
hi .
INCLUDED

MORE MAC
PROGRAMMING
TECHNIQUES

DAN PARKS SYDOW

~--------

Contents

Introduction .. 1

What's on the Disk .. 2
What You Need .. 3
Why This Book is for You .. 3

Chapter 1: Custom Menus and the MDEF 5

The MDEF and Menu Definition Procedure 6
Setting the MDEF ID of a MENU Resource 7
The MDEF Defines the Look and Actions of a Menu 8
Creating and Using an MDEF Code Resource 11

The MDEF Source Code ... 14
The Menu Definition Procedure Entry Point 15
Taking Care of the Preliminaries 19
Handling an mSizeMsg Message ... 22

More Mac Programming Techniques

Handling an mDrawMsg Message ... 23
Handling an mChooseMsg Message ... 27
The MyMDEF Source Code Listing .. 34

Building the MDEF Code Resource ... 37
Building with Code Warrior ... 39
Building with Symantec C++ /THINK C 40

The MDEF Test Application ... 42
What the Test Application Does .. 43
The Test Application Resources .. 43
The Test Application Source Code ... 4 7

Cl1apter Summary ... 55

Chapter 2: Custom Controls and the CDEF 57

The CDEF and Control Definition Function 58
Setting the CDEF ID of a CNTL Resource 59

The CDEF Defines the Look and Actions of a Control 62
Tl1e CDEF Source Code .. 63

The Control Definition Function Entry Point 64
Taking Care of the Preliminaries .. 67
Handling a testCntl Message ... 71
Handling a drawCntl Message ... 74

The MyButtonCDEF Source Code Listing 84
Building the CDEF Code Resource .. 88

Building with Code Warrior ... 88
Building with Symantec C++/THINK C 90

The CDEF Test Application .. 92
V\'hat the Test Application Does .. 92

The Test Application Resources ... 95
The Test Application Source Code ... 102

Adding a Second Button to MyTestApp ... 108
Changing the MyTestApp Resource File 108
Building a New MyTestApp Application 110

Adding Control Variation Handling to MyButtonCDEF 112

vi

Contents

Changing the MyTestApp Resource File 112
The CDEF Source Code for Control Variations 115
Adding More Control Variations to a CDEF 123

Chapter Summary ... 125

Chapter 3: More Custom Controls: Sliders 127
The CDEF and Slider Controls .. 128

Drawing the Slider Control and Indicator 128
The Slider Resources 131

Slider Control Source Code 134
The Slider CDEF Entry Point .. 135
Taking Care of the Preliminaries .. 138
Calculating the Thumb Rectangle .. 139
Handling a testCntl Message ... 144
Calculating the Thumb Region ... 145
Handling a thumbCntl Message ... 148
Handling a posCntl Message ... 155
Handling a drawCntl Message ... 159
Building the CDEF Code Resource .. 161

The Slider Test Application .. 161
The Test Application Resources .. 162
The Test Application Source Code ... 164

Sliders and Custom Dragging ... 166
The CDEF Messages ... 166
Handling a dragCntl Message ... 168

Smoother Custom Dragging ... 17 4
Adding New PICT Resources .. 174
Taking Care of the Preliminaries 1 77
Handling a dragCntl Message ... 178
Handling a drawCntl Message ... 180
Covering the Old Thumb .. 183
Adding a Label to the Control .. 185

Chapter Summary ... 187

vii

More Mac Programming Techniques

Chapter 4: Control Panels and cdevs 189

Control Panels and the Finder ... 190
A Control Panel or an Application? .. 193

(~011 trol Panel Resources ... 194
About the MySetSound Control Panel 195
MySetSound and the Required Control Panel Resources 198
MySetSound and the Familiar Resource Types 199
MySetSound and the nrct Resource Type 204
MySetSound and the mach Resource Type 209

Control Panel Source Code .. 211
Control Panels and Private Data Storage 211
The Control Device Function Entry Point 213
Taking Care of the Preliminaries .. 215
Handling an initDev Message .. 216
Setting the Radio Buttons .. 217
Handling a hitDev Message ... 221
The MySetSound Source Code Listing 225

Building the cdev Code Resource .. 227
Building with Code Warrior ... 229
Building with Syman tee C++ /THINK C 230
Enhancing the MySetSound Control Panel 232
Creating an Icon Family .. 234
Changing the Control Panel's Display Font 236
Additional Resources ... 238
Additions to the Source Code ... 239
The MySetSoundPlus Source Code Listing 242

The Mylnsanity Control Panel ... 246
The Mylnsanity Resources ... 248
Handling a nulDev Message .. 252
Selective Execution: The mach Resource and the

macDev Message ... 254
The Mylnsanity Source Code Listing .. 257

Chapter Summary ... 260

viii

Contents

Chapter 5: Resources................................. 261
About Resources .. 262
Using Multiple DITL Resources in One Dialog Box 263

About Dynamic Dialog Box Items ... 263
The MulitpleDITLs Resources .. 266
The AppendDITL() and ShortenDITL() Routines 271
Keeping Track of DITL Items ... 273
The MultipleDITLs Source Code Listing 276
Building the MultipleDITLs Program 281

Using Custom Resource Templates .. 282
The TemplateUser Program .. 284
Creating a New Resource Type and Template 285
Using Resource Data In an Application 294
The TemplateUser Source Code Listing 298

Chapter Summary ... 300

Chapter 6: Resource Files . 303
The MultipleRsrcFiles Resources .. 307
Resource File Reference Numbers ... 308
Opening and Closing a Resource File Source Code 310
The MultipleRsrcFiles Source Code Listing 312

Dynamically Creating a New Resource File 316
The CreateRsrcFile Resources ... 318
Resource File Creation Code .. 319
The CreateRsrcFile Source Code Listing 323

Dynamically Copying a Resource to Another File 324
The RsrcCopier Resources .. 325
DetachResource() and ReleaseResource() Explained 327
Resource Copying Code .. 334
The RsrcCopier Source Code Listing 340

Working with a Preferences File ... 343
The PreflJser Resources .. 345

ix

More Mac Programming Techniques

Using a Preferences File to Set Dialog Box Items 349
Chapter Summary ... 366

Chapter 7: Files ... 369

Opening a Ne\v Document ... 370
Windows and Document Records ... 371
The NewDocument Source Code Listing 376

Opening an Existing PICT File .. 379
Reading and Displaying the Contents of a PICT File 381
The OpenPICTfile Source Code Listing 385

Saving a Document to a PICT File ... 390
Expanding the Document Record .. 392
Saving a Document with "Save As" .. 394
Saving a Document With "Save" .. 402
The SavePICTfile Source Code Listing 403

Opening an Existing TEXT File ... 409
The Text Window Document Record 411
Reading and Displaying the Contents of a TEXT File 412
The OpenTEXTfile Source Code Listing 419

Saving a Document to a TEXT File .. 423
Adding Text to a Document .. 424
Saving a TEXT Document with "Save As" 425
The Save TEXT file Source Code Listing 430

Chapter Summary ... 435

Chapter 8: Printing 437

About Printing ... 438
The Printer Resource File ... 438
The Printer Driver Resource ... 442

Printing Manager Functions ... 443
The Print Record ... 444
The MinimalPrint Source Code Listing 444
The Basic Printing Manager Functions 445

x

Contents

Running MinimalPrint .. 450
Printing Pictures .. 451

Printing a Document .. 456
Walking Through PrintPICTdoc ... 457
The PrintPICTdoc Source Code Listing 462

Multiple Windows and Printing ... 466
The PrintPICTdocll Resources ... 467
The PrintPICTdocll Interface .. 467
Handling Selections from the File Menu 470
The PrintPICTdocll Source Code Listing 4 73

Printing Dialog Item Text ... 481
The PrintDITLscreens Resources ... 483
Printing Lines of Text Using Static Text Items 486
The PrintDITLscreens Source Code Listing 493

Chapter Summary ... 500

Appendix A: Errors . 501

Syman tee and Code Resource Errors ... 501
ResEdit Crash While Working with CNTL Resources 502
Slider Control Freezes in Built Application 503
Global Variables Don't Hold Values ... 503
Strings Contain Garbage Characters .. 505
Multisegment Project Error ... 506

Metrowerks and Code Resource Errors ... 508
ResEdit Crash While Working with CNTL Resources 508
Slider Control Freezes in Built Application 510
Link Error: Illegal Single Segment 32-Bit Reference 510
Global Variables Don't Hold Values ... 511
Strings Contain Garbage Characters .. 513
Multisegment Project Error ... 514

System Crashes: Errors at Runtime .. 516
Routines Available Only in System 7 ... 516

Index ... 5::1.!J

xi

ACKNOWLEDGMENTS

Michael Sprague, Development Editor, M&T Books, for keeping things
rolling smoothly.

Stephanie Doyle, Production Editor, M&T Books, for a page layout effort
that resulted in a great looking book.

Peter Ferrante, Apple Computer, for another helpful technical edit, and
for taking the time to test the software.

Michael C. Amorose, Alamo Computer, for including his mach resource
template on this book's disk.

Jason Anderson, Beyond Midnight Software, for including his PictSize
utility on this book's disk.

Alessandro Levi Montalcini, for adding his shareware cdevEloper utility
to the book's disk.

John Holder, for including his shareware utility Resource Handler FKEY
with this book's disk.

Carole McClendon, Waterside Productions, for making this book happen.

Introduction

Chapter 1 covers the MDEF-the menu definition procedure. An MDEF
is a code resource, that is, compiled code that can be used by other appli­
cations. Because the first four chapters of this book all deal with code
resources, you '11 read a thorough description of code resources and defi­
nition procedures in general, and then menu definition procedures in
particular. This chapter has a detailed walk-through of the creation of an
MDEF that displays patterns rather than text items, and of the test appli­
cation that makes use of this MDEF.

Chapters 2 and 3 describe the CDEF, or control definition function.
This type of code resource can be used to add 3-D buttons of your own
creation to any Mac program. In Chapter 2, you'll see an example that
does just that. Chapter 3 continues the discussion of the CDEF using slid­
ers in the example programs.

Chapter 4 covers the cdev, or control device function. After building
a cdev you'll have what's more commonly known as control panel-just
like those under the Apple menu of any Mac.

1

More Mac Programming Techniques

Chapter 5 discusses resources. Here the focus is on using multiple
DITL resources in a single dialog box. This is a technique that you'll find
useful in any program-especially tutorial or educational software that
allows the user to move through screens of information as if flipping
through the pages of a book. Also covered in this chapter are custom
resource templates-the tool to creating your own resource types.

Chapter 6 describes resource files. You're already familiar with the
resource file that's a part of almost every Macintosh project, but there are
other uses for resource files as well. In this chapter, you'll see how to
write programs that use resources found in resource files, create new
resource files, and copy resources from one file to another. Finally, this
chapter includes and in-depth discussion and example of the very impor­
tant topic of preferences files.

Chapter 7 discusses files. Here you'll see how to open an existing
PICT or TEXT file, and how to save your own application documents as
new Pl CT or TEXT files. To do any of these tasks, you'll make use of the
standard dialog boxes that the Toolbox provides for selecting or naming
files.

Chapter 8 covers printing. Here you'll read about the functions that
make up the Printing Manager, and you'll see how to use them in a very
short program that prints some graphics to your own printer-regardless
of the type of printer you have connected to your Mac. After that, you'll
see how to print a PICT file (like the one created in Chapter 7) and how
to print the contents of a dialog box.

WHAT'S ON THE DISK

The disk that comes bundled with this book has a single folder on it.
Within that folder are three more folders: Metrowerks Examples J,
Symantec Examples f, and Utilities f.

The Symantec Examples f holds the source code files and project
files for the every example program that is covered in this book. If you
have the Symantec C++ or THINK C compiler, you'll find that everything

2

Introduction

is all set up for you. If you have the Symantec compiler, you'll find that
you'll save a lot of typing by using these projects.

The Metrowerks Examples f contains the source code files and pro­
ject files for each of the examples discussed in this book. All of the
Symantec examples are repeated here in CodeWarrior format-you
won't have to make any changes to the source code or project files.

The Utilities f folder contains several third-party programs and utili­
ties that compliment the topics covered in this book.

WHAT You NEED

To understand the contents of this book, you should be familiar with a
higher-level language-preferably C or C++. All source code listings are
given in C. You should also be familiar with basic Macintosh program­
ming concepts such as programming with the Toolbox.

All you need to run the example programs included on the disk is a
Macintosh compiler. Either the Metrowerks CodeWarrior compiler, the
Symantec C++ compiler, or the THINK C compiler will do. If you have
one of these compilers, you can compile all of the source code from
either a 680x0-based Macintosh or a Power Macintosh.

WHY THIS BOOK IS FOR You

Most Macintosh books cover the basics of Mac programming: the event
loop, displaying windows and dialog boxes, and the primary resource
types, such as the WIND and the DLOG. While very valuable to the new
Mac programmer, they leave an information void that the intermediate
Macintosh developer has no way of filling. To develop a real, nontrivial
Macintosh application, you need to move beyond the basics.

After reading this text and working through the numerous example
programs, you'll be able to write Macintosh programs that include any or
all of the following features:

3

More Mac Programming Techniques

• Fancy controls like buttons that have a slick, three-dimensional
look to them and sliders that have a look like the sliding volume
control on a stero receiver.

• Menus that hold more than just text items. Some applications call
for menu items that are graphical, not text based-like a graphics
program that allow the user to change patterns by choosing a new
pattern from a menu.

• Multiple resource files so that your application can remain small.
Upgrades to the application are quick and leave the resources
untouched.

• A preferences file so that the user of your application will be able
to save program options and dialog box settings.

• File-handling capabilities. To be complete, your Mac application
should allow the user to open files and save documents as new
files.

• Document printing. A truly polished application allows the user
to print the document that he or she created.

• Control panels. If your program will be small, and will affect sys­
tem-wide settings, such as the speaker volume, make it a control
panel rather than an application.

If you would like to know about any of these topics, this book is for you.
In general, if you've programmed the Mac, but aren't sure how to go
about turning your very basic program into a full-blown application that's
ready to be distributed to others, this book is for you.

klore Mac Programming Techniques covers all of the above-mentioned
topics, and several others. There's plenty of example C language source
code in the book-and on the included disk. And if you own either the
Metrowerks CodeWarrior compiler, the Symantec C++ compiler, or
TllINK C, you'll also find the disk contains project files all set up for
your immediate use.

4

Chapter

CUSTOM MENUS AND THE MDEF

The behavior of a menu is controlled by the Menu Manager. As you've
worked with Macintosh applications you've certainly noticed that most
menus behave in the same way. A click of the mouse button while the
cursor is over a menu drops that menu down and displays its menu
items. The menu items are listed in the Chicago font, and each item
occupies the same height in the menu. Macintosh menus look similar to
one another because the Menu Manager uses the same code to display
different menus. That code is stored in the System file in a resource of
type MDEF.

5

More Mac Programming Techniques

While most menus do have the same look to them, some applications
implement menus that are anything but standard; graphics programs are
a prime example. Most have a menu that, when dropped down, displays
an array of colored squares. Selecting one of the squares changes a color
setting within the graphics applications. A program that uses a nontradi­
tional menu, such as the one just described, doesn't use the system
MDEF code. Instead, that application contains its own MDEF and
instructs the Menu Manager to use its code rather than the system code.

In this chapter you'll see exactly how to create your own MDEF
resource. Once you know the basics of how to write an MDEF, the look of
the menus that your applications use will be limited only by the bounds
of your imagination.

THE MDEF AND MENU DEFINITION PROCEDURE

Most Mac programmers are familiar with the MENU resource-it defines
the text of the items that appear in a single menu. But many of these
same programmers don't realize that all Macintosh menus also make use
of an MDEF resource that defines the look of the menu when it appears
on the screen. This MDEF resource, with an ID of 0, is found in the
System file that is present on every Mac. You can verify that this resource
exists in the System file of your own Mac by opening a copy of the System
file using a resource editor such as ResEdit (see Figure I.I).

Figure I. I shows that ResEdit displays the MDEF resource using the
ResEdit hex editor. There's nothing to view graphically because the
MDEF simply consists of code-the code of a menu definition procedure.
This procedure is responsible for the drawing of all menu items in a
menu. It also provides the code to handle user actions in a menu.
Because each Mac has a copy of this resource in its System file, it is avail­
able to every program. That means that menus typically have a consistent
look and consistent operation in all Macintosh applications.

6

Chapter 1 Custom Menus and the MDEF

System
.. '").

~HOV l, i:.1
0101 I IOI
0010 100 1 ,,_E] J!;R <AO> ,,_ 0 110 10 10

CHP 01, 2 00011110
u~~ 01000000
RTt ...

mcky ltm:.J MDRW

0 1011101

~
0010 100 1 . .. EE:J
0110 1010 -·~
0001 111 0 · ·EJ 0 I 00 0000 ... ·-E::l

mean MENU mitq

MDEFs from System
!Q. Size Name

._ 0 4492 I
IE MOEF ID 0 from S_ystem
000000 600A 0000 4044 4546 ' DDDMOEF -0-
000008 0000 0000 4E56 FE9E DDDDNIJDu I 000010 48E7 1F38 266E 0014 HDD8&naa
000018 2048 A029 426E FFE4 Kt)Bn DD
000020 426E FFE2 426E FFC4 BnDDBnDf ::::1

1~m 000028 OC78 3FFF 028E 53EE Dx? DDeSD ~ 000030 FFC4 41FA 0052 302E Of A DORO .
000038 0018 426E FFC2 426E DDBnD-,Bn ~

~

FIGURE 1.1 THE SYSTEM FILE CONTAINS AN MDEF RESOURCE WITH AN ID OF 0.

Setting the MDEF ID of a MENU Resource

When you define a MENU resource in a project's resource fil e, you give
that resource a menu ID, and you specify which MDEF resource that
menu should use. If you're like most Mac programmers, you might not
be aware of this fact. That's because your resource editor by default speci­
fies that each new MENU uses the system MDEF with ID 0. You can, how­
ever, change this specification.

7

More Mac Programming Techniques

Figure 1.2 shows a typical MENU resource in ResEdit. When this
resource is on the screen, the ResEdit menu bar will look like the one
pictured in Figure 1.3. If you select the Edit Menu & MDEF ID me nu
item from the MENU menu, you'll see the dialog box shown in Figure
1.3. Here you can either leave the MDEF ID at 0, telling the Menu
Manager to use the system menu definition procedure, or you can set the
ID to a different MDEF resource, thereby telling the Menu Manager to
use a different menu definition procedure.

E!C MENU ID 128 from MenuTest.11' .rsrc

11111_ Entire Menu: ~ Enabled

New ... ~
......................... OM000000 0 .. 0 0000"0-0HOOOO-OOOOOOOOOOOOOOOOOO••+oo+0+0+0++0000 Title: @I File I

Quit 3€0
0 s (Apple menu)

Color

rn1e: 1•1
I tern TeHt Default : l•I

~ Menu Background: D

FIGURE 1.2 THE MENU RESOURCE THAT DEFINES A TYPICAL MENU.

How many other menu definition procedures are there to choose from?
That depends on how many MDEF resources you've created. You'll cre­
ate one or more menu definition procedures and save each as an MDEF
resource. Then you' ll copy any or all of your own MDEFs to the resource
file for the project your working on. Any MDEF that is in the project's
resource file is available for use by that project.

The MDEF Defines the Look and Actions of a Menu

An MDEF controls how a menu looks and acts. Figure 1.4 shows the look
ofa typical Macintosh menu, as defined by the system's MDEF resource.

8

Chapter 1 Custom Menus and the MDEF

s File Edit Resource Window

Please enter the Menu ID and
the resource ID of the MDEF to
be used below.

Menu ID: I 120 I
MDEF ID: 0 J

~ i4~ ~ ,
(Cancel) H~ ~ OK

!.~ ;;

w~.
~

A new MENU automatically uses the system's
menu definition procedure-MDEF 0

Remolle I con
Remoue Colors

Use Color Picker

FIGURE 1.3 EACH MENU RESOURCE SPECIFIES AN MDEF RESOURCE

THAT WILL CONTROL THAT MENU.

C:an't undo ~z

Cut 8€H
Copy sec
Paste 3€U
Select Hll 8€A

FIGURE 1.4 A TYPICAL MENU, AS CONTROLLED BY THE SYSTEM MDEF.

Occasionally, a Macintosh program will require a menu with a completely
different look than the one supplied by the system MDEF resource.
Figure 1.5 gives a couple of examples. In cases such as those shown in
Figure 1.5, the application will use its own MDEF resources rather than
the system MDEF.

9

More Mac Programming Techniques

Colors

•
'it:•

.d•••tt :. i~i

• ••••

·············~~ -~~~ ••••••••••••••••••••

Patterns

FIGURE 1.5 NONSTANDARD MENUS CONTROLLED BY MDEFs

OTHER THAN THE SYSTEM MDEF.

Programmer-defined MDEFs aren 't used only to create menus that dis­
play graphics. A single MDEF can be created to change the overall look
of each of an application's menus. In Figure 1.6 you see how using an
MDEF resource o ther than the system's MDEF 0 causes an application's
Edit menu to take on a whole new look.

10

Can't Undo) X Z

Cut

Copy

Paste

Select All X A]

FIGURE 1.6 AN MDEF CAN BE USED TO CHANGE THE LOOK OF A MENU

THAT DISPLAYS ITEMS AS TEXT.

Chapter 1 Custom Menus and the MDEF

In this chapter you'll learn how to create your own MDEF resource.
You'll also develop a simple application that serves but a single pur­
pose-to test your new MDEF.

Once you specify that a MENU resource is to be controlled by your
own MDEF resource, the system MDEF will not come into play-for that
one menu. So while your primary purpose in creating an MDEF is usually
to create a more graphical menu, you'll also have to give your menu defi­
nition procedure the ability to handle the routine tasks that the system
menu definition procedure normally handles. These tasks include

• Calculating the menu's boundary (for display purposes)

• Displaying the menu items on the screen when the menu is
clicked on

• Handling proper highlighting of menu items as the user moves
the cursor over items

• Noting which menu item is selected by the user

Creating and Using an MDEF Code Resource

Your menu definition procedure will start out as source code. You'll write
code that defines the look of a menu and code to handle all of the previ­
ous tasks-the tasks normally handled by the system menu definition
procedure. Then, instead of turning the source code into an application,
you'll use your development environment to compile the code into a code
resource. A code resource, as its name implies, is simply compiled code
stored in a resource.

When you tell your development environment to turn code into a
code resource, you'll be given the opportunity to save that resource to a
resource file. Your development environment will create a new resource
file, compile your menu definition source code, and save the compiled
code as an MDEF resource in the new resource file. Figure 1.7 shows a
menu definition procedure I've created and saved to a resource file

11

More Mac Programming Techniques

named MyMDEF.rsrc. Because the resource is compiled code, opening it
in a resource editor will result in lhe display of meaningless hex charac­
ters. You'll notice in the figure that instead of giving the MDEF an ID of
0, which would conflict with the syslem's own me nu definition proce­
dure , I've g iven my MDEF a different ID. In this example I've arbilrarily
gin:n my MDEF an ID of 1000.

MyMDH.rsrc
.----

iaH OU 1, 1\1
.):;R <AO>
CHP 01, 2
~M[,a
Rlt

MDEF

1.-1 MOHS from MyMDH.rsrc
~ Size Name

1000 884 l
-IB MDEF ID 1 000 from M__y_MDEF .rsrc

0004EO 6002 3001 4E75 322E mDODNu2.
0004E8 FFFC OC69 001A OOOA DDDiDDDD
0004FO 6604 5247 6002 DE41 fDRG ' DOA
0004F8 4A69 0004 6606 4A29 J i DDfDJ)
000500 0001 6704 DE41 DE41 DDgDDADA
000508 5047 72FF 2F01 7200 PGr D/DrD
000510 1229 0003 6708 3F0 1 D >DDgD? D
0005 18 A888 426F 0002 3029 ii>aBo DDO)
000520 OOOE 6806 6100 06EO DDk DaDDD
000528 4257 4267 2FOC A88C BWBg/Dii>c5

FIGURE 1. 7 LIKE THE SYSTEM MDEF, YOUR MDEF WILL BE

COMPILED CODE SAVED AS A RESOURCE.

I
!~l!i

I
~
Iii

Once an MDEF is crealed and saved to a resource file , il can be used with
any menu in any application. Fi rst, you ' ll open the resource fil e that
h o lds the MDEF and copy lhe MDEF r esource. Nexl, you ' ll use lhe
resource editor to open the resource fork of the application that will be
using the MDEF. Then you' ll paste the MDEF resource into that applica­
tion . I've shown an example of this in Figure 1.8, where I'm using my
\ fD EF wilh ID 1000 and an applica tion named MyTestApp that I've
already developed .

12

Chapter 1 Custom Menus and the MDEF

j"OU 1,Al
JH<AO>
C.MP Dl, 2
IN!:: j ...

MDEF CODE

~ -
MENU

Copy an 'MDEF' from its resource file and
paste it into the resource fork of an application

§0

j"OV l,Al
.J~R <AO)

jHOU 11111
J~R <•O>

CH' 0 1, ::l CMP 01, 2
UC j HICj

"" ...
MDEF CODE

H

MDEF

Then the 'MENU' resources in the
application will have access to the 'MDEF'

0 101 11 01 0101 110 1
... 01001 0010 IOOI

1BT 0 1101010 01101010
•••• '110 0001 1110

•••••••• 01000000 .
DATA OREL MBAR

Cl
0101 I I OI e 00 10 1001
0 11 01010
0001 111 0 .
01000000

S IZE WIND ZERO

MyTestApp

0 10 1 I I O I 0101 I IOI

1f
0010 1001 00 101001
0 110 1010 0 11010 10
000 1I110 00011110
0 1000000 01000000 .
DATA OREL MBAR

~ e CJ .
-

MENU SIZE WIND <>
f!j

FIGURE 1.8 FOR AN APPLICATION TO USE AN MDEF, THAT MDEF MUST BE

PASTED INTO THE APPLICATION'S PROJECT FILE.

Once an application contains an MDEF resource, any MENU resources
that have been designated to be users of that MDEF will have access to it.
Figure 1.9 shows an application project's resource file with two MENU
resources in it. One of them- MENU 128, the Edit menu-will use the
standard system MDEF. The other MENU-MENU 129, a menu titled
Fill-will be using my own MDEF.

When a MENU will be using a custom menu definition procedure- as
my Fill menu is doing-you generally won't add any menu items to the
MENU. Instead, the MDEF itself will be responsible for adding the individ­
ual menu items. Figure 1.10 shows what both the Edit and Fill menus might
look like when controlled by their respective menu definition procedures.

13

More Mac Programming Techniques

~
I say "generally" because there are times when you'll add
menu Items. For an MDEF that displays graphical Items, like
patterns, you won't add the items In the MENU resource. If
your MDEF doesn't use graphical items, however, you will
add the items in the MENU resource. An example of this Is
shown back In Figure 1.6. The MDEF that controls that
menu changes the look of the menu and the text that the
items are displayed in, but It stlll uses text for each Item.

N 0 T E

-m MENUs from M ·restRpp·.n.rsrc

Please enter the Menu ID and
the resource ID of the MDEF to
be used below.

Menu ID:j _ 1_20 __

MDEF ID: lo __ _
(Cancel) ((OK JJ

Please enter the Menu ID and
the resource ID of the MDEF to
be used below.

Menu ID: j_1_29 ___

MDEF ID: 11000

(Cancel) ([OK ll

FIGURE 1.9 DIFFERENT MENU RESOURCES CAN USE DIFFERENT MDEF RESOURCES.

THE MDEF SOURCE CODE

In this section you'll see the source code for an example MDEF code
resource. The MyMDEF code resource displays a menu that holds five

14

Chapter 1 Custom Menus and the MDEF

menu items. Rather than using text for the menu items, each menu item
is a rectangle with a differen t pattern in it. Figure l. ll shows what this
menu looks like. Both the MyMDEF source code file and the MyMDEF
project file appear on the included disk. I'll in troduce the source code
for MyMDEF.c piecemeal, explaining each part of it as it is introduced.
The entire listing appears at the end of this section.

Undo 3€2

Cut 3€H
Copy 3€C
Paste 3€U
Clear

FIGURE 1.10 BOTH STANDARD AND NONSTANDARD MENUS MAY APPEAR WITHIN

THE SAME MENU BAR OF ONE APPLICATION.

I: [: [: [: [: [: [: [: [: [: [: [~ [I
1::1

FIGURE 1.11 THE MENU THAT IS DISPLAYED BY THE MYMDEF MDEF CODE RESOURCE.

The Menu Definition Procedure Entry Point

When a user clicks the mouse button while the cursor is on a menu in a
menu bar, the Menu Manager invokes the code in the system's menu

15

More Mac Programming Techniques

definition procedure (MDEF = 0). That procedure is then responsible
for drawing the text that makes up each menu item. It is also responsi­
ble f<.>r handling actions in the dropped menu. If the MENU resource
that defines a particular menu specifies an MDEF other than the system
MDEF, the Menu Manager will instead use the code within that other
MDEF.

When the Menu Manager uses your menu definition procedure, it
will first look for a function named main () in the MDEF code, which
serves as the Menu Manager's entry point into your MDEF code. This func­
tion named main () is a callback routine. A callback routine is a program­
mer-defined function that gets called by the Toolbox. Since a Toolbox
function (not one of your own functions) will be calling your menu defi­
nition procedure's ma; n () function, the declaration of your ma; n ()
routine must adhere to a strict calling convention.

The Toolbox expects callback routines to follow Pascal calling con­
ventions, not C conventions. So your declaration of main () must start
with the pascal keyword. That tells the compiler to load the function
parameters on the stack in the proper sequence. You, the programmer,
do not have to be concerned with the differences between Pascal and C
calling conventions.

For the MDEF main () routine, the Menu Manager expects no
return value. That means you'll follow the pas ca 1 keyword with the
Void keyword, and then the function name. While some compiler envi­
ronments allow the MDEF main () routine to have a variable number of
parameters, traditionally the main () routine has five parameters. While
you can give these parameters the names you'd like, their data types
should be as shown in this snippet from the main () declaration of this
chapter's MyMDEF example:

pascal void main(short
MenuHandle
Re ct
Point
short

message,
the_menu.

*menu_rect_ptr.
hit_point.

*which_item_ptr

\Vhen the Menu Manager calls the main () function, it will place values
in the function parameters. That will allow main () routine to take care

16

Chapter 1 Custom Menus and the MDEF

of whatever menu-related task needs handling. And how will the menu
definition procedure know what type of task the Menu Manager wants
handled? The very first parameter to main () will hold that information.
The message parameter will hold one of four constants, each of which
represents a Menu Manager request for the handling of a different task :

mDrawMsg
mChooseMsg
mSizeMsg
mPopUpMsg

Draw the menu on the screen (drop the menu)

Tell which item was selected, and highlight it

Calculate the dimensions of the menu

Calculate the rectangle of the pop-up menu box

An understanding of this first parameter to main () gives you enough
information to follow just what ma i n () does:

pascal void main(short
MenuHandle
Re ct

message,
the_menu.

*menu_rect_ptr.
hit_poi nt.

*which_item_ptr
{

Point
short

switch (message)
{

}

case mSizeMsg:
II determine the size of the menu
break:

case mDrawMsg:
II draw the menu on the screen
break:

case mChooseMsg:
II determine which item was selected. highlight it
break:

case mPopUpMsg:
II determine the size of the pop-up box
break:

As the user moves the cursor over a menu that uses the MyMDEF menu
definition, the Menu Manager will invoke this MDEF code repeatedly. It
will call it once, passing an mSi zeMsg message, to determine the size of

17

More Mac Programming Techniques

the nonstandard menu. Then it will call it again, passing an mDrawMsg
message, to draw the menu. And as the user moves the cursor over the
items in the menu, the Menu Manager will call the code several times,
each time passing an mChooseMsg message.

The message parameter tells the ma i n () function which task
should be handled. The remaining four parameters provide information
the menu definition procedure will need in order to handle that task.

The second parameter, the_menu, is a handle to the menu record of
the clicked-on menu. This handle will be used to set some of the fields of
the menu record.

The third parameter, menu_rect_ptr, is a pointer to the rectangle
that is the boundary of the clicked-on menu. If the value of message is
either mSi zeMsg or mPopUpMsg, menu_rect_ptr won't point to a
valid rectangle. Instead, it will be your job to calculate the size of the menu
rectangle. If the value of message is either mDrawMsg or mChooseMsg,
this pointer will point to a valid rectangle. Where do these dimensions
come from? A call to ma i n () with either of these messages will be preced­
ed by an earlier call to main ()with either a message value of mSi zeMsg
or mPopUpMsg. That call will set the menu boundary and make the Menu
Manager aware of the size.

The fourth parameter to main(), hit_point, is the point in the
menu at which the cursor is currently located. The menu definition proce­
dure needs this information when the value of message is mChooseMsg.
The menu definition code will respond to a message of this type by high­
lighting and unhighlighting menu items as the user drags the cursor over
the menu. The hi t_poi nt will be used to determine which item the cur­
sor is currently over. Again, it should be obvious that as the user moves the
cursor over a dropped menu, the menu definition procedure will be
repeatedly called by the Menu Manager.

The last parameter to main (),which_ i tem_ptr, is a pointer to the last
i tern selected from the menu. This parameter will be used when message
has a value of mChooseMsg. As the user drags the cursor over the dropped
menu, the menu definition code will highlight an item that the cursor covers.
But at that time it must also unhighlight whichever menu item was previously
highlighted. The wh i ch_ i tem_pt r will be used for that purpose.

18

Chapter 1 Custom Menus and the MDEF

Typically, main () is used as a branching point. Depending on the
value of the message parameter, ma i n () will call one of the programmer­
defined routines to handle the task at hand. Here's the main () routine
for MyMDEF, which handles three of the four possible message values:

pascal void main(short
MenuHandle
Re ct

message.
the_menu.

*menu_rect_ptr.
hit_point.

*which_item_ptr
(

}

Point
short

switch (message)
{

}

case mSizeMsg:
Do_My_Size_Of_Menu(the_menu):
break:

case mDrawMsg:
Do_My_Draw_Menu(the_menu. menu_rect_ptr >:
break:

case mChooseMsg:
Do_My_Choose_Item(menu_rect_ptr. hit_point. which_item_ptr >:
break:

r21
In this chapter I'll be working with menus that drop down
from the menu bar-not with pop-up menus. So I'll omit any
mPopUpMsg code from the remainder of this discussion. Pop­
up menus are a subject worthy of quite a few pages of expla­
nation. For more information on creating an MDEF that uses
a pop-up menu, refer to Inside Macintosh: Macintosh Toolbox
Essentials.

N 0 T E

Taking Care of the Preliminaries

While a menu definition procedure isn't an application, it is code, and it
does contain functions. So, like application code, you'll need to use func­
tion prototypes to give the compiler's preprocessor information about

19

More Mac Programming Techniques

each function you define. The MyMDEF menu definition procedure will
consist of four functions. The first three each handle one message type,
and the fourth is a simple utility routine that will be used to invert the
highlighting of a menu item.

void Do_My_Size_Of_Menu(MenuHandle):
void Oo_My_Draw_Menu(MenuHandle, Rect *):
void Do_My_Choose_ltemC Rect *, Point, short*):
void Invert_My_Item(short, Rect *);

To eliminate the scattering of numbers throughout my source code, I'll
use 1/defi ne directives to establish a half dozen constants. Figure 1.12
shows just what each of the first four constants refers to. In that figure
I've taken the liberty of changing the scaling of the menu items a little
so that it becomes clear just what some of these pixel dimensions are
referencing.

//define
//define
//define
//define
I/define
//define

r21
N 0 T E

TOP_BOT_SPACE 2
SIDE_SPACE 5
MENU_PAT_WIDTH 100
MENU_PAT_HEIGHT 25
NUM_MENU_ITEMS 5
SYS_PAT_LIST_OFFSET 20

While at this point It may seem llke overkill to be so con­
cerned with these menu dimensions, you'll soon find out that
they are Important. When your menu definition procedure
receives an mChooseMsg message, It wlll be your responslbll­
ity to highlight and unhlghllght menu Items. You can't accu­
rately do that without knowing these dimensions.

The System file of every Macintosh contains a PAT# resource with an
ID of 0. This system pattern list holds 38 patterns that are readily avail­
able for your program's needs. Figure 1.13 shows all 38 of the system
patterns. My example MDEF will use five of these patterns-one for
each of the five menu items. An index is used to access any pattern
from the list. My menu items will use patterns 21 through 25, so I
defined a constant named SYS_PAT_LIST_OFFSET with a value of
20. Later, you'll see how this constant is used when the menu is drawn
to the screen.

20

Chapter 1 Custom Menus and the MDEF

MENU_PAT_WIDTH

-....--------..-: ·-··· :::::>
v v

SIDE_SPACE SIDE_SPACE

TOP_BOT_SPACE

TOP_BOT_SPACE
TOP_BOT_SPACE

MENU_PAT_HEIGHT

TOP_ BOT_SPACE

FIGURE 1.12 CONSTANTS DEANE THE DIMENSIONS OF THE MDEF MENU.

19

w1111111Jllll~{$9:;/lfflif4 · l'~'HNF'N'&li88

SYS_PAT_LIST_OFFSET

FIGURE 1.13 MvMDEF WILL USE AVE OF THE 38 PAnERNS

IN THE SYSTEM'S PATTERN UST.

21

More Mac Programming Techniques

T I P

A menu definition procedure can have functions, function
prototypes, and tide f i n e directives, but It can't contain
global variables. Since the code for an MDEF is seldom very
complex or very lengthy, this shouldn't be a hindrance.

Handling an mSizeMsg Message

When the main () routine of a menu definition procedure receives an
mSi zeMsg, it means the Menu Manager needs to know the size of the
menu that is defined in the MDEF. For a standard menu, the Menu
Manager can calculate this information on its own. That's because it can
use the size of the Chicago font-the standard menu font-to determine
the height and width of each menu item in a standard menu. A custom
menu, however, may consist of patterns, graphics, or different sizes of
fonts, so the Menu Manager needs some help.

·when main() receives an mSizeMsg, call the MDEF function that
calculates the menu's size. The menu's size is the rectangle that it occu­
pies when it is dropped down. In my example, the width is the width of
one pattern that will be drawn in the menu, plus the small buffer area I'll
add to either side of the pattern:

MENU_PAT_WIDTH + (2 * SIDE_SPACE)

Ycm can refer back to Figure 1.12 to see how the constants in the previous
equation, and the following equation, are defined. The height of a single
menu item is the height of one of the patterns, plus the buffer area that
appears above and below the pattern. That means the height of the entire
menu is the number of menu items times the height of one item:

NUM_MENU_ITEMS * CMENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE))

As the values are calculated they should be stored in the menu W i d th
and menuHeight fields of the menu's menu record. Recall that the sec­
ond parameter to main () is a handle to the menu. The Menu Manager
is responsible for obtaining a handle to the menu and passing it to your
main () function. You are responsible for setting the two menu size

22

Chapter 1 Custom Menus and the MDEF

fields in this menu record. To do this, dereference the handle twice
using the * operator. Here is the complete Do_My _Si ze_Of _Menu ()
routine for the MyMDEF example:

void Do_My_Size_Of_Menu(MenuHandle the_menu
{

}

(**the_menu).menuWidth = MENU_PAT_WIDTH + (2 * SIDE_SPACE):
(**the_menu).menuHeight - NUM_MENU_ITEMS * CMENU_PAT_HEIGHT +

(2 * TOP_BOT_SPACE)):

Once the menuWi dth and menuHei ght fields of the menu record are
set, the Menu Manager knows the size of the menu. That information is
necessary for the process of drawing the menu to the screen-the topic
I'll cover next.

Handling an mDrawMsg Message

The Menu Manager can draw a standard menu by simply using the
Chicago font to draw the text of each menu item. For a standard
menu, the Menu Manager takes the menu item information that has
been defined in a MENU resource and stores it in the menu's menu
record. For a custom menu, things are not that simple. The Menu
Manager doesn't know what each menu item in a custom menu looks
like, so it counts on the custom menu's menu definition procedure to
supply that information in a draw function. To access this information,
the Menu Manager will send main() an mDrawMsg message. That
message should be handled by a routine that does the actual drawing.
I've named the MyMDEF version of this routine Do_My _Draw_
Menu().

To draw the menu items you '11 set up the location of the first item
and then enter a loop. The body of the loop should draw an item and
then change the location to the area that will hold the next menu item.
For the MyMDEF example, the loop will draw each of the five pattern­
filled rectangles that make up the menu items. The following snippet
shows how the MyMDEF example determines the location of the pat­
terned rectangle that will serve as the first menu item:

23

More Mac Programming Techniques

Rect the_rect:

the_rect.top = menu_rect_ptr->top + TOP_BOT_SPACE;
the_rect. left = menu_rect_ptr->left + SIDE_SPACE;
the_rect.bottom - the_rect.top + MENU_PAT_HEIGHT;
the_rect.right = the_rect.left + MENU_PAT_WIDTH;

Recall that men u_rect_pt r is a pointer to the rectangle that is the
boundary of the clicked-on menu. This pointer doesn't always point to a
valid rectangle. The Menu Manager is able to supply a valid rectangle
only after it sends the menu definition procedure an mS i zeMsg mes­
sage. Before a menu definition procedure ever receives an mDrawMsg,
you can safely assume that an mSi zeMsg has already been handled and
that the menu_rect_pt r now points to a valid rectangle.

The rectangle that menu_rect_ptr points to holds the pixel bound­
ary of the entire menu and holds these numbers as global coordinates.
Since the menu definition procedure will be drawing to the screen-not a
window-global coordinates are desired. The top of the first menu item
rectangle will be at the coordinate held in menu_rect_ptr. top, plus
the small pixel buffer value TOP _BOT _SPACE:

the_rect.top = menu_rect_ptr->top + TOP_BOT_SPACE;

Figure L .14 shows how this value is obtained. The bottom of the first pat­
terned rectangle is then simply the top plus the height of the menu item
rectangle:

the_rect.bottom - the_rect.top + MENU_PAT_HEIGHT;

The coordinates of the left and right sides of the first patterned rectangle
arc determined in the same manner as the coordinates for the top and
bottom:

the __ rect.left = menu_rect_ptr->left + SIDE_SPACE:
the_rect.right - the_rect.left + MENU_PAT_WIDTH:

With the coordinates of the first patterned rectangle established, it's time
to draw that rectangle. That's done in loop:

24

Chapter 1 Custom Menus and the MDEF

short
Pattern
short

i ;
the_pat;
item_height;

for (i = l; i <= NUM_MENU_ITEMS; i++)
{

}

GetlndPattern(&the_pat, sysPatlistID.
SYS_PAT_LIST_OFFSET +);

FillRect(&the_rect. &the_pat);
FrameRect(&the_rect);

the_rect.top += item_height;
the_rect.bottom ~ the_rect.top + MENU_PAT_HEIGHT;

rnenu_rect_ptr. top •··•·

the_rect.top = rnenu_rect_ptr.top + TOP_BOT_SPACE

FIGURE 1.14 THE TOP OF THE FIRST MENU ITEM RECTANGLE IS THE SUM OF THE TOP

COORDINATE OF THE MENU AND THE PIXEL BUFFER.

The loop begins with a call to Get Ind Pattern () . The first parameter,
the_pat, will be assigned a pattern by the Toolbox when the function has
completed. The second parameter specifies the ID of the PAT# pattern list
resource to use. I am using the system PAT# pattern list discussed earlier, so

25

More Mac Programming Techniques

I'll pass in the constant sysPatL i st ID here. Finally, GetindPattern()
needs a value that serves as an index into the pattern list There are 38 pat­
terns in the system list, and MyMDEF will be using patterns 21 through 25 for
the five menu items. Setting this last parameter to SYS_PAT_LIST_OFFSET
+ i results in the proper pattern being used in each iteration through the
loop.

Drawing the patterned rectangle to the menu requires just two Toolbox
calls. A call to Fi 11 Rect () draws the rectangle with the system pattern, and
a call to FrameRect () provides a thin black frame around the rectangle.

The loop ends by incrementing the top and bottom coordinates of
the_ rec t in preparation for the drawing of the next menu item. Notice
that the top coordinate must be incremented by the height of the entire
menu item, not by the height of a patterned rectangle. The following
line of code shows how i tem_hei ght is calculated, and Figure 1.15
points out the difference between the height of a menu item and the
height of a patterned rectangle.

item_height - MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

26

the_rect.top
for the second
menu item

Menu
item
height

Patterned
rectangle
height

FIGURE 1.15 THE HEIGHT OF A MENU REM DIFFERS FROM THE HEIGHT OF A

PATTERNED RECTANGLE WITHIN AN nEM.

Chapter 1 Custom Menus and the MDEF

Every time the user clicks the mouse while the cursor is in the menu bar
on the title of the menu that uses the MyMDEF code, main() will be
called twice. The first call will send main () an mS i zeMs g message to get
the boundaries of the entire menu. The second call will send ma i n () an
mDrawMsg message to draw the entire menu, hence giving the appear­
ance of the menu dropping down. Here's a look at the entire
Do_My_Draw_Menu() function from the MyMDEF example:

void Do_My_Draw_MenuC MenuHandle the_menu, Rect *menu_rect_ptr
{

}

short
Re ct
Pattern
short

i :
the_rect:
the_pat:
item_height:

item_height ~ MENU_PAT_HEIGHT + C 2 * TOP_BOT_SPACE);

the_rect.top - menu_rect_ptr->top + TOP_BOT_SPACE:
the_rect.left - menu_rect_ptr->left + SIDE_SPACE:
the_rect.bottom - the_rect.top + MENU_PAT_HEIGHT:
the_rect.right = the_rect.left + MENU_PAT_WIDTH:

for (i = 1: i <= NUM_MENU_ITEMS: i++)
{

}

GetindPatternC &the_pat, sysPatlistID,
SYS_PAT_LIST_OFFSET + i):

FillRect(&the_rect, &the_pat);
FrameRect(&the_rect):

the_rect.top += item_height:
the_rect.bottom = the_rect.top + MENU_PAT_HEIGHT:

Handling an mChooseMsg Message

As the user drags the cursor over the items of the dropped menu, the
Menu Manager will send the menu definition procedure mChooseMsg
messages. In response to an mChooseMsg message, the main () function
should invoke a routine that handles the highlighting and unhighlighting
of items in the menu. This function, named Do_My_Choose_Item() in

27

More Mac Programming Techniques

the MyMDEF example, is responsible for nothing more than inverting
menu items as the cursor sweeps across them.

There are two primary scenarios that Do_My_Choose_Item() will
look for and handle. The first is the case where the cursor has moved
from one point in the dropped menu to another point in the menu. The
second is the case where the· cursor has moved fro m one point in the
dropped menu to a point outside the menu. Keep in mind that when the
user drags the mouse such that the cursor moves out of a dropped menu,
that menu does not d isappear. Instead, the menu stays dropped, and
whatever item was previously highligh ted becomes unhighlighted. Figure
1. 16 shows this situation .

Dragging the mouse
off of an item ...

.. . causes that item
to be unhighlighted

FIGURE 1.16 DRAGGING THE CURSOR OFF A DROPPED MENU UNHIGHUGHTS

THE PREVIOUSLY SELECTED ITEM.

T I P

While you may consider the display of a nonstandard menu
the primary purpose of your menu definition procedure,
another Important task of the menu definition procedure Is
to mimic the normal behavior of standard menus. That
means properly responding to the movement of the mouse
over one of your menus.

28

Chapter 1 Custom Menus and the MDEF

I will first examine the case of the cursor moving from one point to
another within the menu. To handle this scenario, Do_My_Choose_
I tern () will require three parameters that the Menu Manager passes to
main(). With that in mind, here's the declaration for Do_My_Choose_
Item():

void Do_My_Choose_Item(Rect
Point
short

*menu_rect_ptr.
hit_point.

*which_item_ptr

Do_My_Choose_Item() will use three local variables, which are as fol­
lows. The first, se 1 ected_ i tern, will be used to hold the item number
of the item the cursor is currently over. The o 1 d_ i tern variable will be
used to hold the item number of whatever item the cursor was previously
over. The last variable, i tem_hei ght, will be used to hold the height of
a single menu item.

short selected_item;
short old_item;
short item_height:

Before determining where the cursor is currently located, I'll take care of
a couple of preliminary assignments. First, i tem_hei ght is assigned the
pixel height of a single menu item:

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE):

bl]
N 0 T E

You may have noticed that this Is the second routine that
declares and calculates i tem_hei ght. This Is necessary
because the MDEF can't have global variables. An applica­
tion finds its global variables by looking to the value held in
the AS register of the CPU. Because a code resource Isn't
part of the application that Is currently running, it can't
make the assumption that the AS register Is set up with the
proper value at the time a call Is made to the code in the
code resource. This Inability to reference the AS world Is
the reason a code resource can't contain traditional global
variables. It is possible for a code resource to set up the A4

29

More Mac Programming Techniques

register and then make use of variables global to the code
resource, but that's usually not necessary.

Next, I'll set the old_ i tern variable to the number of the menu item that was
previously highlighted. The whi ch_i tem_ptr parameter, originally passed
in to ma i n () , points to a value the represents this item. If no item was previ­
ously highlighted, the value that which_ i tem_pt r points to will be 0.

old~item = *which_item_ptr:

Now it's time to handle the scenario of the cursor that has been moved
from one point to another within the menu. Here is the snippet that
takes care of this case:

if < PtlnRect(hit_point. menu_rect_ptr))
(

}

selected_item = ((hit_point.v - menu_rect_ptr->top)/item_height)+l:

if < < old_item > O) && (old_item != selected_item))
Invert_My_Item(old_item. menu_rect_ptr):

if < selected_item !- old_item)
{

Invert_My_Item(selected_item. menu_rect_ptr >:
*which_item_ptr = selected_item:

Pt In Re ct () is a Toolbox function that accepts two parameters and
returns a Boolean value. If the Point parameter hi t_po int lies in the
Rect pointed to by the menu_rect_ptr, PtinRect() returns a value
of true. If the point lies outside the Rect parameter, PtlnRect()
returns false. If the result is in fact true, it's time to handle the high­
lighting of the menu items.

The first order of business is to determine the value of s el e ct e d
i tern-the item that the cursor is currently over. The following line of
code takes care of that task:

selected_item ~ ((hit_point.v - menu_rect_ptr->top)/item_height)+l:

30

Chapter 1 Custom Menus and the Mll>EF

Figure 1.17 substitutes some numerical values for the variables to show
just what's taking place in this assignment statement. In the figure it's
assumed that the mChooseMsg message was sent when the cursor was 55
pixels down from the top of the screen. As you study the figure keep in
mind that both rnenu_rect_pt r- >top and hi t_poi nt. v are in glob­
al coordinates. Also take note of the fact that because the short variable
selected_ i tern is an integral variable type-not a floating-point
type-the fractional portion of the division result will always be dropped.

#define
#define

TOP_BOT_SPACE
MENU_PAT_HEIGHT

2
25

~e~u_rect_ptr->top ··•··· ! : : '. !I
~is~_point. v ,l~11~]lllll]~llllltI]j~~l~l~lll

selected_item = 2

item_height
is29

FIGURE 1.17 DETERMINING IN WHICH MENU ITEM THE CURSOR IS CURRENTLY LOCATED.

With the value of se 1 ected_ i tern determined, the function checks to
see if the previously highlighted menu should be inverted back to its
unhighlighted state.

This will happen only if two conditions are true. First, an item must
previously have been selected (o 1 d_ i tern > 0). Second, the newly select-

31

More Mac Programming Techniques

ed item must be different from the previously selected item. If the cursor
has moved from one point in an item to another point in that same item,
the \'alues of s e 1 ected i tern and o 1 d i tern will be the same and
there is no need to change the highlighting. If both of these conditions
apply, the utility routine Invert_My_Item() is called to change the
state of the previously highlighted item:

if ((old_item > O) && (old_item != selected_item))
Invert_My_ItemC old_item, menu_rect_ptr):

Next, a check is made to see if the currently selected menu item should
be inverted. If this current item is different than the previous item, ·it
should be inverted, or selected. If the new item does indeed get high­
lighted, the which_ i tem_ptr variable is set to point to this item. The
Menu Manager keeps track of this variable, so setting its value to the new
menu item number lets the Menu Manager in on the change. The next
time the Menu Manager calls the main () routine of the menu defini­
tion procedure, it will pass in this changed value.

if (selected_item != old_item)
{

Invert_My_Item(selected_item. menu_rect_ptr);
*which_item_ptr = selected_item:

Tog-ether, the previous two if statements have the effect of unhighlighting
the old item and highlighting the new item, if applicable. Next,
Do_My_Choose_Item() must handle the case of a cursor that moves
out of the menu. That scenario is handled in an else-if section:

if (PtinRectC hit_point. menu_rect_ptr))
{

II handle highlighting when cursor is in the menu
}
else if (old_item > 0)
{

32

Invert_My_Item(old_item. menu_rect_ptr);
*which_item_ptr = 0:

Chapter 1 Custom Menus and the MDEF

If the value of hi t_po int doesn't lie within the boundaries of the
menu, the code reaches the el s e - i f statement. There, a check is made
to see if a menu item was previously selected (old_ i tern > 0). If it was
selected, that item should be unhighlighted to reflect the fact that the
cursor is no longer over that item. A call to Invert_My_Item() takes
care of that. Again, the Menu Manager must be notified that the item
number of the selected item has changed. This time no item is currently
selected, so whi ch_i tem_ptr is set to point to a value ofO.

Now, here is a look at the completed version of the Do_My _
Choose_Item() routine:

void Do_My_Choose_Item(Rect
Point
short

*menu_rect_ptr.
hit_point.

*which_item_ptr
{

}

short selected_item:
short old_item:
short item_height:

item_height = MENU_PAT_HEIGHT + C 2 * TOP_BOT_SPACE);

old_item = *which_item_ptr:

if C PtinRectC hit_point, menu_rect_ptr))
{

}

selected_item = ((hit_point.v - menu_rect_ptr->top)/
item_height)+l:

if ((old_item > 0) && (old_item != selected_item))
Invert_My_ItemC old_item, menu_rect_ptr):

if (selected_item != old_item)
{

Invert_My_Item(selected_item. menu_rect_ptr):
*which_item_ptr = selected_item:

else if (old_item > O)
{

}

Invert_My_Item(old_item, menu_rect_ptr);
*which_item_ptr = 0:

33

More Mac Programming Techniques

Do_My_Choose_Item() has three conditions in which a menu item
must be inverted. Rather than repeat the code that inverts a menu item, I
have written a short utility routine to handle that one task.
Invert_My_Item() sets up a Rect variable the size of the entire
menu. Then it adjusts the top and bottom of that rectangle to the coordi­
nates of the menu item that is to be inverted. A call to the Toolbox rou­
tine InvertRect() then does the actual inverting.

void Invert_My_Item(short item_number,
Rect *menu_rect_ptr)

Rect the_rect;
short item_height:

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

the_rect = *menu_rect_ptr:

the_rect.top += ((item_number - 1) * item_height):
the_rect.bottom = the_rect.top + item_height:

InvertRectC &the_rect):

The MyMDEF Source Code Listing

I will end this section with the complete listing for MyMDEF. The listing
consists of just four functions-each of which has been described in
detail on the preceding pages.

II
II function prototypes

void Do_My_Size_Of_Menu(MenuHandle);
void Do_My_Draw_Menu(MenuHandle, Rect *):
void Do_My_Choose_Item(Rect *, Point. short*);
void Invert_My_Item(short. Rect *);

ll~~~~~~~~~~~~~~~~~~~~~~~~-
11 #define directives

34

Chapter 1 Custom Menus and the MDEF

//define
//define
//define
//define
#define
//define

TOP_BOT_SPACE 2
SIOE_SPACE 5
MENU_PAT_WIDTH 100
MENU_PAT_HEIGHT 25
NUM_MENU_ITEMS 5
SYS_PAT_LIST_OFFSET 20

entry point to the code

pascal void main(short
MenuHandle
Re ct

message.
the_menu.

*menu_rect_ptr,
hit_poi nt.

*which_item_ptr
{

Point
short

switch (message)
{

case mSizeMsg:
Do_My_Size_Of_Menu(the_menu):
break:

case mDrawMsg:
Oo_My_Draw_Menu(the_menu. menu_rect_ptr >:
break:

case mChooseMsg:
Do_My_Choose_ltem(menu_rect_ptr. hit_point, which_item_ptr >:
break:

}

II~~~~~~~~~~~~~~~~~~~~~~
II set the size of the entire menu

void Do_My_Size_Of_Menu(MenuHandle the_menu
{

C**the_menu).menuWidth = MENU_PAT_WIDTH + (2 * SIDE_SPACE);
(**the_menu).menuHeight = NUM_MENU_ITEMS *

CMENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE)):

draw the menu items

35

More Mac Programming Techniques

void Do_My_Draw_Menu(MenuHandle the_menu. Rect *menu_rect_ptr)
{

short
Re ct
Pattern
short

; :
the_rect:
the_pat:
item_height:

item_height - MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE):

the_rect.top - menu_rect_ptr->top + TOP_BOT_SPACE:
the_rect.left = menu_rect_ptr->left + SIDE_SPACE:
the_rect.bottom - the_rect.top + MENU_PAT_HEIGHT:
the_rect.right = the_rect.left + MENU_PAT_WIDTH:

for (i - 1: i <- NUM_MENU_ITEMS: i++)
{

GetindPattern(&the_pat. sysPatlistID.
SYS_PAT_LIST_OFFSET +):

FillRect(&the_rect. &the_pat >:
FrameRect(&the_rect >:

the_rect.top += item_height:
the_rect.bottom - the_rect.top + MENU_PAT_HEIGHT;

handle cursor movement over menu items

void Do_My_Choose_Item(Rect
Point
short

*menu_rect_ptr.
hit_point.

*which_item_ptr

36

short selected_item:
short old_item:
short item_height:

item_height - MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE >:

old __ item = *which_item_ptr:

if < PtinRect(hit_point. menu_rect_ptr))
(

selected_item - ((hit_point.v - menu_rect_ptr->top)/item_height)+l:

if ((old_item > O > && (old_item != selected_item))
Invert_My_Item(old_item. menu_rect_ptr >:

Chapter 1 Custom Menus and the MDEF

if (selected_item != old_item)
{

Invert_My_ItemC selected_item, menu_rect_ptr);
*which_item_ptr = selected_item;

else if { old_item > 0)
{

Invert_My_Item(old_item, menu_rect_ptr);
*which_item_ptr = 0:

invert a single menu item

void Invert_My_Item{ short item_number,
Rect *menu_rect_ptr

{
Rect the_rect:
short item_height:

item_height = MENU_PAT_HEIGHT + (2 * TOP_BOT_SPACE);

the_rect = *menu_rect_ptr;

the_rect.top += ((item_number - 1) * item_height);
the_rect.bottom = the_rect.top + item_height:

InvertRect(&the_rect):

BUILDING THE MDEF CODE RESOURCE

To create an MDEF resource you'll first create a project file, just as you
would for an application. Next, you'll add the MDEF source code file to
the project, along with the appropriate libraries. Then, turning the
source code into an MDEF resource is simply a matter of telling your
development environment that you want it to generate a code resource
rather than an application. Your compiler will then create an MDEF

37

More Mac Programming Techniques

resource and place it in its own r esource file. Figure 1.18 shows the
MyYlDEF code resource in a resource file named MyMDEF.rsrc.

Your compiler will let you specify whether the resource file should be
on e that gets launched b y Apple 's ResEd it resource editor or
Mathemaesthetics Resorcerer resource editor. A file type of rsrc and a
creator of RSED tells the compiler to place the MDEF in a ResEdit file . If
you instead specify a file type of RSRC and a creator of Doug, the MDEF
will end up in a Resorcerer file . Use the file type and creator that match
the resource editor you use.

The resource fi le serves as a storage area for the MDEF resource. To
use th is code resource you' ll copy the MDEF from this file and paste it
in to the resource fork of any application that needs to use it. This chap­
ter concludes by describing how to create a simple application to test the
MDEF resource.

38

i)H OU l, A1
J $:R <AO)
CHP Dl, 2
SME ~
Ut

MDEF

MyMDEF .rsrc

MDEFs from MyMDEF .rsrc
Size Name

1000 566 "MyMDEF"

§19§ MDEF "M MDEF" ID = 1 000 from ~
000000
000008
000010
000018
000020
000028
000030
000038
000040

600E 0000 4044 4546
03E8 0000 0000 0000
41FA FFEE 4E71 4E71
6000 0040 4E56 0000
594F 2F3C 5041 5423
3F2E OOOA A9AO 226E
OOOC 20 1F 671C 2040
2050 30 18 322E 0008
6710 8240 620C 5341

' DDDMDEF
aaaaaaaa
ADDDNqNq
' DD@NUDD
YO/ <PAT•
? . DD9t "n
aa a9a @

POD2.DD
gD~@bDSA

FIGURE 1.18 AN MDEF CODE RESOURCE GETS SAVED TO A RESOURCE FILE.

Chapter 1 Custom Menus and the MDEF

You will find the project file and source code file for this chapter's exam­
ple on the included disk. As with all of the code presented in this book,
the disk holds two versions of the example-one for CodeWarrior users
and another for Syman tee users. The preference settings of each project
file are set according to the following descriptions.

Building with CodeWarrior

If you use Code Warrior, launch the Metrowerks C/C++ 68K compiler and
create a new project. Give the project a descriptive name such as
MyMDEF.µ. Then add the MyMDEF.c source code file, along with the
MacOS.lib library. Figure 1.19 shows what your project file will look like.

~
N 0 T E

MgMDEf.JJ
File Code Data la •

v Sources Di Di El i}
MyMDEF.c Oi o! • [I i..-..,

............... ~.~.~.~~.~.~.~.~ 1...9.l...9.l JD ..

2 file(s) D 0

FIGURE 1.19 THE PROJECT WINDOW FOR A METROWERKS

CODEWARRIOR MDEF CODE RESOURCE.

If you're compiling with the Metrowerks PowerPC compiler,
use the three standard PPC llbraries-MWCRuntime.Llb,
MathLib, and lnterfaceLl~ln place of the MacOS.lib library.

Before compiling, you'll want to tell the compiler to generate a code
resource rather than an application. Select Preferences from the Edit
menu and click on the Project icon to display the Project panel. Use the
pop-up menu to set the Project Type to Code Resource, as I've done in
Figure 1.20. Then fill in the edit boxes as shown in Figure 1.20.

39

More Mac Programming Techniques

Enter MDEF as
the resource type

Set the pop-up to Code Resource

Entera name
for the resource
file that will hold
the MDEF

Assign a
1--~ L----•~,....,.,..._. resource

Set the Creator and l)lpe to these values
to generate a ResEdit resource file

ID to the
MDEF

FIGURE 1.20 THE PROJECT PANEL SETIINGS FOR A METROWERKS

CODEWARRIOR M DEF CODE RESOURCE.

Next, cl ick on the Processor icon to display the Processor Info panel. Use
the Code Model pop-up menu to select the Small code model. The other
options in th is menu are Smart and Large. For all code resources, you ' ll
use the Small code model.

Dismiss the Preferences dialog box by clicking in its OK button. Then
select Make from the Project menu. After j ust a couple of seconds, the
bui ld will complete, and you'll have a new resource fi le in the folder that
holds the MyMDEF.µ project.

Building with Symantec C++ /THINK C

If you work with Syman tec C++ or THINK, launch the THINK Proj ect
Manager and create a new proj ect. Give the project a name that associ­
a t c s it with your source code, such as MyMDEF.7t. Next, add th e
MyMDEF.c source code fi le and the YfacTraps library to the project.
Figure 1.21 shows the project window for a Symantec project.

4 0

Chapter 1 Custom Menus and the MDEF

MyMDEF.'Jl'
Name Code

v Segment 2 4 &
Mac Traps 0
MyMDEF.c 0
Totals 470

-0
~

FIGURE 1 .21 THE PROJECT WINDOW FOR A SYMANTEC MDEF CODE RESOURCE.

Before you compile the MyMDEF code you' ll want to tell the THINK
Project Manager to generate a code resource rather than an application.
Select Set Project Type from the Project me nu. Click o n the Code
Resource radio button in the dialog box that appears. Then fill in the
edit boxes as I've done in Figure 1.22.

Set the File
l}'pe and

.--------,1.1?--"--. Creator to
O Application File Type ._r_sr_c _ _, "I._~ these

O Desk Accessory ~--,,, .. - --. values to
Creator RSED ' '"--~ generate a

Click on 0 Deuice Driuer ~-~ II ResEdit file
the Code ~Code Resource D Multi-Segment
Resource ~~

0
Enter a name

button ~------------- for the MDEF
Name I MyMDEF itself

11
Type l MOH J ID ~ Assign a

(~""'- ~ resource

D A ~- Att t?::I rn;;-,00 ID to the Custo1 ~ader rs s E.J MDEF

n OK

.........
Enter MDEF as the resource type

FIGURE 1.22 THE SET PROJECT TYPE SETTINGS FOR A SYMANTEC MDEF CODE

RESOURCE.

Dismiss the dialog box by clicking in its OK button. Then choose Build
Code Resource from the Project menu. The THINK Project Manager will

41

More Mac Programming Techniques

compile the MDEF.c code. Then it will present a dialog box that allows
you to e n ter a name for the resource file to which th e MDEF code
resource will be saved. Enter a name that will remind you that this is a
resource file (see Figure 1.23).

I a My MDEF f ... I
D Mtf--10!: r .c
D M!.f'10H:ri-

~Saue code r esource as:

~ c::J Hard Disk

[j•~c1

(Desktop)

n Saue D
(Cancel }

Enter a
name for the
resource file
that wi ll hold
the MDEF

~ MyMDEF .rsrc

~ Smart Link D Merge

F IGURE 1.23 THE SYMANTEC DIALOG BOX FOR NAMING THE RESOURCE FILE THAT WILL

HOLD THE MDEF CODE RESOURCE.

After clicking the dialog box Save button, you '11 have a new resource file
in the same folder that contains the MyMDEF.1t project.

THE MDEF TEST APPLICATION

A code resource isn't stand-alone code, tha t is, you can't double-cl ick
a cod e resource to execute it. Instead, a code resource su ch as an
MDEF is used by an application. So to test a cod e resource you 'll
need a simple Mac application tha t uses that resource . This chapters
ends with just such a program. Because the code will look similar to
the cod e for other simple Macintosh programs you 've seen in the
past, rll keep the walk-through of it to a minimum. Instead , I'll con-

42

Chapter 1 Custom Menus and the MDEF

centrate on how the test application makes use of the MDEF code
resource.

What the Test Application Does

This chapter, and the next few chapters that follow, include a test applica­
tion named MyTestApp. This chapter's version of MyTestApp displays
four menus, but only one will be of interest. The Fill menu will be used
to test the MyMDEF menu definition procedure. When a user clicks on
the Fill menu, the MDEF developed in this chapter will control the
menu, not the system MDEF.

MyTestApp begins by displaying a window with a framed rectangle
drawn in it. A click on the Fill menu displays a menu with five patterns in
it. Selecting any one pattern has the effect of filling the framed rectangle
with that pattern. Figure 1.24 shows how the program looks as a Fill
menu selection is being made, and after.

S File Edit S File Edit Fill

--- New New Window

FIGURE 1.24 THE TEST APPLICATION RESPONDS TO A MENU SELECTION IN THE MENU

CONTROLLED BY THE MYMDEF CODE RESOURCE.

The Test Application Resources

You know all about the few resources that are in every Macin tosh pro­
gram , so you may be tempted to skim or skip this section. Don't! You'll

43

More Mac Programming Techniques

wan t to do a few nontraditional things to the MyTestApp proj ect resource
file Lo ensure that the Fill menu works correctly.

Fi rs t, create four MENU resources. The File menu will be used to
qui t the application , and the Fill menu will be used to test the MDEF.
Tile MyTestApp application won't be concerne<l with the Apple menu
and the Edit menu. Figure 1.25 shows the four MENU resources.

MENUs from M TestApp.n.rsrc

,----------·--·-,

I About MyTestApp. !
! i

i I
[__________ _ ___ __]

128

1···· .. ·--···---··--····-···············-·-····-···-·····1

I Undo 3€2 I
!
i ~~~y =~

L:=-:~ ___ ___1
130

1~1!'. I _________ I
I i
I i
! i
l ·-······-··-········--··-··························---i

129

F ------1
I l
l..__··------··------·-·--··--J

13 1

{}

0
Iii

FIGURE 1.25 THE MENU RESOURCES FOR THE TEST APPLICATION PROJECT.

Berore moving on to o ther resources, double-click on MENU 131- the Fill
menu. When you do, you ' ll see the MENU editor shown in Figure 1.26.

Whe n you open a MENU resource you ' ll see that ResEdit has added a
ne,,· menu to its menu bar- a menu titled MENU. Select Ed.it Menu &:

MDEF ID from tha t menu. Now, per form the very important ste p of
changing the MDEF ID value from 0 to 1000. This MDEF ID value must
match the value of the MDEF resource that you ' ll be copying into the

44

Chapter 1 Custom Menus and the MDEF

compiled MyTesLApp app lication . I gave th e MyMDEF MDEF code
resource an ID of 1000, so that's the value I need to enter for this MENU
resource's MDEF ID. Figure 1.27 emphasizes this point.

:im MENU ID 131 from M_y_TestHpp. ff .rs re

llDI Entire Menu: [8J Enabled

~ @I Fill Title: I
0 s (Hpple menu)

Color

Title: .

I tern TeHt Default: 1111
tzy Menu Background: D

FIGURE 1.26 THE MENU RESOURCE FOR THE MENU THAT WILL llE CONTROU.ED

BY THE MvMDEF CODE RESOURCE.

T I P

If you forget to perform this step, the Fill menu will not work
in the MyTestApp application!

The MDEF ID values of the other three menus should each keep the
value of 0 that ResEdit assigned them. Only the Fill menu will be using
the custom MDEF.

Next, create an MBAR resource and add the four MENU resource
IDs to it. Make sure the order of the IDs matches the order I've used in
Figure 1.28.

Finally, add a WIND resource . This resource will define the window
that holds the patterned rectangle that gets drawn by the Fill menu. The
size and cype of window that you define by the WIND resource isn 't critical.

45

More Mac Programming Techniques

Please enter the Menu ID and
the resource ID of the MDEF to
be used below.

Menu ID: 1_1_31 __

MDEF ID:

(Cancel J
ol!HOU l,Al

.,ISRCAO>
CKP Dl,2
ll'ICE.ll
ltTS:

MDEF

Size Name

1 000 566 "MyMDEF"

MyMDEF .rsrt

FIGURE 1.27 THE MDEF ID MUST BE SET TO THE ID OF THE MDEF CODE RESOURCE.

~= MBRR ID= 128 from M_y_TestRpp.11.rsrc

u of menus 4 ~

1) *****
Menu res ID I 12a

2) *****
Menu res ID I 129

3) *****
Menu res ID It 30

i) *****
Menu res ID 1131

5) *****

FIGURE 1.28 THE MBAR RESOURCE FOR THE TEST APPLICATION PROJECT.

46

Chapter 1 Custom Menus and the MDEF

The Test Application Source Code

As mentioned, there's nothing fancy about the MyTestApp source code.
A look at the function prototypes and the /Ide f i n e directives will pro­
vide a good preview of what's in store.

II~~~~~~~~~~~~~~~~~~~~~
II

void Initialize_Toolbox(void);
void Set_Up_Menu_Bar(void);
void Open_Window(void);
void Handle_One_Event(void >:
void Handle_Mouse_Down(EventRecord *);
void Handle_Menu_Choice(long);
void Handle_Apple_Choice(short):
void Handle_File_Choice(short >:
void Handle_Fill_Choice(short >:
void Update_Window(WindowPtr);

II
II

f/defi ne MENU_BAR_ID 128
#define APPLE_MENU_ID 128
f/defi ne SHOW_ABOUT_ ITEM 1
f/defi ne FI LE_MENU_I D 129
f/defi ne QUIT ITEM 1
f/defi ne EDIT _MENU_ID 130
f/defi ne FILL_MENU_ID 131

f/defi ne WIND_ID 128

f/defi ne SYS_PAT_LIST_OFFSET 20

function prototypes

#define directives

MyTestApp uses three global variables. A 11 _Done signals that the program
should quit. Pattern_Index holds an index into the system pattern list
and is used to keep track of the pattern that is currently being used to draw
and update the rectangle in the program's window. Pat_Rect defines the
coordinates of the rectangle that gets filled with a pattern.

47

More Mac Programming Techniques

ll~~~~~~~~~~~~~~~~~~~~~~~~~-
11

Boolean
short
Re ct

All_Done =false:
Pattern_Index;
Pat_Rect:

global variables

The main () function performs standard initializations, displays the
menu bar, opens a window, then loops until the program terminates.

II
II main()

void main(void)
(

Initialize_Toolbox();
Set_Up_Menu_Bar();
Open_Window();

while (All_Done ==false
Handle_One_Event();

In it i a 1 i ze_ Too 1 box () and Set_Up_Men u_Ba r () take care of setting
up the application. Both functions should look familar to Mac programmers.

ll~~~~~~~~~~~~~~~~~~~~~~~~~-
11 initialize the Mac

void Initialize_Toolbox(void
{

InitGraf(&qd.thePort >:
InitFonts();
InitWindows();
InitMenus();
TEinit();
InitDialogs(OL):
FlushEvents(everyEvent. OL);
InitCursor();

ll~~~~~~~~~~~~~~~~~~~~~~~~~-
11 set up menu bar and menus

void Set_Up_Menu_Bar(void)

48

Chapter 1 Custom Menus and the MDEF

{

}

Handle menu_bar_handle:
MenuHandle apple_menu;

menu_bar_handle = GetNewMBar(MENU_BAR_ID);

SetMenuBar(menu_bar_handle);
DisposHandle(menu_bar_handle);

apple_menu = GetMHandle(APPLE_MENU_ID);
AddResMenu(apple_menu, 'DRVR');

DrawMenuBar();

The Open_Wi ndow() function does just what its name says. It also sets up
the coordinates for the rectangle that will be drawn to the window and
gives Pattern_Index an initial value. SYS_PAT_LIST_OFFSET is a
#define that is set to a value of 20. That means the pattern that is initially
used will be the twentieth in the system pattern list. Pattern twenty happens
to be a solid white pattern. When the rectangle is initially drawn (a little
later), it will be filled with white. As you'll see a little later, the value of
Pattern_! ndex changes when a selection is made from the Fill menu.

II~~~~~~~~~~~~~~~~~~~~~
II open a display window

void Open_Window(void)
{

}

WindowPtr the_window;

the_window = GetNewWindow(WIND_ID, OL, CWindowPtr)-lL);
ShowWindow(the_window);
SetPort(the_window):

SetRect(&Pat_Rect, 20, 20, 150, 100);
Pattern_Index = SYS_PAT_LIST_OFFSET;

Hand 1 e_One_Event () is called repeatedly from main () . It uses a call to
Wai tNextEvent () to retrieve information about the most current event.
A switch statement then calls the proper function to handle the event.

49

More Mac Programming Techniques

II
II handle single event

void Handle_One_Event(void
{

EventRecord the_event:

WaitNextEventC everyEvent, &the_event, 15L, OL >:

switch (the_event.what)
{

case mouseDown:
Handle_Mouse_DownC &the_event):
break:

case updateEvt:
Update_Window(CWindowPtr)the_event.message >:
break:

A mouseDown event is handled in the standard fashion by the
Handl e_Mouse_Down ()function.

II~~~~~~~~~~~~~~~~~~~~~~
II handle a click of the mouse

void Handle_Mouse_Down< EventRecord *the_event
{

50

WindowPtr
short
long

window:
the_part:
menu_choice:

the_part - FindWindow (the_event->where, &window):

switch (the_part)
{

case inMenuBar:
menu_choice - MenuSelect(the_event->where):
Handle_Menu_Choice(menu_choice >:
break;

case inSysWindow:
SystemClick C the_event, window);
break:

case inDrag:

Chapter 1 Custom Menus and the MDEF

}
}

DragWindow(window. the_event->where.
&qd.screenBits.bounds);

break:

A mouse click in the menu bar sends the program to Handl e_Menu_
Choi ce (). This routine relies on three subroutines to do the actual
handling of a click on either the Apple, File, or Fill menus. A click on the
Edit menu will drop down the Edit menu, but any menu selections will
be ignored.

handle a click on a menu

void Handle_Menu_Choice(long menu_choice)
{

}

short the_menu:
short the_menu_item:

if (menu_choice != O
{

}

the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice):

switch (the_menu)
{

case APPLE_MENU_ID:
Handle_Apple_Choice(the_menu_item);
break;

case FILE_MENU_ID:
Handle_File_Choice(the_menu_item);
break:

case EDIT_MENU_ID:
break:

case FILL_MENU_ID:
Handle_Fill_Choice(the_menu_item):

}

HiliteMenu(O);

51

More Mac Programming Techniques

The handling of menu selections from the Apple menu and the File
menu is done in the same way that you've seen done in numerous Mac
applications.

II~~~~~~~~~~~~~~~~~~~~~~~~~
II handle a click in the Apple menu

void Handle_Apple_Choice(short the_item
{

Str255 desk_acc_name:
int desk_acc_number;
MenuHandle apple_menu:

switch (the_item)
f

case SHOW_ABOUT_ITEM:
SysBeep(5);
break:

default:
apple_menu - GetMHandle(APPLE_MENU_ID);
GetitemC apple_menu. the_item, desk_acc_name);
desk_acc_number - OpenDeskAcc(desk_acc_name);
break;

II~~~~~~~~~~~~~~~~~~~~~~~~~
II handle a click in the File menu

void Handle_File_Choice(short the_item)
{

switch C the_item)
{

case QUIT_ITEM:
All_Done true:
break;

In response to a menu selection from the Fill menu, MyTestApp ends up
at Handl e_Fi l l_Choi ce(). The menu definition procedure code that
appears in the MyMDEF MDEF takes care of the display of the Fill menu

52

Chapter 1 Custom Menus and the MDEF

and the highlighting of its menu items. But it doesn't actually perform
any tasks once a menu selection is made; that is up to your application.
For this test program I've decided that a selection from the Fill menu will
result in the filling of a rectangle with the same pattern that is pictured
in the Fill menu item.

Handle_Fil l_Choice() is aware of which menu item was select­
ed-the item number is in the variable named item. I will use that value,
and the SYS_PAT_LIST_OFFSET to set the value of the global variable
Pattern_Index to the proper index into the system pattern list. Then,
a call to EraseRect() clears the window and a call to Inval Rect()
marks the window's port rectangle as invalid. That tells the Window
Manager that the window needs updating. The system then generates an
updateEvt.

II~~~~~~~~~~~~~~~~~~~~~~~~--
// handle a click in the Fill menu

void Handle_Fill_Choice(short item)
{

WindowPtr window:

window= FrontWindow():

Pattern_Index ~ SYS_PAT_LIST_OFFSET + item:

EraseRect(&window->portRect):
InvalRect(&window->portRect);

}

What happens when the system generates the updateEvt? The next call
to Wai tNextEvent () will send the program to the Upda te_Wi ndow()
function. This routine gets the proper pattern from the system pattern list
and then uses this pattern to fill the rectangle defined by the global vari­
able Pat_Rect.

!! __ __

II update the window in response to updateEvt

void Update_Window(WindowPtr window)

53

More Mac Programming Techniques

}

Pattern the_pat ;

Begi nUpdate (window);
GetlndPattern(&the_pat . sys Pat l i s tID, Pattern_Index) ;
Fi l lRect (&Pat _Rect . &the_pat);
FrameRect (&Pat_Re ct) ;

End Update(wi ndow);

T hal is it for the test application source code. You can see that most of
the code supports the basic fun ctioning of Mac p rogram. Very little new
code is needed to actually test the MDEF itself.

With the source code entered , the next step is to build the stand­
alone application . After that, I' ll quit my development environment and
return to the desktop .

The lasl thing I' ll want to do is copy the MDEF code resource from its
own resource fi le and paste it into the MyTestApp application . I' ll launch
a resource edito r and ope n both the MDEF code resource fi le and the
MyTestApp application . Note that I' m opening the application itself, not
the \1yTestApp.7t.rsrc file. Then I' ll perform the Copy and Paste. When
complete, the screen looks li ke Figure 1.29.

54

MyM DEF .rs re M TestRpp

•H OU l, ._ 1
.J i;S? (t110)
CttP Dl, :Z
t;N[.
F:T::

MDEF,

Oii ttOU 1, A1
J~R <AO>
CHP 01 ,,2
race. Oii
RT<

CODE

.attou 1,A1
"'SOR <AO>
CHP Dl , 2
SMC Oii ...
MDEF

0 10 1 I I OI
0010 100 1
0 11 0 10 10
0 00 1 I 11 0
0 I 0 0 0 00 0

DAT A

MENU

0 10 1 I I OI
00 10 100 1
0 11 0 10 10
000 I 111 0
0 I 00 0000

DREL

SIZE

MBAR

D
WIND

FIGURE 1.29 THE RESULT OF PASTING THE MDEF CODE RESOURC

INTO THE APPLICATION'S RESOURCE FORK.

Ill

~
N 0 T E

Chapter 1 Custom Menus and the MDEF

Some of the resources in your MyTestApp program may differ
from those shown In Figure 1.29. That's because the
Symantec compiler and the CodeWarrlor compiler each add
one or two different resources during their bull~ processes.

There's nothing more to do to get the MDEF to work-just launch the
MyTestApp application, move the mouse over the Fill menu, and click!

CHAPTER SUMMARY

The look and behavior of all Macintosh menus is provided by MDEF
resources. Unless instructed to do otherwise, the Menu Manager uses the
system 0 MDEF. To give a menu its own unique look you can write menu
definition procedure code. You'll then use your development environ­
ment to compile that source code and save it in a resource file as an
MDEF code resource.

Besides providing a menu that has a look and functionality not nor­
mally supported by a Mac application, an MDEF resource provides the
added benefit of being reusable. You can paste a copy of an MDEF
resource into any number of applications to provide each program with
the use of the MDEF code.

55

Chapter

CUSTOM CONTROLS AND THE CDEF

The Macintosh Toolbox, along with a graphical resource editor, makes
the creation, display, and handling of standard controls such as push but­
tons, radio buttons, and check boxes an easy task for Mac programmers.
While these standard controls suffice for most purposes, they don't pro­
vide the slick look that both programmers and users have come to expect
from the computer that set the standards for how a graphical user inter­
face should look. The Mac applications that look the most professional
and are the most compelling to use usually have controls that have the
look of dials, three-dimensional buttons, and sliders. Most Mac program­
mers are surprised-and disappointed-when they learn that these types
of controls are not readily supported by the Macintosh Toolbox.

57

More Mac Programming Techniques

While fancy controls of the types just mentioned can't be created as
readily as standard controls, they can be created and brought to life with
just a little extra programming effort. And once you know the technique
for creating one new type of control, you'll find that it becomes relatively
easy to create all sorts of fancy, unique controls that will give your appli­
cations a custom look.

Chapter I introduced you to code resources-in the form of the
MDEF resource. In this chapter you'll learn about a second type of code
resource-the CDEF resource. Your understanding of the MDEF code
resource, the menu definition procedure, and how the MENU resource
specifies an MDEF resource will be important as you read this chapter.
That's because each of these menu-related concepts has an analogous
control-related concept.

In this chapter you'll see how a CDEF can be used to create custom
controls that use pictures as buttons. The techniques discussed in this
chapter will apply not only to picture buttons, but to sliders-the topics
covered in Chapter 3.

THE CDEF AND CONTROL DEFINITION FUNCTION

Mac programmers are familiar with the look of standard controls such as
check boxes, radio buttons, and push buttons-they're shown in Figure
2.1. With the introduction of System 7 came a few changes to the Mac
graphical user interface-there's more and better shading in windows,
for instance. Controls such as buttons and check boxes, however, were
not changed from System 6 to System 7.

just as standard menus are given their look and feel by an MDEF
code resource found in the System file, so too are standard controls
given their properties by resource code found in the System file. For
standard controls such as push buttons, check boxes, and radio buttons,
this code is supplied in a control definition function that's kept in a System
file CDEF with a resource ID of 0.

58

Chapter 2 Custom Controls and the CDEF

@ Fast

O Medium

O Slow

Speed Settln s . ---- - -- -
=:=--.:::-_

D Display Speed

[8J Saue Fastest Speed

18] Repeat Test

Copy J (Saue J Cancel n Done D

FIGURE 2.1 A DIALOG BOX WITH STANDARD CONTROLS IN IT.

Setting the CDEF ID of a CNTL Resource

In Chapter 1, you saw that a MENU resource specifies which MDEF code
resource will control the menu defined by the MENU resource. Controls
follow this same organization . When you create standard con trols in a
DITL resource by using the floating pale tte that accompan ies th e
DITL-as in Figure 2.2- you r resource editor will specify that each of
those controls be handled by the system's CDEF.

§0~ D ITL ID = 128 from Test. Tt .rs ~

D Use Color

QRed

Q Btue (OK)
j~~~~~]

[;] Cont rol

T: Static Text

.__ ____________ _._._]liE~~!.~.~.! ... ~=
& Icon

I. Picture
·-·················-······················ lillfil User Item

These
controls
will be
handled
by system
'CDEF'O

FIGURE 2.2 STANDARD CONTROLS CAN BE ADDED TO A DIALOG BOX

USING A Dill RESOURCE.

59

More Mac Programming Techniques

lf you create a control by adding a Control from the floating palette- as
shown in Figure 2.3- you '11 h ave the oppor tunity to specify which CDEF
should handle that control.

~ Dill ID= 128 from Test.TT.rs

0 Use Color

O Red

QBlue

c~~~J~~~~~~~~~~~i

(OK)

..
:m:::m:::mm::::::::mm::::m::::

(9 Button

181 Check Box ..
® Radio Button

I~ Control

T: Static Text
··g·"f:ci·;·t··;:~·~·t· .. ·······
..
& Icon

I .. Picture

[] User Item

FIGURE 2.3 ADDING WHAT WILL BE A CUSTOM CONTROL TO A DITL

Jn ResEdit, double-clicking on the newly added control will open a win­
dow like the one shown in Figure 2.4. In this window, the ID of a CNTL
resource that holds information about the new control can be entered.

The ID of a CNTL resource that
holds information about this control

Edit DITL Item Test. TT .rsrc

Resource ID: I 200

Control ...,. I

[8J Enabled Top: I 2_s _ __. Bottom: 50

Left: 11_6_0_~ Right: 210

FIGURE 2.4 A CUSTOM CONTROL SPECIFIES THE ID OF THE CNTL RESOURCE IT USES.

60

Chapter 2 Custom Controls and the CDEF

One of the key pieces of information that is held in a CNTL resource is
th e ID of the CDEF that will handle controls based on the CNTL
resource. Figure 2.5 shows the trail from a Control DITL item to the
CNTL resource item and then to the CDEF item.

- llJ Edit Dill item #5 from Test.11.rsrc

Resource ID: [200 ~

I Control ,.I u
§19

[8J Enc:i
CNTL ID 200 from Test.11.rsrc

BoundsRect lo 11 ° I I 2s I lso llliD
Uolue jo I
Uisible @True 0 False

Mox I 1 I
Min I 0 I
ProclO [0 I
Ref Con u

~Im CDEF ID - 0 from SJl.Stem
000000 ~OOA 0000 4344 4545 ' OODCDEF II 000008 0000 0008 4E56 FFC6 aaaaNIJDA
000010 48E7 1F78 OC5E 0002 HDaxanaa I 000018 OOOC 6312 OC5E OOOA DDc::DDn DD
000020 OOOC 570A OC5E 0008 DDgDDnDD
000028 OOOC 5500 OODE 485E DDfDODHn ~
000030 FFEC A898 A89E OC78 aa;:,iJ;:,u ax Qi

FIGURE 2.5 A CUSTOM CONTROL SPECIFIES A CNTL RESOURCE,

WHICH IN TURN SPECIFIES A CDEF RESOURCE.

~

~
~

To create a custom control you' ll first write a control definition function
and use your compiler to save that code to a CDEF code resource. Then,
in the resource fil e of an app lication projec t, you 'll create a CNTL
resource with a P roe ID that includes the resource ID of your CDEF.
Finally, as you add items to a DITL resource in the resource file of the

61

More Mac Programming Techniques

app lication project, you' ll make one of those items a Control ite m
defined by your CNTL resource.

THE CDEF DEFINES THE LooK AND ACTIONS OF A CONTROL

A developer creates a custom control when he or she is not satisfied with
the look or actions of the standard controls that are available as part of
the Macintosh user interface. For instance, if you want to give the inter­
face lO your programs a more three dimensional look, you can begin by
defining your own types of controls. Figure 2.6 shows how your own con­
trols could achieve this look.

Speed Settin s

9 Fast ...J Display Speed :1J
J Medium

J Slow

~ ! ~ Cancel

FIGURE 2.6 CUSTOM CONTROLS ALLOW AN APPLICATION TO GIVE ITS

DIALOG BOXES A UNIQUE LOOK.

Dials and sliders offer a range of settings rather than the on/ off settings
of buttons. Sliders are the controls that add the most graphical look to a
Mac program-yet they are a type of control that are seldom, if ever,
used by the average programmer. That's because aside from the scroll
ba r, sliders don't exist as a predefined control type-as buttons and
check boxes do. Figure 2.7 provides a representative sample of the types

62

Chapter 2 Custom Controls and the CDEF

of sliders you' ll be able to add to your Mac programs after reading this
chapter and Chapter 3.

flGURE 2. 7 TYPICAL CUSTOM SLIDERS THAT CAN BE CREATED

USING CDEF CODE RESOURCES.

In this chapter and the next I'll develop two controls-a new type of button
and a slider-using CDEF resources. And, as I did for the MDEF, after creat­
ing the CDEF resources I can easily copy them into more than one program.

THE CDEF SOURCE CODE

In this section I'll develop a CDEF that consists of a control defini tion
function that uses pictures in place of standard buttons. The pictures
that define what a button looks like won't actually be a part of the CDEF.
Instead, the CDEF will rely on PICT resources that are in the applica­
tion's resource fork. That keeps the CDEF generic enough for it to be
usable by any application.

63

More Mac Programming Techniques

The CDEF code won't place any limits on the size or color level of the
pictures. That means I can use a graphics program to draw a set of pic­
tures and, after pasting the pictures into the resource file of an applica­
tion project, use those pictures as a button.

The Control Definition Function Entry Point

Mouse clicks on a control tell the Control Manager to execute the code
definition function associated with that control. If you've defined a con­
trol based on a CNTL resource with a ProcID other than 0, the Control
Manager won't use the system control definition function. Instead, it will
look in the application's resource fork for the appropriate CDEF and
execute the main () function of that code resource. As it is for the
MDEF, the main () function is the entry point into a CDEF resource.

The entry point to a CDEF is a callback routine, so its header needs
to begin with the pas ca 1 keyword. For a CDEF, the main () routine has
a return type of 1 ong and four parameters-as shown in this example:

pascal long main(short var_code.
Control Handle the_control,
short message,
long msg_param)

Ali it was for the MDEF, the CDEF message parameter is a constant that
tells main () what type of action needs to be handled. The message
parameter can take on any one of the 11 Apple-defined constants listed
here.

drawCntl

testCntl

calcRgns

initCntl

dispCntl

posCntl

thumbCntl

64

Draw the control to a dialog box or window

Test to see if cursor is over control

Calculate control's region (24-bit systems)

Initialize the control

Dispose the control

Position control's indicator, update settings

Calculate dragging indicator parameters

Chapter 2 Custom Controls and the CDEF

dragCntl

autoTrack
calcCntlRgn
calcThumbRgn

Handle dragging of control or indicator

Invoke control's action procedure

Calculate control's region (32-bit systems)

Calculate indicator's region

The body of a CDEF main () routine is similar to that of an MDEF
main(): it examines the value of the message parameter and invokes a
routine that specifically handles the action. Here's the shell of a CDEF
main () for a control definition function that could be made to handle
each of the possible message values:

pascal long main(short var_code,

{

Control Handle the_control.
short message,
long msg_param)

long return_val - OL:

switch(message)
{

case drawCntl :
II each case would invoke a routine
II to handle one type of message
break:

case testCntl :
break:

case calcCRgns:
break:

case i nitCntl:
break:

case dispCntl:
break:

case posCntl :
break:

case thumbCntl:
break:

case dragCntl :
break:

case autoTrack:
break:

case calcCntlRgn:
break:

65

More Mac Programming Techniques

}

case calcThumbRgn:
break:

default:
break:

return (re tu rn_va 1) :

Fortunately, controls defined by most CDEF code resources won't need to
respond to each type of message. You can see by the description of the
message constants that many of the messages make sense only for controls
that act as dials or sliders. For instance, this section's MyButtonCDEF
example control definition function, which works with buttons, will only
need to handle two types of messages: testCt 1 and d rawCt 1. Here's a
look at the ma i n () function for MyButtonCDEF:

pascal long main(short var_code.

{

}

Control Handle the_control.
short message,
long msg_param)

long return_val = OL:

switch(message)
{

case testCntl:
return_val = Test_Control(the_control. msg_param >:
break:

case drawCntl:
Draw_Control(the_control):
break:

default:
break:

return (return_val);

The first parameter to main () , var _code, is used only for CDEF
resources that support multiple variations of a single control. This para-

66

Chapter 2 Custom Controls and the CDEF

meter will be ignored in the MyButtonCDEF, but will be used in Chapter
3 in an example that supports control variations.

The second parameter to main(), the_control, is a handle to the
control record of the control receiving the action. Various routines in the
CDEF will examine fields of the control record before operating on the
control.

The final main() parameter, msg-param, is a short that holds addi­
tional information about the message sent to ma i n () . The exact meaning
of ms g_p a ram is dependent on the type of message sent to ma i n () .

Taking Care of the Preliminaries

The MyButtonCDEF source code has a single 1/i ncl ude directive used
to bring the GestaltEqu.h header file into the source code:

#include <GestaltEqu.h>

The CDEF code will use two of four pictures in the display of a single but­
ton. If the Macintosh using the CDEF is a color system, one pair of pic­
tures will be used. If the Mac is monochrome (or color, but set to display
only black and white), the CDEF will use a different pair of pictures.
Because a call to Gesta 1 t () will be used in determining the color level,
or bit depth, of the Mac, rll need to include the GestaltEqu.h header file.

Since I've brought up the topic of using multiple pictures for a single
button, now is as good a time as any to elaborate. A button control has two
states: its normal state and a depressed state. When the cursor is not over a
control, or when it is over a control but the mouse button is not pressed,
the control is in its normal state. When the mouse button is pressed while
the cursor is over a control, the control is in its depressed state-it appears
to be pressed down. For a standard button, the depressed state inverts the
button. Figure 2.8 shows a button in both states.

If MyButtonCDEF only worked with black and white buttons, only two
pictures would be needed for a single control-one for each of the con­
trol's two states. Since MyButtonCDEF is much more user-friendly than

67

More Mac Programming Techniques

that-it supports both color and monochrome systems-it requires four
pictures for each control. One pair will be used if the CDEF detects a
color system, and the second pair will be used for a monochrome system.

MyButtonCDEF uses two constants to aid in determining which pic­
ture the CDEF should display:

Info Info

Rge: ~ Rge: ~

K l -OK

~

FIGURE 2.8 BunoNS HAVE TWO STATES: ON THE LEFT IS THE NORMAL STATE,

ON THE RIGHT IS THE DEPRESSED, OR DOWN, STATE.

#define
//define

DOWN_OFFSET
BW_OFFSET

1
2

Figure 2.9 shows the four pictures that have been drawn for a typical
button. You 'II want to refer to this figure as you read the following dis­
cussion. The CDEF considers the picture that will be used for a button
in the normal, or up, state on a color system as the base picture.
Whatever its ID is, the color picture representing a depressed, or down,
button should have an ID one greater. The constant OOWN_OFFSET rep­
resents this difference. The picture that will be used as the up button on
a monochrome system should have an ID two greater than the base pic­
ture ID. The BW_ O F FS ET constant is used to represent this value.
Finally, the monochrome down picture should have an ID three greater
than the base picture. That means it will have a value one greater than
the monochrome up picture. Again, DOWN OFFSET will be used for
specifying this picture.

68

Chapter 2 Custom Controls and the CDEF

Button up, color
(base picture)

p

~A
~ ,,.~

.t!i ti 'g
'

Button down, color
(base picture + 1)

DiskPictureButtons

Button up, black and white
(base picture + 2)

Button down, black and white
(base picture + 3)

FIGURE 2.9 FOUR PICTURES WILL BE USED FOR ANY ONE BUTTON.

To create pictures that a re usable by the CDEF, the four drawn buttons
should be individually copied from the graphics program in which they
were rendered and pasted into an applica ti on project's resource fi le .
Assuming tha t I'll be using the pictures in an application named Test, I'd
paste the pictures in the Test.1t.rsrc file. Figure 2.10 shows how four typi­
cally numbered PICT resources would look. While th e selection of an ID
for the base PICT is not important, the consecutive numbering of the
four PICT resources is crucia l.

MyButtonCDEF has three additional constants tha t it defines:

I/def i ne
I/def ine
#defin e

CNTRL_I NA CTI VE
CNTRL_INVI SIBLE
SYS_GRAY_ PAT_ INDEX

255
0
4

6 9

More Mac Programming Techniques

To mark a control as inactive the cont r 1Hi1 i te field of the control's
control r ecord should be set to a value of 255. That tells the Control
Manager to dim the control and ignore mouse clicks over that control.
Since the MyButtonCDEF will be responsible for drawing and handling a
p icture button control, it will also be responsible for graying out the but­
ton and ignoring mouse clicks to it. T he constant CNTRL_ I NA CTI VE will
be use d fo r these purposes. If a picture button is inactive, the
SY S_ GRA Y _ PAT _ IN DEX constant will be used to superimpose a gray pat­
tern over the picture button to give it a dim appearance.

PICTs from Test .11.rsrc

~
~l1

200 201

B
~ -.. : t. ... _,,,, ... J

202 203

FIGURE 2.10 THE FOUR PICTIJRES WILL BECOME PICT RESOURCES.

A control can be set to visible or invisible by altering the value of the con­
trol's co nt rl Vi s field. A value of 0 tells the Control Manager to com­
ple tely cover the control with the background pattern of the window or

70

Chapter 2 Custom Controls and the CDEF

dialog box in which the control resides. The C NT R L_ I NV I S IBLE con­
stant will be used to determine if a picture button is visible.

The MyButtonCDEF consists of just four functions-their prototypes
are shown below. Draw_Cont ro l () does the actual drawing of the con­
trol and Test_Control () checks to see if a mouse click occurred in
the control. Col or _Is_On() is a utility routine that determines if the
user's machine has a color monitor, and Di m_Item() is a second utility
routine that handles the dimming of a picture button.

void
long
Boolean
void

Draw_Control(ControlHandle);
Test_Control(ControlHandle, long);
Color_Is_On(Rect);
Dim_Item(Rect);

Handling a testCntl Message

When a mouse click may affect a control, the Control Manager will send
a testCntl message to the main() function of the CDEF code. For a
testCntl message, the value of the msg_param variable becomes
important because it holds the local coordinates of the cursor. The
ma i n () function should send this information, along with the handle to
the control, to a routine that determines if the cursor is over a control
governed by the CDEF code. For MyButtonCDEF, that routine is named
Test_Control ().Here's the call to Test_Control (),as made from
the main () function of the CDEF:

case testCntl:
return_val = Test_Control(the_control. msg_param):
break;

Here's the header for Tes t_Cont ro l () :

long Test_Control(ControlHandle control, long mouse_loc)

Test_Control ()receives the msg_param as along variable, not as a
Point. The function begins by extracting the coordinates of the mouse
location from this l on g variable:

71

More Mac Programming Techniques

Point the_point;

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

Next, Test_Control () sets a local variable to the size of the control
rectangle. That information is found in the cont r 1 Re ct field of the
control record:

Rect the_rect:

the_rect = (**control).contrlRect;

Then it's a simple matter of comparing the coordinates of the cursor
with the coordinates of the rectangle that bounds the control. If the
point representing the cursor position is in the rectangle, the cursor is
over the picture button control:

if (PtinRect(the_point, &the_rect))
return (inButton);

else
return (0);

If the PtinRect() test passes, Test_Control () returns a value of
i nButton to main (). This Apple-defined constant is a part code that
designates that the mouse is pressed while over a button. Let's jump back
to the body of main() to see what's going on. After Test_Control ()
executes, return_val will have a value of i nButton if the mouse was
pressed in the control, or a value of 0 if it wasn't. The main () function
ends by returning this value to the Control Manager. The Control
Manager will see to it that this value ends up in the contrl Hi 1 i te field
of the picture button's control record:

long return_val = OL;

switch(message)
{

case drawCntl:
Draw_Control(the_control);

72

Chapter 2 Custom Controls and the CDEF

}

break;

case testCntl:
return_val = Test_Control(the_control, msg_param);
break;

default:
break:

return (return_val) ;

Once the value of return val has been stored in the button's control
record, the button can be properly updated (drawn), or, if the value is 0, the
button will be left as is. If the button is to be updated, the Control Manager
will again execute the CDEF-this time passing ad rawCnt l message.

Below is the listing for Test_Control ().Notice that before the
Pt In Re ct () test is made Tes t_Cont ro 1 () checks to see if the control
is invisible or inactive. If the control is in either of these states, Test_
Cont r o 1 () properly concludes that it doesn't matter if the mouse is
pressed when the cursor is over the control.

long Test_Control(ControlHandle control. long mouse_loc
{

Rect the_rect:
Point the_point:

if ((**control).contrlVis == 0
return C 0);

if ((**control).contrlHilite == 255
return < O);

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

the_rect = C**control).contrlRect:

if (PtlnRect(the_point, &the_rect))
return (inButton);

else
return C 0);

73

More Mac Programming Techniques

~
Yes, you caught me. I could just as easily combine the Intro­
ductory if logic In Test_Cont ro 1 () into one if state.
ment. But I thought that using separate tests would be easi­
er to follow than a single combined statement llke this: N 0 T E

if (((**control).contrlVis == CNTRL_INVISIBLE) I I
((**control).contrlHilite CNTRL_INACTIVE))
return (0);

Handling a drawCntl Message

The CDEF main () routine receives a d rawCnt 1 message anytime the
mouse button is depressed and the user's dragging of the mouse may
affect the state of a control that the CDEF handles. A change in the high­
lighting of the control will also result in main () receiving a d rawCnt 1
message. In either case, the CDEF will respond by calling its own drawing
routine. For MyButtonCDEF, that routine is named Draw_Control ():

case drawCntl:
Draw_Control(the_control);
break;

In order to operate on the proper control, Draw_Control () needs to
receive a handle to the control record of the affected control:

void Draw_Control(ControlHandle control)

The first thing the control-drawing function should do is check to see if
the control is visible. A hidden control should not respond to mouse
clicks, and of course should not be drawn. The contrl Vis field of the
control holds a value in the range of 0 to 255. A value of 0, or
CNTRL_INVISIBLE, means the control is invisible. If that's the case,
there's no work to be done, and Draw_Control ()should terminate:

if (C**control).contrlVis == CNTRL_INVISIBLE)
return:

74

Chapter 2 Custom Controls and the CDIEF

If the test of cont r 1 Vi s results in the identification of a visible control,
Draw_Control () should handle the drawing. Before drawing can take
place, Draw_Control ()needs to determine which of the four pictures
should be used. To do that, a call to the Toolbox routine
GetControl Reference() is made to get the ID of the base picture:

short pi ct_ID:
pict_ID - GetControlReference(control);

Pass GetControl Reference() a handle to a control record, and the
Toolbox will return the contrl Rf Con field of that control record. A
control record has more than a dozen fields, many of which are filled by
a CNTL resource. Earlier in this chapter you saw that when you want a
control to be handled by one of your own CDEF code resources, you cre­
ate a CNTL resource to describe that control. The Ref Con field of that
CNTL resource corresponds to the contrl RfCon field of the control
record. When loaded into memory, the information in the CNTL
resource will be used in filling the control record. The CNTL Ref Con
field can be used by an application for any purpose. I've decided to use it
as a holder for the PICT ID of the control's base picture. Figure 2.11
illustrates how this might work.

Once Draw_Contro 1 () has the ID of the base picture, the routine
sets out to determine which of the four pictures should be used. First, the
control's boundary rectangle is obtained by examining the cont rl Rect
field of the control record:

Rect control_rect:

control_rect - (**control).contrlRect:

Next, that rectangle is passed to the utility routine Co 1 or _I s_On () to
determine if the rectangle lies within a monitor that has color turned on.
The Co 1 or _I s_On () function is covered a little later in this section If
the rectangle is located in a color monitor, Co 1 or _I s_On () will return
a value of true; otherwise it returns a value of fa 1 se. If the monitor is
color, I'll leave the value of pi ct_I D alone-it's already set to the base

75

More Mac Programming Techniques

pictu re..: ID, which is a color picture. If the monitor is monochrome, I'll
add BW_ OF FSET to pi ct_ I D to come up with the ID of the first black­
and-wh ite picture:

if (Color_Is_On(control _rect) ~ f alse)
pict_ID +- BW_OFFSET;

PICTs from Test.'Jf.rsrc

-- I

~
: ~--1

i
_ -.................... .1 :.:=:::::::::.1"

~. 200
...................................... -................................ 1

201

'-: 1-F=lii CNTL ID 500 from Test. 'Jf .rs re

BoundsRect ::=:==!.1-==I =---I .__I ___.I .__I ___.I lliD
' Uo lue

Uis ible

Mox

Min

Proc lD

J RefCon

Tit le

@ True O False

l J

FIGURE 2.11 THE REFCON FIELD OF A CUSTOM CONTROL'S CNTL RESOURCE SPECIFIES

THE BASE PICTURE FOR THAT CONTROL.

Now pi ct_ ID holds the ID of either the first color picture or the first
black-and-white picture. If the button hasn' t been clicked on, I've got the

76

Chapter 2 Custom Controls and the CDEF

correct picture. If, however, the user has clicked the mouse button and
the cursor is over the button, I'll need to add the offset that gives the ID
of the down, or depressed, picture. The contrl Hi 1 i te field of the con­
trol record provides this information. You know that if this field has a
value of 255, the control is inactive, but this field also provides other infor­
mation. If it has a value that corresponds to the Apple-defined constant
i nButton, then the control is active and is currently receiving a mouse
press within its boundaries. If that's the case, I'll add DOWN_OFFSET to
the value of pi ct_I D to arrive at the correct picture to use:

if ((**control).contrlHilite -~ inButton)
pict_ID +- DOWN_OFFSET:

A draw routine must handle each of the four conditions for which a pic­
ture exists. Figures 2.12 and 2.13 show how Draw_Control () handles
two of these four conditions.

pict_id

Color Monitor, Mouse Click On Picture Button

#define
#define

BW_OFFSET
DOWN_ OFFSET

2
1

if (Color_Is_On(control_rect l == false l

pict_ID += BW_OFFSET;

if ((**control) .contrlHilite == inButton
,____~ D pict_ID += DOWN_OFFSET;

ro
201

FIGURE 2.12 DRAW_CONTROL() HANDLING A MOUSE CLICK ON A COLOR SYSTEM.

77

More Mac Programming Techniques

pict_id

Monochrome Monitor, Mouse Ciiek On Picture Button

#define
#define

BW_OFFSET
DOWN_OFFSET

2
1

if (Color_Is_On(control_rect

pict_ID += BW_OFFSET;

false)

if ((**control).contrlHilite == inButton)

pict_ ID += DOWN_OFFSET;

203

FIGURE 2.13 DRAW_CONTROL() HANDLING A MOUSE CLICK

ON A BLACK· ANO-WHITE SYSTEM.

Once it has been determined which picture sh ould be used, it's a simple
matter of calling the Toolbox routine Get Res au rce () to load the cor­
rect picture into memory and receive a handle to it. Then a call to the
Toolbox function DrawPi c tu re() draws the picture to the rectangle
occupied by the control:

PicHandle pict_handl e;

pict_handle - (PicHandle)GetResource('PI CT' , pict_ID);

DrawPicture (pict_handl e , &control_rect);

There 's one last ch eck that Draw_Control ()must make. I f th e
con trl Hi 1 i te field of the co ntrol record h as a value of 255, or
CNTRL_ I NA CTI VE, the con trol is said to be inactive . If this is the case,
the call to DrawPi cture() will have properly drawn the picture tha t
shows the con trol in the up state. Now it's time to superimpose a gray

78

Chapter 2 Custom Controls and the CDIEF

pattern over the picture to provide the effect of a dimmed item. A call to
the utility routine Dim_Item(), which is discussed later in this section,
takes care of that task:

if (C**control).contrlHilite =- CNTRL_INACTIVE
Dim_ltem(control_rect):

Here's a look at the source code for the entire Draw_Control () func­
tion.

void Draw_Control(ControlHandle control)
{

Graf Ptr
Re ct
short
PicHandle

saved_port:
control_rect:
pi ct_ID:
pict_handle:

if (C**control).contrlVis == CNTRL_INVISIBLE
return:

GetPort(&saved_port):

pict_ID = GetControlReferenceC control >:

control_rect = C**control).contrlRect:

if C Color_Is_On(control_rect) ==false
pict_ID +- BW_OFFSET:

if C (**control).contrlHilite == inButton
pict_ID += DOWN_OFFSET:

pict_handle = CPicHandle)GetResource('PICT', pict_ID):

if C pict_handle == nil)
ExitToShell();

DrawPicture(pict_handle, &control_rect >:

if (C**control).contrlHilite == CNTRL_INACTIVE
Dim_Item(control_rect):

SetPort(saved_port):

79

More Mac Programming Techniques

Before walking through the only other message routine that
MyButtonCDEF uses, I'll finish this section with a look at the two utility
routines used by Draw_Control ().The first is Col or _Is_On().
Here's the source code for that function:

Boolean Color_Is_On(Rect the_rect
{

OS Err error;
response;
current_device;
the_pix_map;

long
GDHandle
PixMapHandle

error= Gestalt(gestaltQuickdrawVersion. &response);

if (error != noErr)
Exi tToShel l ();

else if (response== gestaltOriginalQD
return C false);

else
{

LocalToGlobal((Point*) &the_rect);
LocalToGlobal(1 +(Point*) &the_rect);
current_device = GetMaxDevice(&the_rect);
the_pix_map = (**current_device).gdPMap;
if ((**the_pix_map).pixelSize > 1)

return (true);
else

return (false);

~
Determining which monitor holds a given rectangle, and deter­
mining the pixel depth-or color level-of that monitor, Involves
knowledge of graphics devices. As you read the explanation of
Co 1 or_ I s _On () , you may find that this topic seems a little
deep. If that is the case, you can accept at face value that the
Co 1 or_ I s _On () function works. Or, you can spend a couple of
hours reading all about devices In the "Graphics Devices" cha~
ter of Inside Macintosh: Imaging With QulckDraw.

N 0 T E

C o 1 o r _I s _ 0 n () begins with a call to Ge s ta 1 t () . Ge s ta 1 t () is a
Toolbox function that returns information about the machine on which

80

Chapter 2 Custom Controls and the CDEF

a program is running. The first parameter-the selector code--tells
Gest a 1 t ()what information I want. When the call is complete, the sec­
ond parameter-the response-will hold that information. By passing the
Apple-defined constant gestaltOuickdrawVersion, I'm telling
Gest a 1 t () to determine which version of QuickDraw is in the
Macintosh. If it's gesta 1 tOri gi na 1 OD-the original, older
QuickDraw-the machine can only display black and white. If that's toe
case, Co 1 or _I s_On () has found the information it was looking for,
and it can return a value off a 1 s e to the calling function.

Any version of QuickDraw other than gesta 1 tOri gi na 1 OD means
the Mac is capable of displaying color-though the user may have set the
monitor to black and white. The code in the e 1 s e section determines
whether color is on or off. The Rect variable the_rect, which was
passed to Co 1 or _I s_On (), holds the coordinates of the rectangle that
bounds the control that is to be drawn. These coordinates are local to
the window or dialog box in which the control appears. The following
lines convert these coordinates to global values-coordinates that are in
terms of the desktop area:

LocalToGlobalC {Point*) &the_rect >:
LocalToGlobal(1 +<Point*) &the_rect >:

A rectangle can be expressed as four integers or two points. The Toolbox
routine Loe a 1 ToGl oba 1 () is expecting the address of a Point as its
parameter, so the first call to Loca 1 ToGl oba 1 () casts the_rect to a
pointer to a Point. So the first call to Loe a 1 ToGl oba 1 () converts the
first of the two points that define the_rect to global coordinates. By
again casting the_rect to a pointer to a Point, and then adding one
to the address, the parameter to the second call to Loe a 1 ToGl oba 1 ()
becomes the address of the second Point that defines the_rect.

I agree, It Is confusing. Keep In mind that the first Point of
a rectangle defines the upper-left corner of the rectangle,
whlle the second Poi n t defines the lower-right corner.

N o T E Each call to Loe a 1ToG1oba1 () Isolates one of these
Poi n ts and converts It to global coordinates. The result Is

81

More Mac Programming Techniques

a rectangle of the same size as the original rectangle, but
In global coordinates.

Once the rectangle is converted to global coordinates, a call to
GetMaxDevi ce() is made. When passed a rectangle (in global coordi­
nates), the Toolbox routine GetMaxDev ice () determines in which
video device the rectangle lies. This is necessary to handle the case of a
user running a system with two monitors, each set to a different color
level.

GDHandle current_device:

current_device - GetMaxDevice(&the_rect >:

GetMaxDevi ce () returns a handle to the graphics device that holds
the control. Dereferencing this handle twice leads to a GDevi ce struc­
ture. One of the fields of the GD e vi c e structure is g d PM a p-a
Pi xMapHandl e. A Pi xMapHandl e is a pixel map of the screen-in this
case, the screen of the monitor that holds the control to draw. The last
step is to double dereference the Pi xMapHandl e to get to the pixel
depth of the screen. If pixel Size is 1, the screen is set to mono­
chrome; if it's greater than 1, color is turned on.

PixMapHandle the_pix_map:

the ___ pix_map ""' (**current_device) .gdPMap:
if < (**the_pix_map).pixelSize > 1)

return (true):
else

return (false):

The second utility routine used by Draw_Control ()is Dim_Item()­
shown here:

void Dim_Item(Rect dim_rect
{

82

Chapter 2 Custom Controls and the CDEF

PenState saved_pen_state:
Pattern gray_pattern:

GetPenState(&saved_pen_state):
PenNormal():
GetindPattern(&gray_pattern, sysPatlistID, SYS_GRAY_PAT_INDEX);
PenPat(&gray_pattern):
PenMode(patBic):
PaintRect(&dim_rect):
SetPenState(&saved_pen_state):

Di m_I tern () begins by saving the state of the graphics pen with a call to
GetPenState() and ends by restoring the pen to its initial condition
with a call to SetPenState(). In between these Toolbox calls,
Di m_Item() sets the graphics pen such that a painted rectangle will
superimpose a light gray pattern over the picture button.

T I P

Keep in mind that the code that makes up a code resource
Is not part of an application. As such, the application is not
aware of exactly when the code resource will execute.
Thus the appllcatlon can't be responsible for saving any
graphics pen characteristics that it might want to retain.
Instead, It's up to the code resource to save and restore
these attributes.

Overlaying a light gray pattern over the existing button picture is accom­
plished by first getting a gray pattern from the system pattern list.
Chapter 1 described how a call to GetindPattern() works. Next, the
pen pattern is set to this gray pattern. Then the pen transfer mode is set
to pa tB i c. By setting the mode to this constant, the painting of a pat­
tern over the button picture won't wipe out the entire picture. Instead,
parts of the picture will show through. This will give the effect of a
dimmed picture, as shown in Figure 2.14.

83

More Mac Programming Techniques

0 1

·-·····--···· .. -····!
Active button Inactive (dim) button

FIGURE 2.14 DRAWING A GRAY PATI'ERN OVER A aunoN PICTURE

GIVES IT A DIM, OR INACTIVE, LOOK.

THE MvBunoNCDEF SOURCE CODE LISTING

Aside from main (), the MyButtonCDEF code contains just four func­
tions, two of which are short utility routines. Here's the complete source
code listing for this chapter's CDEF code resource:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II #include directives
#include <GestaltEqu.h>

II~~~~~~~~~~~~~~~~~~~~~~~~~
II

void
1 ong
Boolean
void

II
II

ffadef i ne
#define

84

function prototypes

Draw_Control(ControlHandle):
Test_Control(ControlHandle. long):
Color_ls_On(Rect):
Dim_ltem(Rect):

DOWN_OFFSET
BW_OFFSET

1
2

#define directives

Chapter 2 Custom Controls and the CDEF

#define
//define
//define

CNTRL_INACTIVE 255
CNTRL_INVISIBLE 0
SYS_GRAY_PAT_INDEX 4

entry point to the code

pascal long main(short var_code.

{

Control Handle the_control.
short message,
long msg_param)

long return_val = OL:

switch(message)
{

case drawCntl :
Draw_Control(the_control):
break:

case testCntl:
return_val ~ Test_Control(the_control, msg_param):
break:

default:
break:

return C return_val):

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// draw the control

void Draw_Control(ControlHandle control)
{

Graf Ptr
Re ct
short
PicHandle

saved_port:
control_rect:
pict_ID:
pict_handle:

if ((**control).contrlVis
return:

GetPort(&saved_port):

CNTRL_INV I SIBLE

85

More Mac Programming Techniques

pict_ID = GetControlReference(control);

control_rect = (**control).contrlRect:

if (Color_Is_On(control_rect) """3 false
pict_ID += BW_OFFSET:

if ((**control).contrlHilite ~- inButton)
pict_ID += DOWN_OFFSET:

pict_handle = (PicHandle)GetResource('PICT'. pict_ID):

if (pict_handle -= nil)
ExitToShell():

DrawPicture(pict_handle. &control_rect):

if ((**control).contrlHilite == CNTRL_INACTIVE
Dim_Item(control_rect);

SetPort(saved_port):

//~~~~~~~~~~~~~~~~~~~~~~~~~
II test for mouse clicks in the control

long Test_Control(ControlHandle control. long mouse_loc
{

86

Rect the_rect:
Point the_point:

if ((**control).contrlVis == CNTRL_INVISIBLE
return (0):

if (C**control).contrlHilite
return (0):

CNTRL_I NACTI VE

the_point.v = HiWord(mouse_loc):
the_point.h = LoWord(mouse_loc):

the_rect = (**control).contrlRect:

if (PtinRect(the_point. &the_rect))
return (inButton):

else

Chapter 2 Custom Controls and the CDEF

return (O):
}

II~~~~~~~~~~~~~~~~~~~~~
II is color available, and turned on?

Boolean Color_ls_On(Rect the_rect
{

}

OS Err error:
response:
current_device:
the_pix_map:

long
GDHandle
PixMapHandle

error= Gestalt(gestaltQuickdrawversion, &response >:
if (error != noErr)

Exi tToShel 1 C):
else if C response gestaltOriginalQD)

return { false):
else
{

}

LocalToGlobal((Point*) &the_rect >:
LocalToGlobal(1 +(Point*) &the_rect >:
current_device = GetMaxDevice(&the_rect >:
the_pix_map = C**current_device).gdPMap:
if C C**the_pix_map).pixelSize > 1)

return (true >:
else

return (false >:

ll~~~~~~~~~~~~~~~~~~~~~~~~~-
11 dim an item by overlaying light gray pattern

void Dim_ltem{ Rect dim_rect
{

PenState saved_pen_state:
Pattern gray_pattern:

GetPenState(&saved_pen_state >:
PenNormal():
GetlndPattern(&gray_pattern, sysPatlistID, SYS_GRAY_PAT_INDEX):
PenPatC &gray_pattern):
PenMode{ patBic):
PaintRect{ &dim_rect >:
SetPenState{ &saved_pen_state);

87

More Mac Programming Techniques

BUILDING THE CDEF CODE RESOURCE

The steps for building a CDEF are essentially the same as the steps for
building an MDEF:

I . Create a new project.

2. Add the necessary library and code resource source code file to
the project.

3. Tell the compiler to generate a code resource rather than an
application.

4. Build the code resource.

The code resource will be saved to its own resource file. When an appli­
cation requires the CDEF code, it's a simple matter to use a resource edi­
tor to copy the code resource from its resource file and paste it directly
into the resource fork of an application.

Building with CodeWarrior

CodevVarrior users should launch their C/C++ compiler and create a
new project. After adding the appropriate files, the project window will
look like the one shown in Figure 2.15.

88

M_y_ButtonCDEF •JI
File Code Data 19 •

v Sources 0 ! 0 l El -0-
My ButtonCDEF .c 0 i 0 1 • III t-=-

............... ~.~.~.~~.~.~.~.~ 1 9.l 9.l. J!l ..

2 file(s) 0 0

FIGURE 2.15 THE PROJECT WINDOW FOR A METROWERKS

CODEWARRIOR CDEF CODE RESOURCE.

Chapter 2 Custom Controls and the CDEF

The Preferences menu item from the Edit menu allows the project to be
marked as a code resource rather than an application. Figure 2.16 shows
the preferen ce settings in the Project panel of the Preferences dialog
box. Note that all of the items that get filled in are the same as they are
for an MDEF code resource. The o nly significant change is in the
ResType, which should be CDEF rather than MDEF.

N 0 T E

Apply to open project.

rs t
p~~ I

l inker

a l

Project Type: I Code Resource .,.. I
,... Code Resource Info:---------.
File Nome MyButtonCDEF.rsrc

Sym Nome

Resource Nome MyButtonCDEF

HeoderType: l.__s_t_o_n_d_o_rd _______ ... _.I
D Multi Segment
D Display Dialog
D Merge To File

Resource Flogs ~

ResType Res ID

I COEF J J 1000
Creator Type

J RSED J J rsrc

(Factory Settings J [Reuert Panel J (Cancel J H~(..... o __ K o;;;;;;;{tl'J

FIGURE 2.16 THE PROJECT PANEL SETTINGS FOR A METROWERKS

CODEWARRIOR CDEF CODE RESOURCE.

As you saw in Chapter 1, Metrowerks code resource pro­
jects must use the Small code model. Click on the Processor
icon to display the Processor Info panel. Then use the Code
Model pop-up menu to select the Small code model.

After dismissing the Preferences dialog box, it's time to build the code
resource by selecting Make from the Project menu. The resul t will be a
CDEF code resource in a file named MyButtonCDEF.rsrc.

89

More Mac Programming Techniques

Building with Symantec C++ /THINK C

Syman Lec C++ and THINK C owners will begin by launching the THINK
Prnj ecL Manager and crea ting a n ew project. Adding the MacTraps
library and the code resource source code file complete the project. It
should look like the one in Figure 2.17.

M_y_ButtonCDEF. TI'
Name Code

v Segment 2 4 ~
Mac Traps 0

My ButtonCDEF .c 0

Totals 470
-0
'Ti

FIGURE 2.17 THE PROJECT WINDOW FOR A SYMANTEC CDEF CODE RESOURCE.

SeleCLing the Set Project Type item in the Proj ect menu will display the
di alog box shown in Figure 2.18. The various items that need to be
fill ed in are the sam e as those tha t were filled in for the MDEF in
Chapter 1. The only important change is the Type, which should now
be CDEF.

After dismissing the dialog box, select Build Code Resource from the
Project menu. Again, this is the same step you performed for the MDEF
code resource. In the dialog box that opens, type in a name for the
resource file that will be created to hold the CDEF resource- just as I've
done in Figure 2. 19. Make sure the Merge check box is not checked,
then click Save.

The THINK Project Manager will compile the control definition
function source code and build the CDEF code resource. The result will
appear in a n ew resource file.

90

Chapter2 Custom Controls and the CDEF

0 Application

0 Desk Accessory

0 Deuice Driuer

®Code Resource

Name I MyButtonCDEF

Type jcoEF

D Custom Header

Cancel

File Type I rsrc

Creator I RSED

D Multi-Segment

ID I 1000

Attrs ~~

OK

FIGURE 2.18 THE SET PROJECT TYPE SETTINGS FOR A SYMANTEC CDEF CODE RESOURCE.

I a My Button CDEF f ... ,

D !VhJBU t ton[Of: f" ,c
D Mi.~Button[DEF", 11

{} G:::l Hard Disk
t-"'-

Saue code resource as:

I MyButtonCDEF .rsrc

fgl Smart Link D Merge

([jf~C1 J

(Desktop)

n Saue D
(Cancel]

FIGURE 2.19 THE SYMANTEC DIALOG BOX FOR NAMING THE RESOURCE FILE THAT WILL

HOLD THE CDEF CODE RESOURCE.

91

More Mac Programming Techniques

THE CDEF TEST APPLICATION

As yo u learned in Chapter 1, a code resource is not stand-alone code and,
as such , cannot be tested without the help of an application that uses the
code. Since this chapter's test application has no menus or menu bar,
you ' II find that its source code listing is shorter than Chapter l 's listing.

What the Test Application Does

If rou '\'e migrated to Apple's System 7.5, you may have noticed a few
changes in the Macintosh graphical user interface. While most dialog
boxes and control panels still use the standard controls, a few interface
components use a sleeker looking set of controls. Figure 2.20 shows the
Ap pleCD Audio Player, with its polished-looking controls.

FIGURE 2.20 THE APPLECD AUDIO PLAYER.

Because l like the look of the AppleCD Audio Player, I'll have my test
application display a button that looks similar to one found in the Apple
program. I'll draw four pictures that wlll be used to mimic one button
that has the look of the controls that appear in the bank of buttons to the
le l't o f' th e volume slider in the AppleCD Audio Player. Figure 2.21 shows
the fo ur pictures, still in the window of the graph ics program in which I
drew them. Each of the four picnires will become a PICT resource in a
resource file-as discussed in the next section.

92

Chapter 2 Custom Controls and the CDEF

This chapter's version of MyTestApp simply displays a dialog box that
holds four controls. Two of the controls are standard controls that will be
handled by the Dialog Manager, and two are handled by the Control
Manager and this chapter's MyButtonCDEF control definition function .
Figure 2.22 shows what the MyTestApp dialog box looks like.

p
O A
~ ; .. m

.t!i tT 'g
...........

M ButtonPictures

FIGURE 2.21. USING A GRAPHICS PROGRAM TO DRAW FOUR

PICTURES FOR USE AS ONE BUTTON.

FIGURE 2.22 THE MvTESTAPP DIALOG BOX.

Actions in the check box and the Quit push button are taken care of by
the Dialog Manager (which makes use of the Control Manager). A mouse
click over either of the an-ow buttons will be handled by the CDEF. The

93

More Mac Programming Techniques

source code that makes up the test application, however, will make no dis­
tinction between controls that are handled by the MyButtonCDEF and
the sysLcm CDEF. Instead, the distinction will be made in the resource file,
where the CNTL resources that define the two arrow buttons will specify
that the MyButtonCDEF code be used with the two picture buttons.

Figure 2.23 shows how the MyTestApp dialog box looks when a user
clicks Lhe mouse button while the cursor is over one of the arrow buttons.
The figure shows that the MyButtonCDEF code takes over and draws a
depressed button picture over the existing arrow button. When either arrow
button is clicked, the test application will beep the Mac's speaker-one beep
for a click on the left button, two beeps for a click on the right button.

FIGURE 2.23 THE MvTESTAPP DIALOG BOX WITH ONE CUSTOM CONTROL DEPRESSED.

The MyButtonCDEF includes code that handles the case when a button
is inactive. When the application source code marks a button handled by
the CDEF as inactive, the Draw_Contro l () routine that is a part of
MyButtonCDEF draws a gray pattern over the button and refuses to
process mouse clicks in the button 's rectangle. Figure 2.24 shows that
when the Dim Left Button box is checked, the arrow button on the left
becomes inactive. Once the button is dim, mouse clicks on it will not
result in the display of the depressed arrow button picture. That provides
verification that the CDEF is indeed ignoring mouse clicks. Additionally,
when the button is dim, a mouse click on it will not result in a sounding
of the Mac's speaker, verifying that mouse clicks on Lhe inactive control
are also ignored by the application.

94

Chapter 2 Custom Controls and the CDEF

FIGURE 2.24 THE MYTESTAPP DIALOG BOX WITH ONE CUSTOM CONTROL INACTIVE.

THE TEST APPLICATION RESOURCES

The test application will display two picture buttons, but they will both be
based on the same set of pictures. Figure 2.25 shows the four PICT
resources that will be used for a button.

When you draw the four pictures that will represent a button, make
them all the same size. While you 're in your graphics program make a
note of the pixel dimensions of one of the pictures. In Figure 2.26 you
can see that I'm using an enlarged view mode to manually count the size
of a picture. The size of any one picture in my example turns out to be
22 pixels high by 50 pixels wide.

I'll need a CNTL resource for each picture button that is to appear in
the dialog box of the test application. Four of the CNTL fields are of sig­
nificance:

BoundsRect

Vi sib l e

ProcID

Ref Con

The local pixel coordinates of the control in the dialog box

Specifies that the control be visible

Tells which CDEF handles the control

Provides the PICT ID of the base picture for this control

95

More Mac Programming Techniques

normal
TOOl.5

.......... ,
[]] CJ)

CK \::b

Cb CJ)

PICTs from MJLTestApp.n.rsrc t::.. ==liiJ

I

I
[._ _____ ._. ____ ___!

200

202

I - I
, I
! I I I

'-------·----·----.J

,-­
i
i

I

201

203

~

FIGURE 2.25 THE PICT RESOURCES FOR MYTESTAPP.

M ButtonPictures ot 800%

~1-.-r----n~, ~~~~
FIGURE 2.26 ENLARGING ONE BUTION PICTURE TO DETERMINE ITS PIXEL DIMENSIONS.

96

Dimensions
of the control

CDEF
resource ID
times 16 plus
variation code

PICT
resource ID
for the base
picture

Chapter 2 Custom Controls and the CDEF

CNTLs from MyTestRpp.1l".rsrc
~ Size Name

500 23

BoundsRect lo 11° 1122 I I so
Ualue lo
Ulsible ®True O Folse

Max I 1

Min lo
ProclD It 6000

Ref Con 1200
Title

FIGURE 2.27 SHOWS THE VAWES IN THE CNTL RESOURCE

FOR A CONTROL WITH AN ID OF 600.

I lliIJ
1}

The order of the Bounds Rect fields is top, left, bottom, right.
Notice that I set the boundaries so that they make up a rectangle 22 pix­
els high and 50 pixels wide-the same size as one of the PICT resources.

When I created the MyButtonCDEF, I gave it an ID of 1000. Yet the
P roe ID field of the CNTL resource shows rve entered a value of 16000.
That's because the Proc ID doesn't hold the ID of the CDEF-at least
not directly. Instead, the Proc ID follows this formula:

ProclD = ('CDEF' ID * 16) + variation code

Variation codes are described in Chapter 3. For now, rn just say that a
single CDEF can be written such that it supports different variations of a
control type. For example, the MyButtonCDEF uses a picture to display a
button. A variation of that could be to use the same picture and to dis­
play a button title under the picture.

97

More Mac Programming Techniques

The MyButtonCDEF has no variations, so the variation code is 0. That
makes the value of Proc ID 16000:

ProcID = ('CDEF' ID * 16) + variation code
ProcID - (1000 * 16) + 0

After defining the CNTL resource, I create the DITL resource that holds
all of the items in the dialog. Figure 2.28 shows the four items in the
DITL.

Dills from MyTestRpp.u.rsrc
Size Name

128 82 S Button

llua 01n;1b = 128.from M TestApp.tt.rsrc. 181 Check Box

® Radio Button

(;) Control -................................. .
T: Static Text

::iii::~~~:!:!.~~!~:::::::
--~ _[_L!j

& Icon ..
I .. Picture

··········-·······················-······· ID Dim Left Button Lzj Quit LlJ
Ill User Item

FIGURE 2.28 THE DITL RESOURCES FOR MYTESTAPP.

Items 2 and 3 are the two controls. They were each created by clicking on
the control item in the floating palette and dragging the mouse over to
the DITL editor. The default ID and size of a control item won,t match
the numbers I used in my CNTL resources, so rn double-click on each
item to edit that information. Figure 2.29 shows the result of double­
clicking on item 2.

In Figure 2.29 you can see that rve entered a Resource ID of 500.
That tells this control item to use the information found in the CNTL
resource with an ID of 500. After entering the CNTL ID, I entered the
Top and Left coordinates of the control. These numbers are the pixel

98

Chapter 2 Custom Controls and the CDEF

coordinates that the control will have in the dialog box. After entering
these values, ResEdit supplied the Height and Width values-I had no
control over those values. Figure 2.30 shows both the CNTL resource and
the DITL item 2 so that you can compare.

~- Edit Dill item #2 from M TestRpp. ft .rsrc

Resource ID: 1500

Control ... 1

181 Enabled Top: 140 Height: 22

Left: 1100 Width: 50

FIGURE 2.29 SmlNG THE CONTROL'S LOCATION AND THE RESOURCE ID OF THE CNTL
USED BY THE CUSTOM CONTROL.

~• CNTL ID= 500 from M_y_TestQpp.11.rsrc

BoundsRect I 0 110 11 22
:::::===~===;-~

Uo I ue L-1 o _ _ __ _,
I I so llliD

;rm Edit DITL item #2 from M TestRpp.ft.rsrc

Resource ID: ~j 5_o_o_~
.--C-o_n_t_ro_l ___ ..,.""'I

181 Enabled Top: ~I "_o _ _.

Left: ~I 1_00 _ _.

Height : 22

Width: 50

FIGURE 2.30 THE DITL ITEM SPECIFIES WHICH CNTL RESOURCE

IS USED BY THE CUSTOM CONTROL.

99

More Mac Programming Techniques

If ~ ·ou're using ResEdit, your DITL item window may display the Bottom
and Right dimensions rather than Height and Width. You can set ResEdit
to display either pair using the Item menu (see Figure 2.31).

~IEi Edit Dill item #2 from M TestRpp.n.r:

Resource ID: lsoo

Control Tl

~Enabled Top: 140 Bottom: 62

Left: I 100 Right : 150

FIGURE 2.31 RESEDIT CAN DISPLAY EITHER A CONTROL'S DIMENSIONS OR ns LOCATION.

A DITL is a dialog item list for a dialog box, so I need to add a DLOG
resource to hold dialog box information. Figure 2.32 shows that DLOG.
The background, or content area, of a dialog box is normally white. In
Figure 2.32, you can see that the background of my dialog box is gray.
To add color (or grayscale) to the content area of a dialog box, add a
dctb resource to the resource file. This can easily be done from within
the DLOG editor of ResEdit; Figure 2.33 shows the two steps. First, click
0 11 the Custom radio button. That displays a group of dialog box parts
that can have color added to them. Clicking on the rectangle to the
right of the word Content drops down a palette of color choices (see
Figure 2.33) .

After selecting a color from the palette, the alert pictured in Figure
2.34 appears. A dctb, or dialog color table, defines the colors that appear
in a d ialog box. Click OK to let ResEdit create and add the resource.

100

Chapter 2 Custom Controls and the CDEF

DLOGs from MyTestApp.11.rsrc

!Q. Size Name

128 21

DLOG ID z 128 from M TestRpp.11.rsrc

DD

Top:~ Height:~

left:~ Width:~

Color: ® Default
0 Custom

Dill ID: j 128
~--~

18] Initially uislble

0 Close boH

FIGURE 2.32 THE DLOG RESOURCE FOR MYTESTAPP.

Then click on the
Content rectangle

Top:~ Height:~

Left:~ Width:~

First click on the Custom radio button

O Close boH

efault
®Custom

Frame: I I
Highlight: I I

FIGURE 2.33 ADDING COLOR TO THE CONTENT AREA OF A DIALOG BOX.

101

More Mac Programming Techniques

Adding color to a 'DLOG' will create a
'dctb' resource to store the color
information. The 'dctb' resource will
haue the same id as this 'DLOG'.
Remember to delete this resource if
you delete the 'DLOG'

Cancel l[OK D

FIGURE 2.34 ADDING COLOR TO A DIALOG BOX CREATES A DCTB RESOURCE.

~
N 0 T E

Providing a background color In a dialog box Is safe regard­
less of the system the application will end up running on. In
the MyTestApp source code I'll be loading the DLOG
resource into memory using a call to the Toolbox routine
Get New Di a 1 o g () • If the MyTestApp application Is running
on a color system, Get New Di a 1 o g () will search for a dctb
resource with the same ID as the DLOG resource and use
the information found within that resource. If the application
Is running on a monochrome system, GetNewDi a 1 og () wlll
Ignore any dctb resources in the application's resource fork.

Figure 2.35 shows the dctb resource, as well as all of the other resource
types that make up the resource file for the MyTestApp project.

The Test Application Source Code

Aside from the required main () routine, this chapter's test application
consists of just three functions. Here's the prototypes for each:

//_ _____________________ _
II function prototypes

void Initialize_Toolbox(void);

102

Chapter 2 Custom Controls and the CDEF

void Open_Di alog (void) ;
short Set_Check_Box(DialogPtr. s hort);

~Iii M Iii

~@~
{}

[li:I ~ ~Ji ¢¢
CNTL dctb DITL DLOG PICT

-0
\ii

FIGURE 2.35 THE RESOURCE TYPES FOR MYTESTAPP.

The first five of the nine #define directives listed in the source code are
resource-related. OLOG I 0 is the resource ID of both the DLOG and
DITL resource for the program's dialog box. The next four cons tan ts

represent the item numbers of the four DITL items.

The CHECKBOX OFF and CHECKBOX ON constan ts are used when
handling a click in the check box of the dialog box. The CNTRL_ I NAC­
TI VE and CNTRL_ACTIVE constants are used in setting the highlight
level of one of the two picture buttons.

#define
#define
I/define
//define
#define

I/define
#def ine
#define
#define

DLOG_ ID
DON E_BUTTON_ITEM
ARROW_l_ITEM
ARROW_2_ITEM
DIM_ARROW_l_ITEM

CHECKBOX_OFF
CHECKBOX_ON
CNTRL_I NACTIVE
CNTRL_ACTI VE

128
1
2
3
4

0
1

255
0

I/define directives

The main () fun ction performs the standard Toolbox initializations,
then calls a function named Open_Di a 1 og () to display and handle the
program's modal dialog box.

103

More Mac Programming Techniques

//~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

Initialize_Toolbox():
Open_01a log ():

//~~~~~~~~~~~~~~~~~~~~~~~~~
II initialize the Mac

void Initialize_Toolbox(void
{

InitGraf(&qd.thePort);
InitFonts():
InitWindows():
InitMenus():
TEinit();
InitDialogs(OL >:
FlushEvents(everyEvent, OL):
InitCursor();

Open_Di a 1 og () displays the dialog box that is described in the "What
the Test Application Does" section. A call to GetNewDi a 1 og () loads the
dialog record, while calls to ShowWi ndow() and Set Port () make sure
the dialog box is visible and ready to receive graphics commands.
Open_Di a 1 og () then enters a while loop that repeatedly calls
Mod a 1Dia1 og () to capture mouse clicks in active items in the dialog box.

A mouse click on either of the two arrow picture buttons will result in
the display of one of the PICT resources. Open_Di a 1 og () needs no
special code to make this happen; it's all handled by the MyButtonCDEF
code that gets called by the Control Manager in response to a click on
either button. A mouse click on an arrow button also sounds the Mac's
speaker:

case ARROW_l_ITEM:
SysBeep(5 >:
break:

104

Chapter 2 Custom Controls and the CDEF

case ARROW_2_ITEM:
SysBeep(5 >:
SysBeep(5 >:
break:

The handling of a mouse click on the check box relies on the utility rou­
tine Set_Check_Box(). This function-described later-toggles the
check box. It also returns a value ofO (CHECKBOX_OFF) if the check box
has been unchecked, or 1 (CH EC KBOX_ON) if the check box is now
checked. The returned value, held in check_box_val, is then tested.
The Toolbox routine Hi 1 i t e Cont r o 1 () is then called to either acti­
vate or inactivate one of the picture buttons:

case DIM_ARROW_l_ITEM:
check_box_val = Set_Check_Box(the_dialog, the_item):
GetDitem(the_dialog, ARROW_l_ITEM,

&the_type, &the_handle, &the_rect >:
if (check_box_val == CHECKBOX_ON)

HiliteControl(CControlHandle)the_handle,
CNTRL_INACTIVE):

else
HiliteControl(CControlHandle)the_handle,

CNTRL_ACTIVE) ;
break;

Here's a look at the complete listing for Open_Di a 1 og ():

//~~~~~~~~~~~~~~~~~~~~~~~~~
II open a display dialog

void Open_Dialog(void)
{

DialogPtr
short
Boolean
short
short
Handle
Re ct

the_dialog;
the_ item:
all_done =false:
check_box_val;
the_type:
the_handle:
the_rect:

the_dialog - GetNewDialog(DLOG_ID, nil. CWindowPtr)-lL >:
ShowWindow(the_dialog >:

105

More Mac Programming Techniques

SetPort(the_dialog);

while (all_done -- false
{

}

ModalDialog(nil. &the_item):

switch C the_item
{

case ARROW_l_ITEM:
SysBeep(5 >:
break:

case ARROW_2_ITEM:
SysBeepC 5);
SysBeep(5 >:
break:

case DIM_ARROW_l_ITEM:
check_box_val = Set_Check_BoxC the_dialog. the_item >:
GetDitemC the_dialog, ARROW_l_ITEM.

&the_type. &the_handle. &the_rect >:
if (check_box_val == CHECKBOX_ON)

HiliteControl((ControlHandle)the_handle.
CNTRL_INACTIVE);

else
HiliteControlC CControlHandle)the_handle,

CNTRL_ACTIVE) :
break:

case DONE_BUTTON_ITEM:
all_done = true:
break:

DisposDialog(the_dialog >:

The last function in MyTestApp is Set_Chec k_Box () . This short routine
can be used-without modification-in any program that uses check
boxes. Set_Check_Box() receives a pointer to the dialog box that
received a mouse click and the item number of the clicked-on item as its
two parameters. Set_Check_Box() begins with a call to GetDitem()
to obtain a handle to the clicked-on check box. That handle is used in a
call to GetCtl Value() to get the value of the check box. That value is

106

Chapter 2 Custom Controls and the CDEF

then tested in an if statement. If the check box was on, a call to
SetCtl Value() turns it off. If it was off, a different call to
Set Ct 1Va1 ue () turns it on. In either case, Set_C hec k_Box () returns
a short that will let the calling routine know the new state of the check
box.

''--~~~~~~~~~~~~~~~~~~~~
II toggle checkbox to opposite state

short Set_Check_Box(DialogPtr the_dialog, short the_item)
{

}

short the_type:
Handle the_handle:
Rect the_rect:
int old_value:

GetDitem(the_dialog, the_item, &the_type,
&the_handle, &the_rect):

old_value = GetCtlValue((ControlHandle)the_handle):

if (old_value CHECKBOX_ON)
{

SetCtlValue((ControlHandle)the_handle, CHECKBOX_OFF);
return (CHECKBOX_OFF);

}
else
{

}

SetCtlValue((ControlHandle)the_handle, CHECKBOX_ON >:
return (CHECKBOX_ON):

As with all of the examples in this book, you'll find separate Symantec
and CodeWarrior versions of the source code for this new version of
MyTestApp in folders on the included disk.

After compiling and building a stand-alone application, it is time to
add the CDEF resource, just as the MDEF resource was added to Chapter
l's version of MyTestA.pp. To do this, open both the MyButtonCDEF.rsrc
file and the MyTestApp application using a resource editor. Then copy
the MyButtonCDEF CDEF from the MyButtonCDEF.rsrc file and paste it
into the application. Figure 2.36 shows the results.

107

More Mac Programming Techniques

MyButtonCOEF .rsrc

,)"0" 1,1111
,mt<llO)
CHP 01,2
JM[,) ...
CDEF

H

DITL

0 101 I I O I
0010 1001
0110 1010
00011 110

ZERO

~~
fill¢¢
CNTL

DLOG

M TestApp

.lHOV 11Al
0 101 I IOI
0010 1001 .JU<RO) 0 11 0 1010

'"' 01.,,':Z 000 1 1110
Jiii[,) 0 1000000 ...
CODE DATA

0 101 I I OI
00 101001
0 11 01010

~Ji 0001 1 110
01000000

OREL PICT

FIGURE 2.36 THE RESULT OF PASTING THE CDEf CODE RESOURCE

INTO THE APPLICATION'S RESOURCE FORK.

IE
dctb

@) .

SIZE

Now there's nothing left to do but give the program a test drive. Make
sure the speaker volume of your Mac is on so you can hear the system
alert sound that plays when a picture button is clicked on.

ADDING A SECOND BunoN ro MvTEsrAPP

Before jumping into a new CDEF, I'll cover Chapter l 's MyButtonCDEF.
In this section you'll see how a couple of simple changes to the resource
file of MyTestApp makes it possible to use MyButtonCDEF with any num­
ber of buttons.

Changing the MyTestApp Resource File

This chapter's version of MyTestApp displays a dialog box with two cus­
tom picture button controls in it. Because both controls in the
MyTestApp program use the same set of PICT resources, they look identi­
cal. It would be a simple matter to instead have the program d isplay two
different looking picture controls. To do so, I need to add another set of
four PICT resources (see Figure 2.37).

108

Chapter 2 Custom Controls and the CDEF

~19 PICTs from M TestRpp.11.rsrc

~ I

' - - - ___ _I
202

r-··--·················-·-···-·-···--···-···-·····-····1

i

I
i
i
I
!

t -..................................... .i
300

1------~- ----1

, ___________ !
302

!

IM*I !

, __ ---- _____ J
203

-
~ -....... !

301

, .. !

1

! l*MI !
l

L. .. ·--····-·····-·············-·· .. -················-·-..l
303

FIGURE 2.37 ADDING A SECOND SET OF PICT RESOURCES TO THE

MYTESTAPP PROJECT'S RESOURCE FILE.

After drawing the four pictures in my graphics program , I added each to
the resource file of the MyTestApp project. Figure 2.37 shows that each
of the four pictures has an arrow pointing to the left. I've kept the origi­
nal four pictures (with arrows pointing to the right) in the resource
file- you can see part of two of those PICT resources in Figure 2.37.

Next, I'll need to add a new CNTL resource so that one of the two
custom controls will use the new pictures. In the new CNTL, which I've
given an ID of 600, I'll change the Ref Con field value. Recall that the
Ref Con field specifies the ID of the base PICT to be used as the button.
Figure 2.38 shows how CNTL ID 600 would look.

109

More Mac Programming Techniques

CNTL ID= 600 from M Testnpp.n.rsrc

BoundsRect lo 11° 112 2
Ua lue lo
Ui s ible @True O Folse

Max 11
Min lo
Pr oclO 116000
Re f Con '300

To change the look of a button, enter
a new PICT ID in the RefCon field

I I so I ITill

FIGURE 2.38 ADDING A SECOND CNTL RESOURCE TO THE

MYTESTAPP PROJECT'S RESOURCE ALE.

Next, I need to change the CNTL resource ID of one of the two custom
con trol's in the DITL resource. Since I want the left button to display the
new left arrow picture, I'll change the ID listed in the left control. Figure
2.39 shows this change.

Building a New MyTestApp Application

To make the changes that were made to the MyTestApp resource file go
into effect, a new version of the MyTestApp application needs to be built.
When I use my development environment to do that, the MyTestApp.c
source code won ' t be recompiled. Instead, the build will j ust link the
altered MyTestApp resource file to the existing MyTestApp object code to
create a new application . After copying the existing CDEF resource from

110

Chapter 2 Custom Controls and the CDEF

MyButtonCDEF and pasting it into the new MyTestApp, launching the
application would result in a dialog box like the one in Figure 2.40.

= § D Ill ID = 128 from M TestRpp. rr .rsrc

-. Edit D Ill item #2 from M TestRpp. rr .rsrc

Resource ID: 1600

~-Co_n_t_r_o_l---...,.~I

[81 Enabled Top: ~'4_0_~

Le ft: .__I 1_0_0 _ __,

Height: 22

Width: SO

FIGURE 2.39 CHANGING THE RESOURCE ID OF A CONTROL DITL ITEM SO THAT THE ITEM

USES THE NEW CNTL RESOURCE.

FIGURE 2.40 THE DIALOG BOX DISPLAYED BY THE NEW VERSION OF MYTESTAPP.

111

More Mac Programming Techniques

T I P

Notice that the MyButtonCDEF project was not changed
in any way. The CDEF can be used as Is to handle any
number of picture buttons. To add more buttons or change
the look of existing ones, change the PICT .and CNTL
resources In the resource file of the application project
that uses the CDEF.

ADDING CONTROL VARIATION HANDLING TO

MvBunoNCDEF

Earlier in this chapter I mentioned that one CDEF can be made to han­
dle different types of controls. That's what the system CDEF resource
does. The System file CDEF with ID 0 handles push buttons, radio but­
tons. and check boxes. It can do this because it knows how to work with
variations of a control. In this section you'll see how you can easily give
your own CDEF the power to work with different variations of the picture
button control.

Changing the MyTestApp Resource File

While the MyButtonCDEF allows a picture button to take on any look,
it still supports only one type of control. Each button handled by
MyButtonCDEF will simply be a PICT resource drawn to a dialog box
or window. MyButtonCDEF could, however, be written in such a way
that it would give a programmer options on how a button should look
in an application. For instance, the MyButtonCDEF CDEF is written to
allow the use of a picture as a button. This type of control would be
considered the default control, and would have a variation value of 0.
This same CDEF could also be written such that a picture button con­
trol could be drawn with a title beneath it. If the button was to have a
title, the variation value would be 1. This situation is shown in Figure
2.41.

112

Chapter 2 Custom Controls and the CDEF

Variation 1: Variation 0:

Custom picture custom picture
button control, button control
with button title

D Dim Left Button Quit

FIGURE 2.41 ONE TYPE OF CONTROL CAN HAVE DIFFERENT VARIATIONS.

The CNTL is the resource that provides the details of what a custom con­
trol looks like. The P roe ID is the field of the CNTL that specifies which
CDEF should handle the control. But if one CDEF is to support multiple
variations of a control, how does o ne include this information in the
CNTL? The answer lies in the formula for determining the value of the
ProcID:

ProcID - (' CDEF ' ID * 16) + variation code

For a default control that simply displays a PICT resource, the variation
code will be 0 and the Pro c ID will be 16000; you've seen that earlier in
this chapter. If I want the custom control to display a picture and have a
Litle underneath it, I'll include the variation code in my calculation of th e
ProcID. Since I said that my new version of MyButtonCDEF will have
just one variation , the variation code will be 1:

ProcID - (' CDEF ' ID * 16) + variation code
ProcID - (1000 * 16 + 1
ProcID - 16001

113

More Mac Programming Techniques

Figure 2.42 shows how the CNTL resource would look for a custom con­
trol tha t is to display both a picture and a title.

§0 CNTL ID= 600 from MyTestRpp:JT.rsrc

BoundsRect I I so llliD
Uo lue

Ui s ib le @True O False

Mox

Min

ProclO

RefCon

Tit le

16001

300

ProcID
Pr ocID
ProcID

'CDEF ' ID * 16) + variation code
1000 * 16) + 1
16001

FIGURE 2.42 CHANGING THE CNTL PRoclD so THAT THE CUSTOM CONTROL

WILL BE GOVERNED BY A CONTROL VARIATION.

For some control variations, this change may be the only resource modi­
fication needed . For my button title example, however, I need to make
one o ther change: the addition of an STR resource.

If a custom control is to have a title, I'll include that title in an STR
resource. To associate the title with a particular control, I'll give the STR
resource the same ID as the PICT resource that holds the control's base
picture. Since the ID of the left arrow picture is 300, I'll g ive the new STR
resource an ID of 300 also (see Figure 2.43).

114

Chapter 2 Custom Controls and the CDEF

STRs from MyTestApp. n.rsrc
Size Name

300 7

~Im STR ID = 300 from M TestApp. n .rsrc

The String I Left
~========================:

Data $

FIGURE 2.43 CREATING THE STR RESOURCE THAT WILL HOLD

THE TITLE OF A BUTTON CUSTOM CONTROL.

N 0 T E

Giving a PICT resource and STR resource the same ID
doesn't provide any actual connection or association
between the two In the resource file. That pairing will be
made later, in the CDEF source code.

Changing the variation of a custom control involves changing at least
one resource-the CNTL resource-in the application project's resource
file. It may also require other changes, such as the addition of an STR
resource as shown above. Of course , in order for these changes to be
meaningful, there will also have to be some changes made to the CDEF
source code.

The CDEF Source Code for Control Variations

You saw that the MyButtonCDEF source code didn't make use of the first
parameter to main()-the sho rt parameter var_co de. Here's a
reminder of what the declaration of main () looks like:

pascal long main(short var_code.
Control Handle the_control .

115

More Mac Programming Techniques

short
long

message ,
msg_param

If a CD EF is to support control variations, it will use v a r _code to draw
the correct control. When the mouse button is clicked on a custom con­
trol, the Control Manager will use information from the control's CNTL
resource to determine which variation code sho uld be passed to the
CDEF main () routine . Figure 2.44 shows that it's the CNTL P roe ID
that holds the variation code.

BoundsRect

Uolue

Uis ible

Mo x

Min

Proc lO

Ref Con

Title

Left

lo
lo
@ True O Fals

CNTL ID = 500 from

BoundsRect

Uolue

Uisible

lo 11°
lo
@ True 0 Fals

pascal long main(short var_code,
ControlHandle the_control,
short message,
long msg_param)

FIGURE 2.44 THE PRoclD FIELD OF A CNTL RESOURCE DETERMINES WHICH CODE

VARIATION GETS USED.

116

Chapter 2 Custom Controls and the CIDEF

In the previous MyButtonCDEF example, ad rawCnt 1 message resulted in
a call to Draw_Control ().In this example CDEF, MyButtonVarCDEF, a
d rawCnt 1 message also results in a call to a drawing function. However,
where the previous CDEF only passed a control handle to the drawing rou­
tine, this chapter's CDEF will pass both the control handle and the varia­
tion code. Here's the snippet from main () that makes the call:

case drawCntl:
Draw_Control(the_control. var_code):
break:

MyButton VarCDEF is an adaptation of MyButtonCDEF. The changes that
need to be made to MyButtonCDEF in order for it to support variation
codes are minimal. You just saw the first change-Draw_Control ()
gets a second parameter passed to it. The other changes are to the
Draw_Control ()routine itself.

Draw_Cont ro 1 () determines which of the four PICT resources to
draw by first getting the resource ID of the base picture. That informa­
tion is held in the Ref Con field of the control's CNTL resource, and sub­
sequently in the cont r 1 Rf Con field of the control record. As you saw
earlier, a call to GetControl Reference() returns this value:

pict_ID = GetControlReference(control):

In the MyButtonVarCDEF, a call to GetControl Reference() will be
followed by an assignment statement.

short pict_ID:
short string_ID:

pict_ID = GetControlReference(control):
string_ID - pict_ID:

T I P

The assignment of st r in g_I D must be made just after the
Initial assignment of pi ct_ ID. The call to
GetControl Reference() returns the ID of the control's
base picture-and that's the ID of the control title STR ID.

117

More Mac Programming Techniques

Later In Draw_Control () pi ct_ID may change (to
pi ct_ID plus an offset). That new value won't be useful In
obtaining the STR ID.

There's one more addition I'll need to make to Draw_Control ().
After drawing the correct picture, Draw_Control () should examine
var _code to see if the control being drawn is a variant control. If
var _code has a value other than 0, it is. If var _code has a value of I,
My Button VarCDEF will need to draw a title under the button picture:

switch (var_code)
{

case 1:
Draw_Button_Title(saved_port. string_ID. control_rect):
break:

I could have used an i f statement to handle this single vari­
ation:

if (var_code == 1)
N O T E Draw_Button_Title(saved_port. string_ID.

control_rect >:

Instead, I choose to use a s w i t ch statement to show how
several different variation codes would be handled by a
CDEF.

Draw_Button_Title() is the only routine that's been added to
MyButtonCDEF to turn it into MyButtonVarCDEF. Before examining
that function, here's a look at the new version of Draw_Control ().
The few additions to MyButtonCDEF version have been printed in bold­
face type.

void Draw_Control(ControlHandle control. short var_code)
{

Graf Ptr
Re ct
short
PicHandle

118

saved_port:
control_rect:
pi ct_ID:
pict_handle:

}

Chapter 2 Custom Controls and the CDEF

short stri ng_ID:

if (C**control).contrlVis == CNTRL_INVISIBLE
return:

GetPortC &saved_port >:

pict_ID = GetControlReference(control):
string_ID = pict_ID:

control_rect = C**control).contrlRect:

if (Color_ls_On(control_rect) -=false
pict_ID += BW_OFFSET:

if C (**control).contrlHilite == inButton
pict_ID += DOWN_OFFSET:

pict_handle - CPicHandle)GetResource('PICT'. pict_ID):

if (pict_handle == nil)
ExitToShell():

DrawPicture(pict_handle. &control_rect):

if C C**control).contrlHilite == CNTRL_INACTIVE
Dim_ltem(control_rect):

switch (var_code)
{

}

case 1:
Draw_Button_Title(saved_port. string_ID. control_rect >:
break:

SetPortC saved_port):

If the clicked-on button has a variation code of l, (Draw_Button_
Title ()) will be called. Draw_But ton_ Title () has only one task: to
draw a title beneath a button's picture. Although it takes only a few lines
of code to perform this chore, Dr a w_B u t ton_ Ti t l e () consists of sev­
eral local variables and 18 lines of code. Here's a look at why
Draw_Button_Ti tl e() needs this extra baggage:

119

More Mac Programming Techniques

void Draw_Button_Title(GrafPtr the_port.
short string_ID.

{
Re ct control_rect

Save the current state of the graphics pen
Save the current font information
Set the graphics pen to its default settings
Set the font information to the desired values

Get a handle to the title string
Move the graphics pen such that the string will be centered
Draw the string
Release the string handle

Return the font information to the saved values
Return the graphics pen to its saved state

From the above comments you can see that much of the code in
Draw _Button_ Ti t 1 e () exists to ensure that when the function is com­
pleted, all drawing settings will be as they were when the function began.
Again, this is a courtesy to the calling application. When a user clicks on
a button, an application won't save the drawing information. So if my
CDEF code is going to alter the state of the graphics pen or the current
font, my CDEF should also restore all of this information when it is done.

Draw_Button_Ti tl e() uses a call to GetPenState() to preserve
the state of the graphics pen. To save the current font information,
Draw_Button_Ti tl e() looks at two fields of the current graphics
port; that's why the one of the function parameters is a Graf Ptr. After a
call to Pen Norma 1 () sets the graphics pen to its default settings, calls to
Text Font() and TextSi ze() set the font information for the text in
which the title will appear. Here's the part of Draw_Button_Title()
that takes care of these preliminary tasks:

Pen State
short
short

saved_pen_state:
saved_font:
saved_size:

GetPenState(&saved_pen_state >:
saved_font - the_port->txFont:

120

Chapter 2 Custom Controls and the CDEF

saved_size = the_port->txSize:
PenNormalC>:
TextFont(geneva):
TextSizeC 9 >:

Next comes the drawing of the title. First, Draw_Button_Title()
makes a call to the Toolbox routine GetStri ng ()to obtain a handle to
the title string. The value of the parameter to Get String (),
stri ng_ID, was found in Draw_Control () and passed to (Draw­
B u t ton Ti t 1 e ()) . Because Toolbox routines generally work with a
St r 2 5 5 or St r i n g Pt r, the string handle is dereferenced and the
resulting pointer is stored in the String Pt r variable button_t it 1 e:

StringHandle str_handle:
StringPtr button_title:

str_handle = GetString(string_ID >:
button_title - *str_handle:

Draw_Button_ Tit 1 e () now determines where to draw the string. First
the width of the button is calculated using the control's boundary rectan­
gle. Next, the center of the button is determined. Then, with the help of
the Toolbox function St r i n g W i d th () , the point to which the graphics
pen should be moved is figured, and the results are saved to the variables
x andy:

short
short
short

button_width:
center:
x, Y:

button_width = control_rect.right - control_rect.left:
center= control_rect.left + C button_width I 2 >:
x =center - (StringWidth(button_title) I 2 >:
y ~ control_rect.bottom + 12:

After moving the graphics pen, the button title is drawn. Since
Draw_Button_Ti tl e() declared and allocated memory for the string,
Draw_Button_Ti t 1 e () will clean up by releasing this memory with a
call to Rel ea seRes ou rce ():

121

More Mac Programming Techniques

MoveTo(x, y);
Drawstring(button_title >:
ReleaseResource(CHandle)str_handle);

Finally, Draw_Button_Ti tl e() restores the graphics pen settings and
the font information:

TextFont(saved_font):
TextSize(saved_size >:
SetPenStateC &saved_pen_state);

Herc's an uninterrupted look at the Draw_Button_ Tit 1 e () function.

void Draw_Button_TitleC GrafPtr the_port,
short string_ID,

Pen State
StringHandle
short
short
StringPtr
short
short
short

Rect control_rect

saved_pen_state:
str_handle:
saved_font:
saved_size:
button_title:
button_width:
center:
x. y;

GetPenStateC &saved_pen_state >:
saved_font = the_port->txfont:
saved_size = the_port->txSize:
PenNormal();
TextFontC geneva >:
TextSizeC 9):

str_handle - GetString(string_IO >:
button_title - *str_handle:
button_width - control_rect.right - control_rect.left:
center - control_rect.left + (button_width I 2):
x =center - (StringWidthC button_title) I 2 >:
y = control_rect.bottom + 12:
MoveTo(x, y):
Drawstring(button_title):
ReleaseResource(CHandle)str_handle >:

TextFont(saved_font):
TextSize(saved_size):

122

Chapter 2 Custom Controls and the CDEF

SetPenState(&saved_pen_state);

MyButton VarCDEF is derived from the MyButtonCDEF CDEF developed
in this chapter. Aside from the addition of a new function­
Draw_Button_Ti tl e()-the changes to MyButtonCDEF are minimal,
and have all been covered here. If you'd like to examine the entire
source code listing for the new CDEF, you '11 find it in the
MyButton VarCDEF.c file on the included disk.

Adding More Control Variations to a CDEF

A CDEF can support any number of variations. For example, you might
want to modify My Button VarCDEF so that it has separate variations for
different title sizes. Variation I could draw the button title in 9-point
Geneva-as it does now-while variation 2 could draw the title in 12-
point Chicago (the system font). To handle this second variation you
need to add another case label to the switch in Draw_Control ();

switch C var_code)
{

case 1:
title_font ... geneva:
title_size ... 9:
Draw_Button_Title(saved_port. string_ID. control_rect,

title_font. title_size):
break:

case 2:
title_font ... systemFont:
title_size ... 12;
Draw_Button_TitleC saved_port. string_ID. control_rect >:

title_font. title_size):
break:

From the above snippet you can also see that the (Draw_Button_
Title ()) routine now has five parameters instead of three. By passing
along the font information for the button title, (Draw_Button_
Title ()) becomes a more versatile function. Besides the addition of

123

More Mac Programming Techniques

the two new parameters, the only changes that would need to be made to
Draw_Button_Titl e() would be to the parameters to TextFont()
and TextS i ze():

voi d Draw_Button_Title (Graf Ptr
short
Re ct
short
short

the_port .
stri ng_ ID,
control _rect,
titl e_fo nt,
title_size)

{

}

II Local variables
II Save pen and font informat i on

Tex tFont(title_font);
TextSize(title_s ize);

II Draw tit l e
II Resto re pen and fo nt information

To make use of this new control variation, I would j ust have to modify the
CNTL resource for one of the custom controls in the resource fil e of the
MyTcstApp proj e ct. If I gave CNTL 500 a Pro c ID of 16002, the
MyButtonVarCDEF would be used with a variation code of 2 for the right
arrow button. The dialog box posted by MyTestApp would then look like
the one in Figure 2.45.

FIGURE 2.45 THE DIALOG BOX DISPLAYED BY THE NEW VERSION OF MYTESTAPP.

124

Chapter 2 Custom Controls and the CDEF

CHAPTER SUMMARY

While the Macintosh Toolbox makes it easy to create all of the standard
controls, such as buttons and check boxes, it has no provisions for letting
a programmer quickly and easily create fancier controls. Instead, a pro­
grammer must create a CDEF code resource to carry out this task. A
CDEF consists of a control definition function that describes how a con­
trol should be drawn and how it should be handled.
Like an MDEF, a CDEF is code that exists outside and apart from the
code of an application. With a CDEF, it is a mouse click on an applica­
tion's custom control that causes this external code to execute. The
Control Manager is responsible for invoking the CDEF code and for
returning authority to the application after the control has been han­
dled.

After writing the source code that will serve as the CDEF code
resource, your developmental environment will turn that source code
into a code resource. It will then be your job to copy this code resource
and paste it into the resource fork of the application that uses the custom
controls.

125

Chapter

MORE CUSTOM CONTROLS: SLIDERS

A control definition function, or CDEF, can be written such that it works
with any kind of custom control, not just buttons. Sliders are a type of
control that seems very "Mac-like," yet there is no resource type or tool­
box functions that readily allow sliders to be added to programs. In this
chapter you'll see how a CDEF can be written. to support the use of slid­
ers in any Mac application.

Because Chapter 2 supplied you with the foundation for developing
control definition functions, the basics of how a slider control is created
will be familiar to you. A slider, however, is more complex than the sim­
ple picture buttons developed in Chapter 2, so there will be plenty of
new topics to explore.

127

More Mac Programming Techniques

THE CDEF AND SLIDER CONTROLS

The dragging of a slider's thumb, or indicator, can be accomplished in a
number of ways. In this chapter you' ll see a few different ways of imple­
menting a horizontal slider like the one pictured in Figure 3.1.

OK

FIGURE 3.1 A TYPICAL SUDER CONTROL IN A DIALOG BOX.

Drawing the Slider Control and Indicator

A slider consists of two separate parts. The indicator, or thumb, of the
con trol is the part the user clicks on and drags. The control itself-the
path on which the thumb travels-is the other slider part. As it is for all
custom controls, it is the responsibili ty of the con trol definition function
to draw the parts of a slider. When the main () function of a CDEF
receives a d rawCt l message, the CDEF can use a series of QuickDraw
calls to draw the par ts of the control, or, as I'll do in this chapter, the
CDEF can display pictures that are stored in PICT resources.

Typically, a slider conu·ol that is drawn with the use of pictures will
use two PICT resources- one for the con trol and one for the indicator. If
a CDEF is to support drawing to both color and monochrome screens,
four pictures should be available to the applicatio n. Depending on the
color level of the monitor, the application will use one pair or the other
from the four pictures. Figure 3.2 shows a set of fo ur PICTs used to draw

128

Chapter 3 More Custom Controls: Sliders

the control and slider in Figure 3.3. Figure 3.3 shows the same dialog box
on both a color monitor and a monochrome monitor.

PICTs from M...Y_TestApp.n.nrc

t J

,,:! :. .. :
200 201

202 203

FIGURE 3.2 THE APPLICATION PROJECT'S RESOURCE FILE WILL HOLD

A SET OF FOUR PICTURES FOR A SINGLE SLIDER.

When a con trol that is to be used as a slider is added to a DITL resource,
its size will be determined by the CNTL resource referenced by the con­
trol DITL item. This is as it was for Ch apter 2's picture button controls.
The size of th e control should be the size of the slider's path-the con­
trol picture. An example of this is in Figure 3.4.

129

More Mac Programming Techniques

PICT 202 PICT 200

OK

PICT 203 PICT 201

FIGURE 3.3 Two PICTURES WILL BE USED FOR A COLOR SUDER, AND TWO DIFFERENT

PICTURES WILL BE USED FOR A BLACK•AND-WHITE SLIDER.

i.. 220 pixels

14 pixels j_ I =o

0 CNTL ID 300 from MyTestRpp. Tr .rsrc

BoundsRect lo 11° 111 4 11 220 llliD -0
r-1

FIGURE 3.4 THE CNTL RESOURCE ESTABLISHES THE SIZE OF A SUDER.

The color control can be drawn in a graphics program and pasted it into
a resource file . After that, the thumb should be drawn in the graphics

130

Chapter 3 More Custom Controls: Sliders

program, right on top of the control. Figure 3.5 shows an enlarged view
of a thumb drawn in a control.

--=-~-~-·-----==-_:.____ __ _

p
~ A
~ ,,.~

i!i t 'g
'-~

Cl Cl

Slider Picture ut 800%

FIGURE 3.5 A GRAPHICS PROGRAM SHOULD BE USED TO DRAW THE SLIDER'S THUMB,

When the slider control's indicator picture is copied from the graphics
program, the selection rectangle used sh o uld be just the size of the
thumb. Figure 3.6 shows the thumb being selected. After pasting the
indicator p icture into the application project's resource file, the same
steps should be taken to create and save two black-and-white pictures.

When it comes time to update the entire control, the CDEF will first
use a call to DrawPi cture() to draw the larger control picture, and
"stamp" the thumb picture on top of the control picture using a second
call to D r aw P i ct u r e () .

The Slider Resources

A slider may or may not require PICT resources; it depends on how the
programmer ch ooses to implement the drawing of the slider. But a slider
will always need a control item in a DITL resource and a CNTL

131

More Mac Programming Techniques

resource-as did the picture button controls in Chapter 2. Figure 3.7
sho\\·s a conu·ol item in a DITL. In the figure you can see that informa­
tion about this DITL item can be found in the CNTL resource with an ID
of ~OO.

p
~A
& ·rn
a fl 'g
'-.... --.....

CB

Slider Picture at 8003 --~ ------- -- -
=-==- - --

FIGURE 3.6 THE SELECTION OF THE THUMB SHOULD BE MADE JUST INSIDE

THE BOUNDARIES OF THE CONTROL.

You\·e already seen that the BoundsRect of a CNTL holds the size of a
control item. For some controls, such as a slider, the Va 1 ue, Ma x, and
Min fi e lds become important. Together, these three values determine the
curr<"nt location of the thumb within a slider con trol. T he Min and Max
fie lds hold the range of numbers that the Va 1 ue field can have. In
Figure 3.8 you can see that the thumb of the slider that uses CNTL 300
will have a range of 100 and is initially located at the dead center of the
con trol.

The Value field of the CNTL resource provides the initial location of the
thumb in the control. This value gets copied to the slider's control record. As
the user drags the thumb of a slider, calls to Se tCont ro 1Va1 ue () will
update this value in the control record.

132

Chapter 3 More Custom Controls: Sliders

Dills from MyTestApp.n.rsrc

.!2. Size Name

128 34 I
Dill ID = 128 from MyTestApp:rr.rsrc

'--1

r~::.w

~¥4 ¥§ Edit DITL item #2 from "'!.!l._TestApp.n.rsrc

Resource ID: 13DO I
'-- I Control ..-1

181 Enabled Top: 140 I Bottom: 54

Left: 130 I Right: 250

flGURE 3. 7 THE INFORMATION ABOUT A CONTROL ITEM IS STORED IN A CNTL RESOURCE­

RESOURCE 300 FOR THIS EXAMPLE.

§0

BoundsRect

Ualue

Uisib le @True

Max 1100

Min lo

This number yields the current location
of the thumb in the slider control

MyTestApp.11.rsrc

I 11 11 220 llliD
O False

IJ I

Max - Min gives the range of
numbers that value can have

FIGURE 3.8 THE CNTL RESOURCE SUPPLIES INFORMATION ABOUT THE RANGE AND

PLACEMENT OF A CONTROL'S INDICATOR.

133

More Mac Programming Techniques

The P roe ID of a slider's CNTL resource indirectly holds the resource
ID of the CDEF code resource that governs the slider. In Figure 3.9 P roe ID
has a value of 8000, telling you that the CDEF resource ID for this CNTL
must be 500 (8000 I 16 = 500).

The Ref Con for a CNTL can be used to hold any information that a
custom control will need. For the slider, I'll use the RefCon to hold the
resource ID of the base picture of the set of four PICT resources. Figure
3.9 shows that this slider uses pictures beginning with PICT resource 200.

§[i] CNTL ID = 300 from M TestApp.11.rsrc

BoundsRect lo 11 ° 1111 11220 llliD
Uolue Isa
Ui s ib le @True O False

Mo x 100

Min 0

ProclO 8000

RefCon 200

Tit le

FIGURE 3.9 THE COMPLETED CNTL RESOURCE, WITH A REFCON VALUE OF 200.

SLIDER CONTROL SOURCE CODE

When a user clicks the mouse on a control indicator and begins drag­
ging the mouse, an outline-or gray area- the size of the indicator fol­
lows the movement of the mouse. This is evidenced when you move the
thumb of a scroll bar in a typical Macintosh application. Figure 3.10
shows what the scroll bar of a word processor document looks like as the
thumb is being dragged.

134

Chapter 3 More Custom Controls: Sliders

November

December

Total

Rnnual Report

50.6

62.5

537.4

112.0

205.0

1342.3

322.s

405.4

3455.1

FIGURE 3.10 TYPICALLY, AN INDICATOR THAT IS BEING DRAGGED WILL

DISPLAY A GRAY OUTLINE OF THE THUMB.

In this section I'll develop the source code for a CDEF named MySlider
GrayCDEF. It uses this style of dragging for horizontal sliders like the one
pictured in Figure 3.11.

OK

FIGURE 3.11 THE MYSUDERGRAYCDEF SUPPORTS THE OUTLINED DRAGGING OF A THUMB.

The Slider CDEF Entry Point

All control definition functions can make use of the format of the
main () routine discussed in Chapter 2-regardless of the type of cu s-­
tom control the definition is supporting. So this chapter's slider example
will have a main () [unction that looks much like the o ther CDEF entry
points you've seen:

135

More Mac Programming Techniques

pascal long main(short var_code.

{

}

Control Handle the_control.
short message.
long msg_param

long return_val = OL:
unsigned long high_bit:
unsigned long strip_bit:

switch (message)
{

case testCntl:
return_val = Test_ControlC the_control. msg_param):
break:

case calcThumbRgn:
Calc_Thumb_Region(the_control. (RgnHandle)msg_param >:
break:

case calcCRgns:
high_bit - (unsigned long)msg_param & Ox80000000:
if C high_bit == Ox80000000)
{

strip_bit = (unsigned long)msg_param & Ox7FFFFFFF:
Calc_Thumb_Region(the_control. CRgnHandle)strip_bit >:

}

break:

case thumbCntl:
Calc_Thumb_Drag_Limits(the_control.

CThumbDraglnfo *)msg_param >:
break:

case posCntl:
Position_Thumb(the_control. msg_param >:
break:

case drawCntl:
Draw_Control(the_control >:
break:

return (return_val >:

136

Chapter 3 More Custom Controls: Sliders

A slider control will need to respond to more message types than a but­
ton control because the slider has more parts: The slider has both a con­
trol and an indicator, while the button has just the picture that repre­
sents the button. While the above main () function handles six message
types, it's not uncommon for a slider control to watch for other messages
as well. Later in this chapter you'll see other slider control messages,
including dragCntl and cal cCntl Rgn~

The six messages handled by the ma i n () routine of
MySliderGrayCDEF, and the functions each message invokes, are covered
on the next pages. As an overview, I'll briefly describe each message here.

As was the case in the Chapter 2 examples, the Control Manager sends
the CDEF a testCntl message when a mouse click needs to be tested to
see if it occurred in the boundaries of a control. When the Control
Manager sends this message, it will also send the coordinates of the mouse
click in the msg_pa ram parameter.

When a user clicks on the thumb of a slider control and drags the
mouse, the CDEF will be called several times, with different message
types. The testCntl message will be sent to see if the cursor was over
the thumb. If it was, the region in which the thumb is currently located
needs to be calculated. When dragging an indicator, the Control
Manager works with a region rather than a rectangle. If the user's Mac
has 24-bit addressing, the CDEF will be called with a ca 1 cCRgns mes­
sage. If the Mac has 32-bit addressing turned on, the message will instead
be a ca 1 cThumbRgn.

As the user drags the mouse, thumbCnt 1 messages will be sent to the
CDEF to draw an outline of the thumb. Only when the user releases the
mouse will a po s C n t 1 message be sent to reposition the thumb. The
routine that handles a po s C n t 1 message will calculate the new, final
position of the thumb and will then send the CDEF a drawCntl mes-,
sage to do the actual drawing.

A message type of drawCntl is sent to the CDEF by the Control
Manager when either the control or the thumb needs to be drawn-the
msg_param value indicates which. Ifa msg_param value ofO accompanies

137

More Mac Programming Techniques

the d rawCnt l message, the control needs to be drawn. If msg_pa ram has
a value of 129, then the thumb should be drawn.

The six messages sent to the MySliderGrayCDEF CDEF are summa­
rized in Figure 3.12.

I I
testCntl

~ ... , Was the mouse click on
the thumb?

I II

calcCRgns (24-bit) or
calcThumbRgn (32-bit)

~ If the mouse click was on
the thumb, calculate the
region occupied by the
thumb

I I

thumbCntl

~ •• I
Using the calculated thumb
region, draw a gray outline
of the thumb as it's dragged
in the control

I ~
posCntl

~ Send a drawCntl message
to reposition the thumb when
the mouse button is released

FIGURE 3.12 SEVERAL MESSAGE TYPES ARE INVOLVED IN THE DRAGGING OF AN INDICATOR.

Taking Care of the Preliminaries

MyS!iderGrayCDEF makes a call to Gestalt () to see if the system it's
running on has a color monitor, so it includes the GestaltEqu.h header
file:

#in clude <GestaltEqu.h>

138

Chapter 3 More Custom Controls: Sliders

MySliderGrayCDEF is the first CDEF example that declares its own data
structure. The Thumb Drag Info struct will be used to hold information
that tells the CDEF in what boundaries the user can drag the thumb:

typedef struct
{

Rect limitRect:
Rect slopRect:
short axis:

} ThumbDraglnfo:

This CDEF uses a PICT numbering scheme similar to the one used for
picture buttons. The resource ID of the PICT used as the control on
color systems is considered the base ID. The black-and-white version of
that picture has an ID one greater than the base picture, while the color
picture used for the thumb has an ID two greater than the base picture.
The black-and-white version of the thumb picture has an ID one greater
than the color version. That numbering sequence is summed up in three
fld e f i n e directives:

f/defi ne
fldef i ne
fldefi ne

CONTROL_BW_OFFSET
THUMB_OFFSET
THUMB_BW_OFFSET

1
2
1

MySiiderGrayCDEF consists of main () and seven other functions.
You've seen Co 1 or _I s_On () in Chapter 2, so it won't be discussed in
this chapter.

void
long
void
void
void
Re ct
Boolean

Draw_Control(ControlHandle >:
Test_Control(ControlHandle. long):
Calc_Thumb_Region(ControlHandle. RgnHandle >:
Calc_Thumb_Drag_Limits(ControlHandle. ThumbDraglnfo *):
Position_Thumb(ControlHandle. long):
Calc_Thumb_Rect(ControlHandle):
Color_ls_On(Rect >:

Calculating the Thumb Rectangle

Many of the actions that take place in a slider are dependent on the size
of the rectangle that encloses the control's indicator. In order to elimi-

139

More Mac Programming Techniques

nate redundant code, MySliderGrayCDEF has a utility routine named
Ca 1 c_ Th umb_Rect () . You'll come to see that Ca 1 c_ Thumb_Rect ()
gets invoked by four of the functions in the CDEF.

Cal c_Thumb_Rect() begins by determining the width of the
thumb. That's done by obtaining a handle to one of the thumb pictures
(they're both the same size) and examining the pi cFrame field of the
P i ct u re data structure.

short
PicHandle
Re ct
short

pi ct_ID;
pict_handle:
pict_rect:
thumb_width:

pi ct_ID ""' GetControl Reference(control) :
pict_ID +- THUMB_OFFSET:
pict_handle = CPicHandle)GetResource('PICT', pict_ID);
if (pict_handle nil)

ExitToShell():

pict_rect - (**pict_handle).picFrame:

thumb_width = pict_rect.right - pict_rect.left;

The thumb_wi dth variable will be used a little later in the function. Before
that time, the pixel width of the entire control is needed. That value can be
obtained from the contrl Rect field of the control record. Figure 3.13 is a
reminder of where the pixel coordinates of the control originated.

Rect control_rect:
short control_pixel_width;

control_rect - (**control).contrlRect:
control_pixel_width - control_rect.right - control_rect. left:

The control uses the contrl Value member of the control record to
keep track of the location of the thumb. This number only has meaning
in the context of the range of values that the control can have. After
using the minimum and maximum control values to determine the
range, the current control value is used to see how far the thumb is offset
from the minimum value. Then a ratio is calculated. In Figure 3.14 you

140

Chapter 3 More Custom Controls: Sliders

can see that the initial position of the thumb is at the center of the con­
trol. This won't be the case for the duration of the CDEF execution-the
cont r 1Va 1 ue will be changing as the thumb moves.

Edit Dill item #2 from MyTestApp:rr.rsrc

Resource ID: 1300

..---C-o-nt_r_o_l ___ --r~l

181 Enabled Top: 140 Bottom: 54

Left: 130 Right: 250

~ ~
control_pixel_width 250

control_pixel_width 220

FIGURE 3.13 THE CONTROL ITEM IN THE DITL RESOURCE PROVIDE

THE ORIGINAL BOUNDARIES OF A CONTROL.

short
short
fl oat

control _unit_width;
cont rol _offset;
ratio;

control _unit_width - (**control) . contrlMax -
(**control).contrlMin :

- 30

control _offset - (**control) . contrl Value - (**control) . contrlMin;
ratio - (float)control_offset I (float)control_unit_width;

Cal c_ Thumb_ Rect() calculates a ratio because the control's value is
relative to the control's minimum and maximum settings, not to any
pixel numbering. The ratio can be used with pixel values to determine
the pixel center of the thumb:

short thumb_center ;

thumb_center - control _rect.left + (ratio* cont rol_pixel_width) ;

141

More Mac Programming Techniques

§0 CNTL ID= 300 from MyTestApp.'Jf.rsrc

BoundsRect

Ualue

Uisible

Ir! M~x
~Min

11220

@True

I 100

lo
l.....----------------------------~

control_unit_width
control_unit_width

100 - 0

100

control_of f set
control_of fset

so - 0

so

FIGURE 3.14 THE CNTL MIN AND MAX FIELDS PROVIDE THE RANGE IN WHICH A THUMB

CAN TRAVEL-THE VAWE FIELD GIVES THE THUMBS INITIAL PLACEMENT IN THAT RANGE.

Carrying on with the numbers used in the example, the thumb's horizon­
tal center is at pixel 140-midway between the control's left side at 30
pixels and its right side at 250 pixels. Figure 3.15 points this out.

thumb_center = control_rect.left + (ratio* control_pixel_width
thumb_center = 30 + (0.5 * 220)
thumb_center = 140

After the horizontal midpoint of the thumb rectangle has been deter­
mined, it's a simple task to find the four rectangle boundaries. The
previously calculated thumb_wi dth is used to determine the left and
right boundaries. Since I always create a thumb that rests in the con­
trol one pixel from the top and one pixel from the bottom, rn use the
control's rectangle to calculate the thumb rectangle's top and bottom
coordinates.

Rect thumb_rect:

thumb_rect.left = thumb_center - (thumb_width I 2);
thumb_rect.right - thumb_rect.left + thumb_width:
thumb_rect.top = control_rect.top + 1:
thumb_rect.bottom - control_rect.bottom - 1:

142

Chapter 3 More Custom Controls: Sliders

control_rect.left

(30)

• control_pixel_width

'-, ...
(220)

J

•
thumb_center

(140)

..

FIGURE 3.16 THE THUMB'S PIXEL LOCATION IS CALCULATED BY CALC_THUMB_RECT{).

You'll find that all six messages handled by MySliderGrayCDEF use
Ca 1 c_ Thumb_Rect (); that's why I've elected to describe the routine in
such detail. Here's a look at the entire Ca 1 c_ Th umb_Rect () listing.

Rect Calc_Thumb_Rect(ControlHandle control)
{

short
PicHandle
Re ct
short
short
Re ct
Re ct
short
short
short
fl oat

pict_ID:
pict_handle:
pict_rect:
thumb_width:
thumb_center:
thumb_rect:
control_rect:
control_pixel_width:
control_unit_width:
control_offset:
ratio;

pict_ID - GetControlReferenceC control >:
pict_ID += THUMB_OFFSET:
pict_handle - (PicHandle)GetResourceC 'PICT', pict_ID):

143

More Mac Programming Techniques

if C pict_handle ==nil)
ExitToShell();

pict_rect = (**pict_handle).picFrame;

thumb_width = pict_rect.right - pict_rect.left;

control_rect =(**control).contrlRect;
control_pixel_width = control_rect.right - control_rect. left;

control_unit_width = C**control).contrlMax -
C**control).contrlMin;

control_offset = (**control).contrlValue -
(**control).contrlMin;

ratio= (float)control_offset I Cfloat)control_unit_width;

thumb_center = control_rect.left + (ratio*
control_pixel_width);

thumb_rect.left = thumb_center - (thumb_width I 2 >:
thumb_rect.right = thumb_rect.left + thumb_width;
thumb_rect.top = control_rect.top + l;
thumb_rect.bottom = control_rect.bottom - l;

return (thumb_rect);

Handling a testCntl Message

A click of the mouse requires that the CDEF compare the point of the
mouse click with the current location of the control's thumb. You'll
recall from Chapter 2 that a tes tCnt 1 message sends the mouse click
coordinates in the ms g_pa ram parameter. Calls to Hi Word () and
Lo Word () extract these coordinates. After making a call to
Cal c_Thumb_Rect(), a call to PtlnRect() should be made to com­
pare the location of the mouse click to the coordinates of the thumb. If
the click was in the thumb, a value of i nThumb should be returned to
main () . The Control Manager will see to it that this value is entered into
the contrl Hi 1 i te field of the slidees control record.

long Test_Control(Control Handle control. long mouse_loc
{

144

}

Chapter 3 More Custom Controls: Sliders

Point the_point;
Rect thumb_rect;

the_point.v = HiWord(mouse_loc);
the_point.h = LoWord(mouse_loc);

thumb_rect = Calc_Thumb_Rect(control):

if (PtlnRect(the_point. &thumb_rect))
return (inThumb);

else
return (0);

r21
MySllderGrayCDEF assumes that the slider will always be
visible and active. If you'd like to change these assumptions,
add the tests of the control record cont r 1 Vi s and
cont r 1Hi1 i te fields, as you saw in the Test_Cont ro 1 ()
routine of the Chapter 2 CDEF MyButtonCDEF.

N 0 T E

Calculating the Thumb Region

After a call to Test_ Cont r o 1 () confirms that a mouse click has
occurred in the thumb of a slider, the Control Manager will again invoke
the CDEF. This time the Control Manager will be interested in obtaining
the region occupied by the thumb. As mentioned, the Control Manager
likes to work with an indicator's region rather than its rectangle. Once
the bounding rectangle of the thumb is known, calculating the region is
easy. Passing a region handle and a rectangle to the Toolbox routine
Re ct Rgn () will take care of this task. Re ct Rgn () will set up the region
structure that the handle references such that it has the coordinates of
the rectangle. In Ca 1 c_ Thumb_Regi on () you see the first use of the
Cal c_Thumb_Rect() routine:

void Calc_Thumb_RegionC Control Handle control.
RgnHandle indicator_rgn

{
Rect indicator_rect:

indicator_rect = Calc_Thumb_RectC control);

145

More Mac Programming Techniques

RectRgn(indicator_rgn, &indicator_rect >:

Converting a rectangle to a region is easy. Getting to the
Ca 1 c_ Thumb_Regi on () routine that accomplishes this takes a little bit
of work, though. In the days prior to 32-bit addressing, some data struc­
tures and Toolbox routines used the high order bit of an address for spe­
cial nonaddress purposes. Now that new Macintoshes require all 32-bits
for use in addressing, these old scheme's don't work. Calculating the
region of the thumb of a control is one such instance where this 24-
bit/32-bit conflict has to be handled.

For a CDEF running on a Mac that has 32-bit addressing turned on,
things are very simple. If the Control Manager needs the region of a con­
trol's thumb, it sends a cal cThumbRgn message. The msg_param field
will hold an address that can be typecast to a handle to a region. It will be
the job of the CDEF to calculate the thumb's region boundaries and to
place these values in the data structure that the region handle indirectly
points to. For a ca 1 cThumbRgn message, the main () routine should
simply call the region-calculating routine Cal c_Thumb_Regi on():

case calcThumbRgn:
Calc_Thumb_Region(the_control, (RgnHandle)msg_param):
break:

If the Control Manager instead needs the region of the entire control, it
sends a cal cCntl Rgn message. In this case the msg_param again holds
a handle to a region, but the region data structure should be filled with
the boundaries of control. Since MySliderGrayCDEF never needs to cal­
culate the reg-ion of the entire control, it doesn't handle a
cal cCntl Rgn message.

Before 32-bit addressing, the Control Manager would send a
ca 1 cCRgns message to a CDEF to indicate that it needed the region of
either a control's thumb or of the control itself. The ca 1cCnt1 Rgn and
ca 1 cThumbRgn that were added after the arrival of 32-bit systems would
be ignored on older 24-bit systems. Because addresses only occupied 24
of the 32 bits of a 1 ong word, the Control Manager felt free to embed
extra information in the unused upper bits of a long. For the

146

Chapter 3 More Custom Controls: Sliders

msg_pa ram parameter of a cal cCRgns message, the Control Manager
uses the upper bit to hold a flag that indicates whether the thumb region
or the control region should be calculated. Figure 3.16 shows how the
msg_pa ram holds this information on a 24-bit system.

Macintosh With 24-blt Addressing

The 32 bits of rnsg_param

Li LJ ~
=i= 1===1 ========' L-/

D
Q ~

Lower 24 bits:
Region handle-address
of a pointer to a region

Upper 1 bit:

If a 1-assign region the boundaries of the thumb
If a 0-assign region the boundaries of the control

Pointer to
region

Region
data

structure

FIGURE 3.16 THE BIT VAWES OF THE LONG VARIABLE MSG_PARAM HOLD

TWO KEY PIECES OF INFORMATION.

On a 24-bit system it is the responsibility of the CDEF to determine which
region is to be calculated. The CDEF can do this by examining the value
of only the high bit of the msg_pa ram long word. That's done by mask­
ing out all of the lower 31 bits, as shown here:

unsigned long high_bit:

high_bit - (unsigned long)msg_param & Ox80000000;

If the result of the masking operation is a hi g h_b i t value the same as
the mask, the highest bit of msg_pa ram is a one. That means the

147

More Mac Programming Techniques

Control Manager wants the region of the thumb. The CDEF can then cal­
culate this region using the same routine that handles a ca 1 cThumbRgn
on 32-bit systems-Calc_Thumb_Region(). Before making a call to
this function, the highest bit-the flag-should be stripped off of
msg_param. The resulting value is the address that will serve as the
region handle.

If the original masking of the high bit results in a value other than
the mask, the high bit is a zero. This reveals that the Control Manager is
interested in the region of the entire control, not the region of the
thumb. Again, MySliderGrayCDEF doesn't work with the region of the
control, so this result is ignored. Here's how a ca 1 cCRgns message is
handled in the ma i n () routine of MySliderGrayCDEF:

unsigned long high_bit:
unsigned long strip_bit:

case calcCRgns:
high_bit ~ (unsigned long)msg_param & Ox80000000;
if C high_bit Ox80000000)
{

strip_bit - (unsigned long)msg_param & Ox7FFFFFFF;
Calc_Thumb_Region(the_control. CRgnHandle)strip_bit);

}
break:

Handling a thumbCntl Message

When a control's thumb has been clicked on, the Control Manager will

send the control definition function ad ragCnt 1 message. If the CDEF
handles this type of message, the CDEF gets the opportunity to perform
thumb dragging in whatever way it sees fit. MySliderGrayCDEF doesn't
support custom dragging, so this message will be ignored. Later in this
chapter you'll see code for a CDEF that does perform custom dragging.
If the CDEF ignores dragCntl messages, the Control Manager will use the
Toolbox routine TrackControl () to handle thumb dragging.
TrackControl () is the routine that draws the gray outline of an indi­
cator as it's dragged about the control. This is how MySliderGrayCDEF
handles thumb dragging.

148

Chapter 3 More Custom Controls: Sliders

To draw a properly sized outline of the thumb, TrackControl ()
needs to know the size of the indicator. To get this information,
Trac kCon t ro 1 () will issue a call to the CDEF, passing a ca 1 cCRgn s or
ca 1 cThumbRgn message.

Before beginning to track the cursor as the user drags the mouse,
Track Cont r o 1 () needs to know the rectangle to which dragging
should be constrained. As the user moves the mouse within this rectan­
gle, TrackControl ()will continuously draw the outline of the thumb.
Should the user move the mouse out of this rectangle,
TrackControl ()will know that the outline should not be drawn.

Your first thought might be to simply make the dragging rectangle
the size of the control's rectangle. After all, that's the logical confines of
the thumb. Unfortunately, things aren't quite that easy. As its point of ref­
erence, TrackControl () uses the mouse location at which the mouse
click took place. If, for example, the left boundary of the dragging rec­
tangle was the left boundary of the control, TrackControl () would
allow dragging from the point of the mouse click up to the left edge of
the control. As shown in Figure 3.17, the result would be that the thumb
could be dragged past the left edge of the control.

To alleviate this potential problem, the Control Manager uses a data
structure to hold more accurate information about the constraints it
should apply to thumb dragging. The St r Uc t that it uses has the follow­
ing three fields:

Re ct
Re ct
short

limitRect:
slopRect:
axis:

The 1 i mi t Re ct field is the rectangle that holds the screen coordinates
of the rectangle to which dragging will be confined. This rectangle will
be the size of the control's boundary rectangle, inset some amount to
prevent the situation shown in Figure 3.17.

The s 1 op Re ct is a rectangle that can be a little larger than the
1 i mi tRect rectangle. This rectangle can be used to add a little play,
or slop, to the user's movement of the mouse. As a consideration to
the user, the s 1 op Re ct will let the user drag the mouse slightly past

149

More Mac Programming Techniques

the edge of the control, but still constrain the display of the thumb to
the control.

~

LI~

•

Dragging limits are
relative to the
location of the mouse
click on the thumb

If the drag limit was
set to the control's
edge, part of the
thumb could drag off
the control

FIGURE 3.17 THE DRAGGING LIMITS OF A THUMB MUST BE INSET FROM THE CONTROL

BOUNDARIES OR THE THUMB CAN BE DRAGGED OUTSIDE THE CONTROL.

The final struct member, axis, names the axis to which the user may
drag the control. For a horizontal control like the one used in
:\1lySiidcrGrayCDEF, the thumb should be limited to horizontal motion.
One of three Apple-defined constants can be used for this field:
noConstraint,hAxisOnly,orvAxisOnly.

To get all of the information that's held in the struct, the Toolbox
sends the CDEF a thumbCntl message before dragging begins. Along
with this message, the Toolbox sends a pointer to a struct in the long
parameter ms g_pa ram. It is the job of the control definition function to
fill in the fields of the structure that this pointer points to. To do that,

150

Chapter 3 More Custom Controls: Sliders

MySliderGrayCDEF defines a data type that matches the format of the
struct the Toolbox is looking to fill. While this struct can be given
any name, it must have the three fields shown here:

typedef struct
{

Rect limitRect:
Rect slopRect:
short axis:

} ThumbDraglnfo:

When a thumbCntl message is received, the main() function of
MySliderGrayCDEF calls a routine named Ca 1 c_Thumb_Drag_L i mi ts ().
The second parameter to this function is msg_pa ram, typecast to point to
a ThumbDraginfo struct:

case thumbCntl :
Calc_Thumb_Drag_Limits(the_control.

CThumbDraglnfo *)msg_param >:
break:

Here's how Calc_Thumb_Drag_Limits() receives the parameters
that are passed to it:

void Calc_Thumb_Drag_Limits(Control Handle control.
ThumbDraglnfo *thumb_drag_struct

It is the job of Ca 1 c_ Thumb_Drag_L i mi ts () to fill the three fields of
the ThumbDrag Info struct. Before writing any values to these members,
the routine first extracts one piece of information that the Control
Manager has supplied in the struct. The first field, 1 i mi tRect, holds
the coordinates of the mouse click. Since the thumb will be constrained
to horizontal motion, the routine is only interested in the horizontal
location of the mouse click. Here's how that information is obtained:

short mouse_click_h:

mouse_click_h = C*thumb_drag_struct).limitRect.left:

Ca 1 c_ Thumb_Drag_L i mi ts () will also need the pixel coordinates of
the thumb and of the control:

151

More Mac Programming Techniques

Rect control_rect:
Rect thumb_rect:

thumb_rect - Calc_Thumb_Rect(control >:

control_rect - (**control).contrlRect:

Figure 3.18 shows the coordinates that are important to determining the
dragging rectangle. I've included an arbitrary pixel value for each, after
making the assumption that the control has a width of 220 pixels and
thal the thumb has a width of 40 pixels. I'll use those values in the
remainder of this discussion.

control_rect.left mouse_click.h control_rect.right

(30)

•

0

thumb_rect.left

(120)

(150) (250)
4~ •

•
thumb_rect.right

(160)

FIGURE 3.18 SEVERAL COORDINATES ARE IMPORTANT IN THE DETERMINATION OF

THE DRAGGING RECTANGLE OF A THUMB.

The rectangle that serves as the boundary for thumb dragging will be
close to the size of the control rectangle, but not as big. Its coordinates
will be dependent on the location of the thumb and the cursor location
over the thumb when the mouse was clicked. Here's how the left and
right boundaries are found:

152

Chapter 3 More Custom Controls: Sliders

Rect bounds_rect:

bounds_rect.left = control_rect.left +
(mouse_click_h - thumb_rect.left):

bounds_rect.right - control_rect.right -
(thumb_rect.right - mouse_click_h):

Using the numbers from Figure 3.18, here's the values of the left and
right edges of the bounding rectangle:

bounds_rect.left = 30 + 150 - 120) - 60
bounds_rect.right - 250 - 160 - 150) - 240

Figure 3.19 shows that if the thumb is dragged to a location 60 pixels
from the left of the dialog box, the thumb will end up all of the way to
the left of the control-as hoped for. The figure also shows that dragging
the thumb to bounds_rect.right places the thumb at the far right of
the control. Note that these values only apply for this control and thumb
when the mouse click occurs at a horizontal pixel value of 150, as was
shown in Figure 3.18.

bounds_rect.left bounds_rect.right

(60) (240)
• •

[I J -=c:~
It

FIGURE 3.19 THE BOUNDS_RECT RECTANGLE PROPERLY CONSTRAINS

THE MOVEMENT OF THE THUMB.

Because the thumb doesn't move in a vertical direction, the top and bot­
tom coordinates of the boundary rectangle can be the same as those of
the control rectangle:

153

More Mac Programming Techniques

bounds_rect.top - control_rect.top:
bounds_rect.bottom = control_rect.bottom:

With the coordinates of the boundary rectangle set, an assignment to the
1 i mi tRect member of the ThumbDraginfo structure can be made:

(*thumb_drag_struct).limitRect - bounds_rect:

To make things simple, I'll set the s 1 op Rec t to the size of the
1 i mi tRect. That means that I won't allow any slop, or play, in the user's
dragging of the mouse. If the user drags past the left or right edges of the
1 i mi tRect, the gray outline of the thumb will immediately disappear:

(*thumb_drag_struct).slopRect - bounds_rect:

Finally, I'll constrain movement of the thumb to the horizontal axis by
setting the axis member to the constant hAxi sOnly:

(*thumb_drag_struct).axis = hAxisOnly:

Here's the entire Ca 1 c_ Thumb_Drag_L i mi ts () routine:

void Calc_Thumb_Drag_Limits(Control Handle control.

{
Re ct
Re ct
Re ct
short

control_rect:
bounds_rect:
thumb_rect:
mouse_click_h:

ThumbDraglnfo *thumb_drag_struct

mouse_click_h - (*thumb_drag_struct).limitRect.left:

thumb_rect = Calc_Thumb_Rect(control):

control_rect - (**control).contrlRect:

bounds_rect.left = control_rect.left +
C mouse_click_h - thumb_rect.left):

bounds_rect.right = control_rect.right -
C thumb_rect.right - mouse_click_h):

bounds_rect.top = control_rect.top:

154

Chapter 3 More Custom Controls: Sliders

}

bounds_rect.bottom - control_rect.bottom:

(*thumb_drag_struct).limitRect = bounds_rect:
(*thumb_drag_struct).slopRect - bounds_rect:
(*thumb_drag_struct).axis = hAxisOnly:

Handling a posCntl Message

When the user clicks on a control's thumb and drags it across the con­
trol, only the outline of the thumb follows the cursor. It's not until the
user releases the mouse that the thumb actually gets redrawn. It's at this
mouseUp event that the Control Manager sends the CDEF a posCnt l
message. The ma i n () function of MySliderGrayCDEF handles this mes­
sage type with a call to Position_ Thumb ():

case posCntl:
Position_Thumb(the_control, msg_param);
break:

On the receiving end, Position_ Thumb () looks like this:

void Position_Thumb(Control Handle control. long total_offset

For a posCntl message, the msg_param parameter holds pixel values
for the horizontal and vertical offsets from the point at which the mouse
was clicked on the thumb to the final position at which the mouse was
released. Consider the case of a user that clicks the mouse button on the
thumb at the point (150, 45) and drags the mouse (and thumb outline)
to the left and releases the mouse button at the point (80, 45) .
Embedded in msg_pa ram would be a horizontal offset of-70 and aver­
tical offset of 0.

Position_ Thumb () needs the horizontal component of this offset
so that it can determine at what point on the screen the thumb should be
redrawn. A call to LoWo rd () extracts this horizontal coordinate:

short horiz_offset:

horiz_offset = LoWord(total_offset >:

155

More Mac Programming Techniques

\Vhen the new thumb position is determined, its location will be stored in
the contrl Value field of the control record. As you've seen, this field
holds the position as a single value in the range of the control's minimum
and maximum values, not as a pixel coordinate. So a few preliminary cal­
culations are in order. The values of the variables control_pixel_
width and control_unit_width, shown as follows, are found in this
same manner as they were found in Ca 1 c_ Thumb_ Rect ():

Re ct
short
short

control_rect:
control_pixel_width:
control_unit_width:

control_rect = (**control).contrlRect:
control_pixel_width = control_rect.right - control_rect.left:
control_unit_width = (**control).contrlMax -

(**control).contrlMin:

Next, the number of units that the thumb moved is calculated:

float pixels_per_unit:
short units_moved:

pixels_per_unit = (float)control_pixel_width I
Cfloat)control_unit_width:

units_moved = horiz_offset I pixels_per_unit:

As an example of the value that would be calculated for uni ts_moved,
consider the following scenario. A CNTL resource defines that a control
have a minimum value of 0 and a maximum value of 100, and that the
thumb initially be at a value of 50-at the center of the control. The
entire control has a pixel width of 220 pixels. When the program in
which the control appears is running, the user clicks on the thumb and
drags it 55 pixels to the left before releasing the mouse button. Figure
3.20 illustrates this situation. The value of pi xe 1 s_pe r _unit would be
2.2, and the value of units moved would be -25:

pixels_per_unit control_pixel_width I control unit_width
pixels_per_unit - 220 I 100
pixels_per_unit = 2.2

156

Chapter 3 More Custom Controls: Sliders

units_moved = horiz_offset I pixels_per_unit
units_moved = -55 I 2.2
units_moved = -25

If the thumb was moved 55 pixels to the left, it has moved one-fourth of
the total pixel width of the control's 220 pixels. That means the thumb
has also moved one-fourth of the total unit width, or 25 units, as well.

control_pixel_width
(220)

horiz_of f set

, ... (-55) f
I L.. J :IJ

..._

•
(**control) .contrlValue

(50)

control unit width
(100)

--

.

FIGURE 3.20 THE HORIZONTAL OFFSET OF THE THUMB IS THE NUMBER OF PIXELS THAT THE

THUMB HAS MOVED FROM ITS ORIGINAL POsmoN.

After determining the number of units moved, the cont r 1 Va 1 u e field
of the control record needs to be updated to reflect the change. A call
to GetCont ro 1Va1 ue () returns the value before the move. The num­
ber of units moved (-25) is then added to this value. The resulting total

157

More Mac Programming Techniques

is then stored back in the control record with a call to SetCont ro 1
Value():

control_value = GetControlValue(control);
control_value += units_moved;
SetControlValue(control. control_value);

The call to SetControl Value() is the last line of code in
Position_ Thumb ().So it would appear that Pas it ion_ Thumb () didn't
complete its goal of redrawing the thumb at its final destination. But in fact
it has. That's the interesting part of Position_ Thumb()-the thumb will
get drawn without the function drawing it and without an explicit call to the
control definition's drawing routine, Draw_Control ().Here's why: a
CDEF call to Set Cont ro 1Va1 ue (), SetCont ro 1 Mini mum (), or
SetCont ro 1 Maxi mum () will automatically cause another message to be
sent to the CDEF. The message type? Ad rawCnt 1 message. So, as
Position_ Thumb () ends, Draw_Contro 1 () will begin.

void Position_ThumbC Control Handle control. long total_offset
{

short
Re ct
short
short
fl oat
short
short

horiz_offset;
control_rect;
control_pixel_width;
control_unit_width;
pixels_per_unit;
units_moved;
control_value:

horiz_offset = LoWord(total_offset);

control_rect = C**control).contrlRect;
control_pixel_width = control_rect.right - control_rect.left:
control_unit_width = (**control).contrlMax -

C**control).contrlMin;

pixels_per_unit = (float)control_pixel_width I
(float)control_unit_width:

units_moved = horiz_offset I pixels_per_unit;

control_val ue = GetControl Value(control) :
control_value += units_moved:
SetControlValue(control. control_value);

}

158

Chapter 3 More Custom Controls: Sliders

Handling a drawCntl Message

For MySliderGrayCDEF, the drawing of a control is done in much the
same manner as it was for the Chapter 2 CDEF MyButtonCDEF. Using
the ID of one of the PICT resources, a call to Get Resource() returns a
Pi cHandl e to Draw_Control ().Then a call to DrawPi cture()
draws the control. For the control itself, the picture can be drawn to the
control's rectangle:

Re ct
short
PicHandle

control_rect:
pi ct_ID:
pict_handle:

control_rect - C**control).contrlRect:

pict_ID - GetControlReference(control);
if (Color_Is_On(control_rect) == false

pict_ID += CONTROL_BW_OFFSET:

pict_handle - CPicHandle)GetResourceC 'PICT'. pict_ID):
DrawPictureC pict_handle, &control_rect >:

Drawing the control picture serves to obscure the old thumb picture.
That's exactly what should happen. Remember, Draw_Control () will
be called in response to the thumb being dragged and the mouse being
released. The picture of the thumb at its original location-before the
mouse click-is still present in the dialog box or window. The above call
to DrawPi ctu re () wipes it out.

After drawing the control picture, it's time to draw the thumb. The
new location of the indicator is stored in the cont r l Va l u e field of the
control record. A call to Ca 1 c_ Th umb_Rect () retrieves that value and
uses it to calculate and return the thumb's new pixel coordinates. After
obtaining a handle to the proper picture, a call to DrawPi ctu re ()
stamps the thumb over the control picture:

pict_ID - GetControlReference(control >:
pict_ID += THUMB_OFFSET:
if C Color_Is_OnC control_rect) =-- false

pict_ID += THUMB_BW_OFFSET:

119

More Mac Programming Techniques

thumb_rect = Calc_Thumb_RectC control):

pict_handle = CPicHandle)GetResourceC 'PICT', pict_ID >:
DrawPictureC pict_handle, &thumb_rect >:

Here's a look at Draw_Control ().

r::l]
It's important to place the code that draws the control picture
before the code that draws the thumb picture. Reversing the
order of drawing would cause the thumb to Immediately be
obscured by the control picture. N 0 T E

void Draw_Control(ControlHandle control
{

}

Re ct
Re ct
short
PicHandle

control_rect:
thumb_rect:
pi ct_ID:
pict_handle:

control_rect = C**control).contrlRect:

pict_ID = GetControlReferenceC control >:
if C Color_Is_OnC control_rect) IO:UZI false

pict_ID += CONTROL_BW_OFFSET;

pict_handle = CPicHandle)GetResource('PICT', pict_ID >:
DrawPictureC pict_handle, &control_rect >:
ReleaseResourceC CHandle)pict_handle):

pict_ID = GetControlReference(control):
pict_ID += THUMB_OFFSET:
if C Color_ls_OnC control_rect) =--false

pict_ID +- THUMB_BW_OFFSET:

thumb_rect = Calc_Thumb_Rect(control >:

pict_handle = (PicHandle)GetResource('PICT', pict_ID >:
DrawPicture(pict_handle, &thumb_rect):
ReleaseResource(CHandle)pict_handle):

160

Chapter 3 More Custom Controls: Sliders

Building the CDEF Code Resource

The process of building the MyButtonCDEF in Chapter 2 should have
given you all of the information and confidence you need to build any
CDEF code resource. If you have forgotten how to set up a code resource
project, refer back to Chapter 2. You can also take a look at the
MySliderGrayCDEF project, which is located in the My Slider Gray CDEF
f folder.

If you use the Metrowerks compiler, select Preferences from the Edit
menu. After clicking on the Project panel, make sure that the panel set­
tings are correct. The Project Type should be set to Code Resource and
CDEF should be entered in the ResType field. The ResID should be 500
so that the CNTL resources can work with this CDEF. When you're satis­
fied that everything's okay, dismiss the Preferences dialog box and select
Make from the Project menu to build the code resource.

If you're a Symantec user, select Set Project Type from the Project
menu and look at the dialog box settings. Verify that the Code Resource
radio button is selected and that the Type field is filled out as CDEF. The
ID field should be set to 500 so that the CNTL resources in the resource
file will use the MySliderGrayCDEF. After dismissing the dialog box you
can build the code resource by selecting Build Code Resource from the
Project menu.

THE SLIDER TEST APPLICATION

This chapter's test application is one of the shortest Mac programs you '11
ever write. MyTestApp simply displays the dialog box shown in Figure
3.21-the dialog box you've seen throughout this chapter.

Clicking on the control's thumb allows the outline of the thumb to
be dragged back and forth across the control. A click on the OK button
ends the program.

161

More Mac Programming Techniques

(OK)

FIGURE 3.21 THE DIALOG BOX DISPLAYED BY MYTESTAPP.

The Test Application Resources

You've already seen the key resources used in this chapter's MyTestApp­
they've been used in the figures that accompanied discussions of slider
CDEFs earlier in this chapter. To save you a lot of page flipping, I've
repeated the m here. The MyTestApp resource file h olds four PICT
resources so that the application will be able to display both color and
monochrome versions of the control and its thumb. These PICTs are
shown in Figure 3.22.

The resource file's one DITL holds just two items-an OK push but­
ton and a Control item that will become the slider. As shown in Figure
3.23, the Control item relies on CNTL resource 300 for its information.
Because I've given the MySliderGrayCDEF an ID of 500, the CNTL
resource has a P roe ID of 8000. Figure 3.24 shows the one CNTL
resource used by MyTestApp.

ProcID = ('CDEF ' ID * 16) + var ia tion code
ProcID - (500 * 16) + 0
Pr ocID = 8000

162

Chapter 3 More Custom Controls: Sliders

PICTs from MJLTestApp.n .rsrc ,------!
!
!

l ·-···-····j
200

1···

·,! ' nm !

t .. :
202

;-····-·-·-·-·-·---··-····-·-···-·····-·-·-·--·: ~

L _ .. l
201

; ~

i
..!

203

FIGURE 3.22 THE PICT RESOURCES USED BY MYTESTAPP.

D Ills from Myles tApp. Ti.rs re

!Q. Siz• Name

126 34 I
Dill ID = 128 from MyTestApp.n.rsrc

~

r.~::ru

pg ¥¥ Edit DITL Item #2 from MJLTestApp.-rr.rsrc

Resource ID: 1300 I
'-- I Control •I

181 Enabled Top: 140 I Bottom: 54

Left: 130 I Right : 250

FIGURE 3.23 THE CONTROL ITEM RELIES ON CNTL RESOURCE 300 FOR ITS INFORMATION.

163

More Mac Programming Techniques

fC CNTL I 0 = 300 from ""!Y_Test_App. n .rs re~

BoundsRect

Ualue

Uisible

ffox

Min

ProclD

Ref Con

Title [

®True O False

100

0

8000

200

J

FIGURE 3.24 THE CNTL RESOURCE USED BY MYTESTAPP.

The Test Application Source Code

\ ,fyTcstApp contains just a few dozen lines of code. After initializing the
Toolbox, the program displays a modal dialog box. Once the dialog box is
up, the code loops until the OK button is pressed. Take notice of the fact
that the application needs no source code to support the slider control
char "-as added in the application 's resource file. The MySliderGrayCDEF
"-ill handle everything. After building the application," don 't forget to use
your resource editor to copy the CDEF fro m its own resource file and
paste it into the application.

II~~~~~~~~~~~~~~~~~~~~~~~~~
II function prototypes

void Initialize_Toolbox(void);
void Display_Dialog(void);

II~~~~~~~~~~~~~~~~~~~~~~~~~
I I main()
main ()

164

Chapter 3 More Custom Controls: Sliders

{
Initialize_Toolbox():
Display_Dialog():

}

//~~~~~~~~~~~~~~~~~~~~~-
// open and display a modal dialog box

void Display_Dialog(void
{

}

DialogPtr the_dialog:
short the_ item:
Boolean all_done - false:

the_dialog - GetNewDialog(128, nil, (WindowPtr)-lL >:
ShowWindowC the_dialog >:

while (all_done ==false)
{

}

Modal Dialog(nil, &the_item):

switch C the_item)
{

}

case ok:
all_done = true:
break:

DisposDialog(the_dialog);

//~~~~~~~~~~~~~~~~~~~~~~~~-
// initialize the Mac

void Initialize_ToolboxC void
{

InitGraf{ &qd.thePort >:
InitFonts();
InitWindows();
InitMenus();
TEinit():
InitDialogs(OL);
FlushEvents(everyEvent, OL);
InitCursor();

185

More Mac Programming Techniques

SLIDERS AND CUSTOM DRAGGING

The MySliderGrayCDEF relied on the Control Manager to implement
the dragging of the thumb of the slider. When the Control Manager han­
dles indicator dragging, it does so in a standard manner: It displays the
outline of the indicator and constantly updates that outline as the user
drags the mouse. If you'd like your slider to have its indicator dragged in
a different manner, you're free to do so. In this section you'll learn how
to have a CDEF implement custom dragging.

The MySliderRoughCDEF will handle a horizontal slider-just as
MySliderGrayCDEF does. The difference will be that MySliderRough
CDEF won't display the outline of the thumb as it gets dragged by the
user. Instead, it will move the thumb itself.

bl]
N 0 T E

As the thumb moves across the control, how smoothly wlll It
appear to glide from one end to the other? The answer lies In
the title of the CDEF! Don't worry, though, we'll Improve
upon things a little before the chapter ends.

The CDEF Messages

MySliderRoughCDEF responds to only three types of messages: testCntl,
drawCntl, and dragCntl. Because the CDEF will be performing the
dragging of the thumb, it won't need to send region information back to
the Toolbox-that's why it won't need to handle cal cThumbRgn or
ca 1 cCRgns messages. The CDEF also won't need to send back information
about the drag boundaries or thumb position-so thumbCntl and
po s C n t l messages won't be handled either.

'"'
1hile MySliderRoughCDEF handles fewer messages than

MySliderGrayCDEF, it does handle one message type that the previous
slider didn't watch for: the dragCntl message.

Before responding to the user's attempt to drag an indicator, the
Control Manager sends a CDEF a dragCntl message. If the CDEF
returns a 0, or doesn't handle a dragCntl message (as was the case for

166

Chapter 3 More Custom Controls: SlideD's

MySliderGrayCDEF), the Control Manager will assume that it should
drag the indicator in its standard fashion. If, on the other hand, the
CDEF handles the drag C n t l message, the Control Manager will not
attempt to display the outlined indicator. Instead, it will relent control to
the CDEF. It then becomes the responsibility of the control definition to
invoke its own dragging routine. For MySliderRoughCDEF, this routine is
named Drag_Cont ro l ():

pascal long main(short var_code,

}

Control Handle the_control,
short message,
long msg_param)

long return_val = OL:

switch (message)
{

case testCntl :
return_val = Test_Control(the_control, msg_param >:
break;

case dragCntl:
return_val = Drag_Control(the_control >:
break;

case drawCntl:
Draw_Control(the_control);
break;

return (return_val) :

r:l1
If the Control Manager sends a msg_param value of 0 along
with the drag C n t l message, then the entire control Is to
be dragged by the user. If, as is more likely, a nonzero
msg_pa ram value is sent, just the Indicator is to be moved
by the custom drag routine of the CDEF. You'll find Informa­
tion on dragging an entire control In Inside Macintosh:

N 0 T E

Macintosh Toolbox Essentials.

167

More Mac Programming Techniques

Messages of the test C n t 1 and d r a wC n t 1 types will be handled exactly
as they were for MySliderGrayCDEF, so there's no need to repeat that
source code of Test_Control () and Draw_Control () here. That
means there's only one new routine to cover-the Drag_Control ()
function that's called to handle a dragCntl message.

Handling a dragcntl Message

Once tes tCnt 1 confirms that the mouse button has been clicked on
the slider's thumb, it's up to Drag_Control () to handle the dragging
of the indicator. Since this CDEF doesn't rely on the Control Manager tu
do any dragging calculations or dragging, it should make sense to you
that the work done by Drag_Control ()will be performed in a loop. As
the user moves the mouse, Drag_Control () must constantly deter­
mine the change of position of the mouse and redraw the thumb as
needed. Before examining the function's code, here's an overview of
what Drag_Control ()will be doing:

long Drag_Control(ControlHandle control
{

Perform size calculations for the control and thumb
Get the mouse location at point of mouse click

Begin Loop
Get the new mouse location as it is moved by user
Determine pixel change from old mouse location to new
location
Translate pixel change to corresponding change in unit
value
Set the control's value field to the new value
Update the control <redraw the thumb and control)
Mark the new mouse location as the old mouse location

End Loop

By the time Drag_Control () is called, the Test_Control () func­
tion has determined that there was a mouse click in the thumb of a slid­
er. Before entering the loop that will trace the user's mouse movements
and redraw the control, Drag_Control () will perform a few calcula­
tions that will be used within the loop body.

168

Chapter 3 More Custom Controls: Sliders

You've already seen how to determine the size of the control-in
both pixel dimensions and unit dimensions:

Re ct
short
short

control_rect:
control_pixel_width:
control_unit_width:

control_rect = {**control).contrlRect;

control_pixel_width = control_rect.right - control_rect.left;
control_unit_width = {**control).contrlMax -
(**control).contrlMin:

A call to Ca 1 c_ Thumb_Rect () will return the rectangle that holds the
boundaries of the indicator. From this rectangle one other useful dimen­
sion will be determined-the width of the thumb:

short thumb_width:
Rect thumb_rect;

thumb_rect = Calc_Thumb_Rect(control):

thumb_width = thumb_rect.right - thumb_rect.left:

A call to GetMouse () returns the point of the cursor when the mouse is
first clicked on the control's indicator:

Point old_mouse_loc;

GetMouse(&old_mouse_loc >:

Now it's time for the loop. As long as the mouse button is held down by
the user, the loop will repeatedly execute-the call to the Toolbox rou­
tine St i 11 Down () makes sure of this. Once in the loop body, a call to
GetMouse() is made. The mouse location is saved in a different variable
than the point taken just before the loop started:

Point new_mouse_loc:

while (StillDown())
{

GetMouseC &new_mouse_loc);

II rest of loop body
}

119

More Mac Programming Techniques

The change in the horizontal mouse position from the time the mouse
was pressed to the time it was moved is saved in a variable named
ho r i z_ ch an g e. Then a test is performed to see if there was any change
in mouse position and to see if the cursor is still over the indicator:

short horiz_change;

horiz_change = new_mouse_loc.h - old_mouse_loc.h:

if (C horiz_change != O) &&
< PtlnRect(new_mouse_loc, &control_rect))

{
II move the thumb

If both tests pass, it's time to determine the new location to which the
thumb should be moved. The left and right coordinates of the previously
calculated thumb_rect are adjusted for the change in position of the
mouse. Then the center of the thumb is located:

thumb_rect.left +- horiz_change;
thumb_rect.right +- horiz_change;

thumb_center = thumb_rect.left + (thumb_width I 2);

The center of the thumb, which is in pixel coordinates, is now translated
to a unit location. First it's determined how far (in pixels) the center of
the thumb is from the left side of the control:

control_offset ~ thumb_center - control_rect.left;

This offset value is then used to calculate a ratio. What fraction of the
entire control length was the thumb moved?

ratio - Cfloat)control_offset I (float)control_pixel_width;

Along with the minimum control value (as set in the CNTL resource)
and the total number of units in the control, this ratio can then be used
in the determination of the unit value at which the thumb should be
placed:

170

Chapter 3 More Custom Controls: Sliders

control_value - C**control).contrlMin +
C control_unit_width *ratio >:

Next, a call to SetControl Value() sets the contrl Value field of the
control record to this new value:

SetControlValueC control. control_value);

Now the really important part. Recall from earlier discussions that a call
to SetCont ro 1Va1 ue () automatically causes the Control Manager to
send a drawCntl message to the CDEF. That means that at this point a
call to Draw_Control () is made. The execution of Draw_Control ()
draws the entire control, thereby covering up the old thumb. It also
draws the thumb in its new position.

Before the body of the loop ends, the value of o 1 d_mo use_ l o c is
set to the value of new_mouse_ l oc:

old_mouse_loc - new_mouse_loc;

When the body of the loop again executes, GetMouse () will return a
new mouse point and store it in new_mouse_ l oc. A comparison will
then be made between this location and the location that was obtained
in the last iteration of the loop.

Before looking at the entire Drag_Cont ro 1 () routine, there's one
last snippet to discuss. After the pixel location of the thumb is deter­
mined in the loop body, two checks are made. Drag_ Cont r o 1 () needs
to verify that the user didn't move the mouse past either the left or right
boundaries of the control. If that happens, the routine adjusts the thumb
boundaries so that they stop a few pixels from the end of the control,
regardless of how far past the edge the user has dragged the mouse.

if C thumb_rect.left < C control_rect.left + 3))
{

thumb_rect.left - control_rect.left + 3:
thumb_rect.right - thumb_rect.left + thumb_width:

}
if C thumb_rect.right > C control_rect.right - 2))
{

thumb_rect.right = control_rect.right - 2:

171

More Mac Programming Techniques

thumb_rect.left - thumb_rect.right - thumb_width:

Now, here's the complete source code listing for the Drag_Control()
function.

long Drag_Control(ControlHandle control)
{

short
short
Re ct
Re ct
short
short
short
short
fl oat
Point
Point
short

thumb_width;
thumb_center:
thumb_rect:
control_rect:
control_pixel_width:
control_unit_width:
control_offset:
control_value:
ratio:
new_mouse_loc:
old_mouse_loc:
horiz_change:

control_rect = (**control).contrlRect:

control_pixel_width - control_rect.right - control_rect.left:
control_unit_width - (**control).contrlMax -

(**control).contrlMin:

thumb_rect - Calc_Thumb_Rect(control):

thumb_width - thumb_rect.right - thumb_rect.left:

GetMouse(&old_mouse_loc):

while (StillDown())
{

172

GetMouse(&new_mouse_loc >:
horiz_change - new_mouse_loc.h - old_mouse_loc.h:

if C C horiz_change !- 0) &&
(PtinRect(new_mouse_loc, &control_rect))

thumb_rect.left +- horiz_change:
thumb_rect.right += horiz_change:

if C thumb_rect.left < (control_rect.left + 3))
{

thumb_rect.left - control_rect.left + 3:
thumb_rect.right - thumb_rect.left + thumb_width:

}

Chapter 3 More Custom Controls: Sliders

}
if (thumb_rect.right > (control_rect.right - 2))
{

}

thumb_rect.right = control_rect.right - 2:
thumb_rect.left = thumb_rect.right - thumb_width:

thumb_center = thumb_rect.left + (thumb_width I 2):

control_offset = thumb_center - control_rect.left:
ratio = Cfloat)control_offset I

(float)control_pixel_width:

control_value = (**control).contrlMin +
(control_unit_width *ratio >:

SetControlValue(control. control_value):

old_mouse_loc = new_mouse_loc:

return (1 L) :

~
N 0 T E

Remember, If the CDEF has a provision for handling a
drag C n t 1 message, and it doesn't handle the dragging, It
should return a value of 0 to the Control Manager. Since
MySllderRoughCDEF does handle the dragging, It should be
sure to make the Control Manager aware of this fact by
returning a value other than 0. That's the purpose of the last
statement In Drag_Control ().

Use your development environment to build a CDEF code resource with
an ID of 500. Then copy it from its resource file and paste it into
MyTestApp. Since it has the same ID as the MySliderGrayCDEF that's
already in the test application, you'll be warned that you're about to
replace an existing resource. Go ahead and do so. Then exit the resource
editor and run MyTestApp. Click on the control's thumb and drag the
mouse. As you do that, you'll see that the thumb follows the cursor, but
the result is unacceptably jerky. In the next section you'll see what can be
done to smooth things out a little.

173

More Mac Programming Techniques

SMOOTHER CUSTOM DRAGGING

MySliderRoughCDEF adequately demonstrates how the handling of a
drag C n t 1 message can be used to implement custom dragging of a con­
trol's indicator. The end result of that CDEF, however, was a thumb that
flickered as it was dragged across the control. In this section you'll see
how a few simple changes can greatly reduce flicker.

~
N 0 T E

If you're very familiar with off-screen drawing techniques,
then you already know the best way to create smooth, flick­
er-free animated effects. You can use a series of G Wo r 1 d s to
smoothly move a thumb PICT over the control background. If
you aren't familiar with GWo r 1 d s, this technique requires
several lines of code and a correspondingly lengthy discus­
sion. For that reason the use of off-screen Pi xMa p s, or
G W or 1 d s, is considered beyond the scope of this book.

Adding New PICT Resources

For the new version of the slider CDEF, which I'll call MySliderSmooth
CDEF, changes will need to be made to the PICT resources. The first change
is to an existing PICT-the picture that is used as the slider's thumb. I have
launched my graphics program and opened the document that held the
thumb graphics. Now, instead of selecting just the thumb, I've included two
pixels of the control itself, as shown in Figure 3.25. Then I copied this pic­
ture and pasted it in the application project's resource file. I deleted the old
PICT with ID 202 and changed the ID of the new PICT to 202.

Next, I copied a small part of the background pattern of the control
itself. The size of this picture isn't too important-it will be changed by
the CDEF before being drawn. I pasted this new picture into the applica­
tion project's resource file and gave it an ID of 205.

To support monochrome monitors, I added black-and-white versions
of the same two pictures that have just been discussed. Because the black­
and-white version of the control has a white background, the change to
the thumb picture won't be evident, and the new background picture

174

Chapter 3 More Custom Controls: Sliders

won 't be visible a t all. Figu re 3.26 sh ows th e PICT resou rces of the
MyTestApp proj ect's resource file.

- =¥5¥iE!'3 Slider Picture at 8003

FIGURE 3.25 THE SELECTION OF THE NEW THUMB PICTURE SHOULD INCLUDE TWO PIXELS

OF THE CONTROL ON BOTH THE LEFT AND RIGHT SIDES OF THE THUMB.

• PI CTs from M TestRpp.11.rsrc U Ii

I
I
!_ ___ _

202

.. I

203

II

FIGURE 3.26 Two NEW PICTs SHOULD BE ADDED TO THE APPLICATION PROJECT'S

RESOURCE FILE-PICTURES 204 AND 205.

175

More Mac Programming Techniques

Figure 3.27 shows why I've made the previous changes to the pictures. In
that figure you can see how MySliderRoughCDEF handled the updating
of the control's thumb as it was moved across the control. A drag of the
mouse caused the control picture to be redrawn first, and the thumb pic­
ture to be redrawn second. The drawing of the entire control picture
caused the thumb to completely disappear before it was redrawn, and
was responsible for the flicker that's seen when the thumb is dragged.

LL1f1

II
0

@
~

LLJ

II
0

@ LLifl

11

11

11

The mouse button is clicked
on the control's indicator

A quick drag of the mouse
causes an offset, and the
control picture is drawn

The new thumb position is
calculated, and the thumb
picture is drawn over the
control picture

FIGURE 3.27 MYSLIDERROUGHCDEF HAD FUCKER BECAUSE THE ENTIRE CONTROL

PICTURE WAS DRAWN OVER THE THUMB PICTURE.

Figure 3.28 shows how the new set of pictures will greatly reduce flicker.
When the mouse is dragged on the thumb, the thumb picture will be
drawn at the new location, without first drawing the control picture.
Then the small control pattern picture will be drawn behind the new

176

Chapter 3 More Custom Controls: Sliders

thumb to obscure what remains of the old thumb. The result will be a
slight blurring of the thumb as its moved, but flicker will be eliminated.

II
@] LL~

LLJ

II
0

@] Ll~J

11

II

The mouse button is clicked
on the control's indicator

A quick drag of the mouse
causes an offset, and the
thumb picture is drawn at the
new location-overlapping
the old thumb picture

The portion of the old thumb
that is visible is calculated,
and the control pattern
picture is drawn over that
part of the control

FIGURE 3.28 MY5UDER5MOOTHCDEF REDUCES FLICKER BY AVOIDING

THE DRAWING OF THE CONTROL PICTURE.

Taking Care of the Preliminaries

Because there have been new pictures added, the source code for
MySliderSmoothCDEF will define a new constant. When CONTROL_PART _
OFFSET is added to the ID of the base picture, the result will be the ID of
the appropriate control background picture.

//define
//define

CONTROL_BW_OFFSET
THUMB_OFFSET

1
2

177

More Mac Programming Techniques

/fdefi ne
#define

THUMB_BW_OFFSET
CONTROL_PART_OFFSET

1
4

Handling a dragCntl Message

MySliderSmoothCDEF uses the same custom dragging routine that
MySliderRoughCDEF uses-but with a couple of important additions.
First, an additional Rect variable has been added. At the end of the
whi 1 e loop in Drag_Control (),the al d_thumb_rect will be
assigned the rectangle coordinates of thumb_rect. At the next pass
through the loop, the thumb will be drawn at its new location. Then both
the new rectangle and the old rectangle will be passed to a function that
draws the control's background pattern over the visible part of the old
thumb picture. Figure 3.29 shows that if the thumb is dragged to the left,
it will be the right coordinate of thumb_rect and the right coordinate
of o 1 d_thumb_rect that will determine the boundaries of the rectan­
gle to which the pattern should be drawn.

thumb_rect.left

•

~

old_thumb_rect.left

thumb_rect.right

•

•
old_thumb_rect.right

FIGURE 3.29 BOTH THE NEW AND OLD COORDINATES OF THE THUMB ARE USED TO DETER­

MINE WHERE TO DRAW THE CONTROL PATIERN PICTURE.

178

Chapter 3 More Custom Controls: Sliders

While there are only a few changes to Drag_ Cont r o 1 () , they are impor­
tant. So I've again supplied the entire listing of the routine. The changes
from the MySliderRoughCDEF version appear in bold type.

long Drag_Control(ControlHandle control)
{

short
short
Re ct
Re ct
short
short
short
short
fl oat
Point
Point
short
Re ct

thumb_width:
thumb_center:
thumb_rect:
control_rect:
control_pixel_width:
control_unit_width:
control_offset:
control_value:
ratio:
new_mouse_loc:
old_mouse_loc:
horiz_change:
old_thumb_rect:

control rect = (**control).contrlRect:

control_pixel_width = control_rect.right - control_rect.left:
control_unit_width = (**control).contrlMax -

(**control).contrlMin:

thumb_rect = Calc_Thumb_Rect(control):
old_thumb_rect = thumb_rect;

thumb_width - thumb_rect.right - thumb_rect.left:

GetMouseC &old_mouse_loc);

while (StillDown() >
{

GetMouse(&new_mouse_loc >:
horiz_change = new_mouse_loc.h - old_mouse_loc.h:

if ((horiz_change != 0) &&
(PtlnRect(new_mouse_loc. &control_rect))

thumb_rect.left +- horiz_change;
thumb_rect.right +~ horiz_change:

if thumb_rect.left < (control_rect.left + 4))
{

179

More Mac Programming Techniques

}

thumb_rect.left = control_rect.left + 4:
thumb_rect.right = thumb_rect.left + thumb_width:

}
if (thumb_rect.right > (control_rect.right - 2))
{

}

thumb_rect.right = control_rect.right - 2:
thumb_rect.left = thumb_rect.right - thumb_width:

thumb_center = thumb_rect.left + (thumb_width I 2);

control_offset = thumb_center - control_rect.left:
ratio ~ (float)control_offset I

(float)control_pixel_width:

control_value = (**control).contrlMin +
(control_unit_width * ratio);

SetControlValue(control, control_value >:

Draw_Over_Old_Thumb(control, old_thumb_rect, thumb_rect >:

old_thumb_rect = thumb_rect;

old_mouse_loc = new_mouse_loc;

return (lL);
}

Set Cont r o 1 Va 1 u e () is called near the end of the while loop. Recall that
a call to this routine triggers a d rawCnt 1 message. When that happens,
Draw_Control () will be called to draw the thumb in its new location.
Then Draw_Over _01 d_Thumb(), which will be discussed in just a bit, is
called to obscure the remnants of the old thumb picture.

Handling a drawCntl Message

The previous version of Draw_ Cont r o 1 () drew both the control pic­
ture and the thumb picture-that was the source of the flicker in
MySliderRoughCDEF. This new version has the same code to draw each
picture, but it now has some logic added so that it only draws one or the

180

Chapter 3 More Custom Controls: Sliders

other. The dragging of the thumb never requires that the control picture
be drawn-just the thumb and the control pattern. But there are times
when the window or dialog box in which the control appears may need
updating, so D raw_Cont ro 1 () needs to keep its ability to draw the
entire control.

When the Control Manager sends CDEF a d rawCnt 1 message, it
includes a part code in the ms g_p a ram parameter. If that part code is 0,
the entire control should be drawn. If the part code is 129, the thumb
should be drawn. In the previous version of Dr a w_C on tr o 1 () , this
msg_pa ram part code was ignored and both the control and thumb
were drawn. In this new version, the part code will be examined:

case drawCntl:
Draw_Control(the_control. msg_param):
break:

When a control needs updating, perhaps because the dialog box in
which it appears has been covered and then exposed, the Control
Manager will send a drawCntl message with a msg_param value of 0.
In that case, Draw_Cont ro 1 () will draw the control:

if (part_code != 129)
{

pi ct_ID = GetControl Reference(control) :
if (Color_Is_On(control_rect) ==false

pict_IO +=- CONTROL_BW_OFFSET:

pict_handle = CPicHandle)GetResource('PICT'. pict_ID):
DrawPictureC pict_handle. &control_rect >:

If, on the other hand, a d r a wC n t 1 message is sent as the result of a call to
SetControl Value(), the Control Manager will include a msg_param
value of 129. That means just the thumb should be drawn. Since the
above code executes when msg_pa ram is not 129, it will be skipped. The
code for drawing the thumb, however, is always executed:

pict_ID - GetControlReferenceC control);
pict_ID +- THUMB_OFFSET:

181

More Mac Programming Techniques

if (Color_Is_On(control_rect) == false
pict_ID += THUMB_BW_OFFSET;

thumb_rect = Calc_Thumb_Rect(control);

pict_handle = CPicHandle)GetResourceC 'PICT', pict_ID);
DrawPictureC pict_handle. &thumb_rect);

ReleaseResource((Handle)pict_handle);

The Drag_Control () routine that was discussed just a while back had
a call to SetCont ro 1Va1 ue () . It is that call that triggers the redrawing
of the thumb-but not the control. Here is a look at the new version of
Draw_Control ():

void Draw_Control(ControlHandle control. long part_code)
{

Re ct control_rect:
thumb_rect:
pi ct_ID;
pict_handle;

Re ct
short
PicHandle

control_rect = (**control).contrlRect:

II Draw the control
II This code will be skipped if coming from Drag_Control()

if (part_code != 129)
{

pict_ID = GetControlReference(control);
if (Color_ls_On(control_rect) ==false

pict_ID += CONTROL_BW_OFFSET;

pict_handle - (PicHandle)GetResource('PICT'. pict_ID):
DrawPicture(pict_handle, &control_rect);

II Draw the thumb
II This code will be executed in all cases

pict_ID - GetControlReference(control):
pict_ID +- THUMB_OFFSET:
if (Color_Is_On(control_rect) == false

182

Chapter 3 More Custom Controls: Slicllers

pict_ID += THUMB_BW_OFFSET;

thumb_rect = Calc_Thumb_RectC control):

pict_handle = CPicHandle)GetResource{ 'PICT'. pict_ID):
DrawPictureC pict_handle. &thumb_rect):

ReleaseResourceC CHandle)pict_handle):
}

Covering the Old Thumb

There is just one routine left to cover in MySliderSmoothCDEF­
D r aw_Ov er _01 d_Thumb(). After SetControl Value() triggers the
execution of Draw_Control (), Draw_Over _01 d_Thumb() is called
from within Drag_Control ().

The first thing Draw_Over _01 d_ Thumb () does is get a handle to
the control background pattern picture. Then it calculates the size of the
rectangle to which this picture should be drawn. Because the picture is a
solid pattern, there's no need to be concerned with distortion as the size
of the picture changes.

Re ct
short
PicHandle

control_rect:
pi ct_ID:
pict_handle:

pict_ID = GetControlReference(control);
pict_ID += CONTROL_PART_OFFSET;
if (Color_Is_On(control_rect) ==false

pict_ID += CONTROL_BW_OFFSET;

pict_handle = CPicHandle)GetResource('PICT'. pict_ID);

Next, the coordinates of the rectangle that is to provide the boundaries
for the background picture need to be calculated. The top and bottom
coordinates are easy to derive:

Rect cover_rect;

cover_rect.top = control_rect.top + 1:
cover_rect.bottom = control rect.bottom - 1;

183

More Mac Programming Techniques

The right and left boundaries of cover _rect are dependent on the
direction in which the thumb has moved. If it moved to the right, the
covering rectangle must appear to the left of the new thumb picture. If
the thumb moved to the left, the covering rectangle must appear to the
right of the thumb picture:

if (new_thumb_rect.left > old_thumb_rect.left
{

}

cover_rect.left = old_thumb_rect.left - 1:
cover_rect.right = new_thumb_rect.left:

else
{

}

cover_rect.left = new_thumb_rect.right - 2:
cover_rect.right = old_thumb_rect.right + 1:

The last step is to draw the background picture:

DrawPicture(pict_handle, &cover_rect >:

II moving right

II moving left

Listed as follows is the source code for the entire Draw_Over _01 d_Thumb()
routine.

void Draw_Over_Old_Thumb(ControlHandle control,

Re ct
short
PicHandle
Re ct

control_rect:
pi ct_ID;
pict_handle:
cover_rect:

Rect old_thumb_rect,
Rect new_thumb_rect)

control_rect = C**control).contrlRect:

pict_ID = GetControlReferenceC control >:
pict_ID += CONTROL_PART_OFFSET:
if (Color_ls_OnC control_rect) -- false

pict_ID +- CONTROL_BW_OFFSET;

pict_handle - CPicHandle>GetResource('PICT', pict_ID >:

184

Chapter 3 More Custom Controls: Sliders

}

cover_rect.top - control_rect.top + 1;
cover_rect.bottom - control_rect.bottom - 1:

if new_thumb_rect.left > old_thumb_rect.left

{

}

cover_rect.left ~ old_thumb_rect.left - 1:
cover_rect.right - new_thumb_rect.left:

else

{
cover_rect.left - new_thumb_rect.right - 2:
cover_rect.right - old_thumb_rect.right + 1:

DrawPictureC pict_handle. &cover_rect >:
ReleaseResource(CHandle)pict_handle);

II moving
II right

II moving
II 1 eft

As always, the project file and source code file for this section's example
CDEF have been included on disk. After building a CDEF code resource,
copy the resource and paste it into the same version of MyTestApp that
you've been using in this chapter. Then build a new application. As a
short cut, you can open the application itself and paste the CDEF into
the application fork directly. Then run MyTestApp to see that the anima­
tion of the slider has indeed improved.

Adding a Label to the Control

As a final step to giving your sliders a clean look, you may want to add a
label above or below the control. In Figure 3.30 I've added a new PICT
resource to the resource file of the MyTestApp project.

Next, I added a Picture item to the DITL resource, as shown in
Figure 3.31. After building a new application, the slider's dialog box
looked like the one shown in Figure 3.32. Figure 3.33 shows a couple of
other examples of how you might want to provide feedback to the user of
your slider.

185

More Mac Programming Techniques

186

Ull

PI CTs from MyTestRpp. n .rs re

tEDlutt
I

128

HllJ!i

I l

r .. l

OFF
I

MEDIUM

FIGURE 3.30 To ADD A LABEL TO A SUDER, FIRST ADD A PICT TO

THE APPLICATION PROJECT'S RESOURCE FILE.

Elii~ 0 ITL ID = 128 from M TestRpp.11

LOI.I
I

MEDIUM
I

OK aj

HllliJ
I

2

FIGURE 3.31 To DISPLAY THE PICTURE, ADD A PICTURE ITEM TO THE DITL.

OFF
I

LOI.I
I

OK

MEOIUf1
I

HIGH
I

FIGURE 3.32 THE RESULT OF ADDING THE PICT RESOURCE.

Chapter 3 More Custom Controls: Sliders

4 5
I I

OK

FIGURE 3.33 Two EXAMPLES OF SLIDERS WITH LABELS.

CHAPTER SUMMARY

Sliders are a very "Mac-like" control, yet most programmers choose not
to include them in their applications. That's because sliders are not sup­
ported by the Toolbox in the same way that standard push buttons, check
boxes, and radio buttons are. Because a control definition function can
be written so that it handles any style of con trol, you' ll want to use a
CDEF to add sliders to any of your Macintosh programs.

Just as last chapter's picture button CDEF watched for tes tCn t l
and drawCntl messages, so do this chapter 's slider CDEF examples. By
also responding to the cal cCRgns, cal cThumbRgn, thumbCntl , and
po s C n t l messages, a CDEF can be written such that it displays the stan­
dard indicator outline as a thumb is dragged across a control.

To implement a less traditional means of dragging a control's thumb,
use custom control dragging. To do that, your CDEF should handle
d ra gCnt l messages.

187

Chapter

CONTROL PANELS AND CDEVS

Control panels are small "programs" that enable a Macintosh user to easi­
ly change such features as the speaker volume, the desktop pattern, and
the speed at which the cursor moves across the screen. In short, a control
panel exists for the purpose of allowing the user to change a systemwide
feature of the Macintosh. Unlike applications, control panels usually
aren't used daily-the functions that a control panel performs are usual­
ly needed only occasionally.

A control panel is a special type of code resource that is used without
the help of an application. Rather than requiring the presence of an
application to load and execute it-as MDEF and CDEF resources do-a
control panel code resource, or cdev, relies on the Finder. When a con­
trol panel is opened, it is the Finder that loads the code resource, inter­
acts with it, and sends it messages.

189

More Mac Programming Techniques

Control panels don't clutter up the desktop. Instead, they're neatly
tucked away in a folder that can be easily accessed from the Apple menu.
So while control panels aren't accessed often, when the need to open
one does arise, the control panel can easily be found. In this chapter,
you 'II see how to create your own Control Panel to add to the ones Apple
supplies to each owner of a Macintosh.

CONTROL PANELS AND THE FINDER

The arrival of System 7 brought many changes to the way in which the
Desktop looks and functions. One of these changes involves the way in
which control panels are implemented.

Accessing Control Panels

In System 6, a single Control Panel desk accessory was used to make any
and all system changes. That desk accessory is shown in Figure 4.1. In the
figure, you can see that on the left of the Control Panel is a list of icons.
Clicking on one of these icons changes the system features displayed on
the right of the desk accessory.

The System 6 method of accessing systemwide features from a single
desk accessory has a couple of significant drawbacks. First, only one set of
features can be displayed at one time. Second, the display of features is
always limited to the fixed size of the Control Panel desk accessory dialog
box. To eliminate these hindrances, the manner in which systemwide fea­
tures are accessed has changed with System 7.

Starting with System 7, the Control Panel desk accessory no longer
exists as a single item. Instead, the one Control Panel has been replaced
by individual control panels. Each control panel is created to control the
function of a specific machine setting. Figure 4.2 shows the Mouse con­
trol panel, which is used to alter the mouse tracking speed and the speed
at which mouse clicks are made.

190

Chapter 4 Control Panels and cdevs

Keyboard

.....
~

Mouse

Sound .

Control Panel

Desktop Pattern

Menu Blinking Time (9

Rate of Insertion
Point Blinking

···· I····
O®O

Slow Fast

3:43:26 AM
7 -
6 -
5 -
4 -
3
2-
1 -
0 -

® 12hr. 0 24hr.

0 00® Date IInJ
Off 1 2 3 10/11 /94

RAM Cache ~ I;) 0 On
.....,,...... __i..;~ @Off
3 .3 .1

Speaker
Volume

FIGURE 4.1 THE SYSTEM 6 CONTROL PANEL DESK ACCESSORY.

~Im Mouse
Mouse Tracking

[1] j ~
0 0®0000

Very Slow Slow Fast

+ + +
•o • o •@

Double-Click Speed

FIGURE 4.2 A TYPICAL SYSTEM 7 CONTROL PANEL.

In System 7, a single Control Panels menu item can be found in the
Apple menu. Instead of opening a Control Panel desk accessory, howev­
er, selecting this menu item opens a Control Panels folder. This folder

191

More Mac Programming Techniques

holds the icons for each individual control panel found on the Mac.
Double-clicking on an icon launches that one control panel. Figure 4.3
shows the Control Panels menu item and the Control Panels folder.

File Edit Uiew Label Special
About This Macintosh ...

@!) AppleCD Audio Player

Ii Calculator
~Chooser
!!! Control Panels
~Find File
~ Jigsaw Puzzle
Jil Key Caps
[J Note Pad

25 items

~
Col or

~
Co 1 o rSwi tc h

m
Date & Time

Control Panels
262.5 MB in disk

liilN
~

Fax Menu

fl
File Sharing Monitor

!i]
General Controls

Keyboard

[ilJ
Labels

~
Map

FIGURE 4.3 ACCESSING CONTROL PANELS FROM THE APPLE MENU ON

A MAC RUNNING SYSTEM 7.

fo1- System 7.5, accessing con trol panels has b ecom e even easie r. Instead

of opening a folder, a Control Panels menu item selection displays a hier­
archical menu that lists all of th e control pan els available for that
Macintosh. Sliding the cursor over to any item in the list opens that con­
trol panel. Figure 4.4 shows the System 7.5 implementation of control
panels.

192

Chapter 4 Control Panels and cdevs

File Edit Uiew Label Special
About This Macintosh .••

el!) RppleCD Rudio Player
I Calculator
~Chooser

~Find File
~ Jigsaw Puzzle
fil Key Caps
~Note Pad
~Recent Applications ~

6[I Recent Documents ~

~ sc..-apbook

Apple Menu Options
RTM™ GH
Color
Date 8' Time
Desktop Patterns
EHtensions Manager
File Sharjng Monitor
General Controls
Keyboard
Labels
Launcher
Map

FIGURE 4.4 ACCESSING CONTROL PANELS FROM THE APPLE MENU ON

A MAC RUNNING SYSTEM 7 .5.

A Control Panel or an Application?

If you have an idea for a small, simple program that could be used to vary
a system feature, you may be tempted to turn that idea into an applica­
tion. After all, you already know how to develop Macintosh applications.
While that temptation is great, you'll want to overcome it and instead
develop a control panel. Here's why:

• If your utility alters systemwide features, users will naturally assume
that it can be found by selecting the Control Panels menu item.

• A control panel may actually be easier to develop than an applica­
tion.

That second point merits some discussion. A control panel is a file that
consists of several resources. Among these resources is a cdev code

193

More Mac Programming Techniques

resource. The cdev consists of the code for a control device function, or cdev
function. Like the code for a menu definition procedure or a control defi­
nition function, the code for a control device function does not look like
the code for a standalone application. There is no main event loop, no
call to Wai tNextEvent(), and no code to support the moving of a
modeless dialog box. For MDEF and CDEF code resources, these ele­
ments are all found in the application that uses the MDEF or CDEF. For
a cdcv code resource, all of these things are handled by the Finder.

In this book's MDEF and CDEF chapters, a few different test applica­
tions were written. If a dialog box was to be opened, the test application
was responsible for supplying the DLOG resource and calls to the Toolbox
routines that opened and displayed the dialog box. Had any of these test
applications worked with a modeless dialog box, the test application would
have been responsible for supporting the movement of the dialog box and
its interaction with other windows on the screen. For a cdev code resource,
the Finder handles all of these tasks-no driving application needs to be
developed in order for a control panel to function.

~
N 0 T E

Because of this, a control panel Is double-cllckable. Double­
cllcklng on a control panel causes the Finder to load the
control panel In memory and open and display the Modeless
dialog box that houses the control panel's Items.

\\Then shouldn't you develop a control panel? When the implementation
of your feature-setting code requires placing menus in the menu bar or
the display of multiple dialog boxes. Control panels are meant to be
clean and simple. If your code is more complex, develop an application
rather than a control panel.

CONTROL PANEL RESOURCES

A control panel consists of both required and optional resources. To cre­
ate a control panel, you must add these resources to a resource file. Next,
you'll write the control device function source code that your program-

194

Chapter 4 Control Panels and cdevs

ming environment will tum into a cdev code resource. Your compiler will
then link this cdev resource with the resources in the resource file. The
result will be a control panel fi/,e-known simply as a control panel to Mac
users.

In this section, you' ll see the resources necessary to develop a con­
trol panel named MySetSound. In the next section, you'll see the corre­
sponding control device function source code for the same control
panel.

About the MySetSound Control Panel

Varying the sound level of the Mac's speaker is a task just about all Mac
users have performed. Apple's Sound control panel, shown in Figure 4.5,
makes this task simple to carry out. The MySetSound control panel per­
forms just one of the many tasks that Apple's Sound control panel han­
dles- it allows the user to set the speaker volume to high, or to tum it
off. Figure 4.6 shows the MySetSound control panel.

1 1

I
:

!
i
i

Alert Sounds

Built-in
Uolume

Sound

Q840au Sound
Quack
RipSound
Simple Beep
Sosumi
Trumpets
Wild Eep

(Add...) (Remoue)

: .. ,

FIGURE 4.5 APPLE'S SOUND CONTROL PANEL.

195

More Mac Programming Techniques

~- M Setsound

Speaker Volume

@High

00ff

(Set Uotume)

FIGURE 4.6 THIS BOOK'S MYSETSOUND CONTROL PANEL.

To change the Mac's speaker volume using MySetSound, a user clicks
on <:>ither radio button, then clicks the Set Volume push button. If the
High rad io button is o n , the speaker will beep once at the highest
speaker volume. If the Off radio button is on, the Mac will flash the
m en u bar. Once th e volume is set, the Mac's speaker volume will
remain at the selected level until it is again ch anged, either through
the :VlySetSound, the Sound control panel, or any other sound-setting
con Lro l panel.

If you have Apple's Sound control panel open when you make a
sound level change in MySetSound, you ' ll see the slider in the Sound
control panel jump to the appropriate end of the scale . Figure 4. 7 shows
both sound control panels.

N 0 T E

196

The MySetSound is a good Introductory example of a control
panel because it is very simple. It's not an example of a
practical real-world control panel, however, because it dupli­
cates the control of a systemwide feature already controlled
by an Apple-supplied control panel. Your own control panel
should provide a service or services not already handled by
Apple control panels. You'll see an example that does this
later in this chapter.

Chapter 4 Control Panels and cdevs

r-l Alert Sounds

I

I
!

!

Built-in
Uolume

• M SetSound

Sound

.... , ..

Sosumi
Wild Eep

(Add ... J

Speaker Volume

@High

0 Off

Set Llolume

t
!
I

(Remoue J I
l

i
'--· .. ··-···-·-·-·--···-·····-····-··-··-·····--·--··--·········--·-· .. ··--·----····-··············-··..)

FIGURE 4. 7 WHEN THE SYSTEM SPEAKER VOLUME IS CHANGED IN MYSETSOUND, THE

CHANGE WILL BE REFLECTED IN APPLE'S SOUND CONTROL PANEL.

From the previous figures, you can see that the MySetSound control
panel doesn 't present much of a threat to Apple 's Sound control panel.
That's alright because the MySetSound isn't meant to compete with
Apple's handy control panel. Instead, it's meant to demonstrate how easy
it is to develop a control panel. In creating the MySetSound, you'll dis­
cover all of the following:

• Which resources a control panel requires

• What the function of each required resource is

• What the source code of a typical control panel looks like

• How a systemwide feature can be set by a control panel

• How the Finder interacts with a control panel

• How a single control panel can be compatible with both System 6
and System 7

197

More Mac Programming Techniques

MySetSound and the Required Control Panel
Resources

A control panel, more correctly referred to as a control panel file, consists
of several resource types. All but one of the resources will originate in a
resource file that you...i:reate using a resource editor. The final resource,
of type cdev, will be linked to this resource file to form the control panel
file. The cdev is created by your programming environment and holds
the compiled control device function code.

Figure 4.8 shows the resource file for the MySetSound control panel
project. In keeping with the naming convention of the other code
resources in this book, I've ended the file name with the type of code
resource that is being developed-here it's a cdev resource. When it
comes time to name the control panel itself, I'll drop the cdev ending
and simply name it MySetSound.

§Im"~ M SetSoundCDEU.n.rsrc ~Iii

BNDL

0101 1101
0010 1001
0 11 0 10 10
0001 111 0
01000000

ma ch

DITL

CDEV

nrct

FREF

0101 I I OI
00 101 001
0 1101 010
0001 111 0
01000000 ...
Sndv

L:JD
~

ICN**

2.0bl
6.0.5
7.0 ...

vers

-0-

-Or

•
FIGURE 4.8 THE MYSETSOUND RESOURCE FILE, WITH THE RESOURCES

REQUIRED OF A CONTROL PANEL.

While a control panel file can contain any number of resources and
resource types, the ones shown in Figure 4.8 are the types that are
required for any control panel.

198

bl]
N 0 T E

Chapter 4 Control Panels and cdevs

The file in Figure 4.8 doesn't contain a cdev resource
because it is the resource file for the control panel project,
not for the control panel Itself.

Most of the resource types shown in Figure 4.8 should look familiar to
you. The BNDL resource group is used to create a family of icons for
the control panel. As a by-product of creating a BNDL resource, your
resource editor will add an ICN#, FREF, and signature resource to the
resource file. For the MySetSound example, the signature is Sndv, so
the signature resource file is Sndv. The ICN# resource holds the black­
and-white icon drawn in the BNDL icon editor. The FREF is a file refer­
ence resource that associates the ICN# resource with this control panel.

The other two resources that you'll recognize are the DITL and the
vers resources. The DITL resource holds all of the items that will appear
in the control panel's dialog box. There's no DLOG resource because
the Finder will be responsible for creating the dialog box itself. The vers
resource, while not strictly required, is recommended for all System 7
code. The vers resource holds version information about the control
panel.

The MySetSound resource file holds only two resource types that you
won't find in application resource files. Control panels often use two­
pixel-wide lines to divide the control panel into separate areas. The nrct
resource lists the number and size of the rectangles that will be in the
control panel's dialog box. Finally, the mach resource specifies which
types of Macintosh the control panel will run on. Figure 4.9 summarizes
the resource types that are to appear in a control panel's resource file.

MySetSound and the Familiar Resource Types

MySetSound has several resource types that you're already familiar with.
I'll briefly cover each of them here. After that, I'll spend a few extra
pages on the two new types: the nrct and the mach resources.

199

More Mac Programming Techniques

Familiar resource types ...

~~ 2.0bl

(3El 6.0.5
7.0 ...

BNDL DITL vers

l3 01000000

Sndv

... new control panel resource types

01011101
00101001
01101010
00011110
01000000

mach nrct

FIGURE 4.9 THE RESOURCE TYPES THAT MUST APPEAR IN A

CONTROL PANEL'S RESOURCE FILE.

Before looking at the resources, a few words about resource ID number­
ing are in order. A control panel is serviced and controlled by the Finder.
That means that a control panel's required resources will be accessed by
the Finder. Because of this, there are restrictions on the resource IDs you
can give to control panel resources. When a user selects a control panel
from the Apple menu, for instance, the Finder will open a Modeless dia­
log box and look to the control panel's resource fork for a DITL
resource with an ID of -4064. When it finds a DITL with that ID, the
Finder will use Dialog Manager and Control Manager routines to display
the items listed in that DITL. If the control panel does not contain a
DITL with an ID of-4064, the loading of the control panel will fail.

200

r:lJ
N 0 T E

Chapter 4 Control Panels and cdevs

The DITL, BNDL, mach, and nrct resources each must have a
resource ID of -4064. The FREF and ICN# resources that are
automatically generated by the creation of the BNDL
resource wlll (and must) also have IDs of -4064. The signa­
ture resource that Is also created along with a BNDL will
have an ID of 0. The vers resource, which Is not technically a
required control panel resource, should have an ID of 1.

MySetSound has a DITL with four items, as shown in Figure 4.10. The
control device function code (covered later) will be responsible for han­
dling mouse clicks in the radio button and push button items. Note that
the DITL has been given an ID of -4064, as required.

r:lJ
N 0 T E

alifEi D ITL · 10 = -4064 from M SetSoundCOEU

!Speaker Uolumlljj

lOHighW
IOOff w

[Set Uolume~

FIGURE 4.10 THE DITL RESOURCE FOR MYSETSOUND.

The reasoning behind the off-centered placement of the DITL
items wlll be discussed when the nrct resource Is covered.

As required, the MySetSound has a BNDL resource with an ID of -4064,
which is shown in Figure 4.11. A control panel can have any four-charac­
ter signature. I have picked Sndv to give an indication that this control
panel is a "sound device."

201

More Mac Programming Techniques

lii§-BNllt JD 6 -40.64from M.

Signature: I Sndu I

Type Finder I cons
~~~---..... <(} .... 

cdeu 

FIGURE 4.11 THE BNDL RESOURCE FOR MYSETSOUND. 

Double-clicking on the row of gray patterned rectangles in the BNDL 
resource opens the ResEdit icon editor. Using this editor, I created a sim­
ple black-and-white icon for the MySetSound control panel, which is 
shown in Figure 4.12. I opened Apple's Sound control panel in ResEdit 
to get an idea of how to draw a small speaker. 

~ 
N 0 T E 

Before performing this blatant theft of an Apple Icon, I of 
course verified that no Apple employees were looking over 
my shoulder! 

To better support users with color monitors, you might want to also add 
color icons to the control panel resource file. For MySetSound, I've kept 
things simple by sticking to black and white. The example cdev that fol­
lows MySetSound uses color icons and small icons. 

I've added a vers resource to the MySetSound resource file so that the 
MySetSound displays version information in the Finder's Get Info window. 
This resource, which should have an ID ofl, is shown in Figure 4.13. 

202 



Chapter 4 Control Panels and cdevs 

• 
• •••••••••••••••••••••••••••• • • • • • • •• • • • • • • • • • • • • • • • • '-... • • • • • • • •••••• • • • • • • • • • • • D • • • • • • • • • • • • • 0 • • • • • • • •••••• • • • • • • • • • • • 0 • • • • • • • • • • • • • • • 

1-1 • •• • • • • • • • • • • ••• •••• • ••• • ••• • • • • • • • • • •••• • •• • • • •• • •• • • • • • • • • • • • • • • • • • • • • • • •• •••• • • • • • •••••••••••••••••••••••••••••••• 
FIGURE 4.12 THE ICON EDITOR AND THE BLACK•AND-WHITE ICON FOR MYSEJSOUND, 

H uers ID a 1 from M SetSoundCD£U.11.rsrc 

Uersion number: [D . LI . LI 
Release:! Final ,.. I Non-release: LI 
Country Code:l._o_o_-_u_sn _____ ... _.I 

Short uersion string: ~I 1_._o _________ ~ 

Long uersion string (uislble in Get Info): 

11.0 copyright © Soundldeas, Inc. 

FIGURE 4.13 THE VERS RESOURCE FOR MYSETSOUND. 

203 



More Mac Programming Techniques 

MySetSound and the nrct Resource Type 

Control panels contain two resource types that aren't found in applica­
tions: the nrct and the mach resources. Figure 4.1 4 shows the nrct 
resource for MySetSound. 

lilm nrct ID= -4064 from M SetSoundCDEU.11.rsrc 

HumOfRects 

1) ***** 

Rectangle 

2) ***** 

FIGURE 4.14 THE NRCT RESOURCE FOR MYSETSOUND. 

The nrct resource, which must have an ID of -4064, serves two purposes. 
First, it determines the overall size of the control panel's dialog box. 
Second , the nrct divides the control panel's dialog box into rectangles. 

For an application, the size of a dialog box is held in a DLOG 
resource. A control panel, you' ll recall , has no DLOG resource- the 
Finder is responsible for opening and displaying the control panel 's 
Modeless dialog box. So the Finder needs to be told how large the dialog 
box should be. It is the combined dimensions of all of a control panel's 
nrct rectangles that provide this information. Since MySetSound only has 
one rectangle, that one rectangle is the control panel's size. In the nrct 
resource, the ordering of the four rectangle dimensions is (T, L, B, R). 
Figure 4.15 shows that MySetSound rectangle (-1, 87, 169, 322) results in 
a dialog box that is 235 pixels wide by 170 pixels high. 

For all control panels, one of the rectangles listed the nrct resource 
must have a top coordinate of -1 and a left coordinate of 87. If your con­
trol panel will be System 6 compatible, it will appear in the single Control 
Panel desk accessory that is used to display all control panels. As shown 
in Figure 4.16, the point (87, -1) represents the upper-left comer of the 
control panel display area. 

204 



Chapter 4 Control Panels and cdevs 

- 1 

87 322 

§0 MySetSoundCDEU 

Speaker Volume 

@ High 

Q Off 

( Set Uolume 

169 ----------------

D~----0 
235 

170 

FIGURE 4.15 THE COORDINATES OF THE RECTANGLE IN WHICH 

THE MYSETSOUND CONTROL PANEL WILL APPEAR. 

87 

- 1 0 

Gener al 

Control Panel 

~~(87, -1 ) 
Keyboard 

Sound 

3.3.1 

FIGURE 4.16 THE REFERENCE FOR THE PLACEMENT OF THE CONTROL PANEL mMS IN A 

CONTROL PANEL APPEARING IN THE SYSTEM 6 CONTROL PANEL DESK ACCESSORY. 

205 



More Mac Programming Techniques 

T I P 

Even if your Control Panel will not be backwards compatible 
with System 6 and the Control Panel desk accessory, it 
must contain a nrct resource with a rectangle that has (87, 
-1) as Its upper-left corner. 

When you place a control panel's dialog items in the control panel's 
DITL resource, the 87-pixel offset must be considered. Earlier you saw 
the DITL for MySetSound. Recall that the fo ur items in that DITL 
appeared to have been placed too far to the right in the DITL. Figure 
4.17 shows why this was done. 

D 

~ 
General 

I •::::·:·:·:·Y.·:·:·:~! I 

Keyboard 

"~ 
Mouse 

@li.i'§&!.$1 ]QJ 
3.3. 1 

Control Panel 

Speaker Volume 

@High 

Q Off 

( Set Uolume J 

. ... . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . .. .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... .. ... . . . . . . . . . . . . . . . . . . . . . 

FIGURE 4.17 THE 87-PIXEL OFFSET ALLOWS A CONTROL PANEL TO m INSIDE THE 

DISPLAY AREA OF THE SYSTEM 6 CONTROL PANEL DESK ACCESSORY. 

When a cdev is opened under System 6, the DITL items will be placed in 
the Control Panel dialog box (see Figure 4.17). In Figure 4.18, I've over­
laid the MySelSound DITL over the Control Panel to emphasize just why 
you need to place DITL items off-cen ter. 

206 



3.3.1 

Chapter 4 Control Panels and cdevs 

!Speaker UolumetiJ 

10 High L!J 
IOOff w 

[ Set Uolume~ 

................ . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 
e e e o e e e e "" "" e I e e ................ . . . . . . . . . . .. .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 

I e e e e e e e e • o o e e I 
e e e e o I" o o o "e e e e" 

e o e e e o •" e e I I 0 e o • • • e O o • e I I e e e e e e 
e I e e e I e e •••I I e • ................ . . . . . . . . . . . . . . . 

I e e e e e • e e Io•• e e 0 
e. 0 o e e Io""" o I I e 

0 e" e e "" • e e o "e e o I e e I I e e •I e e e 0 o I e 
I e e e e e e e • o o o e e Io 

e e O I• e o o e e e 0 o If 
0 e e e" •" e e. o o e e 0 I 

e • O O O e IO e • e • e I e 
e e • e e e e e • e O I I e o I 

e e e e o e o e I e e e e e e 
e I I e e e e e • • o e I I• e 

e e e e I"•"" e e e e e e ................ . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . 
~)j)j)j)j)j)j)~)j)j)~)~)j)j)~j~ 

FIGURE 4.18 THE DITL ITEMS ARE OFFSET SO THAT THEY WILL APPEAR CENTERED IN THE 

SYSTEM 8 CONTROL PANEL DESK ACCESSORY'S DISPLAY AREA. 

What happens if the Control Panel is opened while running on a Mac 
with System 7? The Finder knows enough to shift all of the items 87 pix­
els to the left before placing them in the dialog box that it opens. 

Setting the size of the control panel's dialog box is one purpose of 
the nrct resource. The second purpose of the nrct is to divide the 
control panel's dialog box into rectangles. The MySetSound control 
panel has a single rectangle. Figure 4.19 shows an example that uses 
two rectangles. 

~ 
N 0 T E 

Control panel rectangles exist for aesthetic purposes only. 
They're used to separate or group logically related items In a 
control panel. The Finder simply uses the values in the nrct 
to determine where to draw dividing lines in the control 
panel's dialog box. The Finder will not distinguish between 
mouse clicks that occur In one rectangle or another. 

207 



More Mac Programming Techniques 

0 Time Tracker 

Uersion 1.2 
© Timeflys, Inc. 1994 

@On 
0 0ff 

Time will be logged 
at increments of: 

@ minute 
0 5 minutes 
O 15 minutes 
O 30 minutes 

Rectangle 

FIGURE 4.19 THE NRCT RESOURCES DIVIDE A CONTROL PANEL INTO SEPARATE AREAS. 

If the combined area of the rectangles that make up an nrct resource 
docsn ' t cover a single rectangle, the Finder will fill any empty space with 
a gray pattern. Figure 4.20 shows an nrct resource that defines two rec­
tangks. Figure 4.21 shows how the two rectangles would be placed in a 
System 7 control panel. 

Iii nrct ID 4064 from MJllnsani!Y_COEU.11.rsrc 

Hu110 fRect s 2 .Q 

1) ***** 

Rectangle l-1 1187 11 45 11 325 llliD 
2) ***** 

Rectangle 

'"3 
1187 11270 11 225 llliD 

3) ***** 

FIGURE 4 .20 Two NRCT RESOURCES DEFINE TWO SEPARATE DISPLAY AREAS. 

208 



Chapter 4 Control Panels and cdevs 

87 325 

I I 
0 Timelrackerl I 

Uersion 1.0 
© TimeFlys, Inc. 1994 

@On 
Q Off 

Log time at 
increments of: 

0 30 seconds 

® 1 minute 

0 5 minutes 

0 15 minutes 

0 30 minutes 

0 1 hour 

............ . . . . . . . . . . . . . . . . . . . . . . . . ... . ... .. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . ... . . . . . . . . . . . . ..... . .. .. .. . . . . . . . . . . . . ... ...... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

270 ~~•~~~~~~~~~·-··-··-··-· ·-·--··-··-··-··-·-.-..··· 

225 

FIGURE 4.21 THE AREA OF A CONTROL PANEL DIALOG BOX 

THAT IS NOT COVERED BY NRCT RECTANGLES WILL APPEAR GRAY. 

MySetSound and the mach Resource Type 

Because control panels usually make systemwide changes, a ll control pan­
els cannot run on all Macintosh models and all versions of the system 
software. For example , if a contro l panel you're developing adjusts a 
color level, it might make no sense to have the control panel run on a 
black-and-white Macintosh like an old MacPlus. The mach resource is 
used to let the Finder know whether or no t your control panel runs on 
all Macintosh models. 

If a mach resource (which must have an ID of -4064) has a value of 
FFFF 0000, th e n the Finder assumes the control pane l runs on a ll 

209 



More Mac Programming Techniques 

Macintosh models, and it will open the control panel regardless of the 
Mac on which it resides. Figure 4.22 shows the mach resource for 
MySetSound. Because MySetSound will run on any Mac, its mach 
resource has a value of FFFF 0000. 

000000 
000008 
000010 
000018 
000020 
000028 
000030 
000038 
000040 
000048 

FFFF 0000 DDDD 

FIGURE 4.22 THE MACH RESOURCE FOR A CONTROL PANEL 

THAT IS TO RUN ON ANY MACINTOSH. 

If a mach resource instead has a value of 0000 FFFF, the Finder will not 
make the assumption that the control panel can be opened. Instead, it 
will invoke the control panel's cdev code and send a message requesting 
that the control device function determine if the control panel works on 
the current machine. It is up to the control device function code to then 
perform any necessary tests to see if the control panel will work on the 
machine. If the control panel can't run on the Mac, the Finder will dis­
play an alert like the one shown in Figure 4.23. 

210 

The control panel "My Insanity" 
cannot be used with this Macintosh. 

n OK JJ 

FIGURE 4.23 THE FINDER WILL DISPLAY AN ALERT IF A CONTROL PANEL 

CANNOT RUN ON THE HOST MACHINE. 



~ 
N 0 T E 

Chapter 4 Control Panels and cdevs 

The Mylnsanlty control panel that appears later In this chap­
ter works this way. It makes a call to Gestalt() to see If the 
Mac has color QulckDraw. If It does, the control panel wlll 
load. If it doesn't, the control panel wlll not appear, and the 
alert shown In Figure 4.23 will be posted. 

CONTROL PANEL SOURCE CODE 

A control panel, or cdev, code resource has many similarities to the other 
types of code resources you've worked with. It also has some important 
differences. Key among them is the control panel's need for a private 
storage area in which to hold data. 

Control Panels and Private Data Storage 

When a user selects a control panel from the Apple menu, the Finder 
executes the cdev code. For as long as the control panel is open, this 
cdev code will be executed repeatedly. Whenever the user performs an 
action that involves the control panel (such as clicking on an item in it), 
the Finder must call the cdev code to handle that action. Even when no 
user action is taking place in the control panel, the Finder will still be 
executing the cdev code, sending null events to it periodically. If a con­
trol panel needs to retain any information between these calls, it needs 
some means of storing values. 

Because a control panel has dialog box items in it, it usually needs to 
store information for the duration of its life on the screen. Since a con­
trol panel is only one of several pieces of code that the Finder works ·with, 
a control panel needs some means of storing values between these calls. 
The MySetSound control panel, for instance, keeps track of which of its 
two radio buttons is currently on. That way, when the user clicks on a 
radio button in the control panel, MySetSound knows which button to 
tum off. If the user clicks on the desktop while MySetSound is open, the 
control panel will move to the background. If the user then clicks on the 
control panel, the Finder will again make the control panel active and 
again call the cdev code. Between those calls the control panel must 
retain its data-the item number of the radio button that is currently on. 

211 



More Mac Programming Techniques 

To hold data, a control panel allocates memory for a data structure 
and obtains a handle to that memory. This handle should be created 
when the control panel is opened. During the execution of the cdev, the 
control device function can work with the data that the handle refer­
ences. Then, when the current call to the cdev code is complete, the cdev 
should pass the handle back to the Finder. The next time the Finder calls 
the control panel, it will pass the handle back to the control panel. When 
the control panel is inactive, the handle to its data is safely kept track of 
by the Finder. The handle is created only once while the control panel is 
open. The passing of the handle between the control panel and the 
Finder, however, occurs every time the cdev code is invoked. Figure 4.24 
summarizes how a control panel maintains its private data. 

212 

Q 
finder 

F~r <rl Handle p 

Q 
finder 

i=c 

f!C 

CU•IUDJll. 

0HlliH [ 
ODFF 

0HlliH 
ODrF 

0HlliH 
ODf'F 

t"CJ5"••u•"' 

0HlliH 
Ocrr 

!l 

Qy Bandle~ 
Finder · · -----

Bandle J 

The Finder opens a 
control panel, and the 
'cdev' then allocates 
memory and obtains 
a handle to it. 

After the call to the 
'cdev' is complete, the 
handle is returned to 
the Finder. 

The Finder handles 
other tasks. 

A click on the control 
panel tells the Finder 
to activate the control 
panel and pass the 
handle to the 'cdev'. 

FIGURE 4.24 A CONTROL PANEL MAINTAINS A DATA STRUCTURE 

FOR ITS OWN PRIVATE DATA. 



Chapter 4 Control Panels and cdevs 

The MySetSound control panel defines a data structure that holds two 
members. The first field keeps track of the item number of the radio but­
ton that is currently on. The second field holds the current system vol­
ume. The handle to this struct, CDEVHandl e, is the handle that will be 
passed between the control panel and the Finder. 

typedef struct 
{ 

short current_button_sys_vol: 
short current_sys_vol: 

} CDEVRecord, *CDEVPtr. **CDEVHandle: 

The Control Device Function Entry Point 

A cdev is a code resource, so, like MDEF and CDEF code resources, it 
requires an entry point by which application code can access it. For a 
cdev, that application is the Finder. 

The entry point for a cdev begins with the pas ca 1 keyword. The 
return type should be the handle type defined by the cdev. For 
MySetSound, that type is CD EV Hand 1 e. After the return type comes 
main and the seven function parameters. Here is the entry point for 
MySetSound: 

pascal CDEVHandle main( short 
short 
short 
short 
Event Record 
CDEVHandle 
DialogPtr 

message, 
item. 
num_items. 
control_panel_ID. 
*the_event, 
cdev_storage, 
the_dialog ) 

As it has been for other code resource types you've seen, the message 
parameter indicates the type of action that is to be handled by the con­
trol device function. 

i nitDev 
hit Dev 
mac Dev 
nulDev 

Perform initializations when Control Panel opens 

Handle a mouse click on an enabled dialog box item 

Determine if the Control Panel can run on this Macintosh 

Perform background processing chores during null event 

213 



More Mac Programming Techniques 

updateDev 
activDev 
deActivDev 
keyEvtDev 
closeDev 

Update text or items not updated by the Dialog Manager 

Handle Control Panel becoming active 

Handle Control panel becoming inactive 

Handle a keystroke 

Perform any clean up before Control Panel quits 

The second parameter to main () is applicable only when an enabled 
item in the control panel has been clicked on, that is, only if message 
has a value of hi tDev. The i tern parameter holds the item number of 
the clicked-on item. 

The third parameter, num_i terns, is used when the cdev is running 
under System 6. It holds the number of items in the scrolling list of items 
in the Control Panel desk accessory. For a control panel running under 
System 7, this parameter has a value of 0. 

The fourth parameter to main (), control _panel _ID, holds a pri­
vate value used by the Finder and control panel to access the control 
panel's resources. Your control panel source code will never need to ref­
erence this parameter. 

The the_event parameter holds the EventRecord for the event 
that caused the invocation of the cdev. 

The sixth parameter to main(), cdev_storage, is the handle to 
the control panel's private data. After the control panel opens, it will 
return this handle to the Finder. From that point on, the Finder will pass 
this handle back to the cdev every time it calls it. 

The last parameter to main () is the_d i a 1 og. This parameter is a 
pointer to the control panel's dialog record. 

The control device function's main () routine should handle a mes­
sage by determining which type of message was sent by the Finder, and 
then responding to that message. If the message is a hi tDev type, then 
ma i n ( ) should determine which dialog item was clicked on. Here is a 
look at the format of a cdev that handles in i tDev and hi tDev messages: 

switch ( message ) 
{ 

214 



Chapter 4 Control Panels and ccBevs 

case initDev: 
II control panel opened. perform any initializations 

case hitDev: 
II enabled item clicked on. handle appropriately: 
switch < i tern > 
{ 

case 1: 
II handle click on 'DITL' item #1 

case 2: 
II handle click on 'DITL' item #2 

II case label for each item 

Taking Care of the Preliminaries 

The MySetSound control panel changes the system sound volume by 
making a call to the Toolbox routine Set Sound Vol ( ) . This routine is 
defined in the Sound.h universal header file, so the Sound.h file should 
be included at the top of the source code: 

#include <Sound.h> 

The resource file for MySetSound has a DITL resource with three 
enabled items. The MySetSound source code defines a constant for each 
of the items: 

//define 
#define 
#define 

HIGH_SYS_VOL_ITEM 
OFF_SYS_VOL_ITEM 
SET_SYS_VOL_ITEM 

1 
2 
3 

As mentioned, MySetSound will adjust the speaker volume by making a 
call to the Toolbox routine SetSoundVol ().As its only parameter, 
SetSoundVo 1 () accepts a short integer in the range of 0 to 7. A 0 turns 
the volume off, while a 7 sets the volume to its highest level: 

//define 
#define 

SYS_VOL_OFF 
SYS_VOL_HIGH 

0 
7 

215 



More Mac Programming Techniques 

Handling an initDev Message 

\i\11en a control panel opens, the Finder sends it an initDev message. This 
gives the control panel an opportunity to perform any one-time initializa­
tions. Because the Dialog Manager will handle the drawing of dialog box 
items, your initialization code won't have to. V\'hat it should do is allocate 
memory for the data structure that will be saved in the control panel's pri­
vate storage area, and then assign initial values to the members. 

MySetSound defines a struct named CD EV Record to hold its data. 
Below is another look at the CDEVRecord structure. Following the 
st r u ct definition is the line of code that allocates storage for one struc­
ture and returns a handle to that memory. Recall that the cdev_stor­
a g e variable is passed in as one of the parameters to ma i n ( ) and initial­
ly does not point to any valid data. 

typedef struct 
{ 

short current_button_sys_vol: 
short current_sys_vol: 

CDEVRecord, *CDEVPtr, **CDEVHandle: 

cdev_storage - CCDEVHandle)NewHandle( sizeof( CDEVRecord ) ): 

The current_button_sys_vol member will hold the DITL item 
number of the radio button that is currently on. I've arbitrarily decided 
to open the control panel with the High radio button on, so I'll assign a 
value of I (HIGH_SYS_VOL_ITEM) to this struct member. To make 
the assignment, I'll need to dereference the handle twice: 

{**cdev_storage).current_button_sys_vol = HIGH_SYS_VOL_ITEM: 

If the High radio button is on, then the system speaker volume should be 
set to its highest level. I'll assign the current_sys_vol member a 
value of 7 (HIGH_SYS_VOL_ITEM). This assignment only stores the sys­
tem volume level in the structure-it doesn't make the actual change to 
the speaker volume: 

216 



Chapter 4 Control Panels and cclevs 

(**cdev_storage).current_sys_vol = SYS_VOL_HIGH: 

MySetSound has a function named Set_Radi o_Buttons that's used to set 
the control panel's radio buttons. In response to a click on a radio button, 
Set_Radi o_Buttons() turns the old button off and the newly clicked-on 
button on. The control panel uses two local variables-new_radi o and 
ol d_radi 0-to hold the DITL item numbers of these two buttons. This is 
the snippet that adjusts the radio buttons to their initial settings: 

new_radio - C**cdev_storage}.current_button_sys_vol: 
old_radio = OFF_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio, new_radio, num_items ): 

Here's a look at the complete section of code that handles an in i tDev 
message. 

case initDev: 
cdev_storage = CCDEVHandle)NewHandleC sizeof( CDEVRecord ) >: 
(**cdev_storage).current_button_sys_vol = HIGH_SYS_VOL_ITEM: 
(**cdev_storage).current_sys_vol - SYS_VOL_HIGH: 

new_radio = C**cdev_storage).current_button_sys_vol: 
old_radio = OFF_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio, new_radio, num_items >: 
break: 

Setting the Radio Buttons 

Set_Radi o_Buttons () is a simple utility function that would normally 
deserve very little mention. For use in a control panel, however, it war­
rants some discussion. 

The purpose of Set_Radi o_Buttons () is to turn off one radio 
button and on another one. The first parameter to the function is a 
Di al ogPtr that points to the control panel's Di al ogRecord. The sec­
ond parameter is the DITL item number of the button to turn off, while 
the third parameter is the DITL item number of the button to turn on. 

217 



More Mac Programming Techniques 

The fourth parameter is the number of items in the control panel, 
excluding the DITL items. This last parameter is the one that deserves a 
closer look. First, a look at the function definition: 

void Set_Radio_Buttons( DialogPtr dlog, 
short old_radio, 
short new_radio, 
short num_items ) 

To turn off a radio button, you'd normally use a call to Get Di a 1 og 
Item ( ) to get a handle to the DITL item, then make a call to 
SetCont ro 1Va1 ue () to tum off the button. The handle needs to be 
typecast to a Control Handle, and the value should be set to 0 to tum 
off the control. Assuming that o 1 d_r ad i o is the DITL item number of 
the radio button to tum off, the following snippet would do the trick: 

Handle 
short 
Re ct 

handle; 
type; 
box: 

GetDialogltem( dlog, old_radio, &type, &handle, &box ): 
SetControlValue( (ControlHandle)handle, 0 ): 

For a control panel, you'll want to make one significant change. If your 
cdev is to be backwards compatible to System 6, you'll have to take into 
consideration that the Control Panel desk accessory has a few DITL items 
of its own. The Control Panel maintains an item list that holds the items 
that appear in the Control Panel's scrolling list. Each icon is an item. 
When an icon is clicked on in the System 6 Control Panel, the items in 
the clicked-on Control Panel are appended to the Control Panel's list. 
Figure 4.25 shows that if MySetSound is running under System 6, the 
Control Panel with four icons considers the three MySetSound items to 
be items numbered 5, 6, and 7, respectively. 

In order to access any one of the MySetSound items under System 6, 
the cdev code must refer to the item by the item number the Control 
Panel uses, not by its MySetSound DITL value. 

218 



Control Panel has 
four of its own items, 
( nurn_ i terns = 4 ) 

General 

Ke1Jboard 

···~ 

OJ 
Mouse 

• @dMQl!&I 

3 .3.1 

Chapter 4 Control Panels and cdevs 

Control Panel 

Speaker Volume 

( Set Uolume J 

... . .. . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . . . . . . . ....... . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . . . . . .. ... .. ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Fifth 
Control 
Panel item, 
cdev DITL 
item #1 
( item= 5 ) 

Sixth 
Control 
Panel item, 
cdev DITL 
item #2 
( item = 6 ) 

Seventh 
Control 
Panel item, 
cdev DITL 
item #3 
( i tem= 7 ) 

FIGURE 4.25 WHEN RUNNING UNDER SYSTEM 6, A CONTROL PANEL'S DITL ITEMS ARE 

APPENDED TO THE ITEM LIST OF THE CONTROL PANEL DESK ACCESSORY. 

The workings of the System 6 Control Panel explain why the Finder pass­
es the control device function the n um_ i terns parameter. This variable 
holds the number of icons in the Control Panel 's scrolling list It is this 
value that must be added to the control panel DITL item value in a call 
to GetDialogitem( ). In that way, a handle to the correct i tem is 
obtained. Here 's h ow a radio button is turned off in a control panel: 

Hand le 
short 
Re ct 

handle; 
type; 
box; 

GetDial ogi tem( dl og, old_radio + num_i tems , &type, &handl e , &box ); 
SetControlValue( CControlHandle)handl e, 0 ); 

219 



More Mac Programming Techniques 

To tum a radio button on-the second task that Set_Radi o_ Buttons () 
performs-the same two Toolbox functions are used. This time a value of 
255 is passed to SetControl Value() to signal that the control is to be 
turned on: 

GetDialogltemC dlog, new_radio + num_items, &type, &handle, &box ); 
SetControlValue( CControlHandle)handle, 255 ); 

If Set_Radi o_Buttons () adds the number of control panel items to 
new_radi o and ol d_radi o, then it is important that these values be 
passed in as the DITL values of the items, not as the combined value of 
control panel items and cdev item number. You can see from the 
in i t Dev code that this is exactly what MySetSound does. First, the data 
structure member current_button_sys_vol is set to 1-the DITL 
item of the High radio button. Then new_radi o is assigned this same 
value. 'Kext, ol d_radi o is assigned a value of2-the DITL item number 
of the Off radio button: 

C**cdev_storage).current_button_sys_vol = HIGH_SYS_VOL_ITEM: 

new_radio = C**cdev_storage).current_button_sys_vol: 
al d __ radio = OFF _SYS_VOL_ITEM: 

Finally, a call to Set_Radi o_Buttons () is made: 

Set_Radio_ButtonsC the_dialog, old_radio, new_radio, num_items ); 

What about a cdev that's running under System 7? In System 7, each con­
trol panel is self-contained. There's no reliance on a Control Panel desk 
accessory, and thus no need to include the number of icon items in the 
System 6 Control Panel in determining item numbers. Fortunately, the 
Finder is smart enough to realize this. When your control panel is 
opened on a Mac with System 7, the Finder will give n um_ i terns a value 
of 0 and pass that value to your control panel. That means you can use 
the very same System 6 code. Any time num_ i terns appears in the code 
as an offset, it will in effect be ignored. 

220 



Chapter 4 Control Panels and cdevs 

rll 
Even if you're sure your control panel will only be used under 
System 7, you should still consider using n um_ i t ems In your 
cdev code. Since Its value of 0 will be Ignored, there's no 
harm done. And should you ever change your mind and 
decide to make your control panel backwards compatible, 
you'll be all set. 

N 0 T E 

You'll see Set_Radi o_Buttons () (exactly as it's shown below) in each 
of the three control panel examples in this chapter. 

void Set_Radio_Buttons( DialogPtr dlog, 

{ 
Handle 
short 
Re ct 

handle: 
type: 
box: 

short old_radio, 
short new_radio, 
short num_items ) 

GetDialogltem( dlog, old_radio + num_items, &type, &handle, 
&box >: 

SetControlValue( (ControlHandle)handle, 0 >: 

GetDialogltem( dlog, new_radio + num_items. &type, &handle, 
&box >: 

SetControlValue( (ControlHandle)handle, 1 ): 

Handling a hitDev Message 

When the user clicks on an enabled control panel item, the Finder sends 
the control device function a hi tDev message. Along with the message, the 
item number will be sent in the i tern parameter and, as always, the number 
of control panel items will be sent in the num_ i terns parameter. If the con­
trol panel is running under System 6, i tern will have a value that includes 
the number of Control Panel icon items-as shown in Figure 4.25. 

Consider a System 6 control panel with four icons in its scrolling list 
and the three enabled MySetSound items. The n um_ i terns parameter 

221 



More Mac Programming Techniques 

will have a value of 4. If the user clicks on the High radio button (DITL 
item number 1), i tern will have a value of 5. 

The first thing to do in response to a hi t Dev message is to subtract 
nu m_ it ems from it em. That will give the DITL item number of the 
clicked-on item. Since a control panel running under System 7 will always 
have a num_ i terns value of 0, this operation will have no adverse effect 
on the i tern parameter. Next, a switch that runs the appropriate code 
for that item is entered: 

case hitDev: 
item= item - num_items; 

switch ( i tern 
{ 

case HIGH_SYS_VOL_ITEM: 
II handle radio button 

case OFF_SYS_VOL_ITEM: 
II handle radio button 

case SET_SYS_VOL_ITEM: 

} 

break; 

II handle push button 

II HIGH_SYS_VOL_ITEM = 1 

II OFF_SYS_VOL_ITEM = 2 

II SET_SYS_VOL_ITEM = 3 

The reason for subtracting num_ i terns from i tern is so that the code 
can freely use the fidefi ne directives for the control panel items, with­
out concern for any offset and without trying to factor in the number of 
control panel items. When I created my control panel DITL in ResEdit, I 
defined the High radio button to be item number 1. That's how I intu­
itively think of this button-item number 1. I don't want to consider the 
control panel offset each time I think of a DITL item. 

'When should I be concerned about the item offset that's used in the 
System 6 Control Panel? Only in my utility routine or routines that access 
items. The Set_Radi o_Buttons () is an example. 

MySetSound handles a click on a radio button by determining which 
button should be considered the new button and which should be the 
old button. The new button will of course be the one that was clicked on. 
The old button will be whatever button was stored in the current 

222 



Chapter 4 Control Panels and cdevs 

button_sys_vol field of the control panel's private storage area. For a 
click on the High radio button, this snippet would suffice: 

old_radio = (**cdev_storage).current_button_sys_vol; 
new_radio = HIGH_SYS_VOL_ITEM; 

Next, a call to Set_Radi o_Buttons () is made to turn off the old but­
ton and to turn on the new button: 

Set_Radio_Buttons( the_dialog, old_radio. new_radio, num_items ); 

After setting the radio buttons, the current_button_sys_vol mem­
ber of the storage structure must be updated to hold the DITL item 
number of the clicked-on button. 

(**cdev_storage).current_button_sys_vol = new_radio; 

The speaker volume is based on the current radio button, so now is the 
time to store that value. If the High radio button was clicked, the number 
7 (SYS_VOL_HIGH, the highest volume value) should be stored in the 
other member of the control panel's data structure: 

(**cdev_storage).current_sys_vol = SYS_VOL_HIGH; 

Below is the complete code for handling a click on the High radio but­
ton. A click on the Off radio button is handled in a similar fashion. 

case HIGH_SYS_VOL_ITEM: 
old_radio = (**cdev_storage).current_button_sys_vol; 
new_radio = HIGH_SYS_VOL_ITEM; 
Set_Radio_Buttons( the_dialog, old_radio, new_radio, num_items ); 
(**cdev_storage).current_button_sys_vol = new_radio; 
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH; 
break; 

The two MySetSound radio buttons can be clicked on and off by the user 
as often as desired-without a change of the system volume going into 
effect. It's not until the user clicks on the Set Volume push button that 
this change happens. A call to the Toolbox function Set Sound Vo 1 ( ) 

223 



More Mac Programming Techniques 

takes care of that. SetSoundVol () accepts a short integer in the range 
of 0 to 7 and then sets the system speaker volume based on that value. 
The value to pass to SetSoundVol ()is held in the current_sys_vol 
field of the Control Panel's data structure. It holds a value of either 
SYS_VOL_HIGH or SYS_VOL_OFF; it depends on which radio button is 
currently on. 

After setting the speaker volume, a call to Sys Beep ( ) sounds the sys- , 
tern alert to give the user some audio feedback. 

case SET_SYS_VOL_ITEM: 
SetSoundVol( (**cdev_storage).current_sys_vol ); 
Sys Beep( 1 ) ; 

Here is a look at the code that MySetSound uses to handle a hi tDev 
message: 

case hitDev: 
item= item - num_items; 

switch ( item 
{ 

case HIGH_SYS_VOL_ITEM: 
old_radio = (**cdev_storage).current_button_sys_vol; 
new_radio = HIGH_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio, new_radio, 

num_items ); 
(**cdev_storage).current_button_sys_vol = new_radio; 
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH; 
break; 

case OFF_SYS_VOL_ITEM: 
old_radio = (**cdev_storage).current_button_sys_vol: 
new_radio = OFF_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio, new_radio, 

num_ i terns ) ; 

224 

(**cdev_storage).current_button_sys_vol = new_radio; 
(**cdev_storage).current_sys_vol = SYS_VOL_OFF; 
break; 

case SET_SYS_VOL_ITEM: 
SetSoundVol( (**cdev_storage).current_sys_vol >: 
SysBeep( 1 ): 



Chapter 4 Control Panels and cdevs 

} 
break: 

The MySetSound Source Code Listing 

Now it's time to look at the complete source code listing for the 
MySetSound control panel. As always, you'll find the source code, pro­
ject, and resource files for this example on the included disk. 

II~~~~~~~~~~~~~~~~~~~~~ 
II #include directives 

#include <Sound.h> 

II~~~~~~~~~~~~~~~~~~~~~~~~ 
II function prototypes 

void Set_Radio_Buttons( DialogPtr, short, short, short >: 

II~~~~~~~~~~~~~~~~~~~~~~~~ 
II #define directives 

fldefi ne 
fldefi ne 
fldefi ne 

fldefi ne 
fldefi ne 

HIGH_SYS_VOL_ITEM 
OFF_SYS_VOL_ITEM 
SET _SYS_VOL_ITEM 

SYS_VOL_OFF 
SYS_VOL_HIGH 

1 
2 
3 

0 
7 

II~~~~~~~~~~~~~~~~~~~~~~~~ 
II define data structures 

typedef struct 
{ 

short current_button_sys_vol; 
short current_sys_vol; 

} CDEVRecord, *CDEVPtr, **CDEVHandle: 

II~~~~~~~~~~~~~~~~~~~~~~~~ 
II entry point to the code 

225 



More Mac Programming Techniques 

pascal CDEVHandle main( short 
short 
short 
short 

message. 

{ 

Event Record 
CDEVHandle 
DialogPtr 

item. 
num_items. 
control_panel_ID. 
*the_event. 
cdev_storage. 
the_dialog ) 

short old_radio: 
short new_radio: 

switch ( message ) 
{ 

case initDev: 
cdev_storage = (CDEVHandle)NewHandle(sizeofCCDEVRecord ) ): 

(**cdev_storage).current_button_sys_vol = 

HIGH_SYS_VOL_ITEM: 
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH: 

new_radio = (**cdev_storage).current_button_sys_vol: 
old_radio = OFF_SYS_VOL_ITEM: 
Set_Radio_Buttons(the_dialog, old_radio, new_radio. 

num_ items): 
break: 

case hitDev: 
item= item - num_items: 

switch ( item 
{ 

case HIGH_SYS_VOL_ITEM: 
old_radio ... 
(**cdev_storage).current_button_sys_vol; 
new_radio = HIGH_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio. 

new_radio. num_items ): 
C**cdev_storage).current_button_sys_vol = 
new_radio: 
(**cdev_storage).current_sys_vol = SYS_VOL_HIGH: 
break: 

case OFF_SYS_VOL_ITEM: 
old_radio ... 
C**cdev_storage).current_button_sys_vol: 
new_radio = OFF_SYS_VOL_ITEM: 

226 



} 

} 

Chapter 4 Control Panels and cdevs 

Set_Radio_Buttons( the_dialog, old_radio, 
new_radio, num_items ); 

(**cdev_storage).current_button_sys_vol -
new_radio; 
(**cdev_storage).current_sys_vol = SYS_VOL_OFF; 
break: 

case SET_SYS_VOL_ITEM: 

} 
break: 

SetSoundVol( C**cdev_storage).current_sys_vol ): 
SysBeep( 1 ); 

return ( cdev_storage >: 

set radio buttons 

void Set_Radio_Buttons( DialogPtr 
short 
short 
short 

dlog, 
old_radio, 
new_radio, 
num_items ) 

{ 

} 

Handle handle: 
short type: 
Rect box: 

GetDialogltem( dlog, old_radio + num_items, &type, &handle, 
&box >: 

SetControlValue( (ControlHandle)handle, 0 ): 

GetDialogltemC dlog, new_radio + num_items, &type, &handle, 
&box ): 

SetControlValue( CControlHandle)handle. 1 ): 

BUILDING THE CDEV CODE RESOURCE 

In the first three chapters of this book, you built a few different types of 
code resources. For a cdev, things are a little different. A control panel 
file is self-contained code. Besides the cdev resource, a control panel file 

227 



More Mac Programming Techniques 

holds all of the other resources you created in the control panel's project 
resource file- resources such as the DITL, nrct, and mach. After build­
ing the code resource, you'll find that instead of having a resource file 
wiLh a code resource in it, you'll have a new control panel, with an icon 
like the one pictured in Figure 4.26. 

Im M_y_ Set Sound cdeu f •l! 
4 items 281.4 MB in disk 42.8 MB available 

iJ ~ 
M ySetSo u ndC DEV. 'T1 M ySetSo u ndC DEV .c 

~ ~~ 
Hl• CFF 

M ySetSo u ndC DEV. 'T1. r s re MySetSound 

¢1 1¢ 

FIGURE 4.26 BUILDING A CDEV CODE RESOURCE RESULTS IN 

THE CREATION OF A NEW CONTROL PANEL, 

~ 

11 

-0 
\iii 

Because a control pan el file is self-contained, you won 't need an applica­
tio11 to test it out. Instead, drop the control panel into your System fold­
e r. If yo u ' re using System 7, MySetSound will appear in the Control 
Panels folder in the Apple menu. Under System 6, the MySetSound icon 
will appear in the icon list of the Control Panel desk accessory. 

N 0 T E 

228 

If you're using System 7, you can simply double-click on a 
control panel file to execute its code. There's no need to 
place it in your System folder during testing. After you're sat­
isfied with the results, then drop it In the System folder so 
that you can access It from the Apple menu. 



Chapter 4 Control Panels and cdevs 

Building with CodeWarrior 

If you're using the Metrowerks Code Warrior compiler, create a new pro­
ject and add the two files shown in Figure 4.27. 

=[ii My_SetSoundCOEU.µ 
File Code Data !!I " 

v Segment 1 O j Oi El 0 
My SetSoundCDEV .c 0 l 0 l • [I t-=i 

............... ~.~.~.~~.:.~.~.~ ...................... .L ............. ~L ........... g.L ................. ID. 

2 file(s) 0 0 

FIGURE 4.27 THE METROWERKS PROJECT WINDOW FOR 

THE MYSETSOUND CONTROL PANEL. 

Before building the control panel, select Preferences from the Edit 
menu. Click the Project icon to bring up the Project panel, as shown in 
Figure 4.28. Make sure that all of the items in this panel are filled in cor­
rectly. The Project Type should be set to Code Resource, and a n ame 
sho uld be e ntered in the File Name edit box. Unlike the other code 
resources you 've created , the cdev will no t be placed in its own resource 
file, so the name shouldn ' t include a referen ce to "resource." Instead of 
giving it a name like MySetSoundCDEV.rsrc, simply name it MySetSoun d. 

For a control panel, the resource type must be cdev, and the resource 
ID must be -4064. The Type field should be cdev and the Creator field 
can be any four characters. Figure 4.28 shows that Sndv was picked to 
indicate that this is a sound control device. 

T I P 

Don't forget that Metrowerks code resource projects must 
use the Small code model. Click on the Processor icon to 
display the Processor Info panel. Use the Code Model pop-up 
menu to select the Small code model. 

229 



More Mac Programming Techniques 

Apply to open project. 

Project Type: I Code Resource ,.. I 
r Code Resource Info:-------~ 

Fiie Name I MySetSound I 
Sym Name . . 

Resource Name 
'---:===============~ 

HeaderType: ~l~st_a_n_d_a_rd~~~-.... _,I 
D Multi Segment 
D Display Dialog 
D Merge To File 

Resource Flags ~ 

ResType ReslD 

I cdeu 11-4064 
Creator Type 

I Sndu 11 cdeu 

[Factory Settings) [ Reuert Panel) ( Cancel ) n OK D 

FIGURE 4.28 THE METROWERKS PREFERENCES DIALOG BOX FOR 

THE MYSETSOUND CONTROL PANEL. 

To build the code resource, select Make from the Project menu. When 
the build comple tes, you'll have a new control panel, with an icon like 
the one shown in Figure 4.26. 

Building with Symantec C++ /THINK C 

If you ' re working with a Symantec compiler, launch the THINK Project 
Manage r and create a n ew project. Add the MacTraps library a nd 
MySctSoundCDEV.c source code file to the project, as shown in Figure 4.29. 

Select Set Project Type from the Project menu. Click the Code 
Resource radio button to set the project type. Enter a name for the cdev 
resource, then fill in the Type field with cdev. The File Type should be 
cdeY, and the Creator can be any four characters. Figure 4.30 shows a 
Creator of Sndv for the MySetSound sound control device. Finally, enter a 
resource ID of -4064 for the cdev. This is the ID a control panel code 
resource must have. 

230 



Chapter 4 Control Panels and cdevs 

r; 

M_y_SetSoundCOEIJ.-11: 
Name Code 

v Segment 2 4 .Q 
Mac Traps 0 
My SetSoundCDE\l .c 0 
Totals 470 

~ • 
FIGURE 4.29 THE SYMANTEC PROJECT WINDOW FOR THE MYSETSOUND CONTROL PANEL. 

0 Application 

0 Desk Accessory 

0 Deuice Driuer 

® Code Resource 

Name I MySetSound 

Type jcdeu 

D Custom Header 

Cancel 

File Type I cdeu 

Creator I Sndu 

D Multi-Segment 

n 

ID 1-4064 

Attrs ~~ 

OK ]J 

FIGURE 4.30 THE SYMANTEC PROJECT TYPE WINDOW FOR 

THE MYSETSOUND CONTROL PANEL. 

After clicking the OK button, create the control panel file by selecting 
Bui 1 d Code Resource from the Project menu. Here you 'II get the 
opportunity to name the code resource. In the past you may have given a 
code resource a name that ended in .rsrc to make it obvious that the gen­
erated file was a resource file. For a control panel, this isn't necessary. 
The cdev resource that's created during the build won't be placed in its 
own resource file. Instead, the THINK Project Manager will merge the 
cdev resource with the resources in the control panel's project resource 

231 



More Mac Programming Techniques 

fil e to create a control panel file. For that reason, a name such as 
MySetSound is appropriate. 

Enhancing the MySetSound Control Panel 

MySetSound is a good first example of a control panel-it's as simple as 
they come. The MySetSoundPlus control panel shows how to add a few 
more resources to a control panel-resources found in just about every 
control panel. It also demonstrates how easy it is to expand the capabili­
ties o f a control panel. 

Figure 4.31 shows the MySetSoundPlus control panel. On its left side 
are items to set the system speaker volume-the same controls fo und in 
MySetSound. On the right side are a new set of controls that are used to 
sc i the volume of the system alert. 

~Iii M SetSoundPlus 

Speaker Alert 
Uolume Uolume 

@High @High 

QOff Q Off 

Set System Set Alert 
Uolume Uolume 

FIGURE 4 .31 THE MYSETSOUNDPLUS CONTROL PANEL. 

S1arting with version 3.0 of the Sound Manager, it is possible to indepen­
ckntly vary the volume that the system alert plays at and the volume that 
o ther sounds play at. The Toolbox routine SetSoundVo 1 () controls the 
level of the system speaker volume. The new Sound Manager routine 
SetSysBeepVol ume() controls the volume that the system alert plays at. 
Consider a program that calls SetSoundVol (7) a nd SetSysBeep 
Vo 1 ume ( 1) . If that program plays an snd resource, it will play it at the 

232 



Chapter 4 Control Panels and cclevs 

loudest volume. If that same program displays an alert that beeps, or calls 
Sys Beep(), the volume of that sound will be low. 

Before allowing the user to adjust the alert volume, the 
MySetSoundPlus control panel will have to first check to see if the 
machine it's running on contains version 3 of the Sound Manager. Not 
all Macs have the new Sound Manager. If the host machine has an earlier 
version, the SetSysBeepVolume() call will not be available, and the 
control panel will dim those items that control the alert volume, as 
shown in Figure 4.32. 

T I P 

Speaker Rlert 
Uolume Uolume 

@High QHigh 

QOff 0 Off 

Set System Set Rlert 
Uolume Uolume 

FIGURE 4.32 THE MYSETSOUNDPWS CONTROL PANEL WHEN 

SOUND MANAGER 3.0 IS NOT AVAILABLE. 

Earner in this chapter, I stated that your own control panels 
should not duplicate the efforts of Apple programmers. The 
MySetSoundPlus comes closer to this recommendation than 
MySetSound did. While this new control panel still allows for 
the adjustment of the speaker volume level-as Apple's 
Sound control panel does-It also allows the user to adju~t 
the alert volume. That's something that the Apple Sound con­
trol panel doesn't do. An even better MySetSoundPlus could 
omit the speaker volume setting and just have sound-related 
settings for features not covered by the Sound control panel. 
It could also use a sllder CDEF for each control. 

233 



More Mac Programming Techniques 

Creating an Icon Family 

The con tents of the resource file for MySetSoundPlus have increased quite 
a bit from that of MySetSound. If you look closely at Figure 4.33, howeve1~ 

you' ll see that of the seven new resource types, all but two of them are icon 
related. The icl4, icl8, ics#, ics4, and ics8 are all icons. The finf and snd are 
the only other additions; they' ll be covered a few pages ahead. 

MySetSound had only one icon-a black-and-white ICN# resource. 
To better support users with color monitors, MySetSoundPlus adds sever­
al color icons. Figure 4.34 shows what the BNDL resource looks like for 
the new control panel. 

SetSoundPlusCOEU. ff .rsrc im 

•Cl 
-0 

~~ A ~~ El El IHFO El El ~ .... 
BNDL DITL finf FREF ic14 

-~ LJCl DD mDD &aD 
~ .... ~ .... ~ .. .. ~ ··· ~··· 

ic18 ICN• ics• ics4 ics8 

010 1 I IOI 010 1 I 101 
2.0bl 00101001 

~)~ 
0010 100 1 

0110 1010 01 10 10 10 6.0 .5 000 1 1110 000 1 111 0 
0 I 00 0000 CDEll 

01000000 7.0 ... ... ... {} 
ma ch nrc~ snd Snd+ vers \:i 

FIGURE 4.33 THE RESOURCE FILE FOR THE MYSETSOUNDPLUS PROJECT. 

In Figure 4.35 you can see the icl8 icon being drawn in the icon editor. 
This icon will be used on machines that are set to display eight or more 
bits of color. Once again I used my resource editor to peek at Apple's 
Sound control panel icl8 icon to get an idea of how to add shading to my 
own icon. 

234 



Chapter 4 Control Panels and cdevs 

-Iii§ BNDL ID = -4064 from M 

Signature: j Snd+ 

Type Finder Icons 

cde1.1 ~-~~·(D ~ 

tzy 

FIGURE 4.34 THE BNDL RESOURCE FOR THE MYSETSOUNDPLUS PROJECT, 

FIGURE 4.35 THE ICON EDITOR AND THE ICL.8 ICON FOR ntE MYSETSOUNDPLUS PROJECT. 

235 



More Mac Programming Techniques 

Changing the Control Panel's Display Font 

You may have noticed that the MySetSound control panel didn't use the 
system font, which is 12-point Chicago, to display its static text item. 
Instead, it used 9-point Geneva. A control panel will always use this font, 
unless instructed to do otherwise. The finf, or font information, resource 
is the means for doing this. 

A finf resource holds the ID, style, and size of a font. When the con­
trol panel that uses this resource opens, the Finder reads this informa­
tion and uses it in the display of static text items. For a control panel, the 
finf must have an ID of-4049 (see Figure 4.36). 

To set the font ID, enter the ID of the font to use in the Font Number 
box of the finf resource. To get the ID of many of the commonly used 
fonts, refer to the constants listed in the Fonts.h universal header file: 

systemFont 0 
applFont 1 
newYork 2 
geneva 3 
monaco 4 
venice 5 
1 ondon 6 
a thens 7 
sanFran 8 
toronto 9 
cairo 11 
losAngeles = 12 
times = 20 
helvetica Cll 21 
courier 22 
symbol = 23 
mobile ... 24 

To set the style of the font, use one of the constants found in the Types.h 
universal header file. To use more than one style, add the values of the 
individual styles together. Enter the value in the Font Style edit box of 
the finf resource. 

normal 
bold 
ita 1 i c 
underline 
outline 

236 

0 
1 
2 
4 
8 



Chapter 4 Control Panels and cdevs 

Finally, enter the font size in points in the Font Size edit box. In Figure 
4.36, I've set the finf resource to use the system font (Chicago) in a plain 
style and in 12-point size. 

u Fonts 

1) ***** 
Font Number lo 
Font Style lo 
Font Size I 12 

2) ***** 

FIGURE 4.36 THE FINF RESOURCE FOR THE MYSETSOUNDPWS PROJECT. 

The information in a finf resource should be in hexadecimal format. You 
can, however, enter the values in decimal, as I've done in Figure 4.36. 
Don't be alarmed when you reopen a finf resource, as I've done in 
Figure 4.37. You'll find that the Resource editor now displays the infor­
mation in hex. 

- ~ finf ID= -4049 from M SetSolilldPlusCDEU.n.rsrc 

u Fonts 

1) ***** 
Font Number 1$0000 

Font Style 1$0000 

Font Size j$OOOC 

2) ***** 

flGuRE 4.37 THE FINF RESOURCE FOR THE MYSEISouNDPws PROJECT, AF1ER IT IS REOPENED. 

237 



More Mac Programming Techniques 

Additional Resources 

The MySetSoundPlus control panel has the required DITL with an ID of 
-4064, as shown in Figure 4.38. In the source code file, you'll find a con­
stant defined for each of the enabled items in the DITL: 

#define HIGH_SYS_VOL_ITEM 1 
#define OFF_SYS_VOL_ITEM 2 
#define SET_SYS_VOL_ITEM 3 

#define HIGH_ALRT_VOL_ITEM 5 
#define OFF_ALRT_VOL_ITEM 6 
/fdefi ne SET_ALRT_VOL_ITEM 7 

a~ D Ill ID = -4064 from M SetsoundPlusc 

Speaker 4 

Uolume 

10 High W 
IOOff w 

Set Syste 
Uolume 

Uolume 

10 High lfil 
IOOff w 
Set Alert 7 

Uolume 

FIGURE 4.38 THE DITL RESOURCE FOR THE MYSETSOUNDPW& PROJECT. 

Control Panels may contain any resource types, not just the required 
ones. In response to the user clicking on the Set System Volume button, 
the MySetSoundPlus control panel will play a short sound. That sound 
comes from an snd resource stored in the control panel. Figure 4.39 
shows this sound resource. 

238 



Chapter 4 Control Panels and cdevs 

s;ze Name 

9000 13558 "Glass breaking" 

FIGURE 4.39 THE SND RESOURCE FOR THE MYSETSOUNDPLUS PROJECT. 

Additions to the Source Code 

MySetSoundPlus works very much like the first example control panel, 
MySetSound. There are, however, a few differences worth noting. 

Because MySetSoundPlus uses two sets of radio buttons (with two buttons 
per set), its private data storage needs to keep track of the current infor­
mation for each radio button set. The CD EV Record struct has the same 
two members used to keep track of the system speaker volume in 
MySetSound-current_button_sys_vol and current_sys_vol. 
But it also has two new members. The field current button 
a 1ert_vo1 keeps track of which of the two buttons on the right side of 
the control panel is currently on. Member current_al ert_vol holds 
the current volume setting, either 0 or 7, to be used for the system alert 
volume. 

typedef struct 
{ 

short current_button_sys_vol; 
short current_sys_vol ; 
short current_button_alert_vol; 
short current_alert_vol; 

CDEVRecord, *CDEVPtr, **CDEVHandle; 

Because MySetSoundPlus contains items that must be made active or 
inactive, depending on the availability of Sound Manager 3.0, the han-

239 



More Mac Programming Techniques 

dling of an initDev message has become more complex. Checking for a 
particular version of the Sound Manager is a three-step process. First, a 
check is made to see if the SoundDi spatch trap is available. 

Boolean snd_dispatch: 

snd_dispatch = ( NGetTrapAddress( _SoundDispatch, ToolTrap != 
NGetTrapAddress( _Unimplemented, ToolTrap ): 

Csing NGetTrapAddress () to compare a trap to the unimplemented trap 
\vill determine the presence or absence of the trap. If the Sound Dispatch 
trap exists on the host machine, snd_di spatch will be assigned a value of 
true. 

Boolean snd_dispatch: 

snd_dispatch = ( NGetTrapAddress( _SoundDispatch, ToolTrap != 

bl] 
N 0 T E 

NGetTrapAddress( _Unimplemented, ToolTrap ): 

Traps, the unimplemented trap, and NGetTrapAddress () 
are discussed at length In another M&T book, Macintosh 
Programming Techniques. 

If the SoundDi spatch trap is present, you can safely assume that the 
Toolbox routine SndSoundManagerVersi on() is also present. A call 
to this routine will fill snd_mgr _ver-a variable of type NumVersi on­
with version information about the Sound Manger. 

NumVersion snd_mgr_ver: 

snd_mgr_ver.majorRev = 0: 
if < snd_dispatch ==true ) 

snd_mgr_ver - SndSoundManagerVersion(): 

If the Sound Dis patch trap isn't present, the maj o rRev field of the 
snd_mgr _ver variable will retain its initial value of 0. If the Sound 
Di s pa t ch trap is present, Sn d Sound Ma nag e r Ve rs i on ( ) gets called 

240 



Chapter 4 Control Panels and cdevs 

and the major Rev field of s n d_mg r _ v er will hold the major version 
number of the Sound Manager. If the version is at least 3, the right bank 
of dialog items can be kept active. If the version is less than 3, the items 
will be made inactive. Since the Toolbox function that sets the alert vol­
ume isn't available in preversion 3 releases of the Sound Manager, this is 
a necessary step. 

if ( snd_mgr_ver.majorRev >= 3 ) 
{ 

(**cdev_storage).current_button_alert_vol = 
HIGH_ALRT_VOL_ITEM: 

(**cdev_storage).current_alert_vol = kFullVolume: 

new_radio = C**cdev_storage).current_button_alert_vol: 
old_radio = OFF_ALRT_VOL_ITEM: 
Set_Radio_Buttons( the_dialog. old_radio, new_radio, num_items ): 

} 
else 
{ 

} 

Dim_Dialog_Item( the_dialog, HIGH_ALRT_VOL_ITEM, num_items ); 
Dim_Dialog_Item( the_dialog, OFF_ALRT_VOL_ITEM. num_items ); 
Dim_Dialog_Item( the_dialog, SET_ALRT_VOL_ITEM. num_items ); 

Di m_Di a 1 og_I tern () is the application-defined routine that dims one 
dialog item. Like Set_Radi o_Buttons (),Di m_Di a 1 og_Item() adds 
the value of n um_ i terns to the DITL item to dim. That allows the control 
panel to be compatible with System 6. A call to Hi 1 iteControl (),with 
a value of 255 marks the control item as inactive and draws it in a dim 
state. 

void Dim_Dialog_Item( DialogPtr dlog, 

{ 

} 

Handle handle: 
short type: 
Rect box: 

short item. 
short num_items 

GetDialogitem( dlog, item+ num_items. &type, &handle. &box ); 
HiliteControl( CControlHandle)handle. 255 ): 

241 



More Mac Programming Techniques 

The MySetSoundPlus Source Code Listing 

The complete listing for the MySetSoundPlus control panel follows. There 
are many similarities between it and the MySetSound code listing that was 
given earlier in this chapter. Because the Set_Radi o_Buttons () func­
tion is unchanged from its previous incarnation, its code has been omitted 
from this listing. 

#include directives 

#include <Sound.h> 

II_~~~~~~~~~~~~~~~~~~~~~~~~ 
II function prototypes 

void Set_Radio_ButtonsC DialogPtr. short, short. short ); 
void Dim_Dialog_Item( DialogPtr. short, short ); 

II 
II #define directives 

//define HIGH_SYS_VOL_ITEM 1 
#define OFF _SYS_VOL_ITEM 2 
#define SET _SYS_VOL_ITEM 3 

//define HIGH_ALRT_VOL_ITEM 5 
#define OFF_ALRT_VOL_ITEM 6 
//define SET_ALRT_VOL_ITEM 7 

/fdef i ne SYS_VOL_OFF 0 
ff define SYS_VOL_HIGH 7 

//define SND_GLASS_ID 9000 

II 
II define data structures 

typedef struct 
{ 

242 



Chapter 4 Control Panels and cdevs 

short current_button_sys_vol; 
short current_sys_vol; 
short current_button_alert_vol: 
short current_alert_vol; 

CDEVRecord, *CDEVPtr, **CDEVHandle; 

pascal CDEVHandle main( short 
short 
short 
short 

short 
short 
Handle 
NumVersion 
Boolean 

Event Record 
CDEVHandle 
DialogPtr 

old_radio; 
new_radio; 
snd_handle: 
snd_mgr_ver: 
snd_dispatch; 

switch ( message ) 
{ 

case initDev: 

entry point to the code 

message, 
item, 
num_items, 
control_panel_ID. 
*the_event, 
cdev_storage, 
the_dialog ) 

cdev_storage = CCDEVHandle)NewHandleCsizeofCCDEVRecord ) ): 

C**cdev_storage).current_button_sys_vol = 
HIGH_SYS_VOL_ITEM: 

C**cdev_storage).current_sys_vol = SYS_VOL_HIGH: 

new_radio = C**cdev_storage).current_button_sys_vol: 
old_radio - OFF_SYS_VOL_ITEM; 
Set_Radio_Buttons( the_dialog, old_radio, new_radio, 

num_ items ) : 

snd_dispatch - ( NGetTrapAddress( _SoundDispatch, 
ToolTrap ) != 
NGetTrapAddress( _Unimplemented, 
ToolTrap ) ) ; 

snd_mgr_ver.majorRev = 0: 
if ( snd_dispatch =-true ) 

snd_mgr_ver - SndSoundManagerVersionC>: 

if ( snd_mgr_ver.majorRev >= 3 ) 

243 



More Mac Programming Techniques 

244 

C**cdev_storage).current_button_alert_vol -
HIGH_ALRT_VOL_ITEM: 
C**cdev_storage).current_alert_vol = kFullVolume: 

new_radio = 
C**cdev_storage).current_button_alert_vol: 
old_radio - OFF_ALRT_VOL_ITEM: 
Set_Radio_ButtonsC the_dialog, old_radio, 

new_radio. num_items ): 
} 
else 
{ 

Dim_Dialog_ltemC the_dialog, HIGH_ALRT_VOL_ITEM, 
num_items ): 

Dim_Dialog_ltem( the_dialog, OFF_ALRT_VOL_ITEM, 
num_items ); 

Dim_Dialog_ltemC the_dialog, SET_ALRT_VOL_ITEM, 
num_ items >: 

} 
break: 

case hitDev: 
item - item - num_items: 

switch C item 
{ 

case HIGH_SYS_VOL_ITEM: 
old_radio ... 
C**cdev_storage).current_button_sys_vol; 
new_radio = HIGH_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio, 

new_radio, num_items >: 
(**cdev_storage).current_button_sys_vol 
new_radio: 
C**cdev_storage).current_sys_vol ""'SYS_VOL_HIGH; 
break: 

case OFF_SYS_VOL_ITEM: 
old_radio ""' 
C**cdev_storage).current_button_sys_vol: 
new_radio - OFF_SYS_VOL_ITEM: 
Set_Radio_Buttons( the_dialog, old_radio, 

new_radio, num_items >: 
C**cdev_storage).current_button_sys_vol 
new_radio: 
C**cdev_storage).current_sys_vol = SYS_VOL_OFF: 



} 

} 

Chapter 4 Control Panels and cdevs 

break: 

case SET_SYS_VOL_ITEM: 
SetSoundVol( (**cdev_storage).current_sys_vol ): 
snd_handle = GetResource( 'snd •. SND_GLASS_ID ): 
SndPlay( nil. snd_handle. true >: 
break: 

case HIGH_ALRT_VOL_ITEM: 
old_radio = 
(**cdev_storage).current_button_alert_vol: 
new_radio = HIGH_ALRT_VOL_ITEM: 
Set_Radio_Buttons( the_dialog. old_radio. 

new_radio. num_items ): 
(**cdev_storage).current_button_alert_vol 
new_radio: 
(**cdev_storage).current_alert_vol = kFullVolume: 
break: 

case OFF_ALRT_VOL_ITEM: 
old_radio = 

(**cdev_storage).current_button_alert_vol: 
new_radio = OFF_ALRT_VOL_ITEM: 
Set_Radio_Buttons( the_dialog. old_radio. 

new_radio. num_items ); 
(**cdev_storage).current_button_alert_vol 
new_radio: 
(**cdev_storage).current_alert_vol = kNoVolume: 
break: 

case SET_ALRT_VOL_ITEM: 

} 
break: 

SetSysBeepVolume( 
(**cdev_storage).current_alert_vol ); 
SysBeep( 1 ): 
break: 

return ( cdev_storage ): 

''~~~~~~~~~~~~~~~~~~~~~~~~~-
// set radio buttons 
void Dim_Dialog_Item( DialogPtr dlog, 

short item, 
short num_items 

245 



More Mac Programming Techniques 

Handle 
short 
Re ct 

handle; 
type ; 
box; 

GetDialogltem( dlog, item+ num_items, &type , &hand l e , &box ) ; 
HiliteControl( (Contro lHandle) handle, 255 ) ; 

THE MYINSANITY CONTROL PANEL 

When running, this chapter's last example, the Myl nsanity control panel, 
draws a tiny black rectangle at the center of its dialog box. The rectangle 
rapidly grows ou tward until it gets close to the edge of the dialog box. 
Then it disappears, only to immediately appear and to begin growing 
once again. Figure 4.40 shows the rectangle as it's growing. 

246 

@On 

0 Off 

FIGURE 4.40 THE MvlNSANITY CONTROL PANEL. 



Chapter 4 Control Panels and cdevs 

Myinsanity exists more as a diversion than as a control panel that works 
with systemwide features. But there's a lot to be learned from this seeming­
ly trivial exercise in repetitive drawing. It has been mentioned several times 
in this chapter that the Finder is in constant communication with an open 
control panel. Mylnsanity offers proof of this. Even when the control panel 
is delegated to the background, the panel's black rectangle will con tinue 
its endless cycle of growing and disappearing (see Figure 4.41). 

My Insanity 

CTI 
Applications 

LJ 
Utilities 

@On 
0 Off 

(l] 
System Folder 

LJ 
Mail II 

FIGURE 4.41 THE MYINSANITY CONTROL PANEL EXECUTE 

EVEN WHEN IT IS IN THE BACKGROUND. 

Myinsanity also demonstrates how easy it is to include graphics in a con­
trol panel-that's something this chapter's first two examples didn' t do. 
The control p anel's dialog box is divided into rectangles, compliments 
of two nrct resources. A PICT resource is displayed in the top rectangle. 
In the bottom rectangle, the simple growing rectangle anima tion 
appears. 

247 



More Mac Programming Techniques 

Finally, the Mylnsanity control panel shows how a control panel can 
be written so that it executes only on certain types of machines and 
gracefully exists when the host machine doesn't meet the control panel's 
crilcria. While backwards compatibility with System 6 is always welcomed 
by users, there are times when it just isn't feasible. 

The Mylnsanity Resources 

Figure 4.42 shows the resource file for Mylnsanity. Each of the resource 
types should now look familiar to you. 

~ii rel 

tc~ tc~ L:J[j 
-\} 

1313 1313 ~-··· 
BNDL DITL finf FREF ICN# 

01011101 01011101 
2.0bl 00101001 0010 1001 

01101010 01101010 

~~~ 6.0.5 00011110 00011110 
01000000 01000000 7.0 ...

ma ch nuts PICT vers
{7

'Iii

FIGURE 4.42 THE RESOURCE FILE FOR THE MYINSANITY PROJECT.

For simplicity, Mylnsanity only defines one icon-the black-and-white
ICN# resource. Since the control panel is all about animation, its icon
tries to imply the idea of motion. The path of a bouncing ball is shown in
the control panel's BNDL resource in Figure 4.43 and in the icon editor
in Figure 4.44.

Mylnsanity is the first example of a control panel that uses two nrct
resources. Figure 4.45 shows the nrct resources.

Two nrct resources have been created to divide the control panel into
two sections. Each nrct has the same left and right coordinates, 87 and
325, respectively. When the Finder opens the control panel's dialog box,

248

Chapter 4 Control Panels and cdevs

it will draw a horizontal line on the boundaries of th e two nrct resources.
Figure 4.46 shows the Mylnsanity control panel, without its dialog items.

...........

• D

• 0

• 0 ..

g~ BNDL ID = - 4064 from M

Signature: I nuts

Type Finder Icons

cdeu

FIGURE 4.43 THE BNDL RESOURCE FOR THE MYINSANITY PROJECT •

• • • • • • • • • • • • •• ••••• • .. ·····=· ••• • ••• •••• ••• • •• • ••• • ••••• •• • • • •• • •• • • • • •• • • •• ••• • •••••• •• • • •••• •• • •

FIGURE 4.44 THE ICON EDITOR AND THE BLACK·AND-WHITE ICON FOR

THE MYINSANITY PROJECT.

249

'

More Mac Programming Techniques

-Iii nrct ID - -4064 from M_y_lnsonl!Y_CDEU.n.rsrc

HumOfRects 2 ~

1) *****
11

Rectangle 1-t 11 87 1145 11 325 llliD 11

2) ***** 1:
11

Rectang le 143 1187 11210 11 325 llliD
3) *****

'zy •
FIGURE 4.45 THE NRCT RESOURCE FOR THE MYINSANITY PROJECT.

~ M_y_I nsonl!Y_

FIGURE 4.46 THE TWO RECTANGLES FORMED BY THE NRCT RESOURCES

IN THE MYINSANITY PROJECT.

Because a control panel is always displayed in a d ialog box, you can easily
add graphics to any cdev you create. Figure 4.47 shows the one PICT
resource Mylnsanity uses.

250

Chapter 4 Control Panels and cdevs

CDEU. n .rsrc

r :~ -----1
j$' ~~ ~V{<J~<CC1<fte i

I_ - -- - - ___ __!
128

FIGURE 4.47 THE PICT RESOURCE FOR THE MYINSANITY PROJECT.

Mylnsanity requires just three DITL items (see Figure 4.48). The first two
are radio buttons, and the third is a picture item. You'll see constan ts for
the first two items defined in the Mylnsanity sou rce code:

/fdefi ne
#define

ON_ ITEM
OFF _ ITEM

1
2

-~ Dill ID= -4064 from M

FIGURE 4.48 THE DITL RESOURCE FOR THE MYINSANITY PROJECT.

251

More Mac Programming Techniques

Handling a nulDev Message

This chapter's first two control panels responded to i ni tDev and hi tDev
messages, as do almost all Control Panels. The Mylnsanity Control Panel
handles these two message types and two others: the nulDev and the
macDev. The nul Dev message is described here, while the macDev is dis­
cussed just ahead.

Once opened, the Mylnsanity control panel repeatedly draws a grow­
ing square. Even when the cdev is inactive, it keeps executing its code.
This isn't just the case for My Insanity, it's true for any control panel. But
because most control panels don't include a case label for the nulDev
message, the Finder's nu 1 Dev message is ignored by the control panel
and control is immediately returned to the Finder.

When Mylnsanity receives a nul Dev message, it responds by check­
ing to see if the On radio button is set. If it is, it calls an application­
dcfined routine to draw the growing square.

case nulDev:
if < (**cdev_storage).current_button_animate == ON_ITEM

Grow_Square();
break;

The Grow_Squa re () function begins by drawing a rectangle zero pixels
in width and height. After that, a loop is entered. Each pass through the
loop draws the square one pixel larger in each direction. The effect, of
course, is that the square is growing. After the loop has completed, the
black square is erased by a call to EraseRect().

One execution of Grow_Squa re () has the effect of drawing a dot
in the center of the control panel and expanding it outward to the edge
of the panel. Then Grow_Squa re () whites out this panel-filling
square. As you watch the control panel in action, you'll see that this
drawing and erasing occurs very quickly. That's the speed at which the
Finder is sending null events to the control panel, whether the cdev is
active or not.

252

Chapter 4 Control Panels and cdevs

void Grow_Square(void
{

}

Pattern the_pat:
Rect the_rect:
int i:

SetRect(&the_rect. 205. 155, 205. 155):

for C i = 0: i < 100: i ++)
{

InsetRect(&the_rect. -1. -1 >:
FrameRect(&the_rect):

}

EraseRect(&the_rect >:

r:l]
Code resources don't have access to the qd variables like
the patterns white, black, etc. If your control panel needs to
use patterns, use a call to Get I n d Pattern () to obtain one
of the system patterns. By using a call to EraseRect(),
Mylnsanlty gets by without needing the white pattern.
Here's a second way that a white square could be drawn
over the black square. Keep In mind that of the 38 system
patterns, pattern 20 is solid white.

N 0 T E

Rect the_rect:
Pattern the_pat:

II use set SetRect() to set rectangle boundaries here

GetlndPatternC &the_pat. sysPatlistID. 20):
FillRect(&the_rect. &the_pat):

Grow_Squa re () is a simple routine that could be modified to draw
much more complex and interesting graphics, including graphics that
use color. If you do make this type of change, however, you'll want to
make sure that the host computer is capable of displaying color. That
type of check is the topic of the next section.

253

More Mac Programming Techniques

Selective Execution: The mach Resource and the
macDev Message

If a control panel occupies more space than the System 6 Control Panel
occupies, it isn't System 6 compatible. If a control panel uses certain
Toolbox functions that aren't available on machines running under
System 6, it too is unable to run on that machine. Additionally, your
control panel may require that certain hardware features be present on
the host Macintosh in order for it to properly execute. For these rea­
sons, you '11 want to know how to tell the Finder that your control panel
won't run on every Macintosh model and under every system version.
You'll also want to know how to make that control panel user-friendly
in that it won't crash if a user does attempt to run it on an incompatible
machine.

The control panel's mach resource is where the Finder initially
determines if a control panel can run on the host machine. If a control
panel has a mach resource with a value of FFFF 0000, as the chapter's
MySctSound control panel does, the Finder will assume that the con­
trol panel is able to run on all Mac models, and on either System 6 or
System 7. If, on the other hand, a control panel has a mach resource
with a value of 0000 FFFF, as the Mylnsanity control panel does-the
Finder won't make this assumption. For your comparison, Figure 4.49
shows both the MySetSound mach resource and the Mylnsanity mach
resource.

If the Finder encounters a mach resource with a value of 0000 FFFF,
the Finder will send as the control panel a macDev message. This mes­
sage is sent as the very first message and is sent to the control panel only
one time during the execution of the control panel. When a control
panel receives a macDev message, it should perform the test or tests that
arc necessary to determine if the Macintosh meets whatever criteria the
control panel requires of a host machine.

If the machine passes the tests that the control device function per­
forms, it is capable of running the control panel, and the control device
function should return a value of 1 to the Finder. When the Finder

254

Chapter 4 Control Panels and cdevs

receives this value, it will open the control panel. If the Mac isn't able to
run the control panel, a value of 0 should be returned. If the Finder
receives a value of 0, it will not attempt to open the control panel.
Instead, it will post the alert pictured in Figure 4.50.

Mylnsanity Control Panel mach resource
0000 FFFF = Control Panel must perform its own
compatibility tests

0000 FFFF aaaa 000000
000008
000010
000018
000020
000028
000030
000038
000040
000048

~IE§ ma ch ID = -4064 from M Set Sound
000000
000008
000010
000018
000020
000028
000030
000038
000040
000048

FFFF 0000

MySetSound Control Panel mach resource
FFFF 0000 = Finder will open the Control Panel
on any Mac system

aaaa

FIGURE 4.49 THE ORDERING OF THE HEX VALUES IN A MACH RESOURCE IS IMPORTANT.

Mylnsanity performs only black-and-white drawing. To get prepared for
its upgrade to a color version, though, it includes a test to see if the
Macintosh it's running on has color QuickDraw. A call to Gestalt (),
with a selector of ges ta 1 tQui c kd rawVer s ion, returns a respon se
that holds the version of QuickDraw that resides on the Mac. If that ver­
sion is the original "colorless" QuickDraw, a value of 0 is returned to the

255

More Mac Programming Techniques

Finder and the control panel isn't opened. Any other QuickDraw version
supports color, so a 1 is returned and the Finder opens the cdev.

The control panel "My Insanity"
cannot be used with this Macintosh.

I OK D

FIGURE 4.50 THE ALERT DISPLAYED BY THE FINDER WHEN A USER ATI'EMPTS TO USE THE

MYINSANnY CONTROL PANEL ON A MONOCHROME MACINTOSH.

The Mylnsanity code for handling a mac Dev message is shown as fol­
lows. Notice that because the control device function's main () routine
returns a CDEVHandl e, the values 0 and 1 must be typecast to this data
type before being returned. The Finder will still interpret these returned
values as simply the numbers 0 and 1.

case macDev:
error= Gestalt(gestaltQuickdrawVersion~ &response):
if (error != noErr)

ExitToShell();
else if (response== gestaltOriginalQD

return ((CDEVHandle)O);
else

return ((CDEVHandle)l);
break;

N 0 T E

256

A more comprehensive test would also check the bit level of
the Macintosh to see if it not only has color, but that it also
has color turned on. You can refer back to the Co 1 or
I s_On () routine in Chapter 2 to get an Idea of how that test
Is made.

Chapter 4 Control Panels and cdevs

The Mylnsanity Source Code Listing

This chapter ends with the complete listing for the Mylnsanity control
panel. Once you get the project up and running, you might want to try
your hand at modifying the source code so that color is added to the ani­
mated graphics that Mylnsanity draws.

#include directives

#include <GestaltEqu.h>

II __ __

II function prototypes

void Grow_Square(void);
void Set_Radio_Buttons(DialogPtr. short. short, short);

II __ __

II #define directives

#define
//define

//define

ON_ITEM
OFF _ITEM

SYS_PAT_LIST_OFFSET

1
2

20

II __ __

II define data structures

typedef struct
{

short current_button_animate;
} CDEVRecord, *CDEVPtr, **CDEVHandle:

pascal CDEVHandle main(short

entry point to the code

message,

257

More Mac Programming Techniques

short
short
short
Event Record
CDEVHandle
DialogPtr

item,
num_items,
control_panel_ID,
*the_event,
cdev_storage,
the_dialog)

short old_radio:
short new_radio:
OSErr error:
long response:

switch (message
{

258

case macDev:
error= Gestalt(gestaltQuickdrawVersion, &response):
if (error != noErr)

ExitToShell():
else if (response == gestaltOriginalQD

return ((CDEVHandle)O):
else

return (CCDEVHandle)l):
break:

case initDev:
cdev_storage = CCDEVHandle)NewHandle(sizeof(CDEVRecord)):

C**cdev_storage).current_button_animate - ON_ITEM:

new_radio = (**cdev_storage).current_button_animate:
old_radio = OFF_ITEM:
Set_Radio_Buttons(the_dialog, old_radio, new_radio >:
break:

case hitDev:
item= item ~ num_items:

switch (i tern
{

case ON_ITEM:
old_radio = (**cdev_storage).current_button_animate:
new_radio = ON_ITEM:
Set_Radio_Buttons(the_dialog, old_radio,
new_radio):
C**cdev_storage).current_button_animate =

}

}

new_radio;
break;

Chapter 4 Control Panels and cdevs

case OFF _ITEM:
old_radio = C**cdev_storage).current_button_animate;
new_radio = OFF_ITEM;
Set_Radio_Buttons(the_dialog. old_radio.
new_radio >:
(**cdev_storage).current_button_animate -
new_radio:
break:

}

break:

case nulDev:
if ((**cdev_storage).current_button_animate =- ON_ITEM

Grow_Square();
break;

return (cdev_storage);

II~~~~~~~~~~~~~~~~~~~~~
II Grow square. then wipe it out

void Grow_Square(void
{

}

Pattern the_pat;
Rect the_rect:
int i:

SetRect(&the_rect. 205. 155. 205. 155);

for (i = 0; i < 100; i ++)
{

}

InsetRect(&the_rect. -1. -1);
FrameRect(&the_rect):

EraseRect(&the_rect);

259

More Mac Programming Techniques

CHAPTER SUMMARY

A control panel file is made up of several resources, the most significant
of which is the cdev code resource. A cdev holds the compiled code for a
control device function. The cdev control device function, like the MDEF
menu definition procedure and the CDEF control definition function, is
the code that performs the actions of the code resource.

Under System 6, all control panels appeared as icons in a single desk
accessory-the Control Panel desk accessory. Under System 7, each con­
trol panel is its own independent entity. System 7 control panels are
accessed from within the Control Panels folder under the Apple menu.

All control panel files consist of several required resources. A control
panel needs a DITL resource to hold the items that will appear in the
con 1 rol panel's dialog box. The control panel doesn't, however, need a
DLOG resource to define the dialog box itself-thafs supplied by the
Finder when the control panel is opened. Another required resource is
the nrct. This resource defines the size of the control panel itself. The
mach resource tells the Finder whether it should open the control panel
without question or if it should first ask the control panel to perform
tests to determine if the host computer is of a configuration capable of
running the cdev. Other required resource types are the BNDL, FREF,
and ICN#. These resources perform the same functions as they do for an
application.

260

RESOURCES

Resources hold information that defines what your application looks
like-from every item in each menu to the buttons in each dialog box.
Resources can also be used to store information about your program-a
preferences file is nothing more than a resource file. The Toolbox rou­
tines that are a part of the Resource Manager make it possible for your
programs to work with resources.

One interesting way to work with resources is to define several dialog
box item lists that can be used in a single dialog box. In this chapter,
you'll see how to use two or more DITL resources with a single DLOG
resource. By displaying different items at different times, a dialog box in
your application becomes very flexible. As the user selects different
menu items, or clicks on different buttons, the look of the dialog box can
change accordingly.

261

More Mac Programming Techniques

Resource editors allow you to use any of dozens of different types of
resources. But even this wide variety may not be enough for your pro­
gramming needs. If that's the case, you can create your own resource
type. When you do, you'll use a hex editor to add and modify items in
the resource. Because working in hex is too confusing, a resource editor
allows you to create a template resource that can be used in conjunction
with your own custom resource. The template allows a more graphic edit
of the custom resource to be done, and it allows numbers and text to be
added without using hexadecimal.

ABOUT RESOURCES

Any Macintosh file, whether a document file or application file, can con­
sist of both a resource fork and a data fork. In many cases, both forks
may be present, but one will be empty. For a 680x0 application, the data
fork is usually empty. For a PowerPC application, it isn't. The resource
fork of an application holds resources that define the application's
menus, windows, controls, dialog boxes, and icons. Additionally, 680x0
applications store the code that makes up the application in CODE
resources in the resource fork. PowerPC applications, however, keep the
application code in the data fork. Though the resource fork of an appli­
cation is just a part of the application file, programmers typically call the
resource fork a resource file. This interchanging of terms is an accept­
able practice, because from the programmer's perspective, the resource
fork can and is accessed as if it were its own file.

Typically, an application's resources are created using a resource edi­
tor such as Apple's ResEdit or Mathemaesthetics Resorcerer. In Figure
5 .1, ResEdi t is being used to add a WIND resource to a new resource file.

Resources can also be created directly by your application. The rou­
tines that make up the Resource Manager allow you to give your applica­
tion the ability to alter its own resources or to create an entirely new
resource file with new resources. As you'll see in Chapter 6, this last task
is done when an application requires a preferences file.

262

Chapter 5 Resources

Untitled

WINOS from Untitled

DITL DLOG Size Name

126 29
129 29

Select New Type

TEHT <r g TMPL ~
TOOL ~imi

:::1!1

uers ![~!l n l) wctb OK

wl'E'fh~ l"'4
~ I§

(l wstr ;o. Cancel

FIGURE 5.1 ADDING A WIND RESOURCE USING THE RESOURCE EDITOR RESEDIT.

USING MULTIPLE DITL RESOURCES IN ONE DIALOG Box

One of the most interesting aspects of dialog boxes is that dialog box
items can be added and removed as the program runs. That is, dialog
box items can change dynamically. As an application runs, a dialog box
can adapt itself to different conditions in the program by adding or tak­
ing away some or all of its items.

About Dynamic Dialog Box Items

Figure 5.2 is a dialog box with five dialog box items in it. To the left are two
push buttons, labeled Beep Once and Beep Twice. At the top right are two
radio buttons, and at the lower right is another push button . In this dialog
box, only the three items on the right-the radio buttons and the OK but­
ton-are permanent parts of the dialog box. The two push buttons on the
left will only be present when the Play Beeps radio button is on.

263

More Mac Programming Techniques

Clicking this radio button ... r.===:==o===:i
(Beep Once J

(Beep Twice J

Q------0
... adds these items

®Play Beeps

0 Play Sound

[OK)

FIGURE 5.2 A DIALOG BOX WITH DYNAMICAUY ADDED PUSH BUTIONS.

Figure 5.3 shows the same dialog box as pictured in Figure 5.2. In Figure
5.3, the two push button items that were on the left of the dialog box
have been replaced by a single, larger push button.

Clicking this radio button ...

Play
Sound

D------'n
... adds this item

0 Play Beeps

®Play Sound

[OK)

FIGURE 5.3 THE SAME DIALOG BOX AS PICTURED IN FIGURE 5.2, WITH DIFFERENT BUTIONS.

264

Chapter 5 Resources

Changing dialog box items "on the fly" is a feature that is very useful for
displaying only the items that pertain to a certain radio button, check
box, or menu selection. The previous example uses radio buttons to
change the dialog box items. You could just as easily have the displayed
items be dependent on a pop-up menu selection rather than a button
choice. And, with dynamic dialog box items, you don't have to limit the
displayed items to only two sets, as this example does.

The example presented here is from a program that will be devel­
oped over the next several pages-it's named MultipleDITLs. You can see
from the previous figures that this example is short on real-world useful­
ness. As usual, I've selected simplicity over complexity so that I can place
the emphasis on technique. Once you understand the MultipleDITLs
example, you ' ll be able to apply the p rogram's concepts to more com­
plex examples, like the one pictured in Figure 5.4.

Book Report Generator: British Literature

Period:

0 Short Format
@Long Format

~Title Page
0 Footnotes
0 Bibliography

(Cancel J

(Create Report D

Uirginia Woolf
@ The Mark on the Wall

D. H. Lawrence
0 The Rocking-Horse Winner

James Joyce
0 The Dead

T. S. Eliot
0 Journey of the Magi

Samual Beckett
O Dante and the Lobster

Dylan Thomas
0 Fern Hill

FIGURE 5.4 A MORE COMPLEX EXAMPLE USING DYNAMIC DIALOG BOX ITEMS.

265

More Mac Programming Techniques

Figure 5.4 shows the dialog box for a program that is the bane of all
English teachers-an automated book report generator. In this example,
all of the items on the left side of the dialog box's vertical line are perma­
nent items. These items include the pop-up menu, the format radio but­
tons, the three check boxes, and the two push buttons. All of the items
on the right side of the vertical line are overlay items. When a menu selec­
tion is made from the pop-up menu, these items would all change and a
set of items would be added to the existing base items. As the user makes
different menu selections, one overlay set is removed and a different one
is added in its place. In this example, four DITL resources would be
used: one for the base items, and one for each of the three sets of overlay
items. Only one set of overlay items would be used at any one time, and
the decision of which set to use would be based on the current selection
in the pop-up menu.

The MulltpleDITLs Resources

To create a dialog box that is capable of displaying a variable number of
items, begin as you would with any dialog box; that is, create a DLOG
resource and a DITL resource. Determine which dialog box items will
always be available in the dialog box and include them in the DITL
resource. This will become the base DITL for the dialog box. Figure 5.5
shows the base DITL for the MulitpleDITLs program.

266

lo Play Beeps Laj
lo Play Sound laj

[OK ~

FIGURE 6.6 THE BASE DITL RESOURCE FOR THE MULTIPLEDITLs PROJECT.

Chapter 5 Resources

The DLOG used in the MultipleDITLs program is shown in Figure 5.6. It
has been given an ID of 128, which is the same ID as the base DITL
resource.

DLOGs from MultipleDITls.n.rsrc
Size Name

128 21

Top:~ Height:~

Left:~ Width:~

Color: @Default
O Custom

DITL ID: .._I 1_2_B _ _,

fgl I nitiolly uisible

D Close boH

FIGURE 5.6 THE DLOG RESOURCE FOR THE MULTIPLEDITLs PROJECT.

For each set of items that will be added to the dialog box, a separate over­
lay DITL is created. Because the MultipleDITLs dialog box will use two
separate sets of items (one for each radio button selection), it has two
overlay DITL resources. Figure 5. 7 shows the DITL used when the Play
Beeps radio button is selected. Figure 5.8 shows the DITL that's used
when the Play Sound radio button is clicked on.

When completed, the MultipleDITLs resource file will hold three
DITL resources, which are shown in Figure 5.9. Only the ID of the base
DITL is significant-it must match the resource ID given in the DLOG
resource.

267

More Mac Programming Techniques

~Iii§ Dill "Radio 1 Dill: s

[Beep One?]

[Beep Twice]

FIGURE 5.7 THE FIRST OVERLAY DITL RESOURCE FOR THE MULTIPLEDITLs PROJECT.

§19§ Dill "Radio 2 Dill: SndPla "

Play
Sound

FIGURE 5.8 THE SECOND OVERLAY DITL RESOURCE FOR THE MULTIPLEDITLs PROJECT.

;;Iii D Ills from MultipleD llls:rr .rs re
JQ. Size Name

128 62 " Base DITL: Radios and OK"
20 1 50 "Radi 0 1 D ITL: SysBeep"
202 26 " Radio 2 D ITL: SndPl ay"

FIGURE 5.9 THE ID NUMBERS OF THE THREE DITL RESOURCES

FOR THE MULTIPLEDITLs PROJECT.

lmj

~

-0'
li'

When a user of the MultipleDITLs program clicks on the Play Sound
radio button , the MultipleDITLs program will append the item in DITL
202 to the items in base DITL 128. Then , in response to a click on the

268

Chapter 5 Resources

Play Beeps radio button , the p rogram will remove the DITL 202 item
and in its place append the items in DITL 201 to the base items. Figure
5.10 shows DITL 201 being overlaid onto DITL 128, with their upper-left
corners about to be lined up.

[Beep One?]

[Beep Twice]

Radios and OK'1

IO Play Beeps Laj
lo Play Sound Laj

[OK L1J

FIGURE 5.10 CONCEPTUALIZATION OF HOW AN OVERLAY DITL WORKS WITH A BASE DITL.

Figure 5.10 shows that the positioning you give to the items in an overlay
DITL will de termine where the items end up when appended to the
item s in the base DITL. The result of the combination of overlay DITL
201 and base DITL 128, as seen when the MultipleDITLs program is run­
ning, is shown in Figure 5.11.

(Beep Once J

(Beep Twice J

@Play Beeps

0 Play Sound

(OK J

FIGURE 5.11 THE DIALOG BOX THAT RESULTS FROM USING THE BASE

DITL AND ONE OVERLAY DITL.

Looking back at Figure 5.10 brings up one important question. When
the items in two DITL resou rces are combined, how is the problem of

269

More Mac Programming Techniques

DITL numbering resolved? In Figure 5.10, you can see that there are two
number I items and two number 2 items. This resolution is handled in
the record that is maintained for the dialog box that holds the base
DITL.

Each dialog box has a record, represented by the Di a 1 ogRecord
data structure, which holds information about the dialog box. One of the
Di a 1 ogRecord members, the i terns field, keeps track of the items in
the dialog box. The i terns member is a handle to a list of items. When
the dialog box opens, this list holds the items from the base DITL. When
items are appended to the dialog box, they are appended to this list.
Items that are appended to this list are numbered sequentially from the
last item that was in the original list. Figure 5.12 shows how this works for
the MultipleDITLs program when you use one of the overlays.

Item list

Item

(OK)

0 Play Beeps

O Play Sound

(Beep Once)

(Beep Twice)

Item
Number

1

2

3

4

5

§0§ D ITL "Base DITL: Radios and OK'i §

lo Play Beeps laj
lo Play sound W

[OK LJ1

~0~ DITL "Radio 1 DITL: SysBeep" §§

(Beep OncJ]

(Beep Twice]

FIGURE 5.12 THE DIALOGRECORD ITEM UST HOLDS THE DITL

ITEMS AND A NUMBER FOR EACH ITEM.

270

Chapter 5 Resources

When referencing items in your source code, you'll use the item num­
bers as they appear in the Di a 1 og Re co rd item list-not as they exist in
the DITL resources that hold the items. For base DITL items, these num­
bers are the same, but as you can see from Figure 5.12, for appended
items, the item list numbers differ from the DITL items.

r:l1
N 0 T E

Yes, more than one overlay DITL can be used at any given
time. Both DITL resources 201 and 202 could be appended
to DITL 128. Then the single item in DITL 202, the Play
Sound push button, would have an item list number of 6.
Adding more than one DITL at a time makes things needless­
ly complex, however. It's much better to include all of the
items that are to be added in a single DITL and then overlay
that one DITL onto the base DITL.

The AppendDITL() and ShortenDITL() Routines

To dynamically add items to a dialog box, you'll rely on the Toolbox
function AppendDITL(). AppendDITL() requires three parameters: a
pointer to the dialog that will hold the items, a handle to the items, and a
constant that tells where the items should be added. Here's a call to
AppendDITL():

DialogPtr the_dialog;
Handle item_list_handle:

AppendDITL(the_dialog. item_list_handle. overlayDITL):

The first parameter is the Di a 1 o g Pt r variable returned by the
GetNewDi a 1 og () call that loaded the dialog box into memory. The sec­
ond parameter is obtained from a call to GetlResource(). The third
parameter, overl ayDITL, is an Apple-defined constant used to specify
that the upper-left comer of the overlay DITL should line up with the
upper-left comer of the base DITL, as shown in Figure 5.10. The follow­
ing is a snippet that makes use of all three of these parameters.

271

More Mac Programming Techniques

DialogPtr the_dialog:
Handle item_list_handle:

the_dialog - GetNewDialog(128. nil. CWindowPtr)-lL >:

item_list_handle - GetlResource('DITL'. 201 >:
AppendDITL(the_dialog. item_list_handle. overlayDITL):

This code uses a call to GetNewDi a 1 og () to open a dialog box using a
DLOG resource with an ID of 128. Any items in the DITL associated with
this DLOG will of course be displayed at this time. Next, a call to
GetlResource() is made to acquire a handle to the overlay DITL that
has an ID of 201. The pointer to the dialog box and the handle to the
DITL are then used to append the overlay items onto the dialog box.

You should follow a call to AppendDITL() with a call to the Toolbox
routine Re 1 ea seResou rce (), passing the item list handle as the only
parameter:

ReleaseResource(item_list_handle);

If your dialog box no longer needs the appended items, make a call to
the Toolbox routine ShortenDITL(). This function requires two para­
meters: a pointer to the dialog box that's to have items removed, and the
number of items to remove. ShortenDITLC) always removes the items
from the end of a dialog box's item list. That makes it a convenient com­
pliment to the AppendDITL() routine, which adds items to the end of
the item list.

To determine how many items to remove, make a call to the Toolbox
function CountDITL(). When passed, a Di a 1 ogPtr, CountDITL()
returns the number of items in that dialog box. The following snippet
shows how the items in overlay DITL 201 could be removed from a dia­
log box. Recall that DITL 201 has two items and the base DITL has three
items, for a total of five items currently in the dialog box.

#define NUM_BASE_ITEMS 3

short total_items;

272

Chapter 5 Resources

total_items - CountDITL(the_dialog >:
ShortenDITL(the_dialog, total_items - NUM_BASE_ITEMS):

Keeping Track of DITL Items

With the Toolbox functions AppendDITL() and ShortenDITL(),
adding and removing dialog box items becomes an easy task. But if these
operations are to take place at the whim of the user, you '11 need to keep
track of which items are in the dialog box at any given time.

The following fragment outlines the logic used by the MultipleDITLs
program. After a call to Mod a 1Dia1 og () returns the item number of a
clicked-on item, a switch statement is used to take the appropriate
action. The first three items are from the base DITL, and as such they
will always be in the dialog box. The fourth and fifth items, however,
must be handled differently. If DITL 201 is the overlay, then its two push
buttons will be items 4 and 5. If DITL 202 is the overlay, then its one
push button will be item 4.

do
{

ModalDialog(nil, &the_item >:

switch (the_item
{

}

case 2:
II handle click on 1st radio button, base 'DITL' item
break:

case 3:
II handle click on 2nd radio button, base 'DITL' item
break;

case 4:
II handle click on button from overlay 'DITL' 201 or ...
II handle click on button from overlay 'DITL' 202
break:

case 5:
II handle click on button from overlay 'DITL' 201
break;

} while the_item !- 1); //OK button, base 'DITL' item

273

More Mac Programming Techniques

From the above code, you can see that a case label is needed for each of
the items that might possibly appear in the dialog box, even though it is
only guaranteed that the base DITL items will be present.

The case label for the fourth item is unique in that it has to be able to
handle two scenarios. If the Play Beeps radio button is on, DITL 201 is
appended and the fourth item in the item list is the Beep Once push but­
ton. If, on the other hand, the second radio button is on, DITL 202 is
appended in place of DITL 201 and the fourth item in the item list is the
Play Sound push button. Figure 5.13 shows how the Di a 1 og Re co rd
item list varies depending on which radio button is on.

Item list when DITL 201 is appended Item list when DITL 202 is appended

Item
Item

Number Item
Item

Number

(OK) 1 (OK) 1

0 Play Beeps 2 0 Play Beeps 2

0 Play Sound 3 0 Play Sound 3

(Beep Once) 4
T (Play J Sound 4

(Beep Twice) 5

FIGURE 5.13 THE DIALOGllECORD ITEM UST AS IT WOULD APPEAR WHEN USING

DITL 201, THEN DITL 202, AS THE OVERLAY.

To handle both possible situations, the case label for the fourth item will
need to include its own switch statement. Whatever variable is being
used to keep track of the current appended DITL will be used in the
switch. Here's the format for handling this type of item:

274

Chapter 5 Resources

case 4:
switch (overlay tracking variable)
{

case overlay 201:
II beep speaker once

case overlay 202:

}
break:

II play a sound from a 'snd ' resource

Since DITL 201 adds a fifth item to the Di a 1 ogRecord item list and
DITL 202 doesn't, the case for item 5 only has to handle a click on the
Beep Twice button that will be present when DITL 201 is the appended
DITL:

case 5:
II handle click on button from overlay 'DITL' 201
break:

The next section presents the complete source code listing for the
MultipleDITLs program. Before looking it over, you might want to look
at how its primary function, Open_Di a 1 og (),works. You've seen much
of it piecemeal here, so it should look familiar to you.

void Open_Dialog(void >
{

II Open the dialog box
II Set one of the two radio buttons
II Append the appropriate 'DITL', based on the radio
II button that is set
II Set a variable to keep track of which overlay is current

do
{

Modal Dialog(nil, &the_item);

switch (the_item
{

case 2:
II Set radio buttons
II Remove items from other overlay, 'DITL' 202
II Add items from this overlay, 'DITL' 201

275

More Mac Programming Techniques

II Set a variable to keep track of current overlay

case 3:
II Set radio buttons
II Remove items from other overlay, 'DITL' 201
II Add items from this overlay, 'DITL' 202
II Set a variable to keep track of current overlay

case 4:
switch overlay tracking variable
{

case overlay 201:
II Beep speaker once

case overlay 202:

}
break;

case 5:

II Play a sound from a 'snd ' resource

II Beep speaker twice
break:

while C the_item !- 1);

II Dispose of the dialog

The MultipleDITLs Source Code Listing

There's only one part of the MultipleDITLl code that you won't recognize­
these lines from ma i n () :

OSErr error;
long response;

error - Gestalt{ gestaltDITLExtAttr, &response);
if < response== gestaltDITLExtPresent)

ExitToShell{):

The AppendDITL() and ShortenDITL() routines aren't available in
System 6. This means that you'll need to perform one of two checks before

276

Chapter 5 Resources

calling these functions. If you're forcing users to run your program on a
machine with System 7, verify that this system is present when your pro­
gram starts up. Or, if your program is backwards compatible with System 6,
check for the presence of the DITL routines before using them. That's
what the above snippet of code does.

r2]
N 0 T E

If you're making your program backwards compatible, you
might want to use two different schemes for dlsplaylng DITL
information. For System 7, you can use the multiple DITL
technique presented here. For System 6 users, you'd have to
Instead use Show Di a 1 o g I t em () and H i de Di a 1 o g I t em () ,
or else have separate dialog boxes for different options.

Now here's the entire listing. As always, look on the included disk for all
of the files needed to build your own version of the program.

//~~~~~~~~~~~~~~~~~~~~~-
//

#include <GestaltEqu.h>
#include <Sound.h>

void Initialize_ToolboxC void):
void Open_Dialog(void >:

#include directives

function prototypes

void Set_Radio_Buttons(DialogPtr. short* short >:

1/defi ne
#define
1/defi ne
1/defi ne
1/defi ne

1/defi ne
1/defi ne

DLOG_ID
OK_ ITEM
RADIO_l_ITEM
RADI0_2_ITEM
NUM_BASE_ITEMS

RADIO_l_DITL
RADI0_2_DITL

128
1
2
3
3

201
202

#define directives

277

More Mac Programming Techniques

#define SND_GLASS_ID 9000

//~~~~~~~~~~~~~~~~~~~~~-
// main()

void main(void
{

OSErr error:
long response:

error - Gestalt(gestaltDITLExtAttr, &response >:
if C response== gestaltDITLExtPresent)

ExitToShell C):

Initialize_Toolbox();

Open_Oialog();

//~~~~~~~~~~~~~~~~~~~~~-
// initialize the Mac

void Initialize_Toolbox(void
{

InitGraf(&qd.thePort):
InitFonts():
InitWindowsC>:
InitMenus():
TEinit():
InitDialogs(OL >:
FlushEvents(everyEvent, OL >:
InitCursor():

//~~~~~~~~~~~~~~~~~~~~~~~~-
// open a display dialog

void Open_Dialog(void)
{

DialogPtr
short
short

278

the_dialog:
the_ item:
new_radio:

Chapter 5 ResouD'ces

short
Handle
short
short
Handle

old_radio:
item_list_handle:
total_items:
append_type:
snd_handle:

the_dialog = GetNewDialog(DLOG_ID. nil. CWindowPtr)-lL);

old_radio = RADI0_2_ITEM:
new_radio = RADIO_l_ITEM:
Set_Radio_Buttons(the_dialog, &old_radio, new_radio):

item_list_handle = GetlResourceC 'DITL'. RADIO_l_DITL):
AppendDITLC the_dialog. item_list_handle, overlayDITL >:
ReleaseResourceC item_list_handle >:

append_type - RADIO_l_DITL:

ShowWindowC the_dialog >:
SetPortC the_dialog >:

do
{

ModalDialog(nil. &the_item >:

switch C the_item
{

case RADIO_l_ITEM:
new_radio = RADIO_l_ITEM;
Set_Radio_Buttons(the_dialog, &old_radio, new_radio >:

total_items = CountDITLC the_dialog >:
ShortenDITLC the_dialog, total_items - NUM_BASE_ITEMS);

item_list_handle ~ GetlResourceC 'DITL', RADIO_l_DITL);
AppendDITLC the_dialog, item_list_handle, overlayDITL >:
ReleaseResource(item_list_handle);

append_type = RADIO_l_DITL:
break:

case RADI0_2_ITEM:
new_radio = RADI0_2_ITEM:

Set_Radio_Buttons(the_dialog, &old_radio, new_radio);

279

More Mac Programming Techniques

total_items = CountDITL(the_dialog):
ShortenDITLC the_dialog, total_items - NUM_BASE_ITEMS):

item_list_handle = GetlResource('DITL', RADI0_2_DITL):
AppendDITLC the_dialog, item_list_handle, overlayDITL);
ReleaseResource(item_list_handle):

append_type = RADI0_2_DITL:
break:

case 4:
switch (append_type)
{

}

case RADIO_l_DITL:
SysBeep(1 >:
break:

case RADI0_2_DITL:
snd_handle = GetlResource('snd '. SND_GLASS_ID):
SndPlay(nil. snd_handle, true);
break:

break:

case 5:
SysBeep(1):
SysBeep(1);
break:

while (the_item != OK_ITEM);

DisposDialog(the_dialog);
}

''~~~~~~~~~~~~~~~~~~~~~-
// set radio buttons

void Set_Radio_Buttons(DialogPtr dlog,
short *old_radio,
short new_radio)

280

Chapter 5 Resources

Handle hand:
short type:
Rect box:

GetDitemC dlog. *old_radio. &type. &hand. &box):
SetCtlValue(CControlHandle)hand. 0):

GetDitem(dlog, new_radio, &type. &hand. &box >:
SetCtlValue((ControlHandle)hand. 1):

*old_radio - new_radio:

T I P

The Toolbox routines that allow multiple DITL resources to
work are AppendDITL() and ShortenDITL(). These rou­
tines do not support ictb resources. An ictb, or item color
table, is a resource that adds color to individual items in a
dialog box. This shouldn't be a problem for most developers
because Apple doesn't recommend adding nonstandard col­
ors to dlalog box items.

Building the MultipleDITLs Program

From here on, building tfle example programs listed in this book will be
an elementary task, regardless of the compiler you're using. After this
point, I won't cover application building for the examples. You '11 find
that for each project, you need only follow the simple steps listed here.

Symantec users will create a new project and add the MacTraps library
and the one source code file. Then select Run or Build Application from
the Project menu. For a look at any of the projects or files, refer to the
Symantec examples folder included on the disk.

Metrowerks users should create a new project and add the MacOS.lib
library and the one source code file. Then choose Run or Make from the
Project menu. To see the details of a project, resource, or source code
file, look at the Metrowerks examples folder provided on the disk.

281

More Mac Programming Techniques

USING CUSTOM RESOURCE TEMPLATES

A graphical resource editor like ResEdit depends on templates to make
resource editing easy. A template displays the value or values in a single
resource of a single resource type. For example, you use the STR# tem­
plate to edit the strings in a STR# resource. Figure 5.14 shows the STR#
template. The template, which is built into ResEdit, displays the strings in
a manner that is easy to read and easy to edit.

·-~·-

-·--··
STR 11 te STA# templa

~ '-- !Q. Size Name

128 0 l
0 SJR# ID 128 from MyTestRpp:rt.rsrc

...._,
~ HumStrings 3

1) *****

The str ing jMacintosh Programmi ng Techn ique s I

2) *****

The string IQui ckTime: Mac intosh Mu ltimedia I
3) *****
The string jProgramming the PowerPC I
4) ***** ~

1!r

FIGURE 5.14 A RESOURCE EDITOR TEMPLATE DISPLAYS RESOURCE ITEMS IN A WAY THAT

MAKES EDITING THE RESOURCE EASIER.

You don't have to use the built in STR# template when viewing a STR#
resource . If you chose Open Using Hex Editor from the Resource menu,

282

Chapter 5 Resources

you'd see the same three strings in a window like the one shown in
Figure 5.15. After looking at this window, you'll surely come to the con­
clusion that a template makes things much clearer.

= .S.TR# IQ= 128. frf).ITtM "Testflp[.M1.l'.'S'rC
000000
000008
000010
000018
000020
000028
000030
000038
000040
000048
000050
000058
000060
000068
000070

0003 2040 6163 696E
746F 7368 2050 726F
6772 6160 6069 6E67
2054 6563 686E 6971
7565 731F 5175 6963
6854 6960 653A 2040
6163 696E 746F 7368
2040 756C 7469 6065
6469 6117 5072 6F67
7261 6060 696E 6720
7468 6520 506F 7765
7250 43

II Macin
tosh Pro
gramming

Techniq
ueslQuic
kTime: M
acintosh

Mul time
dialProg
ramming
the Powe
rPC

flGuRE 5.15 WITHOUT A TEMPLATE, EDmNG A RESOURCE BECOMES MUCH MORE DIFFICULT.

ResEdit supplies templates for about 60 of the commonly used resource
types, including the ALRT, DITL, and DLOG resources. For most of your
programming needs, these built-in templates are all that you 'II ever need.
If you want to store your own data structures in a resource file, however,
you'll want to create your own template so that you can view and edit
your data. Fortunately, ResEdit makes it easy to add your own templates
to a resource file.

A common task performed by a Macintosh program is to obtain infor­
mation that's held in a resource. A call to GetNewWindow(), for exam­
ple, acquires WIND resource data used to load a window into memory.
The window example uses a predefined resource type and a Toolbox rou­
tine. It's also possible to store your own data in a resource of your own
design and to access it from source code using the GetlResource()
Toolbox routine.

In this section, you'll see how to create your own resource type. Then
you'll create a template to make data stored in your resource easy to

283

More Mac Programming Techniques

work with . You'll also see how to access this same data from within a pro­
gram. In Chapter 6, you'll see a very practical example that makes use of
these tasks- the creation and use of a preferences file.

The TemplateUser Program

The disk that accompanies thi s book includes a project n amed
Template User. In the project's resource file is a TSTD resource type. This
isn 't a standard resource type, I 've created it just for use by th e
TemplateUser program. There's no real significance to the four-charac­
ter resource name. I chose the letters TSTD to stand for "test data," but I
could have used any four characters.

T he TSTD resource holds four pieces of data: a short, a 1 ong, a
Boolean , and a string. Figure 5.16 shows how a resource of the TSTD
type might look when opened with ResEdit's hex editor.

~•§ TSID ID= 128 from TemplnteUser.11.rsrc
000000
000008
000010
000018
000020
000028
000030
000038
000040
000048

7FFF 7FFF FFFF 0100 11111111
0F56 6172 6961 626C IVariabl
6520 4C65 6E67 7468 e Length

FIGURE 5.16 A CUSTOM RESOURCE TYPE NAMED TSTD.

\Ii

Since it's very difficult to determine what values are held in the TSTD
resource and equally difficult to modify its data, I've added a template to
the resource file. The template makes working with TSTD resources easy.
The template addition is shown on the next pages.

Data are stored in a resource in an application so that it's available
for use by th at application. To demonstrate how this is done, the
TcmplateUser program loads the data from one TSTD resource and dis­
plays it in a window (see Figure 5.17).

284

Chapter 5 Resources

New Window

32767

2147483647
1
Variab l e Length

FIGURE 5.17 THE RESULT OF RUNNING THE TEMPLATEUSER PROGRAM.

Creating a New Resource Type and Template

Using ResEdit, a new resource of any type is added to a resource file by
selecting Create New Resource from the Resource menu. If you're going
to add a resource of a standard type, such as an ALRT or DITL resource,
you ' II find the resource name in the scrolling list in the Select New Type
dialog box. If you want to add a resource of your own type, you obviously
won't see its name in the list. Instead, just click in the Edit text box and
type in whatever four character n ame you 've settled on. Figure 5.18
shows a new TSTD resource about to be added to the resource file.

Select New Type

actb iD- lrsrn I a cur

I
aedt
ALRT

K) APPL OK

BNDL
caps ~ (Cancel)

FIGURE 5.18 CREATING A NEW RESOURCE TYPE IN RESEDIT.

285

More Mac Programming Techniques

After clicking OK, a new resource icon will appear in the type picker
window, and two new windows will open. The first holds a list of all of
the TSTD resources in the file. Since this resource type was just created,
there'll be only one resource listed here. ResEdit will give this first
resource an ID of 128. The second window that opens is the ResEdit hex
editor window. The new resource opens without any data in it (see
Figure 5.19).

TemplateUser.11.rsrc

QI 0 I 1101 ~ (10101001
(11101010
(10011110
(11000000 ...
TSTD

TSTDs from TemplateUser.11.rsrc

!Q. Size Name .__

126 0 l
~lil§ TSTD ID= .l28frorn JemplateUser.tr.rsrc .~

'-I 000000 ;Q:
000008
000010
000018
000020
000028
000030
000038

-0 000040
000048 ii

FIGURE 5.19 THE NEW, EMPTY TSTD RESOURCE-EDITING WINDOW.

Unlike a standard resource type, like a STR#, there is no template in
ResEdit to define how data entered into a TSTD resource should be for­
mat tcd. If you start typing, the hex equivalent to the keys you press will
be displayed in the hex editor. If you wanted to enter the values 32767,
2147483647, true, and Variable Length, you'd have to enter the values as
shown in Figure 5.20.

286

Chapter 5 Resources

TSTDs from TemplateUser.11.rsrc
!Q. Size Name

128 24 I
~-~ TSTD ID = 128 from TemploteUser.n.rsrc ~

i.- 000000 7FFF 7FFF FFFF 0100 11111111 ~ 000008 0F56 6172 6961 626C IUariabl
000010 6520 4C65 6E67 7468 e Length
000018
000020
000028
000030
000038 -01 000040
000048 ~

FIGURE 5.20 THE TSTD RESOURCE WITH DATA ENTERED.

Unless you can do decimal-to-hex conversions and alphanumeric-to-hex
conversions in your head , this is way too much work! The solution, of
course, is to create a template. To do this, you'll again select Create New
Resource from the Resource menu. Templates are a standard resource
type, so scrolling through the resource type list will eventually reveal the
TMPL resource name in the list. A click on the name will place it in the
Edit box. Figure 5.21 shows the Select New Type dialog box as it looks
just before OK is clicked.

Select New Type

uers
wctb
WIND
wstr

n OK D

(Cancel)

FIGURE 5.21 CREATING A TEMPLATE RESOURCE IN RESEDIT.

287

More Mac Programming Techniques

After clicking OK, the windows shown in Figure 5.22 will open. There
will be one new TMPL resource, with ID 128. The template editor will
open, and you can begin to edit the template.

TemplateUser. ff .rsrc

0101 1101
···e::::::I 0010 1001
··IEE!J 0110 1010

--IE:! 0001 1110

·-e:::J 01000000

TMPL TSTD

TMPLs from TemplateUser. 11 .rsrc

~ .IQ. Size Name

126 0 I
~ TMPL ID:=: 128 fn:nn TemplateUser.11.rsrc ~ -- .Q

1) *****

-0
~

FIGURE 5.22 THE NEW, EMPTY 'TMPL RESOURCE•EDITING WINDOW.

When ResEdit created the TSTD resource and the template that will be
used to edit this resource, it gave each an ID of 128. That's the ID that
ResEdit gives the first resource of any type. The fact that both the TSTD
resource and the TMPL resource have the same ID is not what binds
them together. Instead, it's the TMPL name that associates it with the
TSTD resource. To give the TMPL resource a name, first click on the
resource to highlight it, as done in Figure 5.23. Then select Get
Resource Info from the Resource menu.

In the dialog box that opens, type in TSTD (see Figure 5.24). Now
that the template has the same name as the resource type it is to be used
with, the association is made. Just to show that the ID of the template
docsn 't have to be the same as the resource it's to be used with, I've
changed the TMPL ID to 200.

288

Chapter 5 Resources

Resource
Create New Resource 8€K
Open Resource Editor
Open Using Template ...
Open Using HeH Editor

Reuert This Resource

Get Resource Info 3€ I

FIGURE 5.23 SELECTING GET RESOURCE INFO FOR THE TEMPLATE RESOURCE.

=Iii~ Info for TMPL 200 from TemplateUser.11.rs1

Type: TMPL

ID:
Name:

Owner ID:

Sub ID:

Attributes:
D System Heap
D Purgeable

D Locked

Size: 62

Owner type

DRUR ~
WDEF
MDEF

D Preload
D Protected D Compressed

FIGURE 5.24 CHANGING THE RESOURCE ID AND THE RESOURCE

NAME OF THE TEMPLATE RESOURCE,

289

More Mac Programming Techniques

After closing the Get Info window, it's time to edit the template. The tem­
plate will have an item for each data element that will be in a TSTD
resource. The template item will give a label to the data element and will
specify the type of data that the element is. Imagine that the TSTD
resource will hold just a single data element, and that it will be a two-byte
number. In C, that would be a short variable. In the template, there
should be a single item that corresponds to this one data element. Figure
5.25 shows what this item would look like.

§(ii~. TMPL "TSTD" ID = 200 froni, Templote. n .rsrc

1) *****
Label

Type

2) *****

jshort data

lolJRD

FIGURE 5.25 A TEMPLATE RESOURCE THAT DEFINES

ONE DATA FIE~A TWCHIYTE NUMBER.

A template item can have any label, but it should be descriptive of what
the data element is or what it will be used for. I choose "short data" for
the label. The item has to have a type, and it must be one of the types
that ResEdit recognizes. For a two-byte value, or short, enter DWRD as
the type. DWRD stands for decimal word.

As a test, close the template resource and double-click on the TSTD
resource to open it. Now, instead of the hex editor opening, the template
will open. You'll see the label in the left of the window and an Edit box to
the right of the label (see Figure 5.26). To enter a number, just click in
the Edit box and type it in. Since the template specified that this data ele­
ment would be in decimal, you can type in a number as you normally
would-there's no need to convert it to hex. Figure 5.26 shows the TSTD
resource with the number 18 entered.

290

Chapter 5 Resources

TSTDs from TemplateUser.1T .rs re

~ Size Name

128 2 l
F-lm TSTD ID == 128 from TemplateUser.11.rsrc ~

"-- .Q
s hort data 118 I

~ w
FIGURE 5.26 How THE TSTD RESOURCE WOULD LOOK WHEN USING THE TMPL RESOURCE.

Now let's go back to the template to complete it. The TemplateUser p ro­
gram is going to use four data elements, and it expects to find them in its
resource fork-in a TSTD resource. The program will be looking for a
short, a long, a Boolean, and a string. Figure 5.27 shows what the TSTD
template should look like in order to meet these specifications. You can
use the Insert New Field(s) menu item from the Resource menu to add
each new item.

After closing the template, double-click on the TSTD resource to
open it again. This time, the TSTD editor will look like the one pictured
in Figure 5.28. Now the TSTD data can be edited in the same graphical
manner that resources of standard types are edited. In Figure 5.28, I've
entered a value for each of the fo ur fields.

ResEdit allows you to specify that a template item represents just
about any kind of data. Table 5. 1 shows many of the four-character
names you can use in your TMPL resources.

Now that some da ta is stored in a resource, what can be done ·with
it? T ha t depends on the requirements of the application that will use
the data. T he Te mplateUser program will sim ply read in this data and
display it in a window. To do that, a WIND resource needs to be added
to the resource fil e. Figure 5.29 shows the WIND that TemplateUser
works with.

291

More Mac Programming Techniques

'-I

292

TMPLs from Temp late User. TT .nrc
.!Q. Size Name

200 50 "TSTD" l
~I TMPL "TSTD" ID= 200 from Template.TT.rsrc

'-I
1) *****

Label I short data I
Type louAo I
2) *****

Label I long data I
Type loLNG I
3) *****

Label I bool ean data I
Type IBOOL I
i) *****

Label I str ing data I
Type IPSTA I
5) *****

FIGURE 5.27 THE COMPLETED TMPL RESOURCE.

TSTDs fro m Templa teUser.n'.rsrc
.!Q. Size Name

128 24 l
slB= TSTD ID .. 128 from TemplateUser. TT .rsrc

short data 132767 I
long data 121i7i836i7 I
boo lean data @True O False

string data iuariable Length I

FIGURE 5.28 How THE TSTD RESOURCE WOULD LOOK

WHEN USING THE COMPLETED TMPL RESOURCE.

~

tzy
'ii

~

tzy
11

Chapter 5 Resources

ResEdit Type Description

DBYT
1-byte decimal field
Maximum value for data of this type: 255

DWRD
2-byte decimal field
Maximum value for data of this type: 32,767

DLNG
4-byte decimal field
Maximum value for data of this type: 2, 147,483,647

Pascal string field
PSTR Enter the text without leading or trailing characters

(no ''\p" or ''\O")

CHAR 1-byte character field

BOOL
Boolean field
Displayed as a pair of radio buttons

Rectangle field
RECT Displayed as four edit boxes, each used to enter

one coordinate of the rectangle. Order of entry is:
(top, left, bottom, right)

TABU: 5.1 SoME OF THE Fouff'CHARACIER NAMES THAT CAN BE USED IN A TEMPLATE REsouRCE.

• f h 11:11 ._lllltm llall1w

Top:@O Height:~

left:~ Width: EJ

Color: @ Def11ult
O Custom

------·-------

181 lnltl11lly ulslble

D Close boH

FIGURE 5.29 THE WIND RESOURCE USED BY THE TEMPLATEUSER PROJECT.

293

More Mac Programming Techniques

Figure 5.30 shows the complete resource file for the TemplateUser pro­
ject. In the upcoming pages, you'll see how to read the TSTD data into
Template User. In Chapter 6, you'll see how this technique of storing and
reading resource data is used to save a program's preference settings.

···i::::::=::::::J
··e:::I
··e::J
·-e:::J

TMPL

01011101
0010 1001
01101010
00011110
01000000

TSTD WIND

FIGURE 5.30 THE RESOURCE TYPES FOUND IN THE TEMPLATEUSER RESOURCE FILE.

Using Resource Data In an Application

When a Mac application makes a call to GetNewWi ndow(), the Toolbox
loads information from a WIND resource into a Wi ndowRecord data
structure. It then supplies the program with a pointer to that data. This
pointer is a Wi ndowPt r:

WindowPtr the_window;

the_window = GetNewWindow(WIND_ID. nil. CWindowPtr)-lL);

Your program can then use the Wi ndowPt r variable to obtain informa­
tion stored in the Wind ow Record. That's possible because the
Wi ndowRecord data type is defined in the universal header files and is
known to the Toolbox.

\\'hen you want an application that you're writing to access informa­
tion from a resource type that you've defined, you 'II have to supply the
application with the format in which the data is stored.Just as a program
needs to recognize a Wi ndowRecord data structure before it can work
with a WIND resource, your application will need to have a data structure
defined for any programmer-defined resource type.

294

Chapter 5 Resources

As you've seen, TemplateUser defines a resource type named TSTD. Any
resource of that type contains a short, a 1 ong, a Boal ean, and a Pascal
string-in that order. That means the TemplateUser application needs to
define a data structure that matches this format. Here's that structure:

typedef struct
{

short short_val;
long long_val;
Boolean bool_val;
Str255 str_val;

TemplateRecord. *TemplatePtr. **TemplateHandle;

~
N 0 T E

This technique is slmllar to one you encountered in Chapter
3. In that chapter, you saw that whenever the Control
Manager sends a thumb C n t 1 message to a cdev, it also
sends a pointer to a data structure. That data structure
holds Information about the dragging llmlts, or boundaries, of
a control. In Chapter 3, you saw that It was up to you to
define a matching structure in the cdev source code so that
you could read In the data that this pointer referenced.

Now, when TemplateUser needs to access information from the TSTD
resource, it makes a call to the Toolbox routine GetlResource() to
load the resource data in to memory and to return a handle to the data:

Handle data_handle;

data_handle - GetlResource('TSTD'. 128);

Getl Resource () can be used to load one resource of any type into
memory. The first parameter is the resource type, and the second is the
ID of the particular resource to load.

· · Recall that the TemplateUser resource file defines a TMPL
resource with an ID of 200 and a TSTD resource with an ID
of 128. It's the TSTD resource being loaded here. The tem­

N o r E plate resource is only used within ResEdlt to make resource
editing easier.

295

More Mac Programming Techniques

Once the TSTD resource data is loaded into memory, it can be accessed
by the Template User application, but not until the application is told the
format of the data. Until then, it appears as just a stream of information
in memory. Type casting the generic d at a_h and 1 e variable to a
Temp 1 ateHandl e is the way to tell the application how the ':1ata format­
ted. To gain access to one piece of data, the Templ ateHandl e is deref­
erenced twice. Here's how a short variable would be assigned the value
of the first piece of data in the TSTD resource:

#define
#define

TSTD_RES_TYPE
TSTD_RES_ID

short my_short:
Handle data_handle:

'TSTD'
128

data_handle = GetlResource(TSTD_RES_TYPE, TSTD_RES_ID):

my_short = C**CTemplateHandle)data_handle).short_val:

Henceforth, the my_short variable can be used, and the first member
of the TSTD data in memory can be ignored. This applies to each of the
four TSTD data members; once variables are assigned the values held in
the resource, you don't have to use the handle. The following snippet
loads the TSTD data into memory and extracts all of the data from that
resource by assigning four variables its data:

short
long
Boolean
Str255
Handle
StringPtr
Size

my_short:
my_ long:
my_boolean:
my_str;
data_handle:
source_str:
byte_count:

data_handle = GetlResource(TSTD_RES_TYPE, TSTD_RES_ID):

my_short = C**CTemplateHandle)data_handle).short_val;
my_long = C**CTemplateHandle)data_handle).long_val:
my_boolean = C**CTemplateHandle)data_handle).bool_val;

296

Chapter 5 Resources

source_str = (**(TemplateHandle)data_handle).str_val:
byte_count = C**CTemplateHandle)data_handle).str_val[OJ + 1:
BlockMoveData(source_str, my_str. byte_count);

After obtaining a handle, the first three assignments are straightforward:
cast the handle, then dereference it twice to get at a struct member.
Assigning a value to the St r 2 5 5 variable requires a little extra work. A
string variable is an array of characters, and in C one array cannot be
assigned the value of another array, so an assignment like this will result
in an error during compilation:

my_str = (**(TemplateHandle)data_handle).str_val: II not legal!

Instead of a direct assignment to a St r255 variable, make the assign­
ment to a pointer:

StringPtr source_str:

source_str = (**(TemplateHandle)data_handle).str_val:

Next, get the length of the string-it can be found in the first element of
the array that holds the string. Add one byte to account for this first
length byte. Then use the Toolbox routine Bl ockMoveData () to copy
the string to the St r255 variable.

StringPtr source_str;
Size byte_count:

source_str = (**(TemplateHandle)data_handle).str_val:
byte_count = (**(TemplateHandle)data_handle).str_val[OJ + 1:
BlockMoveData(source_str, my_str. byte_count):

Once a program has the resource data stored in variables, the informa­
tion can be used just as data in any variable is used:

my_short *= my_short: II square the value in my_short

MoveTo(20, 80):
Drawstring(my_str); II draw my_str to a window

297

More Mac Programming Techniques

The TemplateUser Source Code Listing

TemplateUser opens a window, loads data from a TSTD resource, then
writes that data to the window. 'When you run the program, you 'll see a
window like the one shown in Figure 5.31. If you want to test out both
the template resource and the program, try opening the project 's
resource file and double-clicking on the TSTD resource. Edit any or all
of the four fields in that resource. Then save the resource and recompile
the program. 'When it runs, TemplateUser should display the new values
you've entered into the TSTD resource.

New Window

32767

2147483647

Variable Length

FIGURE 5.31 THE RESULT OF RUNNING THE TEMPLATEUSER PROGRAM.

The fo llowing is the listing for TemplateUser. To keep things simple,
there 's no real event loop-a click of the mouse button ends things. And
to save a little paper, the listing for In it i a 1 i ze_ Too 1 box () has been
omitted. You will, however, find it in the source code file on disk.

II~~~~~~~~~~~~~~~~~~~~~~~~~
II function prototypes

void Initia li ze_Toolbox(voi d);
void Get_Templa te_Resource_Values(voi d);

II~~~~~~~~~~~~~~~~~~~~~~~~~
I I #def i ne directives

#define WIND_ ID 128

298

Chapter 5 Resources

/ldefi ne
//define

TSTD_RES_TYPE
TSTD_RES_ID

'TSTD'
128

II~~~~~~~~~~~~~~~~~~~~~~
II define data structures

typedef struct
{

short short_val:
long long_val:
Boolean bool_val:
Str255 str_val:

} TemplateRecord, *TemplatePtr, **TemplateHandle:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

WindowPtr the_window:

Initialize_Toolbox():

the_window - GetNewWindow(WIND_ID, nil, CWindowPtr)-ll):
SetPort(the_window >:

Get_Template_Resource_Values():

while (!Button())

}

II~~~~~~~~~~~~~~~~~~~~~~
II retrieve data from 'TSTD' resource

void Get_Template_Resource_Values(void)
{

short
long
Boolean
Str255
Handle
StringPtr
Size
Str255

my_short:
my_ long:
my_boolean:
my_str:
data_handle:
source_str:
byte_count:
temp_str:

219

More Mac Programming Techniques

data_handle - GetlResourceC TSTD_RES_TYPE, TSTD_RES_ID);

my_short - C**CTemplateHandle)data_handle).short_val:
my_long - C**CTemplateHandle)data_handle).long_val:
my_boolean - C**CTemplateHandle)data_handle).bool_val:

source_str - C**CTemplateHandle)data_handle).str_val;
byte_count - C**CTemplateHandle)data_handle).str_val[O] + 1:
BlockMoveDataC source_str, my_str, byte_count):

MoveToC 20, 20 >:
NumToString((long)my_short, temp_str):
Drawstring(temp_str >:

MoveToC 20, 40);
NumToStringC my_long, temp_str);
Drawstring(temp_str >:

MoveToC 20, 60 >:
NumToString(Clong)my_boolean, temp_str);
Drawstring(temp_str);

MoveToC 20, 80);
Drawstring(my_str);

CHAPTER SUMMARY

Resources contain information that a program uses "on demand." When
a program is to open a window, for example, it loads a WIND resource to
get the characteristics of the window. Though resources generally hold
information about the graphical interface parts of a program, such as
descriptions of menus, windows, and dialog boxes, this isn't always the
case. A resource can be created to hold any type of data. When you cre­
ate your own custom resource, a resource editor will open a window that
allows you to edit that resource in hexadecimal. Since this type of editing
is quite a chore, resource editors also allow you to create a template
resource that is used every time the custom resource is opened in the
resource editor. This TMPL resource defines labels and fields that make
the editing of custom resources simple.

300

Chapter 5 Resources

When you define your own resource type, you'll also need to define a
structure in your source code that corresponds to the format in which
the resource data is held. When you load a custom resource into memory
with a call to Get 1 Resource (), the Toolbox returns a handle to the
memory location at which the resource data has been placed. Unless a
structure is defined, to the program this resource information will
appear to be just one continous stream of data. The structure can be
used to view the data as individual members of as t ruct variable.

One useful programming trick that involves resources is to define sev­
eral dialog box item lists that will be used by one dialog box. To do this,
first define a base DITL with the same ID as the one specified in a DLOG
resource. Then define as many different overlay DITL resources as need­
ed. In your source code, use the AppendDITL() and ShortenDITL()
Toolbox functions to add and remove these overlay DITL resources as
needed. Generally, it will be some user action that triggers the changing
of the DITL.

301

Chapter

6

RESOURCE FILES

When source code gets compiled and linked to form a standalone appli­
cation, a single resource file is usually merged with the object code to
become an integral part of the application. The resources that were in
this file (along with the application code in a 680x0 application) then
become the application's resource fork. As a program executes it uses
the resources in its resource fork. An application can, however, use
resources that are located in any resource file, not just resources in its
own fork.

By having your program use different resource files, you can divide
application-used information into logical groupings, much as you would
divide a book's information into separate chapters. The advantage to this
approach is that as information needs to be changed or updated, it can

303

More Mac Programming Techniques

easily be altered by opening the proper resource file from outside the
application. In this chapter, you'll see how to write a program that makes
use of multiple resource files.

Resource files don't necessarily have to be created before an applica­
tion runs-the application itself is capable of creating a new file. An
application can also copy resources from its own resource fork or any
other fork and add them to the new, empty resource file. You'll see how
to tackle both of these tasks in this chapter.

Some application retain certain values between executions. These val­
ues hold information such as the user's choice of font and the dialog box
settings that the user has selected. To preserve this information, an appli­
cation uses a preferences file. This file is a resource file that can have its
contenL~ viewed or edited using any resource editor. This chapter discuss­
es preferences files at length so that you can include a preferences file
with any of your Mac applications.

WORKING WITH MULTIPLE RESOURCE FILES

An application's resources are generally found in the resource fork of
the application-they're placed there by the development environment
that was used to build the application. But an application can also make
use of resources found outside its own resource fork. Any Mac program
can be written such that it is capable of opening a resource file and
accessing the resources found within that file.

The greatest advantage to using separate resource files-reduced
application size-applies to large applications that hold an abundance of
resources. An example might be an educational program that holds
dozens or hundreds of PICT resources. Since so much of the disk space
occupied by an application of this type consists of resources, the applica­
tion's size is greatly reduced by placing most of its resources in separate
files. While the overall disk space of the application and its resource files
remains the same as an application that is self-contained, there is still a
plus to this scheme. If an application is going to be revised frequently, it
may be possible to make changes to just the application and not the

304

Chapter 6 Resource Files

resources. If the application revisions are distributed electronically, end
users will need to download only the small application, and not a mono­
lithic one that contains hundreds or perhaps thousands of kilobytes of
resources. If the application is distributed by disk, the revised version can
usually be shipped on one disk rather than multiple disks. Figure 6. 1
shows an application that uses the resources found in ten resource fi les.
The application itself is just 49 Kin size, while the resources occupy over
two and a half megabytes of disk space.

Mac Programming f
2 items 119.5 MB in disk 80.5 MB available

Name Size Kind

~ In Action! Mac Techniques 49K application program

In Action' Resources ~ • 2,881 K folder

In Action! Resources Ii'-
10 items 119.5 MB in disk 80.5 MB available

t------t .. .

Name Size Ki nd

D I nAction.rsr cOO 172K ResEdit 2. 1 .1 docu 0
D I nAction.rsr cO 1 319K ResEdit 2. 1 . 1 docu

D I nAction.rsrc02 336K ResEdit 2. 1. 1 docu

D I nAction.rsrc03 382K ResEdit 2. 1 .1 docu

D I nAction.rsrc04 280K ResEdit 2. 1 .1 docu

D I nAction.rsrc05 392K ResEdit 2.1 .1 docu

D lnAction.rsrc06 252K ResEdit 2 .1 .1 docu

D lnAction.rsrc07 245K ResEdit 2. 1 .1 docu

D lnAction.rsrc08 182K ResEdit 2. 1 .1 docu

D lnAction.rsrc09 322K ResEdit 2. 1 .1 docu

FIGURE 6.1 AN APPLICATION THAT USES THE RESOURCES HELD IN TEN RESOURCE FILES.

The MultipleRsrcFiles source code presented in this section is an exam­
ple of an application that uses a resource located in an exte rna l file.
MultipleRsrcFiles opens a dialog box and displays a picture in it (see
Figure 6.2).

305

More Mac Programming Techniques

OK

FIGURE 6.2 THE RESULT OF RUNNING THE MULTIPLERSRCFILES PROGRAM.

Figure 6.3 shows the folder that holds the project, source code, and project
resource file for the MultipleRsrcFiles project; they're the three files at the
lefr of the figure. These three files are used to build the application, shown
at the center of the figure. On the right side of the figure is the resource
file chat MultipleRsrcFiles uses. If the MultipleRsrcFiles application is to be
distributed to users, the MyRsrcFile resource file must accompany it.

306

=o Multiple Resource Files f 0~
5 items 2B4.6 MB in disk 39.6 MB eve11eble

~
~

Multi pleRsrcFiles :J1

~ ~ [E
Multi pleRsrcfiles.c Multi pleRsrcFiles MyRsrcfile

[E >-
Multi pleRsrcf i les.11.rsrc

-0
¢1 J¢ P-i

.___

This file is used by the application

FIGURE 6.3 THE MULTIPLERSRCFILES APPLICATION USES THE RESOURCE

FOUND IN THE MYRSRCFILE RESOURCE F1LE.

N 0 T E

Chapter 6 Resource Files

In order for the MultlpleRsrcFlles program to use t he
MyRsrcFile resource file, the application and the resource
file must be in the same folder. If you'd llke to nest resource
files in a different folder, so that they' re hidden from t he
user, see the information on file pathnames In Chapter 7.

The MultipleRsrcFiles Resources

The MultipleRsrcFiles program begins by opening a dialog box. The DITL
and DLOG resources for the dialog box are found in the application 's
resource fork. That means these resources started out in the project's
resource file. Figure 6.4 shows the DLOG resource. From this figure, you
can see that the DITL has just a single dialog box item in it-an OK button.

left: 1~4_0 ~

DLOG ID = 128 f rom MultlpleRsrcflles.11.rsrc

Height: I 100

Width: I 130

11600010
Color: ® Oefoult

0 Custom

DITL ID: ~I 1_2_0_~

181 lnitiolly uisible

D Close boH

FIGURE 6.4 THE DLOG RESOURCE USED BY THE MULTIPLERSRCFILES PROGRAM.

Besides the DLOG and DITL resource there's a third resource in th e
project's resource file: a STR# resource that holds a single string. T he
string is the name of the external resource file that the MultipleRsrcFiles
program uses. This resource is pictured in Figure 6.5.

30 7

More Mac Programming Techniques

DITL

MultipleRsrcfiles. 'Tf .rsrc

DLOG

STR#s from MultipleRsrcfiles. 'Tf .rsrc
Size

128 13

HumStrings

1) *****
The string

2) *****

Name

I MyRsrcF i I e

FIGURE 6.5 A STR# RESOURCE HOLDS THE NAME OF THE RESOURCE FILE USED

BY THE MULTIPLERSRCFILES PROGRAM.

The resource file that MultipleRsrcFiles uses is named MyRsrcFile. It con­
tains a single PICT resource. It is this picture that MultipleRsrcFiles will
display in its dialog box. Figure 6.6 shows the contents of the MyRsrcFile
resource file.

Resource File Reference Numbers

A file can have a data fork, resource fork, or both. That means that any
file is capable of holding resources in a resource fork. A program, which
is an application file, holds resources just as a resource file does--they
each have a resource fork. Because an application can use resources in
external files as well as use its own resources, confusion could arise if two
open resource forks each contained a resource of the same type and
same ID. To circumvent this problem, the File Manager assigns a refer­
ence number to each resource fork that opens. Only one resource fork
can be the current fork, and it is the current fork from which resources
are loaded.

308

Chapter 6 Resource Files

My Rs refile

PICT

~Iii~ PI CTs from M Rsrcfile ~­
-0

~i

128

FIGURE 6.6 THE RESOURCE FILE USED BY THE MULTIPLERSRCFILES PROGRAM HOLDS A

SINGLE PICT RESOURCE.

If an application relies on multiple resource forks, a call to the Toolbox
routine UseRes Fil e () should be made before accessing a resource.
Just as Set Po rt () designates one of possibly many graphics ports to be
the current port , Use Res Fi l e () designates that one particula r
resource fork be the current fork. Use Res Fi l e () requires only one
parameter- a short that holds the reference number of the resource
fork to use.

As an example, imagine that both an application and a resource file
contain a snd resource. Each of the two snd resources has an ID of 8500,
but they hold d ifferent sounds. To play the snd that resides in the appli­
cation's resource fork, Use Res Fi l e () would first be called, with th e
application's resource fork reference number as the parameter:

short Appl _Rsrc_Fork_Ref _Num;
short File_Rsrc_Fork_Ref_Num ;

II Get reference number of appl i cation' s resource fork
II Get reference number of open resource fi le's resource for k

309

More Mac Programming Techniques

UseResFile(Appl_Rsrc_Fork_Ref_Num);

II play the sound

When an application is launched, the system opens the application's
resource fork and makes it available for the application's use. This fork
will remain open for the duration of the program's execution. You can
get a reference number to the fork by calling the Toolbox routine
Cur Res Fi 1 e () . If you do this at application startup, you can be assured
that the application's resource fork is the current resource fork:

short Appl_Rsrc_Fork_Ref _Num:

Initialize_Toolbox();

Appl_Rsrc_Fork_Ref_Num - CurResFile();

A resource fork's reference number will be valid for the entire period
that the fork is open. So once you've saved the reference number of an
application's resource fork, you won't have to call Cur Res Fi 1 e () again.
And if you save the reference number to a global variable, you'll be able
to make the application's resource fork current at any time.

Opening and Closing a Resource
File Source Code

Opening a resource file consists of calling the Toolbox routine
FSpOpen Res Fi 1 e () . The leading FSp in the function name tells you that
it's one of the many file specification routines, and as such it will require an
FSSpec as a parameter. You can make a call to FSMakeFSSpec() to
request that the File Manager fill an FSSpec variable with information
about the file of interest. Before calling FSMa ke FSSpec () , you'll need to
know the file's name and its location. The name is stored in the first (and
only) string in the application's STR# resource. If the resource file exists in
the same directory as the application, then its volume reference number
and directory ID are both 0. The following snippet returns a file system
specification record:

310

Chapter 6 Resource Files

1/defi ne
1/defi ne

short

Str255
short
1 ong
FSSpec

RSRC_STR_ID
MY_FIRST_RES_FILE_INDEX

File_Rsrc_Fork_Ref_Num:

rsrc_file_name;
vol_ref;
dir_ID;
rsrc_FSSpec;

GetlndStringC rsrc_file_name, RSRC_STR_ID.

vol_ref = 0:
di r _ID = 0:

MY_FIRST_RES_FILE_INDEX);

128
1

FSMakeFSSpec(vol_ref, dir_ID, rsrc_file_name, &rsrc_FSSpec >:

Now the call to FSpOpen Res Fi 1 e () can be made. The first parameter
to this routine is a pointer to the FSSpec and the second is a file permis­
sion constant. Using the fsCurPerm constant means that the file will be
opened with whatever access is available-usually read and write permis­
sion. After FSpOpenResFile() opens the resource fork ofa file, it
returns a file reference number. If the attempt to open the specified file
fails, a value of -1 will be returned as the reference number. If you save
this reference number to a global variable, you'll always be able to make
this file the current file with a call to Use Res Fi 1 e () :

File_Rsrc_Fork_Ref_Num = FSpOpenResFileC &rsrc_FSSpec, fsCurPerm);

UseResFile(File_Rsrc_Fork_Ref_Num);

The File Manager treats an application's resource fork and a resource
file's resource fork in the same manner. After making sure that the cor­
rect fork is current, you can access a resource in any fork just as you have
in the past. If, for instance, a resource file contains a PICT with an ID of
128, you can draw that picture to the current port as follows:

PicHandle pict_handle:

UseResFileC File_Rsrc_Fork_Ref_Num >:

311

More Mac Programming Techniques

pict_handle = GetPicture(pict_id);

II Set up the rectangle to draw to

DrawPicture(pict_handle, &pict_rect);

ReleaseResource((Handle)pict_handle);

When you 're through with a resource fork, call the Toolbox routine
C 1 o s e Res Fi 1 e () to close it. After that, you can optionally set the glob­
al reference number variable to 0. Then, if your application ever wants to
check to see if a nonapplication resource fork is open, it can do so. If a
check of this variable's value reveals that it is nonzero, then a resource
file resource fork is open. After closing the file, make a call to
Use Res Fi 1 e () to guarantee that the application's resource fork
becomes current.

CloseResFile(File_Rsrc_Fork_Ref_Num):

File_Rsrc_Fork_Ref_Num - O:

UseResFile(Appl_Rsrc_Fork_Ref_Num);

The MultipleRsrcFiles Source
Code Listing

This section has described the code used by MultipleRsrcFiles. You'll
notice that MultipleRsrcFiles bundles the code that opens and closes a
resource fork into two functions: Open_Resource_Fi 1 e() and
C 1 os e_Resou rce_Fi 1 e (). To enable these routines to work with any
resource fork, they both require that information about the a file be
passed in.

Open_Resource_Fi 1 e() uses a call to GetindStri ng() to
obtain the name of the file to open. So Open_Resource_Fi 1 e()
expects the STR# resource ID and the index to the string as parameters:

void Open_Resource_File(short rsrc_str_ID_num, short str_index

312

Chapter 6 Resource Flies

After closing a resource fork, Cl ose_Resource_Fi 1 e() sets the file refer­
ence number to 0 to indicate that no file is open. Pass Cl ose_Resource_
Fi 1 e () a pointer to this file number variable so that this assignment will
hold after the function has ended:

void Close_Resource_File(short *file_ref_num)

Now, here's the complete listing for the MultipleRsrcFiles program.
You'll find that this short program does all of the following:

• Uses the DITL and DLOG resources from the application's
resource fork to open a dialog box

• Opens a resource file's resource fork

• Loads a PICT resource from the external file

• Draws the picture using the PICT resource

• Closes the resource fork of the external file

II~~~~~~~~~~~~~~~~~~~~~
II function prototypes

void Initialize_Toolbox(void >:
void Open_Dialog(void >:
void Open_Resource_File(short, short >:
void Close_Resource_File(short * >:
void Draw_One_Picture(short):

II~~~~~~~~~~~~~~~~~~~~~~~~~
II #define directives

//define
#define

//define
//define
f/defi ne

DLOG_ID
OK_ ITEM

RSRC_STR_ID
MY_FIRST_RES_FILE_INDEX
eWORLD_PICT_ID

128
1

128
1

128

II~~~~~~~~~~~~~~~~~~~~~~~~~
II declare global variables

short Appl_Rsrc_Fork_Ref _Num;

313

More Mac Programming Techniques

short File_Rsrc_Fork_Ref_Num - 0:

II~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

}

Initialize_ToolboxC>:

Appl_Rsrc_Fork_Ref_Num - CurResFile();

Open_Dialog();

II~~~~~~~~~~~~~~~~~~~~~~~~
II open a display dialog

void Open_Dialog(void)
{

DialogPtr the_dialog;
Boolean done - false:
short the_ item:

the_dialog - GetNewOialog(DLOG_ID, nil, CWindowPtr)-ll);

ShowWindow(the_dialog);
SetPort(the_dialog):

Open_Resource_File(RSRC_STR_IO, MY_FIRST_RES_FILE_INDEX):

Draw_One_Picture(eWORLO_PICT_IO):

Close_Resource_File(&File_Rsrc_Fork_Ref_Num >:

while (done -- false)
{

314

ModalDialog(nil. &the_item >:

switch C the_item
{

case OK_ITEM:
done ... true;
break;

Chapter 6 Resource Files

DisposDialog(the_dialog):
}

open a resource file

void Open_Resource_FileC short rsrc_str_ID_num. short str_index
{

Str255
short
long
FSSpec

rsrc_file_name:
vol_ref:
di r _ID:
rsrc_FSSpec:

GetlndStringC rsrc_file_name. rsrc_str_ID_num. str_index):

vol_ref = O:
di r _ID - 0:

FSMakeFSSpecC vol_ref. dir_ID. rsrc_file_name, &rsrc_FSSpec):

}

File_Rsrc_Fork_Ref_Num = FSpOpenResFileC &rsrc_FSSpec,
fsCurPerm >:

if C File_Rsrc_Fork_Ref_Num -- -1)
ExitToShellC):

UseResFileC File_Rsrc_Fork_Ref_Num >:

''~~~~~~~~~~~~~~~~~~~~~~~~~
II close a resource file

void Close_Resource_File(short *file_ref_num
{

CloseResFile(*file_ref_num):

*file_ref _num = 0:

UseResFileC Appl_Rsrc_Fork_Ref_Num):

get picture from 'PICT' resource, draw it

315

More Mac Programming Techniques

void Draw_One_Picture(short pict_id)
{

}

PicHandle
Re ct
short
short

pict_handle:
pict_rect:

pict_width:
pict_height:

pict_handle = GetPictureC pict_id);
if C pict_handle == nil)

Exi tToShell ():

pict_rect = (**pict_handle).picFrame:

pict_width = pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top;

SetRect(&pict_rect. o. o. pict_width. pict_height);

DrawPictureC pict_handle. &pict_rect);

ReleaseResource(CHandle)pict_handle);

DYNAMICALLY CREATING A NEW RESOURCE FILE

A resource file is typically created not by your own application, but by a
resource editor such as ResEdit or Resorcerer. Any application can, how­
ever, create a resource file. The most common need for this task comes
when working with preferences files. A preferences file is usually a
resource file stored in the Preferences folder in the System folder. If your
program relies on a preferences file, it may not be safe to assume that the
user hasn't inadvertently discarded or moved it. If that has happened,
your application will need to replace the preferences file by creating a
new resource file. This section's example program, CreateRsrcFile, does
just that.

\\Then launched, CreateRsrcFile attempts to create a new resource file
named MyNewRsrcFile. If its attempt is successful, you'll see an alert box
like the one on the left of Figure 6.7. If the attempt isn't successful, the
alert box pictured on the right will appear.

316

Chapter 6 Resource Files

File created. Error. File not created.

FIGURE 6.7 THE TWO MESSAGES THAT THE CREATERSRCFILE PROGRAM CAN DISPLAY.

After dismissing the alert box, the CreateRsrcFile program will exit. In the
Create Resource File f folder, you'll see a new, empty resource file--com­
plete with the ResEdit file icon. Figure 6.8 shows the contents of this folder.

N 0 T E

~rm Create Resource File f •j
5 items 284.8 MB in disk 39.4 MB 8V81leble

[i .Q

CresteR3rcfile.11

~ ~ ~
CresteRsrcfile.c CresteRsrcfile MyNewRsrcfile

~ L~
Creete Rsrcfile.11. rsrc

to
¢1 IQ IW

........
This file is created by the application

FIGURE 6.8 THE CREATERSRCFILE APPLICATION CREATES A NEW,

EMPTY RESOURCE FILE NAMED MYNEWRSRCFILE.

If you don't rename or delete the resource file between exe­
cutions of the CreateRsrcFile program, the error message
will be displayed In the alert. If you step through the pro­
gram using the debugger, you'll see that the error variable
gets a value of -48, which Is a dupFNErr-a duplicate file
name error.

317

More Mac Programming Techniques

The CreateRsrcFile Resources

The CreateRsrcFile program doesn't require any resources of its own for
the task of creating a new resource file. The only two resources con­
tained in the project's resource file-an ALRT and a DITL resource­
exist to give the user a little feedback. If CreateRsrcFile didn't display an
alert box, it would appear that the program simply launches and then
quits without doing anything.

CrcateRsrcFile uses a single alert box to display either of two mes­
sages. To do this, the DITL resource contains a static text item with the
characters AQ in it (see Figure 6.9).

CreateRsrcfile.11.rsrc

ALRT DITL

D Ills from CreateRsrcFile.
Size Name

128 34

~lii~LDITL ID= 128 from Create

ro ,
[OK ~

FIGURE 6.9 THE DITL RESOURCE USED BY THE CREATERSRCFILE PROGRAM.

The text to be displayed in the alert will be determined as the program runs.
Before displaying the alert, a call to the Toolbox routine Pa ramText () will
be made to set the static text item string to the proper text.

318

Chapter 6 Resource FiHes

Resource File Creation Code

Creation of a resource file is achieved through a call to the File Manager
routine FSpC reateRes File ().As was the case for opening a resource
fork, you'll need to have an F SS p e c handy before calling this routine. A
call to FSMa ke FSSpec () , as defined in the previous section, takes care
of this. The CreateRsrcFile program will create a file that resides in the
same folder as the application, so the volume reference number and the
directory ID can both be 0. The program defines the new file's name in
the source code-you might choose to list the name in a STR# resource
in the application's resource fork, as done in the past.

Str255 prefF_file_name = "\pMyNewRsrcFile":
short vol_ref:
long dir_ID:
FSSpec pref _FSSpec:

vol_ref = 0:
di r _IO 0:

FSMakeFSSpec(vol_ref, dir_ID, pref_file_name, &pref_FSSpec):

With the FSSpec created, it's time to call FSpCreateRes File(). This
routine requires four parameters. You've seen the first one-a pointer to
an FSSpec. The second parameter is an application signature. If you
want the file to be owned by your application, you'll give it the same four­
character creator name you're using for your application. In the
Symantec THINK Project Manager, you set the creator using the Set
Project Type menu item from the Project menu. The resulting Symantec
dialog box is shown in Figure 6.10. If you're a CodeWarrior user, you use
the Project panel in the Preferences dialog box to edit the creator (see
Figure 6.11). In both environments, the default creator is????.

The third parameter to FSpCreateRes Fi 1 e() is the file's type. If
the resource file is owned by your application, you can use any four char­
acters that are meaningful to your program.

The last parameter to FSpCreateResFi 1 e() is a script code. A
file's script code identifies how the Finder will display the file's name.
Here you can use the Apple-defined constant smSystemScri pt.

319

More Mac Programming Techniques

@ Application

O Desk Accessory

O Deuice Driuer

O Code Resource

Creator

0 Far CODE

D Far DATA
Partition (K) ._I 3_8_4 _ _ _.

SIZE Flags~ loooo I 0 Separate STRS

Cancel n OK D

FIGURE 6.10 THE SYMANTEC DIALOG BOX USED TO SET THE APPLICATION'S CREATOR.

Apply to open project.
I

~
~ Project Type: I Application ... I

r Application Info: \varnings

0 File Name I CreateRsr cFile I
Pr-ocessor Creator lft?t?):] I

n 'SIZE' Flags~
Type APPL

I Preferred Heap Size (k) 384 Linker

a I Minimum Heap Size (k) 384

~

(Factory Settings) (Reuert Panel) (Cancel) n OK D

FIGURE 6.11 THE METROWERKS DIALOG BOX USED TO SET THE APPUCATION'S CREATOR.

320

Chapter 6 Resource Flies

Assuming I've given my application a creator of CrRF (for "create
resource file"), and I've settled on this resource file having a file type of
myRF (for "my resource file"), a call to FSpCreateResFi le() would
look like this:

FSpCreateResFile(&pref_FSSpec, 'CrRF', 'myRF', smSystemScript):

A call to FSpCreateResFi le() results in the creation of a resource
file-regardless of the creator and file type names you choose. If you
launch your resource editor and choose Open from the File menu, you'll
see the name of the new resource file in the list of files. And if you open
it, you'll be able to add resources to it as you would any other resource
file. What you won't be able to do is double-click on the file's icon from
the Finder to launch your resource editor and open the file. That's
because the Finder won't associate this file with any particular resource
editor. If you want to give your resource file the same icon as your
resource editor would assign a new file, and also make it double-click­
able, use your resource editor's creator and file type in the call to
F Sp Create Res Fil e () . For ResEdit, that would result in a call that
looked like this:

FSpCreateResFile(&pref_FSSpec, 'RSED'. 'rsrc', smSystemScript):

If you use the resource editor Resorcerer, or feel that the majority of your
program's users will, you can set up the call to FSpCreateResFi le()
as follows:

FSpCreateResFile(&pref_FSSpec, 'Doug', 'RSRC', smSystemScript):

You can verify the success of a call to a Resource Manager routine by call­
ing the Toolbox function Res Error(). Res Error() returns an error
code descriptive of any problem that the Resource Manager may have
encountered. A result of no Err means the call succeeded.
CreateRsrcFile uses this technique to determine if the resource file was
created. If it was, it sets the alert box string to "File created." A failed
attempt to create a new file will set the alert box string to "Error. File not
created." In either case, the alert box is displayed with a call to A 1 e rt () .

321

More Mac Programming Techniques

If you aren't familiar with the ParamText() function, Figure 6.12 sum­
marizes how it's used to assign up to four strings for display in static text
items.

short error:

FSpC rea teRes File (&pref _FSSpec, 'RSED' , 'rs re' , smSystemScri pt):

error= ResError():
if (error == noErr)

ParamText("\pFile created.". "\p", "\p", "\p" >:
else

ParamText("\pError. File not created.", "\p", "\p", "\p" >:

Alert(ALERT_ID, nil):

322

ParamText ("\pWrong. 11
,

11 \pYou get: 11
,

11 \pone try. 11
,

11 \p 11
) ;

§0§ Dill ID= 128 from Tes

IAO ~

1A1 "2 @i

[OK LY Wrong.

You get: One try.

t OK l

FIGURE 6.12 THE PARAMTEXT(} FUNCTION IS USED TO CHANGE THE TEXT OF UP

TO FOUR STRINGS THAT APPEAR IN A DIALOG BOX.

Chapter 6 Resource FDDes

The CreateRsrcFile Source Code Listing

This very short program creates a new resource file named MyNewRsrcFile.
If you open the file with a resource editor, you'll find that it is empty. You
can remedy this situation by reading the next section of this book, which
discusses how to write a program that is capable of copying resources from
one file to another.

II~~~~~~~~~~~~~~~~~~~~~
II function prototypes

void Initialize_Toolbox(void);
void Create_New_Rsrc_File(void);

II~~~~~~~~~~~~~~~~~~~~~~
II #define directives

f/defi ne ALERT_ID 128

''~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

Initialize_Toolbox();

Create_New_Rsrc_File();
}

''~~~~~~~~~~~~~~~~~~~~~~~~~
II initialize the Mac

void Initialize_Toolbox(void
{

InitGraf(&qd.thePort);
In it Fonts ();
InitWindows();
InitMenus();
TEinit();
InitDialogs(OL);
FlushEvents(everyEvent. OL);

323

More Mac Programming Techniques

InitCursor():

II
II create preference file if none exists

void Create_New_Rsrc_File(void)
{

}

Str255
short
1 ong
FSSpec
short

pref_file_name = "\pMyNewRsrcFile":
vol_ref:
di r _ID:
pref_FSSpec:
error:

vol_ref = 0:
dir_ID = 0:

FSMakeFSSpec(vol_ref. dir_ID. pref_file_name. &pref_FSSpec):

FSpCreateResFile(&pref_FSSpec. 'RSED'. 'rsrc'. smSystemScript):

error= ResError():
if (error == noErr)

ParamText("\pFile created.". "\p". "\p". "\p"):
else

ParamText("\pError. File not created.". "\p". "\p". "\p"):

Alert(ALERT_ID. nil):

DYNAMICALLY COPYING A RESOURCE TO ANOTHER FILE

If your program creates a new, empty resource file, you 'II most likely also
want your program to add resources to it. The RsrcCopier program that's
developed over the next several pages copies a single PICT resource
from the resource fork of the RsrcCopier application and places it in an
existing, empty resource file named MyAddToRsrcFile.

324

Chapter 6 Resource Flies

Like last section's CreateRsrcFile program, RsrcCopier uses a single
alert box to provide feedback to the user. If the program successfully
copies the PICT resource to the resource file, the alert message on the
left side of Figure 6.13 is displayed. If the attempt to copy the resource
fails, the message on the right side of the figure is posted.

Resource added. Error. Resource not added -
may already eHist.

FIGURE 6.13 THE TWO MESSAGES THAT THE RSRCCOPIER PROGRAM CAN DISPLAY.

~
N 0 T E

After running RsrcCopler, use your resource editor to open
the MyAddToRsrcFlle resource file. The previously empty
resource file will now hold the one picture that is shown in
Figure 6.14. Either delete or renumber Its one PICT
resource. If you don't, RsrcCopler will attempt to add a sec­
ond PICT 128 to this same file, which should not be done. If
this happens, and RsrcCopier wlll post the error message
alert shown on the right side of Figure 6.13.

The RsrcCopier Resources

The resource file for the RsrcCopier project holds the same DITL and
ALRT resources found in this chapter's CreateRsrcFile program. As you
can see from Figure 6.15, RsrcCopier also uses PICT and STR#
resources.

325

More Mac Programming Techniques

This resource file will be empty before
RsrcCopier runs, but will contain one
PICT resource after it executes D MyRddToRsrcFile

~~i
PICT

~Ii§~ PICT ID= 128 from M

FIGURE 6.14 THE RsRCCOPIER PROGRAM ADDS ONE PICT RESOURCE TO THE EXISTING

MYADDToRsRCFILE RESOURCE FILE.

RsrcCopier. n .rsrc

~ ~i -·--··
ALRT Dill PICT STR0

Dills from RsrcCopier.n.rsrc
Size Name

128 34

- 0 IR ·ID = 12tt tiiofuJlsreCo:

1·0 ~

[OK ~

FIGURE 8.16 THE DITL RESOURCE USED BY THE CREATERSRCFILE PROGRAM.

326

Chapter 6 Resource Files

RsrcCopier uses a STR# resource to decide which resource file to open.
This is the same technique used in this chapter's MultipleRsrcFiles pro­
gram. Figure 6.16 shows that the picture will be copied to a resource file
named MyAddToRsrcFile. The PICT that it copies is shown in Figure 6.17.

STR#s from RsrcCopier:rr.rsrc
JQ. Size Name

128 18 l
~Iii STR# ID= 128 from RsrcCopier.n.rsrc

'-- .Q
tfomStr i ngs 1

lo ***** I
The string IMyAddToRsrcFi le I
2) *****

-0
ii

FIGURE 6.16 A STR# RESOURCE HOLDS THE NAME OF THE RESOURCE FILE THAT WILL

RECEIVE THE COPIED RESOURCE.

sf!I§ PI CT ID m 128 from RsrcCopi1

'-

fl

FIGURE 6.17 THE PICT RESOURCE THAT WILL BE COPIED FROM THE RSRCCOPIER APPLI­

CATION AND ADDED TO THE MYADDTORSRCFILE RESOURCE FILE.

DetachResource() and ReleaseResource() Explained

As you'll see when you study the RsrcCopier source code listing,
RsrcCopier makes a call to the Toolbox routine DetachResource().

327

More Mac Programming Techniques

Since the differences between DetachResource() and the more com­
monly used Toolbox function Rel easeResource() can be confusing,
this section delves into the purposes of these two routines.

When a resource fork is opened, whether an application's fork or a
resource file's fork, all of the resources in that fork are not .loaded into
memory. Instead, only resources with their preload attribute set get
loaded. Additionally, resources are loaded individually as calls are made
to Toolbox routines such as GetlResource() and GetNewWi ndow().
What is always loaded into memory when a resource fork is opened is a
rt'sou rce map.

\Vhen a resource fork is opened, there are two resource maps for that
fork. The first resides on disk, in the resource file. This map holds the
disk location of each resource in the file. The second resource map is the
one that gets loaded into memory. This map is made up of a series of
handles-one handle for each resource. Except for resources that are
marked as preloaded, these handles are initially set to n i 1. Figure 6.18
shows a resource fork being opened by an application. In this example,
the resource fork holds two resources: a PICT resource with an ID of 128
and a snd resource with an ID of 9000. Assuming that the PICT resource
is marked as preloaded and the snd resource isn't, only a copy of the pic­
ture data will be loaded into memory. Figure 6.19 shows that the handle
for the PICT resource is set to point to this loaded data, while the handle
for the snd resource remains n i 1 .

Preloading a resource isn't the only way resource data makes its way
in to memory. When an application makes a call to a routine such as
GetlResource() the specified resource will get loaded-if it isn't
already in memory. When that happens, the resource map handle for
that one resource will change from nil to a handle that leads to the
resource data.

The handles in the resource map in memory are used by the Resource
Manager, rather than directly by the application. As objects in memory
arc moved about during the normal course of memory compaction, the
resource map allows the Resource Manager to keep track of things. In

328

Chapter 6 Resource Flies

order for an application to get a handle to a resource in memory, it must
declare a handle variable and make a call to a Toolbox routine.

Resource File

PICT
128

snd
9000

_L -=>

resource [
map

When the resource file's
resource fork is opened, a
resource map is placed in
memory and the preload­
marked PICT resource
is loaded.

picture data

PrCT 128 nil

snd 9000 nil

FIGURE 6.18 A RESOURCE FILE WITH ITS PRELOADED-MARKED

PICT RESOURCE BEING LOADED INTO MEMORY.

For the PICT example discussed here, a call to GetPi cture() would
return a handle to the PICT in memory:

PicHandle pi ct_ hand l e;

pict_handle - GetPicture(p i ct_id);

329

More Mac Programming Techniques

Resource File

Resource Fork

PICT ,, 128
~

i: and
;

9000

map

Because the PICT data
is in memory, a handle in
the resource map is
assigned to lead to it

[
picture data

master pointer

PICT 128 handle

snd 9000 nil

FIGURE 6.19 A HANDLE IN THE RESOURCE MAP IS SET TO LEAD TO

THE PRELOADED PICTURE DATA,

If the p ictu re data isn't in m e mory, it will be loaded and both the
resource map handle and the application-defined handle will be set to
lead to this data. If the picture data is in memory, perhaps from being
preloaded, there's no need to load the data again. Instead, the applica­
tion handle will just be set to the value of the resource map handle that
leads to the picture data. Figure 6.20 sh ows that once an application
declares a handle and makes a call to a resource-loading routine, there
are two handles leading to the resource data.

330

Chapter 6 Resource Flies

Resource File

Resource Fork

PICT
128

and
9000

resource
map

A call to GetPicture ()
returns a handle to the
picture data-a handle
that can be used by the
application.

[

[

;~re data
'

master pointer

PICT 128 handle J
snd 9000 nil

GetPicture() handle

FIGURE 6.20 AN APPLICATION CAN DECLARE ITS OWN HANDLE VARIABLE

THAT WILL LEAD TO THE RESOURCE DATA.

When an application is through with resource data, it can make a call to
the Toolbox routine Rel easeResource() to free the memory that
holds the data:

PicHandle pict_ handle;

pict_ handle - GetPicture(pict_ id) ;

II draw the picture

ReleaseResource((Handle)pict_handle);

331

More Mac Programming Techniques

A call to Re 1 ease Resource () frees memory by setting the resource's
master pointer to n i 1. Setting the master pointer to nil invalidates a ll
h a ndl es tha t lead to the resource data. That m eans that bo th the
resource map handle and the application-defined handle are invalid (see
Figure 6.21). If the resource data is agai n needed, another Toolbox call
will have to be made to load it.

Resource File

Resource Fork

PICT
128

snd
9000

resource
map

A call to ReleaseResource {)
sets a resource's master
pointer to nil, invalidating any
of that resource's handles.

picture data

1--~-m-a-st-e-rp-o-in~t-er~n-i-l~-t1'~

[

1--P_r_c_T_1_2_s __ h_a_n_a_1_e_

snd 9000 nil

GetPicture{) handle 1~

FIGURE 6.21 A CALL TO RELEASE RESOURCE() INVALIDATES

ALL HANDLES THAT LEAD TO THE RESOURCE,

When an application is finished using a resource, and no longer needs a
handle to that resource, a call to Rel easeResou r ce() should be made.

332

Chapter 6 Resource Files

The Toolbox contains a companion routine to Rel easeResou rce()
that is named DetachResource(). Detach Resource() sets a resource
map handle to n i 1 , but doesn't release the resource data from memory
and doesn't affect application-defined handles to the resource data. This
situation is shown in Figure 6.22.

Resource File

Resource Fork

PICT
128

snd
9000

resource
map

A call to DetachResource ()
invalidates the resource map
handle, but doesn't release
the resource or affect the
application-defined handle

[

[

picture data

master pointer

PICT 128 nil

snd 9000 nil

GetPi cture () handle

FIGURE 6.22 A CALL TO DETACHRESOURCE() INVALIDATES ONLY

THE RESOURCE MAP HANDLE THAT LEADS TO THE RESOURCE.

Why would an application need to set a resource map handle to n i 1 , yet
keep a valid application-defined handle? In most programming scenar­
ios, it doesn't. But for the few cases when a program wants to access

333

More Mac Programming Techniques

resource data "behind the back" of the Resource Manager, this step is
necessary. One such case is in the copying of resources-something the
RsrcCopier program does. To add a resource to a resource fork, the
Toolbox routine AddResource() is called. AddResource() accepts a
handle to the data in memory that is to be added to a resource fork.
AddResource() imposes one important stipulation on the handle it
works with, however. The handle must not be a resource handle. This is
where the call to DetachResource() comes in. By setting the resource
map handle to n i 1 , the Resource Manager no longer recognizes the
resource data in memory. Yet the application handle can still be used to
access this resource data. To the application and the Resource Manager,
this resource data is nothing more than any arbitrary bytes of data.

The call to DetachResource() seems like a sneaky way to get the call
to AddResource() to work, and it is. But it is an important part of
resource copying, and it is a step you shouldn't omit. In the next section,
ym 1 'll see the source code-complete with a call to Detach Resource ()­
that performs the resource copy.

Resource Copying Code
RsrcCopier uses the following general strategy to copy the PICT resource
that is in its resource fork to the resource fork of an existing resource file:

l. Open the resource fork of the existing resource file.

2. Mark the application's resource fork as the current resource file.

3. Obtain a handle to the resource to copy.

4. Mark the open resource file's resource fork as the current
resource file.

5. Verify that a resource of the same type and ID as the resource to
copy isn't present.

6. Add the resource to the open resource file's resource fork.

7. Save the change that was made to the resource fork.

8. Close the resource fork of the existing resource file.

334

Chapter 6 Resource Flies

RsrcCopier uses a routine named Open_Resource_File() to open
the resource fork of the MyAddToRsrcFile resource file. This routine
relies on a call to the Toolbox function F Sp 0 pen Res Fi 1 e () to open
the fork. This version of Open_Resource_Fi 1 e() is identical to the
version developed in this chapter's MultipleRsrcFiles program.

After the resource fork has been opened, RsrcCopier calls a function
named Copy_Rsrc_From_Fi 1e_To_Fi1 e(). This function calls quite
a few Toolbox routines, many of which may be new to you. Take a look at
the function, then read the walk-through that follows.

void Copy_Rsrc_From_File_To_File(ResType res_type.
short res_ID.

Handle app_handle;
short the_ID;
ResType the_type;
Str255 res_name;
short res_attributes:
Handle test_handle:

short from_ref _num.
short to_ref _num)

UseResfile(Appl_Rsrc_Fork_Ref_Num);

app_handle = GetlResource(COPY_RES_TYPE, COPY_RES_ID);

GetResinfo(app_handle, &the_ID, &the_type, res_name >:
res_attributes ... GetResAttrs(app_handle);
DetachResource(app_handle);

UseResFile(File_Rsrc_Fork_Ref_Num):

test_handle - GetlResource(res_type, res_ID);
if (test_handle nil)
{

ParamText("\pResource added.", "\p", "\p", "\p" >:
Alert(ALERT_ID, nil):

}
else
{

ParamText("\pError. Resource not added - may already exist.",
"\p". "\p". "\p") :

335

More Mac Programming Techniques

Alert(ALERT_ID, nil);
Exi tToShell ();

AddResource(app_handle, res_type, res_ID, res_name);
SetResAttrs(app_handle, res_attributes);
ChangedResource(app_handle):
WriteResource(app_handle);
ReleaseResource(app_handle >:

Copy __ Rsrc_From_Fi 1e_To_Fi1 e() is written such that it can copy
any one resource from one file to another. Passing the resource type and
ID lets the routine know which resource to look for. Passing the refer­
ence numbers of the fork to copy from and the fork to copy to allows the
routine to be used with any two resource forks. Here are the parameters
to the function:

void Copy_Rsrc_From_File_To_File(ResType res_type,
short res_ ID,
short from_ref _num,
short to_ref _num)

RsrcCopier defines constants for both the type and ID of the resource to
copy. After you've successfully run the program, try changing the type
and ID to match those of any other resource in the application's
resource fork. Then recompile the program and run it again. Afterward,
open the MyAddToRsrcFile to verify that the resource was added.

//define
//define

COPY_RSRC_TYPE
COPY_RSRC_ID

'PICT'
128

The Copy _Rs rc_From_Fil e_ To_Fil e () routine expects both of the
resource forks involved in the copy to be open. RsrcCopier defines a vari­
able to hold a reference number to each of these forks:

short Appl_Rsrc_Fork_Ref _Num;
short File_Rsrc_Fork_Ref_Num - 0;

Here's how RsrcCopier calls the Copy_Rsrc_From_Fi 1e_To_Fi1 e()
function:

336

Chapter 8 Resource IFDles

Copy_Rsrc_From_File_To_File(COPY_RSRC_TYPE, COPY_RSRC_ID,
Appl_Rsrc_Fork_Ref _Num,
File_Rsrc_Fork_Ref_Num);

Copy_Rsrc_From_Fi 1e_To_Fi1 e() calls UseResFi 1 e() to make
the application's resource fork current. Then it calls GetlResource()
to load the PICT resource from the application fork and to obtain a han­
dle to the resource code:

Handle app_handle;

UseResFile(Appl_Rsrc_Fork_Ref_Num);

app_handle = GetlResource(res_type, res_ID);

r:ll
N 0 T E

By the way, the 1 In the name of a Toolbox routine like
GetlResource() Is referring to the fact that the Toolbox
will only look In one resource file-the current one-to find
the specified resource. A call to Get Res o u r c e () , on the
other hand, will result in a search of all open resource
forks.

The program defines constants for the type and the ID of the resource to
copy, but it doesn't define a constant for the third identifying feature of a
resource-its name. Many programmers don't name their resources,
even though resource editors easily allow them to. So RsrcCopier doesn't
assume a resource is named. When it comes time to add the resource to a
resource file, however, that piece of information becomes important. A
call to the Toolbox routine GetResinfo() takes care of things here.
Given a handle to a resource, GetResinfo() returns the resource's
type, ID, and name. Since the resource type and ID were passed in to
Copy_Rsrc_From_Fi 1e_To_Fi1 e(), the values that GetResinfo()
returns for these two identifiers will be ignored.

short the_ID;
ResType the_type:
Str255 res_name;

GetResinfo(app_handle, &the_ID, &the_type, res_name):

337

More Mac Programming Techniques

At this point, the program has the type, ID, and name of the resource to
copy. It also has a handle to the resource. This still isn't enough informa­
tion, though. Every resource has attributes associated with it, whether the
resource is purgeable, locked, preloaded, and so forth. A call to the
Toolbox routine GetResAttrs () gets all of this information and
returns it in the bits of a 2-byte short variable:

short res_attributes:

res_attributes = GetResAttrs(app_handle):

'\Nith all of the information about the resource to copy gathered, the
PICT resource needs to be detached-as discussed at length in the previ­
ous section:

DetachResourceC app_handle):

Next, the current resource fork needs to be changed from the applica­
tion fork to the resource file fork:

UseResFile(File_Rsrc_Fork_Ref_Num >:

Before adding the resource to the resource fork, the routine verifies that
a resource of the same type and ID as the resource to copy isn't present.
This is accomplished by calling Get 1 Resource () . Hopefully, a
resource with the same type and ID isn't present in the destination fork.
If that's the case, Getl Resource () will of course fail in its attempt to
get the resource and return a value of n i 1. A check of this handle's value
will determine if the copying routine should carry on with the resource
add (handle is n i 1, resource not present), or exit (handle not n i 1,
resource already exists).

test_handle = GetlResource(res_type, res_ID):
if (test_handle -=- nil)

II display alert with "success" message
else

II display alert with "failed" message
II exit

338

~
N 0 T E

Chapter 8 Resource FHes

There is another approach that you can use to handle the
case of duplicate resource IDs. As you've seen, if the test
handle isn't n i 1 , then the resource already exists. Instead
of exiting, you can request that the system issue a new ID
with the Uni q u e 1 I D () function. This routine returns an ID
for the resource type passed to it-an ID that isn't used in
the open resource fork. Here's a snippet that uses
UniquelID():

short new_res_ID;

test_handle = GetlResource(COPY_RES_TYPE. COPY_RES_ID);
if C test_handle !- nil)

new_res_ID = UniquelID(res_type):

II now add resource to fork

To add the resource to the open resource file's resource fork, a call is
made to Add Resource () . This routine requires a handle to the
resource data in memory and the type, ID, and name of the resource.
After that, the resource attributes are set with a call to Set Res At tr s () :

AddResource(app_handle, res_type. res_ID. res_name);
SetResAttrs(app_handle, res_attributes);

When the resource fork of the resource file was opened, its resource map
was placed in memory. Now, a new resource has been added to this
resource fork, but the resource map hasn't been made aware of this
change. To update the resource map, a call to the Toolbox routine
Ch an g e d Res o u r c e () is made:

ChangedResource(app_handle);

At this point, the resource code has be added to the resource fork, but
the addition hasn't been saved to disk. A call to the Toolbox function
Wri teResource() takes care of that task:

WriteResource(app_handle);

339

More Mac Programming Techniques

Finally, the handle to the resource code can be released using a call to
Re 1 easeResource(). Recall that the previous call to DetachResource ()
did set the resource map handle to n i 1 , but didn't release the resource code
from memory.

ReleaseResource(app_handle):

The RsrcCopier Source Code Listing

RsrcCopier defines four routines aside from the main () function. One
is the ever-present In it i a 1 i ze_ Too 1 box (). The other two,
Open_Resource_Fi 1 e() and Cl ose_Resource_Fi 1 e(), are identi­
cal to the routines of like name that were developed for the
MultipleRsrcFiles program earlier in this chapter.

II~~~~~~~~~~~~~~~~~~~~~~~~
II function prototypes

void Initialize_Toolbox(void):
void Open_Resource_File(short, short >:
void Close_Resource_File{ short*):
void Copy_Rsrc_From_File_To_File(ResType, short, short, short):

II~~~~~~~~~~~~~~~~~~~~~~~~
II #define directives

/idef i ne
/idef i ne
#define

/idefi ne
1idefi ne

ALERT_ID
STR_LI ST_ID
RSRC_FILE_STR_INDEX

COPY_RSRC_TYPE
COPY_RSRC_ID

128
128

1

'PICT'
128

II~~~~~~~~~~~~~~~~~~~~~~~~
II declare global variables

short Appl_Rsrc_Fork_Ref _Num:
short File_Rsrc_Fork_Ref_Num = 0:

340

Chapter 6 Resource Flies

II~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

}

Initialize_Toolbox():

Appl_Rsrc_Fork_Ref_Num - CurResFile():

Open_Resource_File(STR_LIST_ID, RSRC_FILE_STR_INDEX):

Copy_Rsrc_From_File_To_File(COPY_RSRC_TYPE, COPY_RSRC_ID,
Appl_Rsrc_Fork_Ref _Num,
File_Rsrc_Fork_Ref_Num):

Close_Resource_File(&File_Rsrc_Fork_Ref_Num >:

II~~~~~~~~~~~~~~~~~~~~~~
II open a resource file

void Open_Resource_File(short rsrc_str_ID_num, short str_index
)
(

Str255
short
1 ong
FSSpec

rsrc_file_name:
vol_ref:
dir_ID:
rsrc_FSSpec:

GetlndString(rsrc_file_name, rsrc_str_ID_num, str_index >:

voLref = O:
di r _ID = 0:

FSMakeFSSpecC vol_ref, dir_ID, rsrc_file_name, &rsrc_FSSpec >:

File_Rsrc_Fork_Ref_Num = FSpOpenResFileC &rsrc_FSSpec,
fsCurPerm >:

if (File_Rsrc_Fork_Ref_Num -- -1)
ExitToShell():

UseResFile(File_Rsrc_Fork_Ref_Num >:

341

More Mac Programming Techniques

//~~~~~~~~~~~~~~~~~~~~-
// copy a single resource from one resource file to another

void Copy_Rsrc_From_File_To_File(ResType res_type,
short res_ID,

}

Handle
Str255
short
Handle
Res Type
short

app_handle;
res_name;
res_attributes;
test_handle;
the_type;
the_ID;

UseResFileC from_ref_num);

short from_ref _num,
short to_ref _num)

app_handle = GetlResource(res_type, res_ID);

GetResinfo(app_handle, &the_ID, &the_type. res_name);
res_attributes = GetResAttrs(app_handle);
DetachResourceC app_handle);

UseResFile(to_ref_num);

test_handle = GetlResource(res_type, res_ID);
if C test_handle == nil)
{

ParamText("\pResource added.", "\p", "\p", "\p");
Alert(ALERT_ID, nil) ;

}
else
{

ParamText{ "\pError. Resource not added - may already exist.",
"\p", "\p", "\p") ;

Alert(ALERT_ID, nil);
ExitToShell();

AddResource(app_handle, res_type, res_ID, res_name);
SetResAttrs(app_handle, res_attributes);
ChangedResource(app_handle);
WriteResource(app_handle);
ReleaseResource(app_handle);

UseResFile(Appl_Rsrc_Fork_Ref_Num);

342

Chapter 6 Resource Flies

II~~~~~~~~~~~~~~~~~~~~~
II close a resource file

void Close_Resource_File(short *file_ref_num
{

CloseResFile(*file_ref_num):

*file_ref_num = 0:

UseResFile(Appl_Rsrc_Fork_Ref_Num):

WORKING WITH A PREFERENCES FILE

Almost all professional-grade Macintosh applications have a preferences
file that is stored in the Preferences folder of the System Folder. This file
is never accessed directly by the application's users. Instead, the applica­
tion itself opens and reads information from within this file. Depending
on the information that a program needs, this can be done when the
program is launched or at any time during its execution. When a pro­
gram first starts, the preferences file may be accessed so that the applica­
tion can determine user preferences such as the font in which text
should be displayed. Later, the program may again access the same pref­
erences file to determine which radio buttons should be turned on when
a dialog box opens.

There's a lot of background information that you'll need to be respon­
sible for knowing before you can jump right into writing an application
that uses a preferences file. Fortunately, you already have a working knowl­
edge of all of the techniques that go into the writing of this type of pro­
gram. From the Chapter 5 section "Using Custom Resource Templates"
you know how to create your own resource type using a custom resource
and template resource. You've also seen how to read that information into
program. Here, the custom resource will hold the preferences for the
application. From this chapter's ''Working with Multiple Resource Files"
section you know how to store a resource in a separate resource file, and
then how to have an application open this file's resource fork and load its
resource. From reading this chapter's "Dynamically Creating a New

343

More Mac Programming Techniques

Resource File" and "Dynamically Copying a Resource to Another File" sec­
tions, you have the information needed to be able to give your program
the ability to recreate a preferences file should an uniformed user inad­
vertently delete the existing preferences file. You'll do this by storing a
copy of the preferences resource in the application's resource fork. Then
you 'II be able to create a new resource file and copy the resource infor­
mation from the application's fork to the resource file's fork.

In this section, you'll see the source code for a program named
PrcfUser. PrefUser is an application that opens a dialog box like the one
pictured in Figure 6.23. When the dialog box opens, the application will
also open the program's preferences file to determine what values to give
the dialog box items. The PrefUser preferences file holds four pieces of
information: the string to display in the edit text box, the state of each of
the two radio buttons, and the state of the one check box.

String: I Taylor

O Radio Button 1

® Radio Button 2

D Check BoH 1

OK

FIGURE 8.23 THE RESULT OF RUNNING THE PREFIJSER PROGRAM.

Pref"C ser reads in the dialog box settings information from the prefer­
ences file, stores that information in four global variables, and closes the
preferences .file. Using the values in the global variables, the dialog box
items are set. After that, the user is free to set the values of the dialog
items by clicking on them. When finished, the user clicks OK to dismiss
the dialog box. Before the dialog box is closed, the preferences file will
again be accessed-this time to write the new dialog box item values back
to the file.

344

Chapter 6 Resource Flies

The PrefUser Resources

PrefUser requires two resource files. Like most Mac programs, it needs a
project resource file to hold the resources that will become part of the
application. It also needs a resource file to serve as the preferences file.
Figure 6.24 shows the PrefUser preferences file after it has been created
by the application.

§fil · PrefUset Prefet1!'nc~s Iii.~
01011101 lt 0010 1001 ···~ 01101010 ··e!J
00011110 ··l!:E:J 01000000 ·-E50

PRFN TMPL

-0
1ii

FIGURE 8.24 THE RESOURCES IN THE PREFIJSER PREFERENCES PREFERENCES FILE.

The preferences file needs just two resources: a resource to hold the
preferences data and a template that defines how that data looks in the
resource editor. The template was created first. Selecting Create New
Resource from the Resource menu brought up the Select New Type dia­
log box. The TMPL type was selected, and the dialog box was dismissed.
Selecting Get Resource Info from the Resource menu allows the TMPL
ID and name to be edited. The ID is arbitrary, but the name isn't; it has
to match the name that will be given to the resource type that will hold
the preferences data. That resource type will be named PRFN, so that's
the name that has been given to this TMPL resource.

The preferences file will hold information about the three items and
the string that will appear in the PrefU ser dialog box. In the application,
the three items will be set using calls to Set Di a 1 cg Item(). A value of 1
turns on the item, a value of 0 turns off the item. The program will use a
St r 2 5 5 variable to keep track of the string that gets drawn in the dialog
box. Peeking ahead to the source code, you can see the data structure
that will be used to hold the preferences information:

345

More Mac Programming Techniques

typedef struct
{

short rad_l_val;
short rad_2_val;
short chk_l_val;
Str255 name_str;

} PrefRecord, *PrefPtr, **PrefHandle;

Figure 6.25 shows the TMPL resource. It shows that the three dialog box
item values will appear in the PRFN resource as D'WRD items. Recall that
DWRD represents a decimal word, or two bytes. Because the program will
use a St r 2 5 5 variable to hold the string, the TMPL resource defines the
fourth PRFN resource item as a PSTR, that is, a Pascal string.

TMPls from PrefUser Preferences
~ s;ze Name

200 61 "PRFN"

e TMPL "PRFN" 1 o :::: 200 from P.refUser Prel1frenc

1) *****
Label jradio_Lva I

Type 101.tRO

2) *****
Label I rad i 0_2-va I

Type 101.tRO

3) *****
Label lcheck_l_val

Type lowRo I
4) *****
Label jname_str

Type IPSTR

5) *****

FIGURE 6.25 THE TMPL RESOURCE USED BY THE PREFERENCES RESOURCE.

346

Chapter 6 Resource Flies

With the template created, ifs time to enter the preferences data. Once
again Create New Resource is selected from the Resource menu. Then
PRFN is typed in the edit box of the Select New Type dialog box. A click
on OK creates a resource of this type and opens it up using the TMPL
template. Figure 6.26 shows how the PRFN resource looks with values
entered in it. When the PrefUser reads in this information, it will use
SetControl Value() to tum the top radio button off, the bottom radio
button on, and the check box off. Then it will make a call to
Set Di a 1 og ItemText () to write the string "Taylor" to the edit text item.

PRFNs from Pretuser. n .rsrc
.IQ_ Size Name

128 13 I
ili~:PllfN.JD .. =i 1·28 frorn PrefUserPreferences_~

I ~ -- radio-1-val 0

radio_2-val 1 I
check_l_val 0 I
name-str Taylor I I"::-

i2
ii

FIGURE 8.28 THE PRFN RESOURCE, AS IT LOOKS WHEN OPENED

WITH THE TMPL RESOURCE PRESENT.

The second resource file that PrefU ser needs is the application project
resource file (see Figure 6.27).

Just like the preferences file, the project resource file has a PRFN and
TMPL resource. In fact, using my resource editor, I copied these two
resources directly from the PrefU ser Preferences resource file and pasted
them in the project resource file. It's interesting to note that this pair of
resources may or may not be used by the application. Earlier in this chap­
ter, you saw how to write an application that was capable of creating a
new resource file. You also saw that it is possible to copy a resource from
one resource fork to another. These two techniques will be used by the

347

More Mac Programming Techniques

PrefU ser application only if the program cannot find the preferences file
in the Preferences folder. In the unlikely case that the user moved,
renamed, or deleted the preferences file, PrefUser will create a new,
empty resource file and place it in the Preferences folder. Then it will
copy the backup PRFN and TMPL resources held in the application
resource fork and add them to the new preferences file.

~lil PrefUser.1t .rs re Iii
01011101 0

[la
0010 1001 ···i=::::::::J
01101010 ··51
0001 1110 ··e:J 01000000 -·--·· --e::J

DITL DLOG PRFN STR# TMPL

FIGURE 6.27 THE RESOURCES IN THE RESOURCE FILE USED BY THE PREFIJSER PROJECT.

T I P

If the preferences resource and template resource exist in
the application's resource fork, why have a preferences file?
Why not just use the appllcatlon versions to keep track of
preferences? Because If It Is at all avoidable, an appllca­
tlon 's resources shouldn't be altered. If a preferences file
gets corrupted, It's an easy matter to replace it. If an appll­
catlon gets corrupted, It may not be as easy a task to
restore.

Before opening its preferences file, PrefUser needs to know the file's
name. This string is kept in a STR# resource. Figure 6.28 shows the name
of the file that PrefUser will expect to find in the Preferences folder.

· By convention, the name of an appllcatlon's preferences flle
should be the name of the application followed by the word
"Preferences." This Isn't a requirement, but rather an Apple

N o T E recommendation.

348

--

Chapter 6 Resource Files

STR#s from PrefUser.11' .rs re

!!2. Size Name

128 23 l
l!j= SJR# ID"" 128 from PrefUser.n.rsrc

NumStrings 1

1) *****
The string IPrefUser Preferences I
2) *****

FIGURE 6.28 A STR# RESOURCE HOLDS THE NAME OF THE

PREFERENCES Fl LE USED BY THE PREFIJSER PROGRAM.

.it

-0
1!1

PrefUser displays a Modal dialog box that is defined by a DLOG and
DITL resource. Figure 6.29 shows the DITL.

=(ii§ 0 ITL ID = 128

lstrin@ll WI
lo Radio Button 1 lzj
lo Radio Button 2 Laj
ID Check BoH 1 Laj

OK ~

FIGURE 6.29 THE DITL RESOURCE USED BY THE PREFIJSER PROGRAM.

Using a Preferences File to Set Dialog Box Items

When you run PrefUser, you'll see the dialog box that was pictured in
Figure 6.23. A call to a routine named Open_Di a 1 og () brings this dia­
log box to life. Here's a look at the tasks Open_Di a 1 og () takes care of:

349

More Mac Programming Techniques

void Open_Dialog(void)
(

II Open the dialog box

II Access the preferences file to get dialog item values

II Set the dialog item values using the
II preferences information

II Loop until done
II ModalDialog()
II Handle click on an item
II If item is OK button. get the final value
II End loop

II Save the preferences back to the preferences

II Dispose of the dialog box

of each

file

item

Much of the code that makes up Open_Di a 1 og () involves the handling
of a mouse click on one of the enabled items in the dialog box. This code,
which is in awhile loop and centers around a call to Modal Di a 1 og (),
is \'cry basic stuff. Of far more interest is the code that precedes and fol­
lows the loop.

Immediately after opening the dialog box with a call to
GetNewDi al og(), Open_Di al og() calls Get_Di al og_P refer­
ences () . This routine opens the PrefUser Preferences resource file so
that the dialog box item settings can be determined. Things aren't quite
that simple, however, because there's a possibility that an attempt to open
the preferences file could fail.

Get_Di a 1 og_Preferences () relies on one, or possibly two, other
application-defined routines to open the file. Figure 6.30 shows the rou­
tines that may become involved in the opening of the preferences file.

The code that makes up Open_Preferences_Fi 1 e() is very similar
to the code in the Open_Resource_File() found in this chapter's
MultipleRsrcFiles program. Open_Preferences_Fi 1 e() has two notable
differences from Open_Resource_Fi 1 e(), however. First, it doesn't
assume that the file to open is in the same directory as the application.

350

Chapter I Resource FDles

Instead, it assumes it can be found in the Preferences folder in the System
Folder. So instead of assigning a value of 0 to both the volume reference
number and the directory ID, Open_Preferences_Fi 1 e() makes a call
to the Toolbox routine Fi ndFol der().

Get_Dialog_Preferences()
-----~~~~~~~-

Open_Preferences_File()

Create_New_Pref_File()

FIGURE 8.30 THE CHAIN OF CAUS FOUOWED WHEN OPENING THE PREFERENCES FILE.

The Find Fo 1 der () routine is used to obtain path information to the
Preferences folder, Apple Menu Items folder, Control Panels folder, and
other system directories. The first parameter to Fi n d F o 1 de r () is the
reference number of the volume that holds the folder in question.
System-related folders should of course be on the startup disk, so the
Apple-defined constant kOnSystemDi sk can be used here. To deter­
mine which folder to search for, Fi n d F o 1 de r () accepts an Apple­
defined constant as its second parameter. The third parameter, which
can be another Apple-defined constant-specifies whether or not a new
folder of this name should be created if an existing one can't be found.
In return for this information, Fi n d F o 1 de r () will fill the fourth and
fifth parameters with the volume reference number and directory ID of
the sought-after folder. Here's what a call to Find Fo 1 der () looks like:

351

More Mac Programming Techniques

short vol_ref:
long dir_ID:

FindFolderC kOnSystemDisk, kPreferencesFolderType,
kDontCreateFolder, &vol_ref, &dir_ID >:

~
N 0 T E

Fi n d Fol de r () Is another System 7-only routine. If your
program Is to run on Macs with System 6, you can't use this
function. Instead, you can Instruct the user to keep the pref­
erences file In the application's directory. Then set the vol­
ume reference number and directory ID to 0.

Aside from the call to Fi n d Fol de r () , the only other difference
between PrefUser's Open_Preferences_Fi le() routine and
MultipleRsrcFiles's Open_Resource_Fi le() function comes in the
handling of a failed attempt to open the resource file. Earlier you saw
that Open_Resource_Fi le() simply calls Exi tToShel l () to return
to the Finder. The Open_Preferences_Fi le() function handles
things in a much more graceful manner by calling Create_New_
Pref _File() to create and open a new preferences file. Here's a look
atOpen_Preferences_ File():

short Open_Preferences_File(void
{

Str255 pref_file_name;
short vol_ref:
long dir_ID;
FSSpec pref _FSSpec;
short file_ref_num;

GetlndString(pref_file_name, STR_LIST_ID, PREF_STR_INDEX);

FindFolderC kOnSystemDisk, kPreferencesFolderType,
kDontCreateFolder, &vol_ref, &dir_ID);

FSMakeFSSpec(vol_ref, dir_ID, pref_file_name, &pref_FSSpec);

file_ref_num = FSpOpenResFileC &pref_FSSpec, fsCurPerm);

if file_ref_num -= -1)

352

Chapter 6 Resource Files

file_ref_num ~ Create_New_Pref_File(pref_FSSpec):

return (file_ref_num):

If the attempt to find and open an existing preferences file fails,
Open_Preferences_Fi 1 e() calls Create_New_Pref _Fi 1 e(). This
function is very similar to the Copy_Rsrc_From_Fil e_To_Fil e() rou­
tine found in this chapter's RsrcCopier program. Crea t e_N ew_
Pref _Fi 1 e () differs only in the respect that it doesn't assume two resource
forks are open. Instead, it makes a call to FSpCreateRes Fi 1 e() to cre­
ate a new resource file in the Preferences folder. Then, like
Copy_Rsrc_From_File_To_File(), Create_New_Pref_File()
copies a single resource from the application's resource fork to the resource
file.

short Create_New_Pref_File(FSSpec pref_FSSpec)

{
short
Handle
short
Res Type
Str255
short

file_ref_num:
app_handle:
res_ID:
res_ type:
res_name:
res_attributes:

UseResFile(Appl_Rsrc_Fork_Ref_Num):

app_handle = GetlResource(PREF_RES_TYPE. PREF_RES_ID):

GetReslnfo(app_handle. &res_ID. &res_type. res_name):
res_attributes - GetResAttrsC app_handle):
DetachResource(app_handle):

FSpCreateResFile(&pref_FSSpec. 'RSED', 'rsrc', smSystemScript >:
file_ref_num - FSpOpenResFile(&pref_FSSpec. fsCurPerm >:
UseResFile(file_ref_num >:

AddResource(app_handle, res_type, res_ID. res_name >:
ChangedResource(app_handle):
WriteResource(app_handle >:
ReleaseResource(app_handle):

353

More Mac Programming Techniques

return C file_ref_num):

If Open_Preferences_Fi 1 e () succeeds in finding the preference
file, it opens it. If it fails, it calls Crea te_New_P ref _Fi 1 e () to create a
new resource file, open it, and copy the backup version of the PRFN
resource to that file. In either case, Open_Preferences_Fi 1 e() will
end up with a reference number to the open preferences file. It's this
number that is returned to Get_Di a 1 og_Preferences (). Once
Get_Di a 1 og_Preferences () has that number, it can make a call to
Use Res Fi 1 e () to set the current resource fork to the preferences file.
The data in the PRFN resource is then accessed and assigned to the glob­
al variables: Radio_l_Val, Radio_2_Val, Check_l_Val, and
Name_St ring:

data_handle = GetlResourceC PREF_RES_TYPE, PREF_RES_ID):

Radio_l_Val - C**CPrefHandle)data_handle).rad_l_val:
Radio_2_Val - C**CPrefHandle)data_handle).rad_2_val:
Check_l_Val - C**CPrefHandle)data_handle).chk_l_val:

source_str = C**CPrefHandle)data_handle).name_str:
byte_count - C**CPrefHandle)data_handle).name_str[O] + 1:
BlockMoveData(source_str, Name_String, byte_count);

If you need a refresher on just how the previous lines work, refer to the
description of the Template User program in Chapter 5. If you're satisfied
with the explanation that GetlResource() loads the PRFN resource and
double-indirection is then used to access each data element, then take a look
at the complete listing for the Get_Di a 1 og_Pref erences () routine.

/fdefine PREF_RES_TYPE 'PRFN'
//define PREF_RES_ID 128

short Radio_l_Val: II global variables
short Radio_2_Val: II I
short Check_l_Val: II I
StringPtr Name_String; II _v_

354

Chapter 6 Resource FHes

void Get_Dialog_Preferences(void)
{

}

short
Handle
StringPtr
Size

pref _ref _num:
data_handle:
source_str:
byte_count:

pref_ref_num - Open_Preferences_File{):

UseResFile(pref_ref_num):

data_handle = GetlResource(PREF_RES_TYPE. PREF_RES_ID);

Radio_l_Val = (**(PrefHandle)data_handle).rad_l_val:
Radio_2_Val = (**CPrefHandle)data_handle).rad_2_val:
Check_l_Val = (**(PrefHandle)data_handle).chk_l_val:

source_str = (**(PrefHandle)data_handle).name_str:
byte_count = C**CPrefHandle)data_handle).name_str[O] + 1:
BlockMoveData(source_str. Name_String. byte_count):

CloseResFile(pref_ref_num):

With the preferences read into global variables, it's a simple matter to set
the dialog box items to their appropriate values. Open_Di a 1 og () calls
Set_ Initial _Di a 1 og_ Va 1 ue s () to handle this task. Set_
I n i ti a l _Di a 1 o g_ Va 1 u es () in turn relies on the Toolbox functions
GetDialogitem(). SetControlValue(), and SetDialogitem
Text() to set the values of the two radio buttons, the one check box,
and the edit text item.

void Set_lnitial_Dialog_Values(DialogPtr dlog)
{

Handle hand:
short type:
Rect box:

GetDialogltem(dlog. RADIO_l_ITEM. &type. &hand, &box);
SetControlValue(CControlHandle)hand. Radio_l_Val):

GetDialogltem(dlog, RADI0_2_ITEM, &type, &hand. &box):
SetControlValue(CControlHandle)hand, Radio_2_Val):

355

More Mac Programming Techniques

GetDialogltem(dlog, CHECK_l_ITEM, &type, &hand, &box >:
SetControlValue((ControlHandle)hand, Check_l_Val):

GetDialogltem(dlog, STRING_ITEM, &type, &hand, &box):
SetDialogltemText(hand, Name_String >:

Once the dialog box items are set, Open_Di a 1 og () enters the familiar
w h i 1 e loop that most dialog boxes use to handle user mouse clicks on
enabled items. When the user finally clicks on OK, a call is made to
Get_Final_Dialog_Values():

case OK_ITEM:
done ID true:
Get_Final_Dialog_Values(the_dialog >:
break:

Because Open_Di a 1 og () doesn't keep track of the values of items as
they are selected or deselected, this routine is needed to save the final
dialog box item values to the global variables.

void Get_Final_Dialog_Values(DialogPtr dlog
{

Handle hand:
short type:
Rect box:

GetDialogltem(dlog, RADIO_l_ITEM, &type, &hand, &box):
Radio_l_Val = GetControlValue(CControlHandle)hand >:

GetDialogltem(dlog, RADI0_2_ITEM, &type, &hand, &box):
Radio_2_Val = GetControlValue(CControlHandle)hand >:

GetDialogltem(dlog, CHECK_l_ITEM, &type, &hand, &box):
Check_l_Val - GetControlValue((ControlHandle)hand):

GetDialogltem(dlog, STRING_ITEM, &type, &hand, &box):
GetDialogltemText(hand, Name_String);

Open_Di a 1 og () ends by saving the values of the dialog box items to the
preferences file and then disposing of the dialog box. The Save

356

Chapter 8 Resource Files

Di a 1 og_Preferences () function begins by opening the preferences
file. The Toolbox function NewHandl eClear() is then called to allo­
cate and clear (zero out) a block of memory the size of the PRFN
resource. Then the values of the dialog box items are written to the
memory that this handle leads to. This is essentially the reverse of the
operations that were performed to read the PRFN values into memory
when the dialog box was opened.

new_data_handle = NewHandleClearC sizeof(PrefRecord) >:

C**CPrefHandle)new_data_handle).rad_l_val = Radio_l_Val:
C**CPrefHandle)new_data_handle).rad_2_val = Radio_2_Val:
C**CPrefHandle)new_data_handle).chk_l_val = Check_l_Val:

source_str = Name_String;
byte_count = Name_String[O] + 1:
BlockMoveData(source_str.

C**CPrefHandle)new_data_handle).name_str.
byte_count);

Next, a handle to the PRFN resource is obtained. Before saving the new
data, the old PRFN resource will be deleted. A call to GetReslnfo() gets
the name of the old resource, and a call to GetResAttrs () saves its attril>
utes. Then the old PRFN is deleted using a call to RemoveResource().

Handle old_data_handle:
Handle new_data_handle;

old_data_handle = GetlResource(PREF_RES_TYPE. PREF_RES_ID);

GetReslnfo(old_data_handle. &res_ID. &res_type. res_name >:

res_attributes = GetResAttrs(old_data_handle);
RemoveResource(old_data_handle);

Finally, the new PRFN resource is added and the new resource is saved to
disk with a call to W r i t e Res o u r c e () :

AddResource(new_data_handle. res_type. res_ID. res_name >:
SetResAttrs(new_data_handle. res_attributes >:
WriteResource(new_data_handle):

357

More Mac Programming Techniques

Here's a look at the Save_Di al og_Preferences() routine. Note that
while working with the new resource handle, the handle is locked in
memory. That's because the Toolbox routine RemoveResource() may
mo\'e or purge memory. Because the handle new_data_handl e is used
before and after the call to RemoveResource(), the memory it leads to
should be locked in place so that the handle correctly leads to it regard­
less of any memory shifting that might take place.

The other resource-related routines In this chapter don't
move memory. For other routines, refer to the appropriate
volume In the new Inside Macintosh series of books. These

N o T E books give a description of every Toolbox routine. If a routine
may move memory, that fact wlll be mentioned In the routine
description.

void Save_Dialog_Preferences(void
{

short
Handle
Handle
short
Res Type
Str255
short
StringPtr
Size

pref_ref _num:
old_data_handle:
new_data_handle:
res_ID:
res_type:
res_name:
res_attributes:
source_str:
byte_count:

pref_ref_num = Open_Preferences_File();

UseResFileC pref_ref_num);

new_data_handle = NewHandleClear(sizeof(PrefRecord)):
HLock(new_data_handle >:

358

C**CPrefHandle)new_data_handle).rad_l_val - Radio_l_Val:
(**CPrefHandle)new_data_handle).rad_2_val - Radio_2_Val:
C**(PrefHandle)new_data_handle).chk_l_val = Check_l_Val:

source_str - Name_String:
byte_count - Name_String[O] + 1;
BlockMoveData(source_str.

(**CPrefHandle)new_data_handle).name_str.
byte_count):

Chapter 6 Resource Files

old_data_handle ~ GetlResource(PREF_RES_TYPE. PREF_RES_ID);

GetResinfo(old_data_handle. &res_ID, &res_type, res_name);

res_attributes = GetResAttrs(old_data_handle);
RemoveResource(old_data_handle);
AddResource(new_data_handle, res_type, res_ID, res_name);
WriteResource(new_data_handle);

HUnlockC new_data_handle):

ReleaseResource(new_data_handle);

CloseResFileC pref_ref_num);

UseResFile(Appl_Rsrc_Fork_Ref_Num);

The PrefUser Source Code Listing

This chapter ends with a look at the listing for this book's longest pro­
gram. Since you've seen In it i a 1 i ze_ Too 1 box () and the utility rou­
tines Set_Radi o_Buttons () and Set_Check_Box() numerous
times already, they've been omitted from this listing.

II~~~~~~~~~~~~~~~~~~~~~~~~~
II #include directives

#include <Folders.h> II holds the definition for FindFolder()

II~~~~~~~~~~~~~~~~~~~~~~
II function prototypes

void
void
void
void
void
void
short
short
void
short

Initialize_Toolbox(void):
Open_Dialog(void);
Get_Final_Dialog_Values(DialogPtr);
Set_Initial_Dialog_Values(DialogPtr);
Get_Dialog_Preferences(void):
Save_Dialog_Preferences(void);
Open_Preferences_File(void):
Create_New_Pref_FileC FSSpec);
Set_Radio_ButtonsC DialogPtr. short * short):
Set_Check_Box(OialogPtr, short):

359

More Mac Programming Techniques

II
II #define directives

//define DLOG_ID 128
#define OK_ ITEM 1
//define RADIO_l_ITEM 2
//define RADI0_2_ITEM 3
//define CHECK_l_ITEM 4
#define STRI NG_ITEM 5

//define STR_LIST_ID 128
//define PREF_STR_INDEX 1

//define PREF_RES_TYPE 'PRFN'
#define PREF_RES_ID 128

II~~~~~~~~~~~~~~~~~~~~~~~~
II define data structures

typedef struct
{

II

short rad_l_val:
short rad_2_val:
short chk_l_val:
Str255 name_str:

PrefRecord, *PrefPtr, **PrefHandle:

II declare global variables

short
short
short
StringPtr
short

Radi o_l_Val:
Radio_2_Val:
Check_l_Val:
Name_String:
Appl_Rsrc_Fork_Ref _Num:

void main(void)
{

Initialize_Toolbox():

360

main()

Chapter 6 Resource Flies

Appl_Rsrc_Fork_Ref_Num = CurResFile();
Name_String = CStringPtr)NewPtr(sizeof(Str255)):

Open_Dialog():
}

II~~~~~~~~~~~~~~~~~~~~~~~~~
II open a display dialog

void Open_Dialog(void)
{

DialogPtr
Boolean
short
short
short

the_dialog;
done= false:
the_ item:
new_radio:
old_radio:

the_dialog = GetNewDialog(DLOG_ID, nil, CWindowPtr)-lL >:

Get_Dialog_Preferences();

Set_lnitial_Dialog_Values(the_dialog >:

if (Radio_l_Val ~ 1)
old_radio = RADIO_l_ITEM:

else if C Radio_2_Val -- 1 >
old_radio = RADI0_2_ITEM:

ShowWindowC the_dialog >:
SetPort(the_dialog >:

while < done == false)
{

Modal Dialog(nil, &the_item);

switch (the_item)
{

case RADIO_l_ITEM:
new_radio ~ RADIO_l_ITEM:

II Determine which radio
II button is on and call
II that button the old
II radio button

Set_Radio_Buttons(the_dialog, &old_radio, new_radio);
break;

case RADI0_2_ITEM:
new_radio - RADI0_2_ITEM;

311

More Mac Programming Techniques

Set_Radio_ButtonsC the_dialog. &old_radio. new_radio);
break:

case CHECK_l_ITEM:
new_radio - CHECK_l_ITEM:
Set_Check_Box(the_dialog, the_item);
break:

case OK_ITEM:
done ... true:
Get_Final_Dialog_ValuesC the_dialog);
break:

Save_Dialog_Preferences():

DisposDialog(the_dialog);

//~~~~~~~~~~~~~~~~~~~~~~~~~
II get dialog settings from preferences file

void Get_Dialog_PreferencesC void)
{

short
Handle
StringPtr
Size

pref _ref_num:
data_handle:
source_str:
byte_count:

pref_ref_num - Open_Preferences_FileC):

UseResFileC pref_ref_num >:

data_handle - GetlResourceC PREF_RES_TYPE, PREF_RES_ID);

Radio 1 Val - C**(PrefHandle)data_handle).rad_l_val:
Radio_2_Val - C**CPrefHandle)data_handle).rad_2_val:
Check_l_Val - C**CPrefHandle)data_handle).chk_l_val:

source_str - (**CPrefHandle)data_handle).name_str:
byte_count - C**CPrefHandle)data_handle).name_str[O] + 1;
BlockMoveData(source_str. Name_String. byte_count):

CloseResFile(pref_ref_num);

362

Chapter 8 Resource Flies

II~~~~~~~~~~~~~~~~~~~~~~~~~
II open the preferences file

short Open_Preferences_File(void
{

Str255
short
long
FSSpec
short

pref_file_name;
vol_ref;
dir_ID;
pref _FSSpec:
file_ref_num:

GetindString(pref_file_name, STR_LIST_IO, PREF_STR_INDEX);

FindFolder(kOnSystemDisk, kPreferencesFolderType,
kDontCreateFolder. &vol_ref, &dir_ID >:

FSMakeFSSpec(vol_ref, dir_ID, pref_file_name, &pref_FSSpec >:

file_ref_num - FSpOpenResFile(&pref_FSSpec, fsCurPerm >:

if (file_ref_num -- -1)
file_ref_num - Create_New_Pref_File(pref_FSSpec >:

return C file_ref_num):
}

II~~~~~~~~~~~~~~~~~~~~~~~~~
II create preference file if none exists

short Create_New_Pref_File(FSSpec pref_FSSpec)

{
short
Handle
short
Res Type
Str255
short

fil e_ref _num:
app_handle:
res_ID:
res_type:
res_name:
res_attributes:

UseResFileC Appl_Rsrc_Fork_Ref_Num):

app_handle - GetlResource(PREF_RES_TYPE. PREF_RES_ID):

GetResinfo(app_handle, &res_ID, &res_type, res_name >:
res_attributes - GetResAttrs(app_handle):
DetachResource(app_handle);

383

More Mac Programming Techniques

FSpCreateResFile(&pref_FSSpec. 'RSED'. 'rsrc'. smSystemScript):
file_ref_num - FSpOpenResFile(&pref_FSSpec. fsCurPerm >:
UseResFileC file_ref_num >:

AddResourceC app_handle. res_type. res_ID. res_name >:
SetResAttrsC new_data_handle. res_attributes):
ChangedResourceC app_handle >:
WriteResource(app_handle >:
ReleaseResource(app_handle):

return C file_ref_num):

set dialog item values when dialog opens

void Set_Initial_Dialog_Values(DialogPtr dlog)
{

Handle hand:
short type:
Rect box:

GetDialogitemC dlog. RADIO_l_ITEM. &type. &hand. &box):
SetControlValueC CControlHandle)hand. Radio_l_Val):

GetDialogitem(dlog. RADI0_2_ITEM. &type. &hand. &box >:
SetControlValue(CControlHandle)hand. Radio_2_Val):

GetDialogitemC dlog. CHECK_l_ITEM. &type. &hand. &box):
SetControlValue(CControlHandle)hand. Check_l_Val):

GetDialogitemC dlog. STRING_ITEM. &type. &hand. &box):
SetDialogitemText(hand. Name_String):

get dialog item values when user is done

void Get_Final_Dialog_Values(DialogPtr dlog)
{

Handle hand:
short type:
Rect box:

GetDialogitemC dlog. RADIO_l_ITEM. &type. &hand. &box >:

364

Chapter 6 Resource Files

Radio_l_Val = GetControlValue((ControlHandle)hand):

GetDialogitem(dlog, RADI0_2_ITEM, &type, &hand, &box >:
Radio_2_Val = GetControlValue(CControlHandle)hand >:

GetDialogitem(dlog, CHECK_l_ITEM, &type, &hand, &box >:
Check_l_Val = GetControlValue(CControlHandle)hand):

GetDialogitem(dlog, STRING_ITEM, &type, &hand, &box):
GetDialogitemText(hand, Name_String);

}

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// save dialog settings from preferences file

void Save_Dialog_Preferences(void
{

short
Handle
Handle
short
Res Type
Str255
short
StringPtr
Size

pref _ref _num:
old_data_handle:
new_data_handle:
res_ID:
res_type;
res_name:
res_attributes:
source_str:
byte_count:

pref_ref_num = Open_Preferences_File();

UseResFile(pref_ref_num >:

new_data_handle = NewHandleClear(sizeof(PrefRecord)):
Hlock(new_data_handle):

(**(PrefHandle)new_data_handle).rad_l_val = Radio_l_Val:
C**CPrefHandle)new_data_handle).rad_2_val = Radio_2_Val:
C**CPrefHandle)new_data_handle).chk_l_val - Check_l_Val:

source_str = Name_String;
byte_count = Name_String[OJ + 1:
BlockMoveDataC source_str,

(**CPrefHandle)new_data_handle).name_str,
byte_count >:

old_data_handle - GetlResource(PREF_RES_TYPE, PREF_RES_ID);

GetResinfo(old_data_handle, &res_ID, &res_type, res_name >:

385

More Mac Programming Techniques

res_attributes - GetResAttrsC old_data_handle);
RemoveResourceC old_data_handle);
AddResourceC new_data_handle, res_type. res_ID. res_name);
WriteResourceC new_data_handle);

HUnlock(new_data_handle);

ReleaseResource(new_data_handle);

CloseResFileC pref_ref_num);

UseResFile(Appl_Rsrc_Fork_Ref_Num);

CHAPTER SUMMARY

Resources are housed in resource forks. A resource fork may be a part of
an application or a part of a different type of file, such as a document
file. If your application will make extensive use of resources-especially
large snd or PICT resources, you might consider using one or more
resource files. By using the Toolbox routine Use Res Fi 1 e () , your appli­
cation will be able to access the resources in these files just as it would
resources in its own resource fork. The advantage comes when you need
to revise the program. Because the resources are external, you '11 be able
to distribute a small application.

An application can create a new, empty resource file "on the fly" by
making a call to the Toolbox routine FSpCreateResFi 1 e(). This tech­
niques is important when your application has to replace a damaged or
missing resource file that it was expecting to work with.

Applications have the ability to copy resources from one resource fork
to another. This is done by first calling GetlResource() to obtain a
handle to the resource to copy. After that, the Toolbox routine
Add Resource() is used to add the resource to a different resource fork.

A preferences file is a must for any program that is to be commercial
grade. This file holds the settings that a user has made to the program
and allows these settings to be restored each time the program is run. A
preferences file is a resource file with a custom resource in it. This cus-

366

Chapter 6 Resource Files

tom resource holds all of the preferences settings that the program is to
track. When information from this file is needed by the application, the
resource fork of the file is opened and the preferences information is
read into memory. Once in memory, the application can use a handle to
the data in assignment statements.

387

Chapter

FILES

The Standard File Package is a set of routines that handles the user inter­
face when a user saves or opens a document. In this chapter, you'll see
how to use these functions to display the standard Open dialog box that
allows a user to select a file to open. Once a file selection has been made,
the work of reading the files data to memory and then displaying that
data in a window begins. This chapter demonstrates how to use several
File Manager routines to get this task completed-for both PICT and
TEXT files.

Opening an existing file is usually only half of the file managing tasks
of which an application is capable. After a user has created a new docu­
ment and drawn or written to it, your application should be able to let
the user save that document to a file on disk. In this chapter, you'll see

369

More Mac Programming Techniques

how to use the Standard File Package to display the standard Save dialog
box to give the user the opportunity to name and save a document.
Here, you ' ll again see how to work with both PICT and TEXT files.

OPENING A NEW DOCUMENT

An application may work with both documents and files-the two aren't
the same. A program that makes use of a New command in a File menu
creates a new document, usually an empty window based on a WIND
resource. If that same application has a Save (or Save As) menu item, that
document can be saved to disk as a file. When the application terminates,
the document will cease to exist, while the file will remain present on disk.

If you 've ever written a Mac application that opens a new window,
you've essentially created a document. In that case, you may be tempted
to skip this section , but please don't. The techniques used here will be
expanded upon a little later in this chapter, when opening existing files
and saving new files are discussed.

This section's NewDocument program opens a new window and
drnws a picture in it (see Figure 7.1) . If this simple program implement­
ed menus, it would have a New menu item that called the application's
Do_New_Pi cture_Document() function to handle the task of open­
ing the window. Instead, the NewDocument program simply makes the
call from main () .

FIGURE 7.1 THE RESULT OF RUNNING NEWDOCUMENT.

370

Chapter 7 Files

New Document requires just two resources: a WIND and a PICT. T he
WIND has an ID of 128 and can be of any size. The PICT has an ID of
128 and will be used as the picture that gets drawn in the program's win­
dow. Figure 7.2 shows the project's resource file and the PICT resource.

Newoocument.11.rsrc

PICT WIND

-Iii~ PICTs from NewDocument.11.rsrc ~-
0

L ... 1

128

FIGURE 7 .2 THE PICT RESOURCE IN THE NEWDOCUMENT PROJECT RESOURCE FILE.

Windows and Document Records

In order for your application to be capable of having more than one win­
dow open at one time, you'll need a scheme that allows your program to
keep track of the con tents of each window. T hat way, when a window
needs updating (or needs to be saved to disk or printed), the correct win­
dow contents will be used. One such scheme is to define a document
record data type. This data type will hold all the information about any
one of a program's windows. For the NewDocument program, there's
only one item that needs to be kept track of for any window-a handle to
the picture that will appear in the window:

371

More Mac Programming Techniques

typedef struct
{

PicHandle the_pict:

} WindowData. *WindowDataPtr. **WindowDataHandle:

The previous definition defines a structure of type Wi ndowData, as well
a'i a pointer and a handle to this structure. NewDocument will use on the
data type and the handle, so the pointer is included here simply for the
sake of completeness.

· While the document record used by NewDocument contains
only one member, your more sophisticated program will most
likely have a document record with several members. Later

N o T E in this chapter, this structure will grow to include three
members.

After defining the new data structure, you can use a call to NewHandl e
C 1 ea r () to allocate a block of memory the size of the data structure
and return a handle to that memory. That's what is being done in this
snippet:

WindowDataHandle the_data:

the_data = (WindowDataHandle)NewHandleClear(sizeofC WindowData) >:

To assign a value to the structure's one member, dereference the handle
twice. Here the Pi c Hand 1 e member is being set to n i 1 to show that the
member hasn't yet been assigned to a picture:

(**the_data).the_pict =nil:

NewDocument wraps the above code into a routine named Do_New_
Pi cture_Document(). This function opens a new window, allocates
memory for a new document record, and then makes a call to
SetWRefCon () to bind the window and record together. When fin­
ished, the routine returns a pointer to the new window.

372

Chapter 7 Flies

WindowPtr Do_New_Picture_Document(void)
{

WindowPtr
WindowDataHandle

the_window:
the_data:

the_window = GetNewWindow(WIND_ID, nil, CWindowPtr)-lL);

the_data = CWindowDataHandle)NewHandleClear(sizeof(WindowData):
(**the_data).the_pict - nil;

SetWRefCon(the_window, Clong)the_data):

return (the_window):

Before the Toolbox function SetWRefCon () gets called, a window has
been loaded into memory and a handle has been created to point to a
section of memory the size of a Wi ndowData structure. But there is no
connection between the window and the memory allocated for the data
structure. It's the call to SetWRefCon () that ties the data held in the
Wi ndowData structure to the new window. It does this by storing a han­
dle to the data in the ref Con field of a window.

A Wi ndowPtr always points to a Wi ndowRecord. The 4-byte
ref Con field of a Wi ndowReco rd can be used to hold a pointer to sup­
plemental data for the window. Here, that supplemental data is the appli­
cation-defined Wi ndowData struct. Figure 7.3 shows how the call to
SetWRefCon () associates the data of a Wi ndowData structure with one
particular window.

bl]
N 0 T E

Another method for keeping track of a window's contents is
to make use of the wi ndowPi c field of the Wi ndowRecord,
as described in Chapter 8. That technique, however, Is useful
only when a window contains a picture. The technique
described here can also be used for a window that holds
text, as you'll see later In this chapter.

If a program makes use of multiple windows, it's a simple matter to find the
data that goes with any one window. First, obtain a pointer to the window in

373

More Mac Programming Techniques

question. In almost all cases, the window that is to be worked with is the
front window:

WindowPtr the_window;
II do stuff here
the_window ~ FrontWindow();

WindowPtr

WindowRecord

Block of
master
pointers [
WindowData

WindowPtr

port

ref Con

master pointer

PicHandle

FIGURE 7 .3 THE NEWDocUMENT PROGRAM USES A WINDOW RECORD'S

REFCON FIELD AS A HANDLE TO A PICTURE.

Next, get the value of the ref Con field from the Wi ndowReco rd that
the Wi ndowPt r points to. Use the Toolbox routine GetWRefCon ():

374

Chapter 7 Flies

long wind_ref_con:

wind_ref_con = GetWRefCon(the_window);

Earlier, the ref Con field was assigned to hold a handle to a document
record for this one window. That means the value of wi nd_ref _con is a
handle. Before using the handle, it needs to be typecast to a
WindowDataHandle:

WindowDataHandle the_data;
the_data - CWindowDataHandle)wind_ref_con:

Now, the data in the document record can be accessed. For
NewDocument, that data is a handle to a picture. To associate a picture
with a window, the Add_Pi cture_Data_To_Document() routine is
used. Pass this £Unction a pointer to a window and a handle to a picture,
and the routine will store the handle in the window's document record:

void Add_Picture_Data_To_Document(WindowPtr the_window.
PicHandle the_picture

{
WindowDataHandle the_data:
long wind_ref_con;

wind_ref_con = GetWRefCon(the_window):

the_data = CWindowDataHandle)wind~ref_con:

(**the_data).the_pict ~ the_picture:

Any time a window needs to have the proper picture drawn to it, the
Pi c Hand 1 e in the window's document record can be used. The previ­
ous steps are used to retrieve the handle to the document record, and
then the picture handle is obtained from that record:

WindowDataHandle
1 ong
PicHandle

the_data:
wind_ref_con:
the_picture;

wind_ref_con = GetWRefCon(the_window);

375

More Mac Programming Techniques

the_data = CWindowDataHandle)wind_ref_con:
the_picture = C**the_data).the_pict:

A rectangle the size of the picture is then set, and the picture is drawn.
The NewDocument routine Update_Wi ndow() follows all of these
steps to update the window whose pointer is passed in:

void Update_Window(WindowPtr the_window)
{

WindowDataHandle
1 ong
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_picture:
pict_rect:
pict_width:
pict_height:

SetPort(the_window):

wind_ref_con = GetWRefConC the_window >:

the_data = CWindowDataHandle)wind_ref_con:

the_picture = C**the_data).the_pict:

pict_rect = (**the_picture).picframe;
pict_width = pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top;
SetRect(&pict_rect, o. 0, pict_width. pict_height):
DrawPicture(the_picture,

1
&pict_rect):

The NewDocument Source Code Listing

The NewDocument program opens a new window, creates a document
record for the window, fills the Pi cHandl e member of that record with
a handle to a picture, and then resizes the window to the size of that pic­
ture. To end the program,just click the mouse.

The only routine not discussed is Si ze_Pi cture_Wi ndow(). This
function uses the size of a window's picture to determine the size of the
window, and to then show the previously invisible window.

376

Chapter 7 Flies

function prototypes

Initialize_Toolbox(void); void
WindowPtr
void

Do_New_Picture_DocumentC void);
Add_Picture_Data_To_OocumentC WindowPtr, PicHandle):

void Size_Picture_WindowC WindowPtr >:
void

//define
//define

Update_Window(WindowPtr);

WIND_ID
PARROT_PICT_ID

128
128

#define directives

''~~~~~~~~~~~~~~~~~~~~~
II define data structures

typedef struct
{

PicHandle the_pict:

} WindowData, *WindowDataPtr, **WindowDataHandle:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

}

WindowPtr the_window:
PicHandle the_picture:

Initialize_Toolbox():

the_window - Do_New_Picture_Document();
the_picture - GetPictureC PARROT_PICT_ID);

Add_Picture_Data_To_Document(the_window, the_picture >:
Size_Picture_Window(the_window);

Update_WindowC the_window):

while C !Button())

II~~~~~~~~~~~~~~~~~~~~~~~~~
II create a new, empty file

377

More Mac Programming Techniques

WindowPtr Do_New_Picture_Document(void)
{

WindowPtr
WindowDataHandle

the_window:
the_data:

the_window = GetNewWindowC WIND_ID, nil, CWindowPtr)-lL >:

the_data - CWindowDataHandle)NewHandleClear(sizeofCWindowData >>:
(**the_data).the_pict - nil:

SetWRefCon(the_window, Clong)the_data >:
return C the_window >:

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// fill file data for one window

void Add_Picture_Data_To_Document(WindowPtr the_window,
PicHandle the_picture)

{
WindowDataHandle the_data:
long wind_ref_con:

wind_ref_con - GetWRefConC the_window >:

the_data = CWindowDataHandle)wind_ref_con:

(**the_data).the_pict - the_picture:
}

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// resize newly opened window to the size of picture

void Size_Picture_WindowC WindowPtr the_window
{

WindowDataHandle
long
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_picture:
pict_rect:
pict_width:
pict_height:

wind_ref_con - GetWRefCon(the_window):

the_data = CWindowDataHandle)wind_ref_con:

the_picture - (**the_data).the_pict:
pict_rect = C**the_picture).picFrame:
pict_width - pict_rect.right - pict_rect.left:

378

Chapter 7 FiOes

}

pict_height - pict_rect.bottom - pict_rect.top:
SetRect(&pict_rect, 0, 0, pict_width, pict_height);
SizeWindowC the_window. pict_width. pict_height, false):
ShowWindowC the_window >:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II update one window
void Update_WindowC WindowPtr the_window)
{

}

WindowDataHandle
1 ong
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_picture:
pict_rect;
pict_width:
pict_height:

SetPort(the_window >:
wind_ref_con = GetWRefCon(the_window):

the_data - CWindowDataHandle)wind_ref_con:

the_picture - C**the_data).the_pict:
pict_rect = C**the_picture).picFrame:
pict_width - pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top;
SetRectC &pict_rect, o. 0, pict_width. pict_height >:
DrawPictureC the_picture. &pict_rect);

OPENING AN EXISTING PICT FILE

The NewDocument example demonstrates how to open a window and
then use that window as a document. But it doesn't work with files. In
this section, you'll see how to open an existing PICT file.

Opening a file doesn't show its contents on screen. To do that, you
read the file contents to memory and then display this stored informa­
tion in a window-a document. In this section, you'll see how to open
and read a PICT file, and to display the resulting picture in a window.
Later in this chapter, you '11 see how to follow similar steps to read and
display the contents of a TEXT file.

The OpenPICTfile program uses the standard Get File dialog box to
display a list of available PICT files. The included disk has a few example

379

More Mac Programming Techniques

PICT fil es, or you can create your own using a graphics program. Figure
7.4 shows the standard Get File dialog box.

= Hard Disk 340

Eject

Desktop

(Cancel

{} n Open

FIGURE 7 .4 THE STANDARD GET FILE DIALOG BOX­

A PART OF THE STANDARD FILE PACKAGE.

)

l

After clicking the Open button or double-clicking on the name of a PICT
fil e, the OpenPICT file program opens (but doesn 't show) a new, empty
window, and reads the PICT data from the file. The program then sizes
the window to the size of the picture, makes the window visible, and final­
ly displays the picture in it. For the included Parrot.PICT file, the result
will look like that shown in Figure 7.5.

FIGURE 7.5 OPENING A PICT FILE WITH OPENPICTFILE DISPLAYS

THE CONTENTS OF THE FILE IN A WINDOW.

The OpenPICTfile project requires just a single resource: a WIND that
will serve as the document window. Since the picture to display will be

380

Chapter 7 FIOes

read in from an existing file, no PICT resource is needed. Figure 7.6
shows the project resource file.

~!I . OpenP I CTfile •. 11 .rsr~ ·. · !!I~

D
{}
i-=-

WIND

-0
~

FIGURE 7 .6 THE 0PENPICTFILE PROJECT RESOURCE FILE

CONSISTS OF JUST A SINGLE WIND RESOURCE.

Reading and Displaying the Contents
of a PICT File

To allow a user to open any PICT file in any folder, or directory, you'll
use the Standard Get dialog box-also referred to as the Open dialog
box. A call to the Toolbox routine Standard Get Fi 1 e () displays the
dialog box pictured in Figure 7.4.

SFTypelist type_list ~ { 'PICT'. O. O. 0 }:
StandardfileReply reply:

StandardGetFile(nil. 1. type_list, &reply >:

The first three parameters are used to tell the File Manager which types
of files to display in the dialog box display list. StandardGetFi 1 e() can
easily display four different types of files. If your application is capable of
opening more than four different types, you'll need to pass a pointer to a
filter function as the first parameter. Since the OpenPICTfile program
only works with one file type (PICT files), I'll pass n i 1 here. The second
parameter tells how many types of files to display, while the third parame­
ter specifies each type. You can fill the SFTypeL i st when you declare it,
as I've done here. Surround the type in single quotes, and for unused
type simply supply a 0:

381

More Mac Programming Techniques

SFTypelist type_list = { 'PICT', 0, 0, 0 }:

The last parameter to Standard Get Fi 1 e () is a pointer to a variable of
type Standard Fi 1 eReply. When the user clicks on the Open or
Cancel buttons in the standard Get File dialog box, the File Manager will
fill the members of the StandardFileReply structure. From the uni­
versal header file StandardFile.h, here's how the Standard Fi 1eRep1 y
structure looks:

struct StandardFileReply
{

} ;

Boolean
Boolean
OS Type
FSSpec
ScriptCode
short
Boolean
Boolean
1 ong
short

sfGood;
sfReplacing:
sfType:
sfFile;
sfScript;
sfFlags;
sflsFolder:
sflsVolume:
sfReservedl;
sfReserved2;

The example programs in this chapter will make use of just two of the
Standard Fi 1 eReply members: sfGood and sf Fi 1 e. By examining
the value of sf Good, your program can determine if the user clicked on
the Open button (sfGood will be true) or the Cancel button (sfGood
will be fa 1 s e). To open the selected file, your program will need an
F SS p e c-a file system specification-for that file. The file system specifica­
tion is the standardized way of specifying the name and location (path)
of a Macintosh file. The sf Fi 1 e field of the Standard Fi 1eRep1 y sup­
plies this FSSpec.

To open a selected file, use the Toolbox routine FS pOpen D F (). Pass
this function a pointer to the file's FSSpec, a permission level, and a
pointer to a variable of type short:

short pict_ref_num;

FSpOpenDFC &reply.sfFile, fsRdPerm, &pict_ref_num);

382

Chapter 7 FiOes

FSpOpenDF() will find the requested file and open its data fork. If a
permission level of fsRdPerm is specified, your application will only
be able to read the file. The five Apple-defined permission levels are as
follows:

//define f sCurPerm 0 II whatever permission is
II a 11 owed

1/defi ne fsRdPerm 1 II read permission
1/defi ne f sWrPerm 2 II write permission
1/defi ne fsRdWrPerm 3 II exclusive read/write

II permission
//define fsRdWrShPerm 4 II shared read/write permission

After opening the file, FSpOpenDF() returns a file reference number to
your program. It is this number that your application will then use to refer
to the file, as shown here in calls to the Toolbox routines Get EO F () and
SetFPos ():

long file_length:
GetEOFC pict_ref_num. &file_length >:
SetFPos(pict_ref_num. fsFromStart. 512):

Get EO F () is used to get the size (in bytes) of the contents of a file.
SetFPos () is used to move the file mark-the position marker used to
keep track of the current position to read from or write to-to a particu­
lar byte location in a file. All PICT files have a 512-byte header that is
used in different ways by different applications. These first 512 bytes hold
data unrelated to the picture data, so you'll want to move the file mark
past them before starting to read the picture data. The fs FromSta rt
constant used in the call to Set FPos () tells the function to count from
the start of the file.

The total length of the file was found by Get EO F () and is held in
the variable f i 1 e_ l en gt h. The actual size of the picture is this total size
minus the 512-byte header:

Size pict_size:

pict_size - file_length - 512:

383

More Mac Programming Techniques

At this point, the file is open and all of the information necessary to read
its contents has been obtained. Before beginning the read, I'll make a
call to NewHandl eCl ear () to allocate an area of memory the size of
the picture and to return a handle to this area:

Handle temp_handle = nil:

temp_handle = NewHandleClearC pict_size):

The Toolbox routine FSRead () is used to read in the file data. Pass this
function the reference number of the file to read from, a pointer to the
number of bytes to read, and a pointer to a buffer to read to:

HLock(temp_handle >:
FSReadC pict_ref_num, &pict_size, *temp_handle):

HUnlockC temp_handle);

The above code uses the temporary handle as the buffer to read to. Since
temp_handl e is a handle-and FSRead() requires a pointer buffer­
I've dereferenced it once. Since a handle is relocatable, I've also taken
the precaution of locking it during the move.

After the call to FSRead () is complete, temp_handl e is a handle to
the picture data. Now it's a simple matter to typecast this generic handle
to a P i c Hand 1 e:

PicHandle the_picture:

the_picture = C PicHandle)temp_handle;

At this point, the application has a Pi c Hand 1 e that can used as any other
picture handle is used. It can be used in a call to DrawPi cture(), or it
can be stored in the the_pi ct field of a window's document record.

In the OpenPICTfile program, all of the code necessary to open a PICT
file is packaged in a routine named Load_Pi cture_From_PICT_Fi 1 e().
Load_Picture_From_PICT_File() accepts a WindowPtr as its only
parameter. After the user chooses a PICT file to open, this window pointer
will be used in a call to SetWTi tl e() to change the document window's

384

Chapter 7 Flies

title to that of the file being opened. After opening the picture file,
Load_Pi cture_From_PICT_Fi 1 e() doesn't do anything with the pic­
ture. Instead, it returns the picture data to the calling routine.

PicHandle Load_Picture_From_PICT_File(WindowPtr the_window
(

}

SFTypelist
StandardFileReply
short
long
Size
Handle
PicHandle

type_list = { 'PICT', 0, 0, 0 }:
reply:
pict_ref_num:
file_ length:
pict_size:
temp_handle = nil:
the_picture:

StandardGetFile(nil. 1, type_list, &reply):

if (reply.sfGood false)
ExitToShel 1 C):

SetWTitle(the_window, reply.sfFile.name):

FSpOpenDFC &reply.sfFile, fsRdPerm, &pict_ref_num):

GetEOFC pict_ref_num. &file_length):
SetFPos(pict_ref_num, fsFromStart, 512):

pict_size = file_length - 512:

temp_handle = NewHandleClearC pict_size >:

Hlock(temp_handle >:
FSRead(pict_ref_num, &pict_size, *temp_handle):

HUnlockC temp_handle >:
the_picture = C PicHandle)temp_handle:

return C the_picture >:

The OpenPICTfile Source Code Listing

OpenPICTfile uses all of the routines found in the NewDocument exam­
ple-only Load_Pi cture_From_PICT_Fi 1 e() is new. OpenPICTfile

385

More Mac Programming Techniques

begins by making a call to Do_New_Pi ctu re_Document () to open a
new, empty window and a new document record. It then stores a handle
to the window's document record in the Wi ndowRecord ref Con field.

The last section's New Document program used a PICT resource as
the source of the picture to display. Here, OpenPICTfile uses the picture
found in a PICT file. After Load_Pi cture_From_PICT_Fi 1 e()
returns a Pi c Hand 1 e to main () , the program finishes up just as it did in
NewDocument. First, Add_Pi cture_Data_To_Document() adds the
Pi cHandl e to the window's document record. Then Si ze_Pi cture_
W i n d ow () resizes the window to fit the picture and shows the window.
Finally, Update_Wi ndow() displays the picture.

For simplicity, OpenPICTfile doesn't implement menus. Instead, the
Open dialog box will appear when the program launches. If you add an
Open menu item to the File menu of one of your programs, handle that
menu selection by calling Load_Pi cture_From_PICT_Fi 1 e(),
Add_Picture_Data_To_Document(),andSize_Picture_Window().

After selecting a PICT file, OpenPICTfile displays that file's picture in
a document window. To end the program, just click the mouse button.

void
WindowPtr
PicHandle
void
void
void

function prototypes

Initialize_Toolbox(void);
Do_New_Picture_Document(void);
Load_Picture_From_PICT_File(WindowPtr):
Add_Picture_Data_To_Document(WindowPtr, PicHandle):
Size_Picture_WindowC WindowPtr >:
Update_WindowC WindowPtr);

#define directives

#define WIND_ID 128

II~~~~~~~~~~~~~~~~~~~~~~~~~
II
typedef struct
{

PicHandle the_pict:

define data structures

} WindowData, *WindowDataPtr, **WindowDataHandle:

386

Chapter 7 FiDes

II~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void >
{

WindowPtr the_window;
PicHandle the_picture;

Initialize_Toolbox();

the_window = Do_New_Picture_Document();

the_picture = Load_Picture_From_PICT_File(the_window);

Add_Picture_Data_To_Document(the_window. the_picture);

Size_Picture_Window(the_window);

Update_Window(the_window);

while (!Button())

II~~~~~~~~~~~~~~~~~~~~~~~~~
II get a handle to a picture from a PICT document

PicHandle Load_Picture_From_PICT_File(WindowPtr the_window
{

SFTypeli st
StandardFileReply
short
long
Size
Handle
PicHandle

type_list = { 'PICT'. 0, 0, 0 };
reply;
pict_ref_num;
file_length;
pict_size:
temp_handle - nil:
the_picture:

StandardGetFile(nil. l, type_list, &reply >:

if (reply.sfGood == false)
ExitToShell();

SetWTitleC the_window. reply.sfFile.name):

FSpOpenDFC &reply.sfFile. fsRdPerm, &pict_ref_num);

GetEOFC pict_ref_num. &file_length);
SetFPos(pict_ref_num. fsFromStart, 512);

387

More Mac Programming Techniques

pict_size - file_length - 512:

temp_handle - NewHandleClear(pict_size):

Hlock(temp_handle):
FSRead(pict_ref_num. &pict_size. *temp_handle >:

HUnlock(temp_handle):

the_picture = (PicHandle)temp_handle:

return (the_picture):

//~~~~~~~~~~~~~~~~~~~~~~~~~
II create a new, empty file

WindowPtr Do_New_Picture_Document(void)
{

WindowPtr
WindowDataHandle

the_window:
the_data:

the_window - GetNewWindow(WIND_ID. nil. CWindowPtr)-lL >:

the_data= CWindowOataHandle)NewHandleClear(sizeof(WindowData)):
(**the_data).the_pict =nil:

SetWRefCon(the_window. (long)the_data >:

return (the_window):

//~~~~~~~~~~~~~~~~~~~~~-
// fill file data for one window

void Add_Picture_Oata_To_Document(WindowPtr the_window,
PicHandle the_picture)

WindowDataHandle the_data:
long wind_ref_con:

wind_ref_con - GetWRefCon(the_window >:

the_data= (WindowDataHandle)wind_ref_con:

(**the_data).the_pict = the_picture:
}

388

Chapter 7 Files

II~~~~~~~~~~~~~~~~~~~~~
II resize newly opened window to the size of picture

void Size_Picture_WindowC WindowPtr the_window
{

WindowDataHandle
long
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_picture:
pict_rect:
pict_width:
pict_height:

wind_ref_con - GetWRefCon(the_window):

the_data = CWindowDataHandle)wind_ref_con:

the_picture = C**the_data).the_pict:

pict_rect = C**the_picture).picFrame:
pict_width = pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top;
SetRectC &pict_rect, 0, 0, pict_width, pict_height >:
SizeWindow(the_window, pict_width, pict_height, false):
ShowWindow(the_window);

l/~~~~~~~~~~~~~~~~~~~~~~~~~-
11 update one window

void Update_Window(WindowPtr the_window
{

WindowDataHandle
long
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_picture:
pict_rect:
pict_width:
pict_height:

SetPortC the_window);

wind_ref_con= GetWRefCon(the_window):

the_data= CWindowDataHandle)wind_ref_con:

the_picture = C**the_data).the_pict:

389

More Mac Programming Techniques

pict_rect = (**the_picture).picFrame;
pict_width = pict_ rect.right - pict_rect.left;
pi ct _height = pict_ rect.bottom - pi ct_rect.top;
SetRect(&pict_rect, 0, 0, pict_width, pict_height);
DrawPicture(the_picture, &pict_rect);

SAVING A DOCUMENT TO A PICT FILE

In this chapter's "Opening a New Document" section, a document was
created, but no files were involved. Then in this chapter's "Opening an
Existing PICT File" section, a document was created from an existing file.
In neither case, however, was a file created. Now that you know how to cre­
ate a document, and you've worked with document records, you're ready
to see how to save the contents of a document to a file.

The SavePICTfile program is an expanded version of NewDocument.
SaYePICTfile uses the routines found in NewDocument to open a new,
empty document and to then draw a picture in it. As in NewDocument,
SavePICTfile gets the picture from a PICT resource in the application 's
resource fork.

After opening the document and displaying a picture in it,
SavePICTfile posts the standard Save dialog box (see Figure 7.7.)

390

New Window

,.....,....-=========~...--.=Hard Disk 340
~ SaueP I CTfile ~ Eject
D SaueP I CTfile.c
D SaueP ICTfile.·J1
D SauePICTfile.11.rsrc

Saue as:

I MyParrotFile

Desktop

New L:l)

Cancel

Saue

FIGURE 7.7 THE STANDARD SAVE FILE DIALOG eox­
A PART OF THE STANDARD FILE PACKAGE.

Chapter 7 Files

The standard Save dialog box allows the user to supply a name for the file
that is to be created. If the user types in the name of an existing file, the
File Manager will display the Name Conflict Aler t box (see Figure 7.8.)

New Window

la Saue PICT File t ... , = Hard Disk 340

D MyParrotFile
<1' Saue

l~ l ject J
D Saue Replace e>1isting sktop J
D Saue "M!-!ParrotFile" ?
D Saue ([l)

w DJ
Cancel [Replace)

Saue a~. ntel J
~I M_y_P_ar_r_ot_F_ile _____ ~I n Saue l)

FIGURE 7 .8 THE NAME CONFLICT ALERT BOX, A PART OF THE STANDARD FILE PACKAGE.

After quitting SavePICTfile, you'll see a new PICT file. If you double-click
o n it , the Finder will di sp lay the a lert b ox sh own in Figure 7.9.
SavePICTfile doesn ' t support the opening of PICT files, so you' ll have to
open your newly created file from an application that does. Apple 's sim­
ple text editing program TeachText is capable of displaying a PICT file,
so go ahead and click on the OK button in the alert box. When you do,
you'll see the PICT file opened in a TeachText document like the one
shown in Figure 7.10.

The document "MyParrotFile" could not be
opened, because the application program
that created it could not be found. Do you
want to open it using "TeachTeHt 7.0"?

(Cancel l n OK D

FIGURE 7 .9 DOUBLE-CLICKING ON A PICT FILE CREATED BY

SAVEPICTFILE DISPLAYS THIS ALERT.

391

More Mac Programming Techniques

S File Edit

F IGURE 7 .10 A PICT FILE CREATED BY SAVEPICTFILE

CAN BE OPENED USING TEACHTEXT.

SavePICTfile requires the same two resources that the NewDocument
pr~jcct used: a PICT and a WIND. The OpenPICTfile resource fi le is
shown in Figure 7.11.

~19§ SaueP I CTfile. n .rsrc Iii~

D ~
~.i
PICT 'WIND

-01
1i1

FIGURE 7.11 THE RESOURCES FOR THE 5AVEPICTFILE PROJECT.

Expanding the Document Record

Until a user saves a document, there is no file associated with that docu­
ment. Once a document is saved, you' ll want to enable that document to
keep track of the file it was saved to. If your program allows a document to

392

Chapter 7 Files

be edited, the user may want to save the document several times during
the execution of the application. If the document keeps track of the file
it's been saved to, each additional save that is performed will be easy to
perform.

Any information that is to be tied to a particular document can be kept
in the document record. To this point, that record has consisted of just a
Pi cHandl e that is used to keep track of the picture that is currently dis­
played in the document:

typedef struct
{

PicHandle the_pict:

} WindowData, *WindowDataPtr, **WindowDataHandle;

To keep track of a file, I'll add two more fields to the document record-one
for the file's reference number and the other for an FSSpec for the file:

typedef struct
{

PicHandle the_pict:
long file_ref_num:
FSSpec file_FSSpec:

} WindowData, *WindowDataPtr, **WindowDataHandle;

When a new, empty document is created, the file reference number
should be set to 0 to show that there is no file paired with this document.
Later, when the user saves the document, the file reference number will
be changed to a nonzero value. Here's the SavePICTfile version of
Do_New_Pi cture_Document(). There's only one new line of code in
the routine, which is shown in bold type.

WindowPtr Do_New_Picture_Document(void
{

WindowPtr
WindowDataHandle

the_window:
the_data;

the_window - GetNewWindowC WIND_ID, nil, CWindowPtr)-ll):

393

More Mac Programming Techniques

the_data - CWindowOataHandle)NewHandleClear(sizeof(WindowData));
C**the_data).the_pict - nil;
(**the_data).file_ref_num - O;

SetWRefConC the_window. Clong)the_data);

return C the_window);

Saving a Document with "Save As"

Application's use much of the same code to handle Save As and Save
menu selections. The primary differences are that a Save As command will
display the standard Put dialog box-also called the Save dialog box­
while the Save command won't. Additionally, a Save As menu selection
may require the creation of a new file, while a Save menu selection does
not. In this section you'll see how to handle a Save As menu item selection.
The next section illustrates the handling of the Save menu item.

To allow the user to choose the name of the file to save a document's
contents to, have your application post the Save dialog box. A call to the
Toolbox routine StandardPutFi 1 e() will display the dialog box pic­
tured in Figure 7.7:

StandardFileReply the_reply;

StandardPutFile("\pSave as:". "\pUntitled", &the_reply);

The first parameter to StandardPutFi 1 e() is the string that will appear
just over the text item in the Open dialog box. The second parameter is
the default string that will appear in the text item-it's the name the file
will be given if the user clicks on the Save button without first typing in a
file name. The final parameter is a pointer to a Standard Fil eReply
variable. After the user clicks the Save button, the File Manager will fill this
variable will information about the newly created file.

Now it's up to your application to determine what is to be saved. By
convention, a Save or Save As menu selection is used to save the front­
most window. A call to FrontWi ndow() returns a pointer to that window.

394

Chapter 7 Files

Then, as was done in previous examples, a handle to the document
record for that window is obtained:

WindowPtr
long
WindowDataHandle

the_window:
wind_ref _con:
the_data:

the_window - FrontWindow():
wind_ref_con - GetWRefCon(the_window >:
the_data - CWindowDataHandle)wind_ref_con:

Now it's time to create a new, empty file. A call to FSpCreate() takes
care of this task. Before making this call, however, verify that the user
isn't replacing an existing file of the same name. If the user is, then
there's no need to create a new file-the original file can be used.

if (the_reply.sfReplacing i::::n:::t false >

FSpCreate(&the_reply.sfFile, 'svpf', 'PICT', smSystemScript >:

The first parameter to FSpCreate () is a pointer to the FSSpec to be
filled by the File Manager. Because the File Manager just created the new
file, it knows (and can return) this file name and directory information
to the application. The second and third parameters to FSpCreate()
are the file's creator and file type. Here, svfp was chosen to represent
"save picture file"-your creator type can of course differ. To save a docu­
ment as a PICT file, the third parameter must be PICT. The last parame­
ter to FSpC reate () is the script system to be used to display the file's
name. Use the system script here.

The document record, as defined in the SavePICTfile program, has
two members devoted to keeping track of the file associated with a docu­
ment. One of those members is the file's FSSpec. At this point, that
member should be set to the FSSpec that was returned by
FSpCreate():

(**the_data).file_FSSpec - the_reply.sfFile:

Next, check to verify that there isn't already an open file associated with
the document. If there is, close it now with a call to FSC 1 o s e () .

395

More Mac Programming Techniques

if (C**the_data).file_ref_num !~ 0)
FSClose((**the_data).file_ref_num);

Recall that when a new document is opened, the application-defined
routine Do_New_Pi cture_Document () sets the fi 1 e_ref _num field
of the document record to 0. If that field isn't 0 at this point, then an
open file already exists for this document.

Now it's time to open the new file. A call to FSpOpen D F () opens the
data fork-that's where the picture data will be written to:

short ref _num:

FSpOpenDF(&C**the_data).file_FSSpec. fsRdWrPerm, &ref_num >:

The first parameter to FSpOpenDF() is a pointer to the FSSpec of the
file to open. The second parameter is the permission level for the file;
make sure this permission level includes write privileges so that the applica­
tion can write the picture data to it. The last parameter to FSpOpenDF ()
is a pointer to a short variable. FSpOpenDF() will assign this variable a
reference number for the opened file.

At this point, a file is created and opened, so it's safe to say that the
document that is about to be saved now has a file associated with it. Set
the document record fi 1 e_ref _num member to the value returned by
FSpOpenDF():

(**the_data).file_ref_num = ref_num:

Now is the time to write the data to the new file. This task requires a little
effort, so I'll wrap the data-writing code in another application-defined
routine-one named Write_PICT_Data_To_File(). Before moving
on to that function, take a look at how the above code has been grouped
into a function named Handl e_Save_As_Choi ce():

void Handle_Save_As_Choice(void)
{

WindowPtr
long

396

the_window:
wind_ref_con:

Chapter 7 Files

WindowDataHandle the_data:
StandardFileReply the_reply:
short ref _num:

StandardPutFile("\pSave as:". "\pUntitled". &the_reply):

if (the_reply.sfGood == false
return:

the_window = FrontWindow<>:
wind_ref_con = GetWRefCon(the_window);
the_data = (WindowDataHandle)wind_ref_con:

SetWTitle{ the_window. the_reply.sffile.name):
if { the_reply.sfReplacing -- false)

FSpCreate{ &the_reply.sfFile. 'svpf'. 'PICT',
smSystemScript);

(**the_data).file_FSSpec = the_reply.sffile;
if ((**the_data).file_ref_num != 0)

FSClose{ {**the_data).file_ref_num >:

FSpOpenDF(&C**the_data).file_FSSpec, fsRdWrPerm, &ref_num):

{**the_data).file_ref_num - ref_num;

Write_PICT_Data_To_File{ the_window >:

You've seen that a picture can be stored as either a PICT resource or a
PICT file. If it is a PICT resource, it exists in the resource fork of a file.
Often that file is an application-file-a Mac program.

To read a picture stored in a PICT resource, you open a resource
fork (or use the already-open application resource fork) and make a call
to Get Pi ct u re (). To write a PI CT resource to a resource fork, you
again open a resource fork and then use a series of Toolbox routines that
includes AddResource() and WriteResource(). Chapter 6
described this process.

To read a picture stored in a PICT file, you open a file's data fork, not
its resource fork. Then you read the picture data. Reading a picture from
a PICT file isn't as easy as simply making a call to Get Picture()
because each PICT file has a 512-byte header that must be taken into

397

More Mac Programming Techniques

considera tion . After that, a call to FSRead () reads in the picture data.
Reading PICT files was discussed earlier in this chapter. To write a picture
to a PICT file, the 512-byte header must again be considered. Next, the
picture information held in memory (and referenced by a Pi cHandl e)
must be written to the file . Figure 7.12 shows the layout of the disk memo­
ry a PICT file occupies.

512
bytes

2 bytes

8 bytes

Variable
length

Header

Size

Bounding
rectangle

Data

000000000000
000000000000
000000000 ...

X bytes

left 20
righ t = 180
top 45
bottom = 165

FIGURE 7 .12 THE PARTS OF A PICT FILE AS THEY APPEAR IN MEMORY.

To decide which picture to write to disk, you ' ll again re ly on the da ta in
the front window- the picture in the active docume nt. Ge t tha t window's
r efCon value to use as the handle to the document record, then deref­
e rence that handle to get a handle to the picture in tha t \V:indow:

398

WindowDataHandle the_data;
long wind_ref_con;
PicHandle the_picture;

wind_ref_con - GetWRefConC the_window);

the_data ... CWindowDataHandle)wind_ref_con;
the_picture = C**the_data).the_pict;

Chapter 7 Files

The routine that writes the picture data to a file will be called after the
file has been created. That means the file will be open, and its reference
number will be held in the document record belonging to the window
that holds the picture. The file reference number will be needed in sub­
sequent Toolbox calls, so retrieve it now:

short ref_num;

ref_num - C**the_data).file_ref_num;

The picture header, size, bounding rectangle, and data are all written to
a file's data fork using calls to FSWri te ().Before making the first call to
F SW r i t e () , set the file marker to the start of the file:

SetFPosC ref_num. fsFromStart. 0);

A picture's 512-byte header is used to store application-specific informa­
tion about the picture. If your application ignores this header, as many
programs do, fill each byte with a 0. One way to do this is to set a 1 ong
variable (4 bytes) to a value of 0, then loop 128 times. Each pass through
the loop should write these 4-bytes of zeros to the file. After 128 passes
through the loop, the file will contain 512 zeros. FSWri te () accepts a
pointer to data as its third parameter, so you'll want to set up the loop as
follows:

long num_bytes:
long zero_data;

num_bytes - 4;
zero_data ... OL:
for C i - 1: i < ... 128: i++)

FSWriteC ref_num. &num_bytes. &zero_data);
399

More Mac Programming Techniques

After writing the header, write the picture's size, bounding rectangle, and
data to the file. You won't have to manually calculate these individual val­
ues-they' re all held in the Pi ct u re structure that the picture's
P i c Ha n d 1 e leads to in memory. Because of this, all of a picture's infor­
mation can be written to disk using a single call to FSWri te(). Before
doing so, make a call to GetHandl eSi ze() to get the size, in bytes, of
the picture:

num_bytes ~ GetHandleSize(CHandle)the_picture):
FSWrite(ref_con, &num_bytes, (Ptr)(*the_picture)):

Pictures that are created on a Macintosh computer that isn't using Color
QuickDraw and pictures created in a basic graphics port (as opposed to a
color graphics port) are considered version I pictures. These picture
types are always 32 KB or less in size. For pictures of this type, the memo­
ry model shown in Figure 7.12 applies. Color or grayscale pictures-ver­
sion 2 pictures-can be larger than 32 KB. For this type of picture, the 2-
byte picture size is ignored. As you've just seen, whether a document's
picture is version 1 or version 2, its information can be written by first
making a call to GetHandl eSi ze(). This Toolbox routine returns the
size in bytes of the object that a handle references. The subsequent call
to FSWri te() then writes all of the picture information to the ref _con
file. Figure 7.13 summarizes the writing of a picture to a file.

When finished writing, call Set EO F () to resize the file to the num­
ber of bytes that have just been written to it. For a picture, the size will be
the size of the picture plus the 512-byte header:

SetEOF(ref_con, num_bytes + 512);

Next, call Get V Ref N um () to determine the volume containing the file.
When passed a file reference number, GetVRefNum() returns a volume
reference number. The volume reference number is needed in the subse­
quent call to the Fl ushVol ()Toolbox function. Fl ushVol ()flushes a
volume. The data that was written using FSWrite() was placed in a
memory buffer. F 1 us h Vo 1 () ensures that this data goes from the buffer
to disk. Fl ushVol () also updates the file's descriptive information con­
tained on the disk.

400

Chapter 7 Files

GetVRefNum(ref_con, &vol_ref_num >:
FlushVol(nil. vol_ref_num >:

SetFPos ()
to start of file

FSWrite ()
512 zeros

FSWrite ()
size of object
picHandle
leads to

Header

Size

Bounding
rectangle

Data

FIGURE 7.13 FSWRITE() IS USED TO WRITE THE PICTURE HEADER AND DATA TO A FILE.

Here's a look at all of the above code, grouped into the Wri te_P I CT_
Data_To_Fi 1 e() function. Recall that this routine will be invoked at
the end of Handl e_Save_As_Choi ce(), that is, the function that cre­
ates a new file and opens its data fork.

void Write_PICT_Data_To_File(WindowPtr the_window
{

WindowDataHandle
long
PicHandle

the_data;
wind_ref_con:
the_picture;

401

More Mac Programming Techniques

short
1 ong
1 ong
short
int

ref _num:
num_bytes:
zero_data:
vol_ref _num:
i :

wind_ref_con - GetWRefCon(the~window):

the_data = (WindowDataHandle)wind_ref_con:

the_picture - (**the_data).the_pict:
ref_num - C**the_data).file_ref_num:

SetFPosC ref_num. fsFromStart. 0);

num_bytes = 4:
zero_data ""' OL:
for (i ""' 1: i <- 128: i ++)

FSWriteC ref_num, &num_bytes. &zero_data >:

num_bytes - GetHandleSize(CHandle)the_picture);
FSWrite(ref_con. &num_bytes, (Ptr)(*the_picture));

SetEOFC ref_con. num_bytes + 512 >:
GetVRefNum(ref_con, &vol_ref_num);
Fl ushVol (nil, vol_ref _num) :

Saving a Document With "Save"

Once a user has saved a file using the File menu Save As item, subse­
quent saves are easier to perform; there's no need to post the Save dialog
box or create a new file.

'When the user selects the Save menu item from your program, first
check to see if the frontmost window has been saved. You can do this by
checking the value of the fi 1 e_ref _num field of the window's docu­
ment record. When the document record was created in Do_New_
Pi cture_Document(), this field was set to 0. Its value doesn't change
until the document is first saved and a new file is created and associated
with the document. If fi 1 e_ref _n um isn't 0, call W r i te_P I CT_
Data_To_Fi 1 e() to save the window's data to the existing and open
file. If the f i 1 e_ref _n um is 0, the window's data has never been saved.

402

Chapter 7 Flies

In that case, treat the Save selection as a Save As choice, and call
Handle_Save_As_Choice().

if ((**the_data).file_ref_num !- 0)
Write_PICT_Data_To_File(the_window):

else
Handle_Save_As_Choice():

The SavePICTfile Source Code Listing

SavePICTfile uses the routines from past programs to open a new win­
dow and initialize its document record. It then loads a PICT resource
and draws the picture to the window. SavePICTfile doesn't implement
menus, so after opening a new window, a call to Handl e_Save_As_
Choice ()is made to mimic a user's selection of Save As from a menu.

After saving the document, the program waits for a click of the
mouse button. When that happens, SavePICTfile doesn't terminate.
Instead, a call to Handl e_Save_Choi ce() is made. This allows you to
verify that Handl e_Save_Choi ce() doesn't post the Save dialog box
once a document has been saved. After the second save, again click the
mouse button to end the program.

~ You can be sure that the second save Is really taking place
~ In any one of three ways:

N 0 T E

1. After clicking the mouse button the first time, listen to your Mac
as it accesses the hard drive during the writing of the file.

2. After saving the file the first time (by typing a file name in the
Save dialog box and clicking the save button), wait a minute or
two before clicking the mouse. Once you do click the mouse, the
file will again be saved. This second save will mark the existing file
as modified. You can verify that the file was modified by clicking
once on it in the Finder and then selecting Get Info from the
Finder's File menu. Figure 7.14 shows an example of a file's dif­
ferent Created and Modified times.

403

More Mac Programming Techniques

3. Use your compiler's debugger during the compile of the
SavePICTfile source code. Step through the code to see that
Handl e_Save_Choi ce() executes as expected.

==[jj · M Partotf lie lnf o ·

, , J MyParrotFile

Kind: document
Size : 17K on disk (13, 708 bytes used)

Vhere : Hard Disk 340 : Development :
C 07-Files f: Save PICT File f:

Created : Sat, Nov 26, 1994, 12 :44 AM
Modified : Sat, Nov 26, 1994, 1 2 :45 AM
Version: n I a

Comments:

D Locked D Stationeriy pad

FIGURE 7.14 PAUSING BETWEEN SAVES DURING THE RUNNING OF SAVEPICTFILE

RESULTS IN A FILE WITH DIFFERENT CREATED AND MODIFIED TIMES.

''~~~~~~~~~~~~~~~~~~~~~~~~~-
//

void
WindowPtr
void
void
void
void
void
void

404

function prototypes

Initialize_ToolboxC void);
Do_New_Picture_Document(void);
Add_Picture_Data_To_Document(WindowPtr, PicHandle);
Size_Picture_Window(WindowPtr);
Update_WindowC WindowPtr);
Handle_Save_As_Choice(void);
Handle_Save_Choice(void);
Write_PICT_Data_To_FileC WindowPtr >:

#define directives

Chapter 7 FDles

fldefi ne
fldefi ne

WIND_ID
PARROT_PICT_ID

128
128

II~~~~~~~~~~~~~~~~~~~~~~
II define data structures

typedef struct
{

PicHandle
long
FSSpec

the_pict:
file_ref_num:
file_FSSpec:

} WindowData. *WindowDataPtr. **WindowDataHandle:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

}

WindowPtr the_window:
PicHandle the_picture:

Initialize_Toolbox():

the_window = Do_New_Picture_Document():

the_picture = GetPicture(PARROT_PICT_ID):

Add_Picture_Data_To_Document(the_window. the_picture);

Size_Picture_Window< the_window):

Update_Window< the_window):

Handle_Save_As_Choice():

Update_Window(the_window >:

while (!Button())

Handle_Save_Choice();

while C ! Button())

405

More Mac Programming Techniques

II~~~~~~~~~~~~~~~~~~~~~
II save file

void Handle_Save_Choice(void)
{

II

WindowPtr
long
WindowDataHandle

the_window;
wind_ref_con:
the_data:

the_window = FrontWindowC>:
wind_ref_con - GetWRefConC the_window);

the_data = CWindowDataHandle)wind_ref_con;

if (C**the_data).file_ref_num !- 0)
Write_PICT_Data_To_File(the_window >:

else
Handle_Save_As_Choice();

II display the "Save As" dialog box. save file

void Handle_Save_As_Choice(void
{

WindowPtr the_window;
long wind_ref_con;
WindowDataHandle the_data;
StandardFileReply the_reply;
short ref _num;

StandardPutFileC "\pSave as:". "\pUntitled". &the_reply);

if (the_reply.sfGood -- false
return:

the_window - FrontWindow();
wind_ref_con = GetWRefCon(the_window);
the_data - CWindowDataHandle)wind_ref_con;

SetWTitleC the_window. the_reply.sfFile.name);

if (the_reply.sfReplacing == false)
FSpCreate(&the_reply.sfFile. 'svpf'. 'PICT'.

smSystemScript);

(**the_data).file_FSSpec - the_reply.sfFile;

406

Chapter 7 Files

if C C**the_data).file_ref_num != O >
FSClose((**the_data).file_ref_num >:

FSpOpenDFC &C**the_data).file_FSSpec. fsRdWrPerm. &ref_num);

(**the_data).file_ref_num = ref_num:

Write_PICT_Data_To_FileC the_window >:

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// write 'PICT' data to an open file

void Write_PICT_Data_To_File(WindowPtr the_window
{

WindowDataHandle
long
PicHandle
short
long
long
short
int

the_data:
wind_ref_con;
the_picture;
ref _num:
num_bytes:
zero_data:
vol_ref _num:
i :

wind ref_con = GetWRefConC the_window >:

the_data = CWindowDataHandle)wind_ref_con:

the_picture = (**the_data).the_pict:
ref_num = C**the_data).file_ref_num:

SetFPos(ref_num. fsFromStart. 0):

num_bytes ... 4:
zero_data = OL:
for (i ... 1: i <= 128: i ++)

FSWriteC ref_num, &num_bytes. &zero_data >:

num_bytes = GetHandleSizeC CHandle)the_picture >:
FSWrite(ref_con, &num_bytes. CPtr)(*the_picture)):

SetEOFC ref_con. num_bytes + 512 >:
GetVRefNum(ref_con, &vol_ref_num >:
Fl ushVol (ni 1. vol_ref _num) :

407

More Mac Programming Techniques

ll~~~~~~~~~~~~~~~~~~~~~~~~~-
11 create a new, empty file

WindowPtr Do_New_Picture_Document(void)
{

WindowPtr
WindowDataHandle

the_window:
the_data:

the_window = GetNewWindow(WIND_ID, nil, CWindowPtr)-lL):

the_data= CWindowDataHandle)NewHandleClear(sizeof(WindowData));
(**the_data).the_pict - nil;
(**the_data).file_ref_num = 0;

SetWRefCon(the_window, Clong)the_data):

return (the_window);

ll~~~~~~~~~~~~~~~~~~~~~~~~~-
11 fill file data for one window

void Add_Picture_Data_To_Document(WindowPtr the_window,
PicHandle the_picture)

WindowDataHandle the_data;
long wind_ref_con;

wind_ref_con - GetWRefCon(the_window);

the_data= CWindowDataHandle)wind_ref_con;

(**the_data).the_pict = the_picture:

II~~~~~~~~~~~~~~~~~~~~~~
II resize newly opened window to the size of picture

void Size_Picture_Window(WindowPtr the_window
{

WindowDataHandle
long
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_picture:
pict_rect:
pict_width:
pict_height:

wind_ref_con - GetWRefCon(the_window):

the_data - CWindowDataHandle)wind_ref _con:

408

Chapter 7 Flies

}

the_picture - C**the_data).the_pict:

pict_rect = C**the_picture).picFrame:
pict_width - pict_rect.right - pict_rect.left:
pict_height - pict_rect.bottom - pict_rect.top:
SetRectC &pict_rect, 0, 0, pict_width, pict_height >:
SizeWindow(the_window, pict_width, pict_height, false >:
ShowWindow(the_window >:

II~~~~~~~~~~~~~~~~~~~~~
II update one window

void Update_WindowC WindowPtr the_window
{

}

WindowDataHandle
long
PicHandle
Re ct
short
short

the_data:
wind_ref_con:
the_p.i cture:
pict_rect;
pict_width;
pict_height;

SetPort(the_window):

wind_ref_con = GetWRefCon(the_window);

the_data = CWindowDataHandle)wind_ref_con:

the_picture - C**the_data).the_pict:

pict_rect - C**the_picture).picFrame:
pict_width - pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top:
SetRect(&pict_rect, 0, o. pict_width, pict_height):
DrawPicture(the_picture, &pict_rect):

OPENING AN EXISTING TEXT FILE

In this section, you'll see how to open, read, and display the contents of a
TEXT file. If you've skipped any of the previous sections in this chapter,
you'll want to go back and read through them now. Many of the tech­
niques and Toolbox routines used to open a file that holds text are the
same as those used to open a file that holds a picture. Those that are will
be touched on only lightly here.

409

More Mac Programming Techniques

The OpenTEXTfile program uses the same standard Open dialog box
that OpenPICTfile used; it's shown in Figure 7.15. The included disk has
an example text file that OpenTEXTfile can work with. OpenTEXTfile
can also be used to open any other text file, including source code files.

la Open TeHt File f,..,

D OpenTeHtfile.c

c::i Hartl Disk 340

Eject

Desktop

(Cancel)

n Open D

FIGURE 7 .15 THE STANDARD OPEN DIALOG BOX USED BY THE 0PENTEXTFILE PROGRAM.

After clicking the Open button, the OpenTEXTfile program opens a new,
empty window. The program then reads the TEXT data from the selected
file and displays it in the new window. If OpenTEXTfile is used to open the
J oyce.text TEXT file, the window will look like that shown in Figure 7.16.

410

Iii ----------= -- - ------:; -- -- -- - -- - -- Jo ce.teHt ----- _ __::___ __ '=" -=~
- --- --- --- - - -

A few light lops upon the pcne mcde him turn lo the w indow. It had
begun lo snow ogcin. He wclched sleep11y the fl ekes, s11ver end dork,
foll Ing obliquely ogoinsl the lcmplighl. The lime hod come for him to
set out on his journey westwcrd. Yes, the newspcpers were right:
snow wcs genercl ell over lrelcnd. It wcs felling on every pert of the
dork cenlrol ploin, on the treeless h111s, felling softly upon the Bog of
Allen end, forther west word, softly fc111ng Into the dork mutinous
Shcnnon weves. It wes felling, too, upon every port of the lonely
churchycrd on the hill where Mtchcel Furey lcy buried. It l oy thickly
dri fled on the crooked crosses end heeds tones, on the spec rs of the
little gate, on the bar ren thorns. His soul swooned slowly cs he heord
the snow foiling faintly through the universe end faintly foiling, like
the descent of their l os t end, upon ell the I iv1ng ond the deed.

FIGURE 7 .16 A TEXT FILE OPENED BY THE 0PENTEXTFILE PROGRAM.

Chapter 7 Files

OpenTEXTfile uses just a single resource-a WIND with an ID of 128.
The program won't resize the window, so I've set the WIND resource to
create a window large enough to display much or all of a small text file.

r:lJ
N 0 T E

For slmpllclty, OpenTEXTflle displays the text of the file It
opens In a window of fixed size. The techniques presented
here wlll also work in more sophisticated applications, such
as those that use windows that grow and windows with
scroll bars.

The Text Window Document Record

For a window that holds a picture, the document record structure, which
can hold any data pertinent to the type of document an application uses,
might look like this:

typedef struct
{

PicHandle the_pict:
long file_ref_num:
FSSpec file_FSSpec:

} WindowData, *WindowDataPtr, **WindowDataHandle:

For a window that holds text, there's no need to have a Pi cHandl e field
in the document record. Instead, a text edit handle would be more
appropriate. The other two fields-the file reference number and the
file system specification-would still be applicable. Here's the version of
the document record used by the OpenTEXTfile program:

typedef struct
{

TEHandle the_text:
long file_ref_num:
FSSpec file_FSSpec:

} WindowData. *WindowDataPtr. **WindowDataHandle;

411

More Mac Programming Techniques

~
N 0 T E

What about a program that can open more than one type of
window? If your program Is capable of opening both a graph­
ics window and a text window, your program might define a
couple of constants that wlll be used when distinguishing
between window types:

/idefi ne
/jdefi ne

PICT_WIND
TEXT_WIND

1
2

Then, the document record structure might look like this:

typedef struct
{

short wind_ type:
PicHandle the_pict:
TEHandle the_text:
long file_ref_num:
FSSpec file_FSSpec:

WindowData, *WindowDataPtr, **WindowDataHandle:

Here, the same structure can be used for either window
type. When a new graphics document Is opened (with, per­
haps, a New Picture Window menu selection), the
wi nd_type field can be set to PICT_WIND. The TEHandl e
fleld wlll go unused for the graphics window. If the user
opens a new text document (with a New Text Window menu
selection), the program wlll set the wi nd_type member to
TEXT_WIND, and the PicHandl e member wlll be left
unused.

Reading and Displaying the Contents of a TEXT File

Before opening an existing text file, a new window in which to display
the text should be opened. Do_New_ Text_Document () takes care of
that task. This routine is analogous to the D o_N ew_P i ct u re_
Document () function that you just saw in the previous example pro­
gram-SavePICTfile. In fact, only one line from that routine has been

412

Chapter 7 Files

modified in order to come up with the Oo_New_ Text_Oocument ()
function. That line appears in bold font:

WindowPtr Do_New_Text_Document(void
{

WindowPtr the_window:
WindowDataHandle the_data:

the_window = GetNewWindow(WIND_ID. nil. CWindowPtr)-lL):

the_data ~ CWindowDataHandle)NewHandleClearCsizeofCWindowData)):
C**the_data).the_text - nil:
(**the_data).file_ref_num = 0:

SetWRefCon(the_window. (long)the_data):

return (the_window);

Do_New_Pi cture_Oocument() initialized the document record
Pi cHandl e field to nil. In the OpenTEXTfile program, the document
record has a TEHandl e field in place of the Pi cHandl e member.
Do_New_ Text_Document () initializes the TEHandl e field to nil.

With a new empty window open, it's time to allow the user to select a
text file to open. In preparation for this, a new TE Hand l e should be cre­
ated. To do that, set a destination rectangle, a view rectangle, and then
call TE New():

TEHandle the_TEtext:
Rect dest_rect:
Rect view_rect;

SetPort(the_window >:
SetRect(&dest_rect, 20, 20, 460, 260):
view_rect = dest_rect:

the_TEtext = TENew(&dest_rect, &view_rect);

When a program creates an edit record, as TENew() does, two rectan­
gles need to be set. One of them, the destination rectangle, is the area in
which the text is drawn. The other, the view rectangle, is the area in

413

More Mac Programming Techniques

which the displayed text will be displayed. v\Thile the boundaries of these
two rectangles are often the same, Figure 7 .17 shows that they don't have
to be.

0 Lawrence. teHt

Al though they li ved in style, they felt ~l ways an
anxiety in the house. There was never ~nough
money. The mother had a small income and the
father had a small income, but not nee ly enough
f or the soci a 1 position which they had to keep up.
The father went into town to some o f ~ ·ce . But
though he had good prospects, these p~ pspects
never materialized. There was al ways the
grinding sense of the shortage of mon~ y, though
the style was always kept up .

.(>.
.A

/ ').-

'----

View rectangle '---J

Destination rectangle

FIGURE 7 .17 AN EXAMPLE OF A VIEW RECTANGLE AND A DESTINATION

RECTANGLE THAT AREN'T THE SAME.

ff the view rectangle is set smaller than the destination rectangle, as
shown in Figure 7.17, the text outside of the view rectangle will not be
displayed. Figure 7.18 shows how the Lawrence. text window would look
using the rectangles shown in Figure 7.17.

After creating the new text edit record and receiving a handle to it, call
StandardGetFile() to display the standard Open dialog box. Tell the
File Manager to display only text files by setting the S FType List to TEXT:

SFType L i st
Standa rdFileReply

type_li s t - { 'TEXT'. 0, 0, 0 } ;
repl y ;

StandardGetFil e (nil. 1. type_l i st. &reply);

414

Chapter 7 Files

Lawrence. teHt

Although they lived in style, they felt
anxiety in the house. There was never
money. The mother had a small income
father had a small income, but not nee
for the social position which they had
The father went into town to some off
though he had good prospects, these pr
never materialized. There was always
grinding sense of the shortage of mane
the styl e was always kept up.

FIGURE 7.18 THE DISPLAYED TEXT, USING THE RECTANGLES IN FIGURE 7.17.

As you did when opening a PICT file, call FSpOpenDF() to open the
TEXT file's data fork, then call GetEOF() to determine the length of
the file. A call to SetFPos () sets the file mark to the start of the file,
ready for reading. GetEOF() and SetFPos () are the same Toolbox
routines used when working with a PICT file. Here, the only difference is
that the last parameter to SetFPos () should be 0, not 512-there's no
512-byte header to skip in a text file as there is in a PICT file.

short
long

t ext_ref_num;
file_length;

FSpOpenDFC &reply.sfFile, fsRdPerm, &text_ref_num);

GetEOF C text_ref_num, &file_length);
SetFPos(text_ref_num, fsFromStart , 0);

A call to FSRead () will read in the text from the text file and store it in
a buffer. Declare a generic pointer variable to serve as the buffer, then
allocate memory for the buffer using a call to New Pt r () . Then read in
the text with a call to FS Read () .

415

More Mac Programming Techniques

Ptr text_buffer:

text_buffer = NewPtr(file_length);

FSRead(text_ref_num. &file_length. text_buffer);

To move the text from the buffer to the TEHandl e variable the_TEtext,
call TESetText (). This Toolbox function copies text that is in a buffer
and stores it in the text edit record referenced by a TEHandl e. The first
parameter to TESetText() is a pointer to the buffer, and the third para­
meter is the TEHandl e. The second parameter is the number of bytes to
copy.

HLock(CHandle)the_TEtext);
TESetTextC text_buffer, file_length, the_TEtext >:

HUnlock(CHandle)the_TEtext);

The OpenTEXTfile program wraps the above code into a routine named
Load_ TEtext_From_TEXT_Doc(). After creating a new, empty docu­
ment, Load_TEtext_From_TEXT_Doc() is called to open a TEXT file,
read in the text it contains, and return a handle to that text to ma i n () .
Here's a snippet that is a part of OpenTEXTfile's main () function:

WindowPtr the_window:
TEHandle the_TEtext;

the window= Do_New_Text_Document();

the TEtext = Load_TEtext_From_TEXT_Doc(the_window);

Here's a look at the complete Load_ TEtext_From_ TEXT _Doc () rou­
tine:

TEHandle Load_TEtext_From_TEXT_Doc(WindowPtr the_window
{

SFTypelist
StandardFileReply
short
long
Ptr

416

type_list = { 'TEXT', 0, 0, 0 };
reply;
text_ref _num;
file_length;
text_buffer;

}

TEHandle
Re ct
Re ct

the_TEtext:
dest_rect:
view_rect:

SetPort(the_window >:
SetRect(&dest_rect. 20. 20. 460. 260 >:
view_rect - dest_rect:

Chapter 7 Files

the_TEtext - TENew(&dest_rect. &view_rect >:

StandardGetFileC nil. 1. type_list. &reply >:

if C reply.sfGood == false)
ExitToShell():

SetWTitle(the_window. reply.sfFile.name):

FSpOpenDF(&reply.sfFile. fsRdPerm. &text_ref_num >:

GetEOF(text_ref_num. &file_length);
SetFPos(text_ref_num. fsFromStart. 0);

text_buffer = NewPtr(file_length);

FSRead(text_ref_num. &file_length. text_buffer >:

Hlock(CHandle)the_TEtext >:
TESetText(text_buffer. file_length. the_TEtext);

HUnlock(CHandle)the_TEtext >:

return (the_TEtext);

At this point, OpenTEXTfile has a window open and a TEHandl e that
references the text from a file, but the two aren't associated with one
another. A call to Add_Text_Data_To_Document() takes care of that.
This function is almost identical to the Add Picture Data
To_Document () routine that you saw in the OpenPICTfile program.
OpenTEXTfile needs to associate

void Add_Text_Data_To_Document(WindowPtr the_window.
TEHandle the_TEtext)

{
WindowDataHandle the_data:
long wind_ref_con:

417

More Mac Programming Techniques

wind_ref_con = GetWRefCon(the_window);

the_data = CWindowDataHandle)wind_ref_con:

(**the_data).the_text = the_TEtext:

To update a window that has text in it, use the Toolbox routine
TEUpdate(). TEUpdate() needs the portRect of the window that
needs updating. You can dereference a Wi ndowPtr to get its port rec­
tangle, then use the & operator on the portRect-TEUpda te () requires
a pointer. The second parameter to TEUpdate () should be a text edit
handle to the text that is to be drawn.

WindowPtr the_window
TEHandle the_TEtext:

TEUpdate(&C*the_window).portRect, the_TEtext):

OpenTEXTfile calls the application-defined routine Update_Wi ndow()
to redraw the contents of a document window. Like the OpenPICTfile
version of this function, this new version first gets a handle to the win­
dm~;s document record. The document record's TEHandl e field holds
the handle to the window's text, so that's the field that's accessed by
Update_Wi ndow():

void Update_Window(WindowPtr the_window
{

WindowDataHandle
long
TEHandle

the_data:
wind_ref_con:
the_TEtext:

SetPort(the_window >:

wind_ref_con = GetWRefCon(the_window >:

the_data = CWindowDataHandle)wind_ref_con:

the_TEtext = (**the_data).the_text:

EraseRect(&C*the_window).portRect >:
TEUpdate(&C*the_window).portRect, the_TEtext >:

}

418

Chapter 7 Files

The OpenTEXTfile Source Code Listing

OpenTEXTfile works in much the same way as this chapter's OpenPICTfile
does. Figure 7.19 shows the main () routine for each; you should examine
the figure and make a line-by-line comparison to see just how similar the
two programs are.

void main(void l
{

WindowPtr the_window;
PicHandle the_picture;

Initialize_Toolbox(J;
the_window = Do_New_Picture_Document();
the_picture; Load_Picture_From_PICT_File(the_window);
Add_Picture_Data_To_Document(the_window, the_picture);
Size_Picture_Window(the_window);
Update_Window(the_window);
while (!Button())

void main(void)
{

WindowPtr the_window;
TEHandle the_TEtext;

Initialize_Toolbox();
the_window = Do_New_Text_Document();
the_TEtext; Load_TEtext_From_TEXT_Doc(the_window);
Add_Text_Data_To_Document(the_window, the_TEtext);
ShowWindow(the_window);
Update_Window(the_window);
while (!Button())

FIGURE 7 .19 THE 0PENTEXTFILE PROGRAM RUNS MUCH LIKE

THE 0PENPICTFILE PROGRAM.

After initializing the Toolbox, OpenTEXTfile calls Do_New_ Text_
Document() to open an empty window and create a document record for
that window. A call to Load_ TEtext_From_ TEXT _Doc () displays the stan­
dard Open dialog box, opens a TEXT file, reads the file's text to memory,
and returns a TEHandl e to main(). Next, Add_Text_Data_To_
Document() is called to assign this TEHandl e to the text handle field of the
window's document record. Then, the window (which was opened but not yet

419

More Mac Programming Techniques

displayed) is shown. A call to Update_Wi ndow() then writes the document's
text to the window. The program ends when the mouse button is clicked.

function prototypes

Initialize_Toolbox(void): void
TEHandle
WindowPtr
void

Load_TEtext_From_TEXT_Doc(WindowPtr);
Do_New_Text_Document(void):

void
Add_Text_Data_To_Document(WindowPtr, TEHandle);
Update_Window(WindowPtr);

#define directives

#define WIND_ID 128

II
II define data structures

typedef struct
{

TEHandle the_text:
long file_ref_num:
FSSpec file_FSSpec;

WindowData. *WindowDataPtr. **WindowDataHandle:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
(

WindowPtr the_window;
TEHandle the_TEtext:

Initialize_Toolbox():

the_window - Do_New_Text_Document():

the_TEtext = Load_TEtext_From_TEXT_Doc(the_window):

Add_Text_Data_To_Document(the_window, the_TEtext);

ShowWindowC the_window);

Update_WindowC the_window);

420

Chapter 7 Flies

while (!Button())

II~~~~~~~~~~~~~~~~~~~~~~
II create a new text edit handle, add test text

TEHandle Load_TEtext_From_TEXT_Ooc(WindowPtr the_window
{

SFTypeli st
StandardFileReply
short
long
Ptr
TEHandle
Re ct
Re ct

type_list = { 'TEXT'. 0, 0, 0 }:
reply;
text_ref _num:
file_length:
text_buffer:
the_TEtext:
dest_rect:
view_rect:

SetPort(the_window):
SetRect(&dest_rect. 20. 20, 460. 260 >:
view_rect = dest_rect:

the_TEtext = TENewC &dest_rect. &view_rect);

StandardGetFileC nil. 1. type_list. &reply);

if (reply.sfGood == false >
ExitToShell C);

SetWTitle(the_window. reply.sfFile.name);

FSpOpenDF(&reply.sfFile. fsRdPerm. &text_ref_num);

GetEOFC text_ref_num. &file_length);
SetFPos(text_ref_num. fsFromStart. 0);

text_buffer - NewPtr(file_length):

FSRead(text_ref_num. &file_length. text_buffer);

Hlock(CHandle)the_TEtext);
TESetText(text_buffer. file_length. the_TEtext);

HUnlockC CHandle)the_TEtext);

return (the_TEtext):

421

More Mac Programming Techniques

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// create a new, empty file

WindowPtr Do_New_Text_Document(void)
{

WindowPtr the_window:
WindowDataHandle the_data:

the_window ~ GetNewWindow(WIND_ID, nil. CWindowPtr)-ll):

the_data = CWindowDataHandle)NewHandleClear(sizeof(WindowData));
(**the_data).the_text =nil:
(**the_data).file_ref_num - 0:

SetWRefCon(the_window. Clong)the_data):

return (the_window):

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// fill file data for one window

void Add_Text_Data_To_Document(WindowPtr the_window.

WindowDataHandle
long

TEHandle the_TEtext)

the_data:
wind_ref_con:

wind_ref_con = GetWRefCon(the_window);

the_data = CWindowDataHandle)wind_ref_con:

(**the_data).the_text = the_TEtext:

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// update one window

void Update_Window(WindowPtr the_window
{

WindowDataHandle
long
TEHandle

the_data:
wind_ref_con:
the_TEtext:

SetPort(the_window):

wind_ref_con = GetWRefCon(the_window);

422

Chapter 7 Files

the_data = (WindowDataHandle)wind_ref_con:

the_TEtext ~ C**the_data).the_text:

EraseRect(&C*the_window).portRect);
TEUpdate(&C*the_window).portRect, the_TEtext);

}

SAVING A DOCUMENT TO A TEXT FILE

If you understood this chapter's SavePICTfile program, you're a good
ways into understanding SaveTEXTfile. SavePICTfile opened a new win­
dow, added a picture to it, and then displayed the standard Save dialog
box so that the user could save the document to a PICT file.
SaveTEXTfile follows a similar course-it opens a new window, adds a lit­
tle text to the window, then displays the same Save dialog box (see Figure
7.20) to let the user save the document to a TEXT file.

abc

New Window

la Saue TeHt File f • ~ G:::::J Hard Disk 340

~ SaueTeHtfile ~ (Eject)
D SaueTeHtfile.c
D SaueTeHtf ile. ll (Desktop)
D SaueTeHtfile. u.rsrc

(New LJ)
'{}

Saue as: (Cancel)
I MyTestTeHtFile I ((Saue l)

FIGURE 7.20 THE STANDARD SAVE DIALOG BOX DISPLAYED

BY THE SAVETEXTFILE PROGRAM.

After running SaveTEXTfile, a new TEXT file will be in the Save Text
File f folder. You can open it with any text editor, including TeachText.
When you do, you'll see a document with the string "abc'' in it.

423

More Mac Programming Techniques

SaveTEXTfile needs just a single WIND as its only resource. If your
application supports text windows with scroll bars, you'll want to add
those CNTL resources as well.

Adding Text to a Document

Before saving a document as a text file, the document of course needs to
have text in it. SaveTEXTfile creates a new text edit record and then
adds some test characters to the record. This snippet, which is identical
to code found in OpenTEXTfile, allocates memory for a new text edit
record and returns a TEHandl e to the program:

TEHandle the_TEtext;
Rect dest_rect;
Rect view_rect;

SetPort(the_window);
SetRect(&dest_rect, 20, 20, 100, 50);
view_rect = dest_rect;

the_TEtext = TENew(&dest_rect, &view_rect);

OpenTEXTfile uses the Toolbox routine TE Key () to add three charac­
ters to the text edit record. The first parameter to TE Key () is the char­
acter to add to the record, and the second parameter is a TEHandl e to
that record:

TEKey('a', the_TEtext);
TEKey('b', the_TEtext);
TEKey('c', the_TEtext);

· If your program supports user-entered text, it wlll look for
keyDown events and respond to each by caning TEKey().
See Inside Macintosh: Text for a description of how to write

N o r E a routine that can be used In a text editor.

SaveTEXTfile uses a routine named Create_New_TEtext() to create
the text edit record and add the characters to it. When complete,
Crea te_New_ TEtext () returns the TE Handle to the calling routine.

424

Chapter 7 Files

TEHandle Create_New_TEtextC WindowPtr the_window)
{

}

TEHandle the_TEtext:
Rect dest_rect:
Rect view_rect:

SetPort(the_window):
SetRect(&dest_rect. 20, 20, 100, 50):
view_rect = dest_rect:

the_TEtext = TENew(&dest_rect, &view_rect):

TEKey('a'. the_TEtext):
TEKeyC 'b'. the_TEtext):
TEKey('c'. the_TEtext):

return the_TEtext):

After opening a new, empty window, SaveTEXTfile's main () routine calls
Crea te_New_ T Etext () to create the new text edit record. Then a call
to Add_Text_Data_To_Document() sets the TEHandl e field of the
window's document record is set to this text edit record. The Update_
Window() function then draws the text to the window. The source code
for both Add_ Text_Data_ To_Document () and Update_Wi ndow()
are identical to the versions of these functions found in the OpenTEXTfile
example. Here's the snippet from main () that handles these chores:

WindowPtr the_window:
TEHandle the_TEtext:

the_window = Do_New_Text_Document<>:
ShowWindow(the_window):

the_TEtext = Create_New_TEtextC the_window):

Add_Text_Data_To_Document(the_window. the_TEtext >:

Update_Window(the_window):

Saving a TEXT Document with "Save As"

Earlier in this chapter, when discussing the saving of a document as a
PICT file, the Handl e_Save_As_Choi ce() routine was developed.

425

More Mac Programming Techniques

There, I said that the function would be written in such a way that only
minimal changes would have to be made to it in order to save a docu­
ment to a file type other than PICT. Here you'll see that this is indeed
the case.

Handl e_Save_As_Choi ce() displays the standard Save dialog box
to let the user name the TEXT file. Then, a handle to the document's
data is obtained so that the file reference number can be saved to it.
From the SavePICTfile example, you've already seen all of the code nec­
essary to do this:

WindowPtr the_window;
long the_ref_con:
WindowDataHandle the_data;
StandardFileReply the_reply;

StandardPutFileC "\pSave as:". "\pUntitled". &the_reply):

if C the_reply.sfGood c:l3 false
return:

the_window = FrontWindow();
the_ref_con = GetWRefCon(the_window);
the_data - CWindowDataHandle)the_ref_con;

Next, the new file is created with a call to FSpCreate(). Here the creator
may differ from SavePICTfile and the file type will be TEXT instead of PICT.

FSpCreate(&the_reply.sfFile, 'svtf', 'TEXT', smSystemScript >:

~
N 0 T E

426

Notice that I say that the creator may differ. Remember, an
appllcatlon's creator Is the 4-character name that differenti­
ates the appllcatlon from other programs and is set In your
development environment. If your application creates flies, It
should give them the same creator type as the appllcatlon
so that the Finder wlll know that these flies "belong" to your
program. If your program saves both PICT files and TEXT
flies, then the calls to F Sp C re ate () will have the same cre­
ator (to match the application creator), but different flle
type names-one will be PICT, the other TEXT.

Chapter 7 Flies

After saving the file system specification, opening the file's data fork, and
then saving the file reference number, Handl e_Save_As_Choi ce()
calls an application-defined routine that does the actual writing of the
window's contents to the file. The following is the SaveTEXTfile version
of Handl e_Save_As_Choi ce(). The differences from the previous
version (found in SavePICTfile) have been marked in bold type.

void Handle_Save_As_Choice(void)
{

WindowPtr the_window:
long the_ref_con:
WindowDataHandle the_data:
StandardFileReply the_reply;
short ref _num:

StandardPutFileC "\pSave as:", "\pUntitled", &the_reply):

if (the_reply.sfGood -- false
return:

the_window - FrontWindow():
the_ref_con - GetWRefCon{ the_window >:
the_data - CWindowDataHandle)the_ref_con:

SetWTitleC the_window, the_reply.sfFile.name >:

if C the_reply.sfReplacing -- false)
FSpCreate{ &the_reply.sfFile, 'svtf', 'TEXT',

smSystemScript):

(**the_data).file_FSSpec - the_reply.sfFile:

if { C**the_data).file_ref_num !- 0)
FSCloseC C**the_data).file_ref_num);

FSpOpenDFC &C**the_data).file_FSSpec, fsRdWrPerm. &ref_num);

C**the_data).file_ref_num = ref_num;

Write_Text_Data_To_File(the_window >:
}

In SavePICTfile, the routine that wrote the data to disk was Write_
Picture_ Data_To_Fi 1 e(). Here, the function is Wri te_Text_

427

More Mac Programming Techniques

Data_ To_Fi le () . While these two routines differ, many of the Toolbox
functions they use are the same.

Wri te_Text_Data_To_Fi le() begins by getting a handle to the
document record of the window that is to be saved to a file. The docu­
ment record holds the window's text in a TEHandl e, and it's this text
that is to be saved.

WindowDataHandle
long
short
TEHandle

the_data:
wind_ref_con:
ref _num:
TE_handle:

wind_ref_con ~ GetWRefCon(the_window);

the_data = CWindowDataHandle)wind_ref _con:

ref _num - C**the_data).file_ref_num:

TE_handle = (**the_data).the_text:

A TE Hand l e is a handle to a TE Rec-a structure that has 30 fields. The
TE Rec, or text edit record, contains all of the information about a block
of text. You've already altered the values of two of these fields once
you've used the TENew() routine-it sets the destRect (destination
rectangle) and vi ewRect (view rectangle) fields for the text edit record.
The hText field is a generic handle to the actual text that can be edited.
This is the text that will be written to the text file. The hText handle will
also be used as the buffer in a call to FSWr i te () .

Handle text_buffer:

text_buffer - C**TE_handle).hText:

The FSWri te() function needs to know the number of bytes of infor­
mation to write. The telength field of the TE Rec holds this value:

long num_bytes:

num_bytes = C**TE_handle).telength:

428

Chapter 7 Files

Now, it's time for the write. Set the file mark to- the start of the file and
write the text:

SetFPos(ref_num , fsFromStart, 0);

FSWrite(ref_num , &num_bytes, C*text_buffer));

Finally, end by calling Set EO F () to resize the file to the number of bytes
written, GetVRefNum() to determine the volume that holds the file,
and Fl ushVol ()to flush the volume:

short vol_ref _num:

SetEOF(ref_num , num_bytes >:
GetVRefNum(ref_num , &vol_ref_num);
FlushVol(nil, vol_ref_num >:

Here's a look at the entire Wri te_Text_Data_To_Fi 1 e() function:

void Write_Text_Data_To_File(WindowPtr the_window
{

WindowDataHandle
1 ong
short
1 ong
TEHandle
Handle
short

the_data:
wind_ref_con:
ref _num:
num_bytes:
TE_handle:
text_buffer:
vol_ref _num:

wind_ref_con = GetWRefCon(the_window >:

the_data = CWindowDataHandle)wind_ref_con:

ref_num = (**the_data).file_ref_num:

TE_handle - (**the_data).the_text:
text_buffer - (**TE_handle).hText:
num_bytes - C**TE_handle).telength:_

SetFPos(ref_num, fsFromStart, 0 >:

FSWrite(ref_num, &num_bytes, C*text_buffer) >:

429

More Mac Programming Techniques

SetEOFC ref_num, num_bytes);
GetVRefNum(ref_num, &vol_ref_num);
FlushVol(nil. vol_ref_num >:

The SaveTEXTfile Source Code Listing

SaveTEXTfile runs much as SavePICTfile. After opening a new, empty win­
dow and adding text to it, the program gives the user the opportunity to
provide a name for the file that the document will be saved as. A new file is
then created and saved to disk by the call to Do_Save_As_Choi ce().
When the user clicks the mouse button, Do_Save_Choice() is called to
again save the file-this time without use of the standard Save dialog box.
After one more mouse click, the program terminates.

''~~~~~~~~~~~~~~~~~~~~~~~~~
II

void
WindowPtr
TEHandle
void
void
void
void
void

#define

function prototypes

Initialize_ToolboxC void >:
Do_New_Text_DocumentC void);
Create_New_TEtext(WindowPtr >:
Add_Text_Data_To_Document(WindowPtr. TEHandle);
Update_Window{ WindowPtr):
Handle_Save_As_Choice{ void >:
Handle_Save_Choice(void >:
Write_Text_Data_To_FileC WindowPtr >:

#define directives

WIND_ID 128

''~~~~~~~~~~~~~~~~~~~~~~~~~
II define data structures

typedef struct
{

TEHandle
long
FSSpec

the_text:
fil e_ref _num:
file_FSSpec:

WindowData, *WindowDataPtr, **WindowDataHandle:

430

Chapter 7 Flies

//~~~~~~~~~~~~~~~~~~~~~-
// main()

void main(void)
{

WindowPtr the_window:
TEHandle the_TEtext:

Initialize_Toolbox<>:

the_window - Do_New_Text_Document():
ShowWindow(the_window >:

the_TEtext - Create_New_TEtext(the_window >:

Add_Text_Data_To_Document(the_window. the_TEtext >:

Update_WindowC the_window):

Handle_Save_As_ChoiceC>:

Update_WindowC the_window >:

while C !Button())

Handle_Save_ChoiceC>:

while< !Button())

}

//~~~~~~~~~~~~~~~~~~~~~~~~-
// create a new text edit handle. add test text

TEHandle Create_New_TEtext(WindowPtr the_window)
{

TEHandle the_TEtext:
Rect dest_rect;
Rect view_rect:

SetPortC the_window >:
SetRect(&dest_rect. 20. 20. 100. 50 >:
view_rect - dest_rect:

the_TEtext - TENewC &dest_rect. &view_rect >:

431

More Mac Programming Techniques

TEKeyC 'a', the_TEtext >:
TEKey('b'. the_TEtext):
TEKey('c', the_TEtext):

return the_TEtext >:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II save file

void Handle_Save_Choice(void)
{

WindowPtr
long
WindowDataHandle

the_window:
the_ref _con:
the_data:

the_window - FrontWindowC):
the_ref_con - GetWRefCon(the_window):
the_data - CWindowDataHandle)the_ref_con;

if ((**the_data).file_ref_num !- 0)
Write_Text_Data_To_File(the_window >:

else
Handle_Save_As_Choice():

II~~~~~~~~~~~~~~~~~~~~~~~~~
II display the "Save As" dialog box, save file

void Handle_Save_As_Choice(void
{

WindowPtr the_window:
long the_ref_con;
WindowDataHandle the_data:
StandardFileReply the_reply:
short ref _num:

StandardPutFile("\pSave as:". "\pUntitled". &the_reply >:

if C the_reply.sfGood -= false
return:

the_window - FrontWindowC>:
the_ref_con - GetWRefConC the_window >:
the_data = CWindowDataHandle)the_ref_con:

SetWTitleC the_window. the_reply.sfFile.name):

432

Chapter 7 Files

if (the_reply.sfReplacing -- false)
FSpCreate(&the_reply.sfFile. 'svtf'. 'TEXT'.

smSystemScript >:

C**the_data).file_FSSpec - the_reply.sfFile:

if ((**the_data).file_ref_num != O)
FSClose((**the_data).file_ref_num >:

FSpOpenDFC &C**the_data).file_FSSpec, fsRdWrPerm. &ref_num >:

(**the_data).file_ref_num - ref_num:

Write_Text_Data_To_File(the_window);

''~~~~~~~~~~~~~~~~~~~~~~~~~
II write 'TEXT' data to an open file

void Write_Text_Data_To_File(WindowPtr the_window)
{

WindowDataHandle
1 ong
short
1 ong
TEHandle
Handle
short

the_data;
wind_ref_con;
ref _num:
num_bytes:
TE_handle:
text_buffer:
vol_ref _num:

wind_ref_con - GetWRefCon(the_window >:

the_data - (WindowDataHandle)wind_ref_con:

ref_num - C**the_data).file_ref_num:

TE_handle - C**the_data).the_text;
text_buffer = (**TE_handle).hText:
num_bytes - (**TE_handle).telength:

SetFPosC ref_num , fsFromStart, 0):

FSWrite(ref_num , &num_bytes. (*text_buffer) >:

SetEOFC ref_num , num_bytes >:
GetVRefNumC ref_num , &vol_ref_num):
FlushVol(nil, vol_ref_num):

433

More Mac Programming Techniques

II
II create a new, empty file

WindowPtr Oo_New_Text_Document(void)
{

WindowPtr the_window:
WindowDataHandle the_data:

the_window - GetNewWindow(WIND_ID, nil, CWindowPtr)-lL):

the_data = CWindowOataHandle)NewHandleClear(sizeof(WindowData));
(**the_data).the_text - nil:
(**the_data).file_ref_num - 0:

SetWRefConC the_window, Clong)the_data >:

return (the_window);

ll~~~~~~~~~~~~~~~~~~~~~~~~--
11 fill file data for one window

void Add_Text_Data_To_Document(WindowPtr the_window,
TEHandle the_TEtext)

WindowDataHandle the_data:
long wind_ref_con:

wind_ref_con - GetWRefCon(the_window >:

the_data - CWindowDataHandle)wind_ref_con:

(**the_data).the_text ~ the_TEtext:

ll~~~~~~~~~~~~~~~~~~~~~~~~--
11 update one window

void Update_Window(WindowPtr the_window
{

WindowDataHandle
1 ong
TEHandl e

the_data:
wind_ref_con:
TE_handle:

SetPortC the_window);

wind_ref_con - GetWRefConC the_window);

434

Chapter 7 Fines

the_data - CWindowDataHandle)wind_ref_con:

TE_handle - C**the_data).the_text:

EraseRectC &C*the_window).portRect):
TEUpdate(&C*the_window}.portRect. TE_handle):

CHAPTER SUMMARY

In an application, any window can be considered a document. If you
define a structure that serves as a document record, you can keep track
of individual documents so that your program can treat each individually.
The primary things you'll want to keep track of in a document record are
the contents of the document, such as a handle to the picture or text it
holds, and information necessary to save the document as a file. This file
information includes a file system specification, or FSSpec, for the file
so that your application can find the file by its file path. The other piece
of file-related information to keep in the document record is a file refer­
ence number so that the application can keep track of which (of possibly
several) open file it should work with.

To open an existing file, your program can use the Stand a rdGetFi 1 e()
function. This routine displays the standard Open dialog box that lets the
user select a file from a list of files. Once selected, a file can be opened and
its contents read by using File Manager routines such as FSRead ().

To save a document as a file, use the Toolbox routine Standard Put
Fi 1 e () . This function displays the standard Save dialog box that allows
the user to provide a name for the file that will hold the contents of a doc­
ument. After that, File Manager routines like FSWri te() should be used
to write the document contents to the disk file.

435

Chapter

PRINTING

In the previous chapter, you saw how to use files to provide users of your
Macintosh applications with the means to save program output. In this
chapter, you 'II see how to add a second data-saving feature to your Mac
applications. By adding printing capabilities, both text and graphics can
be sent to any printer that's attached to the user's computer.

In this chapter, you'll see how to display the two standard printing
dialog boxes found in many Mac programs. The Printing Style dialog box
allows the user to select page preferences such as page orientation. The
Printing Job dialog box lets the user specify the print quality and the
page range. Both of these dialog boxes can be brought to the screen
using Printing Manager routines that work for all printers that come with
a Macintosh printer driver.

437

More Mac Programming Techniques

Here, you'll see how to give your programs the power to print a pic­
ture stored in a resource file or a picture that is in its own PICT file. You'll
also see how text that exists as static text in an application's resource fork
can be brought into a program as a string and sent to the printer.

ABOUT PRINTING

When an application includes the ability to print files, it relies on the
Printing Manager. Just like the other system software managers, you'll use
the Printing Manager functions to standardize the way your application
looks and works.

The Printer Resource File

Like other Toolbox managers, the Printing Manager is a collection of sys­
tem software routines. Unlike the other managers, the code that makes
up each routine isn't found in ROM or in the System File. Rather, the
Toolbox printing routines are nothing more than empty shells. When
your application makes a call to a Toolbox printing function, the pro­
gram is directed to code that exists in a printer resource file.

When an application calls a routine from a manager other than the
Printing Manager, the program jumps to Toolbox code in ROM or in
the System File. The code that makes up that one routine-whatever
routine it is-is then carried out. If the call is to, say, Line (100, 0),
QuickDraw draws a line 100 pixels long to the current port. This is
true regardless of what kind of monitor is hooked up to the
Macintosh. For printers, this "one generic code works on all" principle
doesn't apply. There are countless third-party printers that can be
hooked up to a Macintosh, and no uniform standard of how Toolbox
calls should be handled by a printer. So Apple leaves it up to the man­
ufacturer of each printer to supply the code that makes the printing
functions work.

Every printer that works with a Macintosh comes supplied with a
printer resource file. This file, which is placed in the Extensions folder in

438

Chapter 8 Printing

the System Folder, holds the code that actually carries out Prin ting
Manager routines. The file, which has a name that often includes the
name of the printer, must be present in order for the printer to function .
Figure 8.1 shows several icons in an Extension folder. The four icons in
the top row are each printer resource files.

41 items

27 items

~
~

I mageWriter

[11
Quicklime""

System Folder
269.6 MB in di sk 54.6 MB available

fLQ1
~

LQ I mageWrite r

lJ
Speech Manager

l
EH tensions

269.6 MB in disk

ll
Personal Lase rWriter SC

w.i
~

Maci ntosh Drag and Drop

54.6 MB available

::r
Las·e rW rite r

~
Sound Ma nager

FIGURE 8.1 EXTENSIONS FOLDER ICONS, INCLUDING FOUR PRINTER RESOURCE FILE ICONS.

As you can see from Figure 8-1 , the Exten sions fo lder can ho ld more
than one printer resource file. Since each type of printer has its own
printer resource file, and since a Macintosh can have more than one
printer connected to it, a Mac can have more than one printer resource
fil e. T he printer (and thus the printer resource file) that a Macintosh
uses is governed by the Chooser program in the Apple menu.

The printer resource Lile holds several resource types. Resources of
type PDEF are printer definition functions-they hold the compiled
code that executes when a Printing Manager function is called. Figure
8.2 shows some of the PDEF resources found in a printer resource file
named DW 3. 1 (Serial). This file comes bundle d with the Hewlett
Packard DeskWriter printers.

What happens wh en a Mac application makes a call to a Prin ting
Manager routine? The call is routed to the printer resource file. There,

439

More Mac Programming Techniques

the code that makes up one of the many PDEF resources is loaded and
executed. Figure 8.3 illustrates this sequence of events.

0 10 1 110 1
00 10 100 1
0 11 0 10 10
000 1 111 0
0 1000060

PAPM

0 10 1 11 01
00 10 1001
0 1 10 10 10
0001 111 0
0 1000000

PAPS

OW 3. 1 (Serial)

01 01 11 0 1
0010 100 1
0 11 0 10 10
0001 1 11 0
0 1000000

§19==== PDEFs from OW 3.1 (Serial)

!Q. Size Name

-8001 10032
0 444
4 61 0
7 4378

20 666
33 3188
91 11326
92 7976

FIGURE 8.2 A PRINTER RESOURCE FILE CONTAINS NUMEROUS PDEF RESOURCES.

~
Z..:yApp

440

0
Toolbox

0
0 1011 101

0 0010 10 0 1

printing
0 001111 0

function
........

PDEF PIC•

FIGURE 8.3 A CALL TO A PRINTING MANAGER F\JNCTION IS

CARRIED OUT BY CODE IN A PDEF RESOURCE.

c§ .

Chapter 8 Printing

By having each printer manufacturer support all the same Printing
Manager routines, the burden of worrying about which printer is con­
nected to a user's system is lifted from the Macintosh software develop­
er. When you write an application that calls Printing Manager routines,
you won't have to consider the type of printer that any one user might
have. Instead, just make the function call. It will be up to the printer
resource file to handle that function call as is appropriate for that
printer.

As an example of how the programmer is shielded from printer
specifics, consider the Printing Manager function that displays the
familiar Style dialog box that is displayed when a user selects the Page
Setup menu item found in the File menu of many programs. The
Printing Manager function P rSt 1Dia1 og () is responsible for posting
this dialog box-an example of which is shown in Figure 8.4. This fig­
ure shows the dialog box displayed by the printer resource file for one
of the Hewlett Packard DeskWriter printers. Though the Style dialog
box looks similar for different printers, it is not identical. That's
because the code that displays the dialog box, and the DITL resource
that defines its look, is a part of each printer resource file, not a part of
the Macintosh ROM or System File. Figure 8.5 shows the DITL resource
for the Style dialog box displayed for a Hewlett Packard DeskWriter
printer. Notice that this DITL is present in the printer resource file for
the HP printer.

=O=e=sk=W==ri=te=r==Pa~g=e==Se=t=u=p=========================3==.1 n OK D
Media:

® US Letter O H4 Letter (Cancel)

O us Legal 0 Enuelope (Options]

Reduce/Enlarge:

lmo.rul3
(Help) Orientation:

D Saue as Def a ult

FIGURE 8.4 A TYPICAL PRINTING STYLE DIALOG BOX.

441

More Mac Programming Techniques

0 101 I IOI
0 0101001
0 110 1010
000 1 1110
0 1 0 0000

PAPM

-8192
-8191
-8190

01011 I OI
00 10 100 1
01 101010
0001 1110
0 1000000

PAPS

OW 3.1 (Serial)

~n0\1 1,.11111
.,,l:;.R(lllO)
CD Dl,2
RTt

PDEF

0 101 11 0 1
00 101001
0 11 0 I O l t
0001111 0
01000000

Dills from OW 3.1 (Serial)
Size

522
728

15

Na~ -

~Iii D Ill ID = -8192 from OW 3.1 (Serio I)
DeskWriter Page Setup

Media:
Ol Ql
Ol Ol

Orientation: Reduce/Enlarge:

0 3
D Saue as Default

!ii!!i!!i!i!i!ii!!!!ii! OK

[Cancel]

[Options]

[Help J

FIGURE 8.5 THE DITL THAT DEFINES THE PRINTING STYLE DIALOG BOX

IS FOUND IN THE PRINTING RESOURCE FILE.

The Printer Driver Resource

When a Toolbox printing routine like P rSt 1Dia1 og () is called, it's the
PDEF code in the printer resource file that actually gets executed. Many
printing routines, like PrStl Di al og(), don't perform any printing.
When it does come time to do the actual printing, it's another printer
r esource file resource that does the low-leve l work of translating
QuickDraw routines to instructions recognized by a printer. It's a driver
resource that handles this task of communicating with the printer. Each
printer resource file has a DRVR resource with an ID of -8192, usually
named .XPrint (see Figure 8.6).

442

Chapter 8 Printing

ow 3.1 (Serial)

w ••• • 1101 010 1110 1 01 0 1 I IOI 01011 10 1
ttlt lOOI 00 10 1001 OOIO I H I ,
01101010 0110 1010 0110 10 10 ,,. ... , 1110 M Ol 11 10 00011 1 10 - DTSL EDGE Errs FLGS

=· ORIJRs fr~DW 3.1 (Serial) Iii]
ID Size Name

"- -8192 5150 Dri ver: ".XPrint" ~

'<>
'i

FIGURE 8.6 THE .XPAINT DRVR RESOURCE COMMUNICATES WITH THE PRINTER.

PRINTING MANAGER FUNCTIONS

Like all of the Toolbox managers, the Printing Manager consists of a
wealth of functions. But to get started with printing, you' ll need to use
only a handful of them. In this section, you'll see the source code for a
program named MinimalPrint. When executed, this application prints a
string of text and a diagonal line (see Figure 8.7) . To accomplish this,
MinimalPrint uses the nine Printing Manager rou tines that you 'll find in
every Mac program that has the ability to print.

Printed using normal QuickDraw commands.

FIGURE 8. 7 THE OUTPUT FROM THE MINIMAi.PAiNT PROGRAM-A PAINTED PAGE.

443

More Mac Programming Techniques

The Print Record

Before printing, your application must create a print record. This record
holds information specific to the printer being used, such as its resolu­
tion, and information about the document that is to be printed, such as
scaling, page orientation, and the number of copies to print.

In C, the print record is represented by a st r u ct of the type
TP ri nt. Before any printing takes place, your application must allocate
memory for a TPri nt structure and obtain a handle-a THPri nt han­
dle-to that memory. You can make a call to the Memory Manager rou­
tine NewHandl e() or NewHandl eCl ear() to accomplish this. Include
the size of a print record as the parameter and cast the returned generic
pointer to a THPri nt handle:

THPrint Print_Record;

Print_Record = CTHPrint)NewHandleClear(sizeof(TPrint));

T I P

The T In THPrint stands for type and the H stands for handle.
You'll see this notation used throughout the functions of the
Printing Manager. This naming convention (called Hungarian
notation) was used by the Apple programmers lnltlally
Involved in writing the Printing Manager. Elsewhere in this
chapter, you'll see P for pointer and Pr for printer.

After creating a new print record, call the Printing Manager routine
Pr i n t Def au 1 t () to fill the record with default values. These values will
serve as initial values until the user selects Page Setup and Print from the
File menu of your application. The values entered in the corresponding
dialog boxes will overwrite some or all of the values supplied by
Pri ntDefaul t():

PrintDefault(Print_Record);

The MinimalPrint Source Code Listing

Normally, you'll find the source code listing for an example program
given at the end of the section. Because MinimalPrint is such a short

444

Chapter 8 Printing

listing, I'll provide the source code right up front. After the listing, I'll
give a thorough walk-through.

Aside from main (),there's only one application-defined function­
the same In it i a 1 i ze_ Too 1 box () routine you're accustomed to see­
ing. Since it's just a "copy and paste" routine, I've omitted its listing here.

#include <Printing.h>

void main(void)
{

THPrint
TPPrPort
TPrStatus

Print_Record;
printer_port:
printer_status:

Initialize_Toolbox();

Print_Record = CTHPrint>NewHandleClear(sizeof(TPrint) >:

PrOpen();

PrintDefault(Print_Record):

PrStlDialog(Print_Record);

PrJobDialog(Print_Record);

printer_port = PrOpenDoc(Print_Record. nil. nil >:

P rOpenPage (printer _port. n i 1) ;
Textfont(times);
TextSize(14);
MoveTo(10. 20 >:
Drawstring("\pPrinted using normal QuickDraw commands.");
MoveTo(50. 50);
Line(100, 30) :

PrClosePage(printer_port >:

PrCloseDoc(printer_port);

PrClose():

The Basic Printing Manager Functions

Now that you know that the code used to execute Printing Manager func­
tions resides in a resource file, you shouldn't be surprised to learn that

More Mac Programming Techniques

this resource file must be opened before its code can be accessed. The
Printing Manager function P rOpen () prepares the current printer
resource file for use. The current printer is whichever printer was last
selected in the Chooser program found in the Apple menu. Preparation
consists of opening both the Printing Manager and the printer resource
file for the current printer. When finished with the resource file, a call to
Pr C 1 o s e () closes the Printing Manager and the printer resource file.

~ Your application must balance a call to P rOpen () with a
~ calltoPrClose().

T I P

PrOpenDoc() initializes a printing graphics port. This graphics port isn't
associated with any window-it's associated with the printer. When a win­
dow's graphics port is current (by way of a call to Set Port()), drawing
takes place on the screen. When a printing graphics port is current (by
way of a call to PrOpenDoc()), drawing operations are routed to the
printer. Once a printing graphics port is current, all QuickDraw com­
mands are sent to the printer.

vVhen passed a handle to a print record, P rOpen Doc () allocates a
new printing graphics port and returns a TPPrPort to the application.
The TPPrPort is a pointer to a printing graphics port. PrOpenDoc()
requires a second and third parameter, each of which can normally be
set to n i 1 . The second parameter can be used when an application
wants to pass in a pointer to an existing printing graphics port, and the
third parameter can be used to allocate a particular area in memory to
serve as an input and output buffer.

Pr C 1 o s e Doc () closes a printing graphics port. Make a single call to
PrCl oseDoc() after the last page of a document has been sent to the
printer. Pass PrCl oseDoc() the pointer to the printing graphics port
that was returned by PrOpenDoc(). The PrCl oseDoc() call balances
the earlier call to PrOpenDoc ().

PrOpenPage() is used to begin printing a single page of a docu­
ment. Pass PrOpenPage() the pointer to the printing graphics port

446

Chapter 8 Printing

that was obtained in the PrOpenDoc() call. The second parameter is
used only for deferred printing-a delayed printing feature that is nor­
mally used only on older printers. You can usually set this parameter to
ni 1. After a call to PrOpenPage() is made, all of the QuickDraw com­
mands necessary to output one page of a document should be made.
After that, call PrCl osePage().

PrClosePage() signals the end of the current page. Once a call to
P r C 1 o s e Page () is made, the Printing Manager will stop ace um ulating
QuickDraw calls. Pr C 1 o s e Page () requires a single parameter-the
pointer to the printing graphics port that was returned by PrOpenDoc ().

You've probably noticed the pairing between "open" and "close"
Printing Manager functions. As shown in Figure 8.8, you'll want to bal­
ance PrOpen(), PrOpenDoc(), and PrOpenPage() with their closing
counterparts.

1

(:;\ Open and close the
~ Printing Manager

Print_Record = (THPrint)NewHandleClear

PrOpen();

PrintDefault(Print_Record);

PrStlDialog(Print_Record);

PrJobDialog(Print_Record);

printer_port = PrOpenDoc(Print_Record

PrOpenPage(printer_port, nil);

PrClosePage(printer_port);

PrCloseDoc(printer_port);

PrClose();

(;;\ Open and close a
\.V printing graphics port

{:;\ Op~n and close
~ a single page

FIGURE 8.8 EACH PRINTING MANAGER OPEN FUNCTION IS PAIRED WITH A CLOSE ROUTINE.

447

More Mac Programming Techniques

Besides the open and close calls, the MinimalPrint source code relies on
a few other Printing Manager routines. The first is Pr Def au 1 t () , which
you've already seen. PrDefaul t() initializes the members (such as
print resolution) of a TPri nt record. The values used in the initializa­
tion are dependent on the current printer driver and come from the dri­
ver's resource file. PrDefaul t() requires a single parameter-a handle
to a TPri nt record.

Before printing, you'll want to give the user the opportunity to speci­
fy printing style options. A call to Pr St 1 Di a l o g () displays a Style dia­
log box that allows the user to do just that. If your application has a Page
Setup menu item, make a call to P rSt 1Dia1 og () in response to a
user's selection of this menu item. For simplicity, MinimalPrint doesn't
include any menus, so the program simply brings this dialog box up near
the start of the program. As discussed earlier, the Style dialog box is
defined in the resource file of the printer driver, so its exact look is
dependent on the printer in use.

The Pr St 1 Di a 1 o g () function requires a handle to a T Pr i n t
record as its one parameter. If the user clicks the style dialog box OK but­
ton, the values entered in that dialog box (such as page orientation) will
be placed in the TPrint record. Pr St 1 Di a 1 o g () will then return a
value oft rue. If the user clicks the Cancel button, the TP ri nt record
will be unaffected and the routine will return a value offal s e.

T I P

Your application must make a call to Pr 0 pen () before
attempting to call any other Printing Manager routines,
Including P r St 1 Di a 1 o g () • If your application is supposed
to open the Style dlalog box, but doesn't, you probably failed
to Include a call to P rOpen () In the program.

Displaying the Style dialog box saves document printing information, but
not the number of copies or the range of pages to print. To do that, call
P rJ ob Di al og (). This routine will display the printing job dialog box.
Like the Style dialog box, the Job dialog box is defined in the printer
resource file. A call to PrJobDi al og() should be made in response to
a user's selection of the Print menu item in your application.

448

Chapter 8 Printing

PrjobDialog() accepts a handle to a TPri nt record as its only para­
meter. A mouse click on the dialog box's OK button results in the values
in the dialog box (such as number of copies to print) being entered into
the TPri nt record. PrJobDi al og () then returns a value of true to
the application. A click on the dialog box's Cancel button leaves the
TPri nt record untouched and returns a value offal se to the program.

Again, make sure that a call to Pr 0 pen () Is present some­
where In your appllcatlon's source code before calling a
Printing Manager routine.

T I P

About half of the code in MinimalPrint is devoted to the open and close
routines. Figure 8.9 adds remarks to the remaining lines of code in
MinimalPrin t.

Create print record

Initialize print record

Display the printer
style dialog box

Display the printer
job dialog box

Call QuickDraw
Toolbox functions

Print_Record = {THPrint)NewHandleClear

PrOpen();

PrintDefault(Print_Record);

PrStlDialog(Print_Record);

PrJobDialog(Print_Record);

printer_port = PrOpenDoc{ Print_Record

PrOpenPage(printer_port, nil);

PrClosePage{ printer_port);

PrCloseDoc(printer_port);

PrClose();

FIGURE 8.9 THE BASIC PRINTING MANAGER FUNCTIONS INCWDE CALLS TO INITIAUZE

PRINTING AND DISPLAY THE PRINTING DIALOG BOXES.

449

More Mac Programming Techniques

Running MinimalPrint

When you run MinimalPrint, you'll first see the Style dialog box. Figure
8.10 shows a typical example. You can change the page orientation and,
if your printer supports it, set the page reduction or enlargement per­
centage. After pressing the OK button, you'll see the Job dialog box
(Figure 8.11 gives an example). Here, you set the print quality. Because
MinimalPrint only calls PrOpenPage() and PrCl osePage() one
time, only one page will be printed, regardless of any values you enter in
the Page Range edit boxes. After pressing the OK button, MinimalPrint
will print a single page. The contents of the page are defined by the
code between the PrOpenPage() and PrCl osePage() calls. Though
it isn't necessary, I've indented the code between these calls to add some
emphasis to just where the printing code is located.

PrOpenPage(printer _port, nil) ;
TextFont(times);
TextSize(14);
MoveToC 10, 20);
Drawstring("\pPrinted using normal QuickDraw commands.");
MoveToC 50, 50);
line(100, 30) ;

PrClosePage(printer_port);

N O T E

450

Experiment with the code between Pr 0 pen Page () and
P r C 1 o s e Pa g e () . Add a few more QulckDraw calls, then
compile and run the program. As you do this, keep in mind
that a typlcal printer considers one page to be approximately
560 plxels In width and 720 pixels In height. Entering
QulckDraw commands (such as MoveTo() or SetRect())
that fall out of this range wlll result In text or objects that
get partially printed-or not printed at all.

Chapter 8 Printing

=O=es=k=W=r=it=e=r=P=a=g=e=S=et=u=p==========================3=.1 n OK B
Media:

® us Letter O R4 Letter (Cancel)
O us Legal 0 Enuelope (Options)

(Help) Orientation: Reduce/Enlarge:

·~ -3
D Saue as Default

FIGURE 8.10 MINIMALPRINT DISPLAYS THE PRINTING STYLE DIALOG BOX

SIMILAR TO THIS HP DESKWRITER VERSION.

OeskWriter n D ==3=.1 OK
Quality: Pages:

O Best ® Rll (Cancel)

®Normal 0 From: D To: D (Preuiew)
0 Draft

Copies: Page Order: (Help
1£1•1 D Print Back to Front

FIGURE 8.11 MINIMALPRINT DISPLAYS A PRINTING Joa DIALOG BOX,

LIKE THIS HP DESKWRITER VERSION.

Printing Pictures

As long as a printing graphics port is current-rather than a "normal"
graphics port-QuickDraw calls will be routed to the printer. To print text
you can use DrawSt ring (), and to print graphics you can use calls to
such routines as Line (), FrameRect (), and Fi 11 Re ct (). To print
more sophisticated graphics, you can use a call to Draw Pi ct u re () to
print any picture that's saved as a PICT resource.

451

More Mac Programming Techniques

The PrintPICT program listing that appears a few pages ahead is a
derivation of MinimalPrint. Instead of a few QuickDraw calls between
PrOpenPage() and PrCl osePage(), PrintPICT calls an application­
defined routine named Draw_Stuff _To_Port():

PrOpenPage(printer_port. nil >:

Draw_Stuff_To_Port(pict_ID);

PrClosePage(printer_port);

Using the passed-in picture ID, Draw_Stuff _ To_Po rt () first gets a
handle to a PICT resource. Then the function sets a boundary rectangle
to hold the picture and draws the picture to the current port using a call
to D raw Pi ct u re () :

void Draw_Stuff_To_Port(short pict_ID)
{

PicHandle
Re ct
short
short
short

pict_handle:
pict_rect:
pict_width:
pict_height:
L, R, T. B:

pict_handle - GetPicture(pict_ID >:

pict_rect - C**pict_handle).picFrame:
pict_width a pict_rect.right - pict_rect.left:
pict_height - pict_rect.bottom - pict_rect.top:

L = 75:
R = L + pict_width:
T = 50:
B = T + pict_height:
SetRect(&pict_rect. L, T. R. B >:

DrawPicture(pict_handle, &pict_rect >:

ReleaseResource((Handle)pict_handle >:

The pi c Fr a me field holds a rectangle that serves as the boundary of the
retrieved PICT. From that rectangle the width and height of the picture

452

Chapter 8 Printing

are extracted. Using these values, a rectangle can be established such
that th e pi ctu re can be prin ted to any par t of t h e page. T he
Draw_ Stuff _ To_ Port() function will place the picture 75 pixels in
and 50 pixels down on the page. Because the (0, 0) coordinate of a page
doesn't appear in the very upper-left corner of a page, the picture will
actually be set in and down a little. As shown in Figure 8.12, printers gen­
erally leave about a quarter of an inch margin on a page.

FIGURE 8.12 PRINTERS LEAVE A SMALL MARGIN ON EACH SIDE OF A PRINTED PAGE.

N 0 T E

You may have noticed that the Dr aw_ St uff _ To_ Port ()
routine doesn't call any Printing Manager functions. That
means that this same routine can be used to draw to either
a window or a printer. Whichever port is active at the t ime of
the call will receive the output. That means this one routine
could be used to update a window and send Its contents to a
printer. If a call to Draw_ St uff _ To_ Port() was preceded
by a call to Set Po rt () , the picture would be drawn to the
active window rather than to the printer:

WindowPtr the_window;

the_window - GetNewWindow(128 , nil . (Wi ndowPtr) - lL);
SetPort(the_window) ;
Draw_Stuff_To_Port(128);

453

More Mac Programming Techniques

The PrintPICT includes all of the basic Printing Manager function calls
that you saw in the MinimalPrint listing. Only one of these calls differs
here-the call to PrJobDi al og(). This function returns a value-a
value that was ignored in MinimalPrin t. The returned Boo l ea n value
signals whether or not the Job dialog box OK button was clicked. If it
wasn't, then the user canceled printing. The simplistic PrintPICT pro­
gram handles this case by terminating. If the OK button was clicked, a
value of true will be returned by PrJobDialog() and the program
will continue:

Boolean do_print;

II Other Printing Manager calls here

do_print = PrJobDialog(Print_Record >:

if (do_print == false
ExitToShell() :

If you followed MinimalPrint, the rest of PrintPICT will look very familiar
to you. Here's the listing:

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// main()

void main(void)
{

THPrint
TPPrPort
TPrStatus
Boolean
short

Print_Record:
printer_port:
printer_status;
do_print:
pi ct_ID - 128:

Initialize_Toolbox();

Print_Record = CTHPrint)NewHandleClearC sizeof(TPrint));

PrOpen():

PrintDefault(Print_Record);

PrStlDialog(Print_Record >:

454

Chapter 8 Printing

do_print = PrJobDialog(Print_Record);

if (do_print == false)
ExitToShel l () ;

printer_port = PrOpenDoc(Print_Record. nil. nil);

PrOpenPage(printer _port. nil) ;

Draw_Stuff_To_Port(pict_ID);

PrClosePage(printer_port);

PrCloseDoc(printer_port):

PrClose();

//~~~~~~~~~~~~~~~~~~~~~-
// QuickDraw commands to be sent to a port

void Draw_Stuff_To_Port(short pict_ID
{

PicHandle
Re ct
short
short
short

pict_handle:
pict_rect:
pict_width:
pict_height:
L. R. T. B;

pict_handle = GetPicture(pict_ID);

pict_rect = (**pict_handle).picFrame;
pict_width = pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top:

L = 30:
R = L + pict_width:
T = 50;
B = T + pict_height;
SetRect(&pict_rect. L. T. R. B):

DrawPicture(pict_handle. &pict_rect);

ReleaseResource(CHandle)pict_handle);

455

More Mac Programming Techniques

P RINTING A DOCUMENT

The two pr inting example programs you've seen so far don't use win­
dows. Instead, words and graphics mysterio u sly appear on a printed
page. To the user, the re's no ap parent orig in of th e graphics that get
printed. A more realistic use of prin ting would be for an application to
send the contents of a window to the prin ter; the Pr intPICTdoc program
does that.

When Prin tPICTdoc runs, the user sees the standard Get File dialog
box d iscussed in Chapter 7. And again as in Chapter 7, the dialog box is
used here to open a PICT file. Figure 8.13 shows the d ialog box with the
names of three sample PICT files.

le Printin9 PICT docs t ... , E:J Hard Disk 340

D eWorld.PICT {} Eject

D Person.PI CT Desktop

(Cancel)

0 n Open ~
FIGURE 8.13 PRINTPICTDOC DISPLAYS THE STANDARD GET FILE DIALOG BOX

TO ALLOW THE USER TO OPEN A PICT FILE.

Selecting a file to open brings a window to the screen. It holds the con­
tents of the PICT fil e . After the window opens, the Style dialog box
appears. Clicking its OK button brings up th e Printing J ob dialog box
(sec Figure 8.14).

Clicking the OK button dismisses the J ob d ialog box. Then the con­
tents of the window are sent to the printer.

456

Chapter 8 Printing

DeskWriter Page Setup ~ . 1 ~ OK ~ Media:
®US Letter 0 R4 Letter (Cancel)
0 US Legal 0 Enuelope

(options)

Orlen ta ti on: Reduce/ Enlarge: [Help)

UI [l§J] ~%

0 Saue as Default

DeskWrlter 3 .1 n OK ,
Quality: Pages:

O Best @All (Cancel)

®Normal O From: CJ To: CJ (Preuiew)
0 Draft

Copies: Page Order: Help

[ii] O Print Back to Front

FIGURE 8.14 PRINTPICTDOC DISPLAYS FIRST THE STYLE DIALOG BOX,

THEN THE Joe DIALOG BOX.

r21
N 0 T E

The purpose of PrintPICTdoc is to demonstrate how the con­
tents of a window can be printed. To keep things straight­
forward, there isn't much of an interface. To see a docu­
ment printing example that includes a menu and multiple,
movable windows, keep reading this chapter!

Walking Through PrintPICTdoc

PrintPICTdoc consists of main () and several short application-defined
routines. Here's the listing for main () :

void main(void)
(

Wi ndowPtr the_window;

457

More Mac Programming Techniques

PicHandle the_picture:

Initialize_Toolbox():
Initialize_Printing():

the_picture = Load_Picture_From_PICT_DocC>:
Open_Picture_Display_Window(the_picture >:

PrOpen():
PrStlDialog(Print_Record >:
PrCl ose():

the_window = FrontWindow():
Do_Print_Window(the_window):

while (!Button())

}

main () begins by initializing the Toolbox and a print record. Initializing
the print record consists of allocating memory for it and setting the record
members to default values. A new routine, Initial i ze_Pri nti ng(),
takes care of this.

void Initialize_Printing(void)
(

Print_Record = CTHPrint)NewHandleClearC sizeof(TPrint) >:
PrOpen():
PrintDefaultC Print_Record):
PrClose():

Notice that In it i a 1 i ze_P ri nt i ng () nests the callto P ri ntDef au 1 t ()
between calls to PrOpen() and PrCl ose(). Remember, the printer
resource file must be open before a Printing Manager call can be made. In
previous examples, PrOpen () was called at the start of the program and
Pr C 1 o s e () was called at the end. While that approach works for both sim­
ple and large applications, for the larger application you might want to con­
sider the tactic used here.

458

Chapter 8 Printing

When an application launches, its application fork is opened by the sys­
tem. When PrOpen () is called, the printer resource file is opened. At that
point, the program has two resource files open. When making certain
Toolbox calls, this has to be kept in mind. Most Toolbox functions that use
resources search all open resource files and search the current resource file
first. If the printer resource file is open, it will be included in the search.
Since different resources of the same type can have the same ID (provided
they reside in different resource files), your application could end up using
the wrong resource. Additionally, a call to GetlResource(), which
searches only the current resource file, could fail to find a specified
resource if the printer resource file is current rather than the application
resource fork. If you close the printing resource after using it, you usually
won't have to be concerned with which file is current.

With initialization complete, main() calls Load_Picture_From_
PI CT _Doc () to display the standard Get File dialog box. After a PICT
file selection is made, the routine loads the picture and returns a handle
to it. After that, ma i n () passes this Pi c Hand l e to a routine named
Open_Picture_Display_Window():

the_picture - Load_Picture_From_PICT_Doc();
Open_Picture_Display_Window(the_picture >:

Open_Pi cture_Di spl ay_Wi ndow() uses the pi cFrame field of the
Picture record to get the size of the picture. Then it opens a window,
displays the picture that the_pi ctu re references, and resizes the win­
dow so that it is the same size as the picture. Open_Pi cture_
Di spl ay_Wi ndow() uses a handy Toolbox routine named SetWi ndow
Pi c () to draw the picture to the window. When SetWi ndowPi c C) is
passed a pointer to a window and a handle to a picture, it establishes a
link between the two. It does this by adding the picture handle to the
wi ndowPi c field of the Wi ndowReco rd that the window pointer points
to. Once that is done, updating the window is no longer a concern of the
programmer. Instead, the Window Manager will redraw the picture any
time the window needs updating.

419

More Mac Programming Techniques

void Open_Picture_Display_WindowC PicHandle the_picture)
{

Rect pict_rect:
short pict_width:
short pict_height:
WindowPtr the_window:

pict_rect = C**the_picture).picFrame:
pict_width = pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top:

the_window = GetNewWindowC WIND_ID, nil. CWindowPtr)-ll >:
SetWindowPic(the_window, the_picture):
SetPortC the_window):
SizeWindow(the_window, pict_width, pict_height, false):
ShowWindowC the_window >:

~
N 0 T E

The functionality of Load_Pi cture_From_PICT_Doc() and
Open_Pi cture_Di spl ay_Wi ndow() could easily have
been combined Into one routine. That is, a single function
could have loaded the picture and then opened a window and
displayed that picture. By using two functions, though, things
are kept more generic, which Is a desirable feature. Now
Open_Pi cture_Di spl ay_Wi ndow() can be used to display
any picture, whether that picture is from a PICT document
that was opened or from a PICT resource in a resource file.
Open_Pi cture_Di spl ay_Wi ndow() doesn't care where
the Pi c Hand l e It uses comes from. And while PrlntPICTdoc
doesn't use Open_Pi cture_Di spl ay_Wi ndow() in these
different ways, the application that you Copy and Paste the
routine to might!

After a window has been opened, main () calls Pr St l Di al og () to dis­
play the Style dialog box. After the Style dialog box is dismissed, a rou­
t inc named Do_Pri nt_Wi ndow() is called to print the contents of the
window. This routine looks similar to the main () routine of the simpler
l\'1inima1Print program presented earlier in this chapter.

460

Chapter 8 Printing

void Do_Print_Window(WindowPtr the_window)
{

TPPrPort
TPrStatus
Boolean

PrOpen():

printer_port:
printer_status:
do_print:

do_print = PrJobDialog(Print_Record):

if (do_print ==false)
return :

printer_port - PrOpenDoc(Print_Record, nil. nil):

PrOperiPage(printer_port, nil):

Draw_Stuff_To_Port(the_window):

PrClosePage(printer_port):

PrCloseDocC printer_port >:

PrClose();

Do_Pri nt_Wi ndow() is designed to print the contents of a window, so it
accepts a Wi ndowPtr as its only parameter. Before calling Do_Pri nt_
Window(), main() uses the Toolbox routine FrontWindow() to get a
pointer to the window. In a Macintosh application that has multiple win­
dows open, it's the front window that gets printed. Though PrintPICTdoc
only opens a single window, the call to FrontWi ndow() hints at how an
application that works with multiple windows determines which window
should get printed.

To specify what is to be printed, Do_Pri nt_Wi ndow() relies on the
familiar Draw_Stuff_To_Port() routine. In this version of the function,
the contents of a window are sent to the printer. To get a handle to the pic­
ture to draw to the printing graphics port, Draw_Stuff _To_Port() relies
on a routine that is the companion to SetWi ndowPi c()GetWi ndowPi c().
When passed a Wi ndowPtr, GetWi ndowPi c () returns the Pi cHandl e
that is found in the window's wi ndowPi c field. After that, it's a simple matter
to get the framing rectangle and use that Rec t in a call to Draw Pi ct u re () .

481

More Mac Programming Techniques

void Draw_Stuff_To_Port(WindowPtr the_window
{

PicHandle the_picture:
Rect pict_rect:

the_picture = GetWindowPicC the_window):
pict_rect = C**the_picture).picFrame:

DrawPicture(the_picture, &pict_rect >:
}

The PrintPICTdoc Source Code Listing

Because PrintPICTdoc uses only one resource, a WIND that defines the
window that will hold the picture, the project's resource file wasn't shown
here. Instead, it's time to take a look at the PrintPICTdoc source code.

#include directives

#include <Printing.h>

void
void
PicHandle
void
void
void

/tdef i ne

function prototypes

Initialize_Toolbox(void):
Initialize_Printing(void);
Load_Picture_From_PICT_Doc(void);
Open_Picture_Display_Window(PicHandle):
Do_Print_Window(WindowPtr):
Draw_Stuff_To_Port(WindowPtr >:

#define directives

WIND_ID 128

II~~~~~~~~~~~~~~~~~~~~~~~~~
II global variables

THPrint Print_Record:

462

Chapter 8 Printing

II~~~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

WindowPtr the_window;
PicHandle the_picture;

Initialize_Toolbox();
Initialize_Printing();

the_picture - Load_Picture_From_PICT_Doc();
Open_Picture_Display_Window(the_picture);

PrOpen():
PrStlDialog(Print_Record);
PrClose();

the_window - FrontWindow<>:
Do_Print_Window(the_window);

while (!Button() >

II~~~~~~~~~~~~~~~~~~~~~~~~~
II set up a print record

void Initialize_Printing(void)
{

Print_Record - CTHPrint)NewHandleClear(sizeof(TPrint >);
PrOpen();
PrintDefaultC Print_Record);
PrClose();

II~~~~~~~~~~~~~~~~~~~~~~~~~
II get a handle to a picture from a PICT document

PicHandle Load_Picture_From_PICT_DocC void
{

SFTypeL i st
StandardFileReply
short
long

type_list - { 'PICT'. 0, O. 0 };
reply;
pict_ref_num - O;
file_length;

463

More Mac Programming Techniques

Size
Handle
PicHandle

pict_size:
temp_handle ~ nil:
the_picture:

StandardGetFil e(nil. 1. type_l i st. &reply) ;

if (reply.sfGood -= false)
ExitToShell();

FSpOpenDFC &reply.sfFile. fsRdPerm, &pict_ref_num >:

GetEOFC pict_ref_num. &file_length):
SetFPos(pict_ref_num. fsFromStart. 512):

pict_size - file_length - 512;

temp_handle = NewHandleClear(pict_size);

HLock(temp_handle):
FSRead(pict_ref_num. &pict_size. *temp_handle);

HUnlock(temp_handle);

the_picture = (PicHandle)temp_handle;

return (the_picture):

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// open a document and display a picture

void Open_Picture_Display_Window(PicHandle the_picture)
{

Re ct
short
short
WindowPtr

pict_rect;
pict_width:
pict_height;
the_window;

pict_rect - (**the_picture).picFrame:
pict_width = pict_rect.right - pict_rect.left;
pict_height = pict_rect.bottom - pict_rect.top;

the_window - GetNewWindow(WIND_ID. nil. CWindowPtr)-lL);
SetWindowPic(the_window. the_picture);
SetPort(the_window >:
SizeWindowC the_window. pict_width. pict_height. false):
ShowWindowC the_window):

464

Chapter 8 Printing

DrawPicture(the_picture, &pict_rect >:
}

II~~~~~~~~~~~~~~~~~~~~~~~~~
II handle a print request

void Do_Print_Window(WindowPtr the_window)
{

}

TPPrPort
TPrStatus
Boolean

PrOpen();

printer_port:
printer_status:
do_print:

do_print - PrJobDialog(Print_Record >:

if C do_print """"' false >

return :

printer_port - PrOpenDocC Print_Record, nil, nil >:

PrOpenPage(printer _port, nil) :

Draw_Stuff_To_Port(the_window >:

PrClosePageC printer_port >:

PrCloseDoc(printer_port):

PrCl ose():

II~~~~~~~~~~~~~~~~~~~~~~~~~
II QuickDraw commands to be sent to a port

void Draw_Stuff_To_Port(WindowPtr the_window)
{

}

PicHandle the_picture:
Rect pict_rect:

the_picture - GetWindowPic(the_window >:
pict_rect - C**the_picture).picFrame:

DrawPictureC the_picture, &pict_rect):

485

More Mac Programming Techniques

MULTIPLE WINDOWS AND PRINTING

Now that you have a firm grasp of which Printing Manager routines are
the primary ones, and how those functions are used, it's time to take a
look at printing in a "real" Macintosh application. PrintPICTdocll is a
program that, like its predecessor PrintPICTdoc, opens a PICT file and
displays the file 's picture in a window. This new version of the program ,
however, also includes a menu bar, allows for multiple, draggable win­
dows to be open, and supports printing of those windows. Figure 8.15
shows PrintPICTdocll with three picture windows open at the same time.

s File

FIGURE 8.15 PRINTPICToocll ALLOWS MULTIPLE WINDOWS

TO BE OPEN AT ANY GIVEN TIME.

PrintPICTdocll has a File menu with five items. The Open item displays the
standard Get File dialog box that lets the user select a PICT file to open. The
Close item closes the active window. Page Setup displays the Printing Style
dialog box, while Print displays the Printing Job dialog box and sends the
contents of the active window to the printer. The last item, Quit, ends the
program. Figure 8.16 shows the PrintPICTdocII File menu. The right side of
the figure shows what the menu looks like when no windows are open.

466

Chapter 8 Printing

Open .•• 380 Open ••• 380

Close 38W Close 8€W

Page Setup ... Page Setup ...
Print... 38P Print... 38P

Quit 38Q Quit OOQ

FIGURE 8.18 THE PRINTPICTDOCll FILE MENU HAS ITEMS THAT WILL

DIM WHEN NO DOCUMENTS ARE OPEN.

The PrintPICTdocll Resources

PrintPICTdocll requires just a few resources. Two MENU resources (see
Figure 8.17) define the applications menus. The one MBAR resource pic­
tured in Figure 8.18 groups those menus together to form a single menu
bar. The last resource is a WIND with an ID of 128. Since the program
will resize the window to match the size of the picture it displays, its
resource size is unimportant.

The PrintPICTdocll Interface

To work with menus and windows, PrintPICTdocII relies on several rou­
tines that aren't printing related, which I will describe in this section.
Here's a look at how things get started:

void main(void)
{

Initialize_Toolbox();

Initialize_Printing();

Set_Up_Menu_Bar();

while (All_Done ==false
Handle_One_Event():

467

More Mac Programming Techniques

PrintP ICTdocl l.Ti.rsrc

~
LlJ

MBAR MENU WINO

MEN Us from PrintP I CT doc 11 . Tr .rs re

1rc1_____ ii!:~ -----~:----1

Close sew
~Iii MENU ID - 129 from PrlntPICTdocll.n.rsrc

m I
--~.~~n ... :·-·-·-····-··-·-···--·-···--·--~-~- ~ I

Close se w I
____ ,, , _ - - l

Page Setup... I
Print... SC P i

... i

Quit se q I
I

~ ,

Entire Menu: 181 Enabled

Title: @ ~I F_il_e ________ ~
0 s (Rpple menu)

Color

Title: I l
Item TeHt Default: I l
Menu Background: D

FIGURE 8.17 THE MENU RESOURCE usED FOR THE PR1NTPICToocll FILE MENU.

.___

468

MBA Rs from PrintPICTdocl I. Tf.I

!Q. Size Name

128 6 l
=i.- MORR ID 128 from PrlntPICTdocll.11.rsrc

II Of menus 2

1) *****
Menu res ID I 128 I
2) *****

Menu res ID 11 29 I
3) *****

FIGURE 8.18 THE MBAR RESOURCE USED TO DEFINE THE MENUS

IN THE PRINTPICToocll MENU BAR.

~

tzy
'i1

Chapter 8 PrlntDng

The first three routines provide basic program set up. In i ti al i z e_
Tool box () and Initial i ze_P ri nt i ng () you've seen before.
Set_Up_Menu_Bar() loads the MBAR resource, sets it up, then displays
the menu bar at the top of the screen. After that, the never-ending event
loop starts to cycle, calling Hand l e_One_Event () each time.

void Handle One Event(void) { - -
Adjust_Menus();

WaitNextEvent(everyEvent. &The_Event, 15L, OL);

switch (The_Event.what)
{

case mouseDown:
Handle_Mouse_Down();
break;

case keyOown:
Handle_Keystroke();
break;

Handl e_One_Event() begins by calling Adjust_Menus() to either
enable or disable the File menu items. If a window is open, then the Close,
Page Setup, and Print items should be active. If no windows are open, then
these items of course do not apply-and should be dimmed.
Adj ust_Menus ()bases its decision on whether to enable or dim the menu
items on the result of a call to the Toolbox routine FrontWi ndow(). If
FrontWi ndow() returns ni 1, there are no open windows, and the items
should be disabled.

While each call to Hand l e_One_Event () captures the most recent
event (by means of Wai tNextEvent ()), PrintPICTdocll only responds to
mouseDown and key Down events. If the event is a mouse button click,
Handl e_Mouse_Down () is called to drop a menu, or select, move, or close
a window-whichever is appropriate based on the cursor location at the time
of the mouse click. If the event involves a key press instead,
Handl e_Keystroke () is called to determine if the user has pressed a
menu command key equivalent. If that is the case, Handl e_Keystroke()
treats the key press as a menu selection.

489

More Mac Programming Techniques

If a mouse click involves a menu item, Handl e_Menu_Choi ce()
will be called. This function in turn calls Handl e_Appl e_Choi ce() or
Handl e_Fi 1 e_Choi ce()-whichever is appropriate.

Because the previous routines consist of code basic to most Mac pro­
grams, I didn't include their listings here in the discussion. Instead, refer
to the source code listing several pages ahead. To make up for the omis­
sion, Figure 8.19 provides a flow diagram of how these routines interact.

I Handle_One_Event () I

Adj us t_Menu () Handle_Keystroke() I

Handle_Mouse_Down()

I Handle_Menu_Choice() I
I

l
Handle_Apple_Choice() I Handle_File_Choice()

FIGURE 8.19 THE PRINTPICTDOCll EVENT LOOP AND

THE HIERARCHY OF ROUTINES IT INVOKES.

Handling Selections from the File Menu

When the user selects an item from the File menu, Handl e_Fi 1 e_
Cho i c e () gets called. You should be able to quickly recognize the code
under each Case label; you've seen it all before in this chapter.

470

Chapter 8 Printing

void Handle_File_Choice(short the_item
{

}

WindowPtr the_window;
PicHandle the_picture = nil:

switch C the_item)
{

case OPEN_ITEM:
the_picture = Load_Picture_From_PICT_Doc();
if (the_picture != nil)

Open_Picture_Display_Window(the_picture);
break;

case CLOSE_ITEM:
the_window = FrontWindow();
CloseWindow(the_window);
break;

case PAGE_SETUP_ITEM:
PrOpen();
PrStlDialog(Print_Record);
PrClose();
break;

case PRINT _ITEM:
the_window = FrontWindow();
Do_Print_Window(the_window);
break;

case QUIT_ITEM:
All_Done = true;
break;

If the user selects Open from the File menu, the Load Picture
From_PICT_Doc() and Open_Pi cture_Di spl ay_Wi ndow() routines
are called. These two functions are responsible for loading a user-selected
PICT to memory and then displaying that picture in a new window. This ver­
sion of Load_Pi cture_From_PICT_Doc() is identical to the previous
one, with the exception of one line. Instead of calling Exi tTo She 11 () if
the user clicks the Cancel button in the standard Get File dialog box,
Load_Pi cture_From_PICT_Doc() returns a value of ni 1 to the calling
function:

471

More Mac Programming Techniques

if (reply.sfGood false
return (nil);

The result is that the_picture variable in Handl e_Fi 1 e_Choi ce() gets
a value of ni 1, and call to Open_Pi cture_Di spl ay_Wi ndow() is
skipped. If the user went ahead and selected a PICT file to open, the rou­
tine to open the picture display window will be called. Incidentally,
Open_Pi cture_Di spl ay_Wi ndow() is identical to the earlier version
that you saw.

case OPEN_ITEM:
the_picture - Load_Picture_From_PICT_Doc();
if (the_picture !=nil)

Open_Picture_Display_Window(the_picture);
break:

To handle a Page Setup selection, the Printing Manager routine PrStl
Di a 1 og () is called. Since the printer resource file isn't being left open
for the duration of the program, it's necessary to first open it:

case PAGE_SETUP_ITEM:
PrOpen():
PrStlDialog(Print_Record);
PrClose():
break;

A menu choice of Print results in a call to Do_Pri nt_Wi ndow(). But
fir.st, the active window is determined through a call to FrontWi ndow().
The result of that call is passed to Do_Pri nt_Wi ndow(). Do_Pri nt_
W i n d OW () looks just as it did earlier in this chapter-it displays the Job
dialog box and calls Draw_Stuff_To_Port() to dump the picture to
the printer.

case PRINT_ITEM:
the_window = FrontWindow<>:
Do_Print_Window(the_window);
break:

The code used to handle the Close and Quit menu items should be self­
explanatory.

472

Chapter 8 Printing

The PrintPICTdocll Source Code Listing

The following is the complete source code listing for the PrintPICTdocll
example.

#include directives

#include <Printing.h>

II~~~~~~~~~~~~~~~~~~~~~
II

void
void
void
PicHandle
void
void
void
void
void
void
void
void
void
void

II
II

//define

//define

//define
//define

//define
//define
//define
/ldefi ne
//define

function prototypes

Initialize_Toolbox(void);
Initialize_Printing(void);
Set_Up_Menu_BarC void);
Load_Picture_From_PICT_Doc(void >:
Open_Picture_Display_WindowC PicHandle);
Do_Print_WindowC WindowPtr);
Draw_Stuff_To_Port(WindowPtr);
Handle_One_Event(void);
Handle_KeystrokeC void);
Handle_Mouse_DownC void);
Handle_Menu_Choice(long);
Handle_Apple_Choice(short >:
Handle_File_ChoiceC short);
Adjust_MenusC void >:

WIND_ID

MENU_BAR_ID

APPLE_MENU_ID
SHOW_ABOUT_ITEM

FI LE_MENU_ID
OPEN_ITEM
CLOSE_ITEM
PAGE_SETUP _ITEM
PRINT_ITEM

/ldefi ne directives

128

128

128
1

129
1
3
5
6

473

More Mac Programming Techniques

#define QUIT_ITEM 8

II~~~~~~~~~~~~~~~~~~~~~~~~~
II

TH Print
Boolean
EventRecord

global variables

Print_Record:
All_Done =false:
The_Event:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II

void main(void)
{

Initialize_Toolbox();

Initialize_Printing();

Set_Up_Menu_Bar();

while (All_Done-= false
Handle_One_Event():

main()

II~~~~~~~~~~~~~~~~~~~~~~~~~
II set up a print record

void Initialize_Printing{ void)
{

Print_Record - CTHPrint)NewHandleClearC sizeof(TPrint));
PrOpen();
PrintDefault(Print_Record >:
PrClose{):

II~~~~~~~~~~~~~~~~~~~~~~~~~
II set up menu bar and menus

void Set_Up_Menu_Bar(void)
{

Handle menu_bar_handle:
MenuHandle apple_menu_handle:

474

Chapter 8 Printing

}

menu_bar_handle - GetNewMBarC MENU_BAR_ID);

SetMenuBar(menu_bar_handle);
DisposHandleC menu_bar_handle);

apple_menu_handle = GetMHandle(APPLE_MENU_ID);
AddResMenuC apple_menu_handle, 'DRVR');

DrawMenuBar();

II~~~~~~~~~~~~~~~~~~~~~~~~~
II · get a handle to a picture from a PICT document

PicHandle Load_Picture_From_PICT_Doc(void
{

SFTypelist
StandardFileReply
short
long
Size
Handle
PicHandle

type_list - { 'PICT'. O. O. 0 };
reply;
pict_ref_num - 0:
file_length:
pict_size:
temp_handle =nil;
the_picture;

StandardGetFile(nil. 1. type_list. &reply >:

if (reply.sfGood ===- false)
return (nil) ;

FSpOpenDFC &reply.sfFile. fsRdPerm. &pict_ref_num);

GetEOFC pict_ref_num. &file_length >:
SetFPosC pict_ref_num. fsFromStart. 512 >:

pict_size = file_length - 512:

temp_handle - NewHandleClear(pict_size);

HLockC temp_handle >:
FSRead(pict_ref_num. &pict_size. *temp_handle >:

HUnlockC temp_handle >:

the_picture - C PicHandle)temp_handle:

return (the_picture);

475

More Mac Programming Techniques

II
II open a document and display a picture

void Open_Picture_Display_WindowC PicHandle the_picture)
{

}

II

Re ct
short
short
WindowPtr

pict_rect:
pict_width:
pict_height:
the_window:

pict_rect = {**the_picture).picFrame:
pict_width = pict_rect.right - pict_rect.left:
pict_height = pict_rect.bottom - pict_rect.top:

the_window = GetNewWindow(WIND_ID, nil. CWindowPtr)-lL):
SetWindowPic(the_window, the_picture):
SetPortC the_window):
SizeWindow(the_window. pict_width. pict_height, false):
ShowWindow(the_window):

DrawPicture{ the_picture, &pict_rect >:

II handle a print request

void Do_Print_Window(WindowPtr the_window
{

TPPrPort
TPrStatus
Boolean

PrOpen():

printer_port:
printer_status:
do_print:

do_print - PrJobDialog(Print_Record):

if { do_print == false)
return :

printer_port = PrOpenDoc(Print_Record. nil. nil >:

PrOpenPage(printer _port. ni 1) :

Draw_Stuff_To_Port(the_window):

476

Chapter 8 Printing

PrClosePage(printer_port);

PrCloseDoc(printer_port);

PrClose():

''~~~~~~~~~~~~~~~~~~~~~~~~~-
// QuickDraw commands to be sent to a port

void Draw_Stuff _To_Port(WindowPtr the_window
{

PicHandle
Re ct

the_picture:
pict_rect:

the_picture = GetWindowPic(the_window);
pict_rect = (**the_picture).picFrame:

DrawPicture(the_picture, &pict_rect):

''~~~~~~~~~~~~~~~~~~~~~~~~~-
// handle one event

void Handle_One_Event(void)
{

Adjust_Menus():

WaitNextEvent(everyEvent, &The_Event, 15L, OL);

switch C The_Event.what
{

case keyDown:
Handle_KeystrokeC):
break:

case mouseDown:
Handle_Mouse_Down():
break:

477

More Mac Programming Techniques

II
II enable/disable File menu items

void Adjust_Menus(void)
{

WindowPtr the_window:
MenuHandle file_menu_handle:

file_menu_handle = GetMHandle(FILE_MENU_ID):

the_window = FrontWindow():

if (the_window == nil)
{

Disableltem(file_menu_handle,
Disable Item(file_menu_handle,
Disableltem(file_menu_handle,

}

else
{

Enableltem(file_menu_handle,
Enable Item(file_menu_handle,
Enableltem(file_menu_handle,

CLOSE_ITEM):
PAGE_SETUP _ITEM
PRINT_ITEM) :

CLOSE_ITEM) :
PAGE_SETUP _ITEM
PRINT_ITEM):

) :

) :

II
II handle a keystroke

void Handle_KeystrokeC void)
(

short chr:
long menu_choice:

chr = The_Event.message & charCodeMask:

if C C The_Event.modifiers & cmdKey) !- O)
{

478

if C The_Event.what != autoKey)
{

menu_choice = MenuKey(chr):
Handle_Menu_Choice(menu_choice);

Chapter 8 PrintDng

II~~~~~~~~~~~~~~~~~~~~~~
II handle a click of the mouse button

void Handle_Mouse_Oown(void
{

WindowPtr
short
1 ong

the_window:
the_part:
menu_choice;

the_part = FindWindow(The_Event.where. &the_window):

switch (the_part)
{

case inMenuBar:
menu_choice = MenuSelect(The_Event.where);
Handle_Menu_Choice(menu_choice >:
break:

case inSysWindow:
SystemClick(&The_Event. the_window);
break:

case inDrag:
DragWindow(the_window. The_Event.where.

&qd.screenBits.bounds);
break:

case inGoAway:
if (TrackGoAway(the_window. The_Event.where > >

CloseWindow(the_window);
break:

case inContent:
if (the_window != FrontWindow()

SelectWindow(the_window >:
break;

handle a click in the menu bar

void Handle_Menu_Choice(long menu_choice
{

short the_menu;

479

More Mac Programming Techniques

short the_menu_item;

if (menu_choice != 0
{

the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice);

switch (the_menu)
{

}

case APPLE_MENU_ID:
Handle_Apple_Choice(the_menu_item);
break:

case FILE_MENU_ID:
Handle_File_Choice(the_menu_item);
break;

Hi l iteMenu(O);

//~~~~~~~~~~~~~~~~~~~~~~~~~-
// handle a click in the Apple menu

void Handle_Apple_Choice(short the_item
{

Str255 desk_acc_name;
short desk_acc_number;
MenuHandle apple_menu_handle:

switch (the_item)
{

480

case SHOW_ABOUT_ITEM
SysBeep(1);
break:

default :
apple_menu_handle = GetMHandle(APPLE_MENU_ID);
Getltem(apple_menu_handle, the_item. desk_acc_name);
desk_acc_number = OpenDeskAcc(desk_acc_name);
break:

Chapter 8 Printing

II~~~~~~~~~~~~~~~~~~~~~~~~~
II handle a click in the File menu

void Handle_File_Choice(short the_item
{

WindowPtr the_window;
PicHandle the_picture = nil:

switch (the_item)
{

}

case OPEN_ITEM:
the_picture = Load_Picture_From_PICT_Doc();
if C the_picture != nil)

Open_Picture_Display_Window(the_picture);
break;

case CLOSE_ITEM:
the_window = FrontWindow();
CloseWindowC the_window);
break;

case PAGE_SETUP_ITEM:
PrOpenC>:
PrStlDialog(Print_Record);
PrClose();
break;

case PRINT_ITEM:
the_window = FrontWindow():
Do_Print_Window(the_window);
break:

case QUIT_ITEM:
All_Done =true;
break:

PRINTING DIALOG ITEM TEXT

Several types of Mac applications display information by the "screen-full,"
as does the program in Figure 8.20. This example, which teaches the fun­
damentals of Mac programming, is like many other software tutorials and
other educational applications. It allows a user to flip through screens
(windows or dialog boxes) of information at his or her own pace.

481

More Mac Programming Techniques

Chapter 3: Resources

PicHandle man_handle ;

man_handle = GetPicture (128) ;

Topic: The 'PICT' Resource

A handle to the picture 1

is returned to the program. L .. ,
128

Click the STEP or RUN icon ...

ICLessoN· I

FIGURE 8.20 A TYPICAL ELECTRONIC TUTORIAL.

Programs like the one shown in Figure 8.20 would benefit from having a
Print Page button or menu item. That would allow the user to dump any
page of information to the printer. The PrintDITLscreens program that
is presented in this section does just that. Figure 8.21 shows one of the
program's three screens.

482

Vitamin A

About the Vitamin:
Vitamin A is a fat soluble vitamin. As such, it can be stored in the body
without daily replenishment. Vitamin A is measured in international units
(IU) . The recommended daily dose for an ad ult is 5 ,000 IU.

Benefits of the Vitamin:
• Minimizes "Weak eyesight and night blindness .
• Aids in the resistance to infections.
• Promotes: grovth, bone strength, healthy skin.

(NeHt Page) (Print This Page) Done

FIGURE 8.21 THE RESULT OF RUNNING THE PRINTDITlsCREENS PROGRAM.

Chapter 8 Prlnt6ng

The PrintDITLscreens program is capable of displaying what appears to
be three screens of information. The program accomplishes this by leav­
ing the same dialog box on the screen and simply "swapping" DITL
resources-a technique discussed at length in Chapter 5. Each time the
user clicks the Next Page button, a different DITL resource is used to dis­
play the static text. After the third screen is reached, the program cycles
back to the first screen. The three buttons at the bottom of the dialog
box are in the base DITL, so they are present on each "page."

When the user of PrintDITLscreens presses the Print This Page but­
ton, the text that is currently in the dialog box gets printed. For the first
screen of information, the output would look like the page shown in
Figure 8.22.

Vitamin A

About the Vitamin:
Vitamin A is a fat soluble vitamin. As such, it can be stored in the body
without daily replenishment. Vitamin A is measured in international units
(JU). The recommended daily dose for an adult is 5,000 IU.

Benefits of the Vitamin:
• Minimizes weak eyesight and night blindness.
• Aids in the resistance to infections.
• Promotes: growth, bone strength, healthy skin.

FIGURE 8.22 EXAMPLE HARD-COPY OUTPUT FROM THE PRINTDITLsCREENS PROGRAM.

The PrintDITLscreens Resources

PrintDITLscreens needs a single DLOG resource and four DITL
resources. Figure 8.23 shows the DLOG resource as it looks with the base
DITL-the DITL that will always be present in the dialog box. Figure
8.24 shows a list of the four DITL resources, along with a look at DITL
128, the base item list.

483

More Mac Programming Techniques

§IO DLDG ID .. 128 from PrintDITLscreens.n.rsrc

g LJCtJLJDDLJ•[!jBD

Top:~ Height: §:J
Left:~ Width:~

Color: @Default
O Custom

DITL ID: I 129
~--~

D Initially uisible

D Close boH

FIGURE 8.23 THE DLOG RESOURCE USED BY THE PRINTDITlsCREENS PROGRAM.

484

D ITLs from PrintD ITLscree ns. Tl'. r s re

!Q. Size Name

128 74 " Bose DITL"
20 1 460 " Vitami n A"
202 442 "Vitamin C"
203 464 " Vi tami n D"

~Iii"' DITL "Bas~ Dill" ID • 128 from PrintDITLscreens.Tt.1 ~
~

[Newt Pagell [Print This Page9 [DonJl.j ..
FIGURE 8.24 THE LIST OF Dill RESOURCES AND THE BASE Dill USED BY THE

PRINTDITLsCREENS PROGRAM.

Chapter 8 Printing

Figure 8.25 shows what one of the three overlay DITL resources looks
like-DITL 128. For readability, the program will display the text items of
the dialog box in Times font rather than the system font. To make edit­
ing the DITL easier, I've selected the View As menu item from ResEdit's
DITL menu and selected Times from the pop-up menu. That causes
ResEdit to display the static text items in this one DITL in the Times
font, providing a ''what you see is what you get" view of the text items.
Figure 8.26 shows the ResEdit DITL menu, while Figure 8.27 shows the
dialog box that appears when View As is selected from that menu.

g .Dill "Uitamin R" ID = 201.. from PrintQITLscreens.n

jv1wmmA w

ene ts o i1Blnln:
Minllnizes weak eyesight and night blindness.
Aids in the resistance to infections.
Promotes: growth, bone sttengh, healthy skin, teeth, and gums.

FIGURE 8.25 ONE OF THE THREE OVERLAY Dill RESOURCES

USED BY THE PRINTDITlsCREENS PROGRAM.

I

Renumber I terns •••
Set Item Number ...
Select Item Number ...
Show I tern Numbers

Rlign To Grid
Grid Settings •••

Show Rll I terns
Use I tern's Rectangle

Balloon Help •••

FIGURE 8.26 THE RESEDIT VIEW As MENU ITEM IN THE Dill MENU.

485

More Mac Programming Techniques

"Uiew As" only changes the font
and size when uiewed. It does
not modify any resources.

Font: I Times ~
Size: I 12 ,,. ~

(Cancel) ((OK l)

FIGURE 8.27 SELECTING THE VIEW As MENU ITEM ALLOWS THE LOOK

OF TEXT IN A DITL RESOURCE TO BE CHANGED.

The base DITL is always present in the DLOG, and its items will be recog­
nized by the PrintDITLscreens program as items l, 2, and 3. At any time,
PrintDITLscreens will also overlay one of the other three DITL resources
onto the dialog box as well. Each of those three DITL resources consists
of three static text items-the page title and two items that hold informa­
tion about a particular vitamin. When added to the three base DITL items
already in the dialog records list of items, these three items will be recog­
nized by the program as items 4, 5, and 6. When referring to these items,
the PrintDITLscreens source code uses these six //define directives:

/ldefine
/ldefine
//define
/ldefine
//define
/ldefine

NEXT_PAGE_ITEM
PRINT_PAGE_ITEM
DONE_ITEM
PAGE_TITLE_TEXT_ITEM
PAGE_TEXT_l_ITEM
PAGE_TEXT_2_ITEM

1
2
3
4
5
6

Printing Lines of Text Using Static Text Items

Upon running, PrintDITLscreens calls the application-defined routine
Open_Di a 1 og () to set the display font to Times and open the dialog box
that holds the base DITL and one overlay DITL. The dialog box opens with
the first overlay (DITL 201) displayed. The current_overl ay variable
keeps track of the displayed DITL.

486

Chapter 8 PrintiU1g

#define OVERLAY_l_DITL_ID

Handle item_list_handle:
short current_overlay;

201

SetDAFont(times); II set font to Times rather than system font

The_Dialog = GetNewDialog(DLOG_ID, nil, (WindowPtr)-lL);

item_list_handle = GetlResource('DITL', OVERLAY 1 DITL_ID);
AppendDITL(The_Dialog, item_list_handle, overlayDITL);
ReleaseResource(item_list_handle);

current_overlay = OVERLAY_l_DITL_ID:

ShowWindow(The_Dialog):
SetPort(The_Dialog);

If the user clicks on the Next Page button, Open_Di a 1 og () calculates how
many items are currently in the dialog box and shortens the dialog item list
so that it reflect'i only the number of items in the base DITL. Then the
DITL ID value held in current_overl ay is incremented for use in the
next "page." If the user is already at the last page, the DITL ID is set to the
first overlay DITL, so the program returns to the first page of information.
The DITL resource is then retrieved, and its items are appended to the
item list. For more information on ShortenDITL() and AppendDITL(),
and this DITL switching technique, refer back to Chapter 5.

case NEXT_PAGE_ITEM:
total_items = CountDITL(The_Dialog);
ShortenDITL(The_Dialog, total_items - NUM_BASE_ITEMS >:

if (current_overlay == LAST_OVERLAY)
current_overlay = OVERLAY_l_DITL_ID:

else
++current_overlay:

item_list_handle = GetlResource('DITL', current_overlay >:
AppendDITL(The_Dialog, item_list_handle, overlayDITL);
ReleaseResource(item_list_handle >:
break:

487

More Mac Programming Techniques

If the user clicks on the Print This Page button, the text that is currently
displayed in the dialog box will be sent to the user's printer. A routine
named Do_Pri nt_Wi ndow() sees to that:

case PRINT_PAGE_ITEM:
Do_Print_Window():
break:

The Do_Pri nt_Wi ndow() function calls all of the basic Printing
Manager functions such as PrOpen() and PrOpenDoc(). It doesn't,
however, make a call to PrJobDialog(). While it is a courtesy to the
user, displaying the Printingjob dialog box is not necessary to cause print­
ing to begin-a call to PrOpenPage() does that. Do_Pri nt_
Windows() skips the Job dialog box and goes right to the call to
PrOpenPage(). As usual, it's the Draw_Stuff_To_Port() function
that defines what it is that gets printed. Here's that the PrintDITLscreens
version of that function:

void Draw_Stuff_To_Port(void)
{

Handle hand:
short type:
Rect box:
Str255 dlog_string:
short text_y:

TextFont(times >:
TextSize(12):

GetDialogltem(The_Dialog, PAGE_TITLE_TEXT_ITEM. &type, &hand.
&box >:

GetDialogltemTextC hand, dlog_string):

text_y - START_TEXT_Y:
MoveToC START_TEXT_X. text_y):
Drawstring(dlog_string >:

text_y ~ START_TEXT_Y + C 2 * LINE_SPACING_TEXT):
MoveTo(START_TEXT_X. text_y):
Break_Text_Into_Lines(PAGE_TEXT_l_ITEM. text_y):

text_y - START_TEXT_Y + (8 * LINE_SPACING_TEXT):

488

Chapter 8 Printing

MoveTo(START_TEXT_X, text_y):
Break_Text_Into_Lines(PAGE_TEXT_2_ITEM, text_y):

}

Draw_Stuff _To_Port() begins by setting the text to 12 point Times.
Earlier, Open_Di a 1 og ()set the text to Times with a call to SetDAFont().
Because font changes that are made before a call to PrOpenPage() don't
affect text sent to the printer, it is necessary to use calls like Text Font ()
and Text Si z e () within the routine that draws to the printer graphics port.

After setting the text, the next two lines of code get the text from the
fourth item (PAGE_ TITLE_ TEXT _ITEM) in the dialog box item list:

f/defi ne PAGE_TITLE_TEXT_ITEM

Handle hand:
short type:
Rect box:
Str255 dlog_string;

4

GetDialogltemC The_Dialog, PAGE_TITLE_TEXT_ITEM. &type, &hand,
&box >:

GetDialogltemTextC hand. dlog_string >:

In Figure 8.28 you '11 notice that each of the three overlay DITL resources
are set up in the same way-the first item is a title for the page, the sec­
ond item holds text that describes a vitamin, and the third item contains
text that covers benefits of a vitamin. By keeping the items in each over­
lay DITL consistent, a single routine (Draw_Stuff_To_Port()) can
be used to send the text of any one DITL to the printer.

After getting the text in the first DITL item (which, when added to
the base items, is the fourth item in the list), Draw_Stuff _To_Port()
moves the graphics pen to the upper-left corner of the printing graphics
port and draws the text:

l/defi ne
l/defi ne

START_TEXT_X
START_TEXT_Y

short text_y:

text_y = START_TEXT_Y:

0
20

489

More Mac Programming Techniques

MoveTo(START_TEXT_X. text_y):
Drawstring(dlog_string >:

D Ill "Uitamin A" ID = 201 from PrintD Ill screens

out 11amln: 2
it.amin A is a fat soluble vitamin. As such, it can be stored in the body

Dill "Llitamin C" ID= 202 from PrintDITLscreens

ut 11amln: 2
.i1aJJUn C is a wa12r soluble vi1aJJUn. Most animals synthesize their ovn

ene 113 o i1amln:
Helps utilize calcium for strong bones and 12eth.
In conjunction with vi1aJJUn C it can aid in preventing colds.
Aids in the assimilation of vi1aJJUn A.

FIGURE 8.28 EACH OF THE THREE OVERLAY DITL RESOURCES

CONTAINS THREE STATIC TEXT REMS.

After drawing the title (such as "Vitamin A"), the graphics pen is
moved back to the left side of the port and down a couple of lines.
Then a routine named Break_Text_lnto_L i nes () is called to
retrieve the text from the second static text item and to send that text
to the printer:

//define
//define

LINE_SPACING_TEXT
PAGE_TEXT_l_ITEM

15
5

text_y = START_TEXT_Y + (2 * LINE_SPACING_TEXT):
MoveTo(START_TEXT_X, text_y >:
Break_Text_lnto_Lines(PAGE_TEXT_l_ITEM. text_y):

490

Chapter 8 Printing

As its first parameter, Break_ Text_I nto_L i nes () receives the item
number of the dialog item text to retrieve. In this example, the item is the
second static text item from the overlay DITL-the fifth item including the
base DITL items. The second parameter is the vertical pixel distance that
the pen should be moved from the top of the port before drawing begins.

Break_ Text_I nto_L i nes () begins by retrieving the text from the
dialog box item and saving that text to an St r 2 5 5 variable:

Handle
short
Re ct
Str255

hand:
type:
box:
dlog_string:

GetDialogltem(The_Dialog, dlog_item, &type, &hand, &box >:
GetDialogltemTextC hand, dlog_string >:

If the program next attempted to write the string directly to the printer,
the text would flow off the right side of the page. While the text that makes
up the words of a static text item may appear to occupy several lines, it is
really just a single string. The boundaries of the static text item, as defined
in the DITL in the resource file, determine how the text looks on screen,
but it doesn't break up the text into individual lines. As part of the solution
to this dilemma, I've added carriage returns after each line of text in each
static text item, as shown for item number 2 in Figures 8.29 and 8.30.

Carriage return

ene ts o itamm:
Millimizes veak eyesight end night blindness.
Aids in the resistance to infections.
Promotes: grovth, bone strengh, healthy skin, teeth, end gums.

Carriage return

Carriage return

Carriage return

FIGURE 8.29 EACH UNE IN A SINGLE STATIC TEXT ITEM IS SEPARATED

FROM OTHER UNES BY A CARRIAGE RETURN.

411

More Mac Programming Techniques

fitammA w
:aJioui ·m.e·viWriID: · ·· · · · · · · · · ·· · · · · · · · · · · · · · · · · · ·· · ·· · · · · · ·· · · · · · · · · · · · ·········Ii; ~
:Vitamin A is a fat soluble vitamin. A:l such, it can be stored in the body .
:without daily replenishment. Vitamin A is measured in international units : I"""
~JU). The recommended daily dose for an adult is 5 ,000 JU. ;

: ...•

This line ends at the
word "body" because
a carriage return was
entered after it-no t
because of the

tic boundary of the sta
text item.

0 Edit Dill item #2 from PrintDITLscreens:n.rsrc

Te Ht : About the Uitamin: 1 Uitamin R is a fat soluble uitamin. Rs
I Static TeHt ... 1 such, it can be stored in the body [

'--
without daily replenishment. Uitamm~

D Enabled Top: 140 I Height: 165

Left: 120 I Width: 1350

FIGURE 8.30 CARRIAGE RETURNS IN DITL STATIC TEXT ITEMS

ARE ADDED IN THE STATIC TEXT EDITOR.

I
I

Before writing the retrieved string to the printing port, Break_ Text_
I nto_L i nes () divides the string into several smaller strings. The start
and end of each of these substrings are determined by the carriage returns
in the static text item string. Break_ Text_ I nto_L i nes () finds the
length of the entire string, in characters, then uses a for loop to check
each character in the string, searching for the carriage returns. Each time
a carriage return is found, the text from the last carriage return to the
newly found carriage return is printed. T his is done by copying these char­
aClers from the entire static text string to a temporary string, then making
a call to DrawStri ng(). In brief, here's how one St r255 variable gets
broken up into lines of text:

Get the l ength of the static text str ing

Begin loop, one iteration for each character in the string
If character is ASCII 13 (return characte r) ,
end of a line is found

492

Chapter 8 Printing

Starting char of line is the last return character. + 1
Ending char of the line is the current return character
Copy these characters to a temporary string
Draw the temporary string to the printing port
Position the graphics pen for the next line of text

End loop

The PrintDITLscreens Source Code Listing

When you run PrintDITLscreens, you '11 see a dialog box like the one in
Figure 8.31. If you'd like to write an electronic tutorial, PrintDITLscreens
might be a good place to start. It uses DITL overlays, as described in
Chapter 5, to change the information in the dialog box. By creating sev­
eral more DITL resources, any amount of information could be easily
conveyed to the user. To give the program a better interface, you could
add a File menu that holds the Page Setup item found in most applica­
tions that allow printing. With a menu in place, the Print This Page but­
ton could be replaced with a Print Page menu item. The dialog box
could be made modeless, and different dialog boxes could be provided
for different topics, such as one for vitamins and one for minerals.
Finally, you could get rid of the drab buttons and replace them with cus­
tom controls, as was done in Chapter 2. The results of these improve­
ments could be a program like the one pictured in Figure 8.32.

Vitamin A

About the Vitamin:
Vi1Bmin A is a fat soluble vitamin. As such, it can be stored in the body
without daily replenishment. Vitamin A is measwed in international units
(IU). The recommended daily dose for an adult is 5,000 IU.

Benefits of the Vitamin:
• Minimizes weak eyesight and night blindness.
• Aids in the resis18.It.Ce to infections.
• Promotes: growth, bone strength, healthy skin.

NeHt Page J Print This Page J (Done J

FIGURE 8.31 THE RESULT OF RUNNING THE PRINTDITlscREENS PROGRAM.

413

More Mac Programming Techniques

Open ... 3€0

Close S€W

Page Se t up ...
Print Page ... sgp

Quit 3€0
Uitamins

Vitamin A

..- About the Vi1Bmin

Vi1Bmin A is a fat soluble vitamin. A3 such, it can be stored in the body
without daily replenishment Vi18min A is measured in international units
(IU) . The recommended daily dose for an ad ult is 5 ,000 IU .

..- Benefits of the Vi18min

• Minimizes weak eyesight and night blindness .
• Aids in the resistance to infections.
• Promotes: growth, bone strength, healthy skin.

IF!r~
Previous Nex t

FIGURE 8.32 ONE POSSIBLE RESULT OF RUNNING AN ENHANCED VERSION

OF THE PRINTDITlsCREENS PROGRAM.

//~~~~~~~~~~~~~~~~~~~~~~~~~~~
II #include directives

#include <Printing.h>

void Initialize_Toolbox(void) ;
void Initia l ize_Printing(void) ;
void Open_Oia l og(void) ;
void Do_Print_Wi ndow(void) ;
void Draw_Stuff_To_Port(voi d);

function prototypes

void Break_Text_I nto_Lines(short. short);
void Copy_Part_Of_Str i ng(Str255, St r255, short. short);

494

Chapter 8 Printirng

II
II //define directives

//define DLOG_ID 128
/ldefi ne NEXT _PAGE_ITEM 1
f/defi ne PRINT_PAGE_ITEM 2
/ldefi ne DONE_ITEM 3

/ldefi ne NUM_BASE_ITEMS 3

//define OVERLAY _l_DITL_ ID 201
/ldefi ne LAST_OVERLAY 203
//define PAGE_TITLE_TEXT_ITEM 4
//define PAGE_TEXT_l_ITEM 5
//define PAGE_TEXT_2_ITEM 6

//define START_TEXT_X 0
//define START_TEXT_Y 20
//define LINE_SPACING_TEXT 15

global variables

THPrint Print_Record:
DialogPtr The_Dialog;

II~~~~~~~~~~~~~~~~~~~~~~~
II main()

void main(void)
{

Initialize_Toolbox():

Initialize_Printing();

Open_Dialog();
}

II~~~~~~~~~~~~~~~~~~~~~
II set up a print record

void Initialize_Printing(void)
{

Print_Record - CTHPrint)NewHandleClear(sizeofC TPrint));
PrOpen();

495

More Mac Programming Techniques

PrintDefaultC Print_Record):
PrCloseC>:

II~~~~~~~~~~~~~~~~~~~~~~~~~
II open a display dialog

void Open_Dialog(void)
{

Boolean
short
Handle
short
short

done ... false:
the_ item:
item_list_handle:
current_overlay:
total_ items:

SetDAFontC times):

The_Dialog = GetNewDialog(DLOG_ID, nil. CWindowPtr)-ll):

item_list_handle = GetlResource('DITL'. OVERLAY_l_DITL_ID }:
AppendDITL(The_Dialog, item_list_handle, overlayDITL >:
ReleaseResource(item_list_handle >:

current_overlay = OVERLAY_l_DITL_ID:

ShowWindow(The_Dialog >:
SetPort(The_Dialog >:

while (done == false)
{

496

Modal Dialog(nil, &the_item):

switch (the_item
{

case NEXT_PAGE_ITEM:
total_items = CountDITLC The_Dialog >:

ShortenDITLC The_Dialog, total_items - NUM_BASE_ITEMS);

if (current_overlay =- LAST_OVERLAY)
current_overlay = OVERLAY_l_DITL_ID:

else
++current_overlay:

item_list_handle = GetlResource('DITL',
current_overlay):

AppendDITLC The_Dialog. item_list_handle, overlayDITL):
ReleaseResource(item_list_handle):

Chapter 8 Printing

}

}
}

break:

case PRINT_PAGE_ITEM:
Do_Print_Window();
break:

case DONE_ITEM:
done - true:
break:

DisposDialogC The_Dialog):

SetDAFont(systemFont);

II~~~~~~~~~~~~~~~~~~~~~
II handle a print request

void Do_Print_Window(void)
{

TPPrPort printer_port:
TPrStatus printer_status:

PrOpen();

printer_port = PrOpenDocC Print_Record. nil. nil):

PrOpenPage(printer _port. ni 1 >:

Draw_Stuff_To_Port();

PrClosePage(printer_port);

PrCloseDoc(printer_port);

PrCl ose():

II~~~~~~~~~~~~~~~~~~~~~~
II QuickDraw commands to be sent to a port

void Draw_Stuff _To_Port(void
{

Handle hand:

497

More Mac Programming Techniques

}

short
Re ct
Str255
short

type:
box;
dlog_string;
text_y;

TextFontC times);
TextSizeC 12);

GetDialogltem(The_Dialog, PAGE_TITLE_TEXT_ITEM, &type, &hand,
&box);

GetDialogltemText(hand. dlog_string);

text_y = START_TEXT_Y;
MoveTo(START_TEXT_X. text_y);
Drawstring(dlog_string >:

text_y = START_TEXT_Y + (2 * LINE_SPACING_TEXT);
MoveTo(START_TEXT_X, text_y);
Break_Text_Into_Lines(PAGE_TEXT_l_ITEM, text_y);

text_y = START_TEXT_Y + (8 * LINE_SPACING_TEXT):
MoveTo(START_TEXT_X, text_y):
Break_Text_Into_Lines(PAGE_TEXT_2_ITEM, text_y):

II~~~~~~~~~~~~~~~~~~~~~~~~~
II Break one Str255 string into several lines of text

void Break_Text_Into_Lines(short dlog_item, short text_y)
{

Handle
short
Re ct
Str255
short
short
short
int
short
char
Str255

hand;
type;
box:
dlog_string:
str_length:
start_char;
end_char:
i :
count:
the_chr:
line_string:

GetDialogitemC The_Dialog, dlog_item, &type, &hand, &box >:
GetDialogltemTextC hand, dlog_string);

str_length = dlog_string[O];

498

Chapter 8 Printing

count ... 0:
start_char "" 1:

for (i = 1: i <= str_length: i++) // go through entire
II string

{

}

++count:

the_chr = dlog_string[i]:

if (the_chr == 13)
{

}

end_cha r ... i :
Copy_Part_Of_String(line_string. dlog_string.

start_char. end_char >:
Drawstring(line_string >:

start_char - end_char + 1:
text_y +- LINE_SPACING_TEXT:
MoveTo(START_TEXT_X, text_y);
count - O:

//~~~~~~~~~~~~~~~~~~~~~~~~~
II copy a portion of one string to another string

void Copy_Part_Of _String(Str255 dst.

int i. j:

j = 1:
for (i - start_char:
(

dst[j] ... src[i]:
j++:

}

Str255 src.
short start_char.
short end_char)

<= end_char: i++)

dst[O] = (end char - start_char) + 1:

499

More Mac Programming Techniques

CHAPTER SUMMARY

The functions that make up the Macintosh system software Printing
Manager are actually found in the printer resource file that accompanies
every printer that is compatible with the Macintosh. Because it is the printer
vendor that is responsible for the implementation of each of the Printing
Manager routines, the printing dialog boxes vary from one printer to
another. The Printing Style dialog box is used to set the page orientation
and the reduction/ enlargement scale. You'll use the Pr St 1 Di a 1 o g () to
bring this dialog box to the screen. The Printing Job dialog box lets the
user specify the number of copies and the quality of the printed page. This
dialog box is posted using the PrJobDi a 1 og () routine.

Printing is accomplished by sending QuickDraw routines not to a
normal graphics port, but to a printing graphics port instead. After ini­
tializing the Printing Manager with a call to P rOpen () , this specialized
graphics port is opened by way of a call to P rOpenDoc ().After invoking
PrOpenPage(), all subsequent calls to QuickDraw routines are sent to
the printer rather than the screen. It is the printer driver software that
interprets these calls and does the actual printing.

500

Appendix

ERRORS

Whether you use the Symantec or Metrowerks compiler, you're apt to
run into an error somewhere in your programming endeavors. This
appendix covers the errors that you could encounter as you work on pro­
jects of the types described in this book.

SYMANTEC AND CODE RESOURCE ERRORS

If you're using the Symantec C++ compiler and you get errors while
working on a code resource project, check out the pages in the following
sections.

501

More Mac Programming Techniques

ResEdit Crash While Working with CNTL Resources

After a CDEF code resource is compiled and built in the THINK Project
Manager, a resource editor is used to copy the resource from its own file
and to paste it directly into the application 's resource fo rk. Figure A. I
shows this technique. Using this approach (as do the examples in this
book) , you shouldn 't encounter any ResEdit-related problems.

Copying the CDEF resource
directly to the application

_."OU 1,Al
.JU<U> <"' Dl , l ••c •
""
CDEF

Application opened by ResEdit- not
the application project's resource file

MyTestApp

CNTL dctb DITL

DLOG PICT

FIGURE A.1 COPYING A CDEF FROM A RESOURCE FILE AND PASTING

IT DIRECTLY INTO AN APPLICATION.

A second way to work with a CDEF is to copy the CDEF code resource
in to the application proj ect resource file (projectnam e.n.rsrc) before the
application is built. Then, when you build the application in the T HINK
Project Manager, the linker will merge the project resource file, includ­
ing the CDEF resource, into the application . In Figu re A.2, this approach
is be ing u sed.

Ir you use this second approach, and ResEdit is your resource edito r,
you could lead to a crash while working in ResEdit. If you copy the CDEF
to the application proj ect's resource fil e and then quit ResEdit, you' ll be
safe . If. however, you start to edit either a CNTL resource or a Control
item in a DIT L resource, ResEdit may unexpectedly quit. For this reason,
the book u ses the m e thod of working o n the ap plication projec t 's
resource file without the CDEF pasted into it.

502

Appendix A Errors

Application project resource file

Copying the CDEF resource
to the application project's
resource file-before the
application is built

MyTestRpp.11. rsr c

~IBEll M_y_ButtonCDEF.rsrc Ell~ . ~!
.i ~~~ ~~o1> I h.. CNTL dctb Dill
~=~ ~1,7
"' l..._f ___ --.-.-M>
CDEF v ~--O-IT_L_s_f_ro_m_M_y_T_es_t..LRp_pL.-11-. r-sr_c __

~ Size Namt

128 82 T
'- ilB!i DITL ID= 128 from MyTestRpp.n.rsrc ~

D Dim Left Button [Quit J

FIGURE A.2 COPYING A CDEF FROM A RESOURCE FILE AND PASTING

IT INTO THE PROJECTS RESOURCE FILE.

Slider Control Freezes in Built Application

I

'
•

If you build an application that uses a slider CDEF code resource, you
should be able to drag the slider thumb back and forth along the fu ll
length of the slider control. If at some point the thumb freezes and can't
be moved, you' ll need to modify the application project's resource lile
and rebuild the application. This problem is a ResEdit bug and is rela ted
to the DITL Control item that ho lds the slider control.

Open the application project's resource fil e (proj ectname.7t.rsrc)
using ResEdit and open the DITL resource. Move the Control item a few

pixels in any direction. Save the fil e and quit ResEdit. Rebuild the appli­
cation in the THINK Project Manager.

Global Variables Don't Hold Values

The Mac operating system locates an application's global variables by
keeping track of where they're located in memory. To do this, it holds a

503

More Mac Programming Techniques

pointer to the start of the globals. This pointer is kept in the A5 register.
Since a code resource is usually used by an application, the code
resource cannot use this same register to hold a pointer to its own set of
global variables. If you attempt to declare a global variable in a code
resource, you'll find that it won't hold a value that is assigned to it. To
overcome this obstacle and to allow a code resource to declare global
variables, the Symantec compilers let you devote a register other than A5
as the pointer to a global variable space-the A4 register.

Before working with global variables in a code resource, you'll need
to set up the A4 register. When the main () function of a code resource
begins to execute, register AO holds the starting address of the code
resource. That address needs to be moved in to A4. Once that happens,
the operating system will be able to locate any global variables that the
code resource has declared.

To set up the A4 register, call the routines Remember AO () and
Set U pA4 () as the first lines of code in main () . These two functions are
Symantec-defined routines-they aren't part of the Mac Toolbox. Their
definitions are in the Symantec SetUpA4.h header file, so you'll need to
include that header in your code resource. Just before exiting main (),
call the Symantec routine RestoreA4(). Below is a snippet that shows
how the sequence of calls looks in a 'cdev' code resource. The same for­
mat would apply to any other code resource type as well.

#include <SetUpA4.h>

short Num_Strings; II global variable: use anywhere in the 'cdev'

pascal CDEVHandle main(short message,

{
RememberAOC>:
SetUpA4();

switch C message
{

504

short
short
short
EventRecord
CDEVHandle
DialogPtr

item,
num_items,
control_panel_ID,
*the_event,
cdev_storage,
the_dialog)

Appendix A Errors

}

II okay to use Num_Stri ngs here or
II in any routine called by main ().

RestoreA4();

return (cdev_storage) ;

For a complete example of how the A4 register and global variables are
used, see the Appendix A-Errors f folder. In there you ' ll find a Control
Panel code resource example named GlobalData in the Code Resources
f folder. That example uses a global variable, as well as a string literal­
another source of data errors in a code resource. The GlobalData control
panel is shown in Figure A.3.

GlobalData

M\I Test StringM\I Test String

(Draw String)

FIGURE A.3 THE RESULT OF RUNNING THE GLOBAi.DATA PROGRAM.

Strings Contain Garbage Characters

To use strings in a code resource, you'll have to first set up the A4 register,
as discussed in the "Global Variables Don't Hold Values" section of this
appendix. Refer to that section for more information on the A4 register.

In a code resource, a string literal will consist of random garbage­
even after being g iven a value in a #define directive or an assignment
statement. Once the A4 register is set up, however, the characters that
make up a string will be preserved. The following snippet sh ows how the
A4 register is set up and how a string can be used in a cdev resource. T his
technique \Vorks for any other code resource type as well.

505

More Mac Programming Techniques

#include <SetUpA4.h>

/ldefi ne TEST _DRAW_STR "\pMy Test String"

pascal CDEVHandle main(short
short
short
short

{
RememberAO();
SetUpA4();

switch (message
{

Event Record
CDEVHandle
DialogPtr

message.
item.
num_items.
control_panel_IO,
*the_event,
cdev_storage,
the_dialog >

II okay to use TEST_DRAW_STR here or
II in any routine called by main().

RestoreA4();

return (cdev_storage);

For a complete example, see the Appendix A-Errors f folder. Look in the
Code Resources f folder to find a control panel code resource example
named GlobalData. That example uses a string literal in a //define direc­
tive. It also shows how a global variable can be used in a code resource.

Multisegment Project Error

Code resources are generally small in size-usually well below the 32KB
size limit of a segment. For that reason, segmentation rarely becomes an
issue for code resources. If you do decide to create a multisegment code
resource, the Symantec compiler will respond with the error message
shovm in Figure A.4

If you need to create a code resource that consists of more than one
segment-as the one shown in Figure A.5 does-you'll need to let the
THINK Project Manager know of your intentions.

506

Appendix A Errors

can't do that with multi-segment project

FIGURE A.4 THE SYMANTEC ERROR WHEN TRYING TO BUILD

A CODE RESOURCE GREATER THAN 32 KB IN SIZE.

Before compiling a multisegment code resource project, select Set
Project Type from the Project menu. Then check the Multisegment
checkbox, as shown in Figure A.6.

.11
Name Code

v Segment 2 4 -0
Mac Traps 0

.......... ~~.~~J.~.~~.:~ .. 9. ..
V Segment 3 4

Draw.c
Totals

0
824 <7

~

FIGURE A.5 A SYMANTEC CODE RESOURCE PROJECT

THAT CONSISTS OF MORE THAN ONE SEGMENT.

Once this checkbox is checked, you can compile and build the code
resource-without regard for the number of segments it's made up of.

For an example of a control panel resource that uses two segments,
refer to the Appendix A-Errors f folder. Look in the Code Resources f
folder to find the control panel code resource example named MultiSeg.
That example uses both a global variable and a string li teral in two source
code files. The source code for the MultiSeg cdev is identical to that of
the GlobalData cdev discussed in the "Global Variables Don ' t H old
Values" section of this appendix. The only difference is that MultiSeg uses
two segments.

507

More Mac Programming Techniques

Check for a multi-segment code resource project

O Deuice Driuer

® Code Resource

Name I MultlSeg

Type lcdeu

D Custom Header

Cancel

File Type I cdeu

Creator I tst2

181 Multi-Segment

ID 1-4064

Attrs ~~

([OK)J

FIGURE A.6 MARKING A SYMANTEC CODE RESOURCE PROJECT

TO BE MORE THAN ONE SEGMENT.

METROWERKS AND CODE RESOURCE ERRORS

If you use a Metrowerks CodeWarrior compiler and you get errors when
you're working on a code resource project, read the pages in the follow­
ing sections.

ResEdit Crash While Working with CNTL Resources

After a CDEF code resource is compiled and built in CodeWarrior, a
resource editor is used to copy the resource from its own file and to paste
it directly into the application's resource fork. This technique is shown in
Figure A.7. Using this approach (as the examples in this book do), you
shouldn't encounter any ResEdit-related problems.

A second way to work with a CDEF is to copy the CDEF code resource
into the application project resource file (projectname.µ.rsrc) before the
application is built. Then, when you build the application in CodeWarrior,
the linker will merge the project resource file, including the CDEF
resource, into the application. In Figure A.8, this approach is being used.

508

Appendix A Errors

Copying the CDEF resource
directly to the application

.a"O"l,Al
<IS:lf(lllO)
C"P Ol,2:
H t.a ...
CDEF

Application opened by ResEdit-not
the application project's resource file

~~
ml¢9
CNTL

DLOG

M yTestRpp

dclb DITL

PICT

FIGURE A. 7 COPYING A CDEF FROM A RESOURCE FILE

AND PASTING IT DIRECTLY INTO AN APPLICATION.

Copying the CDEF resource
to the application project's
resource file-before the
application is built

ButtonCDEF.rsrc ~

CDEF

Application project resource file

MyTestRpp.µ.rsrc

CNTL dclb DITL

D Ills from MyTestRpp.µ.rsrc:
Sizo Nam•

128 82

'!:Im§ D Ill ID = 128 from M TestRpp.µ.rsrc =

D Dim Left Button

FIGURE A.8 COPYING A CDEF FROM A RESOURCE ALE AND

PASTING IT INTO THE A PROJECT'S RESOURCE ALE.

Quit

If you use this second approach, and ResEdit is your resource editor, you
could lead to a crash while working in ResEdit. If you copy the CDEF to
the application proj ect's resource file and then quit ResEdit, you'll be

509

More Mac Programming Techniques

safe. [f, however, you start to edit either a CNTL resource or a Control
item in a DITL resource, ResEdit may unexpectedly qui t. For this reason,
the book uses the method of working on the app lica tion project's
resource file without the CDEF pasted into it.

Slider Control Freezes in Built Application

If you build an application that uses a slider CDEF code resource, you
should be able to drag the slider thumb back and forth along the ful l
length of the slider control. If at some point the thumb freezes and can' t
be moved, you ' 11 need to modify the application project's resource file
and rebuild the application. This problem is a ResEdit bug and is related
to the DITL Control ite m that holds the slider control.

O pe n the application project's resource file (p roj ectname.Jt.rsrc)
using ResEdit and open the DITL resource. Move the Control item a few
pixels in any direction. Save the file and quit ResEdit. Rebuild the appli­
cation in Metrowerks.

Link Error: Illegal Single Segment 32-Bit Reference

T he Metrowerks compilers give you three different object code options
for a project: Small, Smart, and Large code. Newly created projects
default to the Smart option, which allows call references to be outside of
the 16-bit offset range limit imposed by the Small code model. This works
fin e for application projects, but not for code resource projects. If a
Metrowerks code resource isn 't set to the Small code model, a build of the
code resource will result in error messages like the ones in Figure A.9.

•• Errors : 5
•• Link Error

•• Link Error

Messa_.9.e Window Iii~
oo Warnings : 0 Infos : 0

: LinkError:MyMDEF.c: 'main' hos illegal s ingle segment 32-bit refe~

: LinkError :MyMDEF.c : ' ma in' hos illegal single segmen t 32-bit ref0~;
· -~
~

FIGURE A.9 LINK ERROR MESSAGES WHEN A METROWERKS CODE RESOURCE

IS BUILT USING THE INCORRECT CODE MODEL.

510

Appendix A Errors

For all of the Metrowerks code resources covered in this book (MDEF,
CDEF, and cdev), you 'II need to make sure that the Code Model is set to
Small in the Processor panel of the Preferences dialog box, as sh own in
Figure A.IO. To make this change, select Preferences from the Edit
menu. Then click on the Processor icon to d isplay the Processor Info
panel. Choose Small from the Code Model pop-up menu.

Code Model must be set to Small for code resources
,--

Rpply to open project.

a '°' r Processor Info: ~ z

I
~L

Code Model: l Small ... J
I ... , Struct Alignment: 68K n D 68020 Codegen D 4- Byte lnts

Linker- D 68881 Codegen D 8-Byte Doubles

IJ I
D Peephole Optimizer
OCSE Optimizer D Far Data

Pr-oject D Optimize For Size D Use Profiler

Ii D Far Uirtual Function Tables

Access Paths ~ D Far String Constants

(Factory Settings) (Reuert Panel) (Cancel) ' OK)

FIGURE A.10 USING THE METROWERKS PREFERENCES DIALOG BOX TO MAR.K

A CODE RESOURCE TO USE THE SMALL CODE MODEL.

Global Variables Don't Hold Values

The Mac operating system locates an application's global variables by
keeping track of where they're located in memory. To do this, it holds a
pointer to the start of the globals. This pointer is kept in the A5 register.
Since a code resource is usually used by an application, the code
resource canno t use this same register to hold a pointer to its own set of

511

More Mac Programming Techniques

global variables. If you attempt to declare a global variable in a code
resource, you'll find that it won't hold a value that is assigned to it. To
overcome this obstacle and allow a code resource to declare global vari­
ables, the Metrowerks compilers let you devote a register other than A5
as the pointer to a global variable space-the A4 register.

Before working with global variables in a code resource, you'll need
to set up the A4 register. When the ma i n () function of a code resource
begins to execute, register AO holds the starting address of the code
resource. That address needs to be moved in to A4. Once that happens,
the operating system will be able to locate any global variables that the
code resource has declared.

To set up the A4 register, call the routine SetCu rrentA4 () as the
first lines of code in main () . This function is a Metrowerks-defined rou­
tine-it isn't part of the Macintosh Toolbox. Its definition is in the
Mctrowerks A4Stuff.h header file, so you'll need to include that header
in your code resource. Just before exiting main (), call the Metrowerks
routine SetA4 (). Below is a snippet that shows how the sequence of
calls looks in a cdev code resource. The same format would apply to any
other code resource type as well.

#include <A4Stuff .h>

short Num_Strings; // global variable: use anywhere in the 'cdev'

pascal CDEVHandle main(short
short
short
short
Event Record
CDEVHandle
DialogPtr

long save_A4:

save_A4 = SetCurrentA4():

switch (message)
{

message.
item.
num_items.
control_panel_ID.
*the_event.
cdev_storage.
the_dialog)

II okay to use Num_Strings here or
II in any routine called by main().

512

Appendix A Errors

}

SetA4C save_A4);

return C cdev_storage);

For a complete example of how the A4 register and global variables are
used , see the Appendix B-Errors f folder. In there, you 'll find a control
panel code resource example named GlobalData in the Code Resources
f folder. That example uses a global variable, as well as a string literal­
another source of data errors in a code resource. The GlobalData control
panel is shown in Figure A.11.

gla GlobalData

My Test StringMy Test String

(Draw String J

FIGURE A.11 THE RESULT OF RUNNING THE GLOBALDATA PROGRAM.

Strings Contain Garbage Characters

To use strings in a code resource you'll have to first set up the A4 register,
as discussed in the "Global Variables Don't Hold Values" section of this
appendix. Refer to that section for more information on the A4 register.

In a code resource, a string literal will consist of random garbage­
even after being given a value in a #define directive or an assignment
statement. Once the A4 register is set up, however, the characters that
make up a string will be preserved. The following snippet shows how the
A4 register is set up and how a string can be used in a cdev resource. This
technique works for any other code resource type as well.

513

More Mac Programming Techniques

#include <A4Stuff .h>

#define TEST_DRAW_STR "\pMy Test String"

pascal CDEVHandle main(short
short
short
short
Event Record
CDEVHandle
DialogPtr

1 ong save_A4:

save_A4 = SetCurrentA4();

switch (message)
{

message.
item.
num_items.
control_panel_ID.
*the_event.
cdev_storage.
the_dialog >

II okay to use TEST_DRAW_STR here or
II in any routine called by main().

SetA4(save_A4 >:

return (cdev_storage >:

For a complete example, see the Appendix A-Errors f folder. Look in
the Code Resources f folder to find a control panel code resource exam­
ple named GlobaIData. That example uses a string literal in a //define
directive. It also shows how a global variable can be used in a code
resource.

Multisegment Project Error

Code resources are generally small in size-usually well under the 32KB
size limit of a segment. For that reason, segmentation rarely becomes an
issue for code resources. If you do decide to create a multisegment code
resource, the Metrowerks compiler will respond with the error message
shown in Figure A.12.

514

Appendix A Errors

link Error: Code resource cannot haue more
than one segment.

n OK D

FIGURE A.12 THE METROWERKS ERROR WHEN TRYING TO BUILD

A CODE RESOURCE GREATER THAN 32 KB IN SIZE.

If you need to create a code resource that consists of more than one seg­
ment, as the one shown in Figure A.13 d oes-you 'll need to let the
CodeWarrior compiler know of your intentions.

MultiSeJ)_.Jl
File Code Data !!I ..

v Segment 1 O j Oi El 0
MultiSeg .~ I 0 I 0 I • (El ~
HacOS.hb ! Oi Oi [El

·v .. ··se!im"i!"iir:t·········r············c;r···· ····c;r······· i!f
............... ~:..~~:.?.L. Q.L. Q.L. !D.. ~

3 f11e(s) 0 0 Iii

FIGURE A.13 A METROWERKS CODE RESOURCE PROJECT THAT

CONSISTS OF MORE THAN ONE SEGMENT.

Before compiling a multisegm ent code r esource projec t, selec t
Preferences from the Edit menu. Click on the Project icon to display the
Project panel in the dialog box. Then check the Multi Segment check­
box, as shown in Figure A.14.

Once this checkbox is checked, you can compile and build the code
resource, without regard for the number of segments it's made up of.

For an example of a control panel resource that uses two segments,
refer to the Appendix A-Errors f folder. Look in the Code Resources f
folder to find the control panel code resource example named MultiSeg.

515

More Mac Programming Techniques

That example uses both a global variable and a string literal in two
source code files. The source code for the MultiSeg cdev is identical to
that of the GlobalData cdev discussed in the "Global Variables Don't
Hold Values" section of this appendix. The only difference is that
MultiSeg uses two segments.

Check
for a
multi
segment
code
resource
project

Apply to open project.

Ii
Access Paths

-0- Project Type: Code Resource ..,. I
Code Resource lnfo:--------

File Name I MultiSeg I
Sym Name . .

Resource Name
...._-;================:

Header Type: Standard ..,. I
181 Multi Segment
D Display Dialog
D Merge To File
Resource Flags ~

ResType ReslD

I cdeu 11-4064
Creator Type

I tst2 11 cdeu

(Factory Settings)

FIGURE A.14 MARKING A METROWERKS CODE RESOURCE PROJECT

TO BE MORE THAN ONE SEGMENT.

SYSTEM CRASHES: ERRORS AT RUNTIME

J)

If a pn~ject successfully compiles, but crashes when you run the applica­
tion that you built from the project, you'll want to read the following
pages. Figure A.15 shows two of the error messages you could encounter.

Routines Available Only in System 7

Some Toolbox routines are available only on Macs running a version of
System 7. The following five System 7-only functions are used in this
book's examples:

516

Appendix A Erroll's

AppendDITLC)
ShortenDITl()
FindFolder()
StandardGetFile()
StandardPutFile()

~(· Sorry, a system error occurred.
• Standard File not present

Sorry, a system error occurred.
unimplemented trap

(Restart)

(Restart)

FIGURE A.15 RUNTIME ERROR MESSAGES RESULTING FROM APPLICATIONS

THAT USE ROUTINES NOT FOUND ON PRE-SYSTEM 7 MACS.

If you run a program and you get the bomb alert, with a "Standard File
not present" error message, then it's likely that the application called
either StandardGetFi le() or StandardPutFi 1 e() while running
on a Mac with a pre-System 7 operating system. If the alert has an "unim­
plemented trap" error message, than several Toolbox calls could be sus­
pect. For the examples in this book, AppendDITL(), ShortenDITL(),
and Fi n d Fol de r () are System 7-only routines that will result in this
error message when an application they appear in is run on a machine
using a version of System 6.

You can check the user's machine to verify it is running System 7 by
making a call to the Toolbox function Gestalt (). But first, make sure
that Gestalt () itself is present-it's not found on early Macintosh
models or early systems. A call to SysEnvi rans () returns information
about the host machine in a SysEnvRec variable. If the mac hi neType

517

More Mac Programming Techniques

field of this record is less than 0, the host machine is old. And, if the
system Ver s i on is less than Ox0607, the host machine is running a ver­
sion of system software older than 6.0.7. If your application is running on
a machine that matches one or both of these descriptions, there's a
chance your application may crash.

If the machine is not old, and it's running a version of system soft­
ware 6.0.7 or newer, move onto the next test. Call the Gestalt() func­
tion, passing a selector code of gestal tSystemVersi on. In return,
Ges ta 1 t () will set the response variable to a hex value representing the
system running on the host machine. If this value is Ox0700 or greater,
the Mac has a version of System 7. The following snippet is an example of
how your application might determine if the host machine is running
System 7. If the program makes it past the following tests without exiting,
a version of System 7 is in use.

#include <GestaltEqu.h>

SysEnvRec mac_info;
OS Err err;
long response;

SysEnvirons(curSysEnvVers. &mac_info);

if (Cmac_info.machineType < 0) I I
Cmac_info.systemVersion < Ox0607))

ExitToShell();

err= Gestalt(gestaltSystemVersion, &response);

if (err== noErr)
{

if < response < Ox0700
ExitToShell();

else
ExitToShell();

518

A

AO register, 504
A4 register, 29-30, 503-505, 511-513
A4Stuff.h Metrowerks header file, 512
A5 register, 29-30, 511
AddResource () Toolbox function,

334,339
AppleCD Audio Player, 92
applications, building, 281
axis thumb dragging struct field,

149-155

Index

B
BNDL resource

control panel ID requirement, 201
control panels and, 201-202
defined, 199

c
callback routine, 16
CDEF message parameters

autoTrack, 65

519

More Mac Programming Techniques

calcCntlRgn, 65, 137, 146
calcCRgns, 136, 137, 146-147
calcRgns, 64
calcThumbRgn, 65, 137, 146, 148
dispCntl, 64
dragCntl, 65, 137, 166-173,

178-180
drawCntl, 64, 66, 74-84, 117-122,

137, 159-160, 180-183
initCntl, 64
posCntl, 64, 137, 155-158
testCntl, 64, 66, 71-74, 137,

144-145
thumbCntl, 64

CD EF resource
adding to application, 107-108,

110-111, 173
building, 88-91, 161
CNTL relationship, 59-60, 94
control variations, 112-124
defined,58,62
MDEF, as background

information, 58
message parameters, 64-66
system, 58
testing, 92-101, 161-163

cdev code resource
building, 227-232
defined,194,195
origin of, 198-199

cdev message parameters
activDev, 214
closcDev, 214
deActivDev, 214
hitDev, 213, 214, 221-225
initDev, 213, 216-217
keyEvtDev, 214
macDev, 213, 254-256

520

nulDev, 213, 252-253
updateDev, 214

CDEVRecord application-defined
data type, 216, 239

ChangedResource () Toolbox
function, 339

Chicago font, 5, 22, 123
CloseResFile() Toolbox function, 312
CNTL resource

BoundsRect, 95, 97, 132
CDEF relationship, 59-60, 94-97
creating, 98
fields of, 95-97
ID, 98, 109, 162
Max, 132
Min, 132
ProcID, 95, 97-98, 113, 134, 162
RefCon,95, 109, 117,134
size of, 98-100
Value, 132
Visible, 95

code resource
Code Model, 89
control panels, 189
defined, 11
Merge check box,90
Small model, 89
use of, 42

color, determination of, 67, 75, 80-82
contrlHilite control record field,

72, 77
contrlRect control record field, 75
contrlRfCon control record field, 75,

109, 117
contrlVis control record field, 70-71,

74-75
control

custom, 57-58, 61-62

dimming, 79, 82-84
ProcID,61, 113, 116, 124
sliders, see slider controls
standard, 57
titles, adding to, 114-115, 119-123,

185-187
variations, 112-124
visiblility of, 70-71, 7 4

control definition function
#define directives and, 139
defined, 58-59, 61
entry point, 64
functio.n prototypes and, 139
main() routine, 64-67

control device function,
defined, 194
entry point, 213-215
main() routine, 213-215
messages, 213-214
private data storage in, 211-213
radio buttons and, 217-221

Control Manager, 64, 72, 104
control panels

appropriate use of, 193-194
defined, 189
executing, 189
file, 195, 198
limited compatibility, 209-211
resource ID requirements, 200
resources for, 194-211
storage of, 190
System 6 and, 190-191, 204-206,

214, 218-219, 221-222, 228,
254-256

System 7 and, 191-193, 214, 220-
222, 228, 254-256

testing, 194
control panel file, 195, 198

Index

Control Panels folder, 191-192
control record fields,

contrlHilite, 72, 77, 144-145
contrlRect, 75, 140
contrlRfCon, 75, 109, 117
contrlValue, 140-141, 156-157,

159, 171
contrlVis, 70-71, 74-75

CountDITL() Toolbox function, 272
creator name, application, 319
CurResFile() Toolbox function, 310
custom resource types, see resource

templates

D

dctb resource, 100-102
destRect TERec data structure

field, 428
DetachResource() Toolbox function,

327-334, 340
Dialog Manager, 93
DialogPtr data type, 217
DialogRecord data type, 217,

270,275
DITL resource

control items and, 98-100
control panel ID

requirement, 201
control panels and, 199-201

DITL resource
AppendDITL() Toolbox function,

271-275, 487, 517
base items, 266
multiple overlays, 271
overlay items, 266

521

More Mac Programming Techniques

overlayDITL global constant, 271
ShortenDITL() Toolbox function,

271-275, 487, 517
DLOG resource

color and, 100-102
control items and, 100-102

documents
defined,370
files and, 370
printing, 456-461
records, 371-376, 392-394,411

DrawPicture () Toolbox function, 78,
131, 159,384,461

dupFNErr system error, 317

E
EraseRect() Toolbox function, 53, 252
errors

F

CNTL resources, 502-503
code resource, 501-516
global variables lose values, 503-

505, 511-512
illegal single segment 32-bit refer-

ence, 510
link, 510
multisegment, 506-508, 514-516
ResEdit, 502-503, 508-510
runtime, 516-518
slider control, 503, 510
strings hold garbage, 505-506,

513-514

file
creation/ modification dates, 403-

404

522

creator, 426
data fork, 382
defined, 370
documents and, 370
see also PICT file
see also TEXT file

File Manager, 310
file specification routines, 310
file system specification, 382
FindFolder() Toolbox function, 351-

352
find resource

control panels and, 236-237
defined,236

Flush Vol() Toolbox function, 400,
429

fonts
control panels and, 236-237
Geneva, 236
System, 236

forks, data and resource, 262
FREF resource

control panel ID requirement, 201
defined,199

FSRead() Toolbox function, 384,
398,415

FSWrite() Toolbox function, 399-
400, 428

FrontWindow() Toolbox function,
394,461,469

fsCurPerm global constant, 311
FSMakeFSSpec() Toolbox function,

310
FSpCreate() Toolbox function, 395,

426
FSpCreateResFile () Toolbox func­

tion, 319-322
FSpOpenDF() Toolbox function,

382,396,415

FSpOpenResFile () Toolbox func-
tion, 310-311

fsRdPerm global constant, 383
FSSpec data type, 310, 382, 395
function prototypes, MDEF and,19-20

G -
GDevice data structure, 82
gdPMap field of GDevice, 82
Geneva font, 123
Gestalt() Toolbox function, 67,

80-81, 138,255,517
GestaltEqu.h universal header file,

67,138
gestaltOriginalQD response, 81
gestaltQuickdrawVersion selector

code,81,255
gestaltSystemVersion selector code,

518
Get File dialog box, 379-380, 456
GetlResource () Toolbox function,

271, 283, 295, 328, 337-338,
354,459

GetControlValue() Toolbox function,
106,157

(same as GetCtlValue() Toolbox
function)

GetControlReference() Toolbox
function, 75, 117

GetCtlValue () Toolbox function,
106, 157

(same as GetControlValue()
. Toolbox function)

GetDialogltem () Toolbox function,
218-219, 355

(same as GetDitem () Toolbox

lncllex

function)
GetDltem () Toolbox function, 106

(same as GetDialogltem ()
Toolbox function)

GetEOF() Toolbox function, 383,
415

GetHandleSize() Toolbox function,
400

GetlndPattern (), 83, 253
GetMaxDevice() Toolbox function, 82
GetMouse() Toolbox function, 169,

171
GetNewDialog() Toolbox function,

102, 271-272
GetPenState() Toolbox function, 83,

120
GetPicture () Toolbox function, 329
GetResAttrs() Toolbox function,

338,357
GetReslnfo() Toolbox function, 337,

357
GetResource() Toolbox function, 78,

159
GetString() Toolbox function, 121
GetVRefNum () Toolbox function,

400,429
GetWindowPic() Toolbox function,

461
GetWRefCon() Toolbox function, 374
GrafPtr data type, 120
GWorlds data type, 17 4

H

hAxisOnly global constant, 150
HideDialogltem() Toolbox

function, 277

523

More Mac Programming Techniques

HiliteControl() Toolbox function,
105,241

HiWord () Toolbox function, 144

I

ICN# resource
control panel ID requirement,

201
control panels and, 234-235
defined, 199

icons, color, 234-235
illegal single segment 32-bit

reference error, 510
inButton global constant, 72
InvalRect() Toolbox function, 53

K

keyDown event type, 424, 469
kOnSystemDisk global constant, 351

L

Large object code option,
Metrowerks, 510-511

limitRect thumb dragging struct
field, 149-155

LocalToGlobal() Toolbox
function, 81

LoWord() Toolbox function, 144,
155

524

M
mach resource

control panel ID requirement,
201

control panels and, 209-210, 254-
256

defined, 199,209
mouseDown event type, 469
major Rev Num Version record field,

240
MDEF message parameters

mChooseMsg, 17-19, 27-34
mDrawMsg, 17-19, 23-27
mPopUpMsg, 17-19
mSizeMsg, 17-19, 22-23

MDEF resource
adding to application, 11-13, 54
application and, 6, 12-13, 54
building, 37-42
code resource, 11
defined, 5-6, 11
function prototypes, 19-20
global variables and, 29-30, 503-

505, 511-513
MENU relationship, 7-8, 13, 44-46
message parameters, 17-19
resource file and, 11-12, 37-38
system, 5-6, 8
testing, 42-46

menu
drawing, 17-19, 23-27
graphical, 6, 9-10
selecting items, 17-19, 27-34
size of, 17-19, 22-23
system display code, 5
see also MDEF resource

see also MENU resource
menu definition procedure

#define directives and, 20
callback routine, 16
defined,6
determination of menu size, 17-19,

22-23
drawing menu items, 17-19, 23-27
entry point, 15-16
function prototypes and, 20
main() routine, 16-18
selecting menu items, 17-19, 27-34

Menu Manager, 5
MENU resource

defined,6
MDEF relationship, 7-8, 13, 44-46

ModalDialog() Toolbox function,
104,273

N

Name Conflict alert, 391
NewHandle (), 444
NewHandleClear() Toolbox func-

tion, 357, 372, 384, 444
NewPtr() Toolbox function, 415
NGetTrapAddress() Toolbox func­

tion, 240
noConstraint global constant, 150
nrct resource

control panel ID requirement, 201
control panels and, 204-209, 248-

250
defined, 199,204,207
multiple, 248

NumVersion data type, 240

Index

0

Open dialog box, 410
overlayDITL global constant, 271

p

PAT# resource
defined,20
GetlndPattern() Toolbox func­

tion, 25-26, 253
sysPatListID global constant, 26

patterns
menu and, 20-21
system pattern list, 25-26

ParamText() Toolbox function, 318,
322

part codes, 72
pascal keyword, 16,64,213
patBic pen transfer mode, 83
pen transfer modes, 83
picFrame Picture data structure

field, 140, 452, 459
PicHandle data type, 372, 384
PICT file

header, 383-384, 397
opening existing, 379-385
saving document as, 390-402

picture,
buttons and, 63, 68-70, 108-110
graphics programs and, 69
PICT resources and, 68-69
printing, 451-454

Picture data structure, 140
PixMapHandle data type, 82

525

More Mac Programming Techniques

Point data type, 81
PowerPC, code storage, 262
PrClose() Toolbox function, 446-

447, 458
PrCloseDoc() Toolbox function,

446-447
PrClosePage() Toolbox function,

446-447, 450
preferences file

accessing from application,
350-355

corruption of, 348
creating new, 353-354
defined,343
name of, 348
resources for, 345-349
saving values to, 356-359

Preferences folder, 343
PrintDefault() Toolbox

function, 444
printer resource file

defined, 438-439
driver resource, 442
resource types, 439

printing
dialog item text, 481-493
font changes, 489
graphics port, 446
multiple windows, 466-472
print record, 444
Printing Job dialob box, 437, 448
Printing Style dialog box, 437,

441,448
Printing Manager, 437
PrjobDialog() Toolbox function,

448-449
PrOpen () Toolbox function, 446-

44 7' 458-459

526

PrOpenDoc() Toolbox function,
446-447

PrOpenPage() Toolbox function,
446-44 7' 450

PrStlDialog() Toolbox function, 441,
442,448

PtlnRect() Toolbox function, 30,
72-73

R

refCon WindowRecord data struc­
ture field, 373-375

ReleaseResource () Toolbox func­
tion, 121, 272, 327-334, 340

RememberA4() Symantec-defined
function,504

RemoveResource() Toolbox func-
tion, 357-358

ResEdit, hex editing with, 6
ResError() Toolbox function, 321
RestoreA4() Symantec-defined

function,504
resource

attributes, getting, 338
copying, 324-327, 334-340
IDs, unique, 339
information, getting, 337
loading, 328
multiple DITLs and, 261, 263-281
preloading, 328
templates and, 262, 282-297

resource file
accessing, 308-310
closing, 312
copying resources between, 324-

327' 334-340

creating, 303, 316-324
current,310
external, 303
opening, 310-311
reasons for, 303-304
reference numbers, 308-310

resource map, 328
resource templates

application use of, 294-297
data element types, 290-293, 346
defined,262,282
preferences files and, 345-349

response, and Gestalt(), 81

s
Save dialog box, 391
selector code, and Gestalt(), 81
SetA4() Metrowerks-defined func-

tion, 512
SetCntlValue () Toolbox function,

107, 132, 171, 180-182,220,
347,355

(same as SetControlValue()
Toolbox function)

SetControlMaximum() Toolbox
function, 158

SetControlValue () Toolbox
function, 132

(same as SetCtlValue () Toolbox
function)

SetCurrentA4() Metrowerks-defined
function, 512

SetDAFont() Toolbox function, 489
SetDialogl tern () Toolbox function,

345

Index

SetDialogltemText() Toolbox func­
tion, 347, 355

SetEOF() Toolbox function,
400,429

SetFPos() Toolbox function,
383,415

SetPenState() Toolbox function, 83
SetPort() Toolbox function, 104
SetResAttrs() Toolbox function, 339
SetSoundVol () Toolbox function,

215, 223-224, 232
SetSysBeepVolume() Toolbox func­

tion, 232
SetUpA4() Symantec-defined

function,504
SetUpA4.h Symantec header file,

504
SetWindowPic(), 459
SetWRefCon() Toolbox function,

372-373
SetWTitle() Toolbox function, 384
sfFile global constant, 382
SFTypeList data type, 381-382, 414
ShowDialogltem () Toolbox

function, 277
ShowWindow() Toolbox function,

104
single segment 32-bit reference

error, 510
slider controls

custom dragging, 166-173,
174-187

defined, 127
en try point, 135
indicator part, 128, 139-144,

148-155
main() routine, 135
pictures, used as, 128-131

527

More Mac Programming Techniques

slider part, 128
thumb region, 145-148
thumb, 128

slopRect thumb dragging struct
field, 149-155

Small object code option,
Metrowerks, 510-511

Smart object code option,
Metrowerks, 510-511

smSystemScript global constant, 319
SndSoundManagerVersion ()

Toolbox function, 240
Sound Manager 3.0, 239-241
SoundDispatch trap, 240
Standard File Package, 369
StandardFileReply data type, 382,

394
StandardGetFile() Toolbox function,

381-382, 414, 517
StandardPutFile() Toolbox function,

394,517
static text items, printing, 486-493
StillDown() Toolbox function, 169
STR# resource, 282
STR resource, control titles and,

114-115, 121
Str255 data type, 121, 297, 492
StringPtr data type, 121
StringWidth() Toolbox function, 121
SysEnvirons() Toolbox function,

517
System file, 58
System file, menu display code, 5
System font, 5, 22, 123
system Version SysEnvRec data

structure field, 518
systemwide Macintosh features,

189, 196

528

T

TeachText, opening PICT
files with, 391

TEHandle data type, 413, 416, 424
TEKey() Toolbox function, 424
teLength TERec data structure field,

428
TemplateHandle application-defined

data type, 295-297
Tern plateRecord application-defined

data type, 295-297
TENew() Toolbox function, 413, 428
TERec data type, 428
TESetText() Toolbox function,

416
TEUpdate() Toolbox function,

418
TEXT file

destination rectangle, 413-414,
428

header, lack of, 415
opening existing, 409-418
saving document as, 423-430
view rectangle, 413-414, 428

• TextFont() Toolbox function, 120,
124,489

TextSize() Toolbox function, 120,
124,489

THPrint data type, 444
ThumbDraglnfo application-defined

data structure, 139
TPPrPort data structure, 446
TPrint data type, 444, 448-449
TrackControl () Toolbox function,

148-149
transfer modes, 83

u
UniquelD() Toolbox function, 339
update events, 53
UseResFile() Toolbox function, 309,

311, 337

v
vAsixOnly global constant, 150
vers resource

control panels and, 202
defined, 199

viewRect TERec data structure field,
428

void keyword, 16, 64, 213

Index

w
WindowData application-defined

data type, 372
WindowHandle application-defined

data type, 372
windowPic WindowRecord data

structure field, 373, 459, 461
WindowPtr data type, 373
WindowRecord data type, 373, 459
WriteResource() Toolbox function,

339,357

529

ABOUT THIS DISK

The one 1.4-MB disk contains a single folder named Beyond the Basics
f. Within this folder are three more folders. The first contains several
utility programs that can be used to supplement the topics in this book.
The other two folders hold source code files and project files for each
of the examples presented in the this text. One folder holds
Metrowerks CodeWarrior projects, the other holds Symantec projects
for either the Symantec C++ 7.0 or THINK C 7.0 compilers. If you have
one of these compilers, this disk provides you with everything you need
to get started.

This disk is a Macintosh 1.4-MB high-density disk. All newer model
Macintosh computers come with the SuperDrive-a 1.4-MB high-density
floppy drive. If you have an older Macintosh with an 800-KB double-den­
sity floppy drive, you won't be able to use this disk. You can, however, if
you find a friend or coworker who has a SuperDrive. That person can
copy the folders to 800-KB disks for you. The files on this 1.4-MB disk are
compressed (archived) in a single self-extracting file. To extract the fold­
ers and files from within this one file, simply copy it to your hard drive
and double-click on it. You need no special software program or utility to
perform this extraction.

A 0 1wsionm MIS.Prl'<s, Inc.
A Subsidiary of Henry Holt and Co., Inc.

More Mac Programming
Techniques
Dan Parks Sydow

ISBN 1 -~:;HSl-411!'>-H

Copyright 0 I !J\J:; by M&T UtH>k.~
Fonnat: Mad ntosh

M&T Books
115 ·wes t 18th Street New York, NY 10011

(800) 488-5233

INCLUDED
I cn:l

lntcrmcJ1.uc

> Hot programming tricks and
techniques

> Learn file resources from
the ground up

Build cus tom menus and
add custom controls

> Handle INITs effectively

Learn how to make a
Preference file

> Print flawlessly from your
programs

ISBN 1-55851-405-8

SALE PRICE $6.99

. J ~lllH I .I.Ill I .

