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About This Book

The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 604™ microprocessor. This book is intended as a companion
to the PowerPC™ Microprocessor Family: The Programming Environments, referred to as
The Programming Environments Manual. Because the PowerPC Architecture™ is
designed to be flexible to support a broad range of processors, The Programming
Environments Manual provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

Note that The Programming Environments Manual does not attempt to replace the
PowerPC architecture specification (documented in The PowerPC Architecture: A
Specification for a New Family of RISC Processors), which defines the architecture from
the perspective of the three programming environments and which remains the defining
document for the PowerPC architecture.

The PowerPC 604 RISC Microprocessor User’s Manual summarizes features of the 604
that are not defined by the architecture. This document and The Programming
Environments Manual distinguishes between the three levels, or programming
environments, of the PowerPC architecture, which are as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

« PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.
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» PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. The OEA
defines the PowerPC memory management model, supervisor-level registers, and
the exception model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 604-specific registers and progressing to more specialized topics
such as 604-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA))

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 604. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

+ Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model. '
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Chapter 2, “PowerPC 604 Processor Programming Model,” is useful for software
engineers who need to understand the 604-specific registers, operand conventions,
and details regarding how PoweiPC instructions are implemented on the 604.

Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion of the
cache and memory model as implemented on the 604.

Chapter 4, “Exceptions,” describes the exception model as implemented on the 604.

Chapter 5, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 604.

Chapter 6, “Instruction Timing,” describes instruction Ummg in the 604.
Chapter 7, “Signal Descriptions,” describes individual signals defined for the 604.
Chapter 8, “System Interface Operation,” describes interface operations on the 604.

Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604.

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604.

This manual also includes a glossary and an index.

In this document, the terms “PowerPC 604 Microprocessor” and “604” are used to denote
a microprocessor from the PowerPC architecture family. The PowerPC 604
microprocessors are available from IBM as PPC604 and from Motorola as MPC604.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual.

PowerPC Microprocessor Family: The Programming Environments, MPCFPE/AD
(Motorola Order Number) and MPRPPCFPE-01 (IBM Order Number) __

The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA

John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

PowerPC 601 RISC Microprocessor User’s Manual, Rev 1

MPC601UM/AD (Motorola Order Number) and 52G7484/(MPR601UMU-02)
(IBM Order Number)

PowerPC 601 RISC Microprocessor Technical Summary, Rev 1

MPC601/D (Motorola order number) and MPR601TSU-02 (IBM order number)
PowerPC 603 RISC Microprocessor User’s Manual, MPC603UM/AD (Motorola
order number) and MPR603UMU-01 (IBM order number)
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o PowerPC 603 RISC Microprocessor Technical Summary, Rev 3

MPC603/D (Motorola order number) and MPR603TSU-03 (IBM order number)
e PowerPC 604 RISC Microprocessor Technical Summary, Rev 1

MPC604/D (Motorola order number) and MPR604TSU-02 (IBM order number)
e PowerPC 620 RISC Microprocessor Technical Summary, MPC620/D (Motorola

order number) and MPR620TSU-01 (IBM order number)

Additional literature on PowerPC implementations is being released as new processors
become available.

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW A bar over a signal name indicates that the signal is active low—for
example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
APO-AP3 (address bus parity signals) and TT0-TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

mnemonics Instruction mnemonics are shown in lowercase bold.

OPERATIONS Address-only bus operations that are named for the instructions that
generate them are identified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

italics Italics indicate variable conmand parameters, for example, beetrx
0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA,rB Instruction syntax used to identify a source GPR

rAl0 The contents of a specified GPR or the value 0.

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.

Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.
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X In certain contexts, such as a signal encoding, this indicates a don’t
care.

n Used to express an undefined numerical value.

Acronyms and Abbreviations

The Table i contains acronyms and abbreviations that are used in this document. Note that
the meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table I. Acronyms and Abbreviated Terms

Term Meaning
ALV Arithmetic logic unit
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BHT Branch history table
BPU Branch processing unit
BTAC Branch target address cache
BUID Bus unit ID
CcoP Common on-chip processor
CR Condition register
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DEC Decrementer (register)
DEQ Decode queue
DisQ Dispatch queue
DSISR Register used for determining the source of a DS| exception
DTLB Data translation look-aside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in, first out
FLQ Finish load queus
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Table I. Acronyms and Abbreviated Terms (Continued)

Term Meaning
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDo Hardware implementation dependent (register) 0
IABR Instruction address breakpoint register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Enginesrs
ITLB Instruction translation look-aside buffer
v Integer unit
JTAG Joint Test Action Group
L2 Secondary cache
LR Link register
LRU Least recently used
LsB Least-significant byte
Isb Least-significant bit
Lsu Load/store unit
MCiU Muitiple-cycle integer unit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMCRn Monitor mode control register n
MMU Memory management unit
MsSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-Op No operation
OEA Operating environment architecture
PID Processor identification tag
PLL Phase-locked loop
PMCn Performance monitor control (register) n
PMI Performance monitor interrupt
PTE Page table entry
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
PTEG Page table entry group
PVR Processor version register
RISC Reduced instruction set computing/computer
ROB Reorder buffer
RTL Register transfer language
RWITM Read with intent to modify
SCIU Single-cycle integer unit
SDA Sampled data address (register)
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address (register)
SIMM Signed immediate value
SLB Segment look-aside butfer
SPR Special-purposs register
SPRGn Registers available for general purposes
SR Segment register
SRRO (Machine status) save/restore register 0
SRR1 (Machine status) save/restore register 1
B Time base register
LB Translation lookaside buffer
UMM Unsigned immediate value
UISA User instruction set architecture
VEA Virtual environment architecture
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations
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Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology

conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (ISI)

IS1 exception

Interrupt*

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state) User-level privilege
Real address Physical address
Relocation Translation
Storage (locations) Memory

Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this document, see the introduction

to Chapter 4, “Exceptions.”

Table iii describes instruction field notation conventions used in this manual.

Table lii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA criD, crS (respectively)
D d
DS ds
LM M
FRA, FRB, FRC, FRT, FRS frA, rB, frC, frD, frS (respectively)
FXM CRM
RA, RB, RT, RS TA, B, rD, rS (respectively)
sl SIMM
V] IMM
ul UIMM
nLnm 0...0 (shaded)
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Chapter 1
Overview

This chapter provides an overview of the PowerPC 604™ microprocessor. It includes the
following:
¢ A summary of 604 features

¢ Details about the 604 hardware implementation. This includes descriptions of the
604’s execution units, cache implementation, memory management units (MMUs),
and system interface.

o A description of the 604 execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview

This section describes the features of the 604, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

The 604 is an implementation of the PowerPC™ family of reduced instruction set computer
(RISC) microprocessors. The 604 implements the PowerPC Architecture™ as it is specified
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-precision and
double-precision).

The 604 is a superscalar processor capable of issuing four instructions simultaneously. As
many as six instructions can finish execution in parallel. The 604 has six execution units
that can operate in parallel:

» Floating-point unit (FPU)

e Branch processing unit (BPU)

o Load/store unit (LSU)

o Three integer units (IUs):
— Two single-cycle integer units (SCIUs)
— One multiple-cycle integer unit (MCIU)
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This parallel design, combined with the PowerPC architecture’s specification that
instructions be of uniform length, allows for rapid execution times, yields high efficiency
and throughput. The 604’s rename buffers, reservation stations, dynamic branch prediction,
and completion unit increase instruction throughput, guarantee in-order completion, and
ensure a precise exception model. (Note that the PowerPC architecture specification refers
to all exceptions as interrupts.)

The 604 has separate memory management units (MMUs) and separate 16-Kbyte on-chip
caches for instructions and data. The 604 implements two 128-entry, two-way set (64 x 2)
associative translation lookaside buffers (TLBs), one for instructions and one for data. The
604 also provides support for demand-paged virtual memory address translation and
variable-sized block translation. The TLBs and the cache use least-recently used (LRU)
replacement algorithms.

The 604 has a 64-bit external data bus and a 32-bit address bus. The 604 interface protocol
allows multiple masters to compete for system resources through a central external arbiter.
Additionally, on-chip snooping logic maintains data cache coherency for multiprocessor
applications. The 604 supports single-beat and burst data transfers for memory accesses
and memory-mapped I/O accesses.

The 604 uses an advanced, 3.3-V CMOS process technology and is fully compatible with
TTL devices.

1.1.1 PowerPC 604 Microprocessor Features
This section summarizes features of the 604’s implementation of the PowerPC architecture.
Figure 1-1 provides a block diagram showing features of the 604. Note that this is a

conceptual block diagram intended to show the basic features rather than an attempt to
show how these features are physically implemented on the chip.
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Major features of the 604 are as follows:

High-performance, superscalar microprocessor
— As many as four instructions can be issued per clock cycle.

— As many as six instructions can start executing per clock (including three integer
instructions).

— Single clock cycle execution for most instructions
Six independent execution units and two register files
— BPU featuring dynamic branch prediction
— Speculative execution through two branches
— 64-entry fully-associative branch target address cache (BTAC)

— 512-entry, direct-mapped branch history table (BHT) with two bits per entry
for four levels of prediction—not-taken, strongly not-taken, taken, strongly
taken

— Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

— Each SCIU has a two-entry reservation station to minimize stalls.

— The MCIU has a two-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

— Thirty-two GPRs for integer operands
— Twelve rename buffers for GPRs
— Three-stage floating-point unit (FPU)

~ Fully IEEE 754-1985 compliant FPU for both single- and double-precision
operations

— Supports non-IEEE mode for time-critical operations

— Fully pipelined, single-pass double-precision design

- Hardware support for denormalized numbers

— Two-entry reservation station to minimize stalls

— Thirty-two 64-bit FPRs for single- or double-precision operands
— Load/store unit (LSU)
Two-entry reservation station to minimize stalls
Single-cycle, pipelined cache access
Dedicated adder performs EA calculations
Performs alignment and precision conversion for floating-point data
Performs alignment and sign extension for integer data
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— Four-entry finish load queue (FLQ) provides load miss buffering
— Six-entry store queue
— Supports both big- and little-endian modes
¢ Rename buffers
— Twelve GPR rename buffers
— Eight FPR rename buffers
— Eight condition register (CR) rename buffers
The 604 rename buffers are described in Section 1.2.1.5, “Rename Buffers.”
o Completion unit

— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and removes speculatively executed, dispatched,
and fetched instructions if branch is mispredicted

— Retires as many as four instructions per clock

 Separate on-chip instruction and data caches (Harvard architecture)
— 16-Kbyte, four-way set-associative instruction and data caches
— LRU replacement algorithm
— 32-byte (eight word) cache block size

— Physically indexed; physical tags. Note that the PowerPC architecture refers to
physical address space as real address space.

— Cache write-back or write-through operation programmable on a per page or per
block basis

— Instruction cache can provide four instructions per clock cycle; data cache can
provide two words per clock cycle.

— Caches can be disabled in software

— Caches can be locked

— Parity checking performed on both caches

— Data cache coherency (MESI) maintained in hardware
— Secondary data cache support provided

— Instruction cache coherency maintained in software

— Provides a no-DRTRY/data streaming mode, which allows consecutive burst
read data transfers to occur without intervening dead cycles. This mode also
disables data retry operations.

» Separate memory management units (MMUs) for instructions and data

Chapter 1. Overview 1-6



— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Separate instruction and data translation lookaside buffers (TLBs)

— Both TLBs are 128-entry and two-way set associative

— Separate IBATs and DBATS (four each) also defined as SPRs

— LRU replacement algorithm

— Hardware table search (caused by TLB misses) through hashed page tables
— 52-bit virtual address; 32-bit physical address

Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 1.5:1, 2:1, and 3:1)
— A 64-bit split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions
— Additional signals and signal redefinition for direct-store operations
Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
is valid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

Power management
— Operating voltage is 3.3+ 0.3 V

— Software-initiated NAP mode suspends instruction dispatch and waits for all
activity in progress, including active and pending bus transactions, to complete.
It then shuts down the internal chip clocks, and enters nap mode.

Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

In-system testability and debugging features through JTAG boundary-scan
capability

1-6
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1.2 PowerPC 604 Microprocessor Hardware
Implementation

This section provides an overview of the 604’s hardware implementation, including
descriptions of the functional units, shown in Figure 1-2, the cache implementation, MMU,
and the system interface.

Note that Figure 1-2 provides a more detailed block diagram than that presented in
Figure 1-1—showing the additional data paths that contribute to the improved efficiency in
instruction execution and more clearly indicating the relationships between execution units
and their associated register files.
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Figure 1-2. Block Diagram—Internal Data Paths
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1.2.1 Instruction Flow

- Several units on the 604 ensure the proper flow of instructions and operands and guarantee
1 the correct update of the architectural machine state. These units include the following:

Fetch unit—Using the next sequential address or the address supplied by the BPU
when a branch is predicted or resolved, the fetch unit supplies instructions to the
eight-word instruction buffer.

Decode/dispatch unit—The decode/dispatch unit decodes instructions and
dispatches them to the appropriate execution unit. During dispatch, operands are
provided to the execution unit (or reservation station) from the register files, rename
buffers, and result buses.

Branch processing unit (BPU)—In addition to providing the fetcher with predicted
target instructions when a branch is predicted (and a mispredict-recovery address if
a branch is incorrectly predicted), the BPU executes all condition register logical
and flow control instructions.

Completion unit—The completion unit retires executed instructions in program
order and controls the updating of the architectural machine state.

1.2.1.1 Fetch Unit

The fetch unit provides instructions to the eight-entry instruction queue by accessing the
on-chip instruction cache. Typically, the fetch unit continues fetching sequentially as many
as four instructions at a time.

The address of the next instruction to be fetched is determined by several conditions, which
are prioritized as follows:

1.
2.

Detection of an exception. Instruction fetching begins at the exception vector.

The BPU recovers from an incorrect prediction when a branch instruction is in the
execute stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

The BPU recovers from an incorrect prediction when a branch instruction is in the
dispatch stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

The BPU recovers from an incorrect prediction when a branch instruction is in the
decode stage. Subsequent instructions are flushed and fetching begins at the correct
target address.

A fetch address is found in the BTAC. As a cache block is fetched, the branch target
address cache (BTAC) and the branch history table (BHT) are searched with the
fetch address. If it is found in the BTAC, the target address from the BTAC is the
first candidate for being the next fetch address.

If none of the previous conditions exist, the instruction is fetched from the next
sequential address.

1-8
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1.2.1.2 Decode/Dispatch Unit

The decode/dispatch unit provides the logic for decoding instructions and issuing them to
the appropriate execution unit. The eight-entry instruction queue consists of two four-entry
queues—a decode queue (DEQ) and a dispatch queue (DISQ).

The decode logic decodes the four instructions in the decode queue. For many branch
instructions, these decoded instructions along with the bits in the BHT, are used during the
decode stage for branch correction.

The dispatch logic decodes the instructions in the DISQ for possible dispatch. The dispatch
logic resolves unconditional branch instructions and predicts conditional branch
instructions using the branch decode logic, the BHT, and values in the CTR.

The 512-entry BHT provides two bits per entry, indicating four levels of dynamic
prediction—strongly not-taken, not-taken, taken, and strongly taken. The history of a
branch’s direction is maintained in these two bits. Each time a branch is taken the value is
incremented (with a maximum value of three meaning strongly-taken); when it is not taken,
the bit value is decremented (with a minimum value of zero meaning strongly not-taken).
If the current value predicts taken and the next branch is taken again, the BHT entry then
predicts strongly taken. If the next branch is not taken, the BHT then predicts taken.

The dispatch logic also allocates each instruction to the appropriate execution unit. A
reorder buffer (ROB) entry is allocated for each instruction, and dependency checking is
done between the instructions in the dispatch queue. The rename buffers are searched for
the operands as the operands are fetched from the register file. Operands that are written by
other instructions ahead of this one in the dispatch queue are given the tag of that
instruction’s rename buffer; otherwise, the rename buffer or register file supplies either the
operand or a tag. As instructions are dispatched, the fetch unit is notified that the dispatch
queue can be updated with more instructions.

1.2.1.3 Branch Processing Unit (BPU)

The BPU is used for branch instructions and condition register logical operations. All
branches, including unconditional branches, are placed in a reservation station until
conditions are resolved and they can be executed. At that point, branch instructions are
executed in order—the completion unit is notified whether the prediction was correct.

The BPU also executes condition register logical instructions, which flow through the
reservation station like the branch instructions.

1.2.1.4 Completion Unit

The completion unit retires executed instructions from the reorder buffer (ROB) in the
completion unit and updates register files and control registers. The completion unit
recognizes exception conditions and discards any operations being performed on
subsequent instructions in program order. The completion unit can quickly remove
instructions from a mispredicted branch, and the decode/dispatch unit begins dispatching
from the correct path.
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The instruction is retired from the reorder buffer when it has finished execution and all
instructions ahead of it have been completed. The instruction’s result is written into the
appropriate register file and is removed from the rename buffers at or after completion. At
completion, the 604 also updates any other resource affected by this instruction. Several
instructions can complete simultaneously. Most exception conditions are recognized at
completion time.

1.2.1.5 Rename Buffers

To avoid contention for a given register location, the 604 provides rename registers for
storing instruction results before the completion unit commits them to the architected
register. Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight
for the condition register. GPRs are described in Section 1.3.2.1, “General-Purpose
Registers (GPRs),” FPRs are described in Section 1.3.2.2, “Floating-Point Registers
(FPRs),” and the condition register is described in Section 1.3.2.3, “Condition Register
(CR).”

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. The dispatch unit also provides a tag to the
execution unit identifying the result that should be used as the operand. When the proper
result is returned to the rename buffer it is latched into the reservation station. When all
operands are available in the reservation station, execution can begin.

The completion unit does not transfer instruction results from the rename registers to the
registers until any speculative branch conditions preceding it in the completion queue are
resolved and the instruction itself is retired from the completion queue without exceptions.
If a speculatively executed branch is found to have been incorrectly predicted, the
speculatively executed instructions following the branch are flushed from the completion
queue and the results of those instructions are flushed from the rename registers.

1.2.2 Execution Units

The following sections describe the 604’s arithmetic execution units—the two single-cycle
IUs, the multiple cycle IU, and the FPU. When the reservation station sees the proper result
being written back, it will grab it directly from one of the result buses. Once all operands
are in the reservation station for an instruction, it is eligible to be executed. Reservation
stations temporarily store dispatched instructions that cannot be executed until all of the
source operands are valid.

1.2.2.1 Integer Units (IUs)

The two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU) execute all integer
instructions. These are shown in Figure 1-1 and Figure 1-2. Each IU has a dedicated result
bus that connects to rename buffers and to all reservation stations. Each IU has a two-entry
reservation station to reduce stalls. The reservation station can receive instructions from the
decode/dispatch unit and operands from the GPRs, the rename buffers, or the result buses.
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Each SCIU consists of three single-cycle subunits—a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The MCIU consists of a 32-bit integer multiplier/divider and supports early exit on
16- x 32-bit multiplication operations. The MCIU executes mfspr and mtspr instructions,
which are used to read and write special-purpose registers. The MCIU can execute an
mtspr or mfspr instruction at the same time that it executes a multiply or divide instruction.
These instructions are allowed to complete out-of-order.

Note that the load and store instructions that update their address base register (specified by
the rA operand) pass the update results on the MCIU’s result bus. Otherwise, the MCIU’s
result bus is dedicated to MCIU operations.

1.2.2.2 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1 and Figure 1-2,is a single-pass, double-precision execution
unit; that is, both single- and double-precision operations requlre only a single pass, with a
latency of three cycles.

As the decode/dispatch unit issues instructions to the FPU’s two reservation stations, source
operand data may be accessed from the FPRs, the floating-point rename buffers, or the
result buses. Results in turn are written to the floating-point rename buffers and to the
reservation stations and are made available to subsequent instructions. Instructions are
executed from each reservation station in dispatch order.

1.2.2.3 Load/Store Unit (LSU)

The LSU, shown in Figure 1-1 and Figure 1-2, transfers data between the data cache and
the result buses, which route data to other execution units. The LSU supports the address
generation and handles any alignment for transfers to and from system memory. The LSU
also supports cache control instructions and load/store multiple/string instructions. As
noted above, load and store instructions that update the base address register pass their
results on the MCIU’s result bus. This is the only exception to the dedicated use of result
buses.

The LSU includes a 32-bit adder dedicated for EA calculation. Data alignment logic
manipulates data to support aligned or misaligned transfers with the data cache. The LSU’s
load and store queues are used to buffer instructions that have been executed and are
waiting to be completed. The queues are used to monitor data dependencies generated by
data forwarding and out-of-order instruction execution ensuring a sequential model.

The LSU allows load operations to precede pending store operations and resolves any
dependencies incurred when a pending store is to the same address as the load. If such a
dependency exists, the LSU delays the load operation until the correct data can be
forwarded. If only the low-order 12 bits of the EAs match, both addresses may be aliases
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for the same physical address, in which case, the load operation is delayed until the store
has been written back to the cache, ensuring that the load operation retrieves the correct
data.

The LSU does not allow the following operations to be speculatively performed on
unresolved branches:

» Store operations
» Loading of noncacheable data or cache miss operations
¢ Loading from direct-store segments

1.2.3 Memory Management Units (MMUs)

The primary functions of the MMUs are to translate logical (effective) addresses to
physical addresses for memory accesses, I/O accesses (most I/O accesses are assumed to
be memory-mapped), and direct-store accesses, and to provide access protection on blocks
and pages of memory.

The PowerPC MMUs and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

The 604’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory. The MMUs support block address translations, direct-store segments,
and page translation of memory segments. Referenced and changed status are maintained
by the processor for each page to assist implementation of a demand-paged virtual memory
system.

Separate but identical translation logic is implemented for data accesses and for instruction
accesses. The 604 implements two 128-entry, two-way set associative translation lookaside
buffers (TLBs), one for instructions and one for data. These TLBs can be accessed
simultaneously.

1.2.4 Cache Implementation

The 604 implements separate 16-Kbyte, four-way set-associative data and instruction
caches (Harvard architecture). The PowerPC architecture defines the unit of coherency as
a cache block, which for the 604 is a 32-byte (eight-word) line.
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PowerPC implementations can control the following memory access modes on a page or

block basis: -
»  Write-back/write-through mode 1

¢ Cache-inhibited mode
¢ Memory coherency
* Guarded memory (prevents access for speculative execution)

The caches implement an LRU replacement algorithm.

1.2.4.1 Instruction Cache

The 604’s 16-Kbyte, four-way set associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions. Instruction
cache coherency is not maintained by hardware.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled/enabled and invalidated by setting the HID0[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

1.2.4.2 Data Cache

The 604’s data cache is a 16-Kbyte, four-way set associative cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the LSU.

The data cache tags are dual-ported, so the process of snooping does not affect other
transactions on the system interface. If a snoop hit occurs, the LSU is blocked internally for
one cycle to allow the eight-word block of data to be copied to the write-back buffer.

To ensure cache coherency, the 604 data cache supports the four-state MESI
(modified/exclusive/shared/invalid) protocol.

These four states indicate the state of the cache block as follows:

+ Modified (M)—The cache block is modified with respect to system memory; that is,
data for this address is valid only in the cache and not in system memory.

« Exclusive (E)—This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

» Shared (S)—This cache block holds valid data that is identical to this address in
system memory and at least one other caching device.

» Invalid (I)—This cache block does not hold valid data.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled/enabled and invalidated by setting the
HIDO[17] and HIDOQ[21] bits, respectively. The data cache can be locked by setting
HIDO[19].
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Each cache line contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27-A31 of the logical addresses are zero); thus, a cache
line never crosses a page boundary. Accesses that cross a page boundary can incur a
performance penalty.
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Figure 1-3. Cache Unit Organization

1.2.5 System Interface/Bus Interface Unit (BIU)

The 604 provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The 604 uses one-beat and four-beat data
transactions, although it is possible for other bus participants to perform longer data
transfers. The 604 clocking structure supports processor-to-bus clock ratios of 1:1, 1.5:1,
2:1, and 3:1, as described in Section 1.2.6, “Clocking.”

The system interface is specific for each PowerPC processor implementation. The 604
system interface is shown in Figure 1-4.
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Figure 1-4. System Interface

Four-beat burst-read memory operations that load an eight-word cache block into one of
the on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implements the critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining words in the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.

Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions. The 604 supports bus pipelining and out-of-order split-bus transactions. In
general, the bus-pipelining mechanism allows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604 allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604 provides a separate queue for snoop
push operations so these operations can access the bus ahead of previously queued
operations. The 604 dynamically optimizes run-time ordering of load/store traffic to
improve overall performance.
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In addition, the 604 implements a data bus write only signal (DBWO) that can be used for
reordering write operations. Asserting DBWO causes the first write operation to occur
before any read operations on a given processor. Although this may be used with any write
operations, it can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible, -
allowing the 604 to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (lwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations.

The following sections describe the 604 bus support for memory and direct-store
operations. Note that some signals perform different functions depending upon the
addressing protocol used.

1.2.5.1 Memory Accesses

Memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock
cycle. Data transfers occur in either single-beat transactions or four-beat burst transactions.
A single-beat transaction transfers as much as 64 bits. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
is disabled, cache-inhibited accesses, and stores in write-through mode). Burst transactions,
which always transfer an entire cache block (32 bytes), are initiated when a block in the
cache is read from or written to memory. Additionally, the 604 supports address-only
transactions used to invalidate entries in other processors’ TLBs and caches.

Typically I/O accesses are performed using the same protocol as memory accesses. Refer
to Chapter 8, “System Interface Operation,” for more information.

1.2.5.2 Signals
The 604°s signals are grouped as follows:

 Address arbitration signals—The 604 uses these signals to arbitrate for address bus
mastership.

" o Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

¢ Address transfer signals—These signals, which consist of the address bus, address i
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

» Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or cache-inhibited.
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» Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

« Data arbitration signals—The 604 uses these signals to arbitrate for data bus
mastership.

 Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

¢ Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

» System status signals—These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

» Processor state signals—These two signals are used to set the reservation coherency
bit and set the size of the 604’s output buffers.

» Miscellaneous signals—These signals are used in conjunction with such resources
as secondary caches and the time base facility.

o Test/COP interface signals—The common on-chip processor (COP) unit is the
master clock control unit and it provides a serial interface to the system for
performing built-in self test (BIST).

« Clock signals—These signals determine the system clock frequency. These sngnals
can also be used to synchronize multiprocessor systems. :

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as APO-AP3 (address bus parity
signals) and TTO-TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

1.2.5.3 Signal Configuration
Figure 1-5 illustrates the logical pin configuration of the 604, showing how the signals are

grouped.
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Figure 1-5. PowerPC 604 Microprocessor Signal Groups

1.2.6 Clocking

The 604 has a phase-locked loop (PLL) that generates the internal processor clock. The
input, or reference signal, to the PLL is the bus clock. The feedback in the PLL guarantees
that the processor clock is phase-locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances. The PLL also ensures a 50% duty cycle for
the processor clock.

The 604 supports the following processor-to-bus clock frequency ratios—1:1, 1.5:1, 2:1,
and 3:1, although not all ratios are available for all frequencies. For more information, refer
to the 604 hardware specifications.
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1.3 PowerPC 604 Microprocessor Execution Model
This section describes the following characteristics of the 604’s execution model:

o The PowerPC architecture

» The 604 register set and programming model
* The 604 instruction set

« The 604 exception model

» Instruction timing on the 604

1.3.1 Levels of the PowerPC Architecture

The PowerPC architecture is derived from the IBM POWER Architecture™ (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented. For example, if a processor adheres to the virtual environment architecture,
it is assumed that it meets the user instruction set architecture specification.

o PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software must conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers. Note
that the PowerPC architecture refers to user level as problem state.

+ PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

* PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. The OEA
defines the PowerPC memory management model, supervisor-level registers, and
the exception model. Note that the PowerPC architecture refers to the supervisor
level as privileged state.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.
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The 604 complies with all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illegal instruction exception on the 604. PowerPC processors are allowed to have
implementation-specific features that fall outside, but do not conflict with, the PowerPC
architecture specification. Examples of features that are specific to the 604 include the
performance monitor and nap mode.

The 604 is a high-performance, superscalar PowerPC implementation of the PowerPC
architecture. Like other PowerPC processors, it adheres to the PowerPC architecture
specifications but also has additional features not defined by the architecture. These
features do not affect software compatibility. The PowerPC architecture allows optimizing
compilers to schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution units in
the 604 allow compilers to maximize parallelism and instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
instruction processing of the PowerPC processors.

1.3.2 Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

During normal execution, a program can access the registers, shown in Figure 1-6,
depending on the program’s access privilege (supervisor or user, determined by the
privilege level (PR) bit in the machine state register (MSR)). Note that registers such as the
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operands that are part of the instructions. Access to registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register
(mtspr) and Move from Special-Purpose Register (nfspr) instructions) or implicitly as the
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure 1-6 shows the registers implemented in the 604, indicating those that are defined by
the PowerPC architecture and those that are 604-specific. Note that all of these registers
except the FPRs are 32 bits wide.
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Figure 1-6. Programming Model—PowerPC 604 Microprocessor Registers
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PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by application software). As shown in Figure 1-6, the programming model
incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Note that each PowerPC implementation has its own unique set of
implementation-dependent registers that are typically used for debugging, configuration,
and other implementation-specific operations.

Some registers are accessible only by supervisor-level software. This division allows the
operating system to control the application environment (providing virtual memory and
protecting operating-system and critical machine resources). Instructions that control the
state of the processor, the address translation mechanism, and supervisor registers can be
executed only when the processor is in supervisor mode.

The following sections summarize the PowerPC registers that are implemented in the 604.

1.3.2.1 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are 32 bits wide in 32-bit PowerPC implementations and 64 bits wide in 64-bit
PowerPC implementations. The 604 also has 12 GPR rename buffers, which provide a way
to buffer data intended for the GPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The use of rename buffers is not defined by the
PowerPC architecture, and they are transparent to the user with respect to the architecture.
The GPRs and their associated rename buffers serve as the data source or destination for
instructions executed in the IUs.

1.3.2.2 Floating-Point Registers (FPRs)

The PowerPC architecture also defines 32 floating-point registers (FPRs). These 64-bit
registers typically are used to provide source and target operands for user-level,
floating-point instructions. The 604 has eight FPR rename buffers that provide a way to
buffer data intended for the FPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The rename buffers are not defined by the PowerPC
architecture. The FPRs and their associated rename buffers can contain data objects of
either single- or double-precision floating-point formats.

1.3.2.3 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching. The 604 also
has eight CR rename buffers, which provide a way to buffer data intended for the CR. The
rename buffers are not defined by the PowerPC architecture.
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1.3.2.4 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard.

1.3.2.5 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 604 implements the MSR as a 32-bit register;
64-bit PowerPC processors use a 64-bit MSR that provides a superset of the 32-bit
functionality.

1.3.2.6 Segment Registers (SRs)

For memory management, 32-bit PowerPC implementations use sixteen 32-bit segment
registers (SRs).

1.3.2.7 Special-Purpose Registers (SPRs)

The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. Some SPRs are accessed
implicitly as part of executing certain instructions. All SPRs can be accessed by using the
move to/from SPR instructions, mtspr and mfspr.

In the 604, all SPRs are 32 bits wide.

1.3.2.7.1 User-Level SPRs
The following SPRs are accessible by user-level software:

» Link register (LR)—The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide.

o Countregister (CTR)—The CTR is decremented and tested automatically as a result
of branch and count instructions. The CTR is 32 bits wide.

» XER—The 32-bit XER contains the integer carry and overflow bits.
» The time base registers (TBL and TBU) can be read by user-level software, but can
be written to only by supervisor-level software.

1.3.2.7.2 Supervisor-Level SPRs

The 604 also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

» The 32-bit data DSISR defines the cause of DSI and alignment exceptions.

+ The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.
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+ The decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. In the
604, the decrementer frequency is 1/4th of the bus clock frequency (as is the time
base frequency).

 The 32-bit SDRI1 register specifies the location and page table format used in
logical-to-physical address translation for pages.

« The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by
the 604 for saving the address of the instruction that caused the exception, and the
address to return to when a Return From Interrupt (rfi) instruction is executed.

o The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

* SPRGO-SPRG3 registers are 32-bit registers provided for operating system use.

« The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

» The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

» The time base registers (TBL and TBU) together provide a 64-bit time base register.
The registers are implemented as a 64-bit counter, with the least-significant bit being
the most frequently incremented. The PowerPC architecture defines that the time
base frequency be provided as a subdivision of the processor clock frequency. In the
604, the time base frequency is 1/4th of the bus clock frequency (as is the
decrementer frequency). Counting is enabled by the Time Base Enable signal
(TBEN).

» Block address translation (BAT) registers—The PowerPC architecture defines 16

BAT registers, divided into four pairs of data BATs (DBATs) and four pairs of
instruction BATs (IBATs).

The 604 includes the following registers not defined by the PowerPC architecture:

« Instruction address breakpoint register (IABR)—This register can be used to cause
a breakpoint exception to occur if a specified instruction address is encountered.

» Data address breakpoint register (DABR)—This register can be used to cause a
breakpoint exception to occur if a specified data address is encountered.

» Hardware implementation-dependent register 0 (HID0)—This register is used to
control various functions within the 604, such as enabling checkstop conditions, and
locking, enabling, and invalidating the instruction and data caches.

 Processor identification register (PIR)—The PIR is a supervisor-level register that
has a right-justified, four-bit field that holds a processor identification tag used to
identify a particular 604. This tag is used to identify the processor in multiple-master
implementations.
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+ Performance monitor counter registers (PMC1 and PMC?2). The counters are used
to record the number of times a certain event has occurred.

» Monitor mode control reglster 0 (MMCRO)—This is used for enabling various
performance monitoring interrupt conditions and establishes the funcnon of the
counters.

» Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the HID registers, or other implementation-specific
registers, be consistent among PowerPC processors.

1.3.3 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.3.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining.

1.3.3.1.1 Instruction Set

The 604 implements the entire PowerPC instruction set (for 32-bit implementations) and
most optional PowerPC instructions. The PowerPC instructions can be loosely grouped
into the following general categories:

 Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions
. Floatmg-pomt instructions—These include ﬂoatmg-pomt computational
instructions, as well as instructions that affect the FPSCR. Floating-point
instructions include the following:
— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point move instructions
— Floating-point status and control instructions
— Optional floating-point instructions (listed with the optional instructions below)
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The 604 supports all IEEE 754-1985 floating-point data types (normalized,
denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software exception routines.

The PowerPC architecture also supports a non-IEEE mode, controlled by a bit in the
FPSCR. In this mode, denormalized numbers, NaNs, and some IEEE invalid
operations are not required to conform to IEEE standards and can execute faster.
Note that all single-precision arithmetic instructions are performed using a
double-precision format. The floating-point pipeline is a single-pass implementation
for double-precision products. For almost all floating-point instructions, a
single-precision instruction using only single-precision operands in
double-precision format performs the same as its double-precision equivalent.
Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions

— Integer load and store string instructions

— Floating-point load and store

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— System call and rfi instructions
— Condition register logical instructions

Synchronization instructions—The PowerPC architecture defines instructions for
memory synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronize instruction (sync)—This UIS A-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— The Instruction Synchronize instruction (isync)—This instruction causes the
604 to purge its instruction buffers and fetch the double word containing the next
sequential instruction.

— The Enforce In-Order Execution of I/O instruction (eieio)—The eieio
instruction, defined by the VEA, can be used instead of the sync instruction when
only memory references seen by /O devices need to be ordered.

Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. These
instructions include move to/from special-purpose register instructions (mtspr and
mfspr).
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* Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.
— User- and supervisor-level cache instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions
* Optional instructions—the 604 implements the following optional instructions:
— The eciwx/ecowx instruction pair
— The TLB Synchronize instruction (tlbsync)
— Optional graphics instructions:
— Store Floating-Point as Integer Word Indexed (stfiwx)
— Floating Reciprocal Estimate Single (fres)
— Floating Reciprocal Square Root Estimate (frsqrte)
— Floating Select (fsel)

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
specific store instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses
The effective address (EA) is the 32-bit address computed by the processor when executing

amemory access or branch instruction or when fetching the next sequential instruction.
The PowerPC architecture supports two simple memory addressing modes:
« EA=(rAl0) + offset (including offset = 0) (register indirect with immediate index)
+ EA=(rAlQ) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.
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For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

1.3.4 Exception Model

The following subsections describe the PowerPC exception model and the 604
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as
a result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRRO so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRR0 and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.
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The PowerPC architecture supports the following types of exceptions:

Synchronous, precises—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604
unplements only the i 1mprec13e nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604.

Asynchronous—The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604, and in many PowerPC processors, the hardware interrupt
is generated by the assertion of the Interrupt (INT) signal, which is not defined
by the architecture. In addition, the 604 implements the system management
interrupt, which performs similarly to the external interrupt, and is generated by
the assertion of the System Management Interrupt (SMI) signal, and the
performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskable by setting MSR[EE].

— Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions that are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)—FEQ and
FEl—that determine how floating-point exceptions are handled. There are four
combinations of bit settings, of which the 604 implements three. These are as follows:

Ignore exceptions mode (FEQ = FE1 = 0). In this mode, the instruction dispatch logic
feeds the FPU as fast as possible and the FPU uses an internal pipeline to allow
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.

Precise interrupt mode (FEO = 1; FE1 = x). This mode includes both the precise
mode and imprecise recoverable mode defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604 takes floating-point exceptions as
defined by the PowerPC architecture.
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 Imprecise nonrecoverable mode (FEO = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRR0) may point to an instruction following the instruction that caused
the exception.

The 604 exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type Exception
Asynchronous/nonmaskable Machine check
System reset
Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)
Synchronous/precise Instruction-caused exceptions
Synchronous/imprecise Floating-point exceptions (imprecise nonrecoverable mode)

The 604’s exceptions, and a general description of conditions that cause them, are listed in
Table 1-2.

Table 1-2. Overview of Exceptions and Conditions

Exception Vector Offset

Causing Conditions
Type (hex) 9
Reserved 00000 —
System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
) signal.
Machine check | 00200 Amachine check exception is signaled by the assertion of a qualified TEA

indication on the 604 bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Dsi

00300

The causse of a DSI exception can be determined by the bit settings in the

DSISR, listed as follows:

0 Set if a load or store instruction results in a direct-store program exception;
otherwise cleared.

1 Set if the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] =1, set by an eciwx, ecowx, lwarx, or stwex. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Set if an EA matches the address in the DABR while in one of the three
compare modes.

10Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11 Set if eciwx or ecowX is used and EARIE] is cleared.

ISl

00400

An S1 exception is caused when an instruction fetch cannot be performed for

any of the following reasons:

* The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an IS| exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

* The fetch access is to a direct-store segment.

« The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment

00600

An alignment exception is caused when the processor cannot perform a
memory access for the following reasons:

Afloating-point load, store, Imw, stmw, iwarx, stwcx., eciwx, or ecowx
instruction is not word-aligned. _

A dcbz instruction refers to a page that is marked either cache-inhibited or
write-through.

A dcbz instruction has executed when the 604 data cache is locked or disabled.
An access is not naturally aligned in little-endian mode.

An Imw, stmw, Iswi, ISWX, stswi, or stswX instruction is issued in little-endian
mode.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

« Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values
in MSR[FEO] and MSR[FE1].

FPSCRIFEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

« Illegal instruction—An illegal instruction program excsption is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSRI[PR] = 1.

» Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

Afloating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

00A00-00BFF

System call

00C00

Asystem call exception occurs when a System Call (sc) instruction is executed.

Trace

00D00

Ether MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSRIBE] = 1 and a branch instruction is completed.

Floating-point
assist

00E00

Defined by the PowerPC architecture, but not required in the 604.

Reserved

00E10-00EFF

Performance
monitoring

interrupt

00F00

The performance monitoring interrupt is a 604-specific exception and is used
with the 604 performance monitor, described in Section 1.5, “Performance
Monitor.”

The performance monitoring facility can be enabled to signal an exception
when the valuse in one of the performance monitor counter registers (PMC1 or
PMC2) goes negative. The conditions that can cause this exception can be
enabled or disabled in the monitor mode control register 0 (MMCRO).

Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved

01000-012FF
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset
Ci
Type (hex) ausing Conditions
Instruction 01300 An instruction address brealgoint exception occurs when the address (bits 0 to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
management input signal is asserted. This exception is provided for use with the nap mode,
interrupt which is described in Section 1.4, “Power Management—Nap Mode.”
Reserved 01500-02FFF | Reserved, implementation-specific exceptions. These are not implemented in
the 604.

1.3.5 Instruction Timing

As shown in Figure 1-7, the common pipeline of the 604 has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which all floating-point instructions must pass.

(Four-instruction dispatch per clock cycle in

any combination)

| Fetch (IF) |

i
Decode (ID)

Y

l Dispatch (DS) '

Execute Stage

FPU BPU Lsu

|

mou | |

]
]
]
]
| sowr || scwz ||
]
[]
[]
]

Complete (C)

Y

I Write-Back (W)I

Figure 1-7. Pipeline Diagram
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The common pipeline stages are as follows:

Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

Instruction decode (ID)—During the ID stage, all time-critical decoding is
performed on instructions in the dispatch queue (DISQ). The remaining decode
operations are performed during the instruction dispatch stage.

Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

Execute (E)—While the execution stage is viewed as a common stage in the 604
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early as the
complete stage. If the completion logic detects an instruction containing exception
status or if a branch has been mispredicted, all subsequent instructions are cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

Wiriteback (W)—The writeback stage is used to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in parallel
with multiply and divide operations.
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The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

1.4 Power Management—Nap Mode

The 604 provides a power-saving mode, called nap mode, in which all internal processing
and bus operations are suspended. Software initiates nap mode by setting the MSR[POW]
bit. After this bit is set, the 604 suspends instruction dispatch and waits for all activity in
progress, including active and pending bus transactions, to complete. It then powers down
the internal clocks, and indicates nap mode by asserting the HALTED output signal.

When the 604 is in nap mode, all internal activity stops except for decrementer, time base,
and interrupt logic, and the 604 does not snoop bus activity unless the system asserts the
RUN input signal. Asserting the RUN signal causes the HALTED signal to be negated.

Nap mode is exited (clocks resume and MSR[POW] cleared) when any asynchronous
interrupt is detected.

1.5 Performance Monitor

The 604 incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

The monitor mode control register 0 (MMCRO) can be used to specify the conditions for
which a performance monitoring interrupt is taken. For example, one such condition is
associated with one of the counter registers (PMC1 or PMC2) incrementing until the most
significant bit indicates a negative value. Additionally, the sampled instruction address and
sampled data address registers (SIA and SDA) are used to hold addresses for instruction
and data related to the performance monitoring interrupt.
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Chapter 2
PowerPC 604 Processor Programming
Model

This chapter describes the PowerPC programming model with respect to the 604. It consists
of three major sections, which describe the following:

» Registers implemented in the 604
+ Operand conventions
» The 604 instruction set

2.1 The PowerPC 604 Processor Register Set

This section describes the registers in the 604 and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Note that registers are defined at all three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.
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2.1.1 Register Set

The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the integer exception register (XER) is SPR 1). These registers can
be accessed using the mtspr and mfspr instructions.

Implementation Note—The 604 fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.
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/ SUPERVISOR MODEL \

4 R OEA
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General-Purpose Register Dependent Register’ Register
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SPR 1008 PVR | SPR287
s [vsr ] [too_] |
PRI Memory Management Registers
Instruction BAT
$ Registers Data BAT Registers Segment Registers
P IBATOU |SPR528 DBATOU | SPR536 SRo
IBATOL | SPR529 DBATOL | SPR537 SA1
Floating-Point IBATIU | SPR530 DBAT1U | SPR 538 $
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FPRO IBAT2U |SPR532 DBAT2U | SPR 540
FPR1 IBAT2L |SPR533 DBAT2L |[SPRS&41
IBAT3U | SPR534 DBAT3U | SPR542 SDR1
$ IBAT3L | SPR535 DBATAL | SPR 543 SPR25
FPR31
Performance Monitor
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Monitor Counters Register 0 Instruction Address
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SPRS SPRG2 | SPR274 SRR1 | SPR27
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\ J (For Writing) SPR22
USER MODEL TBL | SPR284 Instruction Address
VEA TBU | SPR285 Breakpoint Register
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1 604-specific—not defined by the PowerPC architecture

Figure 2-1. Programming Model—PowerPC 604 Microprocessor Registers
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The PowerPC’s user-level registers are described as follows:

L]

User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The PowerPC general-purpose register file

consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See “General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO-CR?7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 604 is the same in
both cases. In the 604, an mtcrf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use of the mterf instruction, see
Section 6.6, “Instruction Scheduling Guidelines.”

Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

Implementation Note—The PowerPC architecture states that in some

implementations, the Move to FPSCR Fields (mtfsf) instruction may perform
more slowly when only a portion of the fields are updated as opposed to all of
the fields. In the 604 implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
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registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for
integer operations. It is set implicitly by many instructions. See “XER Register
(XER),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

— Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bectrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

» User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB for
writing values to the TB. For more information, see “PowerPC VEA Register
Set—Time Base,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

» Supervisor-level registers (OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are describes as follows:

— Configuration registers
— Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. See “Machine
State Register (MSR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.
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Implementation Note—Note that the 604 defines MSR[29] as the performance monitor
marked mode bit (PM). This additional bit is described in Table 2-1.

Table 2-1. MSR[PM] Bit

Bit

Description

PM

Performance monitor marked mode

0  Process is not a marked process.

1 Process is a marked process.

This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”

— Processor version register (PVR). This register is a read-only register that

identifies the version (model) and revision level of the PowerPC processor.
For more information, see “Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

Implementation Note—The processor version number is 4 for the 604. The
processor revision level starts at 0x0000 and is different for each revision of
the chip. The revision level is updated for each silicon revision.

— Memory management registers
~ Block-address translation (BAT) registers. The PowerPC OEA includes eight

block-address translation registers (BATs), consisting of four pairs of
instruction BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for
a list of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual. Because BAT upper and lower words
are loaded separately, software must ensure that BAT translations are correct
during the time that both BAT entries are being loaded.

SDRI1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. For more information, see “SDR1,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.”

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

— Exception handling registers
— Data address register (DAR). After a DSI or an alignment exception, DAR is

set to the effective address generated by the faulting instruction. See “Data
Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.
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— SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See “SPRG0-SPRG3,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

— DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

— Machine status save/restore register 0 (SRR0). The SRRO register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 0
(SRRO),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Machine status save/restore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Miscellaneous registers

— Time Base (TB). The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
“Time Base Facility (TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

— Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Implementation Note—In the 604, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

— Data address breakpoint register (DABR)—This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered. See “Data Address Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for
more information.

— External access register (EAR). This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processors that implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.
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» Hardware implementation registers—The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604 are described as follows. Note that in the 604, these registers
are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered. ‘

— Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functions within the 604, such as enabling checkstop conditions,
and locking, enabling, and invalidating the instruction and data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 604. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition is implementation-specific.

— Performance monitor counter registers (PMC1 and PMC?2). The counters are
used to record the number of times a certain event has occurred.

— Monitor mode control register 0 (MMCRO)—This is used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 604-Specific Registers

This section describes registers that are defined for the 604 but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is
assigned an SPR number by the architecture but is not defined by it. Note that these are all
supervisor-level registers.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The 604 also implements an Instruction Address Breakpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be a word. If the word specified
by the IABR is fetched, the instruction breakpoint handler will be invoked. The instruction
which triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.
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Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 Word address to be compared
30 ’ Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
31 Translation enabled. This bit is compared with the MSRJ[IR] bit. An IABR match is
signaled only if these bits also match.

The instruction that triggers the instruction address breakpoint exception is executed before
the exception handler is invoked. For more information about the IABR exception, see
Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with the mtspr and mfspr instructions using the SPR number,
1010.

2.1.2.2 Processor Identification Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28-31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, this tag is used for
several direct-store bus operations in the form of a “bus transaction from” tag.

PIR

Reserved

27 28 31

Figure 2-3. Processor Identification Register
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The PIR can be accessed with the mtspr and mfspr instructions using the SPR number,
1013. Note that although this number is defined by the OEA, the register structure is defined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register 0

The hardware implementation dependent register 0 (HIDO) is an SPR that controls the state
of several functions within the 604.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings

Description

Enable machine check input pin

0  The assertion of the MCP does not cause a machine chack exception.

1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of a
Cache Parity Error, detection of an address parity error, or detection of a data parity error.

Note that the machine check excsption is further affected by the MSR[ME] bit, which specifies whether the

processor checkstops or continues processing.

Enable cache parity checking

0  The detection of a cache parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

Enable machine check on address bus parity error

0 The detection of a address bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

Enable machine check on data bus parity error

0  The detection of a data bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

15

Not hard reset
0  Ahard reset occurred if software had previously set this bit
1 Ahard reset has not occurred.

16

Instruction cache enable

0  The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accessss from the bus (sncop, cache ops) are ignored.

1  The instruction cache is enabled

17

Data cache enable

0  The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1 The data cache is enabled.
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Table 2-3. Hardware implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

18 | Instruction cache lock

0  Normal operation

1 Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry.

19 | Data cache lock

0  Normal operation

1 Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 | Instruction cache invalidate all

0 The instruction cache is not invalidated.

1 Whenset, an invalidate operation is issued that marks the state of each clock in the instruction cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle inmediately following the write

operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 | Data cache invalidate all

0  The data cache is not invalidated.

1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified fines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 | Serial instruction execution disable )

0  The 604 executes one instruction at a time. The 604 does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.

1 Instruction execution is not serialized.

29 Branch history table enable
The 604 uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch
instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).

The BHT is initialized and disabled at power-on reset. The BHT is updated while it is disabled, so it can be

initialized before it is enabled.

2.1.2.4 Performance Monitor Registers

The remaining five registers defined for use with the 604 are used by the performance
monitor. For more information about the performance monitor, see Chapter9,
“Performance Monitor.”

2.1.2.4.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.
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The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-4.

Table 2-4. MMCRO Bit Settings

Bit Name Description

0 Dis Disable counting unconditionally
0  The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

2 DU Disable counting while in user mode

0  The PMCn counters can be changed by hardware.

1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0  The PMCn counters can be changed by hardware.
1 IfMSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

6 DISCOUNT Disable counting of PMC1 and PMC2 when a performance monitor interrupt is
signaled (that is, (PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or
the occurrence of an enabled time base transition with (INTONBITTRANS =1) &
(ENINT = 1)).

0  The signalling of a performance monitoring interrupt has no effect on the
counting status of PMC1 and PMC2.

1 The signalling of a performance monitoring interrupt prevents the changing
of the PMC1 counter. The PMC2 counter will not change if
PMC2COUNTCTL =0.

Becausse a time base signal could have occurred along with an enabled counter

negative condition, software should always reset INTONBITTRANS to zero, if the

value in INTONBITTRANS was a one.

7-8 RTCSELECT 64-bit time base, bit selection enable
00 Pickbit 63 to count
01 Pickbit 55 to count
10 Pickbit 51 to count
11 Pick bit 47 to count
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Table 2-4. MMCRO Bit Settings (Continued)

Bit Name Description

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on

0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15 | THRESHOLD Threshold value. All 6 bits are supported by the 604; allowing threshold values
from 0 to 63. The intent of the THRESHOLD support is to be able to characterize
L1 data cache misses.

16 PMC1INTCONTROL | Enable interrupt signaling dus to PMC1 counter negative.
0  Disable PMC1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMC2INTCONTROL | Enable interrupt signalling due to PMC2 counter negative. This signal overrides
the setting of DISCOUNT.

0 Disable PMC2 interrupt signaling due to PMC2 counter negative

1  Enable PMC2 Interrupt signaling due to PMC2 counter negative

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or

after a performance monitoring interrupt is signaled.

0  Enable PMC2 counting

1  Disable PMC2 counting until PMC1 bit 0 is set or until a performance monitor
interrupt is signaled

This signal can be used to trigger counting of PMC2 after PMC1 has become

negative. This provides a triggering mechanism for counting after a certain

condition occurs or after a preset time has elapsed. It can be used to support

getting the count associated with a specific event.

19-25 | PMCISELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-5.
26-31 | PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-6.

2.1.2.4.2 Performance Monitor Counter Registers (PMC1 and PMC2)

PMCI1 and PMC?2 are 32-bit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both PCMn[INTCONTROL] and MMCRO[ENINT] are
also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMC1 and PMC2 are SPRs 953 and 954, respectively, and can be read and written to by
using the mfspr and mtspr instructions. Software is expected to use the mtspr instruction
to explicitly set the PMC register to non-negative values. If software sets a negative value,
an erroneous interrupt may occur. For example, if both PCMn[INTCONTROL] and
MMCRO[ENINT] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the
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values of the SIA and SDA may not have any relationship to the type of instruction being

counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MMCRO register
or until a performance monitor interrupt is generated. Table 2-5 lists the selectable events
with their appropriate MMCRO encodings.

Table 2-5. Selectable Events—PMC1

Mugnml;"':sl Description

000 0000 Nothing

000 0001 Processor cycles

000 0010 Number of instructions completed

000 0011 RTCSELECT bit transition

000 0100 Number of instructions dispatched

000 0101 lcache misses

000 0110 dtlb misses

000 0111 Branch predicted incorrectly

000 1000 Number of reservations requested (LARX is ready for execution)

000 1001 Number of load dcache misses that exceeded the threshold value with lateral L2 intervention
000 1010 Number of store dcache misses that exceeded the threshold value with lateral L2 intervention
000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions

000 110i Number of eielo instructions

000 1110 Number of integer instructions being completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions being completed every cycle (no loads or stores)

001 0000 LSU produced result

001 0001 SCIU1 produced result

001 0010 FPU produced result ‘

001 6011 Instructions dispatched to the LSU

001 0100 Instructions dispatched to the SCIU1

001 0101 Instructions dispatched to the FP unit

001 0110 Snoop requests received

001 0111 Number of load dcache misses that exceeded the threshold value without lateral L2 intervention
001 1000 Number of store dcache misses that exceeded the threshold value without lateral L2 intervention
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Bits MMCRO[26-31] are used for selecting events associated with PMC2. These settings are
shown in Table 2-6.

Table 2-6. Selectable Events—PMC2

Jucros o1 —
00 0000 Nothing
00 0001 Processor cycles
00 0010 Number of instructions completed
00 0011 RTCSELECT bit transition
00 0100 Number of instructions dispatched
00 0101 Number of cycles a load miss takes
000110 Data cache misses
000111 Instruction th misses
00 1000 ' Branches comploted
00 1001 Number of reservations successfully obtained (STCX succeeded)
00 1010 Number of mfspr instructions dispatched
00 1011 Number of icbi instructions
00 1100 Number of isync instructions
00 1101 Branch unit produced result
00 1110 SCIUO produced resuit
00 1111 MCIU produced result
010000 Instructions dispatched to the branch unit
01 0001 Instructions dispatched to the SCIUO
010010 Number of loads completed
01 0011 Instructions dispatched to the MCIU
010100 Number of snoop hit cccurred

2.1.2.4.3 Sampled Instruction Address Register (SIA)

The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.
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If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

2.1.2.4.4 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

 Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.
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All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

 Underflow during multiplication using a denormalized operand
» Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misalighed Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-7. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4 Floating-Point Operand

The 604 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
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standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

The 604 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized
numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming
manner. This is accomplished by delivering results that approximate the values required by
the IEEE standard. Table 2-7 summarizes the conditions and mode behavior for operands.

Table 2-7. Floating-Point Operand Data Type Behavior

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI =0) (NI=1)
Single denormalized | Single denormalized | Single denormalized | Normalize all three | Zero all three
Double denormalized | Double denormalized | Double denormalized
Single denormalized | Single denormalized | Normalized or zero Normalize AandB | ZeroAand B
Double denormalized | Double denormalized
Normalized or zero Single denormalized | Single denormalized | Normalize BandC | ZeroBand C
Double denormalized | Double denormalized
Single denormalized | Nommalized or zero Single denormalized | NormalizeAand C | ZeroAand C
Double denormalized Double denormalized
Single denormalized | Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized | Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized | Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNaNl' QNaNl'!
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaNl! QNaNl!l
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNaNl QNaNl'l
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
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Table 2-8 summarizes the mode behavior for results.

Table 2-8. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-lEEE Mode (Ni = 1)
Single Denormalized Retumn single-precision Return zero.
denormalized number with trailing
2eros.
Single Normalized Return the result. Return the resuit.
Infinity
Zero
Single QNaN Retur QNaN. Return QNaN.
SNaN
Single INT Place integer into low word of FPR. | If (Invalid Operation)
then
Place (0x8000) into FPR{32-63]
olse
Place integer into FPR[32-63].
Double Denormalized Return double precision Return zero.
denormalized number.
Double Normalized Return the result. Return the resuit.
Infinity
Zero
Double QNaN Return QNaN. Return QNaN.
SNaN
Double INT Not supported by 604 Not supported by 604

2.2.5 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for the 604. These
instructions are divided into the following functional categories:

 Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

» Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”
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« Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

 Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,”
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

» Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

¢ Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

» External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 604’s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
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mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604 instructions belong to one of the following three classes:

e Defined
o Illegal
o Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the 604.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 604 provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604 provides hardware support for all instructions defined for 32-bit implementations.
The 604 does not support the optional fsqrt, fsqrts, and tlbia instructions.
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A defined instruction can have invalid forms. The 604 provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists all invalid instruction forms and specifies the operation of the 604 upon
detecting each.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

« Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9,22,56,57, 60,61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

+ Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the 604.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 604:

2,30, 58, 62

¢ All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17,19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

¢ Aninstruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The 604 invokes the system illegal instruction error handler (a program exception) when it
detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about
illegal and invalid instruction exceptions. With the exception of the instruction consisting
entirely of binary zeros, the illegal instructions are available for further additions to the
PowerPC architecture.
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2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:
 Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual.

+ Implementation-specific instructions required to conform to the PowerPC
architecture

* Architecturally-allowed extended opcodes
» Implementation-specific instructions

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.
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The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter3, “Operand Conventions,” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address O, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

» Register indirect with immediate index mode
* Register indirect with index mode
» Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:
o Immediate
o Link register indirect
» Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (s¢) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

» No higher priority exception exists (Sc).

¢ All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.
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* Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

 The instructions following the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 604—those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 604 provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tibie, and tlbsync. Note that the privilege level of the mfspr and mtspr instructions
depends on the SPR encoding.

+ An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

* An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

+ The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

» The execution of a trap instruction invokes the program exception trap handler.

¢ The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

» The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”
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2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the 604
and highlights any special information with respect to how the 604 implements a particular
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

¢ CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
» Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:
 Integer arithmetic instructions
¢ Integer compare instructions
+ Integer logical instructions
» Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-9. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,IB
Subtract From subf (subf. subfo subfo.) rD,rA,1B
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
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Table 2-9. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Subtract from Immediate Carrying subfic D,rA,SIMM
Add Carrying addc (addc. addco addco.) D,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,r8
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. hego nego.) D,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw (mullw. muliwo muliwo.) rD,rA,r8
Multiply High Word multhw (mulhw.) ID,rA,1B
Multiply High Word Unsigned muthwu (mulhwu.) rD,rA,18
Divide Word divw (divw. divwo divwo.) rD,rA, 1B
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,IB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
604 arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the integer exception register are set to reflect an overflow condition
of a 32-bit result. This may only occur when the overflow enable bit is set (OE = 1).
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2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-10
summarizes the integer compare instructions.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-11 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-11. Integer Logical Instructions

Name Mnemonic Os:;:‘r;r;d

AND Immediate andi. rA,rS,UIMM
AND Immediate Shifted andis. rA,rS,UIMM
OR Immediate ori rA,rS,UIMM
OR Immediate Shifted oris rA,rS,UIMM
XOR Immediate xori rA,rS,UuIMM
XOR Immediate Shifted xoris rA,rS,UIMM
AND and (and.) rA,rS,rB

OR or (or) rA,rS,rB
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Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic Ospye':;r;(d

XOR xor (xor.) rA,rS,rB
NAND nand (nand.) rArs,rB
NOR nor (nor.) rA,rS,1B
Equivalent eqv (eqv.) rArsS,rB
AND with Complement andc (andc.) rArs,rB
OR with Complement orc (orc.) rArs,rB
Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) TArS

Count Leading Zeros Word cntizw (cntizw.) | rAsrS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is retumed to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-12.

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax
Rotate Left Word Immediate then AND with Mask riwinm (riwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask riwnm (riwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert Awimi (riwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.
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Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-13.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word siw (slw.) rA,rS,rB
Shift Right Word SIW (Srw.) rA,rS,rB
Shift Right Algebraic Word Immediate | srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,r8

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:
» Floating-point arithmetic instructions
* Floating-point multiply-add instructions
+ Floating-point rounding and conversion instructions
 Floating-point compare instructions
« Floating-point status and control register instructions
* Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 2-14.

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frAfrB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) fr0,frAirB
Floating Subtract Single fsubs (fsubs.) frD,frA,irB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frAfrC
Floating Multiply Single fmuls (fmuls.) frD,frA frC
Floating Divide (Double-Precision) fdiv (fdiv.) rD,frA,frB
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Table 2-14. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Floating Divide Single fdivs (fdivs.) rD,frA 1B
Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB
Floating Square Root Single fsqrts (fsqrts.) frD,irB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate | frsqrte (frsqrte.) rD,irB
Floating Select fsel frD frA frC.frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-15.

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) rD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC.1rB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA rC.frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) 1rD,frA,rC,rB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) | frD,frA,rC,frB
Floating Negative Multiply-Subtract (Double-Precision) | fnmsub (fnmsub.) 1rD, frA,1rC,irB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) | frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.
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Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single frsp (frsp.) fr0,1rB
Floating Convert to Integer Word fetiw (fetiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero | fctiwz (fctiwz.) rD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = -0). The floating-point compare
instructions are summarized in Table 2-17.

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fempu criD,frA,frB
Floating Compare Ordered fcmpo crfD,frA frB

Within the PowerPC architecture, an fcmpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 604, crfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that
all floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-18.

Table 2-18. Floating-Point Status and Control Register Instructions

‘ Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) fiD
Move to Condition Register from FPSCR | mcrfs crfD,criS
Move to FPSCR Field Immediate mtisfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtist (mtisf.) FM,frB
Move to FPSCR Bit 0 mtisb0 (mtfsb0.) | crbD
Move to FPSCR Bt 1 mtisb1 (mtfsb1.) | erbD
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2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-19 summarizes the floating-point
move instructions.

Table 2-19. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr (fmr.) frD,i1B
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) rD,irB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Integer load instructions

Integer store instructions

Integer load and store with byte reverse instructions
Integer load and store multiple instructions
Floating-point load instructions

Floating-point store instructions

Memory synchronization instructions

Implementation Notes—The following describes how the 604 handles misalignment:

L]

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal

segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 604 triggers a DSI exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.
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» Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 604 completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604 requires a direct-store protocol “Reply” from the
device. If two translations cross from T =0 into T = 1 space, a DSI exception is
signaled.

» In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (Ibzx, Ibzux, lhzx, lhzux, lhax, lhaux, lwzx,
Iwzux), the integer store indexed instructions (stbx, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructions (lhbrx, lwbrx, sthbrx,
stwbrx), the string instructions (Iswi, lswx, stswi, stswx), and the synchronization
instructions (sync, lwarx). In the 604, executing one of these invalid instruction
forms causes CRO to be set to an undefined value. The floating-point load and store
indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux, stfdx, stfdux) are also
invalid when the Rc bit is one. In the 604, executing one of these invalid instruction
forms causes CRO to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst lupdate memory
sync Iwait for update

icbi Iremove (invalidate) copy in instruction cache
sync Iwait for icbi to be globally performed
isync Iremove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 604
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.
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2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA # 0 and rA # rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD as invalid forms.

Implementation Notes—The following notes describe the 604 implementation of integer
load instructions:

o In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (Ibzx, Ibzux, lhzx, lhzux, lhax, lhaux, lwzx, and
Iwzux). In the 604, executing one of these invalid instruction forms causes CRO to
be set to an undefined value.

+ For load with update instructions (1bzu, Ibzux, lhzu, lhzux, lhau, lhaux, lwzu,
Iwzux, Ifsu, Ifsux, Ifdu, Ifdux), when rA = 0 or rA = rD the instruction form is
considered invalid. If rA =0, the 604 sets GPRO to an undefined value. If rA =rD,
the 604 sets rD to an undefined value.

» The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (lha, lhax) instructions with
greater latency than other types of load instructions. This is not the case for the 604.

Table 2-20 summarizes the integer load instructions.

Table 2-20. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,1B8
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Ha¥f Word and Zero lhz D,d(rA)
Load Half Word and Zero Indexed Thax D,rA,IB
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Table 2-20. integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed | lhzux rD,rA,IB
Load Half Word Algebraic tha D,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rA,1IB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | lhaux tD,rA,1B
Load Word and Zero wz rD,d(rA)
Load Word and Zero Indexed Iwzx rD,rA,1B
Load Word and Zero with Update Iwzu rD,d(rA)
Load Word and Zero with Update Indexed Iwzux rD,rA,1B

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word
or double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

o IfrA+0, the effective address is placed into rA.

* IfrS=rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-21
summarizes the integer store instructions.
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Table 2-21. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,1B
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux IS,rA,1B
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx IS,rA,1B
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed | sthux IS,fA,1B
Store Word stw rS,d(rA)
Store Word Indexed stwx IS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux IS,rA,1B

Implementation Notes—The following notes describe the 604 implementation of integer
store instructions:

¢ In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer store indexed instructions (stbx, stbux, sthx, sthux, stwx, stwux). In the
604, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

* For the store with update instructions (stbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), when rA = 0, the instruction form is considered invalid. In
this case, the 604 sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions

Table 2-22 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering,” in The Programming
Environments Manual.

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructions (lhbrx, lwbrx, sthbrx, stwbrx).
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In the 604, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-22. Integer Load and Store with Byte Reverse Instructions
Name Mnemonic | Operand Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx IS,rA,rB

2.3.4.3.6 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes—The following describes the 604 implementation of the
load/store multiple instruction:

The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (Imw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604
provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx instructions
to cross a page boundary. However, a DSI exception may occur when the boundary
is crossed (for example, if a protection violation occurs on the new page).

Executing an Imw instruction in which rA is in the range of registers to be loaded
or in whichRA =RT =0is invalid in the architecture. In the 604, all registers loaded
are set to undefined values. Any exceptions resulting from a memory access cause
the system error handler normally associated with the exception to be invoked.

The 604’s implementation of the Imw instruction allows one word of data to be
transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. For the stmw instruction, data is
transferred from the GPRs to the cache at a rate of one word (GPR) per clock cycle.

When an Imw or stmw access is to noncacheable memory, data is transferred on the
external bus at arate of one word per external bus tenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If rA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.
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The PowerPC architecture defines the load multiple word (Imw) instruction with rA in the
range of registers to be loaded as an invalid form.

Table 2-23. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word | Imw rD,d(rA)
Store Muitiple Word | stmw rS,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-24
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” in The Programming Environments Manual for more
information.

Table 2-24. Integer Load and Store String Instructions

Name Mnemoﬁie Operand Syntax
Load String Word Immediate | Iswi rD,ANB
Load String Word Indexed Iswx rD,rAB
Store String Word Immediate | stswi rS,rANB
Store String Word In<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>