

On Macintosh Programming

On Macintosh Programming:
Advanced Techniques

DANIEL K. ALLEN

.....
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital
letters (i.e., Macintosh is a registered trademark of Apple Computer,
Inc.).

Library of Congress Cataloging-in-Publication Data

Allen, Daniel K.
On Macintosh programming : advanced techniques I Daniel K. Allen.

p. cm.
ISBN 0-201-51737-X
1. Macintosh (Computer)--Programming. I. Title

QA76.8.M3A445 1990 89-39855
005.265--dc20 CIP

Copyright © 1990 by Daniel K. Allen

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the
United States of America.
Published simultaneously in Canada.

This book was written, organized, indexed, and formatted by the author,
using the following tools: Apple Macintosh SE 2.5/40 with Radius
Accelerator 16, Apple LaserWriter Plus, Microsoft Word 4.0, Microsoft
Excel 1.5, Apple HyperCard 1.2.2, Apple MPW 2.0 and 3.0, and many
of the tools presented in this book.

Sponsoring Editor: Carole McClendon
Technical Editor: Tony Meadow
Technical Reviewers: Paul Finlayson and Tom Taylor
Cover Design: Doliber Skeffington
Text Design: Total Concept Associates
Set in 11-point Times Roman by Perry Mcintosh

0-201-51737-X

ABCDEFGHIJ-AL -89
First printing, December 1989

To

Mom and Dad

Grandma and Grandpa

Fluffernutter

CONTENTS

Preface

INTRODUCTION

How This Book Is Organized
Conventions
History of Macintosh

CHAPTER 1 THE MACINTOSH ARCHITECTURE

The Macintosh Software Architecture
The Macintosh Hardware Architecture

Memory Map

Memory Mapped 1/0

Register Saving Conventions

Parameter Passing Conventions

A5 World

Low-memory Globals

The A-trap Dispatcher
ATrap-C Tool
LoMem-C Tool
Ascii-C Tool
Conclusion

Recommended Reading

CHAPTER 2 THE MACINTOSH OPERATING SYSTEM

Process Management

The Memory Manager

Heap Zones and Subzones

Pointers

xvii

xxi

xxi
xx ii
XXll

1

3

3
4

5
6

7

8
8

11
18
23
24

25

26

26
27

28

28

vii

Viii CONTENTS

CHAPTER3

Handles and Master Pointers

Memory Allocation Algorithm

Memory Manager Routines
The Segment Loader

Segmentation Bugs

Creating Processes Under the Finder

MultiFinder
The File System

Low- and High-level Routines

Param Blocks

Types and Creators

Finder Information

High-level File System Routines

Data Organization on Volumes
The Input/Output System
Apple Talk
The Start Code and the Boot Process

System Error Handler

Boot Blocks

Booting Continued

Booting-Installing MacsBug

Booting-Installing Patches and INITs
OSPeek-Pascal Desk Accessory
ADBKey-Assembly Language INIT
Zero-C Tool
Conclusion

Recommended Reading

QUICKDRAW

Graphics Ports
Bit Maps
Coordinate Systems
Graphics Operations
Patterns
Cursors
Icons
Color QuickDraw
The Font Manager

28
30

31
32
34

34

36
38

38

39

40
42

42

44
46
47
49
50

52
54

54

55
56
69
70
73

74

75

76
77
78
79
81
81
82
83
83

The Print Manager
Mandel-Pascal Application
Mandel.r-Rez Source Code for Resources
Graph-C Tool
MacQ-C Application
MacQ.r-Rez Source Code for Resources
Conclusion

Recommended Reading

CHAPTER 4 THE MACINTOSH TOOLBOX

The Resource Manager

Resource Maps

Resource Attributes

Resource Manager Routines
The Event Manager

FKEYs

Mouse Events

Key Events

Activate and Update Events

Other Events
The Window Manager

Drawing in Windows

Auxiliary Window Routines
The Control Manager
The Menu Manager

Menus and the User Interface
TextEdit
The Dialog Manager

Dialogs and the User Interface
The Desk Manager
The Scrap Manager
Utilities

OS Utilities

Toolbox Utilities
Package Manager

Pack 0--List Manager

Pack 2-Disk Initialization

Pack 3-StdFile

CONTENTS ix

86
87
99

100
107
118
120
120

1 21

122
126
126
127
128
130
130
131
131
132
132
133
134
135
136
138
138
139
141
143
144
144
144
145
145
145
146
146

X CONTENTS

Pack 4-SANE Arithmetic

Pack 5-SANE Transcendentals
Pack 6-Intemational String Utilities
Pack 7-Binary-Decimal Conversions

Pack 12-Color Picker
Dump-C Tool
ListRsrc-C Tool
CleanRsrc-C Tool
MacsBugKey-Assembly Language FKEY
RotateWindows-Assembly Language FKEY
MF Switcher-Assembly Language FKEY
Conclusion

Recommended Reading

CHAPTER 5 SANE

SANE Functionality

History of SANE
Software SANE versus 68881 SANE
Portability Among Numeric Environments
NaNs and Infinities
Remainders, Modulo, and Rounding

Fixed and Fract Arithmetic
NumTheory-C Tool
Hash-C Tool
Rand-C Tool
Solar-Pascal Tool
Sun-Pascal Tool
Sun-C Tool
Det-C Tool
Conclusion

Recommended Reading

CHAPTER 6 M PW

History of MPW
MPW Overview
The MPW Interface

146
146
146
147

147
147
152
156
159
159
160
161
161

162

162
163
164
165
167

168
169
170
174
177
182
193
198
203
207
208

209

209
211
211

CONTENTS Xi

Shell Command Language 213
Alias Substitution 213

Evaluation of Structured Constructs 214

Variable and Command Substitution 214

Blank Interpretation, File Name Generation, I/0 Redirection, and

Execution 215

MPW Shell Built-In Commands 216

MPW Documentation 218
MPW Tools 219

MPW Text Tools 221
MPW Object Tools 222

MPW Resource Tools 222
Startup-Shell Script 223
MakeCTool-Make Script 228
MakeCTool68881-Make Script 230
Build-Shell Script 230
BuildTools-Shell Script 231
RenameWild-Shell Script 232
InitDisks-Shell Script 233
DeleteUnits-Shell Script 234
CompareSources-Shell Script 234
LibList-Shell Script 235
Ob j-C Tool 235
An XCMD Library Project 239
TwoCol-C Tool 251
Conclusion 253

Recommended Reading 253

CHAPTER? ASSEMBLY LANGUAGE

The MPW Assembler
The 95-percent/5-percent Rule
Leaming Assembly Language
Memory-Assembly Language Desk Accessory
DKAD-Assembly Language Application Shell
DKAD.r-Rez Source Code for DKAD Resources
DisAsm-C Tool
Conclusion

Recommended Reading

255

255
256
257
258
264
274
281
285
285

Xii CONTENTS

CHAPTER 8 THE C LANGUAGE

History of C
Building C Tools
A Note for MPW C 2.0 Users
DeCom-C Tool
FastCat-C Tool
Substitute-C Tool
Reduce-C Tool
Sign-C Tool
Squash-C Tool
WordText-C Tool
Text Tool-C Tool
TextTool.r-Rez Source Code for a Commando Interface
Sort-C Tool
Sort.r-Rez Source Code for a Commando Interface
Index-C Tool

Options

Examples
lndex.r-Rez Source Code for a Commando Interface
Conclusion

Recommended Reading

CHAPTER9 THE PASCAL LANGUAGE

History of Pascal

Apple's Pascals

Apple's Object-oriented Pascals

Pascal on Macintosh Today
Object Pascal
MacApp
StyleTest-Pascal Application
StyleTest.r-Rez Source Code for StyleTest Resources
GraphSort-Pascal Application
Conclusion

Recommended Reading

286

286
287
288
289
290
293
294
296
298
300
303
310
313
321
323
324
327_
347
352
352

353

353
354

355
355
356
356
357
369
371
387
388

CONTENTS Xiii

CHAPTER 10 HVPERCARD 389

APPENDIX

History of HyperCard 389
HyperCard and Object-oriented Programming 391
HomeStack-HyperTalk Script 392
DrawRandom-HyperTalk Script 395
DuplicateBackground-HyperTalk Script 396
Cimport-HyperTalk Script 397
Calendar-HyperTalk Script 399
Books-HyperTalk Script 402
External Commands and Functions (XCMDs) 415

XCMDs and Drivers 415
XCMDs and the Toolbox 416
XCMDs and HyperTalk Callback Routines 417

Make-Shell Script 417
NthFileName-C XFCN 419
NthFileName-Pascal XFCN 420
SetCreator-C XCMD 423
SetCreator-Pascal XCMD 424
Strip-C XFCN 425
Strip-Pascal XFCN 426
Replace-C XFCN 427
Replace-Pascal XFCN 428
CPrint-C XCMD 429
DateDMY-Pascal XFCN 432
Conclusion 434

Recommended Reading 434

MACINTOSH CHARACTER SET

BIBLIOGRAPHY

Algorithms
The C Programming Language
Compiler Construction and Computer Languages
Desktop Publishing and Graphics
Handbooks
Hardware
History of Computers
HyperCard and HyperTalk

435

437

438
440
441
443
445
447
448
449

xiv CONTENTS

Information Theory
Logic
Macintosh
Mathematics
Object-oriented Programming
Operating Systems
The Pascal Language
Physics and Astronomy
Software Engineering
Software Tools
Symbolic Algebra
Symbolic Manipulation and Artificial Intelligence

Index

450
450
452
454
456
456
457
458
460
461
462
463

465

ACKNOWLEDGMENTS

I could not have written this book without the support and help of many people.
Thanks first go to Carole McClendon, Joanne Clapp, Rachel Guichard, and the rest of
the Addison-Wesley staff for their editing, help, understanding, and encouragement, and
to Tony Meadow of Bear River Associates for his help with technical editing. I would
like to thank those at Apple who supported me in writing this book, especially Jean
Louis Gassee, Mike Holm, and the entire HyperCard team.

Thanks go to Dan Winkler for his insights and calm attitude toward everything; to
Rick Auricchio for "The Meaning of ls," plane flights, and children's clothes; to Brian
McGhie for maintaining the A-trap and low memory lists; to Larry Tesler for being in
strumental in hiring me at Apple in early 1985; to Mark Neubieser for the Script
Interpreter and Thursday Mexican lunches; to Steve Goldberg for the TFS Monkey and
Roo-Roo jokes; to Erich Ringewald for the About Box and condominium; and to Carl
Madsen for the UNIX mail and Nikon buying sprees.

For genius, a special thanks to my friends Bill Atkinson, Steve Capps, Jerome
Coonen, and Donn Denman. These are some of the best Macintosh programmers in the
world, and I am grateful to have worked with them and learned so much from them. For
inspiration, thanks to Hugh W. Nibley, Truman G. Madsen, and Wilfred C. Griggs,
three professors at Brigham Young University who taught me how to appreciate history,
philosophy, and the Greek language, respectively.

For years of friendship, thanks to Rob Boody, Ken Davis, Paul Finlayson, Gary
Howard, Mike Holm, Rich Mead, Steve Monfort, Doug Phillips, and Tom Taylor. A
special thanks to Paul and Tom for reviewing this book for technical accuracy; to Doug
for being a great munging partner; to Rob for the moral support that only a Boodelian
individual can give (thanks for the Brautigans); and to Mike, thanks for the garlic bread,
fro-yos, and beverages.

My family has been very supportive and loving during this major undertaking. A
special thanks to my parents Daniel R. and Elizabeth V. Allen for the weekends in
Paradise; to my sister Laura and her husband Woody Edvalson, Uncle Joseph K. Allen,
Uncle T. K. Allen, and to my grandparents J. Knight and Alice R. Allen, for their sup
port. Honorable mention should be made of my second cousin once removed, Robert E.
Allen II, who gave me my first job years ago and helped me get my first Macintosh on
January 27, 1984.

Lastly-but most importantly-I thank my dear wife and companion, Elizabeth Tobin
Allen, for her support, gentle prodding, and infinite understanding. Without her, this
would never have been finished. And thanks to Andrew Kegan and Rachel Elizabeth,
our two greatest joys in life, for the cutest smiles and loving spirits.

xv

PREFACE

This book shows both by precept and by example how easy it is to write Macintosh
software. Programming the Macintosh is easy if you understand how the Macintosh
works and hard if you do not. This book strives to teach how the Macintosh works.

Before now this material has not existed all in one place. I have tried to distill the im
portant information needed for programming into one book, based upon my personal
experience of more than five years of programming on the Mac. In fact, this is one book
I wish I had had five years ago.

The programs found in this book are not artificial. They are useful, real programs. I
wrote them to solve actual problems, and have found them to be handy tools that I use
daily. In addition to being useful in their own right, they serve to illustrate how to pro
gram the Macintosh and how different languages are used in practice.

In order to fully utilize this book, you will need to roll your sleeves up and get into
programming, because much of the reference material in this book is designed to be used
while you are programming. You cannot write good software in a vacuum; this book is
designed to be a programming companion. In addition to reference materials such as this
book, programming for me requires a large block of uninterrupted time to concentrate,
lots of music, munchies, and cold drinks. (Your mileage may vary.) In any case, make
sure you have a good comfortable environment with all the necessary resources at hand
when writing software.

Do not be afraid to try new things and to experiment. For example, HyperCard,
MultiFinder, the Finder, and the original Mac ROMs were all written without an
Engineering Reference Specification (ERS). They were prototyped and played with; they
were written and rewritten, with each iteration becoming better. Iterate. Take the pro
grams in this book and expand on them. Suggestions for improving many of the pro
grams are given with the program listings.

There is also some historical information scattered throughout this book, including
specific names of people who worked on various pieces of software at Apple. I feel it is
important to record the names of these people here, as no other history has been written
documenting their achievements. I apologize to those whose names I have forgotten; this
history is necessarily limited, coming from only one person's perspective.

xvii

xviii PREFACE

Disclaimer

I alone have written this book, and the opinions expressed herein are solely mine. I
have tried to make this book as accurate as possible, but I can give no formal guarantee
of accuracy. Furthermore, neither my employer, Apple Computer, nor my publisher,
Addison-Wesley, are to be held responsible for any of the content of this book.

Although the programs are copyrighted, they may be freely copied and distributed,
but neither the source code nor the resulting binary code for any program may be sold.
These programs are to be used, learned from, and improved upon. Anyone wishing to
incorporate these sources in other products or on a CD-ROM should contact me first.
Source code for the programs found in this book may be obtained on an 800 KB Sony
3.5-inch Macintosh HFS disk as MPW text files for $20.00. To order this disk or to
send correspondence to the author about this book, its source code, and other Apple
related issues, write to:

Dan Allen
1013 Suffolk Way
Fairfield, CA 94533

All correspondence, questions, comments, witty remarks, bug reports, and sugges
tions are welcomed at either of these electronic mail addresses: dan@apple.com on the
UNIX/USENET network or ALLEN. DAN on AppleLink.

On Macintosh Programming

INTRODUCTION

This book covers the subject of Macintosh programming at the intermediate to ad
vanced level. In order to get the most from this book, you should have some experience
with programming in C or Pascal, and some experience in programming the Macintosh.

You will be looking at a lot of source code as you read this book. The code provides
examples of stand-alone applications, MPW tools, desk accessories, INITs, HyperCard
XCMDs, and other types of code. A number of languages are used: C, Pascal, 68000
assembly language, MPW Shell command language, and HyperTalk. Obviously, it pays
to be multilingual these days.

This book will not replace Inside Macintosh or the documentation for your develop
ment system. Instead, it is an attempt to point out some of the important, interesting, or
commonly misunderstood aspects of Macintosh programming. You will not find a de
tailed explanation of all the MPW tools in here, for example, but you will find an expla
nation of how the MPW Shell manages tools, not to mention the source code for more
than a dozen different MPW tools.

How This Book Is Organized

This book takes a bottom-up approach to understanding how the Macintosh works.
The Macintosh architecture is covered in the first five chapters, and the tools used to
create software are explored in the final five chapters. Why are the low-level details first?
Just as the foundation of a house must be built before anything else, you need to under
stand the basics of the Macintosh architecture before you can begin developing software.

Each chapter begins with descriptive and reference material, which is followed by
source code that illustrates the topic at hand. A recommended reading list is given in each
chapter.

Chapter 1 begins with a look at the various layers of the Macintosh architecture. Then
the lowest-level layer is explored, including the A-trap dispatcher, low-memory globals,
register saving conventions, and other basics of the Macintosh architecture.

Chapter 2 covers the Macintosh operating system, including memory and process
management, the file system, and device drivers. MultiFinder is also discussed.

Chapter 3 covers QuickDraw, the graphics kernel of the Macintosh that forms the
foundation for the Toolbox.

Chapter 4 presents the Toolbox and its various Managers. The System file, resources,
windows, menus, and dialogs are explored, and user interface issues are discussed.

xxi

xxii INTRODUCTION

Chapter 5 discusses the Standard Apple Numerics Environment, or SANE. The
Macintosh is first-rate for numerical analysis, so this chapter is essential reading for
anyone doing scientific or engineering programming.

Chapter 6 shifts gears to a discussion of Apple's prime development environment: the
Macintosh Programmer's Workshop, or MPW. The MPW Shell and its script language
are presented, followed by a look at the various MPW Tools that come with MPW.
Make, Link, and MPW Shell scripts are used to build various types of software.

The remainder of the book shows the various languages in use through many exam
ples. Assembly language examples can be found in Chapter 7, C examples in Chapter 8,
Pascal examples in Chapter 9, and HyperTalk scripts-as well as XCMDs in C and
Pascal-are found in Chapter 10.

The appendix contains an ASCII table. The bibliography is an annotated list of books
and publications you may find useful while you develop your skills in programming the
Macintosh.

Conventions

Hexadecimal numbers are preceded by a dollar sign (or in C source code by Ox); all
other numbers are in decimal format. All Macintosh ROM routine names, file names,
and source code listings are in the courier font. Variable names begin with a lowercase
letter, and routine names start with an uppercase letter.

History of Macintosh

The remainder of the introduction gives a brief personal history of the Macintosh.
You may choose to skip this section on a first reading if you want to dive right into the
technical details. However, knowing about the history of the Macintosh is important to a
programmer because it explains why parts of the Mac OS are the way they are.

The first computers were built in the 1940s, but the notion of a personal computer did
not surface until the middle of the 1970s. At this time the Santa Clara Valley, just forty
miles south of San Francisco, was ripe for a revolution in personal computing. Some
years earlier in this valley, the integrated circuit revolution had already been begun by
such hardware pioneers as Fairchild, Varian, Hewlett-Packard, Intel, National
Semiconductor, Advanced Micro Devices, and Amdahl. That revolution earned the val
ley the title "Silicon Valley," and the area has retained its title-and its leading role in
computer-related technology--ever since.

The personal computer revolution began within the small Silicon Valley city known as
Cupertino, which was largely made up of orchards until the 1970s. Apple began life in
the area of Cupertino just south of Highway 280 near Stevens Creek Boulevard and

HISTORY OF MACINTOSH xxiii

Highway 9 (also known as DeAnza Boulevard or the Sunnyvale-Saratoga road). This
area includes Bubb Road, where Apple's first office began, and Bandley Drive, where
Apple buildings today form the main Apple campus.

A central meeting place for many of Apple's early employees was Sunnyvale's
Homestead High School. Steve Jobs (Apple employee #0 and #2), Steve Wozniak
(Apple employee #1), Bill Fernandez (Apple employee #4), Chris Espinosa (employee
#8), and Dan Allen (employee #7849) all attended Homestead during the 1970s.

Steve Wozniak and Bill Fernandez experimented together on some early machines,
experimentation that over time led to the Apple I and the birth of Apple Computer. The
Apple I led to the famous Apple II and then the infamous Apple III. The Apple Ile, Ile,
IIGS, and the Ile Plus are the more recent members of this family, built using the
Motorola 6502 processor.

In 1979, Jef Raskin began creating a computer at Apple that was to be an appliance
for the home. It used a Motorola 6809 8-bit processor and a 5.25-inch disk drive, and it
was called the Macintosh.

Meanwhile the Xerox Corporation had gathered a unique team of people developing
new metaphors and ideas about using computers. In the 1970s, the Xerox Palo Alto
Research Center (PARC) was designing some of the first workstations that incorporated
bit-mapped graphics, windows, icons, and a new device called a mouse. (The mouse
was actually designed in the 1960s at the Stanford Research Institute.) At PARC, Alan
Kay, Dan Ingalls, and Adele Goldberg created the language Smalltalk while Larry Tesler
worked on icons and modeless word processors; in time Kay, Ingalls, and Tesler all
came to work for Apple. While at PARC, Niklaus Wirth, who had created Pascal in the
early 1970s, worked on a successor language called Modula. Later Wirth developed his
own system, called Lilith, that contained Modula-2, a bit-mapped display, windows,
pop-up menus, and a three-button mouse, but it was never a commercial success.

Some of the people who developed these ideas at PARC were lured by Steve Jobs to
come to work for Apple Computer. Together, they worked to bring many of the power
ful ideas found at PARC to the world at a reasonable price. Apple employees spent three
years and a lot of money working on their own implementation and extension of the
PARC workstation concepts, which led to an amazing computer named after a girl in
Steve Jobs's life.

1983

In January, 1983, Apple introduced Lisa, a novel computer with a Motorola 68000
microprocessor running at 5 MHz, 16 KB of ROM, 1 MB of RAM, two 5.25-inch 860
KB floppy disk drives, a 5 MB hard disk, a built-in 12-inch bit-mapped black-and-white
display of 720 by 364 oval pixels, and a mouse. A choice of two printers was offered: a
dot matrix printer that offered integrated printing of text and graphics and a daisy wheel
printer that offered just letter-quality text.

xxiv INTRODUCTION

Lisa had a multitasking operating system that was concealed from the user by the
metaphor of a Desktop, with folders and documents that were graphically illustrated by
the use of icons. Files were manipulated by pointing at, clicking on, and dragging icons
with the mouse. Options available to the user were accessed via pull-down menus.
Different fonts, sizes, and styles could be specified, displayed on screen, and then
printed just as seen on screen. Although most of these features had been implemented
previously in places like Xerox PARC, most people had never before been exposed to
them. The friendly user interface found on Lisa was a revolutionary giant step toward
making powerful software easy to use.

Lisa offered a set of applications that had a degree of integration previously not seen.
Data could be passed between applications by the use of a clipboard, and text and
graphics could be combined in a single document. These applications-known collec
tively as the Lisa 7 n and bundled with Lisa-included the following:

• LisaCalc
• LisaDraw

• LisaGraph

• LisaList
• LisaProject
• LisaTerm

• LisaWrite

spreadsheet
object graphics
business graphics and charts

file manager
project management

terminal emulation
word processing

Unfortunately, Lisa was ahead of its time. The price, $9,995, was too high for most
people.

1984

On January 24, 1984, Apple introduced Macintosh. Like Lisa, Macintosh was ahead
of its time, but it had a more reasonable price of $2,495. Macintosh had a Motorola
68000 microprocessor running at 7.83 MHz, 64 KB of ROM, 128 KB of RAM, one
3.5-inch 400 KB internal floppy disk, a 9-inch internal black-and-white bit-mapped
display, and a mouse. Macintosh also used the Desktop metaphor, but its operating sys
tem was singletasking. The Macintosh screen had 72 square pixels per inch in a 512-by-
342 configuration. To complement the Macintosh's screen, the ImageWriter printer
could print all text and graphics seen on the screen, using a resolution of 144 dots per
inch (dpi). The printer came in standard and wide-carriage models.

Macintosh was bundled with three applications: a word processor called Mac Write, a
bit-mapped graphics program called MacPaint, and a Desktop organizer called the
Finder. The Finder was originally started by Bruce Hom, but in late 1983 Steve Capps
began to write more of the code. Early versions of the Finder were developed using the
Lisa Monitor and were written all in assembly language, like most of the Macintosh

HISTORY OF MACINTOSH XXV

software. MacPaint was written by Bill Atkinson as a demonstration program to show
off his earlier work, QuickDraw, which was ported from Lisa. Originally, the program
now known as WriteNow was going to be shipped with the Mac, but Mac Write, written
by Randy Wigginton (another early Apple employee), made it into the box instead.

Later, Apple added MacDraw (a port of LisaDraw by Mark Cutter), MacProject (a
port of LisaProject by Solosoft), MacTerminal (Martin Haerberli), MacPascal (Think),
and MacBasic (Donn Denman). MacBasic-although announced and completed-tragi
cally was never shipped. Little third-party software was developed for Lisa, but the
world of third-party software for Macintosh was explosive. Microsoft's Word, Chart,
File, MultiPlan, and Basic all helped foster interest in Macintosh in the critical first
months of 1984. In the product's first 100 days on the market, 50,000 Macs were sold.

When the Macintosh was introduced, Lisa was revised to have a single 400 KB 3.5-
inch Sony floppy disk, and the base model had only 512 KB of RAM. It was called
Lisa 2.

In September, 1984, Apple introduced Macintosh 512K, which was the original
Macintosh with 512 KB of RAM, or four times the memory of the original Macintosh.
This greater memory (provided by the use of 256 KB chips), combined with the avail
ability of external 3.5-inch 400 KB disk drives, opened up a new market for larger and
more sophisticated software packages.

1985

In January, 1985, Apple introduced the LaserWriter, which was a 300-dpi printer
based on the Canon CX laser printer engine. It was billed as Apple's "most powerful
computer," including a Motorola 68000 microprocessor running at 12 MHz, 1.5 MB of
RAM, and 512 KB of ROM. The LaserWriter had in ROM a new page description lan
guage called PostScript, created by Adobe Systems.

Along with the LaserWriter, Apple also introduced its AppleTalk local area network,
which allowed devices such as the LaserWriter to be shared by up to 32 users. At this
time, the main engineering network in Apple's Bandley 2 building was running more
than 65 nodes out of a theoretical maximum of 254 devices. Maze Wars was being
played by a majority of the engineers on this network; this heavy use caused the network
to come to its knees, and EtherTalk was soon being considered.

As Lisa sales slowed, Apple renamed Lisa 2 to Macintosh XL. Apple also released an
emulation package for Lisa called MacWorks, which allowed the Mac XL to run
Macintosh software. Only a few months later, Apple discontinued the Lisa/Mac XL alto
gether. Later in the year Steve Jobs left Apple and formed NeXT.

Later in 1985 came software that really began to take advantage of the Macintosh
platform. Part of this development was due to the May Software Supplement, which
provided a massive amount of information to developers. Harvey Alcabes gathered more
than a dozen disks and thousands of pages of documentation for this publication. Major
third-party releases later in the year included an integrated package from Lotus called

'

xxvi INTRODUCTION

Jazz, Microsoft's Excel spreadsheet, and Aldus' PageMaker, a page composition pro
gram especially tuned to work with the LaserWriter. Together, these and other programs
began the desktop publishing revolution.

A major software innovation was also created by Andy Hertzfeld: Switcher, a small
application that allowed multiple applications to coexist. It was written entirely in 68000
assembly language using MDS and went through many iterations and releases, culminat
ing in Switcher 5.2. Although it was not as reliable as MultiFinder eventually was, it
certainly laid the application groundwork for MultiFinder. Erich Ringewald began to
maintain Switcher in late 1985 but soon decided to rewrite it completely.

In September, 1985, the Hard Disk 20, along with the Hierarchical File System
(HFS), allowed Macintoshes to work with large numbers of files much more efficiently,
and a new Image Writer II printer offered faster printing, AppleTalk support, and color
printing.

The Hard Disk 20 with the Macintosh 512K used a 400K Boot Disk with a RAM
based version of HFS that augmented the original flat Macintosh File System (MFS).
The later 128 KB ROMs of the Mac Plus had HFS built in, which ended the days of the
Boot Disk. HFS was originally called TFS, for Turbo File System. The name came
from a project called Turbo Mac that began in late 1984. Turbo Mac was to be a faster
Mac in the original Mac box, but the project was scrapped in early 1985. The Macintosh
Plus project replaced it, and it included TFS under the name of HFS.

HFS was written by Pat Dirks and Bill Bruffy, with some help from Larry Kenyon,
the author of MFS. HFS was tested by Mark Neubieser, Steve Goldberg, and Dan Allen
using the Neubian "Script Interpreter" with Goldberg's "Monkey" scripts for exhaustive
testing.

Finder 4.1 was released in May, 1985, the last and best of the MFS-only Finders.
Finder 5.0 was the first Finder that supported HFS. It shipped with the Hard Disk 20
disk after a long season of Finders whose code names all began with the letter "S." The
code name replaced the word "Special" in the menu bar. Some of these names were
Swizzle, Sushi, and Spam. Those were the halcyon days ...

1986

In January, 1986, Apple introduced the Macintosh Plus, which added support for
external peripherals through a Small Computer Standard Interface (SCSI) port. It had a
larger-capacity 3.5-inch Sony floppy disk drive. The new drive used double-sided disks
that held 800 KB. The drive was also faster and quieter than older drives. The
Macintosh Plus increased standard memory to 1 MB, expandable to 4 MB via the use of
SIMMs modules. The ROMs were expanded from 64 KB to 128 KB and featured HFS
and faster versions of the Resource Manager and QuickDraw. Mac Write and MacPaint
were no longer bundled with each Macintosh that Apple shipped.

The Mac Plus began the trend toward smaller connectors, with its mini DIN-8 serial
connections replacing the earlier DB-9 connectors. It also began the trend toward larger

HISTORY OF MACINTOSH xxvii

keyboards, with a built-in (rather than optional) numeric keypad; the new keyboard was
variously code-named the Saratoga, Nimitz, or Dorfer.

The Mac Plus RO Ms were done in about six months by a very small group of people.
Ed Colby and Eric Harslem led Ernie Beemink, Bill Bruffy, Steve Capps, Jerome
Coonen, Donn Denman, Pat Dirks, Larry Kenyon, Bryan McGhie, and Erich
Ringewald to create new sets of ROMs almost daily in late 1985. Each new set of high
and low ROMs were given interesting names, such as Happy Landing, Hoist Lanyard,
Land Ho, Hearty Laughter, Halle Lujah, Lonely Hearts (the final ROM that shipped
with the original Mac Plus), and Lonely Heifer (a single ROM patched in slightly later
Mac Pluses to fix the infamous SCSI bug). Note the nautical theme, due in large part to
Ed Colbydorfer and Jerome Coonenmiiller.

Along with the usual bug fixes and optimizations, the new ROMs offered much
greater speed than the original 64K ROMs. A major speed-up in QuickDraw was
achieved by the classical trade-off of space for speed: loops were unwound by in-lining
the code. There was also new code in the ROMs for the SCSI Manager and Time
Manager. Several of the resources normally found in the System file (including the float
ing-point packages) were also put in ROM. There was no wasted space in the ROMs.

The Macintosh 128K and 512K became part of history as the Macintosh 512Ke
slowly replaced them as the new low end of Apple's Macintosh lineup. The 512Ke was
the original Mac 512K with the new 128 KB ROMs and 800 KB disk drive that the Mac
Plus offered. The 5 l 2Ke therefore had the original 5 l 2K motherboard-no SIMMs
modules-and retained the DIN-9 connectors for the serial ports. Original Macintosh
owners could upgrade their computers to either the Mac 5 l 2Ke or the Mac Plus level.

Along with the Macintosh Plus came the LaserWriter Plus, an upgraded version of the
original LaserWriter with 1 MB of ROM containing more built-in PostScript fonts. The
Mac Plus originally shipped with System 3.0 and Finder 5.1, but it took until June to
release the classic System 3.2 and Finder 5.3 that was to be the Mac Plus standard for
about one year.

1987

In January of 1987 came AppleShare, an application requiring a dedicated Macintosh
to provide shared access of remote file server volumes with password protection over
the AppleTalk network. AppleShare provided the second reason for people to install a
network. Multiple volumes could be set up on one server.

In March, 1987, Apple introduced two new computers: the Macintosh SE and the
Macintosh II. On the outside, the Mac SE was basically a Mac Plus with a small slot
added for more peripherals, but on the inside the Mac SE had been redesigned in a major
way. A lot of the logic of the Mac Plus was put into custom gate arrays, thus reducing
cost and increasing reliability. The video interlace overhead was reduced, making the SE
about 25 percent faster than a Mac Plus.

xxviii INTRODUCTION

The SE had 1 MB of RAM (expandable to 4 MB), 256 KB of ROM, a SCSI port,
and its own internal expansion connector. It was offered in two versions: with two in
ternal 800 KB drives, or with one 800 KB floppy and a 20 MB built-in hard disk.
Because of this internal hard disk option, a fan was required. Unfortunately, the original
SE "air motion device" was loud; SEs made since early 1988 have a quieter fan.

The SE project was known at various times as Freeport, Maui, Mac±, and originally,
as Aladdin. Many inside Apple joked that SE stood for Slightly Enhanced, but the offi
cial meaning of SE as System Expansion is quite appropriate. Third parties created a
wide variety of cards to utilize this slot: for example, 68020/68881 accelerator cards,
EtherTalk cards, 8086 PC cards, and cards for large displays.

The extra space in the SE ROMs is largely wasted. Each machine begins with the
ROMs of the previous machine as a starting point, so the Mac Plus ROMs were the start
ing point for the Mac SE. The SE team choose 256 KB ROMs because they were the
same size as the Mac II ROMs, which needed the room for things like Color
QuickDraw. Some new code was shared between the SE and II, such as the Apple
Desktop Bus (ADB) Manager, but there was so much free space left-and so little time
to develop good tested code to fill that space-that the SE team ended up putting in sev
eral digitized pictures of themselves. To see the photos, go into MacsBug, set the pro
gram counter to $0041D89A, and then Go. To stop the photos, reset the machine.

The Macintosh II was the first Macintosh to use a different processor. The Mac II
came with a 16.67 MHz Motorola 68020 and a 16.67 MHz Motorola 68881 floating
point coprocessor. Standard RAM was 1 MB, expandable to 8 MB, and 256 KB of
ROM was included. Actually the Mac II was designed to hold 128 MB of RAM on the
motherboard when 16 Mbit memory chips become available. The Mac II ROMs were
quite a project because the developers had to work with a new 32-bit microprocessor and
bus in 32-bit mode, as well as working with color across multiple monitors.

One internal 800 KB floppy disk drive was standard, with room for a second optional
800 KB drive. The Mac II also accommodated an internal SCSI hard disk, as well as
external SCSI devices through the SCSI bus. The Mac II had six slots using the NuBus
architecture, and it offered a NuBus video card that supported up to 256 colors chosen
from a palette of 16 million colors. The same Apple Video Card worked with either color
or black-and-white monitors and offered 16 levels of gray or 16 colors in its standard
configuration. Optional RAM fully populated the card and offered the 256 colors or
grays. The Mac II opened the world of color to Macintosh users.

The Mac II is a descendant of several interesting 68020 projects proposed internally at
Apple in 1985. These projects were called Jonathon, Mid Mac, and Big Mac. Jonathon
fizzled, and the chief architect of Big Mac left with Steve Jobs to form NeXT. This left
Mid Mac-also known as Little Big Mac-as the main expandable Mac project. It took
its first formal step with a full hardware specification under the name of Milwaukee.
Milwaukee then was known variously as Becks (another beer), Ikki ("bottoms up" in
Japanese), Paris (because of Jean Louis Gassee's involvement), and Reno (both the city
of Reno and the Mac II have slots).

HISTORY OF MACINTOSH xxix

At the Boston Mac World Expo in August of 1987 came two very important pieces of
software: HyperCard and MultiFinder. HyperCard was an all new type of software, a
blend between a programming environment, a flexible text-retrieval system, and a
souped-up MacPaint. Written by Bill Atkinson and known as WildCard during its two
year development, HyperCard has become a very useful and powerful tool for many dif
ferent applications. It is discussed in more detail in Chapter 10.

MultiFinder was a cooperative multitasking system designed by Erich Ringewald.
Contrary to what the press thought, MultiFinder was a completely different piece of
software from Hertzfeld's Switcher. Written largely in MPW C, MultiFinder was vari
ously known as Twitcher, Oggler, and Juggler. Phil Goldman and Erich Ringewald split
the work with the aid of an AppleShare file server and GCS: the Goldman Control
System. More on MultiFinder can be found in Chapter 2. Both HyperCard and
MultiFinder became bundled with the Macintosh.

Also unveiled at the Boston Mac World was a faster and sharper Image Writer LQ with
a 27-pin dot matrix print head offering 216-dpi resolution and a 15-inch-wide carriage.
Other peripherals included EtherTalk software and cards for the Mac SE and Mac II, as
well as a FAX modem.

It was a busy year for system software: Finder 5.4 was released with AppleShare in
January; System 4.1 and Finder 5.5 were released in April of 1987 with the Mac II;
System 4.2, Finder 6.0, and MultiFinder 1.0 were bundled as System Tools 5.0 in
October; and the System was revised to 4.3 for System Tools 5.1 in December.

1988

Three refined LaserWriters appeared at the start of 1988, with the introduction of the
expandable LaserWriter II. The LaserWriter II offered a single laser print engine-the
Canon SX-and three different modular controller cards, thus allowing an upgrade path.

The basic LaserWriter USC controller was a QuickDraw-based 300-dpi card that
contained a 7 .5 MHz 68000 microprocessor and 1 MB of RAM. It had a single SCSI
port that restricted the printer's use to a single Macintosh. The LaserWriter IINT con
troller contained a 12 MHz 68000 microprocessor, 1 MB of ROM, and 2 MB of RAM.
This PostScript based card configured the LaserWriter II to be similar to a LaserWriter
Plus, which it replaced. The LaserWriter IINTX controller, with its 16.67 MHz 68020
microprocessor, offered the fastest printing yet. It retained the 1 MB of ROM and 2 MB
of RAM of the IINT, but added the ability to expand both ROM and RAM up to 12 MB.
It also could have its own dedicated hard disk to hold fonts.

In addition, Apple got into the CD-ROM arena with its CD SC drive, with full sup
port for the High Sierra and ISO 9660 standards. To users, the CD SC drive acted like a
much larger and write-protected SCSI hard disk. A single removable plastic CD-ROM
with a diameter of 120 mm could be partitioned to hold multiple formats, including HFS
(Macintosh) files, Apple II ProDos files, MS-DOS, and CD-Audio, with a capacity total-

XXX INTRODUCTION

ing 550 MB per compact disc. (The CD-Audio people spell "disc" with a "c," whereas in
the computer world, "disk" is spelled with a "k.")

The Apple flatbed Scanner provided 300-dpi resolution with 16 levels of gray scale
information to help provide the same resolution input to the Macintosh that LaserWriters
output. The scanner came with AppleScan and HyperScan software. Bill Atkinson's
HyperScan brought images directly into HyperCard and thus was especially fast and
easy to use. It offered a new style of dithering called diffusion that made scanned images
very attractive.

System Tools 6.0 debuted in April of 1988, with Finder 6.1, System 6.0, and
MultiFinder 6.0. It took until September, when System 6.0.2 was released, to get the
bugs out of the System software. HyperCard 1.2 came early in the year offering many
new features, and HyperCard version 1.2.2, which fixed l.2's bugs, came late in
November.

In September, 1988, Apple introduced the Macintosh IIx, the company's first 68030-
based Macintosh. This enhanced version of the Macintosh II featured 4 MB of RAM
standard and a FDHD 1.4 MB disk drive that could read and write 3.5-inch disks
for Macintosh, Apple II, and IBM formats. A faster Motorola 68882 floating-point
coprocessor replaced the Mac II's earlier 68881 coprocessor. The Mac IIx standard con
figurations offered internal 40 MB and 80 MB hard disks. At this time, a new configu
ration of the Macintosh SE also was offered, providing 2 MB of RAM and an internal 40
MB 3.5-inch hard disk.

1989

In January, 1989, Apple introduced the Macintosh SE/30, which featured Mac II
logic in the classic Macintosh form factor, thus retaining the 9-inch built-in monitor.
Like the Macintosh IIx, the SE/30 had a 68030 microprocessor running at 16.67 MHz, a
68882 floating-point coprocessor also at 16.67 MHz, 1 MB of RAM expandable to 8
MB, a FDHD 1.4 MB 3.5-inch floppy disk drive, and an internal 40 MB hard disk. A
version with 4 MB of RAM and an 80 MB 3.5-inch internal hard disk was also offered.
(The 3.5-inch internal 40 MB and 80 MB hard disks were particularly quiet and fast,
unlike the slow and noisy 20 MB 3.5-inch internal drives.) The Mac SE/30 had Color
QuickDraw in ROM, so a color video card could be connected to an external color moni
tor through its unique 122-pin bus. To support the new machine, System 6.0.3 was re
leased with the SE/30.

In March, 1989, Apple introduced the Macintosh IIcx, a Macintosh IIx in a case about
half as wide as a Mac II, with only 3 NuBus slots instead of 6. At 14 pounds it was the
lightest Mac made to date. It had a 68030 and a 68882, both running at 16.67 MHz, 1
MB of RAM expandable to 8 MB, and the 1.4 MB 3.5-inch floppy disk. Options
included a 40 MB internal hard disk, or 4 MB of RAM and an 80 MB hard disk. Along
with the IIcx came two new monitor choices: a portrait full-page display and a two-page
display, as well as three NuBus cards: a low-cost I-bit black-and-white display card, a

HISTORY OF MACINTOSH xxxi

card for the portrait display, and a card for the two-page display. The Mac Ilx was also
offered in several new RAM/disk configurations: 1 MB/no hard disk, 1 MB/40 MB 3.5-
inch internal hard disk, and 4 MB/160 MB internal 5.25-inch hard disk. A 160 MB
5.25-inch external SCSI hard disk was also offered.

In September, 1989, the long-awaited Portable Macintosh was finally unveiled.
Roughly equivalent in functionality to the Macintosh SE, the Portable weighed 15
pounds and was rather large for a laptop, but it ran up to 12 hours on a charge of its
lead-acid batteries. Its long battery life was due to a special Power Manager chip that
slowed the processor and put the machine to sleep when possible. It came with a CMOS
version of the 68000 running at 16 MHz, 1 MB of static RAM (expandable to 4 MB), a
ROM slot, a 1.4 MB floppy drive, and an optional 40 MB hard disk. The display was an
active matrix LCD with 640 x 400 pixel resolution, while the full-size non-detachable
keyboard could accept either a trackball or a numeric keypad. Perhaps the nicest touch
was a beautiful carrying case.

The Macintosh Ilci was also introduced in September. The Macintosh Ilci was a Ilcx
with a faster 25 MHz 68030, a built-in video card for all Apple monitors (except the
Two Page Display), and a slot for an optional memory cache board. The on-board video
avoided NuBus by using main memory as the SE/30 did, thus freeing up an otherwise
used slot. The new 512 KB ROM was 32-bit clean and incorporated 32-bit Color
QuickDraw. Parity checking RAM was another option. A/UX release 1.1.1 was also
introduced, supporting Apple's flavor of UNIX on the Mac II, Mac Ilx, Mac Ilcx, Mac
Ilci, and SE/30 machines.

As Apple continues to create new models of Macintosh, compatibility becomes of
greater importance to those who create Macintosh software. Understanding the basics of
the Macintosh architecture will help you dramatically in this process.

THE MACINTOSH
ARCHITECTURE

CHAPTER 1

Important components of the architecture of the Macintosh are presented in this chap
ter. First, we will look at the world of software from the applications programmer's
point of view. Next, we will take a brief look at the hardware side of the Macintosh and
then examine how memory is used by the operating system. Finally, we will look at the
heart of the Macintosh operating system, the trap dispatcher.

Code for three MPW tools is presented: AT rap, which looks up an A-trap given ei
ther its name or number; LoMem, which looks up low-memory globals by name or
number; and Ascii, which displays the Macintosh character set.

The Macintosh Software Architecture

In its broadest sense, the Macintosh software architecture can be described as a set of
three layers, each layer of software building upon the previous layer. Each software
layer also emphasizes a particular piece of hardware.

Layer one is the world of bits, bytes, and assembly language. The first layer is chiefly
concerned with the manipulation of hardware and basic system resources. Software that
performs these functions, known as system software, usually just means an operating
system; an operating system is the software that manages the fundamental resources of
the computer, which are memory, processes, and files. The Macintosh has added two
higher levels of system software: a standard graphics kernel called QuickDraw and a
collection of user interface components collectively called the Toolbox.

Code written at this level is usually machine-dependent, although assembly language
code can usually be written to work across a range of similar machines. In the case of
the Macintosh, the vast majority of the instructions found in 68000 assembly language
will run on all varieties of Macintoshes. The newer, more sophisticated 68020 and
68030 processors, however, offer instructions that are not available in 68000 assembly
language. Programs and compilers that use these new instructions will not run on older
Macs that use the 68000.

The native Macintosh operating system contained in ROM on all Macintoshes is writ
ten in assembly language, both for speed and for the full freedom to access the processor
and memory. For these reasons, many of the most popular applications found on

1

2 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

personal computers today-for example, Lotus 1-2-3, WriteNow, WordPerfect,
Reflex, and Turbo Pascal-are written in assembly language.

Assembly language code can be hard to maintain. It does not have to be that way
use of the MPW Structured Macro package, for example, makes assembly language
code appear more like Pascal-but assembly language code often regresses to sloppy,
"spaghetti" code. Everything that takes place in the Macintosh, no matter how it is ini
tially coded, is actually performed as assembly language instructions executed by the
microprocessor, so an understanding of assembly language is essential for a good
Macintosh programmer. Some types of bugs are difficult to find and fix unless you have
at least a good reading knowledge of assembly language.

Layer two is the world of high-level computer languages, such as C and Pascal. The
second layer begins to attribute meaning to bits and bytes. Most of the meaning of a
given computation at this level is stored symbolically, with information or data broken
into word-sized chunks rather than bits or bytes. The definition of a word on a
Macintosh is usually considered to be 32 bits.

High-level languages are usually better than assembly language to write applications
with, because they abstract the messy details of addressing modes and bit twiddling that
are part of layer-one programming. High-level languages also have their own library
routines to insulate programmers from the operating system.

Layer three is the world of applications. Applications include word processors,
spreadsheets, databases, graphics, and communication packages. Many of these appli
cations include ways for users to customize applications with a macro or scripting lan
guage. (Customize is the "user friendly" way of saying program.) Such programming
involves working with Excel macros, HyperTalk scripts, and fourth-generation database
query languages (4GLs), for example. These offer a simple, high-level approach to
using the Macintosh ROM resources. Bits and bytes are-or at least should be
completely hidden at this level. This level of computing interacts with information at the
document or stream level; it is the level that most "end users" see.

Unfortunately, with each increase in data abstraction and power comes a correspond
ing decrease in speed and efficiency. Most of the layer-three applications that contain
languages use interpreters rather than compilers and hence are not suited for large or
complex jobs.

There are several notable layer-three tools, however, that you will find very useful.
These tools are also good representatives of what can be created with the tools of layers
one and two:

• HyperCard

• Excel

• Word

Hypertext, graphics, scripting (Apple)

Data and statistical analysis, charting, macros (Microsoft)

Documenting code, style sheets (Microsoft)

• More

• MacDraw

• PageMaker

• Illustrator

THE MACINTOSH HARDWARE ARCHITECTURE 3

Outlining, desktop presentations (Semantec)

Object graphics (Claris)

Desktop publishing (Aldus)

PostScript graphics (Adobe)

The Macintosh Hardware Architecture

The Macintosh-like any computer-is composed of three major types of hardware:
memory (both RAM and ROM), a central processing unit (CPU), and several 1/0
devices. As shown in the following table, each of these pieces of hardware has an influ
ence on the Macintosh architecture because of specific low-level protocols and conven
tions that have been adopted for using these devices.

Hardware Element(s)
Memory
1/0
CPU
CPU, Memory
CPU, Memory
Memory
Memory

Memory Map

Architecture Element
Memory map
Memory mapped RS-232, SCSI
Register saving conventions
Parameter passing conventions
A5World
Low-memory globals
A-trap dispatcher I system routines

One of the best ways to learn about how the Macintosh works is to begin with a de
tailed look at the memory map, which will show you where things are located. Although
the actual addresses in memory differ from model to model, the same basic elements are
present on all flavors of Macintosh.

Each of the major parts of the Macintosh (memory, CPU, and 1/0 devices) interacts
with the memory map in different ways. The following table gives a simple view of the
Macintosh Plus memory, shown with high memory descending to low memory. Other
versions of the Macintosh are slightly different.

4 CHAPTER ONE / THE MACINTOSH ARCHITECTURE

Address Memor_y Ma~ for the Macintosh Plus

$EFFFFF End of VIA space
$E80000 Beginning of VIA space
$DFFFFF End of IWM space
$000000 Beginning of IWM space
$BFFFFF End of SCC write
$BOOOOO Beginning of SCC write
$09FFFF End of SCC read
$090000 Beginning of SCC read
$5FFFFF End of SCSI
$580000 Beginning of SCSI
$41FFFF EndofROM
$400000 Beginning of ROM
$3FFFFF End of RAM (with 4 MB of RAM installed)
varies Sound buffer
varies System Error Handler area
varies Main Screen (ScmBase)
varies MacsBug, if installed
varies RAM cache, if installed
varies Jump table (A5)
varies Application and QuickDraw globals (A5)
varies Stack (A7)
varies Beginning of the application heap (ApplZone)
$001600 Beginning of the system heap (SysZone)
$000EOO Beginning of the Toolbox A-trap table
$000800 More low-memory globals
$000400 Beginning of the OS A-trap table
$000100 Beginning of low-memory global area
$000000 Beginning of RAM; Motorola vectors

Memory Mapped 1/0

The higher locations in the memory map are devoted to memory mapped 110. The
chips that control the peripherals are seen by the CPU as living at the various addresses
shown in the table above. These locations vary between models of the Macintosh, but
can be determined by examining certain special locations in low RAM. Our exploration
into the memory map will concentrate on examining RAM, where the most important
things are happening as far as you are concerned, but we will start by reviewing quickly
what the basic I/O devices are on the Mac.

At the top of the map is the 6522 Versatile Interface Adapter, or VIA. This chip inter
faces with the keyboard, mouse, and real-time clock, and it contains two microsecond
timers. It also is involved with the disk drives, sound, video, serial interface, and SCSI
interrupts. On the Mac SE and later computers, this chip deals with the keyboard and
mouse through the custom Apple Desktop Bus (ADB) chip.

THE MACINTOSH HARDWARE ARCHITECTURE 5

Next on the map is the Integrated Woz Machine, or IWM. This custom Apple chip
controls the Sony floppy disk drives as well as the original Apple Hard Disk 20. The
maximum data transfer rate for the IWM is about 500 Kbits per second (Kbaud).

The next major chip is a Zilog Z8530 Serial Communications Controller, or SCC,
which is a programmable dual-channel chip that also converts between parallel and se
rial. It controls the twin RS-422 (a m(')re noise-immune version of RS-232) serial ports
found on all Macs, and thus is involved with printers, modems, and AppleTalk.
AppleTalk transmits at about 230.4 Kbaud, but the serial ports can actually get up to
about 500 Kbaud under ideal circumstances.

The last important device is the NCR 5380 Small Computer System Interface chip, or
SCSI for short. This byte-oriented interface can be used to connect up to seven periph
erals to the Mac and is designed for fast hard disks and the like. It can transfer 170 K
bytes per second on the Mac Plus all the way up to 1.4 M bytes per second on the Mac
II. (Note that these figures are bytes: multiply by 8 to compare with the transfer rates of
the other chips.)

Register Saving Conventions

Although you can see many of the 1/0 devices in the memory map, the CPU itself
does not appear anywhere in this map. The 68000 processor is what actually moves
things around in the memory map, via the bus. The Motorola 68000 has 16 main regis
ters, a program counter, and a status register. More recent members of the 68xxx family
have additional registers. Floating-point chips have 8 floating-point (FP) registers and
three status registers.

The 68000 registers are organized into a set of 8 data registers and a set of 8 address
registers. Another aspect of the Macintosh architecture dictates what some of these regis
ters must be used for, with other registers being left for your arbitrary use (or the use of
a compiler). The basic register conventions are shown in the following table.

68000
Register
A7
A6
A5
M
A3
A2
Al
NJ

Use Within Macintosh Architecture
Stack pointer
Local stack frame pointer; preserved by ROM
Global data pointer; preserved by ROM
Free to use; preserved by ROM
Free to use; preserved by ROM
Free to use; preserved by ROM
Scratch; preserved by just OS routines
Scratch; OS ROM routines return results here

continued

6 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

continued from page 5

68000
Register
m
D5
D5
D4
D3
D2
DI
IXl

PC

Use Within Macintosh Architecture
Free to use; preserved by ROM
Free to use; preserved by ROM
Free to use; preserved by ROM
Free to use; preserved by ROM
Free to use; preserved by ROM
Free to use; preserved by just OS routines
Free to use; preserved by just OS routines
Scratch; OS ROM routines return results here

Program counter; specifies which instruction
to execute

Parameter Passing Conventions

Another aspect of the Macintosh register conventions deals with the way parameters
are passed to ROM routines. Most operating system routines are register-based, but un
fortunately not all are. Parameters are usually passed to routines in DO, AO, and some
times Al, with results returned in DO and sometimes AO.

The other style of calling is called stack-based. Most Toolbox routines, but not all, are
stack-based. Parameters are passed using Pascal conventions, which occur in the
following order.

1 . Space is reserved on the stack for a result if the routine is a function.

2 . The parameters are pushed on the stack, from left to right.

3 . The trap is called.

4 . The called routine removes its own parameters.

5. The function result (if any) is put on the stack.

6 • The routine returns via an RTS.

These conventions are called Pascal calling conventions, and they are used throughout
the Toolbox and in the Pascal compiler. The C compiler has a different set of calling
conventions, unless the pascal keyword is used. The following table presents a com
parison of the calling conventions of C and Pascal.

THE MACINTOSH HARDWARE ARCHITECTURE 7

Parameter MPW Pascal MPW C 3.0

Order of evaluation: Left to right Right to left
Remover of params: Callee Caller

Boolean I byte (0 or I) 4 bytes, sign ext.
-I'.2_8 .. 127 1 byte 4 bytes, sign ext.
Integer, char 2 bytes 4 bytes, sign ext.
-32767 .. 32767 2 bytes 4 bytes, sign ext.
Longin ts 4 bytes 4 bytes
Pointers 4 bytes 4 bytes
SW SANE types Address of extended JO byte values
68881 SANE types Address of extended 12 byte values
Structure <= 4 bytes Rec/Str/Array passed struct passed
Structure > 4 bytes 4 byte Ptr to structure struct passed
Pascal VAR params 4 byte Ptr to VAR
C style arrays 4 byte Ptr to array

Many of the Toolbox routines are functions that return values. Again, all of the
Toolbox uses the Pascal conventions, but for comparison, the following table shows
how function results are allocated and returned with both C and Pascal.

Function Results

Allocator of result
Remover of result

Boolean
-128 .. 127
Integer, char
-32767 .. 32767
Longlnts, Pointers
Real
Double,Extended
Structure <= 4 bytes
Structure > 4 bytes

A5 World

MPW Pascal

Caller
Caller

2 bytes (in high byte)
2 bytes
2 bytes
2 bytes
4 bytes
4 bytes
4 byte Ptr to temp
Rec/Str/Array passed
4 byte Ptr to structure

MPW C 3.0

Register DO
Register DO
Register DO
Register DO
Register DO
Reg DO,Dl,AO or FPO
Reg DO,Dl,AO or FPO
Reg DO - Ptr to struct
Reg DO - Ptr to struct

An A5 world is that portion above an application's heap that contains its stack, global
data, and jump table. Register A5 is actually a pointer to a pointer to QuickDraw global
data. Positive offsets from A5 refer to jump table entries. (See the "Segment Loader"
section in chapter 2 for more information.) Global data is stored below where A5 points,
so negative offsets refer to global variables.

8 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

One A5 world is allocated per running application. Desk accessories, XCMDs, and
definition procedures do not have their own A5 worlds. Unless an A5 world is faked,
therefore, these lesser citizens do not have global data and multiple code segments.

When you are writing certain types of code----code that can be called during interrupts
or from a patched out A-trap, or code in a definition procedure-it is important to re
member that such code cannot rely upon having a known A5 world. Instead, you should
write such types of code so that they save and restore A5 if they use global variables.
The current application A5 can be retrieved from the low- memory global CurrentAS at
$904.

Low-memory Globals

Low-memory globals maintain state information about the machine, display, key
board, disk drive, OS, and Toolbox; they allow hardware to vary from machine to ma
chine while maintaining software compatibility.

You should use low-memory globals in preference to hard-wired values, but A-traps
are better than either from a compatibility perspective. In other words, you should use
the A-trap TickCount rather than using the low-memory location Ticks.
Unfortunately, many of the useful low-memory variables do not have A-trap interfaces.
There is usually a much greater chance of your code having future incompatibilities with
System software if you are using low memory than if you are not. Nevertheless, low
memory is definitely the most efficient way to access state information, as there is no
trap overhead. If you must use low-memory globals, at least try to avoid writing to low
memory-that is, reading from low memory is safer than writing to it.

The A-trap Dispatcher

The real heart or "Grand Central Station" of the Macintosh architecture is the A-trap
dispatcher. Virtually all requests for services from the Macintosh are vectored through
this flexible mechanism. It is called the A-trap dispatcher because all system calls on the
Macintosh are implemented with 68xxx instructions that begin with binary 1010, or hex
A-hence A-trap. All 68xxx processors have set aside all instructions beginning with
hex A for just such uses.

The A-trap dispatcher is set up by the Macintosh during the boot process. The original
64 KB ROM had just one table of traps, with the lower-numbered traps being for the
operating system and the higher-numbered traps for the Toolbox. Since the introduction
of the 128 KB ROM, this table has been expanded and separated into two tables that re
side in low memory beneath the system heap.

The A-trap dispatcher looks up the current address of a specified routine and then
calls that routine. By using GetTrapAddress and SetTrapAddress, you can change

THE MACINTOSH HARDWARE ARCHITECTURE 9

these tables to refer .to different routines than the normal ROM routines. Such changes to
the trap tables are usually done by Apple in order to fix bugs, but there are many other
nifty uses as well. Some of the functions that can be accomplished by patching out traps
and/or doing pre- and post-processing around traps include the following:

• By intercepting the Open and Close calls, the MPW Shell can support its win
dows over files abstraction. (It also uses the low-memory global FSQueueHook
to do this.)

• By intercepting Memory Manager calls, the MPW Shell can mark blocks of
memory allocated by MPW tools.

• HyperCard intercepts the DrawMenuBar trap to draw its padlock when a stack
is locked.

• MultiFinder intercepts many Event Manager and Window Manager traps to al
low multiple applications to share the screen.

Not all routines are implemented on all Macs. For example, none of the Color
QuickDraw and Palette Manager calls are implemented on a Mac Plus. One trap is guar
anteed always to be unimplemented: $A89F. To determine if a trap is available, do a
GetTrapAddress on the trap in question and a GetTrapAddress on the official
unimplemented trap $A89F. If their addresses are the same, the trap is questionable; do
not use it.

An A-trap word begins with binary 1010 in bits 15 through 12, as mentioned above.
Bit 11 is set for Toolbox traps and cleared for OS traps. Bit 10 is the auto-pop bit for
Toolbox traps and is a flag for OS traps. All of the details of an A-trap word are nor
mally handled by the libraries and interfaces found that are part of MPW.

The auto-pop bit is rarely used any more. If this bit is set, it is assumed that two re
turn addresses were pushed on the stack (old compilers JSRed to the trap word rather
than putting the A-trap in-line), and the trap dispatcher pops the trap's return address off
the stack so that the flow returns directly to the calling program. This mechanism was
set up for older development environments that could not generate in-line A-trap
instructions.

Bit 9 is reserved for future use for Toolbox traps and is another flag for OS traps.
Bits 8 to 0 constitute the A-trap number for Toolbox traps; bits 7 to 0 make up this num
ber for OS traps. Bit 8 for OS traps is set if the trap dispatcher does not preserve AO be
cause the routine returns a result there. If the bit is clear, the trap dispatcher wiil save and
restore AO.

The following list presents examples of the flag bits in OS trap words.

• If bit 9 is set in memory manager calls that allocate memory, the requested
memory will be zeroed upon allocation; if clear, the memory is left in an un
known "garbage" state.

10 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

• If bit 10 is set in a memory manager call, the call applies to the system heap; if
clear, the call applies to the current zone, usually the application heap.

• If bit 9 is set for a device driver call, the call is executed immediately; if clear, it
is not.

• If bit 9 is set for a file system call, the call is an HFS call; if clear, it is an MFS
call. This indicates the expected size of the parameter block that will be passed to
these routines.

• If bit 10 is set for a file system or device driver call, the call is to be executed
asynchronously; if clear, the routine is executed synchronously.

• If bit 9 is set for calls to GetTrapAddress and SetTrapAddress, the new trap
numbering (two separate tables) is used; if clear, the old 64 KB ROM conven
tions apply.

• If bit 10 is set for calls to GetTrapAddress and SetTrapAddress, Toolbox traps
are assumed; if clear, OS traps are assumed.

• If bit 9 is set for RelString and EqualString calls, the comparison ignores
diacriticals.

• If bit 10 is set for RelString and EqualString calls, the comparison is case
sensitive.

• If bit 8 is set for calls to PostEvent in 128 KB ROMs or later, AO will return a
pointer to the event queue entry. This new routine is called PPostEvent.

Of course, all of these details are normally handled for you by the system and your
development environment, but knowing these details does help when debugging. In
fact, MacsBug, the assembly level debugger, is a useful tool in exploring low memory
and A-traps.

ATRAP - C TOOL 11

ATrap-C Tool

This MPW tool is useful for quickly looking up A-traps by name or number. Look-up
is case-sensitive, and all entries that match the given string are output. Thus, typing
Menu or Color will list most of the traps that deal with menus or color, for example.
The names of A-traps are standardized but sometimes are written differently for assem
bly language and Pascal. In the end, it is the trap number that really matters.

Improving ATrap

/*

*
*
*
*

Here are some suggestions for improving AT rap:

• AT rap uses the ANSI C standard library routine strstr, which was not pre
sent for MPW C 2.0. Add this functionality if needed.

• Add the full Inside Macintosh parameters for each trap.

ATrap.c - Looks up by trap pumber the name of a Macintosh trap
- Alternately dumps a list of all trap names and numbers
- Written by Dan Allen 10/30/88
- Name lookup added 2/1/89

*/

#include <CType.h>
#include <StdIO.h>
#include <String.h>

typedef unsigned short word;

typedef struct trap {
char *name;
word num;
trap;

static trap list[] = {
"Open",OxA000,"Close",0xA001,"Read",0xA002,
"Write",OxA003,"Control",OxA004,"Status",0xA005,
"KillIO",OxA006,"GetVolinfo",0xA007,"Create",OxA008,
"Delete",0xA009,"0penRF",OxAOOA,"Rename",0xAOOB,
"GetFileinfo",OxAOOC,"SetFinfo",OxAOOD,"UnmountVol",OxAOOE,
"MountVol",0xAOOF,"Allocate",0xA010,"GetEOF",0xA011,
"SetEOF",0xA012,"FlushVol",0xA013,"GetVol",0xA014,
"SetVol",OxA015,"InitQueue",0xA016,"Eject",OxA017,
"GetFPos",0xA018,"InitZone",OxA019,"GetZone",OxA01A,
"SetZone",OxAOlB,"FreeMem",OxAOlC ,"MaxMem",OxAOlD,
"NewPtr",OxA01E,"DisposePtr",OxA01F,"SetPtrSize",0xA020,

12 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

"GetPtrSize",OxA021,"NewHandle",OxA022,"DisposeHandle",OxA023,
"SetHandleSize",0xA024,"GetHandleSize",0xA025,"HandleZone",OxA026,
"ReallocHandle",0xA027,"RecoverHandle",OxA028,"HLock",0xA029,
"HUnlock",0xA02A,"EmptyHandle",0xA02B,"InitApplZone",OxA02C,
"SetApplLimit",0xA02D,"BlockMove",0xA02E,"PostEvent",OxA02F,
"OSEventAvail",0xA030,"GetOSEvent",OxA031,"FlushEvents",0xA032,
"VInstall",0xA033,"VRemove",0xA034,"0ffLine",0xA035,
"MoreMasters",0xA036,"ReadParam",0xA037,"WriteParam",0xA038,
"ReadDateTime",0xA039,"SetDateTime",0xA03A,"Delay",0xA03B,
"CmpString",0xA03C,"Drvrinstall",0xA03D,"DrvrRemove",OxA03E,
"InitUtil",0xA03F,"ResrvMem",0xA040,"SetFilLock",0xA041,
"RstFilLock",0xA042,"SetFilType",0xA043,"SetFPos",0xA044,
"FlushFile",0xA045,"GetTrapAddress",0xA046,"SetTrapAddress",0xA047,
"PtrZone",0xA048,"HPurge",0xA049,"HNoPurge",OxA04A,
"SetGrowZone",OxA04B,"CompactMem",OxA04C,"PurgeMem",0xA04D,
"AddDrive",0xA04E,"RDrvrinstall",0xA04F,"RelString",0xA050,
"ReadXPRam",0xA051,"WriteXPRam",0xA052,"ClkNoMem",OxA053,
"UprString",0xA054,"StripAddress",0xA055,"LwrString",OxA056,
"SetAppBase",0xA057,"InsTime",0xA058,"RmvTime",0xA059,
"PrimeTime",OxAOSA,"PowerOff",OxAOSB,"** Free **",OxAOSC,
"SwapMMUMode",OxAOSD,"NMinstall",OxAOSE,"NMRemove",OxAOSF,
"HFSDispatch",0xA060,"MaxBlock",OxA061,"PurgeSpace",0xA062,
"MaxApplZone",OxA063,"MoveHHi",0xA064,"StackSpace",0xA065,
"NewEmptyHandle",0xA066,"HSetRBit",OxA067,"HClrRBit",0xA068,
"HGetState",0xA069,"HSetState",OxA06A,"TestManager",0xA06B,
"InitFS",OxA06C,"InitEvents",0xA06D,"SlotManager",0xA06E,
"SlotVInstall",0xA06F,"SlotVRemove",OxA070,"AttachVBL",0xA071,
"DoVBLTask",0xA072,"0SReserved",0xA073,"** Free **",0xA074,
"Sintinstall",OxA075,"SintRemove",0xA076,"CountADBs",OxA077,
"GetindADB",0xA078,"GetADBinfo",0xA079,"SetADBinfo",0xA07A,
"ADBReinit",0xA07B,"ADBOp",0xA07C,"GetDefaultStartup",OxA07D,
"SetDefaultStartup",OxA07E,"InternalWait",0xA07F,"GetVideoDefault",0xA080,
"SetVideoDefault",0xA081,"DTinstall",0xA082,"SetOSDefault",0xA083,
"GetOSDefault",0xA084,"PmgrOp",0xA085,"SetIOPMsginfo",OxA086,
"IOPMsgAccess",0xA087,"IOPMoveData",0xA088,"SCSIAtomic",0xA089,
"Sleep",OxAOBA,"CommMgr",0xA08B,"** Free **",0xA08C,
''**Free **'',OxA08D,''** Free ** 11 ,0xAOBE, 11 ** Free **'',0xA08F,
"SysEnvirons",OxA090,"SndDisposeChannel",0xA801,"SndAddModifier",0xA802,
"SndDoCommand",0xA803,"SndDoimmediate",0xA804,"SndPlay",0xA805,
"SndControl",OxA806,"SndNewChannel",0xA807,"InitProcMenu",OxA808,
"GetCVariant",0xA809,"GetWVariant",OxA80A,"PopUpMenuSelect",0xA80B,
"RGetResource",0xA80C,"CountlResources",OxA80D,"Get1IxResource",0xA80E,
"GetlixType",OxA80F,"UniquelID",OxA810,"TESelView",0xA811,
"TEPinScroll",OxA812,"TEAutoView",0xA813,"SetFractEnable",OxA814,
"SCSIDispatch",0xA815,"Pack8",0xA816,"CopyMask",OxA817,
"FixATan2",0xA818,"XMunger",0xA819,"GetZone",0xA81A,
"SetZone",0xA81B,"Count1Types",0xA81C,"MaxMem",0xA81D,
"NewPtr",OxA81E,"Get1Resource",0xA81F,·"Get1NamedResource",OxA820,
"MaxSizeRsrc",OxA821,"NwHandle",0xA822,"DsposeHandle",0xA823,
"SetHandleSize",OxA824,"GetHandleSize",OxA825,"InsMenuitem",OxA826,
"HideDitem",OxA827,"ShowDitem",0xA828,"HLock",0xA829,

ATRAP - C TOOL 1 3

"HUnLock",0xA82A,"Pack9",0xA82B,"Packl0",0xA82C,
"Packll",0xA82D,"Packl2",0xA82E,"Packl3",0xA82F,
"Packl4",0xA830,"Packl5",0xA831,"FlushEvents",0xA832,
"ScrnBitMap",0xA833,"SetFScaleDisable",0xA834,"FontMetrics",OxA835,
"GetMaskTable",0xA836,"MeasureText",OxA837,"CalcMask",0xA838,
"SeedFill",0xA839,"ZoomWindow",0xA83A,"TrackBox",0xA83B,
"TEGet0ffset",0xA83C,"TEDispatch",0xA83D,"TEStylNew",0xA83E,
"Long2Fix",0xA83F,"Fix2Long",0xA840,"Fix2Frac",OxA841,
"Frac2Fix",0xA842,"Fix2X",OxA843,"X2Fix",OxA844,
"Frac2X",0xA845,"X2Frac",0xA846,"FracCos",0xA847,
"FracSin",0xA848,"FracSqrt",OxA849,"FracMul",OxA84A,
"FracDiv",0xA84B,"CompactMem",0xA84C,"FixDiv",OxA84D,
"GetitemCmd",OxA84E,"SetitemCmd",OxA84F,"InitCursor",0xA850,
"SetCursor",0xA851,"HideCursor",OxA852,"ShowCursor",OxA853,
"UprString",0xA854,"ShieldCursor",0xA855,"0bscureCursor",0xA856,
"SetEntry",0xA857,"BitAnd",0xA858,"BitXor",0xA859,
"BitNot",0xA85A,"BitOr",OxA85B,"BitShift",0xA85C,
"BitTst",0xA85D,"BitSet",0xA85E,"BitClr",0xA85F,
"WaitNextEvent",OxA860,"Random",OxA861,"ForeColor",0xA862,
"BackColor",0xA863,"ColorBit",0xA864,"GetPixel",0xA865,
"StuffHex",0xA866,"LongMul",0xA867,"FixMul",OxA868,
"FixRatio",0xA869,"HiWord",0xA86A,"LoWord",0xA86B,
"FixRound",OxA86C,"InitPort",0xA86D,"InitGraf",0xA86E,
"OpenPort",0xA86F,"LocalToGlobal",OxA870,"GlobalToLocal",0xA871,
"GrafDevice",0xA872,"SetPort",0xA873,"GetPort",OxA874,
"SetPBits",0xA875,"PortSize",0xA876,"MovePortTo",OxA877,
"Set0rigin",0xA878,"SetClip",0xA879,"GetClip",0xA87A,
"ClipRect",0xA87B,"BackPat",0xA87C,"ClosePort",OxA87D,
"AddPt",0xA87E,"SubPt",0xA87F,"SetPt",0xA880,
"EqualPt",0xA881,"StdText",0xA882,"DrawChar",0xA883,
"DrawString",0xA884,"DrawText",0xA885,"TextWidth",OxA886,
"TextFont",0xA887,"TextFace",0xA888,"TextMode",0xA889,
"TextSize",OxA88A,"GetFontinfo",0xA88B,"StringWidth",OxA88C,
"CharWidth",0xA88D,"SpaceExtra",OxA88E,"OSDispatch",0xA88F,
"StdLine",0xA890,"LineTo",0xA891,"Line",0xA892,
"MoveTo",0xA893,"Move",0xA894,"ShutDown",0xA895,
"HidePen",0xA896,"ShowPen",0xA897,"GetPenState",0xA898,
"SetPenState",0xA899,"GetPen",0xA89A,"PenSize",OxA89B,
"PenMode",0xA89C,"PenPat",0xA89D,"PenNormal",0xA89E,
"Unimplemented",0xA89F,"StdRect",0xA8A0,"FrameRect",0xA8Al,
"PaintRect",OxA8A2,"EraseRect",0xA8A3,"InverRect",OxA8A4,
"FillRect",0xA8A5,"EqualRect",0xA8A6,"SetRect",0xA8A7,
"OffSetRect",OxA8A8,"InsetRect",0xA8A9,"SectRect",OxA8AA,
"UnionRect",0xA8AB,"Pt2Rect",OxA8AC,"PtinRect",0xA8AD,
"EmptyRect",0xA8AE,"StdRRect",0xA8AF,"FrameRoundRect",0xA8BO,
"PaintRoundRect",OxA8Bl,"EraseRoundRect",OxA8B2,"InvertRoundRect",0xA8B3,
"FillRoundRect",0xA8B4,"ScriptUtil",0xA8B5,"Std0val",0xA8B6,
"FrameOval",0xA8B7,"Paint0val",0xA8B8,"EraseOval",0xA8B9,
"InvertOval",OxA8BA,"FillOval",0xA8BB,"SlopeFromAngle",0xA8BC,
"StdArc",0xA8BD,"FrameArc",0xA8BE,"PaintArc",OxA8BF,
"EraseArc",0xA8C0,"InvertArc",0xA8Cl,"FillArc",OxA8C2,

14 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

"PtToAngle",0xA8C3,"AngleFromSlope",0xA8C4,"StdPoly",OxA8C5,
"FramePoly",0xA8C6,"PaintPoly",OxA8C7,"ErasePoly",OxA8C8,
"InvertPoly",0xA8C9,"FillPoly",OxA8CA,"OpenPoly",0xA8CB,
"ClosePoly",0xA8CC,"KillPoly",OxA8CD,"OffsetPoly",OxA8CE,
"PackBits",0xA8CF,"UnpackBits",OxA8DO,"StdRgn",OxA8Dl,
"FrameRgn",0xA8D2,"PaintRgn",0xA8D3,"EraseRgn",OxA8D4,
"InvertRgn",0xA8D5,"FillRgn",0xA8D6,"BitMapRgn",OxA8D7,
"NewRgn",0xA8D8,"DisposeRgn",OxA8D9,"0penRgn",OxA8DA,
"CloseRgn", OxASDB, "CopyRgn", OxASDC, "S.etEmptyRgn", OxASDD,
"SetRectRgn",0xA8DE,"RectRgn",0xA8DF,"OffsetRgn",OxA8EO,
"InsetRgn",OxA8El,"EmptyRgn",0xA8E2,"EqualRgn",OxA8E3,
"SectRgn",0xA8E4,"UnionRgn",OxA8E5,"DiffRgn",0xA8E6,
"XorRgn",0xA8E7,"PtinRgn",0xA8E8,"RectinRgn",0xA8E9,
"SetStdProcs",OxA8EA,"StdBits",0xA8EB,"CopyBits",0xA8EC,
"StdTxMeas",0xA8ED,"StdGetPic",OxA8EE,"ScrollRect",0xA8EF,
"StdPutPic",0xA8F0,"StdComment",0xA8Fl,"PicComment",0xA8F2,
"OpenPicture", OxA8F3, "ClosePicture", OxA8F4, "KillPictu.re", OxA8F5,
"DrawPicture",OxA8F6,"** Free **",OxA8F7,"ScalePt",0xA8F8,
"MapPt",0xA8F9,"MapRect",0xA8FA,"MapRgn",OxA8FB,
"MapPoly",OxA8FC,"PrGlue",0xA8FD,"InitFonts",0xA8FE,

' "GetFontName",OxA8FF,"GetFNum",0xA900,"FMSwapFont",0xA901,
"RealFont",0xA902,"SetFontLock",0xA903,"DrawGrowicon",0xA904,
"DragGrayRgn",0xA905,"NewString",0xA906,"SetString",OxA907,
"ShowHide",OxA908,"CalcVis",0xA909,"CalcVBehind",OxA90A,
"ClipAbove",0xA90B,"Paint0ne",OxA90C,"PaintBehind",0xA90D,
"SaveOld",OxA90E,"DrawNew",OxA90F,"GetWMgrPort",OxA910,
"CheckUpdate",OxA911,"InitWindows",0xA912,"NewWindow",OxA913,
"DisposeWindow",OxA914,"ShowWindow",OxA915,"HideWindow",OxA916,
"GetWRefCon",0xA917,"SetWRefCon",0xA918,"GetWTitle",OxA919,
"SetWTitle",0xA91A,"MoveWindow",0xA91B,"HiliteWindow",0xA91C,
"SizeWindow",0xA91D,"TrackGoAway",OxA91E,"SelectWindow",0xA91F,
"BringToFront",0xA920,"SendBehind",0xA921,"BeginUpdate",OxA922,
"EndUpdate",0xA923,"FrontWindow",OxA924,"DragWindow",0xA925,
"DragTheRgn",0xA926,"InvalRgn",OxA927,"InvalRect",0xA928,
"ValidRgn",OxA929,"ValidRect",OxA92A,"GrowWindow",0xA92B,
"FindWindow",0xA92C,"CloseWindow",0xA92D,"SetWindowPic",OxA92E,
"GetWindowPic",OxA92F,"InitMenus",0xA930,"NewMenu",0xA931,
"DisposeMenu",OxA932,"AppendMenu",OxA933,"ClearMenuBar",0xA934,
"InsertMenu",OxA935,"DeleteMenu",OxA936,"DrawMenuBar",0xA937,
"HiliteMenu",0xA938,"Enableitem",0xA939,"Disableitem",0xA93A,
"GetMenuBar",0xA93B,"SetMenuBar",OxA93C,"MenuSelect",0xA93D,
"MenuKey",OxA93E,"Getitmicon",0xA93F,"Setitmicon",OxA940,
"GetitmStyle",OxA941,"SetitmStyle",OxA942,"GetitemMark",0xA943,
"SetitemMark",0xA944,"Checkitem",0xA945,"Getitem",OxA946,
"Setitem",0xA947,"CalcMenuSize",0xA948,"GetMHandle",0xA949,
"SetMenuFlash",0xA94A,"Ploticon",0xA94B,"FlashMenuBar",OxA94C,
"AddResMenu",0xA94D,"PinRect",OxA94E,"DeltaPoint",OxA94F,
"CountMitems",0xA950,"InsertResMenu",0xA951,"DelMenuitem",0xA952,
"UpdtControl",OxA953,"NewControl",0xA954,"DisposeControl",0xA955,
"KillControls",0xA956,"ShowControl",0xA957,"HideControl",0xA958,
"MoveControl",OxA959,"GetCRefCoi:",0xA95A,"SetCRefCon",0xA95B,

ATRAP - C TOOL 1 5

"SizeControl",OxA95C,"HiliteControl",OxA95D,"GetCTitle",0xA95E,
"SetCTitle",0xA95F,"GetCtlValue",OxA960,"GetMinCtl",0xA961,
"GetMaxCtl",0xA962,"SetCtlValue",0xA963,"SetMinCtl",0xA964,
"SetMaxCtl",0xA965,"TestControl",0xA966,"DragControl",OxA967,
"TrackControl",0xA968,"DrawControls",OxA969,"GetCtlAction",0xA96A,
"SetCtlAction",OxA96B,"FindControl",OxA96C,"Draw1Control",0xA96D,
"Dequeue",OxA96E,"Enqueue",0xA96F,"GetNextEvent",0xA970,
"EventAvail",0xA971,"GetMouse",OxA972,"Stilldown",0xA973,
"Button",0xA974,"TickCount",0xA975,"GetKeys",OxA976,
"WaitMouseUp",0xA977,"UpdtDialog",0xA978,"CouldDialog",0xA979,
"FreeDialog",OxA97A,"InitDialogs",OxA97B,"GetNewDialog",0xA97C,
"NewDialog",0xA97D,"SelIText",0xA97E,"IsDialogEvent",OxA97F,
"DialogSelect",0xA980,"DrawDialog",OxA981,"CloseDialog",OxA982,
"DisposeDialog",0xA983,"FindDitem",0xA984,"Alert",OxA985,
"StopAlert",0xA986,"NoteAlert",0xA987,"CautionAlert",OxA988,
"CouldAlert",OxA989,"FreeAlert",OxA98A,"ParamText",0xA98B,
"ErrorSound",0xA98C,"GetDitem",0xA98D,"SetDitem",0xA98E,
"SetIText",OxA98F,"GetIText",OxA990,"ModalDialog",0xA991,
"DetachResource",OxA992,"SetResPurge",0xA993,"CurResFile",0xA994,
"InitResources",0xA995,"RsrcZoneinit",0xA996,"0penResFile",OxA997,
"UseResFile",0xA998,"UpdateResFile",OxA999,"CloseResFile",0xA99A,
"SetResLoad",0xA99B,"CountResources",0xA99C,"GetindResource",0xA99D,
"CountTypes",0xA99E,"GetindType",OxA99F,"GetResource",0xA9AO,
"GetNamedResource",0xA9Al,"LoadResource",0xA9A2,"ReleaseResource",0xA9A3,
"HomeResFile",OxA9A4,"SizeRsrc",0xA9A5,"GetResAttrs",0xA9A6,
"SetResAttrs",OxA9A7,"GetResinfo",0xA9A8,"SetResinfo",0xA9A9,
"ChangedResource",0xA9AA,"AddResource",OxA9AB,"AddReference",OxA9AC,
"RmveResource",OxA9AD,"RmveReference",0xA9AE,"ResError",0xA9AF,
"WriteResource",0xA9B0,"CreateResFile",0xA9Bl,"SystemEvent",0xA9B2,
"SystemClick",0xA9B3,"SystemTask",OxA9B4,"SystemMenu",0xA9B5,
"OpenDeskAcc",0xA9B6,"CloseDeskAcc",0xA9B7,"GetPattern",0xA9B8,
"GetCursor",OxA9B9,"GetString",0xA9BA,"Geticon",0xA9BB,
"GetPicture",OxA9BC,"GetNewWindow",OxA9BD,"GetNewControl",OxA9BE,
"GetRMenu",0xA9BF,"GetNewMBar",0xA9C0,"UniqueID",OxA9Cl,
"SysEdit",0xA9C2,"KeyTrans",OxA9C3,"0penRFPerm",0xA9C4,
"RsrcMapEntry",0xA9C5,"Secs2Date",OxA9C6,"Date2Secs",0xA9C7,
"SysBeep",0xA9C8,"SysError",OxA9C9,"Puticon",0xA9CA,
"TEGetText",0xA9CB,"TEinit",0xA9CC,"TEDispose",0xA9CD,
"TextBox",OxA9CE,"TESetText",0xA9CF,"TECalText",0xA9DO,
"TESetSelect",OxA9Dl,"TENew",OxA9D2,"TEUpdate",OxA9D3,
"TEClick",0xA9D4,"TECopy",0xA9D5,"TECut",0xA9D6,
"TEDelete",OxA9D7,"TEActivate",0xA9D8,"TEDeactivate",0xA9D9,
"TEidle",0xA9DA,"TEPaste",0xA9DB,"TEKey",0xA9DC,
"TEScroll",OxA9DD,"TEinsert",OxA9DE,"TESetJust",0xA9DF,
"Munger",OxA9EO,"HandToHand",OxA9El,"PtrToXHand",0xA9E2,
"PtrToHand",0xA9E3,"HandAndHand",0xA9E4,"InitPack",OxA9E5,
"InitA11Packs",0xA9E6,"Pack0",0xA9E7,"Packl",0xA9E8,
"Pack2",0xA9E9,"Pack3",0xA9EA,"Pack4",0xA9EB,
"Pack5",0xA9EC,"Pack6",0xA9ED,"Pack7",0xA9EE,
"PtrAndHand",OxA9EF,"LoadSeg",0xA9FO,"UnloadSeg",0xA9Fl,
"Launch",0xA9F2,"Chain",OxA9F3,"ExitToShell",0xA9F4,

16 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

"GetAppParms",0xA9F5,"GetResFileAttrs",0xA9F6,"SetResFileAttrs",0xA9F7,
"MethodDispatch",OxA9F8,"InfoScrap",OxA9F9,"UnloadScrap",OxA9FA,
"LoadScrap",0xA9FB,"ZeroScrap",OxA9FC,"GetScrap",0xA9FD,
"PutScrap",0xA9FE,"Debugger",0xA9FF,"OpenCPort",0xAA00,
"InitCPort",0xAA01,"CloseCPort",OxAA02,"NewPixMap",OxAA03,
"DisposePixMap",OxAA04,"CopyPixMap",0xAA05,"SetCPortPix",OxAA06,
"NewPixPat",OxAA07,"DisposePixPat",0xAA08,"CopyPixPat",0xAA09,
"PenPixPat",OxAAOA,"BackPixPat",OxAAOB,"GetPixPat",OxAAOC,
"MakeRGBPat",OxAAOD,"FillCRect",OxAAOE,"FillCOval",OxAAOF,
"FillCRoundRect",0xAA10,"FillCArc",OxAAll,"FillCRgn",0xAA12,
"FillCPoly",OxAA13,"RGBForeColor",0xAA14,"RGBBackColor",0xAA15,
"SetCPixel",0xAA16,"GetCPixel",0xAA17,"GetCTable",OxAA18,
"GetForeColor",0xAA19,"GetBackColor",OxAAlA,"GetCCursor",0xAA1B,
"SetCCursor",OxAAlC,"AllocCursor",OxAAlD,"GetCicon",OxAAlE,
"PlotCicon",0xAAlF,"OpenCPicture",0xAA20,"0pColor",0xAA21,
"HiliteColor",OxAA22,"CharExtra",OxAA23,"DisposeCTable",OxAA24,
"DisposeCicon",OxAA25,"DisposeCCursor",OxAA26,"GetMaxDevice",0xAA27,
"GetCTSeed",0xAA28,"GetDeviceList",0xAA29,"GetMainDevice",OxAA2A,
"GetNextDevice",0xAA2B,"TestDeviceAttribute",OxAA2C,
"SetDeviceAttribute",0xAA2D,
"InitGDevice",0xAA2E,"NewGDevice",0xAA2F,"DisposeGDevice",0xAA30,
"SetGDevice",0xAA31,"GetGDevice",OxAA32,"Color2Index",OxAA33,
"Index2Color",0xAA34,"InvertColor",0xAA35,"RealColor",OxAA36,
"GetSubTable",0xAA37,"UpdatePixMap",OxAA38,"MakeITable",0xAA39,
"AddSearch",0xAA3A,"AddComp",OxAA3B,"SetClientID",0xAA3C,
"ProtectEntry",OxAA3D,"ReserveEntry",OxAA3E,"SetEntries",0xAA3F,
"QDError",OxAA40,"SetWinColor",0xAA41,"GetAuxWin",0xAA42,
"SetCtlColor",OxAA43,"GetAuxCtl",OxAA44,"NewCWindow",OxAA45,
"GetNewCWindow",0xAA46,"SetDeskCPat",OxAA47,"GetCWMgrPort",0xAA48,
"SaveEntries",0xAA49,"RestoreEntries",0xAA4A,"NewCDialog",0xAA4B,
"DelSearch",0xAA4C,"DelComp",0xAA4D,"SetStdCProcs",0xAA4E,
"CalcCMask",OxAA4F,"SeedCFill",0xAA50,"** Free **",OxAASl,
"**Free **",0xAA52,"** Free **",0xAA53,"** Free **",0xAA54,

"**Free **",0xAA55,"** Free ** 11 ,0xAAS6, 11 ** Free **",0xAA57,
"** Free **", OxAA58, "** Free **", OxAA59, "** Free **", OxAASA,
"**Free ** 11 ,0xAASB,"** Free **",OxAASC,"** Free **",OxAASD,
"**Free **",OxAASE,"** Free **",OxAA5F,"DelMCEntries",OxAA60,
"GetMCinfo",0xAA61,"SetMCinfo",OxAA62,"DispMCinfo",0xAA63,
"GetMCEntry",0xAA64,"SetMCEntries",0xAA65,"MenuChoice",OxAA66,

"* * Free **", OxAA67, "** Free **", OxAA68, "** Free **", OxAA69,

"** Free **" ,0xAA6A,"** Free **",OxAA6B, "** Free **",0xAA6C,

"* * Free **", OxAA6D, "** Free **", OxAA6E, "** Free **" ,OxAA6F,

"** Free **",0xAA70,"** Free **" , OxAA71, "** Free **" , OxAA72,
II** Free **" , OxAA73, "** Free **", OxAA74, "** Free **",0xAA75,

"** Free **", OxAA76, "** Free **", OxAA77, "** Free **" , OxAA78,

"** Free **" , OxAA79, "** Free **", OxAA7A, "** Free **" ,OxAA7B,

"** Free **" ,OxAA7C,"** Free **", OxAA7D, "** Free **" , OxAA7E,

"** Free **" ,OxAA7F,"** Free **",0xAA80, II** Free **" ,OxAA81,
II** Free **",0xAA82, 11 ** Free **", OxAA83, "** Free **",0xAA84,
"** Free **" , OxAA85, 11 ** Free **", OxAA86, "** Free **" ,OxAA87,

"* * Free **",0xAA88,"** Free **", OxAA89, "** Free ** 11 , OxAA8A,

ATRAP - C TOOL 17

"**Free **",0xAA8B,"** Free **",OxAA8C,"** Free **",0xAA8D,
"**Free **",OxAABE,"** Free **",OxAA8F,"InitPalettes",0xAA90,
"NewPalette",0xAA91,"GetNewPalette",OxAA92,"DisposePalette",0xAA93,
"ActivatePalette",OxAA94,"SetPalette",OxAA95,"GetPalette",OxAA96,
"PmForeColor",0xAA97,"PmBackColor",0xAA98,"AnimateEntry",0xAA99,
"AnimatePalette",OxAA9A,"GetEntryColor",OxAA9B,"SetEntryColor",0xAA9C,
"GetEntryUsage",0xAA9D,"GetEntryUsage",0xAA9E,"CTab2Palette",0xAA9F,
"Palette2CTab",0xAAA0,"CopyPalette",OxAAAl
} ;

#define OFFSET 144

main(int argc,char *argv[))
{

word i,n;
trap *p;

if (argc == 2 &&
sscanf(argv[l),"%hX",&i)
i > OxAOOO &&
i < OxAAAl)

1 &&

n = i & Ox03FF; /* hex lookup */
if (i > OxA800)

printf("%4X %s\n",list[n+OFFSET) .num,list[n+OFFSET).name);
else

printf("%4X %s\n",list[n).num,list[n) .name);
return O;

i = sizeof(list)/sizeof(trap);
if (argc == 2 && isalpha(argv[l) [0])) /*dump matches*/

for (p = &list[OJ; i--; p++)
if (strstr(p->name,argv[l)))

printf("%X\t%s\n",p->num,p->name);
else { /* or whole table */
for (p = &list[OJ; i--; p++)

printf("%X\t%s\n",p->num,p->name);

return O;

18 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

LoMem- C Tool

LoMem is almost a carbon copy of the AT rap tool above, but this version looks up
low-memory globals rather than A-traps.

Improving LoMem

Here is a suggestion for one way in which LoMem might be improved: LoMem uses
the ANSI C standard library routine strstr, which was not present in the MPW C 2.0
libraries. Add this functionality if needed.

/*

*
*

LoMem.c - Looks up by memory by name or number
- Written by Dan Allen 2/1/89

*/

#include <CType.h>
#include <StdIO.h>
#include <String.h>

typedef unsigned short word;

typedef struct mem {

char *name;
word num;
mem;

static mem list[] ~ {
"Unassigned",0x0000,"ResetSPPC",0x0004,"BusError",Ox0008,
"AddrErr",0xOOOC,"Illegal",Ox0010,"ZeroDiv",Ox0014,
"ChkError",Ox0018,"TrapVErr",Ox001C,"Privileg",Ox0020,
"Trace",Ox0024,"Line1010",0x0028,"Linellll",Ox002C,
"Unassigned",Ox0030,"Coproces",Ox0034,"FmtErrVect",Ox0038,
"Uninited",Ox003C,"Unassig2",0x0040,"Spurious",Ox0060,
"Autointl",Ox0064,"Autoint2",0x0068,"Autoint3",0x006C,
"Autoint4",0x0070,"Autoint5",0x0074,"Autoint6",0x0078,
"Autoint7",0x007C,"TRAPtble",Ox0080,"FP-68881",0x00CO,
"reserved",OxOODC,"PMMU",OxOOEO,"SMgrOldCore",OxOOEO,
"reserved",Ox00EC,"MonkeyLives",Ox0100,"SysCom",Ox0100,
"ScrVRes",0x0102,"ScrHRes",Ox0104,"ScreenRow",Ox0106,
"MemTop",Ox0108,"BufPtr",Ox010C,"StkLowPt",Ox0110,
"HeapEnd",Ox0114,"TheZone",0x0118,"UTableBase",Ox011C,
"MacJmp",0x0120,"DskRtnAdr",Ox0124,"PollRtnAddr",Ox0128,
"DskVerify",Ox012C,"LoadTrap",Ox012D,"MminOK",Ox012E,
"CPUFlag",0x012F,"DskWrll",0x012F,"ApplLimit",Ox0130,
"SonyVars",Ox0134,"PWMValue",0x0138,"PollStack",Ox013A,
"PollProc",Ox013E,"DskErr",0x0142,"SysEvtMask",Ox0144,
"SysEvtBuf",0x0146,"EventQueue",0x014A,"EvtBufCnt",Ox0154,

LOMEM - C TOOL 1 9

"RndSeed",Ox0156,"SysVersion",0x015A,"SEvtEnb",Ox015C,
"DSWndUpdate",Ox015D,"FontFlag",0x015E,"IntFlag",Ox015F,
"VBLQueue",Ox0160,"Ticks",0x016A,"MBTicks",Ox016E,
"MBState",Ox0172,"Tocks",Ox0173,"KeyMap",Ox0174,
"KeyMap",Ox0174,"KeypadMap",0x017C,"{**unknown**}",Ox0180,
"KeyLast",Ox0184,"KeyTime",Ox0186,"KeyRepTime",Ox018A,
"KeyThresh",Ox018E,"KeyRepThresh",Ox0190,"LvllDT",Ox0192,
"Lvl2DT",Ox01B2,"UnitNtryCnt",Ox01D2,"VIA",Ox01D4,
"SCCRd",Ox01D8,"SCCWr",Ox01DC,"IWM",Ox01EO,
"GetParam",Ox01E4,"SPValid",0x01F8,"SysParam",Ox01F8,
"SPATalkA",Ox01F9,"SPATalkB",Ox01FA,"SPConfig",0x01FB,
"SPPortA",0x01FC,"SPPortB",Ox01FE,"SPAlarm",Ox0200,
"SPFont",0x0204,"SPKbd",0x0206,"SPPrint",0x0207,
"SPVolCtl",0x0208,"SPClikCaret",Ox0209,"SPMiscl",Ox020A,
"CDeskPat",0x020B,"Time",Ox020C,"BootDrive",Ox0210,
"JShell",Ox0212,"SFSaveDisk",0x0214,"KbdVars",Ox0216,
"KbdLast",0x0218,"JKybdTask",0x021A,"KbdType",0x021E,
"AlarmState",Ox021F,"MemErr",Ox0220,"JFigTrkSpd",0x0222,
"JDiskPrime",Ox0226,"JRdAddr",Ox022A,"JRdData",0x022E,
"JWrData",0x0232,"JSeek",Ox0236,"JSetUpPoll",Ox023A,
"JRecal",0x023E,"JControl",Ox0242,"JWakeUp",Ox0246,
"JReSeek",Ox024A,"JMakeSpdTbl",Ox024E,"JAdrDisk",Ox0252,
"JSetSpeed",Ox0256,"NiblTbl",Ox025A,"FlEvtMask",Ox025E,
"SdVolume",0x0260,"Finder",0x0261,"SoundPtr",Ox0262,
"SoundVars",Ox0262,"SoundBase",Ox0266,"SoundVBL",Ox026A,
"SoundDCE",Ox027A,"SoundActive",Ox027E,"SoundLevel",Ox027F,
"CurPitch",Ox0280,"SoundLast",Ox0282,"Switcher",Ox0282,
"SwitcherTPtr",Ox0286,"RSDHndl",Ox028A,"ROM85",0x028E,
"PortAUse",Ox0290,"PortBUse",Ox0291,"ScreenVars",Ox0292,
"JGNEFilter",Ox029A,"KeylTrans",Ox029E,"Key2Trans",Ox02A2,
"SysZone",Ox02A6,"ApplZone",Ox02AA,"ROMBase",Ox02AE,
"RAMBase",Ox02B2,"BasicGlob",Ox02B6,"ExpandMem",Ox02B6,
"DSAlertTab",Ox02BA,"ExtStsDT",Ox02BE,"SCCASts",Ox02CE,
"SCCBSts",0x02CF,"SerialVars",Ox02D0,"ABusVars",Ox02D8,
"FinderName",Ox02EO,"DoubleTime",Ox02FO,"CaretTime",Ox02F4,
"ScrDmpEnb",Ox02F8,"ScrDmpType",Ox02F9,"TagData",Ox02FA,
"BufTgFNum",Ox02FC,"BufTgFFlg",0x0300,"BufTgFBkNum",Ox0302,
"BufTgDate",Ox0304,"DrvQHdr",Ox0308,"PWMBuf2",0x0312,
"MacPgm",0x0316,"Lo3Bytes",Ox031A,"MinStack",Ox031E,
"DefltStack",Ox0322,"MMDefFlags",Ox0326,"GZRootHnd",Ox0328,
"GZRootPtr",Ox032C,"GZMoveHnd",Ox0330,"DSDrawProc",Ox0334,
"EjectNotify",Ox0338,"IAZNotify",Ox033C,"CkdDB",Ox0340,
"NxtDB",0x0342,"MaxDB",Ox0344,"FlushOnly",Ox0346,
"RegRsrc",0x0347,"FLckUnlck",Ox0348,"FrcSync",Ox0349,
"NewMount",Ox034A,"DrMstrBlk",Ox034C,"FCBSPtr",Ox034E,
"DefVCBPtr",0x0352,"VCBQHdr",0x0356,"FSBusy",Ox0360,
"FSQHead",Ox0362,"FSQTail",0x0366,"RgSvArea",Ox036A,
"WDCBsPtr",Ox0372,"HFSVars",Ox0376,"DefVRefnum",Ox0384,
"HFSDSErr",Ox0392,"CurDirStore",Ox0398,"ErCode",Ox03A2,
"Params",Ox03A4,"FSTemp8",0x03D6,"FSTemp4",0x03DE,
"FSQueueHook",Ox03E2,"ExtFSHook",Ox03E6,"DskSwtchHook",Ox03EA,

20 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

"ReqstVol",Ox03EE,"ToExtFS",0x03F2,"FSFCBLen",0x03F6,
"DSAlertRect",Ox03F8,"0STable",Ox0400,"GrafBegin",Ox0800,
"JHideCursor",0x0800,"JShowCursor",Ox0804,"JShieldCursor",0x0808,
"JScrnAddr",Ox080C,"JScrnSize",Ox0810,"JinitCrsr",Ox0814,
"JSetCrsr",Ox0818,"JCrsrObscure",Ox081C,"JUpdateProc",Ox0820,
"ScrnBase",Ox0824,"MTemp",0x0828,"RawMouse",Ox082C,
"Mouse",Ox0830,"CrsrPin",Ox0834,"CrsrRect",Ox083C,
"TheCrsr",0x0844,"CrsrAddr",Ox0888,"JAllocCrsr",0x088C,
"JSetCCrsr",Ox0890,"JOpcodeProc",0x0894,"CrsrBase",0x0898,
"CrsrDevice",Ox089C,"SrcDevice",0x08AO,"MainDevice",0x08A4,
"DeviceList",Ox08A8,"CrsrRow",Ox08AC,"{**unknown**}",Ox08AE,
"QDColors",Ox08B0,"CrsrVis",Ox08CC,"CrsrBusy",Ox08CD,
"CrsrNew",Ox08CE,"CrsrCouple",Ox08CF,"CrsrState",Ox08DO,
"CrsrObscure",Ox08D2,"CrsrScale",0x08D3,"{**unknown**}",Ox08D4,
"MouseMask",Ox08D6,"Mouse0ffset",Ox08DA,"JournalFlag",Ox08DE,
"JSwapFont",Ox08E0,"WidthListHand",0x08E4,"JournalRef",Ox08E8,
" { **u.nknown* *} ", Ox08EA, "CrsrThresh", Ox08EC, "JCrsrTask", Ox08EE,
"WWExist",Ox08F2,"QDExist",Ox08F3,"JFetch",Ox08F4,
"JStash",Ox08F8,"JIODone",0x08FC,"CurApRefNum",Ox0900,
"LaunchFlag",Ox0902,"FondState",Ox0903,"CurrentA5",0x0904,
"CurStackBase",Ox0908,"LoadFiller",Ox090C,"CurApName",Ox0910,
"SaveSegHandle",Ox0930,"CurJTOffset",Ox0934,"CurPageOption",Ox0936,
"HiliteMode",0x0938,"{**unknown**}",Ox0939,"LoaderPBlock",Ox093A,
"PrintErr",Ox0944,"ChooserBits",Ox0946,"CoreEditVars",Ox0954,
"ScrapSize",Ox0960,"ScrapHandle",0x0964,"ScrapCount",Ox0968,
"ScrapState",Ox096A,"ScrapName",Ox096C,"ScrapTag",Ox0970,
"RomFont0",0x0980,"ApFontID",Ox0984,"SaveFondFlags",0x0986,
"FMDefaultSize",Ox0987,"CurFMinput",Ox0988,"CurFMSize",Ox098A,
"CurFMFace",Ox098C,"CurFMNeedBits",Ox098D,"CurFMDevice",Ox098E,
"CurFMNumer",Ox0990,"CurFMDenom",Ox0994,"FOutError",Ox0998,
"FOutFontHandle",Ox099A,"FOutBold",Ox099E,"FOutitalic",Ox099F,
"FOutULOffset",Ox09AO,"FOutULShadow",Ox09Al,"FOutULThick",Ox09A2,
"FOutShadow",Ox09A3,"FOutExtra",Ox09A4,"FOutAscent",0x09A5,
"FOutDescent",Ox09A6,"FOutWidMax",Ox09A7,"FOutLeading",Ox09A8,
"FOutUnused",0x09A9,"FOutNumer",Ox09AA,"FOutDenom",Ox09AE,
"FMDotsPerinch",Ox09B2,"FMStyleTab",Ox09B6,"ToolScratch",Ox09CE,
"WindowList",0x09D6,"SaveUpdate",Ox09DA,"PaintWhite",Ox09DC,
"WMgrPort",Ox09DE,"DeskPort",Ox09E2,"0ldStructure",Ox09E6,
"OldContent",Ox09EA,"GrayRgn",Ox09EE,"SaveVisRgn",Ox09F2,
"DragHook",Ox09F6,"TempRect",Ox09FA,"OneOne",OxOA02,
"~inusOne",OxOA06,"TopMenuitem",OxOAOA,"AtMenuBottom",OxOAOC,

"IconBitmap",OxOAOE,"MenuList",Ox0AlC,"MBarEnable",OxOA20,
"CurDeKind",OxOA22,"MenuFlash",OxOA24,"TheMenu",OxOA26,
"SavedHandle",OxOA28,"MBarHook",OxOA2C,"MenuHook",OxOA30,
"DragPattern",OxOA34,"DeskPattern",0xOA3C,"DragFlag",OxOA44,
"CurDragAction",OxOA46,"FPState",OxOA4A,"TopMapHndl",OxOA50,
"SysMapHndl",0xOA54,"SysMap",OxOA58,"CurMap",0xOASA,
"ResReadOnly",OxOASC,"ResLoad",OxOASE,"ResErr",OxOA60,
"TaskLock",OxOA62,"FScaleDisable",OxOA63,"CurActivate",0xOA64,
"CurDeactive",OxOA68,"DeskHook",OxOA6C,"TEDoText",OxOA70,
"TERecal",OxOA74,"ApplScratch",OxOA78,"GhostWindow",OxOA84,

LOMEM - C TOOL 21

"CloseOrnHook",OxOA88,"ResumeProc",OxOA8C,"SaveProc",OxOA90,
"SaveSP",OxOA94,"ANumber",OxOA98,"ACount",OxOA9A,
"DABeeper",OxOA9C,"DAStrings",OxOAAO,"TEScrpLength",Ox0ABO,
"{**unknown**}",OxOAB2,"TEScrpHandle",0x0AB4,"AppPacks",Ox0AB8,
"SysResName",OxOAD8,"SoundGlue",OxOAE8,"AppParmHandle",Ox0AEC,
"DSErrCode",OxOAF0,"ResErrProc",OxOAF2,"TEWdBreak",OxOAF6,
"DlgFont",OxOAFA,"LastTGLobal",OxOAFC,"TrapAgain",OxOBOO,
"KeyMVars",0xOB04,"ROMMapHndl",OxOB06,"PWMBufl",OxOBOA,
"BootMask",OxOBOE,"WidthPtr",OxOB10,"AtalkHkl",OxOB14,
"AtalkHk2",0xOB18,"FourDHack",OxO~lC,"{**unknown**}",OxOB20,

"HWCfgFlags",OxOB22,"TimeSCSIDB",OxOB24,"TopMenuitem",OxOB26,
"AtMenuBottom",OxOB28,"WidthTabHandle",OxOB2A,"SCSIDrvrs",OxOB2E,
"TimeVars",OxOB30,"BtDskRfn",OxOB34,"BootTmp8",0xOB36,
"{**unknown**}",OxOB3E,"T1Arbitrate",OxOB3F,"JDiskSel",OxOB40,
"JSendCmd",OxOB44,"JDCDReset",OxOB48,"LastSPExtra",OxOB4C,
"AppleShare",Ox0B50,"MenuDisable",OxOB54,"MBDFHndl",OxOB58,
"MBSaveLoc",OxOB5C,"BNMQHd",OxOB60,"Twitcherl",OxOB64,
"{**unknown**}",OxOB68,"Twitcher2",0xOB7C,"RMgrHiVars",OxOB80,
"RomMapinsert",0xOB9E,"TmpResLoad",OxOB9F,"IntlSpec",Ox0BAO,
"SMgrCore",OxOBAO,"RMgrPerm",OxOBA4,"WordRedraw",OxOBA5,
"SysFontFam",Ox0BA6,"SysFontSize",Ox0BA8,"MBarHeight",OxOBAA,
"TESysJust",Ox0BAC,"HiHeapMark",Ox0BAE,"SegHiEnable",OxOBB2,
"FDevDisable",OxOBB3,"CMVector",OxOBB4,"XFSGlobs",OxOBB8,
"ShutDownQHdr",Ox0BBC,"NewUnused",OxOBC0,"LastFOND",Ox0BC2,
"FONDID",Ox0BC6,"App2Packs",0xOBC8,"MAErrProc",Ox0BE8,
"MASuperTab",OxOBEC,"MimeGlobs",OxOBF0,"FractEnable",OxOBF4,
"UsedFWidths",Ox0BF5,"FScaleHFact",0x0BF6,"FScaleVFact",OxOBFA,
"{**unknown**}",OxOBFE,"SCSIBase",Ox0C00,"SCSIDMA",OxOC04,
"SCSIHsk",OxOC08,"SCSIGlobals",OxOCOC,"RGBBlack",OxOC10,
"RGBWhite",OxOC16,"{**unknown**}",Ox0ClC,"RowBits",OxOC20,
"ColLines",OxOC22,"ScreenBytes",OxOC24,"IOPMgrVars",OxOC28,
"NMIFlag",OxOC2C,"VidType",0xOC2D,"VidMode",OxOC2E,
"SCSIPoll",OxOC2F,"SEVarBase",OxOC30,"MMUFlags",Ox0CB0,
"MMUType",OxOCBl,"MMU32bit",OxOCB2,"WhichBox",0xOCB3,
"MMUTbl",OxOCB4,"MMUTblSize",OxOCB8,"SinfoPtr",OxOCBC,
"ASCBase",OxOCC0,"SMGlobals",OxOCC4,"TheGDevice",OxOCC8,
"CQDGlobals",OxOCCC,"AuxWinHead",OxOCD0,"AuxCtlHead",OxOCD4,
"DeskCPat",OxOCDB,"SetOSDefKey",OxOCDC,"LastBinPat",OxOCEO,
"DeskPatEnable",OxOCE8,"{**unknown**}",0x0CEA,"ADBBase",0x0CF8,
"WarmStart",OxOCFC,"TimeDBRA",OxODOO,"TimeSCCDB",OxOD02,
"SlotQDT",OxOD04,"SlotPrTbl",OxOD08,"SlotVBLQ",OxODOC,
"ScrnVBLPtr",OxOD10,"SlotTICKS",OxOD14,"PowerMgrVars",CxOD18,
"AGBHandle",OxODlC,"TableSeed",OxOD20,"SRsrcTblPtr",OxOD24,
"JVBLTask",OxOD28,"WMgrCPort",OxOD2C,"VertRRate",OxOD3C,
"SynListHandle",OxOD32,"LastFore",OxOD36,"LastMode",OxOD3E,
"LastDepth",OxOD40,"FMExist",OxOD42,"SavedHilite",0xOD43,
"{**unknown**}",OxOD44,"MenuCinfo",OxOD50,"MBProcHndl",OxOD54,
"MBSaveLoc",OxOD58,"MRect",OxOD58,"MBFlash",OxOD5C,
"MenuCinfo",OxOD5C,"ChunkyDepth",OxOD60,"CrsrPtr",OxOD62,
"{**unknown**}",OxOD64,"PortList",OxOD66,"MickeyBytes",OxOD6A,
"QDErr",OxOD6E,"VIA2DT",OxOD70,"SinitFlags",OxOD90,

22 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

"DTQFlags",OxOD92,"DTQueue",OxOD92,"DTskQHdr",0xOD94,
"DTskQTail",OxOD98,"JDTinstall",0xOD9C,"HiliteRGB",0xODAO,
"TimeSCSIDB",Ox0DA6,"DSCtrAdj",Ox0DA8,"IconTLAddr",0xODAC,
"VideoinfoOK",OxODB0,"EndSRTPtr",0xODB4,"SDMJmpTblPtr",OxODB8,
"JSwapMMU",OxODBC,"SdmBusErr",OxODCO,"LastTxGDevice",0xODC4,
"PmgrHandle",OxODCB,"LayerPalette",OxODCC,"ToolTable",OxOEOO,
"SystemHeap",OxlEOO
};

main(int argc,char *argv[])
{

word i,n;
mem *p;

if (argc == 2 && sscanf(argv[l],"%hX",&n) == 1 && n <= OxlEOO) {
i = sizeof(list)/sizeof(mem); /*hex lookup*/
for (p = &list[OJ; i--; p++)

if (n == p->num)_
printf("%X\t%s\n",p->num,p->name);

i = sizeof(list)/sizeof(mem);
if (argc == 2 && isalpha(argv[l] [0]))

for (p = &list[O]; i--; p++)
if {strstr(p->name,argv[l]))

printf("%X\t%s\n",p->num,p->name);

/* dump matches */

else { /* or whole table */
for (p = &list[OJ; i--; p++)

printf("%X\t%s\n",p->num,p->name);

return 0;

ASCII - C TOOL 2 3

Ascii-C Tool

Another convention used in the Macintosh is the ASCII character set, which is de
fined only for values from 0 to 127. In addition, the Macintosh uses the values 128 to
255 to hold foreign characters and symbols.

Ase ii is a simple MPW tool that lists all of the Macintosh character set. It includes
decimal and hex numbers along with the characters themselves. Obviously, the appear
ance of this table of characters will vary according to what font you select. The full
names of the control characters are also shown, and Macintosh-specific keys are men
tioned where applicable.

/*
* Ascii.c - Lists the ASCII character set
* - Written by Dan Allen 12/16/87

- Control characters added 1/4/88

*
*/

#include <StdIO.h>

char *controlChars[] = {
"NUL - Null",
"SOH - Start of Heading",
"STX - Start of Text",
"ETX - End of Text I Enter key",
"EOT - End of Transmission",
"ENQ - Enquiry",
"ACK - Acknowledge",
"BEL - Bell",
" BS - Backspace",
" HT - Horizontal Tab",
" LF - Line Feed",
" VT - Vertical Tab",
" FF - Form Feed",
" CR - Carriage Return",
" SO - Shift Out",

" SI - Shift In",
"OLE - Data Link Escape",
"DCl - Device Control l"

'
"DC2 - Device Control 2"

'
"DC3 - Device Control 3" I
"DC4 - Device Control 4"

'
"NAK - Negative Acknowledge",
"SYN - Synchronous Idle",
"ETB - End of Transmission Block",
"CAN - Cancel",
" EM - End of Medium",
"SUB - Substitute",
"ESC - Escape I Clear key on keypad",

24 CHAPTER ONE I THE MACINTOSH ARCHITECTURE

);

" FS - File Separator I Left arrow key",
" GS - Group Separator I Right arrow key",
" RS - Record Separator I Up arrow key",
" US - Unit Separator I Down arrow key"

main() /* --> stdout */
{

int i;

for {i = 0; i <= 31; i++)
printf{"%d\t$%X\t%s\n",i,i,contro1Chars[i]);

for {i = O; i <= 255; i++)
printf("%d\t$%X\t%c\n",i,i,i);

for (i = 33; i <= 128; i++) {
if (i % 8) printf{"%3d %c l",i,i);
else printf("%3d %c\n",i,i);

return O;

Conclusion

In this chapter, we have looked at several important components of the Macintosh
architecture:

• Levels of software

• The memory map

• Memory mapped input/output

• Register saving and parameter passing conventions

• The A5 world of an application

• Low-memory globals

• A-trap dispatcher

Three MPW tools were listed: ATrap, which looks up A-traps by name or number;
LoMem, which looks up low-memory globals by name or number; and As c ii, which
displays the Macintosh character set.

CONCLUSION 2 5

Recommended Reading

The best reference about the Macintosh hardware is the Macintosh Family Hardware
Reference, published jointly by Apple and Addison-Wesley.

The most accessible source of information about the Macintosh architecture is found
in Inside Macintosh. The best sources for learning about how the Macintosh works are
the ROM listings; unfortunately, the official commented ROM listings have a very re
stricted distribution. Even inside of Apple they are given only to those with a serious
"need to know."

The next best thing to commented ROM listings is an uncommented ROM listing,
which is at the fingertips of anyone who knows MacsBug, the Macintosh debugger,
and assembly language. While in MacsBug, simply type IL @2AE and you will see the
beginning lines of the ROM in 68000 assembly language. If you want to see the code for
a particular routine-let's pick at random the QuickDraw Random function-just type in
MacsBug IL Random.

The experimental method is often the fastest and most accurate way of determining
how the Macintosh works. Write a short test program and see what the Mac actually
does. Although documentation is important, in the end it is the actual behavior of the
Mac that becomes accepted as the Macintosh architecture.

THE MACINTOSH
OPERATING SYSTEM

CHAPTER 2

Every compu~er has an operating system that manages the machine's fundamental re
sources. Traditionally, an operating system tracks processes, files, and input/output.
The following table shows the basic functions performed by the various important parts
of the operating system on the Macintosh.

Part of OS
Process, booting
Process, memory management
Process, process management
File system

I/O

Macintosh Manager
Start code
Memory Manager
Segment Loader, MultiFinder
File Manager
Device Manager

Note that graphics, windows, menus, and the like are not part of the operating sys
tem. These are higher-level pieces of system software that will be discussed in later
chapters, especially in chapters 3 and 4. Note also that the Finder has nothing to do with
the Macintosh operating system; it is an application just like HyperCard or the MPW
Shell. This chapter concentrates upon the three fundamental subsystems of the operating
system as found on the Macintosh: process management, the file system, and the in
put/output system. The AppleTalk network manager is also discussed briefly. We will
then tie these topics together by examining the start code and the Macintosh boot pro
cess. At the end of this chapter is code for OSPeek, a desk accessory that lets you look
at the inside of the Macintosh operating system (OS); ADBKey, an INIT that turns the
power-on key into a programmer's switch; and Zero, an MPW tool that reinitializes
disks.

Process Management

The original Macintosh permitted a single process to be active. As the machine started
up, the system's boot code was the single active process. The boot sequence then gave
control to the Finder, which in turn gave control to a single application at a time.
Switcher and MultiFinder changed the Macintosh from a single-process machine to a
multitasking machine that handled multiple processes running simultaneously.

26

PROCESS MANAGEMENT 27

Process management on the Macintosh is broken down into several different parts,
the Memory Manager, Segment Loader, and MultiFinder being the three most important.

The Memory Manager

A fundamental part of the Macintosh operating system is the Memory Manager. It is
used by almost every part of the operating system and Toolbox, as well as by applica
tions. To be a successful Macintosh programmer, you must understand the Memory
Manager, as it is critical to a bug-free application. By far the greatest cause of bugs on
the Macintosh is incorrect use of memory and the Memory Manager. The Macintosh's
methods for allocating memory are quite different from most computers, so learn them
well.

The Memory Manager was originally written in Pascal and was actually part of
LisaWrite! It was then translated by Bud Tribble into assembly language while being
ported to the Macintosh. Later, Martin Haeberli, Larry Kenyon, and Jerome Coonen
continued work on it.

One decision to be made for any given project is whether to use a language's library
routines or to call the Memory Manager directly. For example, to dynamically allocate
memory, you could call the Macintosh OS NewPtr routine directly. This could be done
from assembly language, C, or Pascal. However, if you were writing in C, you could
also call malloc; likewise, in Pascal you could call New. These library routines in tum
call the Memory Manager. Few languages have library routines to cover all of the needs
of a Macintosh programmer, so try to use the Memory Manager routines in preference to
a language's library routines. As the Macintosh OS evolves, your code will have fewer
compatibility problems if you have used the Memory Manager routines.

Why is the Memory Manager so hard to use? Much of the blame is due to its virtually
unique use of handles to access memory. A handle is a pointer to a special pointer to a
(possibly) relocatable block of memory. Why this extra level of indirection? Well, if
blocks of memory can move around-rather than being fixed-memory can be used
much more efficiently. In the days of the original 128 KB Macintosh, memory was at a
premium, and handles provided a more efficient form of memory management.

The operation of the Macintosh Memory Manager can be compared to that of the U.S.
Postal Service, as is shown in the following table of correspondences.

Memory Manager
Heap zone
Subzone
Pointer
Handle
Master pointer block
malloc block

U.S. Postal Service
City
Zip code
Street address
Post Office Box
Post Office
Apartment numbers

28 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

Heap Zones and Subzones. The Memory Manager allocates and manages chunks
of memory that are found in a heap. A heap is a contiguous piece of memory that is
allocated and maintained by the Memory Manager on a dynamic basis. At least two
heaps are active at any time: the system heap and the application heap. The system heap
is created while the Mac is booting up and is persistent until the Mac is shut down or
rebooted. The application heap is created automatically when an application is launched
under the Finder. Quitting an application causes the Finder's application heap to be
created anew, because it is the application that is being launched.

In each of these heaps there is normally one zone. Heaps can also be subdivided into
subzones, and in fact this is exactly what happens when MultiFinder is running.
MultiFinder is the application that owns the application heap, and it creates inside its
heap various subzones that are heaps in their own right. Each subzone contains an active
Macintosh application. When an application is quit under MultiFinder, the single block
of memory that MultiFinder allocated for the application is reclaimed. For the purposes
of this discussion, the terms heap, zone, and heap zone will be used interchangeably.

The heap is the largest unit of memory. Subzones, or heaps inside of heaps, can be
created. In a given heap (city), there can be multiple subzones (zip codes). Each heap
zone contains blocks of memory. Memory blocks have varying attributes. For example,
they can be locked or unlocked (a locked block cannot be moved until it is unlocked),
purgeable or non-purgeable (a purgeable block can be disposed of if space is needed and
it is not locked), relocatable or non-relocatable (a relocatable block can be moved if it is
not locked). These different kinds of blocks are referenced using different methods.

Pointers. The simplest way to address memory is through the use of a pointer.
Pointers refer to non-relocatable chunks of memory and are allocated by a call to the
ROM routine NewPt r. Once a pointer is returned, the location of that block of memory
is fixed, just as a street address is fixed. If the block of memory is disposed of or
moved, any saved copies of the original pointer are invalid, as they still point to the
same location in memory. Such a pointer is often called a dangling pointer. (The person
moved and did not leave a forwarding address.)

Using non-relocatable blocks provides greater efficiency when compared with relo
catable blocks, because there is no second level of indirection. If memory is tight, how
ever, these fixed blocks often become "islands" in the heap zone, and they can cause
a problem known as fragmentation. Thus, non-relocatable blocks should be used
sparingly.

If there is not enough memory available to fill a NewPtr request for memory, a nil
pointer-one whose value is zero-is returned. It is important to check all function re
sults for nil pointers to ensure that your application is not writing into low memory.

Handles and Master Pointers. Handles are pointers that point to special pointers
that point to relocatable blocks of memory (or objects as they are often called).
Obviously, a second level of indirection is not as fast as more direct references, but the

PROCESS MANAGEMENT 2 9

use of handles does increase the efficient use of memory. It is another example of the
trade-off of time for space. Whereas use of a pointer requires a single dereferencing, use
of a handle requires double dereferencing.

Handles are like having a Post Office box. An individual with a Post Office box can
roam about the city without worrying about mail being properly delivered, because the
Post Office always knows the current whereabouts of the addressee.

A pointer to a pointer is not a Memory Manager handle. That is, just because a decla
ration reads char **foo in C, or foo '"'Char in Pascal, does not mean that a "real"
handle has been created. Handles come only from the Memory Manager through
NewHandle and other similar calls.

What makes a handle "real" is that a handle points to a master pointer. Once allocated,
master pointers always are in the same place in the heap. They are allocated in non
relocatable chunks called master pointer blocks. Because master pointer blocks are not
relocatable themselves, you should allocate them in the early part of initializing an
application by calling MoreMasters. This prevents heap fragmentation. Master pointers
point to the current location of the relocatable object and are updated automatically by the
Memory Manager when these objects are relocated.

Master pointers also contain attribute flags that specify whether the block is locked,
purgeable, or a resource. In addition, the MPW Shell steals one of the extra bits to mark
blocks of memory allocated by MPW tools. These extra bits have historically limited the
Macintosh to only 24 bit addresses, because they are found in the upper 8 bits of each
32-bit master pointer. However, more recent Macs, such as the Mac II, have the poten
tial to run in 32-bit mode. System 7.0 will provide support for running in 32-bit address
space by moving these flags elsewhere.

Applications should never modify master pointers directly but instead should use the
supplied ROM routines: HLock, HUnlock, HPurge, HNoPurge, HSetRBi t,
HClrRBit, HGetState, and HSetState. When you want to compare master pointers,
your routine should call StripAddress in orderto correctly compare the values of the
pointers; otherwise these extra bits cause bogus results. StripAddress was new in the
256 KB ROMs but has been patched to the 128 KB ROMs in more recent versions of
the System.

Allocating a relocatable block requires calling the routine NewHandle, which returns
a handle. If this value is zero, it is referred to as a nil handle. A nil handle means that the
Memory Manager was not able to allocate the memory asked for. It is important to check
results for nil handles. Failure to do so will cause your application to write into location
zero.

A good way to catch an application writing to location zero is to stuff a special illegal
value into the long word at location zero, so that if location zero is used as a pointer you
will cause a system error. A particularly good value was determined by Steve Capps to
be $7739 5169. This particularly nasty number is odd (causes an address error on
68000-based Macs like the Mac Plus or Lisa) and references an illegal place in memory
on all Macs (it also causes a bus error on a Lisa or Mac II, but no error at all on regular

30 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

Macs!). The best machine on which to debug your application is therefore the Lisa, as it
is the only Mac that catches both address errors and bus errors!

A concept sometimes confused with nil handles is that of an empty handle. An empty
handle starts off just like a regular handle-that is, it is a legal pointer to a master
pointer. However, the master pointer itself is nil, meaning the object it once pointed to is
no longer in memory. This occurs when an object is purged; a nil master pointer is anal
ogous to the P.O. box number of someone who has moved out of a city.

Relocatable blocks are created as non-purgeable and unlocked. The general strategy of
memory management is to allocate relocatable blocks as needed, locking them only for
short periods in order to access them. If a block of memory is no longer needed, it
should be freed. Memory can be reclaimed by calling DisposePtr or DisposeHandle
to completely rid the heap of an object. The Memory Manager does not do much check
ing to see what kind of a handle or pointer you pass to it in the disposing process. If you
pass a random "thing" that you claim is a handle, but that really is not a handle, the
Memory Manager will try to dispose of it, with disastrous consequences: some arbitrary
part of memory will be trashed! Therefore, make sure you pass actual handles and
pointers to these routines.

An intermediate level of garbage collection, however, is avai1able to relocatable ob
jects: they can simply be marked purgeable. This means that the object will be disposed
of if and when the Memory Manager needs more room in the heap, but not until then.
This allows frequently accessed items to be cached in memory. If an item has been
purged, the master pointer remains allocated but is nil. The relocatable object can be real
located through a call to ReallocHandle, but it is up to the application to refill the
contents of the memory.

Memory Allocation Algorithm. When the Memory Manager tries to fill a request
for memory, it uses the following algorithm, stopping as soon as the request can be
granted.

1 . Searches from the current roving location forward in the heap for the first free
block that would accommodate the request.

2 • Compacts the heap by moving unlocked relocatable objects closer to each other,
leaving a larger free space if possible.

3 • Grows the heap. This step is skipped if the heap has already been grown to its
maximum size, which applications should do by calling MaxApp 1 Limit.

4 . Purges unlocked, purgeable, relocatable objects, thus causing the master
pointers of these objects to become updated to nil.

5 . The last-ditch effort is for the Memory Manager to call the application's
(optional) grow zone function. In this routine, the application can unlock and
make purgeable other objects in memory at its own discretion. Make sure not to
call any routines whatsoever that allocate memory from within your grow zone

PROCESS MANAGEMENT 31

function, or the Mac will surely bomb ruthlessly. If the application has not
registered a grow zone proc with the Memory Manager, this step is skipped.

6 . If all previous steps are taken with no success, the Memory Manager returns a
nil pointer or nil handle according to the nature of the original request. In q:rtain
cases, however, the Memory Manager is unable to do even this, in which case a
System Error #28 occurs: Out of Memory, and the bomb box appears.

Relocatable blocks of memory can be locked to improve efficient access to the object.
Applications_ can lock and unlock relocatable objects through the HLock and Hunlock
traps. (These calls are not needed for non-relocatable objects, because such objects can
not move.) Locked objects can cause the same fragmentation problems as non-relocat
able objects, so objects should be locked only for short periods of time, accessed, and
then unlocked. Unlocked objects are free to float around in the heap, and in fact they are
almost guaranteed to do so.

Most calls to the Mac ROMs cause memory to be moved or purged. Almost all
Toolbox calls move memory, and a fair percentage of OS calls do the same. This means
that you should never trust a dereferenced handle across ROM calls, or trust derefer
enced handles used in Pascal WITH statements across ROM calls. A helpful rule is to re
member that straight, generic 68xxx code usually does not cause memory to change or
be purged; many calls to library and system routines can change memory. The definitive
lists of routines that move or purge memory are found as appendices in each volume of
Inside Macintosh.

Memory Manager Routines. The Memory Manager is initialized at boot, along
with the system heap. An application's heap zone is initialized automatically at launch by
Launch calling SetApplBase and InitApplZone. In addition, an application can
reinitialize any zone by calling In it zone. The application heap, under normal
conditions, is set to a small (6 KB) size. The heap can be grown to its maximum size by
MaxApplZone, a routine that is new with the 128 KB ROMs. Calling SetApplLirnit
is an indirect way of setting the stack size by setting the heap's size. MoreMasters
should be called the appropriate number of times (for your application) to allocate master
pointer blocks at application start-up to prevent later heap fragmentation.

The basic Memory Manager routines for allocating memory are NewPtr and
NewHandle. Use DisposePtr and DisposeHandle to reclaim memory. Sizes of
blocks can be manipulated with GetPtrSize, GetHandleSize, SetPtrSize, and
setHandleSize. These calls normally apply to the current heap, which can be deter
mined using PtrZone, HandleZone, and.Getzone and changed with Setzone.
Set Grow Zone is used to install a user function to be called when memory is tight, and
BlockMove is an optimized routine for moving memory, even if it overlaps.

Additional routines for handles include routines to change the master pointer at
tributes: HLock, HUnlock, HPurge, HNoPurge, HSetRBit, HClrRBit,
HGetState, and HSetState, the latter four of which were new with the 128 KB

32 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

ROMs. A handle can be recovered from a pointer to the relocatable block by
RecoverHandle. An existing handle can be reallocated with ReallocHandle; if the
handle is not nil, the memory it points to is purged before the new block is reallocated.
An empty handle can be allocated with the NewEmptyHandle call, available with the
128 KB ROM and later versions.

Given a handle, a new handle that points to a copy of the original block can be created
with HandToHand; or given a pointer to some data, a new handle that points to a copy
of the data can be manufactured by PtrToHand. PtrToXHand is the same as
PtrToHand but uses the passed existing handle instead of creating a new handle;
PtrToXHand still copies the bytes pointed to. HandAndHand copies the data pointed to
by the first handle onto the end of the data pointed to by the second handle;
PtrAndHand copies the data pointed to by a pointer onto the end of the data pointed to
by the handle.

To free space in a heap, use the following:

• FreeMem--retums total free space in the heap

• MaxMem---compacts, purges purgeables; returns size of largest contiguous block

• CompactMem---compacts, collects free space, but does not purge memory; re
turns size of largest contiguous block

• ResrvMem-automatically called by NewPtr; does not allocate space but frees
up a contiguous chunk as low in memory as possible; compacts, purges

• PurgeMem-does not compact; just purges, trying to free up a block of speci
fied size

• EmptyHandle-purges specified block; sets master pointer to nil

Space routines that were introduced with the 128 KB ROM include the following:

• MoveHHi-helps prevent heap fragmentation when called before locking a relo
catable block

• StackSpace-retums number of bytes before the stack hits the heap

• PurgeSpace-retums total free space and the maximum contiguous block
without changing the heap

• MaxBlock-retums the maximum contiguous block possible by compacting the
current zone, without actually performing any compacting

The Segment Loader

The next major task of an operating system is to help provide more memory than there
really is in the system. In sophisticated operating systems like UNIX, the operating

PROCESS MANAGEMENT 33

system can page an image of memory to disk and bring it back in when needed. Such a
system is called virtual memory and requires hardware support. Apple's own implemen
tation of UNIX, called A/UX, requires a paged memory management unit (PMMU) in
the form of a Motorola 68851 or a 68030 that has built-in memory management. System
7 .0 will allow virtual memory under the Macintosh OS with the appropriate PMMU
hardware.

In contrast, the standard Macintosh operating system provides only one simple mech
anism for providing more memory: the Segment Loader, another Andy Hertzfeld cre
ation. Any Macintosh application can be broken down into segments 32 KB or less in
size. These segments are loaded into RAM from disk only when needed. The Segment
Loader helps by knowing what routines are where, and it has only one task: to select and
bring into memory automatically any needed CODE segment that is not already in mem
ory. It does so by retrieving needed CODE segments from the resource fork of the cur
rently executing application and placing them in the current application heap.

CODE resources are like any resource: they are relocatable objects. Obviously, CODE

resources should be fixed when they are executing, so the Segment Loader locks their
handles automatically when LoadSeg is called and unlocks them automatically when
UnloadSeg is called. A CODE segment that is unlocked in the resource file is automati
cally moved (in 128 KB and later ROMs) to the top of the heap when the Segment
Loader calls MoveHHi. If a CODE segment is marked locked in the resource file, it is
simply left wherever the Memory Manager put it.

The mechanism used to locate needed CODE resources is straightforward. When an
application is built, the linker prepares a list of intersegment jumps called a jump table.
The Segment Loader automatically sets up the jump table when an application is
launched. The jump table is stored on disk as the CODE o resource. It is always ID zero.
The jump table is moved into an application's A5 World, which is the collective name
for an application's global data space. As you can see in Figure 2-1, an A5 World con
sists of the application's QuickDraw globals, the jump table, the application's own
global data, and its stack.

High Memory Jump table

Register A5 • Ptr to QD globals

Global data

Low Memory Stack •
Figure 2-1: An AS World

34 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

The format of the jump table is simple: each jump to a segment that is not currently in
memory is just a call to the Segment Loader routine LoadSeg. Once a routine is in
memory, the entry in the jump table is patched to be an actual JMP instruction to the rou
tine in memory. An UnloadSeg call changes any affected entries back to LoadSeg calls
and makes the CODE segment purgeable. LoadSeg and UnloadSeg are unusual for OS
routines in that they are stack-based rather than register-based calls.

The Segment Loader does not at any time dispose of CODE resources; it only loads
them. To dispose of unneeded CODE segments, have your application call the
UnloadSeg routine when appropriate. It is sometimes definitely not appropriate to call
UnloadSeg. For example, a routine should never unload itself. Your application should
unload segments in the main event loop, or better yet, right after a segment is finished
being used-that is, it should remove the print segments just after printing is finished.

CODE segments are given the default attributes of being purgeable by the MPW
Linker, with the exception of segment 1 (the Main segment), which is always made non
purgeable, locked, and preloaded. These attributes, which are identical to the standard
resource attributes of any resource, can be changed by specifying various linker options
or by using ResEdit.

Segmentation Bugs. A special category of bugs can occur as a result of
segmentation problems. If routine A of segment 1 calls a subroutine B of segment 2,
and then segment 1 gets moved or purged, the return from segment 2 to segment 1 can
be painful. A typical symptom of this problem you will see is that when the program
counter is set to some random location in or out of memory, a bus, address, or illegal
error occurs immediately. How does such an error occur?

Many paths can lead to such a situation. If routine B does an UnloadSeg on routine
A, then segment 1 is as good as gone. Of course, the more complex the calling chain,
the harder it is to find such errors, especially when mutual recursion between procedures
is present. Such errors often come from a subtle change in segmentation directives in the
sources, or perhaps from a change to the linker options. A source-level debugger is of
little help in such a situation. Sometimes you can find the offending jump without too
much effort by single-stepping in MacsBug.

Creating Processes Under the Finder

Launching an Application. The task of launching an application is related to the task of
swapping segments. Before there was MultiFinder, the Segment Loader did most of this
work. Things are quite different with MultiFinder active. We will describe here how
things work without MultiFinder. For a description of how things work with
MultiFinder, see the "MultiFinder" section later in this chapter.

The original Macintosh system software was single-tasking. It could run only one
application at a time, the Finder being nothing more than an application itself. The

PROCESS MANAGEMENT 3 5

shellApp and startUpApp names in the boot blocks are normally set to Finder. The
start code then calls the Launch trap to run the Finder.

How is a new process created, or in Macintosh terms, launched? There are a variety
of methods:

• Launch
• Chain

• Sublaunch

When a user double-clicks on an application to open it or launch it in a single-tasking
Macintosh, the Finder then does what the start-up code does: it calls the Launch trap to
open the application. However, there is a subtle but important change when the Finder
calls Launch: the Finder also sets things up so that when the application quits, the
Finder will itself be relaunched. This special kind of launch is called a sublaunch. Apple

. ships three applications with the ability to sublaunch:

• The Finder-the application that gives the Desktop illusion

• The MPW Shell-the application that gives a UNIX-like illusion

• HyperCard-the application that gives any illusion you like

The sublaunch mechanism was originally implemented separately by these applica
tions, but it is now supported by INIT 13 in the System. A call to the Launch trap is
treated as a sublaunch ifbit 3 of the low-memory global byte called Finder at $261 is
zero. Here is a bit of assembly ~anguage code that does this:

; PROCEDURE SubLaunch(appName: Str255) ; under Finder

ADD *4,SP
LEA $93A,AO
MOVE.L (SP) I (AO)
CLR.L 4 (AO)
BCLR *3, $261
_Launch

pop return address
point to lomem LoaderPBlock
stuff pointer to appName
normal sound and screen
clear sublaunch bit in Finder
DC.W $A9F2

Note that there is no RTS after Launch. This is because code following a sublaunch
is never executed. The sublaunching application will resume execution by being re
launched as if it were running for the first time. Sublaunches can be nested-that is, YOl
can launch HyperCard from the Finder, then launch MPW from HyperCard, and ther
launch MS Word from MPW. Quitting Word returns to MPW, quitting MPW returns tc
HyperCard, etc. Each subsequent quit operation "pops" back to the application before it

Sublaunching is different from the ability to transfer to another application, a capabil·
ity found in many different applications, such as Turbo Pascal or ResEdit. Transferrini

36 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

is a like a GOTO, whereas sublaunching is more like a subroutine. When an applica
tion calls Launch, a transfer normally occurs.

A further variant of Launch is chaining, which preserves the current application heap
while starting up a new application. This allows data to be passed in one direction,
namely, to the new application.

Quitting an Application. A process is reclaimed or destroyed by quitting. Although
there are countless ways of exiting an application ungracefully, an application can be
exited gracefully in two different ways:

• Upon an explicit call to Exit ToShell, which is the best way out.

• Returning from the main routine of a program will cause a call to the
Exit To Shell routine automatically. (Exit ToShell is pushed on the stack
in the Launch code.) This behavior is handy for generic C MPW tools, for
example.

ExitToShell zaps the current application heap and calls Launch to start the
shellApp, which normally is the Finder.

Multi Finder

MultiFinder is an application that transforms the Macintosh into a multitasking com
puter. It was written by Erich Ringewald and Phil Goldman and is entirely separate from
Switcher, an earlier attempt at multitasking that was written by Andy Hertzfeld.

When MultiFinder starts running it takes over quite a few of the operating system
routines in order to perform its magic. Although there is still only one system heap and
one application heap, MultiFinder creates the illusion of multiple application heaps
within its own application heap. It can switch quickly between different applications by
switching critical low-memory globals, switching A5 Worlds, and setting up the envi
ronment to look to any given application as if it were the only application running.

Within MultiFinder's application heap MultiFinder allocates partitions for each pro
cess. These partitions resemble individual application heaps, each containing its own
heap, stack, and A5 World. The Finder occupies one such partition. When desk acces
sories are used, a small application called DA Handler occupies a partition. Background
printing uses two different partitions: Backgrounder (started at boot) and Print
Monitor (launched only when needed). The list of partitions to set up at system start-up
is maintained by the Finder in a file called Finder Startup that resides in the System
Folder.

When an application is double-clicked on in the Finder with MultiFinder running, the
Finder does a special type of launch. It is a call to the regular Launch trap but with the
high two bits set in the configuration word that maintains the parent process. This causes

PROCESS MANAGEMENT 37

the Finder to continue running while the new "child" process runs. The child process is
not linked to the parent process as in UNIX, however. If the high two bits are not set,
the parent is terminated upon the spawning of the child process.

Here is some assembly code to launch an application under MultiFinder such that the
launching application still lives:

; PROCEDURE MFLaunch(appNarne: Str255)

LEA rnfBlk,AO point to the extended length pararn block below
MOVE.L 4 (SP), (AO) install ptr to appNarne
MOVE.L (SP)+, (SP) pop appNarne

Launch DC.W $A9F2
RTS and return flow to whoever just call this

rnfBlk DC.L 0 pointer to appNarne
DC.W 0 normal sound and screen
DC.W 'LC' tag for extended pararn block
DC.L $00000004 length of extension
DC.W 0 finder flags: normal
DC.W $4000 launch flags: a MultiFinder launch

ExitToShell works the same as it does when MultiFinder is not around, but in
addition MultiFinder can "kill" an application if a system error occurs in that partition.
This is because MultiFinder takes over some of the same vectors that MacsBug does.
MultiFinder does not support the Chain trap.

MultiFinder introduces a new style of process scheduling known as cooperative
multitasking. This method hinges upon MultiFinder's watching the event traps called by
all standard Macintosh applications. A process switch can occur only when one of three
traps is called: GetNextEvent, WaitNextEvent, or EventAvail. Three types of
switching can occur: layer switching (A5 World and windows are switched), back
ground switching (A5 World is switched, but windows are not), and update switching
(A5 World is switched with update event). These various types of switching require that
trap patches, completion routines, VBL tasks, and defprocs should not assume anything
about register A5. When you are writing these routines, therefore, you should always
save and restore register A5 accordingly.

Interprocess communication (IPC) is limited in the original version of MultiFinder to
the use of "puppet strings," a simple method of passing a message to another application
when switching between partitions. Microsoft uses this to implement its QuickSwitch
facility between Word and Excel, for example.

The most prevalent form of interprocess communication on the Macintosh is the
Clipboard. The Clipboard provides a simple but effective means of passing information.
The Clipboard is normally handled by the Scrap Manager, but MultiFinder plays some
tricks-as did Switcher-to coerce applications to get and put information on the global
clipboard. Applications can also read and write to a common disk file as a means of
passing information between processes.

38 CHAPTER TWO I THE MACINTOSH OPERA TING SYSTEM

The File System

The file system, also called the File Manager, is the single largest piece of operating
system code in the Macintosh ROM. The original Macintosh File System (MFS) sup
ports a single flat directory structure per volume, such as a Sony single-sided 400 KB
disk. The Hierarchical File System (HFS) supports a hierarchical directory structure on
800 KB or larger volumes. Actually there is a way to create a 400 KB HFS volume: ini
tialize a disk as single-sided while holding down the Option key. You can also create an
800 KB MFS volume if you have an old version of the System that did not know about
HFS. To determine if HFS is installed, test the word FSFCBLen in low memory at
$3F6. It is -1 on MPS-only systems and is positive for those machines with HFS
installed.

MFS was designed and written by Larry Kenyon. HFS began life as the Turbo File
System (TFS) and was developed during 1985 by Pat Dirks, Bill Bruffy, and Larry
Kenyon for the Macintosh Plus and later machines.

Under MFS, file names may have up to 255 characters; fiie names under HFS are
limited to 31 characters, and volume names are limited to 27 characters. Colons may not
be used in a file or volume name for either system, because they are used to specify the
full path name of a file.

Each file on the Macintosh has two forks: a resource fork, managed by the Resource
Manager, and a data fork, managed by the programmer. A fork can be empty or
nonexistent for a given file. In the case of an application file, all of the code, menus,
dialogs, ic~ns, and other resources are kept in the resource fork, and the data fork is
usually empty. Document files created by an application are usually the inverse: in this
case, the resource fork is unused, and all of a MacPaint graphic, HyperCard stack, or
MS Word document lives in the data fork. There are exceptions, of course. Some
applications store preference information in their data forks. The MPW Make tool stores
default build rules in its data fork. HyperCard stacks can carry resources in their
resource forks, with ICONs and XCMDs being popular residents.

Low- and High-level Routines

Two sets of calls are documented for you to use in file system routines, but actually
only one set of file system calls exists. The so-called high-level routines are simply glue
code found in MPW's Interface. o library. They are described in Inside Macintosh as
being calls "not in ROM." These high-level routines are translated by the glue code into
the only real calls, the so-called low-level routines.

THE FILE SYSTEM 3 9

Programming languages also offer routines to do file l/0. These routines ultimately
call the low-level file system calls. The existence of such routines in programming lan
guages further increases the number of choices available to you as a programmer. For
example, using MPW C, you can choose among open (semi-standard UNIX/C library
routine), fopen (ANSI C standard library routine with buffering), FSOpen (Mac high
level glue routine), and PBOpen (Mac low-level with minimal glue).

Param Blocks

All of the actual file-system traps use register DO for returning result codes and regis
ter AO to point to a ParamBlockRec. Through this somewhat complicated record, in
formation is passed to and received from file system calls. Different calls interpret
the record's fields differently. Here is a taste of what some of the cases of a
ParamBlockRec look like, along with mention of the volume and file flags:

ParamBlockRec = RECORD
qLink: QElemPtr;
qType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioNamePtr: StringPtr;
ioVRefNum: INTEGER;
CASE ParamBlkType OF

IOParam:
(ioRefNum: INTEGER;
ioVersNum: SignedByte;
ioPermssn: SignedByte;
ioMisc: Ptr;
ioBuffer: Ptr;
ioReqCount: LONGINT;
ioActCount: LONGINT;
ioPosMode: INTEGER;
ioPosOffset: LONGINT);

40 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

FileParam:
(ioFRefNum: INTEGER;
ioFVersNum: SignedByte;
fillerl: SignedByte;
ioFDirindex: INTEGER;
ioFlAttrib: SignedByte;
ioFlVersNum: SignedByte;
ioFlFndrinfo: Finfo;
ioFlNum: LONGINT;
ioFlStBlk: INTEGER;
ioFlLgLen: LONGINT;
ioFlPyLen: LONGINT;
ioFlRStBlk: INTEGER;
ioFlRLgLen: LONGINT;
ioFlRPyLen: LONGINT;
ioFlCrDat: LONGINT;
ioFlMdDat: LONGINT);

VolumeParam:
(filler2: LONGINT;
ioVolindex: INTEGER;
ioVCrDate: LONGINT;
ioVLsBkUp: LONGINT;
ioVAtrb: INTEGER;
ioVNmFls: INTEGER;
ioVDirSt: INTEGER;
ioVBlLn: INTEGER;
ioVNmAlBlks: INTEGER;
ioVAlBlkSiz: LONGINT;
ioVClpSiz: LONGINT;
ioAlBlSt: INTEGER;
ioVNxtFNum: LONGINT;
ioVFrBlk: INTEGER);

CntrlParam:
(ioCRefNum: INTEGER;
csCode: INTEGER;

--> bit 7 set if file busy)
bit 6 set if file protected
bit 0 set if file locked)

--> bit 15 set if volume locked by software)
bit 7 set if volume locked by hardware)
bit 6 set in VCB if any files open on vol)

csParam: ARRAY (0 .. 10] OF INTEGER);
END;

Types and Creators

Each file on the Macintosh has a specific type and creator. Types and creators are 32-
bit codes, usually comprised of four letters. The creator signature is used by the Finder
to display icons of applications and documents properly, and to launch the creator appli
cation when a document file's icon is opened by the user. File types are used to define
types of documents that can be exchanged between applications. In creating new appli
cations, you should not use existing file types in any way that would differ from existing
usage-that is, a "ST AK" should always be a HyperCard-compatible stack. Also, be

THE FILE SYSTEM 41

careful not to confuse file types and creators with resource types, which use a similar
4-byte descriptor but for different purposes. The following table lists some popular
types and creators.

T,n~e Creator Software
ZSYS MACS System
ZSYS MACS MultiFinder
FNDR MACS Finder
APPL maxb MacsBug 5.5
cdev sysc General
PRER LWRR LaserWriter
LROM LWRR Laser Prep

APPL MPS MPW Shell 3.0
APPL WILD HyperCard 1.2.2
APPL XCEL MS Excel 1.5
APPL MSWD MS Word 4.0
APPL MACA MacWrite 4.6
APPL MPNT MacPaint 1.5
APPL MDRW MacDraw 1.9.5
APPL MDPL MacDraw II

TEXT MPS MPW Shell doc
MPST MPS MPW Shell tool
STAK WILD HyperCard stack
XLBN XCEL Excel worksheet
XLPG XCEL Excel macrosheet
WDBN MSWD Word 3 or 4 doc
WORD MACA MacWrite 4.6 doc
PNTG MPNT MacPaint 1.5 doc
DRWG MDRW MacDraw 1.9.5 doc
PICT MDRW MacDraw 1.9.5 pict
DRWG MDPL MacDraw II doc

42 CHAPTER TWO I THE MACINTOSH OPERA TING SYSTEM

Finder Information

A file's type and creator information is stored with each file's Finfo, or Finder in
formation record. This record is actually only a small part of the information stored
about each file; you can retrieve and change this record using the calls Get File Info
and SetFileinfo. Here is a sample Finfo record, which in tum is part of a larger
ParamBlockR_ec:

Finfo = RECORD
fdType: OSType;
fdCreator: OSType;
fdFlags: INTEGER;
fdLocation: Point;
fdFldr: INTEGER;

END;

Volumes and files each have their own flag or attribute bits. In addition to those bits,
the FI n f o block has its own flags, which are interpreted as shown in the following
table.

fdFlag Bit
Number
15
14
13
12
II
10
9
8
7
6
5
0

Meaning if Bit Set
Finder's file lock
File is invisible
File has a bundle
System file--cannot rename
Bozo--cannotcopy
Finder's busy file bit
Changed
lnited
No lnits
Shared
Always switch launch
File is on the Desktop

High-level File System Routines

The file system is initialized at boot time with a call to InitFS, so this should not be
done by most applications. All queued file system calls can be terminated by a call to
InitQueue.

To mount, unmount, put offline, and eject volumes, use calls to MountVol,
UnmountVol, Offline, and Eject. An offline volume is seen on the Desktop but is

THE FILE SYSTEM 4 3

largely unavailable otherwise. Set Vol and Get Vol handle the default volume to which
file system calls go. To obtain detailed information about a volume, call GetVolinfo.

You can access files in many ways: by vRe fNum and partial pathname, by full path
name ("HD:System Polder:Pinder"), or by vRe fNum, di r ID, and leaf name. You can
also index through folders-which in HPS are actual directories.

The basic self-explanatory operations on files are accomplished by Create, Open,
OpenRF (for opening the resource fork instead of the data fork), Read, Write, Close,
Rename, and Delete. You can manipulate the logical length of a file with GetEOF and
SetEOF, and you can change the physical length with Allocate. The file-pointer posi
tion within a file is handled by GetFPos and SetFPos. To lock and unlock an
unopened file, use SetFilLock and RstFilLock. To retrieve information about a file,
use GetF i 1 e Info, and to change that information, use set Fi le Info and
SetFileType. This last trap changes the version number of a file on MPS volumes but
does not do anything on an HPS volume, because file version numbers are not sup
ported in practice on any Mac volumes. It is largely a wasted trap because most routines
fail if the file version number on MPS volumes is anything other than zero.

A file can be partially flushed to disk with FlushFile, but you must call FlushVol
to ensure that writes and various low-level file system caches are flushed to the disk.

The 128 KB ROMs introduced many more routines. Virtually all of the routines men
tioned above have a version that expects an HPS parameter block rather than the older
and smaller MPS parameter blocks. These new HPS parameter blocks contain additional
or changed fields to handle such things as real directories. You can tell which parameter
block a file system routine expects by examining bit 9 in the trap word. If this bit is set,
the HPS parameter block is expected.

In most cases, both versions of these calls perform the same operation, so you should
use the older MPS calls whenever possible so that code will run on the original as well
as newer Macintoshes. Allocate ($A010) is an exception, as it allocates space, con
tiguous or not, whereas AllocContig ($A210) is billed as a separate trap that allocates
only contiguous disk space.

The Mac Plus 128 KB ROMs also have a trap called HFSDispatch ($A060) that of
fers many new file system calls using a word-sized routine selector passed in register
DO. These routines largely give additional support for using directories. GetCatinfo,
for example, allows you to index through all of the files in a directory. The routines that
are available through this trap are shown in the following table.

44 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

Selector Routine Puq~ose

I Open WO Opens a working directory
2 CloseWD Closes a working directory
5 CatMove Moves files/dirs
6 DirCreate Creates a directory
7 Get WO Info Returns WD info
8 GetFCBinf o Returns FCB info
9 GetCatinfo GetFileinfo +
10 SetCatinfo SetFilelnfo +
II Set Vol Info Sets volume name
16 LockRange Locks part of a file
17 UnlockRange Unlocks part of a file

AppleShare (AS) also adds to HFSDispatch ($A060) new routines for supporting
shared read/write access to files as well as permissions. If AppleShare is installed, the
routines shown in the following table are present.

Selector Routine Purpose

48 GetVolParms GetVolinfo for AS
49 GetLogininfo Returns login name
~ GetDirAccess Get access permission
51 SetDirAccess Set access permission
52 Map ID Gets name of usr/grp
53 Map Name Gets id given name
54 CopyFile Duplicates a file on AS
55 MoveRename Moves a file on AS
56 OpenDeny AS version of Open
57 OpenRFDeny AS vers. of OpenRF

Data Organization on Volumes

Each volume must have some information that describes the file system, such as boot
blocks and file directories. An MFS 400 KB 3.5-inch floppy diskette has 800 512-byte
blocks, numbered 0 through 799. They are arranged as shown in the following table.

Block #
0 to I
2 to 3
4 ton
n+I to 799

Use
Boot blocks if bootable; otherwise zero
Master directory blocks; vol info; block map
File directory
File contents

THE FILE SYSTEM 45

An HFS 800 KB 3.5-inch floppy diskette has 1600 512-byte blocks, numbered 0
through 1599. They are arranged as shown in the following table.

Block #
0 to I
2
3 ton
n+I to 799

Use

Boot blocks if bootable; otherwise zero
Volume information block
Volume bit map
File contents

Hard disks are organized in a way similar to that used for HFS floppies. The basic
sector size of a hard disk must be large enough so that the number of sectors will fit in
16 bits. Thus, an 80 MB hard disk has sectors 1.5 KB in size. SCSI hard disk installa
tion programs save a few blocks on the disk for storing the SCSI driver. Therefore,
SCSI drivers are not kept anywhere within an HFS file system but must be retrieved by
reading raw disk sectors. If 32 sectors were allocated for a SCSI driver, then the HFS
boot blocks would actually be in sectors 32-33 of the disk.

On HFS volumes, the file directory is maintained by two invisible files called the ex
tents tree file and the catalog tree file. These files are maintained by the B*-tree manager
built into HFS and their existence is not acknowledged by the file system. Do not con
fuse them with the files used by the Finder for maintaining its icons. The Desktop file
or if the Desktop Manager is running, the Desktop DB and Desktop DF files-is invisi
ble to the user but visible to any inquiring process.

An HFS volume information block-found in block 2 of the disk-is the same as the
MFS volume block for the first 64 bytes. The HFS volume information block contains
the basic information about a disk, including the number of files, space used and avail
able, as well as pointers to the disk catalogs. The information provided in this block is
shown in the following table.

B;yte Name - Size Contents

0 drSigWord - word HFS: $4244; MFS: $0207
2 drCrDate - long init. date & time
6 drLsMod - long last mod date & time
10 drAtrb - word volume attributes
12 drNmFls - word #of files
14 drVBMSt - word first blk of vol bitmap
16 drAllocPtr - word used internally
18 drNmAIBlks - word # of alloc blocks
20 drAIBlkSiz - long allocation block size
24 drClpSiz - long default clump size
28 drAIBISt - word first blk in bitmap
II drNxtCNID - long next unused dir/file #
34 drFreeBks - word # of unused alloc blks

continued

46 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

continued from page 45

B_yte Name • Size Contents

36 drVN - byte length of volume name
n drVN+ I - bytes the volume name chars
6i drVolBkUp - long last bkup date & time
68 drVSeqNum - word used internally
70 drWrCnt - long volume write count
74 drXTClpSiz - long extents tree clump size
78 drCTClpSiz - long catalog tree clump size
82 drNmRtDirs - word # dirs in root
84 drFilCnt - long #files in volume
88 drDirCnt - long # dirs in volume
92 drFndrlnfo - 32 bytes used by the Finder
124 drVCSize - word used internally
126 drVCBMSize - word used internally
128 drCtlCSize - word used internally
130 drXTFISize - long length of extents tree
134 dr XTExtRec - 12 bytes extent rec for extents tree
146 drCTFISize - long length of catalog tree
150 drCTExtRec - 12 bytes extent rec for catalog tree

The Input/Output System

Macintosh's input/output system, known as the Device Manager, handles the manipu
lation of devices used for input/output (1/0), including internal and external peripherals
as well as desk accessories. The Device Manager was written by Andy Hertzf eld and
Larry Kenyon.

Communication with each device is handled through a device driver. Device drivers
respond to five different types of messages: Open, Close, Control, Status, and
Prime. Driver calls include Open, Close, Read, Write, Control, Status, and
Kill IO.

Each Macintosh has a fixed-sized unit table that contains information about device
drivers. This non-relocatable table lives in the system heap. The original Macintosh had
32 entries; the Mac Plus and SE have 48 entries; and the Mac II has 64 entries. The Mac
II uses the extra entries for NuBus card slots. The following table presents a list of the
standard devices by device number.

Device
0

2
3
4
5
6
7
8
9
lO
11
12-26
27-31
32-39
40
41-47

number Device type
Reserved
Hard disk driver (HD-20)
.Print driver
.Sound driver
.Sony driver
.Aln (modem input)
.AOut (modem output)
.Bin (printer input)
.BOut (printer output)
.MPP AppleTalk driver
.ATP AppleTalk driver
Reserved
System desk accessories
Application desk accessories
SCSI drivers 0-7
.XPP AppleTalk driver
Reserved

APPLET ALK 4 7

Driver reference numbers are the two's complement-NEG. w-of the device or unit
number. Driver names always begin with a period; desk accessory names always begin
with a null (ASCII 0) character. If an Open call is made with a file name that does not
begin with a period, the call is passed on to the File Manager. This method is similar to
the UNIX operating system, which also treats files and devices in a unified manner.
Because of this feature, the MPW Shell will not allow you to create or open a file whose
name begins with a period, as the call would go to the Device Manager instead of the
File Manager.

If you wanted to access raw blocks of a disk rather than files, you would go through
the appropriate disk driver rather than the file system. The Sony disk driver is device 4,
so its reference number (the two's complement of the device number) is -5. This would
be plugged into the ioRefNum field of an IOParamBlock. The .Sony driver is opened
automatically at boot, so no Open call needs to be made. To read and write blocks, you
would use Read and Write calls.

Apple Talk

Local area networks-LANs-are becoming an increasingly essential part of comput
ing systems. Different vendors systems are connected more and more often through the
use of LAN s. One of the great virtues of the Macintosh is the fact that every Mac has a
LAN connection built into it. Thus, AppleTalk, which was designed by Gursharan
Sidhu, is one of the most widely used networks ever made.

48 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

Originally, the term AppleTalk meant both a set of protocols and the medium of
twisted pair cables. Loca/Talk now refers to the original medium of twisted pair cables,
and EtherTalk is an alternative medium that offers much faster transfer rates using differ
ent cabling and requiring an expensive card. AppleTalk is now understood to refer to the
protocols that are related to the OSI network layers.

To access AppleTalk, you use standard Read, Write, and Control calls to the
AppleTalk drivers. Two drivers are in ROM on 128 KB and later ROMs: .MPP and
.ATP. The so-called AppleTalk Manager is a misnomer; it is not a ROM manager at all
but is simply the glue code that properly calls the drivers. The AppleTalk Manager is not
needed when you are using assembly language.

The layers of AppleTalk are presented in a top-down fashion in the following table.

Layer

Presentation
AFP

Session
AFP
PAP
ZIP

Transport
ADSP

ATP

EP
NBP
RTMP

Network
DDP

Link Access
ALAP

Physical

Protocol

AppleTalk Filing

AppleTalk Session
Printer Access
Zone Information

AppleTalk Data
Stream
Apple Talk
Transaction
Echo
Name Binding
Routing Table
Maint.

Datagram Delivery

AppleTalk Link
Access

LocaITalk
EtherTalk

Driver

.XPP

.XPP

.ATP

.MPP

.MPP

.MPP

Comments

Used by AppleShare

Links workstation & server
Supports LaserWriter

Socket-to-socket stream

Guarantees delivery

Client of DDP
Names to internet sockets
Used internally by internet

Socket-to-socket delivery

Node-to-node delivery

230 Kbaud twisted pair
JO Mbaud coaxial cable

An AppleTalk network can have up to 255 nodes. Node-to-node delivery is done by
sending up to 600-byte frames by ALAP. Each node can have multiple sockets. DDP
uses ALAP to manage socket-to-socket delivery of 586-byte datagrams over intemets.

THE START CODE AND THE BOOT PROCESS 49

Internet addresses are comprised of a 16-bit network number, an 8-bit node ID, and an
8-bit socket ID within that node.

ATP is the first level of transmission that does error checking to ensure a packet's
contents are accurate. ATP assigns a 16-bit transaction ID and uses DDP, which in tum
uses ALAP to guarantee socket-to-socket delivery of up to 8 ATP Packets, each with up
to 578 bytes of user data, or a maximum of 4,624 bytes of user data. NBP assigns
names to nodes.

Together, these protocols can be used easily to transfer information. A sample session
is presented in the following table.

Client
OpenATPSkt
RegisterName
LookupName
SendRequest

RemoveName
CloseATPSkt

Server
OpenATPSkt
RegisterName

GetRequest
SendResponse
AddResponse
RemoveName
CloseATPSkt

Comments
Connect to network
Register name on net
Client will see server
Send request to server
Server gets request
Server sends data
More packets sent
Become invisible
Disconnect from net

The Start Code and the Boot Process

The first piece of code to execute when a Macintosh is booted is called the start code,
which is located as the first instructions of the Macintosh ROM. The start code, which
was originally written by Larry Kenyon, begins by checking to see if a diagnostic ROM
is installed. If one is installed, control is immediately turned over to it; otherwise, initial
ization next sets up the VIA and IWM chips, obtains the default sound volume from pa
rameter RAM, draws a black screen, and then plays the boot beep. If the boot beep
sounds, the CPU is okay.

Next comes a quick test of memory-both ROM and RAM-to determine its in
tegrity. The memory test code for the Macintosh Plus was written by Jerome Coonen
and is an interesting application of number theory to computer science. The ROM is
checksummed against the first long word in the ROM address space, which is a check
sum of the rest of the ROM. Various patterns are written to and then read from RAM to
check its validity. The amount of RAM is also determined by the SizeSeriously rou
tine at this time. If any memory is determined to have problems, the "Sad Mac" icon is
displayed with a code specifying which chips are bad. The Sad Mac codes that might be
displayed are shown in the following table.

50 CHAPTER TWO I THE MACINTOSH OPERA TING SYSTEM

Sad Mac Code
Olxxxx
02xxxx
03xxxx
04xxxx
05xxxx
OFOOOl
OF0002
OF0003
OF0004
OF0005
OF0006
OF0007
OF0008
OF0009
OFOOOA
OFOOOB
OFOOOC
OFOOOD

Meaning
ROM test
RAM test - bus subtest
RAM test - byte write
RAM test - mod3 test
RAM test - add uniqueness
Bus error
Address error
Illegal instruction
Zero divide
Check instruction
Trap instruction
Privilege violation
Trace
Line 1010
Line 1111
Other exceptions
Unimplimented trap
NMI - interrupt button

If the first hex digit is 2-5, a memory chip failed to pass the RAM test. If this occurs,
the last four digits (xxxx above) are the encoded position of the bad RAM chip. Starting
with the third digit displayed from the left, the hex digits specify chips G 12-G9, then
G8-G5, then F12-F9, and finally F8-F5. Thus, an error code of 020800 means that chip
G 12 failed the bus subtest. Each bit represents a chip: row G is nearer the inside of the
mother board; row F is closer to the outside.

System Error Handler

After the memory test is completed, all of memory is initialized to binary ones. Next,
the System Error Handler written by Andy Hertzfeld and Ken Krugler is installed. This
error handler sets all of the Motorola exception vectors to point into ROM. When one of
these exceptions is hit the System Error Handler displays-using very minimal re
sources-the familiar "bomb box." The bomb box is actually INIT 2 of the System
file, which is called by the ROM through the SysError routine as a last-resort method
of informing the user that the Macintosh cannot proceed any further. The range of errors
that may trigger the bomb box to appear includes-but is not limited to-the codes ex
plained in the following table.

Bomb Box Code
l
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
al
21
12
23
2A
25
26
Tl
28
D
31
32
33
40
41
42
51
64
81
84
8.5
86
~
9)

32767

THE START CODE AND THE BOOT PROCESS 51

Meaning
Bus error; invalid memory ref.; only XL & II
Address error; odd word data ref. w/68000
Illegal instruction; unrecognized bit pattern
DIVS or DNU with divide by zero
CHK instruction failed; out of range
TRAPV instruction failed; overflow
Privilege violation; erroneous RTE?
The trace bit of the status register is set
The A-trap dispatcher failed (line 1010)
Unimplemented line 1111 instruction
Other Motorola hardware exceptions
Unimplemented A-trap routine
A interrupt vector is NIL, usually level 4-7
1/0 Error; DCE purged
GetResource of CODE segment failed
Halt bit set in SANE environment
Package 0 not present
Package 1 not present
Package 2 not present
Package 3 not present
Package 4 not present
Package 5 not present
Package 6 not present
Package 7 not present
Out of memory; can't allocate request
GetResource of CODE 0 failed; can't launch
File system map has been trashed
Stack overflow (stack and heap collided)
Request user to reinsert offline disk
Not the disk I wanted
Hardware has overrun serial driver
Corrupt heap; ZcbFree is negative
Welcome to Macintosh greeting
Can't find the file named Finder; can't load it
Shutdown alert "You can now tum off ... "
Unserviceable slot interrupt
Serial driver error masks
Bad opcode given to SANE Pack4
A menu has been purged
Can't find menu bar
Can't find menu
Can't find patch for particular Mac
Can't load patch resource
General system error

52 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

On machines with 128 KB ROMs and later, a small version of MacsBug called
MicroBug is installed at the same time as the System Error Handler. This debugger is
installed via the MacJmp low-memory global pointer; you can enter MicroBug by press
ing the interrupt programmer's switch (when a regular MacsBug is not installed).
MicroBug supports MacsBug's G, DM, SM, TD, PC, and SR commands. It can also
set and display individual A and D registers. A small Nub debugger that can communi
cate with another Macintosh through the serial port is also installed, but it has been little
used.

Next in the boot process comes the main operating system initialization. This is where
the Macintosh begins to take on its own personality, so to speak. MemTop is set to point
to the top of physical memory. All interrupts are turned off. At this point, various low
memory globals are initialized to point to memory-mapped hardware, and the mouse and
cursor are joined together.

The next step sets up the Vertical Blanking Manager (VBL). The video retrace triggers
an interrupt 60 times each second (l/60 of a second= 1 tick) when the CRT gun is re
tracing back to the top of the screen before the next redraw. This level 1 interrupt has
five main tasks to perform: increment the low-memory global called Ticks, update the
cursor position, check keystrokes every 32 ticks, check the mouse state every other tick,
and call other VBL tasks that are scheduled with the VInstall and VRemove routines.

At this point, more tables are set up, including the interrupt dispatch tables antl the A
trap dispatch tables. The A-trap tables are set to point to the various OS and Toolbox
routines in ROM, or to an unimplemented trap receiver. The ROM code does this by un
packing an encoded version of the trap table that is also located in ROM. The type of
microprocessor is determined and the A-trap dispatcher is then started.

The boot code continues by reading the time and other saved parameters from
parameter RAM. Next, the Memory Manager is initialized and the default system and
application heaps are created. The SCC chip is initialized, the keyboard is fired up, and
the Unit Table is set up with the Sony disk driver and sound driver opened. The asynch
serial drivers and SCSI drivers are loaded but not opened. A default GetNextEvent
filter is installed, the package dispatcher is initialized, and the Switcher table is installed.
At this point, the first calls to QuickDraw change the black start-up screen to a gray boot
screen with a disk icon. This first disk icon is in ROM and therefore cannot be changed.

Boot Blocks

Now the MacStart code tries to read in the boot blocks from the boot disk. Which
disk is the boot disk? First the internal floppy is checked, then the external floppy, then
it checks any chain of HD-20 hard disks of the IWM variety, and then it looks through
SCSI devices, starting with device 7 dow:n to 0. Internal SCSI hard disks are always
SCSI ID 0. In the Macintosh SE and Mac II, this search path for a boot disk can be
changed with the cdev named Startup in the Control Panel; this cdev stores the boot

THE START CODE AND THE BOOT PROCESS 53

disk information in the extended parameter RAM that later Macs have. (A cdev is a
piece of code that extends the functionality of the Control Panel DA. Other standard
cdevs include Sound, Mouse, Keyboard, Color, etc.) Floppies that are found that do
not have boot blocks are ejected and the search continues. If no boot disk can be found,
the disk icon will contain a question mark.

What information do the boot blocks contain? The first two blocks (blocks zero and
one) of any bootable Macintosh disk contain various start-up parameters. The first sev
eral parameters are shown in the following list, along with their defaults.

RECORD
signature: INTEGER; $4C4B or 'LK' }

entryPoint: Ptr;
version: INTEGER; $0017 for System 6.0 }

page2Flags: INTEGER;
systemRsrc: Strl6; {'System')
shellApp: Strl6; {'Finder')
debugger: Strl6; { 'Macs Bug' }
debugger2: Strl6; {'Disassembler')
startScrn: Strl6; {'StartupScreen')
startupApp: Strl6; {'Finder')
scrapFile: Strl6; {'Clipboard File'}
numFCBs: INTEGER; { max files open)

numEvents: INTEGER; { max buffered events
heapl28K: LONGINT; { Mac 128K system heap
heap256K: LONGINT; { Mac 256K system heap
heap512K: LONGINT; { Mac 512K system heap

END

A few more comments on boot blocks: the signature word contains the initials of
Larry Kenyon, the chief architect of the original Macintosh File System. The startupApp
name is set to MultiFinder, rather than Finder, when it is set to run. The boot
blocks also show that there were once plans for a 256 KB Mac. In post-512 K Macs, the
last of the three heap-size longs holds the actual value for other Macs. The start-up code
also has its own defaults if these figures are too small, or if the boot block version is too
old. The system heap is set to 128 KB with System 6.0 and a Mac IL (That's as big as
all of the memory of the original 128 K Mac!)

A disk/file editing tool is useful when you need to examine or change the boot blocks.
(My favorite is still Fedit, written by John Mitchell.) Later versions of the System file
contain a copy of the boot blocks as resource boot 1. When the Finder does a disk-to
disk copy, it will copy the boot blocks as well.

54 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

Booting Continued

Now back to the boot sequence. After the boot disk has been found, the system heap
is grown to the size specified in the boot blocks. The Event Manager is initialized by a
call to InitEvents so that it has a buffer size that will handle the number of events
specified in the boot blocks. The file system is initialized by a call to In it F s so that it
has the maximum number of open files that the boot blocks indicate. Next, the boot disk
is mounted and a system folder is looked for via the I OVF n d r Info field of a
GetVolinfo call on the boot volume. This system folder is then set to be the default
volume.

Another boot block parameter is checked as the start-up code looks to see if there is a
boot screen present. The default file name is StartupScreen. If a file of that name is
present, the QuickDraw bit map found in the data fork of the file 1s made the start-up
screen by a call to CopyBi ts. If color QuickDraw is present, the resource fork is
searched for a PICT o resource to display instead.

Next, the Resource Manager is fired up by a call to InitResources. For this to
work, a System file whose name is specified in the boot blocks must be present.
Normally, this file is called system. Once the System file is found, the Font Manager is
initialized with a call to In it Fonts and, unless there is a boot screen, the first
Macintosh alert is displayed: "Welcome To Macintosh." This alert is contained in the
DSAT 0 resource in the System file, and thus can be made international.

Booting-Installing MacsBug

The next step is to check for a debugger. The boot blocks actually have the ability to
load and execute two different debuggers. If a file by the name of MacsBug or
Disassembler is found, the system loads and executes that file. All versions of
MacsBug since version 5 have a built-in disassembler, so the disassembler loading point
is rarely used.

The process of loading MacsBug takes place as follows: First the boot-blocks code
reserves some space (1,024 bytes) for MacsBug's own global variables. Then this code
looks for the file specified in the boot blocks, as described above. If the file is not
found, the global space is deallocated and the boot process continues normally without
installing a debugger.

IfMacsBug is found, the data fork (not the resource fork!) of the file is loaded onto
the current stack, which is located immediately below the main screen buffer in memory.
For historical reasons, the first block (512 bytes) of the MacsBug data fork is stripped
off during this loading process. In any of the version 5 series of MacsBug, this other
wise unused block contained a brief history of the people who contributed to MacsBug.
Unfortunately, the author of the version 6 series of MacsBug removed this nice use of
otherwise wasted space and replaced it with spaces.

THE START CODE AND THE BOOT PROCESS 55

The boot code then executes a JSR (Jump Subroutine and Return) to MacsBug itself.
MacsBug begins its installation process by checking to see if the mouse button is down.
If it is, MacsBug aborts the installation and lets the boot process continue without in
stalling itself. If the button is not down, MacsBug determines which kind of machine
and microprocessor it is running on and configures itself accordingly. The code for
MacsBug is loaded in high memory right beneath the screen on classic Macs, and it is
almost at the very top of RAM on Mac Ils.

Any of the version 5 MacsBugs installed themselves into several of the Motorola
vectors; MacsBug 6.0 installs itself into the low-memory global MacJmp at location
$120 instead. At the successful completion of the installation, the message "MacsBug
installed" is posted below the "Welcome to Macintosh" screen.

Booting-Installing Patches and INITs

The boot process then continues by checking the data fork of the System file, which
contains the code that installs the patches to the OS and Mac ROMs. A patch is a tricky
piece of code that either corrects bugs or adds features to the main Macintosh ROM
routines.

Originally the patches themselves lived in the data fork, but in later versions of the
Macintosh System file the code in the data fork simply loads a PTCH resource that con
tains all of the patches. There is a PTCH resource for each different Macintosh computer.
They are keyed by ROM version number-for example, PTCH 630 is for the Macintosh
SE. In addition, some ptch resources contain entire managers to be back-patched to
earlier machines. For example, in System 6.0 there are several pt ch resources that con
tain RAM-based code for Styled TextEdit, the Script Manager, and the Sound Manager.

Another mechanism is provided for developers and hackers: INITs. These useful re
sources allow you to patch and extend the system before any applications are running.
Unfortunately, INITs can cause unexpected crashes if you do not use them properly. An
example of an INIT is given at the end of the chapter.

The boot code looks for INIT resources 0-31 in the System file and JSRs to them.
Some of these INIT resources are used by Apple. to set up the keyboard maps (INIT O
and INIT 1) and other localizable things. INIT 31 extends the system software further
by looking for any files of type INIT that in tum contain resources of type INIT. These
files must be in the System Folder in order to be found. This facility allows you to install
your own start-up code without changing the System file.

A disk track cache is then set up from a resource of type each. The name of the file
containing the scrap--usually Clipboard-is then looked up from the boot blocks.

Finally, the start-up application is launched. Typically, the start-up application is the
Finder, but you can set it to any other application via the Finder's Set Startup facil
ity. This start-up application may be different from the "shell" application. Both names

56 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

are mentioned in the boot blocks. At this point the System relinquishes control of the
Mac to the start-up application.

OSPeek - Pascal Desk Accessory

You may find it useful at this point to examine the code for a driver. OSP eek is a
handy desk accessory-recall that desk accessories are drivers- that is useful for
"looking under the hood" of your Macintosh. It displays a graphical picture of what mi
croprocessor, RO Ms, and amount of memory are found on the Mac. It also shows the
values of the some of the more important low-memory globals-in hex, of course.
Figure 2-2 shows an example of OSPeek ' s display.

40800000 ROMBose
OOOE30FO Mem Top
FAA00020 ScrnBase
004C4C5C Bu f P tr
0020BS9C RegRS
0020B39C S tackBose
0020AEC2 RegA7
0020681C Appllimi t
002068 1C HeapEnd
002037CC App I Zone
0000 IEOO SysZone
00000000 Mc:icJmp
004FAAA4 ATrap
004FA6FC Trace
004C496E Adr Err
004C4966 Bus Err

Figure 2-2: OS Peek' s Display

The value given for MemTop in Figure 2-2 is wrong because MultiFinder actually
dummies up a false value that it stores in MemTop. After calling a special MultiFinder
routine, we can find out the real value, which we did to show the 5 MB of RAM in this
particular example.

The fun begins when you close OSP eek by clicking in its close box. When you do
so, a Standard File dialog appears asking you to supply a file name. Clicking Okay then
generates an MPW text file that lists every A-trap, along with an educated guess about
the status of the routine. The trap can be either in ROM or in a RAM patch. If it is in
RAM, OSPeek will also try to determine who patched the trap. Possible candidates in
clude the System, MultiFinder, and the currently running application. Clicking Cancel
will omit this process.

One tip on using OSPeek: hold down the Option key when bringing up OSPeek

when MultiFinder is active. Bringing up desk accessories in MultiFinder normally
launches a separate application known as the DA Handler. If you do not hold down the
Option key, you will see the A-trap world of the DA Handler rather than of the applica-

OSPEEK - PASCAL DESK ACCESSORY 57

tion being examined. Holding down the Option key loads the DA into the application's
heap rather than launching the separate DA layer. Alternately, you could just run without
MultiFinder. In any case, examining the output of OSPeek for various applications can
be instructive and revealing!

Here is the Makefile for OSPeek:

OSPeek f OSPeek.p.o
Link -o OSPeek.DRVW -w -rt DRVW=O -sg OSPeek a

"{Libraries}"DRVRRuntime.o OSPeek.p.o a
"{Libraries}"Interface.o a
"{PLibraries}"Paslib.o

Rez -rd -c DMOV -t DFIL OSPeek.r -o OSPeek
Delete OSPeek.DRVW

Now here is the Pascal code for the DA:

File OSPeek.p - Written by Dan Allen
Written May 1988 in Turbo Pascal; ported to MPW 14 Jan 1989 }
Tweaked 2 April 1989 }

{$R-} { No range checking

UNIT OSPeek;

INTERFACE

USES MemTypes,QuickDraw,OSintf,Toolintf,Packintf;

FUNCTION DRVROpen
FUNCTION DRVRControl
FUNCTION DRVRStatus
FUNCTION DRVRPrime
FUNCTION DRVRClose

IMPLEMENTATION

TYPE
WordPtr Ainteger;
LongPtr ALongint;

(ctlPB:
(ctlPB:
(ctlPB:
(ctlPB:
(ctlPB:

ERPtr AEventRecord;

ParmBlkPtr; device:
ParmBlkPtr; device:
ParmBlkPtr; device:
ParmBlkPtr; device:
ParmBlkPtr; device:

DCtlPtr) :
DCtlPtr) :
DCtlPtr) :
DCtlPtr) :
DCtlPtr) :

FUNCTION MFMemTop: Longint; INLINE $3F3C,$0016,$A88F;
FUNCTION GetRegA7: Longint; INLINE $2E8F;

OSErr;
OSErr;
OSErr;
OSErr;
OSErr;

58 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

(* ******** MAIN UTILITY ROUTINES ******** *)

FUNCTION AdrToLong(adr: Longint) : Longint;
VAR

temp: LongPtr;
BEGIN

temp := Pointer(adr);
AdrToLong := tempA;

END;

FUNCTION ByteToStr(address: Ptr)
VAR

theByte:
theString:

BEGIN

byte;
Str255;

theByte := addressA;
NumToString(theByte,theString);
ByteToStr := theString

END;

FUNCTION CurAppName: Str255;
VAR

p: AStr255;
BEGIN

p := Pointer($910);
CurAppName := pA;

END;

Str255;

FUNCTION IntToHex(word: Integer): Str255;
VAR

i,d:
hexStr:

BEGIN

Integer;
Str255;

hexStr := '0000';
FOR i := 1 TO 4 DO

BEGIN
d := BAND(BSR(word, (4-i)*4),$000F);
IF d < 10 THEN hexStr[i] := Chr(Ord('O')+d)
ELSE hexStr[i] := Chr(Ord('A')+d-10);

END;
IntToHex := hexStr;

END;

FUNCTION LongToHex(address: Longint) : Str255;
BEGIN

LongToHex := Concat(IntToHex(HiWord(address)),
IntToHex(LoWord(address)));

END;

OSPEEK - PASCAL DESK ACCESSORY 59

FUNCTION WordPtrToHex(address: WordPtr)
BEGIN

WordPtrToHex := IntToHex(addressA);
END;

Str255;

(* ******** MAIN DESK ACCESSORY ROUTINES ******** *)

FUNCTION DRVROpen(ctlPB: ParmBlkPtr; device: DCtlPtr): OSErr;
VAR

savePort:
myRect:

GrafPtr;
Rect;

BEGIN
WITH deviceA DO

IF dCtlWindow = NIL THEN
BEGIN

SetRect(myRect,65,75,455,325);
WindowPtr(dCtlWindow) := NewWindow(Pointer(O),myRect,

'OS Peek by Dan Allen - April 2, 1989',
TRUE, documentProc, Pointer(-1),TRUE, 0);

WindowPeek(dCtlWindow)A.windowKind := dCtlRefNum;
GetPort(savePort);
SetPort(GrafPtr(dCtlWindow));
SelectWindow (Grafptr.(dCtlWindow));
TextMode(srcCopy); TextSize(9);
SetPort(savePort);

END;
DRVROpen := NOErr;

END;

{ *** DRIVER CLOSE ROUTINE *** }

FUNCTION DRVRClose(ctlPB: ParmBlkPtr; device: DCtlPtr): OSErr;
VAR

err:
myRefNum:

mbExists:
mfExists:

OSErr;
Integer;

Boolean;
Boolean;

is MacsBug installed ? }

is MultiFinder installed ?

60 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

busVector:
chkVector:
aTrapVec:
macJmp:
bufPointer:
applLimit:
applZone:
romBase:
twitcher2:
unimpLoc:
aPoint:
reply:
theWatch:

Longint;
Longint;
Longint;
Longint;
Longint;
Longint;
Longint;
Longint;
Longint;
Longint;
Point;
SFReply;
CursHandle;

bus error handler address }
CHK instruction error handler address }
A-trap handler address }
MacsBug 6.0 funnel address }
end of the app's whole process space }
end of the app's heap }
start of the app's heap }
location of the ROM }
MultiFinder's special low memory global
location of the unimplemented A-trap }

FUNCTION BufArea (address: Longint) : Str255;
TYPE

CodeTypes = (bufptr,mb5,mb6,mf,app);
VAR

config: SET OF CodeTypes;
BEGIN

config := [bufptr);
IF macJmp <> 0 THEN config := config + [mb6];
IF mbExists AND (macJmp = 0) THEN config := config + [mb5];
IF mfExists THEN config := config + [mf];

IF address< busVector THEN config := config - [mb5];
IF address< BAND(macJmp,$00FFFFFF) THEN config := config - [mb6);
IF mfExists AND (address < chkVector) THEN config := config - [mb5];
IF mfExists AND (address > twi.tcher2+$4000) THEN config := config - (mf);
IF mfExists AND (address< twitcher2-$2000) THEN config := config - (mf);
IF address< bufPointer THEN config := config + [app];

IF mb6 IN config THEN
BufArea := 'MacsBug6.0'

ELSE IF mb5 IN config THEN
BufArea := 'MacsBug5.5'

ELSE IF mf IN config THEN
BufArea := 'MultiFinder'

ELSE IF app IN conf ig THEN
BufArea := CurAppName

ELSE
BufArea := 'BufPtrArea';

END;

FUNCTION WhereAddr(address: Longint)
LABEL 9;
BEGIN

OSPEEK - PASCAL DESK ACCESSORY 61

Str255;

IF (address > $00C00000) AND (address < $40000000) THEN
BEGIN

9:

WhereAddr
GOTO 9;

END;

'Radius ROM' ;

IF address < applZone THEN
WhereAddr := 'SysHeap'

ELSE IF address < applLimit THEN
WhereAddr := CurAppName

ELSE IF address < romBase THEN
WhereAddr := BufArea(address)

ELSE IF address = unimpLoc THEN
WhereAddr := 'Unimplemented'

ELSE
WhereAddr := 'ROM';

END;

PROCEDURE OutString(a,b,c,d: Str255);
VAR

len:
p:
out:

BEGIN

Longint;
Ptr;
Str255;

out :=Concat(a,b,' = ',c,' ',d,CHR(13));
len := Length(out);
p := Pointer(LongI~t(@out)+l);
err := FSWrite(myRefNum,len,p);

END;

PROCEDURE TrapList(fileName: Str255; vRefNum: Integer);
LABEL 9;
VAR

i:
a:

BEGIN

Integer;
Longint;

busVector := AdrToLong($8);
chkVector := AdrToLong($18);
aTrapVec := AdrToLong($28);
bufPointer:= AdrToLong($10C);
macJmp
applLimit
applZone
romBase
twitcher2
unimpLoc

:=
:=
:=
:=
:=
:=

AdrToLong($120);
AdrToLong($130);
AdrToLong($2AA);
AdrToLong ($2AE);
AdrToLong($B7C);
GetTrapAddress($9F);

62 CHAPTER TWO I THE MACINTOSH OPERA TING SYSTEM

rnfExists
rnbExists

:= twitcher2 > O;
:= (aTrapVec < rornBase) OR (rnacJrnp <> 0);

vRefNurn := SetVol{NIL,vRefNurn);
err := Create{fileNarne,O, 'MPS ','TEXT');
err := FSOpen(fileNarne,vRefNurn,rnyRefNurn);
IF err <> 0 THEN GOTO 9;

FOR i := 2 TO 63 DO { Get vectors }
BEGIN

a := AdrToLong(i*4);
OutString('Vector ',IntToHex{i*4),LongToHex(a),WhereAddr{a));

END;

FOR i := 0 TO 255 DO { Get OS Traps
BEGIN

a := NGetTrapAddress(i,OSTrap);
OutString('OSTrap ',IntToHex(i+$A000),LongToHex(a),WhereAddr(a));

END;

FOR i := 0 TO 511 DO { Get TB Traps }
BEGIN

a := NGetTrapAddress(i,ToolTrap);
OutString('TBTrap ',IntToHex(i+$A800),LongToHex(a),WhereAddr{a));

END;

IF ROMBase > $40000000 THEN
FOR i := 512 TO 1023 DO { Get TB Traps

BEGIN
a := NGetTrapAddress{i,ToolTrap);

OutString('TBTrap ',IntToHex(i+$A800),LongToHex{a},WhereAddr(a));
END;

9: err := FSClose(rnyRefNurn);
END;

BEGIN
Longint(aPoint) := $00700070;
SysBeep(S);

OSPEEK - PASCAL DESK ACCESSORY 63

SFPutFile(aPoint, 'Save vector & trap list:', 'TrapList.tx', NIL, reply);
IF reply.good THEN

BEGIN
theWatch := GetCursor(watchCursor);
SetCursor(theWatchAA);
TrapList(reply.fName,reply.vRefNum);

END;
InitCursor;
WITH deviceA DO

BEGIN
DisposeWindow(GrafPtr(dCtlWindow));
dCtlWindow := NIL

END;
DRVRClose := NOErr;

END;

FUNCTION DRVRPrime (ctlPB: ParmBlkPtr; device: DCtlPtr): OSErr;
BEGIN

DRVRPrime := NoErr; (* not used by desk accessories *)

END;

FUNCTION DRVRStatus (ctlPB: ParmBlkPtr; device: DCtlPtr): OSErr;
BEGIN

DRVRStatus := NoErr; (* not used by desk accessories *)

END;

FUNCTION DRVRControl(ctlPB: ParmBlkPtr; device: DCtlPtr): OSErr;
VAR

savePort: GrafPtr;
patBlack,patGray,patDkGray,patWhite: Pattern;

*** MAIN DRAWING ROUTINES *** }

PROCEDURE DrawCPU;
CONST

xStart = 10; yStart = 40; width 75;
VAR

myRect, m881Rect: Rect;
HWFlags: Ptr;
myStr: Str255;

66 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

FillRect(hiROM,patdkgray);
InsetRect(hiROM,10,15); OffsetRect(hiROM,0,-10);
TextBox(Pointer(Longint(@myStr)+l),length(myStr),hiROM,teJustCenter);
OffsetRect(hiROM,0,20); TextBox(burnDate,dateLen,hiROM,teJustCenter);

DRAW LOWER ROM }

FillRect(loROM,patdkgray);
InsetRect(loROM,10,15); OffsetRect(loROM,0,-10);
myStr := Concat('ROM Version $',WordPtrToHex(Pointer(romBaseA+8)));
TextBox(Pointer(Longint(@myStr)+l),Length(myStr),loROM,teJustCenter);

OffsetRect(loROM,0,20);
myStr := Concat('ChkSum $',WordPtrToHex(Pointer(romBaseA)},' ',

WordPtrToHex(Pointer(romBaseA+2)));
TextBox(Pointer(Longint(@myStr)+l),Length(myStr),loROM,teJustCenter);

END;

PROCEDURE DrawRAM;
VAR

a,b: Rect;
i,j: Integer;
mem: Str255;
memTop: LongPtr;

BEGIN
SetRect(a,104,138,119,168); b :=a;
FOR i := 1 TO 2 DO

BEGIN
IF i 2 THEN

BEGIN
a := b; OffSetRect(a,0,55);

END;
FOR j := 1 TO 6 DO

BEGIN
FillRect(a,patdkgray);
OffsetRect(a,20,0);

END;
END;

MoveTo(122,185);
IF GetTrapAddress($A88F) <> GetTrapAddress($9F) THEN

NumToString(MFMemTop DIV 1024,mem)
ELSE

BEGIN
memTop := Pointer($108);
NumToString((memTopA) DIV 1024,mem);

END;
DrawString(Concat(' ',mem,'KB of RAM'));

END;

OSPEEK - PASCAL DESK ACCESSORY 67

PROCEDURE DrawMemMap;
VAR

i: Integer;
s: Str255;
r: Rect;

BEGIN
SetRect(r,249,14,376,226);
PenNormal; FillRect(r,patWhite);
PenSize(2,2); InsetRect(r,3,3); FrameRect(r);
TextFont(monaco);
FOR i := 1 TO 16 DO

BEGIN
CASE i OF

1: s := Concat(LongToHex(AdrToLong($2AE)),'
2: s Concat(LongToHex(AdrToLong($108)),'
3: s := Concat(LongToHex(AdrToLong($824)),'
4: s Concat(LongToHex(AdrToLong($10C)),'
5: s ·= Concat(LongToHex(AdrToLong($904)),'
6: s := Concat(LongToHex(AdrToLong($908)),'

ROMBase');
MemTop');
ScrnBase');
BufPtr');
RegA5');
StackBase');

7: s ·= Concat(LongToHex(GetRegA7), I RegA7');
8: s Concat(LongToHex(AdrToLong($130)),' ApplLimit');
9: s := Concat(LongToHex(AdrToLong($114)),' HeapEnd');

10: s := Concat(LongToHex(AdrToLong($2AA)),' ApplZone');
11: s := Concat (_LongToHex (AdrToLong ($2A6)), ' SysZone');
12: s := Concat(LongToHex(AdrToLong($120)),' MacJmp');
13: s := Concat(LongToHex(AdrToLong($28)),' AT rap I);

14: s := Concat(LongToHex(AdrToLong($24)),' Trace 1) i

15: s := Concat(LongToHex(AdrToLong($C)),' Adr Err');
16: s := Concat(LongToHex(AdrToLong($8)),'

END;
MoveTo(260,i*11+30);
DrawString(s);

END;
END;

Bus Err');

68 CHAPTER TWO I THE MACINTOSH OPERA TING SYSTEM

*** MACINTOSH INTERFACE CODE *** }

PROCEDURE DoUpdate;
BEGIN

StuffHex(@patBlack,
StuffHex(@patdkGray,
StuffHex(@patGray,
StuffHex(@patWhite,
WITH deviceA DO

'FFFFFFFFFFFFFFFF');
'77DD77DD77DD77DD');
'AA55AA55AA55AA55');
'0000000000000000');

BEGIN
BeginUpdate(GrafPtr(dCtlWindow));

END;

FillRect(GrafPtr(dCtlWindow)A.portRect, patBlack);
TextFont(geneva);
DrawCPU;
DrawROM;
DrawRAM;
DrawMemMap;

EndUpdate(GrafPtr(dCtlWindow))
END

MAIN DRIVER CONTROL ROUTINE *** }

BEGIN { Control }
WITH deviceA DO

BEGIN
GetPort(savePort);
SetPort(GrafPtr(dCtlWindow));
CASE ctlPBA.csCode OF

accEvent: DoUpdate;
goodBye: IF DRVRClose(ctlPB,device) <> NOErr THEN SysBeep(lO};

END;
SetPort(savePort);

END;
DRVRControl := NOErr;

END;

END. { of OSPeek UNIT

ADBKEY - ASSEMBLY LANGUAGE INIT 69

ADBKey - Assembly Language INIT

Here is a short piece of code that will serve as an example of how to write an INIT.
This INIT is written in assembly language; it converts the power-on key found on ADB
keyboards to a direct MacsBug interrupt key. This key is a lot easier to use than the
programmer's switch located on the side of the Macintosh.

* ADBKey INIT
* By Dan Allen 3 June 1988
* Converts the power-on key found on ADB keyboards to a MacsBug NMI key.
* Select the following two lines in MPW and press enter to build the INIT

Asm adb.a
i Link adb.a.o -o ADBKey -rt INIT=O -t INIT -c adbk

MAIN

MOVEM.L
SUB.W
DC.W
MOVE.W
TST.W
BNE.S

BSR.S
@l MOVEM.L

RTS

PatchBeg MOVE.L
MOVE.L
CMPI.B
BNE.S

MOVE.L
BCLR
CMP.B
BNE.S

CLR.B
MOVE.L
MOVE.L
RTS

StdExit MOVE.L
MOVE.L
RTS

D3-D7/A2-A6,-(A7)
#2,SP
$A974
(SP)+,DO

DO
@l

Install
(A7)+,D3-D7/A2-A6

A0,-(A7)
$0CF8,AO
#$02,$000l(A0)
StdExit

$0008(A0),AO
#$07,$0013(AO)
#$80,$183
StdExit

$183
(A7)+,AO
SavedNMI, - (A 7)

(A7) +,AO
SavedADB, - (A7)

_Button

branch when down

ADBBase
keyboard ?

clear key
check KeyMap

does not spring back

70 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

SavedADB DC.L
SavedNMI DC.L
PatchEnd

Install MOVE.L
ADD.W
TST.B
BEQ.S

MOVE.L
DC.W
BNE.S

MOVE.L
LEA
MOVE.L
LEA
MOVE.L
LEA
MOVE.L
DC.W
MOVE.L

@9 RTS

END

0
0

$2AE,AO
JIB,AO
(AO)

@9

ROMBase
Machine Type
Mac Plus?
yes there is no ADB, cruise

Jf(PatchEnd-PatchBeg),DO
$A51E ; _NewPtr,Sys
@9

aO,al
SavedADB,AO
$0064, (AO)
SavedNMI,AO
$007C, (AO)

save ptr

PatchBeg,AO
Jf(PatchEnd-PatchBeg),DO
$A02E BlockMove
Al,$0064

Zero- C Tool

Zero is an MPW tool written in C that quickly reinitializes floppy disks to a clean
state. The default action of this tool is to erase the disk in the internal disk drive as nor
mal. You can specify the external drive by using the -e option.

If you use the -m option, about 15 KB more space can be freed up on the disk. The
program accomplishes this by reconfiguring the size of the HFS B-trees used to catalog
the files on disk to their smallest possible size. This is useful when just a few large files
occupy the disk. However, the system occasionally hangs if 32 or more files are put on
such a disk, so be careful when u&ing this option.

Another option (-z) configures the HFS B-trees to be much larger than normal. This
greatly increases performance when hundreds of small files are to be stored on a disk. In
fact, the original motivation for creating this tool was to make it easier to back up Maple,
a symbolic math package for the Macintosh that has thousands of very small files. This
option makes writing them to disk a much faster process.

By examining this tool, you will see how to fill out a parameter block and how to
make a low-level file system call.

ZERO - THE C TOOL 71

The tool is relatively straightforward and is useful for reinitializing old disks. If a disk
has never been formatted, however, it should be erased normally once first because this
tool calls only DI Zero, not DIFormat.

Options for Zero give you the ability to change the allocation, clump, and B-tree
sizes separately using the -a, -b, and -c options, or collectively by using the -m
(maximum space) and - z (zillion files) options. By default, the disk is named
"Untitled," but you can substitute any name by supplying the name as an argument to
Zero.

Improving Zero

Here are some suggestions for improving zero:

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*/

• If you are a paranoid user, you might want to add an option that allows confir
mation when reinitializing disks that have files on them. Take into account hid
den Desktop files.

• Experiment with different file system parameters on a hard disk. This will re
quire a new option to specify drive numbers. When the user is erasing an entire
hard disk, a special confirmation alert should be put up, saying "Are you sure
you want to delete 2, 14 7 files representing years' worth of work?" to make sure
that the right disk is being zeroed.

zero.c - Zeros floppy disks
- Written by Dan Allen, 1/6/88
- Fixed Mac II bomb 2/8/88
- New options added 9/5/88
- Brought forward to MPW C 3.0 10/11/88
- Works with both 2.0 & 3.0 C compilers 1/8/89
- Cleanup 2/15/89
- Options & defaults changed; added disk options 6/10/89

Allocation size determined by: (1 + (nurnBlocks/64K)) * 512 bytes
Clump size: 4 * allocation size
B-Tree size determined by: numBlocks/64K * 512 bytes

#include <CType.h>
#include <Diskinit.h>
#include <Files.h>
#include <QuickDraw.h>
#include <StdIO.h>

72 CHAPTER TWO I THE MACINTOSH OPERATING SYSTEM

#ifdef ghs /* check for MPW C 2.0 */
#define dizero DIZero
#endif

typedef HFSDefaults

#define INTERNAL
#define EXTERNAL
#define FMTDEFAULTS

*HFSPtr;

1

2
(*((HFSPtr *) Ox39E))

static
static

HFSDefaults
ParamBlockRec

hfsVol = ('B','D',0,0,16,0}; /*std defaults*/
volPB;

static Boolean
static char
static short

progFlag;
*diskName = "Untitled";
driveNum = INTERNAL;

main(int argc,char *argv[])
(

short err;
int i;
HFSPtr oldSettings;

InitGraf(&qd.thePort);
InitCursor();

for(i = 1; i < argc; i++)
if (argv[i] [0] == '-')

switch (tolower (argv[i] [1]))
case
case
case
case

'a':
'b':
'c':
'e':

hfsVol.abSize = atoi(argv[++i]); break;
hfsVol.btClpSize = atoi(argv[++i]); break;
hfsVol.clpSize = atoi(argv[++i]); break;
driveNum = EXTERNAL; break;

case 'm': hfsVol.abSize = 512; hfsVol.clpSize = 512;
hfsVol.btClpSize = 1024; break;

case 'p':
case I z I:

progFlag = true; break;
hfsVol.abSize = 512; hfsVol.clpSize
hfsVol.btClpSize = 16384; break;

else diskName = argv[i];

/* error check for bad sizes */
hfsVol.abSize = Mult512(hfsVol.abSize);
hfsVol.clpSize = Mult512(hfsVol.clpSize);
hfsVol.btClpSize = Mult512(hfsVol.btClpSize);

2048;

if (hfsVol.clpSize < hfsVol.abSize)
hfsVol.clpSize = hfsVol.abSize;

if (hfsVol.btClpSize < 2*hfsVol.abSize)
hfsVol.btClpSize = 2*hfsVol.abSize;

if (hfsVol.btClpSize < hfsVol.clpSize)
hfsVol.btClpSize = 2*hfsVol.clpSize;

if (progFlag)

CONCLUSION 7 3

fprintf(stderr,"# abSize = %u clpSize = %u btClpSize = %u\n",
hfsVol.abSize,hfsVol.clpSize,hfsVol.btClpSize);

/* unmount and zero disk */
volPB.volumeParam.ioVRefNum = driveNum;
err= PBUnmountVol(&volPB);
if (err) fprintf(stderr,"# Unmount err: %d\n",err);

oldSettings = FMTDEFAULTS;
FMTDEFAULTS = &hfsVol;

/* save undocumented low-memory */
/* set our parameters */

err= dizero(driveNum, diskName); /*flame that disk ! */
FMTDEFAULTS = oldSettings; /* restore system defaults */
if (err) {

fprintf(stderr,"# DIZero err: %d\n",err);
return 2;

return O;

int Mult512(int arg)

int num, rmd;

num = arg I 512; rmd = arg % 512;
if (rmd) return (num+l)*512;
else return arg;

Conclusion

In this chapter, we have looked at the core of the Macintosh operating system:

• Memory Manager
• Segment Loader
• File Manager
• Device Manager
• AppleTalk

74 CHAPfER TWO I THE MACINTOSH OPERATING SYSTEM

MultiFinder changed the way processes are handled, and these changes were de
scribed. We also looked in some detail at how the Macintosh OS boot sequence works.

Three pieces of code were also presented: a desk accessory (driver) that explores the
insides of the Macintosh OS, an INIT, and an MPW tool that illustrates how to use the
File Manager.

Recommended Reading

Inside Macintosh is-as always-the reference book of choice about the Mac OS. If
you are interested in AppleTalk, try Inside AppleTalk. Apple's Tech Notes update these
volumes.

For insights into how other operating systems work, there are several excellent
UNIX-related texts. Bach's The Design of the UNIX Operating System gives some
good insight into the UNIX kernel, and Comer's Operating System Design, Volume 1:
The Xinu Approach (Macintosh Edition) actually implements a UNIX-like operating
system for the Macintosh. Comer's text includes full source code in C. Another
good book with C source code is Tanenbaum's Operating Systems: Design and
Implementation.

CHAPTER 3

QUICKDRAW

The most visible part of system software to end users is QuickDraw, the Macintosh
graphics kernel. QuickDraw was designed to be fast and efficient. QuickDraw is device
dependent-that is, it is closely coupled to the Macintosh. However, QuickDraw is not
part of the operating system. It is a separate layer built upon the operating system as a
bridge to the Toolbox. The Toolbox will be examined in chapter 4.

QuickDraw can draw many different types of objects:

• Text-in varied fonts, sizes, and styles
• Lines-includes points, which are simply lines of length 1

• Rectangles-includes squares
• Round rectangles-a rectangle whose comers have been rounded

• Ovals-includes circles
• Arcs-part of an oval; filled arcs are called wedges

• Polygons-a collection of connected lines
• Regions-a collection of lines and framed rectangles, round rectangles, and

ovals
• Pictures-a collection of any QuickDraw objects

• Pattems-8 pixel by 8 pixel bit maps
• Cursors-16 pixel by 16 pixel bit maps

• Icons-32 pixel by 32 pixel bit maps

Lines can vary in width and fill pattern. Shapes can be outlined and/or filled with pat
terns. QuickDraw also handles drawing into multiple locations on or off screen, and will
clip to arbitrary regions.

Perhaps the most distinguishing attribute of QuickDraw is its ability to manipulate
beautiful bit-mapped images quickly. This capability is due to QuickDraw's ability to
draw arbitrary regions in an efficient manner. Regions are a collection of other simpler
objects: lines and shapes (rectangles, ovals, round rectangles, wedges). The resulting
image may be a very complex collection of points, but it is through such collections of
points-such regions-that tools like MacPaint's lasso are made possible.

Virtually all drawing, whether to a screen or to an output device, goes through
QuickDraw. This means that you do not have to worry much about which monitor your
application's user has. There are many choices now: monochrome black and white,

75

76 CHAPTER THREE I QUICKDRA W

4- and 8-bit gray scale, and 4-, 8-, and 32-bit color. You do not even have to worry
if the user has more than one monitor-QuickDraw handles it all, even cutting and
pasting graphics between a 32-bit color monitor and a monochrome black-and-white
monitor, to give an example. There are exceptions to this rule, of course. To take full
advantage of color, you should use the newer Color QuickDraw calls, and to take
full advantage of the PostScript language, you need to write PostScript code.

In this chapter, we will look at QuickDraw in detail. First, we will look at classic
QuickDraw, which is available on all Macintoshes ever made. Then we will look at
Color QuickDraw, which was first implemented on the Macintosh II. We also give a
summary of the Font Manager, which is intertwined with QuickDraw to build characters
and draw text. Finally, we will look at printing and the Print Manager, which also uses
QuickDraw extensively.

The code presented in this chapter includes Mandel, a Pascal application that will let
you explore the Mandelbrot set; Graph, an MPW tool written in C that displays mathe
matical functions; and MacQ, a C application that simulates a book spinning on its axis
in three dimensions.

QuickDraw was created by Bill Atkinson. It was originally written in Pascal for the
Lisa, but eventually was reduced to about 24 KB of object code written in assembly lan
guage. QuickDraw was speeded up for the Macintosh Plus, and color was added by
Ernie Beemink and Dave Fung for the Macintosh II. Both MacPaint and HyperCard
were also written by Bill Atkinson and are excellent examples of what QuickDraw
can do.

Graphics Ports

A Graf Port (or port for short) defines a drawing environment in which drawing can
take place. A Graf Port contains quite a bit of information, and it is used so frequently
that for the sake of speed it has been made a non-relocatable object. Before your pro
gram can do anything, it must initialize QuickDraw with a call to the Ini tGraf routine.
This initializes QuickDraw's global variables. Space for these globals is handled by the
linker and libraries when you are using MPW C or MPW Pascal. A convention of the
Macintosh architecture is that register A5 always points to a pointer that points to the top
QuickDraw variable, thePort. Global variables are referenced as negative offsets from
register A5. Figure 3-1 shows what the QuickDraw portion of an A5 World looks like.

Register A5

I Ptr to thePort I

thePort
white
black
gray

ltGray
dkGray
arrow

screenBits
randSeed

Figure 3-1: The QuickDraw Portion of an AS World

BIT MAPS 7 7

After QuickDraw is initialized, a port can be opened and initialized by a call to
OpenPort. A port already open can be reinitialized through a call to Ini tPort, closed
through ClosePort, and associated with a device through GrafDevice. Creating a
window through the Window Manager also creates a port. Although multiple ports can
be open at the same time, only one port is active at a time. Most QuickDraw calls do not
specify which port to use: they always use the current port. A QuickDraw global variable
called thePort specifies the current port. Be sure to use the SetPort and GetPort
routines to change ports. A common bug in QuickDraw programs is having the port set
improperly. The symptoms of this bug include nothing being drawn or drawing being
done in the wrong location. The solution is easy: use Set Port to specify the right port.

Clipping in a port is done to the visRgn, a field maintained by the Window Manager,
and to the c 1 i p R g n, an arbitrary region at the disposal of the programmer. This
clipRgn can be saved and restored with the use of GetClip and SetClip, respec
tively. You can also set the clipRgn to a rectangle using the ClipRect call. Each of
these clipping operations changes the current port's clipping region, leaving the passed
RgnHandle untouched.

Bit Maps

A bit image is a collection of bits in memory that all occur within a rectangle. Such
images are always aligned to word boundaries and are stored in row major order. In
other words, the first bit of a bit image is in the upper left comer, and the row bytes
must be even. These bits or pixels fall between the points of the coordinate plane, so a
rectangle of m x n pixels contains (m-l)*(n-1) pixel elements. Zero bits are seen as
white; one bits are black. When you add these additional pieces of information-row
width in bytes and a boundary rectangle-to a pointer to the bit image, you have the
QuickDraw data structure known as a bit map. The bit map data structure does not ac
tually contain the image, just a pointer to the image--or, as they say in general semantics
terminology, "the map is not the territory."

78 CHAPTER THREE I QUICKDRA W

The Macintosh screen is itself a bit image. On a classic Mac, the bit image is 512 x
342 pixels in size, with a row width of 64 bytes. Such an image has 175,104 pixels that
occupy 21,888 bytes in memory. A common software compatibility problem occurs
when these values are hardcoded into a piece of software. The screen dimensions on any
Macintosh are described by the QuickDraw global variable screenBits, which is a
QuickDraw bit map. Using screenBits rather than hardcoding screen size will assure
compatibility with future Macintoshes and screens of various sizes.

Each port has an associated bit map. To associate a bit map with a port, call
SetPortBits. You might also want to use a common technique for drawing without
flicker, which uses a second port and bit map located offscreen. Drawing takes place in
the off screen buffer, and CopyBi ts is called to transfer the image to the screen.

Bit maps are manipulated by the versatile CopyBits routine. Bit maps can also be
compressed and uncompressed with PackBits and UnpackBits. The 128 KB ROM
also added a CopyMask routine, two routines that work on the bit image itself,
SeedFill and CalcMask, and a routine called GetMaskTable that returns a pointer
to a special mask table in ROM. All of these routines help with things like lassoing an
image in a painting program. · ·

Coordinate Systems

The coordinate plane used by QuickDraw is a two-dimensional grid whose coordi
nates are in the range -32,768 to 32,767 and whose gridlines are infinitely thin. At the
standard Macintosh screen resolution of 72 pixels per inch, the grid is more than 75 feet
wide and tall. Coordinates increase the same way a page of English text is read, with the
origin in the middle of the grid. The horizontal axis behaves like the standard Cartesian
plane, with negative numbers left of the origin and positive numbers to the right. The
vertical axis, however, is opposite the Cartesian plane: coordinates increase as you go
down in QuickDraw. Points occur at the intersections of gridlines, and pixels occur be
tween gridlines. A single pixel drawn at a point is therefore down and to the right of the
point.

Two different coordinate systems are used by QuickDraw-local and global
and two different rectangles keep track of the coordinates. The portRect rectangle of
a port specifies which part of the bit image will actually be drawn into, and the
portBits .bounds rectangle always encloses the entire bit image specified by the
port's bit map.

When a port is first created and initialized, its bit map refers to the whole screen, and
both the port Bits . bounds and port Re ct fields of the port enclose the entire
screen. The default origin (0,0) is at the upper left corner of the screen. Local and global
coordinates are identical when a port is first created and initialized.

All drawing and calculations in a port are done in local coordinates. If you want to use
a different local coordinate system, call SetOrigin to change the coordinates of the

GRAPHICS OPERATIONS 79

portRect rectangle. The rectangle stays at the same relative location to the bit image
and is the same size as before the call: only the numbers are changed. SetOrigin sets
the coordinates of the top left comer of the portRect. The port Bits. bounds and
visRgn fields are adjusted accordingly. PortSize and MovePortTo are two other
calls that change the coordinates, but they are normally used only by the Window
Manager.

Global coordinates for a port are always fixed with the origin (0,0) at the top left
comer of the port's bit image. To compare items in different ports, convert local coordi
nates to global coordinates via a call to LocalToGlobal, and convert them back with
Global ToLocal. ScalePt, MapPt, MapRect, MapRgn, and MapPoly help these en
tities to be manipulated across different ports and coordinate systems.

Graphics Operations

Each port has a graphics pen that is used for all drawing of objects, such as lines,
rectangles, and regions, in that port. The pen always has a location that is a point on the
QuickDraw plane, which can be set explicitly to an x,y coordinate by the MoveTo call,
relatively by the Move call, or implicitly by most other drawing calls. Lines are drawn by
the similar calls LineTo and Line. A pen's size is set by PenSize, its pattern is set by
PenPat, and its set of default attributes is set by PenNormal. Pens can be hidden and
shown with HidePen and ShowPen, and a set of attributes can be saved and restored
with GetPenState and SetPenState. The current location of the pen can be deter
mined with GetPen, and the state of an individual pixel on be tested with GetP ixel.

QuickDraw also draws text. The Font Manager prepares the actual characters to be
drawn. Each Graf Port contains fields that specify font, size, style, drawing mode, and
amount of space to draw between characters for drawing text. You can set these fields
with TextFont (by font family numbers), TextFace (bold, italic, underline, outline,
shadow, condense, and extend), Text Size (in points), TextMode (various transfer
modes), and SpaceExtra. Drawing is done with the DrawChar, Drawstring, and
DrawText routines, and information about the characters is returned by CharWidth,
StringWidth, Text Width, and GetFontinfo. MeasureText was added in the 128
KB ROM as a faster array version of Text Width, but it works only with text displayed
on the screen.

Your programs can draw many different shapes, including rectangles, rounded rect
angles, ovals, arcs, polygons, and regions. Each of these shapes can be framed (empty
interior), filled (with a specific pattern), painted (with the port's pattern), erased, and
inverted. For rectangles, use these calls: FrameRect, PaintRect, EraseRect,
InvertRect, and FillRect. The calls for other shapes are similar: for rounded rect
angles, use FrameRoundRect, etc.; for ovals, use FrameOval, etc.; for arcs,
use FrameArc, etc.; for polygons, use FramePoly, etc.; and for regions, use
FrameRgn, etc.

80 CHAPTER THREE I QUICKDRA W

QuickDraw defines three cumulative data types: polygons, regions, and pictures.
Connected lines may be grouped together to form a polygon; lines and shapes with at
least one closed loop may be grouped to form a region; and any arbitrary drawing opera
tions may be grouped to form a QuickDraw picture. Opening one of these cumulative
types is like turning on a tape recorder: all appropriate operations done until the object is
closed are recorded as the definition of the object. OpenPoly, OpenRgn, and
OpenPicture are balanced by ClosePoly, CloseRgn, and ClosePicture. Once
grouped together, a polygon or region can be drawn in various flavors (for example,
using PaintRgn, InvertPoly), and a picture can be drawn into an arbitrary rectangle
with or a wP i ct u re, thus allowing shrinking, distorting, and growing of the image.
Only one of each cumulative type can be open per port at a given time. Memory for
polygons and pictures is allocated automatically when they are opened, but memory for
regions must be allocated manually by calling NewRgn. Memory is disposed of by
KillPoly, DisposeRgn, and KillPicture. Pictures are often stored as PICT re
sources and can be retrieved by the GetPicture routine. PICTs are the means of trans
ferring graphics between applications.

QuickDraw provides many calculation routines that help when you are using these
graphical objects. You can set points using Setpt, combine them using AddPt and
SubPt, test them with EqualPt, and transform them between coordinate systems with
Local ToGlobal and Global ToLocal. To determine angles, use Pt ToAngle,
DeltaPoint, SlopeFromAngle, and AngleFromSlope. Rectangles can be set with
SetRect; transformed with OffsetRect and InsetRect; tested with SectRect,
Pt InRect, EqualRect, and EmptyRect; and combined with UnionRect and
Pt2Rect. You can translate polygons with Offsetpoly. To perform analogous oper
ations on regions, use CopyRgn, SetEmptyRgn, SetRectRgn, RectRgn,
OffsetRgn,InsetRgn,SectRgn,UnionRgn,DiffRgn,XorRgn,PtinRgn,
RectinRgn, EqualRgn, and EmptyRgn.

You can also customize QuickDraw by overriding various bottleneck procedures. To
do so, call SetStdProcs and set the procedures as desired. Individual routines may be
changed by calling StdText, StdLine, StdRect, StdRRect, StdOval, StdArc,
StdPoly,StdRgn,StdBits,StdComment,StdTxMeas,StdGetPic, and
StdPutPic.

An example of why you may need to do such customizing can be found in the way
HyperCard functions. HyperCard uses TextEdit to draw into an offscreen buffer. A
problem arises because HyperCard does not want this offscreen buffer erased as it
builds up its card and background layers. Normally TextEdit calls EraseRect before
drawing text in response to TEUpdate; this action would clear the offscreen buffer.
So it can draw its various layers properly, HyperCard takes over several of the
QuickDraw bottleneck procedures to ensure that EraseRect is not called during
TEUpdate.

QuickDraw pictures can be customized using PicComment. One use of this facility is
to put printer-specific code into print code. For example, say that you wanted to send
PostScript code directly to the LaserWriter. The following Pascal code would follow the

CURSORS 81

standard opening of a page through PrOpenPage. This fragment would draw a single
sentence of text, rotated 45 degrees. If an Image Writer was being used, the following
code would be ignored, with nothing being drawn. Each line of PostScript is sent
through DrawString calls.

MoveTo(-32767,-32767); find some location not likely to be on the page }
Line(O,O); draw minimally to allow Print Mgr to define clipRgn
PicComment(190,0,nil); turn on Postscript interpretation }
PicComment(194,0,nil); specify that Drawstring calls contain Postscript }
Drawstring('/Helvetica findfont 24 scalefont setfont'); { actual Postscript
DrawString('200 200 moveto 45 rotate (Rotated text) show'); {more Postscript
PicComment(191,0,nil); {turn off Postscript interpretation of drawn text }

Patterns

Patterns are used to draw or fill objects. They are bit images 8 bits by 8 bits square
that occupy 8 bytes of memory. The most common patterns exist as QuickDraw global
variables: white, black, gray (50-percent gray), ltGray (25-percent gray), and
dkGray (75-percent gray). Patterns can also be set by using StuffHex.

When a pattern is used as the "ink" for a graphics pen, the pen can paint using differ
ent transfer modes. Each port's graphics pen has a parameter called pnMode that speci
fies one of eight different degrees of transparency or opacity: Copy, Or, Xor, Bic (bit
clear), and their inverses using either the source or a pattern as the ink. Each port also
has two other patterns associated with it: a background pattern (usually white) set by
BackPat and a fill pattern (the default is black).

Patterns are stored as resources in two different ways. A single 8-byte pattern, as de
scribed above, is a resource of type PAT, and it can be retrieved with Getpattern. In
addition, a composite pattern resource type called PAT# contains multiple patterns. The
system file includes a pattern list (PAT# 0) that contains the 38 standard MacPaint
patterns.

Cursors

Another special QuickDraw data structure is the cursor, which is an image 16 bits by
16 bits. Actually a cursor has two such images: a mask and a data image. The mask al
lows the cursor to be black (data and mask are both one), white (mask is one, data is
zero), transparent (mask and data both zero), or inverted (data is one, mask is zero). In
addition, a point specifies where the cursor aligns with the mouse; this location is called
the hot spot. The total size of a cursor is thus 68 bytes.

82 CHAPTER THREE I QUICKDRA W

QuickDraw defines one common cursor as another global variable called arrow,
whose shape is self-explanatory. Other commonly used cursors that are found in the
System file are listed in the following table.

Cursor Resource ID in System File
ibeamCursor
crossCursor 2
plusCursor 3
watchCursor 4

InitCursor starts with a clean slate and displays the arrow cursor. You can use the
GetCursor function to retrieve a cursor and Setcursor to specify which resident cur
sor to use. The cursor can be shown and hidden with the HideCursor, ShowCursor,
ObscureCursor, and ShieldCursor calls.

The rotating cursors that are used to show a spinning beachball in the MPW Shell or
HyperCard, as well as the watch with rotating hands used in later versions of the Finder,
are made possible by the MPW tool library of routines. These routines simply make re
peated calls to Set Cursor so often that the cursors appear animated. To use these rou
tines, you will need the appropriate CursorCtl interface file, and should link with the
Tool Libs. o library. The many related cursors are stored together as an acur resource.

Icons

Icons are the next larger QuickDraw data structure: 32 bits by 32 bits square. Icons
are stored as resources in two different ways: an ICON resource is a single 128-byte
icon, whereas an ICN# resource contains several 128-byte icons. Unlike a pattern list,
an icon list does not begin with a count of the number of icons. To retrieve icons of the
ICON variety, call the routine Geticon, and to draw any icon in memory, use the
Plot Icon routine.

The icons used in the Desktop file are stored in each application's resource file as
icons of type ICN#, with two icons per ICN#. The first icon is used as the data image,
and the second icon is a mask, in a manner similar to that used for cursors.

In order for an application to have its own icon show up on the Desktop, several
conditions must be true of the application's resource fork:

• It must contain a BNDL resource: ID 128
• It must contain one or more FREF resources: ID 128, 129, 130 .. .

• It must contain one or more ICN# resources: ID 128, 129, 130 .. .

• A unique creator signature type, ID 0, must exist

• The bundle bit must be set

COLOR QUICKDRA W 8 3

These resources are most easily created using ResEdit. The bundle bit can be set with
ResEdit, Fedit, or in an MPW Shell script using the SetFile command. The first of the
FREF/ICN# pairs refers to the applications icon (an FREF of APPL), and subsequent
pairs give icons to documents owned by the application. (A text document FREF would
be TEXT, for example.) Problems with icons being lost or transferred to other programs
usually occur when the creator signature is not unique on a given volume.

Color QuickDraw

With the Macintosh II came a major revision of QuickDraw called Color QuickDraw.
Color QuickDraw supports a variety of color schemes. The simplest color scheme used
by Color QuickDraw has been in ROM on all Macs, and hence works on all Macs.
GrafPorts have always had fields for a foreground color and a background color, which
could be set by calls to ForeColor, BackColor, and ColorBit. These calls provide
a limited set of colors useful for printing, but with the advent of Color QuickDraw on a
Mac II they also reproduce 8 colors if a color monitor is present. These colors are actu
ally modeled on a planar style of color, where each color plane or layer is drawn
separately.

Color QuickDraw also supports chunky style graphics, where each pixel's color in
formation is maintained contiguously in memory. For example, 8-bit color means that
each pixel occupies a byte in memory. That byte can represent 256 different colors. A
new data type called an RGBColor is used to specify colors, with each of the red, green,
and blue components being represented by an unsigned integer. Thus 3 x 8 bits- 24
bits--of color information are represented in an RGBColor, which allows up to 16 mil
lion different colors to be specified.

Use of this new style of graphics requires a new type of port called a CGrafPort.
CGrafPorts are created in the same way as old Graf Ports, but with the OpenCPort,
Ini tCPort, and CloseCPort calls. Within these new ports are handles to blocks of
information about color; thus, a colorized BitMap becomes a P ixMap and a colorized
Pattern becomes a PixPat (stored in the System file as a ppat). These new-style
ports are the same size as the old ones, but they reinterpret the fields to allow more in
formation. Specifically, the Bi tMap area is replaced by a P ixMapHandle and a
portVersion field, and several patterns were replaced with P ixPatHandles, allow
ing RGBColor fields to be added. The new routines required to manipulate pixel maps
and pixel patterns include SetPortP ix, NewP ixMap, CopyP ixMap, DisposP ixMap,
SeedCFill,CalcCMask,NewPixPat,DisposPixPat,GetPixPat,CopyPixPat,
MakeRGBPat, PenPixPat, and BackPixPat. Many existing routines, such as
CopyBi ts, were simply extended to offer new functionality with the existing interface.

Most things therefore work the same in Color QuickDraw as in QuickDraw. The
standard drawing routines stay intact, automatically drawing in the colors set by two
new calls: RGBForeColor and RGBBackColor. These colors can also be determined

84 CHAPTER THREE I QUICKDRA W

by GetForeColor and GetBackColor. In fact, the only new color drawing opera
tions added are FillCRect, FillCOval, FillCRoundRect, FillCArc,
FillCRgn, and FillCPoly.

Individual pixels can be manipulated with GetCPixel and SetCPixel. There are
also color cursors (in the System as type crsr) and icons (in the System as type cicn).
AllocCursor,GetCCursor,SetCCursor,DisposCCursor,GetCicon,
Disposer con, and PlotCicon work as expected. You can customize Color
QuickDraw using SetStdCProcs; HiliteColor allows you to set the color of high
lighted text; OpColor sets the RGB color for a few new transfer modes, and
CharExtra supersedes SpaceExtra in a CGrafPort.

A new data structure introduced with Color QuickDraw, called a GDevice, allows
multiple monitors to be connected to a Macintosh II family machine. A GDevice record
maintains information about the size and depth of a screen. GDevices are manipulated
byNewGDevice,InitGDevice,GetGDevice,SetGDevice,GetMainDevice,
GetNextDevice, GetMaxDevice, GetDeviceList, SetDeviceAttributes,
TextDeviceAttribute, and DisposGDevice. Start-up information about screen
configurations is stored in the System as a scrn resource.

The Color Manager has the job of finding the best match from available colors for any
given RGBColor request. It does this by setting up a color table through several new
routines, including GetSubTable, GetCTSeed, ProtectEntry, ReserveEntry,
SetEntries, RestoreEntries, and SaveEntries. Inverse tables are created by
the Color Manager via Make I Table for finding approximate color matches. You can
create customized searching and complementing routines using AddSearch, AddComp,
DelSearch, Delcamp, and SetClientID. In addition, you can convert colors using
Color2Index, Index2Color, and InvertColor, and you can test them using
RealColor. Errors are reported through QDError. Color tables are stored on disk as
clut resources.

One final layer of color management has been added because of MultiFinder's re
quirements. Because there can be several applications competing for a limited number of
colors, the Palette Manager was created to mediate between desirous applications.
Programs use the Palette Manager much as they do the Color Manager. Initialization is
done by InitPalettes and allocation with NewPalette, or a palette can be retrieved
from a pltt resource by GetNewPalette. Color tables can be converted to palettes
and vice versa with CTab2Palette and Palette2CTab, and individual entries can be
changed with Get Ent r y Co 1 or, Set Ent r y Co 1 or, Get Ent r y us age, and
SetEntryUsage. Color tables can be animated by AnimateEntry and
AnimatePalette. To associate a palette with a window, use the ActivatePalette,
SetPalette, and GetPalette routines, and to specify specific palette colors, use
PmForeColor and PmBackColor. When a palette is no longer needed, discard it using
DisposePalette.

THE FONT MANAGER 8 5

The Font Manager

The Font Manager, written by Andy Hertzfeld and Donn Denman, supports
QuickDraw's needs for drawing text. Fonts can belong to a font family, which is identi
fied by a name and a number. Each individual size in which a font is available is stored
as a FONT resource, usually in the System. A font family is bundled together by a FOND

resource. Apple's fonts are shown in the following table, with PostScript fonts marked
with an asterisk. PostScript fonts are those fonts which are stored as bit maps in the
System file and as outlines in the LaserWriter ROMs.

Font Name Font Number Style
Chicago 0 (system font) Sans-serif
Application font 1 (usually Geneva)
New York 2 Serif
Geneva 3 Sans-serif
Monaco 4 Monospaced
Venice 5 Script
London 6 Old English script
Athens 7 Bold serif
San Francisco 8 Biz.arre
Toronto 9 Sans-serif
Cairo 11 Hieroglyphics
Los Angeles 12 Script
Zapf Dingbats* 13 Symbols
Bookman* 14 Serif
Palatino* 16 Serif
Zapf Chancery* 18 Script
Times* :l) Serif
Helvetica* 21 Sans-serif
Courier* 22 Typewriter
Symbol* 23 Math symbols
Mobile* 24 Hieroglyphics
Avant Garde* 33 Sans-serif
New Century Schlbk* 34 Serif

The actual number of the font used as the application font is stored both in parameter
RAM and in the low-memory global ApFont ID at $984.

Most applications do not manipulate fonts directly, letting QuickDraw do it instead.
However, you may still find many of the Font Manager calls useful. The Font Manager
ensures that the system font is loaded when InitFonts is called. RealFont checks to
see if a font of a specific size actually exists or whether scaling is needed.
SetFontLock temporarily makes the most recently used font unpurgeable, and
FMSwapFont returns a pointer to a font output record. The 128 KB ROM allows you
to obtain more information via FontMetrics; it also allows you to use fractional

86 CHAPTER THREE I QUICKDRA W

scaling or to disable scaling with SetFScaleDisable. The 256 KB ROM adds
SetFractEnable as a trap.

The Font/DA Mover can change font numbers in exceptional circumstances if two
fonts have the same ID. To prevent problems, your applications should save font names
rather than numbers. Font names and numbers can be converted back and forth with
GetFontName and GetFNum.

The Print Manager

The Macintosh operating system supports printing in a device-independent manner.
This capability was, until recently, unique to the Macintosh operating system. Almost all
printing goes through QuickDraw, so the burden of supporting a new printer is assumed
by the printer manufacturer, not (as is typical of other operating systems) by the applica
tion programmer.

The Print Manager works with the Chooser desk accessory to figure out which printer
the user wants to use. When the printer is known, the Print Manager loads the correct
device's printer driver, which installs its own set of QuickDraw bottleneck procedures.
Your application may then draw the document page by page. In most applications, the
same code is used both to display documents on the screen and to print them. This
greatly improves the chances of an application's being WYSIWYG (what you see is
what you get).

Although nearly all printing is done through QuickDraw, a few exceptions to this rule
do exist. Most commonly, an application will write PostScript code directly, instead of
letting the printer driver do the translation. This is done to take advantage of PostScript
features not available in QuickDraw, such as text rotated to an arbitrary angle. As was
pointed out above, you can write such PostScript enhancements in a compatible manner
through the use of the P icComment calls supported in later versions of the LaserWriter
driver.

Originally, print code was a large amount of glue code that needed to be linked into an
application. This print code has since been moved into the 256 KB ROMs and back
patched in System 4.1 and later to the Macintosh Plus. Now all print routines go through
a single trap called PrGlue.

To use the Print Manager, your application should begin by calling P rOpen to open
printing. Next, a valid print record needs to be obtained. This can be accomplished in
several ways. A print record may be stored with a document on disk, in which case your
application simply needs to validate the print record with PrValidate. An all-new print
record can be filled in with PrintDefault, and the Page Setup and Print dialogs can
be accessed with PrStlDialog and PrJobDialog. PrJobMerge is useful for print
ing several jobs at once, such as printing from the Finder.

Once your application has validated this print record, it can begin the actual printing.
Use PrOpenDoc to initialize a printing Graf Port and make it the current port. (This

MANDEL - PASCAL APPLICATION 8 7

port is a superset of a QuickDraw Graf Port.) To print individual pages, use a call to
PrOpenPage followed by QuickDraw calls for drawing the page in the current port, and
terminated with a call to PrClosePage. When all pages have been printed, call
.PrCloseDoc to close the printing Graf Port. The resultant document will have been
printed immediately (draft printing) or else will have been spooled to disk. In the latter
case, your application will need to call PrPicFile to actually print the spooled
document.

Man de 1 - Pascal Application

This demo program, which illustrates the use of QuickDraw, generates the
Mandelbrot set, a mathematical set of points based on a type of recursive formula called
afractal. (Fractals were discovered by Benoit Mandelbrot.) A floating-point coprocessor
greatly improves the execution time of this interactive application, and a color monitor
provides some gorgeous hues. The About Box gives some hints to using the program.

One of the main advantages of this version of Mandel, which uses an algorithm de
vised by Paul Finlayson, is that it quickly draws a rough approximation to the
Mandelbrot set, and then makes subsequent passes to further refine the image. This al
lows the viewer to see the set come into existence a lot sooner. Clicking on areas of the
displayed set will zoom in on the selected area to allow further exploration.

Improving Man de 1

Here are some suggestions for improving Mandel:

• Add better support for color. Possible enhancements include animation, se
lectable color ranges, and customizable color palettes.

• Mandel does not handle update events well. Add an off-screen bit-mapped im
age that contains all of the pixels as they are drawn. Update events could then be
handled simply by doing a Copy Bits call to copy the bits from off screen to the
main window.

88 CHAPTER THREE I QUICKDRA W

Here is the Makefile:

POptions
PLibs =

= -mbg ch8 -mc68020 -mc68881 -r
"{PLibraries)PasLib.o" a
"{PLibraries)SaneLib881.o" a
"{Libraries)Interface.o" a
"{Libraries)Runtime.o"

Mandel ff Mandel.r
Rez -a -o Mandel Mandel.r -c maxb

Mandel ff Mandel.p.o {PLibs)
Link -o Mandel -sg Main Mandel.p.o {PLibs)

Mandel ff {Worksheet)
Setfile -a B -t APPL -c maxb -d . -m . Mandel
Mandel

and here is the MPW Pascal code:

PROGRAM Mandel;

USES
Memtypes,Quickdraw,OSintf,Toolintf,SANE;

TYPE
WordPtr A Integer;

CONST
CPU $12E;
ROM85 $28E;

appleID 128;
file ID 129;
edit ID 130;
xID 131;
yID 132;
res ID 133;

VAR
colorQD:
quitFlag:
linearFlag:

Boolean;
Boolean;
Boolean;

custPict:
numColors:
limit:

res:

Integer;
Integer;
Integer;

Extended;
centx, centy: Extended;
xmin,xmax:
ymin,ymax:
delx,dely:

Extended;
Extended;
Extended;

str:
f:

aColor:
myRect:
dragRect:

myWindow:
aboutWindow:
appleMenu:
fileMenu:
editMenu:
xMenu:
yMenu:
resMenu:

Str255;
DecForm;

RGBColor;
Rect;
Rect;

WindowPtr;
WindowPtr;
MenuHandle;
MenuHandle;
MenuHandle;
MenuHandle;
MenuHandle;
MenuHandle;

PROCEDURE AboutDialog; FORWARD;

MANDEL - PASCAL APPLICATION 89

FUNCTION CalcMandel(creal,cimag: Extended) : Integer; FORWARD;
FUNCTION DoMenu(mResult: Longint) : Boolean; FORWARD;
PROCEDURE DrawMandel; FORWARD;
FUNCTION EventCheck : Boolean; FORWARD;
PROCEDURE InitWorld; FORWARD;
PROCEDURE UpdateMenus; FORWARD;

PROCEDURE AboutDialog;
VAR

oldPort: GrafPtr;
tempRect: Rect;

BEGIN
GetPort(oldPort);
SetRect(tempRect,30,60,482,292);
aboutWindow := NewWindow(nil, tempRect, '',TRUE, dBoxProc,

WindowPtr(-1),TRUE,0);
SetPort(aboutWindow);

ForeColor(redColor);
TextFont(times); TextSize(36);
MoveTo(8,30);
DrawString('Mandel by Dan Allen');

I

TextFont(courier); ForeColor(blueColor); TextSize(lO);
MoveTo(8,50);
DrawString('Version
MoveTo(8,65);
DrawString('Fractals
MoveTo(8,80);
DrawString('Software
MoveTo(8,95);
DrawString('Hardware

- 1.0 Bl, built January 6, 1989 with MPW Pascal.');

- Discovered by Benoit Mandelbrot.');

- Classic black & white or Color QuickDraw. ');

- Use a MC68881/2 for a serious speedup.');

90 CHAPTER THREE I QUICKDRA W

MoveTo(8,115);
DrawString('Click
MoveTo(8,127};

- Zooms in by a factor of two.'};

DrawString('Option Click - Zooms out by a factor of two.'};
MoveTo(8,139};
DrawString('Cmd Click
MoveTo(8,151);
DrawString('Shift Click
MoveTo(8,163);

- Cycles through 6 classic locations.'};

- Moves center but not magnification.'};

DrawString('Cmd Opt Click - Resets to standard Mandel view.'};
MoveTo(8,175);
DrawString('MenuBar
MoveTo(8,187);
DrawString('Limits
MoveTo(8,199);
DrawString('Mod Colors
MoveTo (8, 211);

- Shows coordinates of current screen center.');

- Number of loops to determine a pixel's color.');

- Repeats colors Modulo the colors available.');

DrawString('Linear Colors - Progression through the available colors.'};

REPEAT SystemTask UNTIL Button; { display until the user clicks mouse btn
DisposeWindow(aboutWindow);
SetPort(oldPort};
FlushEvents(mUpMask+mDownMask+activMask,0);

END;

FUNCTION CalcMandel(creal,cimag: Extended): Integer;
{ compute the actual value of the Mandelbrot set given a point }
VAR

count:
zr2,zi2:

Integer;
Extended;

zreal,zimag: Extended;
zreal2,zreall: Extended;

BEGIN
zreal := creal; zimag := cimag; count := 0;
zreall := 100; zreal2 := 200;
REPEAT

count := count + l;
zr2 := zreal*zreal; zi2 := zimag*zimag;
zimag := 2*zreal*zimag + cimag;
zreal := zr2 - zi2 + creal;
IF zreal = zreal2 THEN count := 0;
zreal2 := zreall; zreall := zreal;

UNTIL (count = 0) (count = limit)
CalcMandel := count;

END;

((zr2+zi2) >4.0);

FUNCTION DoMenu(mResult: Longint)
LABEL 9;
VAR

theitem: Integer;
theMenu: Integer;
temp: Integer;

BEGIN
DoMenu ·= TRUE;

MANDEL - PASCAL APPLICATION 91

Boolean;

theMenu := HiWord(mResult); theitem LoWord(mResult);
CASE theMenu of

appleID:
IF (theitem

AboutDialog
ELSE BEGIN

1) THEN

Getitem(appleMenu, theitem, str);
temp:= OpenDeskAcc(str);
SetPort(myWindow);

END; {of appleID)
file ID:

CASE theitem of
1: BEGIN

limit ·= 64;
Checkitem(fileMenu,
Checkitem(fileMenu,
Checkitem(fileMenu,

END;
2: BEGIN

limit 256;
Checkitem(fileMenu,
Checkitem(fileMenu,
Checkitem(fileMenu,

END;
3: BEGIN

limit ·= 1024;
Checkitem(fileMenu,
Checkitem(fileMenu,
Checkitem(fileMenu,

END;
5: BEGIN

linearFlag := FALSE;
Checkitem(fileMenu,
Checkitem(fileMenu,

END;
6: BEGIN

linearFlag := TRUE;
Checkitem(fileMenu,
Checkitem(fileMenu,

END;

1, TRUE);

2' FALSE);
3, FALSE);

2, TRUE);
1, FALSE);
3, FALSE);

3, TRUE);
1, FALSE);
2, FALSE);

5, TRUE);
6, FALSE);

5, FALSE);
6, TRUE);

92 CHAPTER THREE I QUICKDRA W

8: quitFlag := TRUE;
END; { item CASE }

editID:
temp:= Integer{SystemEdit(theitem - l));

OTHERWISE
DoMenu := FALSE;

END; {of menu CASE}
9:

HiliteMenu(O);
END; {of DoMenu}

PROCEDURE DrawMandel;
LABEL 9;
VAR

i,n,nx,ny: Integer;
xres,yres: Integer;
x,y,del: Extended;
aRect: Rect;

BEGIN
xres := myRect.right;
xmin := centx - res;
ymin := centy - res;

yres .- myRect.bottom;
xmax := centx + res;
ymax centy + res;

delx := (xmax-xmin)/{xres+l); dely := (ymax-ymin)/{yres+l);
IF delx > dely THEN dely := delx ELSE delx := dely;
i := xres;

WHILE i > 0 DO
BEGIN

i :=bsr(i,l);
del := delx*i;
y := ymax; ny := O;

WHILE ny < (yres-i) DO
BEGIN

x := xmin; nx := 0;

9:

MANDEL - PASCAL APPLICATION 93

WHILE nx < (xres-i) DO
BEGIN

n := CalcMandel(x,y);
SetRect(aRect,nx,ny,nx+i,ny+i);
IF colorQD & (numColors > 2) THEN { Color QuickDraw }

BEGIN
IF linearFlag THEN

BEGIN
IF (n = 0) I (n >= limit)
THEN n := numColors-1
ELSE n := n * numColors DIV limit;

END
ELSE

BEGIN
IF (n = 0) I (n >= limit)
THEN·n := numColors-1
ELSE n := n MOD numColors;

END;
Index2Color(n,aColor); RGBForeColor(aColor);
FillRect(aRect,black);

END
ELSE { or patterns for those with black and white)

BEGIN
IF (n = 0) I (n >= 256) THEN

FillRect(aRect,black)
ELSE IF n > 50 THEN

FillRect(aRect,dkgray)
ELSE IF n > 10 THEN

FillRect(aRect,gray)
ELSE IF n > 2 THEN

FillRect(aRect,ltgray)
ELSE

FillRect(aRect,white);
END;

IF EventCheck THEN GOTO 9;
IF quitFlag THEN GOTO 9;
nx := nx + i; x := x + del;

END; (* nx loop *)

ny := ny + i; y := y - del;
END; (* ny loop *)

END; (* WHILE loop *)
WHILE NOT quitFlag AND EventCheck DO

END; { proc DrawMandel }

94 CHAPTER THREE I QUICKDRA W

FUNCTION EventCheck
LABEL 9;

Boolean; { Mandel's main event locp }

VAR
zin, zOut:
theChar:
myPart:
windSize:
myEvent:
whichWindow:

Boolean; { zoom in, zoom out }
Char;
Integer;
Longint;
EventRecord;
WindowPtr;

BEGIN
EventCheck := TRUE;
IF GetNextEvent{everyEvent,myEvent) THEN

CASE myEvent.what OF

keyDown, autoKey:
IF myWindow = FrontWindow THEN

BEGIN
theChar := CHR(Band(myEvent.message, charCodeMask));
IF Band(myEvent.modifiers, cmdKey) <> 0 THEN

IF DoMenu(MenuKey(theChar)) THEN GOTO 9;
END; {of keyDown and autoKey)

mouseDown:
BEGIN

myPart := FindWindow(myEvent.where, whichWindow);
CASE myPart OF

inMenuBar:
IF DoMenu(MenuSelect(myEvent.where)) THEN GOTO 9;

inSysWindow:
BEGIN

SystemClick(myEvent, whichWindow);
IF colorQD THEN numColors := bsl(l,

CGrafPtr(myWindow)A.portPixMapAA.pixelSize);
GOTO 9;

END;
inContent:

BEGIN
IF whichWindow <> FrontWindow THEN

SelectWindow(whichWindow)
ELSE IF whichWindow = myWindow THEN

BEGIN
zin := Band(myEvent.modifiers, cmdKey) <> O;
zOut := Band(myEvent.modifiers, optionKey) <> O;
IF zOut AND NOT zin THEN

BEGIN { optionKey = zoom out }
res := res*2;
GOTO 9;

END;

MANDEL - PASCAL APPLICATION 95

IF zin AND NOT zOut THEN
BEGIN { cmdKey = set to nifty zoomed area }

CASE custPict OF
1: BEGIN

centx
END;

2: BEGIN
centx

END;
3: BEGIN

centx
res :=

END;
4: BEGIN

:= -0.55;

:= -0.92;

:= -1.253;
0.001;

centy := 0. 6; res

centy 0. 26; res

centy 0. 046;

centx := -1.25316; centy := 0.0465;
res := 0.0005;

END;
5: BEGIN

centx := -0.747; centy := 0.106;
res ·= 0.001;

END;
6: BEGIN

centx := -0.74543; centy := 0.11301;
res ·= 0.00001;

END;
END;
custPict := custPict MOD 6 + l; GOTO 9;

END;
IF zin and zOut THEN

BEGIN { option cmd = reset to std view
centx := -0.8; centy := 0.0; res := 1.0;
GOTO 9;

END;
IF Band(myEvent.modifiers, shiftKey) 0
THEN res := res*0.5;

0 .1;

0.03;

GlobalToLocal(myEvent.where); { click
centx := xmin + delx * myEvent.where.h;
centy := ymax - delx * myEvent.where.v;
GOTO 9;

zoom in

END;
END; {of inContent}

inDrag:
DragWindow(whichWindow, myEvent.where, dragRect);

96 CHAPTER THREE I QUICKDRA W

9:

inGrow:
BEGIN

windSize := GrowWindow(whichWindow, myEvent.where,
dragRect);

SizeWindow(whichWindow, LoWord(windSize), HiWord(windSize),
TRUE);

myRect := myWindowA.portRect;
ClipRect(myRect);
FillRect(myRect,white);
GOTO 9;

END;
inGoAway:

IF TrackGoAway(whichWindow,myEvent.where) THEN Halt;
inZoomin .. inZoomOut:

IF TrackBox(whichWindow, myEvent.where, myPart) THEN
BEGIN

ZoomWindow(whichWindow, myPart, FALSE);
myRect := myWindowA.portRect;
ClipRect(myRect);
FillRect(myRect,white);
GOTO 9;

END;
OTHERWISE

END;
END; {of mouseDown}

activateEvt,app4Evt:
BEGIN

IF colorQD THEN numColors := bsl(l,
CGrafPtr(myWindow)A.portPixMapAA.pixelSize);

GOTO 9;
END;

END; { of event CASE
EventCheck := FALSE;

END; { EventCheck

PROCEDURE InitWorld;
BEGIN

MaxApplZone;
InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEinit;
InitDialogs(nil);

str[O] := CHR(l); str[l] := CHR(20);
appleMenu := NewMenu(appleID, str);
AppendMenu (appleMenu, 'About Mande 1 ... ; (- ') ;
AddResMenu(appleMenu, 'DRVR');
InsertMenu(appleMenu, 0);
fileMenu := NewMenu(fileID, 'Mandel');

MANDEL - PASCAL APPLICATION 97

AppendMenu(fileMenu, 'Limit = 64/l;Limit = 256/2;Limit = 1024/3; (-; ');
AppendMenu(fileMenu, 'Mod Colors/M;Linear Colors/L; (-;Quit/Q');
InsertMenu(fileMenu, 0);

editMenu := NewMenu(editID, 'Edit');
AppendMenu(editMenu, 'Undo/Z; (-;Cut/X;Copy/C;Paste/V');
InsertMenu(editMenu, 0);

DrawMenuBar; InitCursor;

SetRect(dragRect,-32768,-32768,32767,32767);
myRect := ScreenBits.bounds;
WITH myRect DO

BEGIN
top := top + 45; bottom := bottom - 10;
left := left + 10; right := right - 10;

END;

colorQD := Band(WordPtr(ROM85)A,$C000) 0;
IF colorQD THEN

BEGIN
numColors := bsl(l,CGrafPtr(myWindow)A.portPixMapAA.pixelSize);
myWindow := NewCWindow(nil,myRect, 'Mandel',TRUE,zoomDocProc,

WindowPtr(-1),TRUE,0);
END

ELSE
myWindow .- NewWindow(nil,myRect, 'Mandel',TRUE,zoomDocProc,

WindowPtr(-1),TRUE,0);

SetPort(myWindow);
FlushEvents(everyEvent,0);

(* Mandel default position *)
centx := -0.8; centy := 0.0; res := 1.0;
limit := 256; Checkitem(fileMenu, 2, TRUE);
linearFlag :=FALSE; Checkitem(fileMenu, 5, TRUE);
custPict := 1; f.digits 5;
quitFlag := FALSE;

END;

98 CHAPTER THREE I QUICKDRA W

PROCEDURE UpdateMenus;
BEGIN

{ in a somewhat non-standard use of the menu bar, we will display I
{ the current location and magnification in the titles of 3 menus I
{ in order to change the text of a menu name, we must create a menu
{from scratch, so first let's delete the old menus ...

DeleteMenu(xID); DeleteMenu(yID); DeleteMenu(resID);
DisposeMenu(xMenu); DisposeMenu{yMenu); DisposeMenu(resMenu);

f.style := FixedDecimal;
Num2Str(f,centx,decStr(str));
xMenu := NewMenu(xID,Concat('x
Num2Str(f,centy,decStr(str));
yMenu := NewMenu(yID,Concat('y

f.style := FloatDecimal;
Num2Str(f,res,decStr{str));

•, str));

•, str));

resMenu := NewMenu(resID,Concat('res = ',str));

InsertMenu(xMenu, 0); InsertMenu(yMenu, 0); InsertMenu(resMenu, 0);
DrawMenuBar;

END;

BEGIN { Main I
InitWorld;
WHILE NOT quitFlag DO

BEGIN
UpdateMenus;
DrawMandel;

END;
DisposeWindow(myWindow);
ExitToShell;

END.

MANDEL - PASCAL APPLICATION 99

Mandel.r-Rez Source Code for Resources

/* Mandel.r - By Dan Allen */

#include "Types.r";

type 'maxb' { pstring; };

resource 'maxb' (0) {
"Mandel 1.0 Bl by Dan Allen\n";

};

resource 'SIZE' (-1) {
dontSaveScreen,
acceptSuspendResumeEvents,
enableOptionSwitch,
canBackground,
multiFinderAware,
backgroundAndForeground,
dontGetFrontClicks,
ignoreChildDiedEvents,
not32BitCompatible,
reserved,reserved,reserved,reserved,reserved,reserved,reserved,
64*1024,
32*1024

};

resource 'FREF' (128) 'APPL', 0, "" };

resource 'BNDL' (128)
'maxb', 0, { 'ICNI', { 0, 128 }; 'FREF', { O, 128 } }

};

resource 'ICNI' (128, purgeable)
/* array: 2 elements */
/* [1] *!
$"0000 0000 07FF FFEO 0800 0010 0800 0010 08FF FFlO 0900 0090"
$"0924 4890 096A D490 092A 5490 092A 5490 0924 4890 0912 2490"
$"0935 6A90 0915 2A90 0915 2A90 0912 2490 0900 0090 08FF FFlO"
$"0800 0010 0800 0010 0800 0010 0800 0010 0800 FFlO 0800 0010"
$"0800 0010 0800 0010 0800 0010 07FF FFEO 0400 0020 0400 0020"
$"0400 0020 07FF FFEO",
/* [2] */
$"0000 0000 07FF FFEO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO"
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO"
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO"
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO OFFF FFFO"
$"0FFF FFFO OFFF FFFO OFFF FFFO 07FF FFEO 07FF FFEO 07FF FFEO"
$"07FF FFEO 07FF FFEO"

};

100 CHAPTER THREE I QUICKDRA W

resource 'clut' (4, "OKA 4 Bit") {
Ox4, $8000,
{ /* array ColorSpec: 16 elements */

0, 65535, 65535, 65535, /* White */
1, 49151, 49151, 49151, /* Lt Grey */
2, 32767, 32767, 32767, /* Med Grey */
3, 65535, 0, 0, /* Red */
4, 0, 65535, 0, /* Green */
5, 0, 0, 65535, /* Blue */
6, 65535, 65535, 0, /* Yellow */
7, 65535, 0, 65535, /* Violet */
8, 0, 65535, 65535, /* Cyan */
9, 0, 65535, 32767, /* Mint */
10, 0, 32767, 65535, /* Sky Blue *I
11, 65535, 32767, 0, /* Orange */
12, 65535, 0, 32767, /* Magenta */
13, 32767, 65535, 0, /* Light Green
14, 32767, 0, 65535, /* Purple */
15, 0, 0, 0, /* Black */

} ;

Graph - C Tool

*/

Many people have complained that MPW cannot create graphical tools. It is not that it
cannot be done; it is just that the methods for doing it have never been well documented.
The tools that may be created must be modal in behavior, however, as the MPW Shell
does not know what to do with a window it does not "own." Note that being modal does
not mean that the window has to be a modal dialog; the window used in the following
tool is created by calling NewWindow, and our tool provides its own modal behavior by
simply not allowing certain things in its main event loop. During this time the MPW
Shell is relatively dormant.

This tool uses basic QuickDraw calls to display various mathematical functions.
Various functions are listed in a menu that this tool adds to the menu bar. Figure 3-2
shows a combined plot of the sine, cosine, tangent, and natural log functions as shown
inside MPW.

Creating a graphical MPW tool is similar to creating a regular application, except that
you should not initialize the Window or Menu Managers. The event processing used in
this tool is simple: the tool takes all events but responds only to mouse- down events. If
the mouse is clicked in the menu bar, the tool checks to see if the tool's special menu has
been selected; if so, the tool draws a plot. Any other mouse clicks terminate the main
event loop.

GRAPH - C TOOL 101

Figure 3-2: The Sine, Cosine, Tangent, and Natural Log Functions as Shown
Inside MPW

Improving Graph

Here are some suggestions for improving Graph:

/*

• If your Mac has a floating-point coprocessor, build a version of Graph with the
-me 6 8 8 81 option. Measure the tremendous performance increase.

• This tool plots only a fixed number of functions. Write an arbitrary expression
evaluator that allows any function to be plotted.

• How would you expand the plotting area in the most Mac-like fashion?
Certainly one option would be a dialog box in which coordinates could be en
tered, but that would not be too good for general exploring. How could clicking
with the mouse greatly speed up exploring the coordinate plane?

• Extend the tool to plot complex functions with conformal mapping of contours
shown in different colors. Does your tool still run on any Mac?

* Graph.c - Plots a function
* - Written by Dan Allen 11/22/88
* - Works with MPW 2.0 & 3.0 1/10/89

*
*/

#include <Math.h>
#include <QuickDraw.h>
#include <Events.h>
#include <Windows.h>
#include <Menus.h>
#include <OSEvents.h>

102 CHAPTER THREE I QUICKDRA W

#define PI 3.14159265358979323
#define MENUID 1000

hf def ghs /* check for MPW c
#define NewMenu NEWMENU
#define AppendMenu APPENDMENU
#define Drawstring DRAWSTRING
#define FindWindow FINDWINDOW
#define MenuSelect MENU SELECT
fondif

short
WindowPtr

halfX,halfY;
wind;

EventRecord event;
MenuHandle menu;

main()
{

long menuCmd;
WindowPtr whichWind;

2.0 */

InitWorld(); /*includes adding our own menu to the menu bar*/
while (1) {

if (GetNextEvent(everyEvent,&event))
if (event.what mouseUp)

break;
if (event.what mouseDown)

if (FindWindow(event.where,&whichWind)
menuCmd = MenuSelect(event.where);
if (menuCmd >> 16 == MENUID)

switch (menuCmd & OxFFFF) {
case 1: NewPlot(); break;
case 3: FSin(); break;
case 4:
case 5:
case 7:
case 8:
case 9:
case 11:
case 12:
case 13:
case 15:
case 16:
case 17:

HiliteMenu(O);

DisposeWorld();
return O;

FCos (); break;
FTan (); break;
FAsin(); break;
FAcos (); break;
FAtan(); break;
FSinh (); break;
FCosh(); break;
FTanh(); break;
FLog (); break;
FLn (); break;
FExp (); break;

inMenuBar) {

FSin()
{

short i;
extended y;

MoveTo(-halfX,0);
for(i = -halfX; i < halfX; i++) {

GRAPH - C TOOL 103

y = sin((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FCos ()
{

short i;
extended y;

MoveTo(-halfX,-halfY);
for(i = -halfX; i < halfX; i++) {

y = cos((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FTan ()
{

short i;
extended y;

MoveTo(-halfX,0);
for(i = -halfX; i < halfX; i++) {

y = tan((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FAsin()
{

short i;
extended y;

MoveTo(-halfX,0);
for(i = -halfX; i < halfX; i++) {

y = asin((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

104 CHAPTER THREE I QUICKDRA W

FAcos ()

I
short i;
extended y;

MoveTo(-halfX,0);
for (i = -halfX; i < halfX; i++) {

y = acos((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FAtan()
{

short i;
extended y;
MoveTo(-halfX,halfY);
for(i = -halfX; i < halfX; i++) {

y = atan((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FSin{l ()
{

short i;
extended y;

MoveTo(-halfX,0);
for(i = -halfX; i < halfX; i++) {

y = sinh((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FCosh ()

I
short i;
extended y;

MoveTo(-halfX,0);
for(i = -halfX; i < halfX; i++) {

y = cosh((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FTanh ()
{

short i;
extended y;

MoveTo(-halfX,halfY);
for(i = -halfX; i < halfX; i++) {

GRAPH - C TOOL 105

y = tanh((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FLog()
{

short i;
extended y;

MoveTo(O,halfY);
for (i = 0; i < halfX; i++) (

y = logl0((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FLn()
{

short i;
extended y;

MoveTo(O,halfY);
for (i = O; i < halfX; i++) {

y = log((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

FExp ()
{

short i;
extended y;

MoveTo(-halfX,0);
for(i = -halfX; i < halfX; i++) (

y = exp((i*2*PI)/halfX)*halfY; /* parens needed for proper eval order*/
LineTo(i,-y);

106 CHAPTER THREE I QUICKDRA W

NewPlot ()
{

EraseRect(&wind->portRect);
PenPat(qd.ltGray);
MoveTo(-halfX,0); LineTo(halfX,0); /*X-axis*/
MoveTo(O,-halfY); LineTo(O,halfY); /*Y-axis*/
PenPat(qd.black);
TextSize(9);
MoveTo(3,12); DrawString("\p(0,0)");
MoveTo(halfX-10,12); DrawString("\p6");
MoveTo(-halfX+2,12); DrawString("\p-6");
MoveTo(3,-halfY+12); DrawString("\pl");
MoveTo(3,halfY); DrawString("\p-1");

In,itWorld ()
{

Rect r;

InitGraf(&qd.thePort);
r = qd.screenBits.bounds;
InsetRect(&r,20,40);
wind = NewWindow (nil, &r, "",true, dBoxProc, (WindowPtr) -1, false, 0);
SetPort(wind);
r = wind->portRect;
halfX = (r.right - r.left)/2;
halfY = (r.bottom - r.top)/2;
SetOrigin(-halfX,-halfY); /* sets coordinates of upper left corner */

menu= NewMenu(MENUID,"\pFunction");
AppendMenu(menu,"\pNew Plot; (-;Sin x;Cos x;Tan x; (-;ASin x;ACos x;ATan x;");
AppendMenu(menu, "\p(-;Sinh x;Cosh x;Tanh x; (-;Log x;Ln x;Exp x");

InsertMenu(menu,0);
DrawMenuBar();
FlushEvents(everyEvent,0);
NewPlot () ;
InitCursor();

DisposeWorld ()
{

DeleteMenu(MENUID);
DisposeMenu(menu);
DrawMenuBar();
DisposeWindow(wind);
FlushEvents(everyEvent,0);

MACQ - C APPLICATION 1 0 7

MacQ - C Application

This stand-alone application is an example of the complex subject known as simula
tion. The mathematics and physics in this application are relatively complicated for the
uninitiated, but it is a good example of putting a Macintosh interface onto some other
wise straight computational code. The first half of the application is the Mac interface
portion that handles events, windows, and menus. Paul Finlayson did the dynamics and
numerical analysis contained in the latter half of the application.

MacQ simulates the rigid-body dynamics of a book tumbling in space. The program
optionally allows the user to specify a constant torque about one of the three principle
axes. The simulation requires the simultaneous numerical integration of a set of seven
first order differential equations. This program offers two different integrators: a simple
Euler integrator for speed and a fourth-order Runge-Kutta integrator for accuracy.

MacQ is short for Mac Quaternion. A quaternion is a blend between a complex num
ber and a vector; the concept was created by the father of modern vector analysis,
William Hamilton. Some people have called quaternions "musty mathematics" because
they were discovered in the mid-1800s and then forgotten, but they are experiencing a
renaissance because they are an efficient technique for modeling rigid body kinematics.
Part of the efficiency is obtained because the technique requires no trigonometric func
tions, but the real win for numerical integration results from the absence of singularities.
Quaternion algebra is thus useful in many spacecraft dynamics applications, for exam
ple. Quaternions are sometimes called Euler's symmetric parameters.

Here is the Makefile:

COptions

CLibs =

= -mbg ch8 -mc68020 -mc68881 -elems881

"{CLibraries)CLib881.o" a
"{CLibraries)Math881.o" a
"{CLibraries)CSANELib881.o" a
"{CLibraries)Cinterface.o" a
"{CLibraries)StdCLib.o" a
"{CLibraries)CRuntime.o"

MacQ ff MacQ.r
Rez -a -o MacQ MacQ.r -c PFDA

MacQ ff MacQ.c.o
Link -w -o MacQ MacQ.c.o {CLibs} {Libs)

MacQ ff {Worksheet}
Setfile -a B -c PFDA -t APPL -d . -m . MacQ
MacQ

108 CHAPTER THREE I QUICKDRAW

and here is the MPW C code:

/* Quaternion Rotation Program
* Quaternion Algebra & Numerical Analysis by Dr. Paul Finlayson
* Macintosh User Interface by Dan Allen

*
* Written originally on 6/13/1986 in Victorville, CA
* Ported from LightSpeedC to MPW C on 10/9/1986 in Cupertino, CA
* A few tweaks done on Tue, Apr 21, 1987 4:54:53 PM
* MPW 3.0 port and about box work on 1/14/89
*/

#include <Types.h>
#include <Memory.h>
#include <Resources.h>
#include <Quickdraw.h>
#include <Fonts.h>
#include <Events.h>
#include <Windows.h>
#include <Controls.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <Scrap.h>
#include <Desk.h>
#include <ToolUtils.h>
#include <SegLoad.h>

#include <Math.h>

/* Mac Application Globals & Initialization Routines */
define apple ID 128
define run ID 129
define Go 1
define Stop 2
define Quit 3
define axis ID 130
define torque ID 131
define integID 132
define LAST ID integID

define HIWORD(aLong) (((aLong) >> 16) & OxFFFF)
define LOWORD(aLong) ((aLong) & OxFFFF)
define PEEK (address) *((char*) address)

MACQ - C APPLICATION

static Boolean
static short
static PicHandle
static WindowPtr
static MenuHandle
static Rect

done= false,restart = true,hangout = false;
curAxis = 2,curTorque = O,curinteg = l,xlimit,ylimit;
picl;
myWindow,whichWindow;
myMenus[6];
myRect;

static EventRecord myEvent;
static void InitWorld()

short i;

MaxApplZone();
InitGraf(&qd.thePort);
InitFonts ();
InitWindows();
InitMenus ();
TEinit ();
InitDialogs(nil);

if (PEEK(Oxl2F)) curinteg
else curinteg = l;

myRect = qd.screenBits.bounds;
InsetRect(&myRect,10,10);
myRect.top += 40;

2; /* default to Runge on 68020 */
/* default to Euler on 68000 */

myWindow = NewWindow(nil,&myRect,"\pQuaternion Rotation Demo",true,
noGrowDocProc, (WindowPtr) -1,false,0);

SetPort(myWindow);
my Re ct
xlimit
ylimit

qd.screenBits.bounds;
myRect.bottom -= 40;
myRect.right -= 40;

myMenus[appleID] = NewMenu(appleID,"\p\024");
AppendMenu (myMenus [apple ID], "\pAbout MacQuaternion ... ; (-; ");
AddResMenu(myMenus[appleID], 'DRVR');

myMenus[runID] = NewMenu(runID,"\pRun");
AppendMenu(myMenus[runID],"\pGo/G;Stop/S;Quit/Q");

myMenus[axisID] = NewMenu(axisID,"\pVelocity");
AppendMenu(myMenus[axisID],"\pX Axis;Y Axis;Z Axis");

myMenus[torqueID] = NewMenu(torqueID,"\pTorque");
AppendMenu(myMenus[torqueID],"\pX Axis;Y Axis;Z Axis");

myMenus[integID] = NewMenu(integID,"\pintegrator");
AppendMenu(myMenus[integID],"\pEuler/E;Runge/R");

for (i = 128; i <= LASTID; i++) InsertMenu(myMenus[i],0);
DrawMenuBar();
InitCursor ();

109

110 CHAPTER THREE I QUICKDRA W

static void AboutDialog()

long i;
Graf Ptr oldport;
WindowPtr tempWind;
Re ct tempRect;
Handle str;

GetPort(&oldport);
SetRect(&tempRect,30,60,482,292);
tempWind = NewWindow (0, &tempRect, "",true, dBoxProc, (WindowPtr) -1, false, 0);
SetPort(tempWind);

TextFont(times); TextSize(24);
MoveTo(l9,30);
DrawString("\pMacQuaternion 1.0 Bl");

TextFont(geneva); TextSize(9);
for(i = 0; i < 3; i++) {

MoveTo(21,i*l2+51);
switch (i) {

case 0: DrawString("\pMacintosh Interface by Dan Allen"); break;
case 1: DrawString("\pNumerical Analysis by Paul Finlayson"); break;
case 2: DrawString("\pQuaternions by William Hamilton"); break;

MoveTo(230,i*l2+51);
switch (i) {

case 0: DrawString("\pJanuary 14, 1989"); break;
case 1: DrawString("\pJune 13, 1986"); break;
case 2: DrawString("\pOctober 16, 1843"); break;

SetRect(&tempRect,20,83,442,170);
str = GetResource('CSTR',128);
HLock (str);
i = SizeResource(str) - l;
TextBox(*str,i,&tempRect,0);
HUnlock(str);

for(i = 0; i < 4; i++)
MoveTo(21,i*l5+175);
switch (i) {

case 0: DrawString("\pREFERENCE"); break;
case 1: DrawString("\p§41: Spinors"); break;
case 2: DrawString("\p§B.6, p. 232"); break;
case 3: DrawString("\pp. 511"); break;

MoveTo(llO,i*l5+175);
switch (i) {

case 0: DrawString("\pAUTHOR(s)"); break;

MACQ - C APPLICATION 111

case 1: DrawString("\pMisner, Thorne, Wheeler"); break;
case 2: DrawString("\pGrant Fowler"); break;
case 3: DrawString("\pJames R. Wertz"); break;

MoveTo(230,i*l5+175);
switch (i) {

case 0: DrawString("\pTITLE"); break;
case 1: DrawString("\p"Gravitation""); break;
case 2: DrawString("\p"Analytical Mechanics, 3rd edition""); break;
case 3·: DrawString("\p"Spacecraft Attitude Determination and Control"");

break;

while (!Button()) SystemTask();
DisposeWindow(tempWind);
SetPort(oldport);

static void DoCommand(long mResult)

short theitem,temp;
char name[255];

theitem = LOWORD(mResult);
switch (HIWORD(mResult)) {

case appleID:
if (theitem == 1) AboutDialog();
else {

Getitem(myMenus[appleID],theitem,name);
temp= OpenDeskAcc(name);
SetPort(myWindow);

break;

112 CHAPTER THREE I QUICKDRA W

case runID:
switch (theitem)

case Go:
restart = true; hangout

case Stop:
hangout = true; break;

case Quit:
done = true; break;

break;
case axisID:

false; break;

if (curAxis == theitem) curAxis 0;
else curAxis = theitem;
restart = true; break;

case torqueID:
if (curTorque == theitem) curTorque 0;
else curTorque = theitem;
restart = true; break;

case integID:
curinteg = theitem;
restart = true; break;

HiliteMenu(O);

static void SetUpMenus()

short i;

Checkitem(myMenus[runID],Go, !hangout);
Checkitem(myMenus[runID],Stop,hangout);

for (i=l; i<=3; i++) {
Checkitem(myMenus[axisID],i, (curAxis == i));
Checkitem(myMenus[torqueID],i, (curTorque == i));

Checkitem(myMenus[integID],1,curinteg 1);
Checkitem(myMenus[integID],2,curinteg 2);

MACQ - C APPLICATION

static void MainEventLoop()
{

static Rect dragRect = {-32767,-32767,32767,32767);

switch (myEvent.what) {
case mouseDown:

switch (FindWindow(myEvent.where,&whichWindow))
case inMenuBar:

SetUpMenus();
DoCommand(MenuSelect{myEvent.where));
break;

case inSysWindow:
SystemClick(&myEvent,whichWindow);
break;

case inDrag:
DragWindow(whichWindow,myEvent.where,&dragRect);
break;

default:
break;

break;
case keyDown:
case autoKey:

if {myWindow == FrontWindow() && myEvent.modifiers & cmdKey)
DoCommand(MenuKey(myEvent.message & charCodeMask));

break;
default:

break;

/* Quaternion Global Variables & Initialization Routines */

*define MAXPOINTS 21

static
static
static

short
extended
extended

npars, npts;
Ixx,Iyy,Izz,IxxR,IyyR,IzzR,Iyymixx,Izzmiyy,Ixxmizz;
q [25], Tbr [4] [4], h, t, Nx, Ny, Nz;

113

static
static

extended
extended

pt [MAXPOINTS] [4] ,Tpt [MAXPOINTS] [4], Tpt2d[MAXPOINTS] [4] ,Xeye;
gr_a,gr_b,gr_c,gr_d;

static void initialize()

/*number of integrated parameters, which are the following q[l .. 7] */
npars=7;

/* quaternion parameters themselves, e.g. the identity matrix */
q[l]=O.; q[2]=0.; q[3]=0.; q[4]=1.;

114 CHAPTER THREE I QUICKDRA W

/* initial angular rotation rates */
switch (curAxis) {

case 0:
q[5]=.02; q[6]=.02; q[7]=.02; break;

case 1:

q[5]=1.l; q[6]=.02; q[7]=.02; break;
case 2:

q[5]=.02; q[6]=1.l; q[7]=.02; break;
case 3:

q[5]=.02; q[6]=.02; q[7]=1.l; break;

/* moments of inertia */
/* the middle valued moment of a rigid body is always the unstable axis */
/* example: lxx = 5; lyy = 4; lzz = 3; the y axis is unstable */
Ixx=5.; Iyy=4.; Izz=3.;

/* reciprocals & diffs of the moments of inertia, precomputed for speed */
IxxR = 1./Ixx; IyyR = 1./Iyy; IzzR = 1./Izz;
Izzmiyy = Izz-Iyy; Ixxmizz = Ixx-Izz; Iyymixx = Iyy-Ixx;

/* for an interesting demo, set Ny= 1. This is torque applied to
the unstable axis (q[5] = .02; q[6] = .1; q[7] = .02;) */

switch (curTorque) {
case 0:

Nx=O.;
case 1:

Nx=l.;
case 2:

Nx=O.;
case 3:

Nx=O.;
default:

Ny=O.; Nz=O.;

Ny=O.; Nz=O.;

Ny=l.; Nz=O.;

Ny=O.; Nz=l.;

break;

break;

break;

break;

/* h is the integration step size, t is the initial starting time */
h = .25; t = O.;

static void normalize_qs()

short i;
extended qmagi;

/* Forces orthogonality of the transformation matrix
defined by the quaternion parameters */

qmagi = l./sqrt(q[l]*q[l] + q[2]*q[2] + q[3]*q[3] + q[4]*q[4]);
for (i = 1; i <= 4; q[i++] *= qmagi)

MACQ - C APPLICATION 11 5

static void T_br(extended q[],extended t[4] [4])
{

extended qll,q22,q33,q44,q12,q13,q14,q23,q24,q34;

/* Transformation from body to inertial reference */
/* Compute squares and cross products of Quaternion parameter */

qll = q[l]*q[l]; q12
q22

q[l] *q[2]; q13
q[2] *q[2]; q23

q33

q[l] *q[3]; q14
q[2] *q[3]; q24
q[3]*q[3]; q34

q44

/* Compute transformation from Body to Reference frame */

q[l] *q[4];
q[2]*q[4];
q[3] *q[4];
q[4] *q[4];

t [1] [1]

t [2] [1]

t [3] [1]

qll-q22-q33+q44; t [1] [2] = 2* (q12-q34); t [1] [3] 2* (q13+q24);
2*{q23-q14); 2* (ql2+q34); t [2] [2] =-qll+q22-q33+q44; t [2] [3]

2* (q13-q24); t [3] [2] = 2* (q23+q14); t [3] [3]
-qll-q22+q33+q44;

static void de(extended q[],extended dq[])

/* the set of differential equations called by either integrator */
/* q[l],q[2],q[3],q[4] Quaternion parameters*/
/* q[5],q[6],q[7] : wx,wy,wz */

/* Quaternion parameter equations */

dq[l] q[7]*q[2] - q[6] *q[3] + q[5] *q[4] * . 5;
dq[2] (-q[7] *q[l] + q[5]*q[3] + q[6] *q[4] * . 5;
dq[3] (q[6] *q[l] - q[5] *q[2] + q[7]*q[4] * . 5;
dq[4] (-q[5]*q[l] - q[6]*q[2] - q[7] *q[3] * . 5;

/* Euler's equations */
/* See Grant R. Fowles' "Analytical Mechanics", §8.6 p.232 3rd edition */

dq[5]
dq[6]
dq[7]

IxxR*(Nx - q[6]*q[7]*Izzmiyy);
IyyR*(Ny - q[7]*q[5]*Ixxmizz);
IzzR* (Nz - q[5] *q[6] *Iyymixx,) ;

static void runge(short n,extended h,extended *t,extended y[])

short i;
extended y1[25],f1[25],f2[25],f3[25],f4[25],h2;

/* Runge-Kutta 4th order numerical integrator - remarkably accurate */

h2 = h/2;
de (y, fl);

for (i = 1; i <= n; yl[i]
*t += h2;

y[i]+h2*fl(i], ++i);

116 CHAPTER THREE I QUICKDRA W

de(yl,f2);
for (i = 1; i <= n; yl[i)

de (yl, f3);
for (i = 1; i <= n; yl[i)
*t += h2;

de (yl, f4);

y[i)+h2*f2[i), ++i);

y[i)+h*f3[i), ++i);

for (i = 1; i <= n; y[i) += h/6*(fl[i)+2*(f2[i)+f3[i))+f4[i]), ++i);

static void euler(short n,extended h,extended *t,extended y[])

short i;
extended dy[25];

/* Euler 1st order numerical integrator - fast but not too accurate */

de(y,dy);
for (i=l; i<=n; y[i]+=h*dy[i],++i);
*t+=h;

static void define_object()

/*
Database of coordinates representing a infinitely flat book
If you wish to draw a more complicated object, simply add your
datapoints to this database and set npts to the appropriate #
of points up to MAXPOINTS - 1

*/

npts=7; Xeye=lO.;
pt [1 J [1 J =2 . ; pt [1] [2] = 0.; pt [1) [3) = 0.;
pt[2][1]=0.; pt[2] [2]= 3.; pt [2] [3] = 0.;
pt [3] [1] =O . ; pt [3] [2] = 0.; pt [3) [3] = 4.;

pt [4] [1]=0.; pt[4] [2]=-2.; pt [4] [3] = 3.;
pt[5) [1]=0.; pt [5] [2] = 2.; pt [5] [3] = 3.;
pt[6] [1]=0.; pt [6) [2] = 2.; pt [6] [3] =-3.;
pt[7] [1]=0.; pt[7] [2]=-2.; pt[7] [3]=-3.;

static void draw_object() /* Transforms database and draws object */

short i, J,p;
extended Xtemp;

/* Transform poshorts from Body to Reference frame */
for (p=l; p<=npts; ++p)

for (i=l; i<=3; ++i)
for (j=l,Tpt[p] [i]=O.; j<=3; ++j

Tpt[p] [i]+=Tbr[i) [j)*pt[p] [j];

/* Map poshorts to 2-d */
for (p=l; p<=npts; ++p)

Xtemp=Xeye/ (Xeye-Tpt [p J [l]) ;
Tpt2d[p] [2]=Xtemp*Tpt[p] [2];
Tpt2d[p] [3] =Xtemp*Tpt [p] [3];

/* Draw object */
for (p=l; p<=3; ++p)

MoveTo ((short) (gr_b), (short) (gr_d)) ;

MACQ - C APPLICATION 117

LineTo ((short) (gr_a*Tpt2d[p] [2] +gr_b), (short) (gr_c*Tpt2d[p] [3] +gr_d)) ;

MoveTo ((short) (gr_a*Tpt2d[7] [2] +gr_b), (short) (gr_c*Tpt2d[7] [3] +gr_d)) ;
for (p=4; p<=7; ++p)

LineTo ((short) (gr_a*Tpt2d[p] [2] +gr_b), (short) (gr_c*Tpt2d[p] [3] +gr_d)) ;

static void scale(xmin,xmax,ymin,ymax
extended xmin,xmax,ymin,ymax;

gr_ a
gr_b
gr_c
gr_ d

main()
{

= ((extended)
=-gr_ a*xmin;
= ((extended)
=-gr_c*ymax;

long tickValue;

InitWorld();

ylimit) I (xmax-xmin);

xlimit) I (ymin-ymax);

define_object(); /*change this routine for different objects*/
scale(-8.,8.,-5.33,5.33); /*may need to change this depending on object*/

while (true) {
if (restart)

initialize();
restart = false;

if (curinteg == 1) euler(npars,h,&t,q);
else runge(npars,h,&t,q);

normalize_qs();
T_br (q, Tbr);

118 CHAPTER THREE I QUICKDRA W

tickValue = TickCount();
picl = OpenPicture(&myRect);
draw_object ();
ClosePicture ();
EraseRect(&myRect);
DrawPicture(picl,&myRect);
KillPicture(picl);

do {
SystemTask();
if (GetNextEvent(everyEvent,&myEvent)) MainEventLoop();
if (done) ExitToShell();

while (hangout);

MacQ.r-Rez Source Code for MacQ
Resources

/* MacQ.r - Resource description for MacQ */

#include "Types.r";

type 'CSTR'
type 'PFDA'

cstring; };
pstring; };

resource • PFDA • (0) { "MacQuaternion 1. 0 Bl"; } ;

resource •SIZE• (-1) {

I;

dontSaveScreen,
acceptSuspendResumeEvents,
enableOptionSwitch,
canBackground,
multiFinderAware,
backgroundAndForeground,
dontGetFrontClicks,
ignoreChildDiedEvents,
not32BitCompatible,
reserved,reserved,reserved,reserved,reserved,reserved,reserved,
64*1024,
64*1024

resource 'FREF' (128) {'APPL', 0, ""I;

MACQ - C APPLICATION 119

resource 'BNDL' (128) {
'PFDA',
0,

};

/* [l] */
'ICN#',

};

/* array IDArray: 1 elements */
/* [l] */
0, 128

/* [2] */
'FREF',

/* array IDArray: 1 elements */

/* [l] */
0, 128

resource 'ICN#' (128) {

/* array: 2 elements */
/* [l] */
$"FFFF FFFF 8000 0001 801F FE7F 807F FFOl 807F FF7D"

$"80FC 0701 80FC 077 9 80F8 0601 80F8 OEFl 81F8 OCOl"
$"81FO OD El 81FO lCOl 83FO lBCl 83EO 1801 83EO 3B81"
$"87EO 3001 87EO 3701 87CO 3001 87CO 7601 8FCO 6001"
$"8F80 6C01 8F86 6001 BF87 D801 9F07 COOl 9F03 E021"
$"9F03 F061 9F03 FOAl 9FFF F921 9FFF FDFl 8FFE 3C21"
$"8000 1C21 FFFF FFFF";
/* [2] */
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF"

};

resource 'CSTR' (128) (

};

"This program models a specific rotating rigid body: an infinitely flat "
"book. The model is based on Euler's equations. The graphics "
"transformations and rotations are based on Quaternion theory.
"The axis menu allows you to select the starting axis; the torque "
"menu allows you to select which axis has a starting torque.
"Either of two numerical integrators can be used: "
"Euler's (for speed) or Runge (for accuracy).
"Quaternions are a generalization of complex numbers to 4 dimensions.
"In Quaternion theory, iA2 = jA2 = kA2 = ijk = -1.";

120 CHAPTER THREE I QUICKDRA W

Conclusion

This chapter looked at how QuickDraw works-both classic and Color QuickDraw.
It showed that QuickDraw relies upon the Font Manager to create the bit maps used by
QuickDraw to draw text. The chapter also reviewed printing and explained that printing
and drawing are closely related; in fact, they often use the same code in applications.

Speaking of code, this chapter presented three applications that use QuickDraw.
Mandel, an application that explores the Mandelbrot set, can use either classic or Color
QuickDraw. Graph, an MPW tool, demonstrates more uses for QuickDraw and how to
create windows under the MPW Shell. Our final application, MacQ, shows how to
wrap a Macintosh interface around a computational engine. As a bonus, MacQ illustrates
the mathematics behind a true physical simulation.

Recommended Reading

Inside Macintosh, volume 1, chapter 6 and volume 5, chapters 4-8 are the places to
read up on QuickDraw in its various flavors. For more reading on graphics in general,
try Foley and Van Dam's Fundamentals of Interactive Computer Graphics. In the realm
of image processing, Holzmann's Beyond Photography: The Digital Darkroom is lots of
fun, and it includes C source code for an image transformation program.

Peitgen's The Beauty of Fractals is the source for information about the Mandelbrot
set. With its gorgeous color plates, it is almost a coffee table book, but also contains a
good technical appendix about writing your own fractal programs for fun and profit.

You will need a pretty good physics education to fully understand MacQ. Here is
how you can get the necessary background on a shoestring. Start with a good introduc
tion to physics from The Feynman Lectures on Physics by Richard Feynman. These
lectures are the most lucid and readable introduction to physics around.

Next, to improve your mechanics, feast on Grant Fowles' Analytical Mechanics. It is
the best intermediate-level mechanics text, with excellent material on rigid body motion.
If you feel the need for a Ph.D.'s worth of mechanics, try Goldstein's Classical
Mechanics.

Relativistic mechanics is one of my favorite diversions: Taylor and Wheeler's
Spacetime Physics handles special relativity, and Misner, Thome, and Wheeler's
Gravitation is the Bible of general relativity. Gravitation is one of the most beautiful and
fascinating books ever written, but prepare for a lifetime's worth of study to under
stand it, as the book weighs almost 1 x 10-27 meters! (Yes, you read meters! The book
uses geometricized units.)

Once your mechanics are up to speed, try Kane's Spacecraft Dynamics and Wertz's
Spacecraft Attitude Determination and Control for help in applying mechanics to real
world problems. Of course, handling real-world problems requires a good background
in numerical analysis, so check the reading list for chapter 5 for those titles.

THE MACINTOSH
TOOLBOX

CHAPTER4

The Macintosh Toolbox contains the various routines that together generate most of
the standard behavior you see in most Macintosh applications. This behavior is known
as the Desktop User Interface and is detailed in the Apple Human Interface Guidelines:
The Apple Desktop Inteiface (Addison-Wesley, 1987). This chapter looks at some of the
more important Toolbox Managers:

• Resource Manager

• Event Manager

• Window Manager

• Control Manager

• Menu Manager

• TextEdit
• Dialog Manager

• Desk Manager

• Scrap Manager

• Utilities

• Package Manager

Because many of the Managers are in ROM, many people mistakenly consider the
Toolbox to be part of the operating system. It is not; rather, it is built on top of the op
erating system. The operating system handles memory, files, and 1/0, and the Toolbox
manages the user interface components, such as the windows, menus, and dialogs.

Much of the Macintosh's early success was the result of the functionality provided by
the Toolbox, which allowed the uniform Desktop Interface. For the first time in the his
tory of computers, developers were strongly encouraged to make their software follow a
coherent, consistent set of interlace guidelines. The resulting applications are easy to
use, uniform, intuitive, and graphically impressive-all because of the use of the
Toolbox. MS Windows (for MS-DOS), Presentation Manager (for OS/2), and the X
Window System (for Unix) are among recent attempts to provide equivalent functional
ity for other computers.

1 21

122 CHAPTER FOUR I THE MACINTOSH TOOLBOX

Because programmers must learn how to use the hundreds of routines in the
Macintosh Toolbox, the Macintosh has earned the reputation of being hard to program.
It is true that there is a learning curve for programmers, but the results speak for them
selves: learning about the Mac Toolbox is well worth it. Macintosh users tend to use
more software than most other computer users, with six to eight applications being used
regularly by the average Mac user as opposed to the one or two applications that most
MS-DOS users tend to learn.

Few systems other than the Macintosh offer as neat a set of tools with which to create
easy-to-use applications. Because the Toolbox routines are standard, all well-written
Macintosh applications have a great deal in common, which makes learning a new
Macintosh application easy after the first one has been mastered. This is not to say that
all Macintosh programs are clones. The Toolbox still offers a high degree of latitude in
its use and customization, allowing each Macintosh application to be unique.

In this chapter we will look at most of the important Managers in the Toolbox, one by
one. The more useful calls for each of these Managers will be mentioned or described, to
give you a feel for the functionality found in the Toolbox. (You should consult Inside
Macintosh for greater detail.) Following these sections is the source code to several
MPW tools that illustrate how to use the Resource Manager, as well as the source code
to several FKEY s that show some tricks you can do with the Event Manager.

The Resource Manager

The concept of resources was unique to the Macintosh in 1984. A resource can be
anything: code, data, text, graphics, icons, windows, fonts, sounds, or anything else
you want. The Resource Manager was originally written by Bruce Hom and was up
dated by Brian McGhie. It allows code and data to be maintained as separate objects in
the resource fork of a file. It also allows data to be initialized, something that Pascal does
not allow. Because most parts of an application are individual resources, you can easily
translate Macintosh applications into other languages without having to recompile code.

Any resource can be uniquely specified by using a resource type and a 16-bit signed
resource ID number. All IDs less than 128 (including negative IDs) are reserved for
system use. Resources can also have an optional resource name, which is a Pascal
Str255.

Negative IDs actually are special IDs that have encoded information about another re
source that "owns" that ID. Owned IDs are used so that the Font/DA Mover will auto
matically move resources such as menus and dialogs along with the desk accessory to
which they belong. For example, a desk accessory is a resource of type DRVR, and its
dialogs (DLOG) and dialog item lists (DITL) would have specially encoded owned IDs
to indicate that they were owned by the DRVR. The two high bits of the ID (14 and 15)
are always set for owned IDs. Bits 13 to 11 specify the type of the resource owner (all
clear for a DRVR; other owners are WDEFs, MDEFs, CDEFs, PDEFs, and PACKs).

THE RESOURCE MANAGER 123

Bits 5 to 10 specify the owner's resource ID (thus a range of 0 to 63), and bits 0 to 4 are
the ID of the owned resource (thus a range of 0 to 31).

A resource type is a 32-bit quantity usually composed of letters. (Lowercase resource
types are reserved for use by Apple.) Resource types are case-sensitive. Most
resource types with fewer than four letters pad the resource type with spaces. Many
resource types already exist and have strict rules as to their structure, meaning, and use.
The following tables present some of the most common resource types. The resource
types in the first table were all defined in the original Macintosh.

Type
ALRT
BNDL
CDEF
CNTL
CODE
CURS
DITL
DLOG
DRVR
DSAT
FKEY
FONT
FREF
FRSV
ICN#
ICON
INIT
INTL
MBAR
MDEF
MENU
PACK
PAT
PAT#
PDEF
PICT
PREC
SERO
STR
STR#
TEXT
WDEF
WIND

Resource Found in All Varieties of Macintosh
Alert template for warning dialogs
Bundle to associate an app with its documents
Code for a custom control definition procedure
Control template describing a control
Code segment (compiled code)
Cursor
Dialog item list specifying buttons
Dialog template specifying size of dialog box
Code for a device driver or desk accessory
Startup alert table, "Welcome to Macintosh"
Code for command shift keys, screen shots
A bit-mapped font
File reference
A list of reserved fonts to not be removed
Icon list (Desktop icons with masks)
Icon
Initialization resource, startup code
International resource used for localization
A collection of menus
Code for a custom menu definition procedure
A menu
Package (extra system code)
A pattern
Pattern list (MacPaint patterns)
Printer definition code
Picture (Scrapbook)
Print record information
RAM Serial driver
Pascal string
A list of Pascal strings
ASCII text (Scrapbook)
Code for a custom window definition procedure
A window template

124 CHAPTER FOUR I THE MACINTOSH TOOLBOX

The Macintosh Plus put several new resources in ROM to save disk space and in
crease speed.

T;y~e ID Resources in 128 KB ROM

CURS IBeamCursor
CURS 2 CrossCursor
CURS 3 PlusCursor
CURS 4 WatchCursor
DRVR 2 .Print driver
DRVR 3 .Sound driver
DRVR 4 .Sony disk driver
DRVR 9 .MPP AppleTalk driver
DRVR 10 .ATP AppleTalk driver
FONT 0 System font name
FONT 12 Chicago 12
MDEF 0 Menu definition procedure
PACK 4 SANE arithmetic
PACK 5 SANE transcendentals
PACK 7 SANE binary-decimal
SERO 0 Serial driver
WDEF 0 Window definition procedure

T;r~e Resources Found in System 3.0 and Later

CACH RAM cache code set in Control Panel
FMTR 3.5" disk formatter
FOND Font family definition
NFNT "New" Font
PRER Non-serial printer Chooser code
PRES Serial printer Chooser code
PTCH ROM patches
RDEV Network Chooser code
ROvr ROM resource override code
ROv# List to ROM resources to override
bmap Bit maps used by the Control Panel
ct ab Used by Control Panel
insc Installer script

Type
ADBS
INT#
KCAP
KCHR
KMAP

KSWP
LDEF
MBDF
MMAP
NBPC
SICN
at pl
boot
itlO
itll
itl2
itlb
itlc
lmem
mcky
mp pc
snd
snth

Type
actb
cctb
cicn
cl st
clut
crsr
dctb
fctb
fint
gama
ictb
mctb
mitq
nrct
pltt
ppat
wctb

THE RESOURCE MANAGER 125

Resources Found in System 4.1 and Later
Apple Desktop Bus driver
Integer list used by Find File DA
Keyboard layout used by Key Caps DA
ASCII mapping (software)
Keyboard map (hardware)
Keyboard script used by Script Manager
Code for a custom list definition procedure
Default menu definition
Mouse tracking code
Name Binding Protocol used by AppleTalk
Script symbol
AppleTalk resource
Boot blocks in System file
Date & time fonnats
Day & month names
Pack6 sort hooks
Pack6 script bundles
Script Manager configuration
Globals to be switched by MultiFinder
Mouse tracking parameters
AppleTalk configuration code
Sounds
Synthesizer

Color-related Resources Found on Mac II Machines
Alert color table
Control color table
Color icon (color Mac at boot)
Color icon list
Color look up table
Color cursor
Dialog color table
Font color table
Font infonnation
Color correction table
Dialog item color table
Menu color table
MakeITable memory requirements
Rectangle positions
Color palette
Pixel pattern
Window color table

126 CHAPTER FOUR I THE MACINTOSH TOOLBOX

Resource Maps

Each resource fork contains the actual resource data and an index to the data called a
resource map. When a resource fork is opened, its resource-map is read into memory.
When any resource is actually read into memory, 12 bytes are used by the Memory
Manager in addition to the actual size of the resource.

Through the resource map mechanism, the Resource Manager allows different places
to be searched for resources. This chained searching of resource maps takes place auto
matically. When the Macintosh is first started up, the System file is opened as a general
library of resources to be checked out by all executing applications.

Once opened, resource files are referred to by a 16-bit reference number, with the
System file always being zero. Fonts and desk accessories, as well as many other re
sources used by applications, are stored in the System file, which is at the end of the
chain of resource forks that are searched for resources when needed.

When an application is launched, its resource map is put at the top of the list of re
source maps to search. This establishes a hierarchy of resource maps. A GetResource
request begins searching with the current application's resources and then-if the re
source specified is not found--:--follows the resource chain until it reaches the head of the
chain, the System file. If the resource cannot be found anywhere, GetResource re
turns a nil handle. This mechanism allows you to write an application that overrides a
standard system resource simply by having a resource of the same type and ID in your
application's resource fork. You can use the UseResFile procedure to start the scope
of a search somewhere "beneath" the most recently opened resource file.

There is a current limitation of 2, 727 resources in any given file. Because the icons of
applications are maintained as resources in the hidden Desktop file used by the Finder,
there is a limit to the number of different applications with different icons·that can be
used on a given disk. If you archive lots of applications on a CD-ROM drive, you can
easily hit this limit. The solution is to use the Desktop Manager, an INIT that comes
with AppleShare that maintains icons and other Finder information in two hidden files
called Desktop DB and Desktop DF. The Desktop information is kept in the data
forks of these files and managed via B-trees rather than by being stored in the resource
fork of the single Desktop file. Using the Desktop Manager greatly improves perfor-

. mance with large numbers of files on a hard disk, because the Resource Manager was
not designed to be used as a database.

Resource Attributes
I

Each resource also has a set of resource attributes that specify how the resource is to
be treated in memory. Starting with bit 1 of the attribute word, the resource attributes
are: changed, preloaded, protected, locked, purgeable, and to be loaded into the system
heap rather than the application heap.

THE RESOURCE MANAGER 127

To open a resource fork, use OpenResFile or OpenRFPerm, which return -1 if the
file cannot be opened. There are routines to get information about resources, to modify
resources, to change resource attributes, and to retrieve the resources themselves.

All resources are relocatable objects, and they may be manipulated by means of han
dles. These handles may be locked or otherwise marked if the resource attributes so
indicate. If your program calls SetResLoad (FALSE) before GetResource, an empty
handle (pointer to a nil master pointer) is returned and the resource is not read into
memory. This should be done only for short periods of time, because many parts of the
Toolbox expect SetResLoad to be turned on. Thus, leaving SetResLoad FALSE can
cause a program to die a silent but painful death. \

To access the actual resource, double dereference its handle. If the object or its at
tributes are changed, only the resource map is modified. The actual data is changed on
disk only when the application terminates (the resource fork is automatically closed) or
when WriteResource, UpdateResFile, or CloseResFile is called. Note that
your application must call ChangeResource to tell the Resource Manager when a re
source has been changed.

A resource that has the purgeable attribute set obviously can be purged by the operat
ing system. Before using such a resource, make a call to LoadResource to ensure that
the resource is in memory.

If a resource file is closed, all of its resources are purged. This can be a problem if
you are still relying on such a resource. If you need a resource from a file that will be
closed before you use the resource, the solution is as follows: before the resource file is
closed, do a DetachResource. This routine will uncouple the actual data from the re
source map.

You can copy a resource file most efficiently by using OpenRF, which will open the
resource fork as if it was a data fork, without reading the resource map into memory.
The resulting retNum can then be passed to Read the file. This is the way the Finder and
MPW Shell copy resource forks, for example. It is not wise from a compatibility stand
point to have your application try to play Resource Manager itself when opening the file
via OpenRF; it is best to always use the Resource Manager calls for manipulating indi
vidual resources. Be careful not to use both OpenRF and OpenResFile to open the
same resource fork at the same time. It would be bad.

Resource Manager Routines

The Resource Manager is initialized by the System on start-up by a call to
InitResources, and each time an application is launched RsrcZoneinit is also
called automatically. To create a resource fork, use CreateResFile, and to open one,
use OpenResFile or OpenRFPerm (the latter allows you to specify access privileges).
CloseResFile does the obvious. Resource Manager errors are reported through
ResError, which in a bulletproof application should be called after every Resource

128 CHAPTER FOUR I THE MACINTOSH TOOLBOX

Manager call to check if things went as expected. You can manipulate the ordering of re
source maps with CurResFil~, HomeResFile, and UseResFile.

Information about resources is available through calls to count Types,
GetindType,CountResources,SizeResource,MaxSizeRsrc,GetResAttrs,
and GetResinfo. Create unique resource IDs through Unique ID. To bring resources
into memory from disk, call Get Re s our c e , Get Named Re s o u r c e , and
Get IndResource.

The 128 KB ROMs also introduced a set of one-level-deep counterparts to many of
these calls. They include CountlTypes, GetlindType, CountlResources,
UniquelID,GetlResource,GetlNamedResource,andGetlindResource.
RGetResource will also allow your application to look through ROMed resources. The
one-deep calls are a way of looking in a single file without having the Resource Manager
look at other files in the resource chain. They are useful for tools that list the actual re
source contents of a file, for example.

When a resource has been purged and needs to be loaded back into memory,
Lo ad Re s our c e will do the job. When a resource is no longer needed,
ReleaseResource frees up the memory occupied by a specified resource.
DetachResource may be called to make an existing RAM-resident resource a non-re
source. In this case, if the resource file to which the resource belongs is closed, the re
source will stay resident rather than being purged. SetResLoad allows empty handles
to be returned rather than actually reading the resource in from disk.

Resources can be modified by SetResinfo and SetResAttrs. Calling
ChangedResource notifies the Resource Manager that you want the changes to be
written back to disk. These changes are not written until the file is closed,
UpdateResFile is called, or the WriteResource routine is called explicitly.
SetResPurge allows the Resource Manager to be called by the Memory Manager when
purgeable (but perhaps changed) resources are about to be purged. The Resource
Manager responds by writing changed resources via WriteResource. You can add
and delete resources from a file using AddResource and RmveResource. Advanced
routines include RsrcMapEntry, GetResFileAttrs, and SetResFileAttrs.

The Event Manager

Events and their proper handling are the core of all Macintosh applications. The Event
Manager, which was written by Andy Hertzfeld, records and delivers events through an
event queue on a FIFO (first in, first out) basis. The events are always returned on a
priority basis, with priority one first, priority two next, etc. The defined events and their
priorities are shown in the following table.

THE EVENT MANAGER 129

Event Bit Priority
(Not used) 0 Null events are 5
Mouse down 1 2
Mouse up 2 2
Key down 3 2
Key up 4 2
Auto key repeat 5 3
Update 6 4
Disk-inserted 7 2
Activate 8
(Reserved for future) 9
Network IO 2
Device driver 11 2
Application 1 12 2
Application 2 13 2
Application 3 14 2
Suspend/Resume 15

The events called Application 1, Application 2, and Application 3 in the preceding
table are for a program's own use. A good use of them would be in a simulation appli
cation. However, they are gradually being taken over for system use. (Suspend/Resume
used to be the Application 4 event.) If you do need your own events, use the Application
1 event and use the other fields of the EventRecord to signal various events.

The key routine of a Macintosh main event loop is its call to GetNextEvent to ob
tain the next queued event. MultiFinder uses this routine to give time to background ap
plications. Before reporting an event to a requestor, GetNextEvent calls
SystemEvent to see if the event belongs to a desk accessory. If it does, the event is
given to the desk accessory rather than to the application. GetNextEvent returns an
event record, which gives an event code, an event message, the time, mouse location,
and modifier flags. Events are measured to a resolution of one tick, or 1/60th of a sec
ond. TickCount also returns the current number of ticks since the Macintosh was
booted. Other flavors of GetNextEvent are also supported. Wai tNextEvent adds a
few more parameters for more· precise tuning of background operation with MultiFinder,
and EventAvail acts just like GetNextEvent but leaves the event in the queue rather
than removing it.

GetOSEvent and OSEventAvail are register-based versions of GetNextEvent
and EventAvail that do not call SystemEvent or process FKEYs. Finally, you can
post an event to the queue with the register-based PostEvent, and you can clear events
from the queue collectively or selectively with the register-based FlushEvents.

Although an InitEvents call does exist, FlushEvents is used instead to initialize
the Event Manager when starting an application. InitEvents actually allocates space in
the system heap for the event queue. It is automatically called once by the start-up code.
If it were called again, the old queue would be left in the heap as garbage. In addition,
the Event Manager relies upon the Window Manager. In the unusual circumstance that

130 CHAPTER FOUR I THE MACINTOSH TOOLBOX

the Event Manager is needed without the Window Manager, the low-memory global
WindowList should be set to NIL.

FKEYs

GetNextEvent also screens out FKEYs-key-down events in which the Command
and Shift keys are held down when a non-keypad number is typed. The following table
lists the Mac's predefined FKEYs.

FKEY Number
1
2
3
4

Location
In ROM
In ROM
In System file
In System file

Purpose
Ejects internal disk
Ejects external disk
Dumps screen to disk
Prints screen to IW

FKEYs 3 to 9 and zero can be added to or modified, but FKEYs 1and2 are in ROM
and hence are unchangeable. Source code to a few example FKEYs is presented at the
end of the chapter.

Mouse Events

In addition to using mouse-up and mouse-down events that return the mouse position
in global coordinates, you can also find the current mouse location in the local coordi
nates of the current GratPort with GetMouse, check to see if the mouse button is cur
rently down with Button, check if the button is still down (without having been re
leased) after a mouse-down event with StillDown, and finally distinguish a double
click from a mouse-up with Wai tMouseUp.

The modifiers field of the EventRecord also allows you to check whether the Option,
Shift, or Command keys were down at the time of the mouse click. The only way to
check for various keys while the mouse button is down is to check the current keymap
via GetKeys.

For most buttons, your application should determine whether the button has been
clicked on by checking for a mouse-up event; this gives the user the option to move off
of the button as a means of canceling the operation of clicking on the button in the first
place. Any button that could have destructive consequences should respond to a mouse
up rather than a mouse-down event.

Mouse-down events differ from mouse-up events in that an event is posted immedi
ately. A good use of mouse-down events is illustrated by HyperCard. A button in a
HyperCard stack that causes the next card of the stack to be revealed works better with a
mouse-down handler than a mouse-up handler. The difference is subtle: a mouse-up
type of button does its action exactly once, when the button is released, so only the next
card can be reached with a mouse-up handler. A mouse-down type of button does its

THE EVENT MANAGER 131

action at least once; if the script is written properly, the action is done over and over
again until the mouse is finally released. For a non-destructive operation such as
scanning through cards in a stack, a mouse-down handler is superior to a mouse-up
handler.

Key Events

Key codes are reported via the event message field in two different ways. The stan
dard-and most compatible-way is to rely upon the ASCII character code given in the
low byte of the message. The second byte (bits 8 to 15) of the message field contains the
actual key code, which varies between the various Macintosh keyboards. The third byte
(bits 16 to 23) contains the ADB address on ADB keyboards. The keyboard-specific
method is to use GetKeys, which returns a bit map of key codes.

Key-up events are rarely used. Auto-key events are posted at a rate based on the cur
rent low memory values of KeyThresh and KeyRepThresh, both of which are set by
the Control Panel. In addition, the modifier flags field reports on the status of the keys
that do not have their own key codes. The key modifier bits are set if the corresponding
key is down. The currently defined modifiers are listed in the following table.

Modifier
Window activate
Mouse up
Command
Shift
Caps Lock
Option
Control

Bit of the Modifier Flag Field
0
7
8
9
10
11
12

The Macintosh, like almost all American computers, uses a variation of the ASCII
character set. The only standard control characters used by Macintosh are Backspace (8),
Tab (9) and Carriage Return (13). The Enter (3) and Arrow keys (28-31) are non-stan
dard uses of these control characters. See Appendix A for a table of the Macintosh char
acter set.

Activate and Update Events

Activate events are the highest-priority events and are never actually posted to the
event queue. They occur whenever a window is clicked on to bring it to the top. A max
imum of two such events can be pending: an deactivate of one window followed by a
corresponding activate of another window. An update event is generated whenever a
window's contents have been obscured and need to be redrawn. The event message for
both events is a pointer to the window record of the appropriate window. Methods for

132 CHAPTER FOUR I THE MACINTOSH TOOLBOX

handling activate and update events are discussed further in the Window Manager sec
tion of this chapter.

Other Events

Whenever a disk is inserted in the computer, a disk-inserted event is posted, with
the message containing the drive number in the lower word of the event message and the
File Manager result code in the high-order word. This result code is obtained through
the automatic call the system makes to Mount Vol when this event is generated. If the
result code is non-zero, a call to DIBadMount may be appropriate. This will bring up
the standard disk-initialization dialogs.

Suspend and resume events are posted by MultiFinder when layers are being
switched. Typically, your application should deactivate/activate its windows and export/
import its scrap to the clipboard when it receives these events. Your application can also
define and send events to itself by using PostEvent. Network events and device driver
events are largely unused.

An obscure low-memory variable at $100 called MonkeyLi ves can be used when
random events are posted to an application. MacPaint, for example, checks to see if this
word of memory is other than $FFFF. If it is, MacPaint will not quit. This feature was
used in the early days of Macintosh testing in conjunction with a desk accessory written
by Steve Capps, called the Monkey, that posted random keyboard and mouse events for
stress-testing purposes.

The Window Manager

The Window Manager handles multiple overlapping windows. Originally written in
Pascal by Bill Atkinson for the Lisa, it was translated to assembly language by Andy
Hertzf eld for the Macintosh.

The Window Manager is fired up by a call to Ini tWindows after QuickDraw and the
Font Manager have been initialized. Among other things, this draws the Desktop, which
is actually a special port called the WMgrPort. The routines GetWMgrPort and
GetCWMgrPort return a pointer to this port. Drawing directly into the Window
Manager Port has always been discouraged, but it is now dangerous when MultiFinder
is running because many different applications share the screen.

The Window Manager allows different kinds of windows to be created. The standard
types of windows are listed in the following table.

Window Definition ID
0
1
2
3
4
8
12
16

THE WINDOW MANAGER 133

Window Name
Standard document
Modal dialog I alert box
Plain box (no shadow)
Plain box with shadow
Document with no grow box
Document with zoom box
Document with zoom, no grow
Rounded corner w/black title

You can create custom windows by writing a window definition (WDEF) procedure.
The Desktop is drawn as a rounded rectangle with a 16-pixel curvature at the comers,

using pattern PAT 16 (or ppat if Color QuickDraw is installed) from the System file. In
addition, the Mac II SetDeskCPat call sets the current color Desktop pattern. The size
and shape of the current Desktop are stored in a RgnHandle kept in the low-memory
global called GrayRgn at $9EE.

Each window has its own GrafPort, which is actually the first part of a larger
WindowRecord. Windows have at least two regions: the content region is the region into
which an application can draw, and the structure region is the entire window, including
its frame, which the Window Manager draws.

Your application can create a window on the fly using NewWindow or NewCWindow,
or it can retrieve a window's description from a WIND resource via GetNewWindow and
GetNewCWindow. One advantage to the latter calls is that a custom color palette will be
loaded automatically on Mac II family machines if a pl t t resource of the same ID as the
WIND resource is present in the resource file. SetWinColor and GetAuxWin allow the
colors of a window on Mac Ils to be further modified. The default colors for windows
are stored in a wctb resource of ID zero in the System file. Windows are usually closed
by DisposeWindow. CloseWindow is a variant that does not release the window
record memory.

Drawing in Windows

Drawing in a window should usually be done in response to an update event, and
such drawing is bracketed with calls to BeginUpdate and EndUpdate. When your
application needs to change the contents of a window, it can add areas to the current up
date region by calls to InvalRect and InvalRgn. The actual drawing can then be done
in response to the official update event received via GetNextEvent. If the application
knows that certain areas are up to date, it can call ValidRect and ValidRgn to inform
the Window Manager of such areas.

The Window's title can be retrieved and changed with GetWTitle and SetWTitle;
a window can be hidden or shown using HideWindow, ShowWindow, and ShowHide;
a particular window can be made active (topmost) by a call to Select Window, which
also deactivates any current active window and does the appropriate highlighting/

134 CHAPTER FOUR I THE MACINTOSH TOOLBOX

unhighlighting (a separate call to HiliteWindow is also provided). Windows can be
rotated by BringToFront and SendToBack; the grow box is redrawn when needed by
DrawGrowicon, and the current front window can be determined by Front Window.

When there is a mouse event, a call to FindWindow determines which window was
clicked in, and where. Window parts are categorized as shown in the following table.

Name Value Description
inDesk 0 None of the following
inMenuBar 1 In the main menu bar
inSysWindow 2 In a desk accessory
inContent 3 In the content region
inDrag 4 In the title bar
inGrow 5 In active grow box
inGoAway 6 In active go-away box
inZoomln 7 To zoom smaller
inZoomOut 8 To zoom larger

Once the part is determined, the appropriate action should be taken. For example, the
size and location of a window can be changed with DragWindow, GrowWindow, and
ZoomWindow. TrackGoAway and TrackBox provide animation for these boxes in the
title bar. In addition, SizeWindow and MoveWindow are provided for non-interactive
window manipulation.

Auxiliary Window Routines

GetWindowPic and SetWindowPic are used to store a PicHandle in the Window
Record. Setting this field causes the Window Manager to call DrawP icture instead of
generating any update events for a window. This is especially useful for a window
whose contents are static. Getwvariant returns a code about the type of window, with
negative numbers being system windows (desk accessories). setWRefCon and
GetWRefCon are used to store an application-specific piece of information in the
Window Record.

The P inRect and DragGrayRgn, utility routines called by DragWindow, are use
ful for dragging objects other than windows. Several low-level routines do the bulk of
the window updating and region maintenance. They include CheckUpdate,
ClipAbove,SaveOld,DrawNew,PaintOne,PaintBehind,CalcVis, and
CalcVisBehind.

THE CONTROL MANAGER 135

The Control Manager

The Control Manager, which was written by Andy Hertzfeld, handles controls such
as buttons and check boxes, associating them with a window. The standard controls are
listed in the following table.

Control Definition ID

0
1
2
16

Description

Simple button
Check box
Radio button
Scroll bar

You can also create custom controls known as CDEFs. Each control can also have an
associated action procedure that provides a degree of animation when the control is being
accessed.

Each control has one or more parts. The following table lists the various part codes
for the standard controls.

Name Value Description

0 entire control active
inButton 10 regular button
inCheckBox 11 check box I radio btn.
inUpButton 20 scroll bar up arrow
inDownButton 21 scroll bar down arrow
inPageUp 22 scroll bar page up rgn
inPageDown 23 scroll bar page down
in Thumb 129 scroll bar thumb

255 entire control inactive

Each control has a control record that contains information relating the control to a
window; a link to the next control for the window; the window's title, size, and state;
and a handle to its control definition function. No special initialization is needed for the
Control Manager, but QuickDraw, the Font Manager, and the Window Manager do need
to have been initialized.

Controls are either created by calling Newcontrol or brought in from disk as CNTL
resources by calling GetNewControl. They can be disposed of individually by calling
DisposeControl, or all controls for a given window can be disposed simultaneously
by calling KillControls. Disposing of or closing a window automatically removes
the controls.

If a user clicks on a control, GetNextEvent reports a mouse-down event that
FindWindow reports to be associated with a certain window. If the window part is in
the content region, your application can call FindControl to determine if a control was
clicked on, and finally it can call TrackCon·trol, DragControl, and
HiliteControl to actually modify the control. The control's settings can be inspected

136 CHAPTER FOUR I THE MACINTOSH TOOLBOX

and changed with Set Ct 1 Value, Get Ct 1 Value, Set Ct lMin, GetCt lMin,
SetCtlMax, and GetCtlMax.

To resize a window that has scroll bars, use MoveControl and SizeControl to
change the size and position of its scroll bars. Other calls that affect the appearance of
controls include GetCTitle and SetCTitle, which change the control's title, and
HideControl and ShowControl, which make controls invisible or visible. Your
application should always respond to update events by calling Dr a we on tr o 1 s,
Drawl Control, or UpdtControl. This last routine is faster because it allows an up
date region to be specified.

Miscellaneous routines include GetCRefCon and SetCRefCon , which store 4 bytes
of specific data in the Control Record (or a handle to a larger block of data);
TestControl, a low-level utility called by other parts of the Control Manager;
GetCtlAction and SetCtlAction, which manipulate a control's action procedure;
Getcvariant, which returns the CDEF's variant control value; and for the Mac II,
GetAuxCtl and SetCtlColor, which get and set colored controls. System defaults
for control colors are kept in the System file as a cctb resource of ID zero.

The standard controls are not perfect for all situations. Sometimes a custom control
(CDEF) needs to be created. When designing a user interface, consider how often a
control is going to be used and how many different states it needs to represent. If only
two states are needed, maybe a checked menu item would be better. Scroll bars may be
appropriate for a word processor but perhaps are not the right navigational tool for hy
pertext. Make sure that operations that need to be executed often are accessible and quick
to use.

The Menu Manager

The Menu Manager, which was written by Andy Hertzfeld, handles the pull-down
menus used by applications. The Menu Manager is initialized by calling InitMenus. To
create menus in memory, call NewMenu; to bring them in from MENU resources, call
GetMenu. Items can be added to a specific menu through AppendMenu, AddResMenu,
InsertResMenu, or InsMenuitem. Up to this point, the menus are not associated
with the menubar. To do that, call InsertMenu. Hierarchical and pop-up menus can be
formed by passing -1 as the behindID to InsertMenu. Finally, to actually see anything,
call DrawMenuBar.

Certain characters, when they appear in a data string passed to AppendMenu, are
given special interpretation; these characters are listed in the following table.

Character

fl

<
I

Modifier

num
char
B, I, U, 0, S
char

THE MENU MANAGER 137

Definition
Creates a blank item
Disables item
Separates items
Uses ICON num
Marks item with char
Sets style of item
Keyboard equivalent

Menu items can be deleted by calling DelMenuitem, a whole menu can be removed
by calling DeleteMenu, and all menus can be removed by calling ClearMenuBar.
Finally, to release the memory used by the menus, call DisposeMenu for menus created
by NewMenu and call ReleaseResource for menus brought in as resources via
GetMenu.

Your application can bring in a set of menus from disk as a MBAR resource by calling
GetNewMBar. It can save and restore menu bars by calling GetMenuBar and
SetMenuBar. (DrawMenuBar still needs to be called after SetMenuBar.)

MenuSelect does the work of drawing menus when the user is browsing with the
mouse down in the menubar. It returns a Longint that contains the menu chosen in the
high word and the item number returned in the low word. MenuSelect calls
SystemMenu if the selected menu is owned by a desk accessory. Keyboard shortcuts
are handled via MenuKey, which maps a character to a menu number and item number
pair. A call to Delay for about 5 ticks will make sure the menu title is highlighted long
enough to be visible. Once the menu number and item number pair are known, the ap
propriate routines can be called to process the menu request; a call to Hili teMenu is
appropriate to unhighlight the menu when the operations are completed.

Menu items can be manipulated with Set Item and Get Item. Menus and items that
are not appropriate at a given instant in time should be dimmed by a call to
Disable Item. Enableitem allows a menu and/or items to again be chosen. Menu
items can also be marked with Checkitem, SetitemMark, GetitemMark,
Setitemicon,Getitemicon,SetitemStyle,andGetitemStyle.

Miscellaneous routines include CalcMenuSize, CountMitems, GetMHandle,
FlashMenuBar, and SetMenuFlash. InitProcMenu should be called when a cus
tom menu bar definition (MBDF) is used. Color menus are supported on the Mac II
family of machines with DelMCEntries, GetMCinfo, SetMCinfo, DispMCinfo,
GetMCEntry, and SetMCEntries. Default menu colors are stored as mctb O in the
System file. Your application can manipulate hierarchical submenus with GetitemCmd
and Set ItemCmd, and it can use PopUpMenuSelect to handle pop-up menus.
MenuChoice allows a Mac II to report the selection of a disabled menu item.

138 CHAPTER FOUR I THE MACINTOSH TOOLBOX

Menus and the User Interface

The use of hierarchical menus should be kept to a minimum, as they are quirky and
frustrating for most users. They also encourage you to put too many items into the
menus, thus making your applications complex. If you feel you need to use hierarchical
menus because you have lots of menu items, sit down and rethink your design. Perhaps
a simple dialog or even a single custom control could portray a wide range of options
with a simpler interface. Imagine the complexity the Color Picker would have had if it
had been done with hierarchical menus ... not to mention the aesthetic disaster it would
have been.

Pop-up menus, on the other hand, are an efficient technique that seems to work out
well for options that are changed rarely or for choosing amongst a list of choices that
need not be studied in order to decide what is needed. If a list of choices needs to be
studied, consider creating a scrolling list using the List Manager, and forget menus alto
gether because holding the mouse down for long periods of time increases user stress.

Remember that each part of the Macintosh User Interface has its place, and learning
the strengths and weaknesses of each part will allow you to develop much smoother
programs than would result from your trying to shoehorn every choice into a menu.

Text Edit

TextEdit is a set of routines that are useful for basic text editing on quantities of text
up to 32,000 characters. TextEdit was written by Steve Capps for editing text in dialog
boxes, not as a true word processor. Originally there were plans for a more powerful set
of text routines called CoreEdit that could be used by a word processor. CoreEdit never
became part of System software; instead it became Mac Write.

To initialize TextEdit, call TEinit. QuickDraw, the Font Manager, and the Window
Manager must already have been initialized. TENew creates a relocatable record that con
tains information about the text. TEDispose releases all memory used by TextEdit
when the TERec is no longer needed.

To associate text with a TERec, call TEGet Text and TESet Text. Your program can
give the user visual cues by calling TE Idle to flash the insertion point and
TESetSelect to select text. TEActivate and TEDeactivate should be called to
properly highlight and unhighlight the selection and insertion point when a window re
ceives activate events. To draw text in response to update events, use TEUpda te;
TextBox, which creates a temporary TERec, may also be used to draw text.

Your application can manipulate text by calling TEKey, TECut, TECopy, TEPaste,
TEDelete, and TEinsert. The TextEdit scrap can be imported and exported by calling
TEFromScrap,TEToScrap,TEScrapHandle,TEGetScrapLen, and
TESetScrapLen. To recompute line starts, call TECal Text, and to set up a custom
word break routine, use SetWordBreak. Justification can be set via TESetJust, and

THE DIALOG MANAGER 139

text can be scrolled with TEsdroll and TEPinScroll. Automatic scrolling can be en
abled by calling TEAutoView, with TESel View causing the current selection to be
scrolled into view.

Style TextEdit is found in ROM on newer Macs and is back-patched in the more re
cent Systems. It allows a single TERec to contain multiple fonts, sizes, styles, and col
ors. Various routines are provided to work with style runs, including TEGetOffset,
TEStylNew,TEStylPaste,TESetStyle,TEGetStyle,TEReplaceStyle,
GetStylHandle,SetStylHandle,GetStylScrap,TEStylinsert,
TEGetPoint, and TEGetHeight. The styl resource format allows styled text to be
shared between applications via the Clipboard.

The Dialog Manager

Dialogs are similar to windows, but controls are associated with them automatically.
The Dialog Manager, written by Bruce Horn and Steve Capps, automatically handles
many details of dealing with windows and events for the programmer.

Dialog boxes are usually of two types: modal and modeless. Modal dialog boxes do
not go away and cannot be covered by other windows until the user performs some ac
tion. Modeless dialog boxes behave much like regular windows. Standard File's save
and open dialogs are examples of modal dialogs.

A special simple case of a dialog is an alert, which is always modal. Both alerts and
dialogs require a DITL resource that lists the items associated with the dialog. The stan
dard item types that can be used in a dialog are listed in the following table.

Item Type
0
4
5
6
7
8
16
32
64
128

Description
Application defined item (dialogs only)
Standard button control
Standard check box control
Standard radio button control
Control defined in CNTL resource
Static text
Editable text (dialogs only)
Icon
QuickDraw picture
Add to other IDs if disabled

The Dialog Manager is initialized by calling Ini tDialog. A resume procedure
pointer is optionally passed to this routine, which is stored in the low-memory global
named ResumeProc. When a System ,Error occurs-a bomb-the dialog has two
buttons: restart and resume. Resume is active only if the InitDialog call has set up a
resume routine to call. Few applications support this, but the MPW Shell does.

140 CHAPTER FOUR I THE MACINTOSH TOOLBOX

To create a dialog on the fly, use NewDialog or NewCDialog (creates a color
GrafPort); to create one from a DLOG resource, use GetNewDialog. You can dispose
of a dialog with DisposeDialog, or if you supplied the memory for the DialogRecord,
with CloseDialog. If a dialog may be needed, you can reserve memory for the dialog
by calling CouldDialog, which brings the DLOG in from disk and makes it unpurge
able. FreeDialog makes it purgeable again. Color dialog defaults are stored in the
System as actb 0 for alerts, dctb 0 for dialogs, and ictb for item lists.

To handle events in a modal dialog, call ModalDialog, which in tum calls
GetNextEvent and SystemTask. Your application should provide a filter procedure
that determines which events will cause ModalDialog to complete. This procedure is
like a mini-main event loop.

Modeless dialogs are best treated by first calling GetNextEvent to obtain an event
and then calling I sDialogEvent, which inspects the event to determine if it applies. If
it does, the next step is to call DialogSelect, which actually handles most events.
Your application will again need to have a filter procedure to provide application-specific
control of actions in the dialog.

Detailed information about a dialog item is accessed with GetDitem and SetDitem,
and individual items can be displayed or hidden by ShowDitem and HideDitem.
Fin dD It em is useful for finding out which item is where so that the cursor can be
changed if needed.

You can perform standard TextEdit operations on the editable text of a dialog box
with the glue routines DlgCut, DlgCopy, DlgPaste, and DlgDelete. Static text can
be changed by calling ParamText, and both static and editable text can be manipulated
with GetIText, SetIText, and SelIText. The text of dialogs is by default always in
the System font (that is, Chicago). To display static and editable text in a different font,
set a low-memory global by calling the glue routine DlgFont; the titles of controls will
still be displayed in the System font.

If you want a dialog to display information to the user without requiring any user in
teraction, use DrawDialog. UpdtDialog is a faster version that uses a supplied update
region, normally the visRgn of the window. Normally, Di al o gs elect and
ModalDialog handle all drawing and updating of a dialog.

Alerts are a special case of dialogs that incorporate sounds to inform the user of
problems. Alerts are not as flexible as dialogs in the types of items they can support, but
they are the most self-contained routines possible. A single ROM call creates a window,
handles events and interactions with its own event procedures, tracks controls, draws
and updates the window, and finally disposes of the window, returning a result. You
can create alerts by calling Alert, StopAlert, NoteAlert, or CautionAlert, all
of which retrieve ALRT resources. The latter three calls are the same as Alert, but they
also draw one of three standard alert icons found in the System. CouldAlert and
FreeAlert act analogously to the dialog routines of similar name. Alerts can use the
system beep sound (the default), or you can install a custom sound routine by calling
ErrorSound. Alerts do their work by calling NewDialog, ModalDialog, and
DisposeDialog.

THE DIALOG MANAGER 1 41

Dialogs and the User Interface

The Dialog Manager is not the sole component of a good user interface. Compared to
menus, for example, dialogs are slow. Another drawback is that dialogs are usually
modal, and a motto of Macintosh development has always been no modes! Then why
are modal dialogs used? Well, if there is a major error, or if the program cannot proceed
without getting the answer to a question, a modal dialog is perfect. It forces the user to
concentrate on the problem at hand. Many choices are not that time-critical, however,
and in such cases modeless dialogs or menus should be used instead.

An increasingly common dialog design problem has to do with buttons and their sizes
and placement. Although this may seem like a minor issue, users have come to expect a
standard user interface on the Macintosh, and it has recently become diluted.

All buttons should be 20 pixels high. Larger buttons are ugly; smaller buttons do not
allow any room for the button's title.

The default button should be highlighted to identify the action that will take place
when Return or Enter is pressed. Normally when users choose a menu item that brings
up a dialog box, they want to do what the menu item suggested. Therefore, the default
button should be the affirmative action, the "OK" or "Yes" option rather than the "No"
or "Cancel" option. About the only exception to this I can think of is the erasing of an
entire disk, which probably should have its default be "Cancel" because of the cata
strophic nature of a possible mistake.

Even Apple has begun to forget this recommendation. For example, recent versions
of the Font/DA Mover always ask, "Are you sure you want to remove that font?" when a
user clicks on "Remove" and the default button says "Cancel." When users click on
"Remove," 98 percent of the time they mean just that: they want the font removed. The
appearance of the dialog with an option to cancel is forgiving enough for users who re
ally did not want to remove the font. So if a dialog is to appear at all, the default should
be "Yes, do what I just told you to do-that is, remove the font!"

If the environment becomes overly protective, and everything requires multiple con
firmations and a dozen keystrokes just to do what the menu or button originally sug
gested, the Macintosh is complicating matters-and the computer is supposed to sim
plify our lives, right?

Another problem is that many applications that do highlight default buttons do so in
an ugly manner, with the highlighting being too fat or too thin. It is a matter of aesthet
ics. An application needs to look clean and consistent. Here are three simple lines of
Pascal that will create the standard highlight around a button whose rectangle has been
retrieved via GetDitem:

PenSize (3, 3);
InsetRect(displayRect,-4,-4);
FrameRoundRect(displayRect,16,16);

One final problem with dialog design has to do with the placement of buttons. Figure
4-1 shows an ideal dialog box.

142 CHAPTER FOUR I THE MACINTOSH TOOLBOX

Saue changes to SR71 :DR:Untitled?

n Yes D
(No) (Cancel)

Figure 4-1: An Ideal Dialog Box

Why is this dialog ideal? The most common action is highlighted as the default, and
the "Cancel" button is down and to the right of the other options that will alter data.
"Cancel" should always be down and to the right of other buttons. Normally, it is desir
able to save the changes, so the "Yes" option is rightly the default action. The "No" op
tion also affects things: it will discard all of the user's work. But "Cancel" will effec
tively do nothing. If a user is wandering through menus bringing up dialog boxes, the
"Cancel" button should be in the same location in all of these dialog boxes so that it is
easy to back out of something that might not do what was desired.

Unfortunately, in some recent applications, the "OK" button has been put in the lower
right comer, which is inconsistent with the Interface Guidelines.

It is nice to provide a keyboard equivalent for the three most common buttons. In this
case (taken from the MPW Shell), the letter "Y" or Enter or Return will select "Yes"; the
letter "N" will select "No"; and Command period (the universal cancel keyboard opera
tion) will cancel the entire operation.

To summarize:

• Buttons are always 20 pixels high.

• Highlighting is always done with a 3-pixel pen, 4 pixels out from the button.

• "OK" or "Yes" is almost always the default and should be placed above
"Cancel."

• "Cancel" is in the lower right comer and is very rarely the default.
• When there are just a few options, they should have keyboard equivalents.

THE DESK MANAGER 1 43

The Desk Manager

The Desk Manager, written by Andy Hertzfeld, handles desk accessories, the origi
nal mini-applications that have proved to be so handy. Techniques for writing a desk ac
cessory are covered in the device driver material found in chapter 2. The Desk Manager
acts as the interface to desk accessories from the host applications point of view. Two
excellent examples of desk accessory design are found in Donn Denman 's Note Pad and
Alarm Clock, my two personal favorites (see Figure 4-2).

' S File Edit Uiew Speci11I

7items 15,906Kindisk 3,960K

i''"'.[DA

LJApps

LJMN

l}]os

CJ Docs

CJ Stacks

LJSources

on
B items 1 5, 906K in disk

lfMPW' Shell nr: HyperCard

\ Rt>sEdit I Launch Word

~ F edit llJ ~acros

----12:00:33 PM

Thanks Donn for these great
DAs j

I

Figure 4-2: Desk Accessories

12:00 PM e1 ~

Desk accessories are always listed in the Apple menu, the very first menu on the
menu bar. The first menu item is traditionally an "About" the application item, followed
by a disabled line. Then a call to AddResMenu listing all DRVRs adds the names of the
available desk accessories to the menu.

When a user makes a choice from the Apple menu (determined by MenuSelect), the
application should call Get Item to return the desk accessory name. Then it can call
OpenDeskAcc with this name to bring up the DA. CloseDeskAcc requires the driver's
refNum, stored in the window Kind field for a DA's window. To give time to a desk ac
cessory for periodic events (like the Alarm Clock's time), call SystemTask. This
should be called in the application's main event loop or in interpreter loops so that DAs
and drivers everywhere have the time they need for background processing.

When your application is processing events, if FindWindow reports a mouse click in
a system window (DA), the application should call SystemClick; if MenuSelect re
ports a selection from the standard edit menu items (cut, copy, etc.) and a system win
dow is at the front, it should call SystemEdit . SystemEvent and SystemMenu are
called for you by their respective managers when needed. That 's about all there is to
supporting desk accessories.

144 CHAPTER FOUR I THE MACINTOSH TOOLBOX

The Scrap Manager

One of the most powerful yet simple innovations of the Macintosh is the Clipboard,
designed by Andy Hertzfeld. Through the Clipboard, data can be passed between appli
cations very easily. With the advent of Switcher, and now MultiFinder, this has become
even easier.

Every application should support the Clipboard. Two standard types of data are
widely supported: TEXT and PICTs. Your application should support the reading and
writing of at least one of these, depending on the nature of the program, and ideally
should read both. For example, a word processor should read and write TEXT to the
Clipboard and should also be able to bring in a QuickDraw picture as a PICT resource.
Your application can also create its own types, carrying more style and format informa
tion, if you like. That way a chunk of text with styles can be saved in the Scrapbook, for
example, and can be brought back in later without any loss of information.

Using the Clipboard (or scrap) is simple. To figure out what is on the Clipboard, call
InfoScrap. To clear the scrap, call ZeroScrap. To store something on the scrap, call
PutScrap. Because Put Scrap just adds to what is there already, several resource
types can be on the scrap simultaneously. To read the scrap, call Get Scrap.

The scrap can reside in memory and/or on the disk. If you want to force it to be read
into memory, use LoadScrap, and to force it to be written to disk (to save RAM, for
instance), call UnloadScrap.

Utilities

There are two sets of useful routines that are all too easy to ignore-the Operating
System (OS) Utilities and the Toolbox Utilities.

OS Utilities

Strings may be compared with Equal String or UprString, and Enqueue and
Dequeue are used by many OS routines to manage queues. A-trap addresses are manip
ulated with GetTrapAddress and SetTrapAddress, and parameter RAM is read by
InitUtil and written to by WritePararn.

The current date and time, as measured in seconds since January I, 1904, is returned
by ReadDateTirne and set with SetDateTirne. This long word can be converted to
and from a DateTirneRec by Date2Secs and Secs2Date. Two other handy routines
include Delay and SysBeep.

PACKAGE MANAGER 145

Toolbox Utilities

Bit manipulations are supported by BitTst, BitSet, BitClr, BitAnd, BitOr,
Bi tXor, Bit Not, and Bi tShift. Routines for word manipulations include Hi Word,
LoWord, and LongMul. Pascal strings can be made relocatable by calling NewString,
while an existing relocatable string can be changed with SetString. Get String re
turns the handle to a string located as a STR resource.

A general-purpose byte manipulator is found in the Munger function, which basically
replaces a target string with a replacement string in a separate destination string.
However, depending upon the six parameters passed to it, Munger can also do a simple
insertion or deletion, or it can just return the location where the target string matches in
the destination.

Package Manager

Packages are pieces of code that originally could not fit into ROM on the original
Macintosh. Each package contains a set of routines that are selected by a selector passed
to the package, along with the parameters to that routine. Since the 64 KB ROM, several
of the packages have been put into the more recent and larger RO Ms.

The Package Manager is initialized automatically when an application is launched by
calling InitAllPacks, which in tum calls Ini tPack for each package. There is no
public Pack 1, although a private copy of Pack 1 is used by ResEdit.

Pack 0-List Manager

This package debuted with the Macintosh Plus System disk after being developed for
use by ResEdit. The List Manager depends on all managers up and through TextEdit in
order to function properly. Lists are created with LNew, and columns and row can be
added and deleted with LAddColumn, LAddRow, LDelColumn, and LDelRow; an entire
list can be deleted with LDispose.

Within each row or column are cells manipulated with LAddToCell, LClrCell,
LGetCell, LSetCell, LCellSize, LGetSelect, and LSetSelect. The mouse
can be tracked with LClick and LLastClick. Cells can be navigated with LFind,
LNextCell, LRect, LSearch, and LSize. Lists are displayed with LDraw,
LDoDraw, LScroll, LAutoScroll, LUpdate, and LActivate. Custom list defini
tions are also possible.

146 CHAPTER FOUR I THE MACINTOSH TOOLBOX

Pack 2-Disk Initialization

This package contains the disk initialization code and alerts. DI Load brings the pack
age into RAM and makes the code and alerts unpurgeable; DIUnload undoes this ac
tion. DIBadMount is the main routine that should be called when a disk-inserted event
occurs with a result code in the high-order word of the event message. This means the
disk that is inserted should (probably) be erased. DIBadMount puts up an alert and ini
tializes the disk by calling DIForrnat, DIVerify, and DI Zero. These routines can also
be called directly.

Pack 3-StdFile

Four routines are available for putting up standard dialogs for accessing files.
SFPutFile allows the user to type a name for saving a file, and SFGetFile allows an
existing file to be chosen for opening. SFPPutFile and SFPGetFile allow you to use
custom dialog boxes.

Pack 4-SANE Arithmetic

Pack 4 contains the basic floating-point arithmetic functions of addition, subtraction,
multiplication, division, remainder, and square root, along with most of the IEEE rou
tines for the SANE environment. This package was disk-based on the original
Macintosh, but since the Macintosh Plus, it has been in ROM. More information on
SANE is found in chapter 5.

Pack 5-SANE Transcendentals

Pack 5 contains the logarithmic and trigonometric floating-point functions. This pack
age was disk-based on the original Macintosh, but since the Macintosh Plus, it has been
in ROM. More information on SANE is found in chapter 5.

Pack 6-lnternational String Utilities

These routines use two resources of type INTL that are in the System file. These re
sources specify date, time, currency, and measurement formats for different countries.
The current date and time are returned in a country-specific style as strings by the
I u oat e String and I u Ti rn est ring routines. I u Date P st ring and
IUTirnePString allow you to use a preferred format instead. Strings can be compared
with IUMagString and IUMagIDString, the latter of which ignores secondary order-

DUMP - C TOOL 1 4 7

ing. IUMetric indicates whether the metric system should be used, and the international
resources can be manipulated with the IUGetintl and IUSetintl calls.

Pack 7-Binary-Decimal Conversions

This package was disk-based on the original Macintosh, but since the Macintosh
Plus, it has been in ROM. It consists of two simple routines for converting integers to
and from strings: NumToString and StringToNum. These routines are part of SANE.

Pack 12-Color Picker

Colors on the Macintosh are usually specified with a set of three colors: red, green,
and blue. The main routine, called GetColor, allows a color dialog to be called up so
that the user can interactively select a color, which is returned as an RGBColor. Several
routines provide conversions between various color specifications, including CMY2RGB
(cyan, magenta, yellow to RGB), HSL2RGB (hue, saturation, lightness to RGB),
HSV2RGB (hue, saturation, value to RGB), and their inverses: RGB2CMY, RGB2HSL, and
RGB2HSV. Two conversion routines, Fix2Smal1Fract and Smal1Fract2Fix, are
provided for the data types used in the HSLColor and HSVColor types.

Dump- C Tool

This MPW tool dumps a hex and an ASCII view of a specified resource or of the en
tire data fork of any file. The tool is useful for quickly viewing resources.

Given a resource type, resource ID, and a file name, the specified resource will be
displayed in hex with its corresponding ASCII version . If a resource type without an ID
is specified, this tool functions like the UNIX tool strings: it shows the ASCII
printable characters of all of the resources of that type. This is useful for perusing STR
and STR# resources, for example.

/*
* Dump.c - File or resource text dumper

* - Written by Dan Allen 7/13/88

* - SetResLoad calls added 9/1/88

* - Works on running Shell 12/21/88

* - Dumping strings fixed 12/26/88

* - Works with both 2.0 & 3.0 C compilers 1/8/89

* - Fixed bug when dumping strings 1/21/89

* - Spinning cursor added 2/1/89
*/

148 CHAPTER FOUR I THE MACINTOSH TOOLBOX

#include <CType.h>
#include <CursorCtl.h>
#include <Memory.h>
#include <Resources.h>
#include <StdIO.h>
#include <StdLib.h>
#include <Types.h>

#define fsRdPerm 1

#ifdef ghs /* check for MPW C 2.0 */
#define openrfperm OpenRFPerm
#endif

typedef unsigned char byte;

Boolean printString;
long size;
void PrintBytes();

main(int argc,char *argv[])
{

Boolean
char
short
long
Handle
Res Type

purgeFlag;
oldState;
refNum,numRsrc,oldResFile;
i;
h;
rt;

if (argc < 2)
fprintf(stderr,"Dump [type [id]] file> stdout\n");
return 1;

InitCursorCtl(nil);
if (argc 2) return DumpFile(argv[l));
if (argc == 3) printString = true;

oldResFile = CurResFile();
SetResLoad(false);
refNum = openrfperm(argv[argc-1),0,fsRdPerm);
SetResLoad(true);
if (refNum == -1) {

UseResFile(oldResFile);

DUMP - C TOOL

fprintf(stderr,"it OpenRFPerm failed for file: %s\n",argv[argc-l]);
return 1;

rt= *((ResType *) argv[l));
numRsrc = (argc < 4) ? CountlResources(rt) 1;
for (i = 1; i <= numRsrc; i++) {

SpinCursor(-10);
SetResLoad(false);
h = (argc < 4) ? GetlindResource(rt,i) Get1Resource(rt,atoi(argv[2)));
SetResLoad(true);
if (h) size= SizeResource(h);
else {

UseResFile(oldResFile);
fprintf(stderr,"it GetResource failed: it%d\n",ResError());
return 2;

purgeFlag = *h ? false : true;
oldState = HGetState(h);
LoadResource(h);
if (ResError ()) {

UseResFile(oldResFile);
fprintf(stderr,"it LoadResource failed.\n");
return 3;

HLock (h);
PrintBytes (*h);
HUnlock (h);
HSetState(h,oldState);
if (purgeFlag) EmptyHandle(h);

UseResFile(oldResFile);
return 0;

149

150 CHAPTER FOUR I THE MACINTOSH TOOLBOX

static void PrintBytes(byte *p)

byte c,s[256];
long i = O,len O;

while (size--) {
c = *p++; i++;

if (isprint (c))
if (printString) putchar(c);
else s[len] = c;
len++;

if (!printString)
printf("%2.2X ",c);
if (i % 16 == 0) {

s[len] = '\0';
printf("\t%s\n",s);
SpinCursor(2);
i = len = 0;

else if (len > 80) {
putchar (' \n') ;
SpinCursor(2);
len = 0;

if (!printString && len > 0) {
s[len] = '\0';
i = 16 - i;
while (i--) printf(" ");
printf("\t%s\n",s);

static int DumpFile(char *fileName)

char *bufin;
int err;
FILE *input;

input= fopen(fileName,"r");
if (!input) {

fprintf(stderr,"JI Cannot open data fork of file %s\n",fileName);
return l;

fseek(input,0,2);
size= ftell(input);
if (size) {

bufin = malloc(size);
if (bufin) {

fseek(input,0,0);
fread(bufin,l,size,input);
err = O;

else {

DUMP - C TOOL 151

fprintf(stderr,"if Not enough heapspace: %d bytes needed\n",size);
err = 2;

else {
fprintf(stderr,"if Zero length file: %s\n",fileName);
err = l;

fclose(input);
if (!err) {

PrintBytes(bufin);
free(bufin);

return err;

152 CHAPTER FOUR I THE MACINTOSH TOOLBOX

ListRsrc - C Tool

This MPW tool is somewhat similar to the ResEqual that comes with MPW, but it has
a nicer two-column format for comparing the resources found in different files. It is
very useful, for example, in comparing two slightly different versions of the same
application.

This tool also illustrates some of the trickier aspects of manipulating resources. Its use
of UseResFile and SetResLoad calls allows it even to list resources from the currently
open System or currently running Shell.

Improving ListRsrc

Here are some suggestions for improving ListRsrc:

• Right now ListRsrc considers two resources the same if they are the same
type, ID, and size. However, the contents of the resources might be different.
Add code to compare the actual bytes of the resources.

• Add an option that allows two individual resources to be considered the same if
they are the same type and name rather than the same type and ID. This is useful
for CODE resources.

/*
* ListRsrc.c

*
- Lists resources from 2 files in a 2 column comparison format
- Written by Dan Allen 10/11/88

* - Works on running Shell (UseResFile) 12/21/88

* - Works with both 2.0 & 3.0 C compilers 1/8/89

* - Spinning cursors added 2/1/89

* - Second resource names added 2/6/89
*/

#include <CType.h>
#include <CursorCtl.h>
#include <Memory.h>
#include <Resources.h>
#include <StdIO.h>
#include <StdLib.h>
#include <String.h>
#include <Types.h>

#define f sRdPerm 1

#define MAXRSRC 1000

#ifdef ghs /* check for MPW C 2.0 */
#define getresinfo GetResinfo
#define openrfperm OpenRFPerm
#end if

typedef struct {
ResType resType;
short
long

res ID;
sizel, size2;

char *namel, *name2;
ResEntry;

LISTRSRC - C TOOL

static void
static char
static short
static long

FillTable(), DumpTable();
diffFlag,typeFlag,*filel,*file2;
id,refNuml,refNum2,oldResFile,OpenRsrc();
index;

static ResType rt;
static ResEntry rsrc[MAXRSRC];

main(int argc,char *argv[]}
{

long i;

if (argc < 2) {
fprintf (stderr, "ListRsrc [-d] [-t TYPE] filel [file2] \n");
return l;

InitCursorCtl(nil);
oldResFile = CurResFile();
for (i = l; i < argc; i++)

if (argv[i] [0] == '-')
switch (tolower (argv[i] [l])}

153

case 'd': diffFlag true; /* only list resources w/different sizes */
break;

else

case 't': typeFlag true; /* only list resources of specified type */
rt= *((ResType *) argv[++i]};
break;

if (!filel) refNuml = OpenRsrc(filel = argv[i]);
else if (!file2) refNum2 = OpenRsrc(file2 = argv[i]);
else {

UseResFile(oldResFile};
fprintf(stderr,"# ListRsrc can only deal with two files at a time.\n"};
return l;

if (filel) FillTable(refNuml};
if (file2) FillTable(refNum2};
UseResFile(oldResFile);
DumpTable (} ;
return 0;

154 CHAPTER FOUR I THE MACINTOSH TOOLBOX

char *AddName(char *name)
{

char *p;
int len;

len strlen(name);
p = malloc(len+l);
if (!p) {

fprintf(stderr,"# Not enough memory for strcpy in AddName.\n");
exit(4);

return strcpy(p,name);

void AddToTable(Handle h,long rsrcSize)

char
short
int

name [256];
id;
i;

ResType rt;

if (index >= MAXRSRC) {
fprintf(stderr,"# listrsrc's internal resource table is full.\n");
exit(3);

getresinfo(h,&id,&rt,name);
if (CurResFile() == refNuml)

rsrc[index] .resType = rt;
rsrc[index] .resID
rsrc[index] .sizel
rsrc[index] .namel
index++;
else {

id;
rsrcSize;
AddName(name);

for(i = 0; i < index; i++) {
if (rt == rsrc[i) .resType && id== rsrc[i] .resID) {

rsrc[i) .size2 rsrcSize;
rsrc[i) .name2 = AddName(name);
return;

rsrc[index] .resType = rt;
rsrc[index] .resID id;
rsrc[index] .size2 rsrcSize;
rsrc[index] .name2 AddName(name);
index++;

LISTRSRC - C TOOL 155

void DumpTable()
{

int i;

if (file2)
printf("Type ResID File 1
for(i = 79; i; i--) putchar('-');
putchar ('\n') ;

for(i = O; i <index; i++) {

File 2 Name 1

if (diffFlag && rsrc[i] .sizel == rsrc[i] .size2) continue;
printf("%.4s %6d",& (rsrc[i] .resType) ,rsrc[i] .resID);
printf(" %6u bytes",rsrc[i] .sizel);
if (file2) printf(" %6u bytes",rsrc[i] .size2);
printf(" %-16s",rsrc[i].sizel? rsrc[i].namel: "");
if (file2) printf("%-16s",rsrc[i].size2? rsrc[i] .name2 "");
putchar (' \n') ;
SpinCursor(2);

void FillTable(short refNum)

short numTypes,numRsrc;
long i,j,rsrcSize;
Handle h;

UseResFile(refNum);
numTypes = (typeFlag) ? 1 : CountlTypes();
for (i = 1; i <= numTypes; i++) {

SpinCursor(-10);
if (!typeFlag) GetlindType(&rt,i);
numRsrc = CountlResources(rt);
for (j = 1; j <= numRsrc; j++)

SetResLoad(false);
h = GetlindResource(rt,j);
SetResLoad(true);
if (h)

rsrcSize = SizeResource(h);
else {

UseResFile(oldResFile);
fprintf (stderr, "# GetResource failed: #%d\n", ResError ());
exit (2);

AddToTable(h,rsrcSize);

UseResFile(oldResFile);

Name 2\n");

156 CHAPTER FOUR I THE MACINTOSH TOOLBOX

static short OpenRsrc(char *fileName)
{

short refNum;

SetResLoad(false);
refNum = openrfperm(fileName,O,fsRdPerm);
SetResLoad(true);
if (refNum == -1) {

fprintf(stderr,"# OpenRFPerm failed for file: %s\n",fileName);
exit(l);

return refNum;

CleanRsrc - C Tool

This MPW tool deletes the entire contents of a file's resource fork. The MPW Shell
does offer the built-in command delete -r, which can also remove a resource fork,
but this tool checks first to see if there are any resources in the file. If there are, the fork
is not deleted unless the -f(orce) option is being used.

Why such a tool? It was originally written to recover wasted space left by early ver
sions of HyperCard in its stacks, but since then it has grown to have other uses as well.
It is a simple and handy way to make a set of MPW text files all have the same font and
size, because it can delete the MP SR resource that contains such information. (New MP SR

resources are created automatically when such documents are opened.) Running this tool
on MPW Pascal 3.0 source files will remove all of the automatic symbol information as
well. (A script just to remove such information can be found in the Pascal chapter of this
book.) If you run this tool on an application, you will end up deleting the entire applica
tion, so be careful!

This tool deletes the resource fork by opening the resource fork and setting the end of
file to the zeroth byte.

/*
* CleanRsrc.c

*
*
*
*
*/

- Deletes resource forks of the specified files
originally to gain wasted space in HyperCard Stacks.

- Written by Dan Allen 11/24/87
- Added -p and -n options 9/1/88
- Works with both 2.0 & 3.0 C compilers 1/8/89

#include <CType.h>
#include <CursorCtl.h>
#include <Files.h>
#include <Resources.h>
#include <StdIO.h>

#ifdef ghs /* check for MPW C 2.0 */
#define openresfile OpenResFile
#define openrf OpenRF
#endif

static char forceFlag, noModFlag, progFlag;

main(int argc,char *argv[])
{

char s[256],*p;
short i, j, err, refNum;
long savedDate;
ParamBlockRec pb;

InitCursorCtl(O);
for(i = 1; i < argc; i++)

if (argv[i] [OJ == '-')
switch (tolower (argv [i] [l]))

CLEANRSRC - C TOOL 157

case 'f': forceFlag =true; break; /* force the fork to be deleted*/
case 'n': noModFlag =true; break; /*do not change mod date of file*/
case 'p': progFlag = true; break; /* echo progress to stderr */
default: break;

if (argc < 2) {
fprintf (stderr, "CleanRsrc [-f] [-n] [-p] files ... \n");
return l;

for (i = l; i < argc; i++) {
if (argv[i] [0] ' - ') continue;

if (noModFlag)
p = argv[i]; j l;
while(*p) s[j++] = *p++;
s [0] = j-1;
pb.fileParam.ioNamePtr = s;
pb.fileParam.ioVRefNum = O;
pb.fileParam.ioFVersNum = 0;
pb.fileParam.ioFDirindex = 0;
err= PBGetFinfo(&pb,false);
savedDate = pb.fileParam.ioFlMdDat;

158 CHAPTER FOUR I THE MACINTOSH TOOLBOX

refNum = openresfile(argv[i]);
if (refNum == -1) continue;

if (CountlTypes() && !forceFlag)
if (progFlag)

fprintf(stderr, "#File: %-19s - Rsrc fork not deleted.\n",argv[i]);
CloseResFile(refNum);
continue;

CloseResFile(refNum);

err= openrf(argv[i],0,&refNum);
if (err) {

fprintf(stderr,"# ERROR: %d\tCannot open file %s\n",err,argv[i]);
return 2;

err= SetEOF(refNum, 0);
if (err) {

fprintf(stderr,"# ERROR: %d\tCannot set EOF on file %s\n",
err, argv[i]);

return 3;

err= FSClose(refNum);
if (err) {

fprintf(stderr,"# ERROR: %d\tCannot close file %s\n", err, argv[i]);
return 4;

if (noModFlag)
pb.fileParam.ioNamePtr = s;
pb.fileParam.ioVRefNum = 0;
pb.fileParam.ioFVersNum = 0;
pb.fileParam.ioFDirindex = 0;
err= PBGetFinfo(&pb,false);
pb.fileParam.ioFlMdDat = savedDate;
err= PBSetFinfo(&pb,false);

if (progFlag)
fprintf(stderr,"File %-19s #DELETED resource fork.\n",argv[i]);

return 0;

ROT A TE WINDOWS - ASSEMBLY LANGUAGE FKEY 159

MacsBugKey - Assembly Language
FKEY

This is the smallest possible FKEY. It simply drops into MacsBug. To get out of
MacsBug, type the letter g and press Return. MacsBugKey is not as useful as
the ADBKey INIT presented in chapter 2 for ADB-equipped Macs, but this FKEY will
work on a Mac Plus. If MacsBug is not installed, this FKEY is a fast way of bringing
up the bomb box!

;; MBKey by Dan Allen
Select the following 2 lines and press enter to build into the current system
Asm MacsBugKey.a

; Link -o "{System Folder)System" MacsBugKey.a.o -rt FKEY=6 -sg MacsBugKey

MAIN
STRING ASIS

bra.s start
dc.w 0,'FKEY',6,0

start dc.w $A9FF
rts

END

RotateWindows - Assembly
Language FKEY

This FKEY allows you to cycle through the open windows in any application. It is
especially useful in the Finder, where there is no Windows menu. If you have lots of
folders open, these 30 bytes of code are pretty handy

RotateWindows by Dan Allen. Thanks to Brian Stearns for the idea.
Select the following 2 lines and press enter to build into the current system

, Asm WRFKey.a
Link -o "{System Folder)System" WRFKey.a.o -rt FKEY=5 -sg RotateWindows

160 CHAPTER FOUR I THE MACINTOSH TOOLBOX

start function result
FrontWindow: WindowPtr
is there a window there?
yes, send it to the back
no, pop stack pointer
and return

@1 zero means to the back
SendBehind(wind,behind: WindowPtr)

MFSwitcher- Assembly Language
FKEV

Switcher reserved the bracket keys to move between applications, but MultiFinder
offers no keyboard facility to change layers. This FKEY partially solves this problem by
allowing you to rotate through the various partitions through a simple technique: this
FKEY clicks in the upper right corner of the menubar. MultiFinder detects the click and
does the switch.

MultiFinder FKEY Switcher
Written by Dan Allen 2/6/1989
Select the following 2 lines and press enter to build into the current system
Asm Switch.a
Link -o 'HD:System Folder:System' Switch.a.a -rt FKEY=9 -sg MFSwitcher

MAIN
STRING ASIS

bra.s start
dc.w 0, 'FKEY ', 9, 0 header for FKEY #9

start tst.l $B7C test Twitcher2
ble.s exit no MF? cruise ...

move.l $830, - (sp) save current Mouse position
move.w $BAA,d0 get MBarHeight
lsr.w tll, dO divide by 2
swap dO
move.w $83A,d0 grab screen width from CrsrPin
sub.w #$18,dO icon offset from right scrn edge

move.! d0,$830

move.w Jll,aO
dc.w $A02F
move.l (sp)+,$830

exit rts

END

Conclusion

CONCLUSION 161

stuff Mouse location

mousedown event (msg undefined)
; PostEvent

; restore Mouse

The Toolbox is the foundation on which all Macintosh applications are built. This
chapter looked at the important parts of the Toolbox:

• Resource Manager

• Event Manager

• Window Manager

• Control Manager

• Menu Manager

• TextEdit

• Dialog Manager

• Desk Manager

• Scrap Manager

• Utilities

• Package Manager

The code in this chapter illustrated the Resource Manager and the Event Manager.
Code in other chapters will illustrate many of the other managers.

Recommended Reading

The single best resource for learning about the Toolbox is Inside Macintosh. It is the
"Bible" of the Macintosh, and you should read it from cover to cover at least once and
refer to it often thereafter. Apple's Tech Notes are an on-going addendum to Inside
Macintosh; they correct errors and provide information about various techniques.
Chernicoff's Macintosh Revealed is a useful supplement with an alternative view of the
Toolbox.

CHAPTER 5

SANE

This chapter looks at several numerics environments available to developers. The best
known is SANE, the Standard Apple Numerics Environment, which is Apple's imple
mentation of the IEEE 754 and IEEE 854 floating-point standards for floating-point
arithmetic. (The 754 standard is a binary standard, and 854 is radix-independent.)

This chapter also examines how and when to use the 68881/68882 floating-point co
processors, the numeric libraries that are part of various programming languages, and
the Fixed and Fract series of traps provided also by the Macintosh OS.

The advantages and disadvantages of each of these various numerics environ
ments are discussed. The trade-offs among speed, accuracy, and portability will be fairly
obvious.

Following the discussion of numerics environments is the source code for various
MPW tools that illustrate the usage of various numeric functions. The tools are:

• NumTheory, which calculates the properties of a given integer

• Hash, which measures and analyzes various hashing functions

• Rand, which statistically compares several random number generators

• Solar, which computes the current position of the sun and planets

• Sun, which is a more accurate model of just the sun

• Det, which calculates determinants of Finlayson matrices as a test of SANE

SANE Functionality

162

SANE adheres to the IEEE standards, which specify the following functionality:

• Single-, double-, and extended-precision data formats. (Only single is actually
required by the standard.)

• Rounding modes, including round to nearest (tie cases round to even), and di
rected roundings: round toward +=, round toward -=, and round toward 0.

• The operations of add, subtract, multiply, divide, remainder, and square root,
with results correctly rounded to the closest possible representation of the in
finitely precise result.

SANE FUNCTIONALITY 163

• Roundings and conversions between the floating-point formats and integral val
ues, as well as conversions between floating-point and decimal strings.

• Relational comparisons between floating-point numbers, with the four mutually
exclusive relations of less than, equal, greater than, and unordered.

• Signed infinities, quiet and signaling NaNs (Not a Number), and signed zeros,
including infinity arithmetic.

• Exceptions, including invalid operations, division by zero, overflow, under
flow, and inexact operations, along with trap handlers to override the default
behavior of exceptional conditions.

History of SANE

Software SANE began life July 3, 1982, when Jerome Coonen began his work on
FP68K. Before coming to Apple, Jerome studied for his Ph.D. at the University of
California at Berkeley with Professor W. Kahan, who was a major contributor to
Hewlett-Packard's HP-38C and HP-15C calculators and the excellent Math ROMs for
the HP-71B and HP-75C portable computers. Coonen and Kahan were two of the three
primary authors of the early drafts which became the IEEE standards. Thus, it is no ac
cident that Apple's implementation of IEEE arithmetic adheres scrupulously to these
standards. Many members of the Apple Numerics Group also contributed, including
David Hough, Colin McMaster, Kenton Hanson, Clayton Lewis, and Jim Thomas. In
the end, however, it was Jerome who wrote almost every line of SANE in hand-coded
68000 assembly language.

SANE was implemented in three pieces, as shown in the following table.

Package
PACK 4
PACK 5
PACK 7

Name
FP68K ($A9EB)
Elems68K ($A9EC)
DecStr68K ($A9EE)

Functionality
All IEEE except string conversions
Log, exp, trig, financial functions
Decimal scanners and formatter

On the original Macintosh, SANE existed as RAM-based packages kept in the System
file, but starting with the Macintosh Plus, SANE was put in ROM and it has stayed there
ever since. Only three traps are consumed when the package interface is used. SANE's
arguments are pushed onto the stack by address (PEA), first the source and then the des
tination. Finally a routine selector (opword) is pushed onto the stack to specify which
operation to perform.

In addition to the requirements of the IEEE standards, Apple's SANE implements
several items that are defined and recommended by the standard, as well as a few fea
tures not mentioned by the standard:

1 64 CHAPTER FIVE I SANE

• extended and comp data formats with 80-bit accuracy (18-19 decimal digits)

• The exponential functions ex, 2x, ex - 1, 2x - 1, xY

• The logarithmic functions ln, log2, ln (1 +x), log2 (l+x)

• The trigonometric functions sin, cos, tan, atan

• The miscellaneous functions compound, annuity, and randomx

• The auxiliary routines scalb, logb, neg, abs, copy sign, nextafter, and
class for inquiring about parts of numbers

Software SANE versus 68881 SANE

On Macs without a floating-point coprocessor, SANE comes in one flavor: extremely
accurate but perhaps a bit slow for intensive number crunching. Most operation destina
tions are extended-precision, with the resulting intermediate math accurate to 80 or 96
bits.

On Macs equipped with a Motorola 68881 or 68882 floating-point coprocessor, there
is a choice to be made. (The 68881 and the 68882 have identical functionality. The
68882 has been re-engineered with hardware pipelining so that, in carefully coded cases,
it will run about twice as fast as the 68881. We will just refer to the 68881 and under
stand that the 68882 is included.) Much of SANE's functionality can be handled in
hardware by these chips at much greater speeds, but sometimes with a loss in accuracy.

Although basic arithmetic (+, -, *, /, sqrt, rem), roundings, comparisons, and con
versions are identical whether done in hardware or software, the other SANE functions
can be less accurate when done by the 68881. For example, at an (tan (o . 5)) is exact
with software SANE but not with MC6888 l SANE. Software SANE functions, particu
larly trigonometric, generally provide better accuracy than the 68881. The elementary
functions of the chips are generally accurate to double precision, however, and they do
execute almost 100 times more quickly than software SANE functions.

You can choose which version of SANE to use by compiling code written with MPW
C or MPW Pascal using various compile-time options. The -mc68881 option specifies
that you should use the 68881 directly for basic arithmetic and some other operations but
use software SANE for the elementary functions. Thus, all results will be identical with
or without this option turned on. On 68881-equipped machines, software SANE uses
the 68881 for basic math functions, because they return the same results as the software
packages and will therefore run faster than the software version.

If speed is desired at the expense of accuracy, the -e 1ems8 81 option generates code
to call the chip directly for all functions that are available on the chip. If you plan to use
either of these options, the math chip must be present or the program will bomb.

How about writing an application that has some modules compiled without direct 881
calls and some modules compiled with 881 calls? You may want to do this in an applica
tion that takes advantage of the 881 if it is around but that still will run on a machine that
does not have the math chip. Well, there are a few problems with this. First, the extend-

SANE FUNCTIONALITY 165

ed data formats are different between software and 881 SANE: 80 bits versus 96 bits.
The information content is the same, but an extra 16 bits of garbage is inserted between
the exponent and mantissa with 881 SANE. This garbage must be taken into account if
extendeds are to be used by both versions of SANE. Recent versions of the SANE libra
ries have routines such as x96tox80 and x80tox96 to help with these conversions.

The second problem is that MPW compilers generate 881 code that is executed in the
first lines of the run-time initialization if any of the 881 options are specified. In order to
have the application run on a machine without an 881, the main program segment must
be compiled without any 881 options. A test can then be made to see if an 881 is present;
if so, the separated compiled modules built with the 881 options can be called safely.

Portability Among Numeric Environments

The mathematical functions available on the Macintosh with software SANE (which
we will refer here to as the PACKs), the 68881, and the standard library functions of C
and Pascal create a real portability headache: which calls should you use? For example,
if a 68881 is present the following functions are also provided:

• The logarithmic functions 10x, loglO

• The trigonometric functions asin, acos, sinh, cosh, tanh, atanh, and
sincos

• The miscellaneous functions modulo, extract mantissa, set condition codes, and
multiply and round to single or double precision

The following table shows which functions are implemented where and under what
name. In the PACKs column, the hexadecimal selector value is given for those functions
implemented by software SANE; in those cases where there are multiple routines that
depend upon data format, the routine that returns extended precision is listed. The 68881
column lists the official Motorola names of the floating-point instructions as found in the
MC68881 User's Manual.

The C routines listed in this table are those that are part of the ANSI C standard
<math. h> library. They are implemented in MPW C either as calls to the packages or as
direct in-line calls to the 68881, depending upon the state of the compile time flags.
Apple extensions to the MPW 3.0 C compiler that appear when you are using the
-mc68881 and -elems881 flags are marked in this table with an asterisk. These calls
are not available unless this flag is used. Similarly, the Pascal routines listed are those
that are part of ISO standard Pascal, and they, like the C routines, call either the pack
ages or the 881, depending upon the -me 6 8 8 81 flag.

A confusing point is that all languages (assembly language, C, and Pascal) can call
SANE library routines in addition to using their own standard routines, which are most
likely implemented as calls to SANE themselves. For example, ANSI C does not
support the IEEE-style remainder, so the table shows a blank for C. But MPW C fully

166 CHAPTER FIVE I SANE

supports SANE, so you can access the IEEE remainder function by linking to the
CSANELib.o library, which will call the PACKs. Alternately, ifthe -mc68881 option
is turned on and the CSANELib881.o library is linked to instead, the library routine will
simply call the chip.

Unless otherwise specified, all arguments and results are of type extended.

Function PAC Ks 68881 c Pascal

Arithmetic FP68K
Addition $0000 FADD + +
Subtraction $0002 FSUB
Multiplication $0004 FMUL * *
Division $0006 FDIV I I
Remainder, IEEE (md to nearest) $000C FREM
Remainder, modulo (md to zero) FMOD fmod
Negation $000D FNEG
Absolute value $000F FABS fabs abs
Copy sign $0011
Square root $0012 FSQRT sqrt sqrt
Nextafter $0013
Integer part, cur. rounding mode $0014 FINT
Integer part, rounded to zero $0016 FINTRZ trunc* trunc
Integer part, rounded to -oo floor
Integer part, rounded to += ceil
Round, ties round away from zero round
Integer & fractional parts modf
Scale x to [.5,1) and a power of 2 frexp
Scale x by 2Ai (i: integer) $0018 FSCALE ldexp
Extract exponent (logb) $001A FGETEXP
Extract mantissa FGETMAN

Logarithmic Elems68K
Log base e (In or natural log) $0000 FLOGN log ln
Log base 2 $0002 FLOG2 log2*
Log (I +x), base e $0004 FLOGNPl lnl*
Log (l+x), base 2 $0006
Log base 10 (common log) FLOGlO loglO

Exponential Elems68K
eAx (exponential, natural antilog) $0008 FETOX exp exp
2"x $000A FTWOTOX exp2*
eAx - I $000C FETOXMl expl*
2Ax - I $000E
!()Ax (common antilog) FTENTOX explO*
xAi (i: integer) $8010
xry $8012 pow

Function PACKs
Trigonometric Elems68K
Sine $0018
Cosine $001A
Tangent $001C
Inverse sine
Inverse cosine
Inverse tangent $001E
Angle of (x,y) in range [-7t,7t]
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Hyperbolic inverse sine
Hyperbolic inverse cosine

68881

FSIN
FCOS
FTAN
FAS IN
FACOS
FATAN

FSINH
FCOSH
FT ANH

SANE FUNCTIONALITY 167

c

sin
cos
tan
as in
a cos
a tan
atan2
sinh*
cosh*
tanh*

Pascal

sin
cos

arctan

Hyperbolic inverse tangent FA TANH atanh*

NaNs and Infinities

The IEEE standard provides support in its data types for results that are not valid
numbers. For example, the result of taking the square root of a negative number is not
itself a real number. By using NaNs (Not A Number), this anomolous result can be re
turned. Dividing by zero can return infinity, another unique bit pattern. The following
table lists the various NaN codes that software SANE implements.

NaN

1
2
4
8
9
17
'.!)

21
33
34
36
37
38
255
INF
-INF
-0

Code Meaning

Invalid square root (sqrt(- I))
Invalid addition (+INF - INF)
Invalid division (0/0)
Invalid multiplication (0 x INF)
Invalid remainder or mod (x rem 0)
Invalid ASCII string conversion
Comp NaN to float
Attempt to creat NaN(O)
Invalid argument to trig routine
Invalid argument to inverse trig routine
Invalid argument to log routine
Invalid argument to x11i or x11y routine
Invalid argument to financial function
All 68881 NaNs
l+INF
-1/0
1/-INF

168 CHAPTER FIVE I SANE

Remainders, Modulo, and Rounding

The IEEE standard requires, and SANE supports, four rounding modes: toward zero,
toward negative infinity, toward positive infinity, and to nearest. Depending upon which
mode is set, different functions are available. For example, calling the integer part rou
tine with rounding to zero is the same as truncating, whereas rounding to positive infin
ity is the ceiling function.

Different types of remainder functions are available if you use different rounding
modes as well. The following two tables show the various options available from several
languages. The HP-7 lB-a hand-held BASIC computer that fully supports IEEE
arithmetic-is also included for comparison.

Function Asm w/881 ANSI c ISO Pascal Postscri~t HP-718

Int Arguments;
Int Result
Absolute value abs abs abs abs
Integer division divs,divu I div idiv div
(round to zero)
Remainder (from divs,divu % mod mod nnd
integer division)

Real Argument;
Int Result
Round to nearest, round
ties away from 0
Integer part (same (int) trunc cvi ip
sign as arg)

Real Arguments;
Real Result
Absolute value abs fabs abs abs abs
Integer part (same fint w/md to 0 modf truncate ip
sign as arg)
Fractional part (same modf fp
sign as arg)
Floor (greatest fint w/md to-= floor floor int, floor
integer::;; x)
Ceiling (least integer fint w/md to ceil ceiling ceil •
;:::: x) -loo

Round to integer fint,fintrz round (pos)
(near,+oo,--oo,zero)

FIXED AND FRACT ARITHMETIC 169

Function Asm w/881 ANSI C ISO Pascal Postscript HP-718

Remainders
Remainder = x - y* finod
ToZero(x/y)
Reduction = x - y*
ToNearest(x/y)
Modulo = x - y*

Floor(x/y)

Remainder Theorl':

frem

Remainder= x - y* ToZero(x/y)
Reduction = x - y*
ToNearest(x/y)
Modulo= x - y* Floor(x/y)

frnod

PeriodicitI

not periodic
lyl or 21yl

lyl

Fixed and Fract Arithmetic

mxl

mod

Interval Rounding Standard
(-lyl,O] [0,lyl) Exact ANSI Basic
[-lyl/2,lyl/2] Exact IEEE 754

(y,O] [O,y) Inexact Math

In addition to the IEEE-compliant extended-precision routines, the Macintosh also has
a fast set of routines that work with numbers in two fixed-point fonnats: Fixed and
Fract. Both fonnats occupy the same size as a Longint, or 32 bits. Although these
fonnats do not support IEEE arithmetic (NaNs, infinities, multiple rounding modes),
they are useful in certain domains where extended-precision accuracy is overkill and
speed is critical. Their usefulness on an 881 machine, however, is questionable, because
881 calls giving full extended precision are actually faster than fixed-point math on such
machines! The FixMath routines each have their own A-trap and use the Toolbox regis
ter conventions of passing their parameters on the stack. Jerome Coonen authored all of
FixMath except for the trig routines, which Kenton Hansen wrote.

The Fixed fonnat represents a number in the range ±0.00002 to ±32767 .99998,
with about 4.5 fractional digits of accuracy. The integer and sign are located in the high
order word, just like a standard integer. The fractional part is contained in the low-order
word, with the most significant bit representing· 1/2 and the least significant bit
representing 1/65536. Addition and subtraction can be perfonned using nonnal math
(ADD. L, SUB. L), and negation is done by 2's complement (NEG. L). Multiplication of
two Fixed point numbers is done with FixMul, and division of two 16-bit integers
returns a Fixed by calling FixRatio. A FixDiv that accepts Fixed numbers was
added in the 128 KB ROMs. FixRound rounds Fixed numbers, with halfway ties
being rounded up. The HiWord and LoWord routines allow you to access the integer
and fractional parts, respectively. All of the FixMath routines were also improved in the
128 KB ROMs so that they handle exceptions in the spirit of the IEEE standard. For
example, overflows return the maximum representable values $7FFFFFF and
$80000000, and division by zero returns the maximum value correctly signed to match
the numerator.

170 CHAPTER FIVE I SANE

The Fract format was introduced in the Mac Plus 128 KB ROMs, with bit 31 being
the sign bit, bit 30 being an integer (0 or 1), and the remaining bits 29 to 0 being a frac
tion with about 8.5 digits of accuracy. Thus, the dynamic range of a Fr act is approxi
mately ±9e-10 to ±1.999999999. Like Fixed numbers, Fract numbers add and sub
tract just like Longints. FracMul, FracDiv, FracSqrt, FracSin, FracCos, and
FixATan2 all accept and return Fr acts. FracSqrt, however, treats its argument as
an unsigned Fract in the range 0 to 3.999999999, because negative numbers are not
allowed. With the addition of the Fr act format came conversion functions: Long2Fix,
Fix2Long, Fix2Frac, Frac2Fix, Fix2X, X2Fix, Frac2X, and X2Frac, where X
denotes extended precision.

Fixed-point math is used by QuickDraw and the Font Manager in drawing text. A
good use of Fr act is found in the Map cdev which stores the MachineLocation lati
tude and longitude as type Fr act in parameter RAM as fractions of a great circle of 90°.
Thus, a latitude of 1.0 = 90°, a longitude of -2.0 = -180°, etc.

NumTheory - C Tool

This tool is just for fun. If you like number theory, this tool tells you everything that
you wanted to know about a given number. (Well, actually, it only begins to tell you.
The properties of numbers are endless) These facts include:

• Prime numbers-The program either verifies primality of the specified number
or lists the number's prime factors. Optionally, the program can generate a list
of prime numbers by the Sieve of Eratosthenes.

• Perfect squares-If the input is the exact square root of a larger number, it is a
perfect square. This is checked.

• Squarefree numbers-If the input number is not perfectly divisible by the
squares of any smaller numbers, it is squarefree.

• Collatz sequences-A Collatz sequence is the sequence of numbers that occurs
when even numbers are divided by 2 and odd numbers are multiplied by 3 and 1
is added. (It is sometimes referred to as the 3N+ 1 problem.) This tool checks
the number of steps taken in the Collatz sequence until a cycle occurs.
Optionally, the program can look for long Collatz sequences.

• Fibonacci numbers-If the input number is a Fibonacci number, the program
lists which Fibonacci number it is. Optionally, the program can list Fibonacci
numbers.

• Harmonic numbers-The - h option prints the nth harmonic number, which is
the sum of the reciprocals of the first n integers.

NUMTHEORY - C TOOL 171

Although this tool is mainly for fun, much of number theory is very important to
computer science. The design and measurement of the running time of a particular algo
rithm, for example, relies heavily on the results and theories of number theory.

/*

*
*

NumTheory.c - Generates and checks primes, Collatz sequences, etc.
- Written by Dan Allen 2/15/89

*/

#include <CursorCtl.h>
#include <Math.h>
#include <StdIO.h>
#include <StdLib.h>

pascal long TickCount() extern OxA975;

#define FALSE 0
#define TRUE 1

static char collatzFlag,fibFlag,harmonicFlag,primeFlag,sieveFlag;
static unsigned seed = 1;

main(int argc,char *argv[])

int i;
unsigned n;
extended x;

seed= TickCount(); n = RandKR();
for (i = 1; i < argc; i++)

if (argv[i] [0] == '-')
switch (argv[i] [1]) {

case 'c': collatzFlag = TRUE; break;
case 'e': sieveFlag = TRUE; break;
case If I: fibFlag = TRUE; break;
case 'h': harmonicFlag = TRUE; break;
case 'p': primeFlag = TRUE; break;

else n = atoi(argv[i]);

if (collatzFlag) Collatz(n);
else if (fibFlag) Fibonacci(n);
else if (harmonicFlag) Harmonic(n);
else if (primeFlag) Factor(n I 1);
else if (sieveFlag) Sieve();
else

if (Factor(n)) Factorize(n);
else printf("%u is prime.\n",n);

172 CHAPTER FIVE I SANE

i = x = sqrt(n);
if (i x) printf("%u is the perfect square of %u.\n",n,i);

for (i = 2; i <= x; i++)
if (n % (i*i) == 0) break;

if (i > x && n > 2) printf("%u is squarefree.\n",n);

i = Fibonacci(n);
if (i >= OJ {

printf("%u is the %d",n,i);
switch (i)

case 1: printf("st & 2nd"); break;
case 3: printf("rd"); break;
default: printf("th");

printf(" Fibonacci number.\n");

printf("%u has a Collatz cycle of %u.\n",n,Collatz(n));

return O;

int Collatz(unsigned m) /* The 3N+l problem */

unsigned i,j,n,num,max = O;

for (i = m; i <= OxFFFFFFFF; i++) {
j = O; n = i;
while (1)

j++; if (n < 2) break;
n = n & 1 ? 3*n+l : n/2;

if (!collatzFlag) return j;
if (j > max) {

max = j; nurn i;
printf("%6u -> %6u cycles\n",num,max);

if (i % 25 == 0) SpinCursor(l);

int Factor(unsigned n)

unsigned i,max,factor;

if (n < 2) return 1;
if (n == 2) return O;
if (n % 2 == 0) return 2;
for (; n < OxFFFFFFFF; n += 2) {

max= ceil(sqrt(n));
factor = O;
for (i = 3; i <= max; i += 2)

if (n%i == 0) { factor = i; break;)
if (!primeFlag) return factor;
if (!factor) printf("%u is PRIME\n",n);
SpinCursor(l);

Factorize(unsigned n)
{

unsigned f;

if (n < 4) return;
printf(''%u = %u'',n,f
while (TRUE) {

n /= f;

f = Factor {n);

Factor(n));

if (fl printf(" * %u",f);
else break;

printf(" * %u\n",n);

int Fibonacci(unsigned n)

unsigned i,fn,fnl,fn2;

if (! fibFlag) {
if (n < 2) return n;
fn = 2; fnl = fn2 = 1;
for (i = 3; fn <= n; i++)

if (fn == n) return i;
fn2 = fnl;
fnl = fn;
fn = fnl + fn2;

return -1;

for (i = fn2 = 0,fnl = 1,fn = 1; i < 48; i++)
printf("Fibonacci %3u = %10u\n",i,fn2);
fn2 = fnl;
fnl = fn;
fn = fnl + fn2;

NUMTHEORY - C TOOL 173

1 7 4 CHAPTER FIVE I SANE

Harmonic(unsigned n)
{

unsigned i;
extended h = 0.0;

for(i = l; i <= n; i++) {

h += 1. 0/i;
printf("Harmonic %6u = %3.18f\n",i,h);

int RandKR ()

seed = seed * 1103515245 + 12345;
return (unsigned) (seed >> 16) % 32768;

#define MAXPRIME 8192
static char sieve[MAXPRIME];

Sieve()
{

unsigned i,j;

for (i = 2; i < MAXPRIME; i++)
sieve[i] = i & 1 ? TRUE : FALSE;

for (i = 3; i < MAXPRIME; i++)
if (sieve[i] == TRUE) {

for (j = i + i; j < MAXPRIME; j += i)
sieve[j] =FALSE;

for (i = 3; i < MAXPRIME; i++)
if (sieve[i] ==TRUE) printf("%u is prime.\n",i);

Hash- C Tool

Hashing is a powerful technique for finding items in a table. Most compilers use
hashing to look up identifiers in their symbol tables. Different hash functions are suited
for different types of data; this tool analyzes the resulting distributions of different hash
functions. The tool uses a standard chi-square test, among other statistics, to measure
how optimal these functions are.

Hash has a generalized hash routine that can take different arguments, thus creating
different hash functions. Several interesting combinations of a multiplier and a modulus
are set by the -e, -o, -q, and -t options, and any specific multiplier and modulus can
be set by the - k and -m options. A random pair can be chosen with the - r option.

HASH - C TOOL 175

The default hash function is the same as the following simplified C function, where
each character of the input string is added to a running total, with each intermediate total
being multiplied by 255. This simple method is actually a good hash function.

int Hash255(unsigned char *s)
{

unsigned h = 0;

while(*s) {
h += *s++;
h *= 255;

return h % RANGE;

The input to Hash is simply a list of files to hash, with each line of each file being
hashed on to determine an index into an array of 211 entries. In addition to the files
given, Hash always tests one particularly interesting case: hashing the strings IlOO, IlOl
... 1300. Many compilers, for example, could generate such a similar set of identifiers
for internally generated temporary variables. However, many hash functions are poor at
uniformly distributing a set of similar strings such as these.

The output of Hash reflects the degree of uniformity achieved by the hash function.
The chi-square value should be-ideally-the same as the size of the hash table. Thus,
the further removed the chi-square value is from this value of 211, the worse the hash
function. The ratio value is another way of specifying this, with a ratio of 1 being ideal.
Hash adds the variances of each file (as well as the Il00-1300 test), thus weighting each
of these equally; it then displays summary statistics. A progress option will display each
individual test as well.

/*
* Hash.c - Tests various hashing algorithms

* - Written by Dan Allen 2/12/1989

*
*/

#include <CursorCtl.h>
#include <StdIO.h>
#include <StdLib.h>

pascal long TickCount() OxA975;
#define RANGE 211
#define NUMI 300

char progFlag;
unsigned a[RANGE],n,runs;

/* size of hash table */
/* # of similar idents to hash */

unsigned mult = 255,modu = 99999; /* a very good hash function */
extended tChi,tRatio;

176 CHAPTER FIVE I SANE

main(int argc,char *argv[])
{

char str[256];
unsigned i;
FILE *input;
InitCursorCtl(O);
srand(TickCount());
for(i = l; i < argc; i++)

if (argv [i J [0 J == ' - ')
switch (argv[i] [l]) {

/* process arguments */

case 'e': mult 44; mo du = 11; break;
case I k': mult atoi(argv[++i]); break;
case 'm': mo du atoi(argv[++i]); break;
case 'o': mult 63; mo du = 8; break;
case 'p': progFlag = l; break;
case 'q': mult 256; mo du = 4; break;
case 'r': mult = rand() % 257;

mo du = rand() % 14 + 2;
break;

case IS I: srand(atoi(argv[++i])); break;
case 't I: mult = 179; mo du = 12; break;

else { I* process files
input fopen(argv[i],"r");
while (fgets(str,sizeof(str),input))

a[Hash(str)]++;
n++;
SpinCursor(l);

fclose(input);
stats(argv[i]);

for (i = l; i <= NUMI; i++)
sprintf(str,"I%d",i+99);
a[Hash(str)]++;
n++;

stats("IlOO - I300");
fprintf(stderr,

*/

"TOTAL: %2u\tChi = %3.3f\tr
runs,tChi,tRatio,mult,modu);

return 0;

%f\tMultiplier %Su

/* elevenths */
/* konstant */
/* modulus */
/* octets */
/* progress */
/* quads */
/* random */

!* seed */
/* twelvths */

Modulus %5u\n",

stats(char *s)
{

unsigned i;
extended chi = 0.0,ratio = 0.0;
extended fabs(extended x);

for (i = O; i < RANGE; i++)
chi+= a(i]*a[i];
ratio+= a[i]*(a[i]+l.0)/2.0;
a[i] = 0;

chi = chi*RANGE/n - n;
ratio= ratio/(n/(2.0*RANGE)*(n+2.0*RANGE-l.0));

if (progFlag)

RAND - C TOOL 177

fprintf(stderr,"N = %5u\tChi = %3.3f\tr = %f\t%s\n",n,chi,ratio,s);
tChi += fabs(chi - RANGE); tRatio += fabs(ratio - 1.0); runs++;
n = 0;

int Hash(unsigned char

unsigned i,h = 0,t

for (i = l; *s; i++)
t *= mult;
t += *s++;

if (i%modu 0)
h += t; t = O;

if (!h) h = t;
return h % RANGE;

=

Rand- C Tool

*s)

O;

{

Random numbers are another aspect of computer math that are often taken for
granted. This tool allows several different random-number generators to be exercised,
measured, and compared.

The Macintosh has two built-in random-number generators: the QuickDraw Random,
which returns an integer in the range ±32767, and the SANE function RandornX, which
returns an extended number in the range 1 ::; x::; 231 - 2. In addition, Chas its rand ()
function in its standard library. Kernighan and Ritchie recommend a particular function
as a good random-number generator; this function is also implemented in this tool.
Finally, from Numerical Recipes in C, we have Knuth's triple set of linear congruential
generators. This tool will also encrypt or decrypt a simple one-line message. Statistical

178 CHAPTER FIVE I SANE

analysis using the chi-square method allows the program to evaluate how good each of
these random number generators are.

Improving Rand

Here are some suggestions for improving Rand:

I*

• Add the SANE Randomx function as yet another alternative random-number
generator. How does its performance compare with the other generators?

• Read Knuth's Seminumerical Algorithms, the classic work on random numbers.
Is anything really random? What is the difference between a random number and
a pseudo-random number?

• Evaluate the Macintosh random-number generators using Knuth's spectral test,
a very good technique for measuring randomness. How do these generators
fare?

• Design and implement your own random-number generation technique.

* Rand.c - Generates random numbers

* - Written by Dan Allen 3/27/88

* - K&R generator added 11/23/88

* - Cleanup 2/15/89

* - Encrypting, QD Random, chi analysis added 2/21/89
*/

#include <CursorCtl.h>
#include <Math.h>
#include <QuickDraw.h>
#include <StdIO.h>
#include <StdLib.h>

#define TRUE 1
#define FALSE 0
#define MAXFREQ 5000

pascal long TickCount() extern OxA975;

typedef unsigned char byte;
typedef unsigned long word;

static byte krFlag,libFlag,progFlag,qdFlag,*msg,cipher[4096];
static word seed,RandKR(),freq[MAXFREQ+l];

main(int argc,char *argv[])
{

byte
word
word
extended

c,*p,*q;
high = O,low = OxFFFFFFFF,sum = 0;
count = l,i,x,t,maxNum 1;
chi,y,fhigh = 0.0,flow = 1.0E4932,fsum

InitGraf(&qd.thePort);
InitCursorCtl(O);
t =seed= TickCount();
for (i = 1; i < argc; i++)
if (argv[i] [0] == '-' && argv[i] [2] == '\0')

switch (argv[i] [1]) {
case 'c': count= atoi(argv[++i]); break;

RAND - C TOOL

0 . 0, Ranl () ;

case
case
case

'k':
'l':
'm':

krFlag = TRUE; maxNum = RAND_MAX; break;
libFlag = TRUE; maxNum = RAND_MAX; break;
msg = argv[++i]; break;

case 'p':
case 'q':
case 's':
default:

progFlag = TRUE; break;
qdFlag = TRUE; maxNum = RAND_MAX; break;
seed= atoi(argv[++i]); break;

179

fprintf(stderr,"Rand [-c num] [-kl-11-q] [-m msg] [-s seed] maxNum\n");
return 1;

else maxNum ·= atoi(argv[i]);

if (maxNum < 1) maxNum = 1;
if (count < 1) count = 1;

if (msg) {
p = msg; q = cipher;
while(c = *p++)

*q++ = c A RandKR()%25;
printf("Cipher: %s\n",cipher);
return 0;

180 CHAPTER FIVE I SANE

if (krFlag) {
maxNum++;
for (i = 0; i < count; i++)

x = RandKR() % maxNum;
if (X > high) high = x;
if (x < low) low = x;
if (x <= MAXFREQ) freq[x]++;
sum += x;
if (progFlag II count== 1) printf("%u\n",x);

else if (libFlag) {
srand(seed); maxNum++;
for (i = 0; i < count; i++)

x = rand() % maxNum;
if (x > high) high = x;
if (x < low) low = x;
if (x <= MAXFREQ) freq[x]++;
sum += x;

if (progFlag II count== 1) printf("%u\n",x);

else if (qdFlag) {
qd.randSeed = seed; maxNum++;
for (i = 0; i < count; i++)

else

x = Random() % maxNum;
if (x > high) high = x;
if (x < low) low = x;
if (x <= MAXFREQ) freq(x]++;
sum += x;
if (progFlag II count== 1) printf("%u\n",x);
if (i % 16 == 0) SpinCursor(l);

seed = -t;
for (i = O; i < count; i++)

y = Ranl(&seed)*maxNum;
if (y > fhigh) fhigh = y;
if (y < flow) flow = y;
x = floor(y); if (x <= MAXFREQ) freq[x]++;
fsum += y;
if (progFlag 11 count == 1) printf("%.18f\n",y);
if (i % 4 == 0) SpinCursor(l);

t = TickCount() - t;
if (count > 1 && !progFlag)

for (i = x = 0; i <= MAXFREQ; i++)
x += freq[i]*freq[i];

chi = maxNum*x/count - count;
if (krFlag I I libFlag I I qdFlag)

RAND -- C TOOL 181

printf("N: %u Low: %u Mean: %.2f High: %u Chi: %.lf Time: %.2f sec\n",
count, low, (extended)sum/count,high,chi,t/60.0);

else
printf("N: %u Low: %.2f Mean: %.2f High: %.2f Chi: %.lf Time:%.2f sec\n",

count,flow,fsum/count,fhigh,chi,t/60.0);

return 0;

/* Recommended ANSI library routine */
/* From K&R 2nd edition, page 46 */
unsigned long RandKR()
{

seed = seed * 1103515245 + 12345;
return (seed >> 16) % RAND_MAX;

/* Knuth's triple set of linear congruential generators */
/* From Numerical Recipies in C, page 210 */
#define Ml 259200
#define I Al 7141
#define I Cl 54773
#define RMl (1. 0/Ml)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (l.0/M2)
#define M3 243000
#define IA3 4561
#define IC3 51349

static extended Ranl(int *idum)
{

static long ixl,ix2,ix3;
static extended r[98];
extended temp;
static int iff = O;
int j;

1 8 2 CHAPTER FIVE I SANE

if (*idum < 0 I I iff == 0)
iff = l;
ixl (ICl - (*idum)) % Ml;
ixl = (IAl * ixl + ICl) % Ml;
ix2 = ixl % M2;
ixl = (IAl * ixl + ICl) % Ml;

ix3 = ixl % M3;
for (j = l; j <= 97; j++)

ixl = (IAl * ixl + ICl) % Ml;
ix2 = (IA2 * ix2 + IC2) % M2;
r[j] = (ixl + ix2 * RM2) * RMl;

*idum = l;

ixl (IAl * ixl + ICl) % Ml;
ix2 (IA2 * ix2 + IC2) % M2;
ix3 (IA3 * ix3 + IC3) % M3;
j = 1 + ((97 * ix3) I M3);
if (j > 97 11 j < 1) exit(3);
temp = r [j];
r [j] = (ixl + ix2 * RM2) * RMl;
return temp;

Solar - Pascal Tool

This program presents one approach to modeling the solar system. It calculates the
current position of the sun and planets. It uses matrices to do the coordinate system
transformations from heliocentric to ecliptic to equatorial and finally to the horizon co
ordinate system. It solves Kepler's equation by Newton's method and uses a table look
up for sidereal time as well as the orbital elements. The tabular data for this program
came from Practical Astronomy with Your Calculator by Peter Duffett-Smith. This pro
gram was written by Paul Finlayson.

Improving Solar

Here are some suggestions for improving Solar:

• Add command-line options to allow different dates, times, and locations to be
input.

• Get the location of the Mac from the MachineLocation part of parameter
RAM, like the Map cdev does.

• Solar currently displays its results as a table of text. Add a graphical interface
that displays its results in a window.

SOLAR - PASCAL TOOL

Here is a generic Makefile for Pascal tools to be built with direct 68881 code.

Generic Makefile for MPW Pascal tools & 68881 code

POptions
PLibs =

= -mbg ch8 -r -mc68020 -mc68881
"{PLibraries}PasLib.o" a
"{PLibraries}SaneLib881.o" a
"{Libraries}Interface.o" a
"{Libraries}Runtime.o"

f .p.o
Link -o {Default} -sg Main {Default}.p.o {PLibs}
Setfile -c 'MPS ' -t MPST -d . -m . {Default}

And here is the Pascal source code for Solar:

PROGRAM Solar;

(* Written by Dr. Paul Finlayson c. 1983 in Turbo Pascal on an HP-110 *)

183

(* Ported to Turbo on the Mac, and then to MPW Pascal by Dan Allen 8/22/87 *)

USES SANE,OSUtils,Packages;

TYPE
Vector
Matrix

ARRAY [0 .. 2] OF Extended;
ARRAY [1 .. 9, 1 .. 7] OF Extended;

VAR
mon,day,year:
hrs,min,sec:
theSeconds:

Integer;
Integer;
Longint;

riseTime,setime,dhrs: Extended;
lon,lat,tLAT: Extended;
1st, ra, dee, az, el: Extended;
dToR,rToD,timeZone: Extended;
planetPos, earthPos: Vector;
etoP: Vector;
orbitdat: Matrix;

184 CHAPTER FIVE I SANE

FUNCTION ArcTan2(y,x: Extended): Extended;
{ ArcTan returned in the range -n to n }
VAR

t: Extended;
BEGIN

IF x 0 THEN
IF y > 0 THEN t := Pi ELSE t

ELSE
t := ArcTan(y/x);

IF x < 0 THEN
IF y < 0 THEN t := t - Pi ELSE t

ArcTan2 .- t;
END;

- Pi

FUNCTION ArcCos(x: Extended): Extended;
BEGIN

ArcCos ·= ArcTan2(Sqrt(l - Sqr(x)),x);
END;

t + Pi;

PROCEDURE PtoR(r,theta: Extended; VAR x,y: Extended);
{ polar to rectangular coordinate conversion }
BEGIN

x := r * Cos(theta);
y := r * Sin(theta);

END;

PROCEDURE RtoP(x,y: Extended; VAR r,theta: Extended);
{ rectangular to polar coordinate conversion }
BEGIN

r := Sqrt(x * x + y * y);
theta ·= ArcTan2(y,x);

END;

PROCEDURE StoR(r,theta,phi: Extended; VAR x,y,z: Extended);
{ spherical to rectangular coordinate conversion }
BEGIN

z := r * Sin(phi);
PtoR(r * Cos(phi),theta,x,y);

END;

PROCEDURE RtoS(x,y,z: Extended; VAR r,theta,phi: Extended);
{ rectangular to spherical coordinate conversion }
VAR

rl: Extended;
BEGIN

r := Sqrt(x * x + y * y + z * z);
RtoP(x,y,rl,theta);
phi := ArcTan2(z,rl);

END;

SOLAR - PASCAL TOOL

FUNCTION JD2(m,d,y: Integer): Integer;
{ Given a month,day,year, calculate Julian Day number
{ JD2 = 1 on Jan 1, 1975 (Epoch 1975.0 JD 2442413) }

BEGIN
JD2 := 367 * (y - 1950) - 7 * (y + (m + 9) DIV 12) DIV 4 +

(275 * m) DIV 9 + d - 5749;
END;

FUNCTION Modulo(base, rmod: Extended): Extended;
{ Recursive definition of mathematical modulo }
BEGIN

IF base >= rmod THEN
Modulo := Modulo(base - rmod, rmod)

ELSE

END;

IF base< 0.0 THEN
Modulo := Modulo(base + rmod, rmod)

ELSE
Modulo base;

FUNCTION Pad(x: Integer): Str255;
{ prefix numbers with leading zeros if needed }
VAR

s: Str255;
BEGIN

NumToString(x,s);
s := Concat('O',s);
pad·= Copy(s,Length(s) - 1,2);

END;

FUNCTION HMS(decimalHrs: Extended): Str255;
{ create HH:MM:SS style string from decimal time }
VAR

dMin,dHrs: Extended;
hrs, min, sec: Integer;

BEGIN
dHrs := Modulo(decimalHrs + 1.0 I 7200,24.0);
hrs := Trunc(dHrs);
dMin := (dHrs - hrs) * 60.0;
min := Trunc(dMin);
sec := Trunc((dMin - min) * 60.0);
HMS Concat(pad(hrs), ':', pad(min), ': ', pad(sec));

END;

185

186 CHAPTER FIVE I SANE

FUNCTION Siderial(month,day,year: Integer;
decHrs,Longitude,timeZone: Extended): Extended;

{ lookup siderial time given date, time, and location }
VAR

dayOfYear: Integer;
ut,b,gst,lst: Extended;

BEGIN

dayOfYear := JD2(month,day,year) - JD2(1,1,year) + 1;
ut := decHrs + timezone;
IF ut > 24 THEN
BEGIN

dayOfYear := dayOfYear + 1;
ut := ut - 24.0;

END;
CASE year OF

1980: b 17.411472;
1981: b := 17.361677;
1982: b := 17.377592;
1983: b 17.393506;
1984: b := 17.409421;
1985: b 17.359625;
1986: b := 17.375539;
1987: b 17.391453;
1988: b := 17.407368;
1989: b .- 17.357573;
1990: b := 17.373487;
1991: b := 17.389402;
1992: b := 17.405316;
1993: b := 17.355521;
1994: b := 17.371435;
1995: b := 17.387349;
1996: b := 17.403263;
1997: b := 17.353468;
1998: b := 17.369382;
1999: b := 17.385297;
2000: b := 17.401211;

OTHERWISE { See Astronomonical Ephemeris for other
WriteLn('Illegal year in function Siderial');

END;
gst := dayOfYear * 0.065709 - b + ut * 1.002743;
1st := gst - longitude I 15.0;
Siderial Modulo(lst,24.0);

END;

years)

SOLAR - PASCAL TOOL

PROCEDURE DateTime(VAR mon,day,year,hrs,min,sec: Integer;
VAR decHrs: Extended);

{ Get current date and time from MacOS }
VAR

t: DateTimeRec;
BEGIN

GetDateTime(theSeconds);
Secs2Date(theSeconds,t);
mon := t.month;
day := t.day;
year := t.year;
hrs .. = t. hour;
min := t.minute;
sec := t.second;
decHrs hrs + (min + sec I 60.0) I 60.0;

END;

PROCEDURE Kepler(m,a,ecc: Extended; VAR r,theta: Extended);
{

Solve Kepler's equation by Newton's method where
m mean anomaly
a semi-major axis
ecc eccentricity
r radius
theta = true anomaly

VAR
e,dE,lastdE,dMdE: Extended;

BEGIN
e := m;

dE := 9E9;
REPEAT

lastdE := dE;
dMdE := 1 - ecc * cos(E);
dE := (e - ecc * sin(E) - m) I dMdE;
e := e - dE;
dE := Abs(dE);

UNTIL (dE = 0) OR (dE >= lastdE);
theta := 2 * ArcTan2(Sqrt((l+ecc) I (1-ecc)) * Sin(e/2),Cos(e/2));
r :=a* (1-Sqr(ecc)) I (l+ecc * Cos(theta));

END;

187

188 CHAPTER FIVE I SANE

PROCEDURE AxisRotate(axis: Integer; angle: Extended; VAR v: Vector);
{ Rotate coordinates of vector v through axis by angle }
VAR

s,c,a: Extended;
k,j: Integer;

BEGIN
s := Sin(angle); c := Cos(angle);
j := (axis + 1) MOD 3; k := (axis + 2) MOD 3;
a := v[j];
v[j] := c * v[j] + s * v[k];
v[k] := c * v[k] - s * a;

END;

PROCEDURE EclipticCoords(m,a,ecc,argPer,incl,lonNode: Extended;
VAR eclipticPos: Vector);

{ Heliocentric to ecliptic coordinates conversion }
VAR

r,phi: Extended;
BEGIN

Kepler(m,a,ecc,r,phi);
eclipticPos[2] := 0;
PtoR(r,phi + argPer,eclipticPos[O],eclipticPos[l]);
AxisRotate(O,-incl,eclipticPos);
AxisRotate(2,-lonNode,eclipticPos);

END;

PROCEDURE EquatorialCoords(eclipticPos: Vector; VAR ra,dec: Extended);
{ Ecliptic to equatorial coordinate conversion }
VAR

r: extended;
BEGIN

AxisRotate(0,-23.43*dToR,eclipticPos);
RtoS(eclipticPos[0],eclipticPos[l],eclipticPos[2],r,ra,dec);

END;

PROCEDURE HorizonCoords(ra,dec,lst,lat: Extended; VAR az,el: Extended);
{ Equatorial to horizon coordinate conversion I
VAR

v: Vector;
r: Extended;

BEGIN
StoR(l,ra - 1st* Pi I 12,dec,v[O],v[l],v[2]);
AxisRotate(l,Pi/2 - lat,v);
RtoS (-v[O] ,v[l] ,v[2] ,r,az,el);

END;

SOLAR - PASCAL TOOL 189

PROCEDURE Read.Mat;
{ Initialize orbital elements for planets; see next proc for definitions)
{ From Duffet p. 100
BEGIN

orbitdat [1, 1] := 0.24085; (* Mercury *)
orbitdat[l,2] := 320.66305;
orbitdat[l,3] := 77.06645;
orbitdat[l,4] := 0.205629;
orbitdat[l,5] := 0.387099;
orbitdat[l,6] := 7.00427;
orbitdat[l,7] := 48.03494;

orbitdat[2,1J := 0.61521; (* Venus *)
orbitdat[2,2] := 310.97453;
orbitdat[2,3] := 131.21928;
orbitdat[2,4] := 0.006785;
orbitdat[2,5] := 0. 723332;
orbitdat[2,6] := 3.39438;
orbitdat[2,7] 76.45475;

orbitdat[3,1] := 1. 00004; (* Earth *)
orbitdat[3,2] 99.53431;
orbitdat [3, 3] 102.51044;
orbitdat[3,4] .- 0.016720;
orbitdat[3,5] ·= 1.000000;
orbitdat [3, 6] 0.0;
orbitdat[3,7] .- 0.0;

orbitdat[4,1] 1.88089; (* Mars *)
orbitdat[4,2] ·= 249. 62919;
orbitdat[4,3] 335.59881;
orbitdat[4,4] 0.093382;
orbitdat[4,5] := 1.523691;
orbitdat[4,6] 1. 84983;
orbitdat[4,7] .- 49.36466;

orbitdat [5, 1] ·= 11.86224; (* Jupiter *)
orbitdat[5,2] := 355.21414;
orbitdat[5,3] := 13.91992;
orbitdat[5,4] := 0.048460;
orbitdat[5,5] := 5.202804;
orbitdat[5,6] := 1. 30450;
orbitdat[5,7] := 100.19608;

orbitdat [6, 1] := 29. 45771; (* Saturn *)
orbitdat[6,2] := 104.17278;
orbitdat[6,3] := 92.55833;
orbitdat [6, 4] := 0.055630;
orbitdat[6,5] := 9.538844;
orbitdat [6, 6] := 2.48933;
orbitdat[6,7] ·= 113.43842;

190 CHAPTER FIVE I SANE

orbitdat[7,l] 84.01247; (* Uranus *)
orbitdat[7,2] 205.78286;
orbitdat (7, 3] := 170.25472;
orbitdat[7,4] ·= 0.047250;
orbitdat (7, 5] := 19.181854;
orbitdat[7,6] := 0.77316;
orbitdat[7,7] 73.87283;

orbitdat (8, l] := 164.79558; (* Neptune *)
orbitdat[8,2] := 249.91462;
orbitdat (8, 3] := 44.40592;
orbitdat[8,4] := 0.008586;
orbitdat[8,5] := 30.057960;
orbitdat[8,6] := 1.77236;
orbitdat[8,7] := 131.50506;

orbitdat (9, l] 246.378; (* Pluto *)
orbitdat[9,2] := 202.3345;
orbitdat (9, 3] := 224.2580;
orbitdat[9,4] 0. 246115;
orbitdat [9, 5] 39.29976;
orbitdat [9, 6] := 17.14451;
orbitdat[9,7] := 109.9965;

END;

PROCEDURE Planets(planetnum,mon,day,year: Integer;timeOfDay: Extended;
VAR m,a,ecc,argPer,incl,lonNode: Extended);

{ Get orbital elements)
VAR

quo: Integer;
dse,le,lp,i,lan,period: Extended;

BEGIN
period := orbitdat[planetnum,l]; { period in tropical years)
le : = or bi tdat [planetnum, 2]; { longitude at epoch 1980 in °)
lp := orbitdat [planetnum, 3]; { longitude of perihelion in °)
ecc := orbitdat[planetnum,4]; { eccentricity of orbit)
a := orbitdat[planetnum,5];
i := orbitdat[planetnum,6];
lan := orbitdat[planetnum,7];

argPer := (lp - lan) * dToR;
incl := i * dToR;
lonNode := lan * dToR;

{ semi-major axis in AU)
{ inclination of orbit in °)
{ longitude of ascending node in °)

argument of perihelion in radians)
inclination)
longitude of ascending node in radians

dse := JD2(mon,day,year) + timeOfDay I 24.0;
i := dse I (period * 365.25) + (le - lp) I 360.0;
m := (i - Trunc(i)) * 2 *Pi;

END;

SOLAR - PASCAL TOOL

PROCEDURE PlanetCoords(planet,month,day,year: Integer; dHrs: Extended;
VAR planetPos: Vector);

VAR
m,a,ecc,argPer,incl,lonNode: Extended;

BEGIN
IF planet = 0 THEN

BEGIN
planetPos[O]
planetPos[l]
planetPos[2J

END
ELSE

.- 0;
:= 0;
:= 0;

BEGIN
Planets(planet,month,day,year,dHrs,m,a,ecc,argPer,incl,lonNode);
EclipticCoords(m,a,ecc,argPer,incl,lonNode,planetPos);

END;
END;

PROCEDURE RiseSet(ra,dec,lat,lst,dHrs: Extended;
month,day,year: Integer;
VAR risetime,setime: Extended);

{ Determine times of rising and setting)
VAR

theta,a: Extended;
BEGIN

a := -Tan(lat) * Tan(dec);
IF a< -1.0 THEN theta :=Pi ELSE theta := ArcCos(a);
risetime := dHrs + (ra - theta) * 12 I Pi - 1st;
setime dHrs + (ra + theta) * 12 I Pi - 1st;

END;

/
FUNCTION PlanetName(planetNum: Integer): Str255;
BEGIN

CASE planetnum OF
0: PlanetName := 'Sun ' ;
1: PlanetName .- 'Mercury';
2: PlanetName := 'Venus ' ;
3: PlanetName 'Earth ' ;
4: PlanetName .- 'Mars ' ;

5: PlanetName := 'Jupiter';
6: PlanetName .- 'Saturn . ;
7: PlanetName 'Ura!1US . ;
8: PlanetName .- 'Neptune';
9: PlanetName 'Pluto ' ;

END;
END;

191

192 CHAPTER FIVE I SANE

PROCEDURE PlanetScreen;
VAR

i,p: Integer;
s: Str255;

BEGIN
WriteLn('Latitude:
WriteLn('Longitude:

, rToD *lat: 6: 2);
lon: 6: 2);

IUDateString(theSeconds,longDate,s);
WriteLn('Date: It S) ;

IUTimeString(theSeconds,TRUE,s);
WriteLn('Local Time: I I s) ;

WriteLn('Universal Time: ',HMS(dHrs +timezone));

1st := Siderial(mon,day,year,dHrs,lon,timeZone);
Wri teLn ('Sider ial Time: ' , HMS (1st)) ;

PlanetCoords(3,mon,day,year,dHrs,earthPos);
WriteLn;
WriteLn (' ':

'RA(HMS)
WriteLn;

12,
DEC (DMS)

FOR p := 0 TO 9 DO
IF p <> 3 THEN

AZ(deg) EL (deg) Rise (HMS) Set (HMS) ') ;

BEGIN
PlanetCoords(p,mon,day,year,dHrs,planetPos);
FOR i := 0 TO 2 DO

END;

eToP [i] : = planetPos [i] - earthPos [i] ;
EquatorialCoords(eToP,ra,dec);
IF dee< 0.0 THEN s := '-' ELSE s := ' ';
HorizonCoords(ra,dec,lst,lat,az,el);
RiseSet(ra,dec,lat,lst,dHrs,mon,day,year,risetime,setime);
WriteLn(PlanetName(p),

END;

HMS(ra * 12 I Pi),
s,
HMS (rToD * Abs (dee)),
rToD * az: 7: 2,'
rToD * el: 7: 2,
HMS(risetime),'
HMS(setime));

BEGIN { main
Reac!Mat;
dToR := Pi I 180;
rToD := 180 I Pi;
tLAT := 37.33; {Cupertino - PST)
lon := 122.08;
timezone := 8.0;
lat := tLAT * dToR;
DateTime(mon,day,year,hrs,min,sec,dHrs);
Planet Screen;

END.

Sun - Pascal Tool

SUN - PASCAL TOOL 193

This program's approach to modeling the solar system shows only the sun rather than
all of the planets as the previous program did. This version uses polynomial series with
trigonometric coefficients to approximate the orbital elements, and they have a quoted
accuracy of 1 minute of arc over a 300-year period of time. Coordinate trans- for
mations are done by spherical trigonometric methods rather than by matrix transforma
tions.

PROGRAM Sun;
{

Written by Dan Allen, originally in HP BASIC on an HP-75C, Dec 1982.
Ported to Macintosh Basic (MPL) 20 Feb 1988.
Ported to Turbo Pascal on 18 Jul 1988.

For more info see:
"Explanatory Supplement to the Nautical Almanac & Astronomical Ephemeris"
"Astrophysical Journal Supplement", Nov 1979.

USES
OSUtils,SANE;

VAR

m,d,y: Integer;
hour: Integer;
minute: Integer;
sec: Integer;
timezone: Integer;

latitude: Extended;
longitude: Extended;

gmt: Extended;
gst,lst: Extended;
jcl9,jd20: Extended;

194 CHAPTER FIVE I SANE

sunLong: Extended;
sunAnom: Extended;
jupAnom: Extended;
moonLat: Extended;
moonLong: Extended;
meanElong: Extended;
lunAscNode: Extended;

helioLong: Extended;
radiusAU: Extended;
e: Extended;

rightAscen: Extended;
decl: Extended;

altitude: Extended;
azimuth: Extended;

FUNCTION DtoR(x: Extended)
BEGIN

DtoR := x*pi/180;
END;

FUNCTION RtoD(x: Extended)
BEGIN

RtoD := x*l80/pi;
END;

Extended; { degrees to radians }

Extended; { radians to degrees }

FUNCTION ArcSin(x: Extended) : Extended;
BEGIN

ArcSin := Arctan(x/Sqrt(l-x*x));
END;

FUNCTION ArcCos(x: Extended) : Extended;
BEGIN

ArcCos := 2*Arctan(Sqrt((l-x)/(l+x)));
END;

FUNCTION Modulo(x,y: Extended)
VAR r: RoundDir;
BEGIN

r := GetRound;
SetRound(Downward);

Extended;

Modulo := x - y * Rint(x/y); {modulo using floor)
SetRound(r);

END;

SUN - PASCAL TOOL 195

PROCEDURE ToJulian; { global date & time --> Julian date }
BEGIN

gmt :=
jd20 :=

jd20 .
jd20 :=
jc19 :=

END;

hour + minute/60 + sec/3600 + timezoner
367.0*y - 7*(y+(m+9) DIV 12) DIV 4;
jd20 - 3*((y+(m-9) DIV 7) DIV 100 + 1) DIV 4;
jd20 + 275 * m DIV 9 + d - 730516.5 + gmt/24;
jd20/36525+1;

PROCEDURE ToSiderial; { Julian Date --> approximate siderial time }
BEGIN

gst := jc19 - gmt/876600;
1st := Modulo((36000.76893 + 0.000387083*gst)*gst,360);
1st ·= Modulo(lst + 15.04106863*gmt + 99.69098325,360);

END;

PROCEDURE FundArgs; { calculate approximate fundamental arguments }
BEGIN

sunLong := jd20 * 0.9856473516 + 280.46592;
sunAnom := jd20 * 0.98560026 + 357.52536;
jupAnom := jd20 * 0.0830912148 + 20.35116;
moonLat := jd20*13.229350272 + 93.27276;
moonLong := jd20 * 13.1763964644 + 218.31624;
meanElong := moonLong - sunLong;
lunAscNode moonLong - moonLat;

END;

PROCEDURE ToEcliptic; { fundamental args --> ecliptic coordinates }
BEGIN

helioLong := Sin(DtoR(sunAnom)) * 691/360 + 0.02 * Sin(DtoR(2*sunAnom));
helioLong := helioLong - 17/3600 * (Sin(DtoR(sunAnom)) + jc19);
helioLong := helioLong - 7/3600*cos(DtoR(sunAnom-jupAnom))

+ Sin(DtoR(meanElong))/600;
IF helioLong < 0 THEN helioLong := helioLong + 360;
radiusAU := 1.00014 - Cos(DtoR(sunAnom))*0.01675

- 0.00014 * Cos(DtoR(2*sunAnom));
END;

19 6 CHAPTER FIVE I SANE

PROCEDURE ToEquatorial; { ecliptic --> equatorial conversion
VAR

q,ql,q2: Extended;
BEGIN

e := Cos(DtoR(lunAscNode))/400 - jc19*47/3600 + 21107/900;
sunLong := sunLong - Sin(DtoR(lunAscNode)) * 17/3600; { nutation
decl (sin(DtoR(sunLong))*Cos(DtoR(helioLong))

+ Cos(DtoR(sunLong)) * Sin(DtoR(helioLong))) * Sin(DtoR(e));
decl := RtoD(ArcSin(decl));
q2 := (Sin(DtoR(sunLong)) * Cos(DtoR(helioLong))

+ Cos(DtoR(sunLong)) * Sin(DtoR(helioLong)));
ql .- (1 - Cos(DtoR(e))) * q2;
q .- ArcTan((Sin(DtoR(helioLong)) - Cos(DtoR(sunLong)) * ql)

I (Cos(DtoR(helioLong)) - Sin(DtoR(sunLong)) * ql));
q := RtoD(q);
rightAscen := (Modulo(sunLong,360) + q) I 15;
IF rightAscen < 0 THEN rightAscen := rightAscen + 24;

END;

PROCEDURE ToHorizon; { equatorial --> horizon conversion
VAR

hl,h2: Extended;
BEGIN

hl := Modulo(lst-rightAscen*lS,360);
h2 := hl - longitude;
altitude ArcSin(Sin(DtoR(decl)) * Sin(DtoR(latitude))

+ Cos(DtoR(decl)) * Cos(DtoR(h2)) * Cos(DtoR(latitude)));
altitude RtoD(altitude);
azimuth := (Sin(DtoR(decl)) * Cos(DtoR(latitude))

- Cos(DtoR(decl)) * Cos(DtoR(h2)) * Sin(DtoR(latitude)));
azimuth := RtoD(ArcCos(azimuth/Cos(DtoR(altitude))));
IF latitude < 0 THEN azimuth := 180 - azimuth;
IF (h2 > 0) AND (h2 < 180) THEN azimuth := Modulo(360-azimuth,360);

END;

PROCEDURE PrintResults;
PROCEDURE Justify(i: Integer);
BEGIN

IF i < 10 THEN Write('O' :0);
Write(i:O);

END;
BEGIN

Write ('Date
Justify (d);
WriteLn('/',y:O);

', rn: 0, 'I') ;

Write('Time ');
Justify(hour);
Write(':');
Justify(minute);
Write(':');
Justify (sec);
IF timezone 8 THEN WriteLn(' PST');
IF timezone= 7 THEN WriteLn(' PDT');
WriteLn;
WriteLn ('Radius

'HelioLong
WriteLn('Declination

'RightAscn
WriteLn('Altitude

'Azimuth
END;

',radiusAU:8:4,' AU
',helioLong:8:4, ' 0 ');

',decl:8:4,' 0

',rightAscen:8:4,' hr');
',altitude:8:4,' 0

',azimuth:8:4, I 0 I) ;

PROCEDURE GetCurTime; { get current time from MacOS }
VAR

secs: Longint;
dt: DateTimeRec;

BEGIN
GetDateTime(secs};
Secs2Date(secs,dt);
m := dt.month;
d := dt.day;
y := dt.year;
hour := dt.hour;
minute := dt.minute;
sec := dt.second;

END;

BEGIN main

SUN - PASCAL TOOL

latitude := 37.34; longitude := 122.0625; timezone := 8; { Cupertino }
GetCurTime;
ToJulian;
ToSiderial;
FundArgs;
ToEcliptic;
ToEquatorial;
ToHorizon;
PrintResults;

END.

197

198 CHAPTER FIVE I SANE

Sun - C Tool

This is a C version of the previous program. It has additional argument processing
that allows various locations and times to be specified as command-line arguments. It
also is smart about the current Daylight Savings Time laws, which seem to change so
often that few computers ever handle them properly.

Improving Sun

Here are some suggestions for improving Sun :

/*

*
*
*
*
*
*
*
*
*

• Combine the best of Solar and Sun by doing matrix transformations for the
coordinate system conversions but doing away with table look-up for the orbital
elements and sidereal time.

• Add modeling for the path of the moon. Caution: the moon's motion is quite ir
regular compared to the sun and planets. Check your results against the astro
nomical and/or nautical almanacs.

• Create a more accurate model of the solar system, taking into account relativistic
effects. Green's Spherical Astronomy shows that such effects actually are sig
nificant, and this book is a good source for the basic formulas. Use tensors
where possible.

• Add graphics to these programs, with both accelerated and real-time options for
viewing the modeled solar system.

• Make a desk accessory that shows the positions of the sun and moon in the sky.

Sun.c - Determines the position of the sun
- Written by Dan Allen
- First done on an HP-75C in HP Basic, Dec 1982.
- Next ported to an HP-71B and HP Basic in mid 1984.
- Next ported to Macintosh Basic 20 Feb 1988.
- Next ported to Turbo Pascal on the Mac 18 Jul 1988.
- Next ported to MPW Pascal Aug 1988.
- Finally ported to MPW C on 2 Apr 1989.

* For more information see:
* "Explanatory Supplement to the Nautical Almanac & Astronomical Ephemeris"
* "The Astrophysical Journal Supplement Series", Volume 41:391-411, Nov 1979.

*
*/

#include <Math.h>
#include <OSUtils.h>
#include <Sane.h>

#define TRUE
#define FALSE
#define RtoD (x)
#define DtoR(x)

1

0
((x) *180. 0/pi ())
((x) *pi () /180. 0)

/* Argument processing vars */
char dateFlag,timeFlag;

/* Default location is Cupertino, CA */
extended latitude= 37.34;
extended longitude = 122.0625;
extended timezone = 8.0;

/* Main calculation vars */
int
extended
extended
extended
extended
extended
extended
extended

m,d,y,hour,minute,sec;
gmt,gst,lst,jc19,jd20;
sunLong,sunAnom,jupAnom;
moonLat,moonLong,meanElong,lunAscNode;
helioLong,radiusAU,e;
rightAscen,decl;
altitude, azimuth;
Modulo();

main(int argc,char *argv[])

int i;

for (i = 1; i < argc; i++) {
if (sscanf(argv[i],"%d/%d/%d",&m,&d,&y) 3)

dateFlag = TRUE;
continue;

SUN - C TOOL

if (sscanf(argv[i),"%d:%d:%d",&hour,&minute,&sec) 3) {
timeFlag = TRUE;
continue;

199

200 CHAPTER FIVE I SANE

/* add your own custom locations below */
if (strcmp(argv[i], "Fairfield") == 0) {

latitude= 38.0 + 17.0/60.0;
longitude = 122.0 + 1.0/60.0;
timezone = 8.0;
continue;

if (strcmp(argv[i),"Palm Springs") 0) {
latitude = 33.0 + 49.0/60.0;
longitude = 116.5;
timezone = 8.0;
continue;

if (strcmp(argv[i),"Provo") == 0)
latitude = 40.0 + 14.0/60.0;
longitude = 111.0 + 39.0/60.0;
timezone= 7.0;
continue;

if (!dateFlag) GetCurDate();
if (!timeFlag) GetCurTime();
if (DaylightSavings()) timezone--;
ToJulian();
ToSiderial();
FundArgs();
ToEcliptic();
ToEquatorial ();
ToHorizon();

printf("Date %02d/%02d/%04d\n",m,d,y);
printf("Time %02d:%02d:%02d\n",hour,minute,sec);
printf("Radius (AU) %10.6f Helio. Longitude= %10.5f 0 \n",

radiusAU,helioLong);
printf("Declination = %10.6f 0

decl,rightAscen);
printf("Altitude = %10.6f 0

altitude,azimuth);
return 0;

Right Ascension = %10.5f hr\n",

Azimuth = %10.5f 0 \n",

FundArgs() /* calculate approximate fundamental arguments */
(

sunLong jd20 * 0.9856473516 + 280.46592;
sunAnom jd20 * 0.98560026 + 357.52536;
jupAnom jd20 * 0.0830912148 + 20.35116;
moonLat jd20 * 13.229350272 + 93.27276;
moonLong = jd20 * 13.1763964644 + 218.31624;
meanElong = moonLong - sunLong;
lunAscNode = moonLong - moonLat;

ToEcliptic() /* convert to ecliptic coordinate system */
{

SUN - C TOOL 201

helioLong = sin(DtoR(sunAnom))*691.0/360.0 + 0.02*sin(DtoR(2.0*sunAnom));
helioLong += -17.0/3600.0*(sin(DtoR(sunAnom)) + jcl9);
helioLong += -7.0/3600.0*cos(DtoR(sunAnom-jupAnom));
helioLong += sin(DtoR(meanElong))/600.0;
if (helioLong < 0.0) helioLong = helioLong + 360.0;
radiusAU = 1.00014-cos(DtoR(sunAnom))*.01675 -.00014*cos(DtoR(2.0*sunAnom));

ToEquatorial() /* convert from ecliptic to equatorial coordinates */
{

extended q,ql,q2;

e = cos(DtoR(lunAscNode))/400.0 - jcl9*47.0/3600.0 + 21107.0/900.0;
sunLong = sunLong - sin(DtoR(lunAscNode)) * 17.0/3600.0; /*nutation*/
decl sin(DtoR(sunLong))*cos{DtoR(helioLong));
decl += cos(DtoR{sunLong))*sin(DtoR(helioLong));
decl *= sin(DtoR(e));
decl = RtoD(asin(decl));
q2 sin(DtoR(sunLong)) * cos(DtoR(helioLong));
q2 += cos(DtoR(sunLong)) * sin(DtoR(helioLong));
ql = (1.0 - cos(DtoR(e))) * q2;
q sin(DtoR(helioLong)) - cos(DtoR(sunLong))*ql;
q /= cos(DtoR(helioLong)) - sin(DtoR(sunLong))*ql;
q = RtoD(atan(q));
rightAscen = (Modulo(sunLong,360.0) + q) I 15.0;
if (rightAscen < 0.0) rightAscen = rightAscen + 24.0;

ToHorizon() /* convert from equatorial to horizon coordinates */
{

extended hl,h2;

hl = Modulo(lst-rightAscen*l5.0,360.0);
h2 = hl - longitude;
altitude sin(DtoR(decl)) * sin(DtoR(latitude));
altitude+= cos(DtoR(decl)) * cos(DtoR(h2)) * cos(DtoR(latitude));
altitude = RtoD(asin(altitude));
azimuth sin(DtoR(decl)) * cos(DtoR(latitude));
azimuth-= cos(DtoR(decl)) * cos(DtoR(h2)) * sin(DtoR(latitude));
azimuth = RtoD(acos(azimuth/cos(DtoR(altitude))));
if (latitude < 0.0) azimuth = 180.0 - azimuth;
if (h2 > 0.0 && h2 < 180.0) azimuth= Modulo(360.0-azimuth,360.0);

int GregToJulian(int m,int d,int y) /* Gregorian to Julian conversion */

return 367*y-7*(y+(m+9)/12)/4-3*((y+(m-9)/7)/100+1)/4+275*m/9+d+l721029;

202 CHAPTER FIVE I SANE

ToJulian() /* set Julian epochs */
{

gmt = hour + minute/60.0 + sec/3600.0 + timezone;
jd20 GregToJulian(m,d,y) - 2451545.5 + gmt/24.0;
jc19 = jd20/36525.0 + 1.0;

ToSiderial() /* approximate the siderial time */
{

gst jc19 - gmt/876600.0;
1st Modulo((36000.76893 + 0.000387083*gst)*gst,360.0);
1st Modulo(lst + 15.04106863*gmt + 99.69098325,360.0);

int DaylightSavings() /*check for Daylight Savings*/

int theSunday;

if (m < 4 I I m > 10) return FALSE;
if (m == 4) {

for(theSunday = 1; theSunday <= 30; theSunday++)
if ((GregToJulian(4,theSunday,y)+1)%7 == 0) break;

if (d < theSunday) return FALSE; else return TRUE;

if (m == 10) {
for(theSunday = 31; theSunday > 0; theSunday--)

if ((GregToJulian(4,theSunday,y)+1)%7 == 0) break;
if (d < theSunday) return TRUE; else return FALSE;

return TRUE;

GetCurDate() /* get date from Mac OS *I
{

unsigned secs;
DateTimeRec dt;

GetDateTime(&secs);
Secs2Date(secs,&dt);
m dt.month;
d dt .day;
y dt .year_;

GetCurTime() /* get time from Mac OS */
{

unsigned secs;
DateTimeRec dt;

GetDateTime(&secs);
Secs2Date(secs,&dt);
hour = dt.hour;
minute = dt.minute;
sec = dt.second;

DET - C TOOL 203

extended Modulo(extended x,extended y) /* mathematical Modulo */
{

extended res;
rounddir r;

r = getround();
setround(DOWNWARD);
res= x - y * rint(x/y); /*modulo using floor*/
setround(r);
return res;

Det - C Tool

This tool shows a neat technique for working with matrices in C. The technique
solves the conformant array problem by allocating space for a matrix in two steps. First,
a vector of pointers to each row of an array is allocated, and second, each row's actual
space is allocated. The row pointers are stored in the first array. This technique allows C
to pass different-sized arrays to standard matrix-processing routines. The rest of the tool
is a collection of matrix routines that solve and print such matrices.

This tool solves a system of equations using the Gauss-Jordan method. A by-product
of this operation is the determinant of a matrix. Two types of matrices are generated au
tomatically and then solved. These matrices were chosen as good types of matrices to
show off the excellent accuracy of SANE. The first type is a matrix we have called a
Finlayson matrix, which is a square matrix whose elements are in a monotonically in
creasing sequence by row major order-that is, for the case n = 3, the Finlayson matrix
is as shown in the following matrix.

2 0 4 CHAPTER FIVE I SANE

It can be shown that all Finlayson matrices 3 by 3 or larger are singular matrices-that
is, their determinants are 0.

The second type of matrix is a Hilbert matrix. Hilbert matrices are ill-formed matrices,
which means that their determinants are close to 0 but not actually 0. Small arithmetic er
rors are greatly magnified when a program is working with ill-formed matrices-just the
kind of behavior that scientists and engineers do not need to distort their calculations. A
3-by-3 Hilbert matrix and its associated column vector are shown in the following
example.

1
2

1
3

1
4

1
3

1
4

1
5

The solution of the resulting system of equations is the column vector [x,y,z], all of
whose elements should be exactly 1. Solutions that deviate do so because of round-off
error. SANE's extended precision can actually solve a 10-by-10 Hilbert matrix, yielding
the correct solution vector of all ones, without any round-off error. Few numerics envi
ronments can claim such accuracy.

This tool takes a single argument: the order of the matrix to create and solve. Thus, to
solve a 100-by-100 matrix, you would simply type Det 100.

/*
* Det.c - Matrix Benchmark
* - Written by Dan Allen 10/4/88
* - Extended to include Hilbert matricies on 7/21/89

*
*/

#include <Math.h>
#include <StdIO.h>
#.include <StdLib. h>

pascal long MacsBug() extern OxA9FF;
pascal long TickCount() extern OxA975;

extended SolveSys(extended **a,int m,int n);
extended **CreateMatrix(int a,int b,int c,int d);
void DestroyMatrix(extended **a,int a,int b,int c);
void PrintMatrix(extended **a, int m,int n);
void Error(char *text);

main(int argc,char *argv[])

int i,j,n,ticks;
extended **a,det,sum,t;

if (argc != 2) return l;

n = atoi(argv[l]);
if (n < 1) Error("negative array bounds specified");

/* Create a. •Finlayson" Matrix */
ticks= TickCount();
t = 1.0;
a= CreateMatrix(l,n,l,n);
for (i = l; i <= n; i++)

for (j = l; j <= n; j++)
a[i] [j] = t++;

det = SolveSys(a,n,n);
DestroyMatrix(a,l,n,l);

DET - C TOOL 205

ticks= TickCount() - ticks;
printf("FINLAYSON Time = %.2f seconds Det %.lSe\n",ticks/60.0,det);

/* Create a Hilbert Matrix */
ticks= TickCount();
a= CreateMatrix(l,n,l,n+l);
for (i = l; i <= n; i++)

sum=O.O;
for (j = l; j <= n; j++)

t = 1.0/ (i+j-1);
a[i][j] = t;
sum += t;

a[i] [n+l] = sum;

det = SolveSys(a,n,n+l);
ticks= TickCount() - ticks;
printf("HILBERT Time= %.2f seconds Det = %.18e\n",ticks/60.0,det);
for (sum= 0.0, i = l; i <= n; i++) sum+= fabs(a[i] [n+l] - 1.0);
printf("Cumulative error= %.18e\n",sum);
PrintMatrix(a,n,n+l);
DestroyMatrix(a,l,n,l);

return O;

206 CHAPTER FIVE I SANE

extended SolveSys(extended **a,int m,int n)
/* Gauss-Jordan method for solving sets of equations & inverting matrices */

int
extended

for (i =

i, j, k, p;
det = 1. 0, t;

1; i <= m; i++)
for (p = i; p <= m; p++) /* find 1st non-zero pivot element

if
if

if (a[p] [i] != 0. 0) break;
(p > m) return 0.0;
(i != p) {

for (k = 1; k <= n; k++)
t=a[i][k];
a [i] [k] a [p] [k];

a[p][k] = t;

det = -det;

for (j = 1; j <= m; j++)
if (i == j) continue;
t = a[j] [i] I a[i] [i];
for (k = 1; k <= n; k++)

a [j J [k J -= t *a [i J [k J ;

for (i = 1; i <= m; i++)
det *= a[i] [i];

for (i = 1; i <= m; i++)
for (j = m+l; j <= n; j++)

a[i] [j] /= a[i] [i];
return det;

!* singular matrix --> det 0 */
/* swap rows if needed *I

/* add multiple of row */

/* compute determinant */

/* fix up right side */

extended **CreateMatrix(int rowLow,int rowHi,int colLow,int colHi)

int i;
extended **m;

m = malloc((unsigned) (rowHi-rowLow+l)*sizeof(extended *));
if (!m) Error("out of memory for row pointers");
m -= rowLow;

for(i = rowLow; i <= rowHi; i++) {
m[i] = malloc((unsigned) (colHi-colLow+l)*sizeof(extended));
if (!m[i]) Error("out of memory for elements");
m[i] colLow;

return m;

*/

CONCLUSION 207

void DestroyMatrix(extended **a,int rowLow,int rowHi,int colLow)
{

int i;

for (i = rowHi; i >= rowHi; i--) free(a[i]+colLow);
free(a+rowLow);

void PrintMatrix(extended **a, int m,int n)
{

int i,j;

for (i = l; i <= m; i++) {
for (j = l; j <= n; j++)

printf("%.6f ",a[i] [j]);
printf("\n");

void Error(char *text)
{

fprintf(stderr,"Error: %s\n",text);
exit(2);

Conclusion

This chapter looked at the various numerics environments available under the
Macintosh OS. These environments are as follows:

• SANE, the Standard Apple Numerics environment
-Software SANE via the packages

-68881 SANE for basic operations, software SANE for others
-68881 SANE entirely

• MPW C and Pascal library routines (which in tum use SANE)
• Fixed and Fract routines

Next, this chapter presented the sources for several different MPW tools that used
many of the SANE routines:

• NumTheory-A brief look at number theory
• Hash-Simple statistical analysis of hashing functions

• Rand-A comparison of several random-number generators

208 CHAPTER FIVE I SANE

• Solar-A model of the solar system

• Sun-A more accurate model of just the sun's position

• Det-A test of SANE's accuracy when solving systems of equations

Recommended Reading

Source number one about SANE is Apple Computer's Apple Numerics Manual, now
in its second edition. The Motorola reference works on the 68881/68882 floating-point
chips are also invaluable.

Concrete Mathematics, by Graham, Knuth, and Patashnik, is a good introduction to
the mathematics needed by computer scientists. Number theory, algorithm analysis, and
other topics are covered in a readable style. If you are really interested in a heavily math
ematical treatment of algorithm analysis, try Knuth's Art of Computer Programming:
Fundamental Algorithms and then Purdom and Brown's Analysis of Algorithms.

Hashing is treated in Knuth's Art of Computer Programming: Sorting and Searching
and Gonnet's Handbook of Algorithms and Data Structures. Knuth's Art of Computer
Programming: Seminumerical Algorithms is the best reference concerning random num
bers; it also covers floating-point arithmetic and lays the groundwork needed for sym
bolic algebra. Buchberger, Collins, and Loo's Computer Algebra: Symbolic and
Algebraic Computation picks up where Knuth left off, but there is still a big need for a
good book on the algorithms behind symbolic computation.

Numerical Recipes in C: The Art of Scientific Computing and Numerical Recipes: The
Art of Scientific Computing, both by Press, Flannery, et al., are an outstanding pair of
volumes on numerical analysis. Both contain lots of source code illustrating many algo
rithms. The non-C version contains both Pascal and Fortran source· code, into which
tested algorithms can be plugged in quite easily. For more of the theory, but still at an
understandable level, a personal favorite is Burdon, Faires, and Reynolds' Numerical
Analysis which does a good job of outlining algorithms in a pseudo-code that translates
easily to any language. An advanced treatment can be found in Ralston and Rabinowitz's
A First Course in Numerical Analysis, a wonderful text.

For those interested in astronomy and celestial mechanics, Smart's Textbook on
Spherical Astronomy has been the "Bible" for most of this decade. It is written in the
charming style of the 1800s. Green's Spherical Astronomy is a modern derivative of
Smart's work that includes a good relativistic treatment of stellar motion. Taff's Celestial
Mechanics is the mathematically rigorous text on the subject. Finally, there are three
"must-have" reference works: Allen's Astrophysical Quantities (something like a World
Almanac for astronomers), Harwitt's Astrophysical Concepts, and the Royal
Observatory's Explanatory Supplement to the Nautical Almanac and Astronomical
Ephemeris. This final work details all of the formulas used to create the Nautical
Almanacs.

CHAPTER 6

MPW

The Macintosh Programmer's Workshop (MPW) is a professional environment for
developing Macintosh software. It is similar to UNIX in that it is centered around a shell
that can interpret and execute commands, but it is much more Mac-like than UNIX-like,
with its mouse-based editor, user-definable menus, and custom dialogs.

MPW is one of the most powerful development environments around. Although it is
generally conceived of as an environment for developing stand-alone Macintosh soft
ware, three groups of people will find MPW useful:

• Developers of stand-alone Macintosh software

• Anyone porting software from UNIX or MS-DOS-many scientific and engi
neering tools, for example, can be ported easily from other operating systems to
run under the MPW Shell

• Anyone working with large amounts of text-MPW will let you edit a 10 MB
text file, something that no word processor and few text editors will allow.
MPW also makes it easy to write small scripts and tools that manipulate text. In
Chapter 8, you will see many examples of text tools written in C.

This chapter looks at the history of MPW, the Shell language, and tools provided as
part of MPW. The code in this chapter includes many scripts and an MPW tool. Finally,
the scripts and code necessary to build a library are illustrated by the HyperCard XCMD
library, which is utilized more in Chapter 10.

History of MPW

Development of MPW began late in 1984 when an Apple engineer named Rick
Meyers was given the charge to create a development environment to suit Apple's own
internal requirements. As the design of the MPW Shell progressed, it was seen that two
different applications were needed: a UNIX-like command shell and a Mac-like mouse
based editor. A combination shell/editor was decided upon, with Dan Smith writing the
shell and Jeff Parrish writing the editor. Rick Meyers led the project and also worked on
the command interpreter portion of the shell. With the exception of a small amount of
assembly language code, the Shell is written using MPW C and Rez, MPW's resource
compiler.

209

21 0 CHAPTER SIX I MPW

MPW 1.0 was designed to support development on any Macintosh of its day that had
1 MB of RAM and at least 1.6 MB of disk space. It even worked on the Mac XL. The
project started life as MPS, short for Macintosh Programming System. (It was later no
ticed that-coincidentally-MPS also stood for Meyers, Parrish, Smith!) The MPW
Shell was begun by porting the MDS Edit program, which was the editor for the only
other development system that then ran on the Macintosh (MDS Edit was written for
Apple in C by Bill Duvall, formerly of Xerox PARC). Much of the early work on the
Shell was done in C on three Apollo workstations. As the Lisa Workshop's Green Hills
C compiler was ported to run under MPW, so the development of the MPW Shell
moved to Macintosh.

Other elements of MPW included various tools and compilers. Ira Ruben wrote a
completely new 68xxx assembler from scratch, as well as many of the other tools for
MPW. Fred Forsman wrote two major utilities: Make and Print. Ken Friedenbach
brought the Lisa Linker forward, with enhancements. Jim Thomas-then head of the
Development Systems group--and Clayton Lewis of the Numerics group made sure that
the Standard Apple Numerics Environment (SANE) was implemented properly across
all of the languages. Johan Strandberg designed the Rez family of resource tools and
Tom Taylor finished them. Gene Pope worked on ResEdit. Neal Johnson supervised the
equates files, and Steve Hartwell (formerly of Bell Labs) ported the standard C libraries.
Mike Shannon took over dealing with the Green Hills C compiler from Rick Meyers,
and Al Hoffman, Ken Doyle, and Roger Lawrence brought Lisa Pascal forward.

Russ Daniels began work on a symbolic debugger (later to become SADE), but as
that became too ambitious for the schedule, Dan Allen joined the team and rewrote
MacsBug, the Macintosh assembly-level debugger. Russ contributed greatly as "Chief
Heap Dump Analyzer" for the group. In addition to Russ, Chris Brown and at least 13
other people worked on testing the system, not to mention the many people who were
beta-testers. Paul Zemlin was the product manager, and Harry Yee built the system for
Apple's Software Configuration Management (SCM) group.

It took a year and a half to create MPW 1.0, which began distribution through the
Apple Programmers and Developers Association (APDA) in September 1986. After that,
the team grew substantially, and in July 1987, it released MPW 2.0 through APDA.
MPW 2.0 required the 128 KB ROM and a hard disk, and it was shipped on 800 KB
floppies. MPW 2.0 added some new tools, an improved Shell and MacsBug, compilers
that generated 68020 and 68881 code, and interfaces and libraries to support the
Macintosh II.

MPW 3.0 has the same hardware requirements as 2.0 and was released from APDA
in early 1989. Tom Taylor led the project, which led to a brand new in-house C compiler
written by Roger Lawrence, an integrated source code control system called Projector
that was created by Peter Potrebic, a few more tools, and updated libraries and inter
faces. Two all-new debuggers were also introduced: a rewritten MacsBug 6.0, which
was created by Michael Tibbot and a source-level debugger based on the MPW Shell
called SADE (Symbolic Application Debugging Environment), which was written by
Russ Daniels and friends.

MPW OVERVIEW 211

MPW Overview

MPW is versatile in what it can build. It was designed primarily for developing
Macintosh stand-alone double-clickable applications. Many successful applications have
been developed with MPW, including Apple's HyperCard, MPW itself, MacDraw II
(now sold by Claris), Living Videotext's More (now Symantec), and many others. A
substantial percentage of the successful Macintosh applications on the market today were
designed and built using MPW.

Applications created with MPW are run and debugged outside of the MPW environ
ment. When running under MultiFinder-Apple's recently introduced multitasking
operating system-MPW can always be resident, thus allowing a fast return to the envi
ronment to continue the development cycle. MPW itself has at its heart a major
Macintosh application, the MPW Shell, which will be discussed below.

MPW also supports the notion of an integrated tool, which is a generic line-oriented
application that runs inside the MPW environment. Generally, such tools are things like
language translators, text tools, and other non-graphical tools, but there are exceptions,
such as MPW's own Commando tool. Integrated tools have th<:< advantage over standard
applications of being able to use the MPW Shell's environment and resources, thus
freeing you from having to write a Macintosh application every time you need a small
utility. Tools are also a good way to extend the system's functionality; they are dis
cussed in more detail below.

Code is usually disguised as a resource of some kind in the Macintosh. MPW is able
to create many different types of resources, including INITs, PACKS, MDEFs, WDEFs,
DRVRs, and desk accessories. Even the Macintosh ROMs are built entirely with the same
MPW system that is sold to the public.

A new resource type that is growing in popularity is the HyperCard XCMD, which
allows HyperTalk to be extended by calling these compiled resources. Information on
writing XCMDs with MPW is found in chapter 10.

The MPW Interface

MPW is a blend of Smalltalk and uNIX. From Smalltalk, MPW inherits an integrated
environment and the ability to interpret commands when you simply select it and press
the Enter key. The disk-based editor can edit multi-megabyte files, while still being quite
fast because of effective use of memory. The editor is mainly mouse-based, but it does
support several keyboard shortcuts, as well as cursor keys. As the editor is built in, you
cannot easily use any other text editor-a disadvantage to those who prefer their own
editors. The advantages of the integrated environment, however, far outweigh any dis
advantages of the built-in editor.

From UNIX, MPW inherits the notion of a command shell. The command interpreter
supports aliases, shell variables, structured constructs, I/O redirection, pipes, shell
scripts, the sublaunching of tools and applications from MPW, and more. Its history

212 CHAPTER SIX I MPW

mechanism is simple and easy to use: commands are maintained in a window called the
Worksheet that is always present. The Worksheet is handled like any other open file by
the editor. To execute any previous command, simply select the line (triple-clicking is
one shortcut to doing this) and then press Enter or click with the mouse on the lower left
comer of the window to execute the selection. (This corner also shows the name of the
command that is currently executing.) Commands can be executed from any window,
not just the Worksheet. The MPW Shell allows up to 20 open windows in addition to
the Worksheet for MPW 3.0. Figure 6-1 shows a sample worksheet window.

s File Edit Find Mark Window DH Sources

~O~ SR71 :Sources:Scripts:RenameWild ~El§
p MPll She I I Seri pt - renames f i I es by patterns
"llritten by Dan Allen 1/6/89

If "{1}" !N /."/ •Prefix substitution
For i In "{1}""

If • {i }" =N /{1}(..)i>1/
Rename "{1} {il1}" "{2} {il1}"

End
End

Else •Suffix substitution <Must begin with a period)
For i ln""{1}"

If "{i}" =N /(..)i>1{1}/
Rename "{il1}{1}" "{i>1}{2}"

End
End

End

MPIY' Shell

Figure 6-1: A Sample Worksheet Window

~

A window is considered to be a view into a file of the same name. This is a powerful
concept when combined with 1/0 redirection. For example, if a tool's output is redirected
to a particular file that is currently open, the output will be sent to the window as well as
the file. This makes analyzing tool output easy, with one window containing various
shell commands and a second window next to it saving the output from the commands.

MPW supports three types of commands: built-ins, tools, and scripts. If you issue
MPW a command that is not a recognized built-in, MPW searches a user-definable
search path of directories looking for a file of the same name. If the file is a regular
MPW text file (file type of TEXT), it is interpreted as a shell command script. If the file is
an MPW tool (file type of MPST), it is run as executable code. More details on the vari
ous built-ins and the operation of tools will be provided later. MPW can also launch any
stand-alone Macintosh application. When you quit from an application, you will return
to the MPW Shell.

Find-and-replace commands work on open windows, either in a literal mode similar
to that found on most word processors or in a selection-expression mode in which you
can do powerful text processing using commands reminiscent of UNIX's regular ex
pressions. Numeric and string expressions are evaluated in the same way as the pattern
portion of an awk script, regular expressions may be specified as in grep, and selec
tions allow ranges of text in windows to be specified in powerful ways. Admittedly,

SHELL COMMAND LANGUAGE 213

selection expressions are the most arcane aspect of MPW and have a steep learning
curve. This is one area of MPW that is drastically underused by most programmers.

Finally, MPW inherits from both Smalltalk and UNIX the ability to extend the sys
tem. MPW is flexible. From customizing a userStartup shell script, to designing
custom menus and keyboard equivalents that are tied into shell commands, to writing
new tools, MPW is designed from the ground up to be configured the way you want it
to be.

Shell Command Language

The MPW Shell language can be thought of as a programming language in its own
right. It has variables, control structures, input/output facilities, support for subroutines,
and so on. We will see examples of "programs" (often referred to as "scripts") later in
this chapter.

MPW Commands are interpreted in seven steps when you press the Enter key (or
equivalent):

1 . Alias substitution

2 • Evaluation of structured constructs

3 . Variable and command substitution

4 . Blank interpretation

5 . File name generation

6 . IJO redirection

7 • Execution

We will look at each of these steps in tum.

Alias Substitution

Alias substitution is a simple macro mechanism for replacing one or more commands
with a single term. As with the C preprocessor, the first step of command interpretation
by the Shell is to scan for any words that may be aliases. If any are found, the alias is
expanded. Aliases are created and destroyed by Alias and Unalias, respectively. All
current aliases can be listed by simply typing Alias.

214 CHAPTER SIX I MPW

Evaluation of Structured Constructs

The next step of the command interpreter is to evaluate the structured constructs of a
script. These allow conditional tests and iteration. The If statement allows multiway
branching with multiple optional Else If clauses and an optional final Else clause. All
structured statement openers (Begin, For, If, and Loop) must be alone on a line, and
they require a matching End statement beginning on a separate line. Anything following
an End is ignored until the next line.

The following table lists the structured commands that are built into MPW.

Name
Begin
Break
Continue
Evaluate
Execute
Exit
For
If
Loop

Function
Group commands
Break from For or Loop
Continue with next iteration of For or Loop
Evaluate an expression
Execute command file in the current scope
Exit from a command file
Repeat commands once per parameter
Conditional command execution
Repeat commands until Break

Loops are of two types: definite and indefinite. The definite loop is a variation on a
For loop that resembles the UNIX tool awk's for loop: it takes a list of parameters and
sets a variable to those parameters. The indefinite loop starts simply with Loop. You
may exit the loop using the Break command (which optionally has the form Break If
expression ...) or the Exit command, which terminates the entire script and optionally
returns a result. The Continue statement is just like the C statement of the same name.
There is no Goto.

Variable and Command Substitution

To refer to variables, enclose their names in braces. Variables are not typed: all vari
ables evaluate to strings of text.

To create and destroy variables, use the Set and Unset commands. Their scope is
local to the currently executing script. Scripts can call other scripts or themselves recur
sively, limited only by available memory. Each invocation of a script will have its own
copy of local variables, which are implicitly declared by the use of Set.

If you want to make variables visible to nested scripts, export them with the Export
command. Exported variables can also be hidden later using the Unexport com
mand; they can also be overridden locally through the use of Set. To return lists of all
currently set or exported variables, use the Set and Export commands without
parameters.

SHELL COMMAND LANGUAGE 21 5

If you run a script by using the Execute command rather than by just referring to the
script's name, the script's scope stays the same as the global environment-no local
scope is created. You should always execute a Startup script after it has been changed,
rather than just ref erring to its name.

The MPW Shell sets several variables, including Active, Aliases, Autoindent,
Boot,Command,Font,FontSize,ShellDirectory,Status,SystemFolder,
Tab, Target, Windows, WordSet, and Worksheet. Other variables that are refer
enced by the Shell include Commands, Commando, Echo, Exit, and Test.

The following table lists the variable and parameter commands that are built into
MPW.

Name
Alias
Echo
Export
Parameters
Quote
Set
Shift
Unalias
Unexport
Unset

Function

Define or write command aliases
Echo parameters
Make variables available to commands
Write parameters
Echo parameters, quoting if needed
Define or write Shell variables
Renumber command file positional parameters
Remove aliases
Remove variable defs from the export list
Remove Shell variable definitions

Command substitution through the use of backquotes allows the results of a com
mand that would normally go to standard output to be returned as a string, much like a
function.

Blank Interpretation, File Name Generation,
1/0 Redirection, and Execution

Next in MPW's interpretation process comes blank interpretation. Blank spaces that
have separated tokens are removed. Then file name generation allows selection expres
sions to expand to a list of file names for the current directory.

1/0 redirection follows, sending stdin, stdout, and stderr to arbitrary destina
tions that are also specified by selection expressions. For example, using this mecha
nism, you can run a tool on just a selected portion of text in an open window. By
default, standard output and standard error are sent to the location where the script began
execution, usually the Worksheet.

After I/O redirection, the script is actually executed or interpreted. Evaluation of ex
pressions takes place at this time.

216 CHAPTER SIX I MPW

MPW Shell Built-In Commands

The MPW Shell can accomplish most of the functions that the Finder provides.
Obviously, the Shell is not as easy to use as the Finder, but the Shell does give you flex
ibility in manipulating files with the built-in file system commands shown in the follow
ing table. Many of these commands are similar to UNIX commands.

Name
Catenate
Delete
Directory
Duplicate
Eject
Equal
Erase
Exists
Files
Flush
Mount
Move
Newer
NewFolder
OpenFiles
Rename
SetFile
Unmount
Volumes
Which

Function
Concatenate files
Delete files and directories
Set or write the default directory
Duplicate files and directories
Eject volumes
Compare files and directories
Initialize volumes
Confirm the existence of a file or directory
List files and directories
Flush the tools that the Shell has cached
Mount volumes
Move files and directories
Compare modification dates of files
Create a new folder
List files that are open
Rename files and directories
Set file attributes
Unmount volumes
List mounted volumes
Determine which file the Shell will execute

As shown in the following table, a few other miscellaneous commands are provided.

Name
Beep
Date
Help
Quit
Shutdown

Function
Generate tones
Write the date and time
Write summary information
QuitMPW
Power down or restart the machine

The MPW Shell also provides built-in scriptable commands for most of the actions
that normally would be done with the mouse or keyboard, thus facilitating build scripts
that automate the production of software. Custom menus can be created, with scripts
behind each menu item. A few standard dialogs are also available, and Commando al
lows you to create semicustom dialogs, which are useful for choosing command options
and getting help on a particular command.

SHELL COMMAND LANGUAGE 217

The following table lists MPW's built-in window, menu, and dialog commands.

Name
AddMenu
Alert
Close
Confirm
DeleteMenu
Move Window
New
Open
Request
Revert
Rotate Windows
Save
Size Window
Stack Windows
Target
Tile Windows
Windows
Zoom Window

Function
Add a menu item
Display an alert box
Close specified windows
Display a confirmation dialog box
Delete user-defined menus and menu items
Move window to h,v location
Open a new window
Open file(s) in window(s)
Request text from a dialog box
Revert window to previous saved state
Send active (frontmost) window to back
Save specified windows
Set a window's size
Arrange windows diagonally
Make a window the target window
Arrange windows in a tiled fashion
List windows
Enlarge or reduce a window's size

With its many built-in text commands, the MPW Shell can also act like a pro
grammable word processor. The Find and Replace commands use selection expres
sions to specify complex text patterns, and markers allow ranges of text to be named and
easily selected. Of course, the usual Cut, Copy, Paste, and the ever-needed Undo
command allow text manipulation in open windows. Text can be selected and the cursor
placed with the Find command.

The following table lists the text commands provided in MPW.

Name
Adjust
Align
Clear
Copy
Cut
Find
Format
Mruk
Markers
Paste
Position
Replace
Undo
Unmark

Function
Adjust lines
Align text to left margin
Clear the selection
Copy selection to Clipboard
Copy selection to Clipboard and delete it
Find and select a text pattern
Set I display formatting options for a window
Assign a marker to a selection
List markers
Replace selection with Clipboard contents
Display current line position
Replace the selection
Undo the last edit
Remove a marker from a window

21 8 CHAPTER SIX I MPW

MPW Documentation

Several levels of help are provided with MPW. First, an on-line help command
gives concise summaries of commands and their options, expression syntax and prece
dence, selections, and keyboard shortcuts. You can easily modify and extend this help
system to include additional information.

A second level of help oriented toward building up command lines is an MPW tool
called Commando. Commando was written by Tom Taylor in his spare time to provide a
Mac-like dialog interface to tools. You can make any MPW tool Commando-compatible
by adding a single cmdo resource to its resource fork. By typing a command name fol
lowed by the ellipsis character (or Option Enter), you can bring up a dialog that offers
radio buttons, pop-up menus, check boxes, text fields, and on-line explanations of each
option for that tool. The resulting command line is displayed dynamically in the dialog
box, and can be copied or immediately executed. With every command in the MPW
system "Commandoized," including the built-ins, Commando is a great way to explore
new options and to learn about tools. Commando makes the manual pages generally un
necessary.

A third level of help comes through MPW Shell scripts that automate and guide a user
through building an application, desk accessory, or tool. These powerful scripts, which
are called collectively the Build scripts, install in the menubar two additional menus that
allow directories to be changed quickly, as well as makefiles to be generated and run
automatically. The Build scripts were written by Rick Meyers primarily to help a begin
ning user with the otherwise potentially overwhelming system, although they are useful
anytime a quick tool needs to be cranked out. A list of the available scripts is provided in
the following table.

Name
BuildCommands
BuildMenu
BuildProgram
CreateMake
Directory Menu
SetDirectory

Function
Show build commands
Create the Build menu
Build the specified program
Create a simple makefile
Create the Directory menu
Set the default directory

The final resource included with the system is the main MPW Reference manual,
which fully describes the Shell and its commands. This manual has two parts: the Shell
tutorial and the manual pages for the commands and tools.

MPW TOOLS 21 9

MPW Tools

With the advent of the MPW Shell comes a new class of Macintosh software distinct
from applications or desk accessories: MPW tools. An MPW tool is similar to a standard
Macintosh application, but it runs as part of the MPW Shell and benefits from many
services that the Shell provides. To get a bit more technical, an MPW tool is actually a
coroutine resident within the MPW Shell's heap. The rules for writing tools are short,
and they dictate, for example, that tools do not need to initialize the various Mac Toolbox
managers or to deal with menus or events. MPW tools have these services performed for
them by the MPW Shell.

The following paragraphs describe the launching of a tool and illustrate how an MPW
tool fits into the Macintosh architecture.

A significant portion of the Shell needs to be active and resident in memory during the
execution of a tool, but some code is unneeded, so the first step in preparing to launch a
tool is for the Shell to unload some dormant code segments, thus allowing the tool more
available heap space.

The second step is to open the tool's resource fork and allocate a cache entry. Tools
are cached in memory upon their first execution. This makes subsequent executions of a
cached tool much quicker. This speed advantage is noticeable when a compilation error
is corrected and when code is recompiled, for example. Up to ten tools can be cached in
RAM, with the oldest tools being purged from memory as additional space is required.

The third step in the launching of an MPW tool is to create a separate and distinct A5
World for the tool. What this means is that the MPW Shell does a type of context switch
by setting up an area for the tool's A5 World in the Shell's own application heap. An A5
World in this context is collectively those areas of memory that in the Macintosh
architecture depend upon the value contained in the A5 register of the 68xxx
microprocessor. Such areas include the application's globals, QuickDraw's globals, and
the intra-segment jump table. The MPW Shell takes care of allocating a non-relocatable
block for the globals and also sets up the jump table (code segment 0 of any Mac
application or tool). The tool's stack area, however, is shared with the stack of the MPW
Shell, thus reducing memory requirements.

The fourth step in launching a tool is to set up the environment area, which is an area
in memory containing the parameters being passed to the tool from the Shell. These are
accessed in C, for example, via the standard argv, argc convention.

Finally, the Shell does a quick check of the heap for consistency and then calls the
first routine in the tool's jump table. The MPW tool then effectively becomes the appli
cation in control.

Many of the common routines that an MPW tool may call, such as the file-system and
memory allocation routines, are patched out or intercepted by the MPW Shell, thus al
lowing it to do 1/0 redirection and to perform its "windows over files" abstraction.
When these routines are called by a tool, or when a Readln or printf instruction is
called, the flow of execution returns to the Shell while it handles the tool's request.

220 CHAPTER SIX I MPW

Typical tools contain many instances where the path of execution is transferred back and
forth-transparently to the programmer-between the MPW Shell and the MPW tool.

After the tool terminates, the Shell automatically performs several clean-up operations.
It retrieves the status from the environment area, closes any files left open by the tool,
and then frees up any memory that was allocated by the tool. These operations are
possible because the Shell intercepts the memory allocation and file system calls. Tools
executed later are thus given a clean environment in which to run.

If a tool goes into an infinite loop, or if you want to terminate the execution of a tool,
the Shell provides a periodic Vertical Blanking (VBL) task that checks for a Command
Period keyboard sequence, which will force a tool to be aborted and the environment to
be cleaned up.

The real utility of an MPW tool is that generic code written for more traditional TTY
environments will run in the Macintosh environment without any additional code sup
port. Readln, Writeln, scanf, printf: they all work without your having to write a
set of special QuickDraw commands to support them. Most utilities written to run in the
UNIX environment are especially good candidates for an easy port to MPW tools.

MPW includes many different tools. Compilers, assemblers, and linkers are all MPW
tools. There are text tools to analyze sources, object tools to create libraries and disas
semble object code, and resource tools to create and verify resources. The following
table shows a list of the full set of tools found in MPW.

Name
Asm
Backup
c
Canon
CFront
Choose
Commando
Compare
Count
DeRez
DumpCode
DumpFile
DumpObj
En tab
FileDiv
GetErrorText
GetFileName
GetListltem
Lib
Link
Make
MakeErrorFile
Matchlt

Function
MC68xxx Macro Assembler
Folder file backup
C compiler
Canonical spelling tool
C++ to C translator
Choose I list network file servers and printers
Present a dialog interface for commands
Compare text files
Count lines and characters
Decompile resources
Write formatted CODE resources
Display contents of any file
Write formatted object file
Convert runs of spaces to tabs
Divide a file into several smaller files
Display error messages based on msg number
Display a Standard File dialog box
Display items for selection in a dialog box
Combine object files into a library file
Link an application, tool, or resource
Build up-to-date version of a program
Create error message text file
Language-sensitive bracket matcher

Name
Pascal
PasMat
PasRef
PerfonnReport
Print
ProcNames
ResEqual
Rez
RezDet
Search
SetPrivilege
Set Version
Sort
Translate
Wherels

MPW Text Tools

Function
Pascal compiler
Pascal programs fonnatter
Pascal cross-referencer
Generate a perfonnance report
Print text files
Display Pascal procedure and function names
Compares the resources in two files
Resource compiler
Detect inconsistencies in resources
Search files for pattern
Set access rights for directories on file servers
Maintain version and revision number
Sort or merge lines of text
Translate characters
Find the location of a file

MPW TOOLS 2 21

Working with text is the most common task done on computers. The Macintosh is
well suited to working with text, and in this chapter we will present the source code for
several tools that make manipulating, searching, and summarizing text easier.

With the advent of the CD-ROM, more and more text will be available, but how will it
be accessed? One major class of tools that work well with lots of text is made up of hy
pertext applications, such as Apple's HyperCard. (For more on hypertext, see the chap
ter on HyperCard.) When you are importing a large text database into HyperCard, doing
a great deal of massaging of text up front before the actual importing operation can save
a lot of time in the long run. Many of these tools were in fact created for the express
purpose of importing megabytes of text into HyperCard.

MPW is a good companion environment for working with text, as the MPW Shell is
one of the few programs that can actually open, edit, and work with multi-megabyte text
documents. MPW's built-in commands that are useful in this context are catenate,
Find, Replace, Cut, Copy, and Paste. These commands are powerful because of
their ability to use selection expressions, but they can also be quite slow when used on
big files. MPW also contains several separate text tools, including Canon, Compare,
Count, FileDiv, Search, and Translate.

Find, Replace, and Search are probably the most used of the text tools. Find
and Replace are used to locate and replace text found in open windows, and Search
can search through a list of open windows as well as closed files. All these commands
use the same regular expression language, although Find and Replace can also specify
selections in windows.

Canon allows a canonical list of spellings to be used throughout a file. It is essentially
a tool for doing multiple search and replaces simultaneously. It can be used, for exam
ple, to ensure the uniform use of identifiers throughout a file. The input to canon is a

222 CHAPTER SIX I MPW

list of pairs of words, one pair per line. The first word in a line is the search string, and
the second word in the line is the string that replaces all occurrences of the first string. If
only one word is listed on a line, canon makes sure that any occurrence of that word is
in the proper case. Canon uses as its definition for words the notion of an identifier that
is used in both C and Pascal: any letter or underscore followed by any number of letters,
digits, and underscores.

Several additional text-processing tools written in C are presented in chapter 8,
including Text Tool, Sort, and Index.

MPW Object Tools

The primary object tool is Link, which takes different modules of compiled code and
links them together. The output of the linker is made up of resources, the type of which
depends upon what is being built. For example, the linker outputs CODE resources for
applications, DRVR resources for desk accessories, etc.

Libraries of routines can be created with the Lib utility, which like the linker joins to
gether different pieces of compiled code. Lib is similar to the linker, but its output is
sent to other object files rather than to resources. (Remember that object files use the data
fork rather than the resource fork of a file.)

DumpCode and DumpOb j are disassemblers that allow inspection of compiled code.
DumpCode works on resources of any type (usually CODE), and DumpObj reveals the
contents of object files. A variant of DumpOb j is presented later in this chapter: Obj is a
tool written in C that lists the names and sizes of the various routines in a compiled ob
ject file.

MPW Resource Tools

Re z is the MPW resource compiler: it takes a textual description and creates a re
source from it. (For more about resources, see chapter 4.) Rez uses a language that is
similar in its syntax to C but that is especially crafted for describing Macintosh re
sources, such as ALRTs, DLOGs, DITLs, and MENUs. These and many other re
sources can textually be described in the Rez language. User-defined types are easily
constructed; they aid in making programs easily localizable to foreign languages. To aid
you in using Re z, MPW provides a companion resource decompiler called De re z that
will derive source from existing resources.

Other than the MPW Shell itself, ResEdi t is the only other application included with
MPW. A familiar utility program to any Mac programmer, Res Edit is an interactive
tool for creating, modifying, deleting, and moving resources. Using MPW Pascal or C,
you can write custom edi!ors and add them to the many editors already present in
ResEdit. Sample code to extend ResEdit is included with MPW and ResEdit.

STARTUP - SHELL SCRIPT 223

ResEdi t was originally written by Steve Capps, who incidentally wrote many ver
sions of the Finder. Rony Sebok wrote the template editor, and Gene Pope wrote most
of the other pickers and editors.

A common way to work with resources is to create resources interactively with
ResEdit, then Derez them to obtain a textual description of the resources. You can
then maintain and build the resources with Re z.

MPW includes a few more resource tools. ResEqual is a comparison tool that is
similar to di ff in UNIX, except that it compares resources rather than text, showing all
differences between two files. RezDet is a resource detective: it verifies a resource fork.
It can also list the contents of a resource fork in several different formats. Chapter 4
contains the C source code to ListRsrc and CleanRsrc, two more useful resource
tools. ListRsrc is a blend of ResEqual and RezDet: it lists the contents of two re
source files in a two-column format that allows easy comparisons, and CleanRsrc will
delete resource forks.

One last historical tidbit: why the different spellings of Rez and ResEqual? Well,
ResEqual was named after ResEdit: both were written in Pascal. Meanwhile, Rez,
DeRez, and Rezoet had a whole different flavor, being written in C. Entire meetings
were actually spent arguing the spelling of these tools, but the struggle for uniformity
ended in a stalemate.

Startup -Shell Script

The first MPW Shell Script that you must understand is the start-up script. Startup
is a text file that contains various directives that tell the Shell where things are. A file
called us e r st a rt up also exists to allow you to further customize MPW.
Unfortunately, Userstartup has become just an extension of Startup for most peo
ple: they leave it untouched and thus get the default additional menus, etc.

A good way to get into MPW is to decide how you want your projects arranged and
to rewrite the start-up files to your liking. My personal start-up file has encompassed
both the standard Startup and UserStartup files. I do not even have a
UserStartup file, which makes for even faster launching of the Shell.

The Shell script presented here is for such a system and probably will not be perfect
for anyone else. It will require careful review and changes after any MPW updates. It is
shown here so that you may get an idea of how to modify your own scripts. Figure 6-2
shows what my set-up looks like from the Finder.

224 CHAPTER SIX I MPW

s File Edit Uiew Special

SR71
S items 64 , 149K in disk 12,753K

i!t! DA L:J s tacks m
L:JApps L:JDocs

L:JMP'll CJ sources !SJ System !! MacsBug

Hin os CJ Utilities ~ MultiFinder 00 Startup

~Finder 00 Quit

DR
~ DesktopMgr 00 Suspend

12 items 64 , 149K in disk
5! Finder Startup 00 Resume

!l!MP'll Shell tijp Hy perCard
~ Clipboard File 00 Wor ksheet

\i ResEdit II Launch 'Word
~Note Pad File 00 MPW' .He Ip

lfbFedit I Macros

~Mover l!I Faith

Figure 6-2: M y Set-Up as Viewed from the Finder

The Shell ' s support files go into the System Folder, which is why this set-up is
named OS. (There is nothing special about the name System Folder.) Naming this folder
OS allows you to use the folder in scripts without having to quote it, because there are
no spaces in its name.

The support files for MPW include the Wo r k s h eet, S u spe n d, Res u me , Quit,
MPW . Help, SysErrs. err, and Startup files . With these files in the System Folder,
the MPW Shell can go anywhere, including on the Desktop, but when MultiFinder is in
use, files on the Desktop are often inaccessible, so I use a folder to simulate the
Desktop. The Poor Man ' s Search Path (PMSP) of HFS will allow the Shell to find its
files in the System Folder.

A folder called MPW is placed in the root, and it in tum contains folders called Tools,
Scripts, Libraries, and Interfaces. The Libraries and Interfaces folders have sub
folders for each language. Shell variables are set up in the Startup file to reflect this
organization.

The following Sta r tup file works with both MPW 2.0 and MPW 3.0, with the 3.0
version of the Shell containing additional shell variables that are not listed here. It is al
ways wise to start your own Start up file from an existing Startup file and then be
gin hacking it.

STARTUP - SHELL SCRIPT

MPW Startup File by Dan Allen 1/13/89

MPW Shell Variables ##
Export Active
Export Aliases
Export Boot
Export Command

The pathname of the topmost window.
A comma separated list of the current aliases.
The pathname of the boot disk.
The name of the currently executing command.

225

Export ShellDirectory
Export Status

The pathname of the directory of the MPW Shell.
The result of the last command executed.

Export SystemFolder
Export Target

The pathname of the System (blessed) folder.

Export Windows
Export Worksheet

The path of window underneath the active window.
A comma separated list of open window pathnames.
The pathname of the worksheet.

Set Exit 1 Export Exit
Set Echo 0 Export Echo

If non-zero, command files stop after an error.
If non-zero, commands are echoed.

Set Test 0 Export Test # If non-zero, tools and apps are not executed.

Setup pathnames to common libraries and interfaces
Set MPW " {Boot } MPW: " ; Export MPW
Set Commando Commando ; Export Commando
Set Aincludes "{MPW}Interfaces:Aincludes:" Export Aincludes
Set Cincludes "{MPW}Interfaces:Cincludes:" Export Cincludes
Set Pinterfaces "{MPW}Interfaces:Pinterfaces:" ; Export Pinterfaces
Set Rincludes "{MPW}Interfaces:Rincludes:" ; Export Rincludes
Set Libraries
Set CLibraries
Set PLibraries

"{MPW}Libraries:Libraries:" ; Export Libraries
"{MPW}Libraries:CLibraries:" Export CLibraries
"{MPW}Libraries:PLibraries:" ; Export PLibraries

Setup editor preferences
Set Autoindent 1 ; Export Autoindent
Set CaseSensitive 0 ; Export CaseSensitive
Set Font "Courier" ; Export Font
Set FontSize 9 ; Export FontSize
Set Tab 2 ; Export Tab
Set WordSet "a-zA-Z_0-9." ; Export WordSet

Setup option preferences for two MPW tools that happen to support such things
Set PrintOptions "-f Courier -s 6 -h -hf Times -hs 9 -b2 -r"
Set PasMatOpts '-a -entab -h -k -o 120 -n -q -r -u -z'
Export PrintOptions ; Export PasMatOpts

OKA Shell Variables ##
Set Sources "{Boot}Sources:" ; Export Sources
Set Tools "{Sources}Tools:" ; Export Tools
Set Scripts "{Sources}Scripts:" ; Export Scripts
Set wl "{Sources}WordLists:" ; Export wl
Set Commands":, {Tools},{Scripts}, {MPW}Tools:, {MPW}Scripts:" Export Commands

226 CHAPTER SIX I MPW

MPW Aliases ##
Alias File Target
Alias v Volumes -1
Alias ev Evaluate

Unix Aliases - MPW already has date,echo,make,sort,whereis ##
Alias ar Lib
Alias cat Catenate
Alias cc 'C -rnbg off'
Alias cd Directory
Alias cmp Equal
Alias cp Duplicate
Alias diff Compare -b
Alias df Volumes -1

Alias expr Evaluate
Alias grep Search
Alias ld Link '-w -t MPST -c "MPS " a

"{Libraries}Stubs.o" "{Libraries}Interface.o" a
"{CLibraries}Cinterface.o" "{CLibraries}CRuntime.o" a
"{CLibraries}StdClib.o" "{CLibraries}CSANELib.o" a
"{CLibraries}Math.o" "{Libraries}ToolLibs.o"'

Alias 11 Files -x tckrbm
Alias lr Files -m 5 -r
Alias ls Files -m 5
Alias man Help
Alias mkdir NewFolder
Alias
Alias
Alias
Alias

mv
nm
od
pr

Move
obj # src
dump # src
Print

Alias pwd Directory
Alias rm Delete
Alias sdb Sade
Alias source Execute
Alias tar Backup
Alias tr Translate
Alias wc Count

to
to

this tool is in this book
this tool is in this book

STARTUP - SHELL SCRIPT

DKA Aliases ##
Two short cmds to clear the worksheet; 2nd executes output of make too
Alias Clearlt 'Opem " {worksheet}" ; Clear • : oo " {worksheet}"'

227

Alias Dolt 'Open "{worksheet}"; Make> "{worksheet}"; Find •:oo "{worksheet}"'
Cmds to save and restore directories; first 3 used by 1 letter cmds below
Alias sv 'Set oldDir 'Directory''
Alias rs 'Set Exit 0 ; Open ; Set Exit 1 ; cd "{oldDir}"'
Alias hist 'Set lastDir 'Directory''
Alias home 'hist ; cd "{ShellDirectory}"'
Alias back 'cd "{lastDir}"'
One letter cmds to set my most accessed directories
Alias a 'hist cd "{Sources}ACPCode:"'
Alias b
Alias h
Alias i
Alias m
Alias s
Alias t

'hist
'hist
'hist
'hist
'hist
'hist

cd
cd
cd
cd
cd
cd

"{Boot}Stacks:Scriptures:"'
"{Sources}HCSrc:"'
"{Sources}CTools:"'
"{Sources}MBSrc:"'
"{Sources}ShellSrc:"'
"{Tools}"'

Alias w 'hist cd "{wl}"'
Alias x 'hist cd "{Sources}XCMD:"'
Short cmds to launch most used apps
Alias xl Execute '"{Boot}Apps:MS Excel:MS Excel"'
Alias word Execute '"{Boot}Apps:MS Word:MS Word'"
Alias he Execute '"{Boot}DA:HyperCard"'
Alias resedit Execute '"{Boot}DA:ResEdit"'
Alias mover Execute '"{Boot}DA:Mover" {SystemFolder}System'

DKA Menus ##
DeleteMenu
AddMenu Find ' (-'
Find selection in target window, a very useful cmd key
AddMenu Find 'Find §{targ}/J' o

'Find• "{target}" ; Find /'catenate< "{active}".§'/
Set current window to canonical MPW size
AddMenu Find 'StdWind/L' o

Open "{Target}"'

'MoveWindow 36 22 "{Active}" SizeWindow 473 280 "{Active}"'
Useful fast build-oriented menus
AddMenu DA 'Make/f• 'Dolt'
AddMenu DA 'Build/B' 'Clearlt ; Build'
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA
AddMenu DA

'Build HC/B' 'Clearlt ; h; Build'
'Date Stamp/-' 'Echo -n ·Date -s -d' '
'Change Stamp/=' 'Echo-no o{o DKA 'Date -s -d'o o}'
I (-I I I

'Open Startup' 'Open "{SystemFolder} Startup"•
'Open Makefile' 'Open Makefile'
I(-' 1 I

'Files/L' 'Clearlt ; 11'
'Voll Name/l' 'Echo -n '"volumes 1' "'
'Vol2 Name/2' 'Echo -n "'volumes 2""
'Eject Disks/E' 'Eject 1 ~ dev:null ; Eject 2 ~ dev:null'

228 CHAPTER SIX I MPW

Useful backup commands for moving
AddMenu Sources 'Arriving Docs' a

'Clearit; Echo -n Backup -a
AddMenu Sources 'Arriving Src' d

'Clearit; Echo -n Backup -a
AddMenu Sources 'Arriving OS' a

'Clearit; Echo -n Backup -a
AddMenu Sources '(-' ''

files to/from

-r -from 1 -to

-r -from 1 -to

-r -from 1 -to

-r -to 1 -from

floppies

{Boot}Docs:'

{Sources}'

{SystemFolder}'

{Boot J Docs: '
AddMenu Sources 'Departing Docs' a

'Clearit; Echo -n Backup -a
AddMenu Sources 'Departing Src' a

'Clearit; Echo -n Backup -a
AddMenu Sources 'Departing OS' a

'Clearit; Echo -n Backup -a

-r -t TEXT -to 1 -from {Sources}'

-r -to 1 -from {SystemFolder}'
AddMenu Sources ' (-' ''
These menus temporarily change dir to a specified dir for looking up
AddMenu Sources 'HyperCard' 'sv h cd src rs'
AddMenu Sources 'MPW Shell' 'sv s cd src rs'
AddMenu Sources 'MacsBug' 'sv m cd src rs'
AddMenu Sources '(-' ''
AddMenu Sources 'DKA Scripts' 'sv cd "{Scripts}" rs'
AddMenu Sources 'XCMDs' 'sv x ; rs'
AddMenu Sources 'ACPCode' 'sv ac ; rs'
AddMenu Sources 'CTools' 'SV i ; rs'
AddMenu Sources I (-I ''
AddMenu Sources 'Aincludes' 'sv cd "{Aincludes}" rs'
AddMenu Sources 'Cincludes' 'sv cd "{Cincludes}" rs'
AddMenu Sources 'Pinterfaces' 'sv cd "{Pinterfaces}" ; rs'
AddMenu Sources 'Rincludes' I SV cd "{Rincludes}" ; rs'

MakeCTool - Make Script

files

The second MPW script you need to understand is a Makefile. A Makefile is actually
a combination of two languages: the MPW Shell command language and the Make lan
guage. If you understand that there are lines of Make and lines of the MPW command
language in a Makefile, you have taken a big first step toward understanding Makefiles.

The following script is for building MPW C tools. It is a generic script that allows
many different tools to be built with only a single script.

The first three lines are Make lines: they set Make variables that later will be incorpo
rated in the script. (coptions also happens to be used by the default rules-more on
that later.)

The CLibs line is continued over several lines by use of MPW's line continuation
character, a. It too is a Make assignment that will later be interpreted by the Shell. That
is why all of the quotes are present. The braces indicate a Shell variable that will be ex
panded by the Shell when it is interpreted.

MAKECTOOL - MAKE SCRIPT 229

The next section of the Makefile is what allows any C tool to be built. The idiom of
. f . c. o is how Make says, "Any named argument to this script is a function of that ar
gument followed by .c.o." So Make foo, for example, means that foo is a function of
foo.c.o. The lines following this rule are output to stdout. In this case, the Makefile
will link things, set the file type, delete the object file, and move the resulting tool into a
Tools folder.

The next dependency is handled automatically by the default rules that reside in a
sneaky place: the data fork of the Make tool itself! To dump these rules to standard out
put, type Catenate {MPW}Tools :Make or Catenate' which make'. (If you
change the default rules by using Catenate to send text to the Make tool file, the file
type will be changed to TEXT and Make will not be considered a tool, so be careful!)

One of the default rules says that any file ending in . c . o is dependent upon a file
with the same name ending in just . c, or in other words, an object file depends upon a
source file of the same root name. The default rules thus generate the line to call the
compiler, adding the contents of the aforementioned COptions variable.

The following file is simply named Makefile. It resides in a folder called CTools
with all of the source files for my various C Tools, many of which are presented in
chapter 8. If this folder is the current directory, typing Make and the name of the tool
desired will generate the appropriate list of build commands.

C Tool Generic Makefile by Dan Allen 3/27/88

COptions = -mbg ch8 # use old-style MacsBug names
LOptions = -w -sg Main=STDIO,INTENV,SADEV,SACONSOL,CSANELib
SFOptions = -d . -m . -c "MPS " -t MPST

CLibs = "{Libraries)Stubs.o" i)

"{Libraries)Interface.o" i)
"{CLibraries)Cinterface.o" i)

"{CLibraries)CRuntime.o" i)

"{CLibraries)StdClib.o" i)
"{CLibraries)CSANELib.o" i)
"{CLibraries)Math.o" i)

"{Libraries}ToolLibs.o"

f .c.o
Link -o {Default} {LOptions) {Default}.c.o {CLibs}
Setfile {SFOptions} {Default)
Delete {Default}.c.o
Move -y {Default) {Tools)

230 CHAPTER SIX I MPW

MakeCTool68881 - Make Script

This Makefile is almost identical to the previous Makefile, but the compiler options
are different. The files to be linked against also are different when you are doing 68881
code generation. This file is named Make881.

C Tool Generic Makefile for 68881 by Dan Allen 3/27/88

COptions
LOptions
SFOptions

-mc68020 -mc68881 -elems881 -mbg ch8
-w -sg Main=STDIO,INTENV,SADEV,SACONSOL,CSANELib
-d . -m . -c "MPS " -t MPST

CLibs = "{CLibraries}CLib881.o" a
"{CLibraries}Math881.o" a
"{CLibraries}CSANELib881.o" a
"{CLibraries}Cinterface.o" a
"{CLibraries}CRuntime.o" a
"{CLibraries}StdCLib.o" a
"{Libraries}Interface.o" a
"{Libraries}ToolLibs.o"

f .c.o
Link -o {Default} {LOptions} {Default}.c.o {CLibs}
Setfile {SFOptions} {Default}
Delete {Default}.c.o
Move -y {Default} {Tools}

Build - Shell Script

This very short script automates the build process by calling Make (with an optional
argument) and redirects the build steps that Make generates to a file named
make. build. This file is then executed, thus building the piece of software that is the
default item to be built in the current directory.

To use this script, simply change directory to the desired folder and type build fol
lowed by the magic Enter key; the build process begins for that project. Alternately, you
can add special menus to Shell's menus to allow a command key equivalent to do this.
This is demonstrated in the Startup script above. The Date and Echo commands in
this simple script allow the progress of a build to be timed and watched, respectively.

Make (1) >make.build
Date

Set echo 1
make.build

Set echo 0
Date

Delete make.build

BUILDTOOLS - SHELL SCRIPT 231

BuildTools - Shell Script

This script calls the Build script that was just given, which in turn calls Make, which
in tum uses MakeCTool, also given earlier. This script will automatically build all of
the C tools whose sources reside in the CTools folder. Certain of these tools benefit
greatly from having 68881 code generation. This script uses the Make 8 81 script above
for those few tools.

Type Bui 1dToo1 s without any arguments to build all of the tools, or give
BuildTools a list of arguments to build specific tools.

BuildTool - automated build script for various MPW Tools
Written by Dan Allen 4/1/88
Modified last on 7/9/89

Set oldDir 'Directory'
Set exit O

Loop
If (1) =- /ctools/ 11 (1) ==

Directory (Sources}CSrc:
Set start 'Date -n'
For j In =.c

If "(j}" =- /(=)®l.c/
Echo "Building (®l) ... "

this extracts the tool name w/o suffix

Certain tools really benefit from the 68881
If (®ll =- /det/ 11 (®lJ =- /graph/ 11 (®ll =- /hash/ 11 a

(®l} =- /rand/ 11 (®l} =- /sun/
Make -f Make881 (@l} >(®l).881 && (®l).881 && Delete (®1).881

Else # the rest can be built normally
Make (®l} >(®!}.build && (@!}.build && Delete (®!}.build

End
End

End
Set finish 'Date -n
Echo "Built Tool Suite in 'Evaluate (finish} - (start}' seconds"

Else If 'Exists -f (Sources}CTools: (1) .c' != ""
Directory {Sources}CSrc:
If (1) =- /det/ 11 (1) =- /graph/ 11 (1) =- /hash/ 11 a

(1) =- /rand/ 11 (1) =- /sun/
Make -f Make881 {1} >{1).881 && {1).881 && Delete (1).881

Else
Make (1) >{1}.build && {1}.build && Delete {1}.build

End
End
Shift
Break If (1)

End

Directory "(oldDir}"

232 CHAPTER SIX I MPW

RenameWild - Shell Script

This script allows many files to be renamed at once, something that the built-in re
name command cannot do. For example, if all files ending in .p.o need to be renamed to
.o files, just type RenameWild . p. o . o .

MPW Shell Script - RenameWild - renames files by patterns
Written by Dan Allen 1/6/89

If "{l)" !- /.=/ #Prefix substitution
For i In "{l)"=

If "{i)" =- /{l) (=)®l/
Rename " { 1} { ®l)" " { 2) { ®l)"

End
End

Else # Suffix substitution (Must begin with a period)
For i In ="{l)"

If "{i)" =- /(=)®l{l)/
Rename "{®l){l)" "{®1){2)"

End
End

End

INITDISKS - SHELL SCRIPT 233

InitDisks -Shell Script

This script prompts you to initialize old disks. It uses two floppy disk drives and al
lows you to look at the contents of a disk before erasing it. The zero tool presented in
chapter 2 is much faster, however.

* Script to prompt & initialize old disks in bulk quantities * Written by Dan Allen 7/10/87

Set exit 0 Open -n temp
MoveWindow 15 150 temp ; SizeWindow 475 150 temp
Loop

Mount 1 2 ~ dev:null
Loop

For i In 1 2
Set disk {i}
Volumes -q {i} >temp ~ dev:null
Set nodisk {status}
Set name "'catenate temp'"~ dev:null
Break If !{nodisk}

End
If {nodisk}

Confirm "Insert a Disk"
If {status} != 0

Close -n temp
Exit 0

End
End
Break If !{nodisk}

End
Files -x ktcmd "{name}" >temp ~dev:stdout
Confirm "Do you want to flame this disk?"
If {status} == 0

Erase -y {disk} ~ dev:null
If {status} == 2

Erase -s -y {disk} ~ dev:null
End
Rename -y 'volumes {disk}' Untitled: ~ dev:null

End
Eject {disk} ~ dev:null
Set nodisk 1

End

234 CHAPTER SIX I MPW

Delete Uni ts -Shell Script

MPW Pascal 3.0 has a feature that automatically writes compressed symbol table in
formation to the resource fork of units being compiled. This automatic load/dump feature
greatly speeds up compile times, but these resources can also cause your files to become
large. The following MPW Shell script deletes these unit resources.

Rez normally needs an input file. In this example, we pipe a very short input file to
Rez by sending it from the Echo command's stdout through a pipe to Rez 's st din.
The parameter -m ensures that the modification date does not get changed, and -a is re
quired to do a delete operation with Rez.

DeleteUnits
Removes all unit resources from the list of files input to script
Written by Dan Allen 12/2/88

For i In {Parameters}
Echo "Delete 'unit';" I Rez -a -m -o "{i}"

End

CompareSources - Shell Script

This is another simple script; it is useful for comparing two different folders that con
tain (roughly) the same set of files, but perhaps from two different releases.

CompareSources sourceDir destDir
MPW Shell Script by Dan Allen
Written 3/28/89; updated 6/29/89; updated 7/11/89

Set Exit 0
Set oldDir 'Directory'

Directory "{1}"
set sourcePath 'Directory'
set sourceFiles "'Echo•'"
Directory "{oldDir}"

Directory "{2}"
Set destPath 'Directory'
If "(sourceFiles}" !•"'Echo•'"

Echo '# of files and/or names not the
End
Directory "{oldDir}"

Echo "MASTER
Echo "NEWSRC

{sourcePath}"
{destPath}"

Ignore errors
Save current dir

Go into source dir
Get full pathname
And list of files to
Pop back to saved dir

Go into target dir
Get full pathname

di ff

Check for same # of files, same
same between specified dirs!'

And pop back to orig dir

Print folders to be compared

names

LIBLIST - C TOOL 235

For i In {sourceFiles} # No quotes returns each filename
Compare -b -n "{sourcePath}{i}" "{destPath}{i}"

End

LibList -Shell Script

This script creates a nice list of the various routines found in the libraries that ship
with MPW, along with the names of the files in which they are found. The list makes a
handy reference.

LibList - Creates a list of library routines and the files they are in
Uses TextTool, an MPW tool whose source is given in chapter 8

For i In {Libraries}=.o {CLibraries}=.o {PLibraries}=.o
DumpObj -n {i} I TextTool -d " " -s 4 -p {i} >> list

End

Obj-C Tool

This tool parses MPW object files, extracting size and name information; it was writ
ten because DumpObj did not provide the information desired. If files contain special
symbol information generated for SADE, this tool may not work, as it has not yet been
extended to parse the new MPW 3.0 object records.

/*

* Obj .c - Parses an MPW object file for module info

* - Written by Dan Allen 1/25/89

*
* For an alphabetized list of segments with the number of routines/segment:

* Obj = I TextTool -s 3 -s 2 I Sort I Squash -c

*
* For a sorted list of the largest segments and their sizes:

* Obj = I Sort -n -r
*/

#include <StdIO.h>
#include <StdLib.h>
#include <String.h>
#include <CursorCtl.h>

#define BUFSIZE (32*1024)
#define DICTSIZE 5000

. 236 CHAPTER SIX I MPW

char *dict[DICTSIZE);
int modID,segID;
FILE *input;

main(int argc,char *argv[])
{

/* files ... --> stdout *I

void GetDict(),Skip();
char *bufin,*bufOut;
int c, i;

InitCursorCtl(O);
bufin = malloc(BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut, IOFBF,BUFSIZE);
if (argc == 1) {

fprintf (stderr, "Obj files ... > stdout \n") ;
exit(l);

printf("Bytes\tRoutine\tSegment\tFile\n");
for (i = 1; i < argc; i++) {

input = fopen (argv [i], "r");
if (bufin) setvbuf(input,bufin,_IOFBF,BUFSIZE);
if (!input) {

fprintf(stderr, "#Cannot open: %s\n", argv[i]);
return 1;

while ((c = getc(input)
switch (c) {

!= EOF)

case 0: break;

case 1: Skip(3);
break;

case 2: getc(input);
break;

case 3: getc(input);
Skip(Get2() - 4);
break;

case 4: GetDict();
break;

/* pad record of a single null byte */

/* first record */

/* last record */

/* comment record */

/* dictionary record */

case 5: c = getc (input) ;
if (c & 1) {

Skip (4);
mod ID = -1;

else l
modID Get2();
segID Get2 ();

break;

case 6: Skip(7);
break;

case 7: Skip(5);
break;

case 8: getc(input);
c = Get2 () ;
if (mod ID != -1)

/* module record */
/* data module */

/* code module */

OBJ - C TOOL

/* entry point record */

/* size record */

/* contents record */

237

printf("%d\t%s\t%s\t%s\n",c,dict[modID],dict[segID],argv[i]);
Skip(c - 4);
break;

case 9: getc(input);
Skip(Get2() - 4);
break;

case 10: getc(input);
Skip(Get2() - 4);
break;

default:

/* reference record */

/* computed reference record */

fprintf(stderr,"lt Unknown object record type: %d\n",c);
return 2;

fclose(input);

return O;

238 CHAPTER SIX I MPW

int Get2 ()
{

int i;

i getc(input);
i <<= 8;
i i= getc(input);
if (i < 0) {

fprintf(stderr,"lt Bad object size\n");
exit(2);

return i;

void Skip(int i)

while (i--)
if (getc(input) == EOF) {

fprintf(stderr,"# Bad object file\n");
exit(2);

void GetDict ()

char *p;
int id,len,size;

if (getc(input) == EOF) {
fprintf(stderr,"# Bad object file\n");
exit(2);

SpinCursor(2);
size= Get2() - 6;
id = Get2 ();

AN XCMD LIBRARY PROJECT 239

do {
if (id >= DICTSIZE I I id < 0) {

fprintf(stderr,"# Diet array cannot hold ID: %d\n",id);
exit(3);

len = getc(input); /*get length byte*/
if (len < 0) {

fprintf(stderr,"# Bad length byte for dictionary entry\n");
exit(2);

dict[id] = p = malloc(len+l);
if (!p) {

fprintf(stderr,"# Not enough memory for malloc in GetDict()\n");
exit(3);

id++;
size -= len + l;
while(len--)

*p++ = getc(input);
*p= '\0';
while (size> 0);

An XCMD Library Project

The next several files together form an example of how to create a library. A library is
a central repository of useful routines that can be accessed using the Link tool. MPW
includes many different libraries, some of which provide language support routines and
others of which are interfaces to the Macintosh operating system and Toolbox. You can
create a library of your own favorite and most useful routines for future use.

Before you can make a library, build instructions must exist for the library, so you
need to create a Makefile. Next, you will need a description of the library routines that
programs can use for a defined interface. These header files are usually put in a folder of
interfaces to the libraries. Last, there is the actual source code to the library, the imple
mentation of the useful routines.

The example provided here is a set of glue routines used in the development of
XCMDs for HyperCard. In this case, within HyperCard are many routines called call
backs that XCMDs can use. The XCMD library interfaces to these callback routines.
Many sample XCMDs are given in Chapter 10, where more information may be found
on the art of writing XCMDs. This chapter concentrates on the details of creating a
library.

240 CHAPTER SIX I MPW

This version of the XCMD library is written in MPW C. First comes a simple
Makefile for building the library:

HyperXLib.o f HyperXLib.c.o
C HyperXLib.c -mbg off
Lib HyperXLib.c.o -o {Libraries}HyperXLib.o -Sym Off
Delete HyperXLib.c.o

Next comes the Pascal interface to the libraries. This is put in the Plnterfaces folder so
that it may be found when used by XCMD sources.

(*

* HyperXCmd.p - XCMD and XFCN interface file

* - Modified by Dan Allen on 14 Oct 1988

* - Fully MPW 3.0 compatible 26 Oct 1988
*)

UNIT HyperXCmd;

INTERFACE

USES
MemTypes;

CONST

{ result codes }
xresSucc O;
xresFail 1;
xresNotimp 2;

TYPE
XCmdPtr
XCmdBlock

AXCmdBlock;

RECORD
paramCount: INTEGER;
params: ARRAY[l .. 16] OF Handle;
returnValue: Handle;
passFlag: BOOLEAN;

entryPoint:
request:
result:
inArgs:
outArgs:

END;

ProcPtr; { to call back to HyperCard J
INTEGER;
INTEGER;
ARRAY[l .. 8] OF Longint;
ARRAY[l .. 4] OF Longint;

AN XCMD LIBRARY PROJECT 241

(* Message sending *}

PROCEDURE SendCardMessage(paramPtr: XCmdPtr; msg: Str255};
PROCEDURE SendHCMessage(paramPtr: XCmdPtr; msg: Str255};

(* Container access *}

FUNCTION GetGlobal(paramPtr: XCmdPtr; globName: Str255): Handle;
PROCEDURE SetGlobal(paramPtr: XCmdPtr; globName: Str255; globValue: Handle};
FUNCTION GetFieldByID(paramPtr: XCmdPtr; cardFieldFlag: BOOLEAN;

fieldID: INTEGER}: Handle;
FUNCTION GetFieldByName(paramPtr: XCmdPtr; cardFieldFlag: BOOLEAN;

fieldName: Str255}: Handle;
FUNCTION GetFieldByNum(paramPtr: XCmdPtr; cardFieldFlag: BOOLEAN;

fieldNum: INTEGER}: Handle;
PROCEDURE SetFieldByID(paramPtr: XCmdPtr; cardFieldFlag: BOOLEAN;

fieldID: INTEGER; fieldVal: Handle};
PROCEDURE SetFieldByName(paramPtr: XCmdPtr; cardFieldFlag: BOOLEAN;

fieldName: Str255; fieldVal: Handle};
PROCEDURE SetFieldByNum(paramPtr: XCmdPtr; cardFieldFlag: BOOLEAN;

fieldNum: INTEGER; fieldVal: Handle);

(* String conversion *}

PROCEDURE BoolToStr(paramPtr: XCmdPtr; bool: BOOLEAN; VAR str: Str255);
PROCEDURE ExtToStr(paramPtr: XCmdPtr; num: Extended; VAR str: Str255);
PROCEDURE LongToStr(paramPtr: XCmdPtr; posNum: Longint; VAR str: Str255};
PROCEDURE NumToStr(paramPtr: XCmdPtr; num: Longint; VAR str: Str255};
PROCEDURE NumToHex(paramPtr: XCmdPtr; num: Longint; nDigits: INTEGER;

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
PROCEDURE

(* Misc *}

VAR str: Str255);
StrToBool(paramPtr: XCmdPtr; str: Str255): BOOLEAN;
StrToExt(paramPtr: XCmdPtr; str: Str255}: Extended;
StrToLong(paramPtr: XCmdPtr; str: Str255}: Longint;
StrToNum(paramPtr: XCmdPtr; str: Str255): Longint;
PasToZero(paramPtr: XCmdPtr; str: Str255}: Handle;
ZeroToPas(paramPtr: XCmdPtr; zeroStr: Ptr; VAR pasStr:

FUNCTION EvalExpr(paramPtr: XCmdPtr; expr: Str255}: Handle;

Str255};

PROCEDURE ReturnToPas(paramPtr: XCmdPtr; zeroStr: Ptr; VAR pasStr: Str255);
PROCEDURE ScanToReturn(paramPtr: XCmdPtr; VAR scanPtr: Ptr);
PROCEDURE ScanToZero(paramPtr: XCmdPtr; VAR scanPtr: Ptr};
FUNCTION StringEqual(paramPtr: XCmdPtr; strl,str2: Str255): BOOLEAN;
FUNCTION StringMatch(paramPtr: XCmdPtr; pattern: Str255; target: Ptr): Ptr;
FUNCTION StringLength(paramPtr: XCmdPtr; strPtr: Ptr}: Longint;
PROCEDURE ZeroBytes(paramPtr: XCmdPtr; dstPtr: Ptr; longCount: Longint};

END.

242 CHAPTER SIX I MPW

Next comes the C header equivalent to be placed in the Clncludes folder:

/*

*
*

HyperXCmd.h - HyperCard XCMD and XFCN header file
- Modified by Dan Allen on 19 Oct 1988

* - Fully MPW 3.0 compatible 26 Oct 1988

*
*/

#ifndef HYPERXCMD - -
#define HYPERXCMD - -

#ifndef TYPES
#include <Types.h>
#endif

/* result codes */

#define xresSucc 0
#define xresFail
#define xresNot!mp 2

struct XCmdBlock {
short paramCount;
Handle params[16];
Handle returnValue;
Boolean passFlag;
void (*entryPoint) ();
short request;
short result;
long inArgs[8];
long outArgs[4];

XCmdBlock;

typedef XCmdBlock *XCmdPtr;

/* Send messages */

/*to call back to HyperCard*/

pascal void SendCardMessage(XCmdPtr paramPtr,Str255 msg);
pascal void SendHCMessage(XCmdPtr paramPtr,Str255 msg);

AN XCMD LIBRARY PROJECT

/* Container access */

pascal void
pascal Handle
pascal Handle

pascal Handle

pascal Handle

pascal void

pascal void

pascal void

SetGlobal(XCrndPtr pararnPtr,Str255 globNarne,Handle globValue);
GetGlobal(XCrndPtr pararnPtr,Str255 globNarne);
GetFieldByNarne(XCrndPtr pararnPtr,Boolean cardFieldFlag,

Str255 fieldNarne) ;
GetFieldByNurn(XCrndPtr pararnPtr,Boolean cardFieldFlag,

short fieldNurn) ;
GetFieldByID(XCrndPtr pararnPtr,Boolean cardFieldFlag,

short fieldID);
SetFieldByNarne(XCrndPtr pararnPtr,Boolean cardFieldFlag,

Str255 fieldNarne,Handle fieldVal);
SetFieldByNurn(XCrndPtr pararnPtr,Boolean cardFieldFlag,

short fieldNurn,Handle fieldVal);
SetFieldByID(XCrndPtr pararnPtr,Boolean cardFieldFlag,

short fieldID,Handle fieldVal);

/* String conversion */

pascal void BoolToStr(XCrndPtr pararnPtr,Boolean bool,Str255 str);
pascal void ExtToStr(XCrndPtr pararnPtr,extended *rnyext,Str255 str);
pascal void LongToStr(XCrndPtr pararnPtr,long posNurn,Str255 str);
pascal void NurnToStr(XCrndPtr pararnPtr,long nurn,Str255 str);
pascal void NurnToHex(XCrndPtr pararnPtr,long nurn,short nDigits,Str255 str);
pascal Boolean StrToBool(XCrndPtr pararnPtr,Str255 str);
pascal extended StrToExt(XCrndPtr pararnPtr,Str255 str);
pascal long StrToLong(XCrndPtr pararnPtr,Str255 str);
pascal long StrToNurn(XCrndPtr pararnPtr,Str255 str);
pascal Handle PasToZero(XCrndPtr pararnPtr,Str255 pasStr);
pascal void ZeroToPas(XCrndPtr pararnPtr,char *zeroStr,Str255 pasStr);

/* Misc */

pascal Handle EvalExpr(XCrndPtr pararnPtr,Str255 expr);
pascal void ReturnToPas(XCrndPtr pararnPtr,Ptr zeroStr,Str255 pasStr);
pascal void ScanToReturn(XCrndPtr pararnPtr,Ptr *scanHndl);
pascal void ScanToZero(XCrndPtr pararnPtr,Ptr *scanHndl);
pascal Boolean StringEqual(XCrndPtr pararnPtr,Str255 strl,Str255 str2);
pascal Ptr StringMatch(XCrndPtr pararnPtr,Str255 pattern,Ptr target);
pascal long StringLength(XCrndPtr pararnPtr,char *strPtr);
pascal void ZeroBytes(XCrndPtr pararnPtr,Ptr dstPtr,long longCount);

#endif

243

244 CHAPTER SIX I MPW

Finally, there is the actual C source code for the HyperTalk callback routines. Note
that this code can also be called from Pascal, or even from assembly language, because
of the way that these routines-like virtually all Mac OS routines-use Pascal calling
conventions. These conventions are enforced when you are using C by using the pas
cal keyword. The language in which this library was written does not matter to users.

/*

* HyperXLib.c - Library of HyperTalk callback routines

* - This file was originally called XCmdGlue.c

* - MPW C 3.0 compatible; ported by Dan Allen 10/19/88
*/

#include <HyperXCmd.h>

#define xreqSendCardMessage 1
#define xreqEvalExpr 2
#define xreqStringLength 3
#define xreqStringMatch 4
#define xreqSendHCMessage 5
#define xreqZeroBytes 6
#define xreqPasToZero 7
#define xreqZeroToPas 8
#define xreqStrToLong 9
#define xreqStrToNum 10
#define xreqStrToBool 11

#define xreqStrToExt 12
#define xreqLongToStr 13
#define xreqNumToStr 14
#define xreqNumToHex 15
#define xreqBoolToStr 16
#define xreqExtToStr 17
#define xreqGetGlobal 18
#define xreqSetGlobal 19
#define xreqGetFieldByName 20
#define xreqGetFieldByNum 21
#define xreqGetFieldByID 22
#define xreqSetFieldByName 23
#define xreqSetFieldByNum 24
#define xreqSetFieldByID 25
#define xreqStringEqual 26
#define xreqReturnToPas 27
#define xreqScanToReturn 28
#define xreqScanToZero 39 /* yes, it really is 39 */

AN XCMD LIBRARY PROJECT 245

/* The Callback routines */
pascal void SendCarc!Message(XCmdPtr paramPtr,Str255 msg)

/* Send a HyperCard message (a command with arguments) to the current card.
msg is a pointer to a Pascal format string. */

paramPtr->inArgs[OJ = (long)msg;
paramPtr->request = xreqSendCarc!Message;
paramPtr->entryPoint();

pascal void SendHCMessage(XCmdPtr paramPtr,Str255 msg)
/* Send a HyperCard message (a command with arguments) to HyperCard.

msg is a pointer to a Pascal format string. */

paramPtr->inArgs[O] = (long)msg;
paramPtr->request = xreqSendHCMessage;
paramPtr->entryPoint();

pascal Handle GetGlobal(XCmdPtr paramPtr,Str255 globName)
/* Return a handle to a zero-terminated string containing the value of

the specified HyperTalk global variable. */

paramPtr->inArgs[O] = (long)globName;
paramPtr->request = xreqGetGlobal;
paramPtr->entryPoint();
return (Handle)paramPtr->outArgs[OJ;

pascal void SetGlobal(XCmdPtr paramPtr,Str255 globName,Handle globValue)
/* Set the value of the specified HyperTalk global variable to be

the zero-terminated string in globValue. The contents of the
Handle are copied, so you must still dispose it afterwards. */

paramPtr->inArgs[O] = (long)globName;
paramPtr->inArgs[l] = (long)globValue;
paramPtr->request = xreqSetGlobal;
paramPtr->entryPoint();

pascal Handle GetFieldByName(XCmdPtr paramPtr,Boolean cardFieldFlag,
Str255 fieldName)

/* Return a handle to a zero-terminated string containing the value of
field fieldName on the current card. You must dispose the handle. */

paramPtr->inArgs[O] = (long)cardFieldFlag;
paramPtr->inArgs[l] = (long)fieldName;
paramPtr->request = xreqGetFieldByName;
paramPtr->entryPoint();
return (Handle)paramPtr->outArgs[O];

246 CHAPTER SIX I MPW

pascal Handle GetFieldByNum(XCmdPtr paramPtr,Boolean cardFieldFlag,
short fieldNum)

/* Return a handle to a zero-terminated string containing the value of
field fieldNum on the current card. You must dispose the handle. */

paramPtr->inArgs[O] = (long)cardFieldFlag;
paramPtr->inArgs[l] = fieldNum;
paramPtr->request = xreqGetFieldByNum;
paramPtr->entryPoint();
return (Handle)paramPtr->outArgs(O];

pascal Handle GetFieldByID(XCmdPtr paramPtr,Boolean cardFieldFlag,
short f ieldID)

/* Return a handle to a zero-terminated string containing the value of
the field whise ID is fieldID. You must dispose the handle. */

paramPtr->inArgs[O] = (long)cardFieldFlag;
paramPtr->inArgs(l] = fieldID;
paramPtr->request = xreqGetFieldByID;
paramPtr->entryPoint();
return (Handle)paramPtr->outArgs(O];

pascal void SetFieldByName(XCmdPtr paramPtr,Boolean cardFieldFlag,
Str255 fieldName,Handle fieldVal)

/* Set the value of field fieldName to be the zero-terminated string
in fieldVal. The contents of the Handle are copied, so you must
still dispose it afterwards. */

paramPtr->inArgs[O]
paramPtr->inArgs[l]
paramPtr->inArgs(2]

(long)cardFieldFlag;
(long)fieldName;
(long)fieldVal;

paramPtr->request = xreqSetFieldByName;
paramPtr->entryPoint();

pascal void SetFieldByNum(XCmdPtr paramPtr,Boolean cardFieldFlag,
short fieldNum,Handle fieldVal)

/* Set the value of field f ieldNum to be the zero-terminated string
in fieldVal. The contents of the Handle are copied, so you must
still dispose it afterwards. */

paramPtr->inArgs[OJ
paramPtr->inArgs(l]
paramPtr->inArgs(2]

(long)cardFieldFlag;
fieldNum;
(long)fieldVal;

paramPtr->request = xreqSetFieldByNum;
paramPtr->entryPoint();

AN XCMD LIBRARY PROJECT

pascal void SetFieldByID(XCmdPtr paramPtr,Boolean cardFieldFlag,
short fieldID,Handle fieldVal)

/* Set the value of the field whose ID is fieldID to be the zero
terminated string in fieldVal. The contents of the Handle are
copied, so you must still dispose it afterwards. */

paramPtr->inArgs[O]
paramPtr->inArgs[l]
paramPtr->inArgs[2]

(long)cardFieldFlag;
fieldID;
(long)fieldVal;

paramPtr->request = xreqSetFieldByID;
paramPtr->entryPoint();

pascal void BoolToStr(XCmdPtr paramPtr,Boolean bool,Str255 str)
/*Convert a boolean to 'true' or 'false'. */

paramPtr->inArgs[O] = (long)bool;
paramPtr->inArgs[l] = str;
paramPtr->request = xreqBoolToStr;
paramPtr->entryPoint();

pascal void ExtToStr(XCmdPtr paramPtr,extended *myext,Str255 str)
/* Convert an extended real number to decimal digits in a string. */

paramPtr->inArgs[O]
paramPtr->inArgs[l]

(long)myext;
(long)str;

paramPtr->request = xreqExtToStr;
paramPtr->entryPoint();

pascal void LongToStr(XCmdPtr paramPtr,long posNum,Str255 str)
/* Convert an unsigned long integer to a Pascal string. */

paramPtr->inArgs[O]
paramPtr->inArgs[l]

(long)posNum;
(long) str;

paramPtr->request = hreqLongToStr;
paramPtr->entryPoint();

pascal void NumToStr(XCmdPtr paramPtr,long num,Str255 str)
/* Convert a signed long integer to a Pascal string. */

paramPtr->inArgs[O] = num;
paramPtr->inArgs[l] = (long)str;
paramPtr->request = xreqNumToStr;
paramPtr->entryPoint();

247

248 CHAPTER SIX I MPW

pascal void NumToHex(XCmdPtr paramPtr,long num,short nDigits,Str255 str)
/* Convert an unsigned long integer to a hexadecimal number */
{

paramPtr->inArgs[O]
paramPtr->inArgs[l]
paramPtr->inArgs[2)

num;
nDigits;
(long)str;

paramPtr->request = xreqNurnToHex;
paramPtr->entryPoint();

pascal Boolean StrToBool(XCmdPtr paramPtr,Str255 str)
/* Convert the Pascal strings 'true' and 'false' to booleans. */

paramPtr->inArgs[O] = (long)str;
paramPtr->request = xreqStrToBool;
pararnPtr->entryPoint();
return (Boolean)paramPtr->outArgs[O];

pascal extended StrToExt(XCmdPtr paramPtr,Str255 str)
/* Convert a string of ASCII decimal digits to an extended long integer. */

extended x;

paramPtr->inArgs[O] = (long)str;
paramPtr->inArgs[l] = &x;
paramPtr->request = xreqStrToExt;
paramPtr->entryPoint();
return x;

pascal long StrToLong(XCmdPtr paramPtr,Str255 strPtr)
/* Convert a string of ASCII decimal digits to an unsigned long integer. */
{

paramPtr->inArgs[OJ = (long)strPtr;
paramPtr->request = xreqStrToLong;
paramPtr->entryPoint();
return (long)paramPtr->outArgs[O];

pascal long StrToNum(XCmdPtr paramPtr,Str255 str)
I* Convert a string of ASCII decimal digits to a signed long integer.

Negative sign is allowed. */

paramPtr->inArgs[OJ = (long)str;
paramPtr->request = xreqStrToNum;
paramPtr->entryPoint();
return paramPtr->outArgs[O];

AN XCMD LIBRARY PROJECT

pascal Handle PasToZero(XCmdPtr paramPtr,Str255 pasStr)
/* Convert a Pascal string to a zero-terminated string. Returns a handle

to a new zero-terminated string. The caller must dispose the handle.
You'll need to do this for any result or argument you send from
your XCMD to HyperTalk. */

paramPtr->inArgs[O] = (long)pasStr;
paramPtr->request = xreqPasToZero;
paramPtr->entryPoint();
return (Handle)paramPtr->outArgs[O];

pascal void ZeroToPas(XCmdPtr paramPtr,char *zeroStr,Str255 pasStr)
/* Fill the Pascal string with the contents of the zero-terminated

string. You create the Pascal string and pass it in as a VAR
parameter. Useful for converting the arguments of any XCMD to
Pascal strings. */

paramPtr->inArgs[Q] = (long)zeroStr;
paramPtr->inArgs(l] = (long)passtr;
paramPtr->request = xreqZeroToPas;
paramPtr->entryPoint();

pascal Handle EvalExpr(XCmdPtr paramPtr,Str255 expr)
/* Evaluate a HyperCard expression and return the answer. The answer is

a handle to a zero-terminated string. */

paramPtr->inArgs[O] = (long)expr;
paramPtr->request = xreqEvalExpr;
paramPtr->entryPoint();
return (Handle)paramPtr->outArgs[O];

pascal void ReturnToPas(XCmdPtr paramPtr,Ptr zeroStr,Str255 pasStr)
/* zeroStr points into a zero-terminated string. Collect the

characters from there to the next carriage Return and return
them in the Pascal string pasStr. If a Return is not found,
collect chars until the end of the string. */

paramPtr->inArgs[O] = (long)zeroStr;
paramPtr->inArgs[l] = (long)passtr;
paramPtr->request = xreqReturnToPas;
paramPtr->entryPoint();

249

250 CHAPTER SIX I MPW

pascal void ScanToReturn(XCmdPtr paramPtr,Ptr *scanHndl)
/* Move the pointer scanPtr along a zero-terminated

string until it points at a Return character
or a zero byte. */

paramPtr->inArgs[O] = (long)scanHndl;
paramPtr->request = xreqScanToReturn;
paramPtr->entryPoint();

pascal void ScanToZero(XCmdPtr paramPtr,Ptr *scanHndl)
/* Move the pointer scanPtr along a zero-terminated

string until it points at a zero byte. */

paramPtr->inArgs[OJ = (long)scanHndl;
paramPtr->request = xreqScanToZero;
paramPtr->entryPoint();

pascal Boolean StringEqual(XCmdPtr paramPtr,Str255 strl,Str255 str2)
/* Return true if the two strings have the same characters.

Case insensitive compare of the strings. */

paramPtr->inArgs[OJ = (long)strl;
paramPtr->inArgs[l) = (long)str2;
paramPtr->request = xreqStringEqual;
paramPtr->entryPoint();
return (Boolean)paramPtr->outArgs[OJ;

pascal Ptr StringMatch(XCmdPtr paramPtr,Str255 pattern,Ptr target)
/* Perform case-insensitive match looking for pattern anywhere in

target, returning a pointer to first character of the first match,
in target or NIL if no match found. pattern is a Pascal string,
and target is a zero-terminated string. */

paramPtr->inArgs[O] = (long)pattern;
paramPtr->inArgs[l) = (long)target;
paramPtr->request = xreqStringMatch;
paramPtr->entryPoint();
return (Ptr)paramPtr->outArgs[OJ;

pascal long StringLength(XCmdPtr paramPtr,char *strPtr)
/* Count the characters from where strPtr points until the next zero byte.

Does not count the zero itself. strPtr must be a zero-terminated string. */

paramPtr->inArgs[OJ = (long)strPtr;
paramPtr->request = xreqStringLength;
paramPtr->entryPoint();
return (long)paramPtr->outArgs[O);

TWOCOL - C TOOL 251

pascal void ZeroBytes(XCmdPtr paramPtr,Ptr dstPtr,long longCount)
/* Write zeros into memory starting at destPtr and going for longCount

number of bytes. */

paramPtr->inArgs[O]
paramPtr->inArgs[l]

(long) dstPtr;
longCount;

paramPtr->request = xreqZeroBytes;
paramPtr->entryPoint();

TwoCol - C Tool

As a final exercise in tool making, consider the task of printing MPW sources in two
columns. You can go about the task in two ways: write a new Print tool from scratch,
which requires learning about the Macintosh Print Manager, or write a preprocessor for
the existing Print tool. This tool takes the latter course by preprocessing sources for
Print.

Improving TwoCol

Here are some suggestions for improving TwoCol:

I*

• This preprocessing is not the most efficient way to do things. Write a whole
new tool that uses the Print Manager to print gorgeous two-column listings.
Allow landscape or portrait orientation to be used.

• Add the ability to download PostScript to the LaserWriter.

* twocol.c - Utility to create two columns of text in the same document
* - Written by Dan Allen 3/14/88

*
* The following MPW Shell script will print a TwoCol file:

*
* EnTab -t 0 "{l}" I TwoCol I Print -f Courier -s 4 -h -b2 -hf Times -hs 9
*/

+include <CursorCtl.h>
+include <StdIO.h>
*include <StdLib.h>
+include <Types.h>

*define BUFSIZE 32*1024

252 CHAPTER SIX I MPW

lldef ine TRUE 1
#define FALSE 0

lldef ine PAGELEN 140
#define LINELEN 105
#define COLWIDTH LINELEN+S
lldef ine TABWIDTH 2

static char a[PAGELEN] [COLWIDTH+LINELEN+l];

main()
{

char c,*bufin,*bufOut,*p,more =TRUE;
int i, tab;
int curChar = O,curCol = O,curLine = 0;

InitCursorCtl(O);
if (bufin = malloc(BUFSIZE)) setvbuf(stdin,bufin,_IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut, IOFBF,BUFSIZE);

p = a[O]; i = sizeof(a);
while (i--) *p++ = • •;

while (more) {
while(curLine < PAGELEN) {

if ((c = getchar()) == EOF)
more = FALSE;
break;

if (c == '\n') {
while (curChar < LINELEN)

/* set buffer to all spaces */

/* process input */
/* test page length */
I* test EOF */

/* convert return to spaces */

a[curLine] [curCol+curChar++] ' ';
curChar = O; curLine++;
SpinCursor(4);
continue;

if (c == '\t'l
tab = TABWIDTH;

/* expand a tab to spaces */

while (tab-- && curChar < LINELEN)
a[curLine] [curCol+curChar++] ' ';

continue;

if (curChar < LINELEN) {
a[curLine] [curCol+curChar]
curChar++;
continue;

/* test line length */
c; /* add to array */

if (more && curCol == 0)
curCol = COLWIDTH;

else {
curCol = LINELEN + COLWIDTH;

CONCLUSION 253

/* start 2nd column */

for (i = 0; i < PAGELEN; i++) /* put returns on each line */
a [i] [curCol] = • \n •;

for (p = a[O], i = sizeof(a); i; i--) {
putchar(*p); /*write array to stdout */
*p++ = f I;

if (more) putchar('\f');
curCol = O;

curLine = curChar = 0;
if (!more) break;

return O;

Conclusion

/* write page break */

This chapter looked at how MPW came to be and examined the MPW Shell, the
command language, and the tools provided with MPW.

Listings for many MPW scripts were presented in this chapter to demonstrate several
important techniques for writing scripts. The source code for an MPW tool served to il
lustrate how simple it is to write tools. The final project described how to create a library
of useful routines, in this case a set of callback routines that is useful for writing
XCMDs to be used with HyperCard.

Recommended Reading

The MPW manuals document the MPW Shell and its tools. They are not just recom
mended reading, but essential reading. Do not forget to use the on-line help and
Commando, as these features contain a lot of useful reference information that you will
need on a daily basis.

MPW is similar to UNIX, so many of the books about UNIX actually give good in
sights into neat things that can be done with MPW. For example, Anderson and
Anderson's Unix C Shell Field Guide documents the UNIX C Shell, which is fairly
similar to the MPW Shell-or is it the other way around? Anyway, Kernighan and
Pike's The UNIX Programming Environment is another UNIX text that is still very ap
plicable to MPW programming.

254 CHAPTER SIX I MPW

The best books that convey the philosophy of creating tools in the UNIX and MPW
style are Software Tools and Software Tools in Pascal, two similar versions of the same
book by Kernighan and Plauger. Source code is presented in these books for many
tools, including some for filters, files, sorting, text patterns, editing, formatting, and
macro processing. The first version has sources in Ratfor-a preprocessed version of
Fortran that looks suspiciously like C-and the Pascal version deals quite well with
Pascal's I/0 problems. Considering that Kernighan coauthored the C programming lan
guage (as well as "the White Book"), it is strange that a C version of Software Tools
does not exist.

Another good pair of books is Programming Pearls and More Programming Pearls:
Confessions of a Coder by Bentley. Bentley's books are enjoyable reading. The latter
work uses awk in many examples; awk is further documented in another great little book
that even non-awk users will find interesting, The AWK Programming Language, au
thored by Aho, Kernighan, and Weinberger.

If you want to write a sizable tool, try writing a compiler. The classic text in this field
is the "dragon book," now in its second edition. Entitled Compilers: Principles,
Techniques, and Tools, by Aho, Sethi, and Ullman, this book is heavy wading in
places, but it is all in there. If you are writing a compiler, you will need this book.

If you want a gentler introduction to compiler theory, Wirth does a nice job of build
ing up to a small compiler in Algorithms + Data Structures = Programs. Terry's
Programming Language Translation is a good text that is similar in nature to Wirth's but
that concentrates more on compiler issues than on general techniques of searching and
sorting.

If you are considering using lex and yacc to build your compiler, Pyster's Compiler
Design and Construction is for you. It is also highly recommended for users who do not
plan to use lex and yacc.

ASSEMBLY
LANGUAGE

CHAPTER 7

This chapter looks at assembly language and at the MPW Assembler, Asm.

Understanding assembly language is important for two reasons. First, despite improve
ments in compilers, hand-crafted assembly language written by a skilled programmer is
still more efficient than almost all code generated by compilers. Second, even if your
application will not require any assembly code, you will still need a reading knowledge
of assembly language. Why? Finding subtle bugs usually requires debugging at the
assembly language level. In addition, compilers are not perfect, and sometimes bad code
generation is the source of the bug. All the source-level debugging in the world will not
find code-generation errors. A knowledge of assembly language will help you find such
bugs.

One note about terminology: the language is called assembly language, and the tool is
called an assembler. Many people erroneously say that they are "writing assembler,"
which is akin to saying that they are "writing compiler": neither makes any sense. It is
possible to "write an assembler," which means actually writing an assembly language
translator (which usually is done in C or Pascal), or to "write assembly language code,"
meaning to write in assembly language, but "writing assembler code" is just a grammati
cal error.

The MPW Assembler

MPW includes as its premier language tool an all-new assembler written by Ira
Ruben. Asm generates code for the entire 68xxx family of processors, including the
68000, 68010, 68020, 68030, 68851, 68881, and 68882 processors. And Asm is fast: it
assembles instructions at rates greater than 40,000 lines per minute on a Mac II.

Included with MPW is a full set of equates files that support the Toolbox as well as
sample programs in assembly language for an application, a desk accessory, and an
MPW tool. One volume of the documentation that comes with MPW is devoted to the
many features and options found in Asm.

A highlight of Asm is its powerful macro processor, written by Fred Forsman. Using
macros lets you operate at a higher level of abstraction than is normally available when
using assembly language. Included with MPW is a set of structured macros (written by
Ira Ruben) that implement many of the structured constructs that are available to C and

255

256 CHAPTER SEVEN I ASSEMBLY LANGUAGE

Pascal programmers. When you are using the structured macros, your assembly lan
guage code looks similar to Pascal, but it retains assembly's efficiency.

Another interesting use of Asm's macro processor is illustrated by a set of macros
implementing Object assembly language. These object macros were written by Ken
Doyle, who also wrote the object extensions to MPW Pascal. Object assembly language
is 68xxx assembly code that can be called from Object Pascal programs. These object
macros are also included with MPW, and they allow time-critical portions of object-ori
ented programs to be recoded in assembly language for greater speed.

The 95-percent I 5-percent Rule

For most applications, a high-level language such as C or Pascal has many advan
tages over assembly language. It is therefore wise to write most applications in a high
level language, resorting to assembly when needed. This is exactly what Bill Atkinson
did, for example, with HyperCard: 95 percent of HyperCard's object code came from
Pascal, with the remaining 5 percent being derived from assembly language.

How do you decide which 5 percent to rewrite in assembly language? Another rule is
used to determine this: measure first, then optimize. First, you need to find out where
the time is being spent. Often code is optimized unnecessarily when it accounts for only
a small percentage of the running time. Several tools can be used to help measure per
formance. MPW includes a set of performance tools that can profile code, or you can
write your own simple profiling code into your application, using conditional compila
tion to include the code for special debug versions of your application. For example, a
basic count of how many times a procedure is called can be installed by simply incre
menting a counter as the first line of each procedure.

One of my favorite methods is to use MacsBug and the AT command to flash the
names of the traps on the screen as they are called. This can be done at any time without
any recompiling of the sources, and you can quickly get a feel for where the time is be
ing spent. This technique often shows that a particular A-trap is being called hundreds of
times in a row for some strange reason. If this is the case, fixing the bug may solve the
speed problem, with no assembly language coding required. If you break into MacsBug
during a slow operation, the odds are that the break will occur right in the middle of the
problematic code.

Once a procedure has been identified and verified as the problem area, and once you
have determined that an assembly language routine is the best solution, you can write an
assembly routine and declare it external (Pascal) or extern (C) in the high-level
sources. The linker will take care of hooking everything together properly. Even global
variables declared in the C or Pascal files can be imported and used in assembly
routines.

LEARNING ASSEMBLY LANGUAGE 257

Learning Assembly Language

One of the best ways of learning about assembly language is to disassemble already
compiled code and to read the resulting assembly language code. Here's how to do it.
Write a simple, short program in C or Pascal. Then use DumpObj to look at the gener
ated code of a single procedure. (Use the -m option to specify a single module rather
than a whole file's worth of code.) Can you figure out the translation between the high
level language and assembly language? It is like breaking a code.

Next, try writing the same simple procedure yourself in assembly language, and link
it in with the main C or Pascal program. Test it. If it works, write more and more
assembly code. If you are stuck, fall back to the high-level language and disassembly
trick again. Hang in there: assembly language programming has great rewards in the
end.

The other way to learn assembly language is to study working assembly language
source code. This chapter concludes by presenting a few examples of assembly language
programming. The first is a desk accessory called Memory. This provides an example of
how to implement a desk accessory (or driver!) in assembly language. The second is an
application shell. You can take this code and tum it into your own assembly language
application. Finally, the source code to an MPW tool written in C is listed. This tool
uses a disassembler routine that is shipped as part of MPW version 3. Several other
smaller assembly language examples can be found in Chapter 2 as well.

258 CHAPTER SEVEN I ASSEMBLY LANGUAGE

Memory - Assembly Language Desk
Accessory

This simple desk accessory was one of the first things I wrote for the Macintosh. It
later became a sample piece of code for the first release of MPW. The desk accessory
simply shows how much memory is available on the disk, in the system heap, and in the
current application heap.

**** MEMORY DESK ACCESSORY - A sample DA written in MPW 68000 Assembly

Copyright Apple Computer, Inc. 1985-1987
All rights reserved.

Asm Memory.a
Link Memory.a.o -o Memory -da -t DFIL -c DMOV -rt DRVR=l2 -sg Memory

STRING PASCAL

MAIN

INCLUDE 'QuickEqu.a'
INCLUDE 'ToolEqu.a'
INCLUDE 'SysEqu.a'
INCLUDE 'Traps.a'

Desk accessories (drivers) cannot use global variables in the normal sense.
Usually, a handle is allocated and stuffed into dCtlStorage and global
variables are stored in this handle. However, in this example, the globals
are allocated at the end of the desk accessory's window record. Since the
window record is nonrelocatable storage, the variables will never move.
This record structure below defines the layout of our "global variables."

Global Vars
aString
aNumStr
GlobalSize

RECORD
DS.B
DS.B
EQU
ENDR

WITH GlobalVars

aPBPtr EQU D7

windowSize
28
10
*-Global Vars

Put vars at end of window rec
vol names must be < 28 char
sufficient for 10 GB of space
size of my globals

MEMORY - ASSEMBLY LANGUAGE DESK ACCESSORY 259

**************************** DESK ACCESSORY ENTRY **************************

DAEntry
DC.B
DC.B
DC.W
DC.W
DC.W

DC.W
DC.W
DC.W
DC.W
DC.W

DATitle
DC.B
ALIGN

(l<<dCtlEnable) + (l<<dNeedTime)
0
2*60
(l<<updatEvt)
0

DAOpen-DAEntry
DADone-DAEntry
DACtl-DAEntry
DADone-DAEntry
DAClose-DAEntry

'Free Memory'
2

See Device Manager IM:2
periodic,control flags set
Lower byte is unused
2 sec periodic update
Handle only update events
No menu for this accessory

Open routine
Prime - unused
Control
Status - unused
Close

DA Name (& Window Title)
Word align

************************ DESK ACCESSORY OPEN ROUTINE ***********************

DAOpen
MOVEM.L
MOVE.L

SUBQ.L
MOVE.L

Get Port
TST.L
BNE.S

Al-A4,-(SP)
Al,A4

#4,SP
SP,-(SP)

DCtlWindow (A4)
StdReturn

preserve Al-A4
MOVE DCE pointer to a reg

FUNCTION = GrafPtr
push a pointer to it
push it on top of stack
do we have a window?
If so, return, Else_

*************~***************** NEW WINDOW ROUTINE *************************
MOVE.L

NewPtr

SUBQ
MOVE.L
PEA
PEA
CLR.W
MOVE.W
MOVE.L
MOVE.B
CLR.L

NewWindow

#windowSize+GlobalSize,DO

#4,SP
AO,-(SP)
theWindow
DATitle
-(SP)
#noGrowDocProc,-(SP)
#-1,-(SP)
U,-(SP)
-(SP)

allocate space for record

FUNCTION = windowPtr
address of storage
bounds Re ct
title
visible flag FALSE
window proc
window in front
goAway box TRUE
ref Con is 0

260 CHAPTER SEVEN I ASSEMBLY LANGUAGE

MOVE.L
MOVE.L
MOVE.W

(SP) +,AO
A0,DCtlWindow(A4)
DCtlRefNum(A4),WindowKind(A0)

MOVE.L maxSize,DO
_CompactMem SYS
MOVE.L maxSize,DO
_CompactMem

StdReturn
SetPort

MOVEM.L (SP)+,Al-A4

save windowPtr
system window

old port on stack
restore regs

************************ DESK ACCESSORY DONE ROUTINE ***********************

DADone
MOVEQ
RTS

#0,DO return no error
all done, exit

************************ DESK ACCESSORY CLOSE ROUTINE **********************

DAClose
MOVEM.L
MOVE.L

SUBQ.L
MOVE.L

Get Port

MOVE.L

Al-A4,-(SP)
Al,A4

#4,SP
SP,-(SP)

DCtlWindow(A4),-(SP)
_DisposWindow

CLR.L
BRA.S

DCtlWindow (A4)
StdReturn

preserve Al-A4
MOVE DCE ptr to A4

FUNCTION = GrafPtr
push a pointer to it
get it, now it's on TOS

push the window
dispose of the window

mark DCE properly
all done with close, exit

********************** DESK ACCESSORY CONTROL ROUTINE **********************

DACtl
MOVE.L
MOVE.L
MOVE.W
SUB.W
BEQ.S
SUB.W
BEQ.S

A4,-(SP)
Al,A4
CSCode (AO), DO
#accEvent,DO
DoCtlEvent
#1,DO
DoPeriodic

preserve reg
move DCE ptr to A4
get the control opcode

64? (event)

65? (periodic)

MEMORY - ASSEMBLY LANGUAGE DESK ACCESSORY 261

CtlDone
MOVE.L
MOVE.L
MOVEQ
MOVE.L
RTS

A4,Al
(SP) +,A4
#0,DO
JIODone,-(SP)

put DCE ptr back in Al
restore reg
return no error
jump to IODone

************************** EVENT HANDLING ROUTINE **************************

DoCtlEvent
MOVE.L A3,-(SP)
MOVE.L CSParam(A0),A3
MOVE.W EvtNum(A3),D0
SUBQ #updatEvt,DO
BNE.S CtlEvtDone

MOVE.L EvtMessage(A3),-(SP)
_BeginUpdate

MOVE.L EvtMessage(A3),-(SP)
SetPort

BSR.S DrawWindow

MOVE.L EvtMessage(A3),-(SP)
_EndUpdate

CtlEvtDone
MOVE .L (SP)+, A3
BRA.S CtlDone

save reg
get the event pointer
get the event number
is it an update?
If not, exit

push windowPtr
begin the update operation

push windowPtr again

draw our items

one more time
end of update

restore reg
exit

**************************** PERIODIC ROUTINE *****************************

DoPeriodic
MOVE.L
SetPort

BSR.S
BRA.S

DCtlWindow(A4),-(SP)

DrawWindow
CtlDone

set the port

draw our window every 5s

262 CHAPTER SEVEN I ASSEMBLY LANGUAGE

****************************** FONT METRICS *******************************

DrawWindow
MOVE.W #SrcCopy,-(SP) source mode

TextMode -
MOVE.W #Monaco,-(SP) Monaco

Text Font -
MOVE.W #9,-(SP) 9 point

Text Size -
MOVE.W #1,-(SP) bold

Text Face -

********************** WRITE APPLICATION HEAP FREEMEM *********************

MOVE.W #6,-(SP)
MOVE.W #10,- (SP)

MoveTo
PEA #'AppHeap:
_Drawstring

FreeMem free memory -> DO
JSR PrintNum draw our free mem

************************* WRITE SYSTEM HEAP FREEMEM ***********************

PEA
_Drawstring

FreeMem SYS
JSR

#' SysHeap:

PrintNum
free memory -> DO
draw our free sys mem

***************************** WRITELN VOL INFO ****************************

PEA
_Drawstring

#' Disk:

MOVE.L #ioHVQElSize,DO
NewPtr CLEAR

BNE.S Exit
MOVE.L
MOVE.L
LEA

AO,aPBPtr
DCtlWindow(A4),Al
aString(Al),Al

MOVE.L Al,ioVNPtr(AO)
_HGetVInfo

size of HFS ParamBlock
NewPtr -> AO
IF Error THEN Exit
save PBPtr in D7
get window rec pointer
address of string buffer
ioVNPtr = Volume Name
GetVolinfo info -> AOA

MEMORY - ASSEMBLY LANGUAGE DESK ACCESSORY 263

MOVE.L
MOVE.L
MOVE.W
MOVE.W
MULU.W
SWAP
MOVE.W
MULU.W
SWAP
ADD.L
JSR

PEA
_Drawstring
MOVE.L
MOVE.L
_Drawstring

PEA
_Drawstring

aPBPtr,AO
ioVAlBlkSiz(AO),Dl
ioVFrBlk(A0),D2
Dl,DO
D2,DO
Dl
Dl,D3
D2,D3
D3
D3,DO
PrintNum

#' free on '

aPBPtr,AO
ioVNPtr(AO),-(SP)

#'

MOVE.L aPBPtr,AO
_DisposPtr

Exit
RTS

block size in Dl
free blocks in D2
32 bit * 16 bit multiply
right half of size

left half of size

total bytes free on vol
write # bytes free

off set for volName

free the memory

***************************** SUBROUTINES ****************************

PrintNum

Binary integer to be drawn at CurPenPos in DO on entry
number drawn in plain text, holding restored afterwords

MOVE.L D0,D6
CLR.W -(SP)
_TextFace
MOVE.L D6,DO
MOVE.L DCtlWindow(A4),A0
LEA aNumStr(AO),AO
CLR.W -(SP)

Pack?
MOVE.L AO,-(SP)
_Drawstring
MOVE.W #1,-(SP)

Text Face
RTS

for safe keeping
plain text

and back again
get window rec pointer
get buffer address
selector for NumToString
Binary-Decimal Package
push the pointer to the str

bold text restored

264 CHAPTER SEVEN I ASSEMBLY LANGUAGE

******************************* DATA AREA **********************************

theWindow DC.W

ENDWITH
END

322,10,338,500

DKAD - Assembly Language
Application Shell

; window top,left,bottom,right

The name DKAD is short for "Daniel Knight Allen's Development system," to be
resumed real soon now. This application is presented as a starting point for applications
written in assembly language. It puts up a window and menus and handles events. In
addition, it demonstrates the conventions of how to reference global data and include
MacsBug symbols. Getting this basic structure right is hard for beginning assembly
language programmers; hence the need for this otherwise simplistic example.

Improving DKAD

Here is one suggestion for improving DKAD: The hierarchical menus were put into
this program when they were first brand new. Since that time I have decided I do not
like hierarchical menus because they are hard to use. Remove the hierarchical menus and
implement a better way of accessing lots of information.

Here is the Makefile:

Includes = "{Alncludes}Traps.a" a
"{Alncludes}SysEqu.a" a
"{Alncludes}QuickEqu.a" a
"{Aincludes}ToolEqu.a"

DKAD ff DKAD.a.o
Link -o DKAD DKAD.a.o

DKAD ff DKAD.r
Rez -a -o DKAD DKAD.r

DKAD ff {Worksheet}
Setfile -d . -m . DKAD
DKAD

DKAD.a.o f {Alncludes}Toolbox.d

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL 265

{Aincludes)Toolbox.d
Echo ()t d

f {Includes)

INCLUDE il'Traps.ail' iln a
INCLUDE d' ToolEqu. ad' iln a
INCLUDE il'QuickEqu.ad' iln a
INCLUDE d'SysEqu.ad' an a
DUMP d' {Aincludes)Toolbox.dd' iln
END I Asm -o dev:null

a

Here is the MPW assembly language code. MPW assembler directives are in all caps.

*
*
*

DKAD.a, by Dan Allen 6/23/87
Hierarchical Menus added 9/13/87
MenuJmp table added 11/10/87

PRINT DATA,NOHDR,NOPAGE,SYM
STRING ASIS
LOAD 'ToolBox.d'

QDGlobals RECORD 0,DECREMENT
thePort ds.1 1
white ds.b 8
black ds.b 8
gray ds.b 8
ltGray ds.b 8
dkGray ds.b 8
arrow ds.b curs Rec
screenBits ds.b bitmapRec
randSeed ds.l 1

ORG -graf Size
ENDR

EventRecord RECORD 0
what ds.w 1
message ds.l 1
when ds.l 1
where ds.l 1
modifiers ds.w 1

ENDR

266 CHAPTER SEVEN I ASSEMBLY LANGUAGE

MenuRecord
Apple
File
Edit
Info
Tools
Window
View
Find
Font
Size
Style
Definitions
Language
Toolbox
OS
Machine

g
qd
my Event
myWindow
menuHandles
quitApp

InitWorld

RECORD 0
ds.l 1

ds.l 1

ds.l 1

ds.l 1

ds.l 1

ds.l 1

ds.l 1 Hierarchical sub-menus of the Tools menu
ds.l 1

ds.l 1

ds.l 1

ds.l 1

ds.l 1

ds.l 1 Hierarchical sub-sub-menus of the Definitions menu
ds.l 1

ds.l 1

ds.l 1

ENDR

RECORD ,MAIN
ds.b QDGlobals
ds.b Event Record
ds.l 1

ds.b MenuRecord
ds.b 1

ENDR

SEG 'Init'
PROC
IMPORT MakeWind

link a6, #-8
_MaxApplZone
pea g.qd.thePort
InitGraf
InitFonts
InitWindows
InitMenus
TEinit

clr.l -(sp)
InitDialogs

move.l #$FFFF0000,-(sp)
FlushEvents

sf g.quitApp
bsr.s
jsr

SetupMenus
MakeWind

InitCursor
unlk a6
rts
dc.b 'INITWORL'

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL 267

STRING PASCAL
SetupMenus link a6,#0

@0

@01

@1

@2

Main

lea g.menuHandles.Apple,a3
move.w #1,d3
sub.l #4,sp
move.w d3,-(sp)

GetRMenu
move.l (sp)+, (a3)+
tst.l -4(a3)
bne.s @01
ExitToShell

add.w #1,d3
cmp.w
ble.s

#16, d3
@0

move.l g.menuHandles.Apple,-(sp)
move.l #'DRVR',-(sp)

AddResMenu
move.l g.menuHandles.Font,-(sp)
move.l #'FONT',-(sp)
_AddResMenu
lea g.menuHandles.Apple,a3
move.l #4,d3 ; insert regular menus
move. l (a3) +, - (sp)
clr.w -(sp)

InsertMenu
dbra d3, @1
move.l #10, d3 insert hierarchical menus
move.l (a3) +, - (sp)
move.w #-1,-(sp)

InsertMenu -
dbra d3,@2

DrawMenuBar -
STRING ASIS
unlk a6
rts
dc.b 'SETUPMEN'
ENDPROC

SEG 'Main'
MAIN
IMPORT InitWorld, DoEvent

268

@O

DoEvent

@l

@2

@3

@9

CHAPTER SEVEN I ASSEMBLY LANGUAGE

link
jsr

a6,#0
InitWorld

pea InitWorld
_UnLoadSeg
bsr.s DoEvent
_SystemTask
tst.b g.quitApp
beq.s @O

ExitToShell
unlk a6
rts
dc.b 'MAIN
ENDMAIN

PROC
link a6,il0
sub.w il2,a7
move.w ileveryEvent,-(a7)
pea g.myEvent

GetNextEvent
move.w (a7)+,d0
beq. s @9
move.l g.myWindow,-(sp)

Set Port
ilmButUpEvt,g.myEvent.what
@l ; includes mButDwnEvt
DoMouse
@9
ilautoKeyEvt,g.myEvent.what

exit if null event

cmp.w
bgt.s
bsr.s
bra.s
cmp.w
bgt.s
bsr
bra.s
cmp.w
bne.s
bsr
bra.s
cmp.w
bne.s
bsr
unlk
rts
dc.b

@2 includes keyDwnEvt, keyUpEvt
Do Key
@9
ilupdatEvt,g.myEvent.what
@3
Do Update
@9
#activateEvt,g.myEvent.what
@9
DoActivate
a6

'DOEVENT '

DoMouse

@1

DoMenu

@9

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL 269

link a6,#-4
sub.w #2,sp
move.l g.myEvent.where,-(sp)
pea -4 (a6)

FindWindow
move.w (sp)+,dO
cmp.w #inMenuBar,dO
bne.s @1
bsr.s DoMenu
unlk a6
rts
dc.b 'DOMOUSE '

link a6,#0
sub.w #4,sp
move.l g.myEvent.where,-(sp)

Menu Select
move.l (sp)+,dO
move.l dO,dl
clr.w dl
swap dl
ext.l dO
cmp.w #0, dl
ble.s @9
cmp.w #16,dl
bgt.s @9
lea MenuJmp,aO
sub.w #1,dl
asl.w #1,dl
add.w O(aO,dl),aO
jsr (aO)
clr.w -(sp)

HiliteMenu
unlk a6
rts
dc.b 'DOMENU

clear item
keep menu in low word
keep item in low word
check for bad menu numbers

exit if bad menu number

to get jmp right
multiply by two
add table off set

270 CHAPTER SEVEN I ASSEMBLY LANGUAGE

MenuJmp

DoApple

DoFile

@l

DoEdit

Do Info

DoTools

dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w

link
nop
unlk
rts
dc.b

link
cmp.w
bne.s
st
unlk
rts
dc.b

link
nop
unlk
rts
dc.b

link
nop
unlk
rts
dc.b

link
nop
unlk
rts
dc.b

DoApple-MenuJmp
DoFile-MenuJmp
DoEdit-MenuJmp
Doinfo-MenuJmp
DoTools-MenuJmp
DoWind-MenuJmp
DoView-MenuJmp
DoFind-MenuJmp
DoFont-MenuJmp
DoSize-MenuJmp
DoStyle-MenuJmp
DoDef s-MenuJmp
DoLang-MenuJmp
DoToolbox-MenuJmp
DoOS-MenuJmp
DoMachine-MenuJmp

a6,Jf0

a6

'DOAPPLE '

a jump table for fast case stmts

a6,Jf0
U4,d0 Quit Item ?

@l
g.quitApp
a6

,'DOFILE

a6,Jf0

a6

'DOEDIT

a6,Jf0

a6

'DOINFO

a6,Jf0

a6

'DOTOOLS '

DoWind

Do View

DoFind

DoFont

DoSize

DoStyle

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL 271

link a6,#0
nop
unlk a6
rts
dc.b 'DOWIND

link a6,#0
nop
unlk a6
rts
dc.b 'DOVIEW

link a6,#0
nop
unlk a6
rts
dc.b 'DOFIND

link a6, #-258
move.l g.menuHandles.Font,-(sp)
move.w dO,-(sp)
pea -256 (a6)

Get Item
pea -256 (a6)
pea -258 (a6)

GetFNum
move.w -258(a6),-(sp)
TextFont

move.l g.myWindow,aO
move.l portRect(aO),-(sp)
move.l portRect+4(a0),-(sp)

InvalRect
unlk a6 ·
rts
dc.b 'DOFONT

link a6,#0
nop
unlk a6
rts
dc.b 'DOSIZE

link a6,#0
nop
unlk a6
rts
dc.b 'DOSTYLE I

272 CHAPTER SEVEN I ASSEMBLY LANGUAGE

DoDefs link a6,*0
nop
unlk a6
rts
dc.b 'DODEFS

Do Lang link a6,#0
nop
unlk a6
rts
dc.b 'DOLANG

Do Toolbox link a6,*0
nop
unlk a6
rts
dc.b 'DOTOOLBO'

DoOS link a6,*0
nop
unlk a6
rts
dc.b 'DOOS

DoMachine link a6,#0
nop
unlk a6
rts
dc.b 'DOMACHIN'

DoKey link a6,*0
move.l g.myEvent.message,dO
and.l *charCodeMask,dO
move.w g.myEvent.modifiers,dl
btst *cmdKey,dl
beq.s @l
cmp.b *'q', dO
bne.s @l
st g.quitApp

@l unlk a6
rts
dc.b 'DOKEY

Do Update

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL 273

link a6,#0
move.l g.myWindow,-(sp)
_BeginUpdate
move.l
move.l
move.l

g.myWindow,aO
portRect(aO),-(sp)
portRect+4(a0),-(sp)

EraseRect
move.l #$00320032,-(sp)

Move To
string pascal

move to (50,50)

pea #'DKAD: An Integrated Environment'
_Drawstring
string asis
move.l g.myWindow,-(sp)
_EndUpdate
unlk a6
rts
dc.b 'DOUPDATE'

DoActivate link a6,#0

MakeWind

nop
unlk a6
rts
dc.b 'DOACTIVA'
ENDPROC

proc
link a6,#-8
move.l g.qd.screenBits+6,-8(a6)
move.l g.qd.screenBits+l0,-4(a6)
pea -8 (a6)
move.l #$00300020,-(sp)

InsetRect
sub.w #4,sp
move.l #0,-(sp) on heap
pea -8(a6) rect
STRING PASCAL
pea
STRING
st
move.w
move.l
st
move.l

#'Untitled'
ASIS
-(sp)
#0,-(sp)
Jf-1,-(sp)
-(sp)
JIO,-(sp)

NewWindow
move.l (sp),g.myWindow

SetPort
unlk a6
rts
dc.b 'MAKEWIND'
ENDPROC
END

visible
procID
frontmost
goAway
ref Con

274 CHAPTER SEVEN I ASSEMBLY LANGUAGE

DKAD.r-Rez Source Code for DKAD
Resources

/* DKAD.r, by Dan Allen 6/23/87 */
/* Hierarchical Menus added 9/13/87 */
/* Size added 11/10/87 */

#include "Types.r";

resource 'SIZE' (-1)
dontSaveScreen,
acceptSuspendResumeEvents,
enableOptionSwitch,
canBackground,
multiFinderAware,
backgroundAndForeground,
dontGetFrontClicks,
ignoreChildDiedEvents,
not32BitCompatible,
reserved,reserved,reserved,reserved,reserved,reserved,reserved,
128*1024,
90*1024

};

resource 'MENU' (1, preload)
1,

} ;

textMenuProc,
Ox7FFFEFFD,
enabled,
"\Ox14",/* Apple Menu */ (

"About DKAD ... ", noicon, "",

"-", noicon, "", "", plain
plain,

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL

resource 'MENU' (2, preload)
2,

} ;

textMenuProc,
Ox7FFFEDF7,
enabled,
"File", {

"New'', noicon, "N", "", plain,
"Open ... ", nolcon, "O", "", plain,
"Open Selection", noicon, "D", "", plain,
"-", noicon, "", 1111 , plain,
''Close'', noicon, "W'', ''", plain,
"Save'', noicon, "S'', "'', plain,
''Save as ... ", noicon, '''', "'', plain,
"Save a Copy ... ", noicon, "", "", plain,
"Revert to Saved", noicon,
"-", noicon, "", "", plain,
"Page Setup ... ", noicon, "",

1111
I

"" I

1111 , plain,

plain,
"Print ... ", noicon, ''P'', "", plain,
''-", noicon, "'', "'', plain,
"Quit", no Icon, "Q", "", plain

resource 'MENU' (3, preload)
3,

};

textMenuProc,
Ox7FFFFDBD,
enabled,
"Edit", {

"Undo", no Icon,
"-", noicon, 1111 ,

"Z",
1111 ,

"" I plain,
plain,

"Cut'', noicon, "X'', '''', plain,
''Copy'', noicon, "C'', '''', plain,
''Paste'', noicon, "V", "", plain,
''Clear", noicon, "", '''', plain,
"-", noicon, "", "", plain,
''Select All'', nolcon, ''A'', "'', plain,
"Duplicate", noicon, "D", "", plain,
"-", noicon, ''", "", plain,
"Show Clipboard", no Icon, "", "", plain

275

276 CHAPTER SEVEN I ASSEMBLY LANGUAGE

resource 'MENU' (4, preload)
4,

} ;

textMenuProc,
Ox7FFFFFFB,
enabled,
"Info", {

"Document", no Icon,
''Index'', noicon,
"-", no Icon,
"Proc", noicon,
''Library'', noicon,
"File", noicon,
"Project", noicon,

"" '
plain,

"", plain,
plain,

"", plain,

"" '
"", plain,

"", plain,
"", plain

resource 'MENU' (5, preload)
5,

} ;

textMenuProc,
Ox7FFFFFBB,
enabled,
"Tools",

"View", noicon, "\OxlB", "\Ox07", plain,
"Find", noicon, "\OxlB", "\Ox08", plain,
"-", noicon,
"Font", noicon,

"", plain,
"\OxlB", "\Ox09", plain,

"Size", noicon, "\OxlB", "\OxOA", plain,
"Style", nolcon, "\OxlB", "\OxOB", plain,
"-", noicon, "", plain,
"Definitions",noicon,"\OxlB","\OxOC",plain

resource 'MENU' (6, preload)
6,

} ;

textMenuProc,
Ox7FFFFFFD,
enabled,
"Window",

''Arrange ... '', noicon,
"-", noicon, "" ' "", plain

plain,

/* 7 */
/* 8 *I

/* 9 */
/* 10 */
/* 11 */

/* 12 */

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL

resource 'MENU' (7, preload)
7,

} ;

textMenuProc,
Ox7FFFFFAF,
enabled,
"View", {

"By Document", no Icon, plain,
"By Outline", no Icon, II 11 plain,

'
"By Graph", no Icon, "" ' plain,
"By Tree", no Icon, "" "" plain, I '
"-", noicon, "", "", plain,
"By Code'', noicon, ''", plain,
''-'', noicon, '''', plain,
"By Name", noicon, "", plain,
''By Date'', noicon, "'', '''', plain,
"By Size", noicon, plain

resource 'MENU' (8, preload}
8,

} ;

textMenuProc,
Ox7FFFFFFB,
enabled,
"Find", {

"Find ... ", no Icon, "F", "", plain,
''Find Sarne'', no!con, ''G'', '''', plain,
''-'', noicon, '''', '''', plain,
''Replace ... '', nolcon, '''', plain,
"Replace Same", nolcon, "", plain

resource 'MENU' (9, preload)
9,
textMenuProc,
Ox7FFFFFEF,
enabled,
"Font", {}

} ;

277

278 CHAPTER SEVEN I ASSEMBLY LANGUAGE

resource 'MENU' (10, preload)
10,
textMenuProc,
Ox7FFFFFFF,
enabled,
"Size", {

"7", noicon,
"9" I no Icon,
"10" I noicon,
"12" t noicon,
"14", noicon,
"18", noicon,
"24", noicon,
"36", no Icon,

} ;

1111 ,
"" ,
""
""
1111

""
""
""

1111 , plain,
1111 , outline,

"" , outline, ,
1111 , outline, ,
"" , outline, ,
"" , outline, ,
"" outline, , ,
"" plain , ,

resource 'MENU' (11, preload)
11,

);

textMenuProc,
Ox7FFFFFFF,
enabled,
"Style", (

"Plain", noicon, '"', noMark, plain,
"Bold", noicon, 1111 , noMark, bold,
"Italic", noicon, '"', noMark, italic,
"Underline", noicon, "", noMark, underline,
"Outline", noicon, "", noMark, outline,
"Shadow", noicon, "", noMark, shadow,
"Condense", noicon, "", noMark, condense,
"Extend", no Icon, "", noMark, extend

resource 'MENU' (12, preload)
12,

};

textMenuProc,
Ox7FFFFFFF,
enabled,
"Definitions",

"Language", noicon, "\OxlB", "\OxOD", plain,
"Toolbox", noicon, "\OxlB", "\OxOE", plain,
"OS", noicon, "\OxlB", "\OxOF", plain,
"Machine", noicon, "\OxlB", "\OxlO", plain

/* 13 */
/* 14 */
/* 15 */
/* 16 */

DKAD - ASSEMBLY LANGUAGE APPLICATION SHELL

resource 'MENU' (13, preload)
13,

} ;

textMenuProc,
Ox7FFFFFFF,
enabled,
"Language",

"ASCII Table", noicon, "", noMark, plain,
"Lexical", noicon, "", noMark, plain,
"Syntax", noicon, '"', noMark, plain,
"Declarations", noicon, "", noMark, plain,
"Data Types", noicon, "", noMark, plain,
"Operators", noicon, "", noMark, plain,
"Expressions", noicon, "", noMark, plain,
"Functions", noicon, "", noMark, plain,
"Statements", noicon, "", noMark, plain,
"Input/Output", no Icon, '"', noMark, plain

resource 'MENU' (14, preload)
14,

};

textMenuProc,
Ox7FFFFFFF,
enabled,
"Toolbox", {

"Resources", noicon,
"QuickDraw", noicon,

"" ,
"" ,

noMark, plain,
noMark, plain,

"Fonts", noicon, "", noMark, plain,
"Events", noicon, "", noMark, plain,
"Windows", noicon, "", noMark, plain,
"Controls", noicon, "", noMark, plain,
"Menus", noicon, "", noMark, plain,
"Text Edit", noicon, "", noMark, plain,
"Dialogs", noicon, "", noMark, plain,
"Clipboard", no Icon, "", noMark, plain

279

280 CHAPTER SEVEN I ASSEMBLY LANGUAGE

resource 'MENU' (15, preload)
15,

};

textMenuProc,
Ox7FFFFFFF,
enabled,
"OS",

''Memory'', noicon, noMark, plain,
"Files", nolcon, "", noMark, plain,
"Processes", noicon, "", noMark, plain,
"Segments", noicon, "", noMark, plain,
''Devices", nolcon, '''', noMark, plain,
''Disks'', noicon, '''', noMark, plain,
''Networks'', no!con, '''', noMark, plain,
"Serial", noicon, 1111 , noMark, plain,
''Sound'', noicon, '''', noMark, plain,
''Printing'', noicon, '''', noMark, plain,
"Errors", nolcon, "", noMark, plain,
''Numerics'', noicon, '1 '', noMark, plain

resource 'MENU' (16, preload)
16,

} ;

textMenuProc,
Ox7FFFFFFF,
enabled,
"Machine",

"Instructions", noicon, noMark, plain,
"Condition Codes", no!con, "", noMark, plain,
''Opcodes'', noicon, '''', noMark, plain,
"Timing", noicon, noMark, plain,
"Exceptions", noicon, "", noMark, plain

DISASM - C TOOL 2 81

DisAsm - C Tool

This tool allows data forks and individual resources to be disassembled such that the
resulting disassembly can be reassembled later. It is useful for exploring static code
modules; MacsBug is the tool to use for exploring running code. In fact, to get the
source code to MacsBug-with no comments-disassemble MacsBug's data fork with
this tool.

The disassembler this tool uses is shipped in the Tool Lib. o file as part of MPW
version 3. Ira Ruben wrote the disassembler, which has been used in MacsBug,
DumpObj, and DumpCode. Now you can use it in your favorite tool.

/*
* DisAsm.c - Object code disassmbler
* - Written by Dan Allen 4/2/88
* - Greatly enhanced on 8/17/88
* - Works on running Shell 1/2/89
* - Trap names & cursors added 2/1/89
*/

#include <CursorCtl.h>
#include <DisAsmLookup.h>
#include <FCntl.h>
#include <IOCtl.h>
#include <Memory.h>
#include <Resources.h>
#include <StdIO.h>
#include <StdLib.h>
#include <Types.h>

#define fsRdPerm 1
#define BUFSIZE 32*1024

#ifdef ghs /* check for MPW C 2.0 */
#define openrfperm OpenRFPerm
#end if

static char *bufin,*bufout;
static long fileSize;
void GetRsrcFork(),GetDataFork();

main(int argc,char *argv[])
{

char *p, *q;
char opCode[256],operand[256],comment[256];
short bytesUsed;
long i,len,offset,pos = O,lines = O;

282 CHAPTER SEVEN I ASSEMBLY LANGUAGE

if (argc < 2) {
fprintf(stderr,"DisAsm [type id] file> stdout\n");
return 1;

InitCursorCtl(nil);
if (argc > 2) GetRsrcFork(argc,argv); else GetDataFork(argv[argc-1]);

bufout = malloc(BUFSIZE);
if (bufout) setvbuf(stdout, bufout, IOFBF, BUFSIZE);

printf("\tMAIN\t\t\t; %s\n",argv[argc-1]);
p = bufin; q = p + fileSize; offset = - (long) p;
while (p < q) {

Disassembler(offset,&bytesUsed,p,opCode,operand,comment,nil);
ModifyOperand(operand);
printf("\n@%X\t%s\t",pos,&opCode[l]); pos += bytesUsed;
SpinCursor(l);

if (strchr(&comment[l], '; ') && /*from comment field*/
sscanf(&comment[2],"%X",&i) && /*get hex offset*/
opCode[l] == 'B' 11 /*and if Bnn or Bsr */
(opCode[l] == 'J' &&
! strchr (operand, ' (')))

/* or Jsr or Jmp */
/* if PC relative */

printf("@%X\t\t; %s\t = ",i,&operand[l]); /*convert*/
else {

len = strlen(&operand[l]);
if (len < 10) {

if (!strcmp("DC.W",&opCode[l]) && operand[2] == 'A') {
LookupTrapName(*((short *) p),comment);
printf("%s\t\t; A-Trap\t = %P\t",&operand[l],comment);
else
printf("%s\t\t;\t = ",&operand[l]);

else if (len < 20)
printf("%s\t;\t = ",&operand(l]);

else
printf("%s;\t = ",&operand[l]);

while(bytesUsed--) {
i = *p++;
printf("%2.2X", i & OxOOOOOOFF);

lines++;

printf("\n\n\tEND\n\n");
printf("* Object size = %d bytes\n",pos);
printf("* Source size= %d lines\n\n",lines);
ioctl(l,FIOFNAME, (long *)comment);
faccess (comment,F_STABINFO, (long *) 10);
return O;

static void GetDataFork(char *fileName)

FILE *input;

input= fopen(fileName,"r");
if (!input) {

DISASM - C TOOL

fprintf (stderr, "# Cannot open data fork of fi:!.e %s\n", fileName);
exit (1);

fseek(input,0,2);
fileSize = ftell(input);
if (! fileSize) {

fprintf(stderr,"# Empty data fork\n");
exit(O);

bufin = malloc(fileSize);
if (!bufin) {

fprintf(stderr,"# Not enough heapspace: %d bytes needed\n",fileSize);
exit(2);

fseek(input,0,0);
fread(bufin,l,fileSize,input);
fclose(input);

static void GetRsrcFork(ibt argc, char *argv[])

Boolean purgeFlag;
char oldState;
short refNum,oldResFile;
Handle h;
ResType rt;

oldResFile = CurResFile();
SetResLoad(false);
refNum = openrfperm(argv[argc-1],0,fsRdPerm);
SetResLoad(true);
if (refNum == -1) {

UseResFile(oldResFile);
fprintf(stderr,"# OpenRFPerm failed for file: %s\n",argv[argc-l]);
exit(l);

283

284 CHAPTER SEVEN I ASSEMBLY LANGUAGE

rt= *((ResType *) argv[l]);
SetResLoad(false);
h = Get1Resource(rt,atoi(argv[2]));
SetResLoad(true);
if (!h) {

UseResFile(oldResFile);
fprintf (stderr, "Jf GetResource failed: Jt%d\n", ResError ());
exit(2);

fileSize = SizeResource(h);
bufin = malloc(fileSize);
if (!bufin) {

UseResFile(oldResFile);
fprintf(stderr,"# Not enough heapspace: %d bytes needed.\n",fileSize);
exit(2);

purgeFlag = *h ? false : true;
oldState = HGetState(h);
LoadResource(h);
if (ResError ()) {

UseResFile(oldResFile);
fprintf(stderr,"Jt LoadResource failed.\n");
exit(2);

HLock(h);
if (rt== 'CODE') BlockMove(*h+4,bufin,fileSize-4);
else BlockMove(*h,bufin,fileSize);
HUnlock (h);
HSetState(h,oldState);
if (purgeFlag) EmptyHandle(h);
UseResFile(oldResFile);

CONCLUSION 285

Conclusion

In this chapter, assembly language and the MPW assembler were examined.
Assembly language is useful even for the dedicated Pascal programmer. The two most
common reasons for needing an understanding of assembly language are for optimiza
tion and for tracking down bugs.

Three examples of assembly language code were presented. The first was a desk
accessory that can be used as the basis for your desk accessories. The second was an
application that can be used as the basis for your own assembly language applications.
The last was an MPW tool written in C that disassembles code using a disassembler
shipped with MPW version 3.

Recommended Reading

The Motorola reference manuals are absolutely essential when you are writing
assembly code, but they provide no tutorial information. There really is no book of
choice on the subject of assembly language programming for the Macintosh. Leventhal
and Kane's 68000 Assembly Language Programming is pretty good, but it makes no
mention of the Macintosh, while many of the Macintosh assembly language books are
simply inaccurate.

CHAPTERS

THE C LANGUAGE

C is becoming more and more popular in the Macintosh development community, as
it is in the UNIX and MS-DOS worlds. As you read this chapter, however, keep in
mind that even die-hard C programmers in the Macintosh world need to read Pascal at
least, because the Macintosh operating system and Toolbox were written with Pascal in
mind.

This chapter presents a series of MPW C tools for processing text. C is an excellent
language for text processing. These tools will demonstrate various techniques of using C
and writing MPW tools. Here is a short summary of the tools that will be presented in
this chapter:

• DeCom, a tool to remove C comments using a state machine

• Fast Cat, a faster version of MPW's built-in Catenate command

• Substitute, a literal text-replacement tool designed for streams

• Reduce, a tool for replacing runs of specified characters with a single string

• Sign, a tool that implements the front pass of an anagram pipeline

• Squash, the last pass of an anagram pipeline

• Word Text, which extracts ASCII text and page breaks from files created with
MS Word4.0

• Text Tool, a Swiss Army knife for manipulating text

• Sort, a memory-based sorting tool with some specialized options

• Index, an indexing tool for sources and text files

For an example of a stand-alone application written in C, look at the MacQ program
found in Chapter 5.

History of C

C was created by Brian W. Kernighan and Dennis M. Ritchie at Bell Labs in the late
1960s and early 1970s. It was created as a tool for system programming of the UNIX
operating system. C was based on the language B, which in tum was based on the lan
guage BCPL, both of which were typeless languages.

286

BUILDING C TOOLS 287

The American National Standard for Information Systems (ANSI) standardized the C
language in 1989, and MPW C 3.0 is an almost-conforming implementation. The main
feature added by the 1989 standard to the classic version of C is more rigid type check
ing through function prototypes.

Building C Tools

For convenience, the Make file from Chapter 6 is duplicated here, with one small
addition. Three of the tools from this chapter-Index, Sort, and Text Tool-have
Commando interfaces. Additional Make targets at the end of this Makefile will cause
Re z to build the appropriate resources for these tools. This file will work with both
MPW 2.0 and 3.0 versions of Make. Further explanation and details about Make and
Makefiles can be found in Chapter 6.

This generic Makefile can be used to build any of the C tools given in this chapter.
If you want to write your own new C tools, this will build those as well. Using this file
is simple. For example, to make the FastCat tool presented below, just type Make
FastCat. Select the resulting lines, press the Enter key, and the tool will be built. The
following text would be found in a file called Makefile that should be located in the
same directory (folder) that the sources are. Remember to set the current directory to this
folder as well.

C Tool Generic Makefile by Dan Allen 3/27/88

COptions -mbg ch8 # -g if using MPW C 2.0
LOptions -w -sg Main=STDIO,INTENV,SADEV,SACONSOL,CSANELib
SFOptions -d . -m . -c "MPS " -t MPST

CLibs = "{Libraries}Stubs.o" Cl

"{Libraries}Interface.o" Cl

"{CLibraries}Cinterface.o" Cl

"{CLibraries}CRuntime.o" Cl

"{CLibraries}StdClib.o" Cl

"{CLibraries}CSANELib.o" Cl

"{CLibraries}Math.o" d
"{Libraries}ToolLibs.o"

f .c.o
Link -o {Default} {LOptions} {Default}.c.o {CLibs}
Setfile {SFOptions} {Default}
Delete {Default}.c.o
Move -y {Default} {Tools}

Index ff Index.r
Rez -o Index Index.r

288 CHAPTER EIGHT I THE C LANGUAGE

Sort ff Sort.r
Rez -o Sort Sort.r

TextTool ff TextTool.r
Rez -o TextTool TextTool.r

A Note For MPW C 2.0 Users

Several standard library functions are used in the various tools presented in this
chapter. Many of the sources include a file named stdl ib. h that gives the definitions
of these routines. This file comes with MPW 3.0 but did not ship with MPW 2.0.
Therefore, if you are using MPW C 2.0, you should create the following short header
file and put it into the Cincludes folder.

Other changes between versions 2.0 and 3.0 are handled by using the #ifdef mech
anism. All of these tools have been built successfully using both MPW C 2.0 and C 3.0.

/* stdlib.h for MPW C 2.0 */

#define RAND MAX 32767
double atof {);
int atoi {);
int rand {void);
void srand (unsigned int seed);
void *malloc{);
void *calloc();
void free();
void *realloc{);
void abort();
int atexit {);
void exit();
char *getenv ();
void *bsearch{);
void qsort();
int abs{) ;

DECOM - C TOOL 289

DeCom - C Tool

This tool has the task of removing comments from a C source file. As with many of
the MPW tools that follow, two 32 KB buffers are allocated for increased speed. MPW
tools should also call the rotating cursor routines to be good citizens. Doing so also al
lows background operation of MPW with post-2.0 versions of the MPW Shell. This
tool uses the standard input and output streams so that pipelines are supported.

/*
* DeCom.c - Removes all C comments
* - Written by Dan Allen 2/16/88
* - Rewritten using finite state machine 11/23/88
*/

#include <CursorCtl.h>
#include <StdIO.h>
#include <StdLib.h>

#define BUFSIZE 32*1024

enum {NOCOM,OPENSLASH,OPENSTAR,CLOSESTAR,CLOSESLASH} state

main() /* stdin --> stdout */

char *bufin,*bufOut;
int c;

InitCursorCtl(O);

NOCOM;

if (bufin = malloc(BUFSIZE)) setvbuf(stdin,bufin,_IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut,_IOFBF,BUFSIZE);

while ((c = get char ()) ! = EOF) {
SpinCursor(l);
if (c == '/' && state== NOCOM)

state = OPENSLASH; continue;

if (c == '*' && state== OPENSLASH)
state = OPENSTAR; continue;

if (c == '*' && state== OPENSTAR)
state = CLOSESTAR; continue;

if (c == '/' && state== CLOSESTAR)
state = NOCOM; continue;

if (state== OPENSLASH && c != '*') {
putchar('/'); state= NOCOM;

290 CHAPTER EIGHT I THE C LANGUAGE

if (state== CLOSESTAR && c != '*')
state = OPENSTAR; continue;

if (state== NOCOM) putchar(c);

return 0;

FastCat - C Tool

When large text files-actually the data forks of any Mac files-need to be copied
quickly, this tool is perfect for the job. Be.cause a common operation is to concatenate
several files, this tool takes a list of files rather than using standard input. The result,
however, is still sent to standard output. Note, too, that this particular tool uses the
open, read, and write commands, which are not part of the ANSI standard but which
are standard UNIX system calls supported by MPW C.

Using 256 KB for a buffer is overkill for most average-sized files, but the buffer size
pays off when you are dealing with files in the megabytes. In fact, this tool was written
in order to massage just one month's worth of bibliographic information, which was
contained in a single text file almost 5 MB in size.

Another feature of this tool is that it inquires about the size of the sectors of the default
volume and uses a buffer that is an integral multiple of this sector size. This gives a
signficant boost to throughput.

As an example of the increased performance of this tool, copying a 256 KB text file
on a Mac II with an Apple 80 MB SCSI hard disk takes 24 seconds with the built-in
MPW Shell command Catenate, but the same operation takes only 2 seconds with
FastCat! It is all in the buffers

Improving FastCat

Here are some suggestions for improving Fastcat:

• Extend the argument processing so that standard input is also supported.

• Replace the UNIX-like system calls with ANSI standard library calls. Compare
performance.

• Experiment with different buffer sizes. What relationship is there between disk
allocation block size and buffer size? What is the optimal buffer size for floppy
disks? For a 20 MB hard disk with IK sectors? For a 160 MB hard disk with
2.5K sectors?

FASTCAT - C TOOL 291

/*
* fcat.c - Copies contents of data forks of specified files to stdout
* - Uses 256K buffer (if possible)
* - Written by Dan Allen 11/23/87
* - Revised on 11/23/88
* - Progress & auto added on 6/23/89
* - Buffer set to power of 2*allocBlockSize 6/24/89
*/

#include <CursorCtl.h>
#include <FCntl.h>
#include <Files.h>
#include <StdIO.h>
#include <StdLib.h>

pascal long TickCount() extern OxA975;

static char *buffer,measureFlag,progFlag;
static unsigned bufSize,maxBuf,total,ticks;
static VolumeParam pb;

main(int argc,char *argv[])
{

OSErr err;

InitCursorCtl(O);

/* files_ --> stdout */

err= PBGetVol((ParmBlkPtr) &pb,false);
pb.ioCompletion = nil;
err= PBGetVInfo((ParmBlkPtr)&pb,false);
maxBuf = bufSize = pb.ioVAlBlkSiz * 512;

if (argv [1] [0] == ' - ') {
progFlag = 1;
if (argv[l] [1] == 'm') measureFlag 1;
else {

bufSize = atoi (&argv[l] [l]);
buffer= malloc(bufSize);
if (!buffer) {

fprintf(stderr,"# Cannot allocate a %d byte buffer\n",bufSize);
return 2;

else do {
bufSize >>= 1;
buffer= malloc(bufSize);
while (!buffer);

292 CHAPTER EIGHT I THE C LANGUAGE

if (rneasureFlag)
for (bufSize = pb.ioVAlBlkSiz; bufSize <= rnaxBuf; bufSize <<= 1) {

buffer= rnalloc(bufSize);
if (!buffer) exit(2);
total = 0;
Catenate(argc,argv);
fprintf(stderr,"BufSize: %7d Ticks: %7d Bytes: %7d Bytes/Sec: %7d\n",

bufSize,ticks,total,total*60/ticks);
free(buffer);

else {
Catenate(argc,argv);
if (progFlag)

fprintf(stderr,"BufSize: %7d Ticks: %7d Bytes: %7d Bytes/Sec: %7d\n",
bufSize,ticks,total,tota1*60/ticks);

free(buffer);

return O;

Catenate(int argc,char *argv[])
{

int count,i,input;

ticks= TickCount();
for (i = 1 + progFlag; i < argc; i++)

input= open(argv[i], O_RDONLY);
if (input == -1) {

fprintf(stderr, "I Cannot open: %s\n", argv[i]);
exit(l);

while ((count = read(input, buffer, bufSize)) > 0) {
total += count;
SpinCursor(2);
if (count == -1) return 2;
if (write (1, buffer, count) != count) exit (2);
SpinCursor(-2);

if (close(input) == -1) exit(3);

ticks= TickCount() - ticks;

SUBSTITUTE - C TOOL 293

Substitute-C Tool

The next step of complexity beyond simply copying a file's contents, as we did with
Fastcat, is to process the text in some way. Tools that take text from an input stream,
perform some set of transformations, and then output the changed text are often called
filters. This filter, called Substitute, looks for occurrences of any string and replaces
them with another string. All other text is passed through unchanged. Substitute uses
standard input and output, and is always case-sensitive.

Substitute was written because the built-in command Replace was too slow for
large open windows. For example, if you were to change a list of 31,155 words sepa
rated by spaces to a list with each word on a separate line, Replace -c I I an takes
hours, yet Substitute" "an takes just 13 seconds. Although Substitute does not
support regular expressions as Replace does, that is not why Substitute is so much
faster: the speed increase is the result of not overloading the Macintosh Memory
Manager. The built-in Replace routine calls NewPtr for each little chunk of text re
placed, which eventually creates thousands of objects in the heap, and the Memory
Manager chugs to a near halt.

The find-and-replace arguments can be of different sizes. If this transformation were
to be done "in place," this fact would require a much more complex solution to the
problem. Using a stream approach to the problem, however, allows the input to be
scanned and passed through until the find string is found. At that point the replace string
is ejected into the stream, and then the search continues. Simple!

Improving Substitute

Here are some suggestions for improving Substitute:

/*

• Modify Substitute to look for wildcard patterns (regular expressions) as
does the built-in Replace command.

• Add the ability to search and replace across multiple files. Should the output go
to different files or all to one file?

* Substitute.c - changes occurances of argv[l] to argv[2] via stdin, stdout
* - Written by Dan Allen 3/27/88

*
*/

#include <CursorCtl.h>
#include <StdIO.h>
#include <StdLib.h>
#include <String.h>

294 CHAPTER EIGHT I THE C LANGUAGE

#define BUFSIZE 1024*32

main(int argc, char *argv[])
{

char c,*bufin,*bufOut;

/* stdin --> stdout */

unsigned count= O,i,findLen,repLen;

if (argc != 3) {
fprintf(stderr,"Substitute findStr replaceStr <stdin >stdout\n");

return l;

findLen = strlen(argv[l]); repLen strlen(argv[2]);

InitCursorCtl(O);
if (bufin = malloc(BUFSIZE)) setvbuf(stdin,bufin,_IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut,_IOFBF,BUFSIZE);

while ((c = getchar ()) ! = EOF) {
if (c == '\n') SpinCursor(l);

tryagain:
if (c == argv[l] [count]) {

count++;
if (count == findLen) {

printf("%s",argv[2]);
count = O;

continue;

if (count) {
for (i = O; i < count; i++) putchar (argv [l] [i]);
count = 0; goto tryagain;

putchar(c);

for (i = O; i <count; i++) putchar(argv[l] [i]);
return O;

Reduce - C Tool

Reduce-like Substitute-takes two arguments that specify a text transforma
tion. The replace argument is the same as Substitute, but the find argument is inter
preted not as a string but as a set of characters. If the supplied input text contains a run
of more than one of the characters of this set, the specified replace string is output. All
other text is passed through unchanged.

This tool was originally hardcoded to reduce runs of spaces and tabs to a single tab
character. Tabs and spaces occurring by themselves were passed through unchanged.
Why such a tool? Often TTY output uses many spaces as padding to simulate columns

REDUCE - C TOOL 295

of text. Using Reduce on such text allows the text to be pasted into a spreadsheet easily,
for example, because tabs are often used as column or field delimiters. Another use is to
reduce the number of white-space characters in source files, thus reducing the lexical
scanning time of a compiler.

In the tool's current implementation, you could specify the following to reduce runs
of spaces and tabs.

Reduce " at" at < old > new it Reduce runs of spaces & tabs to 1 tab

This version of Reduce will reduce any set of characters to any single character or
string. Thus Reduce '0123456789.' $would take any number that was made up of
more than one character and reduce it to a single dollar sign. The name Reduce is
somewhat of a misnomer, as the tool can also expand a source under the right circum
stances: Reduce II • II II. anan II could be used on average prose to expand a para
graph's sentences each into their own paragraphs, separated by lines. Reduce is limited
only by your imagination in the number of ways that it can manipulate text.

Improving Reduce

Here are some suggestions for improving Reduce :

/*

• Add a count option for specifying how many characters from the set constitute a
match. What would a count of 1 do?

• This version of Reduce will reduce within quoted strings, so careful use is rec
ommended for source code. Extend the tool to skip quoted literals and strings.
What about comments? Should a separate language-beautifier tool be written in
stead? Write such a tool for your favorite language.

* Reduce.c - Reduces runs of spaces and tabs to a single tab
* - Written by Dan Allen 3/27/88
* - Options added to reduce any string 12/11/88

*
*/

Jtinclude <CursorCtl.h>
Jtinclude <StdIO.h>
Jtinclude <StdLib.h>

Jtdefine BUFSIZE 32*1024
typedef unsigned char byte;

static byte array[256];

296 CHAPTER EIGHT I THE C LANGUAGE

main(int argc,byte *argv[]) /* stdin --> stdout */
{

byte *bufin,*bufOut,lastChar;
int c,count;

InitCursorCtl(O);
if (buf!n = malloc(BUFSIZE)) setvbuf(stdin,bufin,_IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut,_IOFBF,BUFSIZE);

if (argc != 3) {
fprintf(stderr,"Reduce inChars outString < stdin > stdout\n");
return l;

while (c = *(argv[l])++)
array[c]++;

count = 0;
while ((c = getchar ()) ! = EOF) (

if (c == '\n') SpinCursor(2);
if (array [c]) (

count++;
lastChar = c;
continue;

if (count> 1) printf("%s",argv[2]);
if (count== 1) putchar(lastChar);
count = O;
putchar(c);

return 0;

Sign -C Tool

This tool is rather specialized. It is the first step of a pipeline of tools used to generate
anagrams. Anagrams are words (or sentences) that contain the same characters, but in a
different order. For example, "integral" and "triangle" are anagrams of each other, as are
"algorithmic" and "logarithmic"; "evil," "live," and "veil" are all anagrams of one an
other.

The motivation for this problem comes from Bentley's Programming Pearls, a de
lightful book that is highly recommended reading. Given a file called words, one word
per line, Sign < words I Sort I Squash will output to standard output a list of all the
possible anagram combinations. This marvelously simple solution easily reduces an
otherwise combinatoric nightmare to a tractable proble.m. Squash and Sort follow.

SIGN - C TOOL 297

Sign demonstrates ways of using C's excellent set of standard library routines to do
the dirty work: in this case, scanf, strcpy, qsort, and printf do it all.

I*
*
*
*

Sign.c - Sorts the characters of each word of each line of the input file
- Step one of a pipeline to produce anagrams
- Written by Dan Allen 11/6/88

*/

#include <CursorCtl.h>
#include <StdIO.h>
#include <StdLib.h>
#include <String.h>

#define
#define

LINELEN
BUFSIZE

4096
32*1024

static char in[LINELEN],out[LINELEN];

main()
{

char
int

/* stdin --> stdout */

*bufin,*bufOut;
compChar();

InitCursorCtl(O);
if (bufin = malloc(BUFSIZE)) setvbuf(stdin,bufin,_IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut, IOFBF,BUFSIZE);

while(scanf("%4096[A\n]\n",&in) == 1)
strcpy(out,in);
qsort(out,strlen(out),l,compChar);
printf("%s\t%s\n",out,in);
SpinCursor(l);

return O;

int compChar(char *i,char *j)

if (*i < *j) return -1;
else if (*i > *j) return l;
else return O;

298 CHAPTER EIGHT I THE C LANGUAGE

Squash - C Tool

This tool was originally written as the final portion of an anagram pipeline, but it has
since become quite useful for many other text processing tasks. Given an input stream
containing sorted lines of text, Squash will condense into a single line multiple lines
whose first fields are the same. Further examples of using Squash will be found below
in the section on the text tool called Text Tool.

I*
*
*
*

Squash.c - Squashes sorted lines with same first fields into one line
- Written by Dan Allen 10/30/88
- Last step of an anagram pipeline

*
*
*
*
*
*
*

- Options added 11/30/88

Sample Anagram Pipelines:

FastCat dictionary I TextTool -1 I Sign
Squash I TextTool -t

Sort -u I
Sort

* ATrap I TextTool -t -1 I Sign I Sort I Squash I TextTool -t I Sort

*
*I

#include <CType.h>
#include <CursorCtl.h>
#include <StdIO.h>
#include <StdLib.h>
#include <String.h>

#define FALSE 0
#define TRUE 1
#define LINELEN 4096
#define BUFSIZE 32*1024

static char *useage = "Squash [-cl (-1 sep] < stdin > stdout\n";
static char fl[LINELEN],f2[LINELEN],gl[LINELEN],g2[LINELEN];
static char *listSep = "\t",*format = "%4096[A\t]\t%4096[A\n]\n";
static char countFlag;

main(int argc,char *argv[])
{

char *bufin,*bufOut,sameKey
unsigned i,count;

for(i ~ l; i < argc; i++) {

O;

if (argv [i] [0] == ' - • & & argv [i] [2 J
switch (tolower (argv[i] [l])) {

'\0 I)

case 'c': countFlag =TRUE; break;
case 'l': listSep = argv[++i]; break;
default: fprintf(stderr,"%s",useage); return l;

InitCursorCtl(O);

SQUASH - C TOOL 299

if (bufin = malloc(BUFSIZE)) setvbuf(stdin,bufin,_IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut,_IOFBF,BUFSIZE);

if (scanf(format,fl,f2) != 2) return 2;
while(scanf(format,gl,g2) == 2) {

SpinCursor(l);
if (!strcmp(fl,gl)) {

if (! sameKey) {
if (countFlag) {

count = 2;
printf("%s",fl);

else printf("%s\t%s%s%s",fl,f2,listSep,g2);

else {
if (countFlag) count++;
else printf("%s%s",listSep,g2);

sameKey = l;
continue;

if (sameKey)
sameKey = O;
if (countFlag) printf("\t%u\n",count);
else putchar('\n');

if (scanf(format,fl,f2) != 2) break;

300 CHAPTER EIGHT I THE C LANGUAGE

if (!strcmp(fl,gl)) {
if (! same Key) {

if (countFlag) {
count = 2;
printf("%s",gl);

else printf("%s\t%s%s%s",gl,g2,listSep,f2);

else {
if (countFlag) count++;
else printf("%s%s",listSep,f2);

sameKey = l;
continue;

if (sameKey)
if (countFlag) printf("\t%u\n",count);
else putchar('\n');

return O;

WordText - C Tool

WordText extracts the text and page break information from a Microsoft Word 4.0
document in an ad hoc manner. Because WordText takes a list of files, a whole folder
of files can be processed easily. The actual text of the Word documents is sent to stan
dard output, with page breaks being interjected into the text as form feed characters
(ASCII 12). Style information and pictures are not output. The motivation behind this
tool was to help generate an index for this book using Index, another C tool presented
later in this chapter. The -x option of Index uses the form feed character to recognize
page breaks.

The format of Word 4.0 files was ascertained by the experimental method using
Fedit, so this tool does not deal with the full file format. Word places accurate page
break information in a fixed spot only after doing a non-fast save of a document. The
best way to force Word to place accurate page breaks in a fixed spot is to open the Word
file of interest, hold down the shift key, and select Repaginate from the Document
menu. Immediately select Close from the File menu and save the changes. Before you
run Word Text, do this in MS Word for all of the files you wish to process.

Interesting stats about document sizes will be sent to standard diagnostic if you use
-p, with increased detail about page sizes available through - P. Either progress option
lists a count of how many times each character is used over all of the files input.

WORDTEXT - C TOOL 301

Improving WordText

Here are some suggestions for improving WordText :

• Argument processing for this tool is somewhat lazy: the progress option is not
recognized unless it is the first argument given. Fix this.

/*

• Word Text currently reads only the text and page information. Extend it to ex
tract styles, footnotes, and graphics. What destination formats would hold this
information? Write a tool to translate a MS Word file into a ASCII text descrip
tion language such as RTF, TeX or PostScript. Sell the tool to a major software
vendor.

* wordtext.c - Extracts text and page breaks from a MS Word document
* - Written by Dan Allen 8/3/88
* - Working moderately well with 3.0 files 10/29/88
* - Added progress options 12/19/88
* - Added letter freq & totals 2/20/89
* - Updated for Word 4.0 files 6/12/89
*/

it include <CursorCtl.h>
it include <StdIO.h>
it include <StdLib.h>

idef ine BUFSIZE 32768
idefine MAXPAGES 1000

static long progress,totalBytes,totalChars,totalPages,pageStarts[MAXPAGES];
static unsigned count[256];

main(int argc,char *argv[])
{

char c,*p,*buffer;
short pageGuess;
long i,j,length,size,total,*pgBrkPtr;
FILE *input;

/* check args */
InitCursorCtl(O);
if (argc < 2) {

fprintf (stderr, "WordText [-p] files ... > stdout \n");
return l;

if (argv[l] [0]
if (argv(l] [l]

'-') progress++;
'P') progress++;

302 CHAPTER EIGHT I THE C LANGUAGE

/* make buffer */
buffer= malloc(BUFSIZE);
if (!buffer) {

fprintf(stderr,"# Not enough mem to create a %d byte buffer.\n",BUFSIZE);
return 2;

for (i = progress ? 2 : l; i < argc; i++) {
input= fopen(argv[i],"r");
if (!input) {

fprintf(stderr,"# Cannot open file: %s\n",argv[i]);
return 2;

if (progress) fprintf(stderr,"File: %-19s\n",argv[i]);

/* clear the slate */
total = O;
for (j = 0; j < MAXPAGES; j++) pageStarts[j] 0;

/* find ptrs and approximate # pages */
fseek(input,OxSE,0);
fread(&pgBrkPtr,sizeof(pgBrkPtr),l,input);
fread(&pageGuess,sizeof(pageGuess),l,input);
pageGuess = pageGuess/8;

/* seek to page break table */
f seek (input, (long) pgBrkPtr, 0) ;
if (pageGuess >= MAXPAGES) pageGuess = MAXPAGES - l;
fread(&pageStarts[O],sizeof(long *),pageGuess,input);

I* read text */
fseek(input,Oxl00,0);
for (j = l; j <= pageGuess; j++) {

size= pageStarts[j] - pageStarts[j-1];
if (size < 0 I size > BUFSIZE) break;
total += size;
if (progress > 1)

fprintf(stderr," Page %3d: %5d chars, total of %7d chars\n",
j,size,total);

fread(buffer,sizeof(char),size,input);
p = buffer;
while (size--)

c = *p++;
if (c > 7 && c != 31) putchar(c); /* 1-7 used by Word*/
if (c == '\n') SpinCursor(l);
count[(unsigned char)c]++; /*COMPILER BUG: should not have to cast*/

printf("\n\f\n");

fseek(input,0,2);
length= ftell(input);
fclose(input);

TEXTTOOL - C TOOL 3 0 3

totalBytes += length; totalChars += total; totalPages += j-1;

if (progress) {
fprintf(stderr,"%s %7d chars %7d bytes %4d pages\n\n",

. " TOTAL: ",totalChars,totalBytes,totalPages);
fprintf(stderr,"Graphics: %-Su Footnotes: %-Su Formulas: %-Su\n",

count[l],count[5],count[6]);
fprintf(stderr,"Spaces: %-Su Tabs: %-Su Returns: %-Su\n",

count[32],count[9],count[l3]);
for (i = 33; i < 127; i++) {

fprintf(&tderr,"%6u %c ",count[i],i);
if (i % B == 0) fprintf(stderr,"\n");

fprintf(stderr,"\n");

return 0;

Text Tool - C Tool

The main purpose of Text Tool is to extract text from an input stream. This general
text tool began as several different little tools that were used together so often that the
tool has become like a Swiss Army knife: a collection of highly useful tools brought to
gether under one roof. Because you can use the sixteen available options in different
ways, the tool gives you literally thousands of different ways of manipulating text.

The defaults consider each line separated by a carriage return to be a record, which is
further composed of fields separated by tabs. Text Tool gets input from standard input
one line at a time, breaking each line into fields. The output of Text Tool is sent to
standard output. The default behavior on output also uses tabs and returns as field and
record separators, so using Text Tool without any options is just a slow way to con
catenate a file. However, the input and output field and record delimiters are customiz
able, which allows for very flexible processing of text.

The real usefulness of Text Tool appears when only a certain field of a record is de
sired, or when field delimiters need to be changed from tabs to spaces, or when the po
sitions of two fields need to be swapped. Fields to be output are selected with the - s
option, which can be used as many times as there are fields. The order of the -s options
is the order in which the fields will be output. If all of the fields but the first are desired,
the -t (tail) option is a fast LISP-like shorthand.

Suppose you had a file called books that contained one book per line in the following
format: DDC# tab Author tab Title return, where DOC# is the Dewey
Decimal number in ASCII and tab and return are their respective ASCII control charac
ters. Now suppose that with this subject, author, and title information you wanted

304 CHAPTER EIGHT I THE C LANGUAGE

various top ten lists. Using the text tools provided here you could get some interesting
information quickly, through the following pipelines:

Top Ten Authors by number of titles
TextTool -s 2 -s 3 < books I Sort -d I Squash -c I TextTool -s 2 -s l I
Sort -n -r I TextTool -a 10 -s 2 -s l

Top Ten Subject Categories by number of titles
TextTool -s l -s 3 < books I Sort -n I Squash -c I TextTool -s 2 -s 1 I
Sort -n -r I TextTool -a 10 -s 2 -s 1

On my library, these pipelines yield the two lists shown in the tables that follow.

Author
Asimov, Isaac
Apple Computer
Durant, Will
Nibley, Hugh
LDS Church
Knuth, Donald E.
Brautigan, Richard
.Kierkegaard, Soren
Madsen, Truman G.
Motorola

of Books in Collection
16
13
12
11
9
8
7
7
7
7

Dewe.r Decimal Number # of Books in Collection
1.6424 3S
289.3 22
1.6425 :!)

500.2 17
515.63 13
530.11 13
5.133 12
901 12
289.322 11
509 11

Another capability of Text Tool is to assign each book a nearly unique ID number
based on a hash of its author and title. The pipeline

TextTool -s 2 -s 3 < books -f " " I TextTool -k 1 I Sort -n

will output a list sorted by hash number. Running Squash on this output list will catch
duplicate ID numbers: if Squash returns nothing, there are no duplicates; if duplicates do

TEXTTOOL - C TOOL 3 0 5

exist, it will list them. In my collection of 850 different titles, no duplicate IDs are
generated when hashing modulo the default HASHNUM.

Another use of Text Tool would be to list the files on a disk that have the same
name. The following lines will generate a list of the full path names of those files which
have the same leaf file names:

Files -f -s -r {Boot} > names
TextTool -e -d a: -j names < names I
TextTool -s 2 -s 1 I Sort -f I Squash

Improving Text Tool

/*

Here are some suggestions for improving Text Tool:

• Text Tool is record-based. Does it make any sense to write a version of
Text Tool that is stream-based? Which options would still apply? What new
options could be added?

• Text Tool does a simple version of joining two files: it blindly appends each
line of file 2 to the end of each line of the primary input stream when the - j op
tion is used. Implement a relational join so that Text Tool can join on specific
fields.

• How many other interesting options could be added for manipulating two files
simultaneously?

Finally, here is the source code for Text Tool:

* tt.c - TextTool by Dan Allen, begun 25 Nov 1988
* - Prime number generator added 30 Nov 1988
* - Output separators allowed to be strings 11 Dec 1988
* - Fixed bug in select, changed NextPrime 4 Jan 1989
* - End, join, proper options added, 6 May 1989
*/

tinclude <CType.h>
tinclude <CursorCtl.h>
tinclude <Math.h>
tinclude <StdIO.h>
tinclude <StdLib.h>
tinclude <String.h>

306 CHAPTER EIGHT I THE C LANGUAGE

#define FALSE 0
#define TRUE 1
#define HASHNUM 33554393
#define MAXFIELDS 64
#define FIELDSIZE 4096
#define BUFSIZE (32*1024)

typedef unsigned char byte;
typedef unsigned int word;

byte
byte
byte
word
word
FILE
void

*fieldBufs[MAXFIELDS],joinBuf[FIELDSIZE],*p,*select;
*beginStr,end,numerate,lowerCase,properCase,upperCase;
fieldSep = '\t',recSep = '\n',*fieldOutSep,*recOutSep;
fieldNum,recNum,selectNum,order[MAXFIELDS+l];
firstRecs,firstChars,tailRec,hashNum,hashKey,Hash();
*joinFile;
Setup(),OutputRecord();

main(int argc,char *argv[])
(

int c,fieldLen = O;

Setup(argc,argv);
p = fieldBufs[O];

while ((c=getchar()) !=EOF) {
if (c == fieldSep) {

*p = '\0';
p = fieldBufs[++fieldNum];
if (fieldNum >= MAXFIELDS)

fprintf(stderr,"# Too many fields in record #%u\n",++recNum);
return 2;

fieldLen = 0;
SpinCursor(l);
if (fieldSep != recSep) continue;

if (c == recSep) {
*p = '\0';
OutputRecord();
p = fieldBufs[fieldNum
SpinCursor(l);
continue;

fieldLen 0 J;

TEXTTOOL - C TOOL

if (firstChars && fieldLen >= firstChars) continue;
if (uppercase I I properCase && !fieldLen) c = toupper(c);
if (lowercase I I properCase && fieldLen) c = tolower(c);

if (f ieldLen++ == FIELDSIZE) {

307

fprintf(stderr,"# Record %u, field %u: too long\n",++recNum,++fieldNum);
return 2;

*p++ = c;

if (joinFile) fclose(joinFile);
return 0;

void OutputRecord()

word i,thisField;

recNum++;
if (numerate) printf("%u%s",recNum,field0utSep);
if (beginStr) printf("%s%s",beginStr,field0utSep);
if (select) {

if (hashKey) printf("%u%s",Hash(fieldBufs[hashKey-1]),field0utSep);
for (i = 0; i < selectNum; i++) {

else

thisField = order[i];
if (thisField > fieldNum) fieldBufs [thisField] [0]
if (i+l < selectNum) {

printf("%s%s",fieldBufs[thisField],fieldOutSep);
else {
if (joinFile) {

fscanf(joinFile,"%4096[A\n]\n",joinBuf);
printf ("%s%s", joinBuf, fieldOutSep);

printf("%s%s",fieldBufs[thisField],recOutSep);

'\0';

if (hashKey) printf("%u%s",Hash(fieldBufs[hashKey-1]),fieldOutSep);
for (i = 0; i < fieldNum; i++) {

if (tailRec && ! i I I end) continue;
printf("%s%s",fieldBufs[i],fieldOutSep);

if (joinFile) {
fscanf(joinFile,"%4096[A\n]\n",joinBuf);
printf("%s%s",joinBuf,fieldOutSep);

printf("%s%s",fieldBufs(i],recOutSep);

if (firstRecs && firstRecs == recNum) exit(O);

308 CHAPTER EIGHT I THE C LANGUAGE

word Hash(byte *s)
{

word h = 0;

while (*s) {
h += *s++;
h *= 255;

return h % hashNum;

word NextPrime(word n)

word i,max,factor;

if (n > 0) {

if (n % 2 == 0) n++;
for (; n <= OxFFFFFFFF; n += 2) {

max= sqrt(n)+l;
factor = 0;
for (i = 3; i <= max; i += 2)

if (n % i == 0) { factor = i; break; l
if (!factor) return n;

return HASHNUM;

void Setup(int argc,char *argv[])

char *bufin,*bufOut;
word i;

TEXTTOOL - C TOOL

InitCursorCtl(O);
for(i = l; i < argc; i++)
if (argv[i] [OJ == '-' && argv[i] [2] == '\0')

switch (tolower(argv[i] [l])) {
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case I fl:

case 'h':

case Ii I:

case I j I:

firstRecs = atoi(argv[++i]); break;
beginStr = argv[++i]; break;
firstChars = atoi(argv[++i]); break;
fieldSep = argv[++i] [0]; break;
end = TRUE; break;
fieldOutSep = argv[++i]; break;
hashNum = NextPrime(atoi(argv[++i]));
if (!hashKey) hashKey =select ? order[O]+l
recSep = argv[++i] [0]; break;
joinFile = fopen(argv[++i],"r");
if (! joinFile) {

l; break;

fprintf(stderr,"# Cannot open join file: %s\n",
argv[i]);

case 'k':

case 'l':
case 'n':
case 'p':
case 'r':
case IS I!

case 't':
case 'u':

exit(l);

break;
hashKey = atoi(argv[++i]);
if (!hashNum) hashNum = HASHNUM; break;
lowercase = TRUE; break;
numerate = TRUE; break;
properCase = TRUE; break;
recOutSep = argv[++i]; break;
select= argv[++i];
order[selectNum++] = atoi(select)-1; break;
tailRec = TRUE; break;
uppercase = TRUE; break;

else {
fprintf(stderr,"tt
fprintf(stderr,"
fprintf(stderr,"
fprintf(stderr,"
fprintf (stderr,"
exit(l);

[options_] < stdin > stdout # Texttool\n");
[-a num] [-c num] [-t] [-el [-1\-p\-u] [-j file]\n");
[-n] [-b str] [-h num] [-k fld] [-s fld] \n");
[-d char] [-f str] #default fieldSep is tab\n");
[-i char] [-r str] #default recSep is return\n");

if (!fieldOutSep) fieldOutSep = "\t";
if (!recOutSep) recOutSep = "\n";

for (i = O; i < MAXFIELDS; i++)
if (! (fieldBufs [i] = malloc (FIELDSIZE)))

fprintf(stderr,"# Out of memory (field buffer #%d)\n",i);
exit(3);

if (bufin = malloc(BUFSIZE)) setvbuf(stdin,bufin, IOFBF,BUFSIZE);
if (bufOut = malloc(BUFSIZE)) setvbuf(stdout,bufOut,_IOFBF,BUFSIZE);

309

310 CHAPTER EIGHT I THE C LANGUAGE

TextTool.r - Rez Source Code for a
Commando Interface

Text Tool offers so many options that it is helpful to have a Commando interface
with explanatory text. Here is the Re z source for just such an interface:

/* tt.r - The Commando companion for TextTool, a tool by Dan Allen. */
/* Begun 1/4/89 */

#include "cmdo.r"; /*top, left, bottom, right */

resource 'cmdo' (128, "TextTool") {

300,
"TextTool - A field/record oriented tool for munging textfiles. "
"Up to 64 fields, each of 4096 characters, can be read in and output "
"while undergoing various transformations. Useful as a sort filter.",
{

NotDependent { }, RegularEntry

},

"Input Field Sep", {60, 12, 76, 120), {59, 131, 75, 165),
"", ignoreCase, "-d",
"The default input field separator is a tab. Use of this option "
"allows a different single character to delimit fields."

NotDependent { }, RegularEntry

},

"Input Record Sep", {88, 12, 104, 128), {87, 131, 103, 165),
' 11', ignoreCase, ''-i'',
"The default input record separator is a return. Use this option "
"to change this single record delimiter character."

NotDependent { }, RegularEntry {

} '

"Output Field Sep", {60, 182, 76, 296), {59, 311, 75, 341),
"", ignoreCase, "-f",
"Fields are separated on output with tabs by default. Use of this "
"option allows any arbitrary string to be used instead."

NotDependent { }, RegularEntry

},

"Output Record Sep", {88, 182, 104, 308), {87, 311, 103, 341),
1111 , ignoreCase, "-r",
"Records are separated on output with returns by default. Use of "
"this option allows any arbitrary string to be used instead."

NotDependent { }, RadioButtons
{

{130, 20, 144, 104}, "Std", "", Set,
"Case is preserved. The default.",

{145, 20, 159, 104}, "Lower", "-1", NotSet,
"All text is output in lower-case.",

TEXTTOOL - C TOOL

{160, 20, 174, 104}, "Proper", "-p", NotSet,

},

"Each field's text begins capitalized, followed by lower case.",
{175, 20, 189, 104}, "Upper", "-u", NotSet,

"All text is output in upper-case.",

NotDependent { }, CheckOption {
NotSet, {131, 124, 147, 208}, "Number", "-n",

311

"Each record is numbered, starting with the number 1. This preceeds"
" every other option, such as hash numbers and leading strings."

},

NotDependent { }, CheckOption {

} ,

NotSet, {149, 124, 165, 208}, "End", "-e",
"Only the last field of each record is output."

NotDependent { }, CheckOption {
NotSet, {168, 124, 183, 208}, "Tail", 11 -t",
"All fields EXCEPT the first field are output."

} ,
NotDependent }, TextBox { gray, {125, 12, 191, 212), "Options" },

NotDependent }, RegularEntry

} '

"Field", {25, 357, 41, 425}, {23, 432, 39, 462},
'''', ignoreCase, ''-s 1',

"Specifies field N to be output. This option can be repeated "
"for output of a selection of fields."

NotDependent { }, RegularEntry {

},

"Hash Key", {47, 357, 63, 425}, {46, 432, 62, 462},
"", ignoreCase, 11 -k 11 ,

"Specifies that field N will be used to determine the hash value.
"If the -h option is not specified, an implied hash value of 33554393 "
"will be used. If a different hash number is desired, the -h option "
"should follow this option."

NotDependent { }, RegularEntry
"1st Chars", {70, 357, 86, 425), {69, 432, 85, 462},
'''', ignoreCase, ''-c'',
"The first N characters of each field will be output."

},

NotDependent }, RegularEntry {

} ,

"1st Recs", {93, 357, 109, 425}, {92, 432, 108, 462},
"", ignoreCase, "-a",
"Outputs only the first N records, using the input def of a record."

NotDependent { }, TextBox gray, {16, 352, 116, 471}, "Select" },

312

};

CHAPTER EIGHT I THE C LANGUAGE

NotDependent {), RegularEntry (

),

"String", (139, 228, 155, 280), (138, 285, 154, 458),
'''', ignoreCase, ''-b",
"Begin each record with the specified text, separated by the "
"current output field separator."

NotDependent {), RegularEntry {

),

"Hash#", {167, 228, 183, 280), {166, 285, 182, 350),
'''', ignoreCase, ''-h'',
"Hashing of the first field will be done modulo this number. The hash "
"value preceeds the first output field. If N is zero, then a "
"default value of 33554393 is used."

NotDependent{), Files
InputFile,
RequiredFile (

),

(164, 368, 184, 460), /* top, left, bottom, right */
"Join File",
"-j",
"Specifies a file to be joined. All of the specified fields from "
"the main input file are output, then an output field specifier "
"follows, then the next line from the join file, and then the "
"output record specifier.",

),

Additional{"","","","",{}}

NotDependent (), TextBox {gray,{125,224,191,471),"Additional Text"),

NotDependent {), Redirection {
Standardinput,
(16, 14)

},

NotDependent }, Box { gray, {16, 11, 116, 173)),

NotDependent), Redirection
StandardOutput,
(16, 182)

},

NotDependent

NotDependent

), Box { gray, (16, 178, 116, 349)),

}, VersionDialog
VersionString { "1.0 B2"),
"TextTool 1.0 B2 - Created on November 25, 1988 by Dan Allen.\n"
"Built on" $$Date " @ "$$Time ".\n"
"Written using MPW C 3.0 for the book "On Macintosh Programming".",
noDialog

SORT - C TOOL 313

Sort-C Tool

Versions 1.0 and 2.0 of MPW did not include a Sort tool, so here is a RAM-based
sorting tool with a few interesting options that even the MPW 3.0 Sort tool does not
have.

The basic theory of this tool's operation is that it reads lines from standard input,
copying lines with the standard library ma 11 o c routine and setting up pointers to the
lines in an array. Then the library qsort routine is called to sort the lines; actually, it
sorts only the pointers to the lines, thus saving a lot of unnecessary copying of the much
larger text strings. Next, the lines are output in ascending, descending, or tree order, de
pending upon the option selected. If you want just the unique lines to be output, use the
-u option.

You can select among several different sorting comparison routines. The default is
case-sensitive sorting, and case-insensitive ordering or folding is selected by - f.

Floating-point numbers are sorted with -n, and hex numbers are sorted with - h. A ran
dom option sorts in any order (-a).

Dictionary ordering is case-insensitive, but it allows some punctuation to be skipped
while other punctuation is observed. This particular dictionary routine orders lines in the
same way as a professional indexer would order them; the routine has been verified by
passing the equivalent of Knuth's spectral test for indexes: Sort -d sorts the same way
Words into Type, the Chicago Manual of Style, and Webster's Dictionary do.

The most esoteric option (-g) sorts according to the Greek alphabet (a, p, y, 8 ...),
properly handling accents and breathing marks. This works with the encoding used in
the SuperGreek fonts made for the Macintosh, and to a lesser extent with the Symbol
font built into the LaserWriter. Although the Symbol font is satisfactory for mathematical
symbols, it is not aesthetically acceptable for use with the Greek language, even though
it has Greek characters. Classical Greek looks like the characters found in the
SuperGreek font and requires the diacriticals and breathing marks also present in that
font.

Other fonts with special characters, punctuation, and orderings could be added to this
tool by creating arrays indicating character classes as I have done for the SuperGreek
font.

Improving Sort

Here are some suggestions for improving Sort:

• The slowest variant of sorting currently is the numeric sort, because it rescans
strings to floating-point numbers at every comparison. Improve Sort to scan
the strings only once and sort these numbers directly. Do not forget about the
rest of the text following the numbers! Hint: try a union.

314 CHAPTER EIGHT I THE C LANGUAGE

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*I

• The facility for unique lines works properly only with case-sensitive and case
insensitive sorts. Add the other types of orderings to the unique code.

• This Sort is RAM-based. Extend it to use an external sort and merge process
using files on disk so that it can sort arbitrarily large files. Does performance
suffer?

• How would you sort multiple files? Should the output go to multiple files or to a
single file? Add the ability to sort a list of files to the basic standard input
facility.

• Often it is useful to sort on fields of a line. Text Tool can be used to change
field ordering, or sort fields can be put directly into Sort. Which way seems
best to you?

• Replace the library qsort (Quicksort) routine with your implementation of a fa
vorite sort algorithm, such as a binary sort or your own version of Quicksort. If
the comparison routine is hardcoded into your own algorithm-thus saving a
procedure call- is there a noticeable performance improvement?

• What percentage of the program's run time is spent in these string-comparison
routines? Try recoding some of the string-comparison routines in more efficient
C or perhaps even in assembly language in order to improve performance. Was
it worth the effort?

• Discover what algorithm qsort uses, using your favorite disassembler.

Sort.c - RAM based sort tool
- Written by Dan Allen, begun 10/27/87
- Added random & numeric sorts 11/17/87
- Added tree order output 12/30/87
- Greek option added 4/10/88
- Updated to MPW c 3.0 10/7/88
- Started over again 10/30/88
- Dynamic allocation of line array 11/23/88
- Put it all together 11/24/88
- Several fixes to dictionary ordering 12/26/88
- Hex ordering added 1/4/89
- Numeric & hex call strcmp if equal 1/4/89
- Unique works for case-insensitive 5/6/89

#include <CType.h>
#include <CursorCtl.h>
#include <StdIO.h>
#include <StdLib.h>
#include <String.h>
#include <Types.h>

pascal long TickCount() extern OxA975;

SORT - C TOOL

typedef unsigned char byte;
typedef unsigned int word;

#define BUFSIZE (32*1024)
#define LINE SIZE 4096
#define LINE INC 4096
#define RANDMIDPT (RAND_MAX I 2)
#define isdict(c) (isascii(c) ? (isspace(c) 11 ispinct (c)) 1)

static char
static void
static int
static int

*version= "# Sort 1.0 B3 - 6 May 1989";
GetArgs(),WriteSort(),WriteTree();
CaseCompare(),FoldCompare(),DictCompare();
NumericCompare(),HexCompare(),AnyCompare(),GreekCompare();

static Boolean
static byte

progress,reverseFlag,treeFlag,uniqueFlag;
* ((*linePtrs) []),line [LINESIZE];

static word n,t;
enum {CASE,FOLD,DICT,NUMERIC,HEX,ANY,GREEK} sortType

main(int argc,char *argv[])
{

char *buffer,*p;
int curSize = LINEINC;

GetArgs(argc,argv);
buffer= malloc(BUFSIZE);
if (buffer) setvbuf(stdin,buffer,_IOFBF,BUFSIZE);

linePtrs = malloc(curSize*sizeof(char *));
while(fgets(line,LINESIZE,stdin)) {

p = malloc(strlen(line)+l);
if (!p) {

fprintf(stderr,"# Out of memory for strings\n");
return 2;

if (n == curSize)
curSize += LINEINC;

CASE;

linePtrs = realloc(linePtrs,curSize*sizeof(char *));
if (! linePtrs) {

fprintf(stderr,"# Out of memory for line pointers\n");
return 2;

strcpy(p,line);
(*linePtrs) [n++] p;
SpinCursor(-1);

315

316 CHAPTER EIGHT I THE C LANGUAGE

switch (sort Type) {

case CASE: qsort(linePtrs,n,sizeof(byte *),CaseCompare); break;
case FOLD: qsort(linePtrs,n,sizeof(byte *),FoldCompare); break;
case DICT: qsort(linePtrs,n,sizeof(byte *),DictCompare); break;
case NUMERIC: qsort(linePtrs,n,sizeof(byte *),NumericCompare); break;
case HEX: qsort(linePtrs,n,sizeof(byte *),HexCompare); break;
case ANY: qsort(linePtrs,n,sizeof(byte *) ,AnyCompare); break;
case GREEK: qsort(linePtrs,n,sizeof(byte *),GreekCompare); break;

if (progress) fprintf(stderr,"# Time to sort = %.2f sec\n",
(TickCount() - t)/60.0);

if (buffer) setvbuf(stdout,buffer, IOFBF,BUFSIZE);
if (treeFlag) WriteTree(); else WriteSort();
return 0;

void GetArgs(int argc,char *argv[])

int i;

t = TickCount();
InitCursorCtl(O);
for (i = 1; i < argc; i++) {

if (argv[i] [0] == '-' && argv[i] [2] == '\0') {
switch(tolower(argv[i] [1])) {

case 'a':
case 'd':
case 'f':
case 'g':
case 'h':
case 'n':
case 'p':
case 'r':
case 't':
case 'u':
default:

sort Type
sort Type
sort Type
sort Type
sort Type
sort Type
progress

ANY; srand(TickCount()); break;
DICT; break;
FOLD; break;
GREEK; break;
HEX; break;
NUMERIC; break;
true; fprintf(stderr,"%s\n",version); break;

reverseFlag = true; break;
treeFlag = true; break;
uniqueFlag = true; break;

fprintf (stderr,
"Sort [-al-dl-fl-gl-hl-n] [-p] [-r] [-tl-u] < stdin > stdout\n");

fprintf (stderr,
"# Any Diet Fold Greek Hex Numeric Progress Reverse Tree Unique\n");

exit(l);

void WriteSort()
{

int i;

for(i = O; i < n; i++) {
if (uniqueFlag && i) {

if (sortType == CASE)

SORT - C TOOL

if (!strcmp((*linePtrs) [iL (*linePtrs) [i-1])) continue;

else if (!strfold((*linePtrs) [i], (*linePtrs) [i-1])) continue;

printf("%s", (*linePtrs) [i]);
SpinCursor(-1);

/* WriteTree prints sorted array in infix tree order */
/* Example: 0 through 8 is printed as 4,2,6,1,3,5,7,0,8 */
/* Useful for include/omit list input for Index tool */

static void WriteTree()

byte *((*p) []),*((*max)[]);
word inc, offset, keysRemain;

max= linePtrs + n*sizeof(byte *);
inc = keysRemain = n;
while (keysRemain > 0) {

SpinCursor(-1);
offset= inc*sizeof(byte *);
p = linePtrs + (inc>> 1) * sizeof(byte *);
while (p < max) {

if (keysRemain == 0) return;
if ((*p) [0 l) {

printf("%s", (*p) [0]);
(*p) [0] = nil;
--keysRemain;

p += offset ? offset

inc >>= 1;

sizeof(byte *);

int CaseCompare(byte **i,byte **j)

SpinCursor(l);
if (reverseFlag) return -strcmp(*i,*j);
else return strcmp(*i,*j);

317

318 CHAPTER EIGHT I THE C LANGUAGE

int FoldCompare(byte **i,byte **j)
{

byte a,b,*p,*q;

SpinCursor(l);
p = *i; q = *j;
while ((a= tolower(*p))

if (*p == '\0') return 0;
p++; q++;

(b tolower (*q)))

if (reverseFlag) return (a < b) ? 1 -1;
else return (a < b) ? -1 : l;

int DictCompare(byte **i,byte **j)
/*

This routine orders words like a dictionary or index
would, ignoring most punctuation. See "Words into Type",
"The Chicago Manual of Style", and "Webster's New World
Dictionary, Third College Edition" for more info & examples.

*/

byte a,b,*p,*q;
Boolean flag = false;

SpinCursor (1);

p = *i; q = *j;
while (true) {

a= tolower(*p); b = tolower(*q);
if (a == b) {

if (!a) return 0;
if (a== ', ') flag
p++; q++; continue;

true;

if (!a I I a == '\n')
if (! b I I b == '\n' l
if (a == ', ' I I a ==
if (b == ',' I I b ==

return reverseFlag
return reverseFlag
' .. 11 a --
'.' 11 b --

if (isdict(a)) { p++; continue;
if (isdict(b)) (q++; continue; }
break;

' ' &&
' ' &&

if (reverseFlag) return (a < b) ? 1 -1;
else return (a < b) ? -1 : 1;

? 1 : -1;
? -1 : l;
flag) return reverseFlag
flag) return reverseFlag

? 1 : -1;
? -1 : l;

int NumericCompare(byte **i,byte **j)
{

extended x,y;

SpinCursor(l);
x = atof(*i); y = atof(*j); /*this is slow! */
if (x == y) return strcmp(*i,*j);
if (reverseFlag) return (x > y) ? -1 : l;
else return (x > y) ? 1 : -1;

int HexCompare(byte **i,byte **j)

int x,y;

SpinCursor(l);

SORT - C TOOL

x = strtol(*i,0,16); y = strtol(*j,0,16); /*this is slow! */
if (x == y) return strcmp(*i,*j);
if (reverseFlag) return (x > y) ? -1 l;
else return (x > y) ? 1 : -1;

int AnyCompare ()

SpinCursor(l);
return (rand() > RANDMIDPT) ? 1 -1;

int strfold(byte *i,byte *j)

byte a,b;

SpinCursor(l);
while ((a = tolower (*i))

if (*i == '\0') return 0;
i++; j++;

(b to lower (* j)))

if (reverseFlag) return (a < b) ? 1 -1;
else return (a < b) ? -1 : l;

static byte superGreekFold[256] = {

319

0, O, 0, O, 0, 0, 0, 0, 0, 0, 0, 0, /* 0-31 */
0, 0, 114, 0, O, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, /* 32 to 47 */
0,0,0,0,0,0,0,0,0,0,0, /* 48 to 58 */
1,0,0,0,0,0, /* 59 to 64 */

65,66,86,68,69,85,67,71,73,1, /* 65 to 74 */
74,75,76,77,78,79,72,81,82,83,84,1, /* 75 to 86 */
88, 78, 87, 70, /* 87 to 90 */
1,1,1,1,0,0, /* 91 to 96 */

320 CHAPTER EIGHT I THE C LANGUAGE

} ;

65,66,86,68,69,85,67,71,73,1, /* 97 to 106 */
74,75,76,77,78,79,72,81,82,83,84,1, /* 107 to 118 */
88,78,87,70, /* 119 to 122 */
1, 1, 1, 1, 0, /* 123 to 127 */

0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, 0, O, 0, 0, O, 0, 0, O, /*128-159 */
0, /*160-191 */
1,0,0,0,0,0,l,l,l, /* 192 to 200 */
0,0,0,0,0,0,0,0,0, /* 201 to 209 */
1,1,l,1,l,0,1,l, /* 210 to 217 */
0, /* 218 to 238 */
1

int GreekCompare(byte **i,byte **j)

byte a,b,*p,*q;

SpinCursor(l);
p = *i; q = *j;
while (true) {

while ((a superGreekFold[*p++]) 1)

while ((b = superGreekFold[*q++]) 1)

if (a == b) {

if (a== '\0') return O;
continue;
else
break;

if (reverseFlag) return (a < b) ? 1 -1;
else return (a < b) ? -1 : 1;

SORT - C TOOL

Sort.r - Rez Source Code for a Commando
Interface

/* Sort.r - The Commando companion for Sort, a tool by Dan Allen. */
/* Begun 2/10/88 */

#include "cmdo.r";

resource 'cmdo' (128, "Sort")
300,

/* top, left, bottom, right */

"Sort - A general purpose RAM-based sort tool.",

/* WORD DEFINITION */

NotDependent {), RadioButtons
{

{32, 200, 48, 291), "Case", "" , Set,

321

"A case sensitive sort according to ASCII order. Capital letters "
"therefore come before lower case letters. The default.",

),

{54, 200, 70, 291), "Fold", "-f", NotSet,
"Specifies a case INsensitive ordering, folding upper and "
"lower case together for sort comparisons.",

(76, 200, 92, 291), "Dictionary", "-d", NotSet,
"Specifies a dictionary ordering for the sort comparisons.
"Dictionary ordering is NOT case sensitive and ignores most "
"punctuation characters. The resultant ordering is "
"like that found in a dictionary or index.",

(98, 200, 114, 291), "Numeric", "-n", NotSet,
"Sort lines according to numeric order. This assumes that each "
"line begins with a number. Also works with floating point.",

(120, 200, 136, 292), "Hex", "-h", NotSet,
"Sort lines according to hexadecimal order."

Hex numbers may also begin with Ox.",
{142, 200, 158, 292}, "Any", "-a", NotSet,

"Sort lines in a random order. Any order may result.",
{ 164, 200, 180, 292), "Greek", "-g", NotSet,

"Specifies a case insensitive sort using the SuperGreek font. "
"Sorts according to the Greek alphabet, i.e., alpha, beta, gamma ... "
" Ignores Greek punctuation such as accents & breathing marks.",

NotDependent { }, TextBox {gray, (20, 180, 184, 298), "Sort Type"),

322 CHAPTER EIGHT I THE C LANGUAGE

/* OUTPUT */
NotDependent (}, RadioButtons {

(

(36, 344, 52, 428), "Std", Set,
"Standard output of all lines. The default.",

(60, 344, 76, 428), "Tree", "-t", NotSet,
"Outputs the sort in a binary tree in-order, with the middle node "
"first. This greatly increases performance with include or omit "
"files and the Index tool.",

{84, 344, 100, 428), "Unique", "-u", NotSet,
"Outputs only those lines that are unique, that is, only one "
"occurance of multiple identical lines will be output.",

},

NotDependent }, TextBox { gray, {21, 328, 110, 434), "Output" },

/* OPTIONS */
NotDependent { }, CheckOption {

NotSet, {134, 344, 150, 428), "Progress", "-p",
"Outputs the version number of sort as well as the time it takes to sort."

} ,
NotDependent { }, CheckOption {

},

Notset, {158, 344, 174, 428), "Reverse", "-r",
"Sort in reverse or descending (z-a, Z to A, 9 to 0) order. "
"The default is ascending (0-9, A to Z, a-z) order.",

NotDependent { }, TextBox { gray, {125, 328, 184, 434), "Options" },

/* STANDARD IO */
NotDependent { }, Redirection

Standardlnput, {20, 28)
},

NotDependent { }, Redirection
StandardOutput, {70, 28)

},

NotDependent { }, Redirection
DiagnosticOutput, {120, 28)

},

NotDependent {), VersionDialog
VersionString { "1. 0 B3" } ,

},

"Sort 1. 0 B3 - Created on October 27, 1987 by Dan Allen. \n"
"Built on " $$Date " @ " $$Time ".\n"
"Written using MPW C 3.0 for the book "On Macintosh Programming".",
noDialog

} } } ;

INDEX - C TOOL 323

Index -C Tool

Index is a tool that creates indexes, cross-references, concordances, and word-fre
quency lists from text files. The default output of Index is to generate a cross-reference,
displaying an alphabetical list of all words followed by a full list of occurrences by file
and line number. The following explanatory definitions are helpful when you are consid
ering which type of an index you wish to generate.

A word count includes the number of characters, the number of words, and the num
ber of lines of text. These statistics, along with summary totals of all of the input files,
are always sent to the diagnostic output whenever Index is run, unless the quiet (-q)
option is used.

A unique word list contains just the unique words found in the indexed text. A word
frequency list additionally contains the number of occurrences of each unique word.
These types of indexes can be obtained by Index -u and Index -f, respectively.

An index is an ordered list of words, and is a general term that can be applied to many
different kinds of lists. The standard type of index (like those found in the back of many
books) is usually a non-exhaustive alphabetical list of words listing the location of the
main occurrences of each word (or topic). Such an index neither lists all of the words
found in the document nor all of the occurrences of any given word from the document.
Rather, a standard index usually lists only those occurrences that are important or no
table. This type of index can be approximated by using Index in either of two ways.
First, with the - i option, you can specify a list of all words to be included in the index.
Or, if there are only a few words you do not want indexed (for example, a list of "noise"
words or reserved words), you can use the -o option to create an index minus those
words you want omitted.

A cross reference is an exhaustive index-that is, it lists all words found in the docu
ment and all instances of those words. Usually a cross-reference is an alphabetical list of
words, where each word has associated with it a list of line numbers in ascending order.
This is the default output of Index.

Index normally reads all of the characters found in a file (including words in quotes)
and uses as its standard criteria for words the following definition: A word is a sequence
of letters (A ... Z, a ... z), digits (0 ... 9), and periods (.), but not beginning with a pe
riod. This definition allows basic words and numbers. The default string comparison
routine is not case-sensitive and supports the international character set as well. By de
fault, Index does an ascending sort.

The default rules are different for file names ending in .a, .c, .h, .p, and .r. If a file
name ends in one of these suffixes, the appropriate language-specific rules are used for
convenience in indexing 68xxx assembly language, C, C header, Pascal, and Rez files,
respectively. This allows a set of different files to be indexed together. For a complete
description of these automatic language-specific changes, see the appropriate language
option. Note that for source files, reserved words are included in the indexes. If you do
not want reserved words indexed, use the omit option and supply a file of the language
specific reserved words that you want omitted from the index.

324 CHAPTER EIGHT I THE C LANGUAGE

By default, Index reads standard input, but a list of file names to be indexed may be
provided instead. The created index is sent to standard output. Errors, progress infor
mation, and file statistics are all written to diagnostic output. Use of the -q (quiet) option
suppresses the progress and statistics; errors, however, are still sent to diagnostic out
put. Index returns the status values described in the following table.

Status Value
0
I
2
3

Description
No errors
Syntax error (error in parameters)
OS Level error (file not found, etc.)
Not enough memory for operation

Options

Index supports the following options. See the syntax description above for possible
option conflicts.

-a

-b

-c

Assembly language defaults. When you use this option, Index will use
the following 68xxx assembly language defaults for all input files,
regardless of file suffix: Words located in valid assembly comments are
not indexed. The comment conventions used are those used by the
MPW 68xxx Assembler: comments begin with a semicolon and con
tinue to the end of the line; comments can also begin with an asterisk if
it is the first character on a line. Comments may be continued by use of
the backslash (\). Index is not case-sensitive while reading assembly
files, and it uses the assembler's definition of identifiers for its
definition of words to index, which is as follows: the first character of
an identifier may be an upper- or lowercase letter (A ... Z,a ... z), an
underscore(_), or an at symbol(@). Subsequent characters may be let
ters, digits (0 ... 9), underscores {_), dollar signs ($), number signs
(#), percent signs (%), or at symbols (@). Strings and character
constants are delimited by single quotes and are skipped. Escaped
quotes (two single quotes in succession) are also skipped.

Blanks as separators. Any run of characters constitutes a word with the
only word separators being some form of blank space: spaces, tabs,
and carriage returns. This option is the opposite of the -w words-only
option.

C defaults. When you use this option, Index will use the following C
language defaults for all input files, regardless of file suffix: Words
located in valid C comments are not indexed. Valid C comments are
separated by pairs of slashes and asterisks-for example, /* this is a C

INDEX - C TOOL 325

comment*/. Index is case-sensitive when reading C files and uses as
its definition for a word the definition of a legal C identifier, which is as
follows: An identifier is a sequence of letters (A ... Z, a ... z), digits (0 .
. . 9), and underscores L), not beginning with a digit. Strings in C are
delimited by double quotes and character constants by single quotes.
The contents in either case, as well as in the case of escaped quotes
(quotes preceded by the backslash), are skipped.

-d Dictionary ordering. This is not case-sensitive, and it orders words
ignoring punctuation, thus producing the kind of ordering found in
dictionaries and indexes. Specifically, when comparing two words, this
option ignores all space and punctuation characters except commas,
colons, and semicolons.

-f Frequency count. This option specifies a word-frequency list that is
alphabetically sorted and that includes the number of occurrences of
each word.

- h Huge file. This option automatically limits the number of occurrences of
words three characters or shorter to only the first ten occurrences. All
words four characters or longer will have all of their occurrences
indexed. Use of this option will usually greatly reduce the amount of
memory required when indexing a document.

-i filename Include for indexing. This option allows you to give Index a list of
words to be indexed; only those words will be indexed. Words are
contained in the file filename and should be listed one word per line,
where lines are separated by carriage returns. Index looks only in the
current MPW directory for filename, but you may specify a full path
name if desired.

-1 length Using this option gives you a way to specify the length of words to be
included in the generated index, where length is an integer. If it is a
positive integer, all words whose length is greater than or equal to
length will be included in the index. If it is a negative integer, all
words whose length is less than or equal to length will be included in
the index.

-n count Using this option gives you a way to specify the maximum number of
occurrences to index for any given word. For example, using a count of
ten will confine the output of the final index to just the first ten instances
of each word. Use of this option will usually greatly reduce the amount
of memory required when indexing a document.

326 CHAPTER EIGHT I THE C LANGUAGE

-o filename Omit from index. This option allows you to give Index a list of words
to omit from its generated index. All words not found in this list will be
indexed. The words are listed one word per line, where lines are
separated by carriage returns. Index looks only in the current MPW
directory for f i 1 en ame, but you may specify a full path name if
desired.

-p Pascal defaults. When you use this option, Index will use the
following Pascal language defaults for all input files, regardless of file
suffix: Words located in valid Pascal comments are not indexed. Valid
Pascal comments are separated by braces ({)). In addition, comments
may also be separated by matching pairs of parentheses and asterisks
for example, (* this is a valid Pascal comment *). Index is case
insensitive when reading Pascal files, and it uses as its definition for a
word the definition of a legal Pascal identifier, which is as follows: An
identifier is a sequence of letters (A ... Z, a ... z), digits (0 ... 9), and
underscores (_), not beginning with a digit. Strings in Pascal are
delimited by single quotes and are skipped. Escaped quotes (two single
quotes in succession) are also skipped.

-q Quiet output. The default is for Index to provide progress and
statistical information while reading the input files. This option
overrides this information: the only output that can occur when you use
this option is error information.

-r Reverse sort. By default, sorting is done in ascending order. If you use
this option, the sort will be done in a descending order. All sorting is
based on the ASCII collating sequence, modified by the case-sensitive
option (which also affects the extended characters and international
sorting).

-s Case-sensitive comparisons. The default is to be case-insensitive and to
provide for international sorting. If you use this option, all of the
language defaults will be overridden, and all string comparisons will be
case-sensitive. Performance increases markedly with this option.

-t Text file defaults. This option turns off the language default rules that
apply for file names ending in .a, .c, .h, .p, and .rand instead uses the
normal default rules, which are described earlier in this section. All of
the text contained in the files is indexed, including text in quoted
strings.

-u

-w

-x

-z

Examples

INDEX - C TOOL 327

Unique words. This type of index is a simple list of all unique words
found in the input file(s).

Words only. Only alphabetic characters (A-Z, a-z) are allowed in
words. This option specifies that the definition of a word excludes all
numbers, spaces, and punctuation marks. This option is the opposite of
the - b option, which uses blanks as separators to identify words.

Words only with form feed characters separating pages rather than
returns separating lines. This option is useful in conjunction with the
WordText tool in indexing MS Word files. See the WordText tool
description provided earlier in this chapter for more information.

Re z defaults. When you use this option, Index will use the Re z

language defaults for all input files, regardless of file suffix. The Rez
defaults are identical to the C defaults described above, except that Re z

is not case-sensitive.

Index {aincludes}~.a > xref

Index sample.a sample.c sample.p > xref

Index -t -f sample.a sample.c sample.p > xref

The first example above creates a standard cross-reference of all of the assembler
equates files, sorted alphabetically without case distinctions and omitting all comments.
The second example properly handles the appropriate language-specific properties for
comments, case, and word definition as it indexes three different types of files. The final
example creates a word frequency list of all words-including comments and the con
tents of quoted strings.

328 CHAPTER EIGHT I THE C LANGUAGE

Improving Index

Here are some suggestions for improving Index:

• Multi-character suffixes like . ps are not handled correctly by the automatic file
type-detection mechanism. Likewise, escaped characters like \ " are not pro
cessed correctly. Fix these minor bugs.

• The size and number of files that Index can treat is limited by available RAM.
Consider enhancing Index to work in a disk-based manner. How large an ar
chitectural change would this require?

• The contents of quoted strings and constants are always skipped when the lan
guage-specific defaults apply. One way to work around this problem is to use
the -t option so that everything is indexed (including comments). Is there a
simple fix to this?

• The sort is strictly by ASCII orderings. The dictionary sort is ASCII but ignores
certain characters if they are found in a word. Add a provision for numeric
sorting.

• Index does not automatically become case-sensitive while reading assembly
language files if a CASE ON directive is found. All assembly source code is
therefore treated as case-insensitive or case-sensitive if the -s option is speci
fied. Should Index itself parse files for these directives, or should different
language parsers be written as separate preprocessors for Index?

• How can Index help in preparing a table of contents, dictionary, lexicon, or
glossary?

• A key word in context (KWIC) listing is an index along with some contextual
information that pertains to each specific reference. It is arranged alphabetically
by topic or key word. Each word entry consists of a line reference along with
the line on which the word was used. This type of an index is sometimes also
referred to as a topical guide. A concordance is an exhaustive KWIC listing. It
lists all of the words from a given document or set of documents, along with
each occurrence of every word. In addition, it provides a key word in context
extract (the entire line) for every occurrence of every word. Add these types of
indexing capabilities to Index.

• The prolific author of Asm, Backup, and many more tools once said at a warm
Wednesday afternoon MPW meeting, "It's gotta have an option." Make Ira
happy by adding more options to Index so that it competes with his PasMat in
terms of the number of directives possible.

INDEX - C TOOL

Here is the source code to the largest single program found in this book, Index.

I*

*
*

Index.c - A general purpose indexing program
- Written by Dan Allen

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*I

- 23 Mar 1987 Started
- 28 Jul 1987 Rewritten from scratch
- 10 Sep 1987 Added indexing
- 15 Sep 1987 Added language scanning
- 17 Oct 1987 MultiFinder/cursor support
- 17 Nov 1987 Added b & j options
- 16 Dec 1987 Added huge option
- 22 Dec 1987 Added i & o options
- 23 Dec 1987 Added u option
- 29 Dec 1987 Changed w to f, j to w
- 30 Dec 1987 Added d option
- 04 Jan 1988 Sets output tabs to 20
- 24 Mar 1988 Fixed autofile recognition
- 09 Apr 1988 Added greek ordering
- 11 Apr 1988 Finally fixed m option
- 14 Jun 1988 Changed RotateCursor to SpinCursor
- 03 Aug 1988 Uses commas if 1 file; pg #
- 11 Oct 1988 Brought forward to MPW C 3.0; x option added
- 29 Oct 1988 Fixed -x option
- 23 Nov 1988 Fixed comment scanning
- 08 Dec 1988 Fixed omit file bug (NULL to p)
- 12 Dec 1988 Include/omit files set by file suffix
- 26 Dec 1988 Several fixes to dictionary ordering
- 25 Mar 1989 Bug fix for -m & -o at the same time

/* Includes */
#include <CType.h>
#include <CursorCtl.h>
#include
#include
#include
#include
#include
#include

pascal
pascal

<FCntl.h>
<IOCtl.h>
<StdIO.h>
<StdLib.h>
<String.h>
<Types.h>

long TickCount() extern OxA975;
void MacsBug() extern OxA9FF;

void OutPutindex(),ReadList(),Search();
void InitWorld(),IndexFile();
void GetText(),GetAsm(),GetC(),GetPas(),GetGreek();

329

330 CHAPTER EIGHT I THE C LANGUAGE

/* Defines */
Jtdef ine CRSRSPEED 6
it define STRSIZE 256
Jtdef ine FBUFSIZ 16*BUFSIZ
#define MAXCNT OxFFFF
Jtdef ine isdict (c) (isascii(c) ? (isspace (c) 11 ispunct (c)) 1)

struct item {
struct item
unsigned int
unsigned int

*next;
fileNum
filePos

10; /* 10 bits
22; /* 22 bits

1,023 files maximum*/
4,194,303 lines per file max */

) ;

struct key {

char *keyStr;
struct key *left;
struct key *right;
struct item *first;
struct item *last;
unsigned short count; /* 16 bits 65535 occurrences maximum */

I;

/* Global Variables */
static char *version= "it Index 1.0 B3 - 25 Mar 1989";

/* State Globals */
en um
en um
static
static

{ASM,C,PASCAL,REZ,GREEK,TEXT} fileType
{INDEX,FREQ,UNIQ} indexType =INDEX;

struct key *root;

TEXT;

char caseSense,CRFlag,prelimFlag,sepChar '\n';
static FILE *input;

/* Options - Language, Index type, Independent options */
static char asmFlag,cFlag,pasFlag,rezFlag,greekFlag,textFlag;
static char freqFlag,maxFlag,uniqueFlag;
static char blanksFlag,dictFlag,wordFlag;
static char caseSenFlag,hugeFlag,quietFlag,reverseFlag;
static char *inclFile,*omitFile;
static short fFlagPos,lFlagPos,nFlagPos;
static unsigned short numCount = MAXCNT;
static unsigned int lenCount;
static int a,b,result;

/* Sizes */
static char fileBuffer[FBUFSIZ], theWord[STRSIZE];
static
static
static
static

unsigned
unsigned
unsigned
unsigned

int
int
int
int

wordLen,keyChars,refChars,occChars,t;
inChars,inWords,inLines,inFiles;
outChars,outWords,outLines;
sumChars,sumWords,sumLines;

/* Main Program */
main(int argc,char *argv[])
{

int i;

InitWorld(argc,argv);
if (inclFile I I omitFile) ReadList(argv);

for (i = 1; argc--; i++) {
if (argv[i] [OJ == '-') continue;
if (lenCount && i == lFlagPos) continue;
if (numCount && i == nFlagPos) continue;

INDEX - C TOOL 331

if ((inclFile I I omitFile) && i == fFlagPos) continue;
if (argc == 0) break; else inFiles++;
if (indexType ==INDEX) printf("File #%3d = %s\n",inFiles,argv[i]);
IndexFile(argv[i]);

if (!inFiles) IndexFile("dev:stdin");
OutPutindex();
return 0;

static void Munged(scriptErr,realErr)
int scriptErr,realErr;

switch(scriptErr) {
case 1:

fprintf(stderr, "Index [options] < stdin I files ... > stdout\n");
break;

case 2:
fprintf(stderr,"# Mac OS Error: %d\n",rea1Err);
break;

case 3:
fprintf(stderr,"\n# Out of RAM. Try -h, -n, or -1 options.\n");
OutPutindex ();
break;

default:
fprintf(stderr,"# Internal error #%d\n",rea1Err);

exit(scriptErr);

332 CHAPTER EIGHT I THE C LANGUAGE

static void InitWorld(int argc,char *argv[])

char c;
int i,opts = O;

InitCursorCtl(O);
t = TickCount();
for(i = 1; i <= argc; i++) {

if (argv[i] (OJ != '-') continue;
if (argv [i] [2] ! = ' \ 0 ') Munged (1) ;
switch(c = tolower(argv[i] [1])) {

case 'a I:
case 'b':
case 'c':
case 'd':

case I fl:

case 'g':

case 'h':

case Ii 1:

case I l':

case I ffi I :

case 'n':

case 'o':
case 'p':
case 'q':
case 'r':
case f $I:

case 't I:

case 'u':
case 'x':
case 'w':
case I z I:

default:

opts++;

asmFlag = true; fileType = ASM; break;
blanksFlag = true; fileType = TEXT; break;
cFlag = true; fileType = C; break;
dictFlag = true; break;
freqFlag = true; indexType
greekFlag = true; fileType
hugeFlag true; break;

FREQ; break;
GREEK; break;

inclFile argv[fFlagPos i+l]; opts++; break;
lenCount atoi(argv[lFlagPos = i+l]); opts++; break;
maxFlag = true; indexType = FREQ; break;
numCount = atoi(argv[nFlagPos = i+l]);
if (numCount < 1) numCount = 1;
opts++; break;
omitFile = argv[fFlagPos
pasFlag = true; fileType
quietFlag = true; break;
reverseFlag = true; break;
caseSenFlag = true; break;

i+l]; opts++; break;
PASCAL; break;

textFlag = true; fileType = TEXT; break;
uniqueFlag = true; indexType = UNIQ; break;
sepChar = '\f'; /*fall through*/
wordFlag = true; fileType = TEXT; break;
rezFlag = true; fileType = REZ; break;
fprintf(stderr,"# -%c is not a valid option.\n",c); Munged(l);

if (argc - opts == 1) quietFlag = true;
if (!quietFlag) fprintf(stderr,"%s\n",version);
if (asmFlag + cFlag + pasFlag + rezFlag + greekFlag +

textFlag + blanksFlag + wordFlag > 1 I I
caseSenFlag + dictFlag > 1 I I
freqFlag + uniqueFlag + maxFlag > 1 I I
inclFile != NULL && omitFile != NULL)

fprintf(stderr,"# Conflicting options specified.\n");
Munged(l);

static void OpenFile(char *fileName)

char c, *ptr;
extern short MacOSErr;

if ((input= fopen(fileName,"r")))
setvbuf(input,fileBuffer,_IOFBF,FBUFSIZ);

else {

INDEX - C TOOL

fprintf(stderr,"* Cannot open file: %s \n",fileName);
Munged(2,MacOSErr);

if (! quietFlag)
fprintf(stderr,"* %-19s",

(ptr = strrchr(fileName, ': ')) ? ptr+l
fileType =TEXT; c = 't';
if (! (textFlag I I wordFlag I I blanksFlag))

if (ptr = strrchr(fileName, '. ')) {
c = tolower(*(ptr+l));
if (*(ptr+2)) c = 't';
if (c == 'h') c = 'c';

fileName);

if (c != 'a' && c != 'c' && c != 'p' && c != 'r') {
if (asmFlag) c = 'a';
else if (cFlag) c 'c';
else if (pasFlag) c 'p';
else if (rezFlag) c 'r';
else if (greekFlag) c = 'g';
else c = 't';

if (c 'a') fileType ASM;
if (c 'c') fileType C;
if (c 'p') fileType PASCAL;
if (c 'r') fileType REZ;
if (c 'g') file Type GREEK;

caseSense = (fileType == C) ? true caseSenFlag;
if (!quietFlag) fprintf (stderr," (%c) ", toupper (c));
fflush (stderr);

333

334 CHAPTER EIGHT I THE C LANGUAGE

static void IndexFile(char *fileName)

inChars = inwards = inLines = 0;
OpenFile(fileName);
switch (fileType) {

case ASM: GetAsm(); break;
case C: GetC(); break;
case PASCAL:
case REZ:
case GREEK:
default:

fclose(input);

GetPas(); break;
Getc () ; break;
GetGreek();. break;
GetText(); break;

sumChars += inChars; sumWords += inwards; sumLines += inLines;
if (! quietFlag)

fprintf(stderr,"Chars: %8u Words: %6u Lines: %6u (%uK)\n",
inChars,inWords,inLines,keyChars+refChars+occChars+l024>>10);

static int ScanTillChar(char termChar)

int c;

do {
if ((c = getc (input)) EOF)

return c;
else {

inChars++;
if (c == '\n') inLines++;

while (c != termChar);
CRFlag (termChar == '\n') ? true
return 0;

static int IsComment(char termChar)

int c,state = 0;

if ((c = getc(input)) != '*') {
ungetc(c,input);
return 0;

else
inChars++; /* comment begin */

false;

while ((c = getc (input)) ! = EOF) {
inChars++;
if (c == '*' && state == 0) { state = 1; continue; }

INDEX - C TOOL

if (state == 1 && c == termChar) return 0; /* comment end */
if (state== 1 && c != '*') state= O;
if (c == '\n') inLines++;

return EOF;

static void GetTillBlank() /* the only delimiter is white space */

int c, d;

while ((c = getc(input)) != EOF) {
d = c; inChars++; wordLen = theWord[O] 0;

if(c > 32) (
do (

theWord[wordLen++] = c; inChars++;
} while ((c = getc(input)) > 32);
else {
if (c == sepChar) { inLines++; SpinCursor(CRSRSPEED);
continue;

inWords++; theWord[wordLen++] = '\0';
if (wordLen > lenCount) Search(root);
if (c == sepChar) { inLines++; SpinCursor (CRSRSPEED);

if (inChars > 0 && d != '\n') inLines++;

335

336 CHAPTER EIGHT I THE C LANGUAGE

static void GetWords()

int c,d;

while ((c = getc (input)) ! = EOF) {
d = c; inChars++; wordLen = theWord[O] 0;
if (isalpha (c)) {

do {
theWord[wordLen++] = c; inChars++;

) while (isalpha(c = getc(input)));
else {
if (c == sepChar) { inLines++; SpinCursor(CRSRSPEED);
continue;

inWords++; theWord[wordLen++] = '\0';
if (wordLen > lenCount) Search(root);
if (c == sepChar) { inLines++; SpinCursor(CRSRSPEED);

if (inChars > 0 && d != '\n') inLines++;

static void GetText()

int c, d;

if (sepChar == '\f') inLines = l; /* start with pg 1 */

if (blanksFlag) { GetTillBlank(); return; }
else if (wordFlag) { GetWords (); return;
while ((c=getc(input)) !=EOF) {

d = c; inChars++; wordLen = theWord[O] O;
if (isalpha(c)) {

do {
theWord[wordLen++] = c; inChars++;

} while (isalnum(c = getc(input)));
else if (isdigit (c)) {
do {

theWord[wordLen++] c; inChars++;
} while (isdigit (c = getc (input)) I I c == '. ');
else {
if (c == sepChar) { inLines++; SpinCursor(CRSRSPEED);
continue;

inWords++; theWord[wordLen++] = '\0';
if (wordLen > lenCount) Search(root);
if (c == sepChar) { inLines++; SpinCursor(CRSRSPEED);

if (inChars > 0 && d != '\n') inLines++;

INDEX - C TOOL

static void GetAsm()

int c, d;

CRFlag = true; /* for first line of file */
while ((c = getc(input)) != EOF) {

d = c; inChars++;
if (c == '*' && CRFlag)

if (ScanTillChar('\n')) return; else continue;

else if (c ';' && ScanTillChar('\n')) return;
else if (c '\"' && ScanTillChar('\"')) return;
else if (c '\'' && ScanTillChar('\' ')) return;
else if (isalpha(c) II c ==''II c == '@') {

wordLen = theWord[O] 0;
do {

theWord[wordLen++] = c; inChars++;
l while (isalnum(c = getc(input)) 11 c == ' ' 11 c == '@'

I I c == '$' I I c == '#' I I c '%');
inWords++; theWord[wordLen++] = '\0';
if (wordLen > lenCount) Search(root);

if (c == '\n') { inLines++; SpinCursor(CRSRSPEED); CRFlag
else CRFlag false;

if (inChars > 0 && d != '\n') inLines++;

static void GetC()

int c,d;

while ((c = getc(input)) != EOF) {
d = c; inChars++;
if (c == '/' && IsComment('/')) return;
else if (c == '\"' && ScanTillChar('\"')) return;
else if (c == '\' • && ScanTillChar('\' ')) return;
else if (isalpha (c) I I c == ' ') I

wordLen = theWord[O]
do {

theWord[wordLen++]

O;

c; inChars++;
) while (isalnum(c = getc(input)) 11 c
inWords++; theWord[wordLen++] = '\0';
if (wordLen > lenCount) Search(root);

' ') ;

if (c == '\n') inLines++; SpinCursor(CRSRSPEED);

if (inChars > 0 && d != '\n') inLines++;

true; l

337

338 CHAPTER EIGHT I THE C LANGUAGE

static void GetPas()

int c, d;

while ((c=getc(input)) !=EOF) {
d = c; inChars++;
if (c == '(' && IsComment(') ')) return;
else if (c == '{' && ScanTillChar('}')) return;
else if (c == '\'' && ScanTillChar('\' ')) return;
else if (isalpha (c) I I c == ' ') {

wordLen = theWord[O]
do {

theWord[wordLen++J

O;

c; inChars++;
} while (isalnum (c = getc (input)) I I c
inWords++; theWord[wordLen++) = '\0';
if (wordLen > lenCount) Search(root);

I I);

if (c == '\n') { inLines++; SpinCursor(CRSRSPEED);

if (inChars > 0 && d != '\n') inLines++;

static struct key *NewKey()

struct key *p;
struct item *occur;

if (inclFile && !prelimFlag) return NULL;
p = malloc(sizeof(struct key));
if (p && (p->keyStr = malloc(wordLen)))

strcpy(p->keyStr,theWord);
keyChars += wordLen;
refChars += sizeof(struct key);
else Munged(3);

p->left = p->right NULL;
if (prelimFlag) {

p->count = O;
p->first = p->last NULL;
return p;
else p->count = 1;

INDEX - C TOOL

if (indexType == INDEX) {
occur = p->first = p->last
if (occur) {

malloc(sizeof(struct item));

occur->next = NULL;
occur->fileNum = inFiles;
occur->filePos = inLines+l;
occChars += sizeof(struct item);

else Munged(3);

return p;

static void NewOccur(struct key *p)

struct item *occur,*q;

if (omitFile && p->count == NULL) return;
if (hugeFlag && wordLen <= 4 && p->count
if (p->count != MAXCNT) p->count++;
if (p->count > numCount) return;
if (indexType > INDEX) return;

q = p->last;
if (q && q->f ileNum == inFiles && q->filePos
if (occur= malloc(sizeof(struct item)))

if (!p->first) p->first =occur;
p->last = q->next = occur;
occur->next = NULL;
occur->fileNum = inFiles;
occur->filePos = inLines+l;
occChars += sizeof(struct item);
else Munged(3);

static void Search(struct key *p)

struct key *q;
int cond;

if (! p) { root
while (p) {

NewKey(); return; }

10) return;

inLines+l) return;

if (caseSense) cond = StrictCompare(theWord,p->keyStr);
else if (dictFlag) cond = DictCompare(theWord,p->keyStr);
else cond = Compare(theWord,p->keyStr);

q = p;

339

340 CHAPTER EIGHT I THE C LANGUAGE

if (cond < 0) { p = p->left; continue;)
else if (cond > 0) { p = p->right; continue;
else { NewOccur(p); return;)

if (cond > 0) q->right = NewKey();
else q->left = NewKey();

static int StrictCompare(unsigned char *i,unsigned char *j)

while (*i == *j) (
if (*i == '\0') return O;
i++; j++;

if (reverseFlag) return *i < *j ? 1 -1;
else return *i < *j ? -1 : 1;

static int Compare(unsigned char *i,unsigned char *j)

while ((a= tolower(*i))
if (*i == '\0') return 0;
i++; j++;

(b = tolower(*j))) {

if (reverseFlag) return a < b ? 1 -1;
else return a < b ? -1 : 1;

static int DictCompare(unsigned char *i,unsigned char *j)

Boolean flag = false;

/*

*I

This is a highly specialized ordering that indexes use.
See "Words into Type" and "The Chicago Manual of Style"
for examples of the proper order of an index.

INDEX - C TOOL

while (true) {
a= tolower(*i); b = tolower(*j);
if (a == b) {

if
if
if
if

if (!a) return 0;
i++; j++; continue;

(!a) return reverseFlag
(!b) return reverseFlag
(a -- ' I

11 a -- '.' 11 ,
(b -- ' I 11 b -- '.' 11 ,

? 1 :

? -1

a --
b --

if (isdict (a)) i++; continue;
if (isdict (b)) { j++; continue;
break;

result (a < b) ? -1 : l;

:

}

-1;

l;

' '
I I

return reverseFlag ? -result result;

static void ReadList(char *argv[))

int c;

prelimFlag = true;
OpenFile(argv[fFlagPos]);
while ((c = getc(input)) != EOF) {

inChars++;
if (c != '\n')

theWord[wordLen++) c;
else {

theWord[wordLen++) '\0';

&& flag) return
&& flag) return

Search(root); wordLen = 0; SpinCursor(-CRSRSPEED);
inWords++; inLines++;

fclose(input);
prelimFlag = false;
if (! quietFlag)

reverseFlag
reverseFlag

fprintf(stderr,"Chars: %Bu Words: %6u Lines: %6u (%uK)\n",
inChars,inWords,inLines,keyChars+refChars+occChars+l024>>10);

? 1

? -1

341

: -1;

: l;

342 CHAPTER EIGHT I THE C LANGUAGE

static void ListOccur(struct item *pl
{

int i = O;

while (p) {

if (inFiles < 2) {
if (i) printf(", ");
printf("%u",p->filePos);

else printf("%u:%u ",p->fileNum,p->filePos);
p = p->next; i++;
if (p && i == 10)

printf("\n\t"); i 0;

printf("\n");

static void Doindex(struct key *pl

if (p != NULL) {
Doindex(p->left);
if (p->count) {

outwards+= p->count; outLines++; SpinCursor(-CRSRSPEED);
printf("%s\t",p->keyStr);
ListOccur(p->first);

Doindex(p->right);

/* DESCENDING FREQUENCY CODE */
typedef struct {

struct key *kp;
unsigned order;
hack;

static hack *ka;
static unsigned kaCount;

static void DoFreqDesc(struct key *p)

if (p) {

DoFreqDesc(p->left);
ka->kp = p;
ka->order = kaCount++;
ka++;
DoFreqDesc(p->right);

static int SpecialCompare(hack *i,hack *j)

unsigned a,b;

a = i->kp->count; b = j->kp->count;
if (a == b && i->order < j->order) return -1;
else if (a > b) return -1;
else return l;

static void SortDown(struct key *p)

hack *k;
int bytes,n;

outLines = n = refChars I sizeof(struct key);
bytes = n * 8;
k = ka = malloc(bytes);
if (!k) {

INDEX - C TOOL

fprintf(stderr,"I Cannot get %d bytes needed for key array\n",bytes);
exit(2);

if (! quietFlag)
fprintf(stderr,"I Sorting frequencies with temporary %dK buffer ... \n",

bytes+l024>>10);
DoFreqDesc(p);
qsort(ka = k,n,8,SpecialCompare);
while (n--) {

if (k->kp->count) printf("%u\t%s\n",k->kp->count,k->kp->keyStr);
k++; SpinCursor(-CRSRSPEED);

free (ka);

static void DoFreq(struct key *p)

if (p) {

DoFreq(p->left);
if (p->count) {

printf("%u\t%s\n",p->count,p->keyStr);
outwards+= p->count; outLines++; SpinCursor(-CRSRSPEED);

DoFreq(p->right);

343

344 CHAPTER EIGHT I THE C LANGUAGE

static void DoUnique(struct key *p)

if (p) {

DoUnique(p->left);
if (p->count) {

printf("%s\n",p->keyStr);
outWords += p->count; outLines++; SpinCursor(-CRSRSPEED);

DoUnique(p->right);

static void OutPutindex()

char fileName[256];

if (! quietFlag)
fprintf(stderr,"I %22s Chars: %8u Words: %6u Lines: %6u (%uK)\n",

"Input Totals:",sumChars,sumWords,sumLines,
keyChars+refChars+occChars+1024>>10);

fflush(stdout); setvbuf(stdout,fileBuffer, IOFBF,FBUFSIZ);
if (indexType == INDEX) {

if (sepChar == '\f') printf("(Indexed by page number)\n");
printf("\n");

switch (indexType)
case INDEX: Doindex(root); break;
case FREQ: if (maxFlag) SortDown(root); else DoFreq(root); break;
case UNIQ: DoUnique(root); break;

if (indexType < UNIQ) {
ioctl (1,FIOFNAME, (long *) fileName);
faccess (fileName, F_STABINFO, (long *) 20);

t = TickCount() - t;
if (! quietFlag) {

fprintf(stderr,
"I %22s Chars: %8u Keys: %6u Time: %6.lf sec (%.2f MB/hr)\n",

"Index Totals:",ftell(stdout),outLines,t/60.0,
sumChars/t*60.0*3600/1048576);

INDEX - C TOOL 345

/* GREEK CODE */
static unsigned char superGreek[256] = {

} ;

0, /* 0-31 */
0,0,114,0,0,0,0,1,0,0,0,1,0,0,0,1, /* 32 to 47 */
0,0,0,0,0,0,0,0,0,0,0, /* 48 to 58 */
1,0,0,0,0,0, /* 59 to 64 */
65, 66, 86, 68, 69, 85, 67, 71, 73, 1, /* 65 to 74 *I
74,75,76,77,78,79,72,81,82,83,84,1, /* 75 to 86 */
88,78,87,70, /* 87 to 90 */
1,1,1,1,0,0, /* 91 to 96 */
97,98,118,100,101,117,99,103,105,1, /* 97 to 106 */
106,107,108,109,111,112,104,113,114,115,116,1, /* 107 to 118 */
120,110,119,102, /* 119 to 122 */
1, 1, 1, 1, 0, /* 123 to 127 */
O, o, O, o, I* 128-159 *I
0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*160-191*/
l,0,0,0,0,0,1,1,1, /* 192 to 200 */
0,0,0,0,0,0,0,0,0, /* 201 to 209 */
1,1,1,1,l,O,l,l, /* 210 to 217 */
O, O, 0, 0, 0, 0, 0, 0, O, 0, O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 218 to 238 */
1

static unsigned char superGreekFold[256] = {

} ;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0-31 */
0,0,114,0,0,0,0,l,O,O,O,l,0,0,0,l, /* 32 to 47 */
0,0,0,0,0,0,0,0,0,0,0, /* 48 to 58 */
1,0,0,0,0,0, /* 59 to 64 */
65, 66, 86, 68, 69, 85, 67' 71, 73, 1, /* 65 to 74 */
74, 75, 76, 77' 78, 79, 72, 81, 82, 83, 84, 1, /* 75 to 86 */
88,78,87,70, /* 87 to 90 */
1,1,1,1,0,0, I* 91 to 96 */
65,66,86,68,69,85,67,71,73,1, /* 97 to 106 */
74, 75, 76, 77' 78, 79, 72, 81, 82, 83, 84, 1, /* 107 to 118 */
88,78,87,70, /* 119 to 122 */
1,1,1,1,0, /* 123 to 127 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, 0, O, 0, 0, 0, 0, 0, 0, /*128-159*/
0, /*160-191*/
1,0,0,0,0,0,l,l,l, /* 192 to 200 */
0,0,0,0,0,0,0,0,0, /* 201 to 209 */
l,1,1,1,1,0,l,l, /* 210 to 217 */
0, O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, /* 218 to 238 */
1

346 CHAPTER EIGHT I THE C LANGUAGE

static int GreekStrictCornpare(unsigned char *i,unsigned char *j)
{

while (true) {
while ((a= superGreek[*i++]) 1)
while ((b = superGreek[*j++]) 1)
if (a == b) {

if (a== '\0') return O;
continue;
else break;

if (reverseFlag) return a < b ? 1 -1;
else return a < b ? -1 : l;

static int GreekCornpare(unsigned char *i,unsigned char *j)

while (true) {
while ((a = superGreekFold[*i++]) 1)

while ((b = superGreekFold[*j++]) 1)
if (a == b) {

if (a== '\0') return 0;
continue;
else break;

if (reverseFlag) return a < b ? 1 -1;
else return a < b ? -1 : l;

static void GreekSearch(struct key *p)

struct key *q;
int cond;

if (!p) root= NewKey(); return;)
while (p)

if (caseSense) cond = GreekStrictCornpare(theWord,p->keyStr);
else cond = GreekCornpare(theWord,p->keyStr);
q = p;
if (cond < 0) { p = p->left; continue;)
else if (cond > 0) { p = p->right; continue;
else { NewOccur(p); return; }

if (cond > 0) q->right = NewKey();
else q->left = NewKey();

static void GetGreek()

int c, d;

while ((c = getc (input)) != EOF)
d = c; inChars++; wordLen = theWord[O] 0;
if (superGreek[c])

do {
theWord[wordLen++] = c; inChars++;

} while (superGreek[c = getc(input)]);
else {
if (c == '\n') { inLines++; SpinCursor (CRSRSPEED);
continue;

inWords++; theWord[wordLen++] = '\0';
if (wordLen > lenCount) GreekSearcp(root);
if (c == '\n') { inLines++; SpinCursor (CRSRSPEED);

if (inChars > 0 && d != '\n') inLines++;

INDEX - C TOOL

lndex.r-Rez Source Code for a Commando
Interface

/* Index.r - The Commando companion for Index, a tool by Dan Allen. */
/* Begun April 11, 1987 */

#include "cmdo.r"; /* rects: top, left, bottom, right */

resource 'cmdo' (128, "Index")
300,
"Index - General purpose indexing and cross-referencing tool.\n"
"Supports indexing Asm, C, Pascal, Rez, and Greek languages.\n"
"Also indexes & analyzes word frequencies of any text files.",

/* FILE TYPES */
NotDependent { }, RadioButtons

{

{ 30, 145, 45, 205), "Auto", "", Set,
"Automatically parses files according to their filename suffix,"
" i.e., files ending in .c are treated as if the -c option was "
"set, files ending in .a turn on the -a option, etc. Files w/o "
"a suffix are text files.",

{50, 145, 65, 205), "Asm", "-a", NotSet,
"Treat files as MPW Assembly files. Comments started by ; and "
"* are skipped until EOL; quoted strings are skipped; case "
"insensitive; words starts: [A-Za-z @],word continuation: "
"[A-Za-z0-9_@$#%] .•,

347

348

),

CHAPTER EIGHT I THE C LANGUAGE

{70, 145, 85, 205), "C", "-c", NotSet,
"Treat files as MPW C files. Comments spanned by /* and */ "
"are skipped; quoted strings are skipped; case sensitive; "
"words starts: [A-Za-z_], word continuation: [A-Za-z0-9_] .",

{90, 145, 105, 205), "Pascal", "-p", NotSet,
"Treat files as MPW Pascal files. Comments spanned by { and I "
"or by (* and *I are skipped; quoted strings are skipped; "
"case insensitive; words starts: [A-Za-z_], word continuation:"
"[A-Za-z0-9 _] . ",

{110, 145, 125, 205), "Rez", "-z", NotSet,
"Treat files as MPW Rez files. Comments spanned by /* and */ "
"are skipped; quoted strings are skipped; case insensitive; "
"words starts: [A-Za-z_], word continuation: [A-Za-z0·-9_]. ",

{30, 210, 45, 285), "Text", "-t", NotSet,
"Scans textfiles for words and numbers. Contents of "
"strings are included; case insensitive; words are either a)"
" start: [A-Za-z], continuation: [A-Za-z0-9] or b) start [0-9]"
", continuation [0-9.] .",

{50, 210, 65, 285), "Words", "-w", NotSet,
"Scans textfiles for just words: no numbers or punctuation "
"are allowed. Contents of strings are included; case "
"insensitive; words: [A-Za-z]. Results in fewer keys, more "
"occurrences.",

{70, 210, 85, 285), "Blanks", "-b", NotSet,
"Anything delimited by white space is a word. Contents of "
"strings are included; case insensitive; words are delimited "
"by tabs, spaces, and returns.
"Results in more keys, fewer occurrences.",

{90, 210, 105, 285), "Greek", "-g", NotSet,
"Files of Greek words in the SuperGreek font are indexed in a "
"Greek lexicon ordering, i.e., alpha, beta, gamma, ...
"(See Liddel & Scott's Greek-English Lexicon) Case-insensitive; "
"contents of strings & breathing marks included.",

{110, 210, 125, 285), "MS Word", "-x", NotSet,
"This option implies the -w option and is to be used with "
"files preprocessed by the WordText tool for indexing MS "
"Word files. It causes the index to be done on a page "
"(using the formfeed character) rather than line basis.",

NotDependent {), TextBox { gray, {20, 135, 135, 290), "File Type"),

INDEX - C TOOL

/* INDEX TYPES */
NotDependent { }, RadioButtons

{

},

{30, 305, 45, 375), "Std", , Set,
"A standard alphabetical index with 10 refs/line is generated."
"\nMultiple lines are used when needed for an entry."
"\nOUTPUT FORMAT: word TAB file: line file:line ... CR",

{50, 305, 65, 375}, "Max", 11 -m 11 , NotSet,
"A word frequency list sorted numerically in descending "
"order from max to min.\nOUTPUT FORMAT: wordFreq TAB word CR",

{70, 305, 85, 375}, "Freq", "-f 11 , NotSet,
"A word frequency list sorted alphabetically."
"\nOUTPUT FORMAT: wordFreq TAB word CR",

{90, 305, 105, 375), "Unique", "-u", NotSet,
"A list of unique words sorted alphabetically."
"\nOUTPUT FORMAT: word CR",

NotDependent { }, TextBox { gray, (20, 295, 111, 379), "Index" },

/* WORD DEFINITION */
NotDependent { }, RadioButtons

{

},

{145, 302, 160, 340), "Std", , Set,

"All words are indexed.",
{145, 346, 160, 396}, "Omit", 11 -0 11 , NotSet,

"Omit all words listed in the specified file. Words are "
"listed in the file one word per line, separated by returns.",

{145, 400, 160, 470}, "Include", "-i", NotSet,
"Include in the generated index only those words listed in a "
"specified include file. Each line of this file contains one "
"word to be included, thus returns separate entries.",

Or{ (2<<12) + 5, (3<<12) + 5) }, Files {

},

InputFile,
RequiredFile {

},

{166, 315, 186, 445), /* top, left, bottom, right */
"Include/Omit File",

"Specifies the file containing the include or omit file.
"Speed is SLOWEST if this file is already in sorted order, "
"as index creates a binary tree. For FASTEST results use "
"Sort -t on this file first to create an inorder list.",

Additional {"", "" '
{}}

NotDependent { }, TextBox gray, (137, 295, 192, 471), "Words" },

349

350 CHAPTER EIGHT I THE C LANGUAGE

/* OPTIONS */
NotDependent (}, CheckOption {

),

NotSet, (30, 390, 45, 465), "Diet", "-d",
"Specifies dictionary ordering for the sorted index. Dictionary "
"ordering is NOT case sensitive and ignores most punctuation "
"characters. The resultant ordering is like that found in a "
"dictionary or index.",

NotDependent (), CheckOption

),

NotSet, {50, 390, 65, 465}, "Case On", "-s",
"Specifies a case sensitive ordering. This is useful in "
"distinguishing upper and lower case words and abbreviations.
"The default is to not be case sensitive.",

Not Dependent), CheckOption {

},

NotSet, (70, 390, 85, 465), "Reverse", "-r",
"Sort in reverse or descending {z-a, Z to A, 9 to 0) order. "
"The default is ascending (0-9, A to z, a-z) order.",

NotDependent), CheckOption {

},

NotSet, (90, 390, 105, 465), "Huge", "-h",
"Useful for huge text files, this option will only index "
"the first ten entries of words three characters or shorter, but "
"WILL index all occurrences of words greater than 3 characters "
"in length; saves memory.",

NotDependent {), CheckOption

),

NotSet, (110, 390, 125, 465), "Quiet", "-q",
"The default is to list to stderr various statistical measures "
"when parsing the files. Using this option restricts output to "
"stderr to just error messages.",

NotDependent {), TextBox { gray, {20, 385, 135, 470), "Options" },

INDEX - C TOOL

/* WORD LENGTH */
NotDependent { }, RegularEntry

},

"Word Length",
{170,145,185,235),
{170,240,185,270),
'''', ignoreCase, ''-1'',

/* title */
/* TEBox */

"By default all words are indexed. By defining a length you "
"can specify the minumum length of a word in order to be indexed. "
"Use of this option allows ignoring small noise "
"words and also reduces the memory used."

NotDependent { }, RegularEntry {
"Word Count",
{144,145,160,235),
{144,240,160,270),
"", ignoreCase, "-n",

/* title */
/* TEBox */

"By default all occurrences of a word are indexed. By stating a "
"count one can specify the maximum number of word occurrences that "

351

"will be listed. Use of this option will also reduce memory requirements."
},

/* FILES AND STANDARD IO */
NotDependent { }, MultiFiles

11 Files ... ",
"A list of files to index.\n"
"LIMITS: 1023 files, 4M lines/file, 65535 occurences/word,"
" 255 chars/word",
{22, 15, 42, 127), /*top, left, bottom, right */
"File(s) to index:",

MultiinputFiles { { text },
},

NotDependent { }, Redirection
Standardinput, {50, 15)

},

NotDependent { }, Redirection
StandardOutput, {90, 15)

},

NotDependent { }, Redirection
DiagnosticOutput, {130, 15)

},

NotDependent { }, VersionDialog
VersionString { "1.0 B3" },

"" 1111 ' ,

"Index 1.0 B3 - Begun March 23, 1987 by Dan Allen.\n"
"Built on" $$Date"@ "$$Time ".\nWritten using"
"MPW C 3.0 for the book "On Macintosh Programming".",
noDialog

},

} } } ;

352 CHAPTER EIGHT I THE C LANGUAGE

Conclusion

This chapter provided numerous examples of using C on the Macintosh. The source
code for a series of text processing tools has illustrated various techniques for using C
and its standard libraries. These tools included:

• DeCom, a tool to remove C comments using a state machine

• FastCat, a faster version of MPW's built-in Catenate command

• Substitute, a literal text replacement tool designed for streams

• Reduce, a tool for replacing runs of specified characters with a single string

• Sign, a tool that implements the front pass of an anagram pipeline

• Squash, the last pass of an anagram pipeline

• WordText, which extracts ASCil text and page breaks from files created with
MS Word4.0

• Text Tool, a Swiss Army knife for manipulating text

• Sort, a memory-based sorting tool with some specialized options

• Index, an indexing tool for sources and text files

Recommended Reading

The C Programming Language (also called The White Book or K&R), by Kernighan
and Ritchie, is the classic work about the C language and is absolutely essential reading
for beginners or experts. The first edition described the "classic" version of C, and the
second edition describes the ANSI standard version of C. The book contains both tuto
rial and reference material. Its 275 pages are packed with information.

When you are learning the language-and when is it ever fully learned?-Bolsky's
The C Programmer's Handbook is a handy book, as is Barkakati's The Waite Group's
Essential Guide to ANSI C. The Microsoft Quick Reference series has an ANSI C quick
reference guide called Standard C that was written by the knowledgeable pair of Plauger
and Brodie, but the presentation is somewhat confusing.

The X3Jll committee's document American National Standard for Information
Systems-Programming Language C is the definitive document on C. The de facto ref
erence manual for language implementors over the past few years has been Harbison and
Steele's AC Reference Manual, and with its second edition covering ANSI Cit is still
highly recommended for those implementing the C language and libraries.

THE PASCAL
LANGUAGE

CHAPTER 9

Pascal is an important language in the Macintosh world. Almost all documentation
from Apple about the Macintosh is written using Pascal examples. Whether you prefer C
or Pascal, you will need a reading knowledge of Pascal.

This chapter will examine the history of Pascal at Apple, which will help explain how
Pascal came to be so important in the Macintosh world. Following this, the chapter will
look at the Object Pascal language extensions and the MacApp framework written in
Object Pascal. Next, the source code for two Pascal applications will be presented. The
first, StyleTest, is a text editor that uses the new version of TextEdit. StyleTest
supports multiple fonts, sizes, styles, printing, and even colored text. The second appli
cation, GraphSort, graphically demonstrates several different sorting algorithms.

History of Pascal

Pascal was originally designed by Niklaus Wirth in 1970 as a language for teaching
programming to students at the university level. Since then, it has gained great popular
ity as a mainstream programming language. In the mid- to late 1970s, UCSD Pascal
provided an implementation of Pascal based on an intermediate P-code that allowed it to
be widely ported to various machines. Pascal further grew in popularity in 1983 with
Borland's Turbo Pascal, first available for CP/M machines, then for MS-DOS, and fi
nally for the Macintosh in 1986.

One problem with Pascal has been the non-uniformity across implementations, be
cause of major limitations in the language. Many implementors extended the language,
each in their own direction. As Pascal originally had a very small set of standard library
routines, most Pascals have implemented and extended library routines in different
ways. In 1983, an ANSI X3.97-1983/IEEE 770 standard for Pascal was formally com
pleted, and Apple's MPW Pascal complies quite well with the standard, although it has
many extensions.

As mentioned, Pascal was originally designed as a tool for students learning to pro
gram. It is excellent for such purposes, but as more and more people learned Pascal,
they began to use it for system and general-purpose programming. These tasks showed
up Pascal's weaknesses, with various individuals attacking the problems of Pascal.
Examples include the infamous, somewhat tongue-in-cheek article by Ed Pest in the July

353

354 CHAPTER NINE I THE PASCAL LANGUAGE

1983 issue of Datamation entitled "Real Programmers Don't Use Pascal," and the decid
edly more serious Bell Labs internal memo authored by Brian Kernighan in 1981 entitled
Why Pascal Is Not My Favorite Programming Language. His memo criticized Pascal for
the following reasons:

• The size of an array is part of its type, which makes string handling difficult

• There are no static variables and no data initialization

• Related program components must be kept separate

• There is no separate compilation

• There are some miscellaneous problems of type and scope

• There is no escape from the type mechanism

• There is no guaranteed order of evaluation of logical operators

• There are no statements for exiting or continuing loops

• There are no statements for exiting procedures or the entire program

• There is no default clause for the case statement

• The run-time environment and I/O facilities are poor

• Use of the semicolon is irregular

• There are no bit operators

• There is no facility for writing non-printing characters in a string

• There is no macro processor

• Expressions are not allowed to define a constant

Apple's Pascals

It was about the same time that Kernighan wrote his memo that Apple was choosing
Pascal as a major language for its work on Lisa and Macintosh. Many of the engineers
knew Pascal well and had extended the language to suit their needs and to solve many of
the problems listed above. They evolved UCSD Pascal into Lisa Pascal, the ancestor of
MPW Pascal. Lisa Pascal was originally done by Silicon Valley Software (SVS) for
Apple in 1981, although Apple has maintained it for years now. It supported Units, a
concept that originated with UCSD Pascal. Units provided a method of separate compi
lation that provides an Interface as well as an Implementation section for each
module of code, thus providing similar facilities to Wirth's later language Modula-2.

In addition to Units, with their facility for separate compilation, Lisa (and hence
MPW) Pascal were extended to support conditional compilation and compile-time vari
ables, bit operators, short-circuit Boolean operators, Leave and Cycle statements
(similar to break and continue in C), type coercion, and many other concepts. Thus,
Apple's Pascal overcomes most of Kernighan's smaller objections to Pascal, but it still

HISTORY OF PAS CAL 3 5 5

does not have conformant arrays, static variables, a full macro processor, or data initial
ization. For some of these reasons, C is currently becoming increasingly used at Apple.

Apple's Object-oriented Pascals

Another extension to Pascal took place when some early explorations into object-ori
ented programming created a language called Clascal. Clascal was begun in 1983 when
Larry Tesler (formerly of Xerox PARC and since 1980 with Apple Computer) asked
Chris Franklin to implement classes. Clascal was later enhanced by Al Hoffman and
then by Ira Ruben. Clascal was designed to implement the Lisa Toolkit, the predecessor
toMacApp.

Early in 1985, Larry Tesler and Niklaus Wirth created Object Pascal as a superset of
Pascal and a successor to Clascal. Object Pascal supported the concepts of objects,
classes, and inheritance, but in a simpler and clearer way than Clascal did. Ken Doyle
finished things up by writing the Object Pascal extensions to the MPW Pascal compiler.
MPW Pascal is thus a full Object Pascal compiler. (More on object-oriented program
ming can be found later in this chapter.)

Pascal on Macintosh Today

After the Pascal compiler was moved from Lisa to MPW, new features continued to
be added. New in 1987 for MPW 2.0 was the additional facility for the Pascal compiler
to generate 68020 and 68881 code. New for MPW 3.0 Pascal was an automatic
load/dump mechanism that greatly speeds up compile times.

Two other Pascals for the Macintosh are noteworthy: Borland's Turbo Pascal and
Think's Lightspeed Pascal. Each is about 90-percent compatible with MPW Pascal, but
that IO-percent difference is big enough that large software projects, such as HyperCard,
cannot be built with them. Nevertheless, Turbo and Lightspeed are good for prototyping
and quick builds. I usually start Pascal projects in Turbo Pascal because of its quick
tum-around time and then move the finished code to MPW Pascal for final builds. The
MPW code size is smaller, but this is mainly because the linker removes dead code.
The Turbo Pascal code generator is remarkably good, especially considering the fact that
the entire Pascal compiler is only a single 24 KB code segment! Turbo Pascal has not
been updated for several years, which is a shame. It is a remarkable product.

Think's Pascal has a nice integrated debugging environment, much like its predeces
sor Macintosh Pascal. Version 2 of Think's Pascal offers 68020 and 68881 code gen
eration and many other new features. For someone learning Pascal, Think' s Pascal is
hard to beat.

356 CHAPTER NINE I THE PASCAL LANGUAGE

Object Pascal

The MPW Pascal compiler supports object-oriented programming. It actually imple
ments Object Pascal, a language that is a superset of Pascal. To a first approximation,
the following equation derived by Peter Wegner defines object-oriented languages:

object-oriented = objects + classes + inheritance

Objects are the atomic entities of object-oriented programming and can be viewed as
consisting of a data structure and its related methods (procedures), which can manipulate
objects. Objects are specific instances of a class. Classes are arranged hierarchically,
with descendant objects referred to as subclasses and ancestor objects referred to as
superc/asses. Objects of a subclass inherit properties from their ancestor objects. Objects
can send, receive, and respond to messages sent by other objects.

Simula 67 was the first object-oriented language. Since then, several other object-ori
ented languages have been developed: SmallTalk (circa 1972), C++ (1983), and Object
Pascal (1985). Ada, C, and Modula-2---contrary to the many popular articles that men
tion the buzzword "object-oriented programming"-are not object-oriented.

It should be noted that data abstraction is an orthogonal language attribute from ob
ject-orientedness. An abstract data type as supported in Ada or C++ is a data structure
and a set of associated operations that are the only way to access the private data struc
ture. An object-oriented language like Object Pascal, however, can access or modify any
field of known objects-in other words, there are no private members of objects. C++ is
interesting because it allows for fully private members of an object-thus supporting
data abstraction-as well as allowing for public members, thus supporting the object
oriented style of programming. Ada and Modula-2 are not object-oriented, as they do
not support objects or inheritance. Too many people are confusing data-abstraction with
object-orientedness.

MacApp

MacApp, short for generic "Macintosh application," is a toolkit sold as an add-on part
of MPW. It is essentially a huge library of routines, consisting of some 29,000+ lines of
Object Pascal and 1,600+ lines of Object Assembly. MacApp is a separately sold prod
uct built upon Object Pascal, so use of MacApp requires MPW and MPW Pascal.

MacApp's seeds came out of the Lisa Toolkit, done by Larry Tesler, Larry
Rosenstein, and Pete Young. The Lisa Toolkit was written using Clascal, Apple's first
object-oriented Pascal. MacApp was a completely new system designed by Larry
Rosenstein, Larry Tesler, Scott Wallace, and Ken Doyle and implemented by Larry
Rosenstein and Scott Wallace. Early development versions ran in the Lisa Workshop,
but versions 1, 2, and all subsequent releases are for MPW.

STYLETEST - PASCAL APPLICATION 357

MacApp fully implements the standard Macintosh User Interface in a generic
Macintosh application on which you build your own application. This technique greatly
reduces the amount of code you need to write without reducing the ensuing quality. For
example, you would need to write only routines to draw items in windows, write files to
the disk, and things of that sort. The MacApp libraries support such standard features of
the Macintosh interface as desk accessories, menus, multiple documents, error-handling,
the clipboard, printing, and scrolling, moving, resizing, and zooming windows.

With the help of MacApp, significant Macintosh applications can be built in a few
weeks rather than in several months. Even more important, they comply with the rec
ommended guidelines for developing applications and therefore are more robust to
changes in system software. Users also benefit from applications that are consistent with
the Mac interface and hence are easier to use.

MacApp includes the full source code to the MacApp libraries, as well as many sam
ple programs illustrating object-oriented Macintosh programming. Also included is a
"Cookbook" of tips and routines that you may find useful when you are creating
Macintosh applications.

StyleTest - Pascal Application

This application is a simple text editor that uses the new Styled TextEdit to support
multiple fonts, sizes, styles, and colored text. This application also supports printing. It
is a good shell from which to begin a programming project because it has the basic main
event loop and event-handling procedures in place.

Here is the Makefile:

POptions
PLibs =

= -mbg ch8 -r
"{PLibraries}PasLib.o" a
"{PLibraries}SaneLib.o" a
"{Libraries}Interface.o" a
"{Libraries}Runtime.o"

StyleTest ff StyleTest.r
Rez -a -o StyleTest StyleTest.r -c STYT

StyleTest ff StyleTest.p.o {PLibs}
Link -w -o StyleTest -sg Main StyleTest.p.o {PLibs}

StyleTest ff {Worksheet}
Setfile -a B -t APPL -c STYT -d . -m . StyleTest
StyleTest

and here is the code:

358 CHAPTER NINE I THE PASCAL LANGUAGE

{$D+) {$R-)

PROGRAM StyleTest;

USES
Memtypes,Quickdraw,OSintf,Toolintf,Packintf,PrintTraps;

VAR

quit: Boolean;
shiftDown: Boolean;
theChar: Char;
templ: Longint;

mousePt: Point;
dragRect: Rect;
txRect: Rect;
myEvent: EventRecord;
wRecord: WindowRecord;
myWindow: WindowPtr;
theWindow: WindowPtr;

iBeamHdl: CursHandle;
menuDA: MenuHandle;
menuFile: MenuHandle;
menuEdit: MenuHandle;
menuFont: MenuHandle;
menuSize: MenuHandle;
menuStyle: MenuHandle;
menuColor: MenuHandle;
textH: TEHandle;
printH: THPrint;
fontArray: ARRAY[l. .64] OF Integer;
sizeArray: ARRAY [1. . 32] OF Integer;

PROCEDURE AboutDialog; FORWARD;
PROCEDURE CheckMenus; FORWARD;
PROCEDURE DoActivate; FORWARD;
PROCEDURE DoKey; FORWARD;
PROCEDURE DoMenu(result: Longint); FORWARD;
PROCEDURE DoUpdate; FORWARD;
PROCEDURE InitWorld; FORWARD;
FUNCTION LongToHex(long: Longint) Str255; FORWARD;
PROCEDURE PrintDoc; FORWARD;
PROCEDURE SetupMenus; FORWARD;
PROCEDURE UpdateActive; FORWARD;
PROCEDURE UpdateRects; FORWARD;

PROCEDURE AboutDialog;
VAR

aRect:
oldPort:
aWindow:

Rect;
GrafPtr;
WindowPtr;

BEGIN
GetPort(oldPort);
WITH aRect DO

BEGIN

STYLETEST - PASCAL APPLICATION 359

left := (screenbits.bounds.right - screenbits.bounds.left) DIV 2 - 100;
right := left + 200;
top := (screenbits.bounds.bottom - screenbits.bounds.top) DIV 2 - 50;
bottom := top + 100;

END;
aWindow := NewWindow(NIL,aRect, '',TRUE,dBoxProc,Pointer(-1),TRUE,0);
SetPort(aWindow);
TextFont(systemFont);
MoveTo(l0,40); DrawString('Welcome To The About Box');
MoveTo(24,70); DrawString(Concat('TEHandle is ',LongToHex(ORD(textH))));
REPEAT SystemTask UNTIL Button;
DisposeWindow(aWindow);
SetPort(oldPort);
FlushEvents(mUpMask+mDownMask,0);

END;

PROCEDURE CheckMenus;
VAR

flag: Boolean;
i: Integer;
lineHeight: Integer;
fontAscent: Integer;
n: Long Int;
curStyle: TextStyle;
name: Str255;
item: Styleitem;

BEGIN
TEGetStyle(textHAA.selStart,curStyle,lineHeight,fontAscent,textH);

{ clear
FOR i
FOR i
FOR i
FOR i

check
1 TO
1 TO
1 TO
1 TO

marks from the text menus }
CountMitems(menuFont) DO Checkitem(menuFont,i,FALSE);
CountMitems(menuSize) DO Checkitem(menuSize,i,FALSE);
CountMitems(menuStyle) DO Checkitem(menuStyle,i,FALSE);
CountMitems(menuColor) DO Checkitem(menuColor,i,FALSE);

{ make the current font size show up outlined in the menu }
FOR i := 1 TO CountMitems(menuSize) DO

IF RealFont(curStyle.tsFont,sizeArray[i])
THEN SetitemStyle(menuSize,i, [outline])
ELSE SetitemStyle(menuSize,i, []);

360 CHAPTER NINE I THE PASCAL LANGUAGE

{ checkmark which font is being used)
i := l; WHILE fontArray[i] <> curStyle.tsFont DO i i+l;
Checkitem(menuFont,i,TRUE);

{ checkmark the size of the current selection
i := l; WHILE sizeArray[i] <> curStyle.tsSize DO i i+l;
Checkitem(menuSize,i,TRUE);

{ checkmark the style attributes of the selection }
IF curStyle.tsFace = [] THEN Checkitem(menuStyle,l,TRUE);
FOR item := bold TO extend DO

BEGIN
IF item IN curStyle.tsFace THEN flag := TRUE
ELSE flag := FALSE;
Checkitem(menuStyle,ORD(item)+2,flag);

END;
Checkitem(menuStyle,9,BitTst(@curStyle.tsFace,0));

END;

PROCEDURE DoActivate;
BEGIN

IF WindowPtr(myEvent.message) = myWindow THEN
BEGIN

END;

IF BAND(myEvent.modifiers,activeFlag) <> 0 THEN
BEGIN

TEActivate(textH);
Disableitem(menuEdit,l);

END
ELSE

END;

BEGIN
TEDeactivate(textH);
Enableitem(menuEdit,l);

END;

STYLETEST - PASCAL APPLICATION 361

PROCEDURE DoKey;
BEGIN

IF myWindow = FrontWindow THEN
BEGIN

theChar := CHR(BAND(myEvent.message,charCodeMask));
IF (BAND(myEvent.modifiers,cmdKey) = 0) THEN

TEKey(theChar,textH)
ELSE

IF BAND(myEvent.modifiers,shiftKey)
DoMenu(MenuKey(theChar))

ELSE
BEGIN

0 THEN

CASE theChar OF { cmd shift keys for styles
CHR(30): TESetSelect(O,O,textH);
CHR(31): TESetSelect(32767,32767,textH);

END;
END;

'b' : DoMenu ($ 60002) ;
'i': DoMenu ($60003);
'u': DoMenu($60004);
'o': DoMenu($60005);
's': DoMenu($60006);
'c': DoMenu($60007);
'e': DoMenu($60008);
'h': DoMenu($60009);
OTHERWISE DoMenu($60001);

END;
END;

PROCEDURE DoMenu(result: Longint);
CONST

doToggle = 32; { requires System 6.0 }
VAR

bool: Boolean;
theitem: Integer;
theMenu: Integer;
temp: Integer;
name: Str255;
theStyle: TextStyle;
ht,ascnt: Integer;
hack: A Integer;

BEGIN
theitem := LoWord(result);
theMenu := HiWord(result);
InitCursor;

362 CHAPTER NINE I THE PASCAL LANGUAGE

CASE theMenu OF
1: (Apple menu

IF {theitem = 1) THEN
AboutDialog

ELSE
BEGIN

Getitem{menuDA, theitem, name);
temp := OpenDeskAcc{name);
SetPort{myWindow);

END;
2: { File menu }

CASE theitem OF
1: BEGIN { a quick way to insert a bunch of text to play with }

name:= 'This is a test of the emergency broadcasting system. ';
TEinsert{Pointer(ORD{@name)+l),Length{name),textH);
TESelView{textH);

END;
2: DebugStr{LongToHex{ORD{textH))); (go into MacsBug for debugging}
4: bool := PrStlDialog{printH);
5: IF PrJobDialog{printH) THEN PrintDoc;
7: quit :=TRUE;

END;
3: (Edit menu }

BEGIN
IF NOT SystemEdit{theitem - 1) THEN

CASE theitem OF
3: BEGIN (Cut }

templ := ZeroScrap;
TECut{textH);

END;
4: BEGIN (Copy }

templ := ZeroScrap;
TECopy{textH);

END;
5: TEStylPaste{textH); (Paste
6: TEDelete{textH); (Clear}
8: TESetSelect{0,32767,textH);

END;
END;

4: (Font menu
BEGIN

Getitem{menuFont,theltem,name);
GetFNum{name,temp);

Select All }

theStyle.tsFont := temp;
TESetStyle{doFont,theStyle,TRUE,textH);

END;

STYLETEST - PASCAL APPLICATION 363

5: { Size menu }
BEGIN

Getitem(menuSize,theitem,name);
StringToNum(name,templ);
theStyle.tsSize := templ;
TESetStyle(doSize,theStyle,TRUE,textH);

END;
6: { Style menu }

BEGIN
HiliteMenu(6);
IF theitem = 1 THEN

BEGIN
theStyle.tsFace := [);
TESetStyle(doFace,theStyle,TRUE,textH);

END
ELSE

END;

BEGIN
theStyle.tsFace := [);
BitSet(@theStyle.tsFace,9 - theitem);
TESetStyle(doFace+doToggle,theStyle,TRUE,textH);

END;

7: { Color menu }
BEGIN

CASE theitem OF
1: BEGIN

theStyle.tsColor.red := O;
theStyle.tsColor.green := O;
theStyle.tsColor.blue := 0;

END;
2: BEGIN

theStyle.tsColor.red := $FFFF;
theStyle.tsColor.green := O;
theStyle.tsColor.blue := 0;

END;
3: BEGIN

theStyle.tsColor.red := 0;
theStyle.tsColor.green := $FFFF;
theStyle.tsColor.blue :=. O;

END;
4: BEGIN

theStyle.tsColor.red := 0;
theStyle.tsColor.green := O;
theStyle.tsColor.blue := $FFFF;

END;
5: BEGIN

theStyle.tsColor.red := $FFFF;
theStyle.tsColor.green := $FFFF;
theStyle.tsColor.blue := 0;

END;

364 CHAPTER NINE I THE PASCAL LANGUAGE

6: BEGIN
theStyle.tsColor.red := 0;
theStyle.tsColor.green := $FFFF;
theStyle.tsColor.blue := $FFFF;

END;
7: BEGIN

theStyle.tsColor.red := $FFFF;
theStyle.tsColor.green := 0;
theStyle.tsColor.blue := $FFFF;

END;
END;
TESetStyle(doColor,theStyle,TRUE,textH);

END;
END;
HiliteMenu(O);

END;

PROCEDURE DoMouse;
VAR

thePart: Integer;
BEGIN

thePart := FindWindow(rnyEvent.where,theWindow);
CASE thePart OF

inMenuBar:
BEGIN

CheckMenus;
DoMenu(MenuSelect(rnyEvent.where));

END;
inSysWindow:

SysternClick(rnyEvent,theWindow);
inContent:

BEGIN
IF theWindow <> FrontWindow THEN

SelectWindow(theWindow)
ELSE

IF theWindow = rnyWindow THEN

END;
inDrag:

BEGIN
GlobalToLocal(rnyEvent.where);
shiftDown := BAND(myEvent.modifiers,shiftKey) <> O;
TEClick(myEvent.where,shiftDown,textH);

END;

DragWindow(theWindow,myEvent.where,dragRect);

STYLETEST - PASCAL APPLICATION 365

inGrow:
BEGIN

templ := GrowWindow(theWindow,myEvent.where,screenBits.bounds);
InvalRect(theWindowA.portRect);
SizeWindow(theWindow,LoWord(templ),HiWord(templ),FALSE);
UpdateActive;

END;
inGoAway:

IF TrackGoAway(theWindow,myEvent.where) THEN quit :=TRUE;
inZoomin,inZoomOut:

IF TrackBox(theWindow, myEvent.where, thePart) THEN
BEGIN

ZoomWindow(theWindow, thePart, FALSE);
UpdateActive;

END;
END;

END;

PROCEDURE DoPeriodic;
BEGIN

give time to DAs, set cursor, flash idle cursor }

SystemTask;
IF (myWindow = FrontWindow) THEN

BEGIN

END;

GetMouse(mousePt);
IF PtinRect(mousePt, txRect)
THEN SetCursor(iBeamHdlAA)
ELSE SetCursor(arrow);
TEidle(textH);

END;

PROCEDURE DoUpdate;
BEGIN

theWindow := WindowPtr(myEvent.message);
IF theWindow = myWindow THEN

END;

BEGIN
SetPort(theWindow);
BeginUpdate(theWindow);
EraseRect(theWindowA.portRect);
TEUpdate(theWindowA.portRect,textH); { actually draws the text }
DrawGrowicon(theWindow);
EndUpdate(theWindow);

END;

366 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE InitWorld;
BEGIN

MaxApplZone;
FlushEvents(everyEvent,0);
InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEinit;
InitDialogs(NIL);
InitCursor;
PrOpen;
printH := THPrint(NewHandle(SizeOf(TPrint)));
IF printH =NIL THEN DebugStr('Not enough memory for print record.');
PrintDefault(printH);

.SetupMenus;
SetRect(dragRect,-32767,-32767,32767,32767);
WITH screenBits.bounds DO SetRect(txRect,4,24,right-4,bottom-4);
InsetRect(txRect,5,20);
myWindow := NewWindow(NIL,txRect, 'StyleTest',TRUE,zoomDocProc,

Pointer(-1),TRUE,0);
SetPort(myWindow);

UpdateRects; TextFont(times); TextSize(lB);
textH := TEStylNew(txRect,txRect);
TEAutoView(TRUE,textH);
iBeamHdl := GetCursor(iBeamCursor);

quit := FALSE;
END;

FUNCTION IntToHex(word: Integer)
VAR

i,d:
hexStr:

BEGIN

Integer;
Str255;

hexStr := '0000';
FOR i := 1 TO 4 DO

BEGIN

Str255;

d := BAND (BSR(word, ((4-i) *4)), $000F);
IF d < 10 THEN hexStr[i] := CHR(ORD('O'J+d)
ELSE hexStr[i] := CHR(ORD('A')+d-10);

END;
IntToHex := hexStr;

END;

FUNCTION LongToHex(long: Longint) : Str255;
BEGIN

LongToHex := Concat(IntToHex(HiWord(long)),IntToHex(LoWord(longJ));
END;

STYLETEST - PASCAL APPLICATION

PROCEDURE PrintDoc; { print 1 page of text with its styles }
VAR

aRect:
print TE:
printPort:
status:

BEGIN

Rect;
TEHandle;
TPPrPort;
TPrStatus;

aRect := printHAA.rPaper;
InsetRect(aRect,72,72);

printPort := PrOpenDoc(printH,NIL,NIL);
printTE := TEStylNew(aRect,aRect);
IF printTE =NIL THEN DebugStr('Not enough memory for print TERec.');
printTEAA.inPort := GrafPtr(printPort);

{ Print Mgr needs its own TERec, so we'll copy & paste our text & styles }
TESetSelect(0,32767,textH);
TECopy(textH);
TESetSelect(O,O,textH);
TESetSelect(O,O,printTE);
TEStylPaste(printTE);

PrOpenPage(printPort,NIL);
TEUpdate(aRect,printTE); {this actually draws the text on the printer}
PrClosePage(printPort);
PrCloseDoc(printPort);
TEDispose(printTE);
IF printHAA.prJob.bJDocLoop = bSpoolLoop
THEN PrPicFile(printH,NIL,NIL,NIL,status);

END;

PROCEDURE SetupMenus;
VAR

i,n:
1:

s:
BEGIN

Integer;
Longlnt;
Str255;

menuDA := NewMenu(l,Concat(CHR(20)));
AppendMenu (menuDA, 'About StyleTest ... ; (-' l;
AddResMenu(menuDA, 'DRVR');
InsertMenu(menuDA,0);

menuFile := NewMenu(2, 'File');
AppendMenu(menuFile, 'Text/T;MacsBug/D; (-;Page Setup ... ; Print ... ; (-;Quit/Q' l;
InsertMenu(menuFile,0);

menuEdit := NewMenu(3, 'Ed:i..t');
AppendMenu(menuEdit,Concat('Undo/Z; (-;Cut/X;Copy/C;Paste/V;Clear/B;',

•(-;Select All/A'));
InsertMenu(menuEdit,0);

367

368 CHAPTER NINE I THE PASCAL LANGUAGE

menuFont := NewMenu(4, 'Font');
AddResMenu(menuFont, 'FONT');
InsertMenu(menuFont,0);

menuSize := NewMenu(5, 'Size');
AppendMenu(menuSize, '6;7;8;9;10;12;14;18;20;24;27;30;36;');
AppendMenu(menuSize, '42;48;54;60;72;96;144;216;288;360;432;504');
InsertMenu(menuSize,0);

menuStyle := NewMenu(6, 'Style');
AppendMenu(menuStyle, 'Plain;Bold<B;Italic<I;Underline<U;Outline<O; ');
AppendMenu(menuStyle, 'Shadow<S;Condense;Extend;Hot Text');
InsertMenu(menuStyle,0);

menuColor := NewMenu(7, 'Color');
AppendMenu(menuColor, 'Black;Red;Green;Blue;Yellow;Aqua;Magenta');
InsertMenu(menuColor,0);

DrawMenuBar;
FOR i := 1 to CountMitems(menuFont) DO

BEGIN
Getitem(menuFont,i,s);
GetFNum(s,n);
fontArray[i] := n;

END;
FOR i := 1 to CountMitems(menuSize) DO

END;

BEGIN
Getitem(menuSize,i,s);
StringToNum(s,l);
sizeArray[i] := l;

END;

PROCEDURE UpdateActive;
BEGIN

InvalRect(myWindowA.portRect);
UpdateRects;
WITH textHAA DO

BEGIN
destRect := txRect;
viewRect := txRect;

END;
TECalText(textH);

END;

PROCEDURE UpdateRects;
BEGIN

txRect := thePortA.portRect;
WITH txRect DO

END;

BEGIN
left := left + 4;
right := right - 20;
bottom := bottom - 20;

END;

BEGIN { Main
InitWorld;
REPEAT

DoPeriodic;

STYLETEST - PASCAL APPLICATION 369

IF GetNextEvent(everyEvent,myEvent) THEN
CASE myEvent.what OF

mouseDown:
keyDown:
autoKey:
activateEvt:
updateEvt:

END;
UNTIL quit;
PrClose;

END.

DoMouse;
DoKey;
DoKey;
DoActivate;
DoUpdate;

StyleTest.r- Rez Source Code for StyleTest
Resources

/* StyleTest.r - By Dan Allen */

#include "Types.r";

type 'STYT' { pstring;);

resource 'STYT' (0)
"StyleTest 1.0 Bl by Dan Allen\n";

I;

370 CHAPTER NINE I THE PASCAL LANGUAGE

resource 'SIZE' (-1) {
dontSaveScreen,
acceptSuspendResumeEvents,
enableOptionSwitch,
canBackground,
multiFinderAware,
backgroundAndForeground,
dontGetFrontClicks,
ignoreChildDiedEvents,
not32BitCompatible,
reserved,reserved,reserved,reserved,reserved,reserved,reserved,
96*1024,
64*1024

} ;

resource 'FREF' (128) 'APPL', 0, "" } ;

resource 'BNDL' (128)
'STYT', 0, { 'ICN#', { 0, 128 } ; 'FREF', { 0, 128 } }

} ;

resource 'ICN#' (128, purgeable, preload) {

/* array: 2 elements */
/* [1] */
$"00 01 00 00 00 02 80 00 00 04 40 00 00 09 20 00 00 12 10 00"
$"00 24 48 00 00 48 84 00 00 90 12 00 01 02 21 00 02 44 44 80"
$"04 88 88 40 09 11 11 20 10 20 00 10 24 04 40 48 48 88 BF 04"
$"91 11 40 92 42 22 80 41 24 05 30 22 10 83 cs 14 09 lE 7F OF"
$"04 22 30 07 02 41 00 07 01 08 80 07 00 90 60 07 00 42 lF E7"
$"00 24 42 lF 00 10 84 07 00 09 08 00 00 04 10 00 00 02 20 00"
$"00 01 40 00 00 00 80"'
/* [2] *I
$"00 01 00 00 00 03 80 00 00 07 co 00 00 OF EO 00 00 lF FO 00"
$"00 3F FB 00 00 7F FC 00 00 FF FE 00 01 FF FF 00 03 FF FF 80"
$"07 FF FF co OF FF FF EO lF FF FF FO 3F FF FF FS 7F FF FF FC"
$"FF FF FF FE 7F FF FF FF 3F FF FF FE lF FF FF FC OF FF FF FF"
$"07 FF FF FF 03 FF FF FF 01 FF FF FF 00 FF FF FF 00 7F FF FF"
$"00 3F FE lF 00 1F FC 07 00 OF FB 00 00 07 FO 00 00 03 EO 00"
$"00 01 co 00 00 00 80"

) ;

GRAPHSORT - PASCAL APPLICATION 371

GraphSort - Pascal Application

This small application graphically displays different types of sorting algorithms at
work. It was developed to give users a better understanding of some of the popular
sorting algorithms. It has a single resizable window, uses menus to specify options, and
uses the classic color calls so that output will show up in color if a color monitor is
around.

The original idea for such an application can be attributed to Robert Sedgewick and
Marc Brown, who have done a lot of work with graphically displaying algorithms. (See
Sedgewick's text, Algorithms.) The algorithms used for sorting in this application are
primarily from Gaston Gonnet's Handbook of Algorithms and Data Structures and
Wirth 's Algorithms + Data Structures = Programs.

Improving GraphSort

(*

Here are some suggestions for improving GraphSort:

• The larger number of bars are only partially shown on screen. Revise the pro
gram so that sorts of thousands of items can be shown. Because the standard
Macintosh screen is 512 pixels wide, how will you represent thousands of bars?
What methods of selection are appropriate?

• Add more extensive colorization to the program, perhaps showing through color
which bars are moved the most.

• Add other sorting algorithms, or rewrite these algorithms in assembly language
for speed.

* GraphSort - Written by Dan Allen
* - Begun 6/3/89

*
* Select the following lines to build with MPW:

*)

Pascal GraphSort.p -mbg ch8
Link -o GraphSort GraphSort.p.o {PLibraries}PasLib.o d

{Libraries}Runtime.o {Libraries}Interface.o

PROGRAM GraphSort;

USES
MemTypes,QuickDraw,OSintf,Toolintf,Packintf,SANE;

372 CHAPTER NINE I THE PASCAL LANGUAGE

CONST
maxArray

apple ID
file ID

ascnditem
dscnditem
randitem
sizelO
size25
size50
sizelOO
size250
size500
sizelOOO
size2500
size5000
quititem

edit ID
undo Item
cut Item
copy Item
pasteitem

sort ID

TYPE

ins rt Item
selctitem
exchgitem
shell Item
heap Item
quick Item
quick2Itm
quick3Itm

Sort Order

5000;

l;

2;
l;
2;
3;
5;
6;
7;
8;
9;
10;
11;
12;
13;
15;

3;
l;
3;
4;
5;
4;
l;

2;
3;
5;
6;
7;
8;
9;

(ascending,descending,randomSort);

VAR
quit:
sorted:
lastSort:
numBars:
barWidth:

Boolean;
Boolean;
Integer;
Integer;
Integer;

windHeight: Integer;
windWidth: Integer;
numMoves: Longint;
numCmp: Longint;
theTicks: Longint;

EventRecord;
WindowPtr;
MenuHandle;
MenuHandle;
MenuHandle;
MenuHandle;
Rect;

GRAPHSORT - PASCAL APPLICATION 373

theEvent:
theWindow:
appleMenu:
fileMenu:
editMenu:
sortMenu:
dragRect:
a,b:
curOrder:

ARRAY[O .. maxArray] OF Integer;
SortOrder;

PROCEDURE MacsBug; INLINE $A9FF;

PROCEDURE CalcBars;
VAR i: Integer;

bar: Extended;

BEGIN
WITH theWindowA.portRect DO

BEGIN
windHeight := bottom - top;
windWidth := right - left;

END;
barWidth := windWidth DIV numBars;
IF barWidth < 1 THEN barWidth 1;
bar := windHeight I numBars;
CASE curOrder OF

ascending:
FOR i := 1 TO numBars DO

a[i] := Round(i*bar);
descending:

FOR i := 1 TO numBars DO
a[i] := Round((numBars-i)*bar);

randomSort:
FOR i := 1 TO numBars DO

a[i] := Abs(Random) MOD windHeight;
END;
FOR i := 1 to numBars DO b[i]
sorted := FALSE;

END;

a [i];

374 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE DrawStats;
VAR str: Str255;
BEGIN

ForeColor(blackColor);
MoveTo(5,12);
NumToString(theTicks,str);
DrawString(Concat('Sort ticks

MoveTo(5,24);
NumToString(numCmp,str);
DrawString(Concat('Comparisons

MoveTo(5,36);
NumToString(numMoves,str);
DrawString(Concat('Assignments

END;

PROCEDURE SetColor(i: Integer);
VAR value: Integer;
BEGIN

value:= a[i];

', str));

', str) l;

', str));

IF value < 50 THEN ForeColor(blackColor)
ELSE IF value < 100 THEN ForeColor(magentaColor)
ELSE IF value < 150 THEN ForeColor(redColor)
ELSE IF value < 200 THEN ForeColor(greenColor)
ELSE IF value < 250 THEN ForeColor(cyanColor)
ELSE IF value < 300 THEN ForeColor(yellowColor)
ELSE ForeColor(blueColor);

END;

PROCEDURE DrawBars;
VAR i: Integer;

x: Integer;
r: Rect;

BEGIN
SetPort(theWindow);
EraseRect(theWindowA.portRect);
FOR i := 1 TO numBars DO

BEGIN
x := barWidth*(i-1);
SetRect(r,x,windHeight-a[i],x+barWidth,windHeight);
SetColor(i);
FillRect(r,black);

END;
IF sorted THEN DrawStats;

END;

PROCEDURE DrawlBar(i: Integer);
VAR x: Integer;

r: Rect;
BEGIN

GRAPHSORT - PASCAL APPLICATION 375

x := barWidth*(i-1);
SetRect(r,x,O,x+barWidth,windHeight);
FillRect(r,white);
SetRect(r,x,windHeight-a[i],x+barWidth,windHeight);
SetColor (i);
FillRect(r,black);
numMoves .- numMoves + l;

END;

PROCEDURE DrawSwap(i,j: Integer);
VAR x: Integer;

r: Rect;
BEGIN

x := barWidth*(i-1);
SetRect(r,x,O,x+barWidth,windHeight);
FillRect(r,white);
SetRect(r,x,windHeight-a[j],x+barWidth,windHeight);
SetColor(j);
FillRect(r,black);

x := barWidth*(j-1);
SetRect(r,x,O,x+barWidth,windHeight);
FillRect(r,white);
SetRect(r,x,windHeight-a[i],x+barWidth,windHeight);
SetColor (i);
FillRect(r,black);
numMoves := numMoves + 2;

END;

376 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE Insertion;
VAR i,j,x: Integer;
BEGIN

FOR i := 2 TO numBars DO

END;

BEGIN
IF Button THEN EXIT(Insertion);
x := a[i]; a[OJ := x;
j := i - l;
numCmp := numCmp + l;
WHILE x < a[j] DO

BEGIN
numCmp := numCmp + l;
DrawSwap(j+l,j);
a[j+l] := a[j];
j := j - l;

END;
DrawSwap(j+l,0);
a[j+l] := x;

END;

PROCEDURE Selection;
VAR i,j,k,x: Integer;
BEGIN

FOR i := 1 TO numBars - 1 DO

END;

BEGIN
IF Button THEN Exit(Selection);
k := i; x a[i];
FOR j := i+l TO numBars DO

BEGIN
numCmp := numCmp + l;
IF a[j] < x THEN

BEGIN
k := j; x := a[j];

END;
END;

DrawSwap(i,k);
a[k] := a[i]; a[i] := x;

END;

PROCEDURE Exchange; { Bubblesort }
VAR i,j,x: Integer;
BEGIN

FOR i := 2 TO numBars DO
BEGIN

IF Button THEN EXIT(Exchange);
FOR j := numBars DOWNTO i DO

BEGIN
numCmp := numCmp + l;
IF a[j-1] > a[j] THEN

BEGIN
DrawSwap(j-1,j);

GRAPHSORT - PASCAL APPLICATION 377

x := a[j-1]; a[j-1] := a[j]; a[j] := x;
END;

END;
END;

END;

PROCEDURE Shellsort; { G.H. Gonnet, Diminishing Increment using .45454 }
VAR d,i,j,x: Integer;
BEGIN

d := numBars;
WHILE d > 1 DO

BEGIN
IF Button THEN EXIT(Shellsort);
IF d < 5 THEN d := 1 ELSE d := (5*d-l) DIV 11;
FOR i := numBars - d DOWNTO 1 DO

END;
END;

BEGIN
x := a[i]; j := i+d;
numCmp := numCmp + l;
WHILE (j <= numBars) AND (x > a[j]) DO

BEGIN
numCmp := numCmp + l;
a[j-d] := a[j];
DrawlBar(j-d);

j : "' j + d;
END;

a[j-d] := x;
DrawlBar (j-d) ;

END;

378 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE Heapsort; { G.H. Gonnet
VAR i,x: Integer;

PROCEDURE SiftUp(i,n: Integer);
VAR j,x: Integer;
BEGIN

WHILE 2*i <= n DO
BEGIN

IF Button THEN EXIT(Heapsort);
j := 2*i;
IF j < n THEN

BEGIN
numCmp := numCmp + 1;
IF a[j] < a[j+l] THEN j := j + 1;

END;
numCmp := numCmp + 1;
IF a[i] < a[j] THEN

BEGIN
DrawSwap(i,j);
x := a[j]; a[j] := a[i]; a[i) := x;
i := j;

END
ELSE i := n + 1;

END;
END;

BEGIN
FOR i := numBars DIV 2 DOWNTO 2 DO SiftUp(i,numBars);
FOR i := numBars DOWNTO 2 DO

END;

BEGIN
Siftup(l,i);
DrawSwap(l,i);
x := a[l]; a[l] := a[i]; a[i] := x;

END;

GRAPHSORT - PASCAL APPLICATION 379

PROCEDURE Quicksort(lo,hi: Integer); { G.H. Gonnet }
VAR i,j,x: Integer;
BEGIN

WHILE hi > lo DO
BEGIN

END;

i := lo; j := hi; x := a[lo];
WHILE i < j DO

BEGIN
numCmp := numCmp + l;
WHILE a[j] > x DO

BEGIN
numCmp := numCmp + l;
j : = j - l;

END;
a[i] := a[j];
DrawlBar(i);
numCmp := numCmp + l;
WHILE (i < j) AND (a[i] <= x) DO

BEGIN
numCmp := numCmp + l;
i := i + l;

END;
a[j] := a[i];
DrawlBar(j);

END;
a[i] := x;
DrawlBar(i);
IF i-lo < hi-i THEN

BEGIN
QuickSort(lo,i-1);
lo := i + l;

END
ELSE

END;

BEGIN
QuickSort(i+l,hi);
hi := i - l;

END;

380 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE QuickSort2(1,r: Integer); { N. Wirth }
VAR i,j,x,w: Integer;
BEGIN

i := l; j := r;
x := a[(l+r) DIV 2];
REPEAT

numCmp := numCmp + 1;
WHILE a[i] < x DO

BEGIN
i := i + 1;
numCmp := numCmp + 1;

END;
numCmp := numCmp + 1;
WHILE x < a[j] DO

BEGIN
j := j - 1;
numCmp := numCmp + 1;

END;
IF i <= j THEN

BEGIN
DrawSwap(i,j);
w := a[i]; a[i] := a[j]; a[j] := w;
i := i + 1; j := j -1;

END;
UNTIL i > j;
IF 1 < j THEN QuickSort2(1,j);
IF i < r THEN QuickSort2(i,r);

END;

PROCEDURE QuickSort3; { N. Wirth - non-recursive version
CONST m = 12;
VAR i,j,1,r,s,x,w: Integer;

stack: ARRAY[l .. m] OF RECORD l,r: Integer END;

GRAPHSORT - PASCAL APPLICATION 381

BEGIN
s := 1; stack[l] .1 := 1; stack[l] .r := numBars;
REPEAT

1 := stack[s] .l; r := stack[s] .r; s := s - 1;
REPEAT

i : = 1; j : = r; x : = a [(1 + r) DIV 2] ;

REPEAT
numCmp := numCmp + 1;
WHILE a[i] < x DO

BEGIN
i := i + 1;
numCmp := numCmp + 1;

END;
numCmp := numCmp + 1;
WHILE x < a[j] DO

BEGIN
j := j - 1;

numCmp := numCmp + 1;
END;

IF i <= j THEN
BEGIN

DrawSwap (i, j);
w := a[i]; a[i] := a[j]; a[j] := w;
i := i + 1; j := j - 1;

END;
UNTIL i > j;
IF j - 1 < r - i THEN

BEGIN
IF i < r THEN

BEGIN
s := s + 1; stack[s] .1 := i; stack[s] .r := r;

END;
r . - j;

END
ELSE

BEGIN
IF 1 < j THEN

BEGIN
s := s + 1; stack[s] .1

END;
1 := i;

END;
UNTIL l >= r;

UNTIL s = 0;
END;

1; stack[s] .r := j;

382 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE InitWorld;
VAR i,n: Longint;

myRect: Rect;
BEGIN

MaxApplZone;
InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEI nit;
InitDialogs(NIL);
InitCursor;
FlushEvents(everyEvent,0);

SetRect(dragRect,-32767,-32767,32767,32767);
myRect := screenBits.bounds;
InsetRect(myRect,50,50);
theWindow := NewWindow(NIL,myRect, 'GraphSort by Dan Allen',

TRUE,8,Pointer(-1),TRUE,0);
SetPort(theWindow);
TextFont(monaco);
TextSize(9);

appleMenu := NewMenu(appleID,Concat(CHR(20)));
AppendMenu(appleMenu,' (GraphSort 1.0; (-');
AddResMenu(appleMenu, 'DRVR');
InsertMenu(appleMenu,0);

fileMenu := NewMenu(fileID, 'File');
AppendMenu(fileMenu, 'Ascending/A;Descending/D;Random/R; (-');
AppendMenu(fileMenu, '10 Bars/1;25 Bars/2;50 Bars/3;100 Bars/4');
AppendMenu(fileMenu, '250 Bars/5;500 Bars/6;1000 Bars/7');
AppendMenu(fileMenu, '2500 Bars/8;5000 Bars/9; (-;Quit/Q');
InsertMenu(fileMenu,0);

editMenu := NewMenu(editID, 'Edit');
AppendMenu(editMenu, 'Undo/Z; (-;Cut/X;Copy/C;Paste/V');
InsertMenu(editMenu,0);

sortMenu := NewMenu(sortID, 'Sort');
AppendMenu(sortMenu, 'Straight Insertion/I;Straight Selection/S');
AppendMenu(sortMenu, 'Straight Exchange/B; (-;Shellsort/T');
AppendMenu(sortMenu, 'Heapsort/H;Quicksort/E;Quicksort2;Quicksort3'
InsertMenu(sortMenu,0);
DrawMenuBar;

quit := FALSE;
lastSort := 0;
numBars := 25;
curOrder := randomSort;
randSeed := TickCount;
CalcBars;

END;

PROCEDURE SetupMenus;
VAR i: Integer;
BEGIN

GRAPHSORT - PASCAL APPLICATION 383

Checkitem(fileMenu,l,curOrder
Checkitem(fileMenu,2,curOrder
Checkitem(fileMenu,3,curOrder
Checkitem(fileMenu,5,numBars
Checkitem(fileMenu,6,numBars
Checkitem(fileMenu,7,numBars
Checkitem(fileMenu,8,numBars
Checkitem(fileMenu,9,numBars
Checkitem(fileMenu,10,numBars
Checkitem(fileMenu,11,numBars
Checkitem(fileMenu,12,numBars
Checkitem(fileMenu,13,numBars

ascending) ;
descending) ;
randomSort);

10);
25);
50);
100);
250);
500);
1000);
2500);
5000);

FOR i := 1 TO CountMitems(sortMenu) DO
Checkitem(sortMenu,i,i = lastSort);

END;

PROCEDURE DoMenu(menu,item: Integer);
VAR i,t: Longint;

pie:
str:

PicHandle;
Str255;

BEGIN
HiliteMenu(menu);
Delay(5,i);
CASE menu OF

appleID:
IF item > 1 THEN

BEGIN
Getitem(appleMenu,item,str);
i := OpenDeskAcc(str);

END;

384 CHAPTER NINE I THE PASCAL LANGUAGE

fileID:
BEGIN

CASE item OF
ascnditem:
dscnditem:
randitem:
sizelO:
size25:
size50:
sizelOO:
size250:
size500:
sizelOOO:
size2500:
size5000:
quititem:

END;

curOrder
curOrder
curOrder
numBars
numBars
numBars
numBars
numBars
numBars
numBars
numBars
numBars
quit :=

:= ascending;
:= descending;
:= randomSort;

:= 10;
:= 25;
:= 50;
:= 100;
:= 250;
:= 500;
:= 1000;
:= 2500;
:= 5000;
TRUE;

IF item <> quititem THEN
BEGIN

CalcBars;
DrawBars;

END;
END;

editID:
IF NOT SystemEdit(item - 1) THEN

CASE item OF
undoitem:

BEGIN
FOR i := 1 TO numBars DO a[i] := b[i];
sorted := FALSE;
DrawBars;

END;
cut Item:

BEGIN
FOR i := 1 TO numBars DO a[i] := 1;
FOR i := 1 TO numBars DO b[i) := 1;
sorted := FALSE;
DrawBars;

END;
copyitem:

BEGIN
t := ZeroScrap;
pie := OpenPicture(theWindowA.portRect);
DrawBars;
ClosePicture;
i := GetHandleSize(Handle(pic));
t := PutScrap(i, 'PICT',Handle(pic)A);
DisposHandle(Handle(pic));

END;
paste Item:

END;

GRAPHSORT - PASCAL APPLICATION 385

sortID:
BEGIN

FOR i := 1 TO numBars DO a[i] ·= b[i];
sorted := FALSE;
DrawBars;
numMoves := O;
numCmp := 0;
lastSort := item;
theTicks := TickCount;
CASE item OF

insrtitem:
selctitem:
exchgitem:
shell Item:
heapitem:
quickitem:
quick2Itm:
quick3Itm:

END;

Insertion;
Selection;
Exchange;
Shellsort;
Heapsort;
Quicksort(l,numBars);
Quicksort2(1,numBars);
Quicksort3;

theTicks := TickCount - theTicks;
sorted := TRUE;
DrawStats;

END;
END;
HiliteMenu (0);

END;

PROCEDURE DoKey;
VAR result: Longint;
BEGIN

IF BitAnd(theEvent.modifiers,cmdKey) > 0 THEN
BEGIN

END;

result := MenuKey(Char(theEvent.message));
DoMenu(HiWord(result),LoWord(result));

END;

386 CHAPTER NINE I THE PASCAL LANGUAGE

PROCEDURE DoMouse;
VAR i,location:

result:
whichWindow:
pt:

Integer;
Longint;
WindowPtr;
Point;

BEGIN
location := FindWindow(theEvent.where,whichWindow);
CASE location OF

inMenuBar:
BEGIN

SetupMenus;
result := MenuSelect(theEvent.where);
DoMenu(HiWord(result),LoWord(result));

END;
inSysWindow:

SystemClick(theEvent,whichWindow);
inContent:

REPEAT
GetMouse(pt);
i := Abs(pt.h) DIV barWidth + 1;
a[i] := windHeight - pt.v;
b[i] := a[i];
DrawlBar(i);

UNTIL NOT StillDown;
inDrag:

BEGIN
DragWindow(whichWindow,theEvent.where,dragRect);

END;
inGrow:

BEGIN
result := GrowWindow(whichWindow,theEvent.where,dragRect);
SizeWindow(whichWindow,LoWord(result),HiWord(result),FALSE);
CalcBars;
DrawBars;

END;
inGoAway:

BEGIN
quit := TrackGoAway(whichWindow,theEvent.where);

END;
inZoomin,inZoomOut:

END;
END;

IF TrackBox(whichWindow,theEvent.where,location) THEN
BEGIN

ZoomWindow(whichWindow,location,TRUE);
CalcBars;

END;

PROCEDURE DoUpdate;
BEGIN

IF WindowPtr(theEvent.message)

END;

BEGIN
BeginUpdate(theWindow);
DrawBars;
EndUpdate(theWindow);

END;

PROCEDURE MainEvent;
BEGIN

theWindow THEN

WHILE NOT GetNextEvent(everyEvent,theEvent) DO SystemTask;
CASE theEvent.what OF

mouseDown:
mouseUp:
keyDown:
keyUp:
autoKey:
updateEvt:
diskEvt:

DoMouse;
DoMouse;
DoKey;
DoKey;
DoKey;
DoUpdate;

activateEvt:;
END;

END;

BEGIN
InitWorld;
REPEAT MainEvent UNTIL quit;

END.

Conclusion

CONCLUSION 387

This chapter looked at the Pascal language and its history on the Macintosh. A reading
knowledge of Pascal is essential to all Macintosh programmers because most Apple doc
umentation uses examples written in Pascal.

Two applications written in Pascal were also presented. The first, StyleText, illus
trates the use of TextEdit as well as demonstrating an application written in Pascal. The
second, GraphSort, illustrates the use of QuickDraw while exploring the interesting
world of sort algorithms.

388 CHAPTER NINE I THE PASCAL LANGUAGE

Recommended Reading

The main reference manual for Pascal is Jensen and Wirth's Pascal User Manual and
Report. It contains a modest tutorial as well as the definitive language reference manual
for Pascal. I prefer Wirth's Algorithms+ Data Structures= Programs, however, for its
excellent examples of using Pascal to solve problems in sorting, searching, and compiler
construction. Do not confuse this excellent work with Wirth's later work entitled
Algorithms and Data Structures, which uses Modula-2 instead of Pascal, is not as nicely
typeset, is more expensive, and omits much of the material of the earlier work.

The Pascal compiler manuals are also good resources. Apple's MPW Pascal manual
includes syntax charts of the language; Borland's Turbo Pascal manual is a great course
in Pascal and in the basics of Macintosh programming; Think' s manual has the nicest
presentation of them all, with good information about this version of Pascal, although
not as much information about Mac programming as Borland' s manual.

Additional works that use Pascal extensively in their examples are Sedgewick's
Algorithms and Kernighan and Plauger's Software Tools in Pascal, both of which were
used as references for the sorting program.

CHAPTER10
HYPE RC ARD

This chapter begins by taking a look at the object-oriented background of HyperCard.
Next, it examines several different scripts written in HyperTalk, including:

• HomeStack-My customized version of the Home stack

• DrawRandom-A script that illustrates how to use the painting tools from a
script

• DuplicateBackground-A script that copies and pastes backgrounds, a fea-
ture not included in HyperCard

• Cimport-A script that will import C header files into a HyperCard stack

• Calendar-Produces a small calendar displaying two months at a glance

• Books-Provides an example of a more complex stack that catalogs books

Following these scripts, the chapter discusses how you can extend HyperCard by
writing XCMDs and XFCNs. Numerous examples are provided, with source code in
both C and Pascal.

History of HyperCard

HyperCard is the creation of Bill Atkinson. Bill actually laid the groundwork for
HyperCard years earlier when he wrote QuickDraw, the graphics routines found on the
Lisa and Macintosh. Later, he wrote MacPaint to show off QuickDraw's abilities. These
events all happened prior to the unveiling of the original Macintosh in January of 1984.

Not too long after the Macintosh shipped, Bill Atkinson wrote a public domain pro
gram called Rolodex, which displayed a series of fixed-size note cards, each of which
could hold a name and address or some other small amount of text. Rolodex opened
only one file, whose contents were read into memory; this allowed cards to be searched
very quickly. This small, handy program was only about 8 KB in size. It was later re
named QuickFile because of legal issues.

Late in 1985, Bill began work on a new program he called WildCard. He described
his new project to me at that time as "a cross between MacPaint, QuickFile, and an ad
venture game." All of these elements did not come together at first, however. In its early
versions, WildCard had the look and feel of QuickFile, with only a single ever-growing
file called a stack. Most of the development releases-which had a very small distribu-

389

390 CHAPTER TEN I HYPERCARD

tion within Apple-were designed so that Switcher was used with MacPaint to create
graphics that were then pasted into WildCard. The influence and results of Bill's work
on MacPaint finally began to make their appearance when WildCard got its own set of
paint tools. The adventure game aspects surfaced in the form of hot regions called but
tons that, when clicked on, could display another card in the stack.

Later versions of WildCard allowed multiple stacks to be accessed instead of a single
monolithic stack, and stacks could be compacted to reclaim empty space in files.
Because stacks could be quite large, the memory-based searching of QuickFile was not
appropriate, so Bill came up with an entirely different scheme for fast text searching of
disk-based data. Early users had to negotiate seven different interim file formats, but
each new release usually could read and convert the previous format, so data usually
made it forward into the new version.

By October 1986, after almost a year of development, it was realized that small scripts
were needed to express what happened when a user clicked on a button. Dan Winkler
joined the WildCard project to create and implement a language that came to be known as
WildTalk. The power of WildCard expanded greatly when this English-like program
ming language was added. In April of 1987, XCMDs were added as Dan continued to
evolve the language's extensibility.

Everyone was planning on calling the product WildCard, but legal problems again re
quired a name change. Because the program had become more hypertext-like,
HyperCard was begrudgingly accepted as its new name. However, HyperCard's creator
signature to this day reflects its original name: WILD.

What Is HyperCard?

When HyperCard was introduced in August of 1987, everyone thought it was neat,
but no one knew quite what it was. Applications have traditionally fit into one of five
categories: word processors, spreadsheets, databases, graphics, and communications.
HyperCard is an example of a new type of application that does not fit neatly into one of
the Big Five Categories of software, because it actually incorporates elements of all of
them.

HyperCard's inventor, Bill Atkinson, likes to refer to HyperCard as a "software
erector set"-a way of getting people into programming the Macintosh. This he has ac
complished. Early expectations were that 10 percent of the users of HyperCard would
delve into HyperTalk, but actually more than 50 percent of HyperCard users have writ
ten HyperTalk scripts!

Others at Apple refer to HyperCard as an "information toolkit." Indeed, because of its
customizable user interface, HyperTalk, XCMDs, and ease of use, HyperCard has be
come used increasingly as a front-end to relational databases, mainframe computers,
networks, bulletin boards, mail systems, and even to artificial intelligence inference
engines. It provides the tools to access information.

HYPERCARD AND OBJECT-ORIENTED PROGRAMMING 391

HyperCard has been bundled with every Macintosh sold since the fall of 1987.
HyperCard versions 1 through 1.2.5 require 750 KB of memory to run under
MultiFinder, and the application occupies about 400 KB of disk space.

HyperCard and Object-oriented Programming

The basic paradigm of HyperCard is as follows: Related information is kept in a
stack. Each stack contains a variable number of cards and backgrounds. Every card be
longs to exactly one background. A background can contain fields, buttons, and a bit
map of 512 by 342 pixels. Cards can also have their own specific fields, buttons, and bit
maps. The screen displays a superimposition of these two layers-card and back
ground-with the card layer being "on top."

Each of these five fundamental objects-stacks, backgrounds, cards, fields, and but
tons-can have its own HyperTalk script. Messages are sent by the system, and
optionally by scripts, to indicate actions and events. Messages are responded to by han
dlers (procedures and functions) contained in scripts or by commands built into
HyperTalk.

Because of the way HyperTalk handles objects and messages, HyperTalk is consid
ered an object-oriented language. As was mentioned in chapter 9, object-oriented lan
guages can be described by the following equation:

object oriented = objects + classes + inheritance

HyperTalk follows the object-oriented programming tradition, with its own flavor of
objects, classes, and inheritance. HyperCard's classes are stacks, backgrounds, cards,
fields, and buttons. Users can create many new instances of objects, although they can
not create new classes. In other words, users can create all of the buttons and cards they
want, but they currently cannot create a spreadsheet class.

Each individual object can be associated with a script. Each HyperTalk script can
contain many handlers (methods) that can send, receive, and service messages. Handlers
are similar to procedures in that they can be passed parameters and can be called recur
sively, but handler definitions cannot be nested. Handlers support local and global
variables.

Object-oriented languages support inheritance; HyperTalk's inheritance path allows
messages to be dealt with by handlers at various points in the system. In HyperTalk, this
means that a message, such as mouseUp, can be handled by the stack, background,
card, or part (button or field), depending on the situation. When a message is passed to a
HyperCard object, the script of that object is checked for a corresponding handler of the
same name. If one is found, it is dealt with; if one is not found, the current card's script
is checked, then the background script, then the stack's script, then the stack script of

392 CHAPTER TEN I HYPERCARD

the home stack, and finally HyperCard itself. Most of HyperTalk's messages are han
dled by HyperCard.

Actually, the inheritance path is slightly more complicated when the currently execut
ing script goes to a different card or stack during its execution. In that situation, the cur
rent script's card and stack are searched as well as the current visible card and stack.

HyperCard commands are simply messages handled by HyperCard and thus can be
redefined by th~ user through this inheritance path. Objects can subvert the standard
hierarchy by use of the keyword send.

HomeStack- HyperTalk Script

HyperCard uses a special stack named "Home" to allow users to customize
HyperCard to their own taste. The script presented here shows my Home stack. Here is
a brief description of a few useful handlers that I have added to the standard Apple
scripts.

The on ControlKey handler allows ADB keyboards (found on Mac SEs and later
machines) to use the Control key for additional functionality. The keys A to Z are
mapped to the numbers 1 to 26, so Control-A selects all of the text of the currently active
field, for example. Other Control handlers allow you to cut and duplicate cards and to
manipulate text with the Replace and Strip XCMDs presented later in this chapter.

The WriteScripts handler is useful for exporting all of the scripts of a stack to a
text file, perhaps to be printed or indexed or archived with the help of MPW or a word
processor. It lists the sizes and properties of all background fields and buttons, along
with their scripts, as well as the stack and background scripts themselves. You could
easily add ways of handling card-specific fields, buttons, and scripts, if desired. This
script uses the Set Creator XCMD, presented later in this chapter, to set the file type
for MPW. Obviously, other creators could be used. (See Chapter 2 for a list of popular
creator signatures.)

on ControlKey num
if n = 1 then select text of the selectedField
else if n = 4 then

doMenu "Copy Card"
doMenu "Paste Card"

else if n = 18 then
put replace(return,space,the selection) into the selection

else if n = 19 then
put strip(the selection) into the selection

else if n = 24 then doMenu "Cut Card"
else pass ControlKey

end ControlKey

HOMESTACK - HYPERTALK SCRIPT 393

on WriteScripts stackName -- write scripts of a stack into a file
push this card
put "*****" into delimit
repeat 4 times

put delimit after delimit
end repeat
put return into last char of delimit
if stackName is not empty then go to stack stackName
get the long name of this stack
delete char 1 to 7 of it -- label & quote before name
delete last char of it -- trailing quote
put ".ht" after it
put it into fullpath
open file fullpath
get the script of this stack
write delimit to file fullpath
write the long name of this stack & return to file fullpath
write delimit to file fullpath
write it & return & return to file fullpath
repeat with i = 1 to the number of bkgnds

go to card 1 of bkgnd i
get the script of this bkgnd
write delimit to file fullpath
write the long name of this bkgnd & return to file fullpath
write delimit to file fullpath
write it & return & return to file fullpath
repeat with j = 1 to the number of bkgnd buttons

get the script of bkgnd button j
write delimit to file fullpath
write GetPartinfo(name of bkgnd btn j) to file fullpath
write delimit to file fullpath
write it & return .~ return to file fullpath

end repeat
repeat with j = 1 to the number of fields

get the script of field j
write delimit to file fullpath
write GetPartinfo(name of field j) to file fullpath
write delimit to file fullpath
write it & return & return to file fullpath

end repeat
end repeat
close file fullpath
SetCreator fullpath,"MPS "
pop card

end writeScripts

394 CHAPTER TEN I HYPERCARD

function GetPartinfo part
set cursor to busy
put part & return into info
put "Font:" && the textFont of part after info
put " Size:" && the textSize of part after info
put " Style:" && the textStyle of part after info
put " Align:" && the textAlign of part & return after info
put "Rect:" && the rect of part after info
put " Loe:" && the loc of part after info
put " Visible:" && the visible of part after info
put " Style:" && the style of part & return after info
if word two of part is "field" then

put "Locktext:" && the lockText of part after info
put " Showlines:" && the showLines of part after info
put " Widemargins:" && the wideMargins of part & return after info

else
put "Icon:" && the icon of part after info
put " Hilite:" && the hilite of part after info
put " Autohilite:" && the autoHilite of part after info
put " Showname:" && the showName of part & return after info

end if
return info

end GetPartinfo

Apple's standard scripts follow:

on xy
repeat until the mouse is down

put the mouseLoc
end repeat

end xy

on c
choose browse tool
doMenu "Card Info ... "

end c

on b
choose browse tool
doMenu "Bkgnd Info ... "

end b

on s
choose browse tool
doMenu "Stack Info ... "

end s

on startup
getHomeinfo
pass startup

end startup

on resume
getHomeinfo
pass resume

end resume

on getHomeinfo

DRAWRANDOM - HYPERTALK SCRIPT 395

global stacks,applications,documents,userName
set lockScreen to true
set lockMessages to true
push this card
go to card "User Preferences" of stack "Home"
put card field "User Name" into userName
set userLevel to card field "User Level"
set powerKeys to the hilite of button "Power Keys"
set textArrows to the hilite of button "Text Arrows"
set blindTyping to the hilite of button "Blind Typing"
put field "paths" of card "stacks" into stacks
put field "paths" of card "applications" into applications
put field "paths" of card "documents" into documents
pop card
set lockScreen to false
set lockMess~ges to false

end getHomeinfo

DrawRandom - HyperTalk Script

This simple HyperTalk script will draw random regular polygons on the screen. It is
not very useful, except perhaps as a tool for mesmerizing someone. It is shown here as
an example of driving the paint tools from a script. The script could be placed in a but
ton, card, background, or stack script and will randomly paint polygons on the current
card's picture.

on mouseUp
if item 3 of the screenRect
reset paint
choose reg poly tool
doMenu "Select All"
doMenu "Clear Picture"
set filled to true
repeat until the mouse is down

set polysides to random(5)+2
set pattern to random(12)

512 then hide menubar

drag from random(512),random(342) to random(512),random(342)
end repeat
choose browse tool

end mouseUp

396 CHAPTER TEN I HYPERCARD

DuplicateBackground- HyperTalk Script

Not every useful piece of functionality is directly built into HyperCard; that is why
there is a HyperTalk language. The most common and useful operations are built into the
language, and somewhat obscure operations are left to ingenious scripts.

Here is an example: HyperTalk allows cards and pictures and text to be cut, copied,
and pasted, but there is no simple way to copy and paste a background. This HyperTalk
script duplicates a background-that's a copy and paste in one operation. The resulting
two backgrounds found in the same stack will have the same pictures, buttons, fields,
and scripts. Only their internal IDs and names will be different. Card-specific informa
tion is not copied. (Incidentally, it is because of this that HyperCard does not make
this a built-in command: many people would create identical-looking backgrounds
accidentally.)

on duplicateBackground
lock screen
put the id of this card into old
doMenu "New Background"
put the id of this card into new
go old
choose field tool
repeat with i = 1 to the number of fields

select field i
doMenu "Copy Field"
go new
doMenu "Paste Field"
go old

end repeat
choose button tool
repeat with i = 1 to the number of bg btns

select bg btn i
doMenu "Copy Button"
go new
doMenu "Paste Button"
go old

end repeat
choose select tool
doMenu "Background"
doMenu "Select All"
doMenu "Copy Picture"
go new
doMenu "Paste Picture"
go old
choose browse tool
get the script of this
go new
set the script of this

end duplicateBackground

bg

bg to it

CIMPORT - HYPERTALK SCRIPT 397

Cimport - HyperTalk Script

This script will import all of the MPW C and C++ interface files into a HyperCard
stack. It then deletes everything that has to do with C++, strips out various #ifdef
lines to make reading the interfaces easier on the eyes, and compacts the stack. This
script requires the NthFileName and Strip XFCNs presented later in this chapter,
and it illustrates how these are useful for importing text from many text files.

The actual importing of text is quite fast, but the stripping operations take a while in
HyperTalk. Such text massaging is probably better done in MPW. In fact, MPW and
HyperCard often complement each other when you are dealing with large quantities of
text. If you have at least 2.5 MB of memory and are running MultiFinder, you can have
HyperCard running with this stack open while you are also programming in MPW-this
creates a nice composite development environment.

This script requires a background with fields named Name, Version, and Text in
which the information can be put.

on mouseUp
answer "Import Cincludes ?" with "OK" or "Cancel"
if it is "Cancel" then exit mouseUp
put "HD:MPW:Interfaces:Cincludes:" into path -- your pathname goes here
repeat with i = 1 to NthFilename(path,O)

if i ~ 1 then doMenu "New Card"
put NthFilename(path,i) into fileName
put fileName into field "Name"
put path before f ileName
put empty into text
open file fileName
repeat

read from file fileName for 16384
if it is empty then exit repeat else put it after text

end repeat
close file fileName
put Strip(text) into field "Text"

end repeat
clean Import

end mouseUp

on cleanimport
go first card
set lockScreen to true
go first card
removeCPlusPlus
go first card
removeSaf eLink
go first card
removeHeaders
go first card
doMenu "Compact Stack"

end cleanimport

398 CHAPTER TEN I HYPERCARD

on removeHeaders
go first card
repeat for the number of cards

set cursor to busy
get field "text"
repeat until "*/" is in line 1 of it

if line 1 of it contains "Created:"
then put line 1 of it into field "Version"
delete line 1 of it

end repeat
delete line 1 of it
repeat while line 1 of it is empty

delete line 1 of it
if it is empty then exit repeat

end repeat
repeat while line 1 of it contains "#ifndef

delete line 1 to 3 of it
repeat while line 1 of it is empty

delete line 1 of it
if it is empty then exit repeat

end repeat
end repeat
if last line of it contains "#endif" then delete last line of it
put it into field "Text"
go next card

end repeat
end removeHeaders

on removeCPlusPlus
repeat

set cursor to busy
find whole "#ifndef _cplusplus"
if the result is "not found" then exit repeat
get the f oundLine
delete it
subtract 1 from word two of it
if the value of it is empty then delete it
find whole "#endif"
delete the foundLine

end repeat
end removeCPlusPlus

CALENDAR - HYPERTALK SCRIPT 399

on removeSaf eLink
repeat

set cursor to busy
find whole "#ifdef safe link"
if the result is "not found" then exit repeat
put the foundLine into temp
find whole "#endif"
put the foundLine into temp2
put " to" && word 2 of temp2 after word 2 of temp
delete temp

end repeat
end removeSafeLink

Calendar - HyperTalk Script

This sample HyperTalk script is a handler that could be placed in a locked field that
looks similar to the one shown in Figure 10-1. (The field must be locked so that
mouse Up messages are sent to it.) Clicking on the upper portion of the calendar backs
up a month; clicking on the lower portion moves ahead one month. This field is on the
first card of my main Home stack. Another handler checks the current date when the
stack is opened and updates the calendar appropriately so the current month is always at
the top of this card field named "Calendar."

March 1989
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Apri I 1989
Su Mo Tu We Th Fr Sa

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

Figure 10-1: My "Calendar" Card Field

400 CHAPTER TEN I HYPERCARD

on mouseUp
if me is empty then

get the long date
convert it to dateitems
put 1 into item 3 of it
convert it to long date

else
get the clickLoc
if item 2 of it > (the height of me I 2 + the top of me)
then put 1 into offset
else put -1 into offset

get line 1 of me
put " 1, " after word 1 of it
convert it to dateitems
add offset to item 2 of it
if item 2 of it = 0 then

add offset to item 1 of it
put 12 into item 2 of it

end if
convert it to long date

end if
Make2Months it

end mouseUp

on Make2Months theDate -- long date of first day of a month
-- print first month
get theDate
put DaysinMonth(word 2 of it,item 3 of it) into n

put word 2 of it && word 4 of it & return into me
convert it to dateitems
put item 7 of it into dayNum
put MakeMonth(dayNum,n) after me

-- print next month
add 1 to item 2 of it
convert it to long date
put word 2 of it && word 4 of it & return after me
put DaysinMonth(word 2 of it,item 3 of it) into n
convert it to dateitems
put item 7 of it into dayNum
put MakeMonth(dayNum,n) after me

end Make2Months

CALENDAR - HYPERTALK SCRIPT 401

function DaysinMonth month, year
if month is in "April,June,August,October"
then return 30
else if month is "February" then

if year mod 4 = 0 then return 29
else return 28

else return 31
end DaysinMonth

function MakeMonth dayNum,n
put "Su Mo Tu We Th Fr Sa" & return into temp
put 1 into column
repeat while column < dayNum

put " " after temp -- 4 spaces
add 1 to column

end repeat
repeat with i = 1 to n

set cursor to busy
if i < 10 then put space & i after temp
else put i after temp
if column < 7 then

put space & space after temp
add 1 to column

else
put return after temp
put 1 into column

end if
end repeat
if last char of temp * return then put return after temp
return temp & return

end MakeMonth

402 CHAPTER TEN I HYPERCARD

Books - HyperTalk Script

Here is a stack for cataloging books. It will sort by various criteria, total values of
some or all of the books, allows easy export of information to MS Word and MS Excel,
and even create a formatted bibliography at the touch of a button. In fact, this stack was
used to create the bibliography of this book. Figure 10-2 shows what the stack looks
like.

r IS File Edit Go Tools Objects

Author

.. ~.~~
. ~.N.!m
.. ~~.P.!!;!!.~ .~ •. P.!!!!

4 34 PH '1f' .,

Subiect

..'J'.AA .. ~~M:§ .. 9.LHY.I!~r.!.~ ~J~ .. 9.~j~~~-~ ~.~-~-~-~~....

.I9_ry1t~ ... --~~ ~J~ .. 9.~i~.~-~-·~-~.~Y.: ... ~m.~ .. 9.~j~~t~

.. ~.9.~~~ .. 9.f..aj~ ~J~ .. ~.9.~.~~~A.~.~.~.1 .. (~t~.~/.,,,,
11-----------------1 .l!r.9.P.~.~-~~ ~~~-~.~ ~.~9.~.~-~~-~A~.-~.¥P-~~~~~

Title

.. tt~ .. ~.!.~ .. G.~;.~
. tt~~

. .f~t9.~ ~ .. 9.P.~.™.9.~~ .. li~~-~~.~~-~~~ .. ~JH.~~~--- .. ···

..~.9.!!!:~~-: ... ~l!P.~.~-~~.£'1.~.r..X:G.MP..~ .. ~.~.G.;M~

.. ~J~ .. fE.~,,G. ~.~~~~-~9.~.~.~~ .. ~ .. M.G.P..t~~

.. HYl!~~~-~#.~ ... 21~~2.r..l!~.~-~-~-w.::~ .. ~~.~J.-~~1.~ 1-----------------t .. !:!m~~ .. t~, .. ~.i. l'l'J.!'1! .. !.1!1'!1A!!'.lf •. !AA.~ .. ~.c>,!i~ .. !!!L
Publisher .~9.~::Y.~~~.Y AJJ. tsstnl:ill bedside rtftrt:ru:e.

Location . J?.~-~ ... MA.
Edition ..!.~~.~ Value 2.~. ,~.~

Msc .~.!f.~.}.!ZRP., ..
. !l.!.~.!.iY.!.~ .~!P .. ~,..!~.~H'11.~..!m.!L .. 2. .. ~.QP.i!i.

Figure 10-2: The Books Stack

Here is the documentation for the stack, including a listing of the various fields, but
tons, and all of the scripts contained in the stack. This listing of its scripts, fields, and
buttons was created with the writes c r i pt s handler described above in my custom
Home Stack script. This information will allow you to recreate most aspects of the stack
if desired, with background art and custom icons as exceptions.

stack "SR7l:Docs : DKA : DKA/Books "

on openStack

show msg at 19,305
end openStack

on closeStack
hide msg

end closeStack

BOOKS - HYPERTALK SCRIPT

on closeCard
if field "Dewey" is empty then

ask "Enter Dewey Decimal number for this book:"
if it is not empty then put it into field "Dewey"

end if
end closeCard

403

bkgnd "DKA Books" of stack "SR7l:Docs:DKA:DKA/Books"

on newCard

tabKey
end newCard

on doMenu what
if what is "Delete Card" or what is "Cut Card" then

answer "Really delete this book?" with "Cancel" or "OK"
if it is "Cancel" then exit doMenu

end if
pass doMenu

end doMenu what

on GetStats searchString
push this card
set lockScreen to true
go first card
find whole searchString
if the result is "not found" then

answer quote & searchString & quote && "not found." with "OK"
pop card
exit GetStats

end if
put one into count
put field "Value" into total
put the number of this card into f irstCard
repeat

set cursor to busy
go next card
find whole searchString
if the number of this card is firstCard then exit repeat
add one to count
add line one of field "Value" to total

end repeat
pop card
set numberFormat to "0"
put "n =" && count into temp
set numberFormat to "0.00"
put " sum = $" & total & " avg
answer temp with "OK"

end GetStats

$" & total/count after temp

404 CHAPTER TEN I HYPERCARD

on browseStack
if the commandKey is down then

show cards -- show forever
else if the optionKey is down then

set cursor to watch
set lockScreen to true
show all cards -- prewarm

else
repeat until the mouse is down

visual dissolve very fast
go next card

end repeat
end if

end browseStack

bkgnd button "Prev"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 69,30,94,55 Loe: 81,42 Visible: true Style: transparent
Icon: 1014 Hilite: false Autohilite: false Showname: false

on mouseDown

if the cmdKey is down then browseStack
repeat

visual wipe down
go prev card
if the mouse is up then exit repeat

end repeat
end mouseDown

bkgnd button "Next"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 93,30,117,55 Loe: 105,42 Visible: true Style: transparent
Icon: 1013 Hilite: false Autohilite: false Showname: false

on mouseDown

repeat
visual wipe down
go next card
if the mouse is up then exit repeat

end repeat
end mouseDown

BOOKS - HYPERTALK SCRIPT

**
bkgnd button "Go Home"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 6,30,42,55 Loe: 24,42 Visible: true Style: transparent ----

Icon: 1011 Hilite: false Autohilite: false Showname: false

on mouseUp

visual barn door close
go "Home"

end mouseUp

bkgnd button "Export Excel"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 263,25,293,59 Loe: 278,42 Visible: true Style: transparent
Icon: 17303 Hilite: false Autohilite: true Showname: false

on mouseUp

put the short name of this stack & ".xl" into defaultName
ask "Export DDC,author,title to Excel:" with defaultName
if it is empty then exit mouseup
put it into fileName
open file f ileName
go to first card
set lockScreen to true
repeat for the number of cards

write line 1 of field "dewey" & tab &~
line 1 of field "author" & tab &~
line 1 of field "title" & return to file fileName
go to next card
set cursor to busy

end repeat
close file fileName
SetCreator fileName,"XCEL"

end mouseUp

bkgnd button "Dewey"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 361,26,399,41 Loe: 380,33 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Dewey Decimal # ?" with "Cancel" or "Sort"
if it is "Cancel" then exit mouseUp
push card
sort numeric by field "Dewey"
pop card

end mouseUp

406 CHAPTER TEN I HYPERCARD

bkgnd button "LofC"
Font: Helvetica Size: 9 Style: bold Align: center

Rect: 370,42,399,57 Loe: 384,49 Visible: true Style: transparent

Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Library of Congress Card Catalog # ?" -.
with ''Cancel'' or ''OK''
if it is "Cancel" then exit mouseUp
sort by field "LOfC"

end mouseUp

bkgnd button "Author"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 8,61,47,75 Loe: 27,68 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Author?" with "Cancel" or "OK"
if it is "Cancel" then exit mouseUp
sort by field "Author"

end mouseUp

bkgnd
Font:
Rect:
Icon:

button "Title"
Helvetica Size: 9
7,121,33,137 Loe:
0 Hilite: false

Style: bold Align: center
20,129 Visible: true Style: transparent

Autohilite: true Showname: true

on mouseUp

answer "Sort by Title?" with "Cancel" or "OK"
if it is "Cancel" then exit mouseUp
sort by field "Title"

end mouseUp

bkgnd button "Subject"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 253,63,296,79 Loe: 274,71 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Subject?" with "Cancel" or "OK"
if it is "Cancel" then exit mouseUp
sort by field "Subject"

end mouseUp

BOOKS - HYPERTALK SCRIPT 407

bkgnd button "Edition"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 21,219,63,234 Loe: 42,226 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Edition" with "Cancel" or "First" or "Current"
if it is "Cancel" then exit mouseUp
if it is "First" then sort numeric by item 1 of field "Edition"
if it is "Current" then sort numeric by last item of field "Edition"

end mouseUp

bkgnd button "Value"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 164,221,199,235 Loe: 181,228 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by current Value ?" with "Cancel" or "OK"
if it is "Cancel" then exit mouseUp
sort descending numeric by field "Value"

end mouseUp

bkgnd button "Publisher"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 7,185,63,201 Loe: 35,193 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Publisher?" with "Cancel" or "OK"
if it is "Cancel" then exit mouseUp
sort by field "Publisher"

end mouseUp

bkgnd button "Location"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 13,202,63,218 Loe: 38,210 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

on mouseUp

answer "Sort by Location?" with "Cancel" or "OK"
if it is "Cancel" then exit mouseUp
sort by field "Location"

end mouseUp

408 CHAPTER TEN I HYPERCARD

bkgnd button "First"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 45,30,70,55 Loe: 57,42 Visible: true Style: transparent
Icon: 30557 Hilite: false Autohilite: false Showname: false

on mouseUp

if the cmdKey is down then
set cursor to watch
set lockScreen to true
show all cards

end if
go first card

end mouseUp

prewarm

bkgnd button "Last"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 116,30,142,55 Loe: 129,42 Visible: true Style: transparent
Icon: 26865 Hilite: false Autohilite: false Showname: false

on mouseUp

if the cmdKey is down then show cards
go last card

end mouseUp

bkgnd button "DoMsgBox"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 0,294,512,342 Loe: 256,318 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: false Showname: false

on mouseUp

set lockScreen to true
go next
do msg box
if the result is "not found" then go prev
else unlock screen with dissolve fast

end mouseUp

bkgnd button id 69
Font: Chicago Size: 12 Style: plain Align: center
Rect: 146,25,185,59 Loe: 165,42 Visible: true Style: transparent
Icon: 20186 Hilite: false Autohilite: true Showname: false

on mouseUp

visual barn door close fast to gray
visual barn door open fast to card
go any card

end mouseUp

BOOKS - HYPERTALK SCRIPT 409

*************~***

bkgnd button id 80
Font: Chicago Size: 12 Style: plain Align: center
Rect: 225,26,264,59 Loe: 244,42 Visible: true Style: transparent
Icon: 12121 Hilite: false Autohilite: false Showname: false

on mouseUp

answer "Compute total value of books:"
with ''All'' or ''Criteria'' or ''Cancel"
if it is "Criteria" then

ask "Total the values of cards with this text: "
if it is empty then exit mouseUp
GetStats it

else if it is "All" then
push this card
set lockScreen to true
go first
put 0 into total
repeat for the number of cards

add line 1 of field "Value" to total
go next
set cursor to busy

end repeat
pop card
set numberFormat to "0.00"
answer "Total value = $" & total with "OK"

end if
end mouseUp

410 CHAPTER TEN I HYPERCARD

bkgnd button "Bibliography"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 295,25,326,59 Loe: 310,42 Visible: true Style: transparent
Icon: 16566 Hilite: false Autohilite: true Showname: false

on mouseUp

put the short name of this stack & ".wd" into defaultName
ask nwrite RTF bibliography to file:" with defaultName
if it is empty then exit mouseUp
put it into fileName
open file fileName
go to first card
lock screen
write RTFHeader() to file fileName
repeat for the number of cards

get field "Dewey"
if it < 2 or (it >=4 and it < 7) or (it >= 510 and it < 520) then

write authors() & title() to file fileName
write field "subject" && "\par" & return to file fileName

end if
go to next card
set cursor to busy

end repeat
write ")" to file fileName -- RTF end
close file fileName
SetCreator fileName,"MSWD"

end mouseUp

function RTFHeader -- Microsoft's Rich Text Format
-- write version number, font info, AW book format
return "{\rtfO\mac {\fonttbl{\f4\fmodern Monaco;}" &--,
"{\f20\froman Times;}{\f21\fswiss Helvetica;}"&--,
"{\f22\fmodern Courier;}{\f23ftech Symbol;}}"&--,
"{\stylesheet{\qj\fi-540\li540\sl240 \f20\fs20 " &--,
"\sbasedon222\snext0 Normal;}}"&--,
"\margl2347\margr2347\margt2707\margb2707" &--,
"\facingp\gutter907" &--,
"\pard\plain\qj\fi-540\li540\sl240 \f20\fs20 "

end RTFHeader

function authors
get line 1 of field "Author"
repeat with i = 2 to 3

BOOKS - HYPERTALK SCRIPT

if line i of field "Author" = empty then exit repeat
put the number of items of line i of field "Author" into num
put ", " after it
if num = 1 then put line i of field "Author" after it
if num = 2 then

put item 2 of line i of field "Author" && item 1 of line i-,
of field "Author" after it

end if
end repeat
if last char of it *
return it &&

end authors

function title

then put after it

return "{\i" && line 1 of field "title" & "}." &&-.
item 1 of line 1 of field "location" & ":" &&-.
line 1 of fi~ld "Publisher" & "," &&-.
line 1 of field "Edition" & "

end title

411

bkgnd button "Export MPW"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 328,25,358,60 Loe: 343,42 Visible: true Style: transparent
Icon: 11044 Hilite: false Autohilite: true Showname: false

on mouseUp

put the short name of this stack & ".tx" into defaultName
ask "Export text to MPW:" with defaultName
if it is empty then exit mouseUp
put it into fileName
answer "How much information should be exported ?"
with ''All'' or ''Basic'' or ''Cancel''
if it is "Cancel" then exit mouseUp
if it is "All" then put true into flag else put false into flag
open file fileName
go to first card
set lockScreen to true

412 CHAPTER TEN I HYPERCARD

if flag then
repeat for the number of cards

put empty into temp
repeat with i 1 to the number of fields

put field i & tab after temp
end repeat
put replace(return,space,temp) into it
put return into last char of it
write it to file fileName
go to next card
set cursor to busy

end repeat
else

repeat for the number of cards
write line 1 of field "dewey" & tab &~
line 1 of field "author" & tab &~
line 1 of field "title" & tab &~
line 1 of field "subject" & return to file fileName
go to next card
set cursor to busy

end repeat
end if
close file fileName
SetCreator fileName,"MPS"

end mouseUp

bkgnd button "Misc"
Font: Helvetica Size: 9 Style: bold Align: center
Rect: 8,247,34,260 Loe: 21,253 Visible: true Style: transparent
Icon: 0 Hilite: false Autohilite: true Showname: true

bkgnd button "Sort Stack"
Font: Chicago Size: 12 Style: plain Align: center
Rect: 186,25,224,59 Loe: 205,42 Visible: true Style: transparent
Icon: 11716 Hilite: false Autohilite: false Showname: false

on mouseUp

answer "Compact stack: " ~
with "Cancel" or "Compact" or "& Sort"
if ~t is "Cancel" then exit mouseUp
push card
if it contains "&" then sort numeric by field "Dewey"
pop card
doMenu "Compact Stack"

end mouseUp

BOOKS - HYPERTALK SCRIPT 413

bkgnd field "Author"
Font: Times Size: 12 Style: bold,condense Align: left
Rect: 7,73,247,118 Loe: 127,95 Visible: true Style: transparent
Locktext: false Showlines: true Widemargins: false

bkgnd field "Title"
Font: Times Size: 12 Style: bold,condense Align: left
Rect: 7,134,247,179 Loe: 127,156 Visible: true Style: transparent
Locktext: false Showlines: true Widemargins: false

on closeField

repeat
get offset(return,me)
if it > O then put space into char it of me
else exit repeat

end repeat
repeat

if last char of me is space or last char of me is return
then delete last char of me
else exit repeat

end repeat
end closeField

bkgnd field "Publisher"
Font: Times Size: 10 Style: plain Align: left
Rect: 66,185,247,201 Loe: 156,193 Visible: true Style: transparent
Locktext: false Showlines: true Widemargins: false

bkgnd field "Location"
Font: Times Size: 10 Style: plain Align: left
Rect: 66,203,247,219 Loe: 156,211 Visible: true Style: transparent
Locktext: false Showlines: true Widemargins: false

bkgnd field "Edition"
Font: Times Size: 10
Rect: 66,221,154,236

Style: plain Align: left
Loe: 110,228 Visible: true Style: transparent

Locktext: false Showlines: true Widemargins: false

414 CHAPTER TEN I HYPERCARD

bkgnd field "Value"
Font: Times Size: 10
Rect: 203,221,247,237

Style: plain Align: center
Loe: 225,229 Visible: true Style: transparent

Locktext: false Showlines: true Widemargins: false

bkgnd field "Misc"
Font: Times Size: 10
Rect: 34,246,247,288

Style: plain Align: left
Loe: 140,267 Visible: true Style: transparent

Locktext: false Showlines: true Widemargins: false

bkgnd field "Dewey"
Font: Times Size: 10
Rect: 399,25,507,41

Style: plain Align: left
Loe: 453,33 Visible: true Style: transparent

Locktext: false Showlines: true Widemargins: false

bkgnd field "LofC"
Font: Times Size: 10 Style: plain Align: left
Rect: 399,41,507,57 Loe: 453,49 Visible: true Style: transparent
Locktext: false Showlines: true Widemargins: false

bkgnd field "Subject"
Font: Times Size: 10
Rect: 253,78,506,286

Style: plain Align: left
Loe: 379,182 Visible: true Style: transparent

Locktext: false Showlines: true Widemargins: false

on closeField

repeat
get offset(return,me)
if it > 0 then put space into char it of me
else exit repeat

end repeat
repeat

if last char of me is space or last char of me is return
then delete last char of me
else exit repeat

end repeat
end closeField

' EXTERNAL COMMANDS AND FUNCTIONS (XCMDS) 415

External Commands and Functions (XCMDs)

When HyperTalk runs out of speed or functionality, a couple of trap doors can be
used: XCMDs and XFCNs. An XCMD or XFCN is compiled code, and writing such
code is a task for programmers, not for end users. The only difference between an
XFCN and an XCMD is that an XFCN returns a result. This difference is much like the
difference between a procedure and a function in Pascal. We refer to them collectively as
XCMDs for the sake of convenience. If you use MPW, you can write XCMDs in
assembly language, C, or Pascal.

Anyone competent with HyperTalk can easily use an XCMD once it is written.
XCMDs are called as if they were built-in HyperTalk commands; they are invoked by
HyperTalk through its inheritance mechanism. As a message ascends the hierarchy, the
resource forks of several files (the script's stack, the current stack, the home stack, and
HyperCard) are checked to see if they have an XCMD or XFCN resource of that name to
handle the message. If the appropriate resource name is found, the resource is loaded
into memory and HyperCard jumps to the start of it. After the XCMD has executed,
control returns to HyperCard.

XCMDs can be installed and moved between files easily with ResEdi t, or better yet,
with Res Copy, which itself is an XCMD. Res Copy, written by Steve Maller, imitates
the Font/DA Mover interface for moving resources between stacks.

Several different reasons exist for using an XCMD:

• As an interface to drivers, thus allowing HyperCard to control external devices,
such as video disk players and CD-ROM drives

• As a means of accessing the Macintosh OS and Toolbox routines

• As a means of accessing some of HyperCard' s own internal routines

• As a means of speeding up execution of time-critical code

XCMDs and Drivers

HyperCard has an outstanding user interface. It is easy to use and especially amiable
to customization. HyperCard is therefore a great "front end" for the Macintosh to talk to
other devices.

An example of using HyperCard in this manner is hooking up a video disk player to a
Macintosh. A video disk player can be easily controlled through the built-in RS-232
ports of the Mac. XCMDs can be the glue that cements together the video disk player
and HyperCard.

In this example, three pieces of code would need to be written. The driver for the
video disk player would be a standard Macintosh driver, which really knows nothing
about HyperCard. These specialized pieces of code have been around since the begi1
ning of Macintosh, and many people have become proficient in writing drivers becaus1

41 6 CHAPTER TEN I HYPERCARD

desk accessory is a driver. For more information on writing drivers, see Inside
Macintosh, Volume II, Chapter 6.

The second piece of code is the XCMD. It would be small, and its purpose would be
simply to convert HyperTalk messages to the appropriate driver calls.

The third piece of code would be the HyperTalk scripts that call the XCMD with vari
ous parameters, asking it to ask the driver to ask the laser disk player to go to a certain
frame, or to back up, or whatever.

Using XCMDs as an interface to traditional drivers is a simple but powerful proposi
tion. If an XCMD gets too big, think about writing a driver.

XCMDs and the Toolbox

HyperTalk embodies a lot of functionality, but if you need something it does not
have, the Macintosh OS and Toolbox might have it. Indeed, Macintosh programming
sometimes seems like an endless series of calls to the Mac ROMs.

Most Toolbox traps and routines can be called from XCMDs, with certain restrictions
and limitations, which are outlined below. Such routines are not allowed to do every
thing that an application is allowed to do, as they are guests in HyperCard's heap.
XCMDs are more like desk accessories than applications in this regard.

Here are a few guidelines for writings XCMDs:

• Do not initialize any of the Macintosh managers by calling their init traps-that
is, do not call Ini tGraf, Ini tFont s, Ini tWindows, etc.

• Do not assume that you will have lots of memory available for your code. There
is some extra space in HyperCard's heap, but if HyperCard is running in 750K
under MultiFinder, for example, your XCMDs should not be bigger than about
32K each.

• Do not use register A5 of the 68xxx processor. The value in A5 is HyperCard's
and points to HyperCard's global data, jump table, and other things that consti
tute an A5 World. XCMDs do not currently have their own A5 World.

• No A5 World means no global data for XCMDs.

• No global data means no use of string literals with MPW C, as MPW C makes
string literals into global data. (To work around this problem, use STR re
sources or put the strings in a short assembly glue file.)

• No A5 World means no jump table. No jump table means no code segments.
No code segments means a 32K limit on code size for 68000-based machines.
(The 68020 supports longer branches.)

• XCMDs can, however, allocate small chunks of memory using standard calls to
NewHandle (and if you really must do it, NewPtr).

MAKE - SHELL SCRIPT 417

• If your code allocated some memory in the heap, it must deallocate the memory.
HyperCard does not automatically clean up after an XCMD like the MPW Shell
does with its tools.

• If your XCMD allocates a handle to save state information between invocations
of the XCMD, you must also use HyperTalk to store the handle somewhere in
the current stack, perhaps in a hidden field. You will need to convert the handle
from a Longint to a string because everything is treated as a string on the
HyperTalk end of things.

• Because HyperTalk blindly jumps to the start of an XCMD piece of code, it is
important that the main routine actually ends up at the start of the XCMD.
Thus, the link order is very important.

XCMDs and HyperTalk Callback Routines

HyperTalk allows XCMDs to call many useful internal routines, both conversion
routines and stack access routines. The header files and sources for the library that is
used to access the callback routines can be found in chapter 6, which discusses MPW.

The conversion routines provide support for converting among various styles of
strings and numbers. For example, there are routines to convert C-style strings (zero
terminated) to Pascal-style strings (length byte followed by string) and back again. There
are also routines to convert strings to integers and vice versa. The stack access routines
allow an XCMD to call back into HyperTalk and send messages to the current card or to
HyperCard itself. In addition, you can recall and store values of variables, and contents
of fields can be examined.

Make - Shell Script

The following MPW Shell script imitates the action of the Make tool, with the restric
tion that only one make target file can be given to it at a time. This Makefile will build all
of the XCMDs and XFCNs given in the remainder of this chapter; you can extend it
easily to build your own XCMDs.

The reason that the Make tool cannot be used for this purpose is that XCMDs each
have a unique resource ID that must be incorporated into the build instructions, and the
Make tool has no easy facility to assign IDs generically when the default build rules are
used. To solve this problem, we wrote our own customized Make script using MPW's
Shell language. MPW usually looks in the current directory before using its search
paths, so whenever this file-named Make-exists in the folder containing XCMD
sources, it will be called instead of the Make tool.

418 CHAPTER TEN I HYPERCARD

This script works with both C and Pascal source code. The major shortcoming of the
script is that each XCMD needs to be "registered" by name so that resource IDs do not
collide, a problem attributable to the Resource Manager.

To use this script to build the replace .c and strip.p XFCNs, for example, just
type the following line:

make replace.c strip.p

Next, select the resulting output lines and press Enter.

* Make, a build script for XCMDs * Written by Dan Allen 10/14/88

Set Dest
Set Debug
Set Libs

"{SystemFolder}Home" * Location of stack to build XCMDs into
'-mbg off' * Or your favorite incantation
"{Libraries}HyperXLib.o {Libraries}Interface.o "

If {l} =- /cprint.=/
Set 2 'XCMD=l2'

Else If {l} =- /NthFileName.=/
Set 2 'XFCN=9'

Else If {l} =- /Replace.=/
Set 2 'XFCN=ll'

Else If {l} =- /DateDMY.=/
Set 2 'XFCN=71 '

Else If {l} =- /SetCreator.=/
Set 2 'XCMD=9'

Else If {l} =- /Strip.=/
Set 2 'XFCN=l2'

End

If {l} =- /(=)@l.p/
Set Lang Pascal
Set LOpts "-w -rt {2} -m ENTRYPOINT -sg {@l}"
Set Libs "{Libs} {PLibraries}PasLib.o"

Else If {l} =- /(=)®l.c/
Set Lang C

Else

End

Set LOpts "-w -rt {2} -m ENTRYPOINT -sg {@l}"
Set Libs "{Libs} {CLibraries}CRuntime.o"

Alert "Only C and Pascal sources are currently allowed."
Exit 1

If "Newer {l} {l}.o" * This is the "Make-like" line
Echo {Lang} {l} {Debug}

End

Echo Link {LOpts} -o {Dest} {l}.o {Libs}

NTHFILEN AME - C XFCN 419

NthFileName - C XFCN

This XFCN will return the name of the Nth file in a specified directory. By repeatedly
calling this, you can enumerate all of the files in a given directory. Asking for the name
of the zeroth file will return the number of files in the directory. This XFCN is useful for
importing multiple text files into HyperCard. It is used, for example, in the Clnterfaces
stack described earlier.

The build information is in the Makefile given previously; a Pascal version follows
this C version.

/*
* NthFileName.c - A HyperCard XFCN to return the Nth file in a directory
* - Written by Dan Allen 7/20/88
* - Fully MPW 3.0 compatible

*
*/

#include <Types.h>
#include <Memory.h>
#include <Files.h>
#include <HyperXCmd.h>

pascal void EntryPoint(XCmdPtr paramPtr)
{

char
short
long

*p,*q,str[256];
err;
n;

Handle h;
CinfoPBRec pbRec;
ParamBlockRec pbVol;

if (paramPtr->paramCount != 2) return;
ZeroToPas(paramPtr,*(paramPtr->params[O]),str); /*a callback to HC */
pbVol.volumeParam.ioNamePtr = str;
pbVol.volumeParam.ioVolindex = -1;
pbVol.volurnePararn.ioVRefNurn = Ox8000;
pbVol.volurnePararn.ioCompletion = nil;
err= PBGetVInfo(&pbVol,false);

ZeroToPas(pararnPtr,*(pararnPtr->pararns[O]),str);
pbRec.dirinfo.ioNarnePtr = str;
pbRec.dirinfo.ioFDirindex = 0;
pbRec.dirinfo.ioDrDirID = 0;
pbRec.dirinfo.ioCornpletion = nil;
pbRec.dirinfo.ioVRefNum = err ? 0 pbVol.volurnePararn.ioVRefNurn;
err= PBGetCatinfo(&pbRec,false);
if(err) return;

420 CHAPTER TEN I HYPERCARD

ZeroToPas(paramPtr,*(paramPtr->params[l]),str);
n = StrToNum(paramPtr,str);
if (!n) {

NumToStr(paramPtr,pbRec.dirinfo.ioDrNmFls,str);
paramPtr->returnValue = PasToZero(paramPtr,str);
return;

pbRec.dirinfo.ioFDirindex = n;
pbRec.dirinfo.ioCompletion = nil;
err= PBGetCatinfo(&pbRec,false);
if(err) return;

n = pbRec.dirinfo.ioNamePtr[O];
p &(pbRec.dirinfo.ioNamePtr[l]);
h NewHandle(n+3);
if (h) q = *h; else return;

if(pbRec.dirinfo.ioFlAttrib & OxlO) *q++
while (n--) *q++ = *p++;
if(pbRec.dirinfo.ioFlAttrib & OxlO) *q++
*q= '\0';

paramPtr->returnValue h;
return;

I• I• . ,

I : I ;

NthFileName - Pascal XFCN

(*

*
*

NthFileName.p A HyperCard XFCN to return the Nth file in a directory
- Written by Dan Allen 7/20/88

*
*)

{$R-}
{$Z+}

UNIT DummyUnit;

INTERFACE

- Fully MPW 3.0 compatible

USES MemTypes, QuickDraw, OSintf, Toolintf, HyperXCmd;

IMPLEMENTATION

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
VAR

err:
n:
str:
pbRec:
pbVol:

BEGIN

OSErr;
Longint;
Str255;
CinfoPBRec;
ParamBlockRec;

WITH paramPtrA DO
BEGIN

IF paramCount <> 2 THEN
BEGIN

returnValue := '';
EXIT(EntryPoint);

END;

ZeroToPas(paramPtr,params[l]A,str);
WITH pbVol DO

BEGIN
ioNamePtr := @str;
ioVolindex := -1;

NTHFILENAME - PASCAL XFCN 421

ioVRefNum := $8000; { illegal vRefNum }
ioCompletion := nil;

END;
err:= PBGetVInfo(@pbVol,FALSE); in order to get vRefNum

ZeroToPas(paramPtr,params[l]A,str); get pathname again }
WITH pbRec DO

BEGIN
ioNamePtr := @str;
ioFDirindex := 0;
ioDirID := 0;
ioCompletion := nil;
IF err = 0
THEN ioVRefNum := pbVol.ioVRefNum
ELSE ioVRefNum := O; { default volume }

END;
err := PBGetCatinfo(@pbRec,FALSE);
IF err <> 0 THEN

BEGIN
NumToStr(paramPtr,err,str);

in order to get dirID

returnValue := PasToZero(paramPtr,Concat('Error:: Bad path; #',str));
EXIT(EntryPoint);

END;

422

END;

END.

CHAPTER TEN I HYPERCARD

ZeroToPas(paramPtr,params[2]A,str);
n := StrToNum(paramPtr,str);
IF n = 0 THEN

BEGIN
NumToStr(paramPtr,pbRec.ioDrNmFls,str);
returnValue := PasToZero(paramPtr,str);
EXIT(EntryPoint);

END;

WITH pbRec DO
BEGIN

ioFDirindex := n;
ioCompletion := nil;

END;
err := PBGetCatinfo(@pbRec,FALSE); {to get Nth file/dir Name
IF err <> 0 THEN

BEGIN
NumToStr(paramPtr,err,str);
returnValue := PasToZero(paramPtr,Concat('Error:: Bad info; #',str));
EXIT(EntryPoint);

END;

n := Ptr(pbRec.ioNamePtr)A;
BlockMove(Pointer(pbRec.ioNamePtr),@str,n+l); { copy to str }
IF BitTst(@pbRec.ioFlAttrib,3) THEN str .- Concat(': ',str, ':');
returnValue := PasToZero(paramPtr,str);

END;

SETCREA TOR - C XCMD 4

SetCreator - C XCMD

------------This XCMD is simple: it sets the file creator of a given file to whatever you wish. A
list of popular file types and creators can be found in chapter 4. HyperTalk can write
only files of type TEXT, so a SetFileType command is rarely needed. Here is the C ver
sion, followed by a Pascal version:

/*

*
*
*
*

SetCreator.c - A HyperCard XCMD to set the file creator
- Written by Dan Allen 10/16/88
- MPW 3.0 compatible 10/19/88

*/

#include <Types.h>
#include <Files.h>
#include <HyperXCrnd.h>

pascal void EntryPoint(XCrndPtr pararnPtr)
{

char str[256];
short err;
OSType rt;
PararnBlockRec pb;

if (pararnPtr->pararnCount != 2) return;

ZeroToPas(pararnPtr,*(pararnPtr->pararns[O]),str);
rt=*((OSType *) *(pararnPtr->pararns[l]));
pb.filePararn.ioNarnePtr = str;
pb.filePararn.ioFDirindex = 0;
pb.filePararn.ioVRefNurn = 0;
pb.fileParam.ioCompletion = nil;
err= PBGetFinfo(&pb,false);

pb.fileParam.ioFlFndrinfo.fdCreator rt;
err= PBSetFinfo(&pb,false);
return;

424 CHAPTER TEN I HYPERCARD

SetCreator - Pascal XCMD

(*

* SetCreator.p - A HyperCard XCMD to set the file creator
* - Written by Dan Allen 10/16/88
* - MPW 3.0 compatible 10/19/88

*
*)

{$R-}
{$Z+}

UNIT DummyUnit;

INTERFACE

USES MemTypes, QuickDraw, OSintf, HyperXCmd;

IMPLEMENTATION

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
TYPE

OSPtr AOSType;
VAR

str: Str255;
err: OSErr;
rt: OSType;
pb: ParamBlockRec;

BEGIN
WITH paramPtrA DO

END;

END.

BEGIN
IF paramCount <> 2 THEN EXIT(EntryPoint);
ZeroToPas(paramPtr,params[l]A,str);
rt := OSPtr(params[2JA)A;
pb.ioNamePtr := @str;
pb.ioFDirindex := O;
pb.ioVRefNum := 0;
pb.ioCompletion := NIL;
err := PBGetFinfo(@pb,FALSE);
pb.ioFlFndrinfo.fdCreator := rt;
err PBSetFinfo(@pb,FALSE);

END;

STRIP - C XFCN 425

Strip - C XFCN

This XFCN is useful for importing into HyperCard text that contains runs of spaces
and tabs. Strip replaces such a sequence of characters with a single space. (Tabs are
deleted by HyperCard as a field containing them is edited.) Again, C and Pascal versions
are presented.

/*
* Strip - XFCN to reduce runs of spaces and tabs to a space
* - Written by Dan Allen in MPW C 10/19/88
* - Fully MPW 3.0 compatible 10/19/88

*
* Sample HyperTalk line:

*
* put strip(field 1) into field 1 -- reduce tabs & spaces

*
*/

#include <HyperXCmd.h>
#include <Memory.h>
#include <Types.h>

pascal void MoveHHiTrap(Handle h) = { Ox205F, OxA064 };

pascal void EntryPoint(XCmdPtr paramPtr)
{

char *p, *q;
Handle h;

if(paramPtr->paramCount != 1) return;
MoveHHiTrap(paramPtr->params[O]);
h = NewHandle(GetHandleSize(paramPtr->params[O]));
if (! h) return;
p = *(paramPtr->params[O]);
q = *h;
while (*p) {

if (*p == '\t' 11 *p
do

' ') {

p++;
while (*p
*q++ f I;

else
*q++ *p++;

'\t' 11 *p

*q = '\0';
paramPtr->returnValue h;

I I) i

426 CHAPTER TEN I HYPERCARD

Strip- Pascal XFCN

(*

* Strip - XFCN to reduce runs of spaces and tabs to a space
* - Written by Dan Allen in MPW Pascal 10/19/88
* - Fully MPW 3.0 compatible 10/19/88

*
* Sample HyperTalk line:

*
* put strip(field 1) into field 1 -- reduce tabs & spaces

*
*)

{$R-}
{$Z+}

UNIT DummyUnit;

INTERFACE

USES MemTypes, QuickDraw, OSintf, HyperXCmd;

IMPLEMENTATION

PROCEDURE MoveHHiTrap(h: Handle); INLINE $205F, $A064;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
CONST

tab = 9;
space = 32;

VAR

h: Handle;
p,q: Ptr;

BEGIN
WITH paramPtrA DO

BEGIN
IF paramCount <> 1 THEN EXIT(EntryPoint);
MoveHHiTrap(params[l]);
h := NewHandle(GetHandleSize(params[l]));
IF h =NIL THEN EXIT(EntryPoint);
p := params[l]A;
q := hA;
WHILE PA <> 0 DO

IF (pA = tab) OR (pA
BEGIN

REPEAT

space) THEN

p := POINTER(ORD(p)+l);
UNTIL (pA <>tab) AND (pA <>space);
qA := space;
q .- Pointer(ORD(q)+l);

END

ELSE
BEGIN

qA := pA;

p := POINTER(ORD(p)+l);
q := Pointer(ORD(q)+l);

END;
qA : = O;

returnValue .- h;
END; { with }

END; { procedure }
END. { unit }

Replace - C XFCN

REPLACE - C XFCN 427

Replace is yet another XCMD that allows text to be imported and exported cleanly.
For example, text downloaded from Usenet contains a carriage return character at the
end of every line. In order to transfer such text into HyperCard nicely, you can call
Replace (return, space, the selection) on a paragraph of selected text; this will
allow TextEdit to treat the text as a single line, doing appropriate word wrap, rather than
as a bunch of lines. Again, C and Pascal versions are presented.

/*
* Replace - XFCN to replace any char by any other char
* - Written by Dan Allen in MPW Pascal 7/20/88
* - Rewritten in C/Asm 9/22/88
* - Fully MPW 3.0 compatible 10/19/88

*
* Sample HyperTalk lines:

*
* put replace(tab,space,field 1) into field 1 -- change tabs to spaces
* put replace ("®",empty, it) -- delegalize the container it

*
*/

#include <Types.h>
#include <Memory.h>
#include <HyperXCmd.h>

pascal void MoveHHiTrap(Handle h) = { Ox205F, OxA064 };

pascal void EntryPoint(XCmdPtr paramPtr)
{

char a,b,*p,*q;
Handle h;

428 CHAPTER TEN I HYPERCARD

if(paramPtr->paramCount != 3) return;
a= **(paramPtr->params[O]);
b = **(paramPtr->params[l]);
MoveHHiTrap(paramPtr->params[2]);
h = NewHandle(GetHandleSize(paramPtr->params[2]));
if (! h) return;
p = *(paramPtr->params[2]);
q = *h;
while(*p) {

*q = (*p == a) ? b *p;
p++; if (*q) q++;

*q = '\0';
paramPtr->returnValue h;

Replace - Pascal XFCN

(*

*
*
*
*
*
*

Replace - XFCN to replace any char by any other char
- Written by Dan Allen 7/20/88
- Fully MPW 3.0 compatible 10/19/88

Sample HyperTalk lines:

* put replace(tab,space,field 1) into field 1 -- replace all tabs w/spaces
* put replace("®", empty, it) -- delegalize the container it

*
*)

{$R-)
{$Z+)

UNIT DummyUnit;

INTERFACE

USES MemTypes, QuickDraw, OSintf, HyperXCmd;

IMPLEMENTATION

PROCEDURE MoveHHiTrap(h: Handle); INLINE $205F, $A064;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
VAR a,b: SignedByte;

h: Handle;
p,q: Ptr;

BEGIN
WITH paramPtrA DO

BEGIN
IF paramCount <> 3 THEN EXIT(EntryPoint);
a := params[l]AA;
b := params[2]AA;
MoveHHiTrap(params[3]);
h := NewHandle(GetHandleSize(params[3]));
IF h =NIL THEN EXIT(EntryPoint);
p := params[3]A;
q := hA;
WHILE PA <> 0 DO

BEGIN
IF pA = a THEN qA := b ELSE qA := pA;
p := Pointer(ORD(p)+l);
IF qA <> 0 THEN q := Pointer(ORD(q)+l);

END;
qA := 0;
returnValue := h;

END; { with }
END; { procedure }
END. { unit }

CPrint - C XCMD

CPRINT - C XCMD 4 2 9

CPrint stands for "container print." It allows you to print a scrolling field's contents,
or perhaps the contents of a large HyperTalk variable. CPrint allows a choice of fonts,
sizes, line heights, and optionally will put up the standard print dialogs. This XCMD is
given here only in C.

CPrint takes advantage of HyperTalk's ability to accept a variable number of pa
rameters. Given only the actual text to print, this XCMD uses Times 12, automatically
computing the line height to use. If more options are given, they override the defaults.
This XCMD is optimized for LaserWriter use, so some of these defaults should be
changed for Image Writer use.

430 CHAPTER TEN I HYPERCARD

/*
* CPrint.c - XCMD to print any container
* - Written by Dan Allen in MPW C 10/1/88
* - MPW 3.0 compatible 10/19/88
* - added dialog flag 3/3/89

*
* Sample HyperTalk lines:

*
* CPrint it -- Prints the container "it" in the default of Times 12
* CPrint field "foo",21,9,11 -- Prints field in Helvetica 9 on 11 pt spacing

*
*/

#include <HyperXCmd.h>
#include <Memory.h>
#include <PrintTraps.h>
#include <TextEdit.h>
#include <Types.h>

pascal void MoveHHiTrap(Handle h) = { Ox205F, OxA064 };

pascal void EntryPoint(XCmdPtr paramPtr)
{

char dialogFlag;
short fontNum,fontSize,lnHt,lines,lpp,pgHt,pages;
long size;
TEP tr tep;
TEHandle te;
THPrint h;
TPPrPort pp;
TPrStatus status;
Re ct
Str31

rect;
str;

InitCursor();
if (paramPtr->paramCount < 1) return;
MoveHHiTrap(paramPtr->params[O]);
HLock(paramPtr->params[O]);

if (paramPtr->paramCount >= 2) {
ZeroToPas(paramPtr,*(paramPtr->params[l]),str);
fontNum = StrToNurn(paramPtr,str);
else fontNum = 20;

if (paramPtr->paramCount >= 3) {
ZeroToPas(paramPtr,*(paramPtr->params[2]),str);
fontSize = StrToNum(pararnPtr,str);
else fontSize = 12;

if (paramPtr->paramCount >= 4) {
ZeroToPas(paramPtr,*(paramPtr->params[3]),str);
lnHt = StrToNum(paramPtr,str);
else lnHt = fontSize + fontSize/3;

CPRINT - C XCMD 4 31

if (lnHt < fontSize) lnHt = fontSize;

dialogFlag = (paramPtr->paramCount ~= 5) ? 1 : 0;
size= StringLength(paramPtr,*(paramPtr->params[O]));
if (size > 32765) return;

h = (THPrint) NewHandle(sizeof(TPrint));
if (!h) return;
PrOpen();
PrintDefault(h);
if (!dialogFlag I I PrStlDialog(h) && PrJobDialog(h)) {

rect = (**h) .rPaper;
InsetRect(&rect,72,72);
pgHt = (rect.bottom - rect.top);
lpp = pgHt/lnHt;
pgHt = lpp*lnHt;
rect.bottom = rect.top + pgHt;

te = TENew(&rect,&rect);
if (!tel return;
tep = *te;
tep->txFont = f ontNum;
tep->txSize = fontSize;
~ep->lineHeight = lnHt;
tep->fontAscent = lnHt - lnHt/4;
TESetText(*(paramPtr->params[OJ),size,te);
lines = (**te) .nLines;
pages = lines*lnHt/pgHt;
if (lnHt*lines > pgHt*pages) pages++;

432 CHAPTER TEN I HYPERCARD

pp= PrOpenDoc(h,nil,nil);
(**te) .inPort = (GrafPtr) pp;
while (pages--) {

PrOpenPage(pp,nil);
TextFont(fontNum);
TextSize(fontSize);
TEUpdate(&rect,te);
PrClosePage(pp);
TEScroll(O,-pgHt,te);

PrCloseDoc (pp);
TEDispose(te);
if ((**h) .prJob.bJDocLoop == bSpoolLoop)

PrPicFile(h,nil,nil,nil,&status);

PrClose();
DisposHandle((Handle) h);
HUnlock(paramPtr->params[O]);

DateDMY- Pascal XFCN

This XFCN is provided only in Pascal. It returns the current (or specified) date in
what is sometimes known as the military date format-that is, 29 Mar 1989.

(*

*
*

DateDMY.p A HyperCard XFCN to return the date in DD MMM YYYY format
- Written by Dan Allen 8/16/88

*
*)

{$R-}
{$Z+}

- Fully MPW 3.0 compatible

UNIT DummyUnit;

INTERFACE

USES
Memtypes, Quickdraw, OSintf, HyperXCmd;

IMPLEMENTATION

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
VAR

i,secs:
monthName:
str,str2:
date:

Longint;
STRING[3];
Str255;
DateTimeRec;

BEGIN
WITH paramPtrA DO

BEGIN
IF paramCount <> 1 THEN

GetDateTime(secs)
ELSE

BEGIN
ZeroToPas(paramPtr,params[l]A,str);
secs := StrToNum(paramPtr,str);

END;

Secs2Date(secs,date);
i := date.day;
LongToStr(paramPtr,i DIV 10,str);
LongToStr(paramPtr,i MOD 10,str2);
str := Concat(str,str2);

CASE date.month OF
1: monthName := 'Jan';

2: monthName .- 'Feb';

3: monthName 'Mar';

4: monthName := 'Apr';

5: monthName 'May';

6: monthName ·= 'Jun';

7: monthName ·= 'Jul I j

8: monthName ·= 'Aug';

9: monthName 'Sep';

10: monthName 'Oct';

11: monthName := 'Nov';

12: monthName := 'Dec'
END;
LongToStr(paramPtr,date.year,str2);

DA TED MY - PASCAL XFCN

returnValue := PasToZero(paramPtr,Concat(str,' ',monthName,' ',str2));
END; { with }

END; { procedure
END. { unit }

433

434 CHAPTER TEN I HYPERCARD

Conclusion

This chapter looked briefly at HyperCard and its object-oriented language,
HyperTalk. Next, it presented a series of scripts and stacks that demonstrated various
features of HyperCard and HyperTalk.

Finally, the chapter looked at how you can extend HyperTalk by writing XCMDs and
XFCNs. Numerous examples were given. Although it takes a programmer to write
XCMDs and XFCNs, anyone fluent in HyperTalk can use them.

Recommended Reading

As of this writing, the definitive language reference manual for HyperTalk is the
Apple publication entitled the HyperCard Script Language Guide. This is the only one of
the many books on HyperTalk that was personally reviewed by the engineers who cre
ated HyperCard and HyperTalk. (Dan Winkler and I were the main two reviewers.)

Many of the HyperTalk books on the market are worthless, but a few bear mention
ing. First, there are Danny Goodman's Complete HyperCard Handbook and HyperCard
Developers Guide. These books are a bit lengthy, but they are appropriate choices if you
are new to scripting and XCMDs. A good introduction to XCMD writing-with lots of
examples-can be found in Gary Bond's XCMDs for HyperCard.

My personal favorite is Lon Poole's excellent quick reference guide entitled simply
HyperTalk, from Microsoft Press. It is small, easy to use, complete, accurate, and af
fordable. Once you know the basics of HyperTalk, this is the book you will use the
most.

Two other books are soon to be released by the author of HyperTalk, Dan Winkler.
These should become definitive works on the subject.

MACINTOSH
CHARACTER SET

Decimal Meaning Decimal
0 NUL- Null 16

1 SOH - Start of Heading 17

2 STX - Start of Text 18

3 ETX - End of Text 19

4 EOT - End of Transmission :J)

5 ENQ - Enquiry 21

6 ACK - Acknowledge 22
7 BEL- Bell Z3

8 BS - Backspace 24

9 HT - Horizontal Tab 25

10 LF - Line Feed 26

11 VT - Vertical Tab Zl

12 FF ~ Form Feed 28

13 CR - Carriage Return 'B

14 SO - Shift Out])

15 SI - Shift In 31

APPENDIX

Meaning
DLE - Data Link Escape

DC 1 - Device Control 1

DC2 - Device Control 2
DC3 - Device Control 3

DC4 - Device Control 4

NAK - Negative Acknowledge

SYN - Synchronous Idle

ETB - End of Transmission Block

CAN -Cancel

EM - End of Medium

SUB - Substitute

ESC - Escape

FS - File Separator
GS - Group Separator

RS - Record Separator

US - Unit Separator

435

436 APPENDIX

32 77 M 122 z 167 B 212 '
33 78 N 123 I 168 ® 213 '
34 79 0 124 I 169 © 214 -,.-

35 # 80 p 125 I 170 TM 215 0
36 $ 81 Q 126 171 , 216 y
37 % 82 R 127 172 .. 217 y
38 & 83 s 128 A 173 -:#: 218 I
39 84 T 129 A 174 1E 219 a
40 85 u 130 c; 175 0 220 <

41 86 v 131 E 176 00 221 >

42 * 87 w 132 N 177 ± 222 fi
43 + 88 x 133 6 178 ::; 223 ft
44 89 y 134 D 179 ;;::: 224 t
45 90 z 135 a 180 ¥ 225
46 91 [136 a. 181 µ 226
47 I 92 \ 137 a 182 a 227
48 0 93] 138 a 183 I. 228 %0
49 1 94 /\ 139 a 184 n 229 A
50 2 95 140 a 185 1t 230 :E
51 3 96 141 ~ 186 J 231 A
52 4 97 a 142 e 187 232 E
53 5 98 b 143 e 188 Q 233 E
54 6 99 c 144 e 189 Q 234 f
55 7 100 d 145 e 190 a: 235 i
56 8 101 e 146 191 !Zl 236 I
57 9 102 f 147 192 l 237 I
58 103 g 148 193 238 6
59 104 h 149 i" 194 -, 239 6
60 < 105 150 ii 195 -J 240 • 61 = 106 j 151 6 196 f 241 6
62 > 107 k 152 0 197 242 (J
63 ? 108 153 6 198 ~ 243 0
64 @ 109 m 154 0 199 « 244 u
65 A 110 n 155 6 200 » 245
66 B 111 0 156 ti 201 246 ~

67 c 112 p 157 u 202 247 -
68 D 113 q 158 ii 203 A 248 -
69 E 114 r 159 ii 204 A 249 v

70 F 115 s 160 t 205 6 250
71 G 116 t 161 0 206 CE 251 0

72 H 117 u 162 ¢ 207 ce 252
>

73 I 118 v 163 £ 208 253 -
74 J 119 w 164 § 209 254
75 K 120 x 165 210 " 255 v

76 L 121 y 166 ~ 211 "

BIBLIOGRAPHY

This annotated bibliography contains works I used in preparing this book as well as
other books I have found useful over the years. If more than one edition of a work was
published, you will see the first year it was published and the year in which the most re
cent edition was published. My notes may include a listing of the topics covered, and, in
some cases, my opinion concerning what areas of the book are particularly useful.

The bibliography is divided into the following areas:

• Algorithms

• The C programming language

• Compiler construction and computer languages

• Desktop publishing and graphics

• Handbooks

• Hardware

• History of computers

• HyperCard and HyperTalk

• Information theory

• Logic
• Macintosh

• Mathematics

• Object-oriented programming

• Operating systems

• The Pascal language

• Physics and astronomy

• Software engineering

• Software tools

• Symbolic algebra
• Symbolic manipulation and artificial intelligence

437

438 BIBLIOGRAPHY

Algorithms

Aho, Alfred V., John E. Hopcroft, Jeffrey D. Ullman. Data Structures and Algorithms. Reading, MA:
Addison-Wesley, 1983, 1985. Algorithm analysis and design techniques; running time of programs;
lists, stacks, queues, mappings, recursive procedures; trees; abstract data types (ADT); basic operations
on sets, including dictionaries, hash tables, priority queues; tries; directed graphs; sorting; external
storage; memory management. Examples use Pascal.

Baase, Sara. Computer Algorithms: Introduction ro Design and Analysis. Reading, MA: Addison-Wesley,
1988. Sorting; selection and adversary arguments; graphs and digraphs; string matching; dynamic
programming; polynomials, matrices, and FFf; transitive closure, Boolean matrices, and equivalence
relations; NP-Complete problems; parallel algorithms. Algorithms are presented in a language similar
to Modula-2.

Chartrand, Gary. Introductory Graph Theory. New York: Dover, 1977. Mathematical models, graphs,
networks; elementary concepts of graph theory. Transportation problems, including the Konigsberg
Bridge Problem (introduction to Eulerian graphs) and the Salesman's Problem (introduction to
Hamiltonian graphs). Connection problems, including the Minimal Connector Problem (introduction
to trees), and PERT and the Critical Path Method. Party problems, including the Problem of the
Eccentric Hosts (introduction to Ramsey numbers) and the Dancing Problem (introduction to
matching). Games and puzzles, including Knight's Tour, Tower of Hanoi, Cannibals and Missionaries
Problem. Digraphs, including a Traffic System Problem and Tournaments. Planar graphs, coloring
problems (Four Color Problem), Scheduling Problem (introduction to chromatic numbers). Appendix
on sets, relations, functions, and proofs.

Folk, Michael J., Bill Zoellick. File Structures: A Conceptual Toolkit. Reading, MA: Addison-Wesley,
1987. File structures as opposed to data structures. Information retrieval; sorting and searching;
indexing; cosequential processing; tree access methods, B-trees, B* and B+ trees; hashing. Examples in
C and Pascal. Appendices on string functions in Pascal and on the C programming language.

Gonnet, Gaston H. Handbook of Algorithms and Dara Structures. London: Addison-Wesley, 1984. This
wonderful volume contains the important algorithms of computer science. It covers searching, sorting,
selection, and arithmetic algorithms. Particular detail is given to hashing. The algorithms are given in
appendices in C and Pascal. A highly recommended reference handbook.

Graham, Ronald L., Donald E. Knuth, Oren Patashnik. Concrete Mathematics. Reading, MA: Addison
Wesley, 1989. A book about CONtinuous as well as disCRETE mathematics. Chapters cover recurrent
problems, sums, integer functions, number theory, binomial coefficients, special numbers, generating
functions, discrete probability, and asymptotics. Interesting subtopics include primes, mod, hashing,
and big 0 manipulation. The book's formulas are typeset in AMS Euler, a new font. Humoreus
sidebars. Excellent compendium of information never gathered together before. Recommended.

Gries, David. The Science of Programming. New York: Springer-Verlag, 1981. Proving programs correct,
logic, programming language semantics.

Knuth, Donald E. Art of Computer Programming-Fundamental Algorithms. Reading, MA: Addison
Wesley, I 968, 1973. This remarkable volume is advanced, historical, and a classic. It contains a good

BIBLIOGRAPHY 439

introduction to the mathematics needed for algorithm analysis and introduces a hypothetical assembly
language called MIX, in which information structures are then presented. Knuth's style is readable, his
scope is encyclopedic, and his subject is at the core of all programming. An absolute must-have
reference for every computer scientist.

Knuth, Donald E. Art of Computer Programming-Seminumerical Algorithms. Reading, MA: Addison
Wesley, 1969, 1981. This second volume in Knuth's set is the definitive reference on random
numbers and the basis of computer arithmetic. The latter portion of the book provides information that
is useful for implementing symbolic manipulation packages.

Knuth, Donald E. Art of Computer Programming-Sorting and Searching. Reading, MA: Addison
Wesley, 1973. This third volume of the unfinished seven-volume set is the definitive reference on
sorting and searching. Knuth clearly presents and analyzes many different algorithms in a way that
makes this book a classic and that leaves the reader wanting the final four volumes of the set.

Purdom, Paul W., Cynthia A. Brown. The Analysis of Algorithms. New York: Holt, Rinehart &
Winston, 1985. Recurrence relations, NP Completeness, statistics, math.

Sedgewick, Robert. Algorithms. Reading, MA: Addison-Wesley, 1983, 1988. Fundamentals, including
Pascal, data structures, trees, recursion, analysis and implementation of algorithms; sorting, quicksort,
priority queues, mergesort, radix and external sorting; searching, binary and balanced trees, hashing,
radix and external searching; string processing, Knuth-Morris-Pratt, Boyer-Moore, Rabin-Karp
algorithms, pattern matching, parsing, file compression, and cryptology; geometric algorithms, finding
convex hull, range-searching, geometric intersection, closest-point problems; graph algorithms,
connectivity, weighted and directed graphs, network flow; math algorithms, random numbers,
arithmetic, Gaussian elimination, curve-fitting, integration; parallel algorithms, Fast Fourier Transform
(FFT), dynamic and linear programming, exhaustive search, NP-Complete problems. Algorithms in
Pascal.

Tucker, Alan. Applied Combinatorics. New York: Wiley, 1980. Pigeonhole Principle; Mastermind;
binomial coefficents; generating functions; recurrence relations, graph theory, network algorithms,
Traveling Salesman problem.

Van Wyk, Christopher J. Data Structures and C Programs. Reading, MA: Addison-Wesley, 1988. Part 1
covers the complexity of algorithms, pointers and dynamic storage, stacks and queues, linked lists, and
memory organization. Part 2 covers searching, hashing, sorted lists, priority queues, sorting, and
applying data structures. Part 3 covers acyclic and regular graphs. Appendices summarize C and library
functions.

Wirth, Niklaus. Algorithms and Data Structures. Englewood Cliffs, NJ: Prentice-Hall, 1983. Sorting,
searching, recursion, lists, trees. Examples are given in Modula-2. Not as good as his original Pascal
text.

Wirth, Niklaus. Algorithms +Data Structures = Programs. Englewood Cliffs, NJ: Prentice-Hall, 1976.
Sorting, searching, recursion, lists, trees, compiler construction. A well-written text that shows
algorithm development using Pascal. The book's chapters build upon one another and culminate in full
Pascal source code to a PL/O compiler, a subset of PL/1. Highly recommended.

440 BIBLIOGRAPHY

The C Programming Language

Barkakati, Naba. The Waite Group's Essential Guide to ANSI C. Indianapolis: Howard W. Sams, 1988. A
quick reference guide to ANSI C. Includes an overview of ANSI C, the C preprocessor, the C language,
and the C library. Details the 146 functions found in the C standard libraries. Very readable.

Bolsky, M.I. The C Programmer's Handbook. Englewood Cliffs, NJ: Prentice-Hall, 1985. Syntax, data
types, operators, and expressions; statements; functions; declaration; preprocessor; program structure;
1/0 library; other libraries; formatted input/output; portable C programs; character set. A handy
reference to the C programming language, although it has not yet been revised to cover ANSI C.

Dr. Dobbs. Dr. Dobbs' Too/book of C. New York: Prentice-Hall, 1986. The C programming language;
how compilers work; full C source code is given for The Small-C Compiler, a macro assembler,
Getargs, Cross-Reference Generator, and Small-Tools: Programs for Text Processing; CP/M BOOS and
BIOS calls; Grep.c; optimizing strings in C.

Feuer, Alan R. The C Puzzle Book. Englewood Cliffs, NJ: Prentice-Hall, 1982. Puzzles for the C
programming language, with solutions.

Harbison, Samuel P., Guy L. Steele. AC Reference Manual. Englewood Cliffs, NJ: Prentice-Hall, 1984,
1987. Lexical elements; C preprocessor; declarations; types; conversions; expressions; statements;
functions; program structure; ANSI C; the C libraries; character processing; string processing; memory
functions; input/output facilities; storage allocation; math functions; time/date functions; control
functions. Appendices on the ASCII character set and syntax of the C language. This is a good book for
implementors of the C language.

Hogan, Thom. The C Programmer's Handbook. Bowie, NJ: Brady, Prentice-Hall, 1984. A description of
the C language. Appendices include a bibliography of books on C and an ASCII character chart.

Holub, Allen I. The C Companion. Englewood Cliffs, NJ: Prentice-Hall, 1987. This book explains some
of the more esoteric concepts of the programming language C. Chapters cover the C compiler; binary
arithmetic; assembly language; code generation and subroutine linkage; structured programming and
stepwise refinement; pointers; recursion and compiler design; the anatomy of Printf(); debugging.

Kernighan, Brian W., Dennis M. Ritchie. The C Programming Language. Englewood Cliffs, NJ: Prentice
Hall, 1978, 1988. The C reference manual and language report, written by the authors of the C
language. The second edition includes an updated reference manual for proposed ANSI C. The book's
programs have been rewritten in the new style and include many interesting examples. Appendices
include the reference manual, a full summary of the standard C libraries, and a description of the
changes between the first and second editions of this book. Highly recommended. An essential bedside
reference.

Koenig, Andrew. C Traps and Pitfalls. Reading, MA: Addison-Wesley, 1989. Lexical pitfalls, syntactic
pitfalls, semantic pitfalls, linkage, library functions, the preprocessor, portability pitfalls, advice and
answers. Includes an appendix on printf.

BIBLIOGRAPHY 441

Plauger, P. J., Jim Brodie. Standard C: Programmer's Quick Reference. Redmond, WA: Microsoft Press,
1989. A quick reference guide to ANSI/ISO C. The language sections include characters, preprocessing,
syntax, types, declarations, functions, and expressions. The standard C libraries include assert.h,
ctype.h, errno.h, float.h, limits.h, locale.h, math.h, setjmp.h, signal.h, stdarg.h, stddef.h, stdio.h,
stdlib.h, string.h, time.h. Two appendices detail portability issues and names. Unfortunately, the
presentation is hard to follow (too many diagrams and type styles), which makes getting the
information harder than it should be.

Tondo, Clovis L., Scott E. Gimpel. The C Answer Book. Englewood Cliffs, NJ: Prentice Hall, 1985.
Solutions to the exercises found in The White book, The C Programming Language.

Compiler Construction and Computer
Languages

Aho, Alfred V., Jeffrey D. Ullman. Principles of Compiler Design. Reading, MA: Addison-Wesley, 1977,
1979. This is the original "dragon book" about writing compilers. Topics include programming
languages, finite automata and lexical analysis; parsing techniques, automatic construction of efficient
parsers; syntax-directed translation; symbol tables; error detection; code and loop optimization; data
flow analysis. A look at some compilers and a compiler project. Examples use Pascal.

Aho, Alfred V., Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986. Referred to as the "new dragon book," this mainly theoretical classic
covers syntax-directed translation, parsing, lexical analysis, symbol tables, finite automata, syntax
analysis, type checking, run-time environments, intermediate code generation, code optimization.
Studies of EQN, Pascal, C, Fortran H, Bliss/I I, and Modula-2 compilers. The appendix contains the
details of a compiler construction project. Examples in C and Pascal. The opening chapters present C
source code for a simple syntax-directed infix-to-postfix translator. An essential bedside reference.

Fischer, Charles N. Crafting a Compiler. Menlo Park, CA: Benjamin Cummings, 1988. Compiler
construction using Ada/CS. Scanning, grammars and parsing, LL(!) grammars, LR parsing, semantic
processing, symbol tables, run-time storage organization, processing declarations, processing
expressions and data structure references, translating control structures, translating procedures and
functions, attribute grammars and muitipass translation, code generation and local code optimization,
global optimization, parsing in the real world. Six appendices.

Ghezzi, Carlo, Mehdi Jazayeri. Programming Language Concepts. New York: John Wiley & Sons, 1982,
1987. Software development process; computer architecture and programming languages; historical
perspective; preview: evolution of concepts in programming languages; the structure of programming
languages; data types; control structures; programming in the large; functional and logic programming.

Hopcroft, John E., Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Reading, MA: Addison-Wesley, 1979. Finite automata and regular expressions; properties of regular
sets; context-free grammars and languages; Turing machines; undecidability; Chomsky hierarchy;
deterministic context-free languages; closure properties of families of languages; computational
complexity theory; intractable problems.

442 BIBLIOGRAPHY

Horowitz, Ellis. Fundamentals of Programming languages. Rockville, MD: CS Press, 1983. An
overview of the history of programming languages and their variety.

Kane, Gerry, Doug Hawkins, Lance Leventhal. 68000 Assembly language Programming. Berkeley, CA:
Osborne/McGraw Hill, 1981, 1986.

Pyster, Arthur B. Compiler Design and Construction. New York: Van Nostrand Reinhold, 1980, 1988.
This is the most practical of the compiler texts. Chapters include compiler overview; lexical analysis;
recursive descent parsing; LL(!) parsing; LR(!) parsing; syntax-directed translation; run-time
environments; datatypes and intermediate code; code optimization; code generation. Includes C sources
for Ginevra, a C mini-preprocessor; Cecilia, an expression compiler; Gioconda, a lexical analyzer
generator; Express, a language of arithmetic expressions; and Marli, an LL(I) parser generator. Includes
lex code for lexical analyzers for both Pascal and C, as well as yacc code for a full Pascal grammar. A
useful book that gives a good head start on writing a compiler. Highly recommended. An essential bed
side reference.

Schreiner, Friedman Jr. Introduction to Compiler Construction with Unix. Englewood Cliffs, NJ: Prentice
Hall. A good practical introduction to using lex and yacc to make a simple version of a C compiler.

Terry, Patrick D. Programming language Translation. Wokingham, England: Addison-Wesley, 1986. This
book gives lots of sources to recursive descent parsers. Chapters cover translators and interpreters;
simple assemblers; advanced assembler features; languages and grammars; top-down parsing; a simple
compiler; block structure and storage management; concurrent programming; data abstraction.
Appendices include cross-references for the macro-assembler and the CLANG compiler, as well as a
CLANG specification. Includes twelve listings of programs written in Pascal. Highly recommended.

Tremblay, Sorenson. An Implementation Guide to Compiler Writing. New York: McGraw Hill, 1982. A
companion volume to The Theory and Practice of Compiler Writing, this volume provides full PL/I
source code to a GAUSS compiler, GAUSS being a string-oriented Algol-like block structured
language.

Tremblay, Sorenson. The Theory and Practice of Compiler Writing. New York: McGraw Hill, 1985. A
theoretical look at compiler construction. Includes an interesting chapter on programming language
design, with a look at the design of the Ada language.

Tucker, Allen B. Programming languages. New York: McGraw-Hill, 1977, 1986. A systematic and in
depth study of eleven programming languages: Ada, APL, C, COBOL, FORTRAN, LISP, Pascal,
PL/I, Prolog, Snobol, and Modula-2. Also includes chapters related to language design on semantics,
syntax, and pragmatics. Languages are compared and evaluated against nine criteria: expressivity, well
definedness, data types and structures, modularity, input/output facilities, portability, efficiency,
pedagogy, and generality.

BIBLIOGRAPHY 443

Desktop Publishing and Graphics

Adobe Systems. PostScript Language Reference Manual. Reading, MA: Addison-Wesley, 1985. Raster
output devices; scan conversion; page description languages; interpreter; syntax; data types and objects;
stacks; execution; virtual memory; operator overview; graphics; path construction, coordinate systems
and transformations; painting; images; colors and halftones; fonts; character encoding; font metric
information; font cache. List of operators. Appendix on the Apple LaserWriter.

Adobe Systems. PostScript Language Tutorial and Cookbook. Reading, MA: Addison-Wesley, 1985.
PostScript as a page description language (POL). Stack and arithmetic; beginning graphics; procedures
and variables; printing text; loops and conditionals; arrays; more fonts; clipping and line details;
images; PostScript printers (Apple LaserWriter). This cookbook includes 21 example Postscript
programs.

Foley, James D., Andries Van Dam. Fundamentals of Interactive Computer Graphics. Reading, MA:
Addison-Wesley, 1982, 1983. Geometrical transformations, hidden line algorithms, and shading.

Holzmann, Gerard J. Beyond Photography: The Digital Darkroom. Englewood Cliffs, NJ: Prentice Hall,
1988. Image processing, digital photos and cameras, scanners; transformations, Cartesian and polar
coordinates; point and area processes; altered images. Full sources in C for a portable picture editor
(popi) are given, including a lexical analyzer, parser, file handler, and interpreter. Catalogs various
image transformations, including making a negative, logarithmic correction, simulated solarization,
contrast expansion and normalization, focus restoration, blurring, enlarging and reducing by a factor,
mirroring, flipping and rotating, relief, grid transforms, oil transfer, picture shear, slicing, tiling,
melting, and making a matte. A good practical introduction to the topic.

Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989. An
advanced highly mathematical text covering image representation, modeling, enhancement, restoration,
analysis, reconstruction, and data compression. A math introduction details Fourier and Z
transformations, MTF, matrices, random signals. Sampling theory; image transformation, including
unitary, DFT, cosine, sine, Hadamard, Haar, slant, and KL. Stochastic modeling, image filtering,
Bayesian methods, PCM coding, and many more topics.

Knuth, Donald E. Computers and Typesetting-The T£Xbook. Reading, MA: Addison-Wesley, 1986.
This is the user manual of a document preparation language called TEX. Chapters cover book printing
versus ordinary typing; controlling TEX; fonts of type; grouping; dimensions; boxes; glue; modes;
typing math formulas; displayed equations; definitions; making boxes; alignment; breaking paragraphs
into lines; making lines into pages.

Knuth, Donald E. Computers and Typesetting-TEX: The Program. Reading, MA: Addison-Wesley,
1986. This book contains the full source code to TEX. It is written in a literate form of Pascal called
Web. Interesting sections detail the algorithms of TEX, including dynamic memory allocation, the
semantic nest, hash tables, token lists, syntactic routines, scanning routines, typesetting math
formulas, breaking paragraphs into lines, hyphenation, building pages, etc.

444 BIBLIOGRAPHY

Knuth, Donald E. Computers and Typesetting-The Metafont Book. Reading, MA: Addison-Wesley,
1986. The user manual for an interesting font-description language called Metafont. Chapters cover
using Metafont, coordinates, curves, pens, variables, algebraic expressions, equations, assignments,
magnification and resolution, boxes, drawing, filling, erasing, paths, transformations, calligraphic
effects, grouping, definitions (macros), conditions and loops, random numbers, strings, and font metric
information.

Knuth, Donald E. Computers and Typesetting-Metafont: The Program. Reading, MA: Addison-Wesley,
1986. This book contains the full source code to Metafont. It is written in a literate form of Pascal
called Web. Interesting sections detail the algorithms of Metafont, including arithmetic, algebraic and
transcendental functions, hash tables, token lists, path and edge structures, filling contours and
envelopes, polygonal and elliptical pens, dynamic linear and nonlinear equations, macro processing,
parsing, and command interpretation.

Knuth, Donald E. Computers and Typesetting-Computer Modern Typefaces. Reading, MA: Addison
Wesley, 1986. An introduction to the parameters of the Computer Modem typeface family; 62
parameters are described and then varied, with the resulting fonts displayed.

Letraset. Graphic Materials Handbook. Paramus, NJ: Letraset, 1962, 1987. This is a catalog of fonts,
PANTONE color-matching system, various patterns, and other materials used in graphic arts design.
Includes Times, Helvetica, and Zapf fonts.

McLean, Ruari. The Thames and Hudson Manual of Typography. London: Thames and Hudson, 1980,
1988. The art and skill of designing printed matter is treated as follows: historical outline; studio and
equipment; legibility; lettering and calligraphy; letters for printing, classification of typefaces, sans
serif type, a font of type, the point system and measurement of letters; methods of composition, hot
metal machine and cold-metal setting, filmsetting, computers; paper, watermarks, paper kinds and
terms, paper sizes, the weight of paper; cast-off and layout; book design, margins, paper size and shape,
grids, bleeds; the parts of a book, prelims, main text, captions, appendices, bibliography, index, end
papers, case, jackets; jobbing typography, letterheads, tables, calendars, ambiguity, posters; newspaper
and magazine typography.

Skillin, Marjorie. Words Into Type. Englewood Cliffs, NJ: Prentice-Hall, 1974, 1978. The classic work in
the field of publishing. Chapters cover authorship and printing; manuscripts, footnotes, tables,
bibliographies, copyright law, copy and proof, layout, indexes, abbreviations, capitalization,
punctuation, typographical style, composition of foreign languages, grammar, verbs, nouns, use of
words, wordiness, spelling, typography, illustration, mechanics of composition, type measurement,
points, the em, typefaces, photocomposition, paper, book sizes, and binding.

Ulichney, Robert. Digital Hal/toning. Cambridge, MA: MIT Press, 1987. Physical reconstruction
functions, grid geometries; tools for Fourier analysis; dithering with white noise; clustered-dot ordered
dither; dispersed-dot ordered dither, recursive tessellation; ordered dither on asymmetric grids; dithering
with blue noise.

University of Chicago Press. The Chicago Manual of Style. Chicago: University of Chicago Press, 1906,
1982. The classic work from the field of document style. Chapters cover bookmaking, manuscript
preparation and copyediting, proofs, rights and permissions, style, punctuation, spelling, names and

BIBLIOGRAPHY 445

terms, numbers, foreign languages in type, quotations, illustrations, captions, legends, tables,
mathematics in type, abbreviations, documentation, references, notes, bibliographies, indexes,
production and printing, design and typography, composition, and binding.

Handbooks
Abramowitz, Milton, Irene A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964,

1972. With formulas, graphs, and tables. Mathematical and physical constants; analytical methods;
elementary transcendental functions; special functions; combinatorial analysis; numerical interpolation,
differentiation and integration; probability functions; Laplace transformations. The standard reference
book for values of mathematical functions.

Aland, Kurt, Eberhard Nestle. Greek-English New Testament. Stuttgart: Deutsche Bibelgesellschaft, 1981,
1986. Combined edition of Greek and English New Testaments. Uses the 26th edition of the Nestle
Greek text and the 2nd edition of the Revised Standard Version (RSV) English text. Includes four
appendices on codices, citations, textual differences between different Greek and English versions, and
abbreviations. Clothbound, approximately 1,500 pages.

Allen, C. W. Astrophysical Quantities. London: William Clowes, 1973. Tables listing all known weights
and measurements of the planets, stars, and universe. An essential reference work, although a bit dated
now.

Ballou, Glen, editor. Handbook for Sound Engineers: The New Audio Cyclopedia. Indianapolis: Howard
W. Sams, 1987. The classic work in the field of audio engineering. Chapters cover fundamentals of
sound and acoustics; acoustical design of audio rooms for speech, music; electronic components for
sound engineering, including resistors, capacitors, inductors, transformers, tubes, discrete solid-state
devices, integrated circuits, heat sinks, wire, and relays; electroacoustic devices, including microphones,
loudspeakers, enclosures and headphones; audio electronic circuits and equipment, including amplifiers,
attenuators, filters, equalizers, delay, power supplies, constant and variable speed devices, consoles;
disk, magnetic, and digital recording and playback; sound system design; the broadcast chain; image
projection; audio measurements, fundamentals, and units. An essential reference.

Berkow, Robert. M.D., editor. The Merck Manual of Diagnosis and Therapy. Rahway, NJ: Merck, 1947,
1987. The classic work in the field of medical diagnosis. Covers infectious and parasitic diseases,
immunology; allergic, hematologic, cardiovascular, respiratory, genitourinary, gastrointestinal, hepatic
disorders; gynecology, child care, ear, nose, and throat disorders; dental, opthalmic, nutritional,
endocrine, musculoskeletal, neurologic, psychiatric, and dermatologic disorders; venereal diseases;
poisoning; prescriptions.

Beyer, William H. CRC Standard Mathematical Tables. Boca Raton, FL: CRC Press, 1964, 1974.
Constants, conversion factors; algebra; combinatorial analysis; geometry; trigonometry; logarithmic,
exponential and hyperbolic functions; analytic geometry; calculus; differential equations; special
functions; numerical methods; probability and statistics; financial tables; mathematical symbols and
abbreviations. This useful perennial seems to have a few errors in the integral tables these days.

446 BIBLIOGRAPHY

Chemical Rubber Co. The CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press,
1973. Physics, chemistry, mathematical tables.

Diem, K., C. Lentner. Scientific Tables. Basie, Switzerland: Ciba-Geigy, 1970. Mathematics, statistics,
physics, physical chemistry, biochemistry, nutrition, composition and functions of the body, body
fluids, body measurements, hormones.

Hoffman, Mark S., editor. World Almanac and Book of Facts 1988. New York: Pharos Books, 1868,
1988. Lists and tables about countries, history, sports, education, employment, health, medicine,
population, etc.

Jordan, Edward C., editor in chief. Reference Data for Engineers: Radio, Electronics, Computer, and
Communications. Indianapolis: Howard W. Sams, 1943, 1986. The classic work in the field of radio
engineering, this work has recently been renamed and expanded to include post-radio technology.
Chapters cover frequency data; units, constants, conversion factors; properties of materials; networks,
Fourier waveform analysis; transformers, rectifiers, filters, power supplies; semiconductors, transistors,
circuits; optical, analog, satellite, space, and digital communications and signal processing; information
theory, computers; broadcasting, recording standards; electroacoustics; lasers; logic design; mathematical
tables, data, and equations. An essential reference.

Liddell, Scott. Greek-English lexicon. Oxford, England: Oxford University Press, 1983. The canonical
Greek-English dictionary.

Menzel, Donald H. Fundamental Formulas of Physics. New York: Dover, 1955, 1960. A good
compilation of essential mathematical and physics formulas, in two volumes.

Oxford. Oxford English Dictionary. Oxford, England: Oxford University Press, 1930. A massive small
print dictionary of English word usage-the compact version of the OED includes a magnifying glass!
Differs from most dictionaries by giving actual usage of a word by quoting passages from historical
documents taken from literature, history, and science. The epic tome on the English language.

Pearson, Carl E. Handbook of Applied Mathematics. New York: Van Nostrand Reinhold, 1974, 1983.
Formulas from algebra, trigonometry, analytic geometry; elements of analysis; vector and tensor
analysis; complex variables; differential equations; special functions; PDEs; integral equations;
transform methods; asymptotic methods; oscillations; perturbation methods; wave propagation;
matrices and linear algebra; functional approximation; numerical analysis; mathematical models and
their formulation; optimization techniques; probability and statistics.

Sennitt, Andrew G., editor. World Radio TV Handbook. New York: Billboard Publications, 1964, 1988.
World radio and television stations by country and frequency. Includes SW, MW, LW, AM, FM, and
TV. Lists broadcast times. Includes receiver specifications, world maps, reference sections on band
selection, reception conditions, solar activity, and world time.

Tuma, Jan J. Handbook of Physical Calculations. New York: McGraw-Hill, 1976. A good source book of
physics and engineering formulas, including statics and dynamics of rigid bodies; mechanics of
deformable bodies, fluids, heat, and gases; electrostatics and electric current; magnetism and

BIBLIOGRAPHY 447

electrodynamics; vibration and acoustics; geometrical and wave optics. Dozens of appendices, including
physical tables and unit conversions. Recommended.

Tuma, Jan J. Technology Mathematics Handbook. New York: McGraw-Hill, 1975. Another source book,
this time covering the mathematics used in science and engineering. Includes basic arithmetic; algebra;
plane, space, and plane analytic geometry; differential and integral calculus; scalars, vectors, matrices;
series and numerical procedures. Appendices include units, numerical tables, and metric conversions.
Recommended.

Webster, Daniel. Webster's New World Dictionary of American English, Third College Edition. New
York: Simon & Schuster, 1988. All dictionaries are not alike. After a long search, I have decided that
this is the best one-volume dictionary around. It has excellent word etymologies, many Americanisms,
and a good selection of older words otherwise found only in the Oxford English Dictionary. Make sure
you do not get a "student's" version, as it is abbreviated.

Hardware

Kane, Gerry, Doug Hawkins, Lance Leventhal. 68000 Assembly Language Programming. Berkeley, CA:
Osborne I McGraw-Hill, 1981, 1986. Many examples of simple assembly routines; 1/0 with 6820 and
6850 chips.

Keyes, Robert W. The Physics of VLSI Systems. Wokingham, England: Addison-Wesley, 1987.
Microelectronics and integration; semiconductors and semiconductor devices; physical representation of
information; energy and voltage; information storage; IC fabrication; limits to miniaturization; large
systems; performance; alternative logic technologies.

Motorola. MC68000 8116132-Bit Microprocessors Programmer's Reference Manual. Englewood Cliffs,
NJ: Prentice-Hall, 1979, 1986. Architectural description; data organization and addressing capabilities;
instruction set summary; exception processing. Appendices cover condition codes computation;
instruction set details; instruction format summary; MC68000 instruction execution times; MC68008
instruction execution times; MC68010/MC68012 instruction execution times; MC68010/MC68012
loop mode operation.

Motorola. MC68020 32-Bit Microprocessor User's Manual. Englewood Cliffs, NJ: Prentice-Hall, 1984,
1985. Data organization and addressing capabilities; instruction set summary; signal description; bus
operation; processing states; on-chip cache memory; coprocessor interface description; instruction
execution timing; electrical specifications; ordering information and mechanical data. Appendices cover
condition codes computation, instruction set, instruction format survey, advanced topics, MC68020
extensions to M68000 family.

Motorola. MC68030 Enhanced 32-Bit Microprocessor User's Manual. Englewood Cliffs, NJ: Prentice
Hall, 1987. Data organization and addressing capabilities; instruction set; processing states; signal
description; on-chip cache memories; bus operation; exception processing; memory management unit;
coprocessor interface description; instruction execution timing; applications information; electrical
specifications; ordering information and mechanical data.

448 BIBLIOGRAPHY

Motorola. MC68851 Paged Memory Management Unit User's Manual. Englewood Cliffs, NJ: Prentice
Hall, 1986. Overview of system operation; signal description; bus operation description; address
translation; instruction set processor; protection; breakpoints; coprocessor interface; access level control
interface; operation timings; electrical specifications; ordering information and mechanical data.
Appendices cover the instruction set; hardware considerations; software considerations.

Motorola. MC68881 !MC68882 Floating-Point Coprocessor User's Manual. Englewood Cliffs, NJ:
Prentice-Hall, 1985, 1987. General description; programming model; instruction set; exception
processing; coprocessor interface; instruction execution timing; functional signal descriptions; bus
operation; interfacing methods; electrical specifications; ordering information and mechanical data.
Appendices provide a glossary of terms, abbreviations and acronyms. The text details conformance with
the IEEE 754 standard.

Motorola. MC88100 Rise Microprocessor User's Manual. Austin, TX: Motorola, 1988. A description of
Motorola's first reduced instruction set computer (RISC) microprocessor. Includes a full description of
its IEEE-754 floating-point arithmetic. The programming model, addressing modes, and instruction set
are all described in this reference document.

History of Computers

ACM Press. ACM Turing Award Lectures: The First Twenty Years. New York: Addison-Wesley, 1987.
Various lectures on programming languages, AI, logic, algorithms and systems by Edsger W. Dijkstra,
Donald E. Knuth, John Backus, CAR Hoare, Dennis M. Ritche, Ken Thompson, Niklaus Wirth,
Hamming, Marvin Minsky, Wilkinson, John McCarthy, Codd, and others. Wonderful reading.

Freiberger, Paul, Michael Swaine. Fire in the Valley. Berkeley, CA: Osborne/McGraw-Hill, 1984. A
history of personal computers, focusing on Apple Computer.

Goldberg, Adele, editor. A History of Personal Workstations. Reading, MA: Addison-Wesley, 1988. A
collection of papers presented January 9-10, 1986, in Palo Alto, CA. Authors include Gordon Bell,
Doug Engelhart, Vannevar Bush, Alan Kay, Bert Sutherland, Peter Denning. Includes a history of
Arpanet, Dynabook, Xerox Alto, Ethernet, and Hewlett-Packard calculators.

Levy, Steven. Hackers. New York: Dell Publishing, 1984. History of personal computer revolution, with
coverage of MIT hackers and early Apple Computer.

Moritz, Michael. The Little Kingdom. New York: Morrow, 1984. Another history of Apple Computer.

Young, Jeffrey S. Steve Jobs: The Journey ls the Reward. New York: Lynx Books, 1987, 1988. A
biography of Steven Paul Jobs, born February 24, 1955. Details the history of Apple Computer and
the beginnings of NeXT. Although not an authorized biography, it is not bad.

BIBLIOGRAPHY 449

HyperCard and HyperTalk

Apple Computer. HyperCard Script language Guide: The HyperTalk Language. Reading, MA: Addison
Wesley, 1988. The basics of HyperTalk, including objects, messages, scripts, handlers, and the object
hierarchy. Naming objects, sources of value, including constants, literals, functions, properties,
numbers, and containers; chunk expressions, factors, and operators; keywords; system messages;
commands. Appendices cover XCMDs and XFCNs, including assembly language, C, and Pascal
sources; an ASCII table, HyperCard limits, operator precedence table, changes in HyperCard 1.2, a
syntax summary, and a vocabulary list. This is the current definitive work about HyperTalk, being
reviewed thoroughly by Dan Winkler and Dan Allen of the HyperCard team.

Bond, Gary. XCMD'sfor HyperCard. Portland, OR: MIS Press, 1988. Designing XCMDs and XFCNs for
HyperTalk on the Apple Macintosh. Uses MPW Pascal and LightSpeed C. Discusses XCmdB!ock
records and glue routines. Includes source code (in both C and Pascal) for 20 different XCMDs,
including HardCopy, EjectDisk, SetGiobal, NewMenuBar, RestoreMenuBar, PopMenu, AddMenu,
ResMenu, ClearMenu, ModifyMenultem, SmartSum, GetEvent, QuickSort, CopyRes, GetDiskVol,
TalkString, GetPathName, SetWindowName, FontReal, DeleteFile. A good introduction to the world
ofXCMDing.

Goodman, Danny. The Complete HyperCard Handbook. New York: Bantam Books, 1987, 1988. An
introduction to Apple's HyperCard. Includes an interview with Bill Atkinson. Browsing, painting,
authoring, and scripting are described, as are inheritance and the properties of fields, buttons, cards, and
stacks. Sample HyperCard stacks are provided for a corporate directory, a telephone logbook, a time
sheet, a to-do list, a conversion calculator, and a visual outliner. Importing and exporting data. Includes
information on the HyperTalk language. Providing lots of good reading for beginners, this work has
been updated to cover more recent versions of HyperCard. Recommended.

Goodman, Danny. HyperCard Developer's Guide. New York: Bantam Books, 1988. Stack development
issues, including designing for all models of Macintosh; user interface; screen aesthetics; stack
structure; importing; stack protection; HyperTalk scripts; the object hierarchy; system messages;
control structures; linking cards; searching and sorting; resources for stack developers; making icons;
writing XCMDs using Turbo Pascal, LightSpeed C and LightSpeed Pascal; using ResEdit. Includes
sources to three XCMDs: AboutBox, PopUpMenu, SerialPort. Appendices include source code and
interfaces for the various XCMDs as well as an article on interactive sound by Tim Oren.

Poole, Lon. HyperTalk. Redmond, WA: Microsoft Press, 1988. An alphabetical listing of the vocabulary
found in HyperTalk as of version 1.2.1. This quick reference also includes appendices on the inheritance
path, operators, and sources of value. An essential bedside reference, this is my favorite reference work
on HyperTalk.

Winkler, Dan, Scot Kamins. HyperTalk-The Book. New York: Bantam Books, 1989. This forthcoming
language reference work could become the new definitive work on HyperTalk, as it is written by the
authors of HyperTalk.

Winkler, Dan, Scott Knaster. Cooking with HyperTalk. New York: Bantam Books, 1989. A book full of
helpful scripts, XCMDs, and hints by the author of HyperTalk.

450 BIBLIOGRAPHY

Information Theory

Kahn, David. The Codebreakers. New York: MacMillan, 1967. The definitive work on the history of
stenography, codes, cyphers, cryptography, cryptoanalysis, and cryptology. Includes material from the
time of the Egyptians until the modem era, with special details regarding World War II, Pearl Harbor,
etc. Excellent.

Pierce, John R. An Introduction to Information Theory: Symbols, Signals and Noise. New York: Dover,
1961, 1980. The world and theories; origins of information theory; a mathematical model; encoding and
binary digits; entropy; language and meaning; efficient encoding; the noisy channel; many dimensions;
information theory and physics; cybernetics; information theory, psychology, and art. Appendix on
mathematical notation. An essential bedside reference.

Shannon, Claude E., Warren Weaver. The Mathematical Theory of Communication. Urbana, IL:
University of Illinois, 1949. The original paper that created information theory by Bell Lab's famous
Shannon. Subsections cover discrete noiseless systems, the discrete channel with noise, continuous
information, the continuous channel, and the rate for a continuous source. An advanced mathematical
treatment; highly recommended.

Von Neumann, John. The Computer and the Brain. New Haven: Yale, 1958. A study about computation
and cybernetics.

Welsh, Dominic. Codes and Cryptography. Oxford, England: Oxford University Press, 1988. An excellent
text on communications theory from a mathematical standpoint, this work covers entropy, Shannon's
noiseless coding theorem for memoryless sources, communication through noisy channels; error
correcting codes, including Hamming, cyclic, and Reed-Muller codes; Markov sources; the structure of
natural languages, the entropy of English, Zipfs law, and word entropy, and the redundancy of a
language; cryptosystems using a one-time pad and linear shift-register sequences; computational
complexity and NP Complete algorithms; one-way functions, including the Data Encryption Standard
(DES) and the discrete logarithm; public key cryptosystems (RSA); authentication and digital
signatures; randomized encryption. An appendix includes Jetter frequencies of English. Highly recom
mended reading.

Logic

Carnap, Rudolf. Introduction to Symbolic Logic and Its Applications. New York: Dover, 1954, 1958. The
simple language A (sentential connectives, truth tables, L-concepts, tautologies, definitions, identity);
the language B (semantical and syntactical systems, proofs, derivations); the extended language C
(compound predicate expressions, extensionality, relative products, relations, heredity). Forms and
methods of the construction of languages. Axiom systems for set theory, arithmetic, geometry,
physics, biology.

Hofstadter, Douglas R. GOdel, Escher, Bach: An Eternal Golden Braid. New York: Random House, 1979,
1980. One of the classic works that has influenced my thought, this Pulitzer prize winner discusses

BIBLIOGRAPHY 451

what constitutes intelligence. Three themes are interwoven: the math of Kurt Godel, the paintings of
M. C. Escher, and the music of J. S. Bach. Technical chapters alternate with original dialogs between
the tortoise and the hare. The dialogs themselves contain deep insights into the following chapter. The
book covers such topics as computers, recursion, levels of description, propositional calculus, self
replication, AI, and DNA. Highly recommended. An essential bedside companion.

Hofstadter, Douglas R. Metamagical Themas. New York: Basic Books, 1985. More fun from Hofstadter,
with topics covering AI, the self, metamathematics, LISP, DNA, Prisoner's Dilemma, Metafont, and
creativity. Do you know what constitutes the essence of the letter A? Read Hofstadter.

Manna, Zohar, Richard Waldinger. The Logical Basis of Computer Programming. Volume 1. Reading,
MA: Addison-Wesley, 1985. Deductive reasoning (logic: the calculus of computer science),
mathematical logic, propositional logic, truth tables, semantic trees, predicate logic, theories with
induction: nonnegative integers, strings, trees, lists, sets, bags, tuples.

Northrop, F.S.C. Science and First Principles. Woodbridge, CT: Yale, 1932, 1979. A philosophical look
at the history of science from the Greeks to quantum mechanics. Propounds the macroatomic theory of
matter, with three qualities of matter: the physical, the formal, and the psychical. One of the most
influential books on my thought. Highly recommended. An essential bedside reference.

Popper, Karl R. Conjectures and Refutations: The Growth of Scientific Knowledge. New York: Harper &
Row, 1963, 1965. Popper's philosophy of science is developed further as he convinces the reader that
science progresses by conjectures and refutations rather than by the so-called scientific method. The
implications for software development are massive.

Popper, Karl R. The Logic of Scientific Discovery. New York: Harper & Row, 1959. Popper's
philosophy of science directly applies to the task of creating computer software. His studies into the
degrees of testability, verifiability, and falsifiability are fascinating.

Quine, Willard Van Orman. Mathematical Logic. Cambridge, MA: Harvard University Press, 1940, 1981.
A technical volume on logic. Chapters cover statements, quantification, terms, extended theory of
classes, relations, number, and syntax. Includes material on tautologies, stratification, the ancestral, real
numbers, protosyntax, incompleteness. Includes an appendix on theorem versus metatheorem, as well
as lists of definitions and theorems. Requires concentration, but has a good reward.

Russell, Bertrand. Principles of Mathematics. New York: Norton, 1903, 1938. Indefinables, number,
quantity, order, infinity and continuity, space, matter, and motion. Symbolic logic, the propositional
calculus, implication, denoting, classes, relations, the contradiction, cardinal numbers, finite and
infinite, whole and part, infinite wholes, ratios and fractions, quantities, zero, order, progressions,
Dedekind's theory of number, real numbers, Cantor, transfinite ordinals and cardinals.

Smullyan, Raymond. Forever Undecided, a Puzzle Guide to Godel. New York: Alfred A. Knopf, 1987. A
host of puzzles about liars and truth tellers (knaves and knights), interspersed with an introductory
account of symbolic logic and GOdel's Incompleteness Theorem. Later chapters detail self-fulfilling
beliefs, Lob's theorem, and possible world semantics. Mathematics, logic, computer science (and
artificial intelligence), and philosophy are all intertwined in this book of recreational games.
Recommended.

452 BIBLIOGRAPHY

Macintosh

Apple Computer. Apple Numerics Manual. Reading, MA: Addison-Wesley, 1986, 1988. IEEE arithmetic
detailed, with an emphasis on Apple's Standard Apple Numerics Environment (SANE). Includes
information on data types, conversions, expression evaluation, infinities, NaNs, denormalized numbers,
arithmetic operations and comparisons, and ways of controlling the SANE environment. Elementary
functions and examples. Part II describes SANE for the 65C816 and 6502 microprocessors used in the
Apple II family of computers, and Part III describes software SANE as implemented for the 68xxx
family of processors used in the Macintosh. Part IV describes 68881 SANE as used by the Macintosh
II. Appendices cover SANE in high-level languages (C and Pascal) and provide quick reference tables.

Apple Computer. AppleTalk Network System Overview. Reading, MA: Addison-Wesley, 1989. An
overview of the Apple Talk system that serves as a good introduction for programmers.

Apple Computer. Designing Cards and Drivers for Macintosh II and Macintosh SE. Reading, MA:
Addison-Wesley, 1987. The Macintosh II architecture, including NuBus, data transfers, access to address
spaces, arbitration, card electrical design guidelines, physical design guidelines, firmware and card driver
design. Includes as examples the NuBus Test Card, SCSI-NuBus Test Card, and the Mac II Video Card.
The Macintosh SE architecture, electrical and physical design, and the design of a disk controller for the
Mac SE.

Apple Computer. Human Interface Guidelines: The Apple Desktop Interface. Reading, MA: Addison
Wesley, 1987. The philosophy, elements, and specifications of the Apple Desktop Interface are
presented. (This is a revised and expanded edition of a chapter from Inside Macintosh.) This document
gives good guidelines on most things, other than placement of dialog buttons.

Apple Computer. Inside Macintosh Volumes I, II, and lll. Reading, MA: Addison-Wesley, 1984, 1986.
Programming the Apple Macintosh is detailed. Volume 1 covers the Too!Box, volume 2 covers the
operating system, and volume 3 covers hardware and provides summaries. Inside Macintosh is essential
reading for anyone working on the Macintosh. It should be memorized. It is well written and amazingly
correct for a work of its scope. We are lucky to have such a treasure.

Apple Computer. Inside Macintosh, Volume IV. Reading, MA: Addison-Wesley, 1986. Routines new to
the Macintosh Plus 128 KB ROMs are detailed.

Apple Computer. Inside Macintosh, Volume V. Reading, MA: Addison-Wesley, 1988. Routines new to
the Macintosh 256 KB ROMs are detailed.

Apple Computer. Inside Macintosh, X-Ref Reading, MA: Addison-Wesley, 1988. A general index to all
five volumes of Inside Macintosh.

Apple Computer. LaserWriter Reference. Reading, MA: Addison-Wesley, 1988. About the LaserWriter,
LW Plus, IISC, IINT, and IINTX. All about fonts, including naming and downloading. Working in the
printing environment, using AppleTalk, Diablo emulation, and LaserJet emulation. A functional
overview of PostScript is provided, as are specifications for serial port communication.

BIBLIOGRAPHY 453

Apple Computer. Macintosh Family Hardware Reference. Reading, MA: Addison-Wesley, 1988. Classic
Macintosh hardware overview; processor, control, memory, mouse, keyboard, 1/0 ports, video, sound,
and power supply. Similar topics for the Mac SE and Mac II, including Apple Desktop Bus (ADB), the
SE Expansion slot, and NuBus. Appendices detail specifications and differences between the various
members of the family.

Apple Computer. Programmer's Introduction to the Macintosh Family. Reading, MA: Addison-Wesley,
1988. Introduces the topics of event-driven programming, memory management, file 1/0, resources,
MPW, MacApp, and QuickDraw graphics.

Apple Computer. Technical Introduction to the Macintosh Family. Reading, MA: Addison-Wesley, 1987.
An overview of the Macintosh. Includes information on its software, including the toolbox, resources,
graphics, memory, operating system, and UNIX operating system, as well as its hardware.

Apple Computer. Understanding Computer Networks. Reading, MA: Addison-Wesley, 1989. A simple
guide to networking for end users. Good illustrations, but low technical content.

Apple Computer, Gursharan S. Sidhu, Richard F. Andrews, Alan B. Oppenheimer. Inside AppleTalk.
Reading, MA: Addison-Wesley, 1989. A detailed look at AppleTalk that is suitable for programmers
implementing network software. Covers all levels of AppleTalk protocols including LLAP, ELAP,
DDP, RTMP, AEP, ATP, NBP, ADSP, ZIP, ASP, PAP, AFP, and PostScript. An appendix contains
detailed information about the LocalTalk hardware.

Bove, Tony, Fred Davis, Cheryl Rhodes. Adobe Illustrator: The Official Handbook for Designers. New
York: Bantam Books, 1987. Introduction to Adobe Illustrator, a page description tool for the Apple
Macintosh, LaserWriter, and Postscript. Maps, charts, clip art; graphic design and illustration; technical
illustrations; reference manual for Illustrator; EPS and Illustrator file formats described; Postscript
tutorial.

Chemicoff, Steve. Macintosh Revealed. Volumes 1, 2, and 3. Hasbrook Heights, NJ: Hayden, 1985,
1987. The basics of programming the Macintosh. An interesting supplement to-but not a replacement
for-Inside Macintosh.

Cobb, Douglas, Judy Mynhier, Steven Cobb. Excel in Business. Louisville, KY: The Cobb Group, 1985.
The definitive guide to Microsoft Excel for the Apple Macintosh.

Hoffman, Paul E. Microsoft Word 4.0 for the Macintosh. Reading, MA: Addison-Wesley, 1989. A
dictionary of Word's commands. Includes a useful quick reference guide.

Knaster, Scott. How To Write Macintosh Software. Hasbrook Heights, NJ: Hayden, 1986. A useful book
of tips and pointers on programming the Apple Macintosh. Concentrates on debugging, memory
management, and machine compatibility issues.

Knaster, Scott. Macintosh Programming Secrets. Reading, MA: Addison-Wesley, 1988. Concepts and
ideas about Macintosh computers. Use of color with the Mac II. Sending Postscript to a LaserWriter.
Compatibility across the various Macintosh computers is discussed.

454 BIBLIOGRAPHY

Mynhier, Judy, Gena B. Cobb. Word Companion. Louisville, KY: The Cobb Group, 1987. The definitive
guide to Microsoft Word 3.0 for the Apple Macintosh.

Mathematics

Barnett, Stephen. Matrix Methods for Engineers & Scientists; London: McGraw-Hill, 1979. Algebra of
matrices, linear equations, determinants, inverses, Kronecker products, eigenvalues, least squares,
quadratic and hermitian forms, matrix functions.

Beiler, Albert H. Recreations in the Theory of Numbers. New York: Dover, 1964, 1966. Number theory is
presented from a recreational point of view, including prime and perfect numbers.

Braun, M. Differential Equations and Their Applications. New York: Springer Verlag, 1983. Systems of
differential equations, mathematical modeling including L. F. Richardson's theory of conflict,
Lanchester's combat models and the battle of lwo Jima, qualitative properties of orbits, predator-prey
problems, the Threshold Theorem of epidemiology, and a model for the spread of gonorrhea; also
includes an introduction to APL.

Buck, R. Creighton. Advanced Calculus. New York: McGraw-Hill, 1956, 1978. Sets, functions,
continuity, differentiation, integration, series, uniform convergence, differentiation of transformations,
applications to geometry and analysis, differential geometry and vector calculus, numerical methods,
logic and set theory, quaternions, differential forms, extremal problems.

Burdon, Richard L., J. Douglas Faires, Albert C. Reynolds. Numerical Analysis. Boston: Prendle, Weber
& Schmidt, 1978, 1981. Structured numerical algorithms are presented in a readable manner. This is an
excellent intermediate- level text on numerical analysis.

Crowe, Michael J. A History of Vector Analysis. New York: Dover, 1967, 1985. Beginning with Octobe:
16, 1843, and Sir William Rowan Hamilton, this work traces the rise of vectorial systems from the
discovery of quaternions until the final acceptance of vectors in about 1910.

Gill, Philip E., Walter Murray, Margaret H. Wright. Practical Optimization. New York: Academic Press,
1981. Excellent introductory chapter on numerical analysis and especially on matrix math. Covers
linear and non-linear optimization.

Hamming, R. W. Numerical Methods for Scientists and Engineers. New York: Dover, 1973. Theme: The
purpose of computing is insight, not numbers. Contents: fundamentals and algorithms, polynomial
approximation-classical theory; Fourier approximation-modem theory; exponential approximation;
eigenvalues.

Hildebrand, F. B. lntroduction to Numerical Analysis. New York: Dover, 1956, 1974. Approximation,
interpolation, Lagrangian methods, finite-difference interpolation, numerical solution of differential
equations, least-squares polynomial approximation, Gaussian quadrature, splines, numerical solutions
of equations (Gauss and Crout reduction).

BIBLIOGRAPHY 455

Householder, Alston. The Theory of Matrices in Numerical Analysis. New York: Dover, 1964, 1975.
Norms, localization theorems, eigenvectors, numerical analysis, and matrices.

Howard, James C. Mathematical Modeling of Diverse Phenomena. Washington, D.C.: Government
Printing Office, 1979. Scalars, vectors, tensors, aeronautics, particle dynamics, fluid mechanics, general
relativity and cosmological applications, symbolic manipulation with Macsyma and Reduce.

Peitgen, Richter. The Beauty of Fractals. Berlin: Springer Verlag, 1983. Mandlebrot fractals are illustrated
in beautiful color photos.

Press, William H., Brian P. Flannery, et al. Numerical Recipes: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1986. Preliminaries; solution of linear algebraic equations;
interpolation and extrapolation; integration of functions; evaluation of functions; special functions;
random numbers; sorting; root finding and nonlinear sets of equations; minimization or maximization
of functions; eigensystems; Fourier transform spectral methods; statistical description of data; modeling
of data; integration of ordinal differential equations; two-point boundary value problems; partial
differential equations. Includes about 200 algorithms, both in Fortran and Pascal.

Press, William H., Brian P. Flannery, et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1988. A good cookbook of numerical analysis techniques.
Topics include preliminaries; solution of linear algebraic equations; interpolation and extrapolation;
integration of functions; evaluation of functions; special functions; random numbers; sorting; root
finding and nonlinear sets of equations; minimization or maximization of functions; eigensystems;
Fourier transform spectral methods; statistical description of data; modeling of data; integration of
ordinal differential equations; two-point boundary value problems; partial differential equations. Includes
about 200 algorithms in standard and in ANSI C. Highly recommended.

Ralston, Anthony, Philip Rabinowitz. A First Course in Numerical Analysis. New York: McGraw-Hill,
1965, 1978. Interpolation, approximation, quadrature, matrices, solutions of equations, DEQ. An
excellent advanced text on numerical analysis.

Saff, E. B., A. D. Snider. Fundamentals of Complex Analysis/or Mathematics, Science & Engineering.
Englewood Cliffs, NJ: Prentice-Hall, 1976. Complex numbers, analytic functions, complex
integration, series representations for analytic functions, residue theory, conformal mapping.

Wells, David. The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Books,
1986, 1987. This book is categorized by number. Each entry tells you all about the properties of any
given number. Most parts of number theory are presented, including prime, Mersenne, Fermat, and
Fibonacci numbers. Very enjoyable reading.

456 BIBLIOGRAPHY

Object-oriented Programming

Kaehler, Ted, Dave Patterson. A Taste of Smalltalk. New York: W. W. Norton, 1986. An introduction to
Smalltalk-80. Chapters cover the Tower of Hanoi example; a Rosetta Stone: Pascal, C, LISP, and
Smalltalk; messages and objects everywhere; running the example; defining a class; animating the
program; and an algorithm for the rest of us.

Pinson, Lewis J., Richard S. Wiener. An Introduction to Object-Oriented Programming and Smalltalk.
Reading, MA: Addison-Wesley, 1988. Object-oriented programming is defined to be the collection of
abstraction, encapsulation, inheritance, and polymorphism. Classes, subclasses, superclasses, instances,
methods, objects, and messages are discussed. The model-view-controller (MVC) concept is presented
with examples. The book uses Smalltalk-80 throughout. Appendices cover Smalltalk syntax, the
Smalltalk image, and protocol summaries for selected classes.

Schmucker, Kurt. Object-oriented Programming for the Macintosh. Hasbrook Heights, NJ: Hayden, 1986.
An introduction to MacApp and Object Pascal on the Macintosh, this work deals with MacApp version
1, so it is somewhat outdated.

Stroustrup, Bjarne. The C++ Programming language. Reading, MA: Addison-Wesley, 1986. Declarations
and constants; expressions and statements; functions and files; classes; operator overloading; derived
classes; streams; reference manual. Includes an overview of C++ and a comparison with K&R C. This
is the definitive work on the language, but it sure is hard to read. This edition deals with C++ version
1; a new and much improved edition covering version 2 is rumored to be in the works.

Wiener, Richard S., Lewis J. Pinson. An Introduction to Object-oriented Programming and C++. Reading,
MA: Addison-Wesley, 1988. Classes, objects, encapsulation; subclasses, inheritance, polymorphism.
The differences between C and C++. Abstract data types and data hiding using C++. Three case studies:
spelling checker, bank teller discrete event simulation, and an interactive function evaluator. This book
does not contain correct definitions of object-oriented concepts.

Operating Systems

Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice-Hall, 1986.
Introduction to the kernel; architecture of the UNIX operating system; the buffer cache; internal
representation of files; system calls for the file system; the structure of processes; process control;
process scheduling and time; memory management policies (swapping, demand paging); 1/0 subsystem
(drivers, streams); interprocess communication (networks, sockets); multiprocessor and distributed
systems. An appendix lists the UNIX system calls. Includes C fragments to illustrate algorithms.

Comer, Douglas. lnternetworking with TCP/IP: Principles, Protocols, and Architecture. Englewood
Cliffs, NJ: Prentice-Hall, 1988. Long haul and local area networks; the Internet; Ethernet, ProNet,
Arpanet, X25Net, Cypress; Internet addresses, ARP, RARP; routing IP datagrams; error and control
messages (ICMP); protocol layering, the ISO model; user datagram protocol; reliable stream transport
service (TCP); core gateway system (GGP); autonomous systems and confederations (EGP); interior
gateway protocols (RIP, HELLO, GATED); transparent gateways and subnet addressing; client-server

BIBLIOGRAPHY 457

model of interaction; the domain name system; application level services, FfP, electronic mail, rlogin.
Appendices detail the 4.3 BSD UNIX interface to Internet protocols; guide to RFCs; official DARPA
Internet protocols.

Comer, Douglas, Steven Munson. Operating System Design, Volume 1: The Xinu Approach (Macintosh
Edition). Englewood Cliffs, NJ: Prentice-Hall, 1989. This book provides complete C and assembly
source code for a UNIX work-alike operating system that runs as a Macintosh application. Topics
covered include: introduction and overview of the Macintosh; list and queue manipulation; scheduling
and context switching; process management; process coordination; memory management; interrupt
processing; real-time clock management; message passing; process-based hardware event handling;
device- independent input and output; an example device driver; window management using devices;
system initialization; high-level memory management and message passing; a disk driver; file systems;
a syntactic namespace; user interface design; an example user interface: the Xinu Shell; an example set
of shell commands; exception handling and support routines; system configuration. Appendices include
a quick introduction to C and the Xinu programmer's manual.

Hoare, C. A. R. Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice-Hall, 1985.
Parallel processing. Processes, laws, traces; concurrency, the "Dining Philosophers," deadlock,
mathematical theory of deterministic processes; nondeterminism, interleaving; communication, pipes;
interrupts; shared resources; Occam; a calculus of communicating systems. An interesting book about
modem operating system design issues.

Tanenbaum, Andrew S. Operating Systems: Design and Implementation. Englewood Cliffs, NJ: Prentice
Hall, 1987. History of operating systems; concepts and system calls; processes, IPC, process
scheduling; input/output, deadlocks, RAM disks, disks, clocks, terminals; memory management,
swapping, virtual memory, page replacement algorithms; file systems, file servers, security, protection
mechanisms. Includes full source code in C to Minix, a UNIX-compatible operating system described,
designed, and implemented in this book. Excellent reading showing how an operating system really
works.

Tanenbaum, Andrew S. Structured Computer Organization. Englewood Cliffs, NJ: Prentice-Hall, 1984.
Multilevel machines, digital logic, microprogramming, OS, assembly language. A good introduction to
hardware for software people.

The Pascal Language
Borland International. Turbo Pascal for the Mac: User's Guide and Reference Manual. Scotts Valley, CA:

Borland International, 1986. Includes two diskettes of software for the Macintosh. Documents the
Pascal language, writing Macintosh applications, and writing Macintosh desk accessories. Appendices
describe differences between Turbo Pascal and other Pascals, error messages, compiler directives, the
Macintosh Interface Units, the Macintosh character set, and Turtlegraphics. An amazing compiler and
succinct manual make this a great starter's programming package.

458 BIBLIOGRAPHY

Wirth, Niklaus. Programming In Modula-2. Berlin: Springer Verlag, 1982, 1983. The successor to Pascal
is detailed by example and in a Modula-2 language report. Searching, sorting, and a cross-reference
program are explored along the way.

Wirth, Niklaus, Kathleen Jensen. Pascal User Manual & Report. New York: Springer-Verlag, 1974, 1978.
The offical Pascal language report as well as a tutorial on its use, by its author.

Physics and Astronomy

Barrow, John D., Frank J. Tipler. The Anthropic Cosmological Principle. Oxford: Oxford University
Press, 1986. Design arguments for the existence of God; modem teleology; the weak anthropic
principle in physics and astrophysics; physical constants; anthropic principles in classical cosmology;
quantum mechanics; biochemistry; space-travel argument against the existence of extraterrestrial life;
future of the universe. Excellent synthesis of science, philosophy, and religion.

Bate, Roger R., Donald D. Mueller, Jerry E. White. Fundamentals of Astrodynamics. New York: Dover,
1971. Orbital mechanics, orbit determination, trajectories.

Cowan, Henry J., Peter R. Smith. The Science and Technology of Building Materials. New York: Van
Nostrand Reinhold, 1988. Historical introduction; strength and deformation; dimensional stability and
joints; exclusion of water and water vapor; transmission, reflection, and absorption of visible light and
radiant heat; thermal insulation and inertia; effect of fires on building materials; durability; acoustic
properties; iron and steel; nonferrous metals; natural stone; lime, gypsum, and cement; concrete; clay
products; wood; glass; plastics and carpets; paints, adhesives, and sealants; criteria for choice of
building materials. Contains good chemistry and physics formulas.

Davies, P. C. W. The Accidental Universe. Cambridge: Cambridge University Press, 1982. The
fundamental ingredients of nature; scales of structure; the delicate balance; cosmic coincidences; the
anthropic principle. Big number theory, astronomy and cosmology are all detailed in this outstanding
little book. A highly recommended introduction to the field. An essential bedside reference.

Duffett-Smith, Peter. Practical Astronomy with Your Calculator. Cambridge: Cambridge University Press,
1979. A handy little book of algorithms for determining the positions of the sun, moon, and planets.

Feynman, Richard, Robert B. Leighton, Matthew Sands. The Feynman lectures on Physics. 3 volumes.
Reading, MA: Addison-Wesley, 1963. A wonderful introductory set on physics. The three volumes
generally are concerned with mechanics, electromagnetism, and quantum theory, respectively. Feynman
is the best at giving understandable explanations of physical principles. Highly recommended.

Fowles, Grant R. Analytical Mechanics. New York: Holt, Rinehart & Winston, 1962, 1977. Gives a good
intuitive feel for mechanics. Chapters cover fundamental concepts and vectors; Newtonian mechanics
and rectilinear motion of a particle; general motion of a particle in three dimensions; noninertial
reference systems; central forces and celestial mechanics; dynamics of systems of many particles;
mechanics of rigid bodies and planar motion; motion of rigid bodies in three dimensions; Lagrangian
mechanics; dynamics of oscillating sys'tems. Appendices include short summaries of complex numbers,

BIBLIOGRAPHY 459

series expansions, special functions, curvilinear coordinates, and matrices. Excellent intermediate-level
mechanics text. Essential bedside reference.

Goldstein, Herbert. Classical Mechanics. Reading, MA: Addison-Wesley, 1950, 1980. The classic work in
the field of classical mechanics. Survey of elementary principles; variational principles, LaGrange's
equations; two-body central force problem (Kepler's laws), Laplace-Runge-Lenz vectors; kinematics of
rigid body motion, Euler angles, Cayley-Klein parameters, quaternions; rigid body equations of motion,
tensors, precession of the equinoxes; small oscillations; special relativity; Hamilton's equations of
motion; canonical transformations; Hamilton-Jacobi theory; canonical perturbation theory; introduction
to Lagrangian and Hamiltonian formulations for continuous systems and fields. Five appendices,
including Euler angles in alternate conventions.

Green, Robin M. Spherical Astronomy. Cambridge: Cambridge University Press, 1985. An all-new
relativistic version of Smart's classic work. Chapters cover basic formulae; celestial sphere; reference
frame; geocentric coordinates; direct measurements of right ascension and declination; two-body orbital
motion; planetary and satellite orbits; heliocentric and barycentric coordinates; precession and nutation;
time; proper motion and radial velocity; mean and apparent coordinates; astrographic plate
measurements; stellar distances and movements; elements of radio astronomy; radio astrometry;
planetary phenomena and surface coordinates; eclipses and occultations; binary stars; tensor methods;
astronomical constants. An essential bedside reference.

Harwitt, Martin. Astrophysical Concepts. New York: John Wiley, 1973. Astrophysics, random processes,
relativitistic, and quantum effects. Contains an interesting treatment of tachyons, or faster-than-light
particles.

Kane, Thomas R., Peter W. Likins, David A. Levinson. Spacecraft Dynamics. New York: McGraw-Hill,
1983. Kinematics, direction cosines, Euler parameters, Rodrigues parameters, rotations, angular
velocities; gravitational forces, two particles, body and particle, two bodies, centrobaric and proximate
bodies, force functions; simple spacecraft, rotational motion; complex spacecraft, potential and kinetic
energy, dynamical equations, lumped mass models, finite-element methods. Two appendices.

Misner, Charles W., Kip S. Thome, John Archibald Wheeler. Gravitation. San Francisco: Freeman, 1970,
1973. The classic work in the field of general relativity. Spacetime physics, geometrodynamics; special
relativity, electromagnetic field, electromagnetism and differential forms, stress-energy tensor and
conservation laws; curved spacetime, differential geometry, differential topology, affine geometry,
geodesic deviation and spacetime curvature, Newtonian gravity, Riemannian geometry, Bianchi
identities; Einstein's geometric theory of gravity, equivalence principle, variational principle;
relativistic stars; the universe and cosmology; gravitational collapse, black holes, Schwarzschild
geometry; gravitational waves; experimental tests of general relativity; Spinors, Regge calculus,
superspace, beyond the end of time.

Royal Observatory. The Explanatory Supplement to the Nautical Almanac and Astronomical Ephemeris.
London: Her Majesty's Stationary Office, 1973. The classic work in the field of navigation.
Astronomy, navigation, timekeeping, derivation of almanacs explained. Many formulas and tables. A
nard~to-find but essential reference.

460 BIBLIOGRAPHY

Smart, W. M. Textbook on Spherical Astronomy. Cambridge: Cambridge University Press, 1931, 1980.
The classic work in the field of spherical astronomy. Spherical trig, planetary motions, time,
determination of position at sea.

Taff, Laurence G. Celestial Mechanics. New York: John Wiley & Sons, 1985. Newtonian gravitation
explained. Topics include continuous distributions of matter, the two and three body problems,
coordinate and time systems, corrections to coordinates, general precession, proper motion, orbit
transfers, oblate spheroids, Laplacian-type initial orbit determination, Gaussian-type initial orbit
determination, perturbation theory, differential corrections, stellar dynamics including kinetic theory,
Monte Carlo calculations, hydrodynamics and thermodynamics, and binary stars.

Taylor, Edwin F., John Archibald Wheeler. Spacetime Physics. San Francisco: Freeman, 1963, 1966. An
excellent treatise on special relativity. Chapters cover the geometry of spacetime, momentum and
energy, the physics of curved spacetime.

Wertz, James R. Spacecraft Attitude Determination and Control. Dordrecht, Germany: D. Reidel, 1978.
Attitude geometry; elementary spherical geometry; Keplerian orbits; planetary and lunar orbits;
modeling the earth; attitude dynamics; equations of motion. Uses quaternions for equations of motion
(p. 511). Appendices on matrix and vector algebra; quaternions; coordinate transformations; Laplace
transformations; time measurement systems; metric conversion factors; solar system constants;
fundamental physical constants.

Software Engineering

Brooks, Frederick P., Jr. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975, 1982.
Software engineering and testing the IBM 360. Essential reading for anyone creating software.

Date, C. J. A Guide to the SQL Standard. Reading, MA: Addison-Wesley, 1987. Describes the relational
database language SQL. Data definition and manipulation; embedded SQL; language constructs;
extensions. Describes the ANSI standard and includes a critique of the standard. An appendix has a SQL
grammar in BNF form.

Date, C. J. An Introduction to Database Systems. 2 volumes. Reading, MA: Addison-Wesley, 1986.
Describes database architectures, particularly relational databases, including data definition, data
manipulation, views, and embedded SQL. Overviews of DB2 and INGRES. Relational data structures,
integrity rules. The relational algebra and calculus are developed. Inverted list, hierarchic, and network
systems are reviewed.

Johnson, Clarence L. "Kelly," Maggie Smith. Kelly--More Than My Share of It All. Washington, DC:
Smithsonian Institution Press, 1985. Autobiography of the designer of the Lockheed Blackbirds (SR-
71, YF-12, A-12), the U-2, F-104 StarFighter, F-80 Shooting Star, P-38 Lightning, and the
Constellation. Why is this included here? Kelly Johnson developed his amazing projects at the Skunk
Works with very few people. This book details his 14 rules of operation for creating state-of-the-art
aircraft with minimal resources in rec~rd time. I think these rules apply to software projects as well.

BIBLIOGRAPHY 461

Kelly-Bootle, Stan. The Devil's DP Dictionary. New York: McGraw-Hill, 1981. An interesting and fun
dictionary of witticisms relating to computers and data processing.

Lotus. Lotus File Formats for 1-2-3, Symphony, and Jazz. Reading, MA: Addison-Wesley, 1986. 1-2-3
and Symphony file formats. Summary of record types, ordered by opcode, alphabetically, and by
product. Cell format codes, floating-point format, worksheet column designators. Useful for writing
software that can read and write the 1-2-3 file format.

Viescas, John. Quick Reference Guide to SQL. Redmond, WA: Microsoft Press, 1989. Covers the ANSI
standard SQL language in a dictionary format. A handy reference.

Software Tools

Aho, Alfred V., Brian W. Kernighan, Peter J. Weinberger. The AWK Programming Language. Reading,
MA: Addison-Wesley, 1988. The AWK language: patterns, actions, user-defined functions,
input/output; data processing; reports and databases; processing words, random text generation, text
processing, word counts, cross-references, KWIC indexing; little languages, including an assembler,
interpreter, graph drawing, sorting, RPN calculator, infix calculator, recursive-descent parsing;
topological sorting. The book illustrates the great flexibility of A WK and is enjoyable reading.

American Telephone & Telegraph. Unix Programmer's Manual. New York: Holt, Rinehart & Winston,
1986. Volume 1: Commands and utilities; Volume 2: System calls and library routines; Volume 3:
System administration facilities; Volume 4: Document preparation; Volume 5: Languages and support
tools. Includes the full text of the on-line manual pages. Detailed information on sed, nroff, troff, mm,
the C language, lint, sdb, Fortran 77, Ratfor, EFL, make, SCCS, M4, awk, Id, be, de, lex, yacc, uucp.
The COFF object file format is detailed.

Anderson, Gail, Paul Anderson. The Unix C Shell Field Guide. Englewood Cliffs, NJ: Prentice-Hall,
1986. Basic command forms; command shortcuts; job control; history and alias mechanisms; C Shell
programming; advanced programming techniques; customizing the C Shell; inside the C Shell;
example C Shell scripts. Five appendices.

Bell Labs. The Bell System Technical Journal, July/August 1978. Short Hills, NJ: AT&T, 1978. UNIX
time-sharing system, the C programming language, statistical text processing.

Bentley, Jon. More Programming Pearls: Confessions of a Coder. Reading, MA: Addison-Wesley, 1988.
Interesting chapters on profilers, associative arrays in A WK, binary search, self-describing data; little
languages, document design, and an algorithm for selection. Enjoyable and interesting reading.

Bentley, Jon. Programming Pearls. Reading, MA: Addison-Wesley, 1986. Interesting chapters on writing
correct programs, back-of-the-envelope calculations, tool-using, performance monitoring, and other
topics from software engineering. Algorithms for insertion sort, Quicksort, searching, heaps, and a
spelling checker. Highly recommended.

462 BIBLIOGRAPHY

Bourne, Stephen R. The Unix System V Environment. Reading, MA: Addison-Wesley, 1987. History and
background of UNIX. Using UNIX; theed and vi editors; the Bourne Shell; the C programming
language; UNIX system programming; document preparation with nroff, troff, col, equ, ptx, spell,
style, and tbl; data manipulation tools including awk, cmp, comm, diff, grep, join, sed, sort, tail, tr,
uniq, field, lex, and yacc. Appendices describe commands, system calls, C subroutines, adb requests, ed
requests, sh requests, troff requests, vi requests, a macro library, and the ASCII character set. A good
introduction to the use and programming of UNIX.

Kernighan, Brian W., P. J. Plauger. Software Tools. Reading, MA: Addison-Wesley, 1976. Filters, files,
sorting, text patterns, editing, formatting, macro processing, and a Ratfor-Fortran translator. The source
code to many tools is given in Ratfor (Rational Fortran), a language not unlike C. A good resource
about program development and refinement. Highly recommended reading.

Kernighan, Brian W., P. J. Plauger. Software Tools in Pascal. Reading, MA: Addison-Wesley, 1981.
Filters, files, sorting, text patterns, editing, formatting, and macro processing. The source code to many
tools is given in Pascal. A good resource about program development and refinement. Highly
recommended reading. An essential bedside reference.

Kernighan, Brian W., Rob Pike. The UNIX Programming Environment. Englewood Cliffs, NJ: Prentice
Hall, 1984. An excellent introduction for technical people to the UNIX programming facilities.
Includes many examples of using pipes, filters, and the many standard UNIX tools. Includes material on
yacc, lex, awk, nroff/troff. Highly recommended.

Symbolic Algebra

Buchberger, B., G. E. Collins, R. Loos. Computer Algebra: Symbolic & Algebraic Computation. Berlin:
Springer Verlag, 1982, 1983. Discusses the basic algorithms of symbolic math, including algebraic
simplification, factorization, and zeros of polynomials.

Davenport, J. H., Y. Siret, E. Tourneir. Computer Algebra-Systems and algorithms for algebraic
computation. London: Academic Press, 1988. How to use a computer algebra system; the problem of
data representations (integers, fractions, polynomials, rational functions, algebraic functions,
transcendentals, matrices, series); polynomial simplification; advanced algorithms, modular methods, p
adic methods; formal integrations and differential equations. Appendices provide an algebraic background
and a case study of Reduce.

Lipson, John D. Elements of Algebra and Algebraic Computing. Menlo Park, CA: Benjamin/Cummings,
1981. This work on applied algebra begins with the mathematical foundations of sets, relations,
functions, and integers. Algebraic systems are then discussed: semigroups, monoids, groups, rings,
integral domains, fields, quotient algebras, and elements of field theory. Algebraic computing is then
presented, with arithmetic in Euclidean domains, polynomial arithmetic, computation of GCD,
computation by homomorphic images, and the Fast Fourier Transform (FFT).

Wolfram, Stephen. Mathematica. Reading, MA: Addison-Wesley, 1988. The definitive reference book for
the symbolic math package of the same name. Chapters include a practical introduction, the structure of

·-.._

BIBLIOGRAPHY 463

Mathematica, advanced mathematics, and Mathematica as a computer language. Appendices include
more examples and a reference guide to the language.

Symbolic Manipulation and Artificial
Intelligence

Allen, James. Natural Language Understanding. Menlo Park, CA: Benjamin/ Cummings, 1987. This
artificial intelligence reference work covers the processing of natural languages. Part 1 covers syntactic
processing, giving an outline of English and covering basic parsing techniques, features and augmented
grammars, and deterministic parsing. Part 2 covers semantic interpretation and semantic networks, and
part 3 discusses context and world knowledge, including knowledge representation, discourse structure,
and belief models. Part 4 deals with response generation, question-answering systems, and natural
language generation. Two appendices cover logical rules of inference and symbolic computation using
LISP or Prolog.

Bratko, Ivan. Prolog Programming for Artificial Intelligence. Wokingham, England: Addison-Wesley,
1986. This volume of the International Computer Science Series covers the Prolog language; lists,
operators, arithmetic; controlled backtracking; operations on data structures; advanced tree
representations; problem-solving strategies; heuristic searching; AND/OR graphs; expert systems;
game playing; pattern-directed programming; a simple theorem prover.

Clocksin, W. F., C. S. Mellish. Programming in Prolog. Berlin: Springer Verlag, 1981, 1984. Logic and
functional programming. Algebraic and symbolic manipulation. Predicate calculus. Prolog language
report.

Feigenbaum, Edward A. The Handbook of Artificial Intelligence. Los Altos, CA: Kaufmann, 1981. 3
volumes. LISP, natural language, MACSYMA, automatic deduction and inference.

Kluzniak, Feliks, Stanislaw Szpakowicz. Prologfor Programmers. Orlando, FL: Academic Press, 1985.
Logic, metamorphosis grammars, Prolog syntax; implementation notes, tail recursion optimization.
Includes Pascal source for Toy-Prolog.

Nilsson, Nils. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980. Production systems,
predicate calculus, resolution refutation systems, rule-based deduction systems.

Sterling, Leon, Ehud Shaprio. The Art of Prolog. Cambridge, MA: MIT Press, 1986. Logic programs
(facts, queries, rules); database and recursive programming; unification; the Prolog language; arithmetic;
structure inspection; meta-logical predicates; cuts and negation; extra-logical predicates; pragmatics;
nondeterministic programming; search techniques; parsing with definite clause grammars; game-playing
programs; credit evaluation expert system; equation solver; a compiler.

Winston, Patrick Henry, Berthold Klaus, Paul Hom. LISP. Reading, MA: Addison-Wesley, 1981, 1984.
Understanding symbol manipulation; basic LISP primitives; definitions, predicates, conditionals, and
binding; recursion and iteration; association lists, properties, and data abstraction; definition using
lambda; printing and reading; optional parameters, macros, and backquote; list storage, surgery, and

464 BIBLIOGRAPHY

reclamation; examples involving arrays and binary images; examples involving search; examples from
mathematics; the blocks world; rules for good programming and tools for debugging; answering
questions about goals; object-centered programming, message passing, and flavors; symbolic pattern
matching, expert problem-solving using rules and streams; interpreting and compiling augmented
transition trees; procedure writing programs and English interfaces; implementing frames; LISP in
LISP; using Common LISP; LISP primitives.

INDEX

32 bit addressing 29
68000

A-trap instruction 8
registers S

A-trap dispatcher 8
A-trap tables S2
A-traps

Generating list of S6
List of traps by trap

number 11
Overriding 8
Unimplemented 9

A/UX xxxi, 33
AS world 7, 33, 37, 219
Activate events 132
Adaptive buffer strategies 290
ADBchip4
Adobexxv
Aladdin xxviii
Alarm Clock DA 143
Alcabes, Harvey xxv
Alerts 140
Allen, Dan xxiii, xxvi, 210
Anagrams 296
ANSI C 287, 3S2
ANSI Pascal 3S3
APDA210
Apple

CD-ROMxxix
Image Writer xxiv
Image Writer LQ xxix
LaserWriter xxv
LaserWriter II xxix
Macintosh xxiv
Macintosh S12K xxv
Macintosh II xxvii
Macintosh IIci xxxi
Macintosh IIcx xxx
Macintosh IIx xxx
Macintosh Plus xxvi
Macintosh Portable xxxi

Macintosh SE xxvii
Macintosh SE/30 xxx
Macintosh XL xxv

Apple II xxiii
Apple Scanner xxx
AppleShare xxvii, 44
AppleTalk xxv, S, 47

ATP49
Applications 2

DKAD264
GraphSort 371
MacQ 107
Mandel87
StyleTest 3S7

Ascii, C Tool 23
ASCII characters 131
Asm 2SS
Assembly code

ADBKey INIT 69
DKAD application 264
MacsBug FKEY 1S9
Memory DA 2S8
MFSwitcher FKEY 160
MultiFinder launch 37
RotateWindows FKEY 1S9
Sublaunching 3S

Assembly language 1, 163,
2SS

Atkinson, Bill xv, xxv, xxx,
76, 132,2S6,389

Auto-pop bit 9
Awk2S4

B*-tree manager 4S
Background switching 37
Backgrounder 36
Beachball cursor 82
Beemink, Ernie xxvii, 76
Bentley, Jon 296
Binary-decimal conversions

147

Bitimage 77
Bitmaps 77
Block

Locked31
Purgeable 30
Relocatable 30

Bomb box SO
Books HyperTalk script 402
Boot blocks S3
Booting

Loading MacsBug S4
Volume search order S2

Brown, Chris 210
Bruffy, Bill xxvi, xxvii
Buffer sizes 290
Bugs

Allocating memory in grow
zoneproc 31

Bombing ruthlessly 31
Code segment in motion 34
Comparing master pointers

29
Dangling pointer 28
Disposing bad pointers 30
Drawing into the

WMgrPort 132
Fragmentation of heap 28
Hardwired screen size 78
Leaving SetResLoad False

127
Memory manager thrashing

293
Not using proper A5 37
Out of memory 31
Port not set properly 77
Relying upon register AS 8
Using a nil handle 29
Using With statements 31
Writing to location zero 29

Build script 230
BuildTools script 231
Bundle bit 83

465

466 INDEX

C286
Comments 289
Standard C library routines

297
Using matrices with 203

C Application
MacQ 107

C Tool
Ascii 23
ATrap 11
CleanRsrc 156
DeCom 289
Det203
DisAsm 281
Dump 147
FastCat 290
Graph 100
Hash 174
Index 323
ListRsrc 152
LoMem 18
NumTheory 170
Obj 235
Rand 177
Reduce294
Sign 296
Sort 313
Squash 298
Substitute 293
Sun 198
TextTool 303
TwoCol 251
WordText 300
2'.ero 70

C++ 356
Cache, disk track 55
Calendar script 399
Calling conventions

C and Pascal 6
Register-based 6
Stack-based 6

Canon tool 221
Capps number 29
Capps, Steve xv, xxiv, xxvii,

132, 138, 139, 223
Cartesian plane 78
CD-Audio xxix
Celestial mechanics 208
Chain 37
Chooser 86
Clmport script 397

Clncludes 397
Clascal 355
Classes 356
CleanRsrc, C Tool 156
Clipboard 37, 139, 144
Code segments 33, 34
Colbydorfer, Ed xxvii
Collatz sequences 170
Color

Color picker 147
Startup screen 54
Windows 133

Color Manager 84
Commando 218
CompareSources script 234
Compiler theory 254
Control Manager 135

Control definition IDs 135
Part codes 135
Routines 135

Control Panel 53
Conventions xxii

ASCII 23
Coonen, Jerome xv, xxvii, 49,

163, 169
Cooperative multitasking 37
Coordinate systems 78
Coordinate transformations

182, 193
Coprocessor, floating-point

164
CopyBits 54, 78
Copying resource forks 127
CoreEdit 138
CPU check49
Creators, file 40
Cross referencing 323
Cursor, rotating 82
Cursor hot spot 81
Cursors 81

DA Handler 36
Daniels, Russ 210
Data abstraction 356
Date and time routines 144
Debugger54
DeCom, C Tool 289
Default buttons 141
Default make rules 229
DeleteUnits script 234

Delimiters, field 303
Denman, Donn xv, xxv, xx vii,

85, 143
Dereferencing handles 29
Derez223
Desk accessories 143

Memory 258
OSPeek56

Desk Manager 143
Desktop 133
Desktop file 45, 82
Desktop interface 121
Desktop Manager 45, 126
Desktop publishing xxvi
Det, C Tool 203
Determinants 203
Device driver 10, 46
Device Manager 46
Diagnostic ROM 49
Dialog Manager 139

Alerts 140
Dictionary ordering 313
Dimensions, screen 78
Dirks, Pat xxvi, xxvii
DisAsm, C Tool 281
Disassembler 281
Disk Initialization 146, 233
DKAD, assembly application

264
Doyle, Ken 210, 256, 356
Dragging 134
Dump, C Tool 147
Duvall, Bill 210

Encryption 177
Entab294
Espinosa, Chris xxiii
Euler integration 107
Euler's symmetric parameters

107
Event Manager 128
Events

Activate 131
Disk 132
Key 131
Mouse 130
Suspend and resume 132
Update 131

Exception vectors 50
ExitToShell 36

INDEX 467

FastCat, C Tool 290 Graphics Silicon Valley xxii
Fedit53 3D simulation 107 TFS 38
Fernandez, Bill xxiii Plotting math functions Hoffman, Al 210, 355
Fibonacci numbers 170 100 Homestead High School xxiii
File Manager 38 Graphics kernel 75 Hom, Bruce xxiv, 139
File system GraphSort, Pascal application Hough, David 163

HFSDispatch 43 371 HP calculators 163
High-level routines 42 Greek alphabet 313 HyperCard xxix, 389
Routines 38 Drawing into offscreen

File system calls 10 Haeberli, Martin xxv, 27 buffers 80
File types and creators 40 Hamilton, William 107 Driving paint tools from a
Files Handles 28 script 395

Data38 Copying 32 Object types 391
Resource 38 Empty 30 HyperScan xxx

Finder xxiv, 34 Nil 29 HyperTalk callback routines
Disk copying 53 Hanson, Kenton 163, 169 244
Information 42 Hard disks xxvi, 5, 20, 45 HyperTalk Scripts
Startup 36 Hardware Books402

Finite state machine 289 ADB4 Calendar 399
Finlayson, Paul xv, 87, 182 IWM5 Clmport 397
'Fixed math 169 secs DrawRandom 395
FKEY SCSI 5 DuplicateBackground 396

MacsBugKey 159 VIA4 Home Stack 392
MFSwitcher 160 Harmonic numbers 170
RotateWindows 159 Harslem, Eric xxvii Icons 82
Standard keys 130 Hartwell, Steve 210 IEEE standards 162

Floating-point 164 Hash statistics 17 5 Index, C Tool 323
Font Manager 85 Hash, C Tool 174 Indexing
Font/DA Mover 122 Hashing 174, 305 text 323
Forks Heaps 28 Word documents 300

data 38 Free space 32 Information toolkit 390
resource 38 Heap check 219 Inheritance 391

Forsman, Fred 210, 255 System heap size 53 INIT
Fract math 170 Hertzfeld, Andy xxvi, 33, 36, ADBKey69
Fractals 87, 120 46, 50, 85, 128, 132, lnitDisks script 233
Fragmentation 28 135, 136, 143, 144 Initializing disks 73, 132, 233
Free space in heap 32 HFS xxvi, 38 INITs 55
Freeport xxviii Default B-tree size 70 Integer part routines 168
Friedenbach, Ken 210 Hierarchical menus 264 Internet addresses 49
Function results 7 High Sierra standard xxix Interprocess communication 37
Fung, Dave 76 High-level languages 2 Islands in heap 28

Hilbert matrices 204 IWMchip5
Garbage collection 30 History
Gassee, Jean Louis xv C286

Jobs, Steve xxiii, xxviii GetNextEvent 37, 129, 140 HyperCard 389
GetTrapAddress 9 Lisa xxiii Jump table 33

Global data 7 Macintosh xxiv
Globals, low-memory 8 Memory Manager 27 Kahan, W. 163
Goldberg, Steve xxvi MPW209 Kenyon, Larry xxvi, xxvii, 38,
Goldman, Phil xxix, 36 Pascal 353 46,49,53
GratPorts 76, 133 SANE 163 Kepler's equation 182

468 INDEX

Kernighan, Brian 286, 352, SANE functions 166 Memory mapped IO 4
354 Types and creators 41 Memory test 49

Key events 131 Window definition IDs 133 MemTop 52, 56
Keys Window parts 134 Menu Manager 136

Arrow 24 LoadSeg 34 Meta-characters 137
Control 131 Logarithmic functions 165 Pop-up menus 138
Enter23 Low-memory globals 8, 18 Routines 137
Modifiers 131 Setting up menus 367

Knuth, Donald 178, 208 MacApp356 Meyers, Rick 209, 218
MacBasic xxv MFS 38

LAN, AppleTalk 47 MacDrawxxv MicroBug52
LaserWriter Macintosh Microsoft xxv, 37

Sending PostScript 81 Architecture 1 Microsoft Word 300
Launching 34 Operating system 26 Mitchell, John 53

ExitToShell 36 Macintosh II xxviii Modeling
Jump table setup 33 Macintosh Plus Solar system 182
Sublaunch 35 ROMs xxvii Spinning book 107
Transferring 36 Macintosh Portable xxxi Sun 193

Launching MPW tools 219 MacPaint xxiv, 389 Modulo 165
Lawrence, Roger 210 Stress testing with Monkey Monitors 76
Layer switching 37 132 MonkeyLives 132
Lewis, Clayton 163, 210 MacPascal xxv MoreMasters 29
LibList script 235 Macro processor 255 Motorola 68881 164
Library project 239 MacsBug xxviii, 34, 52, 54, Mouse button 55
Lilith xxiii 210, 256 Mouse events 130
Lines 79 MacWrite xxiv, xxv, 138 MPW209
Linker 222, 256 Main event loop 129 Documentation 218
Lisa Monitor xxiv Main segment 34 Object tools 222
Lisa Pascal 210, 354 Make rules 229 Performance tools 256
Lisa Toolkit 355 Makefile 229, 287 Resource tools 222
Lisa Workshop 356 Generic C Tools 228 Text tools 221
List Manager 145 Generic C Tools for 68881 Tools 220
ListRsrc, C Tool 152 230 MPW C conventions 7
Lists malloc 27, 313 MPW Pascal 354

A-traps 11 Mandelbrot set 87 MPW Pascal conventions 7
Bomb box error codes 51 Mandelbrot, Benoit 87 MPW Shell
Control definition IDs 135 Mapcdev 170 Alias substitution 213
Control part codes 135 Master pointer 29 Command substitution 215
Cursor IDs 82 Master pointer blocks 29 Commands 216
Device numbers 47 Mathematical plots 100 Interface commands 217
Dialog item types 139 Maze Wars xxv IO redirection 215
Event modifiers 131 McGhie, Brian xv, xxvii Marking memory 29
Events 129 McMaster, Colin 163 Replace command 293
Finfo flag bits 42 Mechanics 120 Scripts 218
FKEYs 130 Memory, assembly DA 258 Shell language 213
Font names and numbers Memory Manager 27 Structured constructs 214

85 Allocation algorithm 30 Text commands 217
Low-memory globals 18 Grow zone function 31 Variables 214
Menu meta-characters 137 Moving blocks 31 MPW Shell Scripts
NaN codes 167 Out of memory 31 Build 230
Resource types 123 Routines 31 BuildTools 231
Sad Mac codes 50 Memorymap3 CompareSources 234

INDEX 469

DeleteUnits 234 Pascal 353 Text routines 79
InitDisks 233 Problems with 354 Window pictures 134
LibList 235 Pascal application QuickFile 389
Make417 Mandel87 QuickSwitch 37
Rename Wild 232 StyleTest 357 Quitting 28
Startup 223 Pascal DA

MPW Tools 219 OSPeek 56, 57 Rand, C Tool 177
MultiFinder xxix, 28, 36, 132, Pascal Tool Random number generators

160 Solar 182 177
Multiple column printing 251 Sun 193 Raskin, Jef xxiii
Multitasking 37 Patches 55 Recursion 34, 87
Munger 145 Patterns 81 Reduce, C Tool 294
Munging text 295, 303, 392 Pens 79 Regions 80

Perfect squares 170 Register conventions 5
NaN. See Not a Number. PicComment 80 Regular expressions 213
Neubieser, Mark xxvi To print rotated text 80 Relativity theory 120
New27 Pictures 80 Relocatable blocks 28
NewHandle 29 In SE ROM xxviii Re!String 10
NewPtr27 Pipelines 296 Remainders 168
Newton's method 182 Pointers 27 Rename Wild script 232
NeXTxxv Dangling 28 ResEdit 145, 210, 222
Nil master pointer 30 Master29 Resource attributes 34
Nil pointer 28 Nil 28 Resource Manager 54, 122
Non-relocatable blocks 28 Polygons 80 Attributes 126
Not a Number 167 Pop-up menus 138 Limitations 126
Note cards 389 Pope, Gene 210, 223 Resource maps 126
Note Pad DA 143 PostEvent 10 Routines 127
Number theory 170 PostScript xxv Resource tools 222
Numeric environments 165 Sending directly to CleanRsrc 156
Numeric exceptions 163, 167 LaserWriter 81 Dump 147
Numerical analysis 208 Potrebic, Peter 210 ListRsrc 152

Prime numbers 170 Resources See also System
Obj, C Tool 235 Print Manager 86, 251, 429 resources.
Object assembly 256 Print Monitor 36 ALRT 140
Object file format 235 Print spooling 87 Color related 125
Object Pascal 355, 356 Printing code 367 cdev 53
Object-oriented programming Process management 26 DITL 139

356 Programmer's switch 52 DLOG 140
Objects 356 Puppet strings 37 MBAR 137
Operating system 26 MENU 136
OS traps 9 qsort 313 PICT 54
OSI layers 48 Quaternions 107 ROMed 124
OSPeek, Pascal DA 57 QuickDraw xxix, 75, 389 STR 145
Owned resources 123 Bitmap 77 System 125

Bottleneck procedures 80 Return addresses 9
Package Manager 145 Calculation routines 80 Rez 223, 234
PageMaker xxvi Clipping regions 77 RGB colors 83, 147
Palette Manager 84 Color 83 Rich text format 410
Parameter blocks 39 Cursors 81 Ringewald, Erich xv, xxvi,
Parameter passing conventions GrafPort 76 xxvii, xxix, 36

6 Icons 82 Ritchie, Dennis 286
Parrish, Jeff 209 Patterns 81 Rolodex 389

470 INDEX

ROM listings 25 Shellsort 377 scrn 84
ROM version 55 Spacecraft dynamics 120 wctb 133
Rosenstein, Larry 356 Squarefree numbers 170 WDEF 133
Rotated text using PostScript Squash, C Tool 298 System Tools xxix, xxx

81 Standard file 146 SystemTask 143
Rounding 168 Start code 49
Ruben, Ira 210, 255, 281, Startup application 55 Taylor, Tom xv, 210, 218

328,355 Startup screen 54 Tesler, Larry xv, xxiii, 355,
Runge-Kutta integration 107 Startup script 224 356

Statistical analysis 177 Text transformations 293, 294,
Sad Mac codes 49 stdlib.h 288 298,303
SADE210 Stearns, Brian 159 TextEdit 138
SANE 146, 162 Strandberg, Johan 210 Routines 138
sec chip 5 String utilities 146 Styled text 139
Scrap Manager 55, 138, 144 Structured Macros 2, 256 TextTool, C Tool 303
Scroll bars 136 StyleTest, Pascal application TFS xxvi
SCSI xxvi, 52 357 Think Pascal 355
SCSI chip 5 Substitute, C Tool 293 Thomas, Jim 163, 210
SCSI driver 45 Subwnes28 Tibbot, Michael 210
Sector size 45 Sun, C Tool 198 Toolbox 121
Segment Loader 32 SuperGreek font 313 Toolbox traps 9
Segmentation 33 Switcher xxvi, 390 Top ten lists 304
Selection expressions 213 Symbol font 313 Tribble, Bud 27
SetResLoad 127 Symbol table, compressed 234 Trigonometric functions 165
SetTrapAddress 10 System 7 .0 33 Turbo Pascal 353, 355
Shannon, Mike 210 System error 29 TwoCol, C Tool 251
Sidhu, Gursharan 47 Out of memory 31 Types, file 40
Sign, C Tool 296 System Error Handler 50
SIMMs xxvi System file xxvii, 54, 126 UCSD Pascal 353
Simula 67 356 System folder 54 Unimplemented trap 9
Smalltalk 211, 356 System patches 55 Unit table 46
Smith, Dan 209 System resources UNIX 211, 253, 286
Software compatibility. See actb 140 Unix

Bugs. boot53 aliases 226
Software layers 1 cach55 UnloadSeg 34
Software SANE 164 cctb 136 Update events 132, 133
Software tools 254 CDEF 135 User interface
Solar, Pascal Tool 182 cicn 84 Proper button size 142
Solving equations crsr 84 Proper use of dialogs 141

Gaussian elimination 203 CURS 82 Proper use of menus 138
Newton's method 182 dctb 140 Proper use of scroll bars

Sort, C Tool 313 DRVR 14~ 136
Sorting DSAT54 User programming 2

Animated sorts 371 FKEY 159, 160 UserStartup script 223
Bubblesort 377 ICON82 USS Saratoga xxvii
Dictionary ordering 313 ictb 140 Utility routines 144
Greek ordering 313 INIT 35, 50, 55
Heapsort 378 mctb 137 VBL52 -

I
Insertion sort 376 PAT, 133 VBL tasks 220
Quicksort 379 ppat 83 VIAchip4
Selection sort 376 PTCH 55 Video retrace 52

Viewing execution 256
Virtual memory 33
Volume information blocks 45
Volume organization

HFS45
MFS44

WaitNextEvent 129
Watch cursor 82
Wigginton, Randy xxv
WildCard xxix, 389
WildTalk 390
Window Manager 132

Parts 134
Routines 133

Winkler, Dan xv, 390
Wirth, Niklaus xxiii, 254,

353, 355
WordText, C Tool 300
Wozniak, Steve xxiii
WriteNow xxv

XCMDs415
and callbacks 417
and drivers 415
and the Toolbox 416
CPrint 429
DateDMY 432
Library to link to 239
NthFileNarne 419
Replace 427
SetCreator 423
Strip 425

Zero, C Tool 70
Zones 28

INDEX 471

\,

I
. '

On Macintosh® Programming: Advanced Techniques
Daniel K. Allen

Expert programmer Dan Allen distills exactly what
programmers need to know!

On Macintosh® Programming: Advanced Techniques has just what programmers
have been waiting for! Finally, here is a book that contains both essential Macintosh
programming concepts and invaluable source code that all programmers will use
day in and day out.

On Macintosh Programming: Advanced Techniques delves into each layer of the
Macintosh programming environment, beginning with the Macintosh architecture and
operating system, moving on to QuickDraw;"the Macintosh Toolbox, and SANE~ and
ending with a look at development tools available from Apple, including the Macintosh
Programmer's Workshop (MPW'") and HyperCard~ The book presents numerous exam
ples written in C, Pascal, assembly language, HyperTalk;" and MPW Shell languages. In
this book you will f ind:

• a suite of MPW tools that sort, extract, transform, and index text
• an application that illustrates different sorting routines
• applications to graphically simulate mathematical models using SANE
• several MPW tools that list and manipulate resource and object files
• XCMDs, INITs, FKEYs, and desk accessories

The appendices include a handy table of ASCII codes and an extensive annotated
bibliography directing readers to hundreds of useful references on almost every topic
related to Macintosh programming.

All of these features make On Macintosh Programming: Advanced Techniques an
invaluable resource to every Macintosh programmer. The author's expertise in essential
Macintosh programming concepts is unequalled, and the book's numerous time-saving
programs alone are worth the price of the book.

Daniel K. Allen is a programmer and software "explorer" at Apple Computer. His work
has included the design, implementation, and testing of Apple products ranging from
the HD-20, HFS, and the Macintosh Plus, to MacApp, MacsBug, and the MPW Shell. Most
recently, he has been working with Bill Atkinson on HyperCard. Dan Allen has also written
articles for Dr. Dobb's Journal and PPC Journal.

Cover design by Doliber Skeffington

Addison-Wesley Publishing Company, Inc.

