New Technology Building Blocks:s

More MAC
Programming
Techniques

i e

INCLUDED programs

Create file
resources

Use custom controls

Includes examples
in both Symantec
C++ and
Metrowerks
CodeWarrior

MoRE MAC
PROGRAMMING
TECHNIQUES

M&Cl“g

= DAN PARKS SYDOW

Contents

&
s@’ 5,
® ap==
=
Z £
o, 4;
°sramm™®

What’s 0N the DISKcociviiiiieeieiiiiiiiniiniririeeeeeeeeessssssssssssssssseessesesesanenas 2
WRhat YOU NEEA...uuuvuririreeeeiieiriereirreisiiiiineeneeeereereesessssessssessssisssssssesassens 3
Why This Book is for YoU......ccceueiiiiiniiiicicicrcecenee 3

Chapter 1: Custom Menus and the MDEF........ 5

The MDEF and Menu Definition Procedurec.ccouevvcenicricnncnnn 6
Setting the MDEF ID of a MENU Resourcecccocevunvuennieninne 7
The MDEF Defines the Look and Actions of a Menu 8
Creating and Using an MDEF Code Resource............cccueuiennee 11

The MDEF Source Code........uoiiiiiiriiiinninniinnininieeiee s 14
The Menu Definition Procedure Entry Point..........cccceevenenne. 15
Taking Care of the Preliminaries ..o, 19

Handling an mSizeMsg Messagec.ocouvrvvevcniniicnninncnnnne 22

More Mac Programming Techniques

Handling an mDrawMsg Message..........ccccoeeinneniniinenencinennnn 23
Handling an mChooseMsg Message............cccovuiriiinininneniiinins 27
The MyMDEF Source Code Listingcccoooveviiniiiiiienniniennnnns 34
Building the MDEF Code Resource...........oveeeeireeeciiniinicneiennes 37
Building with CodeWarTriorcoovveueioiinieeeiceeceenee 39
Building with Symantec C++/THINK C.............cccccooerrrinnnnnnnne. 40
The MDEF Test Application ... 42
What the Test Application Does............cooiviiiiniiiniiiiininnn, 43
The Test Application Resources............ccoovvviiiiciccvinicnenennenn, 43
The Test Application Source Code.........ccoevvivierinniiiniinenninnnns 47
Chapter SUMMATY ..ot e 55

Chapter 2: Custom Controls and the CDEF.... 57

The CDEF and Control Definition Functioncccccceeiiiinnnnnn. 58
Setting the CDEF ID of a CNTL Resource...........ccceererrerenennene 59
The CDEF Defines the Look and Actions of a Control 62
The CDEF Source Code.......oervieieiiiiiiiiiiiiiiniiiicne oo 63
The Control Definition Function Entry Point...........cocccovuvennen. 64
Taking Care of the Preliminariescoocvveriivvecnecccnincnnrunnns 67
Handling a testCntl Messageccoveueieieerieieieececeeeeeee 71
Handling a drawCntl Message............ccccevveniniincnciirninciencnn, 74
The MyButtonCDEF Source Code Listing.........cc.covevveernncennenn 84
Building the CDEF Code Resource............ccoovevieeinieniciininnnnnennnne. 88
Building with CodeWarITiOrcccoveiiiiriniiririiecrinnes 88
Building with Symantec C++/THINK C.........cccccovvvviiniiniiinnnnen 90
The CDEF Test Application ... 92
What the Test Application Does.........ovvvveiiieeicecniiiiiiens 92
The Test Application ReSOUTCES......cumueiiriiriiteiieeicicnrne, 95
The Test Application Source Codecovriveevriniirirncnninnnne. 102
Adding a Second Button to MyTestApp............ccceevviiiinrenniniininnes 108
Changing the MyTestApp Resource Fileccoccvveienniiinees 108
Building a New MyTestApp Application...........cccccuvvvicuvninncanee 110
Adding Control Variation Handling to MyButtonCDEF 112

Contents
Changing the MyTestApp Resource Filecccccccvccrnnnnnnee 112
The CDEF Source Code for Control Variations..........c..c..c...... 115
Adding More Control Variations to a CDEF 123
Chapter SUMMATYc.coimiiennneieiic e 125

Chapter 3: More Custom Controls: Sliders 127

The CDEF and Slider Controlscccooveriievveninincniiennecnnnen 128
Drawing the Slider Control and Indicatorc..ccoveviniiennnne 128
The Slider RESOUICEScoviiiiiiniiiiiiiiciictneeneeeeesecanens 131

Slider Control Source Codeccoviiiinininiiininencncnccienens 134
The Slider CDEF Entry Point.........cconcciicinininniccncnenn 135
Taking Care of the Preliminariescccococvvneencncccnnencnn, 138
Calculating the Thumb Rectangle.............cccoccoviiniinnnininnenn, 139
Handling a testCntl Messagec.coovvveininirinnniiinnicieinienens 144
Calculating the Thumb Region..........cccvvviviiiiiiiinnnnnnnnen. 145
Handling a thumbCntl Messagecccocovunevriiirvcrnrnirnnninnenen. 148
Handling a posCntl Message.........coueervirievicieneicnencnnccnieienes 155
Handling a drawCntl Message.........c..oovuvvuiecceucrneeccecnnennernenne 159
Building the CDEF Code Resourcecoeeveinreinnircrenene 161

The Slider Test Applicationccovviviiiiniininininccniencee. 161
The Test Application ReSOUrCes..........ccvuivirinininniniiniiisnnnenns 162
The Test Application Source Code ..., 164

Sliders and Custom Dragging.........ccceoeeueierreieiiniiiininiiiiininenns 166
The CDEF MeSSages.........cocuiiiiniiniiiiiiniiniinisssessessessessesssses 166
Handling a dragCntl Messagec.coovviivvinnninincnninnnnnens 168

Smoother Custom Dragging........ccoceeeneiienriiinniiiciciiicieienns 174
Adding New PICT ReSOUICEScoucueiucimicrencicenniinnenenninene 174
Taking Care of the Preliminaries..........ccccovveviviiniinninnnnnn 177
Handling a dragCntl Messagecocoviniiiiiciiinrcnecsenenennes 178
Handling a drawCntl Message............cooovvvieiinrinienennneneeniiinninne 180
Covering the Old Thumb ... 183
Adding a Label to the Control..........cccovviviiciivninnnnincniinnnne 185

Chapter SUMMATYccciviniiiiinincnecetececneesteseteessesessesenes 187

More Mac Programming Techniques

Chapter 4: Control Panels and cdevs.......... 189

Control Panels and the Finder ... 190
A Control Panel or an Application?...........ccocevviiinncninienencne 193
Control Panel Resources...........ccoiiiiviiiiiiiinininciecsinneeseens 194
About the MySetSound Control Panelc.cooevvvieiiricninnne 195
MySetSound and the Required Control Panel Resources....... 198
MySetSound and the Familiar Resource Types..........cccoceueunneee 199
MySetSound and the nrct Resource Typeccuvevriinininene 204
MySetSound and the mach Resource Type.........cccoeveincucanee 209
Control Panel Source Code........connrinirniiiiiiiiniicninccicnienneenne 211
Control Panels and Private Data Storagecceceevvverenvnnnnns 211
The Control Device Function Entry Point ..o 213
Taking Care of the Preliminaries........ccovevviniiiniiiiiiniiinnens 215
Handling an initDev Message.........c.cocevivveniiiniiniinnieccnnninnennee 216
Setting the Radio Buttons..........coveviiinninncniinccceiciieenns 217
Handling a hitDev Message.........ccoueuiiiniiiiiinieiciicnccenene 221
The MySetSound Source Code Listing...........ccocevvivieveisinninnins 225
Building the cdev Code Resourcecocviiiiiiiicninnniiinnninns 227
Building with CodeWarriorccovviiiveiininnininniiinninnn, 229
Building with Symantec C++/THINK C..........cccocooverniniinnnnnen. 230
Enhancing the MySetSound Control Panelc.ccccu.e.e. 232
Creating an Icon Family ..., 234
Changing the Control Panel’s Display Font.........c.cccoouviruennene. 236
Additional RESOUICES.......coeeerimiiiriniiiiniiiiireeienns 238
Additions to the Source Code...........coiviiviinnririiiininniininnns 239
The MySetSoundPlus Source Code Listing........c..coeeieerirenns 242
The MyInsanity Control Panelcoccvvvvnniiicneninniinnnennas 246
The MyInsanity ReSOUICEeS........ouvruviviviinriiiincniiniininniinn 248
Handling a nulDev MeSsageccveveniiniiineninniniieenereneennes 252
Selective Execution: The mach Resource and the
macDev Message ... 254
The Mylnsanity Source Code Listing...........ccccoovvceecuvnnncncnce 257
Chapter SUMMATrY ..ot 260

Contents

Chapter 5: Resources.......c.c.cveremieirennnnneens. 261

AbOoUt RESOUICES.........oouirirenrirririiiicti s 262
Using Multiple DITL Resources in One Dialog Boxc.......... 263
About Dynamic Dialog Box Items............cocooociiivnrniniininnne, 263
The MulitpleDITLs ReSOUrCeSsccocovvirinmermenniniieriiiiensnnenns 266
The AppendDITL() and ShortenDITL () Routines................. 271
Keeping Track of DITL Itemsoo.ccceeeviirieiiuennncccnceensenaencns 273
The MultipleDITLs Source Code Listing........ccccoevvvviiuinnnnen. 276
Building the MultipleDITLs Programcccoceceviiinniinnnnennes 281
Using Custom Resource Templates............ccocviiiinieninnenncciniennn. 282
The TemplateUser Program...........ccccoceeivieiinmcnncnnreriniiennenenn. 284
Creating a New Resource Type and Template 285
Using Resource Data In an Applicationc.cocevvceincennnnnee 294
The TemplateUser Source Code Listingco.ccevrvnininnenns 298
Chapter SUMmAryccevereiiienennriii s 300

Chapter 6: Resource Filesc.ceceeneeeee. 303

The MultipleRsrcFiles Resources...........cooooveiiccciininnccniinnneee. 307
Resource File Reference Numbersccovvicveciiininiininnnncns 308
Opening and Closing a Resource File Source Code................ 310
The MultipleRsrcFiles Source Code Listing.........ccccceccecevnveunene 312
Dynamically Creating a New Resource Filecccccvinieniiins 316
The CreateRsrcFile Resources...........o.o.occeviiiiiniinninncniceennnes 318
Resource File Creation Codeccoiirviecniniinicninceenneenecnne 319
The CreateRsrcFile Source Code Listingccoooevvinunnnnen. 323
Dynamically Copying a Resource to Another File......................... 324
The RsrcCopier Resourcesuveviieiiiininieicnnciniieinnns 325
DetachResource() and ReleaseResource() Explained............ 327
Resource Copying Codeccouviieerieeiiiniiicrereececeevnnen 334
The RsrcCopier Source Code Listingcccccoeeniniiiiiinnnnnne. 340
Working with a Preferences File ..., 343
The PrefUser Resources.........ooiieniiiiiiineiiciieneiicniene. 345

ix

More Mac Programming Techniques

Using a Preferences File to Set Dialog Box Items.................... 349
Chapter SUMMATYcocoeeiiiiieeiere s eseens 366

Chapter 7: Filescoccrveiminurerncnnncncnanesenses 369

Opening a New Document..........ooouvivieniiininniciienenes 370
Windows and Document Records............coveunivciniinnnncncneee 371
The NewDocument Source Code Listing........ccoccccvveviirnuennnne 376

Opening an Existing PICT Filecccooiiiiiniiiiiiniinnn, 379
Reading and Displaying the Contents of a PICT File.............. 381
The OpenPICTfile Source Code Listingcccoccevnrevinnicvannes 385

Saving a Document to a PICT File ... 390
Expanding the Document Record...........c.oocoeniviiniiininnnnnnnn 392
Saving a Document with “Save As”...........ccocoeinnieciniiinnninns 394
Saving a Document With “Save”..........cccccccooviiinniciiniininnennns 402
The SavePICTfile Source Code Listingccccovvvvimirinniinnnnes 403

Opening an Existing TEXT File........ccccocvininninnininiiiniiiienne 409
The Text Window Document Record.........cooiiviiininnninnnn. 411
Reading and Displaying the Contents of a TEXT File............. 412
The OpenTEXTfile Source Code Listing.........coccccovviveninnenee. 419

Saving a Document to a TEXT File........ccccocniniiiiiininiiinnnnnis 423
Adding Text to @ Document...........cccoceeriiviiiiinrcencnienncsenens. 424
Saving a TEXT Document with “Save As”cccccevniinnincas 425
The SaveTEXTfile Source Code Listing.........c..ccccevvvurviinnnnnes 430

Chapter SUMMATY ..ot 435

Chapter 8: Printing.......cccovcimrniicccncarnnncnenn. 437

About Printing ... 438
The Printer Resource File ..., 438
The Printer Driver Resource.oooiiieiniiiincninncnicniennes 442

Printing Manager Functions...........cceoveeriiniiciciiiinnennecsenenes 443
The Print Record ...t 444
The MinimalPrint Source Code Listingccccoccccuvvinuenncnnne 444
The Basic Printing Manager Functions..........coueeeinnnennene. 445

Contents
Running MinimalPrint ..., 450
Printing Pictures ..o 451
Printing a Documentccooiniiniiiiiininincniicceseneieee 456
Walking Through PrintPICTdOC.........ccccooviiiiccncviccnenae 457
The PrintPICTdoc Source Code Listing..........cccceecevvercnvinnnene 462
Multiple Windows and Printingccccecereveeneneccninenenncreeee 466
The PrintPICTdocIl Resources...........coovevieriiicccceeenncneneennes 467
The PrintPICTdoclIl Interfacec.coveiniviiiiicinicniiecennnne 467
Handling Selections from the File Menu........c.ccccevenernnnnene 470
The PrintPICTdocll Source Code Listing..........cccccvvereviruenenene 473
Printing Dialog Item TeXt.......ccooeviiiviiiiniiiiniiiniiccecrenincenes 481
The PrintDITLscreens Resourcesccocvviveninniciincnicnnns 483
Printing Lines of Text Using Static Text Items.............ccceeueune. 486
The PrintDITLscreens Source Code Listingcccccevuvvenne. 493
Chapter SUMMATYccooiiviiieiiii et 500

Appendix A: Errorsccccvcvevmrececniinnnncenene. 501

Symantec and Code Resource Errors..........cccooveinininicncnniinene. 501
ResEdit Crash While Working with CNTL Resources.............. 502
Slider Control Freezes in Built Applicationcccocveeennie. 503
Global Variables Don’t Hold Valuescccooveenincncnniinnnn. 503
Strings Contain Garbage Characterscccoounivincnvinnenne 505
Multisegment Project Error.......cooiviiniiiininne 506

Metrowerks and Code Resource Errors.............cococvviiiiiinnennnne. 508
ResEdit Crash While Working with CNTL Resources.............. 508
Slider Control Freezes in Built Applicationcccovnee. 510
Link Error: Illegal Single Segment 32-Bit Reference 510
Global Variables Don’t Hold Valuesc.ccoovinnininnnnnne. 511
Strings Contain Garbage Charactersccocoveviiiiiiiinennnnne. 513
Multisegment Project Error..........cooooveviiiicnvnniniiniieennnn, 514

System Crashes: Errors at Runtimecccccooviiiiiininiincninnnnns 516
Routines Available Only in System 7...........cccovemvinniiniiiiennnnn. 516

T = U . 3 .-

xXi

ACKNOWLEDGMENTS

Michael Sprague, Development Editor, M&T Books, for keeping things
rolling smoothly.

Stephanie Doyle, Production Editor, M&T Books, for a page layout effort
that resulted in a great looking book.

Peter Ferrante, Apple Computer, for another helpful technical edit, and
for taking the time to test the software.

Michael C. Amorose, Alamo Computer, for including his mach resource
template on this book’s disk.

Jason Anderson, Beyond Midnight Software, for including his PictSize
utility on this book’s disk.

Alessandro Levi Montalcini, for adding his shareware cdevEloper utility
to the book’s disk.

John Holder, for including his shareware utility Resource Handler FKEY
with this book’s disk.

Carole McClendon, Waterside Productions, for making this book happen.

Introduction

L)

$)
5 T
(&) &@
% b
8ra m e

Chapter 1 covers the MDEF—the menu definition procedure. An MDEF
is a code resource, that is, compiled code that can be used by other appli-
cations. Because the first four chapters of this book all deal with code
resources, you'll read a thorough description of code resources and defi-
nition procedures in general, and then menu definition procedures in
particular. This chapter has a detailed walk-through of the creation of an
MDETF that displays patterns rather than text items, and of the test appli-
cation that makes use of this MDEF.

Chapters 2 and 3 describe the CDEF, or control definition function.
This type of code resource can be used to add 3-D buttons of your own
creation to any Mac program. In Chapter 2, you’ll see an example that
does just that. Chapter 3 continues the discussion of the CDEF using slid-
ers in the example programs.

Chapter 4 covers the cdev, or control device function. After building
a cdev you'll have what’s more commonly known as control panel—just
like those under the Apple menu of any Mac.

More Mac Programming Techniques

Chapter 5 discusses resources. Here the focus is on using multiple
DITL resources in a single dialog box. This is a technique that you’ll find
useful in any program—especially tutorial or educational software that
allows the user to move through screens of information as if flipping
through the pages of a book. Also covered in this chapter are custom
resource templates—the tool to creating your own resource types.

Chapter 6 describes resource files. You’re already familiar with the
resource file that’s a part of almost every Macintosh project, but there are
other uses for resource files as well. In this chapter, you'll see how to
write programs that use resources found in resource files, create new
resource files, and copy resources from one file to another. Finally, this
chapter includes and in-depth discussion and example of the very impor-
tant topic of preferences files.

Chapter 7 discusses files. Here you’ll see how to open an existing
PICT or TEXT file, and how to save your own application documents as
new PICT or TEXT files. To do any of these tasks, you’ll make use of the
standard dialog boxes that the Toolbox provides for selecting or naming
files.

Chapter 8 covers printing. Here you’ll read about the functions that
make up the Printing Manager, and you’ll see how to use them in a very
short program that prints some graphics to your own printer—regardless
of the type of printer you have connected to your Mac. After that, you'll
see how to print a PICT file (like the one created in Chapter 7) and how
to print the contents of a dialog box.

WHAT’S ON THE Disk

The disk that comes bundled with this book has a single folder on it.
Within that folder are three more folders: Metrowerks Examples f,
Symantec Examples f, and Utilities f.

The Symantec Examples f holds the source code files and project
files for the every example program that is covered in this book. If you
have the Symantec C++ or THINK C compiler, you’ll find that everything

introduction

is all set up for you. If you have the Symantec compiler, you'll find that
you'll save a lot of typing by using these projects.

The Metrowerks Examples f contains the source code files and pro-
ject files for each of the examples discussed in this book. All of the
Symantec examples are repeated here in CodeWarrior format—you
won’t have to make any changes to the source code or project files.

The Utilities f folder contains several third-party programs and utili-
ties that compliment the topics covered in this book.

WHAT You NEeDp

To understand the contents of this book, you should be familiar with a
higher-level language—preferably C or C++. All source code listings are
given in C. You should also be familiar with basic Macintosh program-
ming concepts such as programming with the Toolbox.

All you need to run the example programs included on the disk is a
Macintosh compiler. Either the Metrowerks CodeWarrior compiler, the
Symantec C++ compiler, or the THINK C compiler will do. If you have
one of these compilers, you can compile all of the source code from
either a 680x0-based Macintosh or a Power Macintosh.

WHyY THis Book Is FOR You

Most Macintosh books cover the basics of Mac programming: the event
loop, displaying windows and dialog boxes, and the primary resource
types, such as the WIND and the DLOG. While very valuable to the new
Mac programmer, they leave an information void that the intermediate
Macintosh developer has no way of filling. To develop a real, nontrivial
Macintosh application, you need to move beyond the basics.

After reading this text and working through the numerous example
programs, you'll be able to write Macintosh programs that include any or
all of the following features:

More Mac Programming Techniques

B Fancy controls like buttons that have a slick, three-dimensional
look to them and sliders that have a look like the sliding volume
control on a stero receiver.

B Menus that hold more than just text items. Some applications call
for menu items that are graphical, not text based—Iike a graphics
program that allow the user to change patterns by choosing a new
pattern from a menu.

B Multiple resource files so that your application can remain small.
Upgrades to the application are quick and leave the resources
untouched.

B A preferences file so that the user of your application will be able
to save program options and dialog box settings.

@ File-handling capabilities. To be complete, your Mac application
should allow the user to open files and save documents as new
files.

B Document printing. A truly polished application allows the user
to print the document that he or she created.

® Control panels. If your program will be small, and will affect sys-
tem-wide settings, such as the speaker volume, make it a control
panel rather than an application.

If vou would like to know about any of these topics, this book is for you.
In general, if you've programmed the Mac, but aren’t sure how to go
about turning your very basic program into a full-blown application that’s
rcady to be distributed to others, this book is for you.

More Mac Programming Techniques covers all of the above-mentioned
topics, and several others. There’s plenty of example C language source
code in the book—and on the included disk. And if you own either the
Metrowerks CodeWarrior compiler, the Symantec C++ compiler, or
THINK C, you’ll also find the disk contains project files all set up for
your immediate use.

Chapter
@)

[N
S 2
4] e
= 1 :
& <
2, «;:’
Csramo®

Custom MENuUs AND THE MIDEF

The behavior of a menu is controlled by the Menu Manager. As you’ve
worked with Macintosh applications you’ve certainly noticed that most
menus behave in the same way. A click of the mouse button while the
cursor is over a menu drops that menu down and displays its menu
items. The menu items are listed in the Chicago font, and each item
occupies the same height in the menu. Macintosh menus look similar to
one another because the Menu Manager uses the same code to display
different menus. That code is stored in the System file in a resource of
type MDEF.

More Mac Programming Techniques

While most menus do have the same look to them, some applications
implement menus that are anything but standard; graphics programs are
a prime example. Most have a menu that, when dropped down, displays
an array of colored squares. Selecting one of the squares changes a color
setting within the graphics applications. A program that uses a nontradi-
tional menu, such as the one just described, doesn’t use the system
MDEF code. Instead, that application contains its own MDEF and
instructs the Menu Manager to use its code rather than the system code.

In this chapter you’ll see exactly how to create your own MDEF
resource. Once you know the basics of how to write an MDEF, the look of
the menus that your applications use will be limited only by the bounds
of your imagination.

THE MDEF AND MENU DEFINITION PROCEDURE

Most Mac programmers are familiar with the MENU resource—it defines
the text of the items that appear in a single menu. But many of these
same programmers don’t realize that all Macintosh menus also make use
of an MDEF resource that defines the look of the menu when it appears
on the screen. This MDEF resource, with an ID of 0, is found in the
System file that is present on every Mac. You can verify that this resource
exists in the System file of your own Mac by opening a copy of the System
file using a resource editor such as ResEdit (see Figure 1.1).

Figure 1.1 shows that ResEdit displays the MDEF resource using the
ResEdit hex editor. There’s nothing to view graphically because the
MDEF simply consists of code—the code of a menu definition procedure.
This procedure is responsible for the drawing of all menu items in a
menu. It also provides the code to handle user actions in a menu.
Because each Mac has a copy of this resource in its System file, it is avail-
able to every program. That means that menus typically have a consistent
look and consistent operation in all Macintosh applications.

Chapter 1 Custom Menus and the MDEF

System
'h 3 HoU 1, alol il
o JaR Chos o1101010
= ENES 01600000
RTS
meky ' MDRYW
Glol 1LID] FILE
o11a1010 LS T
Q0011110 e ==
21000000 B =0
mean MERNL mitq
MDEFs from System
o} Size Name
o 0 4492
=E=— MDEF ID = 0 from System g

000000 600R 0000 4D44 4545 " 00OMDEF
0oooos 0000 000D 4ESE FESE 0OO0OMNUOG
000010 48E7 1F38 266E 0014 HOODSENDOD
0ooo1s 204B AD29 426E FFE4 Kt)BnOO
000020 426E FFE2 426E FFC4 BnOOBnOf
oooozs OC?8 3FFF D28E 53EE Ox700&SO
000020 FFC4 41FA 0052 302E OfAOORO.
000038 0018 426E FFCZ 426E 0O0BnO-Bn

FiGure 1.1 THE SYSTEM FILE cONTAINS AN MDEF REsource witH AN ID oF O.

Setting the MDEF ID of a MENU Resource

When you define a MENU resource in a project’s resource file, you give
that resource a menu ID, and you specify which MDEF resource that
menu should use. If you're like most Mac programmers, you might not
be aware of this fact. That’s because your resource editor by default speci-
fies that each new MENU uses the system MDEF with ID 0. You can, how-
ever, change this specification.

More Mac Programming Techniques

Figure 1.2 shows a typical MENU resource in ResEdit. When this
resource is on the screen, the ResEdit menu bar will look like the one
pictured in Figure 1.3. If you select the Edit Menu & MDEF ID menu
item from the MENU menu, you'll see the dialog box shown in Figure
1.3. Here you can either leave the MDEF ID at 0, telling the Menu
Manager to use the system menu definition procedure, or you can set the
ID to a different MDEF resource, thereby telling the Menu Manager to
use a different menu definition procedure.

=] MENU ID = 128 from MenuTest.7.rsrc
m Entire Menu: Enabled
New... its
------------ Title: @ [File |
Quit %0

O & (Apple menu)

i Menu Background: l:l

Ficure 1.2 THE MENU RESOURCE THAT DEFINES A TYPICAL MENU.

How many other menu definition procedures are there to choose from?
That depends on how many MDEF resources you've created. You'll cre-
ate one or more menu definition procedures and save each as an MDEF
resource. Then you'll copy any or all of your own MDEFs to the resource
file for the project your working on. Any MDEF that is in the project’s
resource file is available for use by that project.

The MDEF Defines the Look and Actions of a Menu

An MDEF controls how a menu looks and acts. Figure 1.4 shows the look
of a typical Macintosh menu, as defined by the system’s MDEF resource.

8

Chapter 1 Custom Menus and the NIDEF

File Edit Resource Window SN
Edit Menu & MDEF 1D...
Choose Icon...
Remouve lcon

Remove Colors

Please enter the Menu ID and
the resource 1D of the MDEF to
be used below.

Use Color Picker

A new MENU automatically uses the system's
menu definition procedure—MDEF 0

Ficure 1.3 EacH MENU ReEsoURCE SPECIFIES AN MDEF RESOURCE
THAT WILL CONTROL THAT MENU.

Can't undo ¥2

Cut 36H
Copy 3C
Paste 8U

Select All A

FicURE 1.4 A TYPICAL MENU, AS CONTROLLED BY THE SYSTEM MDEF.

Occasionally, a Macintosh program will require a menu with a completely
different look than the one supplied by the system MDEF resource.
Figure 1.5 gives a couple of examples. In cases such as those shown in
Figure 1.5, the application will use its own MDEF resources rather than
the system MDEF.

More Mac Programming Techniques

Colors

Patterns

Ce] I R
EACALJEEE
EIII

FiUuRE 1.5 NONSTANDARD MENUS CONTROLLED BY MIDEFs
OTHER THAN THE sYSTEM MDEF.

Programmer-defined MDEFs aren’t used only to create menus that dis-
play graphics. A single MDEF can be created to change the overall look
of each of an application’s menus. In Figure 1.6 you see how using an
MDEF resource other than the system’s MDEF 0 causes an application’s
Edit menu to take on a whole new look.

Ficure 1.6 AN MDEF cAN BE USED TO CHANGE THE LOOK OF A MENU
THAT DISPLAYS ITEMS AS TEXT.

10

Chapter 1 Custom Menus and the MDEF

In this chapter you’ll learn how to create your own MDEF resource.
You’ll also develop a simple application that serves but a single pur-
pose—to test your new MDEF.

Once you specify that a MENU resource is to be controlled by your
own MDEF resource, the system MDEF will not come into play—for that
one menu. So while your primary purpose in creating an MDEF is usually
to create a more graphical menu, you'll also have to give your menu defi-
nition procedure the ability to handle the routine tasks that the system
menu definition procedure normally handles. These tasks include

B Calculating the menu’s boundary (for display purposes)

m Displaying the menu items on the screen when the menu is
clicked on

B Handling proper highlighting of menu items as the user moves
the cursor over items

R Noting which menu item is selected by the user

Creating and Using an MDEF Code Resource

Your menu definition procedure will start out as source code. You’ll write
code that defines the look of a menu and code to handle all of the previ-
ous tasks—the tasks normally handled by the system menu definition
procedure. Then, instead of turning the source code into an application,
you’ll use your development environment to compile the code into a code
resource. A code resource, as its name implies, is simply compiled code
stored in a resource.

When you tell your development environment to turn code into a
code resource, you’ll be given the opportunity to save that resource to a
resource file. Your development environment will create a new resource
file, compile your menu definition source code, and save the compiled
code as an MDEF resource in the new resource file. Figure 1.7 shows a
menu definition procedure I've created and saved to a resource file

11

More Mac Programming Techniques

named MyMDEF.xsrc. Because the resource is compiled code, opening it
in a resource editor will result in the display of meaningless hex charac-
ters. You'll notice in the figure that instead of giving the MDEF an ID of
0. which would conflict with the system’s own menu definition proce-
dure, I've given my MDEF a different ID. In this example I've arbitrarily
given my MDEF an ID of 1000.

MyMBDEF.rsrc

& HOU AT
JER CROD|
CHP DI,2
ENE a
ETE

MDEF
= MDEFs from MyMBDEF.rsrc
[°} Size MNarne
1000 §g4

S[E= MDEF ID = 1000 from MyMBDEF .rsrc =—=]

Q004E0 6002 3001 4E7S 32ZE mOODONuZ.
0004ES FFFC 0OCG%2 001A OODR 0000000
0004F0 6604 5247 6002 DE41 fORG'0O0A
DOO4FS 4A69 0004 6606 4A29 JiD0fO0J>
000500 0001 6704 DE41 DE41 00gOOAOA
000308 S047 72FF 2F01 7200 PGrO/0rD
000310 1229 0003 6708 3F01 0>009070
000518 ASSS 426F 0002 3029 AaBo0OO0)
000520 000E 6B0O6 6100 DBE0 0O0kOa0OO
000528 4257 4267 2ZFOC ASSC BWBg/ORE

Ficure 1.7 Like THE sysTem MDEF, your MDEF wiLL BE
COMPILED CODE SAVED AS A RESOURCE.

Once an MDEF is created and saved to a resource file, it can be used with
any menu in any application. First, you'll open the resource file that
holds the MDEF and copy the MDEF resource. Next, you’'ll use the
resource editor to open the resource fork of the application that will be
using the MDEF. Then you'll paste the MDEF resource into that applica-
tion. I've shown an example of this in Figure 1.8, where I'm using my
MDEF with ID 1000 and an application named MyTestApp that I've
already developed.

12

Chapter 1 Custom Menus and the MDEF

E0Z MyMDEF.rsrc S35
anou a1 Ii}-l N ansvLm Goto to0t 2010 1501 Gr's
::: ;‘I“’z’ l é:;g? eliololo o110 1010 @
- & soclIllo LLUINANT)
R gpca 1900000 01000000
MDEF Iy CODE DATA DREL MBAR
E [T elel 1ol
il i 1
= N ¢
MENU W IND ZERO | |
Copy an 'MDEF' from its resource file and
paste it into the resource fork of an application
S J=——= MyTestApp =——=P1Z
LILIRALT] o101 1101
‘Eﬁ :g';o'; “nies Shalael snsled
EWE S carerd 00011116 2011110
RTE RTE !).!000000 2]000000
MDEF CODE DATA DREL
& HOV 1A EEI[IE_
JER (RO
CHP D12 -I
ENE 2 s
RIS - e—
MDEF MENL SIZE WIND

Then the 'MENU' resources in the

application will have access to the 'MDEF'

Ficure 1.8 For AN APPLICATION TO USE AN MDEF, THAT MDEF musr BE
PASTED INTO THE APPLICATION'S PROJECT FILE.

Once an application contains an MDEF resource, any MENU resources
that have been designated to be users of that MDEF will have access to it.
Figure 1.9 shows an application project’s resource file with two MENU
resources in it. One of them—MENU 128, the Edit menu—will use the
standard system MDEF. The other MENU—MENU 129, a menu titled
Fill—will be using my own MDEF.

When a MENU will be using a custom menu definition procedure—as
my Fill menu is doing—you generally won’t add any menu items to the
MENU. Instead, the MDEF itself will be responsible for adding the individ-
ual menu items. Figure 1.10 shows what both the Edit and Fill menus might
look like when controlled by their respective menu definition procedures.

13

More Mac Programming Techniques

'''''' i | say “generally” because there are times when you'll add

‘ ' menu items. For an MDEF that displays graphical items, like
patterns, you won’t add the items in the MENU resource. If

NoTE your MDEF doesn’t use graphical items, however, you will
add the items in the MENU resource. An example of this is
shown back in Figure 1.6. The MDEF that controls that
menu changes the look of the menu and the text that the
items are displayed in, but it still uses text for each item.

E=—— MENUs from MyTestApp.m.rsrc ==
............ {3
Undo %82 &I
Cut $8H
Copy 88C
Paste 88V
Clear

Please enter the Menu 1D and Please enter the Menu ID and
the resource ID of the MDEF to the resource |0 of the MDEF to
be used below. be used below.

Menu ID: Menu ID:

MDEF 1D: MDEF 1D:

FicUurRE 1.9 DirreERENT MENU RESOURCES CAN USE DIFFERENT MIDEF RESOURCES.

THE MDEF Source CoODE

In this section you’ll see the source code for an example MDEF code
resource. The MyMDEF code resource displays a menu that holds five

14

Chapter 1 Custom Menus and the MDEF

menu items. Rather than using text for the menu items, each menu item
is a rectangle with a different pattern in it. Figure 1.11 shows what this
menu looks like. Both the MyMDEF source code file and the MyMDEF
project file appear on the included disk. I'll introduce the source code
for MyMDEF.c piecemeal, explaining each part of it as it is introduced.
The entire listing appears at the end of this section.

Bl

Undo 32

Cut 3H
Copy 38C
Paste 33U
Clear

FiGURE 1.10 BoTH STANDARD AND NONSTANDARD MENUS MAY APPEAR WITHIN
THE SAME MENU BAR OF ONE APPLICATION.

Ficure 1.11 THE MENU THAT IS DISPLAYED BY THE MYMDEF MDEF cobE RESOURCE.

The Menu Definition Procedure Entry Point

When a user clicks the mouse button while the cursor is on a menu in a
menu bar, the Menu Manager invokes the code in the system’s menu

15

More Mac Programming Techniques

definition procedure (MDEF = 0). That procedure is then responsible
for drawing the text that makes up each menu item. It is also responsi-
ble for handling actions in the dropped menu. If the MENU resource
that defines a particular menu specifies an MDEF other than the system
MDLEF, the Menu Manager will instead use the code within that other
MDEF.

When the Menu Manager uses your menu definition procedure, it
will first look for a function named main() in the MDEF code, which
serves as the Menu Manager’s entry point into your MDEF code. This func-
tion named main() is a callback routine. A callback routine is a program-
mer-defined function that gets called by the Toolbox. Since a Toolbox
function (not one of your own functions) will be calling your menu defi-
nition procedure’s main() function, the declaration of your main()
routine must adhere to a strict calling convention.

The Toolbox expects callback routines to follow Pascal calling con-
ventions, not C conventions. So your declaration of main() must start
with the pascal keyword. That tells the compiler to load the function
parameters on the stack in the proper sequence. You, the programmer,
do not have to be concerned with the differences between Pascal and C
calling conventions.

For the MDEF main() routine, the Menu Manager expects no
return value. That means you’ll follow the pascal keyword with the
void keyword, and then the function name. While some compiler envi-
ronments allow the MDEF main() routine to have a variable number of
parameters, traditionally the main() routine has five parameters. While
you can give these parameters the names you’d like, their data types
should be as shown in this snippet from the main() declaration of this
chapter’s MyMDEF example:

pascal void main(short message,
MenuHandle the_menu,
Rect *menu_rect_ptr,
Point hit_point,
short *which_item_ptr)

When the Menu Manager calls the main() functon, it will place values
in the function parameters. That will allow main() routine to take care

16

Chapter1 Custom Menus and the MDEF

of whatever menu-related task needs handling. And how will the menu
definition procedure know what type of task the Menu Manager wants
handled? The very first parameter to main() will hold that information.
The message parameter will hold one of four constants, each of which
represents a Menu Manager request for the handling of a different task :

mDrawMsg Draw the menu on the screen (drop the menu)
mChooseMsg Tell which item was selected, and highlight it
mSizeMsg Calculate the dimensions of the menu

mPopUpMsg Calculate the rectangle of the pop-up menu box

An understanding of this first parameter to main() gives you enough
information to follow just whatmain() does:

pascal void main(short message,
MenuHandle the_menu,
Rect *menu_rect_ptr,
Point hit_point,
short *which_item_ptr)
{
switch (message)
{
case mSizeMsg:
// determine the size of the menu
break;
case mDrawMsg:
// draw the menu on the screen
break;
case mChooseMsg:
// determine which item was selected, highlight it
break;
case mPopUpMsg:
// determine the size of the pop-up box
break;
}

As the user moves the cursor over a menu that uses the MyMDEF menu
definition, the Menu Manager will invoke this MDEF code repeatedly. It
will call it once, passing an MS1zeMsg message, to determine the size of

i7

More Mac Programming Techniques

the nonstandard menu. Then it will call it again, passing an mDrawMsg
message, to draw the menu. And as the user moves the cursor over the
items in the menu, the Menu Manager will call the code several times,
each time passing an MChooseMsg message.

The message parameter tells the main() function which task
should be handled. The remaining four parameters provide information
the menu definition procedure will need in order to handle that task.

The second parameter, the_menu, is a handle to the menu record of
the clicked-on menu. This handle will be used to set some of the fields of
the menu record.

The third parameter, menu_rect_ptr, is a pointer to the rectangle
that is the boundary of the clicked-on menu. If the value of message is
either mSizeMsg or mPopUpMsg, menu_rect_ptr won’t point to a
valid rectangle. Instead, it will be your job to calculate the size of the menu
rectangle. If the value of message is either mDrawMsg or mChooseMsg,
this pointer will point to a valid rectangle. Where do these dimensions
come from? A call to main() with either of these messages will be preced-
ed by an earlier call to main() with either a message value of mSizeMsg
or mPopUpMsg. That call will set the menu boundary and make the Menu
Manager aware of the size.

The fourth parameter to main(), hit_point, is the point in the
menu at which the cursor is currently located. The menu definition proce-
dure needs this information when the value of message is mMChooseMsg.
The menu definition code will respond to a message of this type by high-
lighting and unhighlighting menu items as the user drags the cursor over
the menu. The hit_point will be used to determine which item the cur-
sor is currently over. Again, it should be obvious that as the user moves the
cursor over a dropped menu, the menu definition procedure will be
repeatedly called by the Menu Manager.

The last parameter to main(), which_item_ptr, is a pointer to the last
item selected from the menu. This parameter will be used when message
has a value of mChooseMsg. As the user drags the cursor over the dropped
menu, the menu definition code will highlight an item that the cursor covers.
But at that time it must also unhighlight whichever menu item was previously
highlighted. The which_item_ptr will be used for that purpose.

18

Chapter 1 Custom Menus and the MDEF

Typically, main() is used as a branching point. Depending on the
value of the message parameter, main() will call one of the programmer-
defined routines to handle the task at hand. Here’s the main() routine
for MyMDEF, which handles three of the four possible message values:

pascal void main(short message,
MenuHandle the_menu,
Rect *menu_rect_ptr,
Point hit_point,
short *which_item_ptr)
{

switch (message)
{

case mSizeMsg:
Do_My_Size_0f_Menu(the_menu);
break;

case mDrawMsg:
Do_My_Draw_Menu(the_menu, menu_rect_ptr);
break;

case mChooseMsg:
Do_My_Choose_Item(menu_rect_ptr, hit_point, which_item_ptr);
break;

In this chapter P'll be working with menus that drop down
from the menu bar—not with pop-up menus. So I'll omit any
mPopUpMsg code from the remainder of this discussion. Pop-
up menus are a subject worthy of quite a few pages of expla-
nation. For more information on creating an MDEF that uses
a pop-up menu, refer to Inside Macintosh: Macintosh Toolbox
Essentials.

Taking Care of the Preliminaries

While a menu definition procedure isn’t an application, it is code, and it
does contain functions. So, like application code, you'll need to use func-
tion prototypes to give the compiler’s preprocessor information about

19

More Mac Programming Techniques

each function you define. The MyMDEF menu definition procedure will
consist of four functions. The first three each handle one message type,
and the fourth is a simple utility routine that will be used to invert the
highlighting of a menu item.

void Do_My_Size_Of_Menu(MenuHandle);

void Do_My_Draw_Menu(MenuHandle, Rect *);

void Do_My_Choose_Item(Rect *, Point, short *);
void Invert_My_Item(short, Rect *);

To eliminate the scattering of numbers throughout my source code, I'll
use #fdefine directives to establish a half dozen constants. Figure 1.12
shows just what each of the first four constants refers to. In that figure
I’'ve taken the liberty of changing the scaling of the menu items a little
so that it becomes clear just what some of these pixel dimensions are
referencing.

fidefine TOP_BOT_SPACE 2
fidefine SIDE_SPACE 5
fidefine MENU_PAT_WIDTH 100
fdefine MENU_PAT_HEIGHT 25
fdefine NUM_MENU_ITEMS 5
fdefine SYS_PAT_LIST_OFFSET 20

While at this point it may seem like overkill to be so con-
cerned with these menu dimensions, you'll soon find out that
they are important. When your menu definition procedure
receives an mChooseMsg message, it will be your responsibil-
ity to highlight and unhighlight menu items. You can’t accu-
rately do that without knowing these dimensions.

The System file of every Macintosh contains a PAT# resource with an
ID of 0. This system pattern list holds 38 patterns that are readily avail-
able for your program’s needs. Figure 1.13 shows all 38 of the system
patterns. My example MDEF will use five of these patterns—one for
each of the five menu items. An index is used to access any pattern
from the list. My menu items will use patterns 21 through 25, so I
defined a constant named SYS_PAT_LIST_OFFSET with a value of
20. Later, you’ll see how this constant is used when the menu is drawn
to the screen.

20

Chapter 1 Custom Menus and the MDEF

MENU_PAT_WIDTH ;

-
Pl P

= > TOP_BOT_SPACE

TOP_BOT_SPACE
TOP_BOT_SPACE

I MENU_PAT_HEIGHT

\/ o

SIDE_SPACE SIDE_SPACE

FiGURE 1.12 CONSTANTS DEFINE THE DIMENSIONS OF THE MDEF mMENU.

T
PR

The five menu patterns

SYS_PAT_LIST_OFFSET

Ficure 1.13 MYMDEF wiLL USE FIVE OF THE 38 PATTERNS
IN THE SYSTEM’S PATTERN LIST.

21

More Mac Programming Techniques

A menu definition procedure can have functions, function
prototypes, and #fdefine directives, but it can’t contain
global variables. Since the code for an MDEF is seldom very
T 1+ p complex or very lengthy, this shouldn’t be a hindrance.

Handling an mSizeMsg Message

When the main() routine of a menu definition procedure receives an
mSizeMsg, it means the Menu Manager needs to know the size of the
menu that is defined in the MDEF. For a standard menu, the Menu
Manager can calculate this information on its own. That’s because it can
usc the size of the Chicago font—the standard menu font—to determine
the height and width of each menu item in a standard menu. A custom
menu, however, may consist of patterns, graphics, or different sizes of
fonts, so the Menu Manager needs some help.

When main() receives an mSizeMsg, call the MDEF function that
calculates the menu’s size. The menu'’s size is the rectangle that it occu-
pies when it is dropped down. In my example, the width is the width of
one pattern that will be drawn in the menu, plus the small buffer area I'll
add to either side of the pattern:

MENU_PAT_WIDTH + (2 * SIDE_SPACE)

You can refer back to Figure 1.12 to see how the constants in the previous
equation, and the following equation, are defined. The height of a single
menu item is the height of one of the patterns, plus the buffer area that
appears above and below the pattern. That means the height of the entire
menu is the number of menu items times the height of one item:

NUM_MENU_ITEMS * (MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE))

As the values are calculated they should be stored in the menuWidth
and menuHeight fields of the menu’s menu record. Recall that the sec-
ond parameter to Main() is a handle to the menu. The Menu Manager
is responsible for obtaining a handle to the menu and passing it to your
main() function. You are responsible for setting the two menu size

22

Chapter 1 Custom Menus and the MDEF

fields in this menu record. To do this, dereference the handle twice
using the * operator. Here is the complete Do_My_Size_0f_Menu()
routine for the MyMDEF example:

void Do_My_Size_0f_Menu(MenuHandle the_menu)

{
(**the_menu) .menuWidth = MENU_PAT_WIDTH + (2 * SIDE_SPACE);
(**the_menu) .menuHeight = NUM_MENU_ITEMS * (MENU_PAT_HEIGHT +
(2 * TOP_BOT_SPACE));
}

Once the menuWidth and menuHeight fields of the menu record are
set, the Menu Manager knows the size of the menu. That information is
necessary for the process of drawing the menu to the screen—the topic
I'll cover next.

Handling an mDrawMsg Message

The Menu Manager can draw a standard menu by simply using the
Chicago font to draw the text of each menu item. For a standard
menu, the Menu Manager takes the menu item information that has
been defined in a MENU resource and stores it in the menu’s menu
record. For a custom menu, things are not that simple. The Menu
Manager doesn’t know what each menu item in a custom menu looks
like, so it counts on the custom menu’s menu definition procedure to
supply that information in a draw function. To access this information,
the Menu Manager will send main() an mDrawMsg message. That
message should be handled by a routine that does the actual drawing.
I've named the MyMDEF version of this routine Do_My_Draw_
Menu().

To draw the menu items you’ll set up the location of the first item
and then enter a loop. The body of the loop should draw an item and
then change the location to the area that will hold the next menu item.
For the MyMDEF example, the loop will draw each of the five pattern-
filled rectangles that make up the menu items. The following snippet
shows how the MyMDEF example determines the location of the pat-
terned rectangle that will serve as the first menu item:

23

More Mac Programming Techniques

Rect the_rect;

the_rect.top = menu_rect_ptr->top + TOP_BOT_SPACE;
the_rect.left = menu_rect_ptr->left + SIDE_SPACE;
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;
the_rect.right = the_rect.left + MENU_PAT_WIDTH;

Recall that menu_rect_ptr is a pointer to the rectangle that is the
boundary of the clicked-on menu. This pointer doesn’t always point to a
valid rectangle. The Menu Manager is able to supply a valid rectangle
only after it sends the menu definition procedure an mSizeMsg mes-
sagc. Before a menu definition procedure ever receives an mDrawMsg,
you can safely assume that an mSizeMsg has already been handled and
that the menu_rect_ptr now points to a valid rectangle.

The rectangle that menu_rect_ptr points to holds the pixel bound-
ary of the entire menu and holds these numbers as global coordinates.
Since the menu definition procedure will be drawing to the screen—not a
window—global coordinates are desired. The top of the first menu item
rectangle will be at the coordinate held in menu_rect_ptr.top, plus
the small pixel buffer value TOP_BOT_SPACE:

the rect.top = menu_rect_ptr->top + TOP_BOT_SPACE;

Figurce 1.14 shows how this value is obtained. The bottom of the first pat-
terned rectangle is then simply the top plus the height of the menu item
rectangle:

the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;

The coordinates of the left and right sides of the first patterned rectangle
arc determined in the same manner as the coordinates for the top and
bottom:

the_rect.left = menu_rect_ptr->left + SIDE_SPACE;
the_rect.right = the_rect.left + MENU_PAT_WIDTH;

With the coordinates of the first patterned rectangle established, it’s time
to draw that rectangle. That’s done in loop:

24

Chapter 1 Custom Menus and the NIDEF

short i
Pattern the_pat;
short item_height;

for (1 = 1; i <= NUM_MENU_ITEMS; i++)
{
GetIndPattern(&the_pat, sysPatListID,
SYS_PAT_LIST_OFFSET + i);
FilTRect(&the_rect, &the_pat);
FrameRect(&the_rect);

the_rect.top += item_height;
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;

menu_rect_ptr.top ') TOP BOT SPACE

the_rect.top = menu_rect_ptr.top + TOP_BOT_SPACE

Figure 1.14 THE TOP OF THE FIRST MENU ITEM RECTANGLE IS THE SUM OF THE TOP
COORDINATE OF THE MENU AND THE PIXEL BUFFER.

The loop begins with a call to GetIndPattern(). The first parameter,
the_pat, will be assigned a pattern by the Toolbox when the function has
completed. The second parameter specifies the ID of the PAT# pattern list
resource to use. I am using the system PAT# pattern list discussed earlier, so

More Mac Programming Techniques

I'll pass in the constant SysPatListID here. Finally, GetIndPattern()
needs a value that serves as an index into the pattern list. There are 38 pat-
terns in the system list, and MyMDEF will be using patterns 21 through 25 for
the five menu items. Setting this last parameter to SYS_PAT_LIST_OFFSET
+ 1 results in the proper pattern being used in each iteration through the
loop.

Drawing the patterned rectangle to the menu requires just two Toolbox
calls. A call to Fi11Rect () draws the rectangle with the system pattern, and
acall to FrameRect () provides a thin black frame around the rectangle.

The loop ends by incrementing the top and bottom coordinates of
the_rect in preparation for the drawing of the next menu item. Notice
that the top coordinate must be incremented by the height of the entire
menu item, not by the height of a patterned rectangle. The following
line of code shows how item_height is calculated, and Figure 1.15
points out the difference between the height of a menu item and the
height of a patterned rectangle.

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

the_rect.top

for the first
menu item ; m
: Menu
Menu : item
item - height
height
T Patterned
rectangle
height
the_rect.top

for the second
menu item

FiGURE 1.15 THE HEIGHT OF A MENU ITEM DIFFERS FROM THE HEIGHT OF A
PATTERNED RECTANGLE WITHIN AN ITEM.

26

Chapter 1 Custom Menus and the MDEF

Every time the user clicks the mouse while the cursor is in the menu bar
on the title of the menu that uses the MyMDEF code, main() will be
called twice. The first call will send main() an mSizeMsg message to get
the boundaries of the entire menu. The second call will send main() an
mDrawMsg message to draw the entire menu, hence giving the appear-
ance of the menu dropping down. Here’s a look at the entire
Do_My_Draw_Menu() function from the MyMDEF example:

void Do_My_Draw_Menu(MenuHandle the_menu, Rect *menu_rect_ptr)
{

short i

Rect the_rect;

Pattern the_pat;

short item_height;

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

the_rect.top = menu_rect_ptr->top + TOP_BOT_SPACE;
the_rect.left = menu_rect_ptr->Teft + SIDE_SPACE;
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;
the_rect.right = the_rect.left + MENU_PAT_WIDTH;

for (i =1; i <= NUM_MENU_ITEMS; i++)
{
GetIndPattern(&the_pat, sysPatlListlID,
SYS_PAT_LIST_OFFSET + i);
Fill1Rect(&the_rect, &the_pat);
FrameRect(&the_rect);

the_rect.top += item_height;
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;

Handling an mChooseMsg Message

As the user drags the cursor over the items of the dropped menu, the
Menu Manager will send the menu definition procedure mChooseMsg
messages. In response to an mChooseMsg message, the main() function
should invoke a routine that handles the highlighting and unhighlighting
of items in the menu. This function, named Do_My_Choose_Item() in

27

More Mac Programming Techniques

the MyMDEF example, is responsible for nothing more than inverting
menu items as the cursor sweeps across them.

There are two primary scenarios that Do_My_Choose_Item() will
look for and handle. The first is the case where the cursor has moved
from one point in the dropped menu to another point in the menu. The
second is the case where the cursor has moved from one point in the
dropped menu to a point outside the menu. Keep in mind that when the
uscr drags the mouse such that the cursor moves out of a dropped menu,
that menu does not disappear. Instead, the menu stays dropped, and
whatever item was previously highlighted becomes unhighlighted. Figure
1.16 shows this situation.

i

Dragging the mouse .. .causes that item
off of an item. . . to be unhighlighted

FiGURE 1.16 DRAGGING THE CURSOR OFF A DROPPED MENU UNHIGHLIGHTS
THE PREVIOUSLY SELECTED ITEM.

While you may consider the display of a nonstandard menu
the primary purpose of your menu definition procedure,
another important task of the menu definition procedure is
T 1 p to mimic the normal behavior of standard menus. That
means properly responding to the movement of the mouse
over one of your menus.

28

Chapter1 Custom Menus and the MDEF

I will first examine the case of the cursor moving from one point to
another within the menu. To handle this scenario, Do_My_Choose_
Item() will require three parameters that the Menu Manager passes to
main(). With that in mind, here’s the declaration for Do_My_Choose_
Item():

void Do_My_Choose_Item(Rect *menu_rect_ptr,
Point hit_point,
short *which_item_ptr)

Do_My_Choose_Item() will use three local variables, which are as fol-
lows. The first, selected_item, will be used to hold the item number
of the item the cursor is currently over. The 01d_item variable will be
used to hold the item number of whatever item the cursor was previously
over. The last variable, item_height, will be used to hold the height of
a single menu item.

short selected_item;
short old_item;
short item_height;

Before determining where the cursor is currently located, I'll take care of
a couple of preliminary assignments. First, item_height is assigned the
pixel height of a single menu item:

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

" | You may have noticed that this is the second routine that
' § declares and calculates item_height. This is necessary
..a.“ because the MDEF can’t have global variables. An applica-
NOoTE tion finds its global variables by looking to the value held in
the A5 register of the CPU. Because a code resource isn’t
part of the application that is currently running, it can’t
make the assumption that the A5 register is set up with the
proper value at the time a call is made to the code in the
code resource. This inabllity to reference the A5 world is
the reason a code resource can’t contain traditional global
variables. It is possible for a code resource to set up the A4

More Mac Programming Techniques

register and then make use of variables global to the code
resource, but that's usually not necessary.

Next, I'll set the 01d_i tem variable to the number of the menu item that was
previously highlighted. The which_item_ptr parameter, originally passed
in to main(), points to a value the represents this item. If no item was previ-
ously highlighted, the value that which_item_ptr points to will be 0.

old item = *which_item_ptr;

Now it’s time to handle the scenario of the cursor that has been moved
from one point to another within the menu. Here is the snippet that
takes care of this case:

if (PtInRect(hit_point, menu_rect_ptr))
{
selected_item = ((hit_point.v - menu_rect_ptr->top)/item_height)+1;

if ((old_item > 0) && (old_item != selected_item))
Invert_My_Item(old_item, menu_rect_ptr);

if (selected_item != old_item)

{
Invert_My_Item(selected_item, menu_rect_ptr);
*which_item_ptr = selected_item;

}

PtInRect() is a Toolbox function that accepts two parameters and
returns a Boolean value. If the Point parameter hit_point lies in the
Rect pointed to by the menu_rect_ptr, PtInRect() returns a value
of true. If the point lies outside the Rect parameter, PtInRect()
returns false. If the result is in fact true, it’s time to handle the high-
lighting of the menu items.

The first order of business is to determine the value of selected_
item—the item that the cursor is currently over. The following line of
code takes care of that task:

selected_item = ((hit_point.v - menu_rect_ptr->top)/item_height)+1;

30

Chapter 1 Custom Menus and the MDEF

Figure 1.17 substitutes some numerical values for the variables to show
just what'’s taking place in this assignment statement. In the figure it’s
assumed that the mMChooseMsg message was sent when the cursor was 55
pixels down from the top of the screen. As you study the figure keep in
mind that both menu_rect_ptr->top and hit_point.v are in glob-
al coordinates. Also take note of the fact that because the short variable
selected_item is an integral variable type—not a floating-point
type—the fractional portion of the division result will always be dropped.

#define TOP_BOT_SPACE 2
#define MENU_PAT_HEIGHT 25

menu_rect_ptr->top
is 20

item_height
is 29

hit_point.v
is 55

selected_item = 2

FicuRE 1.17 DETERMINING IN WHICH MENU ITEM THE CURSOR 1S CURRENTLY LOCATED.

With the value of selected_item determined, the function checks to

see if the previously highlighted menu should be inverted back to its
unhighlighted state.

This will happen only if two conditions are true. First, an item must
previously have been selected (01d_item > 0). Second, the newly select-

31

More Mac Programming Techniques

ed item must be different from the previously selected item. If the cursor
has moved from one point in an item to another point in that same item,
the values of selected_item and ol1d_1item will be the same and
there is no need to change the highlighting. If both of these conditions
apply, the utility routine Invert_My_Item() is called to change the
state of the previously highlighted item:

if ((old_item > 0) && (old_item != selected_item))
Invert_My_Item(old_item, menu_rect_ptr);

Next, a check is made to see if the currently selected menu item should
be inverted. If this current item is different than the previous item, -it
should be inverted, or selected. If the new item does indeed get high-
lighted, the which_item_ptr variable is set to point to this item. The
Mecnu Manager keeps track of this variable, so setting its value to the new
menu item number lets the Menu Manager in on the change. The next
time the Menu Manager calls the main() routine of the menu defini-
tion procedure, it will pass in this changed value.

if (selected_item != old_item)

{
Invert_My_Item(selected_item, menu_rect_ptr);
*which_item_ptr = selected_item;

}

Togcther, the previous two if statements have the effect of unhighlighting
the old item and highlighting the new item, if applicable. Next,
Do_My_Choose_Item() must handle the case of a cursor that moves
out of the menu. That scenario is handled in an else-if section:

if (PtInRect(hit_point, menu_rect_ptr))

{
// handle highlighting when cursor is in the menu
}
else if (old_item > 0)
{

Invert_My_Item(old_item, menu_rect_ptr);
*which_item_ptr = 0;
}

32

Chapter 1 Custom Menus and the MDEF

If the value of hit_point doesn’t lie within the boundaries of the
menu, the code reaches the e1se-if statement. There, a check is made
to see if 2 menu item was previously selected (o1d_item > 0). If it was
selected, that item should be unhighlighted to reflect the fact that the
cursor is no longer over that item. A call to Invert_My_Item() takes
care of that. Again, the Menu Manager must be notified that the item
number of the selected item has changed. This time no item is currently
selected, so which_item_ptr is set to point to a value of 0.

Now, here is a look at the completed version of the Do_My_
Choose_Item() routine:

void Do_My_Choose_Item(Rect ‘*menu_rect_ptr,
Point hit_point,
short *which_item_ptr)

{
short selected_item;
short old_item;
short item_height;
item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);
old_item = *which_item_ptr;
if (PtInRect(hit_point, menu_rect_ptr))
{
selected_item = ((hit_point.v - menu_rect_ptr->top)/
item_height)+1;
if ((old_item > 0) && (old_item != selected_item))
Invert_My_Item(old_item, menu_rect_ptr);
if (selected_item != old_item)
{
Invert_My_Item(selected_item, menu_rect_ptr);
*which_item_ptr = selected_item;
}
}
else if (old_item > 0)
{
Invert_My_Item(old_item, menu_rect_ptr-);
*which_item_ptr = 0;
1
}

33

More Mac Programming Techniques

Do_My_Choose_Item() has three conditions in which a menu item
must be inverted. Rather than repeat the code that inverts a menu item, I
have written a short utility routine to handle that one task.
Invert_My_Item() sets up a Rect variable the size of the entire
menu. Then it adjusts the top and bottom of that rectangle to the coordi-
nates of the menu item that is to be inverted. A call to the Toolbox rou-
tine InvertRect() then does the actual inverting.

void Invert_My_Item(short item_number,
Rect *menu_rect_ptr)
{

Rect the_rect;

short item_height;

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);
the_rect = *menu_rect_ptr;

the_rect.top += ((item_number - 1) * item_height);
the_rect.bottom = the_rect.top + item_height;

InvertRect(&the_rect);

[N

The MyMDEF Source Code Listing

I will end this section with the complete listing for MyMDEF. The listing
consists of just four functions—each of which has been described in
detail on the preceding pages.

/1
// function prototypes

void Do_My_Size_0Of_Menu(MenuHandle);

void Do_My_Draw_Menu(MenuHandle, Rect *);

void Do_My_Choose_Item(Rect *, Point, short *);
void Invert_My_Item(short, Rect *);

//
// {idefine directives

34

Chapter1 Custom Menus and the MDEF

fdefine
jfdefine
ftdefine
#define
fdefine
fidefine

/1

TOP_BOT_SPACE 2
SIDE_SPACE 5
MENU_PAT_WIDTH 100
MENU_PAT_HEIGHT 25
NUM_MENU_ITEMS 5
SYS_PAT_LIST_OFFSET 20

1/

entry point to the code

pascal void main(short message,

{

MenuHandle the_menu,

Rect *menu_rect_ptr,
Point hit_point,

short *which_item_ptr)

switch (message)

{

case mSizeMsq:

Do_My_Size_0f_Menu(the_menu);
break;

case mDrawMsg:

Do_My_Draw_Menu(the_menu, menu_rect_ptr);
break;

case mChooseMsg:

/

Do_My_Choose_Item(menu_rect_ptr, hit_point, which_item_ptr);
break;

//

set the size of the entire menu

void Do_My_Size_Of_Menu(MenuHandle the_menu)

{

(**the_menu).menuWidth = MENU_PAT_WIDTH + (2 * SIDE_SPACE);
(**the_menu).menuHeight = NUM_MENU_ITEMS *

//

(MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE)):

/1

draw the menu items

35

More Mac Programming Techniques

void Do_My_Draw_Menu(MenuHandle the_menu, Rect *menu_rect_ptr)
{

short i

Rect the_rect;

Pattern the_pat;

short item_height;

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

the_rect.top = menu_rect_ptr->top + TOP_BOT_SPACE;
the_rect.left = menu_rect_ptr->left + SIDE_SPACE;
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;
the_rect.right = the_rect.left + MENU_PAT_WIDTH;

for (i = 1; i <= NUM_MENU_ITEMS; i++)
{
GetIndPattern(&the_pat, sysPatListID,
SYS_PAT_LIST_OFFSET + i);
Fil1Rect(&the_rect, &the_pat);
FrameRect(&the_rect);

the_rect.top += item_height;
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT;

//
/7 handle cursor movement over menu items

void Do_My_Choose_Item(Rect *menu_rect_ptr,
Point hit_point,
short *which_item_ptr)

short selected_item;
short old_item;
short ditem_height;

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE):
old_item = *which_item_ptr;

if (PtInRect(hit_point, menu_rect_ptr))

: selected_item = ((hit_point.v - menu_rect_ptr->top)/item_height)+l;

if ((old_item > 0) && (old_item != selected_item))
Invert_My_Item(old_item, menu_rect_ptr);

36

Chapter 1 Custom Menus and the MDEF

if (selected_item != old_item)
{
Invert_My_Item(selected_item, menu_rect_ptr);
*which_item_ptr = selected_item;
}
)

else if (old_item > 0)

{
Invert_My_Item(old_item, menu_rect_ptr);
*which_item_ptr = 0;
}
}
//
// invert a single menu item

void Invert_My_Item(short item_number,
Rect *menu_rect_ptr)

{
Rect the_rect;
short item_height;
item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);
the_rect = *menu_rect_ptr;

the_rect.top += ((item_number - 1) * jtem_height);
the_rect.bottom = the_rect.top + item_height;

InvertRect(&the_rect);

BuiLbiNG THE MDEF CobE RESOURCE

To create an MDEF resource you’ll first create a project file, just as you
would for an application. Next, you’ll add the MDEF source code file to
the project, along with the appropriate libraries. Then, turning the
source code into an MDEF resource is simply a matter of telling your
development environment that you want it to generate a code resource
rather than an application. Your compiler will then create an MDEF

37

More Mac Programming Techniques

resource and place it in its own resource file. Figure 1.18 shows the
MyMDEF code resource in a resource file named MyMDEF.rsrc.

Your compiler will let you specify whether the resource file should be
one that gets launched by Apple’s ResEdit resource editor or
Mathemaesthetics Resorcerer resource editor. A file type of rsrc and a
creator of RSED tells the compiler to place the MDEF in a ResEdit file. If
you instead specify a file type of RSRC and a creator of Doug, the MDEF
will end up in a Resorcerer file. Use the file type and creator that match
the resource editor you use.

The resource file serves as a storage area for the MDEF resource. To
use this code resource you'll copy the MDEF from this file and paste it
into the resource fork of any application that needs to use it. This chap-
ter concludes by describing how to create a simple application to test the
MDEF resource.

MyMBDEF.rsrc

aHou 1,a1
JSR CRod
CHP DI, 2
BHE @
RTS

MDEF

MDEFs from MyMDEF.rsrc

D Size Narne

1000 566 “MyMDEF”

[E= MDEF “MyMDEF” 1D = 1000 from M

000000 G00E 0000 4D44 4546 “DODOMDEF
000008 03ES8 0000 0000 0OOOO O0OO00DODOO
000010 41FA FFEE 4E71 4E71 ADDONgNg
000018 6000 0040 4ES6 0000 ‘DOENVOD
000020 594F 2F3C 5041 5423 YO/<PAT#
000028 3F2E 000A A9A0 226E 7.003t"n
000030 000C 201F 671C 2040 OO DgD &
000038 2030 3018 222E 0002 POD2.00
000040 6710 B240 620C 5341 gD<@bOSA

Ficure 1.18 AN MDEF coDE RESOURCE GETS SAVED TO A RESOURCE FILE.

38

Chapter1 Custom Menus and the MDEF

You will find the project file and source code file for this chapter’s exam-
ple on the included disk. As with all of the code presented in this book,
the disk holds two versions of the example—one for CodeWarrior users
and another for Symantec users. The preference settings of each project
file are set according to the following descriptions.

Building with CodeWarrior

If you use CodeWarrior, launch the Metrowerks C/C++ 68K compiler and
create a new project. Give the project a descriptive name such as
MyMDEF.p. Then add the MyMDEF.c source code file, along with the
MacOS.lib library. Figure 1.19 shows what your project file will look like.

EE=——— MYMDEF.p

File Code Data B ¥
< Gources 0 0] ey
MyMDEF . 0 0 e B[]
Mac0S.1ib 0 0 00|
2%
2 file(s) 0 0 i

FiGURE 1.19 THE PROJECT WINDOW FOR A MIETROWERKS
CobEWARRIOR MDEF CODE RESOURCE.

If you’'re compiling with the Metrowerks PowerPC compiler,
use the three standard PPC libraries—MWCRuntime.Lib,
MathLib, and InterfacelLib—Iin place of the MacO08S.lib library.

Before compiling, you’ll want to tell the compiler to generate a code
resource rather than an application. Select Preferences from the Edit
menu and click on the Project icon to display the Project panel. Use the
pop-up menu to set the Project Type to Code Resource, as I've done in
Figure 1.20. Then fill in the edit boxes as shown in Figure 1.20.

39

More Mac Programming Techniques

Set the pop-up to Code Resource

Apply to open project.

Project Type: | Code Resource w |
- Code Resource Info:

Enter a name
for the resource
file that will hold

Processor

x File Name MyMDEF.rsrc o bt

ergaili Enter a name

Linker Resource Name | MyMDEF for the MDEF
Header Type: |_Standard | itself

ResType ReslD

[J Multi Segment
(] Display Dialog
[JMerge To File

7 :ﬁ Assign a
resource

ID to the

MDEF

Creator Type

Enter MDEF as
the resource type Set the Creator and Type to these values
to generate a ResEdit resource file
Ficure 1.20 THE PROJECT PANEL SETTINGS FOR A MIETROWERKS

CopeWarrior MDEF cODE RESOURCE.

Next, click on the Processor icon to display the Processor Info panel. Use
the Code Model pop-up menu to select the Small code model. The other
options in this menu are Smart and Large. For all code resources, you'll
use the Small code model.

Dismiss the Preferences dialog box by clicking in its OK button. Then
select Make from the Project menu. After just a couple of seconds, the
build will complete, and you'll have a new resource file in the folder that
holds the MyMDEF.p project.

Building with Symantec C++/THINK C

If you work with Symantec C++ or THINK, launch the THINK Project
Manager and create a new project. Give the project a name that associ-
ates it with your source code, such as MyMDEF.nt. Next, add the
MyMDEF.c source code file and the MacTraps library to the project.
Figure 1.21 shows the project window for a Symantec project.

40

Chapter 1 Custom Menus and the MDEF

E=——= MyMDEF.7

Name Code
w7 Segment 2 4 4
MacTraps o [
MyMDEF .¢ 0
Totals 470 | |
b
L]

Ficure 1.21 THE PRoOJECT WINDOW FOR A SYMANTEC MDEF cODE RESOURCE.

Before you compile the MyMDEF code you'll want to tell the THINK
Project Manager to generate a code resource rather than an application.
Select Set Project Type from the Project menu. Click on the Code
Resource radio button in the dialog box that appears. Then fill in the
edit boxes as I've done in Figure 1.22.

Set the File
Type and
S - — Creatorto
O Application . File Type G these
Desk Accessory | Gmemm Values to
. O i i Y i Creator .| generate a
g"dé 02 | O Device Driver ResEdit file
e Code [:
Resource Loy ¢ Enter a name
] for the MDEF
itself

| Assigna
resource
ID to the
MDEF

Enter MDEF as the resource type

Ficure 1.22 THE Set ProJECT TYPE SETTINGS FOR A SYMANTEC MDEF cobE
RESOURCE.

Dismiss the dialog box by clicking in its OK button. Then choose Build
Code Resource from the Project menu. The THINK Project Manager will

41

More Mac Programming Techniques

compile the MDEF.c code. Then it will present a dialog box that allows
you to enter a name for the resource file to which the MDEF code
resource will be saved. Enter a name that will remind you that this is a
resource file (see Figure 1.23).

[My MDEF § ¥ |

Y MyMBEF.¢ < Hard Disk
D MgMBEF .

fipnt
Desktop

Entera Save code resource as:
name for the

resource file |00 » MyMBDEF.rsrc

mgtl\\;‘vglEhgld Smart Link [0 Merge

Ficure 1.23 THE SYMANTEC DIALOG BOX FOR NAMING THE RESOURCE FILE THAT WILL
HoLb THE MDEF CcODE RESOURCE.

After clicking the dialog box Save button, you'll have a new resource file
in the same folder that contains the MyMDEF.xt project.

THE MDEF TesT APPLICATION

A code resource isn’t stand-alone code, that is, you can’t double-click
a code resource to execute it. Instead, a code resource such as an
MDEF is used by an application. So to test a code resource you'll
need a simple Mac application that uses that resource. This chapters
ends with just such a program. Because the code will look similar to
the code for other simple Macintosh programs you've seen in the
past, I'll keep the walk-through of it to a minimum. Instead, I'll con-

42

Chapter 1 Custom Menus and the MDEF

centrate on how the test application makes use of the MDEF code
resource.

What the Test Application Does

This chapter, and the next few chapters that follow, include a test applica-
tion named MyTestApp. This chapter’s version of MyTestApp displays
four menus, but only one will be of interest. The Fill menu will be used
to test the MyMDEF menu definition procedure. When a user clicks on
the Fill menu, the MDEF developed in this chapter will control the
menu, not the system MDEF.

MyTestApp begins by displaying a window with a framed rectangle
drawn in it. A click on the Fill menu displays a menu with five patterns in
it. Selecting any one pattern has the effect of filling the framed rectangle
with that pattern. Figure 1.24 shows how the program looks as a Fill
menu selection is being made, and after.

[& File Edit Fill

New Window ===

[& File Edit

FiGure 1.24 THE TEST APPLICATION RESPONDS TO A MENU SELECTION IN THE MENU
CcONTROLLED BY THE MYMDEF cODE RESOURCE.

The Test Application Resources

You know all about the few resources that are in every Macintosh pro-
gram, so you may be tempted to skim or skip this section. Don’t! You’ll

43

More Mac Programming Techniques

want to do a few nontraditional things to the MyTestApp project resource
file to ensure that the Fill menu works correctly.

First, create four MENU resources. The File menu will be used to
quit the application, and the Fill menu will be used to test the MDEF.
The MyTestApp application won't be concerned with the Apple menu
and the Edit menu. Figure 1.25 shows the four MENU resources.

E=== MENUs from MyTestApp.7.rsrc
N e

u File
About MyTestApp.

128 129

Undo %2 &

Cut 3#H
Copy #C
Paste U
Clear

120 131

[ELE]

Ficure 1.25 Tue MENU RESOURCES FOR THE TEST APPLICATION PROJECT.

Belore moving on to other resources, double-click on MENU 131—the Fill
menu. When you do, you'll see the MENU editor shown in Figure 1.26.

When you open a MENU resource you'll see that ResEdit has added a
new menu to its menu bar—a menu titled MENU. Select Edit Menu &

MDEF ID from that menu. Now, perform the very important step of
changing the MDEF ID value from 0 to 1000. This MDEF ID value must
match the value of the MDEF resource that you'll be copying into the

44

Chapter 1 Custom Menus and the MDEF

compiled MyTestApp application. I gave the MyMDEF MDEF code
resource an ID of 1000, so that’s the value I need to enter for this MENU
resource’s MDEF ID. Figure 1.27 emphasizes this point.

==——— MENU ID = 131 from MyTestApp.7i.rsrc ===

Entire Menu: (< Enabled
ity

Il

Title: @ [Fill]
O & (Apple menu)

Color

Title: [l
Item Text Default:

Menu Background: EI

&

Ficure 1.26 THe MENU RESOURCE FOR THE MENU THAT WILL BE CONTROLLED
BY THE MYMDEF cODE RESOURCE.

If you forget to perform this step, the Fill menu will not work
in the MyTestApp application!

B

The MDEF ID values of the other three menus should each keep the
value of 0 that ResEdit assigned them. Only the Fill menu will be using
the custom MDEF.

Next, crecate an MBAR resource and add the four MENU resource
IDs to it. Make sure the order of the IDs matches the order I've used in
Figure 1.28.

Finally, add a WIND resource. This resource will define the window
that holds the patterned rectangle that gets drawn by the Fill menu. The
size and type of window that you define by the WIND resource isn’t critical.

45

More Mac Programming Techniques

Please enter the Menu ID and
the resource ID of the MDEF to
be used below.

MyMBDEF.rsrc

ARV 1,41
VSR €A0)
CHP 01,2
BRE 3
RTE

MDEF
(EEE|, JIDEFs from MyMDEF.rsrc =i
ﬁk Size Name
1000 566 “MyMDEF” [
O
oa |

Ficure 1.27 Tue MDEF ID must BE SET 10 THE ID oF THE MDEF CODE RESOURCE.

E[EE MBAR ID = 128 from MyTestApp.7.rsrc

it
% of menus 4

1) *kkkk

2) ddokkk

3) Aokkkk

4) HrERK

Henu res D 131

§) kkkkk
0/
]

Ficure 1.28 THE MBAR RESOURCE FOR THE TEST APPLICATION PROJECT.

46

Chapter 1 Custom Menus and the MDEF

The Test Application Source Code

As mentioned, there’s nothing fancy about the MyTestApp source code.
A look at the function prototypes and the #define directives will pro-
vide a good preview of what’s in store.

//
// function prototypes

void Initialize_Toolbox(void);

void Set_Up_Menu_Bar(void);

void Open_Window(void);

void Handle_One_Event(void);

void Handle_Mouse_Down(EventRecord *);
void Handle_Menu_Choice(long);

void Handle_Apple_Choice(short):

void Handle_File_Choice(short);

void Handle_Fill_Choice(short);

void Update_Window(WindowPtr);

//

// {{define directives
{idefine MENU_BAR_ID 128

{idefine APPLE_MENU_ID 128

{idefine SHOW_ABOUT_ITEM 1

fidefine FILE_MENU_ID 129

f#define QUIT_ITEM 1

jdefine EDIT_MENU_ID 130

jidefine FILL_MENU_ID 131

fidefine WIND_ID 128

ftdefine SYS_PAT_LIST_OFFSET 20

MyTestApp uses three global variables. A11_Done signals that the program
should quit. Pattern_Index holds an index into the system pattern list
and is used to keep track of the pattern that is currently being used to draw
and update the rectangle in the program’s window. Pat_Rect defines the
coordinates of the rectangle that gets filled with a pattern.

47

More Mac Programming Techniques

!/

/! global variables
Boolean Al1_Done = false;

short Pattern_Index;

Rect Pat_Rect;

The main() function performs standard initializations, displays the
menu bar, opens a window, then loops until the program terminates.

!/
/7 main()

void main(void)

{
Initialize_Toolbox();
Set_Up_Menu_Bar();
Open_Window();

while (A11_Done == false)
Handle_One_Event();
}

Initialize_Toolbox() and Set_Up_Menu_Bar() take care of setting
up the application. Both functions should look familar to Mac programmers.

//
!/ initialize the Mac

void Initialize_Toolbox(void)

{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL)
FlushEvents(everyEvent, OL);
InitCursor();

}

//

1/ set up menu bar and menus

void Set_Up_Menu_Bar(void)

48

Chapter 1 Custom Menus and the MDEF

{
Handle menu_bar_handle;
MenuHandle apple_menu;
menu_bar_handle = GetNewMBar{(MENU_BAR_ID);
SetMenuBar(menu_bar_handle);
DisposHandle(menu_bar_handle);
apple_menu = GetMHandle(APPLE_MENU_ID);
AddResMenu(apple_menu, °‘DRVR’);
DrawMenuBar();

}

The Open_Window() function does just what its name says. It also sets up
the coordinates for the rectangle that will be drawn to the window and
gives Pattern_Index an initial value. SYS_PAT_LIST_OFFSET is a
#define that is set to a value of 20. That means the pattern that is initially
used will be the twentieth in the system pattern list. Pattern twenty happens
to be a solid white pattern. When the rectangle is initially drawn (a litte
later), it will be filled with white. As you'll see a little later, the value of
Pattern_Index changes when a selection is made from the Fill menu.

//
!/ open a display window
void Open_Window(void)
{
WindowPtr the_window;
the_window = GetNewWindow(WIND_ID, OL, (WindowPtr)-1L);
ShowWindow(the_window);
SetPort(the_window);
SetRect(&Pat_Rect, 20, 20, 150, 100);
Pattern_Index = SYS_PAT_LIST_OFFSET;
}

Handle_One_Event() is called repeatedly from main(). It uses a call to
WaitNextEvent() to retrieve information about the most current event.
A switch statement then calls the proper function to handle the event.

49

More Mac Programming Techniques

//
1/ handle single event

void Handle_One_Event(void)

{
EventRecord the_event;

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)
{
case mouseDown:
Handle_Mouse_Down(&the_event);
break;

case updateEvt:
Update_Window((WindowPtr)the_event.message);
break;

A mouseDown event is handled in the standard fashion by the
Handle_Mouse_Down () function.

//
// handle a ¢lick of the mouse

void Handle_Mouse_Down(EventRecord *the_event)

{
WindowPtr window;
short the_part;
Tong menu_choice;

the_part = FindWindow (the_event->where, &window);

switch (the_part)
{
case inMenuBar:
menu_choice = MenuSelect(the_event->where):
Handle_Menu_Choice(menu_choice);
break;

case inSysWindow:
SystemClick (the_event, window);
break;

case inDrag:

50

Chapter 1 Custom Menus and the MDEF

DragWindow(window, the_event->where,
&qd.screenBits.bounds);
break:

A mouse click in the menu bar sends the program to Hand1e_Menu_
Choice(). This routine relies on three subroutines to do the actual
handling of a click on either the Apple, File, or Fill menus. A click on the
Edit menu will drop down the Edit menu, but any menu selections will
be ignored.

//
// handle a click on a menu

void Handle_Menu_Choice(long menu_choice)

{
short the_menu;
short the_menu_item;
if (menu_choice !=10)
{
the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice);
switch (the_menu)
{
case APPLE_MENU_ID:
Handle_Apple_Choice(the_menu_item);
break;
case FILE_MENU_ID:
Handle_File_Choice(the_menu_item);
break;
case EDIT_MENU_ID:
break:
case FILL_MENU_ID:
Handle_Fi11_Choice(the_menu_item);
}
HiliteMenu(0);
}
}

51

More Mac Programming Techniques

The handling of menu selections from the Apple menu and the File
menu is done in the same way that you've seen done in numerous Mac
applications.

//
// handle a click in the Apple menu
void Handle_Apple_Choice(short the_item)
{
Str255 desk_acc_name;
int desk_acc_number;
MenuHandle apple_menu;
switch (the_item)
{
case SHOW_ABOUT_ITEM:
SysBeep(5);
break:
default:
apple_menu = GetMHandle(APPLE_MENU_ID);
GetItem(apple_menu, the_item, desk_acc_name);
desk_acc_number = OpenDeskAcc(desk_acc_name);
break;
}
}
//
// handle a click in the File menu

void Handle_File_Choice(short the_item)

{
switch (the_item)
{
case QUIT_ITEM:
Al1_Done = true;
break;
}
}

In response to a menu selection from the Fill menu, MyTestApp ends up
atHandle_Fil1_Choice(). The menu definition procedure code that
appears in the MyMDEF MDEF takes care of the display of the Fill menu

52

Chapter1 Custom Menus and the MDEF

and the highlighting of its menu items. But it doesn’t actually perform
any tasks once a menu selection is made; that is up to your application.
For this test program I've decided that a selection from the Fill menu will
result in the filling of a rectangle with the same pattern that is pictured
in the Fill menu item.

Handle_Fil11_Choice() is aware of which menu item was select-
ed—the item number is in the variable named item. I will use that value,
and the SYS_PAT_LIST_OFFSET to set the value of the global variable
Pattern_Index to the proper index into the system pattern list. Then,
a call to EraseRect () clears the window and a call to InvalRect()
marks the window’s port rectangle as invalid. That tells the Window
Manager that the window needs updating. The system then generates an
updateEvt.

/7
// handle a click in the Fill menu

void Handle_Fil1_Choice(short item)
{
WindowPtr window;

window = FrontWindow();
Pattern_Index = SYS_PAT_LIST_OFFSET + item;

EraseRect(&window->portRect);
InvalRect(&window->portRect);
}

What happens when the system generates the updateEvt? The next call
to WaitNextEvent() will send the program to the Update_Window()
function. This routine gets the proper pattern from the system pattern list
and then uses this pattern to fill the rectangle defined by the global vari-
able Pat_Rect.

1/
1/ update the window in response to updateEvt

void Update_Window(WindowPtr window)

53

More Mac Programming Techniques

{
Pattern the_pat;
BeginUpdate(window);
GetIndPattern(&the_pat, sysPatListID, Pattern_Index);
FilTRect(&Pat_Rect, &the_pat);
FrameRect(&Pat_Rect);
EndUpdate(window);
}

That is it for the test application source code. You can see that most of
the code supports the basic functioning of Mac program. Very little new
code is needed to actually test the MDEF itself.

With the source code entered, the next step is to build the stand-
alone application. After that, I'll quit my development environment and
return to the desktop.

The last thing I'll want to do is copy the MDEF code resource from its
own resource file and paste it into the MyTestApp application. I'll launch
a resource editor and open both the MDEF code resource file and the
MyvTestApp application. Note that I'm opening the application itself, not
the MyTestApp.r.rsrc file. Then I'll perform the Copy and Paste. When
complete, the screen looks like Figure 1.29.

MyMDEF.rsrc ESE=——— MyTestApp
olol 1108 olol 110l
S “Hgh i oS omEe
R gegls swiine il R
kTS RTS s oy
MDEF CODE DATA DREL MBAR
1
=
-l = L
MDEF MENU SIZE WIND

FiGURE 1.29 THE RESULT OF PASTING THE MIDEF CODE RESOURC
INTO THE APPLICATION’S RESOURCE FORK.

54

Chapter 1 Custom Menus and the MDEF

Some of the resources in your MyTestApp program may differ
from those shown in Figure 1.29. That’s because the
Symantec compiler and the CodeWarrior compiler each add
one or two different resources during their bulld processes.

There’s nothing more to do to get the MDEF to work—just launch the
MyTestApp application, move the mouse over the Fill menu, and click!

CHAPTER SUMMARY

The look and behavior of all Macintosh menus is provided by MDEF
resources. Unless instructed to do otherwise, the Menu Manager uses the
system 0 MDEF. To give a menu its own unique look you can write menu
definition procedure code. You’ll then use your development environ-
ment to compile that source code and save it in a resource file as an
MDEF code resource.

Besides providing a menu that has a look and functionality not nor-
mally supported by a Mac application, an MDEF resource provides the
added benefit of being reusable. You can paste a copy of an MDEF
resource into any number of applications to provide each program with
the use of the MDEF code.

Chapter

® ®

©
3 T
=
3 5
Q @
Py AN

> .o
ogra m m“‘

Custom CONTROLS AND THE CDEF

The Macintosh Toolbox, along with a graphical resource editor, makes
the creation, display, and handling of standard controls such as push but-
tons, radio buttons, and check boxes an easy task for Mac programmers.
While these standard controls suffice for most purposes, they don’t pro-
vide the slick look that both programmers and users have come to expect
from the computer that set the standards for how a graphical user inter-
face should look. The Mac applications that look the most professional
and are the most compelling to use usually have controls that have the
look of dials, three-dimensional buttons, and sliders. Most Mac program-
mers are surprised—and disappointed—when they learn that these types
of controls are not readily supported by the Macintosh Toolbox.

57

More Mac Programming Techniques

While fancy controls of the types just mentioned can’t be created as
readily as standard controls, they can be created and brought to life with
just a little extra programming effort. And once you know the technique
for creating one new type of control, you'll find that it becomes relatively
easy to create all sorts of fancy, unique controls that will give your appli-
cations a custom look.

Chapter 1 introduced you to code resources—in the form of the
MDEF resource. In this chapter you’ll learn about a second type of code
resource—the CDEF resource. Your understanding of the MDEF code
resource, the menu definition procedure, and how the MENU resource
specifies an MDEF resource will be important as you read this chapter.
That’s because each of these menu-related concepts has an analogous
control-related concept.

In this chapter you’ll see how a CDEF can be used to create custom
controls that use pictures as buttons. The techniques discussed in this
chapter will apply not only to picture buttons, but to sliders—the topics
covered in Chapter 3.

THeE CDEF AND CoNTROL DEFINITION FUNCTION

Mac programmers are familiar with the look of standard controls such as
check boxes, radio buttons, and push buttons—they’re shown in Figure
2.1. With the introduction of System 7 came a few changes to the Mac
graphical user interface—there’s more and better shading in windows,
for instance. Controls such as buttons and check boxes, however, were
not changed from System 6 to System 7.

Just as standard menus are given their look and feel by an MDEF
code resource found in the System file, so too are standard controls
given their properties by resource code found in the System file. For
standard controls such as push buttons, check boxes, and radio buttons,
this code is supplied in a control definition function that’s kept in a System
file CDEF with a resource ID of 0.

Chapter 2 Custom Controls and the CDEF

=———§

O Medium Save Fastest Speed
O Slow [X] Repeat Test

eed Settin:

[] Display Speed

[Copy] [Save]

(concer) Coane]) |

Ficure 2.1 A DIALOG BOX WITH STANDARD CONTROLS IN IT.

Setting the CDEF ID of a CNTL Resource

In Chapter 1, you saw that a MENU resource specifies which MDEF code
resource will control the menu defined by the MENU resource. Controls
follow this same organization. When you create standard controls in a
DITL resource by using the floating palette that accompanies the
DITL—as in Figure 2.2—your resource editor will specify that each of
those controls be handled by the system’s CDEF.

=[JS DITL ID = 128 from Test.7.rs = These
Button controls
(<] Check Box will be
[] Use Color = handled
® Radio Button by system
O Red Bl control BHEER
O siue

g‘_’_f; lcon

i_ Picture

User Item

FiGURE 2.2 STANDARD CONTROLS CAN BE ADDED TO A DIALOG BOX

usiNG A DITL RESOURCE.

59

More Mac Programming Techniques

If you create a control by adding a Control from the floating palette—as
shown in Figure 2.3—you’ll have the opportunity to specify which CDEF
should handle that control.

S DITL ID = 128 from Test.m.rs

Button
Ouse Color " ENfL = Che.Ck e
.................... K {® Radio Button
) Red
) Blue T: Static Text
o Edit Text

;i\, lcon

L Picture

User ltem

FicURE 2.3 ADDING WHAT WILL BE A CUSTOM CONTROL TO A DITL.

In ResEdit, double-clicking on the newly added control will open a win-
dow like the one shown in Figure 2.4. In this window, the ID of a CNTL
resource that holds information about the new control can be entered.

The ID of a CNTL resource that
holds information about this control

ER=——— Edit DITL item{imst.n.rm %
Resource ID:

| Control v |
(] Enabled Top: Bottom: 50

Left: Right: 210

Ficure 2.4 A cusTtom coNTROL SPECIFIES THE ID oF THE CNTL RESOURCE IT USES.
60

Chapter 2 Custom Controls and the CDEF

One of the key pieces of information that is held in a CNTL resource is
the ID of the CDEF that will handle controls based on the CNTL
resource. Figure 2.5 shows the trail from a Control DITL item to the
CNTL resource item and then to the CDEF item.

Resource ID: | 200

| Control |

SEEe=———CNIL 1D = 200 from Test.mi.rs

& En

Boundshect [0 [l0 |[25
Ualue ICI
Uisible @ True () False
I C—
Proc!D G
RefCon

== CDEF ID = 0 from System _@_

000003 o000 o008 4598 Free odnNIe &

0ooo 10 48E7? 1F7S OCGE 0002 HOOxOnDO
oooo1s 000C 6312 OCEE 000A O0cDOnOO
000020 000C 670A OCGE 0O0OOB 0O0gDOnOD
000028 000C 6600 OODE 486E D0OfDO0OHN
000030 FFEC AS92 ASYE OC7S 0OORSAGOx

FiGURE 2.5 A cusTOM CONTROL SPECIFIES A CNTL RESOURCE,
WHICH IN TURN SPECIFIES A CDEF RESOURCE.

To create a custom control you'll first write a control definition function
and use your compiler to save that code to a CDEF code resource. Then,
in the resource file of an application project, you’ll create a CNTL
resource with a ProcID that includes the resource ID of your CDEF.
Finally, as you add items to a DITL resource in the resource file of the

61

More Mac Programming Techniques

application project, you'll make one of those items a Control item
defined by your CNTL resource.

Toe CDEF DerINES THE LOOK AND AcCTIONS OF A CONTROL

A developer creates a custom control when he or she is not satisfied with
the look or actions of the standard controls that are available as part of
the Macintosh user interface. For instance, if you want to give the inter-
face to your programs a more three dimensional look, you can begin by
defining your own types of controls. Figure 2.6 shows how your own con-
trols could achieve this look.

FiGURE 2.6 CUSTOM CONTROLS ALLOW AN APPLICATION TO GIVE ITS
DIALOG BOXES A UNIQUE LOOK.

Dials and sliders offer a range of settings rather than the on/off settings
of buttons. Sliders are the controls that add the most graphical look to a
Mac program—yet they are a type of control that are seldom, if ever,
used by the average programmer. That’s because aside from the scroll
bar, sliders don’t exist as a predefined control type—as buttons and
check boxes do. Figure 2.7 provides a representative sample of the types

Chapter 2 Custom Controls and the CDEF

of sliders you'll be able to add to your Mac programs after reading this
chapter and Chapter 3.

FiGURE 2.7 TYPICAL CUSTOM SLIDERS THAT CAN BE CREATED
usiNG CDEF cODE RESOURCES.

In this chapter and the next I'll develop two controls—a new type of button
and a slider—using CDEF resources. And, as I did for the MDEF, after creat-
ing the CDEF resources I can easily copy them into more than one program.

THE CDEF Source CobE

In this section I'll develop a CDEF that consists of a control definition
function that uses pictures in place of standard buttons. The pictures
that define what a button looks like won’t actually be a part of the CDEF.
Instead, the CDEF will rely on PICT resources that are in the applica-
tion’s resource fork. That keeps the CDEF generic enough for it to be
usable by any application.

63

More Mac Programming Techniques

The CDEF code won’t place any limits on the size or color level of the
pictures. That means I can use a graphics program to draw a set of pic-
tures and, after pasting the pictures into the resource file of an applica-
tion project, use those pictures as a button.

The Control Definition Function Entry Point

Mouse clicks on a control tell the Control Manager to execute the code
definition function associated with that control. If you've defined a con-
trol based on a CNTL resource with a ProcID other than 0, the Control
Manager won’t use the system control definition function. Instead, it will
look in the application’s resource fork for the appropriate CDEF and
exccute the main() function of that code resource. As it is for the
MDEF, the main() function is the entry point into a CDEF resource.

The entry point to a CDEF is a callback routine, so its header needs
to begin with the pascal keyword. For a CDEF, the main() routine has
a return type of 10ng and four parameters—as shown in this example:

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)

As it was for the MDEF, the CDEF meSsage parameter is a constant that
tells main() what type of action needs to be handled. The message
parameter can take on any one of the 11 Apple-defined constants listed
here.

drawCntl Draw the control to a dialog box or window
testCntl Test to see if cursor is over control
calcRgns Calculate control’s region (24-bit systems)
initCntl Initialize the control

dispCntl Dispose the control

posCntl Position control's indicator, update settings
thumbCnt1 Calculate dragging indicator parameters

64

Chapter 2 Custom Controls and the CDEF

dragCntl
autoTrack
calcCntlRgn
calcThumbRgn

Handle dragging of control or indicator
Invoke control’s action procedure
Calculate control’s region (32-bit systems)
Calculate indicator’s region

The body of a CDEF main() routine is similar to that of an MDEF
main(): it examines the value of the message parameter and invokes a
routine that specifically handles the action. Here’s the shell of a CDEF
main() for a control definition function that could be made to handle
each of the possible message values:

pascal long main(short var_code,

{

ControlHandle the_control,
short message,
Tong msg_param)

long return_val = OL;

switch(message)

{

case drawCntl:

// each case would invoke a routine
// to handle one type of message

break;

case testCntl:
break:;

case calcCRgns:
break:

case initCntl:
break:;

case dispCntl:
break;

case posCntl:
break;

case thumbCntl:
break;

case dragCntl:
break;

case autoTrack:
break;

case calcCntlRgn:

break;

More Mac Programming Techniques

case calcThumbRgn:
break;
default:
break;
}
return (return_val);
}

Fortunately, controls defined by most CDEF code resources won't need to
respond to each type of message. You can see by the description of the
message constants that many of the messages make sense only for controls
that act as dials or sliders. For instance, this section’s MyButtonCDEF
example control definition function, which works with buttons, will only
need to handle two types of messages: testCt1 and drawCt1. Here’s a
look at the main() function for MyButtonCDEF:

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)
{

long return_val = OL;

switch(message)
{
case testCntl:
return_val = Test_Control(the_control, msg_param);
break;

case drawCntl:
Draw_Control(the_control);
break;
default:
break;
}

return (return_val);

The first parameter to main(), var_code, is used only for CDEF
resources that support multiple variations of a single control. This para-

66

Chapter 2 Custom Controls and the CDEF

meter will be ignored in the MyButtonCDEF, but will be used in Chapter
3 in an example that supports control variations.

The second parameter to main(), the_control, is a handle to the
control record of the control receiving the action. Various routines in the
CDEF will examine fields of the control record before operating on the
control.

The final main() parameter, nSg-param, isa short that holds addi-

tional information about the message sent to main(). The exact meaning
of msg_param is dependent on the type of message senttomain().

Taking Care of the Preliminaries

The MyButtonCDEF source code has a single #include directive used
to bring the GestaltEqu.h header file into the source code:

ffinclude <GestaltEqu.h>

The CDEF code will use two of four pictures in the display of a single but-
ton. If the Macintosh using the CDEF is a color system, one pair of pic-
tures will be used. If the Mac is monochrome (or color, but set to display
only black and white), the CDEF will use a different pair of pictures.
Because a call to Gestalt() will be used in determining the color level,
or bit depth, of the Mac, I'll need to include the GestaltEqu.h header file.

Since I've brought up the topic of using multiple pictures for a single
button, now is as good a time as any to elaborate. A button control has two
states: its normal state and a depressed state. When the cursor is not over a
control, or when it is over a control but the mouse button is not pressed,
the control is in its normal state. When the mouse button is pressed while
the cursor is over a control, the control is in its depressed state—it appears
to be pressed down. For a standard button, the depressed state inverts the
button. Figure 2.8 shows a button in both states.

If MyButtonCDEF only worked with black and white buttons, only two
pictures would be needed for a single control—one for each of the con-
trol’s two states. Since MyButtonCDEF is much more user-friendly than

67

More Mac Programming Techniques

that—it supports both color and monochrome systems—it requires four
pictures for each control. One pair will be used if the CDEF detects a
color system, and the second pair will be used for a monochrome system.

MyButtonCDEF uses two constants to aid in determining which pic-
ture the CDEF should display:

=——— Info == Info =—

Age: |41 Age: |41

R

FIGURE 2.8 BUTTONS HAVE TWO STATES: ON THE LEFT IS THE NORMAL STATE,
ON THE RIGHT IS THE DEPRESSED, OR DOWN, STATE.

fidefine DOWN_OFFSET 1
ffdefine BW_OFFSET 2

Figure 2.9 shows the four pictures that have been drawn for a typical
button. You'll want to refer to this figure as you read the following dis-
cussion. The CDEF considers the picture that will be used for a button
in the normal, or up, state on a color system as the base picture.
Whatever its ID is, the color picture representing a depressed, or down,
button should have an ID one greater. The constant DOWN_OFFSET rep-
resents this difference. The picture that will be used as the up button on
a monochrome system should have an ID two greater than the base pic-
ture ID. The BW_OFFSET constant is used to represent this value.
Finally, the monochrome down picture should have an ID three greater
than the base picture. That means it will have a value one greater than
the monochrome up picture. Again, DOWN_OFFSET will be used for
specifying this picture.

Chapter 2 Custom Controls and the CDEF

Button up, color Button up, black and white
(base picture) (base picture + 2)

P

=[]

R/ | eS| 3

Button down, color Button down, black and white
(base picture + 1) (base picture + 3)

FIGURE 2.9 FOUR PICTURES WILL BE USED FOR ANY ONE BUTTON.

To create pictures that are usable by the CDEF, the four drawn buttons
should be individually copied from the graphics program in which they
were rendered and pasted into an application project’s resource file.
Assuming that I'll be using the pictures in an application named Test, I'd
paste the pictures in the Test.m.rsrc file. Figure 2.10 shows how four typi-
cally numbered PICT resources would look. While the selection of an ID
for the base PICT is not important, the consecutive numbering of the
four PICT resources is crucial.

MyButtonCDEF has three additional constants that it defines:

ffdefine CNTRL_INACTIVE 255
ffdefine CNTRL_INVISIBLE 0
ffdefine SYS_GRAY_PAT_INDEX 4

69

More Mac Programming Techniques

To mark a control as inactive the contrl1Hilite field of the control’s
control record should be set to a value of 255. That tells the Control
Manager to dim the control and ignore mouse clicks over that control.
Since the MyButtonCDEF will be responsible for drawing and handling a
picture button control, it will also be responsible for graying out the but-
ton and ignoring mouse clicks to it. The constant CNTRL_INACTIVE will
be used for these purposes. If a picture button is inactive, the
SYS_GRAY_PAT_INDEX constant will be used to superimpose a gray pat-
tern over the picture button to give it a dim appearance.

Sl=——— PICTs from Test.m.rsrc =——=—=ng|
iy

200 201

202 203

(=<

Ficure 2.10 THE FOUR PICTURES WILL BECOME PICT RESOURCES.

A control can be set to visible or invisible by altering the value of the con-
trol's contriVis field. A value of 0 tells the Control Manager to com-
pletely cover the control with the background pattern of the window or

70

Chapter 2 Custom Controls and the CDEF

dialog box in which the control resides. The CNTRL_INVISIBLE con-
stant will be used to determine if a picture button is visible.

The MyButtonCDEF consists of just four functions—their prototypes
are shown below. Draw_Control () does the actual drawing of the con-
trol and Test_Control() checks to see if a mouse click occurred in
the control. Color_Is_0n() is a utility routine that determines if the
user’s machine has a color monitor, and Dim_Item() is a second utility
routine that handles the dimming of a picture button.

void Draw_Control(ControlHandle);

Tong Test_Control(ControlHandle, long);
Boolean Color_Is_On(Rect);

void Dim_Item(Rect);

Handling a testCntl Message

When a mouse click may affect a control, the Control Manager will send
a testCntl message to the main() function of the CDEF code. For a
testCntl message, the value of the msg_param variable becomes
important because it holds the local coordinates of the cursor. The
main() function should send this information, along with the handle to
the control, to a routine that determines if the cursor is over a control
governed by the CDEF code. For MyButtonCDEF, that routine is named
Test_Control(). Here’s the call to Test_Control(), as made from
the main() function of the CDEF:

case testCntl:
return_val = Test_Control(the_control, msg_param);
break;

Here’s the header for Test_Control():

long Test_Control(ControlHandle control, long mouse_loc)

Test_Control() receives the msg_param as a 10ng variable, not as a
Point. The function begins by extracting the coordinates of the mouse
location from this 10ng variable:

71

More Mac Programming Techniques

Point the_point;

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

Next, Test_Control () sets a local variable to the size of the control
rectangle. That information is found in the contrlRect field of the
control record:

Rect the_rect:

the_rect = (**control).contrlRect;

Then it’s a simple matter of comparing the coordinates of the cursor
with the coordinates of the rectangle that bounds the control. If the
point representing the cursor position is in the rectangle, the cursor is
over the picture button control:

if (PtInRect(the_point, &the_rect))
return (inButton);

else
return (0);

If the PtInRect() test passes, Test_Control() returns a value of
inButton to main(). This Apple-defined constant is a part code that
designates that the mouse is pressed while over a button. Let’s jump back
to the body of main() to see what’s going on. After Test_Control()
executes, return_val will have a value of inButton if the mouse was
pressed in the control, or a value of 0 if it wasn’t. The main() function
ends by returning this value to the Control Manager. The Control
Manager will see to it that this value ends up in the contr1Hilite field
of the picture button’s control record:

long return_val = 0L;

switch(message)
{
case drawCntl:
Draw_Control(the_control);

72

Chapter 2 Custom Controls and the CDEF

break;

case testCntl:
return_val = Test_Control(the_control, msg_param);
break;

default:
break;
}

return (return_val);

Once the value of return_val has been stored in the button’s control
record, the button can be properly updated (drawn), or, if the value is 0, the
button will be left as is. If the button is to be updated, the Control Manager
will again execute the CDEF—this time passing a drawCnt1 message.

Below is the listing for Test_Control(). Notice that before the
PtInRect () testis made Test_Control () checks to see if the control
is invisible or inactive. If the control is in either of these states, Test_
Control() properly concludes that it doesn’t matter if the mouse is
pressed when the cursor is over the control.

long Test_Control(ControlHandle control, long mouse_loc)

{
Rect the_rect;
Point the_point;

if ((**control).contrlVis == 0)
return (0);

if ((**control).contrlHilite == 255)
return (0);

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

the_rect = (**control).contrlRect;
if (PtInRect(the_point, &the_rect))
return (inButton);

else
return (0);

13

More Mac Programming Techniques

Yes, you caught me. | could just as easily combine the intro-
ductory if logic In Test_Control() into one if state-
ment. But | thought that using separate tests would be easi-
NoTE ertofollow than a single combined statement like this:

if (((**control).contrlVis == CNTRL_INVISIBLE) ||
((**control).contrlHilite == CNTRL_INACTIVE))
return (0);

Handling a drawCntl Message

The CDEF main() routine receives a drawCnt1l message anytime the
mouse button is depressed and the user’s dragging of the mouse may
affect the state of a control that the CDEF handles. A change in the high-
lighting of the control will also result in main() receiving a drawCnt]
message. In either case, the CDEF will respond by calling its own drawing
routine. For MyButtonCDEF, that routine is named Draw_Control():

case drawCntl:
Draw_Control(the_control);
break;

In order to operate on the proper control, Draw_Control() needs to
receive a handle to the control record of the affected control:

void Draw_Control(ControlHandle control)

The first thing the control-drawing function should do is check to see if
the control is visible. A hidden control should not respond to mouse
clicks, and of course should not be drawn. The contrl1Vis field of the
control holds a value in the range of 0 to 255. A value of 0, or
CNTRL_INVISIBLE, means the control is invisible. If that’s the case,
there’s no work to be done, and Draw_Control () should terminate:

if ((**control).contrlVis == CNTRL_INVISIBLE)
return;

74

Chapter 2 Custom Controls and the CDEF

If the test of contr1Vis results in the identification of a visible control,
Draw_Control () should handle the drawing. Before drawing can take
place, Draw_Control () needs to determine which of the four pictures
should be used. To do that, a call to the Toolbox routine
GetControlReference() is made to get the ID of the base picture:

short pict_ID;
pict_ID = GetControlReference(control);

Pass GetControlReference() a handle to a control record, and the
Toolbox will return the contr1RfCon field of that control record. A
control record has more than a dozen fields, many of which are filled by
a CNTL resource. Earlier in this chapter you saw that when you want a
control to be handled by one of your own CDEF code resources, you cre-
ate a CNTL resource to describe that control. The RefCon field of that
CNTL resource corresponds to the contr1RfCon field of the control
record. When loaded into memory, the information in the CNTL
resource will be used in filling the control record. The CNTL RefCon
field can be used by an application for any purpose. I've decided to use it
as a holder for the PICT ID of the control’s base picture. Figure 2.11
illustrates how this might work.

Once Draw_Control() has the ID of the base picture, the routine
sets out to determine which of the four pictures should be used. First, the
control’s boundary rectangle is obtained by examining the contrlRect
field of the control record:

Rect control_rect;

control_rect = (**control).contrlRect;

Next, that rectangle is passed to the utility routine Color_Is_0n() to
determine if the rectangle lies within a monitor that has color turned on.
The Color_Is_0n() function is covered a little later in this section If
the rectangle is located in a color monitor, Color_Is_0n() will return
a value of true; otherwise it returns a value of false. If the monitor is
color, I'll leave the value of pict_ID alone—it’s already set to the base

75

More Mac Programming Techniques

picture 1D, which is a color picture. If the monitor is monochrome, I'll
add BW_OFFSET to pict_ID to come up with the ID of the first black-

and-white picture:

if (Color_Is_On(control_rect) == false)

piet_ID = BW_OFFSET:

=== PICTs from Test.w.rsrc =—=—=WN

20

ks

Ualue

Uisible

MNax

Min

ProclD
| RefCon

Title

BoundsRect

I

T

® True (O False

Iil

200

=——— CNIL ID = 500 from Test.w.rsrc %

ity

ez

EIE]

Ficure 2.11 THE REFCoON FIELD OF A cUSTOM CONTROL'S CNTL RESOURCE SPECIFIES
THE BASE PICTURE FOR THAT CONTROL.

Now pict_ID holds the ID of either the first color picture or the first
black-and-white picture. If the button hasn’t been clicked on, I've got the

76

Chapter 2 Custom Controls and the CDEF

correct picture. If, however, the user has clicked the mouse button and
the cursor is over the button, I’ll need to add the offset that gives the ID
of the down, or depressed, picture. The contrl1Hilite field of the con-
trol record provides this information. You know that if this field has a
value of 255, the control is inactive, but this field also provides other infor-
mation. If it has a value that corresponds to the Apple-defined constant
inButton, then the control is active and is currently receiving a mouse
press within its boundaries. If that’s the case, I'll add DOWN_OFFSET to
the value of pict_ID to arrive at the correct picture to use:

if ((**control).contrlHilite == inButton)
pict_ID += DOWN_OFFSET;

A draw routine must handle each of the four conditions for which a pic-
ture exists. Figures 2.12 and 2.13 show how Draw_Control() handles
two of these four conditions.

Color Monitor, Mouse Click On Picture Button

#define BW_OFFSET 2

pict_id $define DOWN_OFFSET 1

if (Color_Is_On(control_rect) == false)

pict_ID += BW_OFFSET;

if ((**control).contrlHilite == inButton)

[201 | Q pict_TD += DOWN_OFFSET;
[

2e1

FiGURE 2.12 DRAW_CONTROL() HANDLING A MOUSE CLICK ON A COLOR SYSTEM.

77

More Mac Programming Techniques

Monochrome Monitor, Mouse Click On Picture Button

o 4d #define BW_OFFSET 2
Blokut #define DOWN_OFFSET 2 §
if (Color_Is_On(control_rect) == false)

pict_ID += BW_OFFSET;

if ((**control).contrlHilite == inButton)

pict_ID += DOWN_OFFSET;

FiGURE 2.13 DrAW_CONTROL() HANDLING A MOUSE CLICK
ON A BLACK-AND-WHITE SYSTEM.

Once it has been determined which picture should be used, it’s a simple
matter of calling the Toolbox routine GetResource() to load the cor-
rect picture into memory and receive a handle to it. Then a call to the
Toolbox function DrawPicture() draws the picture to the rectangle
occupied by the control:

PicHandle pict_handle;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);
DrawPicture(pict_handle, &control_rect);

There’s one last check that Draw_Control() must make. If the
contrlHilite field of the control record has a value of 255, or
CNTRL_INACTIVE, the control is said to be inactive. If this is the case,

the call to DrawPicture() will have properly drawn the picture that
shows the control in the up state. Now it's time to superimpose a gray

78

Chapter 2 Custom Controls and the CDEF

pattern over the picture to provide the effect of a dimmed item. A call to
the utility routine Dim_Item(), which is discussed later in this section,
takes care of that task:

if ((**control).contrlHilite == CNTRL_INACTIVE)
Dim_Item(control_rect);

Here’s a look at the source code for the entire Draw_Control() func-
tion.

void Draw_Control(ControlHandle control)
{

GrafPtr saved_port;

Rect control_rect;

short pict_ID;

PicHandle pict_handle;

if ((**control).contr1Vis == CNTRL_INVISIBLE)
return;

GetPort(&saved_port):
pict_ID = GetControlReference(control };
control_rect = (**control).contrlRect;

if (Color_Is_On(control_rect) == false)
pict_ID += BW_OFFSET;

if ((**control).contrlHilite == inButton)
pict_ID += DOWN_OFFSET;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);

if (pict_handle == nil)
ExitToShell1();

DrawPicture(pict_handle, &control_rect);

if ((**control).contrlHilite == CNTRL_INACTIVE)
Dim_Item(control_rect):

SetPort(saved_port);

79

More Mac Programming Techniques

Before walking through the only other message routine that
MyButtonCDEF uses, I'll finish this section with a look at the two utility
routines used by Draw_Control(). The first is Color_Is_0n().
Here’s the source code for that function:

Boolean Color_Is_On(Rect the_rect)
{

OSErr error;
Tong response;
GDHandle current_device;

PixMapHandle the_pix_map;
error = Gestalt(gestaltQuickdrawVersion, &response);

if (error != nokrr)
ExitToShell():

else if (response == gestaltOriginalQD)
return (false);

else

{

LocalToGlobal((Point*) &the_rect);
LocalToGlobal(1 + (Point*) &the_rect);
current_device = GetMaxDevice(&the_rect);
the_pix_map = (**current_device).gdPMap;
if ((**the_pix_map).pixelSize > 1)

return (true);
else

return (false);

| Determining which monitor holds a given rectangle, and deter-
‘ mining the pixel depth—or color level—of that monitor, involves

~J I knowledge of graphics devices. As you read the explanation of
NOTE Color_Is_On(), you may find that this topic seems a little
deep. If that is the case, you can accept at face value that the
Color_Is_On() function works. Or, you can spend a couple of
hours reading all about devices in the “Graphics Devices” chap-
ter of Inside Macintosh: Imaging With QuickDraw.

Color_Is_On() begins with a call to Gestalt(). Gestalt() isa
Toolbox function that returns information about the machine on which

80

Chapter 2 Custom Controls and the CDEF

a program is running. The first parameter—the selector code—tells
Gestalt() what information I want. When the call is complete, the sec-
ond parameter—the response—will hold that information. By passing the
Apple-defined constant gestaltQuickdrawVersion, I'm telling
Gestalt() to determine which version of QuickDraw is in the
Macintosh. If it’s gestaltOriginalQD—the original, older
QuickDraw—the machine can only display black and white. If that’s the
case, Color_Is_On() has found the information it was looking for,
and it can return a value of false to the calling function.

Any version of QuickDraw other than gestaltOriginalQD means
the Mac is capable of displaying color—though the user may have set the
monitor to black and white. The code in the else section determines
whether color is on or off. The Rect variable the_rect, which was
passed to Color_Is_On(), holds the coordinates of the rectangle that
bounds the control that is to be drawn. These coordinates are local to
the window or dialog box in which the control appears. The following
lines convert these coordinates to global values—coordinates that are in
terms of the desktop area:

LocalToGlobal((Point *) &the_rect);
LocalToGlobal(1 + (Point *) &the_rect);

A rectangle can be expressed as four integers or two points. The Toolbox
routine LocalToGlobal() is expecting the address of a Point as its
parameter, so the first call to LocalToGlobal() casts the_rect to a
pointer to a Point. So the first call to LocalToGlobal() converts the
first of the two points that define the_rect to global coordinates. By
again casting the_rect to a pointer to a Point, and then adding one
to the address, the parameter to the second call to LocalToGlobal ()
becomes the address of the second Point that defines the_rect.

a rectangle defines the upper-left corner of the rectangle,
while the second Point defines the lower-right corner.
NOTE Each call to LocalToGlobal() isolates one of these

Points and converts it to global coordinates. The result is

' I agree, it is confusing. Keep in mind that the first Point of
N4

81

More Mac Programming Techniques

a rectangie of the same size as the original rectangle, but
in global coordinates.

Once the rectangle is converted to global coordinates, a call to
GetMaxDevice() is made. When passed a rectangle (in global coordi-
nates), the Toolbox routine GetMaxDevice() determines in which
video device the rectangle lies. This is necessary to handle the case of a
user running a system with two monitors, each set to a different color
level.

GDHandle current_device;

current_device = GetMaxDevice(&the_rect);

GetMaxDevice() returns a handle to the graphics device that holds
the control. Dereferencing this handle twice leads to a GDevice struc-
ture. One of the fields of the GDevice structure is gdPMap—a
PixMapHandle. A PixMapHand]le is a pixel map of the screen—in this
case, the screen of the monitor that holds the control to draw. The last
step is to double dereference the PixMapHandle to get to the pixel
depth of the screen. If pixelSize is 1, the screen is set to mono-
chrome; if it’s greater than 1, color is turned on.

PixMapHandle the_pix_map;

the_pix_map = (**current_device).gdPMap;
if ((**the_pix_map).pixelSize > 1)
return (true);
else
return (false);

The second utility routine used by Draw_Control1() isDim_Item()—
shown here:

void Dim_Item(Rect dim_rect)
{

Chapter 2 Custom Controls and the CDEF

PenState saved_pen_state;
Pattern gray_pattern;

GetPenState(&saved_pen_state);

PenNormal();

GetIndPattern(&gray_pattern, sysPatListID, SYS_GRAY_PAT_INDEX);
PenPat(&gray_pattern);

PenMode(patBic);

PaintRect(&dim_rect);

SetPenState(&saved_pen_state);

Dim_Item() begins by saving the state of the graphics pen with a call to
GetPenState() and ends by restoring the pen to its initial condition
with a call to SetPenState(). In between these Toolbox calls,
Dim_Item() sets the graphics pen such that a painted rectangle will
superimpose a light gray pattern over the picture button.

Keep in mind that the code that makes up a code resource
is not part of an application. As such, the application is not
aware of exactly when the code resource will execute.
Thus the application can’t be responsible for saving any
graphics pen characteristics that it might want to retain.
Instead, it’'s up to the code resource to save and restore
these attributes.

Overlaying a light gray pattern over the existing button picture is accom-
plished by first getting a gray pattern from the system pattern list.
Chapter 1 described how a call to GetIndPattern() works. Next, the
pen pattern is set to this gray pattern. Then the pen transfer mode is set
to patBic. By setting the mode to this constant, the painting of a pat-
tern over the button picture won’t wipe out the entire picture. Instead,
parts of the picture will show through. This will give the effect of a
dimmed picture, as shown in Figure 2.14.

83

More Mac Programming Techniques

Active button Inactive (dim) button

FiGURE 2.14 DRAWING A GRAY PATTERN OVER A BUTTON PICTURE
GIVES IT A DIM, OR INACTIVE, LOOK.

THE MYBUTTONCDEF SoURCE CoDE LISTING

Aside from main(), the MyButtonCDEF code contains just four func-
tions, two of which are short utility routines. Here’s the complete source
code listing for this chapter’s CDEF code resource:

1/
1/ ffinclude directives

#include <GestaltEqu.h>

//

// function prototypes
void Draw_Control(ControlHandle);

long Test_Control(ControlHandle, long);

Boolean Color_Is_On(Rect);

void Dim_Item(Rect);

1/

// jidefine directives
f#define DOWN_OFFSET 1

f#fdefine BW_OFFSET 2

84

Chapter 2 Custom Controls and the CDEF

f#fdefine CNTRL_INACTIVE 255

fidefine CNTRL_INVISIBLE 0

fidefine SYS_GRAY_PAT_INDEX 4

//

/! entry point to the code

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)

//
//

tong return_val = OL;

switch(message)
{
case drawCntl:
Draw_Control(the_control);
break;

case testCntl:
return_val = Test_Control(the_control, msg_param);
break;

default:
break;
}

return (return_val);

draw the control

void Draw_Control(ControlHandle control)

{

GrafPtr saved_port;
Rect control_rect;
short pict_ID;
PicHandle pict_handle;

if ((**control).contrlVis == CNTRL_INVISIBLE)
return;

GetPort(&saved_port);

More Mac Programming Techniques

pict_ID = GetControlReference(control);
control_rect = (**control).contriRect;

if (Color_Is_On(control_rect) == false)
pict_ID += BW_OFFSET:

if ((**control).contriHilite == inButton)
pict_ID += DOWN_OFFSET;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);

if (pict_handle == nil)
ExitToShel1();

DrawPicture(pict_handle, &control_rect);

if ((**control).contrlHilite == CNTRL_INACTIVE)
Dim_Item(control_rect);

SetPort(saved_port);

/1

// test for mouse clicks in the control

long Test_Control(ControlHandle control, long mouse_loc)
{

Rect the_rect;

Point the_point;

if ((**control).contrl1Vis == CNTRL_INVISIBLE)
return (0);

if ((**control).contrlHilite == CNTRL_INACTIVE)
return (0);

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

the_rect = (**control).contrlRect;
if (PtInRect(the_point, &the_rect))

return (inButton);
else

86

Chapter 2 Custom Controls and the CDEF

return (0);

//
/7 is color available, and turned on?

Boolean Color_Is_On(Rect the_rect)
{
OSErr error;
long response;
GDHandle current_device;
PixMapHandle the_pix_map;

error = Gestalt(gestaltQuickdrawVersion, &response);
if (error != noErr)
ExitToShell();
else if (response == gestaltOriginalQD)
return (false);
else

{

LocalToGlobal((Point*) &the_rect);
LocalToGlobal(1 + (Point*) &the_rect);
current_device = GetMaxDevice(&the_rect);
the_pix_map = (**current_device).gdPMap;
if ((**the_pix_map).pixelSize > 1)

return (true);
else

return (false);

//
/ dim an item by overlaying light gray pattern

void Dim_Item(Rect dim_rect)
{
PenState saved_pen_state;
Pattern gray_pattern;

GetPenState(&saved_pen_state);

PenNormal();

GetIndPattern(&gray_pattern, sysPatListID, SYS_GRAY_PAT_INDEX);
PenPat(&gray_pattern);

PenMode(patBic);

PaintRect(&dim_rect);

SetPenState(&saved_pen_state);

87

More Mac Programming Techniques

BuiLbING THE CDEF CobE RESOURCE

The steps for building a CDEF are essentially the same as the steps for
building an MDEF:

1. Create a new project.

2. Add the necessary library and code resource source code file to
the project.

3. Tell the compiler to generate a code resource rather than an
application.

4. Build the code resource.

The code resource will be saved to its own resource file. When an appli-
cation requires the CDEF code, it’s a simple matter to use a resource edi-
tor to copy the code resource from its resource file and paste it directly
into the resource fork of an application.

Building with CodeWarrior

CodeWarrior users should launch their C/C++ compiler and create a
new project. After adding the appropriate files, the project window will
look like the one shown in Figure 2.15.

[EEi==———= MuyButtonCDEF.n
File Code Data H ¥
< Sources 0 0 o<
MyButtonCDEF .c 0 0 « B |
Mac0S lib 0 0 ®
=
2 file(s) 0 0]

FiGURE 2.15 THE PROJECT WINDOW FOR A VIETROWERKS
CopEWARRIOR CDEF CODE RESOURCE.

Chapter 2 Custom Controls and the CDEF

The Preferences menu item from the Edit menu allows the project to be
marked as a code resource rather than an application. Figure 2.16 shows
the preference settings in the Project panel of the Preferences dialog
box. Note that all of the items that get filled in are the same as they are
for an MDEF code resource. The only significant change is in the
ResType, which should be CDEF rather than MDEF.

Apply to open project.

E@ Project Type: | Code Resource v |

r Code Resource Info:
File Name MyButtonCDEF.rsrc

W arnings

g Sym Name
Py el Resource Name |MyButtonCDEF

s Header Type: | Standard v |
*

@ | ResType ReslD
z [] Multi Segment CDEF”"
[] Display Dialog | | | 1000 |

| |[OMerge To File Creator Type
-1 | Resource Flags [RSED |[rsrc |

[Facinrg Settings] [Fleuert Pnel] [Cancel]

Linker

FiGure 2.16 THE PROJECT PANEL SETTINGS FOR A MEETROWERKS
CopeWaRrrior CDEF cODE RESOURCE.

As you saw in Chapter 1, Metrowerks code resource pro-
jects must use the Small code model. Click on the Processor
icon to display the Processor Info panel. Then use the Code
Model pop-up menu to select the Small code model.

B

=
o
-
m

After dismissing the Preferences dialog box, it's time to build the code
resource by selecting Make from the Project menu. The result will be a
CDEF code resource in a file named MyButtonCDEF.rsrc.

More Mac Programming Techniques

Building with Symantec C++/THINK C

Symantec C++ and THINK C owners will begin by launching the THINK
Project Manager and creating a new project. Adding the MacTraps
library and the code resource source code file complete the project. It
should look like the one in Figure 2.17.

I=== MyButtonCDEF.n =

Name Code
w7 Segment 2 4
MacTraps o
MMy ButtonCDEF .c 0
Tetals 470 | |
=
i

Figure 2.17 THE ProJECT WINDOW FOR A SYMANTEC CDEF CODE RESOURCE.

Selecting the Set Project Type item in the Project menu will display the
dialog box shown in Figure 2.18. The various items that need to be
filled in are the same as those that were filled in for the MDEF in
Chapter 1. The only important change is the Type, which should now
be CIEE.

After dismissing the dialog box, select Build Code Resource from the
Project menu. Again, this is the same step you performed for the MDEF
code resource. In the dialog box that opens, type in a name for the
resource file that will be created to hold the CDEF resource—just as I've
done in Figure 2.19. Make sure the Merge check box is not checked,
then click Save.

The THINK Project Manager will compile the control definition
function source code and build the CDEF code resource. The result will
appear in a new resource file.

290

Chapter 2 Custom Controls and the CDEF

O Application File Type [rsre
O Desk Accessory
QO Device Driver
@® Code Resource [JMulti-Segment

Creator |RSED

Name |MyButtonCDEF

Type |CDEF

[Custom Header

Fiaure 2.18 THE SET ProJECT TYPE SETTINGS FOR A SYMANTEC CDEF CODE RESOURCE.

[e3 My Button CDEF f ¥ |

0 MyBulteal Bif.¢ 4+ e Hard Disk
0 MyBulloal BEF ¥ :

Eipet
Desktop

Save code resource as:

MyButtonCDEF.rsrc | |

X Smart Link [JMerge

FIGURE 2.19 THE SYMANTEC DIALOG BOX FOR NAMING THE RESOURCE FILE THAT WILL
HoLD THE CDEF CODE RESOURCE.

91

More Mac Programming Techniques

THE CDEF TesT APPLICATION

As vou learned in Chapter 1, a code resource is not stand-alone code and,
as such, cannot be tested without the help of an application that uses the
code. Since this chapter’s test application has no menus or menu bar,
vou'll find that its source code listing is shorter than Chapter 1’s listing.

What the Test Application Does

If you've migrated to Apple’s System 7.5, you may have noticed a few
changes in the Macintosh graphical user interface. While most dialog
boxes and control panels still use the standard controls, a few interface
components use a sleeker looking set of controls. Figure 2.20 shows the
AppleCD Audio Player, with its polished-looking controls.

Elapsed Time
Fdbd =
q

by
(]

Ficure 2.20 THE ArPLECD Aubio PLAYER.

Because I like the look of the AppleCD Audio Player, I'll have my test
application display a button that looks similar to one found in the Apple
program. I'll draw four pictures that will be used to mimic one button
that has the look of the controls that appear in the bank of buttons to the
left of the volume slider in the AppleCD Audio Player. Figure 2.21 shows
the four pictures, still in the window of the graphics program in which I
drew them. Each of the four pictures will become a PICT resource in a
resource file—as discussed in the next section.

92

Chapter 2 Custom Controls and the CDEF

This chapter’s version of MyTestApp simply displays a dialog box that
holds four controls. Two of the controls are standard controls that will be
handled by the Dialog Manager, and two are handled by the Control
Manager and this chapter’s MyButtonCDEF control definition function.
Figure 2.22 shows what the MyTestApp dialog box looks like.

Em

Special
Effects

MyButtonPictures

il

/|2 13]0

A
it
4
@
"'\-\\

FiGure 2.21. USING A GRAPHICS PROGRAM TO DRAW FOUR
PICTURES FOR USE AS ONE BUTTON.

Ficure 2.22 THE MYTESTAPP DIALOG BOX.

Actions in the check box and the Quit push button are taken care of by
the Dialog Manager (which makes use of the Control Manager). A mouse
click over either of the arrow buttons will be handled by the CDEF. The

93

More Mac Programming Techniques

source code that makes up the test application, however, will make no dis-
tinction between controls that are handled by the MyButtonCDEF and
the system CDEF. Instead, the distinction will be made in the resource file,
where the CNTL resources that define the two arrow buttons will specify
that the MyButtonCDEF code be used with the two picture buttons.

Figure 2.23 shows how the MyTestApp dialog box looks when a user
clicks the mouse button while the cursor is over one of the arrow buttons.
The figure shows that the MyButtonCDEF code takes over and draws a
depressed button picture over the existing arrow button. When either arrow
button is clicked, the test application will beep the Mac’s speaker—one beep
for a click on the left button, two beeps for a click on the right button.

Ficure 2.23 THE MYTESTAPP DIALOG BOX WITH ONE CUSTOM CONTROL DEPRESSED.

The MyButtonCDEF includes code that handles the case when a button
is inactive. When the application source code marks a button handled by
the CDEF as inactive, the Draw_Control () routine that is a part of
MyButtonCDEF draws a gray pattern over the button and refuses to
process mouse clicks in the button’s rectangle. Figure 2.24 shows that
when the Dim Left Button box is checked, the arrow button on the left
becomes inactive. Once the button is dim, mouse clicks on it will not
result in the display of the depressed arrow button picture. That provides
verification that the CDEF is indeed ignoring mouse clicks. Additionally,
when the button is dim, a mouse click on it will not result in a sounding
of the Mac’s speaker, verifying that mouse clicks on the inactive control
are also ignored by the application.

924

Chapter 2 Custom Controls and the CDEF

Figure 2.24 THE MYTESTAPP DIALOG BOX WITH ONE CUSTOM CONTROL INACTIVE.

THE TeEST APPLICATION RESOURCES

The test application will display two picture buttons, but they will both be
based on the same set of pictures. Figure 2.25 shows the four PICT
resources that will be used for a button.

When you draw the four pictures that will represent a button, make
them all the same size. While you're in your graphics program make a
note of the pixel dimensions of one of the pictures. In Figure 2.26 you
can see that I'm using an enlarged view mode to manually count the size
of a picture. The size of any one picture in my example turns out to be
22 pixels high by 50 pixels wide.

I'll need a CNTL resource for each picture button that is to appear in
the dialog box of the test application. Four of the CNTL fields are of sig-
nificance:

BoundsRect The local pixel coordinates of the control in the dialog box
Visible Specifies that the control be visible

ProclID Tells which CDEF handles the control

RefCon Provides the PICT ID of the base picture for this control

More Mac Programming Techniques

EE==== PICTs from MyTestApp.n.rsrc E=—=pig]
5

it e

200 201

202 203 '5

Ficure 2.25 THE PICT RESoURCES FOR MYTESTAPP.

SE=—————— MyButtonPictures at 800% &=———2W1
4

Normal
Tools

il

r=q
I

L.a

@ R|| /| =23
=p>

T

<¢|68]/|N\

FicuRre 2.26 ENLARGING ONE BUTTON PICTURE TO DETERMINE ITS PIXEL DIMENSIONS.

Chapter 2 Custom Controls and the CDEF

CNTLs from MyTestApp.m.rsrc
D Size Name
500 23
EE=——— CNIL ID = 500 from MyTestApp.1.rsrc =———
. &
Dimensions \ —
ettt Boundshect [0 |lo |[a2][s0 [(Zen) |
Ualue 0 l
Visible @® True O False :
CDEF Hax ! ﬁ
resource ID i
times 16 plus W fin 0 !
variation code 16000
PICT 200 ?
resource ID l :
for the base -
picture &

FIGURE 2.27 SHOWS THE VALUES IN THE CNTL RESOURCE
FOR A CONTROL WiTH AN ID ofF 500.

The order of the BoundsRect fields is top, left, bottom, right.
Notice that I set the boundaries so that they make up a rectangle 22 pix-
els high and 50 pixels wide—the same size as one of the PICT resources.

When I created the MyButtonCDEF, I gave it an ID of 1000. Yet the
ProcID field of the CNTL resource shows I've entered a value of 16000.
That’s because the ProcID doesn’t hold the ID of the CDEF—at least
not directly. Instead, the ProcID follows this formula:

ProcID = (°'CDEF' ID * 16) + variation code

Variation codes are described in Chapter 3. For now, I'll just say that a
single CDEF can be written such that it supports different variations of a
control type. For example, the MyButtonCDEF uses a picture to display a
button. A variation of that could be to use the same picture and to dis-
play a button title under the picture.

97

More Mac Programming Techniques

The MyButtonCDEF has no variations, so the variation code is 0. That
makes the value of ProcID 16000:

ProcID = ('CDEF' ID * 16) + variation code
ProcID = (1000 * 16) + 0

After defining the CNTL resource, I create the DITL resource that holds
all of the items in the dialog. Figure 2.28 shows the four items in the
DITL.

DITLs from MyTestApp.1.rsrc

D Size Name
128 82
ESE DITL 1D = 128 from MyTestApp.w.rsre B | 5. 720K B
(® Redio Button
E] Control
L 3 5 T StatteText
Edit Text
& Icon
[0 Bim Left Button [4] L. Picture
n User Item

FiGure 2.28 THE DITL RESOURCES FOR MYTESTAPP.

Items 2 and 3 are the two controls. They were each created by clicking on
the control item in the floating palette and dragging the mouse over to
the DITL editor. The default ID and size of a control item won’t match
the numbers I used in my CNTL resources, so I'll double-click on each
item to edit that information. Figure 2.29 shows the result of double-
clicking on item 2.

In Figure 2.29 you can see that I've entered a Resource ID of 500.
That tells this control item to use the information found in the CNTL
resource with an ID of 500. After entering the CNTL ID, I entered the
Top and Left coordinates of the control. These numbers are the pixel

Chapter 2 Custom Controls and the CDEF

coordinates that the control will have in the dialog box. After entering
these values, ResEdit supplied the Height and Width values—I had no
control over those values. Figure 2.30 shows both the CNTL resource and
the DITL item 2 so that you can compare.

=== Edit DITL item #2 from MyTestApp.m.rsrc

Resource 1D:

| Control v |

& Enabled Top: Height: 22

Width: 50

FIGURE 2.29 SETTING THE CONTROL'S LOCATION AND THE RESOURCE ID oF THE CNTL
USED BY THE CUSTOM CONTROL.

Ualue

BoundsRect [0 [0 |[22 | 50
CH

| Control |

[Enabled Top: Height: 22

Width: 50

Ficure 2.30 THe DITL item SPECIFIES WHICH CNTL RESOURCE
IS USED BY THE CUSTOM CONTROL.

More Mac Programming Techniques

If vou're using ResEdit, your DITL item window may display the Bottom
and Right dimensions rather than Height and Width. You can set ResEdit
to display either pair using the Item menu (see Figure 2.31).

Show Height & Width
v Show Bottom & Right

=[I=—= Edit DITL item #2 from MyTestApp.m.r|
Resource 1D:
| Control v |
] Enabled Top: Bottom: 62
Left: Right: 150

Ficure 2.31 ReSEDIT CAN DISPLAY EITHER A CONTROL’S DIMENSIONS OR ITS LOCATION.

A DITL is a dialog item list for a dialog box, so I need to add a DLOG
resource to hold dialog box information. Figure 2.32 shows that DLOG.
The background, or content area, of a dialog box is normally white. In
Figure 2.32, you can see that the background of my dialog box is gray.
To add color (or grayscale) to the content area of a dialog box, add a
dctb resource to the resource file. This can easily be done from within
the DLOG editor of ResEdit; Figure 2.33 shows the two steps. First, click
on the Custom radio button. That displays a group of dialog box parts
that can have color added to them. Clicking on the rectangle to the
right of the word Content drops down a palette of color choices (see
Figure 2.33).

After selecting a color from the palette, the alert pictured in Figure
2.34 appears. A dctb, or dialog color table, defines the colors that appear
in a dialog box. Click OK to let ResEdit create and add the resource.

100

Chapter 2 Custom Controls and the CDEF

DLOGs from MyTestApp.m.rsrc
D Size
128 21

Marne

EE==———— 0L0G 1D - 128 from MyTestApp.m.rsrc ===
== == =B

m] ==k

Color: @ Default
O Custom

& Fllg EdIl Basouree Window

DITL ID:

Initially visible

. - [JClose box
Width:

Ficure 2.32 THE DLOG REsourcte For MyTESTAPP

Then click on the First click on the Custom radio button
Content rectangle

o =

DLOG ID = 128 v, “MyTestApp.m.rsrc

— == =]
o= i N [T

€ Fils Eoil Besguroa Window olor: efault
@ Custom
o f Content: Frame: E
gnlimurl - [r -

T nightight: [
|

OITL 10: [128

Initially visible

-
=
=

Height:

Close box
Left: =

Width:

Ficure 2.33 ADDING COLOR TO THE CONTENT AREA OF A DIALOG BOX.

101

More Mac Programming Techniques

Adding color to a 'DLOG' will create a
'dctb’ resource to store the color
information. The 'dctb' resource will
have the same id as this 'DLOG'.

Remember to delete this resource if
you delete the 'DLOG'

FiGURE 2.34 ADDING COLOR TO A DIALOG BOX CREATES A DCTB RESOURCE.

Providing a background color Iin a dialog box Is safe regard-
| less of the system the application will end up running on. In
| the MyTestApp source code I'll be loading the DLOG
resource into memory using a call to the Toolbox routine
GetNewDialog(). If the MyTestApp application is running
on a color system, GetNewDialog() will search for a dctb
resource with the same ID as the DLOG resource and use
the information found within that resource. If the application
is running on a monochrome system, GetNewDialog() will
ignore any dctb resources in the application’s resource fork.

Figure 2.35 shows the dctb resource, as well as all of the other resource
types that make up the resource file for the MyTestApp project.

The Test Application Source Code

Aside from the required main() routine, this chapter’s test application
consists of just three functions. Here’s the prototypes for each:

//
// function prototypes

void Initialize_Toolbox(void);

102

Chapter 2 Custom Controls and the CDEF

void Open_Dialog(void);
short Set_Check_Box(DialogPtr, short);

Eﬁ%‘___ MyTestApp.Ti.rsrc =
oty
i —
@ = 9
e s e
CNTL DITL DLOG PICT

EE

Ficure 2.35 THE RESOURCE TYPES FOR MYTESTAPP.

The first five of the nine ffdefine directives listed in the source code are
resource-related. DLOG_ID is the resource ID of both the DLOG and
DITL resource for the program’s dialog box. The next four constants
represent the item numbers of the four DITL items.

The CHECKBOX_OFF and CHECKBOX_ON constants are used when
handling a click in the check box of the dialog box. The CNTRL_INAC-
TIVE and CNTRL_ACTIVE constants are used in setting the highlight
level of one of the two picture buttons.

1ot

// f#fdefine directives
ffdefine DLOG_ID 128
ftdefine DONE_BUTTON_ITEM 1
ffdefine ARROW_1_ITEM 2
{fdefine ARROW_2_ITEM 3
f#define DIM_ARROW_1_ITEM 4
f#fdefine CHECKBOX_OFF 0
fidefine CHECKBOX_ON 1
ffdefine CNTRL_INACTIVE 255
ffdefine CNTRL_ACTIVE 0

The main() function performs the standard Toolbox initializations,
then calls a function named Open_Dialog() to display and handle the
program’s modal dialog box.

103

More Mac Programming Techniques

!/
/! main()

void main(void)

{
Initialize_Toolbox();
Open_Dialog();

}

//
// initialize the Mac

void Initialize_Toolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
InitCursor();
}

Open_Dialog() displays the dialog box that is described in the “What
the Test Application Does” section. A call to GetNewDialog() loads the
dialog record, while calls to ShowWindow() and SetPort() make sure
the dialog box is visible and ready to receive graphics commands.
Open_Dialog() then enters a while loop that repeatedly calls
ModalDialog() to capture mouse clicks in active items in the dialog box.

A mouse click on either of the two arrow picture buttons will result in
the display of one of the PICT resources. 0pen_Dialog() needs no
special code to make this happen; it’s all handled by the MyButtonCDEF
code that gets called by the Control Manager in response to a click on
either button. A mouse click on an arrow button also sounds the Mac’s
speaker:

case ARROW_1_ITEM:
SysBeep(5);
break;

104

Chapter 2 Custom Controls and the CDEF

case ARROW_2_ITEM:
SysBeep(5);
SysBeep(5);
break;

The handling of a mouse click on the check box relies on the utility rou-
tine Set_Check_Box (). This function—described later—toggles the
check box. It also returns a value of 0 (CHECKBOX_OFF) if the check box
has been unchecked, or 1 (CHECKBOX_ON) if the check box is now
checked. The returned value, held in check_box_val, is then tested.
The Toolbox routine HiliteControl () is then called to either acti-
vate or inactivate one of the picture buttons:

case DIM_ARROW_1_ITEM:
check_box_val = Set_Check_Box(the_dialog, the_item);
GetDItem(the_dialog, ARROW_1_ITEM,
&the_type, &the_handle, &the_rect);
if (check_box_val == CHECKBOX_ON)
HiliteControl((ControlHandle)the_handle,
CNTRL_INACTIVE);
else
HiliteControl((ControlHandle)the_handle,
CNTRL_ACTIVE);
break;

Here’s a look at the complete listing for Open_Dialog():

//
// open a display dialog

void Open_Dialog(void)

{
DialogPtr the_dialog;
short the_item;
Boolean all_done = false;
short check_box_val;
short the_type;
Handle the_handle;
Rect the_rect;

the_dialog = GetNewDialog(DLOG_ID, nil, (WindowPtr)-1L);
ShowWindow(the_dialog);

105

More Mac Programming Techniques

SetPort(the_dialog);

while (all_done = false)

{
ModalDialog(nil, &the_item);

switch (the_item)
{
case ARROW_1_ITEM:
SysBeep(5);
break;

case ARROW_2_ITEM:
SysBeep(5);
SysBeep(5);
break;

case DIM_ARROW_1_ITEM:
check_box_val = Set_Check_Box(the_dialog, the_item);
GetDItem(the_dialog, ARROW_1_ITEM,
&the_type, &the_handle, &the_rect);
if (check_box_val == CHECKBOX_ON)
HiliteControl((ControlHandle)the_handle,
CNTRL_INACTIVE);

else
HiliteControl((ControlHandle)the_handle,
CNTRL_ACTIVE);

break;

case DONE_BUTTON_ITEM:
all_done = true;
break;
}
}
DisposDialog(the_dialog);
}

The last function in MyTestApp is Set_Check_Box (). This short routine
can be used—without modification—in any program that uses check
boxes. Set_Check_Box() receives a pointer to the dialog box that
received a mouse click and the item number of the clicked-on item as its
two parameters. Set_Check_Box() begins with a call to GetDItem()
to obtain a handle to the clicked-on check box. That handle is used in a
call to GetCt1Value() to get the value of the check box. That value is

106

Chapter 2 Custom Controls and the CDEF

then tested in an if statement. If the check box was on, a call to
SetCtl1Value() turns it off. If it was off, a different call to
SetCt1Value() turns it on. In either case, Set_Check_Box() returns
a short that will let the calling routine know the new state of the check
box.

//
// toggle checkbox to opposite state

short Set_Check_Box(DialogPtr the_dialog, short the_item)
{

short the_type:;

Handle the_handle;

Rect the_rect;

int old_value;

GetDItem(the_dialog, the_item, &the_type,
&the_handle, &the_rect);

old_value = GetCti1Value((ControlHandle)the_handle);
if (old_value == CHECKBOX_ON)
{

SetCti1Value((ControlHandle)the_handle, CHECKBOX_OFF);
return (CHECKBOX_OFF);
}

else

{
SetCt1Value((ControlHandle)the_handle, CHECKBOX_ON);

return (CHECKBOX_ON);
}
}

As with all of the examples in this book, you'll find separate Symantec
and CodeWarrior versions of the source code for this new version of
MyTestApp in folders on the included disk.

After compiling and building a stand-alone application, it is time to
add the CDEF resource, just as the MDEF resource was added to Chapter
I’s version of MyTestApp. To do this, open both the MyButtonCDEF.rsrc
file and the MyTestApp application using a resource editor. Then copy
the MyButtonCDEF CDEF from the MyButtonCDEF.rsrc file and paste it
into the application. Figure 2.36 shows the results.

107

More Mac Programming Techniques

MyButtonCDEF.rsrc ==———— MyTestfApp %ﬁ
g el i il .
Jun (o G @ gmde el
are e L] " 01000800
CDEF CoEF | CNTL CODE DATA dotb
[G=Eini=] LICIRNTT)
——— 00101001
= DIIO1010 4 a
sl T
DITL DLOG DREL PICT SIZE
oleriel
oa10 1001
CINC AT AN
LTI NENE
01000000 —
ZERO &

FIGURE 2.36 THE RESULT OF PASTING THE CDEF cODE RESOURCE
INTO THE APPLICATION'S RESOURCE FORK.

Now there’s nothing left to do but give the program a test drive. Make
sure the speaker volume of your Mac is on so you can hear the system
alert sound that plays when a picture button is clicked on.

ADDING A SEcOND ButtON TO MYTESTAPP

Before jumping into a new CDEF, I'll cover Chapter 1's MyButtonCDEF.
In this section you'll see how a couple of simple changes to the resource
file of MyTestApp makes it possible to use MyButtonCDEF with any num-
ber of buttons.

Changing the MyTestApp Resource File

This chapter’s version of MyTestApp displays a dialog box with two cus-
tom picture button controls in it. Because both controls in the
MyTestApp program use the same set of PICT resources, they look identi-
cal. It would be a simple matter to instead have the program display two
different looking picture controls. To do so, I need to add another set of
four PICT resources (see Figure 2.37).

108

Chapter 2 Custom Controls and the CDEF

?E PICTs from MyTestApp.w.rsrc &=

202 203

300 301

302 303

Ficure 2.37 ApDING A SECOND SET OF PICT RESOURCES TO THE
MyTeSTAPP PROJECT'S RESOURCE FILE.

After drawing the four pictures in my graphics program, I added each to
the resource file of the MyTestApp project. Figure 2.37 shows that each
of the four pictures has an arrow pointing to the left. I've kept the origi-
nal four pictures (with arrows pointing to the right) in the resource
file—you can see part of two of those PICT resources in Figure 2.37.

Next, I'll need to add a new CNTL resource so that one of the two
custom controls will use the new pictures. In the new CNTL, which I've
given an ID of 600, I'll change the RefCon field value. Recall that the
RefCon field specifies the ID of the base PICT to be used as the button.
Figure 2.38 shows how CNTL ID 600 would look.

109

More Mac Programming Techniques

SE=—— CNIL ID = 600 from MyTestApp.m.rsrc i

BoundsRect 0 ”U ”22 —HSD |m =

Ualue 0 I

Uisible .@True) False

Max 1 I

Min ‘U

ProclD |16000

RefCon {300 B

Title & =
2

To change the look of a button, enter
a new PICT ID in the RefCon field

FiGUuRE 2.38 ApDING A SECOND CNTL RESOURCE TO THE
MyYTESTAPP PROJECT'S RESOURCE FILE.

Next, I need to change the CNTL resource ID of one of the two custom
control’s in the DITL resource. Since I want the left button to display the
new left arrow picture, I'll change the ID listed in the left control. Figure
2.39 shows this change.

Building a New MyTestApp Application

To make the changes that were made to the MyTestApp resource file go
into effect, a new version of the MyTestApp application needs to be built.
When I use my development environment to do that, the MyTestApp.c
source code won't be recompiled. Instead, the build will just link the
altered MyTestApp resource file to the existing MyTestApp object code to
create a new application. After copying the existing CDEF resource from

110

Chapter 2 Custom Controls and the CDEF

MyButtonCDEF and pasting it into the new MyTestApp, launching the
application would result in a dialog box like the one in Figure 2.40.

Fs;_mn ID = 128 from MyTestApp.7i.rsrc

L &8 5§
EM=—— Edit DITL item #2 from MyTestApp.7.rsrc ==

Resource 1D:
B [Control |
EJ Enabled Top: Height: 22
Left: Width: 50

Ficure 2.39 CHANGING THE RESOURCE ID oF A ConTRoOL DITL ITEM SO THAT THE ITEM
uses THE NEW CNTL RESOURCE.

FiGURE 2.40 THE DIALOG BOX DISPLAYED BY THE NEW VERSION oF MYTESTAPP.

111

More Mac Programming Techniques

' Notice that the MyButtonCDEF project was not changed
in any way. The CDEF can be used as is to handle any
number of picture buttons. To add more buttons or change
1 1 p the look of existing ones, change the PICT .and CNTL
resources in the resource file of the application project
that uses the CDEF.

ApDING CONTROL VARIATION HANDLING TO
MyButtoNCDEF

Earlier in this chapter I mentioned that one CDEF can be made to han-
dle different types of controls. That’s what the system CDEF resource
does. The System file CDEF with ID 0 handles push buttons, radio but-
tons, and check boxes. It can do this because it knows how to work with
variations of a control. In this section you'll see how you can easily give
your own CDEF the power to work with different variations of the picture
button control.

Changing the MyTestApp Resource File

While the MyButtonCDEF allows a picture button to take on any look,
it still supports only one type of control. Each button handled by
MyButtonCDEF will simply be a PICT resource drawn to a dialog box
or window. MyButtonCDEF could, however, be written in such a way
that it would give a programmer options on how a button should look
in an application. For instance, the MyButtonCDEF CDEF is written to
allow the use of a picture as a button. This type of control would be
considered the default control, and would have a variation value of 0.
This same CDEF could also be written such that a picture button con-
trol could be drawn with a title beneath it. If the button was to have a
title, the variation value would be 1. This situation is shown in Figure
2.41.

112

Chapter 2 Custom Controls and the CDEF

Variation 1: Variation 0:

Custom picture
button control,
with button title

Custom picture
button control

FiGURE 2.41 ONE TYPE OF CONTROL CAN HAVE DIFFERENT VARIATIONS.

The CNTL is the resource that provides the details of what a custom con-
trol looks like. The ProcID is the field of the CNTL that specifies which
CDEF should handle the control. But if one CDEF is to support multiple
variations of a control, how does one include this information in the

CNTL? The answer lies in the formula for determining the value of the
ProcID:

ProcID = ('CDEF' ID * 16) + variation code

For a default control that simply displays a PICT resource, the variation
code will be 0 and the ProcID will be 16000; you've seen that earlier in
this chapter. If I want the custom control to display a picture and have a
title underneath it, I'll include the variation code in my calculation of the
ProcID. Since I said that my new version of MyButtonCDEF will have
just one variation, the variation code will be 1:

ProcID = ("CDEF' ID * 16) + variation code
ProcID = (1000 * 16) + 1
ProcID = 16001

113

More Mac Programming Techniques

Figure 2.42 shows how the CNTL resource would look for a custom con-
trol that is to display both a picture and a title.

EJ=——= CNITL ID = 600 from MyTestApp.7.rsrc —n—|
Boundshect (0 |[o |[22 [[s0 |(Sel)

Ualue 0 I
Uisible @® True) False
Max ‘I |
Min [0 |
ProciD |15001 |
[&
RefCon [300 L\ |

Title [

B

/

ProcID = ('CDEF' ID * 16) + variation code
ProcID = (1000 * 16 } + 1
ProcID = 16001

FIGURE 2.42 CHANGING THE CNTL ProcID so THAT THE CUSTOM CONTROL
WILL BE GOVERNED BY A CONTROL VARIATION.

For some control variations, this change may be the only resource modi-
fication needed. For my button title example, however, I need to make
one other change: the addition of an STR resource.

If a custom control is to have a title, I'll include that title in an STR
resource. To associate the title with a particular control, I'll give the STR
resource the same ID as the PICT resource that holds the control’s base
picture. Since the ID of the left arrow picture is 300, I'll give the new STR
resource an ID of 300 also (see Figure 2.43).

114

Chapter 2 Custom Controls and the CDEF

STRs from MyTestApp.m.rsrc

> Size Mame
300 7
== STR_ID = 300 from MyTestApp.T.rsrc =——|
iy
The String Left
Data $ —l
I
i

FiGURE 2.43 CreATING THE STR RESOURCE THAT WILL HOLD
THE TITLE OF A BUTTON CUSTOM CONTROL.

Giving a PICT resource and STR resource the same ID
‘ doesn’t provide any actual connection or association

between the two in the resource file. That pairing will be
N O0TE made later, in the CDEF source code.

Changing the variation of a custom control involves changing at least
one resource—the CNTL resource—in the application project’s resource
file. It may also require other changes, such as the addition of an STR
resource as shown above. Of course, in order for these changes to be
meaningful, there will also have to be some changes made to the CDEF
source code.

The CDEF Source Code for Control Variations

You saw that the MyButtonCDEF source code didn’t make use of the first
parameter to main()—the short parameter var_code. Here's a
reminder of what the declaration of main() looks like:

pascal long main(short var_code,
ControlHandle the_control,

115

More Mac Programming Techniques

If a CDEF is to support control variations, it will use var_code to draw
the correct control. When the mouse button is clicked on a custom con-
trol, the Control Manager will use information from the control’s CNTL
resource to determine which variation code should be passed to the
CDEF main() routine. Figure 2.44 shows that it’s the CNTL ProcID

short
long

that holds the variation code.

message,

msg_param)

~] [F

/ Left

AN

S[J=—— CNTL ID = 600 from N [E.T==== CNIL ID = 500 from N
BoundsRect 0 J 0 | BoundsRect 0 ID
Ualue 0 Ualue 0
Uisible @ True O Fals Uisible @® True O Fals
Min [o | Min 0
ProclD . 16001 | ProclD 16000
RefCon [300 RefCon [200
Title | —T J L 0

. N

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)

Ficure 2.44 THE ProclD FiELD oF A CNTL RESOURCE DETERMINES WHICH CODE

116

VARIATION GETS USED.

Chapter 2 Custom Controls and the CDEF

In the previous MyButtonCDEF example, a drawCnt1 message resulted in
a call to Draw_Control(). In this example CDEF, MyButtonVarCDEF, a
drawCnt1 message also results in a call to a drawing function. However,
where the previous CDEF only passed a control handle to the drawing rou-
tine, this chapter’s CDEF will pass both the control handle and the varia-
tion code. Here’s the snippet from main() that makes the call:

case drawCntl:
Draw_Control(the_control, var_code);
break:

MyButtonVarCDEF is an adaptation of MyButtonCDEF. The changes that
need to be made to MyButtonCDEF in order for it to support variation
codes are minimal. You just saw the first change—Draw_Control()
gets a second parameter passed to it. The other changes are to the
Draw_Control() routine itself.

Draw_Control() determines which of the four PICT resources to
draw by first getting the resource ID of the base picture. That informa-
tion is held in the RefCon field of the control’s CNTL resource, and sub-
sequently in the contri1RfCon field of the control record. As you saw
earlier, a call to GetControlReference() returns this value:

pict_ID = GetControlReference(control);

In the MyButtonVarCDEF, a call to GetControlReference() will be
followed by an assignment statement.

short pict_ID;
short string_ID;

pict_ID = GetControlReference(control):
string_ID = pict_ID;

The assignment of string_ID must be made just after the
initial assignment of pict_ID. The call to
GetControlReference() returns the ID of the control’s
base picture—and that’s the ID of the control title STR ID.

117

More Mac Programming Techniques

Later in Draw_Control() pict_ID may change (to
pict_ID plus an offset). That new value won’t be useful in
obtaining the STR ID.

There’s one more addition I'll need to make to Draw_Control().
After drawing the correct picture, Draw_Control() should examine
var_code to see if the control being drawn is a variant control. If
var_code has a value other than 0, it is. If var_code has a value of 1,
MyButtonVarCDEF will need to draw a title under the button picture:

switch (var_code)
{

case 1:
Draw_Button_Title(saved_port, string_ID, control_rect):
break;

| could have used an if statement to handle this single vari-
ation:
if (var_code == 1)

Draw_Button_Title(saved_port, string_ID,
control_rect);

Instead, | choose to use a switch statement to show how
several different variation codes would be handled by a
CDEF.

Draw_Button_Title() is the only routine that’s been added to
MyButtonCDEF to turn it into MyButtonVarCDEF. Before examining
that function, here’s a look at the new version of Draw_Control ().
The few additions to MyButtonCDEF version have been printed in bold-
face type.

void Draw_Control(ControlHandle control, short var_code)
{

GrafPtr saved_port;

Rect control_rect;

short pict_ID;

PicHandle pict_handle;

118

Chapter 2 Custom Controls and the CDEF

short string_ID;

if ((**control).contriVis == CNTRL_INVISIBLE)
return;

GetPort(&saved_port);

pict_ID = GetControlReference(control);
string_ID = pict_ID;

control_rect = (**control).contrlRect;

if (Color_Is_On(control_rect) == false)
pict_ID += BW_OFFSET;

if ((**control).contrlHilite == inButton)
pict_ID += DOWN_OFFSET;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);

if (pict_handle == nil)
ExitToShell();

DrawPicture(pict_handle, &control_rect);

if ((**control).contrlHilite CNTRL_INACTIVE)
Dim_Item(control_rect):

switch (var_code)

{
case 1:
Draw_Button_Title(saved_port, string_ID, control_rect);
break:
}

SetPort(saved_port):

If the clicked-on button has a variation code of 1, (Draw_Button_
Title()) will be called. Draw_Button_Title() has only one task: to
draw a title beneath a button’s picture. Although it takes only a few lines
of code to perform this chore, Draw_Button_Title() consists of sev-
eral local variables and 18 lines of code. Here’s a look at why
Draw_Button_Title() needs this extra baggage:

119

More Mac Programming Techniques

void Draw_Button_Title(GrafPtr the_port,
short string_ID,
Rect control_rect)

Save the current state of the graphics pen
Save the current font information

Set the graphics pen to its default settings
Set the font information to the desired values

Get a handle to the title string

Move the graphics pen such that the string will be centered
Draw the string

Release the string handle

Return the font information to the saved values
Return the graphics pen to its saved state

From the above comments you can see that much of the code in
Draw_Button_Title() exists to ensure that when the function is com-
pleted, all drawing settings will be as they were when the function began.
Again, this is a courtesy to the calling application. When a user clicks on
a button, an application won’t save the drawing information. So if my
CDEF code is going to alter the state of the graphics pen or the current
font, my CDEF should also restore all of this information when it is done.

Draw_Button_Title() usesacallto GetPenState() to preserve
the state of the graphics pen. To save the current font information,
Draw_Button_Title() looks at two fields of the current graphics
port; that’s why the one of the function parametersisa GrafPtr. After a
call to PenNormal() sets the graphics pen to its default settings, calls to
TextFont() and TextSize() set the font information for the text in
which the title will appear. Here’s the part of Draw_Button_Title()
that takes care of these preliminary tasks:

PenState saved_pen_state;
short saved_font;
short saved_size;

GetPenState(&saved_pen_state);
saved_font = the_port->txFont;

120

Chapter 2 Custom Controls and the CDEF

saved_size = the_port->txSize;
PenNormal();

TextFont(geneva);

TextSize(9);

Next comes the drawing of the title. First, Draw_Button_Title()
makes a call to the Toolbox routine GetString() to obtain a handle to
the title string. The value of the parameter to GetString(),
string_ID, was found in Draw_Control() and passed to (Draw-
_Button_Title()). Because Toolbox routines generally work with a
Str2b5 or StringPtr, the string handle is dereferenced and the
resulting pointer is stored in the StringPtr variable button_title:

StringHandle str_handle;
StringPtr button_title;

str_handle = GetString(string_ID);
button_title = *str_handle;

Draw_Button_Tit1e() now determines where to draw the string. First
the width of the button is calculated using the control’s boundary rectan-
gle. Next, the center of the button is determined. Then, with the help of
the Toolbox function StringWidth(), the point to which the graphics
pen should be moved is figured, and the results are saved to the variables
X and y:

short button_width;
short center;
short X, ¥Y:

button_width = control_rect.right - control_rect.left;
center = control_rect.left + (button_width / 2);

x = center - (StringWidth(button_title) / 2);

y = control_rect.bottom + 12;

After moving the graphics pen, the button title is drawn. Since
Draw_Button_Title() declared and allocated memory for the string,
Draw_Button_Title() will clean up by releasing this memory with a
call to ReleaseResource():

121

More Mac Programming Techniques

MoveTo(x, y)
DrawString(button_title);
ReleaseResource((Handle)str_handle);

Finally, Draw_Button_Title() restores the graphics pen settings and
the font information:

TextFont(saved_font);
TextSize(saved_size);
SetPenState(&saved_pen_state);

Here’s an uninterrupted look at the Draw_Button_Titl1e() function.

void Draw_Button_Title(GrafPtr the_port,
short string_ID,
Rect control_rect)

{
PenState saved_pen_state;
StringHandle str_handle;
short saved_font;
short saved_size;
StringPtr button_title;
short button_width;
short center;
short X, ¥:

GetPenState(&saved_pen_state);
saved_font = the_port->txFont;
saved_size = the_port->txSize;
PenNormal();

TextFont(geneva);

TextSize(9);

str_handle = GetString(string_ID);

button_title = *str_handle;

button_width = control_rect.right - control_rect.left;
center = control_rect.left + (button_width / 2);

x = center - (StringWidth(button_title) /7 2);

y = control_rect.bottom + 12;

MoveTo(x, ¥y):

DrawString(button_title);

ReleaseResource((Handle)str_handle);

TextFont(saved_font);
TextSize(saved_size);

122

Chapter 2 Custom Controls and the CDEF

SetPenState(&saved_pen_state);
}

MyButtonVarCDEF is derived from the MyButtonCDEF CDEF developed
in this chapter. Aside from the addition of a new function—
Draw_Button_Title()—the changes to MyButtonCDEF are minimal,
and have all been covered here. If you’d like to examine the entire
source code listing for the new CDEF, you’ll find it in the
MyButtonVarCDEF.c file on the included disk.

Adding More Control Variations to a CDEF

A CDEF can support any number of variations. For example, you might
want to modify MyButtonVarCDEF so that it has separate variations for
different title sizes. Variation 1 could draw the button title in 9-point
Geneva—as it does now—while variation 2 could draw the title in 12-
point Chicago (the system font). To handle this second variation you
need to add another case label to the switch in Draw_Control():

switch (var_code)

{
case 1:
title_font = geneva;
title_size = 9;
Draw_Button_Title(saved_port, string_ID, control_rect,
title_font, title_size);
break:;
case 2:
title_font = systemfFont;
title_size = 12;
Draw_Button_Title(saved_port, string_ID, control_rect):
title_font, title_size);
break;
}

From the above snippet you can also see that the (Draw_Button_
Title()) routine now has five parameters instead of three. By passing
along the font information for the button title, (Draw_Button_
Title()) becomes a more versatile function. Besides the addition of

123

More Mac Programming Techniques

the two new parameters, the only changes that would need to be made to
Draw_Button_Title() would be to the parameters to TextFont()
and TextSize():

void Draw_Button_Title(GrafPtr the_port,
short string_ID,
Rect control_rect,
short title_font,
short title_size)

{

// Local variables

// Save pen and font information

TextFont(title_font);

TextSize(title_size);

// Draw title

// Restore pen and font information
1

To make use of this new control variation, I would just have to modify the
CNTL resource for one of the custom controls in the resource file of the
MyTestApp project. If I gave CNTL 500 a ProcID of 16002, the
MyButtonVarCDEF would be used with a variation code of 2 for the right
arrow button. The dialog box posted by MyTestApp would then look like
the one in Figure 2.45.

FiGURE 2.45 THE DIALOG BOX DISPLAYED BY THE NEW VERSION oF MYTESTAPP.

124

Chapter 2 Custom Controls and the CDEF

CHAPTER SUMMARY

While the Macintosh Toolbox makes it easy‘ to create all of the standard
controls, such as buttons and check boxes, it has no provisions for letting
a programmer quickly and easily create fancier controls. Instead, a pro-
grammer must create a CDEF code resource to carry out this task. A
CDEF consists of a control definition function that describes how a con-
trol should be drawn and how it should be handled.

Like an MDEF, a CDEF is code that exists outside and apart from the
code of an application. With a CDEF, it is a mouse click on an applica-
tion’s custom control that causes this external code to execute. The
Control Manager is responsible for invoking the CDEF code and for
returning authority to the application after the control has been han-
dled.

After writing the source code that will serve as the CDEF code
resource, your developmental environment will turn that source code
into a code resource. It will then be your job to copy this code resource
and paste it into the resource fork of the application that uses the custom
controls.

125

Chapter

N)

Y S
(93] an

=
% 3 ra
(] &@

P
”o ,o
Sramm

MORE Custom CONTROLS: SLIDERS

A control definition function, or CDEF, can be written such that it works
with any kind of custom control, not just buttons. Sliders are a type of
control that seems very “Mac-like,” yet there is no resource type or tool-
box functions that readily allow sliders to be added to programs. In this
chapter you'll see how a CDEF can be written- to support the use of slid-
ers in any Mac application.

Because Chapter 2 supplied you with the foundation for developing
control definition functions, the basics of how a slider control is created
will be familiar to you. A slider, however, is more complex than the sim-
ple picture buttons developed in Chapter 2, so there will be plenty of
new topics to explore.

127

More Mac Programming Techniques

THE CDEF AND SLIDER CONTROLS

The dragging of a slider’s thumb, or indicator, can be accomplished in a
number of ways. In this chapter you'll see a few different ways of imple-
menting a horizontal slider like the one pictured in Figure 3.1.

FiGure 3.1 A TYPICAL SLIDER CONTROL IN A DIALOG BOX.

Drawing the Slider Control and Indicator

A slider consists of two separate parts. The indicator, or thumb, of the
control is the part the user clicks on and drags. The control itself—the
path on which the thumb travels—is the other slider part. As it is for all
custom controls, it is the responsibility of the control definition function
to draw the parts of a slider. When the main() function of a CDEF
receives a drawCt1 message, the CDEF can use a series of QuickDraw
calls to draw the parts of the control, or, as I'll do in this chapter, the
CDEF can display pictures that are stored in PICT resources.

Tvpically, a slider control that is drawn with the use of pictures will
use two PICT resources—one for the control and one for the indicator. If
a CDEF is to support drawing to both color and monochrome screens,
four pictures should be available to the application. Depending on the
color level of the monitor, the application will use one pair or the other
from the four pictures. Figure 3.2 shows a set of four PICTs used to draw

128

Chapter 3 More Custom Controls: Sliders

the control and slider in Figure 3.3. Figure 3.3 shows the same dialog box
on both a color monitor and a monochrome monitor.

SE=—— PICTs from MyTestApp.7.rsrc ==—M
iy

200 ‘ 201

202 203

€l

FiGURE 3.2 THE APPLICATION PROJECT'S RESOURCE FILE WILL HOLD
A SET OF FOUR PICTURES FOR A SINGLE SLIDER.

When a control that is to be used as a slider is added to a DITL resource,
its size will be determined by the CNTL resource referenced by the con-
trol DITL item. This is as it was for Chapter 2’s picture button controls.
The size of the control should be the size of the slider’s path—the con-
trol picture. An example of this is in Figure 3.4.

129

More Mac Programming Techniques

PICT 202 PICT 200

PICT 203 PICT 201

FicurRe 3.3 Two PICTURES WILL BE USED FOR A COLOR SLIDER, AND TWO DIFFERENT
PICTURES WILL BE USED FOR A BLACK-AND-WHITE SLIDER.

220 pixels
14 pixels § [1]
E[J=——= CNIL ID = 300 from MyTestApp.n.rsrc ——e—=—|
it
|| BoundsRect |n |u | 14 |220 | =

FicURE 3.4 THE CNTL RESOURCE ESTABLISHES THE SIZE OF A SLIDER.

The color control can be drawn in a graphics program and pasted it into
a resource file. After that, the thumb should be drawn in the graphics

130

Chapter 3 More Custom Controls: Sliders

program, right on top of the control. Figure 3.5 shows an enlarged view
of a thumb drawn in a control.

= Slider Picture at 800%

FiGURE 3.5 A GRAPHICS PROGRAM SHOULD BE USED TO DRAW THE SLIDER’S THUME.

When the slider control’s indicator picture is copied from the graphics
program, the selection rectangle used should be just the size of the
thumb. Figure 3.6 shows the thumb being selected. After pasting the
indicator picture into the application project’s resource file, the same
steps should be taken to create and save two black-and-white pictures.

When it comes time to update the entire control, the CDEF will first
use a call to DrawPicture() to draw the larger control picture, and
“stamp” the thumb picture on top of the control picture using a second
call to DrawPicture().

The Slider Resources

A slider may or may not require PICT resources; it depends on how the
programmer chooses to implement the drawing of the slider. But a slider
will always need a control item in a DITL resource and a CNTL

131

More Mac Programming Techniques

resource—as did the picture button controls in Chapter 2. Figure 3.7
shows a control item in a DITL. In the figure you can see that informa-
tion about this DITL item can be found in the CNTL resource with an ID
of 300.

FiGuRe 3.6 THE SELECTION OF THE THUMB SHOULD BE MADE JUST INSIDE
THE BOUNDARIES OF THE CONTROL.

You've already seen that the BoundsRect of a CNTL holds the size of a
control item. For some controls, such as a slider, the Value, Max, and
Min fields become important. Together, these three values determine the
current location of the thumb within a slider control. The Min and Max
fields hold the range of numbers that the Value field can have. In
Figure 3.8 you can see that the thumb of the slider that uses CNTL 300
will have a range of 100 and is initially located at the dead center of the
control.

The Value field of the CNTL resource provides the initial location of the
thumb in the control. This value gets copied to the slider’s control record. As
the user drags the thumb of a slider, calls to SetControlValue() will
updaite this value in the control record.

132

Chapter 3 More Custom Controls: Sliders

DITLs from MyTestApp.7.rsrc
D Size MName

128 34 |
DITL 10 = 128 from MyTestApp.m.rsrc

TR IR AL 08
EME===== Edit DITL item #2 from MyTestApp.T.rsrc S|

Resource ID:
— | Control - |
X Enabled Top: Bottom: 54
Left: Right: 250

FiGuRe 3.7 THE INFORMATION ABOUT A CONTROL ITEM IS STORED IN A CNTL RESOURCE—
RESOURCE 300 FOR THIS EXAMPLE.

This number yields the current location
of the thumb in the slider control

E0=== CNTL ID = 300/ _d MyTestApp.m.rsrc =]
BoundsRect Eli/ [[14 {20 |(GeD) ks
Ualue 50 I
Uisible @ True () False
Max 100
Min 0

=

Max - Min gives the range of
numbers that value can have

Ficure 3.8 THE CNTL RESOURCE SUPPLIES INFORMATION ABOUT THE RANGE AND
PLACEMENT OF A CONTROL’S INDICATOR.

133

More Mac Programming Techniques

The ProcID of a slider’s CNTL resource indirectly holds the resource
ID of the CDEF code resource that governs the slider. In Figure 3.9 ProcID
has a value of 8000, telling you that the CDEF resource ID for this CNTL
must be 500 (8000 / 16 = 500).

The RefCon for a CNTL can be used to hold any information that a
custom control will need. For the slider, I'll use the RefCon to hold the
resource ID of the base picture of the set of four PICT resources. Figure
3.9 shows that this slider uses pictures beginning with PICT resource 200.

Sl=—— CNTL ID = 300 from MyTestApp.7.rsrc

BoundsRect 1] 0 |1 4 IEZD =

Ualue a0

Uisible @ True (O False

ProclD 6000

RefCon 200

Title)
g
L]

Ficure 3.9 THE coMPLETED CNTL RESOURCE, witH A REFConN vALUE oF 200.

SLIDER CONTROL SOURCE CODE

When a user clicks the mouse on a control indicator and begins drag-
ging the mouse, an outline—or gray area—the size of the indicator fol-
lows the movement of the mouse. This is evidenced when you move the
thumb of a scroll bar in a typical Macintosh application. Figure 3.10
shows what the scroll bar of a word processor document looks like as the
thumb is being dragged.

134

Chapter 3 More Custom Controls: Sliders

Hovember 50.6 112.0 3225
December 625 205.0 405.4
Total 587.4 13423 3455.1

FiGure 3.10 TYPICALLY, AN INDICATOR THAT IS BEING DRAGGED WILL
DISPLAY A GRAY OUTLINE OF THE THUMB.

In this section I'll develop the source code for a CDEF named MySlider
GrayCDEF. It uses this style of dragging for horizontal sliders like the one
pictured in Figure 3.11.

FiGure 3.11 THE MYSLIDERGRAYCDEF SUPPORTS THE OUTLINED DRAGGING OF A THUMB.

The Slider CDEF Entry Point

All control definition functions can make use of the format of the
main() routine discussed in Chapter 2—regardless of the type of cus-
tom control the definition is supporting. So this chapter’s slider example
will have a main() function that looks much like the other CDEF entry
points you've seen:

135

More Mac Programming Techniques

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)
{
long return_val = OL;

unsigned long high_bit;
unsigned long strip_bit;

switch (message)

{
case testCntl:
return_val = Test_Control(the_control, msg_param);
break;

case calcThumbRgn:
Calc_Thumb_Region(the_control, (RgnHandle)msg_param);
break;

case calcCRgns:

high_bit = (unsigned long)msg_param & 0x80000000;

if (high_bit == 0x80000000)

{
strip_bit = (unsigned long)msg_param & Ox7FFFFFFF;
Calc_Thumb_Region(the_control, (RgnHandle)strip_bit);

}

break;

case thumbCntl:
Calc_Thumb_Drag_Limits(the_control,
(ThumbDragInfo *)msg_param);
break;

case posCntl:
Position_Thumb(the_control, msg_param);
break;

case drawCntl:
Draw_Control(the_control);

break;
}

return (return_val);

136

Chapter 3 More Custom Controls: Sliders

A slider control will need to respond to more message types than a but-
ton control because the slider has more parts: The slider has both a con-
trol and an indicator, while the button has just the picture that repre-
sents the button. While the above main() function handles six message
types, it’s not uncommon for a slider control to watch for other messages
as well. Later in this chapter you’ll see other slider control messages,
including dragCnt1 and calcCnt1Rgn:

The six messages handled by the main() routine of
MySliderGrayCDEF, and the functions each message invokes, are covered
on the next pages. As an overview, I'll briefly describe each message here.

As was the case in the Chapter 2 examples, the Control Manager sends
the CDEF a testCnt] message when a mouse click needs to be tested to
see if it occurred in the boundaries of a control. When the Control
Manager sends this message, it will also send the coordinates of the mouse
click in the msg_param parameter.

When a user clicks on the thumb of a slider control and drags the
mouse, the CDEF will be called several times, with different message
types. The testCnt1 message will be sent to see if the cursor was over
the thumb. If it was, the region in which the thumb is currently located
needs to be calculated. When dragging an indicator, the Control
Manager works with a region rather than a rectangle. If the user’s Mac
has 24-bit addressing, the CDEF will be called with a calcCRgns mes-
sage. If the Mac has 32-bit addressing turned on, the message will instead
be a calcThumbRgn.

As the user drags the mouse, thumbCnt1 messages will be sent to the
CDEF to draw an outline of the thumb. Only when the user releases the
mouse will a posCnt1 message be sent to reposition the thumb. The
routine that handles a posCnt1 message will calculate the new, final
position of the thumb and will then send the CDEF a drawCnt] mes-.
sage to do the actual drawing.

A message type of drawCnt1 is sent to the CDEF by the Control
Manager when either the control or the thumb needs to be drawn—the
msg_param value indicates which. If a msg_param value of 0 accompanies

137

More Mac Programming Techniques

the drawCnt1 message, the control needs to be drawn. If msg_param has
avalue of 129, then the thumb should be drawn.

The six messages sent to the MySliderGrayCDEF CDEF are summa-
rized in Figure 3.12.

testCntl

Was the mouse click on
the thumb?

calcCRgns (24-bit) or
calcThumbRgn (32-bit)

If the mouse click was on
the thumb, calculate the
region occupied by the
thumb

thumbCntl

Using the calculated thumb
region, draw a gray outline
of the thumb as it's dragged
in the control

posCntl
Send a drawCnt1 message

to reposition the thumb when
the mouse button is released

FiGure 3.12 SEVERAL MESSAGE TYPES ARE INVOLVED IN THE DRAGGING OF AN INDICATOR.

Taking Care of the Preliminaries

MySliderGrayCDEF makes a call to Gestalt() to see if the system it’s
running on has a color monitor, so it includes the GestaltEqu.h header
file:

ffinclude <GestaltEqu.h>

138

Chapter 3 More Custom Controls: Sliders

MySliderGrayCDEF is the first CDEF example that declares its own data
structure. The ThumbDragInfo struct will be used to hold information
that tells the CDEF in what boundaries the user can drag the thumb:

typedef struct

{
Rect TlimitRect:
Rect slopRect;
short axis;

} ThumbDraglInfo;

This CDEF uses a PICT numbering scheme similar to the one used for
picture buttons. The resource ID of the PICT used as the control on
color systems is considered the base ID. The black-and-white version of
that picture has an ID one greater than the base picture, while the color
picture used for the thumb has an ID two greater than the base picture.
The black-and-white version of the thumb picture has an ID one greater
than the color version. That numbering sequence is summed up in three
jtdefine directives:

fidefine CONTROL_BW_OFFSET 1
f#define THUMB_OFFSET 2
fdefine THUMB_BW_OFFSET 1

MySliderGrayCDEF consists of main() and seven other functions.
You've seen Color_Is_On() in Chapter 2, so it won’t be discussed in
this chapter.

void Draw_Control(ControlHandle);

long Test_Control(ControlHandle, long);

void Calc_Thumb_Region(ControlHandle, RgnHandle);

void Calc_Thumb_Drag_Limits(ControlHandle, ThumbDragInfo *);
void Position_Thumb(ControlHandle, long);

Rect Calc_Thumb_Rect(ControlHandle };

Boolean Color_Is_On(Rect):

Calculating the Thumb Rectangle

Many of the actions that take place in a slider are dependent on the size
of the rectangle that encloses the control’s indicator. In order to elimi-

139

More Mac Programming Techniques

nate redundant code, MySliderGrayCDEF has a utility routine named
Calc_Thumb_Rect (). You'll come to see that Calc_Thumb_Rect()
gets invoked by four of the functions in the CDEF.

Calc_Thumb_Rect() begins by determining the width of the
thumb. That’s done by obtaining a handle to one of the thumb pictures
(they're both the same size) and examining the picFrame field of the
Picture data structure.

short pict_ID;
PicHandle pict_handle;
Rect pict_rect;
short thumb_width;

pict_ID = GetControlReference(control);
pict_ID += THUMB_OFFSET;
pict_handle = (PicHandle)GetResource('PICT', pict_ID);
if (pict_handle == nil)
ExitToShell();

pict_rect = (**pict_handle).picFrame;

thumb_width = pict_rect.right - pict_rect.left;

The thumb_width variable will be used a little later in the function. Before
that time, the pixel width of the entire control is needed. That value can be
obtained from the contr1Rect field of the control record. Figure 3.13 is a
reminder of where the pixel coordinates of the control originated.

Rect control_rect;
short control_pixel_width;

control_rect = (**control).contrlRect;
control_pixel_width = control_rect.right - control_rect.left;

The control uses the contr1Value member of the control record to
keep track of the location of the thumb. This number only has meaning
in the context of the range of values that the control can have. After
using the minimum and maximum control values to determine the
range, the current control value is used to see how far the thumb is offset
from the minimum value. Then a ratio is calculated. In Figure 3.14 you

140

Chapter 3 More Custom Controls: Sliders

can see that the initial position of the thumb is at the center of the con-
trol. This won’t be the case for the duration of the CDEF execution—the
contrilValue will be changing as the thumb moves.

SJ==—— Edit DITL item #2 from MyTestApp.7.rsrc =
Resource ID:
| Control v |
Enabled Top: Bottom: 54
Left: Right: 250

1]

250 - 30
220

control_pixel_width

control_pixel_width

FiGure 3.13 THE cONTROL ITEM IN THE DITL RESOURCE PROVIDE
THE ORIGINAL BOUNDARIES OF A CONTROL.

short control_unit_width;
short control_offset;
float ratio;

control_unit_width = (**control).contriMax -
(**control).contriMin;

control_offset = (**control).contrlValue - (**control).contriMin;

ratio = (float)control_offset / (float)control_unit_width;

Calc_Thumb_Rect() calculates a ratio because the control’s value is
relative to the control’s minimum and maximum settings, not to any
pixel numbering. The ratio can be used with pixel values to determine
the pixel center of the thumb:

short thumb_center;

thumb_center = control_rect.left + (ratio * control_pixel_width);

141

More Mac Programming Techniques

E[1== CNTL ID = 300 from MyTestApp.w.rsrc

BoundsRect 0 0 14 220
Ualue 50 —]

Uisible ® True O False <_—
Eﬂax 100
I Min 0 —

|
control_unit_width = 100 - 0 control_offset = 50 - 0
control_unit_width = 100 control_offset = 50

Ficure 3.14 THE CNTL MIN AND MAX FIELDS PROVIDE THE RANGE IN WHICH A THUMB
CAN TRAVEL—THE VALUE FIELD GIVES THE THUMBS INITIAL PLACEMENT IN THAT RANGE.

Carrying on with the numbers used in the example, the thumb’s horizon-
tal center is at pixel 140—midway between the control’s left side at 30
pixels and its right side at 250 pixels. Figure 3.15 points this out.

thumb_center = control_rect.left + (ratio * control_pixel_width)
thumb_center = 30 + (0.5 * 220)
thumb_center = 140

After the horizontal midpoint of the thumb rectangle has been deter-
mined, it’s a simple task to find the four rectangle boundaries. The
previously calculated thumb_width is used to determine the left and
right boundaries. Since I always create a thumb that rests in the con-
trol one pixel from the top and one pixel from the bottom, I’ll use the
control’s rectangle to calculate the thumb rectangle’s top and bottom
coordinates.

Rect thumb_rect;

thumb_rect.left = thumb_center - (thumb_width / 2);
thumb_rect.right = thumb_rect.left + thumb_width:
thumb_rect.top = control_rect.top + 1;
thumb_rect.bottom = control_rect.bottom - 1;

142

Chapter 3 More Custom Controls: Sliders

control_rect.left

(30)
! control_pixel_width
(220)
o L
1 1

®
thumb_center
(140)

Ficure 3.15 THE THUMB'S PIXEL LOCATION IS CALCULATED BY CaLc_THumB_REcT().

You’ll find that all six messages handled by MySliderGrayCDEF use
Calc_Thumb_Rect(); that’s why I've elected to describe the routine in
such detail. Here’s a look at the entire Calc_Thumb_Rect () listing.

Rect Calc_Thumb_Rect(ControlHandle control)

{
short pict_ID;
PicHandle pict_handle;
Rect pict_rect;
short thumb_width;
short thumb_center;
Rect thumb_rect;
Rect control_rect;
short control_pixel_width;
short control_unit_width;
short control_offset;
float ratio;

pict_ID = GetControlReference(control);
pict_ID += THUMB_OFFSET;
pict_handle = (PicHandle)GetResource(°'PICT', pict_ID);

143

More Mac Programming Techniques

if (pict_handle == nil)
ExitToShell();

pict_rect = (**pict_handle).picFrame;
thumb_width = pict_rect.right - pict_rect.left;

control_rect = (**control).contrlRect;
control_pixel_width = control_rect.right - control_rect.left;

control_unit_width = (**control).contriMax -
(**control).contriMin;
control_offset = (**control).contrlValue -
(**control).contriMin;
ratio = (float)control_offset / (float)control_unit_width;

thumb_center = control_rect.left + (ratio *
control_pixel_width);

thumb_center - (thumb_width / 2);
thumb_rect.left + thumb_width;
control_rect.top + 1;
control_rect.bottom - 1;

thumb_rect.left
thumb_rect.right
thumb_rect.top
thumb_rect.bottom

return (thumb_rect);

Handling a testCntl Message

A click of the mouse requires that the CDEF compare the point of the
mouse click with the current location of the control’s thumb. You’ll
recall from Chapter 2 that a testCnt1 message sends the mouse click
coordinates in the msg_param parameter. Calls to HiWord () and
LoWord() extract these coordinates. After making a call to
Calc_Thumb_Rect(), a call to PtInRect() should be made to com-
pare the location of the mouse click to the coordinates of the thumb. If
the click was in the thumb, a value of inThumb should be returned to
main(). The Control Manager will see to it that this value is entered into
the contr1Hi 11 te field of the slider’s control record.

long Test_Control(ControlHandle control, long mouse_loc)
{

144

Chapter 3 More Custom Controls: Sliders

Point the_point;
Rect thumb_rect;

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

thumb_rect = Calc_Thumb_Rect(control);

if (PtInRect(the_point, &thumb_rect))
return (inThumb);

else
return (0);

MySliderGrayCDEF assumes that the slider will always be
visible and active. If you'd like to change these assumptions,
add the tests of the control record contriVis and
contrlHilite fields, as you saw in the Test_Control()
routine of the Chapter 2 CDEF MyButtonCDEF.

Calculating the Thumb Region

After a call to Test_Control () confirms that a mouse click has
occurred in the thumb of a slider, the Control Manager will again invoke
the CDEF. This time the Control Manager will be interested in obtaining
the region occupied by the thumb. As mentioned, the Control Manager
likes to work with an indicator’s region rather than its rectangle. Once
the bounding rectangle of the thumb is known, calculating the region is
easy. Passing a region handle and a rectangle to the Toolbox routine
RectRgn() will take care of this task. RectRgn() will set up the region
structure that the handle references such that it has the coordinates of
the rectangle. In Calc_Thumb_Region() you see the first use of the
Calc_Thumb_Rect() routine:

void Calc_Thumb_Region(ControlHandle control,
RgnHandle indicator_rgn)
{

Rect indicator_rect;

indicator_rect = Calc_Thumb_Rect(control);

145

More Mac Programming Techniques

RectRgn(indicator_rgn, &indicator_rect);
}

Converting a rectangle to a region is easy. Getting to the
Calc_Thumb_Region() routine that accomplishes this takes a little bit
of work, though. In the days prior to 32-bit addressing, some data struc-
tures and Toolbox routines used the high order bit of an address for spe-
cial nonaddress purposes. Now that new Macintoshes require all 32-bits
for use in addressing, these old scheme’s don’t work. Calculating the
region of the thumb of a control is one such instance where this 24-
bit/32-bit conflict has to be handled.

For a CDEF running on a Mac that has 32-bit addressing turned on,
things are very simple. If the Control Manager needs the region of a con-
trol’s thumb, it sends a calcThumbRgn message. The msg_param field
will hold an address that can be typecast to a handle to a region. It will be
the job of the CDEF to calculate the thumb’s region boundaries and to
place these values in the data structure that the region handle indirectly
points to. For a calcThumbRgn message, the main() routine should
simply call the region-calculating routine Calc_Thumb_Region():

case calcThumbRgn:
Calc_Thumb_Region(the_control, (RgnHandle)msg_param);
break;

If the Control Manager instead needs the region of the entire control, it
sends a calcCnt1Rgn message. In this case the mSg_param again holds
a handle to a region, but the region data structure should be filled with
the boundaries of control. Since MySliderGrayCDEF never needs to cal-
culate the region of the entire control, it doesn’t handle a
calcCnt1Rgn message.

Before 32-bit addressing, the Control Manager would send a
calcCRgns message to a CDEF to indicate that it needed the region of
cither a control’s thumb or of the control itself. The calcCnt1Rgn and
calcThumbRgn that were added after the arrival of 32-bit systems would
be ignored on older 24-bit systems. Because addresses only occupied 24
of the 32 bits of a Tong word, the Control Manager felt free to embed
extra information in the unused upper bits of a long. For the

146

Chapter 3 More Custom Controls: Sliders

msg_param parameter of a calcCRgNS message, the Control Manager
uses the upper bit to hold a flag that indicates whether the thumb region
or the control region should be calculated. Figure 3.16 shows how the
msg_param holds this information on a 24-bit system.

Macintosh With 24-bit Addressing

The 32 bits of msg_param

U |J
il I] iy
[] E>

Lower 24 bits:
Region handle—address
of a pointer to a region Region

data
structure

Upper 1 bit:

If a 1—assign region the boundaries of the thumb
If a 0—assign region the boundaries of the control

FIGURE 3.16 THE BIT VALUES OF THE LONG VARIABLE MSG_PARAM HOLD
TWO KEY PIECES OF INFORMATION.

On a 24-bit system it is the responsibility of the CDEF to determine which
region is to be calculated. The CDEF can do this by examining the value
of only the high bit of the msg_param 10ong word. That’s done by mask-
ing out all of the lower 31 bits, as shown here:

unsigned long high_bit;

high_bit = (unsigned long)msg_param & 0x80000000;

If the result of the masking operation is a high_b1it value the same as

the mask, the highest bit of msg_param is a one. That means the
147

More Mac Programming Techniques

Control Manager wants the region of the thumb. The CDEF can then cal-
culate this region using the same routine that handles a calcThumbRgn
on 32-bit systems—Calc_Thumb_Region(). Before making a call to
this function, the highest bit—the flag—should be stripped off of
msg_param. The resulting value is the address that will serve as the
region handle.

If the original masking of the high bit results in a value other than
the mask, the high bit is a zero. This reveals that the Control Manager is
interested in the region of the entire control, not the region of the
thumb. Again, MySliderGrayCDEF doesn’t work with the region of the
control, so this result is ignored. Here’s how a calcCRgns message is
handled in the main() routine of MySliderGrayCDEF:

unsigned long high_bit;
unsigned long strip_bit;

case calcCRgns:

high_bit = (unsigned long)msg_param & 0x80000000;

if (high_bit == 0x80000000)

{
strip_bit = (unsigned Tong)msg_param & Ox7FFFFFFF;
Calc_Thumb_Region(the_control, (RgnHandle)strip_bit);

}

break;

Handling a thumbCntl Message

When a control’s thumb has been clicked on, the Control Manager will
send the control definition function a dragCnt1 message. If the CDEF
handles this type of message, the CDEF gets the opportunity to perform
thumb dragging in whatever way it sees fit. MySliderGrayCDEF doesn’t
support custom dragging, so this message will be ignored. Later in this
chapter you’ll see code for a CDEF that does perform custom dragging.
If the CDEF ignores dragCntl messages, the Control Manager will use the
Toolbox routine TrackControl() to handle thumb dragging.
TrackControl() is the routine that draws the gray outline of an indi-
cator as it’s dragged about the control. This is how MySliderGrayCDEF
handles thumb dragging.

148

Chapter 3 More Custom Controls: Sliders

To draw a properly sized outline of the thumb, TrackControl ()
needs to know the size of the indicator. To get this information,
TrackControl() will issue a call to the CDEF, passing a calcCRgns or
calcThumbRgn message.

Before beginning to track the cursor as the user drags the mouse,
TrackControl() needs to know the rectangle to which dragging
should be constrained. As the user moves the mouse within this rectan-
gle, TrackControl() will continuously draw the outline of the thumb.
Should the user move the mouse out of this rectangle,
TrackControl () will know that the outline should not be drawn.

Your first thought might be to simply make the dragging rectangle
the size of the control’s rectangle. After all, that’s the logical confines of
the thumb. Unfortunately, things aren’t quite that easy. As its point of ref-
erence, TrackControl () uses the mouse location at which the mouse
click took place. If, for example, the left boundary of the dragging rec-
tangle was the left boundary of the control, TrackControl () would
allow dragging from the point of the mouse click up to the left edge of
the control. As shown in Figure 3.17, the result would be that the thumb
could be dragged past the left edge of the control.

To alleviate this potential problem, the Control Manager uses a data
structure to hold more accurate information about the constraints it
should apply to thumb dragging. The struct that it uses has the follow-
ing three fields:

Rect TimitRect;
Rect slopRect;
short axis;

The 1imitRect field is the rectangle that holds the screen coordinates
of the rectangle to which dragging will be confined. This rectangle will
be the size of the control’s boundary rectangle, inset some amount to
prevent the situation shown in Figure 3.17.

The s1opRect is a rectangle that can be a little larger than the
1imitRect rectangle. This rectangle can be used to add a little play,
or slop, to the user’s movement of the mouse. As a consideration to
the user, the s1opRect will let the user drag the mouse slightly past

149

More Mac Programming Techniques

the edge of the control, but still constrain the display of the thumb to
the control.

Dragging limits are

[*J relative to the
location of the mouse

click on the thumb

If the drag limit was
set to the control's
LL*-I edge, part of the

thumb could drag off
the control

FiGURE 3.17 THE DRAGGING LIMITS OF A THUMB MUST BE INSET FROM THE CONTROL
BOUNDARIES OR THE THUMB CAN BE DRAGGED OUTSIDE THE CONTROL.

The final struct member, axis, names the axis to which the user may
drag the control. For a horizontal control like the one used in
MySliderGrayCDEF, the thumb should be limited to horizontal motion.
One of three Apple-defined constants can be used for this field:
noConstraint, hAxisOnly, or vAxisOnly.

To get all of the information that’s held in the struct, the Toolbox
sends the CDEF a thumbCnt1 message before dragging begins. Along
with this message, the Toolbox sends a pointer to a struct in the long
parameter mSg_param. It is the job of the control definition function to
fill in the fields of the structure that this pointer points to. To do that,

150

Chapter 3 More Custom Controls: Sliders

MySliderGrayCDEF defines a data type that matches the format of the
struct the Toolbox is looking to fill. While this Struct can be given
any name, it must have the three fields shown here:

typedef struct
{

Rect limitRect;
Rect slopRect;
short axis;

} ThumbDragInfo;

When a thumbCnt1 message is received, the main() function of
MySliderGrayCDEF calls a routine named Calc_Thumb_Drag_Limits().
The second parameter to this function is MSg_param, typecast to point to
a ThumbDragInfo struct:

case thumbCntl:
Calc_Thumb_Drag_Limits(the_control,
(ThumbDragInfo *)msg_param);
break;

Here’s how Calc_Thumb_Drag_Limits() receives the parameters
that are passed to it:

void Calc_Thumb_Drag_Limits(ControlHandle control,
ThumbDragInfo *thumb_drag_struct)

It is the job of Calc_Thumb_Drag_Limits() to fill the three fields of
the ThumbDragInfo struct. Before writing any values to these members,
the routine first extracts one piece of information that the Control
Manager has supplied in the struct. The first field, 1imitRect, holds
the coordinates of the mouse click. Since the thumb will be constrained
to horizontal motion, the routine is only interested in the horizontal
location of the mouse click. Here’s how that information is obtained:

short mouse_click_h;
mouse_click_h = (*thumb_drag_struct).limitRect.left;

Calc_Thumb_Drag_Limits() will also need the pixel coordinates of
the thumb and of the control:

is1

More Mac Programming Techniques

Rect control_rect;
Rect thumb_rect;

thumb_rect = Calc_Thumb_Rect(control);

control_rect = (**control).contrlRect;

Figure 3.18 shows the coordinates that are important to determining the
dragging rectangle. I've included an arbitrary pixel value for each, after
making the assumption that the control has a width of 220 pixels and
that the thumb has a width of 40 pixels. I'll use those values in the
remainder of this discussion.

control_rect.left mouse_click.h control_rect.right
(30) (150) (250)
lP [] ®
_ 1

® ®
thumb_rect.left thumb_rect.right

(120) (160)

FIGURE 3.18 SEVERAL COORDINATES ARE IMPORTANT IN THE DETERMINATION OF
THE DRAGGING RECTANGLE OF A THUMB.

The rectangle that serves as the boundary for thumb dragging will be
close to the size of the control rectangle, but not as big. Its coordinates
will be dependent on the location of the thumb and the cursor location
over the thumb when the mouse was clicked. Here’s how the left and
right boundaries are found:

152

Chapter 3 More Custom Controls: Sliders

Rect bounds_rect;

bounds_rect.left = control_rect.left +

(mouse_click_h - thumb_rect.left):
bounds_rect.right = control_rect.right -

(thumb_rect.right - mouse_click_h);

Using the numbers from Figure 3.18, here’s the values of the left and
right edges of the bounding rectangle:

bounds_rect.left = 30 + (150 - 120) = 60
bounds_rect.right = 250 - (160 - 150) = 240

Figure 3.19 shows that if the thumb is dragged to a location 60 pixels
from the left of the dialog box, the thumb will end up all of the way to
the left of the control—as hoped for. The figure also shows that dragging
the thumb to bounds_rect.right places the thumb at the far right of
the control. Note that these values only apply for this control and thumb
when the mouse click occurs at a horizontal pixel value of 150, as was
shown in Figure 3.18.

bounds_rect.left bounds_rect.right
(60) (240)
L]
I_L.EJ __J_*J

FiGure 3.19 THE BOUNDS_RECT RECTANGLE PROPERLY CONSTRAINS
THE MOVEMENT OF THE THUMB.

Because the thumb doesn’t move in a vertical direction, the top and bot-
tom coordinates of the boundary rectangle can be the same as those of
the control rectangle:

153

More Mac Programming Techniques

bounds_rect.top = control_rect.top;
bounds_rect.bottom = control_rect.bottom;

With the coordinates of the boundary rectangle set, an assignment to the
1imitRect member of the ThumbDragInfo structure can be made:

(*thumb_drag_struct).limitRect = bounds_rect;

To make things simple, I'll set the s1opRect to the size of the
TimitRect. That means that I won’t allow any slop, or play, in the user’s
dragging of the mouse. If the user drags past the left or right edges of the
1imitRect, the gray outline of the thumb will immediately disappear:

(*thumb_drag_struct).slopRect = bounds_rect;

Finally, I'll constrain movement of the thumb to the horizontal axis by
setting the aXxis member to the constant hAxisOnly:

(*thumb_drag_struct).axis = hAxisOnly;

Here’s the entire Calc_Thumb_Drag_Limits () routine:

void Calc_Thumb_Drag_Limits(ControlHandle control,
ThumbDragInfo *thumb_drag_struct)
{
Rect control_rect;
Rect bounds_rect;
Rect thumb_rect;
short mouse_click_h;

mouse_click_h = (*thumb_drag_struct).limitRect.left;
thumb_rect = Calc_Thumb_Rect(control);
control_rect = (**control).contriRect;
bounds_rect.left = control_rect.left +

(mouse_click_h - thumb_rect.left);
bounds_rect.right = control_rect.right -

(thumb_rect.right - mouse_click_h);

bounds_rect.top = control_rect.top;

154

Chapter 3 More Custom Controls: Sliders

bounds_rect.bottom = control_rect.bottom;

(*thumb_drag_struct).limitRect = bounds_rect;
(*thumb_drag_struct).slopRect = bounds_rect;
(*thumb_drag_struct).axis = hAxisOnly;

Handling a posCntl Message

When the user clicks on a control’s thumb and drags it across the con-
trol, only the outline of the thumb follows the cursor. It’s not until the
user releases the mouse that the thumb actually gets redrawn. It’s at this
mouseUp event that the Control Manager sends the CDEF a posCnt]
message. The main() function of MySliderGrayCDEF handles this mes-
sage type with a call to Position_Thumb():

case posCntl:
Position_Thumb(the_control, msg_param);
break;

On the receiving end, Position_Thumb () looks like this:

void Position_Thumb(ControlHandle control, long total_offset)

For a posCnt1 message, the msg_param parameter holds pixel values
for the horizontal and vertical offsets from the point at which the mouse
was clicked on the thumb to the final position at which the mouse was
released. Consider the case of a user that clicks the mouse button on the
thumb at the point (150, 45) and drags the mouse (and thumb outline)
to the left and releases the mouse button at the point (80, 45).
Embedded in msg_param would be a horizontal offset of -70 and a ver-
tical offset of 0.

Position_Thumb() needs the horizontal component of this offset
so that it can determine at what point on the screen the thumb should be
redrawn. A call to LoWord() extracts this horizontal coordinate:

short horiz_offset;
horiz_offset = LoWord(total_offset);
155

More Mac Programming Techniques

When the new thumb position is determined, its location will be stored in
the contrlValue field of the control record. As you've seen, this field
holds the position as a single value in the range of the control’s minimum
and maximum values, not as a pixel coordinate. So a few preliminary cal-
culations are in order. The values of the variables control_pixel_
width and control_unit_width, shown as follows, are found in this
same manner as they were found in Calc_Thumb_ Rect():

Rect control_rect;
short control_pixel_width;
short control_unit_width;

control_rect = (**control).contrlRect;

control_pixel_width = control_rect.right - control_rect.left;

control_unit_width = (**control).contriMax -
(**control).contriMin;

Next, the number of units that the thumb moved is calculated:

float pixels_per_unit;
short wunits_moved;

pixels_per_unit = (float)control_pixel_width /
(float)control_unit_width;
units_moved = horiz_offset / pixels_per_unit;

As an example of the value that would be calculated for units_moved,
consider the following scenario. A CNTL resource defines that a control
have a minimum value of 0 and a maximum value of 100, and that the
thumb initially be at a value of 50—at the center of the control. The
entire control has a pixel width of 220 pixels. When the program in
which the control appears is running, the user clicks on the thumb and
drags it 55 pixels to the left before releasing the mouse button. Figure
3.20 illustrates this situation. The value of pixels_per_unit would be
2.2, and the value of units moved would be -25:

pixels_per_unit = control_pixel_width / control_unit_width
pixels_per_unit = 220 / 100
pixels_per_unit = 2.2

156

Chapter 3 More Custom Controls: Sliders

units_moved = horiz_offset / pixels_per_unit
units_moved = -55 / 2.2
units_moved = -25

If the thumb was moved 55 pixels to the left, it has moved one-fourth of
the total pixel width of the control’s 220 pixels. That means the thumb
has also moved one-fourth of the total unit width, or 25 units, as well.

control_pixel_width
(220)

horiz_offset
(-55)

.
d

e
(**control) .contrlValue

(50)

&

control_unit_width
(100)

FiGURE 3.20 THE HORIZONTAL OFFSET OF THE THUMB IS THE NUMBER OF PIXELS THAT THE
THUMB HAS MOVED FROM ITS ORIGINAL POSITION.

After determining the number of units moved, the contrlValue field
of the control record needs to be updated to reflect the change. A call
to GetControlValue() returns the value before the move. The num-
ber of units moved (-25) is then added to this value. The resulting total

157

More Mac Programming Techniques

is then stored back in the control record with a call to SetControl
Value():

control_value = GetControlValue(control);
control_value += units_moved;
SetControlValue(control, control_value);

The call to SetControlValue() is the last line of code in
Position_Thumb(). So it would appear that Position_Thumb() didn’t
complete its goal of redrawing the thumb at its final destination. But in fact
it has. That’s the interesting part of Position_Thumb ()—the thumb will
get drawn without the function drawing it and without an explicit call to the
control definition’s drawing routine, Draw_Contro1(). Here’s why: a
CDEF call to SetControlValue(), SetControlMinimum(), or
SetControlMaximum() will automatically cause another message to be
sent to the CDEF. The message type? A drawCnt1 message. So, as
Position_Thumb() ends, Draw_Control () will begin.

void Position_Thumb(ControlHandle control, long total_offset)
{

short horiz_offset;

Rect control_rect;

short control_pixel_width;

short control_unit_width;

float pixels_per_unit;

short units_moved;

short control_value;

horiz_offset = LoWord(total_offset);

control_rect = (**control).contrlRect;

control_pixel_width = control_rect.right - control_rect.left;

control_unit_width = (**control).contriMax -
(**control).contriMin;

pixels_per_unit = (float)control_pixel_width /
(float)control_unit_width;
units_moved = horiz_offset / pixels_per_unit;

control_value = GetControlValue(control);

control_value += units_moved;
SetControlValue(control, control_value);

158

Chapter 3 More Custom Controls: Sliders

Handling a drawCntl Message

For MySliderGrayCDEF, the drawing of a control is done in much the
same manner as it was for the Chapter 2 CDEF MyButtonCDEF. Using
the ID of one of the PICT resources, a call to GetResource() returns a
PicHandle to Draw_Control(). Then a call to DrawPicture()
draws the control. For the control itself, the picture can be drawn to the
control’s rectangle:

Rect control_rect;
short pict_ID;
PicHandle pict_handle;

control_rect = (**control).contrlRect;

pict_ID = GetControlReference(control);
if (Color_Is_On(control_rect) == false)
pict_ID += CONTROL_BW_OFFSET;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);
DrawPicture(pict_handle, &control_rect);

Drawing the control picture serves to obscure the old thumb picture.
That’s exactly what should happen. Remember, Draw_Control () will
be called in response to the thumb being dragged and the mouse being
released. The picture of the thumb at its original location—before the
mouse click—is still present in the dialog box or window. The above call
to DrawPicture() wipes it out.

After drawing the control picture, it’s time to draw the thumb. The
new location of the indicator is stored in the contrlValue field of the
control record. A call to Calc_Thumb_Rect () retrieves that value and
uses it to calculate and return the thumb’s new pixel coordinates. After
obtaining a handle to the proper picture, a call to DrawPicture()
stamps the thumb over the control picture:

pict_ID = GetControlReference(control);

pict_ID += THUMB_OFFSET;

if (Color_Is_On(control_rect) == false)
pict_ID += THUMB_BW_OFFSET;

159

More Mac Programming Techniques

thumb_rect = Calc_Thumb_Rect(control);

pict_handle = (PicHandle)GetResource(°'PICT', pict_ID);
DrawPicture(pict_handle, &thumb_rect);

Here’s alook at Draw_Control ().

It’'s important to place the code that draws the control picture
before the code that draws the thumb picture. Reversing the
I order of drawing would cause the thumb to immediately be
NOTE obscured by the control picture.

void Draw_Control(ControlHandle control)
{

Rect control_rect;

Rect thumb_rect;

short pict_ID;

PicHandle pict_handle;

control_rect = (**control).contrlRect;

pict_ID = GetControlReference(control):
if (Color_Is_On(control_rect) == false)
pict_ID += CONTROL_BW_OFFSET;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);
DrawPicture(pict_handle, &control_rect);
ReleaseResource((Handle)pict_handle);

pict_ID = GetControlReference(control);

pict_ID += THUMB_OFFSET;

if (Color_Is_On(control_rect) == false)
pict_ID += THUMB_BW_OFFSET;

thumb_rect = Calc_Thumb_Rect(control);
pict_handle = (PicHandle)GetResource(°'PICT', pict_ID);

DrawPicture(pict_handle, &thumb_rect);
ReleaseResource((Handle)pict_handle);

160

Chapter 3 More Custom Controls: Sliders

Building the CDEF Code Resource

The process of building the MyButtonCDEF in Chapter 2 should have
given you all of the information and confidence you need to build any
CDEF code resource. If you have forgotten how to set up a code resource
project, refer back to Chapter 2. You can also take a look at the
MySliderGrayCDEF project, which is located in the My Slider Gray CDEF
f folder.

If you use the Metrowerks compiler, select Preferences from the Edit
menu. After clicking on the Project panel, make sure that the panel set-
tings are correct. The Project Type should be set to Code Resource and
CDEF should be entered in the ResType field. The ResID should be 500
so that the CNTL resources can work with this CDEF. When you’re satis-
fied that everything’s okay, dismiss the Preferences dialog box and select
Make from the Project menu to build the code resource.

If you're a Symantec user, select Set Project Type from the Project
menu and look at the dialog box settings. Verify that the Code Resource
radio button is selected and that the Type field is filled out as CDEF. The
ID field should be set to 500 so that the CNTL resources in the resource
file will use the MySliderGrayCDEF. After dismissing the dialog box you
can build the code resource by selecting Build Code Resource from the
Project menu.

THE SLIDER TEST APPLICATION

This chapter’s test application is one of the shortest Mac programs you’ll
ever write. MyTestApp simply displays the dialog box shown in Figure
3.21—the dialog box you’ve seen throughout this chapter.

Clicking on the control’s thumb allows the outline of the thumb to
be dragged back and forth across the control. A click on the OK button
ends the program.

161

More Mac Programming Techniques

Ficure 3.21 THE DIALOG BOX DISPLAYED BY MYTESTAPP.

The Test Application Resources

You've already seen the key resources used in this chapter’s MyTestApp—
they've been used in the figures that accompanied discussions of slider
CDEFs earlier in this chapter. To save you a lot of page flipping, I've
repeated them here. The MyTestApp resource file holds four PICT
resources so that the application will be able to display both color and
monochrome versions of the control and its thumb. These PICTs are
shown in Figure 3.22.

The resource file’s one DITL holds just two items—an OK push but-
ton and a Control item that will become the slider. As shown in Figure
3.23, the Control item relies on CNTL resource 300 for its information.
Because I've given the MySliderGrayCDEF an ID of 500, the CNTL
resource has a ProcID of 8000. Figure 3.24 shows the one CNTL
resource used by MyTestApp.

ProcID = ('CDEF' ID * 16) + variation code
ProcID = (500 * 16) + 0
ProcID = 8000

162

Chapter 3 More Custom Controls: Sliders

ENE=== PICTs from MyTestApp.1.rsrc =i
ity

200 201
| i it
202 203 5
2]

Ficure 3.22 THE PICT REsoURCES USED BY MYTESTAPP.

DITLs from MyTestApp.m.rsrc

>} Size Name

128 34 |
DITL ID = 128 from MyTestApp.w.rsrc

EN==—= Edit DITL item #2 from MyTestApp.T.rsre ===
Resource ID:

— | Control w |

& Enabled Top: Bottom: 54
Left: Right: 250

FIGURE 3.23 THE CONTROL ITEM RELIES ON CNTL REsource 300 FOR ITS INFORMATION.

163

More Mac Programming Techniques

S[M==== CNIL 1D = 300 from MyTestApp.7i.rsrc

BoundsRect IIZI_-l IE_I I 14 ||E2U e

Ualue s0

Uisible @® True O False

Proc|D 8000 |

RefCon [200 |

Title [=
i
[ET

Ficure 3.24 THeE CNTL resource usep BY MYTESTAPP.

The Test Application Source Code

MyTestApp contains just a few dozen lines of code. After initializing the
"Toolbox, the program displays a modal dialog box. Once the dialog box is
up, the code loops until the OK button is pressed. Take notice of the fact
that the application needs no source code to support the slider control
that was added in the application’s resource file. The MySliderGrayCDEF
will handle everything. After building the application, don’t forget to use
vour resource editor to copy the CDEF from its own resource file and
paste it into the application.

/7
/ function prototypes

void Initialize_Toolbox(void);
void Display_Dialog(void);

Jeif
[/ main()
main ()

164

Chapter 3 More Custom Controls: Sliders

{
Initialize_Toolbox();
Display_Dialog();

}

//
/7 open and display a modal dialog box

void Display_Dialog(void)
{
DialogPtr the_dialog;
short the_item;
Boolean all_done = false;

the_dialog = GetNewDialog(128, nil, (WindowPtr)-1L);
ShowWindow(the_dialog);

while (all_done == false)

{
ModalDialog(nil, &the_item);

switch (the_item)
{
case ok:
all_done = true;
break;
}

}
DisposDialog(the_dialog);

//
1/ initialize the Mac

void Initialize_Toolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
InitCursor();

165

More Mac Programming Techniques

SLIDERS AND CusTOoM DRAGGING

The MySliderGrayCDEF relied on the Control Manager to implement
the dragging of the thumb of the slider. When the Control Manager han-
dles indicator dragging, it does so in a standard manner: It displays the
outline of the indicator and constantly updates that outline as the user
drags the mouse. If you’d like your slider to have its indicator dragged in
a different manner, you’re free to do so. In this section you’ll learn how
to have a CDEF implement custom dragging.

The MySliderRoughCDEF will handle a horizontal slider—just as
MySliderGrayCDEF does. The difference will be that MySliderRough
CDEF won'’t display the outline of the thumb as it gets dragged by the
user. Instead, it will move the thumb itself.

7§ As the thumb moves across the control, how smoothly will it
"' appear to glide from one end to the other? The answer lies in
| the title of the CDEF! Don’'t worry, though, we’ll improve

N O TE upon things a little before the chapter ends.

The CDEF Messages

MySliderRoughCDEF responds to only three types of messages: testCnt1,
drawCntl, and dragCnt1. Because the CDEF will be performing the
dragging of the thumb, it won’t need to send region information back to
the Toolbox—that’s why it won’t need to handle calcThumbRgn or
calcCRgns messages. The CDEF also won'’t need to send back information
about the drag boundaries or thumb position—so thumbCnt1 and
posCnt1 messages won’t be handled either.

While MySliderRoughCDEF handles fewer messages than
MySliderGrayCDEEF, it does handle one message type that the previous
slider didn’t watch for: the dragCnt1 message.

Before responding to the user’s attempt to drag an indicator, the
Control Manager sends a CDEF a dragCnt1 message. If the CDEF
returns a 0, or doesn’t handle a dragCnt1 message (as was the case for

166

Chapter 3 More Custom Controls: Sliders

MySliderGrayCDEF), the Control Manager will assume that it should
drag the indicator in its standard fashion. If, on the other hand, the
CDEF handles the dragCnt1 message, the Control Manager will not
attempt to display the outlined indicator. Instead, it will relent control to
the CDEF. It then becomes the responsibility of the control definition to
invoke its own dragging routine. For MySliderRoughCDEF, this routine is
named Drag_Control():

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)
{

long return_val = OL;

switch (message)
{
case testCntl:
return_val
break;

Test_Control(the_control, msg_param);

case dragCntl:
return_val
break;

Drag_Control(the_control);

case drawCntl:
Draw_Control(the_control);
break:;
}

return (return_val);

If the Control Manager sends a msg_param value of 0 along
with the dragCnt1 message, then the entire control is to
be dragged by the user. If, as is more likely, a nonzero
msg_param value is sent, just the indicator is to be moved
by the custom drag routine of the CDEF. You'll find informa-
tion on dragging an entire control in Inside Macintosh:
Macintosh Toolbox Essentials.

167

More Mac Programming Techniques

Messages of the testCntl and drawCnt1 types will be handled exactly
as they were for MySliderGrayCDEF, so there’s no need to repeat that
source code of Test_Control1() and Draw_Control() here. That
means there’s only one new routine to cover—the Drag_Control()
function that’s called to handle a dragCnt1 message.

Handling a dragCntl Message

Once testCntl confirms that the mouse button has been clicked on
the slider’s thumb, it’s up to Drag_Control1() to handle the dragging
of the indicator. Since this CDEF doesn’t rely on the Control Manager to
do any dragging calculations or dragging, it should make sense to you
that the work done by Drag_Control () will be performed in a loop. As
the user moves the mouse, Drag_Control() must constantly deter-
mine the change of position of the mouse and redraw the thumb as
needed. Before examining the function’s code, here’s an overview of
what Drag_Control () will be doing:

long Drag_Control(ControlHandle control)

Perform size calculations for the control and thumb
Get the mouse location at point of mouse click

Begin Loop
Get the new mouse location as it is moved by user
Determine pixel change from old mouse location to new
location
Translate pixel change to corresponding change in unit
value
Set the control's value field to the new value
Update the control (redraw the thumb and control)
Mark the new mouse location as the old mouse location
End Loop

By the time Drag_Control() is called, the Test_Control() func-
tion has determined that there was a mouse click in the thumb of a slid-
er. Before entering the loop that will trace the user’s mouse movements
and redraw the control, Drag_Control () will perform a few calcula-
tions that will be used within the loop body.

168

Chapter 3 More Custom Controls: Sliders

You’ve already seen how to determine the size of the control—in
both pixel dimensions and unit dimensions:

Rect control_rect;
short control_pixel_width;
short control_unit_width;

control_rect = (**control).contriRect;

control_pixel_width = control_rect.right - control_rect.left;
control_unit_width = (**control).contriMax -
(**control).contriMin;

A call to Calc_Thumb_Rect () will return the rectangle that holds the
boundaries of the indicator. From this rectangle one other useful dimen-
sion will be determined—the width of the thumb:

short thumb_width;
Rect thumb_rect;

thumb_rect = Calc_Thumb_Rect(control);
thumb_width = thumb_rect.right - thumb_rect.left;

A call to GetMouse () returns the point of the cursor when the mouse is
first clicked on the control's indicator:

Point old_mouse_loc;

GetMouse(&old_mouse_loc);

Now it’s time for the loop. As long as the mouse button is held down by
the user, the loop will repeatedly execute—the call to the Toolbox rou-
tine Sti11Down () makes sure of this. Once in the loop body, a call to
GetMouse() is made. The mouse location is saved in a different variable
than the point taken just before the loop started:

Point new_mouse_loc;

while (Stil1Down())

{
GetMouse(&new_mouse_loc);

// rest of loop body
}

169

More Mac Programming Techniques

The change in the horizontal mouse position from the time the mouse
was pressed to the time it was moved is saved in a variable named
horiz_change. Then a test is performed to see if there was any change
in mouse position and to see if the cursor is still over the indicator:

short horiz_change;
horiz_change = new_mouse_loc.h - old_mouse_loc.h;
if ((horiz_change != 0) &&

(PtInRect(new_mouse_loc, &control_rect)))
{

}

// move the thumb

If both tests pass, it’s time to determine the new location to which the
thumb should be moved. The left and right coordinates of the previously
calculated thumb_rect are adjusted for the change in position of the
mouse. Then the center of the thumb is located:

thumb_rect.left += horiz_change;
thumb_rect.right += horiz_change;

thumb_center = thumb_rect.left + (thumb_width / 2);

The center of the thumb, which is in pixel coordinates, is now translated
to a unit location. First it’s determined how far (in pixels) the center of
the thumb is from the left side of the control:

control_offset = thumb_center - control_rect.left;

This offset value is then used to calculate a ratio. What fraction of the
entire control length was the thumb moved?

ratio = (float)control_offset / (float)controi_pixel_width;

Along with the minimum control value (as set in the CNTL resource)
and the total number of units in the control, this ratio can then be used
in the determination of the unit value at which the thumb should be
placed:

170

Chapter 3 More Custom Controls: Sliders

control_value = (**control).contriMin +
(control_unit_width * ratio);

Next, a call to SetControlValue() sets the contrlValue field of the
control record to this new value:

SetControlvalue(control, control_value);

Now the really important part. Recall from earlier discussions that a call
to SetControlValue() automatically causes the Control Manager to
send a drawCnt1 message to the CDEF. That means that at this point a
call to Draw_Control () is made. The execution of Draw_Contro1()
draws the entire control, thereby covering up the old thumb. It also
draws the thumb in its new position.

Before the body of the loop ends, the value of 01d_mouse_loc is
set to the value of new_mouse_1loc:

old_mouse_loc = new_mouse_loc;

When the body of the loop again executes, GetMouse() will return a
new mouse point and store it in new_mouse_10C. A comparison will
then be made between this location and the location that was obtained
in the last iteration of the loop.

Before looking at the entire Drag_Control () routine, there’s one
last snippet to discuss. After the pixel location of the thumb is deter-
mined in the loop body, two checks are made. Drag_Control() needs
to verify that the user didn’t move the mouse past either the left or right
boundaries of the control. If that happens, the routine adjusts the thumb
boundaries so that they stop a few pixels from the end of the control,
regardless of how far past the edge the user has dragged the mouse.

if (thumb_rect.left < (control_rect.left + 3))
{
thumb_rect.left = control_rect.left + 3;
thumb_rect.right = thumb_rect.left + thumb_width;

}
if (thumb_rect.right > (control_rect.right - 2))

{
thumb_rect.right = control_rect.right - 2;

171

More Mac Programming Techniques

thumb_rect.left = thumb_rect.right - thumb_width;
}

Now, here's the complete source code listing for the Drag_Control()
function.

long Drag_Control(ControlHandle control)

short thumb_width;

short thumb_center;

Rect thumb_rect;

Rect control_rect;

short control_pixel_width;
short control_unit_width;
short control_offset;
short control_value;
float ratio;

Point new_mouse_loc;
Point old_mouse_loc;
short horiz_change;

control_rect = (**control).contrlRect;
control_pixel_width = control_rect.right - control_rect.left;
control_unit_width = (**control).contriMax -
(**control).contriMin;

thumb_rect = Calc_Thumb_Rect(control);
thumb_width = thumb_rect.right - thumb_rect.left;
GetMouse(&old_mouse_loc);
while (StillDown())
{

GetMouse(&new_mouse_locC);

horiz_change = new_mouse_loc.h - old_mouse_loc.h;

if ((horiz_change != 0) &&
(PtInRect(new_mouse_loc, &control_rect)))
{

thumb_rect.left += horiz_change;
thumb_rect.right += horiz_change;

if (thumb_rect.left < (control_rect.left + 3))
{

thumb_rect.left = control_rect.left + 3;
thumb_rect.right = thumb_rect.left + thumb_width;

172

Chapter 3 More Custom Controls: Sliders

}
if (thumb_rect.right > (control_rect.right - 2))
{

thumb_rect.right = control_rect.right - 2;
thumb_rect.left = thumb_rect.right - thumb_width;
}

thumb_center = thumb_rect.left + (thumb_width /7 2);

control_offset = thumb_center - control_rect.left;
ratio = (float)control_offset /
(float)control_pixel_width;

control_value = (**control).contriMin +
(control_unit_width * ratio);
SetControlValue(control, control_value);
}

old_mouse_loc = new_mouse_loc;
}

return (1L);

Remember, if the CDEF has a provision for handling a
dragCnt] message, and it doesn’t handle the dragging, it
should return a value of 0 to the Control Manager. Since
MySliderRoughCDEF does handle the dragging, it should be
sure to make the Control Manager aware of this fact by
returning a value other than 0. That's the purpose of the last
statement in Drag_Control().

Use your development environment to build a CDEF code resource with
an ID of 500. Then copy it from its resource file and paste it into
MyTestApp. Since it has the same ID as the MySliderGrayCDEF that’s
already in the test application, you’ll be warned that you’re about to
replace an existing resource. Go ahead and do so. Then exit the resource
editor and run MyTestApp. Click on the control’s thumb and drag the
mouse. As you do that, you'll see that the thumb follows the cursor, but
the result is unacceptably jerky. In the next section you’ll see what can be
done to smooth things out a little.

173

More Mac Programming Techniques

SMOOTHER CusTOM DRAGGING

MySliderRoughCDEF adequately demonstrates how the handling of a
dragCnt1 message can be used to implement custom dragging of a con-
trol’s indicator. The end result of that CDEF, however, was a thumb that
flickered as it was dragged across the control. In this section you’ll see
how a few simple changes can greatly reduce flicker.

i If you're very familiar with off-screen drawing techniques,
| then you already know the best way to create smooth, flick-
| erfree animated effects. You can use a series of GWor1ds to
NOTE smoothly move a thumb PICT over the control background. If
you aren’t familiar with GWorlds, this technique requires
several lines of code and a correspondingly lengthy discus-
sion. For that reason the use of off-screen PixMaps, or
GWorlds, is considered beyond the scope of this book.

Adding New PICT Resources

For the new version of the slider CDEF, which I'll call MySliderSmooth
CDEF, changes will need to be made to the PICT resources. The first change
is to an existing PICT—the picture that is used as the slider’s thumb. I have
launched my graphics program and opened the document that held the
thumb graphics. Now, instead of selecting just the thumb, I've included two
pixels of the control itself, as shown in Figure 3.25. Then I copied this pic-
ture and pasted it in the application project’s resource file. I deleted the old
PICT with ID 202 and changed the ID of the new PICT to 202.

Next, I copied a small part of the background pattern of the control
itself. The size of this picture isn’t too important—it will be changed by
the CDEF before being drawn. I pasted this new picture into the applica-
tion project’s resource file and gave it an ID of 205.

To support monochrome monitors, I added black-and-white versions
of the same two pictures that have just been discussed. Because the black-
and-white version of the control has a white background, the change to
the thumb picture won’t be evident, and the new background picture

174

Chapter 3 More Custom Controls: Sliders

won’t be visible at all. Figure 3.26 shows the PICT resources of the
MyTestApp project’s resource file.

Normal
Tools

o|r|E|/|/-[&[3][0
olele|/ [}f~[=rR

FiGURE 3.25 THE SELECTION OF THE NEW THUMB PICTURE SHOULD INCLUDE TWO PIXELS
OF THE CONTROL ON BOTH THE LEFT AND RIGHT SIDES OF THE THUMB.

=== PILTs from MyTestipp.ii.rsic e m e
e - B

203 204 205 G

FicURE 3.26 Two NEw PICTs SHOULD BE ADDED TO THE APPLICATION PROJECT'S
RESOURCE FILE—PICTURES 204 anp 205.

175

More Mac Programming Techniques

Figure 3.27 shows why I've made the previous changes to the pictures. In
that figure you can see how MySliderRoughCDEF handled the updating
of the control’s thumb as it was moved across the control. A drag of the
mouse caused the control picture to be redrawn first, and the thumb pic-
ture to be redrawn second. The drawing of the entire control picture
caused the thumb to completely disappear before it was redrawn, and
was responsible for the flicker that’s seen when the thumb is dragged.

The mouse button is clicked
| L——'—k—‘ on the control's indicator

A quick drag of the mouse

| N causes an offset, and the

control picture is drawn

L1l |
The new thumb position is
calculated, and the thumb
[l—LkJ picture is drawn over the
control picture

FIGURE 3.27 MyYSLIDERROUGHCDEF HAD FLICKER BECAUSE THE ENTIRE CONTROL
PICTURE WAS DRAWN OVER THE THUMB PICTURE.

Figure 3.28 shows how the new set of pictures will greatly reduce flicker.
When the mouse is dragged on the thumb, the thumb picture will be
drawn at the new location, without first drawing the control picture.
Then the small control pattern picture will be drawn behind the new

176

Chapter 3 More Custom Controls: Sliders

thumb to obscure what remains of the old thumb. The result will be a
slight blurring of the thumb as its moved, but flicker will be eliminated.

The mouse button is clicked
| I—L*J on the control's indicator

A quick drag of the mouse

causes an offset, and the

| L_Lk"] thumb picture is drawn at the
new location—overiapping

the old thumb picture

]

v The portion of the old thumb
that is visible is calculated,
| LLRJ and the control pattern
picture is drawn over that
part of the control

Figure 3.28 MYSLIDERSMOOTHCDEF REDUCES FLICKER BY AVOIDING
THE DRAWING OF THE CONTROL PICTURE.

Taking Care of the Preliminaries

Because there have been new pictures added, the source code for
MySliderSmoothCDEF will define a new constant. When CONTROL_PART _
OFFSET is added to the ID of the base picture, the result will be the ID of
the appropriate control background picture.

fdefine CONTROL_BW_OFFSET 1
fdefine THUMB_OFFSET 2

177

More Mac Programming Techniques

ffdefine THUMB_BW_OFFSET 1
#define CONTROL_PART_OFFSET 4

Handling a dragCntl Message

MySliderSmoothCDEF uses the same custom dragging routine that
MySliderRoughCDEF uses—but with a couple of important additions.
First, an additional Rect variable has been added. At the end of the
while loop in Drag_Control(), the old_thumb_rect will be
assigned the rectangle coordinates of thumb_rect. At the next pass
through the loop, the thumb will be drawn at its new location. Then both
the new rectangle and the old rectangle will be passed to a function that
draws the control’s background pattern over the visible part of the old
thumb picture. Figure 3.29 shows that if the thumb is dragged to the left,
it will be the right coordinate of thumb_rect and the right coordinate
of 01d_thumb_rect that will determine the boundaries of the rectan-
gle to which the pattern should be drawn.

thumb_rect.left thumb_rect.right
p]

L] []
old_thumb_rect.left old_thumb_rect.right

Ficure 3.29 BOTH THE NEW AND OLD COORDINATES OF THE THUMB ARE USED TO DETER-
MINE WHERE TO DRAW THE CONTROL PATTERN PICTURE.

178

Chapter 3 More Custom Controls: Sliders

While there are only a few changes to Drag_Control(), they are impor-
tant. So I've again supplied the entire listing of the routine. The changes
from the MySliderRoughCDEF version appear in bold type.

long Drag_Control(ControlHandle control)

{
short thumb_width;
short thumb_center;
Rect thumb_rect;
Rect control_rect;
short control_pixel_width;
short control_unit_width;
short control_offset;
short control_value;
float ratio;
Point new_mouse_loc;
Point old_mouse_loc;
short horiz_change;
Rect old_thumb_rect;

control_rect = (**control).contrlRect;
control_pixel_width = control_rect.right - control_rect.left;

control_unit_width = (**control).contrlMax -
(**control).contriMin;

thumb_rect = Calc_Thumb_Rect(control);
old_thumb_rect = thumb_rect;

thumb_width = thumb_rect.right - thumb_rect.left;
GetMouse(&old_mouse_loc);
while (StillDown())
[GetMouse(&new_mouse_loc);
horiz_change = new_mouse_loc.h - old_mouse_loc.h;

if ((horiz_change != 0) &&
(PtInRect(new_mouse_loc, &control_rect)))
{

thumb_rect.left += horiz_change;
thumb_rect.right += horiz_change;

if (thumb_rect.left < (control_rect.left + 4))
{

179

More Mac Programming Techniques

thumb_rect.left = control_rect.left + 4;
thumb_rect.right = thumb_rect.left + thumb_width;

}
if (thumb_rect.right > (control_rect.right - 2 })
{
thumb_rect.right = control_rect.right - 2;
thumb_rect.left = thumb_rect.right - thumb_width;
}

thumb_center = thumb_rect.left + (thumb_width / 2);

control_offset = thumb_center - control_rect.left;
ratio = (float)control_offset /
(float)control_pixel_width;

control_value = (**control).contriMin +
(control_unit_width * ratio);
SetControlValue(control, control_value);

Draw_0Over_01d_Thumb(control, old_thumb_rect, thumb_rect);

old_thumb_rect = thumb_rect;
}

old_mouse_loc = new_mouse_locC;
}

return (1L);

SetControlValue() is called near the end of the while loop. Recall that
a call to this routine triggers a drawCnt1 message. When that happens,
Draw_Control() will be called to draw the thumb in its new location.
Then Draw_Over_01d_Thumb (), which will be discussed in just a bit, is
called to obscure the remnants of the old thumb picture.

Handling a drawCntl Message

The previous version of Draw_Control () drew both the control pic-
ture and the thumb picture—that was the source of the flicker in
MySliderRoughCDEF. This new version has the same code to draw each
picture, but it now has some logic added so that it only draws one or the

180

Chapter 3 More Custom Controls: Sliders

other. The dragging of the thumb never requires that the control picture
be drawn—just the thumb and the control pattern. But there are times
when the window or dialog box in which the control appears may need
updating, so Draw_Control() needs to keep its ability to draw the
entire control.

When the Control Manager sends CDEF a drawCnt1 message, it
includes a part code in the msg_param parameter. If that part code is 0,
the entire control should be drawn. If the part code is 129, the thumb
should be drawn. In the previous version of Draw_Control(), this
msg_param part code was ignored and both the control and thumb
were drawn. In this new version, the part code will be examined:

case drawCntl:
Draw_Control(the_control, msg_param);
break;

When a control needs updating, perhaps because the dialog box in
which it appears has been covered and then exposed, the Control
Manager will send a drawCnt1 message with a msg_param value of 0.
In that case, Draw_Control () will draw the control:

if (part_code != 129)

{
pict_ID = GetControlReference(control):
if (Color_Is_On(control_rect) == false)
pict_ID += CONTROL_BW_OFFSET;
pict_handle = (PicHandle)GetResource('PICT', pict_ID):
DrawPicture(pict_handle, &control_rect);
}

If, on the other hand, a drawCnt1 message is sent as the result of a call to
SetControlValue(), the Control Manager will include a msg_param
value of 129. That means just the thumb should be drawn. Since the
above code executes when msg_param is not 129, it will be skipped. The
code for drawing the thumb, however, is always executed:

pict_ID = GetControlReference(control);
pict_ID += THUMB_OFFSET;

181

More Mac Programming Techniques

if (Color_Is_On(control_rect) == false)
pict_ID += THUMB_BW_OFFSET;

thqmb_rect = Calc_Thumb_Rect(control);

pict_handle = (PicHandle)GetResource('PICT', pict_ID);
DrawPicture(pict_handle, &thumb_rect);

ReleaseResource((Handle)pict_handle);

The Drag_Control() routine that was discussed just a while back had
a call to SetControlValue(). It is that call that triggers the redrawing
of the thumb—but not the control. Here is a look at the new version of
Draw_Control():

void Draw_Control(ControlHandle control, long part_code)
{

Rect control_rect;
Rect thumb_rect;
short pict_ID;

PicHandle pict_handle;
control_rect = (**control).contrlRect;

// Draw the control
// This code will be skipped if coming from Drag_Control()

if (part_code != 129)

{
pict_ID = GetControlReference(control);
if (Color_Is_On(control_rect) == false)
pict_ID += CONTROL_BW_OFFSET;
pict_handle = (PicHandle)GetResource('PICT', pict_ID):
DrawPicture(pict_handle, &control_rect);
}

// Draw the thumb
// This code will be executed in all cases

pict_ID = GetControlReference(control);

pict_ID += THUMB_OFFSET;
if (Color_Is_On(control_rect) == false)

182

Chapter 3 More Custom Controls: Sliders

pict_ID += THUMB_BW_OFFSET;
thumb_rect = Calc_Thumb_Rect(control);

pict_handle = (PicHandle)GetResource('PICT', pict_ID);
DrawPicture(pict_handle, &thumb_rect);

ReleaseResource((Handle)pict_handle);

Covering the Old Thumb

There is just one routine left to cover in MySliderSmoothCDEF—
Draw_Over_01d_Thumb(). After SetControlValue() triggers the
execution of Draw_Control(), Draw_Over_01d_Thumb() is called
from within Drag_Control().

The first thing Draw_0Over_01d_Thumb() does is get a handle to
the control background pattern picture. Then it calculates the size of the
rectangle to which this picture should be drawn. Because the picture is a
solid pattern, there’s no need to be concerned with distortion as the size
of the picture changes.

Rect control_rect;
short pict_ID;
PicHandle pict_handle;

pict_ID = GetControlReference(control);

pict_ID += CONTROL_PART_OFFSET;

if (Color_Is_On(control_rect) == false)
pict_ID += CONTROL_BW_OFFSET;

pict_handle = (PicHandle)GetResource('PICT', pict_ID);
Next, the coordinates of the rectangle that is to provide the boundaries

for the background picture need to be calculated. The top and bottom
coordinates are easy to derive:

Rect cover_rect;

cover_rect.top = control_rect.top + 1;
cover_rect.bottom = control_rect.bottom - 1;

is3

More Mac Programming Techniques

The right and left boundaries of cover_rect are dependent on the
direction in which the thumb has moved. If it moved to the right, the
covering rectangle must appear to the left of the new thumb picture. If
the thumb moved to the left, the covering rectangle must appear to the
right of the thumb picture:

if (new_thumb_rect.left > old_thumb_rect.left) // moving right
{

cover_rect.left = old_thumb_rect.left - 1;

cover_rect.right = new_thumb_rect.left;

}
else // moving left

{
cover_rect.left = new_thumb_rect.right - 2;
cover_rect.right = old_thumb_rect.right + 1;
}

The last step is to draw the background picture:

DrawPicture(pict_handle, &cover_rect);

Listed as follows is the source code for the entire Draw_0Over_01d_Thumb()
routine.

void Draw_Over_01d_Thumb(ControlHandle control,

Rect old_thumb_rect,
Rect new_thumb_rect)
{
Rect control_rect;
short pict_ID;
PicHandle pict_handle;
Rect cover_rect;

control_rect = (**control).contrlRect;

pict_ID = GetControlReference(control):

pict_ID += CONTROL_PART_OFFSET;

if (Color_Is_On(control_rect) == false)
pict_ID += CONTROL_BW_OFFSET;

pict_handle = (PicHandle)GetResource(°'PICT', pict_ID);

184

Chapter 3 More Custom Controls: Sliders

cover_rect.top = control_rect.top + 1;
cover_rect.bottom = control_rect.bottom - 1;

if (new_thumb_rect.left > old_thumb_rect.left) // moving

// right
{
cover_rect.left = old_thumb_rect.left - 1;
cover_rect.right = new_thumb_rect.left;
}
else // moving
// left
{
cover_rect.left = new_thumb_rect.right - 2;
cover_rect.right = old_thumb_rect.right + 1;
}

DrawPicture(pict_handle, &cover_rect);
ReleaseResource((Handle)pict_handle);

As always, the project file and source code file for this section’s example
CDEF have been included on disk. After building a CDEF code resource,
copy the resource and paste it into the same version of MyTestApp that
you've been using in this chapter. Then build a new application. As a
short cut, you can open the application itself and paste the CDEF into
the application fork directly. Then run MyTestApp to see that the anima-
tion of the slider has indeed improved.

Adding a Label to the Control

As a final step to giving your sliders a clean look, you may want to add a
label above or below the control. In Figure 3.30 I've added a new PICT
resource to the resource file of the MyTestApp project.

Next, I added a Picture item to the DITL resource, as shown in
Figure 3.31. After building a new application, the slider’s dialog box
looked like the one shown in Figure 3.32. Figure 3.33 shows a couple of
other examples of how you might want to provide feedback to the user of
your slider.

185

More Mac Programming Techniques

PICTs from MyTestApp.m.rsrc

128

Ficure 3.30 To ADD A LABEL TO A SLIDER, FIRST ADD A PICT 1o
THE APPLICATION PROJECT’S RESOURCE FILE.

Ficure 3.31 To DISPLAY THE PICTURE, ADD A PICTURE ITEM 10 THE DITL.

FiGure 3.32 THE RESULT OF ADDING THE PICT RESOURCE.

186

Chapter 3 More Custom Controls: Sliders

FiGURE 3.33 Two0 EXAMPLES OF SLIDERS WITH LABELS.

CHAPTER SUMMARY

Sliders are a very “Mac-like” control, yet most programmers choose not
to include them in their applications. That's because sliders are not sup-
ported by the Toolbox in the same way that standard push buttons, check
boxes, and radio buttons are. Because a control definition function can
be written so that it handles any style of control, you’ll want to use a
CDEF to add sliders to any of your Macintosh programs.

Just as last chapter’s picture button CDEF watched for testCnt]
and drawCnt1 messages, so do this chapter’s slider CDEF examples. By
also responding to the calcCRgns, calcThumbRgn, thumbCnt1, and
posCnt1 messages, a CDEF can be written such that it displays the stan-
dard indicator outline as a thumb is dragged across a control.

To implement a less traditional means of dragging a control’s thumb,
use custom control dragging. To do that, your CDEF should handle
dragCnt1 messages.

187

Chapter
@)

o

5 E
: 4 ¢
(4] &g)
%o o
gi'amm\

CONTROL PANELS AND CDEVS

Control panels are small “programs” that enable a Macintosh user to easi-
ly change such features as the speaker volume, the desktop pattern, and
the speed at which the cursor moves across the screen. In short, a control
panel exists for the purpose of allowing the user to change a systemwide
feature of the Macintosh. Unlike applications, control panels usually
aren’t used daily—the functions that a control panel performs are usual-
ly needed only occasionally.

A control panel is a special type of code resource that is used without
the help of an application. Rather than requiring the presence of an
application to load and execute it—as MDEF and CDEF resources do—a
control panel code resource, or cdey, relies on the Finder. When a con-
trol panel is opened, it is the Finder that loads the code resource, inter-
acts with it, and sends it messages.

189

More Mac Programming Techniques

Control panels don’t clutter up the desktop. Instead, they’re neatly
tucked away in a folder that can be easily accessed from the Apple menu.
So while control panels aren’t accessed often, when the need to open
one does arise, the control panel can easily be found. In this chapter,
you'll see how to create your own Control Panel to add to the ones Apple
supplies to each owner of a Macintosh.

ConTROL PANELS AND THE FINDER

The arrival of System 7 brought many changes to the way in which the
Desktop looks and functions. One of these changes involves the way in
which control panels are implemented.

Accessing Control Panels

In System 6, a single Control Panel desk accessory was used to make any
and all system changes. That desk accessory is shown in Figure 4.1. In the
figure, you can see that on the left of the Control Panel is a list of icons.
Clicking on one of these icons changes the system features displayed on
the right of the desk accessory.

The System 6 method of accessing systemwide features from a single
desk accessory has a couple of significant drawbacks. First, only one set of
features can be displayed at one time. Second, the display of features is
always limited to the fixed size of the Control Panel desk accessory dialog
box. To eliminate these hindrances, the manner in which systemwide fea-
tures are accessed has changed with System 7.

Starting with System 7, the Control Panel desk accessory no longer
exists as a single item. Instead, the one Control Panel has been replaced
by individual control panels. Each control panel is created to control the
function of a specific machine setting. Figure 4.2 shows the Mouse con-
trol panel, which is used to alter the mouse tracking speed and the speed
at which mouse clicks are made.

190

Chapter 4 Control Panels and cdevs

El Control Panel Si—0———=—|
ﬁ‘ Rate of Insertion
Point Blinking
Desktop Pattern O @ O
- Slow Fast
Keyboard Menu Blinking | Time ® =
3:43:26 AM
= -
EA ® 12hr. O 240r. | 4
3
Mouse
Date |z 2
?ff ??C;} 10/11/ 1
11/94 0
<13
Seord ¢ k=4 m O On Speaker
. 77| RAM Cache @orr | voume
31

FicURe 4.1 THE SysTEM 6 CoNTROL PANEL DESK ACCESSORY.

EE Mouse

Mouse Tracking

@%é

O®O000

Verg Slow Slow Fast

¥ + +
Yo Yo Y@

Double-Click Speed

FiGure 4.2 A TYPicAL SYSTEM 7 CoNTROL PANEL.
In System 7, a single Control Panels menu item can be found in the

Apple menu. Instead of opening a Control Panel desk accessory, howey-
er, selecting this menu item opens a Control Panels folder. This folder

191

More Mac Programming Techniques

holds the icons for each individual control panel found on the Mac.
Double-clicking on an icon launches that one control panel. Figure 4.3
shows the Control Panels menu item and the Control Panels folder.

File Edit UView Label Special
About This Macintosh...

AppleCD Audio Player
=5 Calculator
=S Chooser

EE=——— Control Panels —8

&= Control Panels 25 items 2625MBindisk 61.7MB avaﬂat{m
42 Find File :
<& Jigsaw Puzzie B

Key Caps FaxMenu Keyboard

Note Pad

) .
ColorSwitch File Sharing Monitor Labels

izl
e
—— g
Date & Time General Controls

]

Ficure 4.3 AccessING CONTROL PANELS FROM THE APPLE MENU ON
A MAc RUNNING SYSTEM 7.

For System 7.5, accessing control pancls has become even easier. Insteacd
of opening a folder, a Control Panels menu item selection displays a hier-
archical menu that lists all of the control panels available for that
Macintosh. Sliding the cursor over to any item in the list opens that con-
trol panel. Figure 4.4 shows the System 7.5 implementation of control
panels.

192

Chapter 4 Control Panels and cdevs

File Edit UView Label Special
About This Macintosh...

AppleCD Audio Player Apple Menu Options

& Calculator ATM™ GH
@ Chooser Color
Date & Time

#x Control Panels

Desktop Patterns

-3 F!"d File Extensions Manager
Jigsaw Puzzle File Sharing Monitor
Key Caps General Controls

E] Note Pad Keyboard

5] Recent Applications p | Labels
Recent Documents p | Launcher
Scrapbook Map

FiGURE 4.4 AccessING ConTROL PANELS FROM THE APPLE MENU ON
A MAC RUNNING SYSTEM 7.5.

A Control Panel or an Application?

If you have an idea for a small, simple program that could be used to vary
a system feature, you may be tempted to turn that idea into an applica-
tion. After all, you already know how to develop Macintosh applications.
While that temptation is great, you’ll want to overcome it and instead
develop a control panel. Here’s why:

B If your utility alters systemwide features, users will naturally assume
that it can be found by selecting the Control Panels menu item.

B A control panel may actually be easier to develop than an applica-
tion,

That second point merits some discussion. A control panel is a file that
consists of several resources. Among these resources is a cdev code

193

More Mac Programming Techniques

resource. The cdev consists of the code for a control device function, or cdev
Sfunction. Like the code for a menu definition procedure or a control defi-
nition function, the code for a control device function does not look like
the code for a standalone application. There is no main event loop, no
call to WaitNextEvent(), and no code to support the moving of a
modeless dialog box. For MDEF and CDEF code resources, these ele-
ments are all found in the application that uses the MDEF or CDEF. For
a cdev code resource, all of these things are handled by the Finder.

In this book’s MDEF and CDEF chapters, a few different test applica-
tions were written. If a dialog box was to be opened, the test application
was responsible for supplying the DLOG resource and calls to the Toolbox
routines that opened and displayed the dialog box. Had any of these test
applications worked with a modeless dialog box, the test application would
have been responsible for supporting the movement of the dialog box and
its interaction with other windows on the screen. For a cdev code resource,
the Finder handles all of these tasks—no driving application needs to be
developed in order for a control panel to function.

Because of this, a control panel is double-clickable. Double-
clicking on a control panel causes the Finder to load the
control panel in memory and open and display the Modeless
dialog box that houses the control panel’s items.

When shouldn’t you develop a control panel? When the implementation
of your feature-setting code requires placing menus in the menu bar or
the display of multiple dialog boxes. Control panels are meant to be
clean and simple. If your code is more complex, develop an application
rather than a control panel.

CoNTROL PANEL RESOURCES

A control panel consists of both required and optional resources. To cre-
ate a control panel, you must add these resources to a resource file. Next,
you’ll write the control device function source code that your program-

194

Chapter 4 Control Panels and cdevs

ming environment will turn into a cdev code resource. Your compiler will
then link this cdev resource with the resources in the resource file. The
result will be a control panel file—mknown simply as a control panel to Mac
users.

In this section, you’ll see the resources necessary to develop a con-
trol panel named MySetSound. In the next section, you'll see the corre-
sponding control device function source code for the same control
panel.

About the MySetSound Control Panel

Varying the sound level of the Mac’s speaker is a task just about all Mac
users have performed. Apple’s Sound control panel, shown in Figure 4.5,
makes this task simple to carry out. The MySetSound control panel per-
forms just one of the many tasks that Apple’s Sound control panel han-
dles—it allows the user to set the speaker volume to high, or to turn it
off. Figure 4.6 shows the MySetSound control panel.

s d5=———————=—= Sound

..... | Alert Sounds V!

<)

0840av Sound
Quack
RipSound
Simple Beep
Sosumi
Trumpets
Wild Eep

Uolume

Ficure 4.5 ApPLE'S SoUND ConTROL PANEL.

195

More Mac Programming Techniques

MySetsound ===
Speaker Yolume

@® High
O Off

[set volume |

Ficure 4.6 THis Book's MyYSETSounp ConTROL PANEL.

To change the Mac's speaker volume using MySetSound, a user clicks
on either radio button, then clicks the Set Volume push button. If the
High radio button is on, the speaker will beep once at the highest
speaker volume. If the Off radio button is on, the Mac will flash the
menu bar. Once the volume is set, the Mac’s speaker volume will
remain at the selected level until it is again changed, either through
the MySetSound, the Sound control panel, or any other sound-setting
control panel.

If you have Apple’s Sound control panel open when you make a
sound level change in MySetSound, you'll see the slider in the Sound
control panel jump to the appropriate end of the scale. Figure 4.7 shows
both sound control panels.

The MySetSound is a good introductory example of a control
panel because it is very simple. It’s not an example of a
practical real-world control panel, however, because it dupli-
N OTE cates the control of a systemwide feature already controlled
by an Apple-supplied control panel. Your own control panel
should provide a service or services not already handled by
Apple control panels. You’ll see an example that does this
later in this chapter.

196

Chapter 4 Control Panels and cdevs

Speaker Volume
Sound @ High
-{ Alert Sounds) CHoH
) Brass Hi
Droplet
Ducky

4 Wild Eep

Built-in [Add...] [Hemoue]
Uolume

FicURE 4.7 WHEN THE SYSTEM SPEAKER VOLUME IS CHANGED IN MYSETSOUND, THE
CHANGE WILL BE REFLECTED IN APPLE’'S SoUND CoNTROL PANEL.

From the previous figures, you can see that the MySetSound control
panel doesn’t present much of a threat to Apple’s Sound control panel.
That’s alright because the MySetSound isn’t meant to compete with
Apple’s handy control panel. Instead, it's meant to demonstrate how easy
it is to develop a control panel. In creating the MySetSound, you'll dis-
cover all of the following:

Which resources a control panel requires

What the function of each required resource is

What the source code of a typical control panel looks like
How a systemwide feature can be set by a control panel

How the Finder interacts with a control panel

How a single control panel can be compatible with both System 6
and System 7

197

More Mac Programming Techniques

MySetSound and the Required Control Panel
Resources

A control panel, more correctly referred to as a control panel file, consists
of several resource types. All but one of the resources will originate in a
resource file that yousreate using a resource editor. The final resource,
of type cdev, will be linked to this resource file to form the control panel
file. The cdev is created by your programming environment and holds
the compiled control device function code.

Figure 4.8 shows the resource file for the MySetSound control panel
project. In keeping with the naming convention of the other code
resources in this book, I've ended the file name with the type of code
resource that is being developed—here it's a cdev resource. When it
comes time to name the control panel itself, I'll drop the cdev ending
and simply name it MySetSound.

SM= MuySetSoundCDE!

B % oD

BMDL DITL FREF ICN*
olol LIl Glolliel

meie ELEL - e 20d
QoG 111 [IHEN (D COLIR R R A
Iu“mooooo COEY ?.IOO'NIM ?U
mach nrct Sndy vers

FiGure 4.8 THE MYSETSOUND RESOURCE FILE, WITH THE RESOURCES
REQUIRED OF A ConTROL PANEL.

While a control panel file can contain any number of resources and

resource types, the ones shown in Figure 4.8 are the types that are
required for any control panel.

198

Chapter 4 Control Panels and cdevs

The file in Figure 4.8 doesn’t contain a cdev resource
because it is the resource file for the control panel project,
not for the control panel itself.

Most of the resource types shown in Figure 4.8 should look familiar to
you. The BNDL resource group is used to create a family of icons for
the control panel. As a by-product of creating a BNDL resource, your
resource editor will add an ICN#, FREF, and signature resource to the
resource file. For the MySetSound example, the signature is Sndyv, so
the signature resource file is Sndv. The ICN# resource holds the black-
and-white icon drawn in the BNDL icon editor. The FREF is a file refer-
ence resource that associates the ICN# resource with this control panel.

The other two resources that you'll recognize are the DITL and the
vers resources. The DITL resource holds all of the items that will appear
in the control panel’s dialog box. There’s no DLOG resource because
the Finder will be responsible for creating the dialog box itself. The vers
resource, while not strictly required, is recommended for all System 7
code. The vers resource holds version information about the control
panel.

The MySetSound resource file holds only two resource types that you
won'’t find in application resource files. Control panels often use two-
pixel-wide lines to divide the control panel into separate areas. The nrct
resource lists the number and size of the rectangles that will be in the
control panel’s dialog box. Finally, the mach resource specifies which
types of Macintosh the control panel will run on. Figure 4.9 summarizes
the resource types that are to appear in a control panel’s resource file.

MySetSound and the Familiar Resource Types

MySetSound has several resource types that you're already familiar with.
I’ll briefly cover each of them here. After that, I'll spend a few extra
pages on the two new types: the nrct and the mach resources.

199

More Mac Programming Techniques

Familiar resource types . . .

&R 2.0b1
B 605
a 70..
BNDL DITL vers
- & S1eesace
FREF ICN® Sndv

. . new control panel resource types

olot 10N

00161001 .[ﬂ
ollet010 ftaretey
[ILINYN]

01006000 HER T2
CDEV

mach nret

Ficure 4.9 THE RESOURCE TYPES THAT MUST APPEAR IN A

CoNTrROL PANEL’S RESOURCE FILE.

Before looking at the resources, a few words about resource ID number-
ing are in order. A control panel is serviced and controlled by the Finder.
That means that a control panel’s required resources will be accessed by
the Finder. Because of this, there are restrictions on the resource IDs you
can give to control panel resources. When a user selects a control panel
from the Apple menu, for instance, the Finder will open a Modeless dia-
log box and look to the control panel’s resource fork for a DITL
resource with an ID of -4064. When it finds a DITL with that ID, the
Finder will use Dialog Manager and Control Manager routines to display
the items listed in that DITL. If the control panel does not contain a
DITL with an ID of 4064, the loading of the control panel will fail.

200

Chapter 4 Control Panels and cdevs

¢ The DITL, BNDL, mach, and nrct resources each must have a
resource ID of -4064. The FREF and ICN# resources that are
automatically generated by the creation of the BNDL
resource will (and must) also have IDs of -4064. The signa-
ture resource that Is also created along with a BNDL will
have an ID of 0. The vers resource, which Is not technically a
required control panel resource, should have an ID of 1.

MySetSound has a DITL with four items, as shown in Figure 4.10. The
control device function code (covered later) will be responsible for han-
dling mouse clicks in the radio button and push button items. Note that
the DITL has been given an ID of -4064, as required.

SE= DITL 1D = -4064 from MySetSoundCDED

[Speaker Dolume4]

set Uolumel>

o

|

Ficure 4.10 THE DITL RESOURCE FOR MYSETSOUND.

I The reasoning behind the off-centered placement of the DITL
items will be discussed when the nrct resource is covered.

As required, the MySetSound has a BNDL resource with an ID of -4064,
which is shown in Figure 4.11. A control panel can have any four-charac-
ter signature. I have picked Sndv to give an indication that this control
panel is a “sound device.”

201

More Mac Programming Techniques

[NE BNDL 1D = -4064 from MySetSour =

Signature: |Sndv
Type Finder Icons
it
cdev m
™

Ficure 4.11 Tue BNDL rResource ForR MYSETSounD.

Double-clicking on the row of gray patterned rectangles in the BNDL
resource opens the ResEdit icon editor. Using this editor, I created a sim-
ple black-and-white icon for the MySetSound control panel, which is
shown in Figure 4.12. I opened Apple’s Sound control panel in ResEdit
to get an idea of how to draw a small speaker.

course verlfied that no Apple employees were looking over

Before performing this blatant theft of an Apple icon, | of
Q my shoulder!

NOTE

To better support users with color monitors, you might want to also add
color icons to the control panel resource file. For MySetSound, I've kept
things simple by sticking to black and white. The example cdev that fol-
lows MySetSound uses color icons and small icons.

I’'ve added a vers resource to the MySetSound resource file so that the
MySetSound displays version information in the Finder’s Get Info window.
This resource, which should have an ID of 1, is shown in Figure 4.13.

202

Chapter 4 Control Panels and cdevs

Release:| Final w | Non-release: E

Country Code:| 00 - USA v |

Short version string: ll.l]

Long version string (visible in Get Info):

1.0 copyright © Soundldeas, Inc.

FiGure 4.13 THE VERS RESOURCE FOR MYSETSounD.

203

More Mac Programming Techniques

MySetSound and the nrct Resource Type

Control panels contain two resource types that aren’t found in applica-
tions: the nrct and the mach resources. Figure 4.14 shows the nrct
resource for MySetSound.

EW== nrct 1D = -4064 from MySetSoundCDED.T.rsrc

i
HumDfRects 1
1) kKR
Rectangle |-I 87 169 |[322 |(3eD)
2) Ekkokk
i
[i]

Ficure 4.14 THE NRCT RESOURCE FOR MYSETSOUND.

The nret resource, which must have an ID of -4064, serves two purposes.
First, it determines the overall size of the control panel’s dialog box.
Second, the nrct divides the control panel’s dialog box into rectangles.

For an application, the size of a dialog box is held in a DLOG
resource. A control panel, you'll recall, has no DLOG resource—the
Finder is responsible for opening and displaying the control panel’s
Modeless dialog box. So the Finder needs to be told how large the dialog
box should be. It is the combined dimensions of all of a control panel’s
nrct rectangles that provide this information. Since MySetSound only has
one rectangle, that one rectangle is the control panel’s size. In the nrct
resource, the ordering of the four rectangle dimensions is (T, L, B, R).
Figure 4.15 shows that MySetSound rectangle (-1, 87, 169, 322) results in
a dialog box that is 235 pixels wide by 170 pixels high.

For all control panels, one of the rectangles listed the nrct resource
must have a top coordinate of -1 and a left coordinate of 87. If your con-
trol panel will be System 6 compatible, it will appear in the single Control
Panel desk accessory that is used to display all control panels. As shown
in Figure 4.16, the point (87, -1) represents the upper-left corner of the
control panel display area.

204

Chapter 4 Control Panels and cdevs

8

~

322

([T}
-l:i

MySetSoundCDED

Speaker Yolume

@ High
Qoff 170

169 -

235

FiGURE 4.15 THE COORDINATES OF THE RECTANGLE IN WHICH
THE MySEeTSounp ConNTROL PANEL WILL APPEAR.

87
_, — ELE=——= Control Panel| =Fi—F—+—= —— |
ity
General
(87,—1)
Keyboard
F
<)
Sound 5
B31

Ficure 4.16 THE REFERENCE FOR THE PLACEMENT OF THE CONTROL PANEL ITEMS IN A
ConTRoL PANEL APPEARING IN THE SYSTEM 6 CoNTROL PANEL DESK ACCESSORY.

205

More Mac Programming Techniques

Even if your Control Panel will not be backwards compatible
with System 6 and the Control Panel desk accessory, it
must contain a nrct resource with a rectangle that has (87,
T | p -1) as its upper-left corner.

When you place a control panel’s dialog items in the control panel’s
DITL resource, the 87-pixel offset must be considered. Earlier you saw
the DITL for MySetSound. Recall that the four items in that DITL
appeared to have been placed too far to the right in the DITL. Figure
4.17 shows why this was done.

[J====——= Control Panel =

[T}

Speaker Yolume
General .
@® High
S
Keyboard

[setvolume |

FIGURE 4.17 THE 87-PIXEL OFFSET ALLOWS A CoNTROL PANEL TO FIT INSIDE THE
DISPLAY AREA OF THE SYSTEM 6 CoNTROL PANEL DESK ACCESSORY.

When a cdev is opened under System 6, the DITL items will be placed in
the Control Panel dialog box (see Figure 4.17). In Figure 4.18, I've over-
laid the MySetSound DITL over the Control Panel to emphasize just why
vou need to place DITL items off-center.

206

Chapter 4 Control Panels and cdevs

|Speaker Volumei4]

[Set llolumeIi

FiGure 4.18 THE DITL ITEMS ARE OFFSET SO THAT THEY WILL APPEAR CENTERED IN THE
SYSTEM 6 CONTROL PANEL DESK ACCESSORY’S DISPLAY AREA.

What happens if the Control Panel is opened while running on a Mac
with System 7? The Finder knows enough to shift all of the items 87 pix-
els to the left before placing them in the dialog box that it opens.

Setting the size of the control panel’s dialog box is one purpose of
the nrct resource. The second purpose of the nrct is to divide the
control panel’s dialog box into rectangles. The MySetSound control
panel has a single rectangle. Figure 4.19 shows an example that uses
two rectangles.

They’re used to separate or group logically related items in a

control panel. The Finder simply uses the values in the nrct

NOTE to determine where to draw dividing lines in the control
panel’s dialog box. The Finder will not distinguish between
mouse clicks that occur in one rectangle or another.

(7

' Control panel rectangles exist for aesthetic purposes only.

207

More Mac Programming Techniques

] TimeTracker

Version 1.2 ® On

® TimeFlys, Inc. 1994 O Off Rectangle

]

Time will be logged
at increments of:

@® 1 minute
O 5 minutes
() 15 minutes
() 30 minutes

Rectangle

—

FigURE 4.19 THE NRCT RESOURCES DIVIDE A CONTROL PANEL INTO SEPARATE AREAS.

If the combined area of the rectangles that make up an nrct resource
doesn’t cover a single rectangle, the Finder will fill any empty space with
a gray pattern. Figure 4.20 shows an nrct resource that defines two rec-
tangles. Figure 4.21 shows how the two rectangles would be placed in a
System 7 control panel.

[0

=
NumOfRects 2

1) *kkokok

Rectangle IT ”8? ||45 “325 l

2} EE 2 L 0

Rectangle [43 |[s7 |[270 |[225 |(eD)

3) KRRk

nrct ID = -4064 from MylnsanityCDED.m.rsrc

=

EE

Ficure 4.20 Two NRCT RESOURCES DEFINE TWO SEPARATE DISPLAY AREAS.

208

Chapter 4 Control Panels and cdevs

87 325

E 1= TimeTrackerl|

Version 1.0 @® On
© TimeFlys, Inc. 1994 O off

43

45

Log time at
increments of:

(O 30 seconds
® 1 minute
5 minutes
5 minutes
0 minutes
1 hour

o
Q1
(& -
O

270

225

Ficure 4.21 THE AREA OF A CONTROL PANEL DIALOG BOX
THAT IS NOT COVERED BY NRCT RECTANGLES WILL APPEAR GRAY.

MySetSound and the mach Resource Type

Because control panels usually make systemwide changes, all control pan-
els cannot run on all Macintosh models and all versions of the system
software. For example, if a control panel you're developing adjusts a
color level, it might make no sense to have the control panel run on a
black-and-white Macintosh like an old MacPlus. The mach resource is
used to let the Finder know whether or not your control panel runs on
all Macintosh models.

If a mach resource (which must have an ID of -4064) has a value of
FFFF 0000, then the Finder assumes the control panel runs on all

209

More Mac Programming Techniques

Macintosh models, and it will open the control panel regardless of the
Mac on which it resides. Figure 4.22 shows the mach resource for
MySetSound. Because MySetSound will run on any Mac, its mach
resource has a value of FFFF 0000.

= mach 1D = -4064 from MySetSound %

000000 FFFF 0000 oooo
000008
000010
oooo1s
000020
000028
000030
000038
000040
000048

)——

Eikel

FIGURE 4.22 THE MACH RESCURCE FOR A CONTROL PANEL
THAT IS TO RUN ON ANY MACINTOSH.

If a mach resource instead has a value of 0000 FFFF, the Finder will not
make the assumption that the control panel can be opened. Instead, it
will invoke the control panel’s cdev code and send a message requesting
that the control device function determine if the control panel works on
the current machine. It is up to the control device function code to then
perform any necessary tests to see if the control panel will work on the
machine. If the control panel can’t run on the Mac, the Finder will dis-
play an alert like the one shown in Figure 4.23.

The control panel “Mylnsanity”
cannot be used with this Macintosh.

FiGURE 4.23 THE FINDER WILL DISPLAY AN ALERT IF A CONTROL PANEL
CANNOT RUN ON THE HOST MACHINE.

210

Chapter 4 Control Panels and cdevs

The Mylnsanity control panel that appears later in this chap-
ter works this way. It makes a call to Gestalt() to see if the
Mac has color QuickDraw. If it does, the control panel will
load. If it doesn’t, the control panel will not appear, and the
alert shown in Figure 4.23 will be posted.

CoNTROL PANEL SOoURCE CODE

A control panel, or cdev, code resource has many similarities to the other
types of code resources you’ve worked with. It also has some important
differences. Key among them is the control panel’s need for a private
storage area in which to hold data.

Control Panels and Private Data Storage

When a user selects a control panel from the Apple menu, the Finder
executes the cdev code. For as long as the control panel is open, this
cdev code will be executed repeatedly. Whenever the user performs an
action that involves the control panel (such as clicking on an item in it),
the Finder must call the cdev code to handle that action. Even when no
user action is taking place in the control panel, the Finder will still be
executing the cdev code, sending null events to it periodically. If a con-
trol panel needs to retain any information between these calls, it needs
some means of storing values.

Because a control panel has dialog box items in it, it usually needs to
store information for the duration of its life on the screen. Since a con-
trol panel is only one of several pieces of code that the Finder works with,
a control panel needs some means of storing values between these calls.
The MySetSound control panel, for instance, keeps track of which of its
two radio buttons is currently on. That way, when the user clicks on a
radio button in the control panel, MySetSound knows which button to
turn off. If the user clicks on the desktop while MySetSound is open, the
control panel will move to the background. If the user then clicks on the
control panel, the Finder will again make the control panel active and
again call the cdev code. Between those calls the control panel must
retain its data—the item number of the radio button that is currently on.

211

More Mac Programming Techniques

To hold data, a control panel allocates memory for a data structure
and obtains a handle to that memory. This handle should be created
when the control panel is opened. During the execution of the cdev, the
control device function can work with the data that the handle refer-
ences. Then, when the current call to the cdev code is complete, the cdev
should pass the handle back to the Finder. The next time the Finder calls
the control panel, it will pass the handle back to the control panel. When
the control panel is inactive, the handle to its data is safely kept track of
by the Finder. The handle is created only once while the control panel is
open. The passing of the handle between the control panel and the
Finder, however, occurs every time the cdev code is invoked. Figure 4.24
summarizes how a control panel maintains its private data.

The Finder opens a

control panel, and the
‘cdev' then allocates
et memory and obtains
Finder ahandle toit.
& After the call to the
@ HIGH ‘cdev' ig complete, the
.- Handle Ouorr handle is returned to
Finder the Finder.
— @ HIGH The Finder handles
L - Oorr other tasks.
Finder
e i T A click on the control
panel tells the Finder
H @ui to activate the control
i Handle panel and pass the
Finder handle to the 'cdev'.

FiGURE 4.24 A ConTROL PANEL MAINTAINS A DATA STRUCTURE

212

FOR ITS OWN PRIVATE DATA.

Chapter 4 Control Panels and cdevs

The MySetSound control panel defines a data structure that holds two
members. The first field keeps track of the item number of the radio but-
ton that is currently on. The second field holds the current system vol-
ume. The handle to this struct, COEVHand1e, is the handle that will be
passed between the control panel and the Finder.

typedef struct
{

short current_button_sys_vol;
short current_sys_vol;
} CDEVRecord, *CDEVPtr, **CDEVHandle;

The Control Device Function Entry Point

A cdev is a code resource, so, like MDEF and CDEF code resources, it
requires an entry point by which application code can access it. For a
cdeyv, that application is the Finder.

The entry point for a cdev begins with the pascal keyword. The
return type should be the handle type defined by the cdev. For
MySetSound, that type is CDEVHand1e. After the return type comes
main and the seven function parameters. Here is the entry point for
MySetSound:

pascal CDEVHandle main(short message,
short item,
short num_items,
short control_panel_ID,

EventRecord *the_event,
CDEVHandle cdev_storage,
DialogPtr the_dialog)

As it has been for other code resource types you've seen, the message
parameter indicates the type of action that is to be handled by the con-
trol device function.

initDev Perform initializations when Control Panel opens
hitDev Handle a mouse click on an enabled dialog box item
macDev Determine if the Control Panel can run on this Macintosh
nulDev Perform background processing chores during null event

213

More Mac Programming Techniques

updateDev Update text or items not updated by the Dialog Manager
activDev Handle Control Panel becoming active

deActivDev Handle Control panel becoming inactive

keyEvtDev Handle a keystroke

closeDev Perform any clean up before Control Panel quits

The second parameter to main() is applicable only when an enabled
item in the control panel has been clicked on, that is, only if message
has a value of hitDev. The item parameter holds the item number of
the clicked-on item.

The third parameter, num_items, is used when the cdev is running
under System 6. It holds the number of items in the scrolling list of items
in the Control Panel desk accessory. For a control panel running under
System 7, this parameter has a value of 0.

The fourth parameter tomain(), control_panel_ID, holds a pri-
vate value used by the Finder and control panel to access the control
panel’s resources. Your control panel source code will never need to ref-
ercnce this parameter.

The the_event parameter holds the EventRecord for the event
that caused the invocation of the cdev.

The sixth parameter to main(), cdev_storage, is the handle to
the control panel’s private data. After the control panel opens, it will
return this handle to the Finder. From that point on, the Finder will pass
this handle back to the cdev every time it calls it.

The last parameter to main() is the_dialog. This parameter is a
pointer to the control panel’s dialog record.

The control device function’s main() routine should handle a mes-
sage by determining which type of message was sent by the Finder, and
then responding to that message. If the message is a hitDev type, then
main() should determine which dialog item was clicked on. Here is a
look at the format of a cdev that handles initDev and hitDev messages:

switch (message)

{

214

Chapter 4 Control Panels and cdevs

case initDev:
// control panel opened, perform any initializations

case hitDev:
// enabled item clicked on, handle appropriately:
switch (item)

{
case 1:
// handle click on 'DITL' item #1
case 2:
// handle click on 'DITL' item #2
// case label for each item
}

Taking Care of the Preliminaries

The MySetSound control panel changes the system sound volume by
making a call to the Toolbox routine SetSoundVol (). This routine is
defined in the Sound.h universal header file, so the Sound.h file should
be included at the top of the source code:

f#finclude <Sound.h>

The resource file for MySetSound has a DITL resource with three
enabled items. The MySetSound source code defines a constant for each
of the items:

ffdefine HIGH_SYS_VOL_ITEM 1
fidefine OFF_SYS_VOL_ITEM 2
fidefine SET_SYS_VOL_ITEM 3

As mentioned, MySetSound will adjust the speaker volume by making a
call to the Toolbox routine SetSoundVol (). As its only parameter,
SetSoundVo1 () accepts a short integer in the range of 0 to 7. A 0 turns
the volume off, while a 7 sets the volume to its highest level:

fidefine SYS_VOL_OFF 0
fidefine SYS_VOL_HIGH 7

215

More Mac Programming Techniques

Handling an initDev Message

When a control panel opens, the Finder sends it an initDev message. This
gives the control panel an opportunity to perform any one-time initializa-
tions. Because the Dialog Manager will handle the drawing of dialog box
items, your initialization code won’t have to. What it should do is allocate
memory for the data structure that will be saved in the control panel’s pri-
vate storage area, and then assign initial values to the members.

MySetSound defines a struct named CDEVRecord to hold its data.
Below is another look at the COEVRecord structure. Following the
struct definition is the line of code that allocates storage for one struc-
ture and returns a handle to that memory. Recall that the cdev_stor-
age variable is passed in as one of the parameters to main() and initial-
ly does not point to any valid data.

typedef struct

{
short current_button_sys_vol;
short current_sys_vol;

} CDEVRecord, *CDEVPtr, **CDEVHandle;

cdev_storage = (CDEVHandle)NewHandle(sizeof(CDEVRecord));

The current_button_sys_vol member will hold the DITL item
number of the radio button that is currently on. I've arbitrarily decided
to open the control panel with the High radio button on, so I'll assign a
value of 1 (HIGH_SYS_VOL_ITEM) to this struct member. To make
the assignment, I'll need to dereference the handle twice:

(**cdev_storage).current_button_sys_vol = HIGH_SYS_VOL_ITEM;

If the High radio button is on, then the system speaker volume should be
set to its highest level. I'll assign the current_sys_vol member a
value of 7 (HIGH_SYS_VOL_ITEM). This assignment only stores the sys-
tem volume level in the structure—it doesn’t make the actual change to
the speaker volume:

216

Chapter 4 Control Panels and cdevs

(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;

MySetSound has a function named Set_Radio_Buttons that’s used to set
the control panel’s radio buttons. In response to a click on a radio button,
Set_Radio_Buttons() turns the old button off and the newly clicked-on
button on. The control panel uses two local variables—new_radio and
o1d_radio—to hold the DITL item numbers of these two buttons. This is
the snippet that adjusts the radio buttons to their initial settings:

new_radio = (**cdev_storage).current_button_sys_vol;
old_radio = OFF_SYS_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio, new_radio, num_items);

Here’s a look at the complete section of code that handles an initDev
message.

case initDev:
cdev_storage (CDEVHandle)NewHandle(sizeof(CDEVRecord));

(**cdev_storage).current_button_sys_vol = HIGH_SYS_VOL_ITEM;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;

new_radio = (**cdev_storage).current_button_sys_vol;
old_radio = OFF_SYS_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio, new_radio, num_items);
break;

Setting the Radio Buttons

Set_Radio_Buttons() is a simple utility function that would normally
deserve very little mention. For use in a control panel, however, it war-
rants some discussion.

The purpose of Set_Radio_Buttons() is to turn off one radio
button and on another one. The first parameter to the function is a
DialogPtr that points to the control panel’s DialogRecord. The sec-
ond parameter is the DITL item number of the button to turn off, while
the third parameter is the DITL item number of the button to turn on.

217

More Mac Programming Techniques

The fourth parameter is the number of items in the control panel,
excluding the DITL items. This last parameter is the one that deserves a
closer look. First, a look at the function definition:

void Set_Radio_Buttons(DialogPtr dlog,

short old_radio,
short new_radio,
short num_items)

To turn off a radio button, you’d normally use a call to GetDialog
Item() to get a handle to the DITL item, then make a call to
SetControlValue() to turn off the button. The handle needs to be
typecast to a ControlHandle, and the value should be set to 0 to turn
off the control. Assuming that 01d_radio is the DITL item number of
the radio button to turn off, the following snippet would do the trick:

Handle handle;
short type;
Rect box;

GetDialogItem(dlog, old_radio, &type, &handle, &box);
SetControiValue((ControlHandle)handle, 0);

For a control panel, you'll want to make one significant change. If your
cdev is to be backwards compatible to System 6, you’ll have to take into
consideration that the Control Panel desk accessory has a few DITL items
of its own. The Control Panel maintains an item list that holds the items
that appear in the Control Panel’s scrolling list. Each icon is an item.
When an icon is clicked on in the System 6 Control Panel, the items in
the clicked-on Control Panel are appended to the Control Panel’s list.
Figure 4.25 shows that if MySetSound is running under System 6, the
Control Panel with four icons considers the three MySetSound items to
be items numbered 5, 6, and 7, respectively.

In order to access any one of the MySetSound items under System 6,
the cdev code must refer to the item by the item number the Control
Panel uses, not by its MySetSound DITL value.

218

Chapter 4 Control Panels and cdevs

Control Panel has
four of its own items,

(num_items =4) Fifth

Control
Panel item,
cdev DITL
item #1
(item=5)

EDQ,% Control Panel S=i——"
—

= Speaker Volume

General Sixth
Control

Panel item,
_I cdev DITL

Keyboard item #2
(item=6)

Seventh
Control
Panel item,
cdev DITL
item #3
(item=7)

FiGURE 4.25 WHEN RUNNING UNDER SYSTEM 6, A CONTROL PANEL'S DITL ITEMS ARE
APPENDED TO THE ITEM LIST OF THE CONTROL PANEL DESK ACCESSORY.

The workings of the System 6 Control Panel explain why the Finder pass-
es the control device function the num_items parameter. This variable
holds the number of icons in the Control Panel’s scrolling list. It is this
value that must be added to the control panel DITL item value in a call
to GetDialogItem(). In that way, a handle to the correct item is
obtained. Here’s how a radio button is turned off in a control panel:
Handle handle;

short type;

Rect box;

GetDialogltem(dlog, old_radio + num_items, &type, &handle, &box);
SetControlValue((ControlHandle)handle, 0);

219

More Mac Programming Techniques

To turn a radio button on—the second task that Set_Radio_ Buttons()
performs—the same two Toolbox functions are used. This time a value of
255 is passed to SetControlValue() to signal that the control is to be
turned on:

GetDialogItem(dlog, new_radio + num_items, &type, &handle, &box);
SetControlValue((ControlHandle)handle, 255);

If Set_Radio_Buttons() adds the number of control panel items to
new_radio and old_radio, then it is important that these values be
passed in as the DITL values of the items, not as the combined value of
control panel items and cdev item number. You can see from the
initDev code that this is exactly what MySetSound does. First, the data
structure member current_button_sys_vol is set to 1—the DITL
item of the High radio button. Then new_radio is assigned this same
value. Next, 01d_radio is assigned a value of 2—the DITL item number
of the Off radio button:

(**cdev_storage).current_button_sys_vol = HIGH_SYS_VOL_ITEM;

new_radio = (**cdev_storage).current_button_sys_vol;
old radio = OFF_SYS_VOL_ITEM;

Finally, a call to Set_Radio_Buttons() is made:

Set_Radio_Buttons(the_dialog, old_radio, new_radio, num_items);

What about a cdev that’s running under System 7? In System 7, each con-
trol panel is self-contained. There’s no reliance on a Control Panel desk
accessory, and thus no need to include the number of icon items in the
System 6 Control Panel in determining item numbers. Fortunately, the
Finder is smart enough to realize this. When your control panel is
opened on a Mac with System 7, the Finder will give num_items a value
of 0 and pass that value to your control panel. That means you can use
the very same System 6 code. Any time num_items appears in the code
as an offset, it will in effect be ignored.

220

Chapter 4 Control Panels and cdevs

Even if you're sure your control panel will only be used under
System 7, you should still consider using num_i tems in your
| cdev code. Since its value of 0 will be ignored, there's no
NOTE harm done. And should you ever change your mind and
decide to make your control panel backwards compatible,
you'll be all set.

You'll see Set_Radio_Buttons() (exactly as it’s shown below) in each
of the three control panel examples in this chapter.

void Set_Radio_Buttons(DialogPtr dlog,

short old_radio,
short new_radio,
short num_items)
{
Handle handle;
short type;
Rect box:

GetDialogItem(dlog, old_radio + num_items, &type, &handle,
&box);
SetControlValue((ControlHandle)handle, 0);

GetDialogItem(dlog, new_radio + num_items, &type, &handle,
&box);
SetControlvValue((ControlHandle)handle, 1);

Handling a hitDev Message

When the user clicks on an enabled control panel item, the Finder sends
the control device function a hitDev message. Along with the message, the
item number will be sent in the item parameter and, as always, the number
of control panel items will be sent in the num_items parameter. If the con-
trol panel is running under Systemn 6, item will have a value that includes
the number of Control Panel icon items—as shown in Figure 4.25.

Consider a System 6 control panel with four icons in its scrolling list
and the three enabled MySetSound items. The num_items parameter

221

More Mac Programming Techniques

will have a value of 4. If the user clicks on the High radio button (DITL
item number 1), item will have a value of 5.

The first thing to do in response to a hitDev message is to subtract
num_items from item. That will give the DITL item number of the
clicked-on item. Since a control panel running under System 7 will always
have a num_items value of 0, this operation will have no adverse effect
on the item parameter. Next, a SWitch that runs the appropriate code
for that item is entered:

case hitDev:
item = item - num_items;

switch (item)
{

case HIGH_SYS_VOL_ITEM: // HIGH_SYS_VOL_ITEM =1
// handle radio button

case OFF_SYS_VOL_ITEM: // OFF_SYS_VOL_ITEM = 2
// handle radio button

case SET_SYS_VOL_ITEM: // SET_SYS_VOL_ITEM =3

// handle push button
}
break;

The reason for subtracting num_items from item is so that the code
can freely use the ffdef1ine directives for the control panel items, with-
out concern for any offset and without trying to factor in the number of
control panel items. When I created my control panel DITL in ResEdit, I
defined the High radio button to be item number 1. That’s how I intu-
itively think of this button—item number 1. I don’t want to consider the
control panel offset each time I think of a DITL item.

When should I be concerned about the item offset that’s used in the
System 6 Control Panel? Only in my utility routine or routines that access
items. The Set_Radio_Buttons() is an example.

MySetSound handles a click on a radio button by determining which
button should be considered the new button and which should be the
old button. The new button will of course be the one that was clicked on.
The old button will be whatever button was stored in the current_

222

Chapter 4 Control Panels and cdevs

button_sys_vol field of the control panel’s private storage area. For a
click on the High radio button, this snippet would suffice:

old_radio = (**cdev_storage).current_button_sys_vol;
new_radio = HIGH_SYS_VOL_ITEM;

Next, a call to Set_Radio_Buttons() is made to turn off the old but-
ton and to turn on the new button:

Set_Radio_Buttons(the_dialog, old_radio, new_radio, num_items);

After setting the radio buttons, the current_button_sys_vol mem-
ber of the storage structure must be updated to hold the DITL item
number of the clicked-on button.

(**cdev_storage).current_button_sys_vol = new_radio;

The speaker volume is based on the current radio button, so now is the
time to store that value. If the High radio button was clicked, the number
7 (SYS_VOL_HIGH, the highest volume value) should be stored in the
other member of the control panel’s data structure:

(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;

Below is the complete code for handling a click on the High radio but-
ton. A click on the Off radio button is handled in a similar fashion.

case HIGH_SYS_VOL_ITEM:
old_radio = (**cdev_storage).current_button_sys_vol;
new_radio = HIGH_SYS_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio, new_radio, num_items);
(**cdev_storage).current_button_sys_vol = new_radio;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;
break;

The two MySetSound radio buttons can be clicked on and off by the user
as often as desired—without a change of the system volume going into
effect. It’s not until the user clicks on the Set Volume push button that
this change happens. A call to the Toolbox function SetSoundVol()

223

More Mac Programming Techniques

takes care of that. SetSoundVol () accepts a short integer in the range
of 0 10 7 and then sets the system speaker volume based on that value.
The value to pass to SetSoundVol () is held in the current_sys_vol
ficld of the Control Panel’s data structure. It holds a value of either
SYS_VOL_HIGH or SYS_VOL_OFF; it depends on which radio button is
currently on.

After setting the speaker volume, a call to SysBeep () sounds the sys- .
tem alert to give the user some audio feedback.

case SET_SYS_VOL_ITEM:
SetSoundVol((**cdev_storage).current_sys_vol);
SysBeep(1 };

Here is a look at the code that MySetSound uses to handle a hitDev
message:

case hitDev:
item = item - num_items;

switch (item)
{
case HIGH_SYS_VOL_ITEM:
old_radio = (**cdev_storage).current_button_sys_vol;
new_radio = HIGH_SYS_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio, new_radio,
num_items);

(**cdev_storage).current_button_sys_vol = new_radio;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;
break;

case OFF_SYS_VOL_ITEM:

old_radio = (**cdev_storage).current_button_sys_vol;

new_radio = OFF_SYS_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio, new_radio,
num_items);

(**cdev_storage).current_button_sys_vol = new_radio;

(**cdev_storage).current_sys_vol = SYS_VOL_OFF;

break:;

case SET_SYS_VOL_ITEM:

SetSoundVol((**cdev_storage).current_sys_vol);
SysBeep(1);

224

Chapter 4 Control Panels and cdevs

}
break;

The MySetSound Source Code Listing

Now it’s time to look at the complete source code listing for the
MySetSound control panel. As always, you'll find the source code, pro-
ject, and resource files for this example on the included disk.

//
1/ #¢include directives

f##include <Sound.h>

1/
!/ function prototypes

void Set_Radio_Buttons(DialogPtr, short, short, short);

//

// #define directives
fidefine HIGH_SYS_VOL_ITEM 1

fidefine OFF_SYS_VOL_ITEM 2

{idefine SET_SYS_VOL_ITEM 3

ftdefine SYS_VOL_OFF 0

fdefine SYS_VOL_HIGH 7

//

// define data structures

typedef struct

{
short current_button_sys_vol;
short current_sys_vol;

} CDEVRecord, *CDEVPtr, **CDEVHandle;

/7
// entry point to the code

225

More Mac Programming Techniques

pascal CDEVHandle main(short message,
short item,
short num_items,
short control_panel_ID,

EventRecord *the_event,
CDEVHandle cdev_storage,
DialogPtr the_dialog)

short old_radio;
short new_radio;

switch (message)
{
case initDev:
cdev_storage = (CDEVHandle)NewHandle(sizeof(CDEVRecord));

(**cdev_storage).current_button_sys_vol =
HIGH_SYS_VOL_ITEM;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;

new_radio = (**cdev_storage).current_button_sys_vol;

old_radio = OFF_SYS_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio, new_radio,
num_items);

break;

case hitDev:
item = item - num_items;

switch (item)
{
case HIGH_SYS_VOL_ITEM:
old_radio =
(**cdev_storage).current_button_sys_vol;
new_radio = HIGH_SYS_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);

(**cdev_storage).current_button_sys_vol =
new_radio;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;
break;

case OFF_SYS_VOL_ITEM:
old_radio =
(**cdev_storage).current_button_sys_vol;
new_radio = OFF_SYS_VOL_ITEM;

226

Chapter 4 Control Panels and cdevs

//
1/

Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);

(**cdev_storage).current_button_sys_vol =

new_radio;

(**cdev_storage).current_sys_vol = SYS_VOL_OFF;

break;

case SET_SYS_VOL_ITEM:
SetSoundVol((**cdev_storage).current_sys_vol);
SysBeep(1);
}
break;
}

return (cdev_storage);

set radio buttons
void Set_Radio_Buttons(DialogPtr dlog,
short old_radio,
short new_radio,
short num_items)

Handle handle;
short type;
Rect box;

GetDialogItem(dlog, old_radio + num_items, &type, &handle,
&box);
SetControlValue((ControlHandle)handle, 0);

GetDialogItem(dlog, new_radio + num_items, &type, &handle,
&box);
SetControiValue((ControlHandle)handle, 1);

BUILDING THE CDEV CODE RESOURCE

In the first three chapters of this book, you built a few different types of
code resources. For a cdev, things are a little different. A control panel
file is self-contained code. Besides the cdev resource, a control panel file

227

More Mac Programming Techniques

holds all of the other resources you created in the control panel’s project
resource file—resources such as the DITL, nrct, and mach. After build-
ing the code resource, you'll find that instead of having a resource file
with a code resource in it, you'll have a new control panel, with an icon
like the one pictured in Figure 4.26.

SE=———— My Set Sound cdev f =—"~0

4 items 281.4MBindisk 42.3 MB available

ity

=

MySetSoundCDEY .7 MuSetSoundCDEY ¢

=J)

el HI-OFF
MuSetSoundCDEY .7 .rsrc MuSetSound i
7]
| =

Ficure 4.26 BUILDING A CDEV CODE RESOURCE RESULTS IN
THE CREATION OF A NEW CONTROL PANEL.

Because a control panel file is self-contained, you won’t need an applica-
tion to test it out. Instead, drop the control panel into your System fold-
er. If you're using System 7, MySetSound will appear in the Control
Pancls folder in the Apple menu. Under System 6, the MySetSound icon
will appear in the icon list of the Control Panel desk accessory.

If you're using System 7, you can simply double-click on a
control panel file to execute its code. There's no need to

 place it in your System folder during testing. After you're sat-
N 0TE jsfied with the results, then drop it in the System folder so
that you can access it from the Apple menu.

228

Chapter 4 Control Panels and cdevs

Building with CodeWarrior

If you’re using the Metrowerks CodeWarrior compiler, create a new pro-
ject and add the two files shown in Figure 4.27.

El==== MySetSoundCDEL.p

File Code Data [
< Segment 1 i} 1} E >
MySetSoundCDEY ¢ 0 0 s B[|
Mac0S.1ib 0 0 0]
hbd
2 file(s) 0 0 {!

FiGURe 4.27 THE METROWERKS PROJECT WINDOW FOR
THE MYSETSoUND CoNTROL PANEL.

Before building the control panel, select Preferences from the Edit
menu. Click the Project icon to bring up the Project panel, as shown in
Figure 4.28. Make sure that all of the items in this panel are filled in cor-
rectly. The Project Type should be set to Code Resource, and a name
should be entered in the File Name edit box. Unlike the other code
resources you've created, the cdev will not be placed in its own resource
file, so the name shouldn’t include a reference to “resource.” Instead of
giving it a name like MySetSoundCDEV.rsrc, simply name it MySetSound.

For a control panel, the resource type must be cdev, and the resource
ID must be -4064. The Type field should be cdev and the Creator field
can be any four characters. Figure 4.28 shows that Sndv was picked to
indicate that this is a sound control device.

Don’t forget that Metrowerks code resource projects must
use the Small code model. Click on the Processor icon to
display the Processor Info panel. Use the Code Model pop-up

T 1+ p menu to select the Small code model.

229

More Mac Programming Techniques

Project Type: | Code Resource w |

Warnings

- Code Resource Info:
File Name MySetSound

Sym Name

Processor Resource Name

: Header Type: | Standard v |
s E’: i ResType ReslID
Linker [] Multi Segment [yr H—4I]64 I
[Display Dialog sstated
[JMerge To File Creator Type
Resource Flags sndv |[cdev |

Ficure 4.28 THE METROWERKS PREFERENCES DIALOG BOX FOR
THE MYSETSounD ConTROL PANEL.

To build the code resource, select Make from the Project menu. When
the build completes, you’ll have a new control panel, with an icon like
the one shown in Figure 4.26.

Building with Symantec C++/THINK C

If you're working with a Symantec compiler, launch the THINK Project
Manager and create a new project. Add the MacTraps library and
MySetSoundCDEV.c source code file to the project, as shown in Figure 4.29.

Select Set Project Type from the Project menu. Click the Code
Resource radio button to set the project type. Enter a name for the cdev
resource, then fill in the Type field with cdev. The File Type should be
cdev, and the Creator can be any four characters. Figure 4.30 shows a
Creator of Sndv for the MySetSound sound control device. Finally, enter a
resource ID of -4064 for the cdev. This is the ID a control panel code
resource must have.

230

Chapter 4 Control Panels and cdevs

MuySetSoundCDED. 7 &

Name Code
7 Segment 2 4 43
MacTraps ol |
MySetSoundCDEY ¢ 0
Totals 470 | |
]
&

FIGURE 4.29 THE SYMANTEC PROJECT WINDOW FOR THE MYSETSOUND COoNTROL PANEL.

O Application File Type
O Desk Accessory
O Device Driver

@ Code Resource

Creator

Name |MySetSound

Type

O Custom Header

FiGURE 4.30 THE SYMANTEC PROJECT TYPE WINDOW FOR
THE MYSETSoUND CONTROL PANEL.

After clicking the OK button, create the control panel file by selecting
Build Code Resource from the Project menu. Here you'll get the
opportunity to name the code resource. In the past you may have given a
code resource a name that ended in .rsrc to make it obvious that the gen-
erated file was a resource file. For a control panel, this isn’t necessary.
The cdev resource that’s created during the build won’t be placed in its
own resource file. Instead, the THINK Project Manager will merge the
cdev resource with the resources in the control panel’s project resource

231

More Mac Programming Techniques

file to create a control panel file. For that reason, a name such as
MySetSound is appropriate.

Enhancing the MySetSound Control Panel

MySetSound is a good first example of a control panel—it’s as simple as
they come. The MySetSoundPlus control panel shows how to add a few
more resources to a control panel—resources found in just about every
control panel. It also demonstrates how easy it is to expand the capabili-
tics of a control panel.

Figure 4.31 shows the MySetSoundPlus control panel. On its left side
are items to set the system speaker volume—the same controls found in
MySetSound. On the right side are a new set of controls that are used to
set the volume of the system alert.

EE== MySetSoundPlus %
Speaker Alert
Uolume Volume
@ High @® High
O off O off

Set System Set Rlert
Uolume Uolume

Ficure 4.31 THE MYSETSounpPLus ConTROL PANEL.

Starting with version 3.0 of the Sound Manager, it is possible to indepen-
dently vary the volume that the system alert plays at and the volume that
other sounds play at. The Toolbox routine SetSoundVol() controls the
level of the system speaker volume. The new Sound Manager routine
SetSysBeepVolume() controls the volume that the system alert plays at.
Consider a program that calls SetSoundVo1(7) and SetSysBeep
Volume(1). If that program plays an snd resource, it will play it at the

232

Chapter 4 Control Panels and cdevs

loudest volume. If that same program displays an alert that beeps, or calls
SysBeep (), the volume of that sound will be low.

Before allowing the user to adjust the alert volume, the
MySetSoundPlus control panel will have to first check to see if the
machine it’s running on contains version 3 of the Sound Manager. Not
all Macs have the new Sound Manager. If the host machine has an earlier
version, the SetSysBeepVolume() call will not be available, and the
control panel will dim those items that control the alert volume, as
shown in Figure 4.32.

EEH=— MuySetSoundPlus %

Speaker Alert
Volume Uolume
® High O High
O off QO off

Set System Set fAlert
Uolume Volume

FiGURE 4.32 THE MYSETSOUNDPLUS CONTROL PANEL WHEN
SounDd MANAGER 3.0 IS NOT AVAILABLE.

Earlier in this chapter, | stated that your own control panels
should not duplicate the efforts of Apple programmers. The
MySetSoundPlus comes closer to this recommendation than
MySetSound did. While this new control panel still allows for
the adjustment of the speaker volume level—as Apple’s
Sound control panel does—it also allows the user to adjust
the alert volume. That’s something that the Apple Sound con
trol panel doesn’t do. An even better MySetSoundPlus could
omit the speaker volume setting and just have sound-related
settings for features not covered by the Sound control panel.
It could also use a slider CDEF for each control.

233

More Mac Programming Techniques

Creating an Icon Family

The contents of the resource file for MySetSoundPlus have increased quite
a bit from that of MySetSound. If you look closely at Figure 4.33, however,
you'll see that of the seven new resource types, all but two of them are icon
related. The icld, icl8, ics#, ics4, and ics8 are all icons. The finf and snd are
the only other additions; they’ll be covered a few pages ahead.

MySetSound had only one icon—a black-and-white ICN# resource.
To better support users with color monitors, MySetSoundPlus adds sever-
al color icons. Figure 4.34 shows what the BNDL resource looks like for
the new control panel.

S[@== MySetSoundPlusCDED.m.rsrc =@
- its
B === &R =]
ot A --
B S IHFO B
BNDL DITL finf FREF
m D OO0 Bzl gal
@ - Q@ - -
ICH# ics® icsd ics8
CILIRNEd] Qlol ol
0010 1001] |E] 0010 1001 2.0bl
o110 1010 etz 01101010
ik <) EEE5E
mach nrot snd Snd+ vers 'i

FiGURE 4.33 THE RESOURCE FILE FOR THE MYSETSoUuNDPLUS PROJECT.

In Figure 4.35 you can see the icl8 icon being drawn in the icon editor.
This icon will be used on machines that are set to display eight or more
bits of color. Once again I used my resource editor to peek at Apple’s
Sound control panel icl8 icon to get an idea of how to add shading to my
own icon.

234

Chapter 4 Control Panels and cdevs

= BNDL ID = -4064 from MySetSour =]

signature:

Type Finder Icons

cdev

&>

Ficure 4.34 TuHe BNDL Resource FOR THE MYSETSounpPLUS PROJECT.

[EE== Icon Family 1D = -4064 from MySetSoundPlusCDED.17.rsrc =

&
HEE ERDEEEE
T T

B

|

=

LEERC R 1T P B
G O O [e
g R & I O bl L]
|

|]

-]
HEEE
|}

|
R R R
120 100 8 O
5 1 O I Y O S

|

FiGURE 4.35 THE ICON EDITOR AND THE ICL8 ICON FOR THE MYSETSoUNDPLUS PROJECT.

235

More Mac Programming Techniques

Changing the Control Panel’s Display Font

You may have noticed that the MySetSound control panel didn’t use the
system font, which is 12-point Chicago, to display its static text item.
Instead, it used 9-point Geneva. A control panel will always use this font,
unless instructed to do otherwise. The finf, or font information, resource
is the means for doing this.

A finf resource holds the ID, style, and size of a font. When the con-
trol panel that uses this resource opens, the Finder reads this informa-
tion and uses it in the display of static text items. For a control panel, the
finf must have an ID of -4049 (see Figure 4.36).

To set the font ID, enter the ID of the font to use in the Font Number
box of the finf resource. To get the ID of many of the commonly used
fonts, refer to the constants listed in the Fonts.h universal header file:

systemFont = 0
applFont = 1
newYork = 2
geneva = 3
monaco = 4
venice = 5
london = 6
athens = 7
sanfFran = 8
toronto = 9
cairo = 11
losAngeles = 12
times = 20
helvetica = 21
courier = 22
symbol = 23
mobile = 24

To set the style of the font, use one of the constants found in the Types.h
universal header file. To use more than one style, add the values of the
individual styles together. Enter the value in the Font Style edit box of
the finf resource.

normal = 0
bold = 1
italic = 2
underline = 4
outline = 8

236

Chapter 4 Control Panels and cdevs

Finally, enter the font size in points in the Font Size edit box. In Figure
4.36, I've set the finf resource to use the system font (Chicago) in a plain
style and in 12-point size.

Ela% finf 1D = -4049 from MySetSeundPlusCDED, .rsrc:

% Fonts 1

1) skmtok

Font Number |0

Font Style 0
Font Size 12

2) Fdodokk

B

FiGURE 4.36 THE FINF RESOURCE FOR THE MYSETSOUNDPLUS PROJECT.

The information in a finf resource should be in hexadecimal format. You
can, however, enter the values in decimal, as I've done in Figure 4.36.
Don’t be alarmed when you reopen a finf resource, as I've done in
Figure 4.37. You’ll find that the Resource editor now displays the infor-
mation in hex.

@':Erﬁnf ID = -4049 from MySetSoundPlusCDED.w.rsrc %

b—

Fonts 1
1) *kkkk

Font Number I$0000 |
Font Style I$0000 |
Font Size [$000C

2) kKK k

s

FIGURE 4.37 THE FINF RESOURCE FOR THE MYSETSOUNDPLUS PROJECT, AFTER IT IS REOPENED.
237

More Mac Programming Techniques

Additional Resources

The MySetSoundPlus control panel has the required DITL with an ID of
-4064, as shown in Figure 4.38. In the source code file, you'll find a con-
stant defined for each of the enabled items in the DITL:

fidefine HIGH_SYS_VOL_ITEM 1
fidefine OFF_SYS_VOL_ITEM 2
fidefine SET_SYS_VOL_ITEM 3
fidefine HIGH_ALRT_VOL_ITEM 5
fidefine OFF_ALRT_VOL_ITEM 6
fidefine SET_ALRT_VOL_ITEM 7

E[EE DITL 1D = -4064 from MySetSoundPlusC

Speaker [4] Alert [8]
Dolume Uolume

‘set system®| [set Alert
Volume J | Uolume

FiGURE 4.38 THE DITL RESOURCE FOR THE MYSETSOUNDPLUS PROJECT.

Control Panels may contain any resource types, not just the required
ones. In response to the user clicking on the Set System Volume button,
the MySetSoundPlus control panel will play a short sound. That sound
comes from an snd resource stored in the control panel. Figure 4.39
shows this sound resource.

238

Chapter 4 Control Panels and cdevs

EmE snds from.MySetSoundPlusCDED. w.rsrc =

D Size Name

9000 13558 “Glass breaking” 4
5
[

Fioure 4.39 THE SND RESOURCE FOR THE MYSETSOUNDPLUS PROJECT.

Additions to the Source Code

MySetSoundPlus works very much like the first example control panel,
MySetSound. There are, however, a few differences worth noting.

Because MySetSoundPlus uses two sets of radio buttons (with two buttons
per set), its private data storage needs to keep track of the current infor-
mation for each radio button set. The CDEVRecord struct has the same
two members used to keep track of the system speaker volume in
MySetSound—current_button_sys_vol and current_sys_vol.
But it also has two new members. The field current_button_
alert_vol keeps track of which of the two buttons on the right side of
the control panel is currently on. Member current_alert_vol holds
the current volume setting, either 0 or 7, to be used for the system alert
volume.

typedef struct

{
short current_button_sys_vol;
short current_sys_vol;
short current_button_atlert_vol;
short current_alert_vol;

} CDEVRecord, *CDEVPtr, **CDEVHandle;

Because MySetSoundPlus contains items that must be made active or
inactive, depending on the availability of Sound Manager 3.0, the han-

239

More Mac Programming Techniques

dling of an initDev message has become more complex. Checking for a
particular version of the Sound Manager is a three-step process. First, a
check is made to see if the SoundDispatch trap is available.

Boolean snd_dispatch;

snd_dispatch = (NGetTrapAddress(_SoundDispatch, ToolTrap) !=
NGetTrapAddress(_Unimplemented, ToolTrap));

Using NGetTrapAddress() to compare a trap to the unimplemented trap
will determine the presence or absence of the trap. If the Sound Dispatch
trap exists on the host machine, snd_dispatch will be assigned a value of
true.

Boolean snd_dispatch;

snd_dispatch = (NGetTrapAddress(_SoundDispatch, ToolTrap) !=
NGetTrapAddress(_Unimplemented, ToolTrap));

are discussed at length in another M&T book, Macintosh

W Traps, the unimplemented trap, and NGetTrapAddress()
Programming Techniques.

NOTE

If the SoundDispatch trap is present, you can safely assume that the
Toolbox routine SndSoundManagerVersion() is also present. A call
to this routine will fill snd_mgr_ver—a variable of type NumVersion—
with version information about the Sound Manger.

NumVersion snd_mgr_ver;

snd_mgr_ver.majorRev = 0;
if (snd_dispatch == true)
snd_mgr_ver = SndSoundManagerVersion();

If the SoundDispatch trap isn’t present, the majorRev field of the

snd_mgr_ver variable will retain its initial value of 0. If the Sound
Dispatch wap is present, SndSoundManagerVersion() gets called

240

Chapter 4 Control Panels and cdevs

and the majorRev field of snd_mgr_ver will hold the major version
number of the Sound Manager. If the version is at least 3, the right bank
of dialog items can be kept active. If the version is less than 3, the items
will be made inactive. Since the Toolbox function that sets the alert vol-
ume isn’t available in preversion 3 releases of the Sound Manager, this is
a necessary step.

if (snd_mgr_ver.majorRev >= 3)

{
(**cdev_storage).current_button_alert_vol =
HIGH_ALRT_VOL_ITEM;
(**cdev_storage).current_alert_vol = kFullVolume;

new_radio = (**cdev_storage).current_button_alert_vol;
old_radio = OFF_ALRT_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio, new_radio, num_items);

}

else

{
Dim_Dialog_Item(the_dialog, HIGH_ALRT_VOL_ITEM, num_items);
Dim_Dialog_Item(the_dialog, OFF_ALRT_VOL_ITEM, num_items);
Dim_Dialog_Item(the_dialog, SET_ALRT_VOL_ITEM, num_items);

}

Dim_Dialog_Item() is the application-defined routine that dims one
dialog item. Like Set_Radio_Buttons(), Dim_Dialog_Item() adds
the value of num_i tems to the DITL item to dim. That allows the control
panel to be compatible with System 6. A call to HiTiteControl(), with
a value of 255 marks the control item as inactive and draws it in a dim
state.

void Dim_Dialog_Item(DialogPtr dlog,

short item,
short num_items)
{
Handle handle;
short type:
Rect box;
GetDialogltem(dlog, item + num_items, &type, &handle, &box);
HiliteControl((ControlHandle)handle, 255);
}

241

More Mac Programming Techniques

The MySetSoundPlus Source Code Listing

The complete listing for the MySetSoundPlus control panel follows. There
are many similarities between it and the MySetSound code listing that was
given earlier in this chapter. Because the Set_Radio_Buttons() func-
tion is unchanged from its previous incarnation, its code has been omitted
from this listing.

!/
// ffinclude directives

#include <Sound.h>

/7.
/7 function prototypes

void Set_Radio_Buttons(DialogPtr, short, short, short);
void Dim_Dialog_Item(DialogPtr, short, short);

//

// j#define directives
fidefine HIGH_SYS_VOL_ITEM 1

fidefine OFF_SYS_VOL_ITEM 2

#define SET_SYS_VOL_ITEM 3

ffdefine HIGH_ALRT_VOL_ITEM 5

jidefine OFF_ALRT_VOL_ITEM 6

fidefine SET_ALRT_VOL_ITEM 7

ffdefine SYS_VOL_OFF 0

#define SYS_VOL_HIGH 7

jfdefine SND_GLASS_ID 9000

//

// define data structures

typedef struct
{

242

Chapter 4 Control Panels and cdevs

short current_button_sys_vol;
short current_sys_vol;
short current_button_alert_vol;
short current_alert_vol;

} CDEVRecord, *CDEVPtr, **CDEVHandle;

!/
// entry point to the code
pascal CDEVHandle main(short message,
short item,
short num_items,
short control_panel_ID,
EventRecord *the_event,
CDEVHandle cdev_storage,
DialogPtr the_dialog)
{
short old_radio;
short new_radio;
Handle snd_handle;
NumVersion snd_mgr_ver;
Boolean snd_dispatch;

switch (message)
{
case initDev:
cdev_storage = (CDEVHandle)NewHandle(sizeof(CDEVRecord));

(**cdev_storage).current_button_sys_vol =
HIGH_SYS_VOL_ITEM;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;

new_radio = (**cdev_storage).current_button_sys_vol;

old_radio = OFF_SYS_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio, new_radio,
num_items);

snd_dispatch = (NGetTrapAddress(_SoundDispatch,
ToolTrap) !=
NGetTrapAddress(_Unimplemented,
ToolTrap));

snd_mgr_ver.majorRev = 0;
if (snd_dispatch == true)
snd_mgr_ver = SndSoundManagerVersion();

if (snd_mgr_ver.majorRev >= 3)

243

More Mac Programming Techniques

244

{
(**cdev_storage).current_button_alert_vol =
HIGH_ALRT_VOL_ITEM;
(**cdev_storage).current_alert_vol = kFullVolume;
new_radio =
(**cdev_storage).current_button_alert_vol;
old_radio = OFF_ALRT_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);
}
else
{
Dim_Dialog_Item(the_dialog, HIGH_ALRT_VOL_ITEM,
num_items);
Dim_Dialog_Item(the_dialog, OFF_ALRT_VOL_ITEM,
num_items);
Dim_Dialog_Item(the_dialog, SET_ALRT_VOL_ITEM,
num_items);
}
break;

case hitDev:

item = item - num_items;

switch (item)
{
case HIGH_SYS_VOL_ITEM:
old_radio =
(**cdev_storage).current_button_sys_vol;
new_radio = HIGH_SYS_VOL_ITEM;
Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);

(**cdev_storage).current_button_sys_vol =
new_radio;
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH;
break;

case OFF_SYS_VOL_ITEM:

old_radio =

(**cdev_storage).current_button_sys_vol;

new_radio = OFF_SYS_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);

(**cdev_storage).current_button_sys_vol =

new_radio;

(**cdev_storage).current_sys_vol = SYS_VOL_OFF;

Chapter 4 Control Panels and cdevs

break;

case SET_SYS_VOL_ITEM:
SetSoundVol((**cdev_storage).current_sys_vol);
snd_handle = GetResource('snd ', SND_GLASS_ID);
SndPlay(nil, snd_handle, true);
break;

case HIGH_ALRT_VOL_ITEM:

old_radio =

(**cdev_storage).current_button_alert_vol;

new_radio = HIGH_ALRT_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);

(**cdev_storage).current_button_alert_vol =

new_radio;

(**cdev_storage).current_alert_vol = kFullVolume;

break;

case OFF_ALRT_VOL_ITEM:

old_radio =

(**cdev_storage).current_button_alert_vol;

new_radio = OFF_ALRT_VOL_ITEM;

Set_Radio_Buttons(the_dialog, old_radio,
new_radio, num_items);

(**cdev_storage).current_button_alert_vol =

new_radio;

(**cdev_storage).current_alert_vol = kNoVolume;

break;

case SET_ALRT_VOL_ITEM:
SetSysBeepVolume(
(**cdev_storage).current_alert_vol);
SysBeep(1);
break;
}
break;

}
return (cdev_storage);

set radio buttons

void Dim_Dialog_Item(DialogPtr dlog,

short item,
short num_jtems)

245

More Mac Programming Techniques

Handle handle;
short type;
Rect box;

GetDialogItem(dlog, item + num_items, &type, &handle, &box);
HiliteControl((ControlHandle)handle, 255);

THE MYINSANITY CONTROL PANEL

When running, this chapter’s last example, the MylInsanity control panel,
draws a tiny black rectangle at the center of its dialog box. The rectangle
rapidly grows outward until it gets close to the edge of the dialog box.
Then it disappears, only to immediately appear and to begin growing
once again. Figure 4.40 shows the rectangle as it’s growing.

P Mylnsanity
< c;'\ @ On
& oy S riee O off

Ficure 4.40 THe MylInsaniTY ConTROL PANEL.

246

Chapter 4 Control Panels and cdevs

MylInsanity exists more as a diversion than as a control panel that works
with systemwide features. But there’s a lot to be learned from this seeming-
ly trivial exercise in repetitive drawing. It has been mentioned several times
in this chapter that the Finder is in constant communication with an open
control panel. MyInsanity offers proof of this. Even when the control panel
is delegated to the background, the panel’s black rectangle will continue
its endless cycle of growing and disappearing (see Figure 4.41).

Mylnsanity

(0 7 @® On
‘_ ~
& oy "i(b“((((('t(r(. O) 0ff

== HardDisk =—=IR
38 items 263.7 MBindisk
.
Applications Systemn Folder
Utilities Mail

R

Ficure 4.41 THE Mylnsanity ConTROL PANEL EXECUTE
EVEN WHEN IT IS IN THE BACKGROUND.

MylInsanity also demonstrates how easy it is to include graphics in a con-
trol panel—that’s something this chapter’s first two examples didn’t do.
The control panel’s dialog box is divided into rectangles, compliments
of two nrct resources. A PICT resource is displayed in the top rectangle.
In the bottom rectangle, the simple growing rectangle animation
appears.

247

More Mac Programming Techniques

Finally, the Mylnsanity control panel shows how a control panel can
be written so that it executes only on certain types of machines and
gracefully exists when the host machine doesn’t meet the control panel’s
criteria. While backwards compatibility with System 6 is always welcomed
by users, there are times when it just isn’t feasible.

The Myinsanity Resources

Figure 4.42 shows the resource file for Mylnsanity. Each of the resource
typcs should now look familiar to you.

EEe— glnsanitgcnw nw.rsre =8

it
@B e@ oD P
'—J:@ A ‘-J:@ &
B iNFO
BNDL finf FREF ICN#®
¢lon 1101 o105 1tol
0010 1001] JE] 0010 1001 2.0bl
Wi BEm mas Mg eos
d1000000 COEV J1eo00ce A 70..
mach nret nuts PICT vers -
A%

FIGURE 4.42 THE RESOURCE FILE FOR THE MYINSANITY PROJECT.

For simplicity, MyInsanity only defines one icon—the black-and-white
ICN# resource. Since the control panel is all about animation, its icon
tries to imply the idea of motion. The path of a bouncing ball is shown in
the control panel’s BNDL resource in Figure 4.43 and in the icon editor
in Figure 4.44.

MyInsanity is the first example of a control panel that uses two nrct
resources. Figure 4.45 shows the nrct resources.

Two nrct resources have been created to divide the control panel into
two sections. Each nrct has the same left and right coordinates, 87 and
325, respectively. When the Finder opens the control panel’s dialog box,

248

Chapter 4 Control Panels and cdevs

it will draw a horizontal line on the boundaries of the two nrct resources.
Figure 4.46 shows the MyInsanity control panel, without its dialog items.

EM= BNDL 1D = -4064 from Mylnsaniti =

Signature: IE

Type

2

cdev

&

Ficure 4.43 THE BNDL RESOURCE FOR THE MYINSANITY PROJECT.

=—— lcon Family 1D = -4064 from MylnsanityCDED. w.rsrc

Ficure 4.44 THE ICON EDITOR AND THE BLACK~AND-WHITE ICON FOR
THE MYINSANITY PROJECT.

249

More Mac Programming Techniques

EW= nrct ID = -4064 from MylnsanityCOEV.7.rsrc §

iy
HumDfRects 2 ;
1) FkkRK
Rectangle [T ||B7 JIE ||325 |
2} KAAK
Rectangle |43 ||8'r‘ ”2?0 ||325 |
3) kkAEK

it

FIGURE 4.45 THE NRCT RESOURCE FOR THE MYINSANITY PROJECT.

E——-— Mylnsanity

FicuRE 4.46 THE TWO RECTANGLES FORMED BY THE NRCT RESOURCES
IN THE MYINSANITY PROJECT.

Because a control panel is always displayed in a dialog box, you can easily

add graphics to any cdev you create. Figure 4.47 shows the one PICT
resource MyInsanity uses.

250

Chapter 4 Control Panels and cdevs

EE PICTs from MylnsanityCDED. 77.rsrc Eﬂj
kg

(e .~
b
&

W % e

CIEE|

128

Figure 4.47 THe PICT RESOURCE FOR THE MYINSANITY PROJECT.

Mylnsanity requires just three DITL items (see Figure 4.48). The first two
are radio buttons, and the third is a picture item. You'll see constants for
the first two items defined in the MyInsanity source code:

ftdefine ON_ITEM 1
ftdefine OFF_ITEM 2

E DITL ID = -4064 from MylnsanityCDED. 7.

WS 3 [©on [0
& o 'é“icé‘t«m«;I O ofr 2]

E

Ficure 4.48 THE DITL ReEsource FOR THE MYINSANITY PROJECT.

251

More Mac Programming Techniques

Handling a nulDev Message

This chapter’s first two control panels responded to initDev and hitDev
messages, as do almost all Control Panels. The Mylnsanity Control Panel
handles these two message types and two others: the nulDev and the
macDev. The nulDev message is described here, while the macDev is dis-
cussed just ahead.

Once opened, the Mylnsanity control panel repeatedly draws a grow-
ing square. Even when the cdev is inactive, it keeps executing its code.
This isn’t just the case for Mylnsanity, it’s true for any control panel. But
because most control panels don’t include a case label for the nulDev
message, the Finder’s nulDev message is ignored by the control panel
and control is immediately returned to the Finder.

When Mylnsanity receives a nulDev message, it responds by check-
ing to see if the On radio button is set. If it is, it calls an application-
defined routine to draw the growing square.

case nulDev:
if ((*¥*cdev_storage).current_button_animate == ON_ITEM)
Grow_Square();
break;

The Grow_Square() function begins by drawing a rectangle zero pixels
in width and height. After that, a loop is entered. Each pass through the
loop draws the square one pixel larger in each direction. The effect, of
course, is that the square is growing. After the loop has completed, the
black square is erased by a call to EraseRect().

One execution of Grow_Square() has the effect of drawing a dot
in the center of the control panel and expanding it outward to the edge
of the panel. Then Grow_Square() whites out this panel-filling
square. As you watch the control panel in action, you’ll see that this
drawing and erasing occurs very quickly. That’s the speed at which the
Finder is sending null events to the control panel, whether the cdev is
active or not.

252

Chapter 4 Control Panels and cdevs

void Grow_Square(void)

Pattern the_pat;

the_rect;
i;

SetRect(&the_rect, 205, 155, 205, 155);

for (i =0; i < 100; i++)

InsetRect(&the_rect, -1, -1);
FrameRect(&the_rect);

EraseRect(&the_rect);

{
Rect
int
{
}

}

Code resources don’t have access to the qd variables like
the patterns white, black, etc. If your control panel needs to
use patterns, use a call to GetIndPattern() to obtain one
of the system patterns. By using a call to EraseRect(),
Mylinsanity gets by without needing the white pattern.
Here’s a second way that a white square could be drawn
over the black square. Keep in mind that of the 38 system
patterns, pattern 20 is solid white.

Rect the_rect;
Pattern the_pat;

// use set SetRect() to set rectangle boundaries here

GetIndPattern(&the_pat, sysPatListID, 20);
FillRect(&the_rect, &the_pat);

Grow_Square() is a simple routine that could be modified to draw
much more complex and interesting graphics, including graphics that
use color. If you do make this type of change, however, you’ll want to
make sure that the host computer is capable of displaying color. That
type of check is the topic of the next section.

More Mac Programming Techniques

Selective Execution: The mach Resource and the
macDev Message

If a control panel occupies more space than the System 6 Control Panel
occupies, it isn’t System 6 compatible. If a control panel uses certain
Toolbox functions that aren’t available on machines running under
System 6, it too is unable to run on that machine. Additionally, your
control panel may require that certain hardware features be present on
the host Macintosh in order for it to properly execute. For these rea-
sons, you'll want to know how to tell the Finder that your control panel
won’t run on every Macintosh model and under every system version.
You’ll also want to know how to make that control panel user-friendly
in that it won’t crash if a user does attempt to run it on an incompatible
machine.

The control panel’s mach resource is where the Finder initially
determines if a control panel can run on the host machine. If a control
panel has a mach resource with a value of FFFF 0000, as the chapter’s
MySectSound control panel does, the Finder will assume that the con-
trol panel is able to run on all Mac models, and on either System 6 or
System 7. If, on the other hand, a control panel has a mach resource
with a value of 0000 FFFF, as the Mylnsanity control panel does—the
Finder won’t make this assumption. For your comparison, Figure 4.49
shows both the MySetSound mach resource and the Mylnsanity mach
resource.

If the Finder encounters a mach resource with a value of 0000 FFFF,
the Finder will send as the control panel a macDev message. This mes-
sagc is sent as the very first message and is sent to the control panel only
onc time during the execution of the control panel. When a control
panel receives a macDev message, it should perform the test or tests that
arc nccessary to determine if the Macintosh meets whatever criteria the
control panel requires of a host machine.

If the machine passes the tests that the control device function per-
forms, it is capable of running the control panel, and the control device
function should return a value of 1 to the Finder. When the Finder

254

Chapter 4 Control Panels and cdevs

receives this value, it will open the control panel. If the Mac isn’t able to
run the control panel, a value of 0 should be returned. If the Finder
receives a value of 0, it will not attempt to open the control panel.
Instead, it will post the alert pictured in Figure 4.50.

MyInsanity Control Panel mach resource
0000 FFFF = Control Panel must perform its own
compatibility tests

EE= mach & 7
000000 0000 FFFF o
000008 =
000010
000018
000020
000030 EME mach ID = -4064 from MySetSound
Q00040 000000 FFFF 0000 oooo _J{;}_“
000042 000008 5
000010
000015
000020
000025
000030
000022 B
000040 =
000043 =

MySetSound Control Panel mach resource
FFFF 0000 = Finder will open the Control Panel
on any Mac system

FiGURE 4.49 THE ORDERING OF THE HEX VALUES IN A MACH RESOURCE IS IMPORTANT.

MylInsanity performs only black-and-white drawing. To get prepared for
its upgrade to a color version, though, it includes a test to see if the
Macintosh it’s running on has color QuickDraw. A call to Gestalt(),
with a selector of gestaltQuickdrawVersion, returns a response
that holds the version of QuickDraw that resides on the Mac. If that ver-
sion is the original “colorless” QuickDraw, a value of 0 is returned to the

255

More Mac Programming Techniques

Finder and the control panel isn’t opened. Any other QuickDraw version
supports color, so a 1 is returned and the Finder opens the cdev.

The control panel “Mylnsanity”
cannot be used with this Macintosh.

FiGURE 4.50 THE ALERT DISPLAYED BY THE FINDER WHEN A USER ATTEMPTS TO USE THE
MylInsaNITY CoNTROL PANEL ON A MONOCHROME MACINTOSH.

The Mylnsanity code for handling a macDev message is shown as fol-
lows. Notice that because the control device function’s main() routine
returns a CDEVHand1e, the values 0 and 1 must be typecast to this data
type before being returned. The Finder will still interpret these returned
values as simply the numbers 0 and 1.

case macDev:
error = Gestalt(gestaltQuickdrawVersion, &response);
if (error != noErr)
ExitToShell1();
else if (response == gestaltOriginalQD)
return ((CDEVHandle)O0);
else
return ((CDEVHandle)l);
break;

A more comprehensive test would also check the bit level of
the Macintosh to see if it not only has color, but that it also
i has color turned on. You can refer back to the Color_
NOTE Is_On() routine in Chapter 2 to get an idea of how that test
is made.

256

Chapter 4 Control Panels and cdevs

The Myinsanity Source Code Listing

This chapter ends with the complete listing for the MyInsanity control
panel. Once you get the project up and running, you might want to try
your hand at modifying the source code so that color is added to the ani-
mated graphics that MyInsanity draws.

//
// ffinclude directives

f#include <GestaltEqu.h>

//
// function prototypes

void Grow_Square(void);
void Set_Radio_Buttons(DialogPtr, short, short, short);

//
// {#fdefine directives

ftdefine ON_ITEM 1
ftdefine OFF_ITEM 2

jidefine SYS_PAT_LIST_OFFSET 20

//
// define data structures

typedef struct
{

short current_button_animate;
} CDEVRecord, *CDEVPtr, **CDEVHandle;

/1
// entry point to the code
pascal CDEVHandle main(short message,

257

More Mac Programming Techniques

short item,
short num_items,
short control_panel_ID,

EventRecord *the_event,
CDEVHandle cdev_storage,
DialogPtr the_dialog)

short old_radio;
short new_radio;
OSErr error;

long response;

switch (message)
{
case macDev:
error = Gestalt(gestaltQuickdrawVersion, &response);
if (error != nokErr)
ExitToShell();
else if (response == gestaltOriginalQD)
return ((CDEVHandle)0);
else
return ((CDEVHandle)l);
break;

case initDev:
cdev_storage = (CDEVHandle)NewHandle(sizeof(CDEVRecord));

(**cdev_storage).current_button_animate = ON_ITEM;

new_radio = (**cdev_storage).current_button_animate;
old_radio = OFF_ITEM;

Set_Radio_Buttons(the_dialog, old_radio, new_radio);
break;

case hitDev:
item = item = num_items;

switch (item)
{
case ON_ITEM:

old_radio = (**cdev_storage).current_button_animate;
new_radio = ON_ITEM;
Set_Radio_Buttons(the_dialog, old_radio,
new_radio);
(**cdev_storage).current_button_animate =

258

Chapter 4 Control Panels and cdevs

1/
11

new_radio;
break;

case OFF_ITEM:
old_radio = (**cdev_storage).current_button_animate;
new_radio = OFF_ITEM;
Set_Radio_Buttons(the_dialog, old_radio,
new_radio);
(**cdev_storage).current_button_animate =

new_radio;
break;

}

break;

case nulDev:
if ((**cdev_storage).current_button_animate == ON_ITEM

Grow_Square();
break;

}
return (cdev_storage);

Grow square, then wipe it out

void Grow_Square(void)

{

Pattern the_pat;
Rect the_rect;
int i
SetRect(&the_rect, 205, 155, 205, 155);
for (i =0; i < 100; i++)
{
InsetRect(&the_rect, -1, -1);

FrameRect(&the_rect);
}

EraseRect(&the_rect):

More Mac Programming Techniques

CHAPTER SUMMARY

A control panel file is made up of several resources, the most significant
of which is the cdev code resource. A cdev holds the compiled code for a
control device function. The cdev control device function, like the MDEF
menu definition procedure and the CDEF control definition function, is
the code that performs the actions of the code resource.

Under System 6, all control panels appeared as icons in a single desk
accessory—the Control Panel desk accessory. Under System 7, each con-
trol panel is its own independent entity. System 7 control panels are
accessed from within the Control Panels folder under the Apple menu.

All control panel files consist of several required resources. A control
panel needs a DITL resource to hold the items that will appear in the
control panel’s dialog box. The control panel doesn’t, however, need a
DLOG resource to define the dialog box itself—that’s supplied by the
Finder when the control panel is opened. Another required resource is
the nrct. This resource defines the size of the control panel itself. The
mach resource tells the Finder whether it should open the control panel
without question or if it should first ask the control panel to perform
tests 1o determine if the host computer is of a configuration capable of
running the cdev. Other required resource types are the BNDL, FREF,
and ICN#. These resources perform the same functions as they do for an
application.

260

Chapter

® %

S
Iy
‘D s
e
& 5
o& @
7 -
%8rame®

RESOURCES

Resources hold information that defines what your application looks
like—from every item in each menu to the buttons in each dialog box.
Resources can also be used to store information about your program—a
preferences file is nothing more than a resource file. The Toolbox rou-
tines that are a part of the Resource Manager make it possible for your
programs to work with resources.

One interesting way to work with resources is to define several dialog
box item lists that can be used in a single dialog box. In this chapter,
you’ll see how to use two or more DITL resources with a single DLOG
resource. By displaying different items at different times, a dialog box in
your application becomes very flexible. As the user selects different
menu items, or clicks on different buttons, the look of the dialog box can
change accordingly.

261

More Mac Programming Techniques

Resource editors allow you to use any of dozens of different types of
resources. But even this wide variety may not be enough for your pro-
gramming needs. If that’s the case, you can create your own resource
type. When you do, you’ll use a hex editor to add and modify items in
the resource. Because working in hex is too confusing, a resource editor
allows you to create a template resource that can be used in conjunction
with your own custom resource. The template allows a more graphic edit
of the custom resource to be done, and it allows numbers and text to be
added without using hexadecimal.

ABOUT RESOURCES

Any Macintosh file, whether a document file or application file, can con-
sist of both a resource fork and a data fork. In many cases, both forks
may be present, but one will be empty. For a 680x0 application, the data
fork is usually empty. For a PowerPC application, it isn’t. The resource
fork of an application holds resources that define the application’s
menus, windows, controls, dialog boxes, and icons. Additionally, 680x0
applications store the code that makes up the application in CODE
resources in the resource fork. PowerPC applications, however, keep the
application code in the data fork. Though the resource fork of an appli-
cation is just a part of the application file, programmers typically call the
resource fork a resource file. This interchanging of terms is an accept-
able practice, because from the programmer’s perspective, the resource
fork can and is accessed as if it were its own file.

Typically, an application’s resources are created using a resource edi-
tor such as Apple’s ResEdit or Mathemaesthetics Resorcerer. In Figure
5.1, ResEdit is being used to add a WIND resource to a new resource file.

Resources can also be created directly by your application. The rou-
tines that make up the Resource Manager allow you to give your applica-
tion the ability to alter its own resources or to create an entirely new
resource file with new resources. As you'll see in Chapter 6, this last task
is done when an application requires a preferences file.

262

Chapter 5 Resources

Untitled
=
== WINDs from Untitled
DITL DLOG D Size MName
128 29

129 29

Ficure 5.1 Appinag A WIND RESOURCE USING THE RESOURCE EDITOR RESEDIT.

Using MuLtipLE DITL ReEsOURCES IN ONE DiaLoG Box

One of the most interesting aspects of dialog boxes is that dialog box
items can be added and removed as the program runs. That is, dialog
box items can change dynamically. As an application runs, a dialog box
can adapt itself to different conditions in the program by adding or tak-
ing away some or all of its items.

About Dynamic Dialog Box Iltems

Figure 5.2 is a dialog box with five dialog box items in it. To the left are two
push buttons, labeled Beep Once and Beep Twice. At the top right are two
radio buttons, and at the lower right is another push button. In this dialog
box, only the three items on the right—the radio buttons and the OK but-
ton—are permanent parts of the dialog box. The two push buttons on the
left will only be present when the Play Beeps radio button is on.

263

More Mac Programming Techniques

Clicking this radio button . . .
—

\@;/Plag Beeps
O Play Sound
L]

... adds these items

FiGURE 5.2 A DIALOG BOX WITH DYNAMICALLY ADDED PUSH BUTTONS.

Figure 5.3 shows the same dialog box as pictured in Figure 5.2. In Figure
5.3, the two push button items that were on the left of the dialog box
have been replaced by a single, larger push button.

Clicking this radio button . . .

N\

wo Play Beeps
Play

L]

. . . adds this item

FIGURE 5.3 THE SAME DIALOG BOX AS PICTURED IN FIGURE 5.2, WITH DIFFERENT BUTTONS.

264

Chapter 5 Resources

Changing dialog box items “on the fly” is a feature that is very useful for
displaying only the items that pertain to a certain radio button, check
box, or menu selection. The previous example uses radio buttons to
change the dialog box items. You could just as easily have the displayed
items be dependent on a pop-up menu selection rather than a button
choice. And, with dynamic dialog box items, you don’t have to limit the
displayed items to only two sets, as this example does.

The example presented here is from a program that will be devel-
oped over the next several pages—it’s named MultipleDITLs. You can see
from the previous figures that this example is short on real-world useful-
ness. As usual, I've selected simplicity over complexity so that I can place
the emphasis on technique. Once you understand the MultipleDITLs
example, you'll be able to apply the program’s concepts to more com-
plex examples, like the one pictured in Figure 5.4.

[EE==== Book Report Generator : British Literature

i v Virginia Woolf
eriod: _omﬁlj Ic @® The Mark on the Wall
Victorian

D. H. Lawrence
{0 The Rocking-Horse Winner

Modern

) Short Format

@ Long Format James Joyce

() The Dead
[Title Page T. S. Eliot
[Footnotes (O Journey of the Magi

[] Biblingraphy

S — Dylan Thomas
pCraats Hepart | O Fern Hill

Samual Beckett
{O Dante and the Lobster

FiGURE 5.4 A MORE COMPLEX EXAMPLE USING DYNAMIC DIALOG BOX ITEMS.

265

More Mac Programming Techniques

Figure 5.4 shows the dialog box for a program that is the bane of all
English teachers—an automated book report generator. In this example,
all of the items on the left side of the dialog box’s vertical line are perma-
nent items. These items include the pop-up menu, the format radio but-
tons, the three check boxes, and the two push buttons. All of the items
on the right side of the vertical line are overlay items. When a menu selec-
tion is made from the pop-up menu, these items would all change and a
set of items would be added to the existing base items. As the user makes
different menu selections, one overlay set is removed and a different one
is added in its place. In this example, four DITL resources would be
used: one for the base items, and one for each of the three sets of overlay
items. Only one set of overlay items would be used at any one time, and
the decision of which set to use would be based on the current selection
in the pop-up menu.

The MulitpleDITLs Resources

To create a dialog box that is capable of displaying a variable number of
items, begin as you would with any dialog box; that is, create a DLOG
resource and a DITL resource. Determine which dialog box items will
always be available in the dialog box and include them in the DITL
resource. This will become the base DITL for the dialog box. Figure 5.5
shows the base DITL for the MulitpleDITLs program.

[DITL “Base DITL: Radios and DK %

{O Play Beeps [2]
{O Play Sound (3]

ok U

D

-

Fioure 5.8 THE BASE DITL RESOCURCE FOR THE MuLTiPLEDITLS PROJECT.

266

Chapter 5 Resources

The DLOG used in the MultipleDITLs program is shown in Figure 5.6. It
has been given an ID of 128, which is the same ID as the base DITL

resource.

DLOGs from MultipleDITLS.m.rsrc

j[*X Size Name

m 16000

[« LM [T T
[« UFR{ITT]

(]

Top: Height:
Left: Width:

Color: @ Default

(O Custom

DITL 1D:

[Initially visible

[JClose boxr

Ficure 5.6 THE DLOG RESOURCE FOR THE MuLTIPLEDITLS PROJECT.

For each set of items that will be added to the dialog box, a separate over-
lay DITL is created. Because the MultipleDITLs dialog box will use two
separate sets of items (one for each radio button selection), it has two
overlay DITL resources. Figure 5.7 shows the DITL used when the Play
Beeps radio button is selected. Figure 5.8 shows the DITL that’s used
when the Play Sound radio button is clicked on.

When completed, the MultipleDITLs resource file will hold three
DITL resources, which are shown in Figure 5.9. Only the ID of the base
DITL is significant—it must match the resource ID given in the DLOG

resource.

267

More Mac Programming Techniques

== DITL “Radio 1 DITL: SysBeep”

-

Beep Onc

B A

i N
Beep Tu.m:—t.E

FiGure 5.7 THE FIRST oVERLAY DITL rREsource For THE MuLTiPLEDITLS PROJECT.

== DITL “Radio 2 DITL: SndPlay”

Play =

Sound

FiGURE 5.8 THE seconp oVERLAY DITL RESoURCE FOR THE MuLTiPLEDITLS PROJECT.

EE=——— DITLs from MultipleDITLs.w.rsrc =—[@
1D Size MName
128 62 “Base DITL: Radios and OK"
201 50 “Radio 1 DITL: SysBeep”
202 26 “Radio 2 DITL: SndPlay”

Ficure 5.9 THE ID NumBERS OF THE THREE DITL RESOURCES
For THE MuLTiPLEDITLS PRoOJECT.

When a user of the MultipleDITLs program clicks on the Play Sound
radio button, the MultipleDITLs program will append the item in DITL
202 to the items in base DITL 128. Then, in response to a click on the

268

Chapter 5 Resources

Play Beeps radio button, the program will remove the DITL 202 item
and in its place append the items in DITL 201 to the base items. Figure
5.10 shows DITL 201 being overlaid onto DITL 128, with their upper-left
corners about to be lined up.

r 3 IO Play Beeps (2]
B l]nceL: |© Play Sound (3]
Beep Twic = DK [
I |

Ficure 5.10 CONCEPTUALIZATION OF HOW AN OVERLAY DITL works wiTH A BASE DITL.

Figure 5.10 shows that the positioning you give to the items in an overlay
DITL will determine where the items end up when appended to the
items in the base DITL. The result of the combination of overlay DITL
201 and base DITL 128, as seen when the MultipleDITLs program is run-
ning, is shown in Figure 5.11.

Play Beeps
() Play Sound

FiGure 5.11 THE DIALOG BOX THAT RESULTS FROM USING THE BASE
DITL AND oNE OVERLAY DITL.

Looking back at Figure 5.10 brings up one important question. When
the items in two DITL resources are combined, how is the problem of

More Mac Programming Techniques

DITL numbering resolved? In Figure 5.10, you can see that there are two
number 1 items and two number 2 items. This resolution is handled in
the record that is maintained for the dialog box that holds the base
DITL.

Each dialog box has a record, represented by the DialogRecord
data structure, which holds information about the dialog box. One of the
DialogRecord members, the items field, keeps track of the items in
the dialog box. The items member is a handle to a list of items. When
the dialog box opens, this list holds the items from the base DITL. When
items are appended to the dialog box, they are appended to this list.
Items that are appended to this list are numbered sequentially from the
last item that was in the original list. Figure 5.12 shows how this works for
the MultipleDITLs program when you use one of the overlays.

Item list
It item
em : Number
- E0E DITL “Base DITL: Radios and 0K* =
? [O Play Beeps
: {O Play Sound [3]
O Play Beeps 2
E i OK IL
(O Play Sound 3 —i
: E0: DITL “Radio 1 DITL: SysBeep” =|
s [icd2
Beep Twice : 5 L Beep Twic
' n

Figure 5.12 THE Di1ALOGRECORD ITEM LIST HOLDS THE DITL
ITEMS AND A NUMBER FOR EACH ITEM.

270

Chapter 5 Resources

When referencing items in your source code, you’ll use the item num-
bers as they appear in the DialogRecord item list—not as they exist in
the DITL resources that hold the items. For base DITL items, these num-
bers are the same, but as you can see from Figure 5.12, for appended
items, the item list numbers differ from the DITL items.

Yes, more than one overlay DITL can be used at any given

‘ ' time. Both DITL resources 201 and 202 could be appended
to DITL 128. Then the single item in DITL 202, the Play

NOTE Sound push button, would have an item list number of 6.
Adding more than one DITL at a time makes things needless-
ly complex, however. It's much better to include all of the
items that are to be added in a single DITL and then overlay
that one DITL onto the base DITL.

The AppendDITL() and ShortenDITL() Routines

To dynamically add items to a dialog box, you’ll rely on the Toolbox
function AppendDITL(). AppendDITL() requires three parameters: a
pointer to the dialog that will hold the items, a handle to the items, and a
constant that tells where the items should be added. Here’s a call to
AppendDITL():

DialogPtr the_dialog;
Handle item_list_handle;

AppendDITL(the_dialog, item_list_handle, overlayDITL);

The first parameter is the DialogPtr variable returned by the
GetNewDialog() call that loaded the dialog box into memory. The sec-
ond parameter is obtained from a call to Get1Resource(). The third
parameter, overlayDITL, is an Apple-defined constant used to specify
that the upperleft corner of the overlay DITL should line up with the
upper-left corner of the base DITL, as shown in Figure 5.10. The follow-
ing is a snippet that makes use of all three of these parameters.

271

More Mac Programming Techniques

DialogPtr the_dialog:
Handle item_list_handle;

the_dialog = GetNewDialog(128, nil, (WindowPtr)-1L);

item_list_handle = GetlResource('DITL', 201);
AppendDITL(the_dialog, item_list_handle, overlayDITL);

This code uses a call to GetNewDialog() to open a dialog box using a
DLOG resource with an ID of 128. Any items in the DITL associated with
this DLOG will of course be displayed at this time. Next, a call to
GetlResource() is made to acquire a handle to the overlay DITL that
has an ID of 201. The pointer to the dialog box and the handle to the
DITL are then used to append the overlay items onto the dialog box.

You should follow a call to AppendBITL() with a call to the Toolbox
routine ReleaseResource(), passing the item list handle as the only
parameter:

ReleaseResource(item_list_handle);

If your dialog box no longer needs the appended items, make a call to
the Toolbox routine ShortenDITL(). This function requires two para-
meters: a pointer to the dialog box that’s to have items removed, and the
number of items to remove. ShortenDITL() always removes the items
from the end of a dialog box’s item list. That makes it a convenient com-
pliment to the AppendDITL() routine, which adds items to the end of
the item list.

To determine how many items to remove, make a call to the Toolbox
function CountDITL(). When passed, a DialogPtr, CountDITL()
returns the number of items in that dialog box. The following snippet
shows how the items in overlay DITL 201 could be removed from a dia-
log box. Recall that DITL 201 has two items and the base DITL has three
items, for a total of five items currently in the dialog box.

fdefine NUM_BASE_ITEMS 3

short total_items;

272

Chapter 5 Resources

total_items = CountDITL(the_dialog);
ShortenDITL(the_dialog, total_items - NUM_BASE_ITEMS);

Keeping Track of DITL Items

With the Toolbox functions AppendDITL() and ShortenDITL(),
adding and removing dialog box items becomes an easy task. But if these
operations are to take place at the whim of the user, you’ll need to keep
track of which items are in the dialog box at any given time.

The following fragment outlines the logic used by the MultipleDITLs
program. After a call to ModalDialog() returns the item number of a
clicked-on item, a switch statement is used to take the appropriate
action. The first three items are from the base DITL, and as such they
will always be in the dialog box. The fourth and fifth items, however,
must be handled differently. If DITL 201 is the overlay, then its two push
buttons will be items 4 and 5. If DITL 202 is the overlay, then its one
push button will be item 4.

do

{
ModalDialog(nil, &the_item):

?witch (the_item)

case 2:
// handle click on 1st radio button, base 'DITL' item

break;

case 3:
// handle click on 2nd radio button, base °'DITL' item

break:

case 4:
// handle click on button from overlay °'DITL' 201 or...
// handle click on button from overlay 'DITL' 202
break:

case 5:
// handle click on button from overlay 'DITL' 201
break;
}

} while (the_item !=1); // OK button, base 'DITL' item

273

More Mac Programming Techniques

From the above code, you can see that a Case label is needed for each of
the items that might possibly appear in the dialog box, even though it is
only guaranteed that the base DITL items will be present.

The case label for the fourth item is unique in that it has to be able to
handle two scenarios. If the Play Beeps radio button is on, DITL 201 is
appended and the fourth item in the item list is the Beep Once push but-
ton. If, on the other hand, the second radio button is on, DITL 202 is
appended in place of DITL 201 and the fourth item in the item list is the
Play Sound push button. Figure 5.13 shows how the DialogRecord
item list varies depending on which radio button is on.

Item list when DITL 201 is appended Item list when DITL 202 is appended
it ‘ : Itém it item
em 1 Number em { Number
B B
QPlayBeeps | 2 OPlayBeeps | 2
OPlaySound | 3 OPlay Sound | 3
Play

Beep Twice 5

FiGURE 5.13 THE DIALOGRECORD ITEM LIST AS IT WOULD APPEAR WHEN USING
DITL 201, T™HEN DITL 202, AS THE OVERLAY.

To handle both possible situations, the case label for the fourth item will
need to include its own swWitch statement. Whatever variable is being
used to keep track of the current appended DITL will be used in the
switch. Here’s the format for handling this type of item:

274

Chapter 5 Resources

case 4:
switch (overlay tracking variable)
{
case overlay 201:
// beep speaker once

case overlay 202:
// play a sound from a 'snd ' resource
}

break;

Since DITL 201 adds a fifth item to the DialogRecord item list and
DITL 202 doesn’t, the case for item 5 only has to handle a click on the
Beep Twice button that will be present when DITL 201 is the appended
DITL:

case 5:
// handle click on button from overlay 'DITL' 201
break;

The next section presents the complete source code listing for the
MultipleDITLs program. Before looking it over, you might want to look
at how its primary function, Open_Dialog(), works. You've seen much
of it piecemeal here, so it should look familiar to you.

void Open_Dialog(void)

// Open the dialog box

// Set one of the two radio buttons

// Append the appropriate 'DITL’, based on the radio

// button that is set

// Set a variable to keep track of which overlay is current

ModalDialog(nil, &the_item);

switch (the_item)
{
case 2:
// Set radio buttons
// Remove items from other overlay, 'DITL' 202
// Add items from this overlay, 'DITL' 201

275

More Mac Programming Techniques

// Set a variable to keep track of current overlay

case 3:
// Set radio buttons
// Remove items from other overlay, 'DITL' 201
// Add items from this overlay, 'DITL® 202
// Set a variable to keep track of current overlay

case 4:
switch (overlay tracking variable)
{
case overlay 201:
// Beep speaker once

case overlay 202:
// Play a sound from a 'snd ' resource

}
break;

case 5:
// Beep speaker twice
break;
)

} while (the_item !=1);

// Dispose of the dialog
}

The MuitipleDITLs Source Code Listing

There’s only one part of the MultipleDITLs code that you won’t recognize—
these lines from main():

OSErr error;
long response;

error = Gestalt(gestaltDITLExtAttr, &response);

if (response == gestaltDITLExtPresent)
ExitToShell1();

The AppendDITL() and ShortenDITL() routines aren’t available in
System 6. This means that you’ll need to perform one of two checks before

276

Chapter 5 Resources

calling these functions. If you’re forcing users to run your program on a
machine with System 7, verify that this system is present when your pro-
gram starts up. Or, if your program is backwards compatible with System 6,
check for the presence of the DITL routines before using them. That'’s
what the above snippet of code does.

If you're making your program backwards compatible, you
might want to use two different schemes for displaying DITL
information. For System 7, you can use the multiple DITL
NOoTE technique presented here. For System 6 users, you'd have to
instead use ShowDialogItem() and HideDialogItem(),
or else have separate dialog boxes for different options.

Now here’s the entire listing. As always, look on the included disk for all
of the files needed to build your own version of the program.

1/
1/ f#include directives

f#include <GestaltEqu.h>
f#include <Sound.h>

//
// function prototypes

void Initialize_Toolbox(void);
void Open_Dialog(void);
void Set_Radio_Buttons(DialogPtr, short *, short);

//

// f#idefine directives
f#define DLOG_ID 128

jidefine OK_ITEM 1

j#define RADIO_1_ITEM 2

jidefine RADIO_2_ITEM 3

fidefine NUM_BASE_ITEMS 3

fidefine RADIC_1_DITL 201

jidefine RADIO_2_DITL 202

277

More Mac Programming Techniques

fidefine SND_GLASS_ID 9000

//
// main()

void main(void)

{
OSErr error;
long response;
error = Gestalt(gestaltDITLExtAttr, &response);
if (response == gestaltDITLExtPresent)
ExitToShell();
Initialize_Toolbox();
Open_Dialog();
}
//
// initialize the Mac

void Initialize_Toolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
InitCursor();

//
// open a display dialog

void Open_Dialog(void)

{
DialogPtr the_dialog;
short the_item;
short new_radio;

278

Chapter 5 Resources

short
Handle
short
short
Handle

the_di

old_ra
new_ra
Set_Ra

item_1
Append
Releas

old_radio;
item_list_handle;
total_items;
append_type:
snd_handle;

alog = GetNewDialog(DLOG_ID, nil, (WindowPtr)-1L);

dio = RADIO_2_ITEM;
dio = RADIO_1_ITEM;
dio_Buttons(the_dialog, &old_radio, new_radio);

ist_handle = GetlResource('DITL', RADIO_1_DITL);
DITL(the_dialog, item_list_handle, overlayDITL);
eResource(item_list_handle);

append_type = RADIO_1_DITL;

ShowWi
SetPor

do

{
Mod

swi

{

ndow(the_dialog);
t(the_dialog);

alDialog(nil, &the_item);
tch (the_item)

case RADIO_1_ITEM:
new_radio = RADIO_1_ITEM;
Set_Radio_Buttons(the_dialog, &old_radio, new_radio);

total_items = CountDITL(the_dialog):
ShortenDITL(the_dialog, total_items - NUM_BASE_ITEMS);

item_list_handle = GetlResource(°'DITL®, RADIO_1_DITL);
AppendDITL(the_dialog, item_list_handle, overlayDITL);
ReleaseResource(item_list_handle);

append_type = RADIO_1_DITL;
break;

case RADIO_2_ITEM:

new_radio = RADIOQ_2_ITEM;
Set_Radio_Buttons(the_dialog, 8&old_radio, new_radio);

279

More Mac Programming Techniques

total_items = CountDITL(the_dialog);
ShortenDITL(the_dialog, total_items - NUM_BASE_ITEMS);

item_list_handle = GetlResource(‘'DITL', RADIO_2_DITL);
AppendDITL(the_dialog, item_list_handle, overlayDITL);
ReleaseResource(item_list_handle):

append_type = RADIO_2_DITL;
break;

case 4:
switch (append_type)
{
case RADIO_1 _DITL:
SysBeep(1);
break;

case RADIO_2_DITL:
snd_handle = GetlResource(°'snd ', SND_GLASS_ID);
SndPlay(nil, snd_handle, true);
break;

}
break;

case 5:
SysBeep(1);
SysBeep(1);
break;
}

} while (the_item != OK_ITEM);

DisposDialog(the_dialog);

//
// set radio buttons

void Set_Radio_Buttons(DialogPtr dlog,
short *01d_radio,
short new_radio)

280

Chapter 5 Resources

Handle hand;
short type;
Rect box;

GetDItem(dlog, *old_radio, &type, &hand, &box);
SetCt1Value((ControlHandle)hand, 0);

GetDItem(dlog, new_radio, &type, &hand, &box):
SetCt1Value((ControlHandle)hand, 1);

*0ld_radio = new_radio;

The Toolbox routines that allow muitiple DITL resources to
work are AppendDITL() and ShortenDITL(). These rou-
tines do not support ictb resources. An ictb, or item color
table, is a resource that adds color to individual items in a
dialog box. This shouldn’t be a problem for most developers
because Apple doesn’t recommend adding nonstandard col-
ors to dialog box items.

Building the MultipleDITLs Program

From here on, building the example programs listed in this book will be
an elementary task, regardless of the compiler you're using. After this
point, I won’t cover application building for the examples. You'll find
that for each project, you need only follow the simple steps listed here.

Symantec users will create a new project and add the MacTraps library
and the one source code file. Then select Run or Build Application from
the Project menu. For a look at any of the projects or files, refer to the
Symantec examples folder included on the disk.

Metrowerks users should create a new project and add the MacOS.lib
library and the one source code file. Then choose Run or Make from the
Project menu. To see the details of a project, resource, or source code
file, look at the Metrowerks examples folder provided on the disk.

281

More Mac Programming Techniques

UsiNGg CusToMm RESOURCE TEMPLATES

A graphical resource editor like ResEdit depends on templates to make
resource editing easy. A template displays the value or values in a single
resource of a single resource type. For example, you use the STR# tem-
plate to edit the strings in a STR# resource. Figure 5.14 shows the STR#
template. The template, which is built into ResEdit, displays the strings in
a manner that is easy to read and easy to edit.

STR# template
b D Size MName
128 0
EJ=== STR# ID = 128 from MyTestApp.7.rsrc =
= {r
NumStrings 3
1) odkokk
The string]Hacintush Programming Techniquesl
2) EEEEEK

The string IDuickTime: Macintosh HultimediuJ

3} oKk ok

The strin Programming the PowerPC
g

1) Hokodok ok

B

Ficure 5.14 A RESOURCE EDITOR TEMPLATE DISPLAYS RESOURCE ITEMS IN A WAY THAT
MAKES EDITING THE RESOURCE EASIER.

You don’t have to use the built in STR# template when viewing a STR#
resource. If you chose Open Using Hex Editor from the Resource menu,

282

Chapter 5 Resources

you’d see the same three strings in a window like the one shown in
Figure 5.15. After looking at this window, you’ll surely come to the con-
clusion that a template makes things much clearer.

Em= STR¥ 1D = 128 from MyTestApp.m.rsrc %
868000 8003 264D 6163 696E BN Macin b
088608 746F 7368 2050 ?26F tosh Pro
6800 16 6772 616D 6D69 6E6? gramming
8860 18 2054 6563 686E 6971 Techniq
8060820 7565 7V31F 5175 6963 wuesBQuic
808628 6B54 6960 653A 204D kTime: M
2086308 6163 696E 746F 7368 acintosh
860038 284D ?56C 7469 6065 Multime
860040 6469 6117 5072 6F6? dialProg
0068048 7261 606D 696E 67?28 ramming

860059 7468 6520 S86F 7?7?65 the Powe

080858 7256 43 rPC

880860

880868 E;
808070 =

FIGURE 5.15 WITHOUT A TEMPLATE, EDITING A RESOURCE BECOMES MUCH MORE DIFFICULT.

ResEdit supplies templates for about 60 of the commonly used resource
types, including the ALRT, DITL, and DLOG resources. For most of your
programming needs, these built-in templates are all that you’ll ever need.
If you want to store your own data structures in a resource file, however,
you’ll want to create your own template so that you can view and edit
your data. Fortunately, ResEdit makes it easy to add your own templates
to a resource file.

A common task performed by a Macintosh program is to obtain infor-
mation that’s held in a resource. A call to GetNewWindow(), for exam-
ple, acquires WIND resource data used to load a window into memory.
The window example uses a predefined resource type and a Toolbox rou-
tine. It’s also possible to store your own data in a resource of your own
design and to access it from source code using the Get1Resource()
Toolbox routine.

In this section, you’ll see how to create your own resource type. Then
you’ll create a template to make data stored in your resource easy to

283

More Mac Programming Techniques

work with. You'll also see how to access this same data from within a pro-
gram. In Chapter 6, you'll see a very practical example that makes use of
these tasks—the creation and use of a preferences file.

The TemplateUser Program

The disk that accompanies this book includes a project named
TemplateUser. In the project’s resource file is a TSTD resource type. This
isn’t a standard resource type, I've created it just for use by the
TemplateUser program. There’s no real significance to the fourcharac-
ter resource name. I chose the letters TSTD to stand for “test data,” but I
could have used any four characters.

The TSTD resource holds four pieces of data: a short, a long, a
Boolean, and a string. Figure 5.16 shows how a resource of the TSTD
type might look when opened with ResEdit’s hex editor.

= TSTD ID = 128 from TemplateUse
BEO0e0 7FFF 7FFF FFFF 0190 ENNEENRE
0OEPBE BFSE 6172 6961 626C WUariabl
BEEB18 6520 4C65 GE67? 7468 e Length -
0066 18 :
B0P020
£OBB28
60BB30 :
008038 =
000040 e
000048 ;

Ficure 5.16 A cusTom RESOURCE TYPE NAMED TSTD.

Since it’s very difficult to determine what values are held in the TSTD
resource and equally difficult to modify its data, I've added a template to
the resource file. The template makes working with TSTD resources easy.
The template addition is shown on the next pages.

Data are stored in a resource in an application so that it’s available
for use by that application. To demonstrate how this is done, the
TemplateUser program loads the data from one TSTD resource and dis-
plays it in a window (see Figure 5.17).

284

Chapter 5 Resources

New Window

32767
2147483647

1
Yariable Length

FIGURE 5.17 THE RESULT OF RUNNING THE TEMPLATEUSER PROGRAM.

Creating a New Resource Type and Template

Using ResEdit, a new resource of any type is added to a resource file by
selecting Create New Resource from the Resource menu. If you're going
to add a resource of a standard type, such as an ALRT or DITL resource,
you'll find the resource name in the scrolling list in the Select New Type
dialog box. If you want to add a resource of your own type, you obviously
won'’t see its name in the list. Instead, just click in the Edit text box and
type in whatever four character name you’ve settled on. Figure 5.18
shows a new TSTD resource about to be added to the resource file.

Select New Type

Ficure 5.18 CREATING A NEW RESOURCE TYPE IN ReEsEDiT.

More Mac Programming Techniques

After clicking OK, a new resource icon will appear in the type picker
window, and two new windows will open. The first holds a list of all of
the TSTD resources in the file. Since this resource type was just created,
there’ll be only one resource listed here. ResEdit will give this first
resource an ID of 128. The second window that opens is the ResEdit hex
editor window. The new resource opens without any data in it (see
Figure 5.19).

Templatelser.y.rsic

=3

1ol 110}
9010 1001
91101019
9001 1110
01000000

T8TD

TSTDs from TemplateUser.m.rsrc

D Size Name

128 0

== TSTD 1D = 128 from Templatelser.w.rsrc

e I 1515112 %)
600868
8000 10
800018
8006820
006028
606030
088038
080040
080848

[

ikl

FIGURE 5.19 THE NEW, EMPTY TSTD RESOURCE-EDITING WINDOW.

Unlike a standard resource type, like a STR#, there is no template in
ResEdit to define how data entered into a TSTD resource should be for-
maited. If you start typing, the hex equivalent to the keys you press will
be displayed in the hex editor. If you wanted to enter the values 32767,
2147483647, true, and Variable Length, you'd have to enter the values as
shown in Figure 5.20.

———.

Chapter 5 Resources

TSTDs from TemplateUser.w.rsrc

D Size Mame

128 24

IE= TSTD 1D = 128 from TemplateUser.7.rsrc

— 866608 ?FFF PFFF FFFF 6166 HENNRRER
866063 BF56 6172 6961 626C Wariabl
B66a6 18 6528 4C65 GEGY 7468 e Length
@660 18
Goeaza
aeen2s
Be8630
Boaa3s
BoBa46
BoEa48

[

[

Ficure 5.20 THE TSTD RESOURCE WITH DATA ENTERED.

Unless you can do decimal-to-hex conversions and alphanumeric-to-hex
conversions in your head, this is way too much work! The solution, of
course, is to create a template. To do this, you’ll again select Create New
Resource from the Resource menu. Templates are a standard resource
type, so scrolling through the resource type list will eventually reveal the
TMPL resource name in the list. A click on the name will place it in the
Edit box. Figure 5.21 shows the Select New Type dialog box as it looks
just before OK is clicked.

Ficure 5.21 CREATING A TEMPLATE RESOURCE IN RESEDiT.

287

More Mac Programming Techniques

Afier clicking OK, the windows shown in Figure 5.22 will open. There
will be one new TMPL resource, with ID 128. The template editor will
open, and you can begin to edit the template.

TemplateUser.m.rsrc
mm eled]
=1 oTees000
TMPL TSTD

T™MPLs from TemplateUser.m.rsrc
D Size Name

128 0
=HE= TMPL ID = 128 from TemplateUser.mw.rsrc

[
B

1) Fkkokk

]

FiGURE 5.22 THE NEW, EMPTY ‘TMPL RESOURCE-EDITING WINDOW.

When ResEdit created the TSTD resource and the template that will be
used Lo edit this resource, it gave each an ID of 128. That’s the ID that
ReskEdit gives the first resource of any type. The fact that both the TSTD
resource and the TMPL resource have the same ID is not what binds
them together. Instead, it’s the TMPL name that associates it with the
TSTD resource. To give the TMPL resource a name, first click on the
resource to highlight it, as done in Figure 5.23. Then select Get
Resource Info from the Resource menu.

In the dialog box that opens, type in TSTD (see Figure 5.24). Now
that the template has the same name as the resource type it is to be used
with, the association is made. Just to show that the ID of the template
docsn’t have to be the same as the resource it’s to be used with, I’'ve
changed the TMPL ID to 200.

Chapter 5 Resources

Create New Resource K
Open Resource Editor
Open Using Template...
Open Using Hex Editor

Revert This Resource

Get Resource Info

EE= TMPL ID = 128 from TemplatelUser.m.rsrc

(il

Ficure 5.23 SEeLEcTING GET RESOURCE INFO FOR THE TEMPLATE RESOURCE.

[MZ Info for TMPL 200 from TemplateUser.m.rs|
Type: TMPL Size: 62
1D: 200
Name: |TSTD
Owner type

Owner 1D :

Sub 1D:
Attributes:
[JSystem Heap []Locked] Preload
[] Purgeable [JProtected [JCompressed

FiGure 5.24 CHANGING THE RESOURCE ID AND THE RESOURCE
NAME OF THE TEMPLATE RESOURCE.

More Mac Programming Techniques

After closing the Get Info window, it’s time to edit the template. The tem-
plate will have an item for each data element that will be in a TSTD
resource. The template item will give a label to the data element and will
specify the type of data that the element is. Imagine that the TSTD
resource will hold just a single data element, and that it will be a two-byte
number. In C, that would be a short variable. In the template, there
should be a single item that corresponds to this one data element. Figure
5.25 shows what this item would look like.

SEE TMPL “TSTD” ID = 200 from Template.w.rsrc %
1) kokkkk]
Label short data
Type ONRD
2) kRkkk

O
il

FIGURE 5.25 A TEMPLATE RESOURCE THAT DEFINES
ONE DATA FIELD—A TWO-BYTE NUMBER.

A template item can have any label, but it should be descriptive of what
the data element is or what it will be used for. I choose “short data” for
the label. The item has to have a type, and it must be one of the types
that ResEdit recognizes. For a two-byte value, or short, enter DWRD as
the type. DWRD stands for decimal word.

As a test, close the template resource and double-click on the TSTD
resource to open it. Now, instead of the hex editor opening, the template
will open. You’ll see the label in the left of the window and an Edit box to
the right of the label (see Figure 5.26). To enter a number, just click in
the Edit box and type it in. Since the template specified that this data ele-
ment would be in decimal, you can type in a number as you normally
would—there’s no need to convert it to hex. Figure 5.26 shows the TSTD
resource with the number 18 entered.

290

Chapter 5 Resources

T5TDs from TemplatelUser.m.rsrc

(=} Size Name

128 2

Ficure 5.26 How THE TSTD RESOURCE WOULD LOOK WHEN USING THE TMPL RESOURCE.

Now let’s go back to the template to complete it. The TemplateUser pro-
gram is going to use four data elements, and it expects to find them in its
resource fork—in a TSTD resource. The program will be looking for a
short, a long, a Boolean, and a string. Figure 5.27 shows what the TSTD
template should look like in order to meet these specifications. You can
use the Insert New Field(s) menu item from the Resource menu to add
each new item.

After closing the template, double-click on the TSTD resource to
open it again. This time, the TSTD editor will look like the one pictured
in Figure 5.28. Now the TSTD data can be edited in the same graphical
manner that resources of standard types are edited. In Figure 5.28, I've
entered a value for each of the four fields.

ResEdit allows you to specify that a template item represents just
about any kind of data. Table 5.1 shows many of the four-character
names you can use in your TMPL resources.

Now that some data is stored in a resource, what can be done with
it? That depends on the requirements of the application that will use
the data. The TemplateUser program will simply read in this data and
display it in a window. To do that, a WIND resource needs to be added
to the resource file. Figure 5.29 shows the WIND that TemplateUser
works with.

291

More Mac Programming Techniques

292

T™MPLs from TemplateUser.m.rsrc

[} Size Name
200 50 “TSTHY |
EB= TMPL “TSTD” ID = 200 from Template.n.rsrc
g 1) *EkkK &
Label short data I
Type [ouRD
2 wEkRK
Label long data |
Type DLHG '
3) kkkkk
Label [boolean data I
4) AdoRk
Label |3tr-ing data |
5) kkkkH >

Ficure 5.27 THeE comPLETED TMPL RESOURCE.

TSTDs from TemplateUser.m.rsrc

D Size Name

128 24

. short data 32767 |

long data 2147483647 |
boolean data @ True (O False

string data |Uc|r'iub|e Length

E[E== TST0 ID = 128 from TemplateUser.n.rsrc S

&

FIEE

Ficure 5.28 How THE TSTD RESOURCE WOULD LOOK
WHEN USING THE cOMPLETED TMIPL RESOURCE.

Chapter 5 Resources

ResEdit Type Description

1-byte decimal field

DBYT Maximum value for data of this type: 255

2-byte decimal field
DWRD Maximum value for data of this type: 32,767

4—byte decimal field

DLNG Maximum value for data of this type: 2,147,483,647

Pascal string field
PSTR Enter the text without leading or trailing characters
(no"\p” or"\0")

CHAR 1-byte character field

Boolean field

RO Displayed as a pair of radio buttons

Rectangle field

RECT Displayed as four edit boxes, each used to enter
one coordinate of the rectangle. Order of entry is:
(top, left, bottom, right)

TaBLE 5.1 Some oF THE FouR-CHARACTER NAMES THAT CAN BE UseD IN A TEMPLATE RESOURCE.

@ WIND 1D = 128 from TemplateUser.n.rsrc]

O LI L

Color: @ Default
(O Custom

o Helgm: " [® Initially visible
Left: llJitlIh: LIkloaa. oy

Ficure 5.29 THE WIND RESOURCE USED BY THE TEMPLATEUSER PROJECT.

293

More Mac Programming Techniques

Figure 5.30 shows the complete resource file for the TemplateUser pro-
ject. In the upcoming pages, you'll see how to read the TSTD data into
TemplateUser. In Chapter 6, you’ll see how this technique of storing and
reading resource data is used to save a program’s preference settings.

SEi=— Templateliser.w.rsrc ==

—EE cersieet
-E= o1Io 1010

3 00081010

- 21000000 —
TMPL TSTD WIND

FiGURE 5.30 THE RESOURCE TYPES FOUND IN THE TEMPLATEUSER RESOURCE FILE.

Using Resource Data In an Application

When a Mac application makes a call to GetNewWindow(), the Toolbox
loads information from a WIND resource into a WindowRecord data
structure. It then supplies the program with a pointer to that data. This
pointer isa WindowPtr:

WindowPtr the_window;

the_window = GetNewWindow(WIND_ID, nil, (WindowPtr)-1L);

Your program can then use the WindowPtr variable to obtain informa-
tion stored in the WindowRecord. That’s possible because the
WindowRecord data type is defined in the universal header files and is
known to the Toolbox.

When you want an application that you’re writing to access informa-
tion from a resource type that you've defined, you’ll have to supply the
application with the format in which the data is stored. Just as a program
nceds to recognize a WindowRecord data structure before it can work
with a WIND resource, your application will need to have a data structure
defined for any programmer-defined resource type.

294

Chapter 5 Resources

As you've seen, TemplateUser defines a resource type named TSTD. Any
resource of that type contains a short, a 1ong, a Boolean, and a Pascal
string—in that order. That means the TemplateUser application needs to
define a data structure that matches this format. Here’s that structure:

typedef struct
{

short short_val;
long long_val;
Boolean bool_val;
Str255 str_vatl;
} TemplateRecord, *TemplatePtr, **TemplateHandle;

This technique is similar to one you encountered in Chapter
3. In that chapter, you saw that whenever the Control
Manager sends a thumbCnt1 message to a cdey, it also
NO0OTE gends a pointer to a data structure. That data structure
holds information about the dragging limits, or boundaries, of
a control. In Chapter 3, you saw that it was up to you to
define a matching structure in the cdev source code so that
you could read in the data that this pointer referenced.

Now, when TemplateUser needs to access information from the TSTD
resource, it makes a call to the Toolbox routine Get1Resource() to
load the resource data into memory and to return a handle to the data:

Handle data_handle;

data_handle = GetlResource(°'TSTD', 128);

Get1lResource() can be used to load one resource of any type into
memory. The first parameter is the resource type, and the second is the
ID of the particular resource to load.

resource with an ID of 200 and a TSTD resource with an ID
of 128. It’s the TSTD resource being loaded here. The tem-
N 0TE plate resource is only used within ResEdit to make resource
editing easier.

? Recall that the TemplateUser resource file defines a TMPL

295

More Mac Programming Techniques

Once the TSTD resource data is loaded into memory, it can be accessed
by the TemplateUser application, but not until the application is told the
format of the data. Until then, it appears as just a stream of information
in memory. Type casting the generic data_hand]1e variable to a
TemplateHandle is the way to tell the application how the data format-
ted. To gain access to one piece of data, the TemplateHand1e is deref-
erenced twice. Here’s how a short variable would be assigned the value
of the first piece of data in the TSTD resource:

fidefine TSTD_RES_TYPE *TSTD’
fdefine TSTD_RES_ID 128

short my_short;
Handle data_handle;

data_handle = GetlResource(TSTD_RES_TYPE, TSTD_RES_ID);

my_short = (**(Temp]ateHand]e)data;hand1e).short_va1;

Henceforth, the my_short variable can be used, and the first member
of the TSTD data in memory can be ignored. This applies to each of the
four TSTD data members; once variables are assigned the values held in
the resource, you don’t have to use the handle. The following snippet
loads the TSTD data into memory and extracts all of the data from that
resource by assigning four variables its data:

short my_short;
long my_long;
Boolean my_boolean;
Str255 my_str;
Handle data_handle;
StringPtr source_str;
Size byte_count;

data_handle = GetlResource(TSTD_RES_TYPE, TSTD_RES_ID);
my_short = (**(TemplateHandle)data_handle).short_val;

my_long = (**(TemplateHandle)data_handle).long_val;
my_boolean = (**(TemplateHandle)data_handle).bool_val;

296

Chapter 5 Resources

source_str = (**(TemplateHandle)data_handle).str_val;
byte_count = (**(TemplateHandle)data_handle).str_val[0] + 1;
BlockMoveData(source_str, my_str, byte_count);

After obtaining a handle, the first three assignments are straightforward:
cast the handle, then dereference it twice to get at a struct member.
Assigning a value to the Str255 variable requires a little extra work. A
string variable is an array of characters, and in C one array cannot be
assigned the value of another array, so an assignment like this will result
in an error during compilation:

my_str = (**(TemplateHandle)data_handle).str_val; // not legal!

Instead of a direct assignment to a Str255 variable, make the assign-
ment to a pointer:
StringPtr source_str;

source_str = (**(TemplateHandle)data_handle).str_val;

Next, get the length of the string—it can be found in the first element of
the array that holds the string. Add one byte to account for this first
length byte. Then use the Toolbox routine BlockMoveData() to copy
the string to the Str255 variable.

StringPtr source_str;
Size byte_count;

source_str = (**(TemplateHandle)data_handle).str_val;

byte_count = (**(TemplateHandle)data_handle).str_vai{0] + 1;
BlockMoveData(source_str, my_str, byte_count);

Once a program has the resource data stored in variables, the informa-
tion can be used just as data in any variable is used:

my_short *= my_short; // square the value in my_short

MoveTo(20, 80);
DrawString(my_str); // draw my_str to a window

297

More Mac Programming Techniques

The TemplateUser Source Code Listing

TemplateUser opens a window, loads data from a TSTD resource, then
writes that data to the window. When you run the program, you’'ll see a
window like the one shown in Figure 5.31. If you want to test out both
the template resource and the program, try opening the project’s
resource file and double-clicking on the TSTD resource. Edit any or all
of the four fields in that resource. Then save the resource and recompile
the program. When it runs, TemplateUser should display the new values
you've entered into the TSTD resource.

New Window

32767
2147483647

1
Variable Length

FicURE 5.31 THE RESULT OF RUNNING THE TEMPLATEUSER PROGRAM.

The following is the listing for TemplateUser. To keep things simple,
there’s no real event loop—a click of the mouse button ends things. And
to save a little paper, the listing for Initialize_Toolbox() has been
omitted. You will, however, find it in the source code file on disk.

/1
!/ function prototypes

void Initialize_Toolbox(void);
void Get_Template_Resource_Values(void);

//
// ffdefine directives

{idefine WIND_ID 128

298

Chapter 5 Resources

ffdefine TSTD_RES_TYPE 'TSTD*

fdefine TSTD_RES_ID 128

//

7/ define data structures

typedef struct
{

short short_val;
long long_val:
Boolean bool_val;
Str255 str_val;
} TemplateRecord, *TemplatePtr, **TemplateHandle;

//
// main()

void main(void)

{
WindowPtr the_window;
Initialize_Toolbox();

the_window = GetNewWindow(WIND_ID, nil, (WindowPtr)-1L);
SetPort(the_window);

Get_Template_Resource_Values();

while (!Button())

’

//
// retrieve data from 'TSTD' resource

void Get_Template_Resource_Values(void)

{
short my_short;
long my_long;
Boolean my_boolean;

Str255 my_str;
Handle data_handle;
StringPtr source_str;
Size byte_count;
Str255 temp_str;

More Mac Programming Techniques

data_handle = GetlResource(TSTD_RES_TYPE, TSTD_RES_ID);

my_short = (**(TemplateHandle)data_handle).short_val;
my_long = (**(TemplateHandle)data_handle).long_val;
my_boolean = (**(TemplateHandle)data_handle).bool_vatl;

source_str = (**(TemplateHandle)data_handle).str_val;
byte_count = (**(TemplateHandle)data_handle).str_val[0] + 1;
BlockMoveData(source_str, my_str, byte_count);

MoveTo(20, 20):
NumToString((long)my_short, temp_str);
DrawString(temp_str);

MoveTo(20, 40);
NumToString(my_long, temp_str);
DrawString(temp_str);

MoveTo(20, 60);
NumToString((long)my_boolean, temp_str);
DrawString(temp_str);

MoveTo(20, 80);
DrawString(my_str);

CHAPTER SUMMARY

Resources contain information that a program uses “on demand.” When
a program is to open a window, for example, it loads a WIND resource to
get the characteristics of the window. Though resources generally hold
information about the graphical interface parts of a program, such as
descriptions of menus, windows, and dialog boxes, this isn’t always the
case. A resource can be created to hold any type of data. When you cre-
ate your own custom resource, a resource editor will open a window that
allows you to edit that resource in hexadecimal. Since this type of editing
is quite a chore, resource editors also allow you to create a template
resource that is used every time the custom resource is opened in the
resource editor. This TMPL resource defines labels and fields that make
the editing of custom resources simple.

300

Chapter 5 Resources

When you define your own resource type, you’ll also need to define a
structure in your source code that corresponds to the format in which
the resource data is held. When you load a custom resource into memory
with a call to Get1Resource(), the Toolbox returns a handle to the
memory location at which the resource data has been placed. Unless a
structure is defined, to the program this resource information will
appear to be just one continous stream of data. The structure can be
used to view the data as individual members of a struct variable.

One useful programming trick that involves resources is to define sev-
eral dialog box item lists that will be used by one dialog box. To do this,
first define a base DITL with the same ID as the one specified in a DLOG
resource. Then define as many different overlay DITL resources as need-
ed. In your source code, use the AppendDITL() and ShortenDITL()
Toolbox functions to add and remove these overlay DITL resources as
needed. Generally, it will be some user action that triggers the changing
of the DITL.

301

Chapter

> %

)
4
@ g
r=
2 =
))
o‘° &2

y caD
Og fam m\‘\

RESOURCE FILES

When source code gets compiled and linked to form a standalone appli-
cation, a single resource file is usually merged with the object code to
become an integral part of the application. The resources that were in
this file (along with the application code in a 680x0 application) then
become the application’s resource fork. As a program executes it uses
the resources in its resource fork. An application can, however, use
resources that are located in any resource file, not just resources in its
own fork.

By having your program use different resource files, you can divide
application-used information into logical groupings, much as you would
divide a book’s information into separate chapters. The advantage to this
approach is that as information needs to be changed or updated, it can

303

More Mac Programming Techniques

easily be altered by opening the proper resource file from outside the
application. In this chapter, you'll see how to write a program that makes
use of multiple resource files.

Resource files don’t necessarily have to be created before an applica-
tion runs—the application itself is capable of creating a new file. An
application can also copy resources from its own resource fork or any
other fork and add them to the new, empty resource file. You’ll see how
to tackle both of these tasks in this chapter.

Some application retain certain values between executions. These val-
ues hold information such as the user’s choice of font and the dialog box
scttings that the user has selected. To preserve this information, an appli-
cation uses a preferences file. This file is a resource file that can have its
contents viewed or edited using any resource editor. This chapter discuss-
es preferences files at length so that you can include a preferences file
with any of your Mac applications.

WoRkING WITH MuLTiPLE RESOURCE FILES

An application’s resources are generally found in the resource fork of
the application—they’re placed there by the development environment
that was used to build the application. But an application can also make
use of resources found outside its own resource fork. Any Mac program
can be written such that it is capable of opening a resource file and
accessing the resources found within that file.

The greatest advantage to using separate resource files—reduced
application size—applies to large applications that hold an abundance of
resources. An example might be an educational program that holds
dozens or hundreds of PICT resources. Since so much of the disk space
occupied by an application of this type consists of resources, the applica-
tion’s size is greatly reduced by placing most of its resources in separate
files. While the overall disk space of the application and its resource files
remains the same as an application that is self-contained, there is still a
plus to this scheme. If an application is going to be revised frequently, it
may be possible to make changes to just the application and not the

304

Chapter 6 Resource Files

resources. If the application revisions are distributed electronically, end
users will need to download only the small application, and not a mono-
lithic one that contains hundreds or perhaps thousands of kilobytes of
resources. If the application is distributed by disk, the revised version can
usually be shipped on one disk rather than multiple disks. Figure 6.1
shows an application that uses the resources found in ten resource files.
The application itself is just 49 K in size, while the resources occupy over
two and a half megabytes of disk space.

Mac Programming f
2items 119.5 MBindisk 80.5 MB available
Name Size Kind

< InAction! Mac Techniques 49K application program

[WInAction! Resources 2,881K folder
=l In Action! Resources
10 items 119.5 MBindisk 80.5 MB available
Mame Size Kind
O InAction.rsrc00 172K ResEdit 2.1.1 docul4r]
O InAction.rsrc01 319K ResEdit 2.1.1 docu
O InAction.rsrc02 336K ResEdit 2.1.1 docu
O InAction.rsrc03 382K ResEdit 2.1.1 docu
O InAction.rsrc04 280K ReskEdit 2.1.1 docu
O InAction.rsrc0S 392K ResEdit 2.1.1 docu
O InAction.rsrcDé 252K ResEdit 2.1.1 docu
O InAction.rsrc0? 245K ResEdit 2.1.1 docu
[InAction.rsrc08 182K ResEdit 2.1.1 docu
O InAction.rsrc09 322K ResEdit 2.1.1 docu
=
R R RAR A ng !15"5§§ﬁ

FiGURE 6.1 AN APPLICATION THAT USES THE RESOURCES HELD IN TEN RESOURCE FILES.

The MultipleRsrcFiles source code presented in this section is an exam-
ple of an application that uses a resource located in an external file.
MultipleRsrcFiles opens a dialog box and displays a picture in it(see
Figure 6.2).

305

More Mac Programming Techniques

FiGURE 6.2 THE RESULT OF RUNNING THE MuLTIPLERSRCFILES PROGRAM.

Figure 6.3 shows the folder that holds the project, source code, and project
resource file for the MultipleRsrcFiles project; they're the three files at the
left of the figure. These three files are used to build the application, shown
at the center of the figure. On the right side of the figure is the resource
file that MultipleRsrcFiles uses. If the MultipleRsrcFiles application is to be
distributed to users, the MyRsrcFile resource file must accompany it.

[EJ===== Multiple Resource Files f === 115

5items 284.6 MBindisk 39.6 MB available
[l i
MultipleRsrcFiles.n
{=_._E L
f——-l %
MultipleRsrcFiles.c MultipleRsrcFiles MyRsrcFile
0
MultipleRsrcFiles.of.rsre
A%
=l [D]E

This file is used by the application

Ficure 6.3 THE MuLmiPLERSRCFILES APPLICATION USES THE RESOURCE
FOUND IN THE MYRSRCFILE RESOURCE FILE.

306

Chapter 6 Resource Files

In order for the MultipleRsrcFiles program to use the
' ' MyRsrcFile resource file, the application and the resource
file must be in the same folder. If you'd like to nest resource

NOTE files in a different folder, so that they’re hidden from the
user, see the information on file pathnames in Chapter 7.

The MultipleRsrcFiles Resources

The MultipleRsrcFiles program begins by opening a dialog box. The DITL
and DLOG resources for the dialog box are found in the application’s
resource fork. That means these resources started out in the project’s
resource file. Figure 6.4 shows the DLOG resource. From this figure, you
can see that the DITL has just a single dialog box item in it—an OK button.

Eli=———= DL0G ID = 128 from MultipleRsrcFiles.m.rsrc S

[0= [=| [0==8&] [0==g] =]
e o e B O o] [x|
. =]

Color: @ Default
) Custom

DITL 1D:

& Initially visible

_— [Close box

Ficure 6.4 THeE DLOG rResource usep BY THE MuLTIPLERSRCFILES PROGRAM.

Besides the DLOG and DITL resource there’s a third resource in the
project’s resource file: a STR# resource that holds a single string. The
string is the name of the external resource file that the MultipleRsrcFiles
program uses. This resource is pictured in Figure 6.5.

307

More Mac Programming Techniques

MultipleRsrcFiles.m.rsrc

DITL DLOG

STR#¥s from MultipleRsrcFiles.w.rsrc
D Size Name

128 13
EE= STR¥ 1D = 128 from MuitipleRsrcFiles.v.rsre =]

NumStrings 1

1) Kkodkokxk

The string MyRsrcFile]

2) Horkkxk

] kel

FiGURE 6.5 A STR# RESOURCE HOLDS THE NAME OF THE RESOURCE FILE USED
BY THE MULTIPLERSRCFILES PROGRAM.

The resource file that MultipleRsrcFiles uses is named MyRsrcFile. It con-
tains a single PICT resource. It is this picture that MultipleRsrcFiles will
display in its dialog box. Figure 6.6 shows the contents of the MyRsrcFile
resource file.

Resource File Reference Numbers

A file can have a data fork, resource fork, or both. That means that any
file is capable of holding resources in a resource fork. A program, which
is an application file, holds resources just as a resource file does—they
each have a resource fork. Because an application can use resources in
external files as well as use its own resources, confusion could arise if two
open resource forks each contained a resource of the same type and
same ID. To circumvent this problem, the File Manager assigns a refer-
ence number to each resource fork that opens. Only one resource fork
can be the current fork, and it is the current fork from which resources
are loaded.

308

Chapter 6 Resource Files

MuyRsrcFile

79

ﬂ:

PICT
EE=== PICTs from MyRsrcFile =3
= ity
128 O]
]

FiGURE 6.6 THE RESOURCE FILE USED BY THE MuLTIPLERSRCFILES PROGRAM HOLDS A
SINGLE PICT RESOURCE.

If an application relies on multiple resource forks, a call to the Toolbox
routine UseResFile() should be made before accessing a resource.
Just as SetPort () designates one of possibly many graphics ports to be
the current port, UseResFile() designates that one particular
resource fork be the current fork. UseResFile() requires only one
parameter—a Short that holds the reference number of the resource
fork to use.

As an example, imagine that both an application and a resource file
contain a snd resource. Each of the two snd resources has an 1D of 8500,
but they hold different sounds. To play the snd that resides in the appli-
cation’s resource fork, UseResFile() would first be called, with the
application’s resource fork reference number as the parameter:

short Appl_Rsrc_Fork_Ref_Num;
short File_Rsrc_Fork_Ref_Num;

// Get reference number of application's resource fork
// Get reference number of open resource file's resource fork

309

More Mac Programming Techniques

UseResFile(Appl_Rsrc_Fork_Ref_Num);

// play the sound

When an application is launched, the system opens the application’s
resource fork and makes it available for the application’s use. This fork
will remain open for the duration of the program’s execution. You can
get a reference number to the fork by calling the Toolbox routine
CurResFile(). If you do this at application startup, you can be assured
that the application’s resource fork is the current resource fork:

short Appl_Rsrc_Fork_Ref_Num;
Initialize_Toolbox();

App1_Rsrc_Fork_Ref_Num = CurResFile();

A resource fork’s reference number will be valid for the entire period
that the fork is open. So once you've saved the reference number of an
application’s resource fork, you won'’t have to call CurResFile() again.
And if you save the reference number to a global variable, you’ll be able
to make the application’s resource fork current at any time.

Opening and Closing a Resource
File Source Code

Opening a resource file consists of calling the Toolbox routine
FSpOpenResFile(). The leading FSp in the function name tells you that
it’s one of the many file specification routines, and as such it will require an
FSSpec as a parameter. You can make a call to FSMakeFSSpec() to
request that the File Manager fill an FSSpec variable with information
about the file of interest. Before calling FSMakeFSSpec (), you'll need to
know the file’s name and its location. The name is stored in the first (and
only) string in the application’s STR# resource. If the resource file exists in
the same directory as the application, then its volume reference number
and directory ID are both 0. The following snippet returns a file system
specification record:

310

Chapter 6 Resource Files

fidefine RSRC_STR_ID 128
ffdefine MY_FIRST_RES_FILE_INDEX 1

short File_Rsrc_Fork_Ref_Num;

Str255 rsrc_file_name;
short vol_ref;

Tong dir_ID;

FSSpec rsrc_FSSpec;

GetIndString(rsrc_file_name, RSRC_STR_ID,
MY_FIRST_RES_FILE_INDEX);

vol_ref = 0;
dir_ID = 0;

FSMakeFSSpec(vol_ref, dir_ID, rsrc_file_name, &rsrc_FSSpec):

Now the call to FSpOpenResFile() can be made. The first parameter
to this routine is a pointer to the FSSpec and the second is a file permis-
sion constant. Using the fsCurPerm constant means that the file will be
opened with whatever access is available—usually read and write permis-
sion. After FSpOpenResFile() opens the resource fork of a file, it
returns a file reference number. If the attempt to open the specified file
fails, a value of -1 will be returned as the reference number. If you save
this reference number to a global variable, you’ll always be able to make
this file the current file with a call to UseResFile():

File_Rsrc_Fork_Ref_Num = FSpOpenResFile(&rsrc_FSSpec, fsCurPerm);
UseResFile(File_Rsrc_Fork_Ref_Num);

The File Manager treats an application’s resource fork and a resource
file’s resource fork in the same manner. After making sure that the cor-
rect fork is current, you can access a resource in any fork just as you have

in the past. If, for instance, a resource file contains a PICT with an ID of
128, you can draw that picture to the current port as follows:

PicHandle pict_handle;

UseResFile(File_Rsrc_Fork_Ref_Num);

311

More Mac Programming Techniques

pict_handle = GetPicture(pict_id);

// Set up the rectangle to draw to

DrawPicture(pict_handle, &pict_rect };

ReleaseResource((Handle)pict_handle);

When you’re through with a resource fork, call the Toolbox routine
CloseResFile() to close it. After that, you can optionally set the glob-
al reference number variable to 0. Then, if your application ever wants to
check to see if a nonapplication resource fork is open, it can do so. If a
check of this variable’s value reveals that it is nonzero, then a resource
file resource fork is open. After closing the file, make a call to

UseResFile() to guarantee that the application’s resource fork
becomes current.

CloseResFile(File_Rsrc_Fork_Ref_Num);
File_Rsrc_Fork_Ref_Num = 0;

UseResFile(Appl_Rsrc_Fork_Ref_Num);

The MultipleRsrcFiles Source
Code Listing

This section has described the code used by MultipleRsrcFiles. You’ll
notice that MultipleRsrcFiles bundles the code that opens and closes a
resource fork into two functions: Open_Resource_File() and
Close_Resource_File(). To enable these routines to work with any
resource fork, they both require that information about the a file be
passed in.

Open_Resource_File() uses a call to GetIndString() to
obtain the name of the file to open. So Open_Resource_File()
expects the STR# resource ID and the index to the string as parameters:

void Open_Resource_File(short rsrc_str_ID_num, short str_index)

312

Chapter 6 Resource Files

After closing a resource fork, C1ose_Resource_File() sets the file refer-
ence number to 0 to indicate that no file is open. Pass Close_Resource_
File() a pointer to this file number variable so that this assignment will
hold after the function has ended:

void Close_Resource_File(short *file_ref_num)

Now, here’s the complete listing for the MultipleRsrcFiles program.
You’ll find that this short program does all of the following:

B Uses the DITL and DLOG resources from the application’s
resource fork to open a dialog box

B Opens a resource file’s resource fork
B Loads a PICT resource from the external file
B Draws the picture using the PICT resource
B Closes the resource fork of the external file
/1
1/ function prototypes

void Initialize_Toolbox(void);

void Open_Dialog(void);

void Open_Resource_File(short, short);
void Close_Resource_File(short * };
void Draw_One_Picture(short);

//

// {#fdefine directives
jdefine DLOG_ID 128

ftdefine OK_ITEM 1

f#fdefine RSRC_STR_ID 128

ffdefine MY_FIRST_RES_FILE_INDEX 1

#define eWORLD_PICT_ID 128

//

// declare global variables

short Appl_Rsrc_Fork_Ref_Num;

313

More Mac Programming Techniques

short File_Rsrc_Fork_Ref_Num = 0;

//
1/ main()
void main(void)
{
Initialize_Toolbox();
Appl_Rsrc_Fork_Ref_Num = CurResFile();
Open_Dialog();
}
//
// open a display dialog

void Open_Dialog(void)

{
DialogPtr the_dialog;
Boolean done = false;
short the_item;

the_dialog = GetNewDialog(DLOG_ID, nil, (WindowPtr)-1L);

ShowWindow(the_dialog);
SetPort(the_dialog);:

Open_Resource_File(RSRC_STR_ID, MY_FIRST_RES_FILE_INDEX);
Draw_One_Picture(eWORLD_PICT_ID);
Close_Resource_File(&File_Rsrc_Fork_Ref_Num);
while (done == false)
{ ModalDialog(nil, &the_item);
switch (the_item)
{ case OK_ITEM:

done = true;
break;

314

Chapter 6 Resource Files

DisposDialog(the_dialog):
}

//
// open a resource file

void Open_Resource_File(short rsrc_str_ID_num, short str_index)
{

Str255 rsrc_file_name;

short vol_ref;

long dir_ID;

FSSpec rsrc_FSSpec;

GetIndString(rsrc_file_name, rsrc_str_ID_num, str_index);

vol_ref = 0;
dir_ID = 0;

FSMakeFSSpec(vol_ref, dir_ID, rsrc_file_name, &rsrc_FSSpec);

File_Rsrc_Fork_Ref_Num = FSpOpenResFile(&rsrc_FSSpec,
fsCurPerm);

if (File_Rsrc_Fork_Ref_Num == -1)
ExitToShell();

UseResFile(File_Rsrc_Fork_Ref_Num);

/7
7/ close a resource file

void Close_Resource_File(short *file_ref_num)
{
CloseResFile(*file_ref_num);

*file_ref_num = 0;
UseResFile(Appl_Rsrc_Fork_Ref_Num);
}

1
!/ get picture from 'PICT' resource, draw it

315

More Mac Programming Techniques

void Draw_One_Picture(short pict_id)

{
PicHandle pict_handle;
Rect pict_rect;
short pict_width;
short pict_height;
pict_handle = GetPicture(pict_id);
if (pict_handle == nil)

ExitToShell();

pict_rect = (**pict_handle).picFrame;
pict_width = pict_rect.right - pict_rect.left;
pict_height = pict_rect.bottom - pict_rect.top;
SetRect(&pict_rect, 0, 0, pict_width, pict_height);
DrawPicture(pict_handle, &pict_rect);
ReleaseResource((Handle)pict_handle);

}

DyYNAMICALLY CREATING A NEW RESOURCE FILE

A resource file is typically created not by your own application, but by a
resource editor such as ResEdit or Resorcerer. Any application can, how-
ever, create a resource file. The most common need for this task comes
when working with preferences files. A preferences file is usually a
resource file stored in the Preferences folder in the System folder. If your
program relies on a preferences file, it may not be safe to assume that the
user hasn’t inadvertently discarded or moved it. If that has happened,
your application will need to replace the preferences file by creating a
new resource file. This section’s example program, CreateRsrcFile, does
just that.

When launched, CreateRsrcFile attempts to create a new resource file
named MyNewRsrcFile. If its attempt is successful, you’ll see an alert box
like the one on the left of Figure 6.7. If the attempt isn’t successful, the
alert box pictured on the right will appear.

316

Chapter 6 Resource Files

File created. Error. File not created.

Ficure 6.7 THE TWO MESSAGES THAT THE CREATERSRCFILE PROGRAM CAN DISPLAY.

After dismissing the alert box, the CreateRsrcFile program will exit. In the
Create Resource File f folder, you'll see a new, empty resource file—com-
plete with the ResEdit file icon. Figure 6.8 shows the contents of this folder.

EM=———= Create Resource File {f ===l
5items 284.8 MBindisk 39.4 MB available
iy

CJ

CreateRsrcFile.w

ERG

CreateRsrcFile.c CreateRsrcFile MuNewrcFile

CreateRsrcFile..rsrc

@l

This file is created by the application

FiGuRe 6.8 THE CREATERSRCFILE APPLICATION CREATES A NEW,
EMPTY RESOURCE FILE NAMED MYNEwRSRCFILE.

If you don’t rename or delete the resource file between exe-
cutions of the CreateRsrcFile program, the error message
will be displayed in the alert. If you step through the pro-
NOTE gram using the debugger, you'll see that the error variable
gets a value of -48, which is a dupFNErr—a duplicate file
name error.

317

More Mac Programming Techniques

The CreateRsrcFile Resources

The CreateRsrcFile program doesn’t require any resources of its own for
the task of creating a new resource file. The only two resources con-
tained in the project’s resource file—an ALRT and a DITL resource—
exist to give the user a little feedback. If CreateRsrcFile didn’t display an
alert box, it would appear that the program simply launches and then
quits without doing anything.

CreateRsrcFile uses a single alert box to display either of two mes-
sages. To do this, the DITL resource contains a static text item with the
characters 70 in it (see Figure 6.9).

CreateBsrcFile.w.rsrc

[s=piac =)
E ==

Q==

o

ALRT DITL

DITLs from CreateRsrcFile,

— D Size Name
128 34
=[EE DITL ID = 128 from Create
~0 (2]
B

FiGURE 6.9 THE DITL RESOURCE USED BY THE CREATERSRCFILE PROGRAM.

The text to be displayed in the alert will be determined as the program runs.
Before displaying the alert, a call to the Toolbox routine ParamText () will
be made to set the static text item string to the proper text.

318

Chapter 6 Resource Files

Resource File Creation Code

Creation of a resource file is achieved through a call to the File Manager
routine FSpCreateResFile(). As was the case for opening a resource
fork, you’ll need to have an FSSpec handy before calling this routine. A
call to FSMakeFSSpec(), as defined in the previous section, takes care
of this. The CreateRsrcFile program will create a file that resides in the
same folder as the application, so the volume reference number and the
directory ID can both be 0. The program defines the new file’s name in
the source code—you might choose to list the name in a STR# resource
in the application’s resource fork, as done in the past.

Str255 prefF_file_name = "\pMyNewRsrcFile";
short vol_ref;

long dir_ID;

FSSpec pref_FSSpec;

vol_ref = 0;
dir_ID = 0;

FSMakeFSSpec(vol_ref, dir_ID, pref_file_name, &pref_FSSpec);

With the FSSpec created, it’s time to call FSpCreateResFile(). This
routine requires four parameters. You've seen the first one—a pointer to
an FSSpec. The second parameter is an application signature. If you
want the file to be owned by your application, you'll give it the same four-
character creator name you’re using for your application. In the
Symantec THINK Project Manager, you set the creator using the Set
Project Type menu item from the Project menu. The resulting Symantec
dialog box is shown in Figure 6.10. If you’re a CodeWarrior user, you use
the Project panel in the Preferences dialog box to edit the creator (see

The third parameter to FSpCreateResFile() is the file’s type. If
the resource file is owned by your application, you can use any four char-
acters that are meaningful to your program.

The last parameter to FSpCreateResFile() is a script code. A
file’s script code identifies how the Finder will display the file’s name.
Here you can use the Apple-defined constant smSystemScript.

319

More Mac Programming Techniques

® Application File Type
() Desk Accessory
() Device Driver

Creator

{0 Code Resource

Partition (K) (] Far CODE

(] Far DATA
SIZE Flags =4 | 0000 [Separate STRS

Figure 6.10 THE SYMANTEC DIALOG BOX USED TO SET THE APPLICATION'S CREATOR.

Apply to open project.

Project Type: [Application |

- Application Info:

File Name |CreateRsrcFile]

Creator |

Type |ARPPL
Preferred Heap Size (k) 384
Minimum Heap Size (k) |384

'SIZE' Flags v/

[Faciurg Settings]

(Revert Panel] [Cancel]

Ficure 6.11 THE METROWERKS DIALOG BOX USED TO SET THE APPLICATION’S CREATOR.

320

Chapter 6 Resource Files

Assuming I've given my application a creator of CrRF (for “create
resource file”), and I've settled on this resource file having a file type of
myRF (for “my resource file”), a call to FSpCreateResFile() would
look like this:

FSpCreateResFile(&pref_FSSpec, 'CrRF', 'myRF', smSystemScript);

A call to FSpCreateResFile() results in the creation of a resource
file—regardless of the creator and file type names you choose. If you
launch your resource editor and choose Open from the File menu, you’ll
see the name of the new resource file in the list of files. And if you open
it, you'll be able to add resources to it as you would any other resource
file. What you won’t be able to do is double-click on the file’s icon from
the Finder to launch your resource editor and open the file. That’s
because the Finder won't associate this file with any particular resource
editor. If you want to give your resource file the same icon as your
resource editor would assign a new file, and also make it double-click-
able, use your resource editor’s creator and file type in the call to
FSpCreateResFile(). For ResEdit, that would result in a call that
looked like this:

FSpCreateResFile(&pref_FSSpec, 'RSED', 'rsrc', smSystemScript):

If you use the resource editor Resorcerer, or feel that the majority of your
program’s users will, you can set up the call to FSpCreateResFile()
as follows:

FSpCreateResFile(&pref_FSSpec, ‘'Doug', °'RSRC', smSystemScript);

You can verify the success of a call to a Resource Manager routine by call-
ing the Toolbox function ResError(). Reskrror() returns an error
code descriptive of any problem that the Resource Manager may have
encountered. A result of NnOErr means the call succeeded.
CreateRsrcFile uses this technique to determine if the resource file was
created. If it was, it sets the alert box string to “File created.” A failed
attempt to create a new file will set the alert box string to “Error. File not
created.” In either case, the alert box is displayed with a call to Alert ().

321

More Mac Programming Techniques

If you aren’t familiar with the ParamText () function, Figure 6.12 sum-
marizes how it’s used to assign up to four strings for display in static text
items.

short error;
FSpCreateResFile(&pref_FSSpec, 'RSED', 'rsrc', smSystemScript):

error = ResError();
if (error == nofrr)
ParamText("\pFile created.", "\p", "\p", "\p");
else
ParamText("\pError. File not created."™, "\p", "\p", "\p");

Alert(ALERT_ID, nil);

A0 | 2 3
ParamText ("\pWrong.", "\pYou ge

(a3

: " R " \pone try- (] , " \pll) ;

it}

Z[JE DITL ID = 128 from Tes

]

[g

Wrong.

You get: One try.

FiGure 6.12 THE PARAMTEXT() FUNCTION IS USED TO CHANGE THE TEXT OF UP
70 FOUR STRINGS THAT APPEAR IN A DIALOG BOX.

322

Chapter 6 Resource Files

The CreateRsrcFile Source Code Listing

This very short program creates a new resource file named MyNewRsrcFile.
If you open the file with a resource editor, you’ll find that it is empty. You
can remedy this situation by reading the next section of this book, which
discusses how to write a program that is capable of copying resources from
one file to another.

1/
// function prototypes

void Initialize_Toolbox(void);
void Create_New_Rsrc_File(void);

//
// fidefine directives

ftdefine ALERT_ID 128

//
// main()

void main(void)
{
Initialize_Toolbox();

Create_New_Rsrc_File();

//
// initialize the Mac

void Initialize_Toolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);

323

More Mac Programming Techniques

InitCursor();

/7.
1/ create preference file if none exists

void Create_New_Rsrc_File(void)
{
Str255 pref_file_name = "\pMyNewRsrcFile";
short vol_ref;
long dir_ID;
FSSpec pref_FSSpec;
short error;

vol_ref = 0;
dir_ ID = 0;

FSMakeFSSpec(vol_ref, dir_ID, pref_file_name, &pref_FSSpec);
FSpCreateResFile(&pref_FSSpec, 'RSED', 'rsrc', smSystemScript);
error = ResError();
if (error == nokrr)

ParamText("\pFile created.”™, "\p", "\p", "\p");
else

ParamText("\pError. File not created.", "\p", "\p", "\p"):

Alert(ALERT_ID, nil);

DynAMICALLY COPYING A RESOURCE T0 ANOTHER FILE

If your program creates a new, empty resource file, you’ll most likely also
want your program to add resources to it. The RsrcCopier program that’s
developed over the next several pages copies a single PICT resource
from the resource fork of the RsrcCopier application and places it in an
existing, empty resource file named MyAddToRsrcFile.

324

Chapter 6 Resource Files

Like last section’s CreateRsrcFile program, RsrcCopier uses a single
alert box to provide feedback to the user. If the program successfully
copies the PICT resource to the resource file, the alert message on the
left side of Figure 6.13 is displayed. If the attempt to copy the resource
fails, the message on the right side of the figure is posted.

Resource added. Error. Resource not added -
may already exist.

FiGURE 6.13 THE TWO MESSAGES THAT THE RSRCCOPIER PROGRAM CAN DISPLAY.

1 After running RsrcCopier, use your resource editor to open
| the MyAddToRsrcFile resource file. The previously empty
| resource file will now hold the one picture that is shown in
Figure 6.14. Either delete or renumber its one PICT
resource. If you don’t, RsrcCopier will attempt to add a sec-
ond PICT 128 to this same file, which should not be done. If
this happens, and RsrcCopier will post the error message
alert shown on the right side of Figure 6.13.

The RsrcCopier Resources

The resource file for the RsrcCopier project holds the same DITL and
ALRT resources found in this chapter’s CreateRsrcFile program. As you
can see from Figure 6.15, RsrcCopier also uses PICT and STR#
resources.

325

More Mac Programming Techniques

This resource file will be empty before
RsrcCopier runs, but will contain one
PICT rescurce after it executes

MyRAddToRsrcFile

L8

PICT

[EEE PICT ID = 128 from MyRddTol

FiGURE 6.14 THE RSRCCOPIER PROGRAM ADDS ONE PICT RESOURCE TO THE EXISTING
MyAppToRsSRCFILE RESOURCE FILE.

Y

RsrcCopier.m.rsrc

L&

ALRT DITL PICT
DITLs from RsrcCopier.m.rsrc
— D Size Name
128 34
Z DITL 1D = 128 from RsrcCo =
Ao E
0K a
|

FiGURe 6.15 THE DITL RESOURCE USED BY THE CREATERSRCFILE PROGRAM.

326

Chapter 6 Resource Files

RsrcCopier uses a STR# resource to decide which resource file to open.
This is the same technique used in this chapter’s MultipleRsrcFiles pro-
gram. Figure 6.16 shows that the picture will be copied to a resource file
named MyAddToRsrcFile. The PICT that it copies is shown in Figure 6.17.

STR#s from RsrcCopier.y.rsrc
Size Name

28 18

[EEI=== STR¥ 10 = 128 from RsrcCopier.n.rsrc ===——]
o

|| =

HumStrings 1 [

The string [MyRddToRsrcFile i
2) okkkk

[&]

Ficure 6.16 A STR# RESOURCE HOLDS THE NAME OF THE RESOURCE FILE THAT WILL
RECEIVE THE COPIED RESOURCE.

S[ES PICT ID = 128 from RsrcCopie %

FicURE 6.17 THE PICT RESOURCE THAT WILL BE COPIED FROM THE RSRCCOPIER APPLI
CATION AND ADDED 70 THE MYADDTORSRCFILE RESOURCE FILE.

DetachResource() and ReleaseResource() Explained

As you’ll see when you study the RsrcCopier source code listing,
RsrcCopier makes a call to the Toolbox routine DetachResource().

327

More Mac Programming Techniques

Since the differences between DetachResource() and the more com-
monly used Toolbox function ReleaseResource() can be confusing,
this section delves into the purposes of these two routines.

When a resource fork is opened, whether an application’s fork or a
resource file’s fork, all of the resources in that fork are not loaded into
memory. Instead, only resources with their preload attribute set get
loaded. Additionally, resources are loaded individually as calls are made
to Toolbox routines such as Get1Resource() and GetNewWindow().
What /s always loaded into memory when a resource fork is opened is a
resource map.

When a resource fork is opened, there are two resource maps for that
fork. The first resides on disk, in the resource file. This map holds the
disk location of each resource in the file. The second resource map is the
onc that gets loaded into memory. This map is made up of a series of
handles—one handle for each resource. Except for resources that are
marked as preloaded, these handles are initially set to nil. Figure 6.18
shows a resource fork being opened by an application. In this example,
the resource fork holds two resources: a PICT resource with an ID of 128
and a snd resource with an ID of 9000. Assuming that the PICT resource
is marked as preloaded and the snd resource isn’t, only a copy of the pic-
ture data will be loaded into memory. Figure 6.19 shows that the handle
for the PICT resource is set to point to this loaded data, while the handle
for the snd resource remains nil.

Preloading a resource isn’t the only way resource data makes its way
into memory. When an application makes a call to a routine such as
GetlResource() the specified resource will get loaded—if it isn’t
alrcady in memory. When that happens, the resource map handle for
that one resource will change from nil to a handle that leads to the
resource data.

The handles in the resource map in memory are used by the Resource
Manager, rather than directly by the application. As objects in memory
arc moved about during the normal course of memory compaction, the
resource map allows the Resource Manager to keep track of things. In

328

Chapter 6 Resource Files

order for an application to get a handle to a resource in memory, it must
declare a handle variable and make a call to a Toolbox routine.

Resource File

Resource Fork

resource
map

When the resource file's
resource fork is opened, a
resource map is placed in
memory and the preload-
marked PICT resource
is loaded.

FiGURE 6.18 A RESOURCE FILE WITH ITS PRELOADED-MARKED
PICT RESOURCE BEING LOADED INTO MEMORY.

For the PICT example discussed here, a call to GetPicture() would
return a handle to the PICT in memory:

PicHandle pict_handle;

pict_handle = GetPicture(pict_id);

329

More Mac Programming Techniques

Resource File

rce Fork

master pointer

map

resource ‘i

Because the pPICT data
is in memory, a handle in
the resource map is
assigned to lead to it

FiGURE 6.19 A HANDLE IN THE RESOURCE MAP IS SET TO LEAD TO
THE PRELOADED PICTURE DATA.

If the picture data isn’t in memory, it will be loaded and both the
resource map handle and the application-defined handle will be set to
lead to this data. If the picture data is in memory, perhaps from being
preloaded, there’s no need to load the data again. Instead, the applica-
tion handle will just be set to the value of the resource map handle that
leads to the picture data. Figure 6.20 shows that once an application
declares a handle and makes a call to a resource-loading routine, there
are two handles leading to the resource data.

330

Chapter 6 Resource Flles

Resource File

Resource Fork

master polntef :

resource
map

Acallto GetPicture()
returns a handle to the GetPicture() handle
picture data—a handle ;

that can be used by the
application.

FiGURE 6.20 AN APPLICATION CAN DECLARE ITS OWN HANDLE VARIABLE
THAT WILL LEAD TO THE RESOURCE DATA.

When an application is through with resource data, it can make a call to
the Toolbox routine ReleaseResource() to free the memory that
holds the data:

PicHandle pict_handle;
pict_handle = GetPicture(pict_id);
// draw the picture

ReleaseResource((Handle)pict_handle);

331

More Mac Programming Techniques

A call to ReleaseResource() frees memory by setting the resource’s
master pointer to nil. Setting the master pointer to nil invalidates all
handles that lead to the resource data. That means that both the
resource map handle and the application-defined handle are invalid (see
Figure 6.21). If the resource data is again needed, another Toolbox call
will have to be made to load it.

Resource File

Resource Fork

. pctredata

1

master pointer nil

resource
map

A call to ReleaseResource() GetPicture() handle
sets a resource's master
pointer to ni1l, invalidating any
of that resource's handles.

FiGURE 6.21 A cALL T0 RELEASERESOURCE() INVALIDATES
ALL HANDLES THAT LEAD TO THE RESOURCE.

When an application is finished using a resource, and no longer needs a
handle to that resource, a call to ReleaseResource() should be made.

332

Chapter 6 Resource Files

The Toolbox contains a companion routine to ReleaseResource()
that is named DetachResource(). DetachResource() sets a resource
map handle to nil, but doesn’t release the resource data from memory
and doesn’t affect application-defined handles to the resource data. This
situation is shown in Figure 6.22.

Resource File

Resource Fork

master pointer

resource
map

A call to DetachResource ()
invalidates the resource map GetPicture() handle I—
handle, but doesn't release

the resource or affect the
application-defined handle

Ficure 6.22 A cALL T0 DETACHRESOURCE() INVALIDATES ONLY
THE RESOURCE MAP HANDLE THAT LEADS TO THE RESOURCE.

Why would an application need to set a resource map handle to niT, yet
keep a valid application-defined handle? In most programming scenar-
ios, it doesn’t. But for the few cases when a program wants to access

333

More Mac Programming Techniques

resource data “behind the back” of the Resource Manager, this step is
necessary. One such case is in the copying of resources—something the
RsrcCopier program does. To add a resource to a resource fork, the
Toolbox routine AddResource() is called. AddResource() accepts a
handle to the data in memory that is to be added to a resource fork.
AddResource() imposes one important stipulation on the handle it
works with, however. The handle must not be a resource handle. This is
where the call to DetachResource() comes in. By setting the resource
map handle to nil, the Resource Manager no longer recognizes the
resource data in memory. Yet the application handle can still be used to
access this resource data. To the application and the Resource Manager,
this resource data is nothing more than any arbitrary bytes of data.

The call to DetachResource() seems like a sneaky way to get the call
to AddResource() to work, and it is. But it is an important part of
resource copying, and it is a step you shouldn’t omit. In the next section,
you'll see the source code—complete with a call to DetachResource()—
that performs the resource copy.

Resource Copying Code

RsrcCopier uses the following general strategy to copy the PICT resource
that is in its resource fork to the resource fork of an existing resource file:

1. Open the resource fork of the existing resource file.

2. Mark the application’s resource fork as the current resource file.
3. Obtain a handle to the resource to copy.
4

Mark the open resource file’s resource fork as the current
resource file.

(&1}

Verify that a resource of the same type and ID as the resource to
copy isn’t present.

Add the resource to the open resource file’s resource fork.
Save the change that was made to the resource fork.

8. Close the resource fork of the existing resource file.

334

Chapter 6 Resource Files

RsrcCopier uses a routine named Open_Resource_File() to open
the resource fork of the MyAddToRsrcFile resource file. This routine
relies on a call to the Toolbox function FSpOpenResFile() to open
the fork. This version of Open_Resource_File() is identical to the
version developed in this chapter’s MultipleRsrcFiles program.

After the resource fork has been opened, RsrcCopier calls a function
named Copy_Rsrc_From_File_To_File(). This function calls quite
a few Toolbox routines, many of which may be new to you. Take a look at
the function, then read the walk-through that follows.

void Copy_Rsrc_From_File_To_File(ResType res_ty