

PowerPC
Programmer's

Toolkit

Power PC
Programmer's

Toolkit

Tom Thompson

PowerPC Programmer's Toolkit

©1996 Hayden Books, a division of Macmillan Computer Publishing

All rights reserved. Printed in the United States of America. No part of this
book may be used or reproduced in any form or by any means, or stored in a
database or retrieval system, without prior written permission of the pub
lisher except in the case of brief quotations embodied in critical articles and
reviews. Making copies of any part of this book for any purpose other than
your own personal use is a violation of United States copyright laws. For
information, address Hayden Books, 201West103rd Street, Indianapolis,
Indiana 46290.

Library of Congress Catalog Number: 95-80297

ISBN: 1-56830-241-x

This book is sold as is, without warranty of any kind, either express or im
plied. While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the
information or instructions contained herein. It is further stated that the
publisher and author are not responsible for any damage to or loss of your
data or your equipment that results directly or indirectly from your use of
this book.

98 97 96 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the
year of the book's printing; the rightmost single-digit number is the number
of the book's printing. For example, a printing code of 96-1 shows that the
first printing of the book occurred in 1996.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Hayden Books cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

PowerPC is a trademark oflnternational Business Machines Corporation,
used under license therefrom.

Apple, Macintosh, and the Apple logo are trademarks of Apple Corp., regis
tered in the U.S. and other countries.

The Hayden Books Team
Publisher: Lyn Blake

Publishing Manager: Laurie Petrycki

Development Editor: Kezia Endsley

Copy and Production Editors: Bront Davis, Lisa Wilson

Technical Reviewers: Jim Trudeau, Metrowerks, Inc.
Alan Llllich, Apple Computer, Inc.
MarkAnderson, Metrowerks, Inc.

Cover Designer: Karen Ruggles

Interior Designer: Sandra Stevenson

Production Analysts: Mary Beth Wakefield

Production Team Supervisor: Laurie Casey

Production Team: Heather Butler, Angela Calvert,
Kim Cofer, Dan Caparo,
David Garratt, Aleata Howard,
Michelle Lee, Erika Millen,
Beth Rago, Erich Richter,
Karen Walsh

Indexer: Brad Herriman

·/

Dedication
To my wife, Brenda Jean, and my children, John and Evelyn.

About the Author
Tom Thompson has a BSEE degree and bought his first 128K Macintosh in
early 1984. He is a Senior Tech Editor at Large for BYTE magazine and has
been covering the Mac for over ten years. He is an Associate Apple Devel
oper, and has substantial programming experience, including authoring
several shareware utilities. He has also researched and written numerous
articles on programming and hardware technology.

Acknowledgments
A book is a lot like a programming project. It involves a lot of people working
in concert to achieve the final outcome-all on budget and on schedule.
While publishing doesn't normally involve writing code and using
debuggers, in some ways it is more work because you have to explain things
in a way that makes the most sense to the most people. People are pretty
imprecise beings, unlike computers. Of course, this is a programming book
where you do have to write code, use debuggers, as well as try to make things
sensible. It can be done, but not without the capable assistance of many
good people whom I'd like to thank.

To Karen Whitehouse at Hayden Books for her support for the second edition
of this book. Thanks to Llsa Wilson and Bront Davis for making my prose
sensible. An award to my editor Kezia Endsley, for tirelessly shepherding this
book into reality.

To Greg Galanos, Jean Belanger, Dan Podwall, John McEnemey, Berardino
Baratta, and the rest of the Metrowerks gang for providing timely support
and updates to their excellent CodeWarrior software during the course of
writing this book. To Jordan Mattson at Apple for his support and access to
PowerPC material.

To Eric Shapiro of Rock Ridge Enterprises for his valuable code contributions
and suggestions. Eric taught me everything about 68K trap patching, and did
it again for Power PC trap patching. A lot of his code appears in the Flip Depth
Extension shown in Chapter 6, and he made many recommendations that
improved the SwitchBank application. Without his efforts and timely sup
port, Chapter 6 would not have been possible.

Thanks to Roger Goode for the improved graphics. Thanks to my tech
reviewer, Jim Trudeau, for his perceptive remarks. Special thanks to Richard
Hooker and Marvin Denman for checking over the cache descriptions.
Special thanks to Randy Thelen for his insights into the Power Mac run-time
architecture, which helped shape Chapter 4.

Thanks to Steve Jasik for providing a copy of The Debugger, software that will
really make a difference in debugging Power PC programs.

Last but not least, I would like to thank my wife Brenda for her patience
during the long nights I spent toiling away on this new edition.

I

\

Overview
Front Matter

Introduction

Chapter 1: The Power Macs and a Brief History

Chapter 2: Beginning Programs

Chapter 3: Using the Toolbox

Chapter 4: The PowerPC Software Architecture

Chapter 5: Putting ItAll Together

Chapter 6: The Art of Debugging

Chapter 7: Performance and Processors

Appendix A: The PowerPC RISC Processor Family

Appendix B: Porting to the PowerMac

Appendix C: Program Llstings

Contents
Introduction 1

What You'll Need .. 2
The Road Map .. 2
The Metrowerks CodeWarrior Lite on the CD 4
Additional Notes .. 5

1 The Power Macs and a Brief History 7

History of the Power Macs ... 7
The Early Mac .. 8
The First-Generation Power Macs ... 10

Apple and IBM: Who Could Have Imagined It?•.......... 13
Time for a Change (to Power Mac) ... 25

2 Beginning Programs 27
Beginning Programs .. 27
About the Toolbox .. 28
Munge It .. 29
Getting Started ... 30
The Code Tour .. 32
Making Munger .. 35
Running Munger .. 40
Where's the Mac? ... 42
Processes Revealed .. 43
Gathering Processes ... 45
A Word of Caution .. 47
Just the Beginning ... 48

3 Using the Toolbox 49
Meet Some Managers .. 51
Initializing Managers ... 54
Run the Code .. 58
The Fork in the File .. 59
Making Resources .. 61
Making Menus .. 63

0- ~!"!' ~'~'"'~":!.'C' !~~"- -

Making Dialog Boxes ... 68
Editing Dialog Boxes ... 70
Adding Buttons .. 72
Numbering Dialog Items .. 73

Status Display ... 7 4
Adding Alerts .. 76
Saving Resource Data as Text .. 82
Some Words on Events .. 83
Code at Last .. 85
The First Function .. 88
Munger Code, Revisited .. 89
Input and Output Filenames ... 92
Basic Application Functions ... 96
Main Event Loops .. 100
The Initialization Function ... 106
Build Munger .. 108
High-Level Events .. 110
Make Munger Handle High-Level Events 111
Modifying the Event Loop Code ... 112
Delivering High-Level Events .. 113
Writing the Handlers .. 116
Making SonOMunger High-Level

Event Savvy... 123
New Alerts ... 124
Bundle Resource .. 125
Finishing Up .. 130
The Fork in the Road .. 131

4 The PowerPC Software Architecture 133

The 680x0 Application Run-Time Architecture 135
The PowerPC Application Run-Time Architecture 144
Segue: The Care and Feeding of Stack Frames 153

680x0 Function Calls ... 154
Power PC Function Calls 156

Mode Mixing... 162
A Tale of Two Processors ... 170

___ <e.o~te~" -0
5 Putting It All Together 171

SwitchBank: Initial Investigation and Design................................ 173
Building Resources with Rez 175

Using Rez with the ToolServer ... 188
Using Rez from Inside Code Warrior 193

The SwitchBank Program .. 196
Making a Fat Binary ... 222
Handling a Code Fragment ... 228
Interlude: The Anatomy of a Trap ... 229
Writing a Fat Trap .. 234
Building a Fat Trap ... 265
Building a Fat Resource ... 276
Showlnitlcon Code .. 278
Compiling the Fat Resource .. 287
Summary ... 295

6 The Art of Debugging 297

About Debuggers .. 298
Using the CodeWarrior Debugger .. 302
Low-Level Debuggers .. 321

MacsBug .. 321
The Debugger .. 326

Debugging Techniques .. 332
A Bug Taxonomy ... 334
Debugging Miscellany .. 340

Enough Debugging .. 343

7 Performance and Processors 345

Planning and Profiling ... 346
Profiling for a Purpose .. 346
Performance Issues ... 347

Code Tuning ... 348
A Word about Caches ... 349

Cache Operation .. : 350
Cache Details ... 351

General Caching Principles ... 353

0- ~"~ ~,~,'.."~":!.'C' _r~o~;~ -

Simple Optimizations .. 357
Instruction Scheduling ... 357

Processor Specific Issues ... 359
Summary ... 365

Appendix A: The PowerPC RISC Processor Family 367

PowerPC 601 .. 369
PowerPC 603-.......... 370
603e .. 371
166 MHz PowerPC 603e .. 372
Power PC 602 .. 373
Power PC 604 .. 37 4
Power PC 604e .. 375

Appendix B: Porting to the Power Mac

Appendix C: Program Listings

377

381

Chapter 2 ... 381
munger.c .. 381
process.c .. 383

Chapter 3 ... 384
hellol.c ... 384
macmunger.c ... 385
SonOMunger.c .. 395

Chapter 5 ... 411
SwitchBank.c ... 411
FlipDepth.c .. 441
FlipDepth.µ.PPC.exp .. 459
FlipDepth.r .. 459
Klepto.c .. 467
Showinitlcon.h .. 471
Showinitlcon.c .. 471
FatCodeResource.r .. 476

Index 477

Introduction

This book is a road trip. In it, you'll find information on the
PowerPC chip, RISC technology, and a C development environ
ment by Metrowerks called Metrowerks CodeWarrior. You'll find an
assortment of programming hints and tips and insights into how
the Mac works, and you'll discover what new features-and
pitfalls-await on the PowerPC chip. Most important, while I'll
supply plenty of programming examples, I'll also explain how the
Power Mac works. I firmly believe that if you understand how
something works, you're in a better position to use it (or in the case
of a personal computer, program it).

0- ~"Pf f'~'"'~":!.'C' !~'~'- ______________________________________ _

What You'll Need
My basic assumption is that you know how to use a Macintosh and have
some knowledge of the C programming language. If you're not familiar with
C, the best reference on this language is Kernighan and Ritchie's The C
Programming Language, Second Edition, published by Prentice Hall. You
also should have Apple's reference works on the Mac Toolbox, Inside
Macintosh. I also assume you're familiar with using the Code Warrior devel
opment tools. You'll have a demonstration version of Metrowerks
CodeWarrior called CodeWarrior Lite on the CD-ROM accompanying this
book. Check out its documentation files if Code Warrior is new to you. If you
don't have a Power Mac (yet), that's OK. Much of the material in here works
with existing Macs as well, which is perhaps the real beauty of the Power PC
design.

I have structured this book so that it offers material useful to both novices
and experienced Mac programmers. The novice should start at the begin
ning, but more experienced programmers should feel free to browse about
and find a subject of interest. Consult the brief summaries at the beginning
of each chapter to determine if the material is of interest to you. The follow
ing brief road map will help you decide your course.

The Road Map
Chapter 1 covers the Power Macs themselves, including the latest systems
such as the Power Mac 9500, 8500, and 7500 that incorporate the industry
standard PCI bus. It also provides a brief peek at the PowerPC family of
processors-the PowerPC 601, 603, 603e, 604, and 604e-that gives these
systems their great horsepower. It also discusses how these computers
manage to run existing Mac software, thereby preserving that pile of Mac
software you've accumulated over the years.

Chapter 2 helps you write your first real C program. It won't have a friendly
Mac interface, but it will perform a useful job. If you're new to the Mac,
bypassing the user interface details for the moment limits the number of
unknowns you have to deal with while you gain confidence with the develop
ment tools.

___ Jo!'2_~~o~ -0
In Chapter 3, you'll tackle some of those user interface details dodged in
Chapter 2. You'll add a friendly interface and discover the forked nature of
Mac files. If you don't know what a Mac file's data fork and resource fork are,
don't worry. This chapter will explain them to you. You'll also learn about
resources (which, not surprisingly, reside in resource forks) and how to edit
them for use in your program.

Chapter 4 is a rest stop on our journey. You will have reached a point where
you must lay aside your tools for the moment and gain some insights into the
Power Mac's new system architecture. I'll explain how Apple managed the
feat where one set of source code can support two different processors. I'll go
on to describe how the underpinnings of the Power Mac, as much as it
resembles the 680x0 Mac on the surface, are fundamentally a different
operating system. I'll explain what code fragments are, and what they mean
to future application design. In addition, I'll describe Apple's Mixed Mode
Manager, the part of the operating system that manages to keep two wildly
different sets of processor code-the 680x0 and the PPC-operating in
harmony. It will be of general interest to most readers, and required reading
for those writing special programs and extensions. Finally, I'll explain how
both 680x0 and PowerPC code can be embedded in a single application file
that fat binary mentioned earlier-so that such an application is capable of
running on either Mac. You'll use some of these details later when you
explore certain Power Mac-specific features.

Chapter 5 is where you put into practice the information you learned in
Chapter 4. Most of this material will be of interest to advanced programmers.
You'll write an application that controls the Mac's File Sharing software. This
will require writing a function that works with the Mixed Mode Manager to
enable a switch between 68K and PowerPC code. I'll also show how to make
this application a fat binary, capable of running on both 680x0 and Power
Macs. Next, you'll write an Extension that changes a Power Mac's screen
depth. You'll see how to access code fragments. It also demonstrates how to
patch the operating system, both for a 680x0 Mac and Power Mac.

In Chapter 6, it's time to focus on how to fix a program that misbehaves.
Information on the types of debuggers, and debugging tools can be found
here. A look at CodeWarrior's high-level debugger is provided. Tips on
debugging and defensive coding are discussed.

0-~~ !"~'C'~".!.'C' !~''~''- ______________________________________ _

Chapter 7 delves into processor-specific details and how they affect your
application's operation. These details will help you decide strategies to get
the best performance out of your code.

For those who want a better understanding of the processors, Appendix A
provides a look at the Power PC family.

Appendix B consolidates information on how to port an existing Mac
application's C code to the Power Mac. It will be of interest to advanced
programmers who just want to dive in and start retooling their programs
immediately.

Appendix C provides the complete source listings for the programs discussed
in this book.

Appendix D tells you how you can locate more CodeWarrior and Power Mac
programming information.

The Metrowerks CodeWarrior Lite
on the CD
The PowerPC Programmer's Toolkit CD contains the Code Warrior Lite
version 1.3 integrated development environment (IDE). CodeWarrior Lite
prevents you from creating new source code files or projects. It also prevents
you from adding new files to an existing project. Other than these restric
tions, CodeWarrior Lite has the same capabilities as a full-fledged version of
Metrowerks CodeWarrior 1.3 (aka CW8).

The text of this book was written using the full version of Metrowerks
CodeWarrior. You'll have to use slightly different steps when using
Code Warrior Lite from the CD. The commands New, New Projects, and Add
File ... are not available. Because of these limitations, it can work only with
the sample files provided on the CD.

So, if you are following along using Code Warrior Lite, when the text tells you
to use the New, New Project ... , or the Add File ... command, you should
instead open the related project file and keep it open throughout the exer
cise. All the associated files will already be in the project, so you won't need
the Add File ... command. Then, you can follow the same procedures as if you
were using the full version of Code Warrior.

• __ _!oJ~~~o~ -0
Note: We've provided all the code discussed in the book on the CD, so you
don't have to retype it, unless you find it valuable to do so.

You also should note that Metrowerks cannot provide technical support for
the Lite version. You can, however, get all the CodeWarrior information you
could ever want and also meet other CodeWarriors. After you buy a full-up
version, Metrowerks will be happy to provide full technical support.

Additional Notes
There probably are better ways to write some of the functions presented here
and I welcome input from you. The purpose of my code, however, is to
illustrate Power Mac features while being readable by an audience of C
programmers with a wide range of experience. I also bias my code toward
readability because, more often than not, six months later I usually have to
modify the code for use in other projects.

While I've tried to produce error-free code, and I actually use some of these
programs in my day-to-day work, it's possible that some of the code samples
have bugs. Please send me bug reports via email or some other means. If you
have access toAppleLink, my email address is T.THOMPSON, while on the
Internet it is tom_thompson@bix.com. If you prefer a more conventional method,
mail your comments and bug reports to me in care of Hayden Books.

Please note these signposts along the road as we travel.

Background Info
Magnifying Glass icons flag sections of the book where additional back

ground information can be found. For those unfamiliar with a topic, this

extra information promotes a better understanding of the material. Sea

soned Mac programmers can skip these sections.

0- ~"!' ~~~·~'!!.'C' !~'~'- -

Important
Lightning Bolt icons signal important topics. These sections provide infor
mation necessary to understand the material in each chapter, or illustrate
an essential point of the software or operating system. Even seasoned
programmers might want to examine these sections for Power Mac-specific
details.

Hazard
Bomb icons signal potential hazards. These sections supply crucial informa
tion required to keep your program from crashing and your Power Mac
system intact. Do not skip these parts of the book.

Future Directions
Eight Ball icons indicate information that is applicable to the direction that
Apple is taking the Macintosh platform, and operating system. You might,
for example, find information on the Common Hardware Reference Platform
(CHRP) here, or on Apple's next release of its operating system, code
named Copland.

User input text appears in a bold monospace font, as in:

Type MyFile and press Return.

Directives, routines, streams, and functions appear in a monospace font,
as in:

Before we call Munge_File(), we fetch the stopwatch cursor icon using GetCursor().

Filenames appear in quotation marks, as in:

For a complete source code listing, check the file "switchBank.c" on the
CD-ROM.

The symbol • has been used to represent program lines that have wrapped.

Well, enough preliminaries. Let's hit the road

The Power
Macs and a
Brief History

History of the Power Macs
In early 1994, Apple changed the face of the personal
computer industry- again. The company took a
powerful processor technology previously available
only in expensive workstations and offered it to small
businesses and average users through affordable
desktop computers. These low-cost computers,
however, won't run those arcane workstation operat
ing systems. Instead, they offer an interface renowned
for its ease of use: the Macintosh operating system, or
Mac OS. Put simply, Apple has introduced a new line
of high-performance Macintosh computers, the Power
Macs.

Because these Power Macs borrow heavily from the
Macintosh design, a brief history of the Mac is in
order.

0- ~'!' ~r~,"'~":!.'C' !~~;'- -

The Early Mac
Just a decade ago, Apple introduced its newest personal computer during the
1984 Super Bowl. This famous commercial, titled "1984" and directed by
Ridley Scott, depicted a bleak, gray, future dystopia where shaven-headed
drones shuffled toward the ultimate video conference. A runner-hammer
held high and wearing an Apple logo on her shirt-raced onto the scene,
hotly pursued by the faceless thought police. The hammer was hurled at the
conference screen, shattering it. The implication was that Apple's then-new
Macintosh computer would save us from that same gloomy fate. The verdict
is still out on whether the Mac accomplished that goal, but no one disputes
its effect on how we deal with computers and information. Desktop publish
ing, digital image editing, color printing, and other applications were either
invented on the Mac or driven by the demands of its users.

The original Macintosh (now termed "classic Mac" in Apple's technical
literature) was a small beige box with a 7.83 MHz 68000 processor. It came
equipped with a built-in 9-inch black-and-white monitor, 128 K of random
access memory (RAM), a single custom 3 1I2-inch Sony floppy drive, two
serial ports, and 64 K of read-only memory (ROM). The classic Mac was a
"closed system" because it offered no slots or easy expansion capabilities.

The Mac RO Ms provided a large array of support routines that implemented
the graphic user interface (GUI) and system services such as memory man
agement and file I/O. These routines are known collectively as the Mac
Toolbox. Because it's easier to use the Toolbox services than write code from
scratch, the Mac always has encouraged a consistency in application design.
Much of the Mac's "personality," or behavior, comes from these Toolbox
routines.

Important
Because Toolbox routines are relied on heavily when writing a Mac
application, expect to become familiar with them as you progress through
this book. Keep Inside Macintosh nearby; those manuals provide important
details on Toolbox routines. As you become comfortable with programming
the Mac. you'll frequently consult them when writing new applications and
adding features to existing applications.

Because well-behaved applications only access the system through the
Toolbox interface, Apple has retained the option of significantly revising the
hardware and software behind the interface without requiring modifications
to existing applications. A new Mac, for example, might use a new stereo
sound chip, but your application would still use the same sound generation
routines and be able to play music or sound effects on it. That's because
while the Toolbox sound routines still present the same interface to the
programmer, the code underneath this interface layer converts your
program's commands into a format the new hardware understands. This
design eliminated many compatibility problems as Apple enhanced both the
Toolbox routines and the hardware. Of course, not all compatibility prob
lems were avoided, but Apple was able to limit them by using the Toolbox to
define a "virtual machine."

Just as important, the Mac GUI helped enforce a consistency in the appli
cation's user interface, making Mac applications easier to use than those on
other computers. After you mastered one application, you knew the basics of
using other Mac applications as well. To be sure, there were application
specific features users had to learn (text formatting in a word processor, or
how to use a pen tool in a drawing package), but they didn't start over each
time with the basics. They could always count on finding file manipulation
commands under an application's File menu, and locating the editing
commands in the Edit menu.

Faster and Better
Over the years, Apple improved the original Mac and introduced new mod
els. First the company added more memory and a SCSI port. With the Mac II,
Apple used the faster 68020 processor and opened the computer's closed
design by adding NuBus slots. It introduced newer Macs with faster proces
sors and a larger array of features. These machines went by such arcane
names as the Mac Ilcx, Ilci, Ilsi, Ilvi, and Ilvx. Apple minimized the confusion
temporarily by giving certain product lines unique group names. The Mac
notebook computers were labeled PowerBooks. Numbers were tacked onto
the end of the names to help identify the characteristics of each computer.
Still, things got out of hand. A mid-range line of Macs, labeled Centris,

0- ~!"!' ~":!.'E.'~":!.'~' -'~'~"- .

appeared and disappeared, being integrated into the Quadra product line.
Apple introduced a Performa line of Macs, which were identical computers
but repackaged for the home market. Mac system taxonomy and nomencla
ture began to require a scorecard-a very large one at that.

The First-Generation Power Macs
This brings us nearly to the present. Apple was feeling competitive market
pressures to lower costs and improve performance. To reduce hardware
design costs, Apple standardized most of its computers on the following
three basic models.

• The first model uses a low, compact chassis with minimalist expansion
capabilities to reduce costs. This design debuted with the Centris 610,
followed later by the Quadra 610. It has a single Processor Direct Slot
(PDS) that's connected directly to the processor bus. By use of an
adapter, the PDS can accept one NuBus board.

• The second model is a desktop configuration that offers three NuBus
expansion slots and more capacity for internal peripherals. This chassis
was first introduced with the Mac Ilvx and was subsequently used in the
Centris 650 and Quadra 650 systems.

• The third model is a mini-tower chassis introduced with the Quadra
800 and followed by the Quadra 840AV. Like the second model, this
tower system offers three NuBus slots. However, there's ample space
for three to four large SCSI hard drives internally, plus a beefy power
supply to support them.

All three models have a bay for adding an optional CD-ROM, other remov
able media drive, or a high-capacity hard drive.

In the area of performance, Apple had been investigating the use of RISC
processors in future system designs. This research was evident in products
such as Apple's 8x24 GC display board, which uses anAMD 29000 RISC
processor to accelerate screen drawing. In addition, the company demon
strated System 7, which was written for the 680x0 processor, running in a
software emulator on a Motorola 88000 RISC processor.

. - ~h~P!.'C '-"- C!>~P~C '!'.''~'-'~'-'_!'~of. "l"E'l'.-0
Background Info
RISC is the acronym for Reduced Instruction Set Computing. This proces
sor design achieves its high processing speed by implementing many
simple instructions. These instructions usually are of a fixed length and
execute very rapidly, usually one instruction for every tick of the system
clock. This speed is accomplished by limiting what each instruction can do.
A handful of instructions, for example, load data from memory to a register,
or store data from a register to memory. All other instructions perform fast
operations on the contents of the processor's many registers.

These instructions are carefully tailored to minimize overlap between the
operations of other instructions. This lets processor designers add execu
tion units-subsections of the processor dedicated to a specific function,
such as an integer math unit and a floating-point math unit-that can run
in parallel and boost performance by executing two or more instructions
simultaneously. As you might expect, simpler instructions require you to use
more of them to implement a specific task, so RISC programs typically are
larger than Complex Instruction Set Computing (CISC) programs.

We can contrast RISC processors with CISC processors like the Motorola
680x0 and the Intel x86 family. CISC uses variable length instructions to
achieve high code density (that is, lots of instructions can be packed into a
small amount of memory). These instructions, as their name implies, can
perform a sophisticated set of operations and use a wide variety of ad
dressing schemes. One instruction might perform an operation on a
location in memory, then step to the next memory location. Another might
retrieve a value from memory and then perform a math operation on it.

While some of the simpler CISC instructions can be completed in one clock
tick, many cannot. There are several reasons for this. First, because of the
variable-sized instructions. the processor is forced to decode the incoming
bytes to determine an instruction's length. This takes a clock cycle to
perform the initial decode, and then the processor spends additional clock
cycles reading in the rest of the instruction. Second, a complex instruction
that modifies a memory location requires extra clock cycles to perform the
bus operations necessary for the memory access.

continues

0- ~"'~ f":!.'"'~":!.'C' !<:?~'- _____ - - _ - - - _ - .

continued

Finally, the very complexity of CISC instructions often requires the imple
mentation of a small internal processor-a processor within a processor. so
to speak-dedicated to instruction decoding and processor control. This
internal processor uses programs called microcode that perform the
decode operations. Again, this additional layer of complexity requires extra
clock cycles to shuffle instructions through the decoder and operate the
microcode that translates the instruction bits into processor actions.
Because of RISC's simple instructions. a sophisticated decoder isn't re
quired: You won't find microcode inside a RISC processor. The RISC
instruction decoder is implemented completely in hardware and runs at
hardware speeds. It takes only several clock cycles at most to translate a
RISC instruction into its corresponding actions. A RISC processor's perfor
mance is better than a CISC processor's because it can execute more
instructions for a given set of clock cycles than the CISC processor.

If RISC technology is so much better than CISC, why is the latter so
pervasive on desktop computers? RISC came onto the computing scene
much later than CISC. RISC came out of research at IBM. Stanford, and
Berkeley in the early 1980s and wasn't commercialized until the middle of
that decade. In contrast. Apple Computer sold its first microcomputer, the
Apple I, in 1976. By the time RISC processor architecture appeared in the
computing industry, CISC processor architecture had been in use for
practically a decade.

While CISC has a big advantage in terms of an existing software base,
RISC's performance edge should entice users to make the switch. RISC not
only allows personal computers to run tasks such as spreadsheets, image
editing, engineering simulations. and 3-D image rendering significantly faster.
it also provides sufficient horsepower to enable a host of new system
services and applications. Some of the possible new system services include
a robust. multitasking operating system with memory protection and pre
emptive scheduling. multimedia services such as MPEG decoding and
display, integrated telephony and fax functions. voice and handwriting
recognition. and speech synthesis. New applications would be real-time data
processing, effortless 3-D image generation and manipulation, and all sorts
of multimedia work. For more information on the architectural advantages of
RISC. check out Appendix A

Apple and IBM: Who Could Have
Imagined It?
In 1991, Apple teamed up with Motorola and IBM to form an alliance
to define the next-generation processor for future desktop computers.
Despite the huge legacy of applications composed of CISC code on their
respective platforms (Intel x86 code on IBM PCs and Motorola 680x0 code
on Macintoshes), they decided that only RISC offered the necessary per
formance. Cost was an important factor here too. What hindered the
acceptance of other RISC systems was the high cost of the RISC processor's
fabrication, which in turn resulted in expensive computers.

The alliance is designing and producing a family of RISC processors to be
introduced in stages. Each family member is targeted at a specific segment of
the computer market. The first family member, the PowerPC 601, was intro
duced in April 1993. It's targeted at the low-end desktop market, but offers
better performance than today's most advanced CISC processor, Intel's
Pentium. In October 1993, the alliance introduced the PowerPC 603, a low
power sibling to the PowerPC 601. It is geared toward the notebook market.
In April 1994, the PowerPC 604 was announced. Its high-performance design
with multiple execution units addresses the mid- to high-range desktop
market. The PowerPC 620, introduced in October 1994, is optimized for high
speed transaction servers and high-end workstations.

Over time, faster and enhanced versions of existing PowerPC processors will
appear. We've already witnessed some of these enhancements with the 601+,
which uses the same 601 circuit design but a new process technology (the
complex manufacturing operation by which these chips are made) that both
shrinks the size of the circuits and enables the processor to be clocked faster
(up to 110 MHz). Another such improvement is the 603e, which was intro
duced in March 1995 and features larger on-chip caches. It also has some
machine architecture improvements. While it uses the same process tech
nology as its predecessor, the 603, the 603e sports a new, faster switching
transistor design. Also, certain load/store instructions on the 603e are
performance-tuned to operate in fewer clock cycles, and the speed or certain
math operations-notably the floating-point divide instruction-were
improved. The 603e presently can be clocked at 120 MHz, while the original
603 design topped out at 80 MHz. In August 1995, IBM and Motorola

disclosed a faster version of the 603e, called the 166 MHz 603e. In October
1995, an enhanced 604, the 166 MHz 604e, was disclosed. The same process
technology used to fabricate the 601 +was employed to reduce the size and
power consumption of these two processors, while boosting their operating
speed to 166 MHz. To learn more about the Power PC family of processors
and their features, see Appendix A.

The PowerPC 601 (from now on, I'll just call it the 601) was the heart of
Apple's first-generation RISC-based Macintoshes. These systems, mentioned
earlier, are called Power Macs to emphasize their performance. There are
three systems, and each targets a specific user (see Table 1.1).

Each system is built around one of the three standard model designs dis
cussed earlier. Each Power Mac comes equipped with a base 8 MB of 80
nanosecond SIMM-mounted RAM, a hard drive, built -in Ethernet, and 16-bit
stereo sound hardware. The MacOS of these systems contain some impor
tant elements. The first is AppleScript, a scripting language that automates
repetitive tasks or helps implement custom solutions using several applica
tions. Next, there's the QuickTime Extension for multimedia support. An
optional AV Technologies expansion board that provides video I I 0 and
digital video capture can be plugged into the PDS slot on these systems.
Bundled with the AV boards is the Plain Talk voice recognition software and
the text-to-speech engine.

Table 1.1 An Overview of the First Generation Power Macintoshes

Power Macintosh

Speed

Cache

RAM

DRAM expansion

SIMM slots

6100

60/66 MHz

optional

8 MB standard

72 MB

2

7100

66/80 MHz

optional

8 MB standard

136 MB

4

8100

80/100/110 MHz

256 K standard

8 MB standard

264 MB

8

• ______________________________ £h~P!.''_1_ •_Ch~°?':::''.~'?-'~'-' _!l~eCH.;'~'l'. -0
Storage

Standard

HD configs

Floppy

CD-ROM

Video

DRAM video

VRAM video

VRAM expansion

Standard support

SCSI

Networking

Other built-ins

160MB to 250MB 250M to 500MB 250MB to lG

1.4MB with OMA 1.4MB with OMA 1.4MB with OMA

Optional Optional Optional

Standard Standard Standard

1 MB standard 2 MB standard

2 MB 4 MB

1 monitor 2 monitors 2 monitors

High-speed High-speed High-speed asynch

a synch a synch Dual SCSI channels

Ethernet on-board with OMA channel. AAUI connector

16-bit audio stereo in/out with OMA

2 Serial ports-LocalTalk with GeoPort

compatible with OMA channel

Apple Desktop Bus (ADB for input devices)

The Power Mac 6100/60 talces aim at the low-end user by providing a RISC
based Mac at a low price. It uses the Centris 610/Quadra 610 chassis, and the
601 processor is clocked at 60 MHz. The Power Mac 7100/66 uses the Centris
650/Quadra 650 chassis. With the 601 clocked at 66 MHz and three NuBus
expansion slots, this system should meet the mid-range computer user's
needs.

The Power Mac 8100/80 stalces out high-end users, with its processor clocked
at 80 MHz for best performance. Its Quadra 800/840AV chassis contains
ample room for several high-speed SCSI hard drives, and memory can be

0- ~""!' ~'£9!:'~":!.''' !!!?'~·- .

expanded up to 264M, which should satisfy the needs of the most demand
ing power user. Both the Power Mac 7100/66 and the 8100/80 provide a
second monitor port, which you can use to expand the screen work area or to
run a different operating system on the second monitor. The only second
generation Power Mac that uses a first-generation chassis is the Power Mac
8500/120, which is based on the Power Mac 8100. Power Mac 8100 users can
upgrade to this machine with a logic board swap.

The number after the slash in each Power Mac's name denotes the speed of
its processor clock. This naming scheme enables faster versions of these
Power Macintosh systems to be shipped with the same name because only
the trailing digits change. This arrangement eliminates a lot of the confusion
created by the previous method in which minor changes to existing Macs
begat whole new model names. It also explicitly states the processor speed,
which is handy when comparing systems. Such was the case when Apple
introduced faster versions of these designs in late 1994 and early 1995. In
November 1994, Apple introduced the Power Mac 8100/ 110, which was
basically a Power Mac 8100 system using a 601 + pumped up to 110 MHz.
Just two months later, in January 1995, faster versions of the other systems
appeared, dubbed the "speed bump" systems because the system clock was
increased slightly. There is the 6100/66, the 7100/80, and the 8100/100, with
clock speeds of 66, 80, and 100 MHz, respectively. The 8100/ 110 still exists as
a top-notch system for those who need the performance and can afford to
pay the premium price it commands.

In May 1995, Apple began selling its first 603-based Mac, the Power Mac
5200. It features a unique chassis that melds a monitor with a stereo sound
system, floppy drive, and quad-speed CD-ROM drive into a single unit
mounted on a swivel stand (see Figure 1.1).

During the summer of 1995, Apple introduced the Power Macintosh 9500,
followed by the Power Mac 8500, 7500, and 7200 series in August. They
represent Apple's second-generation Power Macintosh architecture. This
architecture features many improvements to boost performance. The
memory subsystem uses interleaving on some models to boost memory
access rates, and the memory controller is smarter about handling data
traffic. The architecture has numerous DMA channels that manage data
transfers among the various I/ 0 subsystems such as the network, SCSI, and
video capture (on those systems, such as the Power Mac 7500 and 8500, that
are equipped with AV technology).

- ':h~P~'C '-•- C!'~ P~C ~·~ -•~d -' l\~'f. f!~ -0
~~ii===!~=-rlll!=l _::_:~r 7200Model

D 0

~\\\\\\\\\\\\\\\\\\"'.--··

5200Model

9500/8500 Model

Figure 1.1 The Power Mac 5200 system.

These systems use Open Transport, a Unix standard for network and
communications. With Open Transport, Apple uses a standard set of pro
grammer interfaces to implement their network protocol stacks, network
interfaces, and serial communications. It also allows future growth paths
for supporting PCI network cards such as lOOM Ethernet and ATM.

These second-generation systems no longer use NuBus expansion cards.
Instead, hardware expansion is handled by another industry standard, the
PCI bus. The PCI bus is known for its throughput and plug-and-play capa
bilities. In fact, a properly designed PCI card is platform agnostic; it can be
plugged into either a PC or a Power Mac, and it operates.

0- ~~'"'~ !"~,!.'~~·c· .:r~01~·- ______________________________________ •

Future Directions
The up-and-coming PowerPC CHRP standard allows future IBM and Power

Mac systems to run several different operating systems (but not all at

once). A crucial capability to support this is that a CHRP system can cold

boot into the Mac OS, Windows NT, or OS/2 Warp, and all of the PCI

expansion cards in the computer's slots will function with the currently

running OS. This is possible because the PCI bus design enables the boot

process to detect and load the appropriate drivers from the expansion

card's firmware.

The other important capability that allows a CHRP system to host various

operating systems is the PowerPC processor is a bi-Endian processor. That

is, it supports the two different memory addressing schemes used in the

industry. It would be difficult, if not impossible, for a computer to host

operating systems that used such disparate addressing modes unless such

support was provided in the processor itself. If you're not sure as to what

an Endian addressing mode is, relax. You normally won't have to deal with

such issues unless you plan to port the code to another platform, such as

a PC or Unix system.

The design of the second-generation family Power Macs, like its predeces
sors, centers around three basic models, as shown in Table 1.2. Each comes
equipped with a base 8 MB of70 nanosecond RAM, a hard drive, two built-in
Ethernet ports (one lOBaseT connector, and one AUi connector to handle
other types of Ethernet cabling), and 16-bit stereo sound hardware.

Table 1.2 Overview of the Second-Generation Power Macintoshes

Power Macintosh 7200 7500 8500 9500

Processor PowerPC 601 PowerPC 601 PowerPC 604 PowerPC 604

Speed 75/90 MHz 100 MHz 120 MHz 120/132 MHz

Cache optional optional 256K standard 512K standard

RAM 8116 MB 8116 MB 16MB 16/32MB

standard standard sttiildard standard

DIMM slots 4 8 8 12

Expansion Slots 3 PC! 3 PC! 3 PC! 6 PC!

Standard HD configs 500 MB to 1 GB 500 MB to 1 GB 1 GB to 2GB lGB to 2GB

Floppy 1.4M 1.4M 1.4M 1.4M
with OMA with OMA with OMA with OMA

CD-ROM Standard Standard Standard Standard

VRAM video 1 MB standard 2 MB standard 2 MB 2 MB (via PC!
card) standard

VRAM expansion 2/4 MB 4 MB 4 MB 4 MB

Standard support 1 monitor. 1 monitor. 1 monitor. 1 monitor, via
built-in built-in built-in PC! card

SCSI Internal Internal fast Internal fast Internal fast
standard

External External External External
standard standard standard standard

Accelerated graphics Composite and S-video Composite and S-video
Accelerated graphics

built in

Logic board
swap

input

Plug-in

input/output on PC! card

Plug-in Plug-in

Ethernet on-board with OMA channel. 1 OBase T and MUI connector

1 6-bit audio stereo in/out with OMA

2 Serial ports-Loca!Talk with GeoPort

compatible with OMA channel

Apple Desktop Bus (ADB for input devices)

0-~!~ ~'!!'~"2.'C' !~0~'- ______________________________________ •

The Power Mac 7200/75, 7500/90, and 7500 use a new low-cost chassis
design based on the popular Quadra 630. This chassis resembles a tall,
beveled pizza box that provides ample room for several PCI cards and the AV
hardware that's present on the Power Mac 7500. Currently, the 7200 series is
the low-cost system for the home market. The 7500's built-in AV features and
higher performance gear it toward small and mid-sized businesses. The
Power Mac 8500 borrows the Power Mac 8100's mini-tower chassis. Its high
speed 604 makes the 8500 useful for the large office, serving the needs of
technical and power users. Folks doing multimedia authoring enjoy this
system's built-in AV capture and display capabilities. While the 9500' s
chassis closely resembles the 8100's, it's roughly 2.5 inches taller, to accom
modate the six PCI slots and the expansion bays for SCSI peripherals. This
generous expansion capacity and fastest 604 processor speed makes the 9500
suitable for high-end publishing and graphics, media authoring, software
development, and other jobs where the utmost in performance is required.
The 7500, 8500, and 9500 house the PowerPC processor on a plug-in card.
This enables you to swap the processor for a faster one when your work load
demands it. The hardware in these systems can handle up to a 150 MHz 604
processor in the system.

Important
These second-generation systems use a different type of RAM. First

generation Power Macs use 72-pin SIMM-mounted RAM. The second

generation systems use 68-pin DIMM-mounted RAM. If you're planning to

upgrade an existing Power Mac to a second-generation system, you'll

either have to budget for new memory, or obtain Newer Technology's

DIMM Tree, a gadget that lets you protect your memory investment. The

DIMM Tree has SIMM sockets that accept your existing RAM. while the

device itself plugs into one of the DIMM sockets on the main logic board.

Your SIMM RAM must have a 70 nanosecond access time or better to be

used this way.

As mentioned earlier. because these computers use a PCI expansion bus,

you'll have to replace any NuBus boards that you own.

-- '?'~P!.·c '-·-C!"_ ~c ~'""-'~d-" !'~"!. "~'l'. -0
In August 1995, Apple also introduced a line of Power PC-based notebook
computers. The Power Book 5300 series is Apple's all-in-one notebook, so
named because it can function as a mobile desktop system. It has a large LCD
screen (10.4 inches for color screens), a built-in storage bay for a floppy drive
or other storage media, a PCM CIA slot that accepts two Type II or one Type
III PCM CIA cards (aka PC Cards), a SCSI port, a serial port, and an ADB
port-in short, almost a full complement of desktop system capabilities. The
Duo 2300 is a light-weight subnotebook computer with minimalist 1/0
capabilities. It has a RJ-11 socket for an internal modem, and a serial port that
can function as an external modem port, printer port, or LocalTalk network
connection, depending upon the system settings. For additional 1/0 capabili
ties, docking connectors can be attached to the computer, or it can be parked
in a docking station. Both PowerBooks use electronic trackpads instead of a
mechanical trackball as a reliable pointing device, and a PowerPC 603e
processor for high performance and long battery life (see Figure 1.2).

0 ==i
0

PowerBook 5300

Figure 1.2 The PowerBook 5300 and Duo 2300.

As nice as these systems are, you might suspect that there's a catch, espe
cially regarding software compatibility. After all, didn't Apple and the others
sacrifice the existing software base on the altar of performance? Apple tries
to let you have your cake and eat it too by placing a 68LC040 emulator in the
RO Ms of these systems. This emulator is a sort of "virtual" 68040 processor
that can execute the 680x0 code in existing Mac applications without modifi
cation, but this emulator doesn't support the 68040's floating-point unit
(FPU) and memory management unit (MMU) instructions. (Only very

0- ~"Pp ~9'..'~":!.'C' !'!?~'.. - .

eclectic utility applications would ever try programming a processor's MMU,
and such code won't work anyway with the Power Mac's vastly different
memory architecture.) The emulator is complete in every other detail, so it
can run the bulk of the existing 680x0-based Mac applications and utilities.
Lack of an FPU in the emulator might or might not be a problem, depending
upon how smart the application software is in dealing with the machine
environment. If the application simply expects an FPU, it will crash. Some
applications detect the absence of an FPU, and either refuse to run or will do
their own computations in software. This slows down the application signifi
cantly because such software computations run in the emulator. Those
applications that use Apple's math routines will run somewhat faster be
cause portions of these routines were rewritten as PowerPC code.

One reason the emulator works is because of the virtual machine defined by
the Mac Toolbox routines. Recall that Mac applications obtain system
services (such as reading a file and drawing to the screen) through the
Toolbox, and these Toolbox calls act as well-defined entry points into the
operating system. What Apple accomplished with the Power Macs was to
literally slide a RISC processor into the system and then use "native" (that is,
PowerPC) Toolbox code to handle the application's requests. The Mac OS,
for example, provides a set of screen drawing primitives known collectively
as QuickDraw. An application's drawing functions that use QuickDraw on a
680x0-based Mac continues to work on a Power Mac without recompiling
the appiication. That's because the Power Macintosh ROMs present an
identical QuickDraw interface to the application, even though this version of
QuickDraw is written in PowerPC code. Whatever application code isn't
using the Toolbox gets executed by the emulator.

This is a simplified explanation of the situation, of course. The Power Mac's
operating system has to know at any given moment whether it's emulating a
680x0 processor or running native PowerPC code. This is a serious problem
because not only is the instruction set different, but the system environment
for each processor is different. There are all sorts of system variables, argu
ments pushed on the stack, and other elements that have to be accounted for
when execution switches from the emulated 680x0 processor environment to
the PowerPC processor environment and back. A Mixed Mode Manager built
into the ROMs along with the emulator manages this context switch. It keeps
track of what processor environment the application is currently in, switches
the context to the different environment when required, and makes any

- ~h~P~'C'-"- Ch~~c ~,~,-'~'-' .!3~"C"~"2'Y-0
necessary adjustments between the two. Such adjustments might pass a
drawing request to the native Toolbox code, while another adjustment might
communicate the result of the request back to the calling program. For the
most part, Mac programmers won't have to concern themselves with how
the Mixed Mode Manager works, but there are exceptions. I'll cover them
when we get into Power Mac-specific features in Chapters 4 and 5.

For those of you still waiting to hear about a catch in this setup, here it is. The
emulator-not surprisingly-musters only the performance of a fast 68030 or
slow 68040 processor. Performance varies, depending upon how often the
680x0 application calls the Toolbox routines written in PowerPC code.
Because Apple estimates that Mac applications spend 60 to 80 percent of
their time in Toolbox code, it's possible that a 680x0 application runs faster
than emulated speeds because it spends most of its time actually running
native Toolbox code rather than running as emulated 680x0 code. The
performance question is complicated by the fact that, for compatibility
reasons and time to market issues, Apple hasn't yet ported all several thou
sand of the Toolbox calls to Power PC code. 680x0 Toolbox routines that
weren't ported get handled by the emulator. In some cases a call to the
Toolbox might execute native code, resulting in a brief performance boost,
while another Toolbox call might continue through the 680x0 emulator,
for a performance hit. It's also important to note that the overhead of the
Mixed Mode Manager handling numerous context switches can degrade
performance.

So are these Power Macs faster or not? Yes, they're faster. The emulator and
Mixed Mode Manager provide compatibility for existing software. They serve
as a bridge that allows 680x0 applications to run until the real solution
arrives: these same applications written in native code. For such native
applications, the overhead of the emulator and Mixed Mode Manager
practically disappears, with the exception of those Toolbox routines still
implemented as 680x0 code. Over time, applications will run even faster as
more of the Mac Toolbox is rewritten as PowerPC code. You can expect
future releases of the Mac OS to replace more of the 680x0 portions of the
Mac OS with native code, yielding better performance. Early reports, how
ever, indicate that despite the mixture of 680x0 and Power PC Toolbox code,
Mac applications recompiled into native code run very fast on the Power
Macs. On the low-end Power Mac 6100/60, such native applications run at

0-~!~ ~'~'C'~":!.'C' !~0~;"- __ - _ -

Intel Pentium speeds. These same programs run nearly twice as fast on the
Power Mac 8100/80.

The second-generation Power Macs are a clear step further along the path
toward rewriting the Mac OS completely in PowerPC code. This version of
the Mac OS, System 7.5.2, has some of the Managers, (such as the Resource
Manager), some device drivers (such as the SCSI driver), and the network
protocol stacks rewritten native code. Those portions of the Mac OS already
native (such as QuickDraw, the math libraries, and the Memory Manager)
have been tuned for better performance. Finally, the 680x0 emulator has
been revised to enhance performance. First, it's been tuned for the 603 and
604 processor architecture. Second, it now uses dynamic recompilation to
"compile" frequently executed sections of 680x0 instructions in native code,
rather than use the brute-force technique of interpreting each 680x0 instruc
tion over and over again. It does this by monitoring the addresses of 680x0
branch instructions and creates a history table. The history table lets the DR
emulator recognize frequently executed sections of 680x0 code (typically
code loops). Each 680x0 instruction acts as an index into a look-up table of
functions, and each function produces a corresponding set of native instruc
tions. These code blocks get placed in a 512 KB cache and the emulator uses
the history table to reroute the course of execution to the cached native code
blocks. To minimize overhead, the cache has a simple management algo
rithm: once it fills, it is purged and the DR emulator begins refilling it. This
results in better performance for both 680x0 and native applications because
the latter still rely on portions of the Toolbox that are 680x0 code. In terms of
performance, the new "DR" emulator boosts application speeds by 15 to 35
percent, on average. Combined with the faster SCSI and smart 1/0, these
systems are very fast. Even emulated 680x0 applications now readily out
perform the fastest 68040 system by a wide margin. However, even better
performance is possible by using a native version of the application.

Future Directions
A future version of the Mac OS (code named Copland) will be mostly

native code and thus will offer even better performance than is available

with the hybrid-code version of the Mac OS today. Its preemptive

multitasking kernel will schedule program activity so that the processor is

used effectively, realizing even better performance. The kernel's task

- £~P.'."C '-"-11'~~ '!a?_•~d3_"'!_of_H!"E'l: -0
scheduler, for example, will transfer execution from a program waiting for
1/0 (say, a disk read) to one that's processing a complex computation, or
to one that needs to write to the network. It also will offer better reliability
because Copland will use a limited memory protection mechanism to "wall
off' the microkernel, device drivers, and Copland-specific background
programs from misbehaving applications.

Time for a Change (to Power Mac)
To make the switch to native Power Macintosh applications, programmers
need development tools that can compile their existing application code into
PowerPC code. Although many different development tools are available, the
best possible situation would be tools that run on both 680x0 Macs and
Power Macs. Source code that you wrote and tested on a 680x0 Mac could be
copied to a Power Mac and easily recompiled, making the initial application
port to the PowerPC a snap. (Note: those applications that are fine-tuned to
the 680x0 run-time environment will require some adjustments or even a
major redesign.) The result is a pair of applications, each of which runs on
680x0 Mac or a Power Mac. With some additional work, you could combine
the code in these two applications to make a fat binary application, one that
could run on both types of Macs. Or, if the target audience is just Power Mac
users, you'd simply write your source code on the Power Mac. Application
testing and maintenance would be further simplified if these tools also
provided a source code level debugger.

Such development tools exist. It's time for you to meet Metrowerks
CodeWarrior, and use it to write some programs.

Beginning
Programs

Beginning Programs
This chapter is for the novice programmer. It shows you how to use
the ANSI C Standard Libraries supported by the Metrowerks C
compiler to do simple tasks on the Mac. The interface for these
programs won't be pretty, given that the ANSI Libraries stem from
Unix's character-based heritage. The goal here, however, is func
tion, not appearance. These libraries provide a safety net that you
can rely on as you explore the Mac's Toolbox and operating
system.

0- ~!Pi' !'~,C'~'!'.'C' !~0~"- ______________________________________ _

As an aspiring Mac programmer, you've no doubt heard this often-quoted
maxim about the Mac: "Easy to use, hard to program." Why is this? If you've
already leafed through the half-dozen or so volumes of Inside Macintosh, you
might even know the answer to that question.

Out of this wealth of information, where do you start? Put another way, how
do you determine which Toolbox calls to use when starting an application
and which ones to call to access services provided by the operating system?

About the Toolbox
The Mac Toolbox and operating system provide more than 4,000 routines, of
which about several hundred are commonly used. The Mac is a complex
gestalt of these routines and data structures that you must understand fairly
well to write a program. How do you know which routines to use? After all,
you must understand how to initialize the application's environment so that
these routines function, how to plug the application into the operating
system so that it coexists and cooperates with fellow applications, and last,
but not least, how an event-driven interface works. This seems like a rather
dismal attitude to take for a book on Mac programming, but I'd rather you
appreciate that there's a lot to learn just to get started in Mac programming
than get frustrated and give up entirely.

Background Info
So that you don't get confused later when I start talking about calling c
functions, let's make a distinction between those functions our program
uses, and those belonging to the Mac Toolbox/OS. Following Inside
Macintosh conventions, I'll use the term routine to indicate Toolbox
functions.

Having said that, now I can say it's not impossible to learn how to program
the Mac. The trick is to limit the unknowns you're dealing with so that you
can break the job into smaller, manageable portions. Fortunately,
Metrowerks Code Warrior provides a way to limit the problems you face, as
you'll see in a moment. Another way to deal with some of the unknowns is to

- ~h~~c ~ ~ ~'!!!''~'-'!.~"-"'! -0
have plenty of source code examples handy. This way you can learn how
particular routines operate and when to use them. I'll help you here by
supplying some working code examples, which you'll find on the CD.

Munge It
I firmly believe in learning by doing, so let's start by solving a problem. One
of my jobs as a technical editor is to take manuscripts and edit them. I clarify
certain points in the manuscript, reorganize the flow of thought, request
missing material, and perform other editorial tasks. I receive these manu
scripts as ASCII text files sent via electronic mail (email) on the Internet or
other online services. Ideally, I get a manuscript file and simply start editing
it in a word processor. In reality, sometimes there are problems.

Most word processors, both Mac and PC, use a carriage-return (CR) charac
ter to end a paragraph of text. This allows the word processor to neatly
"wrap" or fit the text on the screen as you add or eliminate words inside the
paragraph. Some word processors, however, save the text with CRs at the end
of each line. The text looks fine-until you have to change the manuscript
using a different word processor. Because of the extra CRs, the word proces
sor can't wrap the words, and you wind up with a mass of jumbled text. The
author probably meant well, but the editor now has to laboriously prune
those spare CRs from the text, line by line. This type of file is a headache for
me to edit.

After hacking away at one long manuscript for over an hour, I decided that
this chore was a great job for the Mac to handle. I'd write a Mac program to
munge, or hack out, those extra CRs for me. Basically, the program would
read an input file, filter out most of the CRs, and write the rest of the data to
an output file. Thinking more along the lines of how the computer has to do
it, the program reads a byte-or character, actually-from the input file,
examines the byte, and if it passes muster (it's not a CR), writes the byte to an
output file. If the byte is a CR, it's tossed into the bit bucket instead. If the
program detects the end of a paragraph (a double CR, or a blank line), then
the end of paragraph (the double CR) is written to the output file. This makes
the resulting output ASCII text organized the way a word processor expects
it. Stated this way, the problem seems easy enough.

0- ~~"'P !'!:<l':'~".!.'C' !<!?~'- ______________________________________ _

Now here's where CodeWarrior helps. Metrowerks CodeWarrior supports the
ANSI C Standard Library, which is based on the Unix C function libraries.
These libraries supply functions that handle file 1/0 and provide an interac
tive console where you enter commands and get screen output. Because
these functions originally were implemented on old Unix systems, they
typically deal with character-based 1/0. This doesn't make for a nice Mac
interface, but it lets you concentrate on the problem without having to learn
lots of Toolbox routines all at once.

Important
CodeWarrior's console 1/0 provides support for the C Standard Library's
stdin, stdout, and stderr streams. It opens a virtual console window where
all these streams are directed. The console window is set up and managed
by CodeWarrior's SIOUX (Simple Input/Output User eXchange) library,
which must be linked to an application. The CodeWarrior IDE can auto
matically include the SIOUX and several other C libraries in a new project
file. sparing you the trouble of adding them yourself. It does this by draw
ing information from a Stationary file that you pick when creating a new
project. Stationary files act as templates. These templates have built-in
references to the most often-used libraries for certain types of projects.
Most of the Stationary files include the ANSI C libraries by default. If you
don't want to use the ANSI C libraries, pick one of the "minimal" Station
ary files when you create a new project.

Getting Started
Let's get started by launching the CodeWarrior C compiler, or more accu
rately, the application that manages it. The easiest way to do this is to go
inside CodeWarrior folder, open the Code Examples PPC folder, followed by
the Munger folder, and double-click on the file "munger.c." After a short
delay, a window opens, displaying C code. This window belongs to the built
in editor that's part of Code Warrior's Integrated Development Environment
(IDE). The CodeWarrior IDE application hosts and seamlessly combines all
the development tools that you'll need-editor, C compiler, resource com
piler, and linker-to write Mac programs. Within the editor's window, you
should see the following code:

- !?'2~'~ ~ ~ ~'lli'!!'i~g-~'!.m~ -0
#include <stdio.h>

#define CR 0x0D
#define LF 0x0A

FILE *istream, *ostream;

void main (void)

short crflag;
long icount, ocount;
char ifile[64], ofile[64];
int nextbyte;

printf ('Enter input file: ');
gets (ifile);
if ((istream = fopen(ifile, 'rb")) ==NULL)

printf ("\nError opening input\n');
return;
} /* end if *I

printf ('Enter output file: ');
gets (ofile);
if ((ostream = fopen (ofile, "wb"))

fclose (istream);

NULL)

printf ('\nError opening output\n");

return;
} I* end if *I

icount 0L;
ocount 0L;
crflag 0;

/* Set counters */

/* Read char.s until end of file */

while ((nextbyte = fgetc (istream)) != EOF)

/* Path names must be 64 chars or less */

/* Open the file OK? */

/* NO, say so */

/* Bail out */

/* Can we write an output file?*/

/* NO. First close input file */

/* then warn, and bail out */

icount++; /* Bump input char counter */
switch (nextbyte) /* What char was read? */

case CR:

0- ~"'~ f'~!:.'~".!.'C" !'e?~'- -

if (crflag >= 1)
{

else

fputc(nextbyte, ostream);
fputc(nextbyte, ostream);
crflag = 0;
ocount++;
} /* end if */

crflag++;
break; /* end case CR */

case LF:
break; /* end case LF */

default:
fputc (nextbyte, ostream);
ocount++;
crflag = 0;

} /* end switch */

/* end while */

fclose (istream);
fclose (ostream);
printf ("Bytes read: %ld\n", icount);
printf ("Bytes written: %ld\n", ocount);

} /* end main () */

Let's take a closer look at this code.

The Code Tour

/* Two in a row, end of paragraph */

/* Write two CRs to the output */

/* Reset the flag */

/* Bump the flag, and toss the CR */

/* Toss LF, but don't touch crflag */

/* All other chars get written */

/* Clear the flag */

/* Clean up */

The munger program first prompts for an input filename, using the printf (l

function to put a message in a console window made by the C Standard
Library. It uses gets () to read the keyboard when you type in a filename and
press Return. Your input is placed in the array ifile. Note that ifile and ofile

are 64 characters long. If you're opening files with long names, or the file is in
a folder with a long name, you need to increase the sizes of the ifile and ofile

arrays so that the pathname fits.

Background Info
A pathname is the complete description of where a file is located on a

particular hard drive or volume. It's a string of characters that incorporates

the volume's name, the filename, and the names of those folders within

______________________________________ ~:h~p_!e" ~ ! ~o~i~i~g!""1!ra_m! -0
which the file is nested. This might sound overly complicated until you
realize that you might have two files named "Resume" on the same hard
drive, but in different folders. As an example of a directory pathname
description. consider the following. If a Mac's hard drive is named Tachyon,
and a file "Read Me" is in the folder New Info. the pathname for the file is
Tachyon: New Info: Read Me. Another "Read Me" file, located in the folder
named Stufflt, that in turn is inside another folder called Aladdin Docs,
would have the pathname Tachyon:Stuff!t:Aladdin Docs:Read Me. This
convention is similar to DOS/Windows pathnames, but instead of a
backslash (\), the Mac OS uses colons as separators between the drive.
folder. and filenames. This convention also explains why you can't use a
colon in a filename.

Next, the program uses fopen () to open the file:

if ((istream = fopen(ifile, "rb")) == NULL)

printf ("\nError opening input\n");

return;

} /* end if *I

/* Open the file OK? */

/* NO, say so */

/* Bail out */

Note that you check to see if this open operation fails. If it does fail, the
program halts. With the minimalist input provided by the C Standard Li

brary, it's quite possible for you to mistype the filename, which creates an
error condition when fopen <) fails to open the file. The program then uses
similar code to set up the output file and checks for trouble as it does so. This
is a good time to emphasize that no matter how simple or complex your
program is, always, ALWAYS, ALWAYS, check for errors. You can eliminate a
lot of crashes, trashed hard disks, and needless debugging by having your
program determine if the routines it calls complete successfully.

The heart of the program is the while loop, which reads a stream of bytes from
the input file and processes them. The switch statement inside the loop
determines the fate of the byte under scrutiny. Any character other than a CR
or linefeed (LF) falls through to the default case, which writes the character to
the output file. Because I get lots of files from PCs, and DOS ASCII text files
use a LF-CR combination to end each line, the program also filters out any

0- ~!~ ~,~,!."~"2.'C' !~~;~ -

LF characters it happens to find in the character stream. The program
handles this filtering operation with the LF case statement, which simply does
nothing, and as a consequence the LF never gets written to the output file.

Now to those CRs, which are handled by the case statement:

case CR:
if (crflag >= 1)

{

else

fputc(nextbyte, ostream);
fputc(nextbyte, ostream);
crflag = 0;

ocount++;

} I* end if *I

crflag++;
break; /* end case CR */

I* Two in a row, end of. paragraph *I

/* Write two CRs to the output */

/* Reset the flag */

/* Bump the flag, and toss the CR */

The program logic works on the assumption that most folks separate para
graphs with a blank line. This means that the last line· of the paragraph ends
with a CR, which is followed immediately by a blank line composed of a
second CR. So when the program encounters the first CR character, it gets
tossed into the bit bucket and the flag crflag is incremented. If a character
other than CR is read next, the program clears crflag. This handles situations
where the CR just terminates a line of text. Notice the exception here: ALF
character doesn't reset crflag because it occurs jointly with the CR in DOS
files. When a second CR in a row occurs because of a blank line, the if

statement detects that crflag is set. The code now writes two CRs to the
output file to ensure the line break between paragraphs. Of course, we clear
crflag to begin the search for the next paragraph ending.

Finally, the program closes both files and writes a summary to the console
window of the bytes read and written, as tallied by the counters icount and
ocount. Because the program's function is to throw away bytes, fewer bytes
should have been written than read. It's not necessary to do this, but the
summary serves as a sanity check on the program's operation, which is
reassuring to me. It's possible to defeat the paragraph detection logic by
submitting an ASCII text file with no blank lines between each paragraph,
but I can add 30 to 70 blank lines to a manuscript within minutes, while
manually stripping CRs from over several hundred lines takes up to an hour.

. _____________________________________ fh~~'" ~ ~ ~,~;~,;~g_P~[ra_m~ -0
Important
The text of this book was written using the full version of Metrowerks
CodeWarrior. You'll have to use slightly different steps when using
CodeWarrior Lite from the CD. The commands New, New Projects, and
Add File ... are not available. Because of these limitations, it can only work
with the sample files provided on the CD.

So, if you are following along using CodeWarrior Lite. when the text tells
you to use the New, New Project..., or the Add File ... command, you should
instead open the related project file and keep it open throughout the
exercise. All the associated files will already be in the project, so you won't
need the Add File ... command. Then, you can follow the same procedures
as if you were using the full version of CodeWarrior.

Making Munger
Let's make this file munging program. You've opened the file "munger.c," so
the next step is to make a project file for it. From the File menu, select New
Project ... , type Munge.µ (you get theµ character by typing Option-M) for the
project name into the Standard File dialog box that appears.

There's an informal convention where you denote a project file by attaching
either a.µ or .n, or .prj extension to the filename. Use of the .7t extension (the
character is made by typing Option-P) is common among THINK C program
mers, while CodeWarriors favor the .µextension (as mentioned, made by
typing Option-M). This naming convention isn't required, however. You can
use any extension (or none) if you want, but if you're working with other
programmers or plan to share code with other users, these conventions help
identify the project file for them.

Take note of the Project Stationary item that appears in Standard File dialog
window. This popup menu lets you pick from various Stationary files. These
files preconfigure the settings of the project file that you're making. Hold
down the mouse button on this popup menu and pick the item Mac OS PPC
CIC++.µ. Now hit Return or click the Save button.

Now a project window appears, and its window title matches the name of the
project file you just entered. This project window displays and manages the

0-~ ~~·~~'~' _:r~ol!?' _______________________________________ _

several types of files that make up the project, and ultimately, a Mac pro
gram. There's a Source entry for source code files, a Resources entry keeps
track of the resources associated with the project (if any), and there are
entries for the program's libraries, which are divided into Mac OS libraries
and ANSI libraries. In some of these categories, default filenames are pro
vided. It supplies InterfaceLib, MathLib, and MWCRuntime.Lib, for example,
as the default Mac OS libraries. The project also has set up some default ANSI
C libraries, whose entries you'll change in a moment. First, click on the
Sources entry to highlight it. Now choose Add File ... from the Project menu.
In the Standard File dialog box that appears, locate the file "munger.c" and
click on the Add button (see Figure 2.1).

rt;. Folder File Driue Options

la Munger ... I =Tachyon

IQ [Eject

[Desktop J

([Rdd _!kJ)
[Rdd Rll J l-0

Select files to odd ... Re moue

Im

~
(Remoue Rll)

Done

Concel

Figure 2.1 Adding "munger.c" to a project.

The Add button dims, and next you click on the Done button. The source file
"munger.c" is added to project Munger.µ. You added this one file, and
surprise!-it's time to delete some surplus entries from the project. First,
select the <replace me Mac>.c entry in the window's Sources category by
clicking on it. Next, go to the Project menu and pick Remove Files. Repeat
these steps for the <replace me>.rsrc from the Resources category. You
removed these items because they simply acted as placeholders for your own
files. Also, your first programs won't be using resources anyway. (If you're
wondering what a resource is, hold tight until Chapter 4.) Now go to the ANSI
Libraries category and click on the arrow to expose the files kept in this

- Eh~'"'C ~ ~ ~e~i~i~g_PC"\!"!..m' -0
section. Highlight the entry ANSI C++PPC.Lib and again chose Remove Files.
After you've made these changes, the Project window appears as shown in
Figure 2.2.

Mun er.µ

v Sourcos I O~ ll o
0

J.• ; . {}
·v Hae Libr•ries 9" ,.. -..

lntorfacolib I 0 I ID
Hathlib Oj o: ID
HWCRuntime.lib O! Dl [il --v-·A-Nsi-Lihriries----·--·-·------r--c.-1--·--·--·oT-r:r

_______ ;~~x~::c~i_~~~-------_J __ ~l _______ ~L--~

6 filo(s) 0 0

Figure 2.2 Changing the library files in project Munger.µ.

You're not done yet. Select Preferences ... from the Edit menu. Scroll to and
click on the CIC++ group icon. In the panel that appears, ensure that the
checkbox for Require Function Prototypes is set (see Figure 2.3). This setting
demands that you declare each function, specifying the function's number
and type of input arguments and the type of the result (if any). This can catch
potential problems that can occur when you call the function with a set of
arguments different from what it expects. This might happen because you're
modifying the function, or inadvertently passed the function an argument of
the wrong type, as when you call a Toolbox routine. In either case, checking
Require Function Prototypes nails this error at compile time. Otherwise,
when the program runs, such improper function calls might cause a crash. I
also delete the MacHeaders.h precompiled header filename from the Prefix
File Item because my work often involves parts of the Mac OS that aren't
normally in the precompiled header file.

Next, go to the CIC++ Warnings group and click on Unused Variables,
Unused Arguments, and Extended Error Checking. Like Require Function
Prototypes, you actually don't need these settings for this project, but
because they enforce good programming practices, you ought to get into the
habit of setting them now. The unused variables/ arguments settings typi
cally catch "dead code," such as a local variable whose code you eliminated
from a function, but forgot to remove its storage declaration. Extended Error

0- !'."!:"'!"!? ~'~'"°~°"'C' !~'~'- -

Checking uses stricter type-checking rules when compiling the C code,
flagging subtle code goofs. The C compiler, for example, issues a warning if a
non-void function doesn't have a return statement, or a value isn't passed to
the return statement.

Rpply to open project.

D
Font

a
Target

Ii
Access Paths

~
~

-0>

1

1m
:lili Longuoge Info:

D Rctiuote C++ Compiler D RNSI Strict

Source Model: I Rpple C "" I

D RRM conformonce D RNSI Keywords Only
D Enoble C++ [Hceptlons D EHpond Trlgrophs
D Don't I nline
0 Enoble RTTI 0 MPW Newlines
D Pool Strings D MPW Pointer Type Rules
D Don't Reuse Strings D Enums Rlwoys Int
181 Require Function Prototypes

Figure 2.3 Setting the CIC++ preferences for project Munger.µ.

Now scroll to the PPC Linker group icon and click on it. In this group's panel,
go to the Entry Points section. We're just going to check the default functions
that get called when our program initializes, starts, and exits. These func
tions, which are part of the Power Mac run-time architecture, get called
when a native program launches and quits. Both the Initialization and
Termination items in this panel should be blank (see Figure 2.4). The Main
item has a function name of _start. This function is responsible for calling
our program's main () function. This is the default situation for an application;
it usually doesn't require any special initialization or termination processing.
The Mac OS normally handles any set up or house-cleaning when your
application launches and quits. For shared libraries, the Initialization and
Termination items have the function names _initialize and _terminate,

respectively. When the Mac OS loads the shared library, it calls these func
tions to handle any special processing the library requires, such as allocating
and subsequently releasing a large block of memory.

________________________ ~ _____________ fh~~'~ ~ ~ ~'lli~i~g-~~'-m~ -0
Rpply to open project.

~ Link Options:-------------~

~ 1:81 Generate SYM File

Extras 1:81 Use Full Path Names

a, D Generate Link Map

U :;n, D Suppress Warning Messages
C/ C++ Language)liJj; l'ZiJ llli: ~I _N_o_rm_a_1 _u_nk_i_n_g_ _I __________ ~
C/C++ Warnings !!!Ji'.

!l!:::
Entry Points:-;::::========;----------,

II
Initialization:

PPC Processor

m& [Reuert Panel J [Cancel J ([OK JI

Figure 2.4 Checking the entry points for the project.

Finally, go to the PPC Project panel and type Munger for the application name
into the File Name text box (see Figure 2.5) and click on the OK button. Click
on the Toolbar's Make button or select Make from the Project menu, and let
Code Warrior go to work on the project. If there are no problems, processing
statements from the compiler and linker briefly appear in the Toolbar's
status area. An application named Munger is created.

Rpply to open project.

~ ~
~ 11111rn

C/C++ 'H'arnings !d:'

D
PPC Linker

D
PPC PEF

Project Type: Rpplication ... I
Rpplication Info:_.'.:=======--------.

File Name l._M_u_n"""g_er-'I"---------~

'SIZE' Flags~ Creator I???? I
Type~

Preferred Heap Size (k) ~
Minimum Heap Size (k) ~

Stack Size (k) ~

m&.. r (Factory Settings J [Reuert Panel J [Cancel J ([OK JI

Figure 2.5 Setting the name of the application file that the project makes.

0- ~~!"!" ~'~'"'~°"'C' !~'~;"- -

Running Munger
Suppose that on a Mac hard drive named Tachyon, in the Code Warrior tools
folder called Code Warrior, there 's a folder named Code Examples PPC,
followed by a folder named Munger. Inside it is a text file called
"PowerPC.txt." Suppose "PowerPC.txt" is loaded with surplus CRs. First,
open the file in Mac Write Pro and examine the file with the Show Invisibles
set in the View menu. Show Invisibles displays all the characters in the file
including invisible control characters such as CR-instead of just text char
acters. In Figure 2.6, you can see that each line ends with a small bent arrow
symbol; they represent CRs. If you don't have MacWrite Pro, don't worry:
other word processors also can display such "invisible" characters. Check the
documentation for your word processor for details on how to do this.

s File Edit Font Size Style Format Frame Uiew Q ~
llJ Power PC. !Ht (Conuerted) ~

Page t

IBM·andMotorola announce·first·si licon·on ·PowerP C·603+l
+l
At-the M icroprocessor· Forum today I Bm ·and Motorola· jointly ·+l
announced the ·first·fabricatio n of·the ·second· PowerPC ·RI S C ·+l
microprocessor, ·the· 6 0 3. T h is ·was·ac h ieved · less·tha n · 1 2 ·+l
monthsafter·annou nc ing·initial·silicon·on the·PowerPC·601. ·+l
The·PPC·603p rov ides·high performancewhile·consuming·little ·+l
power, making· it· idea I ·for· notebook ·comp uter·des ig ns .+l
+l

I

The·P PC·603·uses·3. 3 V, ·O.Smicron, .4 ·levelmetal, ·static +l
CMOS ·technology topack·1.6million·transistors·onto·a·die·+l
that's·7.4 mm·by·11 .Smm.·By·contrast,.the·PPC·601 ·USeS·3.6·+l
V, ·0.6micron·static·CMOS ·toplace·2.8·million·transistors·on·a·+l
die·120 mmsquare .·Like ·the·PPC·601 ,·the PPC·603+l
implements ·a· 3 2-b hers ion ·Of t he· 64-b it· PowerPC ·+l
architecture w ith ·a· 3 2-b it-address·b us and·a · 3 2-·or 64-b it·data ·+l
bus. · It uses ·the ·same ·S upersca lar des ign w ith· 3 ·instruction +l :iii:!
dispatch.· However, ·the·PPC·603 does differ·fromthe·PPC·601 ·+l '''"'
in ·Severa I a reas .· First, t he· PP C · 6 O 3 ·uses a · Harvard·arc h itecture: +l '''"

;~~~~~E~~ac~~~: ·~:~~~c~~~~~~~~~t~lrc~~i~:~~~~~~+l J
""" · · '-".Cld.w:..:wiLl1. ..J:!Ll.a -;' " . nnr- ..L -0>

Figure 2.6 A sample text fi le, with CRs at the end of every line.

It's time to set "munger" to work on this file and see what happens. Launch
"munger" from the CodeWarrior IDE by clicking on the Run button in the
Toolbar. A console window called munger.out appears. Type in the

pathname to the sample text file we examined earlier as follows:
Tachyon: CodeWarrior: Code Examples PPC: Munger: PowerPC. txt. Of course, if your hard
drive name and CodeWarrior tools folder are named differently, you'll type
the appropriate names into the pathname. If you goof on the filename,
"munger" complains and the program stops. If the filename is OK, "munger"
asks for an output filename. Type a filename that uses the same file path,
such as Tachyon:CodeWarrior:Code Examples PPC:Munger:PowerPC.out. Press Return
and "munger" processes the file. You'll get a summary of the operation, as
shown in Figure 2.7. The munger.out console window remains present, and
you have to pick Quit from the File menu to leave "munger." When you do
so, a dialog box appears that asks if you want to save munger.out's contents.
Click on the Save button if the console window's output is important to you.
Otherwise, click on Don't Save to discard the console window's output. This
feature enables you to capture the output of a job as required. For lengthy
pathnames, as in the example, the SIOUX console window lets you copy and
paste characters. You only have to type in the pathname once for the input
file prompt, select ·this text with the mouse, copy, and then paste the bulk of
the pathname into the prompt for the output file pathname. Now all that's
left is for you to type the n~me of the output file.

Mu'!.!l_er.ou~ijiijiijiijiijiijiijiiJ
Enter input f I I e: Tachyon: Codel-larr i or: Code Examp I es f: Munger f: PowerPC. txt p£.
Enter output fl le: Tachyon:Codel.larrior:Code Examples f:Munger f:PowerPC.out
Bytes read: 5567
Bytes wr- i tten: 5466

I

Figure 2.7 The console window of program "munger" after it processes a file.

Now if you open the resulting file "Power PC.out" with your favorite word
processor, you'll see that "munger" did handle the surplus CRs (see Figure 2.8).

0- ~~'-'"'° E"'-'"'"'-"'-'C' _T~o~i~ -

s File Edit Font Size Style Formot Frome Uiew

~Iii PowerPC.out (Conuerted)
0

Page 1

6

IBMa ndMotoro laannounce·first·si licon·on·PowerPC·603+l II:
+l
At-the Microprocessor· Forum·toda y ·I Bm ·and Motorola ·jointly an no u need ·the ·first·
fabrication ·of t he ·Second· PowerP C· RI S C ·microprocessor, the ·60 3. This ·VYaS achieved·
less·than·12months·afterannouncing·in itia l·silicon·onthe·PowerPC·601 .The·PPC·
603 prov ides· high perfonma nee w hile consuming· little p ower, making· it· idea I for·
notebook·computer·designs.+l
+l
The·PPC·603·uses·3.3.Y,·O.S·micron,.4·1evel·metal, ·static·CMOStechnologytopack·
1.6·million·transistors·ontoa·d iethat's·7.4mm by ·11.Smm.·By·contrast,the·PPC·601 ·
uses·3.6.Y,·0.6micron-static·CMOS·toplace·2.Bmillion·lransistors·on·a·die·120·mm·
square. ·Like·the·P PC·601, the·PPC·603·implementsa ·32-bhersion of·the·64-bit
PowerPC ·architecture, w ith ·a· 3 2-b it·address ·bus and ·a· 3 2- ·Or·64-b it·data ·bus. ·It· uses·
the ·same ·S upersca lar·des ig n w ith· 3 ·instruction ·dispatch.· However, the· PP C · 60 3 ·does·
differ·fromthe·PPC·601 ·in·severala reas.·First,·the·PPC·603·usesa·Harvard·
architecture: · it-has two ·separate· 8 ·KB ·caches, ·One ·for· instructions, ·and ·One ·for·data. ·
Each ·cache· has· its ·own MM U. · Both·cac hes ·are lwo-v.a y ·set-associative and· use ·an.
LRU·algorithm.·Next,·the·PPC·603·has·S·independent-execution·units. ·lt·has·the·same·
branch·prediction·unit·(BPU),·integer·unit'(IU),and·floating-point·unit (FPU), that·can·
dispatch·three ·instructions ·Simultaneously, ·the ·same as ·the· PP C · 601 . ·However, the·
PPC·603·features·a·new:loadlstore·unit-(LSU),and·systemregister·unit·(SRU)·thatare·

Figure 2.8 The munged output file.

Where's the Mac?
OK, so you got some C code to run on the Mac, but where is that easy-to-use
Mac interface? The point is that we got code running quickly without getting
mired in too many details. We let the C Standard Library handle the job of
initialization. It also provided 1/0 through a Mac window masquerading as a
console window. The important thing to carry away from this exercise is that
you can use the C Standard Library to act as a scaffolding while you test
various algorithms and Toolbox calls. The programs you make this way
aren't meant to be friendly, just useful enough to test code. We will start
adding our own Mac interface to our "munge" program in the next chapter.

Here's another example where the C Standard Library pitches in while we
investigate some Toolbox routines. Under System 7, active applications are
called processes. Certain system services such as File Sharing, PlainTalk
voice recognition, the Express Modem, and the LaserWriter 8.3 background

. _____________________________________ 9'~f!!"!: ~ ! ~,~;~;~g_P~~~m! -0
Desktop Printer Spooler actually are processes themselves. These system
services don't show up on the application menu, but they do operate quietly
in the background. As the Mac migrates to a preemptive multitasking OS,
processes will become even more important to the overall operating system
design. With that in mind, let's take a closer look at processes.

Future Directions
The future Mac OS that I'm talking about here is Copland. Copland's
microkernel, drivers. and specialized background applications will run in a
separate memory space, protected from a malfunctioning application.
Programs that make use of the GUI must run together in another memory
space. This is because the QuickDraw code currently is non-reentrant (for
more information on reentrant code, see Chapter 4). Most of the processes
just described, however, don't use QuickDraw, and thus are ready to take
full advantage of the capabilities that Copland offers. But don't some of
these background services, such as PlainTalk and File Sharing, use Control
Panels, which in turn use QuickDraw? Yes, they do. However, each Control
Panel is simply a front end that, based upon the controls you set, sends
the appropriate messages to the background processes that do the actual
work.

Processes Revealed
The Mac OS allocates each process a partition in memory where it runs and
assigns it a unique ID number. This ID number is called the process serial
number (PSN) and it is used by the operating system to reference the process
and control it. Inside Macintosh: Processes documents a group of Toolbox
routines, known collectively as the Process Manager, that manage these
processes and supply information on them. To find out more about pro
cesses, let's examine another quick program. Go to the Code Examples PPC
folder, and open the Process folder. Double-click on the "process.c" file.

#include <processes.h>
#include <stdio.h>

void main (void)

0- ~!"!.' f'~'C'~o:!.'C' _T~o~;~ -

register int
ProcessinfoRec
ProcessSerialNumber
FSSpec
unsigned char
unsigned char

i•
'

thisProcess;
process;
thisFileSpec;
typeBuffer[5] = {0};
signatureBuffer[5) = {0};

thisProcess.processAppSpec = &thisFileSpec; /*Aim pointer at our storage */
thisProcess.processinfoLength = sizeof(ProcessinfoRec); /*Store record size*/
thisProcess.processName = (unsigned char*) NewPtr(32); /*Allocate room for the name*/
process.highLongOfPSN = kNoProcess; /* Clear out process serial number*/
process.lowLongOfPSN = kNoProcess;

while (GetNextProcess(&process) == noErr) /* Loop until all processes found */

if (GetProcessinformation(&process, &thisProcess) noErr) /* Obtain detailed info */

for (i = 0; i <= 3; i++) /* Copy type & sig info into string buffers */

typeBuffer[i) = ((char*) &thisProcess.processType)[i);
signatureBuffer[iJ = ((char*) &thisProcess.processSignature)[i);
} /*end for */

printf ("Process SN: %ld, %ld, Type: %s, Signature: %s, Name: "
thisProcess.processNumber.highLongOfPSN,
thisProcess.processNumber.lowLongOfPSN,
typeBuffer,
signatureBuffer);

printf (" %s \n '', P2CStr (thisProcess. processName)); / * Now print the name * /

} I* end if *I

/* end while */
/* end main() */

This program uses the Process Manager to obtain information about all of
the processes running on the system. Notice that we include one more
header file, <processes. h>, to the source code. This header file defines the
Process Manager routines and a data structure called ProcessinfoRec that acts
as a container for all of the process' relevant information. The lines

thisProcess.processAppSpec = &thisFileSpec; /* Aim pointer at our
... storage *I

thisProcess.processinfoLength = sizeof(ProcessinfoRec); /*Store record size*/
thisProcess.processName = (unsigned char*) NewPtr(32); /*Allocate room for the
... name */

______________________________________ fh~P!'C :S ~ ~o~i~i~g_Pco~ra-"'! -0
process.highLongOfPSN = kNoProcess;
.. serial number */

process.lowLongOfPSN = kNoProcess;

/* Clear out process

are used to set up our local copy of ProcessinfoRec, called thisProcess. Then
we direct pointers in thisProcess to the appropriate storage locations.
processAppSpec, for example, which contains the location of the file that
created the process, is aimed at thisFileSpec. And processName, which holds the
process' name, is directed to a chunk of memory allocated by NewPt r () , a
Toolbox memory allocation routine. Last, we clean out the PSN variables by
assigning kNoProcess, which equals zero, to it ..

Now we use a while loop that calls the Process Manager routine
GetNextProcess () repeatedly. GetNextProcess ()' when called with a PSN of 0,
starts at the beginning of an internal list of PSNs maintained by the Process
Manager and returns the first PSN on the list. By passing each returned PSN
back to GetNextProcess () on subsequent tours of the loop, we walk this list and
use another routine, GetProcessinformation (),to grab information on every
process in the system. When GetNextProcess () finally reaches the end of the
PSN list, it returns an error value and the loop completes.

While the loop cycles, GetProcessinformation () extracts in-depth information on
the current process and stuffs it into thisProcess. As usual, notice that we
check for errors. If GetProcessinformation (J reports no errors after it completes,
we dump some of the information it gathered to the console window.

Gathering Processes
It's time to compile the "process.c" program and see what it gathers. There
are seven steps, and they are nearly identical to the first program, "munger."

1. Save the code (if you typed it in) into a file called "process.c."

2. Create a new project called process.µ. In the Standard File dialog
window, be sure to pick the Stationary file Mac OS PPC Cl C++.µ from
the popup menu. Add "process.c" to the project. Check that the usual
suspects, "InterfaceLib," "MathLib," "MWCRuntime.Lib," "ANSI
C.PPC.Lib," and "SIOUX.PPC.Lib," are in the project. The Project
window should resemble Figure 2.9.

3. Set the PPC Language and PPC Warning preferences the same way you
did for the Munger.µ project.

0- ~'!'E ~'~'"'~"2.'C' !"-"~;'- ____ - .

Process.µ liDJ ~
File Code D•b:JI:

V Sources I 01 Oi • 1:1 ~ MD 4
I

I iMl(il
~v H.;ic L ibr ilries r OI o: i:r

lnterfacelib I ol ol ID I I

~ ! H•thlib I 01 ID
HYCRuntimeo .1. ib 01 ~ V ANSI libr.;iries I o l O;
111151 C.PPC.Ub ol oi ID
SIOUX.PPC.Ub l al oi ID..

~
6 ffle(s) 0 0 II

Figure 2.9 The Project window for the process program.

4. In the PPC Linker preferences panel, check the entry point settings. As
mentioned previously, the defaults for this program are fine, but you
should get into the habit of visiting this panel when we start writing
more capable Mac programs.

5. Name the output file Process in the Project preferences panel.

6. With all the preferences set, make the program.

7. Finally, pick Run from the Project window. The console window ap
pears and displays information on each process' PSN, type, signature,
and name (see Figure 2.10). Note the presence of our own program,
"Process," as well as the CodeWarrior compiler, the Finder, the File
Sharing Extension, and other applications.

Process.out
Process SN: 0, 8192, Type FNDR, S gnature MACS, Name
Process SN: 0, 8193, Type INIT , S gnature hhgg , Name
Process SN: 0 , 8 195, Type APPL , S gnature MPCC , Name
Process SN: 0 , 8197 , Type APPL, S gnat.ure MWPR , Name
Process SN: 0, 8199, Type APPL , S gnature zTRM , Name
Process SN: 0 , 8200 , Type APPL, S gnatur e ????, Name

I

Finder ~
Fi l e Sharing Ex tens ion
MW C/C++ PPC v 1. Oa4p 1
Mac:Wr i te Pro
ZTerm 0 . 9
Process

Figure 2.10 The process program displaying all processes on the system.

-- -E~ ~ ! '!<'~•.!';~'-'!:!'IP_"'!. -0
A Word of Caution
As you can see, with the assistance of the I/ 0 functions provided by the C
Standard Library and SIOUX, you easily can delve into the Mac's inner
workings. Even with all the Mac code I've written over the years, I still
frequently use the C Standard Library I/ 0 functions to quickly test code that
uses unfamiliar Toolbox routines. If you know that you're going to be using
the ANSI libraries exclusively in your program, pick the Stationary file -ANSI
PPC CIC++.µ from the popup menu when creating the project file.

Hazard
Because the C Library, through SIOUX, does its own application initializa
tion, you need to exercise caution when mixing this library with certain
Toolbox routines. For example, the printf() function has SIOUX create a
Mac window that mimics a console window. If your program happens to
initialize the Window Manager so that it can use a Toolbox routine, this
creates a situation where your initialization code butts heads with the
window data structures created by SIOUX, and causes a crash.

To avoid this pitfall, never match the 1/0 functions you use with the Mac
Toolbox with those of the C Library in the program. If you use QuickDraw
or Window Toolbox routines in your code, don't use the C Library functions
that require a console window. Or, if your program uses the C Library's file
1/0 functions, don't use Mac Toolbox's file 1/0 routines.

In CodeWarrior 1.3 (aka CW7), you can modify the behavior of SIOUX
such that you can actually initialize parts of the Mac Toolbox, add custom
menus, and even install your own event loop handler. To do this, you need
the include header file "SIOUX.h" in your source code, and change some
fields in a srnuxsettings data structure. Here's an example where you set
up SIOUX to allow custom menus and your own event loop in a program:

#include <stdio.h>
#include <sioux.h>

void main(void)
{

SIOUXSettings.standalone = FALSE;
SIOUXSettings.setupmenus = FALSE;

continues

0-~~ ~,~,C'~".'C' _T~~;1_ - •

continued

<program code>

II end main()

Tread carefully, and co.nsult the CodeWarrior documentation for more
information.

Just the Beginning ...
In this chapter, you've seen how to build a practical application, leveraging
off the 1/0 functions in the C Standard 1/0 Library. We've outlined seven
steps required to build and run the application in Metrowerks CodeWarrior.
You also examined how to use the C Library to help us experiment with
various Toolbox routines in isolation. Now you can apply this knowledge to
learn how the Mac works, which ultimately assists you in writing Mac appli
cations. Try some experiments of your own, and then proceed to the next
chapter where you'll write a full-blown Mac application.

Using the
Toolbox

At this point you should be comfortable with the
Metrowerks Code Warrior integrated development
environment and how to create and manage a project.
In a jam, you can rely on Code Warrior's C Standard
Library to help you learn how to use new and unfamil
iar Mac Toolbox and OS routines. Does this mean
you're ready to write a full-fledged Macintosh applica
tion? Not quite. For novice Macintosh programmers,
there are a number of basic concepts to learn. These
include program initialization, resources, event
handling, and the structure of files. These concepts
cover a lot of ground, but I'll keep the information
doses manageable by introducing them in stages,
along with programs that demonstrate these aspects of
the Mac OS. Readers with intermediate Mac expertise
might want to jump to the back of the chapter and
study the code on Apple Events. The rest of us will
catch up with you later.

0-~ ~'!'~'!!'C' !~'~'- -

In Chapter 2, I mentioned a Process Manager. As you learned, it is a collec
tion of routines that deals with processes, which are running applications. It
should come as no surprise that many of the Toolbox routines are organized
into groups of related functions, or Managers. The Event Manager deals with
low-level events such as mouse clicks and keystrokes. A Memory Manager
has routines that allocate memory, release memory, and adjust the size of
the stack. A Window Manager provides routines necessary for the care and
feeding of windows, while a Font Manager deals with the various fonts you
see on the screen or use to print. The list goes on and on. One of the few
exceptions to this naming scheme is QuickDraw-the routines that handle
drawing on the screen or onto a page image bound for the printer. These
various Managers serve as libraries of routines available for your use.

Important
The Toolbox routines actually exist either as shared libraries or as functions
in the Power Mac's ROM. For 680x0-based Macs. entry into a particular
Toolbox routine is handled by a 680x0 processor exception, which then
jumps to a dispatch table. For the Power Macs. a Toolbox routine is
entered via a set of pointers called a transition vector. These transition
vectors are set up by the operating system when an application loads. If
you're wondering what an exception or transition vector is, never fear: the
details are explained in the next chapter.

What's nice about this scheme is that it helps organize all of those thousands
of Toolbox routines. If, for example, you need a function that reads a file,
look at the File Manager routines. As a novice, you should spend some time
just browsing through Inside Macintosh. The new editions organize the
technical content by category, such as files, memory, text, and so forth,
rather than by volume number as they did in the past. This arrangement
helps you locate the various Managers by function. Along with the usual
reference information, the new editions of Inside Macintosh also include
some tutorial material. You might not understand all of the information
presented there (for now), but it will give you a good idea of what Managers
exist, and what they do. When necessary, I'll make reference to the appropri
ate Inside Macintosh edition.

- - - - - - - -- -~h!.P!.'~'-•-l!.•~•-"!!>I~'~ -0
Meet Some Managers
To get you used to the idea of Managers, start by writing the classic "Hello
world" program. This also will demonstrate how to initialize a Mac applica
tion. Start by opening the Code Examples PPC folder. Now open the
MacHello folder and double-click "hellol.c." Now let's take a close look
at the code:

#include <Types.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <Windows.h>
#include <Memory.h>
#include <Events.h>
#include <OSUtils.h>

#define NIL 0L
#define IN_FRONT (-1)
#define IS_VISIBLE TRUE
#define NO_CLOSE_BOX FALSE

Already you'll notice that there are a lot more header files involved than just
using the Standard C Library's <stdio. h>. That's because the Standard C
Library includes every 1/0 function possible plus the kitchen sink. In con
trast, each Toolbox Manager has a separate header file. This keeps both your
workload and the compiler's at a manageable level. It means that you have
to be more aware of what routines you plan to use (yet another reason to
browse through Inside Macintosh).

Background Info
Like Symantec's THINK C, the Metrowerks CodeWarrior compiler uses a
special header file called "MacHeaders.h" whether you're generating 680x0
or PowerPC code. This file incorporates the most frequently used header
files, such as "QuickDraw.h," "Fonts.h," "Windows.h," "Files.h," and others.
"MacHeaders.h" references a precompiled processor-specific header file,
either "MacHeaders68K" or "MacHeadersPPC"; depending upon which
processor you've selected in CodeWarrior's Target preferences panel. This
precompiled header file helps boost the compiler's processing speed when
it searches for routine definitions. It also means that if you stick with the

continues

0-~ !:'!!O!."~"l'C' _T !!!>"?!_ -

continued

most frequently used Manager routines, you needn't worry about typing
#include statements. However. not all of the header files are incorporated
into MacHeaders. If you're using some of the more sophisticated Toolbox
routines to, say, play sounds or do special printing, you'll need to include
those files at the start of your source code. Or, you can edit the supplied
"MacHeaders.c" file to add the missing header files, and recompile it with
the CodeWarrior compiler. This makes the header files you need part of
the precompiled header file. The "MacHeaders.c", "MacHeaders.h", and
assorted support files are located in the MacHeaders folder.

I prefer to enter all the header files anyway. This way you keep better
track of what Managers you're using, which helps with your program
design. It doesn't hurt having the header files declared in your program,
because even if you use the "MacHeaders" file, the Metrowerks
CodeWarrior compiler is smart enough to sort things out and prevent
redundant declaration errors from cropping up.

The definitions NIL, IN_FRONT, IS_ VISIBLE, and NO_CLOSE_BOX are for use later in the
program. As you'll see, they'll make a Window Manager routine that we use a
lot easier to understand. Now enter:

void main(void)
{

WindowPtr thisWindow;
Rect windowRect;

/* Lunge after all the memory we can get */

MaxApplZone();
MoreMasters () ;
MoreMasters () ;

/* Initialize the various Managers */

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
In i tWindows () ;
InitCursor();

-- ~"'-"!.''-'-·-'!.';~'-th! !'2'~~ -0
Now we're getting somewhere. The variable WindowPtr holds a pointer to a
data structure that the Window Manager creates for us. The data helps
manage the window that will display the phrase "Hello world." Re ct is a data
structure that describes a rectangle object to QuickDraw. If you use the
Metrowerks editor to examine the "Types.h" file, you'll find Rect, which looks
like this:

struct Rect {

short top;

short left;

short bottom;

short right;

} ;

typedef struct Rect Rect;

Top and left correspond to the x and y coordinates of a point that QuickDraw
uses in its drawing space. The bottom and right variables define a second
point's coordinates. QuickDraw uses these two points to draw the rectangle.
How does it make a rectangle made up of four points (or eight x and y
coordinates) with just two points? QuickDraw relies on the fact that a rect
angle can be drawn with this amount of data. First, QuickDraw draws a line
from point (top, left) to point (top, right) to draw the top of the rectangle.
Next, QuickDraw draws a line from point (top, right) to point (bottom, right),

which draws the right side of the rectangle. Then QuickDraw follows with a
line from point (bottom, right) to point (bottom, left) to draw the bottom of the
rectangle. The line drawn from point (bottom, left) to point (top, left) closes
the rectangle.

MaxApplZone (J is a Memory Manager routine that ensures the application has
sufficient memory. It does this by expanding the application's heap (also
called a zone) as much as possible within the memory partition built for it by
the Process Manager. If you don't call this routine, the Mac OS assumes a
default heap size, which might not be adequate for your needs. This is
followed by calls to MoreMasters (J, a routine that allocates what are called
master pointer blocks. These blocks contain pointers that help implement
the handles that are frequently used to access Toolbox data structures. If you
run out of master pointers, the Memory Manager will create more for you
automatically. However, since the master blocks can't move about in
memory, you run the risk of fragmenting the application's heap as memory

0- ~!Pi' f'~'"'~"l'C' !~~'- ______________________________________ .

becomes littered with these immovable memory blocks. The application will
also run more slowly as it struggles to organize the fragmented memory. If
you provide sufficient master blocks now, it eliminates potential memory
and performance problems in the future. Obviously, it's better to call
MoreMasters () too much at initialization time, rather than too little.

Initializing Managers
Now we initialize the various Managers that we plan to use:

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();

InitGraf() initializes QuickDraw. QuickDrawin turn sets up some global
variables it uses to manage the application's graphic environment. The
storage for these variables is set up by the development system, which
QuickDraw accesses via the global pointer thePort that you provide. Next, the
Font Manager is initialized so that text can be displayed within the window.
Flush Events () clears the event queues of any stray events when the application
is launched. Ini tWindows (), of course, readies the Window Manager.

Now it's time to get into the actual mechanics of displaying the phrase "Hello
world." Add to the program:

/* Set up the window */
windowRect.top = windowRect.left = 40;
windowRect.bottom = 200;
windowRect.right = 300;
if ((thisWindow = NeWWindow(NIL, &windowRect,

"\pHello world", IS_VISIBLE, documentProc,
(WindowPtr) IN_FRONT, NO_CLOSE_BOX, NIL)) I= NIL)
{

SetPort(thisWindow); /*Make window the current port*/
MoveTo (20, 20);
DrawString("\pHello world");
InitCursor ();

while (!Button()) /*Wait until mouse button clicked*/

- ~h~!!''-3 _ ·- '!.';~·-"'! 1'2'~ -0
DisposeWindow(thisWindow); /*Clean up*/

} /* end if *I
else

SysBeep{30);

/* end main() */

The first two lines of code plug coordinate data into the rectangle windowRect
that are used to make the window. If you're puzzled over the point data's
positive values, that's because in QuickDraw's coordinate system, the upper
left comer of the screen is the origin, and larger positive numbers move a
point toward the right and downward. The values in windowRect have
QuickDraw create a window located forty pixels down and forty pixels to the
right of the screen's origin. The window's upper left comer starts at this
position, and the window is 200 pixels tall and 300 pixels wide.

The NewWindow() routine actually makes the window. The #defines we created at
the top of the program are put to use here. From them we can surmise that
the new window is visible on the screen, is supposed to appear in front of all
other windows, has no close box (the small square in the window's upper left
corner that, when clicked on, removes the window), and its title will be Hello
World. NewWindow(> 's first argument allows you to place a pointer to a data
buffer for the window's use. If this argument is NIL, as it is in our example,
the Window Manager allocates the window's data storage on the heap, which
is fine for simple operations. However, if you display lots of text or large color
images in the window, you can severely fragment the heap. For these jobs,
it's best to pass the address of a memory block to NewWindow(). Consult Inside
Macintosh: Macintosh Toolbox Essentials and Inside Macintosh: Memory for
more information on these issues.

Notice that we do some error checking here. If NewWindow(> successfully creates
the window, it will return a pointer to the window's data structure. If
Newwindow() has a problem making the window (possibly there's not enough
memory), the routine returns a value ofNIL. The if statement determines if
we received a valid pointer from the Window Manager. If not, the application
beeps and exits. Admittedly, a beep doesn't offer much diagnostic aid to the
user, but it's preferable to signal a problem this way and quit cleanly, rather
than have the Mac crash.

Ifwe have a valid window pointer, the program next sets the window to be
the current drawing port by using set Port (>. QuickDraw always draws to the

0- ~""!' £'~'"'~m.·c·.:r~~·- ---------------------------------------

screen through a graphics port or grafport, which is another data structure
that describes to QuickDraw an area to draw on the screen, the size and
shape of this area, its coordinate system (which can be different from the
screen's), what type of text to use, and other information. The Window
Manager creates a grafport for every window it makes, and your application
can create and manage many windows-and thus grafports-at once.
Through the setPort () routine, we inform QuickDraw what grafport to draw
in, which in this case is our shiny new window. The following Move To routine
nudges the current drawing point within the window down and right twenty
pixels. These values use the window's own coordinate system, whose origin
is located at the window's upper left corner. Finally, we use the Drawstring ()
routine to write the phrase "Hello world" in the window.

When the Process Manager starts the application, it changes the mouse
pointer, or cursor, to a stopwatch to indicate the Mac is busy. Now that our
initialization code has completed and the program displays the greeting, we
call InitCursor(), which changes the cursor back to an arrow. This indicates
that our application is ready to deal with the user.

If we simply let the program proceed, the window would appear briefly and
be gone. To let the window linger so that we can admire our handiwork, we
insert a while loop. This loop cycles until the routine Button (l returns TRUE,
which occurs when you press the mouse button. Once the loop completes,
we clean up after ourselves by calling DisposeWindow (l, which removes the
window and purges the data structure made by NewWindow(l. The final shape of
the program looks like so:

#include <Types.h>

#include <QuickDraw.h>

#include <Fonts.h>

#include <Windows.h>

#include <Memory.h>

#include <Events.h>

#include <OSUtils.h>

#define NIL 0L

#define IN_FRONT (·1)

#define IS_VISIBLE TRUE

. -~"~-'~ ' -•-'!."~'-th-' I '2'~'~ -0
#define NO_CLOSE_BOX FALSE

void main(void)

{

WindowPtr thisWindow;

Rect windowRect;

/* Lunge after all the memory we can get */

MaxApplZone();

MoreMasters();

MoreMasters () ;

/* Initialize the various Managers */

InitGraf(&qd.thePort);

InitFonts ();

FlushEvents(everyEvent, 0);

InitWindows();

t• Set up the window */

windowRect.top = windowRect.left 40;

windowRect.bottom = 200;

windowRect.right = 300;

if ((thisWindow = NewWindow(NIL, &windowRect,

"\pHello world", IS_VISIBLE, documentProc,

(WindowPtr) IN_FRONT, NO_CLOSE_BOX, NIL)) I= NIL)

{

SetPort(thisWindow); /*Make window current drawing port*/

MoveTo (20, 20);

Drawstring (' \pHello world");

Ini tCursor () ;

while (!Button()) /*Wait until mouse button clicked */

0- ~'.."'!' ~'!!'"'~'!!'~' _,-~,~·- - - - - -- - - - - - - - - - -- - - - - - - -- - - - - - - - - - -- - - -

DisposeWindow(thisWindow);

} I* end if *I

else

SysBeep(30);

I* end main () *I

Run the Code
Let's compile and run this code. Using the seven-step procedure outlined in
Chapter 2, first save the code (if you typed it) into a file called Hello1. c. Next,
create a project called Hello.µ. Add "Hello l .c" to it, and remove the place
holders from the project's window. (You don't need to do this with
CodeWarrior Lite on the Power PC Programmer's Toolkit CD, because the
project file is already set up.)

Set the preferences in this project for the CIC++ Language, and PPC Project
panels. For the Language preferences panel, ensure that the Require Function
Prototypes item is checkboxed and that the Prefix File item is blank. In the
CIC++ Warnings panel, see that the usual items are checkboxed: Unused
Variable, Unused Arguments, and Extended Error Checking. For the PPC
Project preferences panel, name the output file Hello. Now make the project
and run it. You'll get a window that resembles that shown in Figure 3.1.

Hello world

Hello world

Figure 3.1 The result of the "Hello world" program.

Click on the mouse button to quit the application. The font used in the
window was the default application font Geneva. One of Mac OS's finer
features is that it has a smart set of defaults, which simplifies programming.

-- -- - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - -- - -""'.P!."_,_ ._ '!.''~"-"'! !~~": -0
It took 50 lines of code to implement the "Hello world" program. Our result
ing application doesn't do much-but then neither does the Unix-style
version of the program that every beginning C programmer writes. It does
illustrate that the Mac OS is a complex environment that requires attention
to a lot of details before you can write code.

This very simple application required that we have a grasp of the Memory
Manager, the Window Manager, and QuickDraw. I've only provided superfi
cial descriptions of some of the Toolbox routines used in the setup code. For
additional information, consult Inside Macintosh: Macintosh Toolbox Essen
tials, Inside Macintosh: Memory, and Inside Macintosh: Imaging.

"Hellol.c" demonstrates the general initialization setup for a Mac applica
tion. Later programs will require the setup of more Managers, but these will
just be additions to the code you've written here. Like the understanding of
the Mac itself, Mac programming is just a matter of continually adding
components to a basic structure.

The Fork in the File
Now that we've covered program initialization, let's delve into a Mac file's
structure. A Macintosh file is composed of two sections, a data fork and a
resource fork. Physically, there's nothing different about these forks; each is
simply a stream of bytes located somewhere on the hard disk. However, the
Mac OS treats each file fork differently. The data fork typically contains data
created by an application, such as text from a word processor, numbers from
a spreadsheet, or PostScript commands from a drawing application.

The resource fork is a container for objects called-you guessed it-resources.
Resources contain data that is organized into predefined formats. This data
typically describes graphic elements such as icons, windows, and color tables.
Resources also contain nongraphic yet essential elements such as drivers or
program code. A resource type defines the resource to the Mac OS so that it
can properly interpret the data packaged within the resource. A resource type
is a four-character code, such as 'CODE', 'MENU', 'WIND', 'cicn', 'cdev', and
so on. As examples of how the resource type indicates what is inside a re
source, consider that CODE resources contain processor code, MENU re
sources contain the items that appear on a menu, and cicn resources hold
data that displays a color icon. In summary, the resource fork of a 680x0

0- !'."~~p ~!!!l!;'~"!"C' !~~- -

application contains such elements as program code, menu lists, windows,
and icons. The structure of a Power Mac application is somewhat different: It
still keeps the graphical elements in its resource fork, but the program code
is stored as a single block inside the file's data fork. More on this later in
Chapter 4. For more details on a file's data and resource forks, consult Inside
Macintosh: Files, and for more on resources, check Inside Macintosh:
Macintosh Toolbox Essentials.

Future Directions
Copland will use a completely re-engineered version of the File Manager
to handle larger volumes, and it will use more efficient 1/0 algorithms to
improve performance and reliability. One feature of this new File Manager
is that it supports any number of file forks, besides the usual data and
resource fork. The structure and contents of these additional forks are
determined by the programmer. For example, a game designer might store
the bitmaps for sprites in one custom fork, and the texture maps for
objects and hallways in another.

Besides the two forks, each file also has a type and creator. Like resource
types, file type information is a four-character code that describes a file's
contents to the application that opens it. For example, a file type of 'TEXT'
indicates that the file contains ASCII text, 'TIFF' indicates the file has Tagged
Image File Format bit-mapped data (typically a scanned image), and 'APPL'
means the file contains program code organized as an application. The
creator information is a four-character code signature that's unique to the
application that created the file. Each file's type and creator information is
maintained in a desktop database file by the Mac OS. The Finder, the shell
application that displays and manages the so-called virtual desktop on your
Mac's screen, uses the database file to display each file's icon at the appro
priate screen location. Where does the desktop database get a file's type and
creator information, along with its file icon? From resources in your pro
gram, of course.

To see how all this fits together, consider what happens when you double
click on an document icon (say, a CodeWarrior project file). The Finder
detects this action, and obtains the file's creator information from the

- "-"!!.P!.'~ '-•-'!.''~·-~I~ -0
desktop database. Next, it searches for a file of type 'APPL' (an application)
with the same creator signature. If the Finder finds this application file (the
Code Warrior IDE), it has the Process Manager launch it. If the Finder can't
locate the application file, you get a warning on-screen that states: "The
document 'Foobar' could not be opened, because the application program
that created it could not be found."

Obviously, the Metrowerks Code Warrior IDE manages the CODE resources
in the application that we make. However, to build a complete Mac applica
tion with menus, windows, its own custom icon, and signature information,
it's probably dawning on you that you're going to have to become familiar
with resources in greater detail. This assessment is correct, so let us begin.

Making Resources
As usual, the best way to learn about resources is to do something with them.
A great place to start would be to put a friendly interface on that user-hostile
file munger program we wrote in Chapter 2. First, consider what we want the
munger program's interface to do. It should basically behave as before and
let you pick a file to open, ask you to name an output file, and then process
the chosen file. When munger finishes the job, you want a status report.
Once you've finished processing one or more files, you quit munger. With
some thought, we conclude that all the munger application really needs is
an Apple menu, a File menu, and an Edit menu. The Apple menu is just a
placeholder for an application's About Box, the window where the program's
description hangs out. The File menu needs an Open command to open the
desired files and a Quit command to exit the program. The Edit menu won't
be of much use to our application; it's there to assist passing events to other
applications under System 7's cooperative multitasking environment. We
also need to design dialog boxes, which are the windows that display pro
cessing statistics and warn of problems. Finally, we want to display a cool
About Box dialog box that describes munger when the About command is
chosen from the Apple menu.

Locate ResEdit, the resource editor, in the Apple Tools folder on the
CodeWarrior CD-ROM and copy it to your hard disk, if you haven't done so
already. ResEdit lets you create resources, modify them, and save them to a
file's resource fork, much like a text editor does with text data in a file's data

0-~~ ~!."~'!!.'C' ! ~~·- -

fork. Launch ResEdit. Click on the splash screen to dismiss it. Click on the
New button. When the Standard File dialog box appears, type munger .1t. rsrc.

(Remember, to get the 1t character, type Option-P.)

Hazard
Previous versions of the CodeWarrior IDE required that the resource
filename you chose closely matched the project's filename. That's because
when you test drive an application in the CodeWarrior IDE, it does some
important housekeeping for you. By default, it searches for resources
(except for the CODE resources that it made) in a separate file whose
name begins with the project name and ends with the string ".rsrc." For
example, for project munger.µ, we could keep our resources in a file called
"munger.µ.rsrc." This arrangement lets you rapidly modify graphical re
sources in the resource file without having to attach them to the program's
resource fork every time you want to test changes to the interface.

Starting with version 1.3 of the CodeWarrior IDE, the naming convention of
the resource file has been relaxed. That's because you can add a resource
file to the project, just like source code files and library files. Just go to the
Project Menu and select the Add Files ... item. Then use the Standard File
dialog to locate and pick any resource files. Their names will appear in the
project window. Now when you build the program, the CodeWarrior linker
automatically appends any resources these files contain to the resulting
application file. If you wish, you can still use the naming convention and let
the CodeWarrior IDE manage locating and linking the resources for you.
For this example, we'll fly in the face of convention and give the resource
file a name different from the project file's to demonstrate how to add the
resource file to the project.

A window called munger.1t.rsrc appears. This window serves as a view of the
file's resource fork. It's empty because there are no resources in it-yet.
Thinking back to our interface design meeting a little while ago, we decided
that munger needed several menus. Go to the Resource menu and choose
the Create New Resource command, as shown in Figure 3.2.

- ':h!.P!.'"-3 -·- '!.''~"-'"-' ! '2'~~ -0

Figure 3.2 Preparing to make a new resource in ResEdit.

Making Menus
A dialog box appears, asking for a resource type. You can either scroll
through the list of defined resource types or type in one if you know it. Type
MENU (as shown in Figure 3.3) and press Return.

Select New Type

actb ti IMENU I a cur
~

ALRT

!1.:1; APPL ([l) BNDL OK
cctb I cicn {} [Cancel l

Figure 3.3 Making a MENU resource.

0- ~'~'"P~ !:'~!:."~<!!.'C' !~'~''- - - - - - - - - - - -- - - - - - - - - - - - -- - -- - -- - - - - - -- -

Two new windows appear (see Figure 3.4). The frontmost belongs to the
menu resource editor, used to create and modify MENU resources. Say, this
looks promising. But what's that MENU ID = 128 in the window title? To
distinguish among resources of the same type (MENU, in this case) , each
resource has its own ID number. To uniquely identify and use a single
resource, you specify its type and this ID number. The resource ID number is
a 16-bit signed value. ID numbers from -32768 through 127 are reserved for
use by the Mac OS, while you're free to use ID numbers from 128 to 32767.
What ResEdit's menu resource editor did when it created the resource was
conveniently pick the first available ID number.

s File Edit Resource

munger.11' .rs re

nue: @ ~I ~i!i!i!i!i!i!i!~
0 s (Rpple menu)

Figure 3.4 The MENU resource editor.

Since the first menu is the Apple menu, click on the Apple menu radio button
in this window. The word Title changes to the Apple symbol, as shown in
Figure 3.5. Note also that the outlined menu formerly named Title in the
menu bar changed to the Apple symbol as well. This menu is a clone of the
menu you're constructing and it's used for examining a menu's arrangement
and appearance.

Now, press Return. You'll get a highlighted (darkened) area under the Apple
symbol. This is where you begin to add menu items. For the Apple menu,
type About Munger ••• (see Figure 3.6) and press Return. This is the program's
About Box menu item.

---------------------------------------~"!.""'-'-"- "!'~'-'"! I"."'~'O -0
s File Edit Resource

MENUs from munger. n
MENU ID = 128 from mun er. rt

Figure 3.5 Making the Apple menu.

Title: 0
~~~~~~~~~ 

@ s (Rpple menu) 
~ 

Color 

Title:l•I 

Item TeHt Default: l•I 

MENU ID - 1 28 from munger. rt 

Selected I tern: ~Enabled 
Rbout Mul!.!l_er ... 

TeHt: @I Rbout Munger .. ~ 

0 ........... (separator line) 

Color 

D has Submenu TeHt: l•I 

Cmd-Key: 0 l•I 
izy Marie I None • 11•1 

'---~~~~~~~---'-~ 

Figure 3.6 Making the About Box menu item for the Apple menu. 

For the Apple menu, the next menu item is simply a separator or divider line, 
used to indicate where the application's menu ends and the rest of the Apple 
menu begins. To add a separator line, click on the separator line radio 
button, as shown in Figure 3. 7. 

Now click the window's close box and you'll see MENU resource 128 (see 
Figure 3.8). 

We still have two more menus to go. Once agajn select Create New Resource 
from the Resource menu, or type Comrnand-K. A new MENU ID= 129 
window appears. Enter File for the menu's title, press Return, and type 
open .•• for the first menu item. Before you press Return, click on the box to the 
right of the item labeled Cmd-Key in the Editor window, or press Tab to select 



it. Type o in this box (see Figure 3.9). The 0 character is the keyboard equiva
lent for the Open menu selection. That is, typing Command-0 initiates an 
Open action, as if it were selected from the menu. Because keyboard equiva
lents rely on the Command key, they are also called Command-Key equiva
lents. This also explains the name of this Cmd-Key item in the editor window. 

Rbout Munger ... 

MENU ID 128 from mun_g_er. Tf 

Selected Item: D Enabled 

TeHt: Q [~------~] 
' ········· (separator line) 

Color 

D has Submenu TeHt: l•I 
t:nul··Kt~q: r•l 

tzy Mnrk: ! NOrl(l ··········:;·ir•l 
~~~~~~~~~~ 

Figure 3.7 Adding a separator line to the Apple menu.

MENUs from mun er.Tf
0

Rbout Munger ... J

Figure 3.8 MENU ID 128, as it will appear in the application.

Iii MENU ID 129 from mun_g_er. Tf

~ Selected Item: [8J Enabled
OJ!:en ... :ico 0

Te Ht: @I Open ...

O · ······· (separator line)

I

Color

D has Submenu TeHt: l•I
Cmd-Key: ~ l•I

to Mark: I None .,.. Jl•I

Figure 3.9 Entering the keyboard equivalent for the Open menu item.

. - ~h!P!!''-'-·- l!_•~g_th_!' !'2'~~ -0
Press Return and then add a separator line by clicking on the separator radio
button. Press Return again and type Quit . Then, type a a in the Cmd-Key item
box. That completes the File menu. You can then pull down the test menu to
examine it (see Figure 3.10). Click on the window's close box and save the file .

Now to add the last menu, the Edit menu. Type Command-K to create a new
menu resource. The window MENU ID = 130 appears. Type Edi t for the menu
title, press Return, type undo, press Tab, type z, and press Return, which
makes the Undo item in the menu. It has the keyboard equivalent of
Command-Z. Add a separator line and press Return, type cut, press Tab, type
x, then press Return to add the Cut item to the Edit menu. Add the Copy item
by typing copy, Tab, c, and pressing Return, then type in Pas te, Tab, and v to
create the Paste item. Click the window's close box, and you should see all
three menus, ready to go, as shown in Figure 3.B . Save the file , and close the
window by clicking on the close box, or typing Command-W.

s File Edit Reso r

~
Open ... il€0 0 t-=-

Jiil . I
TeHt: @ ~I a_u_it _______ ~

0 ··· ····· (separator line)

0 has Submenu

'o

Figure 3.10 Testing the completed File menu in ResEdit.

0- ~"''"""!' ~'£9CO~~'C' _T~ol~t_ ______________________________________ _

1B-- MEN Us from mun er. 'If

D
Rbout Munger ... J

128

Open ... aco

Quit a& Q

129

Cut :!CH
Copy ace
Paste :ICU

Figure 3.11 The complete MENU IDs for the munger application.

Making Dialog Boxes
Now, let's make the dialog boxes for munger. Choose Create New Resource
again, and this time type DLOG and press Return. A dialog editor window
opens, with the title DLOG ID= 128 (see Figure 3.12).

s File Edit Resource

Dill ID:I '--1_2_8 ---'

181 Initially uisible

181 Close boH

Figure 3.12 The dialog editor window.

- ~h!!'!.'"-'-•- l!.•~o_ th_o I,~,~~ -0
About Boxes are typically dialog windows, because this type of window
requires little program code to support it. By default, the editor has selected
a standard document window, complete with a drag region, a close box,
and a grow icon (the small box at the window's bottom right corner). In
short, a window with all the bells and whistles. Go over to the sixth window
icon from the left and click on it, as shown in Figure 3.13. Notice that the
window's appearance has changed. This is the alternate dialog window,
which is just a variation of the dialog window. This window type has no drag
bar, no close box, and no grow icon. It's pretty simple as windows go, which
is what we want.

Top: IOuMI Height: ~

Left:~ Width: ~

Color: @ Default
0 Custom

DITL ID: '~1_28_~

t8J I nitiolly uisible

t8J Close boH

Figure 3.13 Picking the alternate dialog window.

Click on this window's upper left corner and drag it near the top of the
screen. Next, click on the dark square at the bottom right of the window, and
drag it. The window's size will change dependin~ upon how you drag this
square. Size the window according to what suits you, and release the mouse
button (see Figure 3.14).

0- ~""'-''!' ~'~'"'"'-"'-'C' !~'~"- ~ - - - - - - - - - - - -

DLOG ID= 128 from mun er:rr.rsrc

• flll 11111 llldaun:. Wlnllaw

Top: ltt"I Height: ~

Left: EJ Width: ~

Figure 3.14 Resizing the dialog window.

Editing Dialog Boxes

Color: @ DefBult
0 Custom

Dill ID: ~11_2_8_~

1:8:11 nitiBlly uisible

1:8:1 Close boH

Now, double-click on this window. A pair of windows appears (see Figure
3.15). This is the dialog item, or DITL, resource editor. While the menu editor
lets you add and delete items from a MENU resource, the situation is more
complicated with dialog windows. The dialog editor manages DLOG re
sources, which determine a dialog window's type and size. However, objects
that appear in the window, such as buttons, icons, and text, belong to
another resource, of type 'DITL' . DITL resources contain lists of dialog items,
just as MENU resources contain lists of menu items. Naturally, changing
DITL resources requires a separate editor, which is why that dialog item
editor just appeared.

Although the DLOG and DITL editors operate so seamlessly that they appear
to function as a single editor, it's very important that you remember that
you're working with two different resources here. Notice that the DITL
ID number is 128. It's not required that a dialog's items (DITL resources)
have the same ID number as the dialog window (DLOG) that they appear in,
but it does keep tracking the relationships between the two resources simple.
If you need to use a different DITL ID number, you can change the linkage by
typing a different ID number in the DITL ID item on the DLOG Editor
window in the background.

- ~h!!P'-''-'-·- '!.·~g_ th.'!'~'~'! -0
DLOG ID= 128 from munger:JJ .rsrc

~f!i~ Dill ID= 128
8 Button

[2J Check Box

@ Radio Button

!;! Control

Top:~ Height:~

Left: E==i Width: ~

Color: @ Default
O Custom

Dill ID: ~I 1_2_0_~

[2J Initially uisible

[2J Close boH

Figure 3.15 The DITL editor, for modifying dialog items.

Go to the floating window with the dialog items on it (the window at the
right), and drag the static text object to the dialog window, as shown in
Figure 3.16. Static text can't be changed by the user during the life of the
dialog window, so it's useful for handling the titles of buttons and controls.

DLOG ID= 128 from munger.n.rsrc
~!ti~ Dill ID= 128 - ,,

8 Button

[2J Check Box

@ Radio Button

Top:~ Height:~

Left: EJ Width: ~

[][]
Color: @ Default

O Custom

Dill ID: 1~1_28_~

[2J Initially uisible

[2J Close boH

Figure 3.16 Adding a static text item to the About Box.

Release the mouse button when you've positioned the text object where you
want it. In this example, let's drop it near the top of the window. Now
double-click on this object, and a window titled Edit DITL item #1 appears.

0- ~o~cP~ ~~!:'~".!.'C' _T !?!'.'!_ -

Replace the highlighted text by typing Munger 1. e, pressing Return, typing
written in, pressing Return, and typing Metrowerks c (see Figure 3.17). This is
our About Box information.

Iii Edit DITL item #1 from mun er:TJ.rsrc

Te Ht:

Static TeHt ..,. I

D Enabled

Munger 1.0
Written in

Metrowerks C

~

Top:~

Left: EJ

Figure 3.17 Changing the text of DITL item # 1.

Bottom:~

Right: §==i

Click on this window's close box, and resize the static text box by clicking
and dragging with the mouse (see Figure 3.18) . You'll have to tinker with the
box and text somewhat until you get it to look neat. Use ResEdit' s Alignment
menu to center this text box in the window.

~=Dill ID= 128 ~
!"Miiiigiir··ca··········
! Written in

i.~.i;l-~r.«:i.l,l!_i;l_~~!'..~~
····························· ··········· ~

Figure 3.18 Modifying the size of the dialog item.

Adding Buttons
Now, go back to the dialog items window, and drag a button item to the
dialog window, and position it under the text, as shown in Figure 3.19.

Release the mouse button and a button item appears. Double-click on it to
open an Editor window so that you can change the button's text. Type OK (see
Figure 3.20) . Close the window and use the Alignment menu to center the
button.

- e_h;pC''-'-•-'!''~'-th! I'2'':<>o -0
Munger 1.0
Written in

Metrowerks C
~- ·

Top:~ Height:~

Left: EJ Width: ~

1811 nitially uisible

181 Close boH

[][]

Figure 3.19 Adding a button to the dialog window.

Iii Edit OITL item #2 from mun er.'IJ.rsrc

Button

181 Enabled

Te Ht:

Top:~

Left:~

Figure 3.20 Changing the button's title.

Numbering Dialog Items

Bottom:~

Right:~

There's one more crucial step we have to do here: renumber the dialog items.
The reason is that certain dialog Toolbox routines that manage the dialog
items look for Return keystrokes. They pass this action onto the first item in
the dialog list, just as if you had clicked on that item. What we want to
happen is that when the user presses Return, it activates the OK button,
which then dismisses the About Box window.

Go to ResEdit' s DITL menu, and select Renumber Items A new window
appears, with instructions on how to renumber the items. Hold down the
Shift key, then click first on the OK button, and then the About Box informa
tion (see Figure 3.21). Click on the renumber button, and you're done. You
could have avoided renumbering these items by putting the OK button in the

0-~ ~'~'~"2.'C' .I~'~'- ______________________________________ .

window first, then adding the About Box static text. Occasionally you have to
renumber items after the fact, so it's worth pointing out this feature in
ResEdit now.

l§i11!1§ om ID = 12e
n•iiiii!ie_r_i_BD
! Written in !
i~_ft11'.!!.W.ftfk~~l

c::::~~

S Button
··---~
[8J Check Box

® Radio Button

Use shift-olick to select the items in the
order you want them to be renumbered. re

Cancel] [Renumber]
Item

Figure 3.21 Changing the dialog item numbers.

Close the DITL editor by clicking on the close box, which lands you back in
the DLOG editor. If you want to preview how the About Box looks, pick
Preview at Full Size from the DLOG menu. Close the DLOG window and save
the file.

Status Display
We also decided that we wanted a status display when munger finishes
processing a file. Let's start by typing Command-K to create a new DITL
resource. As the title to the DITL Editor window indicates, this resource has
an ID of 129. Click on the eighth window from the left to select the dialog
window type. The window changes from a document window type to a
dialog window, as shown in Figure 3.22.

Double-click on the window to bring up the DITL resource editor. Go to the
floating dialog item window and drag a static text item to the new window.
Adjust the item's width by dragging with the mouse until the item spans
most of the window. Now copy and paste this item. Nothing appears to have
happened, but if you click and drag on the static text item, you'll uncover an
identical static text item beneath it. Copy and paste again to clone the item
one more time, then arrange the three items above one another in the dialog
window. This gives you three static text items of the same size. Use the
Alignment menu to center the items in this window, as shown in Figure 3.23.

-- ~"!PC''-'-·- '!."~g_ lh_o !'~'~"!'. -0

Top:~ Height:~

Left:~ Width: ~

Color: @Default
0 Custom

DITL ID:j ._ 1_2_9 _ _,

[gJ Initially uisible

[gJ Close boH

Figure 3.22 Changing the window type to a dialog window.

:~:~~~:(~:!~~!:: : : : : : : : ::::: :: :

!B Align Left Sides
g Align Right Sides
co Align Top Edges
gg Align Bottom Edges

~ Align Uertical Centers
ee Align Horizontal Centers

!~!~~!~:!~~~:: : :::: : ::: : :::::]
:~:~~·):~:!~~!:: : :: : : : : ::::: :: : :::::!

Height:~

Left:~ Width:~

T: Static Text

::li : E.~ii:!.~~t.::: ...
& Icon

I_ Picture

[gJ Initially uisible

[gJ Close boH

Figure 3.23 Centering the three cloned dialog items.

Click the top static text item to select it and edit its contents by double
clicking on it. Type File: ~e . The caret and number operate as a special
placeholder where the dialog Toolbox call will substitute a text string, in this
case a filename. We'll see how this works a little later. Go to the second item,

0- ~!'P ~£9!:'~~·c• !~'~'- -

open the item, and type Bytes read: A1. Open the last item and type Bytes

written: A2. Resize the window and align the items again. The dialog window
should appear similar to the one in Figure 3.24. This completes the status
window.

~"'DIR ID= 129 from munc ~

[~!!~~:::~::::::::::::::::::::::::::::!

....

Figure 3.24 The completed status dialog box.

Adding Alerts
Now for one last window. In an ideal world, our code is bug-free and a user
will never try to add one more munged file to a jam-packed hard disk. Because
such a world doesn't exist, we need to report errors when they occur, whether
it's a problem with the code or a user mistake. For this window, we'll use an
alert resource of type 'ALRT'.

What is an alert? An alert is a special dialog window that beeps the Mac and
requires that you click on a button to dismiss the alert. This way, the alert
grabs the user's attention and ensures that he responds to the error message.
There are several types of alerts-note, caution, and stop-and each has a
distinctive icon to indicate the severity of the problem. Nate alerts provide
information, usually to offer the user a choice. Caution alerts warn the user
of a situation that could result in data loss if not dealt with carefully. For
example, caution alerts warn of insufficient disk space to save a certain file,
or that memory is running low and the user should save his work, or that
proceeding with an operation will delete a file. Stop alerts flag a problem so
serious that the application can't complete the operation. An example of a
stop alert is when the program detects an error while writing a file to disk.

For the munger program, we can anticipate that disk 1/0 is where most
problems will occur. Since most disk 1/0 problems-such as running out of
disk space-are difficult to recover from without lots of intervention on the
user's part, munger will just quit the operation and post a stop alert.

- ~hoP~~'-'- '!.''~'-'h! I~'~'~ -0
Let's make a stop alert for munger. Get out of ResEdit's DLOG editor by
closing the Editor window. Type Command-K to make a new resource, and
type ALRT in the Select New Type dialog. The alert resource Editor window
appears, with a default of ALRT resource ID 128. Notice that the alert window
already has dialog items in it (see Figure 3.25). Remember that the objects
displayed in the dialog box actually belonged to a different resource? What's
happening is that the alert editor is, by default, using DITL resource ID 128,
whose items already belong to the About Box dialog.

s File Edit Resource

Color: @Default
O Custom

DITL ID: ~11_2_8_~

Figure 3.25 The alert resource editor.

You have two options here. You can change the ID number that links the
DITL resource to the ALRT resource, or change the ALRT resource ID. I keep
the organization of these linked resource ID numbers simple by using an
ascending list of ID numbers that's divvied up among the D LOG and ALRT
resources. That is, an ALRT resource might get an ID of 128, a dialog a
resource ID of 129, another ALRT gets ID 130, and so on. So, let's change the

0- ~l'f fr29!.'~'!!."~' .I~'~- .

ALRT resource ID. Start by selecting Get Resource Info from the Resource
menu, or typing Command-I. An Info box appears (see Figure 3.26). Type 130

to change the ALRT ID, and then close the window.

-~ Info for ALRT 130 from mu~er.n.rsrc ~

Type: ALRT Size: 12

ID: ~~-30--~

Name: L.,_it--~-----~

Owner type

Attributes:
D System Heap D Locked D Prelo11d
D Purge11ble D Protected D Compressed

Figure 3.26 Changing the ID of the alert resource.

You'll notice that the dialog items haven't changed yet. Go to the DITL ID
item in the alert Editor window and type 138. Now you have a blank window,
as appears in Figure 3.27.

Double-dick on the window to summon the DITL editor. Drag a static text
item to the window, and edit it to say I/O error, ID = A0, as shown in
Figure 3.28.

Now drag a button item to the window and edit it to say OK. Align the two
items and resize the window to fit. Be sure to leave room at the window's top
left corner so that the Dialog Manager can drop a 32-by 32-pixel stop alert
icon into the window when it's drawn. Renumber the dialog items so that the
OK button is item number 1. Again, we do this because the Dialog Manager
passes Return key events to the window's first dialog item, and we want that
to be the OK button. Also, for alerts, the Dialog Manager draws a bold outline
around DITL.item l, on the assumption that it's the default button (an OK
button in this instance). The alert window should appear as shown in
Figure 3.29.

_______________________________________ G_h!J'''C3_ •- '!.•~o_"!.' I02'~0~ -0

Top:~ Height:~

Left:~ Width:~

Color: @Default
O Custom

DITLID:.

Figure 3.27 Changing the ID of the alert's OITL resource.

ALRT ID= 130 from munger.n.rsrc

":rn:~::;;::~m ;;;;;;;;;; @Default

~ Check Box O Custom

@ Radio Button

~ Control

T: Static Text

u: E.~it.:ii.~< ... om •• • ••••••

& Icon

la Picture _ .. ,
[ill User Item

Figure 3.28 Adding the alert's static text message.

~= om ID - 130 from mun_g_e ~

1/ 0 error, ID= ' O

Figure 3.29 The completed alert dialog.

0- f'.O~'"'P !'~9!.'~'!:'c'.' _T~o~'c ______________________________________ _

Important
As discussed earlier, the default button-the item that the program as

sumes the user will pick most of the time-is always DITL item 1. For alert

boxes with more than one button, DITL item 2 should always be the

Cancel button.

There are two last details to take care of. First, we want the alert window to
appear centered on the screen. This turns out to be a simple job. Close the
DITL Editor window to get back into the alert editor and pick the Auto
Position ... from the ALRT menu. A dialog window appears that allows you to
set the window's characteristics so that System 7 will automatically center
the window for you (see Figure 3.30). Go to the active pop-up menu (the one
on the left), and select the alert position. (Alert windows are required to
appear on certain areas of the screen.) The right pop-up menu becomes
active, but since the Main Screen default setting is fine for now, just click on
the OK button to make the changes. Save the file. If you want, you can also
enable the auto-centering settings of the other dialog boxes. Before you do,
consult Inside Macintosh: Macintosh Toolbox Essentials for important
guidelines on these settings.

Rutomatically Position the Window
(Works only with System 7.0 or later.)

([OK JI

Figure 3.30 Setting the alert window's screen position.

Background Info
In pre-System 7 days, dialog boxes would appear on-screen where they

were drawn in the resource editor. Because monitors of any size and

shape could be attached to the Mac, the default location of these windows

weren't always in the best position for visibility, especially on a large

. - '21'!'.P!.'~ '-•-'!!;~'-th!' I~,~~ -0
monitor. You could always write code to determine the Mac's screen size
and then position the dialog window appropriately before showing it. This
code could get extremely complicated if the system had multiple monitors
in use. While such code isn't impossible to write, it was an imposition on
the programmer's resources, which were better spent writing the applica
tion, not managing the interface. As you saw with the alert editor, System
7 now handles this job. This is one of the many improvements in System 7
that both relieves the programmer of an interface detail, and makes
applications more visually consistent to the user.

The other detail is that the dialog item lists aren't cleared from memory
automatically when the alert or dialog box is closed. To help the Memory
Manager reclaim the memory used by these item lists, we mark the DITL
resources as purgeable. To do this, first close the alert resource editor win
dow and then the ALRT resource window. The resource fork of
"munger.n.rsrc" should contain four resources, as shown in Figure 3.31.

ALRT DITL DLOG

MENU

Figure 3.31 The resources the munger application uses.

Next, double-click on the DITL icon to get a view of the DITL resources, from
128 to 130. Hold down the Shift key and click on each DITL resource to select
it. Choose Get Resource Info from the Resource menu and three Info win
dows should appear, as shown in Figure 3.32. Click on the Purgeable
checkbox for each DITL resource to select Purgeable. Close the windows.
Save the file and quit ResEdit.

Info for Dill 129 from munger.n.rsrc
lYP!j--'"""E'=:=:::==~~~=====:==:=="!,~~~~~':!!!!1111111111111!!

1
JO: Typ ~Iii~ Info for Dill 130 from mun er.rr.rsrc

Nil ID: Type: Dill Size: 50

Na

Owner type

Owner JO: DRUR -0-
1-------t WDEF

Sub JO:

D Locked D Preload
D Protected D Compressed

Figure 3.32 Setting the DITL resources as purgeable.

Saving Resource Data as Text
This excursion with ResEdit covered a lot on resources. You might be won
dering if there is a way to save the information they represent in a text
format. This would allow a resource's contents to be distributed on paper, or
as 7-bit ASCII over the Internet. For huge programs with dozens of menus,
windows, dialogs, and alerts, it's easier to search for an item to modify using
a text editor rather than poking around in a resource fork with ResEdit. And
yes, you can save the information in a text format. Along with ResEdit,
Code Warrior supplies two Macintosh Programmer's Workshop (MPW) tools,
called DeRez and Rez. The DeRez tool takes an existing .rsrc file and trans
lates its resources into text descriptions. The text description uses a C-style
programming language that accurately describes a resource's data. The Rez
tool takes these text files and converts them back into binary resources. A
new version ofRez now "plugs" into the CodeWarrior IDE so that you don't
have to deal with the MPWenvironment at all. You can access the MPW

- _ - _ - "-"'YC"-'-"- '!.';~'-'~ I~1~0~ -0
version of these tools from the Metrowerks Code Warrior IDE by selecting
Start Toolserver from the Tools menu. The plug-in version ofRez simply
requires that you add the text description file to your project. For more
information on how to use Rez and the Toolserver, see Chapter 5.

Some Words on Events
Now that we've got the new and improved munger interface constructed,
we're almost ready to start writing code. First, a brief description of how a
Mac application operates is in order. As you work with the Mac, you generate
events. There are two types of events: low-level and high-level. Low-level
events are actions such as keystrokes, mouse clicks, and the insertion of the
occasional floppy disk. The Mac OS uses the Event Manager to detect these
actions and place them in an event queue for the application. High-level
events are used to establish communications among applications. Such
communications might request data from another application, or command
an application to print a file. We'll deal with high-level events later in this
chapter.

Your application takes these events from the queue and responds to each type
as required. It does this using what's called an event loop. In the event loop,
the application circles endlessly, obtaining events from the OS by calling the
routine Wai tNextEvent (). If an event is forthcoming from Wai tNextEvent ()I the
event loop next calls the appropriate function to handle the event. For
example, if your application receives a keystroke (actually a key down event
to the Mac), the action is passed to a function that might drop the character
into a document window. Note that if certain windows are active (such as a
Desk Accessory) or certain key combinations are pressed, different sets of
handler code might be called to process the event. Continuing with our key
down example, if you hold down the Command key while typing a character,
the application instead calls functions that ultimately have a Menu Manager
routine field the event. (Recall that a Command-key combination can be the
keyboard equivalent for a menu choice.) A Mac application, in some in
stances, can be programmed to ignore certain events.

The basic structure of a Mac application is shown in Figure 3.33. A Mac
application goes through its initialization phase and then runs in an event
loop. As events trickle in, the event loop code checks to see what type of
event occurred, and calls the corresponding function to handle the event. It

0- ~~!'~~"!'C'.!'!?'!?t_ _ -- - - - - - - - - - - - - - -

keeps doing this until the user signals the application to quit. At this point
the application exits the event loop and performs any required clean up
operations, such as saving files or discarding memory buffers.

Figure 3.33 Structure of a Mac application.

An important distinction to make here is that events might occur in any
order, and your program must be structured to deal with such disordered
input. It shouldn't force the user through a gauntlet of dialog boxes that
prompt for information. Also, because users aren't likely to explore every
menu choice or dialog box setting, applications should provide reasonable
defaults that help them get started. AB an example of this, a word processor
should default to a specific font (such as Times) and point size (say 12, for
example) when displaying text. Along these same lines, any setting that the
user might change frequently (such as the baud rate in a terminal emulator
application) should be easy to find and change. If you're not familiar with
this sort of user interface design, be sure to check out Apple's Human Inter
face Guidelines.

. - '?'~~'-•-~;~'-'~I<:!''~~ -0
Code at Last
With the interface in place and a firm understanding of events, we can
rewrite the munger program. Fire up CodeWarrior's IDE and create a new
project. For a project name, type munger.µ. (Remember that the project name
either must correspond to the resource filename "munger.n.rsrc" that we
made with ResEdit, or in this case, we must manually add the resource file to
the project.) Now pick Add File ... from Code Warrior's Project menu, and
along the path CodeWarrior:Example Code PPC:MacMunger, open the file
"Macmunger.c." Inside the Project window, double-click on the
"Macmunger.c" file to open it with the built-in editor. In the Editor window,
examine the following code:

#include <Types.h>
#include <QuickDraw.h>
#include <Windows.h>
#include <Fonts.h>
#include <Controls.h>
#include <Dialogs.h>
#include <Menus.h>
#include <Devices.h>
#include <Memory.h>
#include <Events.h>
#include <Desk.h>
#include <OSEvents.h>
#include <OSUtils.h>
#include <ToolUtils.h>
#include <TextUtils.h>
#include <StandardFile.h>
#include <Errors.h>
#include <Resources.h>
#include <Disklnit.h>

/* Resource ID numbers */

#define LAST_MENU
#define APPLE_MENU
#define FILE_MENU
#define EDIT_MENU
#define RESOURCE_ID

3 /* Number of menus */

128 /* Menu ID for Apple menu */

129 /* Menu ID for File menu */

130 /* Menu ID for Edit menu */

127 /* Starting index into the
menu array */

0- ~!'E !'!!ll'.'~'!'.'C'!~~;i_ ______ - - - - - - __________________________ .

#define ABOUT_BOX /* About box menu item # in

Apple menu */

#define OPEN_FILE /* Open item# in File menu */

/*----------------------*/ /*Separator line is item# 2 */
#define !_QUIT

#define ABOUT_BOX_ID

3 /* Quit item# in File menu */

128 /* Resource IDs for our windows

& dialogs */

#define STATUS_BOX_ID 129

#define ERROR_BOX_ID 130

/* Various constants */

#define NIL

#define FALSE

#define TRUE

#define INIT_X

#define INIT_Y

#define APPEND_MENU

#define CHAR_CODE_MASK

#define IN_FRONT

#define NO_CURSOR

#define ONE_FILE_TYPE
#define LONG_NAP

#define CR

#define LF

0L

false

true

112 /* Coords for disk init dialog box */

80

0
255

-1
0L

1

60L

0x0D

0x0A

As you can see, we intend to use more Managers this time, and consequently
have more header files to include.

Next, we define the resource ID numbers of our menus and dialog boxes.
These values come straight from our work in ResEdit. Look carefully at the
menu item numbers in this section. These are values that the Menu Manager
returns to the program when the user makes a menu choice. Notice that the
menu item numbers start at 1, and that each separator line also counts as a
menu item. If you add or remove items from a menu resource, the item
numbers returned by the Menu Manager will change. You'll have to edit the

. - ~"~!.''-'-•- L!.•~•-~ I'2'~ -0
definitions here to match the new menu resource. To help keep this arrange
ment straight, notice how the #defines for the File menu are written so that
they resemble the File menu layout. The rest of the section defines constants
that we'll use elsewhere in the program, including Return and Line Feed.

Here are some function prototypes:

/* Function prototypes */
Boolean Do_Command (long mResult);
Boolean Init_Mac(void);
void Main_Event_Loop(void);
void Report_Error(OSErr errorCode);

/* Application-specific functions */
void Ask_File(void);
void Munge_File(short input, short output, unsigned char *fileName);

/* Globals */
MenuHandle gmyMenus[LAST_MENU+1]; /*Handle to our menus*/
EventRecord gmyEvent; /* Holds event returned by OS */
WindowPtr geventWindow;
Boolean guserDone;
CursHandle gtheCursor;
short gwindowCode;
WindowPtr gwhichWindow;

/* Our private window */

/* Indicates user wants to quit */
/* Current pointer icon */

/* The window that got an event */

OSType
OSType

gfileCreator = {'MUNG'};
gfileType ={'TEXT'};

/* Output file's creator */

/* Output file's type */

You'll recognize some basic functions here, such as Init_Mac(), oo_command(),

and Main_Event_Loop (), whose purpose is obvious. Also, we have a function that
asks for a file, and-of course-a function to munge the file's contents. We
also declare some globals here. The global gmyMenus r J is an array of handles
that will point to menu records. Menu records are data structures that the
Menu Manager builds to manage menus, somewhat like the data structures
the Window Manager uses for windows. The gmyEvent global contains an event
record, which is a data structure that describes the type of event passed to
the application. The globals gfileType and gfilecreator contain the type and
creator information for munger's output file.

0- ~!"!' f'~'C'~~'C' .!~!?'- _____________________________________ - .

Background Info
Everyone has his or her own style for writing code. I'll explain my style
here, not because it's superior, but so that you'll quickly understand what
the code is doing. To prevent confusion between the Mac Toolbox routine
names and the program's function names, I use underscores in the pro
gram function names. So, standardGetFile() is a Toolbox routine, while
Ask_File() is a function that I wrote. Variable names begin with a lower
case letter, such as tileName, unless it's a global variable. Global variable
names begin with a lowercase g, such as gmyEvent. Program constants are
all uppercase, such as LAST_MENu, unless it's a well-publicized constant
defined by Apple, such as everyEvent or watchCursor. Lately, Apple has been
preceding their constants with a lowercase k, such as kCoreEventClass,
which helps identify them. Feel free to use a style that works for you. Just
be consistent, and always comment your code.

The First Function
Now it's time to look closely at the first function in "Macmunger.c":

void Report_Error(OSErr errorCode)

unsigned char errNumString[BJ;

NumToString((long) errorCode, errNumString);
ParamText(errNumString, NIL, NIL, NIL);
StopAlert(ERROR_BOX_ID, NIL);

/* end Report_Error() */

This is our minimalist error reporting function. When a Toolbox routine
returns an error code, we pass it to Report_Error (). Inside Report_Error (),we use
the Toolbox routine NumToString () to convert the error code to a displayable
text string. The resulting Pascal string is then passed to ParamText (),whose job
is to insert up to four strings inside a window. Because we have only one
string to display, ParamText () 's other three arguments are NIL. How does
ParamText () know where to place each text string? Recall that when we made
the alert resource's DITL item for munger, we typed in "110 error, ID= AO."
The AO is the placeholder for this string. ParamText () substitutes the place
holder text with the string in errNumstring, staying within the rectangle defined

- - - - - - - - - - - - - - - - - ___________ - - - - _______ ~"~-'~'-•- '!.';~'-'"-' I021~ -0
by DITL item. After ParamText (J does the insertion, we call stopAlert (J to create
the stop alert window. An example of how the alert box appears is shown in
Figure 3.34.

1/0 error, ID= -47 (L§tj

Figure 3.34 The Report_Error() alert box.

As error functions go, this is adequate for our work. If you get the stop alert,
you can open the "errors.h" file from within the Metrowerks CodeWarrior
editor and search for the error code to get an idea as to what went wrong. If
you plan to unleash this program upon unsuspecting users, be nice to them
and write an error reporting function that provides an explanation of the
problem and suggests remedies. Don't dump a cryptic error ID number on
the screen when trouble strikes.

Munger Code, Revisited
Let's examine the file munging code next:

void Munge_File(short input, short output, unsigned char *fileName)

long
unsigned char
short
long
unsigned char
DialogPtr

amount = 1L;
crflag = 0;
icount = 0;
ocount = 0;

amount;
buffer;
crflag;
icount, ocount.;
inNumString[12], outNumString[12J;
statusDialog;

while (FSRead(input, &amount, &buffer) == noErr)

icount++;
switch (buffer)

/* Bump input char counter */
/*What char was read? */

0- ~"PS ~'"8~~"~' !~'~"- -

case CR:
if (crflag >= 1) /*Two in a row, end of paragraph */

{

FSWrite(output, &amount, &buffer); /*Write two
CRs */

FSWrite(output, &amount, &buffer);
crflag = 0;
ocount++;

/* Reset the flag */

} I* end if *I

else
crflag++;

break; /* end case
/* Bump the flag, and
CR *I

case LF: /* Toss LF, but don't
break; /* end case LF */

default:
FSWrite(output, &amount, &buffer);
ocount++;
crflag = 0;

/* end switch */
/* end while */

/* Clear the flag */

/* Display processing statistics */

toss the CR */

touch crflag */

if ((statusDialog GetNewDialog(STATUS_BOX_ID, NIL,
(WindowPtr) IN_FRONT)) I= NIL)

NumToString(icount, inNumString);

NumToString(ocount, outNumString);

/* Convert bytes read
to string */

ParamText (fileName, inNumString, outNumString, NIL);
DrawDialog(statusDialog);
Delay (120L, NIL);
DisposDialog(statusDialog);
} /* end if I= NIL */

else
SysBeep(30);

} /* end Munge_file() */

Munge_File (l accepts several arguments: an input file reference number, an
output file reference number, and a pointer to a string containing the input
filename. Since computers prefer to handle things as numbers, the File

- ~"'.!'!.''-' -•-'!."!!•-"'.!'I~'~ -0
Manager provides reference numbers for files that you open for reading or
writing. These reference numbers remain valid as long as the files are open
and you pass them to File Manager routines that perform the actual 1/0. As
you probably suspect, the function Ask_File < J obtains these file reference
numbers and then calls Munge_File ().

We use a while loop to read bytes with FSRead < J, and then write bytes using
FSWrite(J, two other File Manager routines. If you compare this loop to the
original munger.c code in Chapter 2, you'll see that the two are very similar,
with FSRead () replacing getc () and FSWrite o replacing fputc ().

After the loop completes, we briefly display the processing statistics in a
dialog box. To display these numbers, we fetch the STATUs_sox_ID dialog
resource using the routine GetNewDialog < J. Like creating a window, we check to
see if GetNewDialog (J was successful at this. If it was, we convert the values in
icount and ocount to strings. We pass these strings, plus the input filename, to
ParamText (J for inclusion in the dialog box. These strings will be substituted for
the placeholders in the status box's DITL items, the same way it occurs in
Report_Error(J's alert box. With the dialog box's contents set up, we call
DrawDialog (J to display the window. Next, we use Delay (J to wait for two
seconds. (Delay (J waits for intervals of time called ticks, which are sixtieths of
a second; 120 ticks is therefore two seconds.) Finally, we remove the dialog
box and we're done.

Background Info
Seasoned Mac programmers will notice that we test for a failure by
examining the pointer returned by GetNewDialog() to see if it is NIL This
type of check didn't work with earlier versions of the Mac OS. That's
because these versions of GetNewDialog() would return a trash value if it
failed. The workaround was to use a Resource Manager routine to see if
the dialog resource existed before calling GetNewDialog(), like so:

if (GetResource('DLOG', ABOUT_BOX_ID) I= NIL)
{

theDialog = GetNewDialog(ABOUT_BOX_ID, NIL,
(WindowPtr) IN_FRONT)j

ModalDialog(NIL, &itemHit);
DisposDialog(theDialog);

continues

0- ~l"~ £'£0!."E".!.'C' !~"- -

continued

} /* end if I= NIL */

else
SysBeep(30);

Thanks to improvements to the Dialog Manager in System 7, we can use
one consistent algorithm to test the results of Window and Dialog Manager
routines.

There are a couple of things to note here. First, we don't do much error
checking on the file 110. This is so that you can examine the code easily, and
verify that we're still using our basic algorithm here. Don't worry about this;
we'll add this error-checking when we add high-level events to munger later.
The other thing is that this code isn't very efficient, reading and writing only
one byte at a time. FSWri te < l automatically buffers some of the data during
output, which improves performance somewhat. However, for faster 1/0 you
would set amount to a large value so that FSRead () would read lots of data into a
big buffer, process that buffer's contents, and then have FSWrite < l write out
large sections of the buffer. However, for my needs, the performance was
adequate so that it wasn't worth the extra effort to improve the application's
speed.

Input and Output Filenames
The next function to write is one that queries the user for input and output
filenames, opens them, and supplies Munge_File < l with the file reference
numbers. This function is Ask_File < l, whose code follows.

void Ask_File(void)

unsigned char
short
OSErr
short
SFTypeList

fileName[14] = {"\pMunge.out"};
inFileRefNum, outFileRefNum;
fileError;
oldVol;
textType ={'TEXT'};

StandardFileReply inputReply, outputReply;

/* Open the input file */

StandardGetFile(NIL, ONE_FILE_TYPE, textType, &inputReply);

- ".""Y!c''-' -•- '!."!'.9-"'-' I '21!!<>!. -0
if (inputReply.sfGood)

{

GetVol (NIL, &oldVol); /* Save current volume */

(&inputReply.sfFile, fsCurPerm,
&inFileRefNum)) I= noErr)

if ((fileError = FSpOpenDF

Report_Error(fileError);
return;
} /* end if error */

/* Open the output file */

StandardPutFile ("\pSave text in:", fileName, &outputReply);
if (outputReply.sfGood)

{

SetVol(NIL, outputReply.sfFile.vRefNum);
fileError = FSpCreate(&outputReply.sfFile, gfileCreator,

gfileType, smSystemScript);
switch(fileError) /* Process result from File Manager */

{

case noErr:
break;
case dupFNErr: /* File already exists, wipe it out */

if ((fileError = FSpDelete(&outputReply.sfFile))

== noErr)
{

if ((fileError FSpCreate(&outputReply.sfFile,
gfileCreator,
gfileType,
smSystemScript))

else

Report_Error(fileError);
FSClose (inFileRefNum);
SetVol(NIL, oldVol);
return;
} /* end I= noErr */

/* end if noErr */

{

Report_Error(fileError);
FSClose (inFileRefNum);
SetVol(NIL, oldVol);
return;

I= noErr)

0- ~~~!!."'2.·~·!~~- -- - - - - - - - -

} /* end else */
break; /* end case dupFNErr */
default: /* Unknown error, try to abort cleanly */

Report_Error(fileError);
FSClose (inFileRefNum); /*Close the input file*/
SetVol(NIL, oldVol); /*Restore original vol. */

return;
} /* end switch */

/*Open data fork */
if (l(FSpOpenDF (&outputReply.sfFile, fsCurPerm,

&outFileRefNum)))
{

gtheCursor = GetCursor(watchCursor); /*Change the
cursor */

SetCursor(&**gtheCursor);
Munge_File (inFileRefNum, outFileRefNum,

(unsigned char*) inputReply.sfFile.name);
FSClose (outFileRefNum);
Setcursor(&qd.arrow); /* Restore the cursor */
} /* end if lfileError */

FlushVol (NIL, outputReply.sfFile.vRefNum);
} /* end if outputReply.sfGood */

FSClose (inFileRefNum);
SetVol(NIL, oldVol);
} /* end if inputReply.sfGood */

} /* end Ask_File() */

This code looks pretty scary, but it's not. We do a lot of error checking in this
function because this is where the goofs that wipe out entire files can hap
pen. First, Ask_File (> uses the Toolbox routine standardGetFile < J to query the
user for an input filename. The arguments ONE_FILE_ TYPE and textType pre
sented to standardGetFile(J have this routine filter out all file types but one, the
'TEXT' type. This averts potential fireworks by eliminating the possibility of
accidentally opening a file loaded with binary data When the routine re
turns, the file information is packaged in a standardFileReply data structure. A
part of this structure, the Boolean sfGood, indicates whether the contents of
standardFileReply are valid-that is, whether the user actually picked a file. We
stop processing if sfGood is FALSE, because this occurs only when the user clicks
on Cancel, which means they decided against munging a file.

- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - ~"'J>!!'~'-•-'!."!!!l_th:!'!"~ -0
If sfGood is TRUE, the program proceeds to open the file. First, we save the
current default volume number using GetVol(). We do this because we will
make the volume where the output is directed the current default volume
temporarily. This way the actions of all File Manager routines apply to this
specific volume, which might be another hard drive on the system or a
shared Mac on the network. Then we use FSpOpenDF(> to open the file's data
fork. If there are no problems, FSpOpenDF <) supplies a file reference number to
be used with subsequent File Manager calls. Next, the program prompts the
user for an output filename, using standardPutFile(). The variable fileName

provides a default name of "Munge.out" that standardPutFile <) offers when it
displays the Standard File dialog. Again, we check sfGood to ensure that the
user typed a filename (or used the default name) and clicked OK. If that's the
case, then we set the output file's volume as the default volume.

While the tests for opening a file for input are simple, opening a file for
output is anything but. For example, it's possible that the filename the user
typed matches the name of a file that already exists in the folder. Fortunately,
standardPutFile <) does this check for us and even tosses a dialog box on the
screen, as shown in Figure 3.35, that warns of the conflict. However, if the
user clicks on Replace, it's up to us to delete the existing file. We use a switch

statement to deal with this situation and other errors.

I= Neutrino T I =Neutrino

Cl system Folder 111 .[ject J Cl THIN
Cl UTH Replace BHistlng sktop J
Cl Utill "Mun11e.out" '?

w DJ Cl WRU (I Cancel ll (Replace) Cl Zl81'1

Saue t •• "'" nee I J
!Munge.out I ((Saue;:J

Figure 3.35 The name conflict dialog box.

First we attempt to create the file using Fspcreate <). If a duplicate filename
error (-48) occurs, we delete the file with FSpDelete (), then try Fspcreate ()

again. If there are problems with these actions, or the first call to Fspcreate c)

happens to return an unexpected error code, we simply stop the operation.
This is accomplished by calling Report_Error c), closing the input file (which we
had opened), restoring the default volume number, and exiting Ask_File c >.

0- ~!"!: !'!!.'"°~".!.'C'!~""'."- -

This might seem like a drastic response, but when there's a disk full of files at
risk, it's better to play it safe.

Assuming everything has worked flawlessly so far, Fspcreate () makes an
output file of the requested creator and type, and the data fork is opened
using FSpOpenoF (). If there are no errors, FspopenoF () returns a file reference
number for the output file. Now we have all the information required by
Munge_File (), since we can obtain the input filename string from sf File. name,

Which is part of StandardFileReply.

Before we call Munge_File < l, we fetch the stopwatch cursor icon using
Getcursor (). The program places it on-screen by calling setcursor(), to indicate
that it is busy processing a file. Then, the program calls Munge_File ().When
the function returns, the program sets the cursor back to an arrow. Now all
that's left is the clean up. The output and input files are closed, and FlushVol()

is called to update the volume information for the new file. Finally, the
original default volume number is restored.

Background Info
Old timers will recognize that System 7's standard GetFile() and
standardPutFile () are similar to the old standard File Manager calls,
SFGetFile (l and SFPutFile (l. The differences between the two sets of
routines are minor. except for the type of reference number returned.
These old routines are still supported for compatibility.

Basic Application Functions
Now it's time to look at some of the basic application functions that imple
ment the user interface. Let's start with the code that handles menu com
mands:

Boolean Do_Command (long mResult)

unsigned char

short

Boolean

short

DialogPtr

accName [255] ;

itemHit;

quitApp;

refNum;

theDialog;

. ______________________________________ "-"'Y!c'C3_ •_ '!!'~"-~ !'!!?1~ -0
short
Graf Ptr

theitem, theMenu;
savePort; /* place to stow current GrafPort

when Desk Accessory (DA) is
activated */

quitApp FALSE; /*Assume Quit not chosen */
theMenu HiWord(mResult); /*Extract the menu selected*/
theitem LoWord(mResult); /*Get the item on the menu */

switch (theMenu)

case APPLE_MENU:
if (theitem == ABOUT_BOX)

{

/* Describe ourself */

if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL,
(WindowPtr) IN_FRONT)) I= NIL)

ModalDialog(NIL, &itemHit);
DisposDialog(theDialog);
} /* end if I= NIL */

else
SysBeep(30);

/* end if theitem == ABOUT_BOX */
else /* It's a DA*/

{

GetPort(&savePort); /*Save port (if DA doesn't) */
GetMenuitemText(gmyMenus[(APPLE_MENU -

MENU_RESOURCE)],
theitem, accName);

refNum = OpenDeskAcc(accName); /*Start it*/
SetPort(savePort); /*Done, restore the port*/
}

break; /* end APPLE_MENU case */

case FILE_MENU:
switch(theitem)

{

case OPEN_FILE:
Ask_ File () ;
break;

case I_QUIT:
quitApp TRUE;

break;

/* Obtain file info & process */

/* User wants to stop */

0-~ ~9~'~'!!"'~' _T~o~- ______________________________________ .

} /* end switch */

break; /* end FILE_MENU case */

case EDIT_MENU:
SystemEdit(theitem - 1);

break;
default:

break;
} /* end switch */

HiliteMenu(0);

return quitApp;
} /* end Do_Command() */

/* Pass events to OS */

/* Switch off highlighting on
the menu just used */

The oo_command () basically takes a menu choice passed to it by the main event
loop, and uses switch statements to route program execution to the appropri
ate handler code. This is accomplished by reducing the menu choice value in
mResul t into components using the HiWord () and Loword () Toolbox routines.
These components consist of the menu chosen, which is stored in theMenu,
and the item on that menu, which is stored in the Item. For example, if some
one using munger selected Quit from its File menu, theMenu would be 129 and
the Item would be 3.

The first switch statement uses theMenu's value to branch to a code section
corresponding to that particular menu. Here a second switch statement uses
theitem's value to pick the function responsible for that specific menu item.
Depending upon the number and structure of ail application's menus, these
switch statements can be sparse or complex.

For the Apple menu, if the About Box item is selected, then munger displays
the dialog box we constructed in ResEdit. As usual, we check to see if
GetNewDialog <) encountered difficulties making the window. If not,
Modaloialog (> fields all' events, keeping the About Box on the screen until the
OK button is clicked or Return is pressed. If another item is picked on the
Apple menu, its name is extracted using GetMenuitemText (). This name is
passed to openoeskAcc(), which opens the DeskAccessory, application, docu
ment, or alias file in the Apple Menu Items folder. Note that we do some
grafport housekeeping, just in case.

. - ~"'-"!!''-'-"-~;~_th!'.!~,~~ -0
Background Info
In pre-System 7 versions of the Mac OS, the only items in the Apple menu
were small utility programs called Desk Accessories that were embedded
in the System file. They were actually a special type of driver so that they
could run concurrently with the application in the original single-tasking
environment. With the advent of cooperative multitasking under MultiFinder
in System 6.0.x, the Mac OS treated Desk Accessories as applications,
although the code and location of Desk Accessories didn't change. System
7 altered this arrangement further by creating an Apple Menu Items folder
where the Desk Accessories appear as separate files. Not only that. but
applications, documents, and the aliases to remote volumes can be placed
in this folder and can be picked from the Apple menu. openoeskAcc() 's role,
which was formerly limited to starting drivers in the System file, has thus
expanded to deal with a variety of objects located in a special folder.

Munger's File menu is pretty simple. If the Open item was picked, we just call
Ask_File <), and let it handle the job. If Quit was chosen, we set the variable
quitApp to TRUE, to signal the main event loop that it's time to stop. The Edit
menu is even simpler. As mentioned earlier, it's mostly a placeholder used to
trickle certain events to other applications. The program calls systemEdit(),
which checks to see if the Edit menu selection (such as a Paste command)
should be passed to a Desk Accessory or handled by the program itself. This
is a holdover from the single-tasking days when only one application could
run at a time, yet could support one or more Desk Accessories running
symbiotically within it.

Just before oo_command () exits, it performs some screen maintenance. When
you make a menu selection, the Menu Manager highlights the menu's title.
This serves as a visual cue that the application is doing something, especially
if the chosen operation happens to be a lengthy one. (Ideally, the program
mer also changes the cursor to a stopwatch, or some other busy indicator.)
Once the operation completes, we call HiliteMenu(0) to restore the menu title's
appearance. Finally, oo_command () returns the value of quitApp to the main event
loop.

0-~~ ~9'!'~"2.'C' _T~l~'c_ ______________________________________ _

Main Event Loops
Speaking of main event loops, it's time to check it out:

void Main_Event_Loop(void)

Point where;

FlushEvents(everyEvent, 0);
guserDone = FALSE;

/* Clear out left over events */

do

if (WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR))
{ I* We have an event. . . *I
switch(gmyEvent.what) /* Field each type of event */

case mouseDown: /* In what window, and where?? */

gwindowCode = FindWindow(gmyEvent.where,
&gwhichWindow);

switch(gwindowCode)

case inSysWindow: /* It's a Desk Accessory */
SystemClick(&gmyEvent, gwhichWindow);

break;
case inDrag:
break;
case inGrow:
break;
case inContent:

break;
case inMenuBar:

/* Drag the window */

/*Change the window's size*/

/* Bring window to front if
it's not */

/* In a menu, handle the
command */

guserDone = Do_Command(MenuSelect(gmyEvent.where));
break;
} /* end switch gwindowCode */

break; /* end mouseDown */
case keyDown:
case autoKey: /* Command key hit, pass to MenuKey */

if((gmyEvent.modifiers & cmdKey) I= 0)
guserDone = Do_Command(MenuKey((char)

(gmyEvent.message

- ~haJ>!.'~' -•- '!.•~•-"!!' I'!9'~ -0
& CHAR_CODE_MASK)));

break; /* end key events */

case updateEvt: /* Update the window */

gwhichWindow = (WindowPtr) gmyEvent.message;
break;

case diskEvt: /* Handle disk insertion event */

if (HiWord(gmyEvent.message) I= noErr)

DI Load();
where.h = INIT_X;
where.v = INIT_Y;
DIBadMount(where, gmyEvent.message);
DIUnload () ;
} /* end if I= noErr */

break; /* end disk event */

case activateEvt: /* Activate event */

gwhichWindow = (WindowPtr) gmyEvent.message;
break;
default:
break;
} /* end switch gmyEvent.what */

} /* end if on next event */

/* end do */

while (guserDone ==FALSE);
} /* end Main_Event_Loop() */

/* Loop until told to stop */

Main_Event_Loop (l is the heart of the application. The program tours the loop in
this function for the life of the application, retrieving events from the operat
ing system queue and responding to them. The loop stops only when the
user selects Quit from the File menu.

This function starts by clearing out any leftover events using FlushEvents (),

and then sets guseroone to FALSE so that the do loop cycles permanently.
Inside the do loop, the program calls Wai tNextEvent () periodically, looking for
events to handle. The first argument to this Toolbox routine is the event
mask, which determines the types of events you want returned to the appli
cation. The munger program allows all of them. This mask can be modified
in eclectic applications to filter out certain events. The second argument is a
pointer to an event record, the data structure containing information on the
type of event received, the pointer's screen location (necessary if the event
was a mouse down), and any modifier information. Modifiers are the

0-~~ ~9!."~"2.'~'l<:?'~"- -

Command, Option, Shift, and Control keys. When these keys are pressed,
typically during a key down or mouse down event, they modify the meaning
of the event, hence their name. You're already familiar with one modifier
key: pressing Command and another key transforms a key down event into a
menu selection.

The LONG_NAP constant informs Wai tNextEvent (J that munger should sleep for
one second intervals, thereby yielding processor time to other applications.
Like Delay (J, this value is in tick intervals. This might seem like a lot of time to
offer to the rest of the system, but munger isn't doing a time-critical back
ground task such as a ZMODEM download, or copying a file across a net
work. Because munger does no background processing, the if statement
around Wai tNextEvent () locks out any null events. In this case, LONG_NAP simply
serves as a placeholder in the routine. The constant No_cuRsoR tells the Mac OS
that no special pointer handling is required.

Important
It's very important that your application periodically surrender the processor

to other applications. [That is, LONG_NAP should never equal O.) System 7

currently uses cooperative multitasking, where applications agree to share

processing time amongst themselves. If your application fails to share time

with other applications, background processing ceases because those

applications can't get processor time to run.

The context switch to another application is handled through the

WaitNextEvent() routine, so it must be called periodically to ensure that

these switches occur. This isn't a problem when program execution is in

the main event loop. However, functions called by the main event loop in

response to a user command might keep program execution out of the

loop long enough so that these application switches fail to happen regu

larly. For example, if Munge_File (J performs disk 1/0 to a floppy-a slow

peripheral device-other background applications get starved for processor

time until the slow file 1/0 completes, and execution returns to munger's

main event loop. The solution is to have the function periodically call

waitNextEvent o itself as it runs. Cooperative multitasking dictates that this

type of program design must be used, since it's up to the application to

relinquish control to other applications frequently.

- ~!!'!.'~'-•-'!.';~,-~ I<!9'!!.<'o -0
Historically, applications used the original event dispatching routine

GetNextEvent(), and it's still supported for compatibility. However, it's

preferable to use WaitNextEvent(), since this routine is better suited for

System l's multitasking environment. For example, WaitNextEvent o provides

the sleep argument, while GetNextEvent (l doesn't.

Future Directions
Apple will release Copland. a microkernel-based OS, in the next year or so.

One of its most important features is that task and process activity is

handled by a preemptive time scheduler. That is, switches between appli

cations occur at regular intervals based on the system clock, rather than

how often waitNextEvent() gets called in an application. This radical change

in the OS design offers two benefits. First, a poorly written application can't

hog processor time and stall the system. Second. it simplifies the

programmer's job because she doesn't have to deal with OS issues when

writing functions, as is the case with cooperative multitasking.

The event loop code has an arrangement similar to oo_command (), where switch

statements zero in on the function that deals with a specific event. The first

switch statement uses the information in gmyEvent. what to jump to the code

section for that event type.

Background Info
The categories of event types defined by the Mac OS are: mouse down,

mouse up, key down, key up, auto key, update, disk insertion, activate,

high-level, null events, and OS events. Most of these events are self

explanatory, but a brief description of the others is in order. The auto key

event occurs when a key is held down long enough to begin repeating the

character. The disk insertion event indicates a floppy or other removable

media has been placed in a drive. The update event signals an application

to redraw the contents of a specific window. Update events occur when

other windows cover the application's window(s) temporarily, perhaps

continues

0- ~!"!' f~'"'~~'C' !!!."~'- ____________________ - - - - _ - - - - - - - - - - - - - -

continued

because of an application context switch or because of a dialog box. The
activate event informs the application that a certain window has been
clicked on with the mouse, and if it isn't the current active window, it must
be made so. Null events indicate that the user has done nothing: there are
no other events to report. The application can either discard this type of
event. or perform some background processing, such as blinking an I-beam
cursor in a window with text. OS events are used for window maintenance
and Clipboard data conversion when your application switches into the
background or foreground. Since munger has no windows, and doesn't use
the Clipboard, we ignore this event type.

Depending upon the event type, yet another switch statement might be used
to further refine what code should respond to the event. For example, the
mouse down event section uses a second switch statement to determine if the
mouse was clicked on a window, the desktop, a Desk Accessory, or in the
menu bar. Conversely, dealing with disk insertion events is a straightforward
procedure, and so its section just has the code that handles the event.

Let's look closely at how events are dealt with. For a mouse down event, the
code has Findwindow(> evaluate where the mouse click occurred. We provide
FindWindow() with this point from gmyEvent. where, which is part of the event
record that contains the mouse position. FindWindow(> returns a code that
describes the part of the window clicked on, such as the title bar section of a
window, the content region (where the application-specific information
appears in the window), its size box (the box at a window's lower right, used
to resize the window), or elsewhere. Elsewhere can be the on-screen desktop
or the menu bar. If the code corresponds to a window element, Findwindow() 's
second argument returns a pointer to that window. We use FindWindow() 's
results in a switch statement to hop to the appropriate handler code. Since
munger doesn't use a window, most of the handlers in this switch statement
are stubs.

If the mouse click occurred in a system window (a Desk Accessory), we call
systemclick (l to forward the event to it. This is one of those vestigial routines
used for compatibility with older software. If the click happened in the menu
bar, we hand the event off to oo_command (> for processing.

- '"."'Y!.''-'-"- '!.''~•-th_o I'2'~ -0
Key down and auto key events are treated the same way. Again, since munger
doesn't use a document window, processing keystrokes is fairly simple. We
peek at the modifier field (gmyEvent .modifiers) for each key event record. If the
Command key wasn't pressed, then we toss the event in the bit bucket. If it
was, the key event might be a menu's keyboard equivalent. First, we extract
the character out of the message field of the event record. We use CHAR_CODE_MASK

to do this, because this field is an amalgam of the key's character code, a
virtual key code (a special code used to identify a physical key on the key
board), and the address of the keyboard on the Apple Desktop Bus (ADB). We
pass the character to Menu Key< J, which maps it to the menu and menu item
with the corresponding keyboard equivalent. MenuKey (J returns a match in a
format that we can simply pass along to oo_command (J to complete.

Like the mouse down window handlers, because the activate and update
events pertain only to windows, we only put code stubs in the event loop for
them. If your application uses windows, you'll have to flesh out this code.

The disk insertion event actually turns out to be a critical one for munger.
Suppose someone decides to save the munged output to a blank floppy?
When such a disk insertion event occurs, munger's handler code springs into
action.

It checks the event's message field for an error code the Mac OS might return
when it attempts to mount the volume (floppy). If a formatted floppy was
inserted, the Mac OS mounts it so that a floppy disk icon appears on the
desktop, and no error is reported. If there was a mount error, we retrieve the
event and call DI Load (J to load the Disk Initialization Manager. We pass the
event's message field to DIBadMount (J, a routine used to initialize (or format)
volumes. Message supplies oreadMount c J with the error code and the drive
number. orsadMount c J places a dialog box on the screen, asking the user to
initialize or eject the floppy. The user presumably initializes the floppy and
DIBadMount c J exits. DIUnload (J then removes the Disk Initialization Manager
from memory, and the user has a fresh floppy on which to save munged files.

If munger didn't field this event, when the user poked a blank floppy into the
drive, nothing would happen. The disk insertion event would remain queued
until the user switched to another application (probably a database to look up
my Internet address and rightfully complain). This application would handle
the event, and the disk initialization dialog would appear unexpectedly,

0-·~ ~~·~'!!'C' !~'~'- .

further confusing the unhappy user. Although munger uses DIBadMount () to
initialize a floppy disk, this routine can also initialize hard disks. See Inside
Macintosh: Files for more information.

As the event loop completes its course, the variable guseroone is checked. If
oo_command () returns TRUE in response to a Quit command, this changes the
state of guseroone. In this case the event loop quits, as does the application.

The Initialization Function
Now all that's left to do is examine munger's initialization function:

Boolean Init_Mac(void)
{

short i;

/* Lunge after all the memory we can get */

MaxApplZone();

/* Make sure we've got some master pointers */

MoreMasters();
MoreMasters () ;
MoreMasters();
MoreMasters();

/* Initialize managers */

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
Ini tMenus () ;
TEI nit();
InitDialogs(NIL);

/* Loop to setup menus */

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++)
{

gmyMenus[(i . RESOURCE_ID)) = GetMenu(i);
/* Get menu resource */

if (gmyMenus[(i - RESOURCE_ID)) ==NIL)
/* Didn't get resource? */

return FALSE; /* No, bail out */

. - '?'!!'!.'~3-"-'!.';~,-~I~,~~ -0
}; /* end for */

/* Build Apple menu */
AppendResMenu(gmyMenus[(APPLE_MENU - RESOURCE_ID)], 'DRVR');

/*Add the menus */
for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++)

InsertMenu(gmyMenus[(i - RESOURCE_ID)], APPEND_MENU)j

DrawMenuBar()i
InitCursor();
return TRUE;

} /* end Init_Mac() */

/* Tell user app is ready */

If you think this function looks similar to the "Hello world" example at the
start of this chapter, you are correct. Notice that we've added code to initial
ize the Menu Manager, Dialog Manager, and TextEdit, a Manager that deals
with simple text entry and editing. TextEdit is required to handle characters
typed into the Standard File dialog box when standardPutFile () asks for a
filename.

We also have to set up the menus. First, we use a for loop to load the menu
resources, using GetMenu < >. This routine returns a handle to menu record,
which we immediately stow in our gmyMenus array. We do some math to
convert the menu resource ID into an array index. Because the initialization
code runs only once, we can afford to do some extra calculations here. We
also perform a fail-safe check to see that GetMenu (> successfully locates the
menu resources and returns valid handles to menu records. If there is a
problem, GetMenu () returns NIL. In this case we simply abort the initialization
process and have the function return FALSE.

Next, we use AppendResMenu () to construct the Apple menu. The AppendResMenu ()

routine searches any resource files open to the application for the requested
resource type. It then adds the names of these resources to the specified
menu. We specify the DRVR resource to collect the Apple menu items. Like
the operation of OpenoeskAcc () routine, this resource type selection is a rem
nant of the pre-System 7 days when Desk Accessories were driver resources
in the System file. However, AppendResMenu () now fetches the names of all the
files in the Apple Menu Items folder, as well as the Desk Accessories.

0- ~!"f ~9!.'~"!.'C' _T~~t_ -

With the Apple menu built, we use another for loop to add munger's own
menus using rnsertMenu (). Finally, we display the new menus using
orawMenuBar(), followed by InitCursor(), which sets the mouse pointer to an
arrow to show the munger is ready.

The last thing left to do is type main<>, and here it is:

void main(void)

if (Init_Mac ())

Main_Event_Loop();

else

SysBeep(30);

} /* end main */

When the application launches, it calls the initialization function. If the
function reports no problem (by returning TRUE), then execution proceeds to
the main event loop. This is where munger runs until the user asks it to quit.

Build Munger
Now it's time to build munger. Add "Macmunger.c," and "munger.n.rsrc"
to the project. Remove the placeholder items <replace me Mac>.c and
<replace me>.rsrc, the library file MathLib, and all of the ANSI libraries from
the project window. The project window should look like that in Figure 3.36.

Go to the PPC Project preferences panel and type munger for the application
filename. Build the application and an application file, sporting the generic
application icon and the name munger, should appear in the folder. Launch
munger, and try it out.

Important
If munger beeps and quits immediately, there's a problem with its menu

resources. First. check to see that the .rsrc filename matches the project

filename. (That is, the project munger.µ should have a resource file named

"munger.µ.rsrc.") Or, if the resource filename differs from the project name

as in our example, confirm that the resource filename appears in the

project window. If not, use Add Files ... from the Project menu to put it

there. If you're sure the resource file is there, the problem might be with

the resources themselves. Open the .rsrc file with ResEdit and make sure
the ID numbers of the MENU resources match those defined in munger's
source code. If not. correct the problem by changing the ID numbers in
ResEdit, or editing "Macmunger.c." Note that Macmunger.c's initialization
code relies on the MENU ID numbers to be in ascending order.

~ File Edit Se11rch Project Tools Window 1140PM!im~.

.· :::.::: .··:.:·.:·.>:· ·· .. ::· .
......... ,. ..

.. ~ ·: {: .: . ~ .: ~: ... : ~ ... : ~ :\ :. ~ :\ ~ ~ ·> ~-: ~ •/:
to /::. :

.. '."' ... :....,.;• .,,;: fi ... ··.;.~,.cs"':)"'. "': . .,.,. ·.,.,·:"'·. ·."':.-·. "". '":"'· ~ : .. : ,.: .-. o,. • .,..,..., .• 0-..... "'. w=,i ... ; . . : : : : : :·

. <:· · : :~ ~:::.::::~~~~~~:-~:- ~: __ .->:·:·::: ::. ~ -... : .. ·<:··: ·::::_·.· .. ·: :

Figure 3.36 The Munger project window. Notice the resource file uses a different name.

Choose Open ... from the File menu, and search for a file to munge. You'll see
that the only files that appear in the Standard File dialog are folders or text
files. Select a text file , such as the sample file in CodeWarrior:Code Examples
PPC:Munger:PowerPC.txt and let munger have at it. When munger is done,
you'll get the status dialog box (see Figure 3.37) that reports on the results of
the filtering operation.

0-~ ~''!'~'!!.'C' .I~0~'- ______________________________________ _

File: PowerPC. tHt

Bytes resd: 5567

Bytes written: 5466

Figure 3.37 Munger's status report dialog box.

High-Level Events
We've seen how an application's event loop retrieves and responds to low
level events posted by the operating system. Under System 7, a second event
mechanism enables applications to communicate with one another. Called
high-level events, these events can be used as messages to request data from
or provide data to other applications. High-level events that follow the Apple
Event Interprocess Messaging Protocol (AEIMP) are called Apple events. The
message format is defined by suites of published commands. For the sake of
simplicity, we will consider Apple events and high-level events one and the
same. For more information on Apple events, consult Inside Macintosh:
Interapplication Communication.

Why should you care about Apple events? Because if your application
responds to them, it can be controlled by a Power Mac's voice recognition
software, or the AppleScript programming language, both which communi
cate through Apple events. At the very least, an application should respond
to the four required Apple events, which are: Open Application, Open
Documents, Print Documents, and Quit Application. Although this quartet of
required events seem rather limited, a creative script can do a lot with them.

For example, you can write a program in AppleScript that searches a folder
for the email you just downloaded, launches a word processor application
(Open Application event), instructs it to print your email files (Print Docu
ments event), and then stops the word processor (Quit Application event).
The Finder, where possible, uses the required events to open documents and
handle print requests. Of course, the applications have to be "savvy" (or
understand) Apple events for the Finder to do this. A special resource in the
application tells the Finder whether it's Apple event savvy or not. If not, the
Finder uses older, pre-System 7 methods to start the application and handle
the request.

- ~!P!!'~'-•_ l!.•~'-th! !~'~co -0
One compelling reason to add high-level event support to munger is that it
allows us to use System 7's neat drag-and-drop mechanism. That is, some
one selects a text file icon with the mouse, drags it across the desktop, and
drops it onto the munger icon. Munger launches, and through high-level
event communications, opens the desired file and processes it. Let's add this
capability to munger, since we only need one of the four required Apple
events to implement it. While we're at it, we'll give munger a distinctive icon,
and beef up the error checking in the Munge_File c J function, as promised
earlier.

Make Munger Handle High-Level
Events
There are four key sections in munger that we have to change so that it
handles high-level events. First, we've got to make our event loop code aware
of this new type of event. Second, we need a mechanism that delivers these
high-level events to the appropriate handler functions. Third, we need the
handler code itself. Last but not least, we have to make the operating system
aware that our application can deal with high-level events.

Begin by making a copy of "Macmunger.c." Select the "Macmunger.c" file
and pick Duplicate from the Finder's File menu, or type Command-D.
Rename the file copy "SonOMunger.c" and add it to the munger.µ project,
while removing the original "Macmunger.c" from the project. Open
"SonOMunger.c" with the editor to add a few more header files to the pro
gram. Beneath the other header files, type:

#include <AppleTalk.h>
#include <AppleEvents.h>
#include <EPPC.h>
#include <PPCToolBox.h>
#include <Processes.h>

struct AEinstalls

AEEventClass theClass;
AEEventID theEvent;
AEEventHandlerProcPtr theProc;

};

typedef struct AEinstalls AEinstalls;

#define LAST_HANDLER 3 /* Number of Apple Event handlers - 1 */

0-~!~ ~'!!.'!::'~'!!.'~' !~'~'- -

Most of these header files define Apple event data structures and routines.
"AppleTalk.h" is required because high-level events can be sent across the
network to other computers. To communicate to other applications, Apple
events also use certain Process Manager routines and so that a header file
appears. The structure AEinstalls organizes certain Apple event data struc
tures and the addresses of handler functions for installation in a dispatch
table. LAST _HANDLER indicates how many of these handlers must be installed in
the dispatch table. There are a few more function prototypes to define, too:

/* High-level Apple Event functions */

Boolean Init_AE_Events(void); /* Install the handlers */

/* Post high-level event to the dispatch table */
void Do_High_Level(EventRecord *AERecord);

/* The four required handlers */
pascal OSErr Core_AE_Open_Handler(AppleEvent •messagein,

.. AppleEvent *reply, long refin);
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent •messagein,

.. AppleEvent •reply, long refin);
pascal OSErr Core_AE_Print_Handler(AppleEvent •messagein,

.. AppleEvent *reply, long refin);
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein,

.. AppleEvent •reply, long refin);

/* Note change! */
OSErr Munge_File(short input, short output, unsigned char *fileName);

There's the usual initialization function to install the handlers, a function to
route the high-level events to the handlers, and the four handlers them
selves. As part of its improved 1/0 checks, Munge_File() returns an error value
now.

Modifying the Event Loop Code
Now let's start with the first item on the list, which is modifying the event
loop code. Go to Main_Event_Loop(), and in the first switch statement (the one
that deals with the event type), add:

case activateEvt: /* Activate event */
gwhichWindow = (WindowPtr) gmyEvent.message;

break;
case kHighLevelEvent: /* Handle Apple Event */

Do_High_Level(&gmyEvent);

- S'_h~!.'C'-"- '!.';~,_th~ I~'~'! -0
break;
default:
break;
} /* end switch gmyEvent.what */

I've included a few of the surrounding source code statements so that you
can recognize where to place the code. From this code you can see that high
level events are just another event passed to the application via the Event
Manager. The operation of this new code is simple: When Wai tNextEvent (l

retrieves a high-level event for us, we just call oo_High_Level(l to handle it.

Delivering High-Level Events
Let's write oo_High_Level (l next, since it's a portion of item two, the delivery
mechanism. Type:

void Do_High_Level(EventRecord *AERecord)
{

AEProcessAppleEvent(AERecord);
} /* end Do_High_Level() */

Was that tough, or what? The event record gets forwarded directly to
AEProcessAppleEvent (). This routine uses information in the event record to
determine what handler routine to call in the dispatch table. The
application's dispatch table is searched first, followed by the system's
dispatch table.A match is based on the event's class and event ID. If there is
a match, AEProcessAppleEvent (l calls the handler associated with that dispatch
table entry. This brings up the question of what builds the dispatch table. For
the answer, type:

Boolean Init_AE_Events(void)
{

OSErr err;
short i;
static AEinstalls HandlersToinstall[J = /*The 4 required Apple Events */

};

{kCoreEventClass, kAEOpenApplication, (AEEventHandlerProcPtr)Core_AE_Open_Handler},
{kCoreEventClass, kAEOpenDocuments, (AEEventHandlerProcPtr)Core_AE_OpenDoc_Handler},
{kCoreEventClass, kAEQuitApplication, (AEEventHandlerProcPtr)Core_AE_Quit_Handler},
{kCoreEventClass, kAEPrintDocuments, (AEEventHandlerProcPtr)Core_AE_Print_Handler}

for (i = 0; i < LAST_HANDLER; i++)

0- ~~'!' ~'!:"C'~~'C' _T~l~t_ -

err= AEinstallEventHandler(HandlersTolnstall[i].theClass,
HandlersToinstall[i).theEvent,

NewAEEventHandlerProc(HandlersTolnstall[i] .theProc),
0, FALSE);

if (err) /* If there was a problem, bail out */

return FALSE;
} /* end for */

return TRUE;
/* end Init_AE_Events() */

It's the responsibility of Init_AE_Events (> to construct the table. The objects in
the array HandlersToinstall[1 correspond to the dispatch table elements of an

event class, an event ID, and a pointer to a handler function. A simple for

loop calls AEinstallEventHandler (), a routine that plugs these items into the

table. If the routine reports an error, we pass a failure indicator (FALSE) back to

Init_Mac (> to halt the application.

Hazard
Don't overlook the NewAEEventHandlerProc () routine that's buried innocuously

as an argument in the call to AEinstallEventHandler(> ! This routine is critical

for the proper setup of the handler functions. Since the Power Mac's

system software is a mixture of 680x0 and PowerPC code, it gets tricky for

the operating system to know what type of code it will be running next

when the thread of execution hops to another function. To combat this

problem, Apple devised Universal Procedure Pointers, or UPPs. The UPPs

describe to the Mixed Mode Manager what type of processor code

(PowerPC or 680x0) the functio'n uses, the number of arguments the

function uses, and the programming language used to implement the

function. The programming language distinction is necessary because

C programs pass their arguments to a function in an order that's different

from Pascal.

The C header files incorporate this UPP information for every Toolbox

routine so that the programmer is normally unaware which routines are

PowerPC code, and which are 680x0 code. For certain functions that you

write, it's up to you to explain their nature to the Mixed Mode Manager by

providing UPPs for them. Functions that fall in this category are external

-- ~"'J'!!''-'-•-'!.•~g_1h_oI021~ -0
functions (such as plug-in modules that might be a mixture of 680x0 or
PowerPC code), or your own internal functions that get called by the
operating system (such as our high-level event handlers). Such functions
are termed callback functions because you first call a Toolbox routine, and
in response to an action, the Mac OS calls a function back in your applica
tion. It's possible that a context (or mode) switch will occur because your
function might be native code, whereas the OS routine performing the
callback is 680x0 code. Or, conversely your 680x0 application's callback
function gets called by a native Toolbox routine. If you fail to provide a
UPP for these callback functions. the Mac OS can get terribly confused
when it jumps to them. This is because the operating system doesn't know
what processor code the function is written in, nor can it determine the
size of the arguments used. If the Mac OS guesses wrong, the result is a
spectacular crash.

The rule of thumb is: If a mode switch is involved, you need a UPP. Native
PowerPC plug-in modules that add capabilities to a PowerPC application
don't require UPPs because there is no mode switch involved.

If you're worried about getting bogged down in the details of writing a
UPP, relax. The header files supply routines that do this work for you,
especially when it's known that the operating system will be calling back
into your application. NewAEEventHandlerProc () is such a routine; it constructs
a UPP for those high-level event handlers whose addresses you supply.
Don't forget to use this routine when setting up your handlers! For a more
detailed explanation of what a UPP is. and how it works, see Chapter 4.

We call Init_AE_Events() as the SonOMunger initializes so that it is prepared to
respond to Apple Events immediately once it is running. Go to the Ini t_Mac ()

function and type:

DrawMenuBar();

if (!Init_AE_Events())

return FALSE;

InitCursor();

/* Set up our high-level event
handlers */

/* Tell user app is ready */

Again, I have included a few neighboring lines of code so that you get the
idea of where to locate the function call. This completes item two.

0- ~c'P f'!!"""~'!!.'C' .I~0~'- - ____________________________________ - _

Writing the Handlers
Item three on our list is writing the handlers. Enter the following code:

/* High-level open application event. */
pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein,

AppleEvent *reply, long refin)

return noErr;
} /* end Core_AE_Open_Handler() */

/* High-level print event */
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein,

AppleEvent *reply, long refin)

return errAEEventNotHandled; /* No printing done here, so */
/* no print handler. */

/* end Core_AE_Print_Handler() */

/* High-level quit event */
pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein,

AppleEvent *reply, long refin)

guserDone = TRUE; /* Tell main event loop we want to stop */
return noErr;

/* Core_AE_Quit_Handler() */

The three handlers you see here are fairly simple. Notice that arguments
passed to them are simply ignored. The Open Application Apple Event
notifies the application to perform any start-up tasks required of it. For
example, the application might create an untitled document window, or
establish a connection to a database. Since SonOMunger's design of
pipelining of data between two files is very focused, it doesn't need any start
up tasks. Therefore, when munger receives an Open Application event, the
function core_AE_Open_Handler() reports a "no error" message back to the caller
while doing nothing. Since SonOMunger doesn't do any printing,
core_AE_Print_Handler() responds with an error message that indicates
SonOMunger can't field the Print Documents event. Upon the receipt of a
Quit Application event, core_AE_Quit_Handler() simply sets guseroone so that
SonOMunger halts on the next tour of the event loop, and returns a "no
error" message.

• ______________________________________ ~h!_P!e~ a_,_ '!.';~,_th! I,~,~~ -0
SonOMunger uses the Open Document Apple event to implement the drag
and-drop feature. When you drop a text file icon onto the SonOMunger icon,
the Finder sends it an Open Document event that also contains the dropped
filename. Drag-and-drop applications are generally expected to complete
the job without further input from the user. That is, you drop a file on
SonOMunger, and you expect a processed output file to appear. With that in
mind, let's write the core_AE_OpenDoc_Handler() function. Type:

/* High-level open document event */
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent *reply,
•long refin)

short
AEDesc
OSErr
AEKeyword
DescType
Size
long
unsigned
FSSpec
short
OSErr

char

i, j j

fileDesc;
highLevelErr;
ignoredKeyWord;
ignoredType;
ignoredSize;
numberOFiles;
outFileName[64J;
inFSS, outFSS;
inFileRefNum, outFileRefNum;
finErr, fOutErr, mungeResult;

gtheCursor = GetCursor(watchCursor); /*Indicate we're busy*/
SetCursor(&**gtheCursor);
mungeResult = 0; /* Clear so FOR loop operates */

/* Get parameter info (a list of filenames) out of Apple Event*/
if (l(highLevelErr = AEGetParamDesc(messagein, keyDirectObject,

•typeAEList, &fileDesc)))
{

if ((highLevelErr = AECountitems(&fileDesc, &numberOFiles))

== noErr)
/* Count files */

for (i = 1; ((i <= numberOFiles) && (lhighLevelErr) &&
•(lmungeResult)); ++i)

{

if (l(highLevelErr = AEGetNthPtr(&fileDesc, i,
typeFSS,
&ignoredKeyWord,
&ignoredType,

0-~~ ~!."~~~'-T~•!?t_ - .

for (j

{

(char *)&inFSS,
sizeof(inFSS),
&ignoredSize))) /*Get name*/

1; (j <= inFSS.name[0]); j++)
/* Copy filename */

outFileName[j)
} /* end for */

inFSS.name[j];

outFileName[j) = '. '; /*Tack '.out' on end*/
outFileName [j + 1) 'o' ;
outFileName[j + 2) = 'u';
outFileName[j + 3) = 't';
outFileName[0) = (j + 3); /*Update string's length*/
if (l(finErr = FSpOpenDF(&inFSS, fsCurPerm,

&inFileRefNum)))

if ((fOutErr = FSMakeFSSpec(DEFAULT_VOL, NIL,
outFileName, &outFSS))

== fnfErr)
{

if (l(fOutErr = FSpCreate(&outFSS,

{

gf ileCreator,
gfileType,
smSystemScript)))

if (l(fOutErr FSpOpenDF(&outFSS,
fsCurPerm,

&outFileRefNum)))
{

mungeResult Munge_File(inFileRefNum,
outFileRefNum,

inFSS.name);
FlushVol(NIL, outFileRefNum);
FSClose(outFileRefNum);
} /* end if lfOutErr */

else

else

Report_Err_Message("\pError opening
output file");

/* end if lfOutErr */

- ~"!!"."~'-'-~;~'-'"-"I~'~'! -0
Report_Err_Message("\pError creating

output file");
/* end else */

} /* end if == fnfErr */

else

if (fOutErr == noErr) /* No error means a
file already has
that name *I

Report_Err_Message("\pCan't write, file
already exists");

} /* end else */
FSClose(inFileRefNum);
} /* end if lflnErr */

else
Report_Err_Message("\pError opening input

file");
/* end if lhighlevelErr */

/* end for */
/* end if == noErr */

AEDisposeDesc(&fileDesc);

} /* end if !highLevelErr */

/* Dispose of the copy made */
/* by AEGetParamDesc() */

SetCursor(&qd.arrow);
guserDone = TRUE;

/* Restore the cursor */
/*We're done, stop the application */

return (highLevelEvent);
} /*end Core_AE_OpenDoc_Handler() */

The Open Document event definitely triggers some activity here. Starting at
the top, core_AE_Openooc_Handler () first slaps a stopwatch on the pointer to
show that the application is busy. Next, the Apple event gets passed to
AEGetParamoesc(), a routine whose arguments tell it to retrieve the data param
eters from the Apple event record. These parameters are to be coerced (or
massaged) into a data array termed a descriptor list, as specified by the
typeAEList argument. This list is placed in a buffer created by AEGetParamoesc ()

and pointed to by fileDesc.

NowAECountitems () determines how many objects make up the descriptor list,
which is the number of files dragged and dropped on SonOMunger. We use
the value returned by this routine to set up a for loop that extracts each
filename out of the descriptor list.

0-~ ~~·~~C, _T~ol~it_ _____________________________________ _

Two things to note here are: First, if an error occurs while extracting
filenames from the descriptor list using AEGetNthPtr(), the loop terminates.
Second, if there's an error during file processing, mungeResul t goes non-zero,
and the loop terminates. We do have to initially zero mungeResult so that the
loop doesn't quit prematurely.

The AEGetNthPtr() routine actually obtains the filenames from the descriptor
list. The routine's arguments instruct it to retrieve the descriptor list items as
file system specification records (typeFss), a format that's used by most
System 7 File Manager routines. Any Apple event keyword and descriptor
type information associated with the item is ignored (ignoredKeyword and
ignoredType). The largest data item returned from the descriptor list must be
no larger than a file system specification record (sizeof (inFSS)), and the size of
the data returned is ignored.

Once an input filename is obtained from the list, we tack an" .out" extension
on it, creating our output filename. This eliminates the dilemma of what to
name the output file without querying the user. Note that we should add a
safety check here, to see that the filename is no larger than 27 characters. The
reason is that Mac OS typically limits filenames to thirty-one characters in
length. I should (but don't) perform a sanity check to ensure that the user
hasn't passed a filename to SonOMunger that will be longer than this 31-
character limit when we append the ".out" extension of the file.

To review, munger got the input filename from an Open Document Apple
event that was the result of the user's drag and drop, and the output filename
is derived from the input name. We use the FSMakeFSSpec () routine to make a
file system specification record out of the derived output filename. The
program then does the usual safety checks to ensure that the input and
output files can be opened and written to properly, and gathers the file
reference numbers. Finally, Munge_File() gets called.

If things proceed smoothly in Munge_File (},then the input and output files are
closed, and the loop cycles to the next file. If for some reason Munge _File ()
encounters trouble, the error value it returns stops the loop so that the user
can fix the problem. Note that we're trying to help the user do just that by
improving the error reporting. The function Report_Err _Message() accepts a
Pascal string that gets displayed in an alert window. Finally, we call
AEDisposeoesc (} to release the memory allocated by AEGetParamDesc (} when it
made a copy of the descriptor list for our use.

- 1""!.P!!'~ ' -•-'!:';~'-"'.!'I '2'~~ -0
The code for Report_Err _Message() is:

void Report_Err_Message(unsigned char *errMess)

ParamText(errMess, NIL, NIL, NIL);
CautionAlert(ERROR_MESS_ID, NIL);

} /* end Report_Err_Message() */

This is a simple routine; it just takes a pointer to a Pascal string and passes
this to ParamText () . cautionAlert () then places the message on-screen. The
value here is in the descriptive messages that you can provide. This is be
cause we know where the problem occurs in the handler code, so we've got a
good idea as to what caused the error.

Last but not least, here's the improved Munge_File() function:

OSErr Munge_File(short input, short output, unsigned char *fileName)
{

long
unsigned char
short
long
OSErr
unsigned char
DialogPtr

amount = 1L;
crflag = 0;
icount = 0;
ocount = 0;

amount;
buffer;
crflag;
icount, ocount;
finOutErr;
inNumString[12), outNumString[12J;
statusDialog;

while (FSRead(input, &amount, &buffer) == noErr)

icount++;
switch (buffer)

{

case CR:

/* Bump input char counter */
/* What char was read? */

if (crflag >= 1) /*Two in a row, end of paragraph*/

if (l(finOutErr = FSWrite(output, &amount,
&buffer)))

if ((finOutErr = FSWrite(output, &amount,
&buffer)) I= noErr)

Report_Error(finOutErr);
return finOutErr;

/* end if I= */

/* end if I * /
else

{

Report_Error(finOutErr);
return finOutErr;
} /* end else */

crflag = 0;
ocount++;
} /* end if */

else

/* Reset the flag */

crflag++; /* Bump the flag, and toss the CR */

break; /* end case CR */

case LF: /* Toss LF, but don't touch crflag */

/* end case LF */ break;
default:

if ((finOutErr
/* Write a character out */

= FSWrite(output, &amount, &buffer))
I= noErr)

Report_Error(finOutErr);
return finOutErr;
} I* end if *I

ocount++;
crflag = 0; /* Clear the flag */

break;
/* end switch */

/* end while */

/* Display processing statistics */

if ((statusDialog GetNewDialog(STATUS_BOX_ID, NIL,
(WindowPtr) IN_FRONT)) !=NIL)

NumToString(icount, inNumString);

NumToString(ocount, outNumString);

/* Convert bytes read
to string */

ParamText (fileName, inNumString, outNumString, NIL);
DrawDialog(statusDialog);
Delay (120L, NIL);
DisposDialog(statusDialog);
} /* end if != NIL */

- _9'!"!!'~3-•_'!.•~'-~I~'~ -0
else

SysBeep (30) ;

return finOutErr;

} /* end Munge_file() */

This function is nearly identical to the original Munge_File < J, except that the
1/0 routines are checked for errors. If a problem is detected, we simply call
the original Report_Error() function, because it's hard to predict the types of
problems that can occur at this level. We also pass back the error code to the
caller so that action can be taken, as you saw in the Open Document handler
code. This completes "SonOMunger.c." If you're confused about where the
new functions went, examine "SonOMunger.c" on the CD-ROM. (The
pathname is CodeWarrior:Code Examples PPC:SonOMunger.) Or, check the complete
source listing in Appendix C.

However, we're still not finished. All that remains is to add some resources to
SonOMunger that provide an alert box for the new error message function,
and to inform the operating system that the new and improved SonOMunger
is Apple Event-aware. Making SonOMunger appear high-level event savvy to
the Mac OS will complete point number four, for those of you keeping score.

Making SonOMunger High-Level
Event Savvy
In the CodeWarrior compiler, select Preferences from the Edit menu, and go
to the PPC Project panel. Type MUNG for the Creator item. This assigns the
application's Creator type, which must match the signature resource you'll
make with ResEdit's bundle editor in a moment. Next, click on the
checkmark icon next to the Size Flags item to activate the pop-up menu. Pick
the isHighLevelEventAware item, and confirm that it is checked. Recall that
earlier I mentioned that the Macintosh OS used a resource to determine if an
application is high-level event savvy or not. The resource used for this
determination is the SIZE resource, and we're setting the appropriate flag bit
in it to indicate that SonOMunger can handle high-level events. If you fail to
do this, the Mac OS assumes that SonOMunger can't handle high-level
events and so none are ever sent to SonOMunger.

0-~ ~'~~'!!.'C•_To_o~t- -

cl; File Edit Search Project Tools Window

Project Type: I RpplicHtion ,.. I
RpplicHtion Info:

11., .---------------,
File NHm·e I SonOMunger

~----------~

'SIZE' Flogs HcceptSuspendResumeEuents
./ conBackground

doesRctiuoteOnFGSwltch
onlyBackground
getFrontCllcks
occeptRppDledEuents

./is32BitCompotible

locolRndRemoteHLEuents
lsStotioneryRware
useTeHtEditSeruices
isDlsployMonagerRwHre

Figure 3.38 Setting a high-level savvy flag in the application's SIZE resource.

New Alerts
Now let's add the new resources SonOMunger requires. Start by double
clicking on the "munger.1t.rsrc" file, which launches ResEdit. The window
that displays the resource fork's contents appears. We'll make the alert box
for the Report_ Err _Message () function first.

Double-click on the ALRT resource icon. After the ALRT resource window
opens, select Create New Resource from the Resource menu or type
Command-K. When the alert editor window appears, change the DITL ID
number to 131. Next, pick Get Resource Info from the Resource menu or type
Command-I. When the Info box opens, change the ID number to 131. Click
on this window's close box, and you have an alert resource with an ID
number of 131, ready to edit.

- C:."'Y!''-'-"- l!_•~o_th_o I'~'~ -0
Double-click on the window to bring up the dialog item (Dl1L) editor. Resize
the window, add an OK button, and follow that with a static text box in the
window's lower left. (Remember that the OK button needs to be DITL item 1,
and that we need to allow space for the alert icon, which appears in the
upper left window corner.) Simply type Ae for the static text item in this box.
You should have an alert window that resembles the one in Figure 3.39. Close
all of the Editor windows, leaving only the one showing the view of the
resource fork.

;::.:a--····----··------------·--····i
i !QD
'···················-··············

Figure 3.39 The Report_Err _Message () alert box.

Bundle Resource
To implement the drag-and-drop filtering, we must provide SonOMunger
with a BNDL, or bundle resource. This resource gets its name because it
describes the linkages among a so-called "bundle" of resources that are used
to supply certain application characteristics to the Finder, and to display the
application's icon on the desktop. Let's begin by building some of these
bundled resources, beginning with an application icon for SonOMunger, and
an icon for its output files.

In ResEdit, create a new resource. Select 'ICN#' for the resource type. The
ICON resource contains a single black-and-white icon bitmap, while the
ICN# resource contains a list of information on black-and-white and color
icons. The ICN# Editor window opens, with a default resource ID of 128.
Click on the ICN# item and draw a black-and-white icon design using the
editor's drawing tools (see Figure 3.40).

0- ~l~ ~'~'~,~~'C' .! ~'~''- -

s File Edit Resource

.........

111111 0

• o
• o

(l • •••••••• • ••••• • • • •• • • • • • • • • • • • • •••••• • • • • •• • • • •••••• • • • • • •• • • • • • • •• • • • • • • • • • • ••• •• • • ••• • • ••• •• •• • •• • • • • ••• • • • • ••• • • • • •• • • • • •••••••• • ••••••••• •

Figure 3.40 Drawing the JCN# resource.

ic18

;c14

If you look at the icons at the far right, you'll get an idea of how they'll appear
on the desktop. They look OK, except for that square outline surrounding it.
So the next thing to do is create the icon mask, which is a black silhouette of
the icon. The Finder uses the mask data to punch the icon's outline, cookie
cutter fashion, into the desktop background pattern. The Finder then draws
the icon into this opening, fitting the icon's image seamlessly onto the
screen. Making the mask is easy: Go to the ICN# item at the Editor window's
upper right and drag the black-and-white icon down to the mask item
window (see Figure 3.41) . A silhouette of the icon appears. The appearance
of the test display icons should improve dramatically.

Next, drag the ICN# to the icl8 item window and click to select it. Now you
can add color to the icon, making an icl8 8-bit color icon resource (see Figure
3.42) . Similar to how the dialog editor and dialog item editor work in tandem
to produce interrelated resources, the ICN# editor lets you create several
types of icon resources. When you're done with the icl8 resource, you can
make the icl4 (the four-bit color icon) resource, although it's not necessary.
Close the ICN# Editor window and save the file.

- ~h!.P!."-'-'- uy;~'-'i!!' I".?'~'O -0
.........

• D
• o • o
I I

Icon Famil ID= 128 from mun

••••••••••••••• • • • •• • • • • • • • • • • • • •••••• • • • • •• • • • •••••• • • • • • • • • • •• •• •• •• • • • • • • • •••• ••••••••• • • • • ••• •• • • ••• • • ••• •• •• • •• • • ••••••••• • •• • • • • ••• • • • • ••• • • • • •• • • • • •••••••• • ••••••••• •

Figure 3.41 Making the application icon's mask.

Select Create New Resource again and the ICN# editor reappears, this time
with an ID of 129. Draw a document icon, similar to the one shown in Figure
3.43. When you're done, close the ICN# Editor window and save the file . The
ICN# Resource window shows the icons, along with their ID numbers. Close
this window and you'll see the various resources associated with the icon list
resource.

Icon Famil ID= 128 from mun er.11.rsrc

• ~~
ICN•

......... l!l~ • D

• 0

~~ • 0

c=i ic14

E2J ~~
Mask

Figure 3.42 Editing an icl8 resource for the application icon.

0- !'.<>~'C'~ ~'£'!.'~°"'C' _T~o~'- ---------------------------------------

Icon Fomil ID= 129 from mun er.11.rsrc

[QJ~
ICN•

l~l~
[QJ [fil

ics4
ic14

~~
Mask

Figure 3.43 Editing an icl8 resource for the document icon.

Select Create New Resource again and this time type BNDL in the resource type
selection window. The BNDL resource window opens, followed by the
bundle Editor window. Go to the BNDL menu and choose Extended View.
Type MUNG for the signature, to match what you entered in the Project prefer
ences panel in Code Warrior. Now go to the Resource menu and pick Create
New File Type. You'll get a new, highlighted entry in the bundle Editor
window, as shown in Figure 3.44.

BNDL ID = 128 from mun er.11.rsrc

Signature: I MUNG I
ID: EJ (should be 0)

©String:
~~~~~~~~~~~~ 

Figure 3.44 Entering a new file type in the BNDL Editor window. 



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - c:_h~!.'"-'-·-'!.''~'-'h! 2~'~'0 -0 
Move the pointer to the Type item, and notice how it changes to an I-beam 
symbol, for text entry. Type in APPL to replace the four question marks. Next, 
go over to the icon section and double-click on it. You'll get a dialog box 
asking you for the icon to use (see Figure 3.45) . Click on icon resource 128 
and click OK. The empty boxes in this section of the Editor window are filled 
with icons. Select Create New File Type again and type in TEXT for the Type 
item. 

Choose an icon for the type RPPL: 

11 D 
128 ~ 129 

~ [ Edit J [ Cancel J ([ OK ]J 

Figure 3.45 Picking the icon for the application file type. 

Pick icon ID 129 for the TEXT file type icons. The BNDL Editor window 
should appear as shown in Figure 3.46. 

lii.i BNDL ID= 128 from mun er.n.rsrc 

Signature: I MUNG I 
ID:@=] (should be 0) 

©String: 
~~~~~~~~~~~~ 

FREF Finder I cons
local ! res ID !Type local ! res ID ! ICN• ic14 io 18 ics • ics4 ics8

0 128 RPPL 0 128 ®@~!!HllD
1 129 TEHT 1 129 D 0 D Cl GI Cl

~

'O

Figure 3.46 The BNDL resource for SonOMunger. with icons for two file types.

0- ~!"!' ~'~!.'~":!.'C' !~~"- .

Close this Editor window. You'll notice that beside the new BNDL resource is
a resource type of 'MUNG'. This is the application's signature resource,
made when you typed in those four characters in the signature item of the
bundle editor. There's also an PREF, or file reference resource. This resource
is used by the Finder to determine what file types (if any) your application
recognizes. When you drag and drop a document on SonOMunger, the
Finder compares the d~cument's file type to the file types in SonOMunger's
PREF resource. If there's a match (say, a ClarisWorks text file was dropped
onto SonOMunger), the Finder launches SonOMunger and sends it an Open
Documents Apple Event with the filename. Save the file and quit ResEdit.

At long last, go ahead and make the application. You'll get a flurry of warning
messages stating that the variables reply and refln are not used in the func
tions Core_AE_Open_Handler(), Core_AE_OpenDoc_Handler(), Core_AE_Print_Handler(),

and Core_AE_Quit_Handler(). You'll also get similar warnings for messagein, except
for the function core_AE_Openooc_Handler(), where we actually use this variable
to receive the file list. You can ignore these warnings, since the variables
simply act as placeholders in these handlers.

Finishing Up
The SonOMunger application might still be showing the generic application
icon after it is created. To ensure that the Finder brings the desktop database
up to date on SonOMunger's capabilities, you have to force the database to
be rebuilt. Do this by restarting the Power Mac and holding down the Com
mand and Option keys as the computer boots. Just before the desktop
appears, you should get a dialog box asking if you want to rebuild the desk
top file. Click on OK. If all went well, SonOMunger's icon should resemble
the one we drew in ResEdit. Now drag a text file document onto
SonOMunger. It will start automatically and grind away quietly for a few
seconds. The status report dialog box appears briefly and then SonOMunger
quits. You're not limited to working with one file at a time, either. You can
drag several or more files to SonOMunger for processing.

This is why we don't use a modal dialog or alert for the status report, because
SonOMunger would stop until you clicked on the OK button for every report
displayed. Note SonOMunger lets the user have it both ways for choosing

. - ~h"!.''-'-·-'!."~'-~ 2°'2'~'~ -0
files. The person familiar with the Standard File dialogs can use those to
select files, while another person might like the drag-and-drop approach. As
you design Mac applications, always remember, give the user as many ways
as possible to operate it.

The Fork in the Road
In this chapter you learned about the forked nature of Mac files. We also
learned about resources, the building blocks of Mac applications, and how to
edit them in ResEdit. We've learned about both low- and high-level events
and how to write a Mac application to respond to them. So far, the Power
Macintosh looks pretty much like a 680x0 Mac, even when programming it.
However, although things look the same, the run-time architecture of the
Power Mac is fundamentally different. We'll find out about that in the next
chapter.

The PowerPC
Software
Architecture

The material in this chapter will be of interest to all Macintosh
programmers, no matter what their level of expertise. It explains
how fundamentally different Power Macs are under the hood, even
though they look and behave like 680x0 Macs.

0- ~!'P ~'~~~'!!.'~' -'~'~"- -

Our road trip has covered quite a bit of ground. We've obtained a nodding
acquaintance with the Code Warrior IDE and learned about the structure of
Mac files and applications.

We've made an application that provides a friendly interface and performs
useful file I/ 0. Importantly, this code compiles and runs whether we use the
680x0 CodeWarrior compiler or the PowerPC (PPC) CodeWarrior compiler.
While this appears to trivialize the differences between a Mac and Power
Mac, make no mistake: The computers use very different processors. Given
that fact, the ability to use the same source code to make processor-specific
versions of an application is actually a tremendous technical achievement.
Apple has put a lot of effort into making the switch to the Power Macintosh
as painless as possible. This effort will pay off for users and developers in the
following ways: Users' current 680x0 application software is still usable and
runs with decent performance. Developers can rapidly port code to the
Power Mac without a major effort to produce a native application.

An added plus for both users and developers is a significantly faster applica
tion. This improved performance, combined with the low investment in cost
and resources to support two different computers, is a win-win situation. It
means that you should see lots of native applications appear early on. And in
fact, that has been the case: within a year, over several hundred Mac applica
tions were revised as native applications.

While pro~ding compatibility with the past, Apple also engineered the future
into the Power Macs. Behind the consistent application interface, the run
time application architecture of the Power Mac has fundamentally changed.
It eliminates some of the limitations inherent in the existing operating
system design-limitations that arose out of hardware constraints imposed
by the 680x0 processor.

This chapter will serve as a rest stop on our journey. While we're recuperat
ing, I'll describe the new run-time architecture in some detail. To understand
the new, however, we must first understand the old. Let's begin with a
description of the existing 680x0 application architecture. After all, we can
anticipate that this type of application will be around for a while longer,
thanks to the Power Mac's 680x0 emulator and the millions of 680x0-based
Macs in the industry. Finally, remember that everything you learned about
the Mac application's program structure still applies: The code will load
resources, have an event loop, and call handlers no matter what processor
you write for.

- Pho~'~~ ! ~cPP 2°!!'!':!' .!'~"!''.!''~'~ -0
The 680x0 Application Run-Time
Architecture
As we discovered in the last chapter, Macintosh files are composed of a data
and resource fork. For a PowerPC/Power Mac application, the program's
code resides in the file's resource fork, as resources of type 'CODE'. Accom
panying these CODE resources are other resources, such as DLOG, ALRT,
WIND, and MENU, which supply graphical information (such as icons) or
data lists (dialog or menu items) that define the application's user interface.
A SIZE resource provides operating system information, such as the amount
of memory the application needs, whether or not it can run in the back
ground, and if the application is high-level event aware. The data fork of the
application is usually empty (see Figure 4.1).

Resource fork Data fork

Jump table --1+ CODED

CODE1

CODE2

CODEX

DLOG t
WIND I
MENU r
SIZE I

Figure 4.1 The structure of a 680x0 application file.

The application's code section is composed of individual CODE resources, or
code segments. Code segments can be a maximum of 32K in size. This value
came about due to a limit imposed by the 68000 processor used in the
original classic Mac. In order to shoehorn code into the confines of that first
system's 128K of RAM, the engineers designed the program code to be
position-independent. That is, the code uses no absolute addresses. Due to
the shifting memory demands of a running application, code segments could
be unloaded and subsequently reloaded into memory in different physical
addresses at different times, which is possible only if the code is position
independent. This allowed those early Mac applications to run within the
cramped memory space by purging unused code segments and then loading

0- ~lp~ .!'~~"2.'C' _r'!?~I_ -

only those segments that had to execute at the moment. Naturally, in the
scheme of the Mac OS design, a Segment Manager deals with these code
segments.

The code references (such as a branch to a different part of the program) of
such position-independent code are based on the program counter's current
address, plus an offset. This scheme is commonly known as PC-relative
addressing, the term coming from the abbreviated name of the processor's
program counter (PC). The 68000 processor implements PC-relative address
ing with a 16-bit signed value, which allows an address range of plus or
minus 32K. The offset's sign indicates whether the reference is before or after
the current PC address. The trade-off was that while this scheme made the
best use of tight memory, it also constrained the code segment's size.

To guarantee that any function within the segment was accesssible to
another function, a segment could be no larger than the largest offset pos
sible, or 32K. Remember that this limit only applies to individual CODE
resources. The application's actual code section can be rather large, packed
with tens or hundreds of 32K CODE resouces, each with its own unique ID
number.

Background Info
Later generations of the 680x0 processor expanded the PC-relative offset
to a signed 32-bit value, which allows the possibility of generating code
segments that are larger than 32K in size. The latest version of
CodeWarrior exploits these hardware capabilities by providing several code
"models." A code model is a programming strategy that deals with memory
addressing issues, such as the implementation of function calls. The several
code models used by CodeWarrior are near, far, and smart.

The near model uses 16-bit PC-relative addressing for function
references, with all its limitations. The far model uses 32-bit
absolute addressing for its function references, thus enabling you
to make large code segments. How does CodeWarrior make
position-independent code in this situation? The Metrowerks
compiler makes all function references into 32-bit offsets from the
start of the code segment. When the application launches, glue
code obtains the segment's current location in memory and adds this value

- f':'~'!: ! ! ~""' 2~!:' ~~'"-"~"--0
to these offsets. The smart model is a combination of the previous two
models. For those function references that have already been defined and
are within 32K of the calling function, a 16-bit PC-relative offset is used.
Otherwise, absolute addresses are used. The smart model thus generates
efficient code while sparing you the details of code segmentation.

This brings up a question. Given the 32K PC-relative addressing limit, how
does one function call another, especially if the target function is positioned
in physical memory beyond this addressing limit? Or, what if that particular
CODE resource isn't in memory at all? This problem is dealt with by using a
data structure called a jump table. By way of explanation, let's start by
reviewing how an application launches.

When you double-click an application icon, the Finder obtains the filename,
which it then passes to the Process Manager. The Process Manager examines
the application's SIZE resource to determine the size of the memory
partition-a contiguous section of physical memory-it must build for the
application.

The memory partition subsequently gets divided into three sections. They
are referred to as heap, stack, and AS world (see Figure 4.2). The heap is a
data pool that the program draws from as necessary to load more resources,
or to process data. This could be more code segments, any needed graphical
resources (such as a window or a menu), data structures used by the Toolbox
routines, and the program's data. The heap starts at the lowest memory
addresses in the partition and expands upwards. The application's stack (not
to be confused with the system stack maintained by the OS) holds temporary
variables and starts near the highest addresses in the memory partition. It
grows downward, toward the heap. Ideally, the top of the heap and top of the
stack never collide.

Practically, if an application crashes with a bomb ID of 28, it means the two
have met, with disastrous results. The AS world holds the application's global
variables, QuickDraw global variables, and the jump table. The name AS
world comes from the fact that all of these objects are accessed as offsets
from an address stored in the 680x0 processor's AS register. This AS world is a
fixed size and is situated just above the base of the application stack. After
these three sections of the application are set up, the Process Manager
transfers control to the application's main () function.

0- ~~"'f ~'C'~"'.'C' !"?~'- __ -

Application
partition

A5world

Stack

Heap

'
'

-

\ A5

'
"

-- -

'l

"

Detail of
AS world

Jump table

application parameters

pointer to QuickDraw globals

Application
global variables

QuickDraw
global variables

Figure 4.2 The structure of a 680x0 application in memory.

t--

L.t_

An application's code segment 0 (that is, a CODE resource of ID 0) contains
information that the Process Manager uses to set up the A5 world, such as
the size of the application's global space and the jump table's initial con
tents. This segment is built by the development software's linker. When the
linker stitches all the program's object code into an application, it keeps
track of external function references, that is, calls made to functions outside
of a code segment. The linker sorts these references by segment number and
then writes this data into the CODE 0 resource. The linker also sizes the
global variables used by the application and writes this value into the seg
ment. The Process Manager loads segment 0 into the heap just long enough
to establish the A5 world and then discards it. It uses a Segment Manager
routine, Loadseg (J, to do this.

The final application code produced by the linker has two types of function
calls. A function call within a code segment becomes a subroutine jump
instruction that uses a PC-relative offset. A call to a function outside the
segment becomes a subroutine jump to a jump table entry. Because the
jump table is referenced through register A5, this is a subroutine jump
instruction that uses the address stored in register A5, plus an offset to a
jump table entry. Because the application's global variables must be acces
sible to every function within the program, they too must be situated in the

. ________________________________ Eho~'~ ~ ! ~0~!'E ~~!." .!'~"!~,~~ -0
A5 world. The application's global variables and QuickDraw globals thus are

referenced as offsets from register A5. As you can surmise, tampering with
A5's contents is not a good idea, as the application relies on it to both operate
and to locate global variables.

Now let's see how the jump table completes the connection to the external

function. The jump table is made up of an array of 8-byte entries, as shown
in Figure 4.3, where each entry represents a function reference. These entries

can have one of two formats. The first format is used when a particular

function's segment is already loaded into memory. The corresponding jump
table entry contains a segment number (2 bytes) and a jump instruction (2

bytes) with a 32-bit absolute address (4 bytes) . Therefore, when an external

function gets called, the AS-relative subroutine jump hops to a correspond
ing entry in the jump table, which in turn becomes a jump instruction to the

actual function.

Format of a jump table entry when code segment Is loaded In memory

T T I I r
segment number JMP function address

l l l l l

Format of a jump table entry when code segment Isn't In memory

I I I T T
offset to function MOVE.W segment number, -(SP) LoadSeg()

l l l l l

Figure 4.3 The two formats of a jump table entry.

If the segment isn't in memory, the jump table entry uses the second format.
The entry contains the target function's offset into the missing segment (2
bytes), followed by an instruction that pushes the segment number onto the
stack (2 bytes), and finally a call to the Loadseg () routine (2 bytes) . Now the
subroutine jump into the jump table executes the push instruction, and then
calls LoadSeg (). LoadSeg () finds the target segment number on the stack, loads
the CODE resource with that ID into memory, and locks it there. Next, it

takes the offset value in the jump table entry and adds it to the segment's
current address in memory to obtain an absolute address for the function's
entry point. Remember that the segment might get loaded into different
sections of memory, so this absolute address changes each time the segment

0- ~!Pf ~'!.'~"2.'C' !~0~'- ______________________________________ •

is loaded. LoadSeg < J then converts the jump table entry into the first format so
that it now holds the segment number and a jump instruction. It also up
dates the jump table entries for every function contained in this segment.
Loactseg (l finally executes the jump instruction it built in the jump table entry,
transferring control to the target function. If a segment happens to get
purged from memory (via another Segment Manager routine called
unloadSeg ()) , the appropriate jump table entries are revised to the second
format to reflect this fact.

As you can see, these operations are transparent to the programmer. The
jump table mechanism quietly ensures that when a function is called, if its
code segment isn't in memory, it gets loaded there automatically. Releasing
memory isn't as automatic: the programmer has to call un1oadSeg < J to indicate
to the Mac OS which segments aren't in use.

Hazard
It's not wise to call un1oadSeg() yourself. If you happen to purge a
code segment that the Mac OS will need later (such as a call back
into an Apple Event handler), you can create a spectacular crash.
Instead, let the Mac OS call this routine as it purges segments
during the normal course of operations.

This carefully choreographed sequence of events enabled graphics-intensive
Macintosh applications to run in small amounts of memory. MultiFinder,
Apple's first implementation of cooperative multitasking, was possible
because each application's position-independent code and jump table
allowed them to be loaded and executed anywhere in memory.

However, there's still a problem: How does an application access Toolbox
routines? Most of these routines are in the RO Ms, which are located in the
Mac's memory space, well over a PC-relative jump away. We didn't see
anything in the application's jump table to deal with Toolbox routines.

For the answer, we again tum to the 680x0 processor. Normally, a processor
trundles along, fetching program instructions and executing them. Occa
sionally, the processor might detect a trap or exception condition. This is an
abnormal state that might be caused by the instruction itself (such as a
divide by 0, an invalid instruction, or a code reference to an odd address), a

_ ...

- ~'!:'~'!: !. ~ ~!~ ~!"'!.'!!' !":?'~'"-"~'~ -0
bus error (a memory SIMM or other hardware component failed to respond
to a bus access), or a peripheral device requesting service through an inter
rupt. The processor responds to an exception by first pushing the address of
the next program instruction onto the stack, followed by some information
called an exception frame-that's a snapshot of the processor's internal
state. The processor then fetches an address from a preprogrammed location
in memory whose location is determined by the type of exception that
occurred. The processor jumps to this address, which is the entry point to a
function that handles the exception. The handler code remedies the problem
(if possible), or services the device request. When the handler code com
pletes, the processor retrieves the exception frame from the stack, thus
restoring its internal state. Finally, the saved program address is popped
from the stack into the PC, which places the processor at the next instruction
in the program, no worse for wear.

Motorola defined two special unimplemented instructions for the purpose of
extending the capabilities of the 680x0 processor. When the processor traps
on one of these instructions, it executes handler code that emulates new
instructions. One of these unimplemented instructions is called the A trap
word, so called because it'sl6 bits in length and the first four bits in the word
are the bit pattern for the hexadecimal A.

Important
In most of the Apple literature. a word is 16 bits in length. This follows a

convention where the size of 680x0 processor's instructions were this

length. The current PowerPC processor literature from IBM and Motorola

define a word as being 32 bits long. Further complicating this situation is

that the PowerPC 620 is a 64-bit processor. Needless to say, this can

cause some confusion. For this discussion, we'll stick with the 16-bit word

length and keep the use of the term word to a minimum.

Apple used the A trap as an entry point into its Toolbox routines. In its
header files, each routine is assigned a word that starts with hexadecimal A,
followed by bits that in.dicate the routine type, some flag bits, and an 8- or 9-
bit value. For example, if we peek at the "Dialogs.h" header file, and search
for the stopAlert () routine, we find the macro:

extern pascal short StopAlert(short alertID, ModalFilterUPP modalFilter)
ONEWORDINLINE(0xA986);

0- ~!"!' f~'C'~":!.'C' !~0~"- ______________________________________ •

The macro ONEWORDINLINE reduces the declaration to:

extern pascal short StopAlert(short alertID, ModalFilterUPP modalFilter)
•\ = {0XA986};

Here we see that the two arguments, alertrn and modalFilter, will be pushed
onto the stack, using the Pascal language calling convention. This is followed
by the trap word for the stopAlert routine, OxA986. Every Toolbox routine uses
similar macros that place arguments on the stack or in certain registers, and
then hands the job off to the exception handler. If you disassemble a 680x0
program using the Disassemble command in CodeWarrior's Project menu,
you'll notice the program's 680x0 machine code is peppered with these A
trap words, all which correspond to Mac Toolbox calls.

Background Info
The last two bytes of jump table entries for code segments not loaded in
memory (the second format) are a call to the Loadse9o routine. These
bytes contain the trap word OxA9FO, which is the LoadSeg (> trap.

Let's put this all together. A Mac is running an application with the 680x0
processor dutifully fetching and executing instructions. Suppose the pro
gram now calls a Toolbox routine. When the processor hits the A trap word
that represents this routine, it causes an exception. The processor fetches the
address for the location of an A trap exception handler written by Apple and
executes it. This handler-appropriately called the Trap Dispatcher
examines the trap word and uses the type bit to select one of two dispatch
tables. One table is for the low-level routines, the other is for operating
system routines.

The Trap Dispatcher then uses the trap word's lower 8 or 9 bits to calculate
an offset into the particular dispatch table. The entry at this offset in the
dispatch table contains the address of the Toolbox routine. Typically, this is
an address in ROM, but some routines can be found in RAM. The processor
hops to this address and executes the Toolbox routine. When the routine
completes, the processor returns from the exception, back to the next
instruction in the application. Where do the addresses in the dispatch table
come from? They're stored in the Macintosh's ROM and are loaded into the
dispatch table when the Mac starts.

Using the exception mechanism as an access point into the Toolbox seems a
tad complicated, but the design has some important advantages. First, it
allows a code segment anywhere in memory to readily access the Toolbox
routines. Second, this mechanism provides flexibility to fix bugs or add new
services. For example, assume that it's discovered that the Toolbox routine
ReallySuperbService (), located in ROM, has a bug. We know that you can't
change ROM-but you can change the offending routine's address in the
dispatch table. Built into the Mac's boot process is a procedure for installing
patch code. After the dispatch table is built, but before initialization is
completed, the System file (early Macs) and System Enabler files (current
Macs) are searched for patch code resources. These resources are loaded in
memory, locked, and executed. This code modifies the address for
ReallySuperbService () in the dispatch table so that it points to the improved
version of the routine located in RAM, rather than the one in ROM.

Apple uses the same method to add enhancements or new services to the
Mac OS. The code implementing new features is loaded and locked in
memory. Empty entries in the dispatch table are directed toward routines
within the feature code. Apple is thus able to fix bugs or add features to the
operating system of existing Macs with just a new release of the system
software.

Third-party vendors can also supply enhancements through the use of
Extension files and Control Panel files. These files have INIT resources that
contain the enhancement code, plus code to patch the dispatch table. At
boot time, the operating system first installs any patch code; then it searches
the Extensions folder and Control Panels folder for files, installs their INIT
code, and modifies the dispatch table. Apple's own CD-ROM driver,
QuickTime software, and File Sharing software are installed this way.

Future Directions
The Mac OS is heavily dependent upon Toolbox routines stored in the

ROMs, as I have mentioned previously. This makes the Mac virtually

impossible to clone because laws have established the copyright

value of ROM code. (Ironically, these laws came about when Apple sued

another vendor who was cloning Apple II computers.) With Copland, this

state of affairs changes. Copland will no longer be a ROM-centric OS.

continues

0-~~ ~'~!.'~":!.'C' .!~'~'- -

continued

Instead, its Toolbox and OS routines are groups of shared libraries stored

as disk files. This simplifies updating or enhancing Copland, because
upgrades are accomplished by just adding new versions of the system files
to your computer's hard drive. This also makes for easy distribution of the

Mac OS to licensed Mac clone vendors ~uch as Radius, DayStar Digital,
and Power Computing. The downside to this design is that you'll need a

bigger hard drive to hold the Copland OS, but this is hardly an issue since

500M and gigabyte drives are a common staple these days.

The PowerPC Application Run-Time
Architecture
On the surface, a PowerPC Mac application seems identical to its 680x0
counterpart. As mentioned earlier, the code you wrote in Chapter 3 compiles
and runs on a Mac with either processor. However, the run-time architecture
behind the API is fundamentally different.

We can see a difference immediately when we examine the structure of a
PowerPC Mac application. Looking at Figure 4.4, you can see that that
application's resource fork still has the graphical resources and the SIZE
resource. However, the program code is located in the file's data fork, as a
block of Power PC code known as a code fragment. This code fragment isn't
segmented, nor is there a size limit. Thus, all of a PowerPC application's code
is stored in a single code fragment.

An application with 3M of Power PC code has a code fragment 3M in size in
the data fork, plus whatever resources are required in the resource fork to
implement the user interface. After viewing the gymnastics required to
support 32K segments in a 680x0 Mac application, the PowerPC application
design appears starkly simple.

- E~~'! ~ ! ~~'!'!' 2'~"' _!l~h~''-''!!'~ -0
Resource fork Data fork

DLOG

WIND

MENU

SIZE Power PC
code fragment

cfrg

Figure 4.4 The structure of a PowerPC application file.

Background Info
Lest you think the original Mac design team came up with an unnecessar

ily complex design, remember that they were working in an era when 256K

to 512K of RAM was considered adequate, and that the 68000 processor

could only address a maximum of 4M. The simplicity of the PowerPC

software architecture stems from the capabilities of today's hardware. The

basic Power Macintosh configuration has 8M of RAM and supports virtua l

memory. The PowerPC 60 1 processor in these first Power Macs can

address 32 bits of physica l memory (4G) and 52 bits of virtual memory

(4T) .

Fina lly, the Power Mac's System Software engineers had the advantage of

a decade's worth of improvements in operating system technology.

Launching a PowerPC Mac application is similar to that of a 680x0 Mac
application, up to a certain point. When you double-click the application
icon, the Finder gets the filename and passes it to the Process Manager as
before. However, now the Process Manager calls a Code Fragment Manager,
whose job is to load code fragments into memory, lock them there, and

0- ~!"~ ~!.'~"2.'C'l~'!?'- _______ - _ - - - _____ - __ - - - _ - - - - _ - - - - - - - - - -

prepare them for execution. After the code fragment is readied, the Process
Manager transfers control to it. The Code Fragment Manager can be consid
ered the PowerPC counterpart to the Segment Manager.

The Power Mac application's memory structure is similar to a 680x0 applica
tion. There's still a heap and a stack, but there's little need for an A5 world.
However, for those Toolbox routines that still exist as 680x0 code and need to
access QuickDraw's globals, the Process Manager constructs a pointer to
these globals in the application's heap, and your program allocates storage
for these globals here as well. The heap also contains any executing code
fragments (when virtual memory is off), the application's globals, the globals
of any library code fragment the program uses, and any library code frag
ments not located in ROM (see Figure 4.5).

Because a Power Mac has both 680x0-based and PowerPC-based Mac
applications on it, how does the Process Manager know which Manager to
use when you launch an application? Each PowerPC application gives the
Process Manager a hint: They have a resource of type 'cfrg' in the file's
resource fork. This resource tells the Process Manager that this application
contains PowerPC code, so it uses the Code Fragment Manager to load the
application. If the cfrg resource is absent, the Process Manager assumes
the application is a 680x0 binary and calls the Segment Manager instead.
The cfrg resource is placed in the file by the development software.

What about the Toolbox routines in ROM? They, too, are code fragments.
After the Code Fragment Manager loads the application's code fragment into
memory, it goes about resolving any external references, which are usually
the Toolbox calls. The Code Fragment Manager loads any additional code
fragments into memory (recall that not all Toolbox or operating system
routines are in ROM), and then it replaces each external routine reference
with its actual address.

To see how this is done, let's examine code fragments in more detail. Code
fragments come in two executable formats, XCOFF and PEF. XCOFF is the
acronym for IBM's Extended Common Object File Format, whereas PEF
stands for Apple's Preferred Executable Format. As its name implies, the
preferred format for code fragments for the Power Macintosh is the PEF
layout. XCOFF is partially supported because the original IBM development
tools used this format.

- f'2'~'~ ! ! ~'!'f ~0!"!'~ ~~'~"~'! -0

Heap

Application
partition

Stack

Application's
global variables

Figure 4.5 The structure of a PowerPC application in memory.

Important
The Code Fragment Manager uses a set of routines known as the Code
Fragment Loader to load code fragments from a file into memory. The
Code Fragment Loader's function is analogous to Loactseg o's. The Code
Fragment Loader is responsible for recognizing and loading either XCOFF
or PEF files. If new file formats are introduced later. the loader will be
updated to handle them. You, the programmer, needn't concern yourself
with file formats. Just let the Code Fragment Manager handle the job of
loading your code fragments.

A PEF consists of a container of code, data, and loader information block. A
container is a chunk of contiguous storage, typically a file, although it can be
any object that the Mac OS accesses, such as the libraries that house the
Toolbox routines in the Power Mac's ROMs. The code and data make up the
code fragment itself, and the loader information block enables the Code
Fragment Manager to prepare the fragment for execution. The loader infor
mation describes the fragment's initialization, start, and termination func
tions, its imported functions and data, its exported functions and data, and
its version number.

0- ~~!"!' f'~'"'~'!!.'C'.!~0~'- ______________________________________ •

The import/export information is crucial to the operation of the PowerPC
run-time architecture. It's how the connections between an application and
the Toolbox routines are established. Code fragments can export certain
entry points or import the entry points of data objects or functions from
other code fragments. For example, the Mac Toolbox is a shared library in
the Power Mac's ROMs. This type of code fragment exports the entry points
of its global data and routines. A Mac application, on the other hand, re
quires Toolbox routines to operate and so it imports the required entry
points from the shared library in the ROMs. The development software's
linker is responsible for matching up the import names in the application to
export names in a shared library. The linker places the exporting library's
name and any import names into the code fragment's loader information
block. It's important to note that this information is stored as actual name
strings. These names get resolved to addresses by the Code Fragment Man
ager at run time.

Background Info
It's easy to see what libraries and routine names a code fragment requires.
To do this, make a copy of the SonOMunger application. Now launch
ResEdit. In ResEdit's File menu, select Get File/Folder Info and open the
copy of SonOMunger. In the Info box that appears, change the Type item
from APPL to TEXT. close the window, and save the file when ResEdit asks
you to. Quit ResEdit. Now, open this file with any word processor. You'll
see some gobbledygook-that's binary machine code, but there's also a
block of text that you can easily read. This block begins with the library
name "lnterfacelib," followed by the name of every Toolbox routine used
by the application.

When Code Fragment Manager loads the application's code fragment, it first
allocates memory for the global variables and static data in the heap space of
the partition built by the Process Manager. The Code Fragment Manager
then performs any load time relocations for the import symbol information
and places this information in a critical data structure called the table of
contents, or TOC. The TOC was built by the development tool's compiler and

linker, and it contains the fragment's import symbols (that is, the names of
the externally referenced data or functions).

The Code Fragment Manager resolves these import symbols and plugs
addresses in the appropriate slots in the TOC. The TOC contains lists of three
type of pointers. These pointers reference the code fragment's own func
tions, its own data, and the import names it uses. These import name refer
ences are the global data variables or the entry points of functions in other
code fragments.

To set up the addresses in the application fragment's TOC, the Code Frag
ment Manager uses the library names in the loader information block to
locate the required shared libraries. It loads these libraries into memory, if
required, and loads any other libraries that these libraries depend on. The
Code Fragment Manager also runs each library's initialization function code,
if present. The shared libraries build any data structures they use within the
application's heap, and some of the TOC pointers are arranged to point at
this data. The Code Fragment Manager then searches for the application
code fragment's import names and replaces them with the corresponding
export addresses in the shared library, in a process called binding. This
binding operation sets up the remaining TOC pointers (see Figure 4.6). After
the TOC is initialized, the code fragment's preparation is complete, and it is
ready to execute.

Note that some of these TOC pointers address objects called transition
vectors. A transition vector is a data structure used by one code fragment to
access an import function in another code fragment. The structure consists
of one pointer to the target fragment's TOC, and a second pointer to a
function within the target code fragment. Therefore, a shared library doesn't
actually export the addresses of its routines. It instead exports transition
vectors, whose job is to point to the routines. The transition vectors are built
by the development software.

Because the TOC is the linchpin of the code fragment's operation, one of the
PowerPC processor's general-purpose registers (GPR2) points to the start of
the TOC at all times and is called the TOC Register (RTOC). The RTOC serves
a function similar to register AS. However, whereas only 680x0 applications
could have an AS world, any Power PC code fragment (a plug-in module,
extension code, or a driver) can have a TOC.

Pointers

Library's glob I
variable

I Reference to
application
global

I Reference to
an imported
global

I Reference to
an imported
function

Data

Application's Application's
TOC globals and statics

Shared Shared
library's library's

Appli n's
glotial

variable

Data

Tran n
ve or

TOC globals and statics

D
Shared library's

function

Shared library's
code fragmetlt

Figure 4.6 The run-time binding of the application code fragment to its libraries.

The dynamic linking strategy used by the Code Fragment Manager mini
mizes the copies of shared libraries in memory, especially in a multitasking
environment. As you've just seen, each application that uses a library has its
own instance of the library's data built for it, unless the library implements a
special shared memory strategy. Because the library's code is separate from
its data, each application can thus execute the same library code while using
its private copy of the data. The shared libraries remain in memory as long as
any application uses them. If the library isn't being used, its termination
code (if any) is executed, and it's unloaded from memory.

Background Info
Because each application can have its own data copy while using a shared

library routine. this capability is said to be reentrant (that is. usable by

multiple processes simultaneously without conflicts). Thus. the Power

Macintosh's Toolbox routines are a major step toward the day when Apple
releases Copland, which uses preemptive multitasking. It's important to
note that this method of data storage doesn't guarantee that a program's
code is reentrant. However, unless a code fragment library can maintain
private data storage for each process that uses its library routines, reen
trant code isn't possible.

Whereas a 680x0 application's global variables are intimately tied to its A5
world, a PowerPC code fragment's global variables are readily accessible to
other code fragments through its TOC. This makes it easier to access and
share global data than was possible with the 680x0 run-time architecture.
Previously, periodic tasks, extension code, or plug-in modules had to use
assembly language code to gain access to the global variables within an
application or inside the operating system. With the PowerPC run-time
architecture, no special programming is necessary to obtain access to
information within another code fragment.

We've covered how data can be accessed by different code fragments. To
complete our understanding of the run-time architecture, let's consider how
one code fragment function calls a function in another code fragment.
Suppose that a code fragment, our Power Mac application, makes a Toolbox
call. The imported function address is fetched from the appropriate transi
tion vector and execution hops to the Toolbox code fragment. However, an
executing code fragment assumes that the RTOC points to its own TOC,
which contains its globals, and addresses of any import functions in another
code fragment. How is the RTOC set to this new code fragment's TOC?

The run-time architecture assigns this job to the caller. In other words,
before execution passes another code fragment, the program must set the
RTOC to point to the target code fragment's TOC. This information is stored
in the transition vector.

Getting back to our example, the following three events occur when our
application makes a Toolbox call. First, glue code in the application uses the
transition vector to set the RTOC to the TOC of the Toolbox's shared library.
The glue code then uses the other half of the transition vector to jump to the
Toolbox routine. Finally, when the routine completes, execution returns to
the application code fragment, and the RTOC is restored to the application's
TOC.

0- ~~'"'~""'~'.I~,~·- --------------------------------------.
Background Info
Following the RISC principle of a simple instruction set, the PowerPC

processor has no "call subroutine" or "return from subroutine" instructions.

Subroutine "calls" are implemented as branch instructions surrounded by

additional instructions to set up registers for function arguments and to

preserve critical registers. Subroutine "returns" are typically branch instruc

tions that use an address stored in the processor's link register (LR).

As an example of this, let's look at the machine code for calling a Toolbox

trap, WaitNextEvent (). In 680x0 machine code this is

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR)

MOVE.W

PEA
#$FFFF, - (A7)

$FFAB(A5)

/* Load the everyEvent mask onto stack */

/* Push address of global gmyEvent

PEA
CLR.L

$00C3
-(A7)

WaitNextEvent

onto stack (note A5 reference) */

/* Push LONG_NAP (decimal 60) */

/* Push NO_CURSOR */

/* Trap word 0xA860, go directly to
the Trap Dispatcher */

Notice that the arguments are pushed on the stack (register A7), and that

a trap word takes the processor to the exception handler, the Trap

Dispatcher. For the PowerPC, this same function call becomes:

addi r31, RTOC, 648 /* Put address of global gmyEvent into r31 */

/* Other program code */

li r3, -1 /* Load the everyEvent mask */

mr r4, r31 /* Get the address of gmyEvent */

li r5, 60 /* Load LONG_NAP */

li r6, 0 /* Load NO_CURSOR */

bl .WaitNextEvent /*Branch to WaitNextEvent(), save return
address in link register */

lwz RTOC, 20(SP) /* Fix up RTOC to point back to app's TOC */

Here the arguments get placed into registers and then a branch is taken

into the glue code responsible for managing the jump to the Toolbox

shared library. This branch instruction also saves the program's next

- f'!'~~ ! ! ~!'!' ~ !".!'~~'!. -0
instruction address into the LR, providing a way home when
waitNextEvent() returns. The glue code, meanwhile, loads the pointer to
waitNextEvent () 's transition vector from your application's TOC. This glue
code uses the transition vector information to adjust RTOC to the TOC of
the Toolbox's shared library and then the jump to the shared library
occurs. When the routine returns, the RTOC is immediately set back to our
code fragment.

Where does this glue code that accomplishes this magic come from? It's in
Interface.Lib.

Unfortunately, this elegant scheme is complicated by the fact that not all of
the Toolbox code in the Power Macs is PowerPC code. Rewriting the Mac
Toolbox, which consists of nearly 2M of tight CISC processor code (based on
the size of the 680x0 code inside the Quadra 840AV's ROMs) into RISC code
was a formidable process at best. Not only was the job a large one, but
replacing time-proven routines with new ones opens the door to introducing
bugs. To achieve high compatibility with 680x0 applications and still get the
Power Macs into the hands of users as soon as possible, Apple elected to
rewrite only a portion of the Toolbox. The remaining routines were left as
680x0 code and the 68LC040 emulator executes them. However, as Apple
extends the Mac OS, the system enhancements are written as native code.
For example, in the second-generation Power Macs, the Expansion Manager
(used to handle the PCI bus) and the network protocol stacks (used to
implement Open Transport, the new network interface) are native code.
Copland will complete this transition of the Toolbox from 680x0 to PowerPC
code, since it's supposed to be largely native code.

Segue: The Care and Feeding
of Stack Frames
So far this discussion has evaded describing how the Power PC processor
maintains two separate code environments. To understand how this is done,
this section covers this mechanism in some detail. Typical programmers
won't be concerned with how the system operates at this level-nor should

0- ~!Pf ~'£'"'~":!.'C' !~~;~ ______________________________________ _

they be. However, if you're curious as to how this happens, or expect to be
spelunking through your program code in a low-level debugger, your time
reading this section is well spent.

680x0 Function Calls
Like the run-time architecture description, we'll start with how the 680x0
processor handles function calls. It uses a stack pointer (SP) that indicates
the position of the stack's top in memory. On the 680x0 processor, register A7
serves as the SP. Processor instructions that push data onto the stack (such
as a function's parameters) or pop data off the stack (perhaps a function
result) accomplish this by reading and modifying the SP's value. To avoid
bus errors, the 680x0 processor ensuresl6-bit alignment of the parameters it
pushes onto the stack.

During the life of a function's execution, it needs storage for the parameters
passed to it, the return address, and any local variables it uses. Typically, this
temporary storage is obtained from the stack. That region of the stack
dedicated to the current function's storage needs is called a stack frame. A
frame pointer (FP) points to the base of the current function's stack frame in
memory. The Mac OS uses register A6 as the FP. Figure 4.7 shows the 680x0
stack after a function has been called.

Previous
stack
frame

Stack
frame

'7

Stack after ~
calling a procedure ~

Local Variables

Parameters
'

Return address

Previous FP ;=:::::..

Local Variables

Stack growth 4ir

y

Figure 4.7 The 680x0 processor stack with a stack frame.

FP

SP

The FP serves two purposes. First, a function's parameters are placed on the
stack above the FP, and its local variables are placed onto the stack below the
FP. This simplifies code design because you use a positive offset from the FP
to access function parameters, whereas a negative offset lets you access any
local variables. Second, because the Mac OS manages the FP, this makes it
easy to locate the start of a function's stack frame. When a function exits, the
Mac OS just discards its storage by bumping the SP to the top of the stack
frame.

AC function's parameters are pushed onto the stack from right to left. The
right-to-left convention enables C functions to support a variable-length
function parameter list. This arrangement allows for program code flexibility,
but also contributes some run-time overhead. Because only the calling
function knows how many parameters it pushed, it must also fix up the stack
(by popping the parameters off it) when the called function exits.

Function results (if any) get returned in the 680x0 processor's DO register. For
those processors equipped with a Floating-Point Unit (FPU), floating-point
results are returned in the FPRO register. Table 4.1 summarizes the Mac OS's
use of the 680x0 processor registers.

Table 4.1 680x0 Processor Register Usage

Preserve Contents across

Register Purpose Function Call?

AO General use No

A2 General use No

A3 General use . Yes

A4 General use.

Alternate globals pointer Yes

A5 Globals pointer Dedicated, do not modify

A6 FP.
Alternate

globals pointer Yes

A7 SP Dedicated, do not modify

DO General use No

continues

0-~!~ f'29!.'~'!!.'~' !!!."~;'.. - .

Table 4.1 Continued

Preserve Contents across

Register Purpose Function Call?

02 General use No

03 General use Yes

07 General use Yes

We've used C language conventions in our description of the function's stack
frame. Pascal language programs handle function calls differently. First, the
calling function pushes space for the called function's result onto the stack.
Next, the called function's parameter list is pushed onto the stack in left to
right order. Therefore, a Pascal function's parameter list is always a fixed
length. The advantage to this scheme is that the size of the called function's
stack frame gets determined at compile time, not at run-time as is the case
with the C functions.

Important
Because most of the Mac Toolbox started life as Pascal code. you often
must pay attention to these Pascal calling conventions, particularly when

accessing Toolbox routines at a low level. Also. while we're discussing
items on the stack, it's important to note that the OS Toolbox routines
don't normally use the stack. Instead, these Toolbox routines pass param
eters and return results through specific processor registers.

PowerPC Function Calls
There are several major differences how function calls-and consequently, a
function's stack frame-are handled on the PowerPC processor. First, native
functions now use a standard calling convention. This provides a consistent
access mechanism that all programming languages use. No extraneous glue
code is necessary to massage the parameter list, as often happens on the
680x0 processor when a C language function accesses Pascal-oriented
Toolbox routines. Second, a Power PC's stack frame structure is precisely
defined. This lets a stack frame's size be determined at compile time, which
eliminates the run-time overhead that a dynamically sized stack frame

. - _c~~'" ~ ! ~!~ ~~~ .!'~~'"-~~ -0
incurs. Because of the reduced overhead, frequent use of the native Toolbox
calls doesn't exact a performance hit.

Finally, while 680x0 calling conventions makes extensive use of the stack for
parameter passing and local storage, the PowerPC calling convention is
heavily register-based. Because the PowerPC processsor has 32 general
purpose registers (GPRs) and 32 floating-point registers (FPRs), this makes
sense. In reality, only eight of the GPRs and fourteen of the FPRs are actually
used to hold parameters because the other registers are used to maintain the
run-time environment. However, eight GPRs should ensure that a function's
parameters get passed via the registers most of the time. Table 4.2 summa
rizes the use of the Power PC processor registers.

Table4.2 PowerPC GPR Usage

GPR Purpose Preserve Contents across

Function Call?

rO Linkage/glue No

rl SP Dedicated, do not modify

r2 RTOC Dedicated, do not modify

r3 First function parameter No

r10 Eighth function parameter No

rl 1 Environment pointer No

r12 Global linkage use No

r13 General use Yes

r31 General use Yes

As the table indicates, the PowerPC uses register rl as the SP, and it preserves 8-
byte alignment when items are pushed onto the stack There is no correspond
ing FP, but the strict conventions regarding a function's stack frame structure
makes it unnecessary. Notice that registers rO through rl2 act as temporary, or
scratchpad storage, for the function's operations. The contents of these registers
are termed volatile. If the function modifies the contents of rl3 through r31, their
values must be restored. These are the non-volatile registers.

Figure 4.8 shows the organization of the Power PC stack with a stack frame.

0- ~!"!:' f".!.9!.'~"2.·C:· !~'~'- .

Calling
function

Called
function

l

~

SP ,..
'7

Parameter area

Linkage area

Saved registers

Local Variables

Parameter area

Linkage area

Stack growth

y

~ ~

4
' ' ' ' ' ' ' ' '

PowerPC stack after
calling a procedure

+24
Saved RTOC

+20
Reserved

+16
Reserved

+12
Saved LR

+8
Saved CR

',, +4
' '

SP
Saved SP

Figure 4.8 The PowerPC stack after a function call.

When a function is called, its parameters are evaluated in left to right order.
This arrangement is similar to the conventions used by the Pascal language
and guarantees a fixed stack frame size. General or fixed-point values get
placed into r3 through rl3. Floating-point values get placed into fprl through
fprl3. Function results are returned via r3 or fprl. In the case of a handling a
data structure (a typical Mac situation), a pointer to the structure is returned.

Those parameters that can't be placed in the first 8 GPR registers are passed
through a dedicated area on the stack frame. Furthermore, this space is
allocated such that it can hold all of the called function's parameters, even
those that do get passed in the registers.

This latter requirement accomplishes two things, especially because the
stack frame is a predetermined, fixed size. It first makes some extra copies of
the parameters available in the stack frame, which the called function's code
can use to do some performance optimizations. Next, this arrangement
happens to handle that C function with a variable-length parameter list

- - - - - - - - - - - - - - - - - _ - ____ - _____ - - - - f'!!'~'! ~ ! ~-~ !'~C' !'~'!."'."'!''" -0
because all of its parameters get passed via the stack frame. In this situation
the called function retrieves the parameters out of RAM, rather than from the
registers.

The stack frame is composed of four regions: a saved registers area, a local
storage area, a parameter (or argument) area, and a linkage area. The saved
registers area is used to preserve the contents of any nonvolatile GPR or FPR
used by the function (that is, rl3 through r31, and fprl4 through fpr31). If the
function is simple enough so that its code uses only the volatile registers, this
area doesn't exist. The local storage area holds the function's local variables,
and is a fixed size. The nonvolatile registers are used for local storage first.
Additional local variables that can't fit into the registers spill over into the
local storage area on the stack. Like the saved registers area, it's possible that
a simple function might not have a local storage area. A function uses the
parameter area to set up and forward parameters to other functions that it
calls. The calling function must arrange this area's contents before every
function call. Because a function typically calls many other functions, the
size of its parameter area size must be set to accomodate the function that
has the largest parameter list.

The linkage area stores the previous SP (which points to the base of the last
stack frame), the RTOC, the Condition Register (CR), and the Link Register
(LR). With the link area juxtaposed to the stack's top, the calling function can
readily access information in this section, and the called function can locate
the caller's parameter area.

Let's see how the setup of the stack frame eliminates the need for a frame
pointer. When a function gets called, a special piece of code produced by the
compiler called a prolog builds the stack frame. It first preserves LR, CR, and
RTOC in the calling function's link area. This is done simply using offsets
from the SP's current position. The LR contains the program's next instruc
tion address, whose value serves as a return address later. Depending upon
the situation, the prolog might not preserve the CR or RTOC registers. For
example, a function inside your own program's code fragment uses the same
TOC, and so the prolog code doesn't save the RTOC's contents. This elimi
nates the overhead of two move instructions from the function call.

Next, the contents are written into the save area. Finally, the prolog code
allocates space for the stack frame by decrementing the stack pointer, and
then it writes the previous SP into its own link area. This value is occasionally
called the back chain because it points to the bottom of the previous stack
frame.

0-~~ ~!:'~~·C' .!~!•_ -

Important
Code purists will no doubt notice that the prolog writes the saved registers
area before the SP is adjusted to actually create space for the called
function's stack frame. Normally, this is a dangerous thing. That's because
an interrupt might fire, and its handler code will undoubtedly want to push
and pop items from the stack, trashing the saved registers area. This
potentially dangerous situation only occurs when building stack frames.

The solution is that the interrupt handler code immediately bumps the SP
down by an amount that's larger than the saved registers area, and then
does its work. This buffer zone value is currently 224 bytes, which is the
amount of space required to store the processor's nonvolatile registers
(nineteen 32-bit GPRs. and the eighteen 64-bit FPRs), rounded up to the
nearest 8-byte boundary. If you're writing an interrupt handler and tempted
to hard-code this value, don't. It is only valid for 32-bit implementations of
the PowerPC processor. such as the 601, 602, 603, 603e, 604, and 604e.
A 64-bit PowerPC processor, such as the PowerPC 620, requires a larger
buffer zone because the save area must store the contents of 64-bit
registers. Instead, use the Mac OS's Exception Handler to install the
handler. The Exception Handler is privy to the processor type and adjusts
the SP by the appropriate amount before calling the handler, and fixes up
the SP after it exits.

When a function exits, special code called an epilog code tears down the stack
frame. First, it increments the SP by the frame's size (thereby discarding it).
Next it restores the registers from the called function's register save area. Then
it restores LR from the calling function's link area. The RTOC is restored
immediately by code in the calling function when execution returns to it.

To return from the called function, the epilog executes a branch instruction
that uses the address stored in the LR register. This value is essentially a
return address, and control passes to the calling function. (Now you know
why these calling conventions bothered with that particular register!) As you
can see, this arrangement requires that the called function doesn't mess with

- ~~~'! ! ! ~""" ~-~"' .!'~~'<C"~'~ -0
the stack once the stack frame is built. However, the advantage to this
scheme is that a function can both have local storage and access parameters
without resorting to a frame pointer.

Background Info
Now that you've seen all the diagrams and read the explanation, how does

this all translate into something you really appreciate, such as code? Here's

some sample PowerPC assembly code, produced by the CodeWarrior

compiler. This code is for a function that has no parameters, and doesn't

return a result. The prolog to such a function is

void aFunction(void)

mflr r0 II Get the link register (LR)
stw r31, -4(SP) II Store 1st non-volatile register in save area
stw r30, -8(SP) II Store 2nd non-voltaile register
stw r0, 8(SP) II Save LR in caller's link area (see Fig 4.8)
stwu SP, -112(SP) II Allocate stack space and- ..

11 ... save previous SP in link area

The epilog for this the function is

lwz r0,120(SP) II Fetch LR from caller's

addi SP,SP,112
lwz r31, -4(SP)
lwz r30, -8(SP)
mtlr r0
blr

II link area (stack frame size+ 8)
II Dispose of stack frame space
II Restore 1st non-volatile register
II Same for 2nd register
II Restore LR
II Return to calling function via address in LR

Notice in the CodeWarrior prolog that the nonvolatile registers were saved
first. Recall that the saved register area of the stack frame under construc

tion is adjacent to the calling function's link area (or next to the base of its

stack frame). Therefore, the saved registers area can be addressed by

using simple negative offsets before the SP gets moved. These examples

are based on code generated by the Metrowerks compiler. Other compil

ers can generate different prolog/epilog code.

0- ~~F'S f'~'"'~~'C' !~0~'- ____ - _ - •

Mode Mixing
If we continue with our example of an application calling a Toolbox routine,
the real question becomes: Is the Toolbox routine about to be called imple
mented as 680x0 code or Power PC code? Put another way, before the proces
sor hops to that routine, how does it determine whether it should simply
start fetching PowerPC instructions or call the 68LC040 emulator instead?

The solution is the Mixed Mode Manager. This is a set of routines that
enables a PowerPC function to call a 680x0 function or a 680x0 function to
call a PowerPC function. Basically, the Mixed Mode Manager operates as a
stack transformation engine. Its job is to massage the stack so that the
function parameters get passed to the target routine in the proper order. The
problem is complicated by the fact that the calling conventions used by a
680x0 environment vary depending upon the programming language used
(C, Pascal, and assembler each use a different method), whereas the
PowerPC uses the register-based mechanism for all programming languages.

Apple solved this thorny problem by designing a Universal Procedure Pointer
(UPP) for all exported functions. A 680x0 procedure pointer is normally the
address of a function's entry point. A UPP has either the usual 680x0 proce
dure pointer (the routine's address) or the address of a routine descriptor.
Take a glance at the "Types.h" header file:

#if GENERATINGCFM

typedef struct RoutineDescriptor *UniversalProcPtr, **UniversalProcHandle;

#else

typedef ProcPtr UniversalProcPtr, *UniversalProcHandle;

#endif

The conditional statement GENERATINGCFM informs the CodeWarrior compiler to
use a certain set of declarations when generating PowerPC code fragments.
Otherwise, it uses the 680x0 declarations for code generation. For PowerPC
code, the UPP declaration becomes a pointer to data structure. This data
structure, RoutineDescriptor, contains information that enables the Mixed
Mode Manager to make the context switch from one instruction set

- - - - - - - - - - - - - - - - ______________ - __ E'!!'~"'~ !. ! ~-~ 2~"' .!'~'!!''!.~'~ -0
architecture (ISA) to another. This structure is termed a routine descriptor,
because it decribes the target routine's address, the number and size of the

parameters passed to the routine, the language calling convention the

routine uses, and what ISA implements the routine. Here's a closer look at

RoutineDescriptor's contents, as revealed by examining the header file

"MixedMode.h":

II Routine Descriptor Structure
struct RoutineDescriptor {

Ulnt16 goMixedModeTrap; 11 Trap word, 0xAAFE
Slnt8 version; II Current version
RDFlagsType routineDescriptorFlags; 11 Flags
Ulnt32 reserved1 ; I I Must be zero
Ulnt8 reserved2; II Must be zero
Ulnt8 selectorlnfo;
Ulnt16 routineCount; I I Number of routines
RoutineRecord routineRecords[1]; II Array of routines

} ;

typedef struct RoutineDescriptor RoutineDescriptor;

typedef RoutineDescriptor *RoutineDescriptorPtr, **RoutineDescriptorHandle;

Of course, this listing then begs the question of what a RoutineRecord is, and it

too can be found in the "MixedMode.h" file:

II Mixed Mode Routine Records
typedef unsigned long ProcinfoType;

II ISA Types
typedef Slnt8 ISAType;

enum {

} ;

kM68kISA
kPowerPCISA

struct RoutineRecord

(ISA Type) 0,
(ISAType)1

ProcinfoType
Ulnt8

procinfo;

ISA Type
RoutineFlagsType routineFlags;
ProcPtr
Uint32

reserved1;
ISA;

procDescriptor;
reserved2;

II Must be 0

II Flags

II Must be 0

0- ~!:"'l'f ~~,!:'~".!.'C' !~~~ ______ -

Uint32 selector;

} j

typedef struct RoutineRecord RoutineRecord;

typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

There are several key items to notice in RoutineRecord. ProcinfoType stores a
description of the routine's calling conventions. ISAType indicates whether the
routine exists as 680x0 or PowerPC code. Finally, ProcPtr points to the routine
itself, unless it references a Power PC routine, in which case it actually points
to a transition vector.

When a 680x0 application calls a Toolbox routine, the following sequence of
events occurs. First, execution passes through the UPP for the Toolbox call.
This in turn goes to either the routine directly (if it's a 680x0 application
calling a 680x0 routine) or to a routine descriptor. The head of the routine
descriptor has a 680x0 trap word (that's right, a trap word) that invokes the
Mixed Mode Manager. The Mixed Mode Manager uses the routine descriptor
information to build a switch frame on the stack, just beneath the current
stack frame. This switch frame contains the information necessary to transfer
the arguments in the proper order to the target routine, plus the state of
various registers in both the 680x0 and PowerPC environments (see Figures
4.9 and 4.10).

The routine descriptor then points to the routine's transition vector, which in
turn points to the TOC and entry point of the routine in the Toolbox shared
library. The Mixed Mode Manager uses the transition vector to adjust the
RTOC and pass control to the Toolbox code (see Figure 4.11).

. - E~~"! ~ ~ ~"'!? ~!." ~~ -0
680xO

caller stack
frame

680x0to
PowerP

switch frame

PowerPC
callee stack

frame

1--~~~~~~~-111

Local Variables

Result space

Parameter

Return address

SavedA6

Parameters
(8 words minimum,
more if needed)

Saved LR
Bi--~~~~~~~~

Saved CR

Back chain (low bit Is set)

Stack growth

'
Figure 4.9 The PowerPC stack during a call from 680x0 application to a PowerPC

routine.

0- ~!"P ~~!."~".!.'C' .!~'~'- .

PowerPC
stack frame

PowerPC
to 680x0

switch frame

680x0 caller
stack frame

0

Oxffffffff

Stack growth

y

Saved LR

Saved CR

Back chain

Switch frame indicator

Saved PowerPC
registers
(GPR13-GPR31)

Reserved

Result space

} 680><0 ;oput
parameters

Return address

A6 back chain

Local variables

Figure 4.10 The PowerPC stack during a call from a native application to a 680x0

routine.

- _ E'!!J~te~ ~ ! ~-"'E~~~-~'~ -0
68K application

Toolbox call

68K Dispatch
Table

Routine
descriptor

Transition
vector

Toolbox
shared library

Shared library's
TOC

Figure 4.11 How a 680x0 application accesses a PowerPC Toolbox routine.

Important

Shared
Library's

data

Apple rewrote the most heavily used Toolbox calls in PowerPC code so
that 680x0 applications could benefit from the native performance of the
PowerPC processor. The Toolbox calls ported for the first Power Macs
include portions of QuickDraw, the Font Manager, TrueType, QuickTime,
the Resource Manager, the Memory Manager. fixed-point math, SANE, and
the Script Manager (for foreign language support). This situation changes
as Apple releases new versions of the Mac OS. For example, the System
7.5.2 release for the second-generation Power Macs, such as the Power
Mac 9500, 8500, 7500, and 7200, contains even more native code. The
heavily used Resource Manager is now completely native, as are the
network protocol stacks, and some of the device drivers, especially the
SCSI Manager. Other portions of the native Mac OS, such as QuickDraw,
the math libraries. and the Memory Manager have been tuned for better
performance. Additionally, the 68LC040 dynamic recompiling (DR) emulator
uses code recompilation to make the remaining 680x0 code execute faster.

continues

0- ~CP~ £'~!.'~"2.'C' _T~l~t_ -

continued

Please note that the revised SANE is available only to support 680x0
applications. Native PowerPC applications should use the new industry
standard C math libraries to access to PowerPC's floating-point hardware.
See Appendix B for more information.

The Code Fragment Manager can use a code fragment's version informa
tion to allow updates for the Toolbox shared library located in ROM. Just
as important, because some of the Macintosh OS is still 680x0-specific. the
Trap Dispatcher and dispatch table is supported. This allows existing
Extensions and Control Panels to patch the operating system as before.

Future Directions
As just mentioned, the operation of the native version of the Mac OS
(currently 7.5.x) still relies on the 680x0 exception handler and trap words.
Under Copland, this dispatch mechanism will completely change. The
680x0 processor-specific A-trap table scheme will be replaced completely
by a processor-independent dispatch mechanism based on transition
vectors. This confers some significant advantages. First, the granularity of
what you patch can be finer. Under the old scheme, certain Toolbox calls
use the same trap word as an entry point. Examples of such calls are
FSpopenoF (l in the File Manager. which goes through the
_HighlevelFSDispatch trap, or FindFolder() in the Alias Manager, which
routes through _AliasDispatch. How these routines work is that a value
called a selector-gets passed to a base routine. The base routine uses
this selector value to determine the actual routine that gets called. Patch
ing such routines are messy because you first patch the base routine. The
patch code then monitors the calls that the base routine receives to
determine whether the routine being used is the one whose behavior you
want to change. This arrangement can introduce all sorts of undesired side
effects. Under Copland's new Patch Manager. you can actually patch only
the FspopenDF() or FindFoldero routines. The second advantage is that the
emulation overhead of the 680x0 Trap Dispatcher goes away, so that
Toolbox calls are dispatched quickly. The catch is that all the existing
Extension and Control Panel code based on the A-trap mechanism breaks.

. - __ - - - - - _ Pho~'!~! ~~"-"'P 2°!.":!'~ .!"::'!.~~ -0
The header files for the Toolbox calls contain UPPs for those routines written
in PowerPC code. Thus, calls to these native routines bring in the Mixed
Mode Manager to handle a context switch, when necessary. Because a UPP
points either to a 680x0 routine address or to a transition vector, the same
header files can be used by development tools on either 680x0- or PowerPC
based Macs. Normally, you won't be aware of the sleight of hand going on
here, except in certain situations.

Hazard
If you're writing custom handlers that the operating system calls back to
within your application (in Mac parlance these are termed "call-back
functions"), you need to write your own UPP so that the Mixed Mode
Manager can manage a context switch when that handler is called. The
UPP is required because the operating system has no idea of what type of
ISA your handler is written in, or the type of arguments it uses. Examples
of such handlers include: custom controls for windows or dialogs that use
a control definition function. event filters for dialogs or alerts, high-level
event handlers. and plug-in modules. Otherwise, the Power Mac crashes
and burns.

Fortunately, Apple provides special functions in the header files for those
routines likely to need a UPP. These functions take the procedure pointer
you pass to it and tack a routine descriptor on your custom function. For
example, in Chapter 3, you saw that NewAEEventHandlerProc (l helped install the
high-level Apple Event functions. For custom event filter alerts and dialogs,
there's NewModalFil terProc () , and so on. These functions help immensely in
hiding the details of building a UPP from scratch. When writing a call-back
function documented in Inside Macintosh, search the header files for the
term "New" to locate these support functions. Why? As you can see in the
two examples provided here, these functions always start with the term
"New," so that's a good place to start to discover if there are ready-made
functions available for your use.

Of course, making these context switches has a price. The Mixed Mode
Manager has an overhead of 50-100 680x0 instructions when handling a
context switch between the 680x0 and PowerPC environment. For certain
heavily-called small Toolbox routines, this context switch overhead becomes

0- ~!:"'l"" f'~9~,~~'~' _T~o~it- ______________________________________ .

considerable, and can impact performance. For these routines, Apple
actually implemented them as "fat traps." That is, these routines were
written in both ISAs (680x0 and PowerPC code). This way, no matter what
ISA calls the routine, it can be used without requiring the penalty of a context
switch.

How is this done? The Mixed Mode Manager examines the UPP of the next
routine to be called. If this routine uses the same ISA as the current routine
as determined by looking at ISAType inside of RoutineRecord, the Mixed Mode
Manager retains the current ISA environment. Notice that the routine
descriptor contains an array of routine records. This allows a fat trap's
routine descriptor to have two routine records: one that describes the calling
conventions and the address of the 680x0-version of the routine, and one
that points to the transition vector for the Power PC-version of the routine.

The Mixed Mode Manager thus calls the appropriate code section in the
routine. This in turn eliminates the overhead of the context switch. For
example, if the processor is currently running in the 681040 emulator, and
this 680x0 code calls another Toolbox routine, the Mixed Mode Manager
calls the corresponding 680x0 version of that routine (if it was written as a fat
trap). As more of the Mac Toolbox is replaced by native PowerPC code, these
Mixed Mode Manager context switches will become more infrequent and the
applications will run faster.

A Tale of Two Processors
In this chapter, you learned about the Mac's application architecture for
both 680x0-based and PowerPC-based Macs. While these architectures are
quite different, the Power Macintosh's OS manages to support both. The
PowerPC's run-time architecture provides a simplified structure that can run
faster, as more applications and more of the Mac Toolbox get written as
PowerPC code. It also has separated the data so that the operating system
can become a full-blown preemptive multitasking OS in the future.

At the same time, the Power Mac OS can support existing 680x0 code and
traps. This capability is provided by the use of special declarations in the
Toolbox header files and in your code for custom functions. We'll see how
this is done in the next chapter, "Putting It All Together."

Putting It All
Together

Here's where you apply the knowledge gained in
Chapter 4 to utilize parts of the Power Macintosh run
time architecture. The task might require rolling your
own UPP for a custom function or calling the Code
Fragment Manager itself.

In the last chapter, you saw that the Power Mac is
quite different under the hood, from its PowerPC
processor to the run-time architecture used by its
native applications. However, by use of unique data
structures such as routine descriptors and UPPs, plus
special-purpose functions in the Toolbox header files,
many of these differences are hidden from you.

Almost.

In this chapter you are going to explore situations that
don't quite fall into a category that the header files can
conveniently handle. You'll stray into this gray area
while writing something exotic. Such exotic fare
includes plug-in modules that expand the capabilities
of an application, and extensions that enhance the
operating system by adding patch code. Because the
Power Mac's run-time architecture makes writing
these types of objects easier, it's well worth knowing
how to do this. These types of jobs require that you

have a firm grasp of the fundamentals that you learned in the last chapter.
You'll see how this is accomplished with actual working code.

Let's take an example of writing a custom function first. Let's use a real case
example here, where I wrote a custom function in a utility program called
SwitchBank. I wrote SwitchBank out of my frustration with System 7 .5 in
dealing with "captive" CD-ROMs. A captive CD-ROM is where the Mac's File
Sharing software mistakenly assumes that you're sharing it with other
networked users. When you try to eject the CD-ROM, you get the message
"The disk 'Your Favorite CD' could not be put away, because it's being
shared," and the disk stays put. This is because the Mac OS tries to protect
the networked users' access to the CD-ROM by refusing to eject it.

There are two ways File Sharing comes to this erroneous conclusion. First, in
your eagerness to try out that new CD-ROM game, you insert the disk into
the drive before the Macintosh completes booting. Or, the Mac crashes with
the disk already in the drive. In either case, a feature of the Mac OS is that
when it boots with File Sharing active and detects a CD-ROM in the drive, it
assumes that you want to share its contents. Thus the Mac OS mounts the
disk as a shared volume. This enables a Macintosh file server to resume
sharing a CD-ROM such as the Oxford Dictionary after a power glitch. For
you, however, the solution is to go to the Control Panels folder, open the File
Sharing Setup Control Panel, and turn off File Sharing. Now you can eject the
disk.

Later in the day, you're at the other end of the building. While talking with a
coworker, you realize there's a file on your Mac you need to give her. Because
of File Sharing, it's easy to use her Mac to log onto your Mac, and copy the
file to her system, right? Wrong. To your dismay, you discover that you left
File Sharing turned off, and so you have to walk back to your office anyway.
Because I look at lots of beta software, this scenario happens more often that
I care to admit. I finally decided to do something about it.

Important
This text was written using the full version of Metrowerks CodeWarrior.

You'll have to use slightly different steps when using the limited version on

the CD; the limited version can only work with the sample files provided on

the CD, so the commands Add File ... and New Project are not available.

- ____________________________________ E~~! ~ ! !:"!"~o.!1.!"~ r20_"!!'! -0
So, if you are following along using the limited version of CodeWarrior
that's on the CD, when the text tells you to use the New Project or the
Add File ... command, you should instead open the related project file and
keep it open throughout the exercise. All the associated files will already
be in the project so you won't need the Add File ... command. Then, you
can follow the same procedures as if you were using the full version of
CodeWarrior.

SwitchBank: Initial Investigation and
Design
Ideally, I wanted something that would switch off File Sharing long enough
to eject the CD-ROM, and restart it. To control File Sharing, though, I first
had to know something about it. Simply put, it's an Extension file that, when
installed, makes each Mac look like a file server. This leads you to a question:
What exactly does the File Sharing Extension do? The answer to that question
is an interesting one. Even better, the answer was already available.

Remember the small program "process.c" from Chapter 2 that listed all of
the running processes on the system? If you have File Sharing active, one of
the processes it invariably lists is called the File Sharing Extension. This
implies that an application actually implements File Sharing, because
processes are running applications. To confirm this, I made a copy of the File
Sharing Extension file, and opened it with ResEdit. There was the usual INIT
resource, but sure enough, tucked in with the ICN#, BNDL, and other re
sources was a CODE resource. Opening the CODE resource, I saw a CODE
resource 0. Could that be a jump table? When I examined that resource
closely, I saw an array of numbers, where the value OxA9FO appeared fre
quently (see Figure 5.1). Because you know from Chapter 4 that this value is
the Loadseg < J trap, it confirmed that this was indeed a 680x0 processor
specific jump table. The presence of a jump table in the Extension file meant
that there was actually an application embedded in it. This was good news
indeed, because you can easily control applications with high-level Apple
Events.

0- ~~"!' ~~~":!.'C' !~'!''- -

,. s File Edit Resource Window Find

File Sharing EKtension Il ,.Ii!! •"Ol.ll,A1
01011101

·-~ .'!\>. 0010 1001

COOEs from File Sharing EKtension

E JQ. ~~ CODE ID= O from File Sharil!.!l_EHtension ~
000000 pooo 0898 0000 003c OOOoOOO< .. 000008 0000 0878 0000 0020 DDDxDDD

I
.

000010 OC96 3F3C 0001 A9FO Dn?<ODS>D .. :. 000018 0000 3F3C 000 1 A9FO DO?< 0090
000020 OOOE 3F3C 000 1 A9FO DO?< 00!>0
000028 0032 3F3C 000 1 A9FO 02?< 00!>0
000030 0056 3F3C 0001 A9FO OU?< 00!>0

l~ 000038 009A 3F3C 000 J A9FO Do?< 00!>0
000040 0004 3F3C 000 1 A9FO 0'?< 00!>0 ~ 000048 013A 3F3C 0001 A9FO O:?<OOS>O ill r 000050 0170 3F3C 0001 A9FO Dp?<DDS>D ;: 000058 0 1 SC 3F3C 000 1 A9FO D<l?<DDS>D
000060 020E 3F3C 000 1 A9FO 00?<00!>0

[
000068 025A 3F3C 0001 A9FO DZ?< DD!>D !ill

10 144 ~DESCod~

11 968 "8TMgr"

L- 12 11494 "PDSCode"

13 646 "StartService"

14 1158 "Servercontrol"

15 576 ":!:A51nit"

16 530 "PASLIB"
H

Figure 5.1 The CODE O jump table in the File Sharing Extension file.

Background Info
Why isn't File Sharing written in native code? Remember, not all of the
Macintosh Toolbox. which by a loose definition includes operating system
software. got ported to PowerPC RISC code. This happens to include some
of Apple's own extensions. including portions of QuickTime. the Apple
CD-ROM driver, and others. This will change over time as Apple completes
the porting process.

File Sharing is known as a daemon or, in Mac parlance, a faceless back
ground application. The program has no user interface and, thus, no AS
world. But wait a minute, doesn't File Sharing use a Control Panel, which
sports a user interface? The answer is that the Control Panels don't do much
more than store the current settings and issue Apple Events to the daemons
when you change these settings.

Such daemons tum out to be fairly common in the latest releases of the Mac
OS. The Express Modem, Plain Talk voice recognition, and the LaserWriter
8.3 Desktop Printer Spooler all use daemons. If you're curious as to what OS

- f~~" ~ ! ~~'"' !'C T~t~'" -0
services use daemons, run the process program and save the list of active
processes to a file. Now, turn on these services and use the process program
again to see what processes appear in memory.

Future Directions
Under Copland, such daemons can be written as Copland-aware programs.
Copland-awareness confers a number of advantages. First, the daemon
runs in a separate memory space and is more robust because it is pro
tected from wild accesses from malfunctioning applications that might
cause memory corruption. The other advantage is that the OS kernel
executes it through a preemptive time-slice scheduler, which means that
the daemon still gets time to run, even when a processor-hogging applica
tion such as Munger is active. It's not surprising then, that Apple has
implemented services such as voice recognition as daemons-it makes the
move to Copland much easier.

SwitchBank's design is simple. It orders the File Sharing process to stop and
ejects the CD-ROM. Once that's done, the program restarts the File Sharing
application. Like the program itself, the user interface should be simple as
well. The drag-and-drop feature you implemented in SonOMunger can be
used here. You let the user drag the CD-ROM icon onto the SwitchBank icon
to eject it. To encourage the program's use so that folks will readily drag the
CD-ROM onto SwitchBank's icon, it should eject any volume dropped on it.

Building Resources with Rez
Use the same approach in building SwitchBank that you applied to Munger
and SonOMunger. That is, you start by creating the interface resources first.
However, you use a program called Rez to generate the resources this time
around.

Rez is an MPW tool that accepts text statements that use a C-style syntax to
describe a resource. It generates the appropriate binary image of each
resource from these descriptions. While this method of resource building
doesn't have the point-and-click flexibility of drawing your dialogs, alerts,
and windows that ResEdit offers, it does have its advantages. For example,
with an appropriately written Rez source file, you could modify the resource

0- ~-"'!' ~9C'~"'.'C' ! ~o~i'c ______________________________________ .

ID numbers of all your dialog boxes and dialog items by editing a few defini
tion statements and "recompiling" the file. That's a job that would require
lots of pointing and clicking to fix in ResEdit. Also, large applications require
sophisticated user interfaces, which in tum means complex resources. These
sets of resources are easier to maintain as a Rez source file. Typically, you'll
write most of your resources with Rez statements, and draw your icons in
ResEdit. You then use the DeRez tool, which is a resource disassembler, to
reduce the binary icon resources into text Rez statements.

To begin, launch the CodeWarrior IDE and open the file SwitchBank.rin the
folder PPC Examples:SwitchBank. Or, you can type:

#include "SysTypes.r"

#include "Types.r"

#define Allitems 0b1111111111111111111111111111111

/* 31 flags •/

#define Noitems

#define Menuitem1

#define Menuitem2

#define Menuitem3
#define Menuitem4

0b0000000000000000000000000000000

0b0000000000000000000000000000001

0b0000000000000000000000000000010

0b0000000000000000000000000000100

0b0000000000000000000000000001000

#define MENU_BAR_ID 128

/• Menu bar resource for your menus */

#define APPLE_MENU 128

t• Menu ID for Apple menu */

#define FILE_MENU 129

/* Menu ID for File menu */

#define EDIT_MENU 130

/* Menu ID for Edit menu */

#define SWITCH_MENU 131
/* Menu ID for File Share control */

#define ABOUT_BOX_ID 128

/* Resource IDs for your windows & dialogs */

#define ERROR_BOX_ID 130

#define ERROR_MESS_ID 131

#define APPL_FREF 128

/* Resource IDs for file refs & icons */
#define DISK_FREF 129
#define SWITCH_ICON 128

- 9'~~ ~ ! ~!!!12' !'!. T2~'!!'! -0
Notice the header files "SysTypes.r" and "Types.r." They supply declarations
and structures that define the resource statements written here. Observe also
that the definitions for the menu and dialog resource IDs are similar to those
you used in SonOMunger. That shouldn't come as a surprise, because those
definitions tell the program what resource, by its type and ID number, to use.
You are using those exact numbers here to generate similar resources. In
fact, some programmers take the definitions in this section and move them
into a separate header file that both the program code and Rez source draw
on for resource information. The other reason the definitions appear the
same is that you are going to reuse a lot of SonOMunger's code.

Now it's time to write some resource descriptions. Locate the following text
in SwitchBank.r, or type:

/*Version info for the Finder's Get Info box
resource 'vers' (1, purgeable)

};

0x01,
0x10,
beta,
0x00,
verUs,

"1.1B, by Tom Thompson"

/* Menu resources */
resource 'MBAR' (MENU_BAR_ID, preload)
{

{ APPLE_MENU, FILE_MENU, EDIT_MENU, SWITCH_MENU };
} ;

resource 'MENU' (APPLE_MENU, preload)

APPLE_MENU, textMenuProc,
Allitems & -Menuitem2,

/* Disable separator line, enable About Box */
enabled, apple,

"About SwitchBank 1.1 ... ", noicon, nokey, nomark, plain;
" " noicon, nokey, nomark, plain

0- ~"'~ !'£!l!:"~"C'C' !~~- -

} ;

resource 'MENU' (FILE_MENU, preload)

FILE_MENU, textMenuProc,
Allltems,
enabled, 'File",

uauit 11 ' noicon, "Q', nomark, plain
}

} ;

resource 'MENU' (EDIT_MENU, preload)
{

EDIT_MENU, textMenuProc,
Allltems & -Menultem2,

/* Disable separator line */

enabled, •Edit• ,

0 Undo 0 , noicon, nzu, nomark, plain; . . noicon, nokey, nomark, plain;
11 Cut 11 J noicon, 11x11, nomark,
'Copy', noicon, "C"' nomark,
11 Paste 11 , noicon, 11vn, nomark,

} ;

resource 'MENU' (SWITCH_MENU, preload)

SWITCH_MENU, textMenuProc,
Allltems,
enabled, "Controls',
{

plain;
plain;
plain

'Toggle File Sharing", noicon, 'T", nomark, plain

} ;

To get the B symbol in the 'vers' resource, press Option-S.

The previous statements describe your menu resources. They define a
resource type ('MENU' and 'MBAR'), its ID number, and certain attributes.
They also describe the menu's title, and its item list. The item list contains
the text of each menu item, and a description of how it appears in the menu.

. - El!!&.:~!!"!'~'"'"'~ T29!'!!"!: -0
For instance, the Controls menu has a single item called Toggle File Sharing
that's displayed with no accompanying icon, no checkmark, and in plain
text. It has a Command key equivalent that is the character "T." The 'vers'
resource provides the version number information that appears in a file's
Info box.

/* Your error messages */

resource 'STR#'(128, purgeable)

/* [1) */ 'A problem occurred stopping File Sharing.';
/* [2) */ 'A problem occurred starting File Sharing.';
/* [3] */ "A problem occurred while ejecting the volume.'; ,. [4) ., "You can't eject the startup volume.'; ,. [5] ., "Couldn't find the startup volume.";
/* [6) ., 'Couldn't get valid system information.';
/* [7] */ "Couldn't locate the File Sharing Extension file.•;
/* [8] ., "A problem occurred while loading the Apple Event */

*/ handlers. "· J

/* [9] */ "Sorry, SwitchBank requires System 7 or later */

*/ to run. "· J

} ;

These are your error messages stored as Pascal strings in a STR# resource.
You place them here, rather than hard-coding them as you did in
SonOMunger, for a good reason. As a list in a resource, these strings can be
easily modified with ResEdit without having to recompile the program code.
This opens the possibility of your program being translated into foreign
languages. You can have someone use ResEdit to edit the menu lists, dialog
boxes, and error messages so that they appear in another language (say,
French) without changing the executable code.

/* This ALRT and DITL are used as an About Box */

resource 'DLOG' (ABOUT_BOX_ID, purgeable)
{

{31, 6, 224, 265},
altDBoxProc,
visible,
noGoAway,
0x0,

ABOUT_BOX_ID,
/* No refCon */

0- ~-"'!' !'!!•!:'~'!!.'C' .!!!?~"- .

/* No window title */

} ;

resource 'DITL' (ABOUT_BOX_ID, purgeable)

}

};

/* Item 1 */

{154, 80, 175' 180}'
Button { enabled, "OK" },
/* Item 2 */

{4, 68, 38, 193},
StaticText {disabled, " SwitchBank 1.1\nby Tom Thompson' },
/* Item 3 */

{86, 11, 102, 250},
StaticText {disabled, "Copyright© 1994 Tom Thompson." },
/* Item 4 */

{44, 114, 76, 146},
Icon {disabled, SWITCH_ICON },
/* Item 5 */

{107, 43, 133, 217},
StaticText { disabled, "Written in Metrowerks C " }

/* The ALRT and DITL for the basic error screen •/
resource 'ALRT' (ERROR_BOX_ID, purgeable)

};

{40, 40, 127, 273},
ERROR_BOX_ID,
{

}

OK, visible, silent,
OK, visible, silent,
OK, visible, silent,
OK, visible, silent

resource 'DITL' (ERROR_BOX_ID, purgeable)

{ 52, 162, 72, 220 },
Button { enabled, "OK" } ,

{ 54' 17' 70' 151 } '

-- E~~'! ~ ! ~~'"'!''C T~g-~ -0
StaticText { disabled, "I /0 error, ID = "0" }

} ;

/* Alert and DITL for error message screen */

resource 'ALRT' (ERROR_MESS_ID, purgeable)

{ 40, 40, 147, 280 } '
ERROR_MESS_ID,

{

OK, visible, silent,
OK, visible, silent,
OK, visible, silent,
OK, visible, silent

}j

resource 'DITL' (ERROR_MESS_ID, purgeable)

{

{ 73, 168, 93, 226 }, Button { enabled, "OK" },
53, 14, 97, 157 }, StaticText { disabled, ""0" }

}

} ;

/* File reference resources */

resource 'FREF' (DISK_FREF)
{

} ;

'disk',

1'

resource 'FREF' (APPL_FREF)
{

} ;

'APPL',
0,

/* Bundle resource */

resource 'BNDL' (128)

0- ~!"!' f'~'"'~":!.'C' !<;?"?'.. _________ - - ____ - ____ - - - _ - - - - - - - - - _ - - - - -

{

'SWCH', 0,

{

'ICN#', { 0, SWITCH_ICON },

/* Only 1 icon */

'FREF', { 0, APPL_FREF, 1, OISK_FREF}

/* Two types of files */

}

} ;

/* Signature resource - all 'STR ' resources */

/* must be declared before this! */

type 'SWCH' as 'STR ';

resource 'SWCH' (0) {

"SwitchBank 1.1B"

} ;

These statements describe your alerts, dialog boxes, and their dialog item
lists. There's also the bundle resource, BNDL, and its satellite definitions in
the FREF resources that describe the application's file type, and a disk type.
This latter type allows file type filtering similar to what's used for
SonOMunger. That is, you can only drag and drop icons representing TEXT
file types onto the SonOMunger's icon, and for SwitchBank you can only
drag and drop an icon representing a disk (or volume) onto its icon. This
filtering action performed by System 7 is very convenient. An application
won't see a high-level Open Document Apple Event unless the Mac OS
deems that the dropped file type matches what the application can handle.

/* Your icon data */

data 'ICON' (SWITCH_ICON)

{

};

$"7FFF FFFE 4000 0002 5C00 003A 55F6 1FAA"

$"5006 10BA 4106 1062 4106 1062 4106 1062"

$'4186 1062 4110 0662 4110 0882 4110 0882"

$"471C 38E2 4514 28A2 4514 28A2 4514 28A2"

$"471C 38E2 4110 0882 411F F882 4110 0882"

$'4110 0882 4110 0882 41FF FF82 4004 2002"

$"4004 2002 4004 2002 4004 2002 5C04 203A"

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE"

-------------------------------------~'!!'~"" ~ ! !:"!"!'!'2'.!\~ T20_"!!'" -0
data 'ICN#' (SWITCH_ICON)
{

} j

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA"

$"5008 10BA 4108 1082 4108 1082 4108 1082"

$"4188 1082 4110 0882 4110 0882 4110 0882'
$"471C 38E2 4514 28A2 4514 28A2 4514 28A2"

$"471C 38E2 4110 0882 411F F882 4110 0882"

$"4110 0882 4110 0882 41FF FF82 4004 2002"

$"4004 2002 4004 2002 4004 2002 5C04 203A"

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$'7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE'

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"
$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

/* SwitchBank's color icon in icl8 format */

data 'icl8' (SWITCH_ICON)
{

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$'FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A"

$'2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$'00FF 2AFF FFFF 2A2A 2A2A 2A2A 2A2A 2A2A"

$'2A2A 2A2A 2A2A 2A2A 2A2A FFFF FF2A FF00"

$"00FF 2AFF 2AFF 2AFF FFFF FFFF FF2A 2A2A"

$"2A2A 2AFF FFFF FFFF FF2A FF2A FF2A FF00"

$"00FF 2AFF FFFF 2AFF F52A F52A FF2A 2A2A"

$"2A2A 2AFF F52A F52A FF2A FFFF FF2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A2A 2A2A FF2A 2A2A"

$"2A2A 2AFF 2A2A 2A2A FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 5454 5454 FF2A 2A2A'
$"2A2A 2AFF 5454 5454 FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 7F7F 7F7F FF2A 2A2A"
$"2A2A 2AFF 7F7F 7F7F FF2A 2A2A 2A2A FF00"

$'00FF 2A2A 2A2A 2AFF FF7F FFFF FF2A 2A2A"

$"2A2A 2AFF FFFF 7FFF FF2A 2A2A 2A2A FF00"

0-~ ~'!."~~'C' .!~'~'- -

$"00FF 2A2A 2A2A 2AFF 7F7F 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF7F 7F7F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 5454 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF54 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A"
$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00"

$"00FF 2A2A 2AFF F5FF 2A54 7FFF F5FF 2A2A"

$"2A2A FFF5 FF2A 547F FFF5 FF2A 2A2A FF00"

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A"

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00"

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A"

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00"

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A"

$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF FFFF FFFF"
$"FFFF FFFF FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF F52A F52A"

$"F52A F52A FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 5454 5454"

$"5454 5454 FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 7F7F 7F7F"

$"7F7F 7F7F FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5"
$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF 54F5"

$"2A7F FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00"
$"00FF 2AFF 2AFF 2A2A 2A2A 2A2A 2AFF 542A"

$"2A7F FF2A 2A2A 2A2A 2A2A FF2A FF2A FF00"

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF FFFF"

$"FFFF FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A"

- S~'!i'! ~ ~ !:"!!'!!!!.!' !"~ r211."!!'!: -0
} j

$"2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00"

/* SwitchBank's color icon, in cicn format */

data 'cicn' (SWITCH_ICON)
{

$"0000 0000 8010 0000 0000 0020 0020 0000"

$"0000 0000 0000 0048 0000 0048 0000 0000"

$"0004 0001 0004 0000 0000 0000 0000 0000"

$"0000 0000 0000 0004 0000 0000 0020 0020"

$"0000 0000 0004 0000 0000 0020 0020 0000"

$"0000 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$'FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$'FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$'FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 4000 0002 5C00 003A 55F8"

$"1FAA 5008 10BA 4108 1082 4108 1082 4108"

$"1082 4188 1082 4110 0882 4110 0882 4110'

$"0882 471C 38E2 4514 28A2 4514 28A2 4514"

$"28A2 471C 38E2 4110 0882 411F F882 4110"

$"0882 4110 0882 4110 0882 41FF FF82 4004"

$"2002 4004 2002 4004 2002 4004 2002 5C04"

$"203A 5404 202A 5C07 E03A 4000 0002 7FFF"

$"FFFE 0000 0000 0000 0005 0000 FFFF FFFF"

$"FFFF 0001 CCCC CCCC FFFF 0002 9999 9999"

$"FFFF 0003 6666 6666 CCCC 0004 EEEE EEEE"

$"EEEE 000F 0000 0000 0000 0FFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFF0 0F11 1111 1111"

$'1111 1111 1111 1111 11F0 0F1F FF11 1111"

$'1111 1111 1111 11 FF F1F0 0F1F 1 F1 F FFFF"

$" F111 111 F FFFF F1 F1 F1F0 0F1F FF1F 4141"

$"F111 111F 4141 F1FF F1F0 0F11 111F 1111"

$"F111 111F 1111 F111 11 F0 0F11 111F 2222"

$" F111 111F 2222 F111 11 F0 0F11 111F 3333"

$" F111 111F 3333 F111 11 F0 0F11 111F F3FF"

$"F111 111 F FF3F F111 11 F0 0F11 111F 333F"

$"1111 1111 F333 F111 11 F0 0F11 111F 223F"

0- ~!Pf ~!.'~"2.'C' !<;?!?t_ ____ - .

$"1111 1111 F223 F111 11 F0 0F11 111F 123F"

$"1111 1111 F123 F111 11 F0 0F11 1FFF 123F"

$"FF11 11 FF F123 FFF1 11 F0 0F11 1F4F 123F"

$"4F11 11 F4 F123 F4F1 11 F0 0F11 1F2F 123F"

$" 2F11 11 F2 F1 23 F2F1 11 F0 0F11 1F2F 123F"

$"2F11 11 F2 F123 F2F1 11F0 0F11 1 FFF 123F"

$"FF11 11 FF F123 FFF1 11F0 0F11 111 F 123F"

$"1111 1111 F123 F111 11 F0 0F11 111 F 123F"

$"FFFF FFFF F123 F111 11F0 0F11 111F 123F"

$"4141 4141 F123 F111 11 F0 0F11 111F 123F"

$"2222 2222 F123 F111 11F0 0F11 111 F 123F"

$"3333 3333 F123 F111 11 F0 0F11 111F FFFF"

$"FFFF FFFF FFFF F111 11F0 0F11 1111 1111"

$"1F24 13F1 1111 1111 11F0 0F11 1111 1111 "

$" 1 F21 13F1 1111 1111 11 F0 0F11 1111 1111"

$"1F24 13F1 1111 1111 11 F0 0F11 1111 1111 "

$"1 F21 13F1 1111 1111 11F0 0F1F FF11 1111 "

$"1F24 13F1 1111 11 FF F1F0 0F1F 1F11 1111 "

$"1F21 13F1 1111 11 F1 F1F0 0F1F FF11 1111 "

$"1FFF FFF1 1111 11 FF F1 F0 0F11 1111 1111 "

$"1111 1111 1111 1111 11F0 0FFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFF0"

} i

/* The system's color caution alert icon */

data 'cicn' (2)
{

$"0000 0000 8010 0000 0000 0020 0020 0000"

$"0000 0000 0000 0048 0000 0048 0000 0000"

$"0004 0001 0004 0000 0000 0000 0000 0000"

$"0000 0000 0000 0004 0000 0000 0020 0020"

$"0000 0000 0004 0000 0000 0020 0020 0000"

$"0000 0001 8000 0003 C000 0007 E000 0007"

$"E000 000F F000 000F F000 001F F800 001F"

$"F800 003F FC00 003F FC00 007F FE00 007F"

$"FE00 00FF FF00 00FF FF00 01FF FF80 01FF"

$"FF80 03FF FFC0 03FF FFC0 07FF FFE0 07FF"

$"FFE0 0FFF FFF0 0FFF FFF0 1FFF FFF8 1FFF"

$"FFF8 3FFF FFFC 3FFF FFFC 7FFF FFFE 7FFF"

$"FFFE FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF 0001 8000 0003 C000 0003 C000 0006"

$"6000 0006 6000 000C 3000 000C 3000 0018"

$"1800 0019 9800 0033 CC00 0033 CC00 0063"

. ____________________________________ p~~~ ~ ! ~~gJt .!"_ T!'IJ!'f!!e~ -0

};

$"C600 0063 C600 00C3 C300 00C3 C300 0183"

$'C180 0183 C180 0303 C0C0 0303 C0C0 0603"

$'C060 0601 8060 0C01 8030 0C00 0030 1800"

$"0018 1801 8018 3003 C00C 3003 C00C 6001"

$'8006 6000 0006 C000 0003 FFFF FFFF 7FFF'

$"FFFE 0000 0000 0000 0006 0000 FFFF FFFF"

$"FFFF 0001 FFFF CCCC 3333 0002 CCCC 9999"

$"0000 0003 9999 6666 0000 0004 3333 3333"

$"3333 0005 BBBB BBBB BBBB 000F 0000 0000"

$'0000 0000 0000 0000 000F F000 0000 0000"

$'0000 0000 0000 0000 004F F400 0000 0000"

$"0000 0000 0000 0000 05FF FF50 0000 0000'

$'0000 0000 0000 0000 04F3 3F40 0000 0000'

$'0000 0000 0000 0000 5FF1 1FF5 0000 0000"

$'0000 0000 0000 0000 4F31 13F4 0000 0000"

$'0000 0000 0000 0005 FF11 11FF 5000 0000"

$'0000 0000 0000 0004 F311 113F 4000 0000'

$'0000 0000 0000 005F F12F F21F F500 0000'

$'0000 0000 0000 004F 314F F413 F400 0000"

$"0000 0000 0000 05FF 11FF FF11 FF50 0000"

$"0000 0000 0000 04F3 11FF FF11 3F40 0000"

$"0000 0000 0000 5FF1 11FF FF11 1FF5 0000"

$"0000 0000 0000 4F31 11FF FF11 13F4 0000'

$"0000 0000 0005 FF11 11FF FF11 11FF 5000'

$"0000 0000 0004 F311 11 FF FF11 113F 4000"

$"0000 0000 005F F111 11FF FF11 111F F500"

$"0000 0000 004F 3111 11 FF FF11 1113 F400"

$"0000 0000 05FF 1111 11FF FF11 1111 FF50"

$"0000 0000 04F3 1111 114F F411 1111 3F40"

$"0000 0000 5FF1 1111 112F F211 1111 1FF5"

$"0000 0000 4F31 1111 111 F F111 1111 13F4'

$'0000 0005 FF11 1111 1112 2111 1111 11FF'

$'5000 0004 F311 1111 1111 1111 1111 113F"

$'4000 005F F111 1111 112F F211 1111 111 F"

$"F500 004F 3111 1111 11 FF FF11 1111 1113"

$"F400 05FF 1111 1111 11FF FF11 1111 1111"

$'FF50 04F3 1111 1111 112F F211 1111 1111"

$"3F40 5FF1 1111 1111 1111 1111 1111 1111"

$" 1 FF5 FF31 1111 1111 1111 1111 1111 1111"

$'13FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF 5FFF FFFF FFFF FFFF FFFF FFFF FFFF"
$~FFF5"

0-~ ~!:."~".!.":'.' !~·~- .

Well, you probably won't type all of the hexadecimal codes here that define
the color data of SwitchBank' s icons, but you get the idea. The ICON re
source defines a black-and-white icon, 32 pixels to a side. ICON is the great
granddaddy of the icon formats, starting on the original Mac in 1984. The
cicn resource is a color icon format first introduced on the Mac II in 1987. It
defines both a black-and-white icon, and an 8-bit color icon. It's not com
monly used these days, because its complex format impairs fast data access.
You supply it here because the Dialog Manager has a special feature that it
uses when a dialog item is an icon. If the icon's cicn resource is available, the
Dialog Manager substitutes the color icon for the dialog box's item icon,
instead of using the black-and-white one. No special programming is re
quired for this to occur. Your About Box uses an icon and it appears in color
when you provide this cicn resource. This is also why you supply the cicn for
the system's caution alert icon: When an alert appears, the icon appears in
color on a color Mac.

The more prevalent color icon format is the icl8 format, which represents a
large (32 pixels per side) 8-bit color icon. There's also a small (16 pixels per
side) 8-bit color icon format called ics8 that's used to display file icons in the
Apple menu, the Application menu, and the Standard File Dialog box. The
Finder also uses the ics8 format if you set the window to display small icons.
These formats define color data only, so access to the icon data is fast. If
you've used ResEdit to spelunk around in other application resources, you
can see that the Mac OS uses the icl8 and ics8 format to display file icons. For
simplicity, I've omitted the ics8 icon data.

Save this editor window as the file "SwitchBank.r," or copy the file from the
CD-ROM from CodeWarrior:Code Examples PPC:SwitchBank: folder. Like
the convention of ending project file names with a.µ or .prj extension, Rez
source files typically end with a .r extension. Now it's time to compile the Rez
source code into resources.

Using Rez with the ToolServer
To create the resources, you'll need to use the Rez tool. You can do this in one
of two ways: through the ToolServer application, or using CodeWarrior's
plug-in version of Rez. You start first with the ToolServer application. A brief
explanation is in order here. Apple's MPW software uses an application called
the MPW Shell, which serves as an IDE for Apple's development tools. Where
MPW differs from Metrowerks Code Warrior is that many of its development

. - 9'!~!: ~ ! ~~·"'!'IC TEQ!'f1!'!: -0
operations-such as compiling, linking, and building resources- are con
trolled by command lines typed into a Worksheet window. This window is
managed by the MPW Shell. MPW tools, like Rez, are applications that have
specialized or little interface code, and thus rely upon the environment set
up by the MPW Shell to function. ToolServer is a special-purpose application
that mimics this environment adequately so that these tools can operate
outside of the MPW Shell. This makes them available to third-party vendors,
which in tum lets Code Warrior programmers tap into the large suite of MPW
tools written over the years.

The first step in generating the resource, then, is to start the ToolServer. Go
to the Tools menu in Code Warrior's IDE and select Start ToolServer. A
ToolServer Worksheet window appears, as does a new icon in the menu bar
that represents the ToolServer's menu, and a Tool status window (see Figure
5.2).

The status pane within the Worksheet's bottom scroll bar shows what tool or
script is active. If you're familiar with the MPW enviroment, you can type in
the name of a tool and any arguments, then press Enter to start it. (Note: You
must press the Enter key on the Extended keyboard, or Command-Return on
the Standard keyboard. Pressing the Return key won't have any effect.) While
you won't be working with ToolServer this way, you will rely on the output
that appears in the Worksheet window to tell you if something' s gone wrong.
From the ToolServer menu, select ToolServer Tools, and a hierarchal menu
appears, as shown in Figure 5.3.

Choose Rez from this menu. The Rez options window appears, as shown in
Figure5.4.

Important
Both the MPW Shell and ToolServer use low-level operations to start your
test application or run an MPW Tool, such as Rez. Debugging programs
such as Jasik Design's The Debugger can seize control when they mistake
this low-level activity as a program exception. To prevent The Debugger
from paying you a visit when you launch MPW tools from the ToolServer
Tools menu, pick the tool InformDbgr from this menu first. It adjusts the run
time environment so that The Debugger doesn't interrupt your use of
ToolServer. Or, you can edit the "MWStartup" file in the ToolServer folder
to call the 1nformDbgr tool automatically when you start ToolServer.

0- ".<>!':"'"'P !'~,!:."~~'C' !~''~''- - - - -- - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - .

s file Edit Se11rch Project Tools Window ~

ToolSeruer Worksheet

Tool Server
:Jlf::

Figure 5.2 The ToolServer Worksheet window; the status pane in the lower left scroll

bar shows the active tool.

Notice that the Type item is highlighted in this dialog box. This and the next
item, Creator, are used to specify the type and creator of the file that Rez
generates. Type rsrc in the Type item, press Tab to select the Creator item,
and type RSED. RSED is ResEdit's creator signature, so once the output file
is made, you can double-click on it to launch ResEdit and examine it
immediately.

Now go to the popup menu labeled with the default file name ofRez.out,
and select Write Output to a New File from this menu. A Standard File dialog
box appears. First ensure that you're in the SwitchBank folder. Type the
name SwitchBank.µ.rsrc and press Return. Now that you've selected the
output file's name, type, and creator, let's specify the input. Start by clicking
on the Files & Paths button. Rez places another window titled Files & Paths ...
on the screen (see Figure 5.5). You next guide Rez to the directory that
contains the header files "SysTypes.r" and "Types.r." To do this, you click on
the #Include Paths ... button.

. ____________________________________ S'!'~~ ~ ! ~!1'~oJt ""' T~t~e~ -0
Commendo .•.
EHecute as a Script

Lookup Symbol
Insert Template

ToolSer L'81 Tools ~ Comm11ndo •.•
Comp11re •••
DeRez •.•
DumpCode •••
Dumpfile •••
DumpObj •••
DumpPEF •..
DumpSYM .••
DumpHCOFF ..•
6etfileN11me ••.
Getlist I tern •..

RMetrowerlcs •••

Figure 5.3 Some MPW tools available from the ToolServer.

Rez Options----------------------.

r Resource Output File ~~
' Type r:r.mm l IRez.out lllMlm

I Creator ????

[

@ Rewrite resource file I D Make resource flle read-only
r Resource Alignment·- ::--·i

i L@ Byte 0 Word O LongWor'!._J

I O Merge reso~;~;s Into resour;- flle
j DOK fo repla< e protected re~oures

r:Commond Line
1
'T~ohyon:CW7 PPC:ToolS.rver 1.1 .1 :Tools :R•z'

0 Progress information
D Redeclered types ok
D Modlfic11tion date

Flies & Poths... ~

Preprocessor •••

L11ngu11ges •••

~~.e~ tool used to cmnpfle rosouroes. I [Cancel)

~L-------------------~-·n----~R~e~z,._ __ #]
3.4b3

Figure 5.4 The Rez Options window, where the output file's name, type, and creator

are set.

0- ~!"!' f~'"'~~'C' .I!!?1!'- _______ - - - __ - ___ - - _ - - - - - - - - - - - - - - - - - - - .

.-Flies fl' Peths ... 1 _ ! ®Doth output and lm:lude
(Description Flies ... J 10 Riles resolution: O Outl)ut ttte onl1,t

I. I
~[-#-l-nc-l-ud_e_P_e_t_h_s.-•. -..] 0 lt\clude<I me~ onlq 1

~ !Redirection - ·-]
(Include Peths ... J Input ~Err_or ___ --.
'-------~ I I I I
Comm1md Line--------------------,

'Taohyon;C'lf7 PPC:ToolServer 1 .1.1 :Tools:Rel'-o 'Tachyon£W7 PPC:Gode EJCamp1es
PPC:SwitohBanlc:SwitchBank.jlrsro• -t rsro-c RSED

Help-----------------, [Cencel J
Use thiS screen to speoffii looation ofsouroe files, "include files, fnoludo · ·
statement files, allas resolution, and redireotion options. n Continue B

Figure 5.5 The Files & Paths window, where the input file and search paths are

selected.

Locate the folder Rlncludes in the CodeWarrior:ToolServer:Interfaces path.
(The ToolServer folder and its contents are either on the CD-ROM or on your
Mac's hard drive, depending upon the type of software installation you did.)
When you get there, click on the Add Current Directory button, and this
name gets appended into a list at the bottom of the window (see Figure 5.6).

~ Folder File Drlue Options

Rdd Current Directory:

let Interfaces• l
Ill Rlncludes ~

#include Seerch Peths:

lmlllllllHHllllll

~
(

c
(

=Tachyon

Desktop

Done

Cencel

Open

fldd Q
Remoue l

Figure 5.6 Adding an include file directory to the file search path.

- !?~~"C ~ ! ~"!'i~g_1t .!'~ r211."'!.>'! -0
Click the Done button, and you're returned to the Files & Paths window. Now
go to the Redirection item in this window and click on the Input popup
menu. Select Existing File from this menu, and a Standard File dialog box
appears. Choose the file SwitchBank.r, and press Return. Finally, click on the
Continue button to exit the Files & Paths window. Check that everything is
set properly, then click on the Rez button. You should hear some hard disk
activity, and the status pane indicates that Rez is active. No news in the
Worksheet window is good news: it means the resource compilation ran
successfully. Once the cursor changes from the rotating "beach ball" busy
indicator back to an arrow, click on the WorkSheet window. You wind up
back in Code Warrior, but the ToolServer window remains open in case you
want to run other MPW tools. If you're finished with Rez, go to the Tools
menu in Metrowerks CodeWarrior and pick Stop ToolServer. The Worksheet
window and the menubar icon disappear when the ToolServer application
quits. You do this because ToolServer uses up to 1.5 MB of RAM, which you'll
want to put to use elsewhere.

Background Info
If the ToolServer complains of missing files or scripts, or the MPW tools
don't appear in the hierarchal menu, the ToolServer software may have
been improperly installed. Both the CodeWarrior IDE and ToolServer
require certain files be inside of specific directories to operate properly.
Check the CodeWarrior documentation file, "CW & ToolServer," to deter
mine whether this is the problem.

A file named "SwitchBank.µ.rsrc" should be present in the SwitchBank
folder. Double-click it to launch ResEdit, and examine the resources. If
everything appears in order, then it's time to start writing code.

Using Rez from Inside CodeWarrior
With CodeWarrior 1.4, Rez has become a plug-in module like the PPC CIC++
compiler, the PPC Linker, the MW Pascal PPC compiler, and a medley of
other tools. In this case, adding a resource text file is just like adding a source

0-~!~ ~,~,!.'~'!!.'C' !~'~'"- _· - - - - - - - - - - - - - -

code file. And like a source code file, the Code Warrior IDE manages its
bookkeeping. If you edit the resource text file, CodeWarrior automatically
compiles the resource text with Rez when you bring the project up to date.
To add SwitchBank.r to the project, simply choose Add Files from the Project
menu, and follow the same procedure that you did to add .c or .rsrc files to
the project. Your project window should appear as in Figure 5.7.

Rpply to open project.

D
Linker

D
PEF

• Iii
Access Paths ,

Project Type: I Rpplication ..-1
Rpplication Info:----------.

File Name I SwitchBank

'SIZE' Flags~
creator I swc~I I
Type~

Preferred Heap Size (k) ~
Minimum Heap Size (k) ~

Stack Size (k) ~

(Factory Settings J (Reuert Panel J [Cancel J ([OK JJ

Figure 5.7 The SwitchBank project window with a resource text file added.

When you build the project or bring it up to date, you'll see the message
"Compiling SwitchBank.r" in the status line of the CodeWarrior Toolbar. This
is followed by the .r interface file name, just as the header files do when the C
compiler operates on your source code. However, you won't see a separate
SwitchBank.µ.rsrc file in the folder as you did with Rez under the ToolServer.
Instead, the resources are added to the project file itself.

If the .r file doesn't appear in the Standard File dialog box, the Rez plug-in
might not have been installed correctly. Go to the Edit menu, select Prefer
ences, and check that there is a Rez panel present, as shown in Figure 5.8.

- El!'~"!~! !'"~;~'-"!'C r2,_"'!!'!: -0
Apply to open project.

II . ~ l11ngu11ge Info:
·l

PPC Processor I~

n D Suppress W11rnlng of Redecl11red Types

PPC Linker :.,

D llfi~
PPCPEF i.

D "
!lil
.!Jli !~

PPC Project I PrefiH File I

•~ ! (ractory Settings J ([l) [Reuert Panel J (Cancel J OK

Figure 5.8 The Rez preferences panel in the CodeWarrior IDE.

If Rez isn't present, check the contents of the CodeWarrior Plug-ins folder to
see whether the Rez plug-in is installed. The CodeWarrior IDE expects to find
plug-in files in specific locations, and if they are absent, the services of those
plug-ins aren't available to you. Consult the CodeWarrior documentation for
the proper installation of the Rez plug-in.

Which method is better, using Rez with the ToolServer, or using the Rez
plug-in? There is no best way, because both produce the desired result of
creating resources for the program. If you want to double-check the results of
your Rez compile, going the ToolServer route produces a file that you can
examine later with ResEdit. The Rez plug-in stuffs the resources into the
project file's data fork, which are not easily accessible. The Rez plug-in,
however, is a lot easier to use, and, because the resource text file is part of the
project, you can use the Code Warrior editor to modify the file. Furthermore,
the CodeWarrior IDE performs version tracking, just as it does with the C
source and header files, and automatically calls Rez to update the resources
after you make a change. Which method you choose depends entirely upon
issues such as the migration from an MPW environment, or if another team
member designs the resources separately from the coding efforts.

0- ~!"!' ~~'"'~'!!.'C' !~'~'- .

The SwitchBank Program
Let's start with the definitions first:

#include <Types.h>
#include <ConditionalMacros.h>
#include <QuickDraw.h>
#include <Windows.h>
#include <Fonts.h>
#include <Controls.h>
#include <Dialogs.h>
#include <Menus.h>
#include <Devices.h>
#include <Memory.h>
#include <Files.h>
#include <Events.h>
#include <Desk.h>
#include <OSEvents.h>
#include <ToolUtils.h>
#include <Diskinit.h>
#include <Folders.h>

#include <AppleTalk.h>
#include <AppleEvents.h>
#include <EPPC. h>
#include <PPCToolBox.h>
#include <Processes.h>

/* Definitions */
#define LAST_MENU 4
/* Number of menus */

#define LAST_HANDLER 3

/* Number of Apple Event handlers - 1 */

#define MENU_BAR_ID 128
/* ID for MBAR resource */

#define APPLE_MENU 128
/* Menu ID for Apple menu */

#define FILE_MENU 129
/* Menu ID for File menu */

#define EDIT_MENU 130
/* Menu ID for Edit menu */

#define SWITCH_MENU 131

. - !'~e!'! ~ ! ~"~i!!Jl_lt !J~ T2~'! -0
/* Menu ID for File Share control */

#define RESOURCE_ID 127
/* Start index into the menu array */

#define ABOUT_BOX
/* About box item# in Apple menu */

#define !_QUIT
/* Quit item# in File menu */

/* Various constants */

#define NIL
#define FALSE
#define TRUE

0L
false
true

/* Coords for disk init dialog box */

#define INIT_X 112
#define INIT_Y 80

#define APPEND_MENU 0
#define CHAR_CODE_MASK 255
#define DEFAULT_VOL 0
#define IN_FRONT (-1)
#define MAX_TRIES 6
#define NO_CURSOR 0L
#define LONG_NAP 60L
#define SYSTEM_? 0x0700
#define FILE_SHARING_CREATOR 'hhgg'
#define FILE_SHARING_TYPE '!NIT'

/* Resource IDs for the windows & dialogs */

#define ABOUT_BOX_ID 128
#define ERROR_BOX_ID 130
#define ERROR_MESS_ID 131

/* Resource ID for the message
#define LOG_ID_STR

strings

#define PROBLEM_STOPPING_FS
/* ID numbers of the messages
#define PROBLEM_STARTING_FS
#define PROBLEM_ON_EJECT
#define DONT_EJECT_STARTUP_VOL
#define CANT_FIND_STARTUP_VOL

*/

128

2
3
4

5

*/

0- ~!"P ~,~,'..'~":!.'C' _T~lltjt_ - .

#define TROUBLE_WITH_SYS_INFO 6
#define CANT_LOCATE_FILE 7
#define PROBLEM_WITH_AE_HANDLER 8
#define SYSTEM_7_REQUIRED 9

/* Bit 9 in vMAttrib field = volume is shared */

#define PERSONAL_ACCESS_MASK 0x00000200L

/* Send a message to file server */

#define SEND_MESSAGE 13

/* csCode to shut down server */

#define SHUT_DOWN 2

These declarations are from "SonOMunger.c" because, as stated earlier, you
are reusing a lot of that code. Most Mac programmers keep handy a working
"shell" that implements basic application components, such as Toolbox
initialization, the event loop, simple menu functions, and high-level event
handlers. Writing a new program thus becomes a matter of fleshing out the
details with application-specific custom functions. This also simplifies
debugging, because you're building on a proven code foundation. Now
declare the functions you plan to use:

/* Function prototypes */

Boolean Check_System(void);
/* Standard application functions */

Boolean Do_Command (long mResult);

Boolean Init_Mac(void);
void Main_Event_Loop(void);
void Report_Error(OSErr errorCode);
void Report_Err_Message(long messageID);

Boolean Init_AE_Events(void);
/* High level Apple Events */

void Do_High_Level(EventRecord *AERecord);
pascal OSErr Core_AE_Open_Handler(AppleEvent •messagein,

AppleEvent •reply,
long refin);

pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent •messagein,
AppleEvent •reply,
long refin);

pascal OSErr Core_AE_Print_Handler(AppleEvent •messagein,
long refin);

- E'!'&.: ~ ! ~~'"' ~c r!"l-''!!'~ -0
pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein,

AppleEvent *reply,
long ref In);

/* Functions to handle details of file sharing */
Boolean File_Share_On(short vRefNum);
Boolean Find_File_Sharing(void);
Boolean Get_FS_Info(void);
void Stop_File_Sharing(void);
void Start_File_Sharing(void);
void Toggle_File_Sharing(void);

As you can see, your functions are broken down into the "generic" ones
you always reuse, plus the application-specific ones. Now for some data
structures:

/* Assorted structures for server trap */

typedef long *LongintPtr;

#if defined(powerc) : : defined (~powerc)
#pragma options align=mac68k
#end if

struct DisconnectParam

QElemPtr qLink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
OSErr ioResult;
LongintPtr scDiscArrayPtr;
short scArrayCount;
short reserved;
short scCode;
short scNumMinutes;
short scFlags;
StringPtr scMessagePtr;
} j

#if defined(powerc) : : defined(~powerc)
#pragma options align=reset
#endif

0- ~C'.!' !'~,'.'~":!.'C' !<;?~'. ______________________________________ .

typedef struct DisconnectParam DisconnectParam;
typedef union SCParamBlockRec SCParamBlockRec;
typedef SCParamBlockRec *SCParamBlockPtr;

/* Structure for adding handlers into AE event dispatch table */
struct AEinstalls

{

AEEventClass theClass;
AEEventID theEvent;
AEEventHandlerProcPtr theProc;

} ;

typedef struct AEinstalls AEinstalls;

/* Globals · standard */
WindowPtr geventWindow;
/* your private window */
EventRecord gmyEvent;
CursHandle gtheCursor;
/* Current pointer icon */
Boolean guserDone;
WindowPtr gwhichWindow;
short gwindowCode;

/* Application-specific globals */
short gdragNDropFlag;
ProcesslnfoRec gprocess;
ProcessSerialNumber gprocessSN;
long gSysDirID;
short gsysVRefNum;
FSSpec gthisFileSpec;
FSSpecPtr gthisFileSpecPtr;

Define your usual gaggle of globals here. The high-level event structure for
the dispatch table is recycled from "SonOMunger." The other data structures
are used to set up a function that controls the file server software that's at the
core of File Sharing. This code illustrates an important point. Note the use of
the #pragma options align=mac6Bk statement. There's a reason that it's here, due
to how different processors access data in different ways.

- !'~!!!'" ~ ~ ~"~;~!t!J!_ T2Q.~'" -0
The 680x0 processor readily accesses data bytes at any memory address.
Larger data types, such as long words, must be aligned on even memory (2-
byte) addresses, or an exception occurs. Put another way, the 680x0 proces
sor requires that most data be aligned on word (16-bit) boundaries. A 680x0
compiler typically adds padding bytes at certain points in a program's data
structures to ensure that they are word-aligned.

The PowerPC processor, on the other hand, favors memory alignment that
conforms to the data's size. In other words, it can readily access bytes at any
address, words (16 bits) at every even address, and longs (32 bits) at every
address divisible by four. Note the use of the verb favors here: The Power PC
can actually access data of any size at any address. However, aligned
memory fetches require fewer bus cycles than unaligned ones. This situation
is summarized in Table 5.1. In special situations, misaligned data can actu
ally trigger an exception. To minimize bus cycles and thus improve perfor
mance, PowerPC compilers insert padding bytes into data structures to
achieve the preferred data alignment.

Table 5.1 Processor-Specific Data Element Alignments

Processor Data Element Size Preferred Alignment

680x0 byte None

word 2-byte alignment required

long 2-byte alignment required

PowerPC byte None

word 2-byte alignment preferred

long 4-byte alignment preferred

0- ~"'~ ~'~':'~".!.'C" !~.".''- -

Important
For the PowerPC 603, 604, and 604e, take care to ensure that elements
within data structures and the contents of large blocks of data stay aligned
on 4-byte (long) boundaries for optimum performance. Typically, a compiler
adds padding bytes to some of the variable's storage locations to optimally
align all of the variable's memory addresses to a 4-byte boundary. For
complex data structures, however. with a mix of different-sized variables,
misalignment can still occur and a program's performance suffers. This
is one of those situations where it's up to you, the programmer, to
ensure that data misalignment doesn't occur. See Chapter 7 for additional
information.

A data structure that's optimally aligned for the PowerPC processor might
not be word-aligned and thus not usable by a 680x0 processor. On a Power
Macintosh, you might wonder why you would care about data alignment
anyway. Recall that the Mac Toolbox still implements many routines as
680x0 code, and the 68LC040 emulator expects the data to be word aligned.
Also, there are still plenty of 680x0-based Macs out there that your software
should support. For example, suppose your program creates files with
internal data structures that you expect a 680x0 Mac to read. Likewise, a
networked Power Mac might transfer data through the network to 680x0
Macs for use. In both cases, proper data alignment is crucial.

To avoid this problem, the #pragma options align=mac68k statement tells the
compiler to word-align the program's data structures. Performance may
suffer on a PowerPC, but this data arrangement ensures that the 680x0
processor accesses will operate, especially for emulated Toolbox code. The
align=reset directive immediately after DisconnectParam structure tells the
compiler to resume arranging data in the PowerPC's preferred data align
ment scheme. This is done to minimize the impact of misaligned data
accesses on the Power PC processor. The header files handle most of these
alignment issues for you, much the same way that they set up the UPPs for
certain Toolbox calls. However, for the custom function here-or any data
structure you expect to pass the Mac OS or 680x0 Mac-you have to take care
of the alignment problem yourself.

- E~~" ~ ! !"!"~'2' !'~ r211.°'!!'" -0
Now it's time to write your custom function:

/* Glue to call the ServerOispatch trap */
#if USES68KINLINES
#pragma parameter ~00 mySyncServerOispatch(~A0)
#endif
pascal OSErr mySyncServerOispatch(SCParamBlockPtr PBPtr)

FOURWOROINLINE(0x7000, 0xA094, 0x3028, 0x0010);

/* = { */
/* 0x7000, /* MOVEQ #$00, 00
/* 0xA094, /* _ServerOispatch
t• 0x3028,*/
/* 0x0010 /*

; Input must be 0*/
Hop to the trap*/

MOVE.W ioResult(A0),00; Move result to 00 because*/
/* } ; File Sharing doesn't.*/

#ifdef powerc
II Call the 680x0 code from the PowerPC through Mixed Mode Manager
static pascal OSErr mySyncServerOispatch(SCParamBlockPtr PBPtr)
{

ProcinfoType myProcinfo;
OSErr result;

/*Need an RTS at the end to return ... */
static short code[) = {0x7000, 0xA094, 0x3028, 0x0010, 0x4E75};

/* Build the procinfo (note use of register based calls) */
myProcinfo = kRegisterBased

RESULT_SIZE(SIZE_COOE(sizeof(OSErr)))
REGISTER_RESULT_LOCATION(kRegister00)
REGISTER_ROUTINE_PARAMETER(1,kRegisterA0,
SIZE_COOE(sizeof(SCParamBlockPtr)));

result= CallUniversalProc((UniversalProcPtr) code,
myProcinfo, (PBPtr));

return result;
/* end mySyncServerOispatch() */

#endif

Syncserveroispatch () is a Toolbox routine that controls the file server software

that implements AppleShare and File Sharing. Unfortunately, this routine

escaped being defined in Apple's PowerPC libraries. Because I happened to

0- ~"!"!: E":!.'C'~":!.'C' !~0~'- ______________________________________ _

know the trap word and glue code for SyncserverDispatch (), it seemed
that I could define the routine call myself. I wrote a function called
mySyncServerDispatch () that uses the 680x0 assembly language code to imple
ment the missing routine call. The conditional flags usES6BKINLINES and powerc

make CodeWarrior use either the original in-line 680x0 machine code when
making the 680x0 version of the application, or use the Power PC function
when making the Power PC application. By placing the 680x0 function
definition before the PowerPC's, the 680x0 function serves double-duty as
the PowerPC's function prototype. All the PowerPC function does is create
the appropriate routine descriptor for mySyncServerDispatch () before calling the
same 680x0 machine code. Let's see how this is done.

In the PowerPC version, declare mySyncServerDispatch () as static to give its
name file scope instead of global scope. You use the same in-line machine
code as in the 680x0 version of the function, but with an important twist.
On a 680x0 processor, the routine's code executes in-line, with execution
resuming at the next instruction when the processor returns from the A trap
exception. However, for the PowerPC version, you call this in-line code as a
function. To return properly to the calling function, you add a 680x0 RTS

instruction (Ox4E75) to the code. You have to call the routine this way so that
the Mixed Mode Manager can step in and handle the instruction set context
switch.

Next, you construct the data structure myProcinfo, which contains a descrip
tion of mysyncServerDispatch() 's arguments. This routine is register based:
That is, the argument and result get passed in 680x0 processor registers.
MysyncserverDispatch (l expects a pointer to a parameter block that contains a
server control command in register AO, and the result of the operation is
returned in register DO. Once myProcinfo is set up to describe this arrange
ment, you call CallUniversalProc(), and pass it the address of the routine call
(the first element of the array code), myProcinfo, and the parameter block with
the server command. When calling a 680x0 routine, as in this example, you
can see that the 680x0 code pointer is a UPP. Therefore, it's unnecessary to
create a routine descriptor for a 680x0 routine. This is why ca11universa1Proc ()

takes the routine descriptor information as a separate argument. Generating
code on-the-fly in the code array this way isn't the best implementation of
the routine call, but it works adequately for this particular program.

- E'!!'~'!: ~ ! ~"!"~'-"""LT~~'!: -0
Important
Implementing a function by using a code array can create potential prob

lems on PowerPC processors with a Harvard architecture (that is, separate

instruction and data caches). such as the PowerPC 603, 603e, 604, and

604e. (The 601 uses a unified cache that can contain both code and

data.) Because the machine instructions inside the array technically are

data, they could wind up in the processor's data cache instead of the

instruction cache, creating no end of problems for program execution.

However, I've conducted tests on a PowerBook 5300 (which has a 603e)

and a Power Mac 9500 (which has a 604), and this function works fine.

Why? It works because the function is written in 680x0 code, which is

treated as data at all times by the 680x0 emulator. This wouldn't be the

case if the function were written in native code, so beware of writing

native function calls this way.

You've made a change to the error reporting function:

void Report_Err_Message(long messageID)

unsigned char errorString[256];

GetindString((unsigned char *)

errorString, LOG_ID_STR, messageID);
if (errorString[0] == 0)

/* Is there a string present? */

{

SysBeep(30);
return;

/* No, give up */

} /* end if *I

ParamText(errorString, NIL, NIL, NIL);
CautionAlert(ERROR_MESS_ID, NIL);

} /* end Report_Err_Message() */

Instead of accepting a pointer to a Pascal string, Report_Err _Message () now
processes a message ID number. This message ID number corresponds to
the ID number of a STR# resource that contains the relevant error message.

0- !'."~"'P !'°~'!.'~".!.'C' !~!''. ______________________________________ _

This function uses GetlndString () to retrieve a string and passes it to the
routines ParamText () and cautionAlert () for display. You do one safety check
here. The Pascal string format has a length byte at the start of the string, and
it is followed by the string data. The length byte tells how many characters
are in the string. If this value is zero, something's gone awry, and you bail
out.

The basic error function, Report_ Error (), hasn't changed.

Here are the first application-specific functions:

Boolean Get_FS_Info(void)
{

gthisFileSpecPtr = >hisFileSpec;
gprocessSN.highLongOfPSN = kNoProcess;
gprocessSN.lowLongOfPSN = kNoProcess;

/* Store record size */
gprocess.processinfoLength = sizeof(ProcessinfoRec);

/*Allocate room forthe name */
gprocess.processName = (unsigned char*) NewPtr(32);
/* Direct towards your storage */
gprocess.processAppSpec = gthisFileSpecPtr;
/* Loop until all processes found */
while (GetNextProcess(&gprocessSN) == noErr)

{

if (GetProcessinformation(&gprocessSN, &gprocess) == noErr)

/* Is this process the File Sharing Extension? */
if (gprocess.processType == FILE_SHARING_TYPE &&
gprocess.processSignature == FILE_SHARING_CREATOR)

return TRUE;

} I* end if *I
} /* end while */

return FALSE;
}/* end Get_FS_Info() */

Get_FS_Info() searches the Mac OS process list, looking for a process whose
file signature is the File Sharing Extension. You'll notice that you swiped
most of this code from "process.c." This function assumes File Sharing is
active, which means its process is present. If you discover such a process,

-- E~~'~ ~ ! ~~'"' _AJ' T2!J!'~'~ -0
Get_Fs_Info (> returns TRUE. The file name connected to this process is saved

in the global gprocess. processAppSpec. If the process list is walked without

finding a match, it returns FALSE.

Boolean File_Share_On(short volRefNum)
{

HParamBlockRec ioHPB, volHPB;
GetVolParmsinfoBuffer volinfoBuffer;

/* Get volume reference number */
volHPB.volumeParam.ioCompletion = NIL; volHPB.volumeParam.ioNamePtr = NIL;

/* No volume name */

volHPB.volumeParam.ioVRefNum = volRefNum;
/* 0 = Use only volRefNum to obtain the info */

volHPB.volumeParam.ioVolindex = 0;
if (IPBHGetVInfo(&volHPB, FALSE))

{

/* Get volume's characteristics */

ioHPB.ioParam.ioCompletion = NIL;
ioHPB.ioParam.ioNamePtr = NIL;
ioHPB.ioParam.ioVRefNum = volHPB.volumeParam.ioVRefNum;
ioHPB.ioParam.ioBuffer = (char *) &volinfoBuffer;
ioHPB.ioParam.ioReqCount = sizeof(volinfoBuffer);
if (IPBHGetVolParms(&ioHPB, FALSE))

{

if (volinfoBuffer.vMAttrib & PERSONAL_ACCESS_MASK)
{ /* The disk is shared */

if (Get_FS_Info())
/* Look for File Sharing Ext */

return TRUE;
/* Got the file info you need */

} /* end if */

} /* end if IPBHGetVolParms */

} /* end if !PBHGetVInfo */

return FALSE;
/* end File_Share_On() */

This is part of the program's design to encourage users to drop all their

volume icons onto the SwitchBank application. File_Share_on () is used to

determine whether the volume dropped onto SwitchBank is shared. If
File_Share_on () reports that the volume isn't shared, SwitchBank will eject it

without interrupting File Sharing. The idea is to avoid excessive stopping and

starting of the File Sharing process, which can fragment memory.

0- ~!"!:' ~<£'"'~~'C' !~'~'- - - - -- - - - - - -- - - - - - - - - - - -- - - - - - -- - - - - - - - .

The routine PBHGetVInfo <) takes the volume specification supplied to it via
volRefNum and converts it to a volume reference number. This value, which is
returned in volHPB. volumeParam. ioVRefNum, is Used in the routine PBHGetVolParms ()
to obtain information about the target volume. If bit 9 in the vMAttrib field is
set, the volume is being shared. You confirm this by callingGet_Fs_Info(),
which checks for the File Sharing Extension process. This also primes your
global gprocess. processAppSpec with the file information associated with the
process.

With these functions, you have obtained enough information about the File
Sharing process to switch it off or on. Starting with shutting it off, you have:

/* Send a shut down immediately message */

/* to the File Sharing Server */

void Stop_File_Sharing(void)
{

DisconnectParam serverBlock;
SCParamBlockPtr serverBlockPtr;

/* Point to the message block */

serverBlockPtr = (SCParamBlockPtr) &serverBlock;
serverBlock.scCode = SHUT_DOWN;

/* Server cmd to shut down */

serverBlock.scNumMinutes = 0;
/* Do it immediately */

serverBlock.scFlags = SEND_MESSAGE;
serverBlock.scMessagePtr = NIL;

if (mySyncServerDispatch(serverBlockPtr) == noErr)

/* Let the OS get at the event */

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);
WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);
} /* end if *I
else

Report_Err_Message(PROBLEM_STOPPING_FS);
} /* end Stop_File_Sharing() */

The function stop_File_Sharing () does exactly what it describes. It accom
plishes this by first loading the appropriate values into a parameter block
that forms a server shutdown command with no time delay interval. Then it
calls your custom function mySyncserveroispatch () with this parameter block.
This issues the server shutdown command to the Mac OS.

- ."'!!'~"" ~ ! !:"lti~g_!t !'l T21J..°'!!'" -0
What stop_File_Sharing() executes next might not seem obvious, but it's part
of the reality of cooperative multitasking. If SwitchBank plowed inexorably
onward, the shutdown command wouldn't take effect. That's because
SwitchBank must surrender processor time so that the shutdown command
percolates through the operating system, and for the File Sharing Extension
process to respond to this command. Therefore, you call Wai tNextEvent () to
give processor time to the operating system and other processes. To ensure
that this occurs even when the Mac is operating under a heavy load, call it
twice. If for some reason mySyncserverDispatch () reports an error, display an
error message that explains the problem.

I* Launch the file that has the File Sharing *I
I* application in it. The file name used for *I
I* the launch was obtained from the process *I
I* when it's memory, or by searching the *I
I* startup disk. *I
void Start_File_Sharing(void)
{

OSErr launchErr;
LaunchPBPtr thisAppPBPtr;
LaunchParamBlockRec thisAppParams;

gthisFileSpecPtr = >hisFileSpec;
thisAppPBPtr = &thisAppParams;
thisAppParams.launchBlockID = extendedBlock;

II Use new format
thisAppParams.launchEPBLength = extendedBlockLen;
thisAppParams.launchFileFlags = 0;

II Don't care about flags
thisAppParams.launchControlFlags = (launchNoFileFlags +

launchContinue +

launchDontSwitch);
I* Give it file name grabbed by Get_FS_Info() before *I
I* File Sharing Sharing was stopped *I

thisAppParams.launchAppSpec = gthisFileSpecPtr;
thisAppParams.launchAppParameters = NIL;

I* Send Open event *I
if ((launchErr = LaunchApplication(thisAppPBPtr)) == noErr)

WaitNextEvent(everyEvent, &gmyEvent, SHORT_NAP, NO_CURSOR);
else

Report_Err_Message(PROBLEM_STARTING_FS);
} I* end Start_File_Sharing() *I

0- ~'~ ~!.'~°"'C' _T!!_Of!il_ -

start_File_Sharing () undoes the work of Stop_File_Sharing (). First, it takes the
file name that it obtained from Get_Fs_Info() or Find_File_sharing(), (described
later) and puts it in a parameter block. You also set control flags in this
parameter block that specify your application should continue running after
the target application launches, and for the target application (File Sharing
Extension) not to switch to the foreground. start_File_Sharing () then calls the
LaunchApplication () routine to start the application embedded in the File
Sharing Extension file. Again, you have to call Wai tNextEvent () so the operating
system gets an opportunity to handle the command.

Important
The initial version of SwitchBank sent a high-level Quit Application Apple
Event that stopped the File Sharing Extension process. However. versions
of File Sharing prior to System 7.5.1 had problems restoring server connec
tions if the process were halted and resumed on the fly. The proper way to
stop this process was through file server commands, because File Sharing
operates as a file server. Also. using the server command provides a
terrific example of how to set up and use a routine descriptor.

For those who are interested in how to halt File Sharing using an Apple
Event, here's the original stop_File_sharing < l function. The code illustrates
how to package a Quit Application Apple Event and send it to another
application.

OSErr Stop_File_Sharing(void)
{

OSErr err;
AppleEvent thisEvent;
AEDesc thisAddress;

if (File_Share_On()) /*Turn it off*/
{

err = AECreateDesc(typeProcessSerialNumber, &gprocessSN,
sizeof(processSN), &thisAddress);

if (!err)
err = AECreateAppleEvent(kCoreEventClass,

kAEQuitApplication,
&thisAddress,

- E'!_o~te" ~ ! ~~·2' .!'~ T29_"~'" -0
if (I err)

kAutoGenerateReturnID,
kAnyTransactionID, &thisEvent);

err = AESend(&thisEvent, nil, kAENoReply +

kAEAlwaysinteract +

kAECanSwitchLayer, kAENormalPriority,
kAEDefaultTimeout, nil, nil);

if (I err)
{

AEDisposeDesc(&thisAddress);
AEDisposeDesc(&thisEvent);
} /* end if *I

/* Let the OS handle the event */

WaitNextEvent(everyEvent, &myEvent, LONG_NAP, NO_CURSOR);
} /* end if fileShareOn */

return err;
} /* end Stop_File_Sharing() */

The SwitchBank Controls menu lets you switch on or off File Sharing with
just a keystroke. However, there's a problem here: What if the user started his
Macintosh with File Sharing off, and wants to turn it on? In this situation,
there's no File Sharing process running in memory that Get_FS_Info () can
retrieve a file name from for LaunchApplication () to use. To close the door on
this potential pitfall, I wrote the Find_File_Sharing () function:

Boolean Find_File_Sharing(void)

HParamBlockRec
Finfo
CinfoPBRec
Point

searchPB;
fileSharingExtinfo, fileSharingMaskinfo;
searchSpec1, searchSpec2;

nilPoint = {0, 0};

/* Set up creator and type for File Sharing Extension */

fileSharingExtinfo.fdType = FILE_SHARING_TYPE;
fileSharingExtinfo.fdCreator = FILE_SHARING_CREATOR;
fileSharingExtinfo.fdFlags = 0;
fileSharingExtinfo.fdLocation = nilPoint;
fileSharingExtinfo.fdFldr = 0;

0-~!~ ~'~'"'~'!!.'C' !~'~"- -

/* Set up masks */

fileSharingMaskinfo.fdType = (OSType) 0xffffffff;
fileSharingMaskinfo.fdCreator = (OSType) 0xffffffff;
fileSharingMaskinfo.fdFlags = 0;
fileSharingMaskinfo.fdLocation = nilPoint;
fileSharingMaskinfo.fdFldr = 0;

/* 1st spec block */

/* Search by file type, not name */
searchSpec1.hFileinfo.ioNamePtr =NIL;

/* Type & creator to look for */

searchSpec1.hFileinfo.ioF1Fndrinfo = fileSharingExtinfo;

/* 2nd spec block */
searchSpec2.hFileinfo.ioNamePtr = NIL;
searchSpec2.hFileinfo.ioF1Fndrinfo = fileSharingMaskinfo;

/* Set up search call */

searchPB.csParam.ioCompletion = NIL;
searchPB.csParam.ioNamePtr = NIL;

/* No volume name */

/* Search on startup volume */

searchPB.csParam.ioVRefNum gsysVRefNum;

/* Result goes here */
searchPB.csParam.ioMatchPtr = >hisFileSpec;

searchPB.csParam.ioReqMatchCount = 1;
/* Look for 1 file */

/* Search based on file characteristics */

searchPB.csParam.ioSearchBits = fsSBFlFndrinfo;
searchPB.csParam.ioSearchinfo1 = &searchSpec1;
searchPB.csParam.ioSearchinfo2 = &searchSpec2;
searchPB.csParam.ioSearchTime = 0;

/* Don't time out */

/* Start at the beginning */

searchPB.csParam.ioCatPosition.initialize
/* No search cache required */

searchPB.csParam.ioOptBuffer = NIL;
searchPB.csParam.ioOptBufSize = 0;

if (PBCatSearchSync((CSParamPtr) &searchPB)
return TRUE;

else

0· I

noErr)

- E"!'e''" ~ ~ ~,~;!!.9_•!'' r2~'" -0
Report_Err_Message(CANT_LOCATE_FILE);
return FALSE;
} /* end else */

/*end Find_File_Sharing() */

In this function, you search for the File Sharing Extension on the startup
volume, or boot disk. You begin by setting up the file's signature information
(its creator and type) in a fileSharingExtinfo structure. This signature informa
tion is what you give the routine PBCatsearchSync () so that it can locate the file.
The PBCatsearchSync <) routine performs high-speed searches on a volume's
catalog file for specific file or directory information, and is ideal for the job.
For more information, consult Inside Macintosh: Files. PBCatsearchsync <)

requires two specification blocks. The first contains search information and a
start range, the second contains any masks to filter out information and a
stop range. Your mask information, in the fileSharingMaskinfo structure,
passes only the file's creator and type. Next, you assemble the parameter
block that furnishes PBCatsearchSync () with the information needed to con
duct the search. You supply it a pointer to the file specification global,
gthisFileSpec, for the result to land in. You also provide the volume reference
number of the startup volume so that the search is conducted on the volume
that has the System Folder. This is done because the File Sharing Extension
resides in the Extensions folder, which in turn lies in the System Folder. If
PBCatSearchSync () returns with a match, the global gthisFileSpec contains the
file name, which is ready for use in Start_File_Sharing ().

Background Info
You might be wondering why Get_FS_Info() and Find_File_sharing() both
use the File Sharing Extension's signature information when they search,
rather than just simply plugging in the name "File Sharing Extension." If you
used a file name instead, it hampers the program's capability to operate in
Macs overseas. That's because the File Sharing Extension's name varies in
different languages, while its file signature data never changes.

The next function implements the File Sharing toggle function used in
SwitchBank's Controls menu. It's pretty simple, and it just calls the other
functions discussed previously.

0- ~'""' ~'~9~":!.rn~c~ co~lk~ - •

void Toggle_File_Sharing(void)

if (Get_FS_Info()) /*File Sharing already on (&in memory)?*/
Stop_File_Sharing(); /*Yes, turn it off*/

else /* No, look for the file */
{

if (Find_File_Sharing())
/* Find the File Sharing Extension file */

Start_File_Sharing();
/* Launch it */

} /* end else */

} /* end Toggle_File_Sharing() */

Some of the functions in SwitchBank, such as the one that installs the core
Apple Event handlers, haven't changed and won't be covered here. For a
complete source code listing, check the file "SwitchBank.c" on the CD-ROM,
or Appendix C. However, what has changed is the new Open Document
handler, as shown here:

/* High-level open document event */
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein,

AppleEvent *reply,
long refln)

{

long dummyResul t;
/* Dummy variable for delay() */
register short
Boolean
AEDesc

i, j;

fileShareWasOn;

volDesc;
/* Container for sent volume names */
OSErr volErr, highLevelErr;
/* Number of volumes dropped onto you */
long numberOVolumes;
/* Bit buckets for high-level event info */
AEKeyword
DescType
Size

ignoredKeyWord;
ignoredType;
ignoredSize;

/* Container for volume names as FSSPecs */
FSSpec volFSS;

gtheCursor = GetCursor(watchCursor);
/* Change cursor */

SetCursor(&**gtheCursor);

____________________________________ O'~'e"" ~ ! !:"EJ~g_!t_!ll!_ T!"L''!!'" -0
fileSharewasOn = FALSE;

if (l(highLevelErr = AEGetParamDesc(messagein, keyDirectObject,
typeAEList, &volDesc)))

if ((highLevelErr = AECountitems(&volDesc, &numberOVolumes))
noErr) /* How many? */

for (i = 1; ((i <= numberOVolumes) &&
(lhighLevelErr)); ++i)

/* Process each vol */

if (l(highLevelErr = AEGetNthPtr(&volDesc, i,
typeFSS,
&ignoredKeyWord,
&ignoredType,
(char *)&volFSS,
sizeof (volFSS) ,
&ignoredSize)))

if (volFSS.vRefNum I= gsysVRefNum)
/* Chosen volume the boot drive? */

if (File_Share_On(volFSS.vRefNum))
/* This volume being shared? */

{

Stop_File_Sharing();
fileSharewasOn = TRUE;
} /* end if *I

= 0; /* Set retry count */
while (((volErr = Eject(volFSS.name,

volFSS.vRefNum)) I=

noErr) &&
(j < MAX_TRIES))

WaitNextEvent(everyEvent,
&gmyEvent, SHORT_NAP,
NO_CURSOR);

Delay(10L, &dummyResult);
j++;

} /* end while */
if (volErr == noErr)

UnmountVol(volFSS.name,

0- ~"!'!'0':"9 ~~~":!.m"'~ co~lk~ -

volFSS.vRefNum);
else

Report_Err_Message(PROBLEM_ON_EJECT);
} /* end if I= gsysVRefNum */

else
Report_Err_Message(DONT_EJECT_STARTUP_VOL)j

} /* end if lhighLevelErr */
/* end for */

} /* end if *I
/* Release memory copy of the AE parameter */

highLevelErr = AEDisposeDesc(&volDesc);
} /* end if !highLevelErr */

if (fileSharewasOn)
Start_File_Sharing()i

if (gdragNDropFlag >= 0) /* Did user drag & drop? */
guserDone = TRUE; /* Yes, stop the application */

SetCursor(&qd.arrow); /*Restore the cursor*/
return highLevelErr; /* Kick back any high-level

problems to calling app */
} /* end Core_AE_OpenDoc_Handler() */

This function, like in SonOMunger, gets called when objects get dropped on
the application's icon. The handler uses the routine AEGetParamDesc () to fetch
the message parameter out of the Open Document event sent to it and
coerces the data into a descriptor list. The AECountitems () routine extracts the
number of items in the list, and this value sets the duration of a for loop. The
for loop uses the routine AEGetNthPtr () to obtain each volume name from the
descriptor list, converting it into a file system specification as it does so. As in
SonOMunger, if AEGetNthPtr (> reports an error, the loop stops. The target
volume is now subjected to a battery of tests. First, its reference number is
checked against the startup volume's reference number. If the two match,
the user is attempting to eject the drive with the system software on it, which
is a very bad idea. SwitchBank thus intervenes and warns the user of this.
You could ignore this problem and allow the operation to fail when, because
of the system software, the Toolbox Ei ect () routine detects the volume is
busy. However, you can supply the user with a more informative error
message and save some wasted processor cycles if you do this check now.

Next you look to see whether the volume is being shared. If so, you call
Stop_File_Sharing () to tum off File Sharing and set the flag f ileShareWason to
remind you that you did so. At last you call Ei ect () to eject the volume. The

- E~·&! ~ ~ ~~'"'.!'~ T2'1!''!!'" -0
nice thing about this Toolbox routine is that it handles any type of volume:
CD-ROM, floppy, and networked hard drives. If the Mac is extremely busy,
Eject () might report an error because File Sharing hasn't had a chance to
stop yet. So you wait one-sixth of a second, call Wai tNextEvent (), and retry the
operation. The value of MAX_TRIES for this loop was determined empirically-a
way of saying that I used SwitchBank on a Power Mac running under a heavy
load and experimented until I found a value that worked best. If the eject
fails, warn the user.

When all of the work is done, clean up by first disposing of the copy of the
descriptor list made by AEGetParamDesc(). Then check fileShareWason to see
whether File Sharing needs to be restarted, and call start_File_Sharing () as
required. Finally, check a flag called gdragNDropFlag to determine whether the
application is already running, or was launched because of a drag-and-drop
action. If the latter, flip the state of guseroone to make SwitchBank quit. If any
of the high-level Apple Event routines have reported an error, pass this value
back to the calling application.

A new function in your stable of shell routines is Check_system(). As its name
implies, it's used to check for specific features the application might need to
operate properly:

Boolean Check_System(void)
{

SysEnvRec machinelnfo;
/* Record with machine-specific data */
short sysVersion;
/* System version # */
/*Version of SysEnvirons() to use */
short versionRequested;

sysVersion = SYSTEM_7;

/* MUST set this to get valid results */
versionRequested = 1;

if (SysEnvirons(versionRequested, &machinelnfo) == noErr)
sysVersion = machineinfo.systemVersion;

else
{

Report_Err_Message(TROUBLE_WITH_SYS_INFO)j
return FALSE;

0- ~·~ ~'°Jl~":!.m!''~ l'0'~ - .

} /* end else */

if (sysVersion < SYSTEM_7)
/* Running System 7.0? */

Report_Err_Message (SYSTEM_7_REQUIRED);

return FALSE;
/* No. Sorry, can't run without it */

} I* end if *I

return TRUE;
/* end Check_System() */

The preferred method for investigating certain system features is to use the
Gestalt Manager. However, the Gestalt Manager is available only under
System 6.0.5 or later, which can be a problem if someone happens to launch
SwitchBank on a Mac running an earlier version of the Mac OS. Because
SwitchBank relies so heavily on certain System 7 features such as Apple
Events, File Sharing, and the catalog search performed by Find_File_sharing (),

you must check the operating system version number. The solution is to call
an older routine, sysEnvirons(). You use it to return the operating system
version number, which you compare to see whether it's System 7 or later. If
not, Check_System() returns FALSE so that SwitchBank aborts the initialization
phase. Once you have determined that System 7 is running, then you can use
Gestalt Manager calls to look for specific features. Examples of how to use
the Gestalt Manager to determine system-specific features abound in every
volume of the new editions of Inside Macintosh, and volume VI of the old
editions of Inside Macintosh. In this case, the check for the presence of
System 7 is sufficient.

In oo_command ()you add an entry for SwitchBank's Controls menu, like so:

case EDIT_MENU:
SystemEdit(theitem - 1);

break;

case SWITCH_MENU:
Toggle_File_Sharing();

break;

default:
break;

. - E~e!'! ~ ! ~~'1'.!"!. r.!'ll.'t!!•r -0
There are also some minor changes to Main_Event_Loop ().At the start of the
function, you set gdragNDropFlag equal to 1. At the end of the dlM

} /* end switch gmyEvent.what */

} /* end if on next event */

else /* Null event */

; /* Do idle or background stuff here */

/* Flag to determine whether app was launched by */

/* user or Open Apple Event */

if (gdragNDropFlag >= 0)
gdragNDropFlag--;

} /* end do */

while (guserDone == FALSE)
/* Loop until told to stop */

} /* end Main_Event_Loop() */

Here's where the flag gdragNDropFlag gets set. For a drag-and-drop operation,
execution passes through the event loop twice (once for the Open Applica
tion Apple Event, and once for the Open Document Apple Event). The event
loop decrements gdragNDropFlag until it goes negative, which occurs if the loop
is traversed three times or more. At this point, if the value is negative, you
can safely assume the application was launched by the user, and so
gdragNDropFlag prevents core_AE_Openooc_Handler() from stopping the application
if a volume is dragged onto SwitchBank.

The initialization function has changed:

Boolean Init_Mac(void)
{

Handle theMenuBar;

/* Lunge after all the memory you can get */

MaxApplZone();

/* Make sure you've got some master pointers */

MoreMasters();
MoreMasters();
MoreMasters();

0-~~ ~~"2.m!''.! !"!!'~ - .

MoreMasters();
MoreMasters();
MoreMasters();
MoreMasters();
MoreMasters();

/* Initialize managers */

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEinit();
InitDialogs(NIL)j

/* Got the menu resources OK? */

if ((theMenuBar = GetNewMBar(MENU_BAR_ID)) NIL)
return FALSE;

SetMenuBar(theMenuBar);
/* Add your menus to menu list */

DisposHandle(theMenuBar);

/* Make Apple menu */

AppendResMenu(GetMenuHandle(APPLE_MENU), 'DRVR')j

DrawMenuBar();

/* Look for specific features or set up */

/* handlers this app needs */

if (ICheck_System()) /*Need System 7 */
return FALSE;

if (IInit_AE_Events())
/* Set up high-level event handlers */

return FALSE;

if (FindFolder(kOnSystemDisk, kSystemFolderType,
kDontCreateFolder, &gsysVRefNum, &gSysDirID) I= noErr)

{

Report_Err_Message (CANT_FIND_STARTUP_VOL)j
return FALSE;
} /* end if */

- St..~"" ~ ! ~!!!>.!'!II! r211."!!'" -0
InitCursor(); /*Tell user app is ready*/
return TRUE;

} /* end Init_Mac() */

This time you build your menus by using GetNewMBar c > and the MBAR resource
you made in SwitchBank.r. This eliminates the array of MenuHandles and
the for loop you used in SonOMunger. However, if you want to add hierar
chal menus in your application, you'll still have to use the InsertMenu c > routine
to set them up. You call Check_system(> to see whether the Mac is running
System 7, followed by Init_AE_Events(>to install your high-level event han
dlers. Finally, you call FindFolder c >, a routine that obtains information on
system directories such as the Preferences folder. If you pass this routine the
constants kOnSystemDisk and kSystemFolderType, you get the startup volume
reference number. From the earlier function descriptions, you'll recall that
you needed this information for some error checking and the catalog search.
The main c > function hasn't changed at all. To examine the complete source
code of the program, open the SwitchBank.c file in the SwitchBank folder, or
check Appendix C.

Creating the SwitchBank application uses the standard make operation you
performed on SonOMunger. Compile the SwitchBank.c file, and correct any
errors. Ensure that only the libraries "MCWRuntime.Lib" and "Interface.Lib"
are in the project. Then, go to the Edit menu and select Preferences. Choose
the PPC Project panel and change the application's name to SwitchBank,
the creator to SWCH, and the memory size to 384 K (see Figure 5.9).
Click on the SIZE flags popup menu here and uncheck the items
acceptSuspendResumeEvents, doesActivateOnFGSwitch, and canBackGround. The first two
flags indicate that an application does its own window maintenance when
the application gets switched from the foreground to the background, or
vice-versa. Because SwitchBank doesn't have any windows other than a
modal dialog box for its About window, disabling these flags tells the Mac OS
not to bother sending it any Suspend/Resume events. Finally, because
SwitchBank doesn't do any background processing, there's no reason for
the Mac OS to send it null events, which is why you disable the canBackGround
flag. This helps balance the load for those applications that do perform
background processing and need null events. Confirm that the flag
isHighLevelEventAware is checked on this menu. Now, make the application,
and remember to rebuild the desktop database. The result should be an
application with a knife-switch icon. You can launch the application, and

0- ~~"PC: !""ll~"'.m!c'.! Io~k2' _ - .

from the Controls menu toggle File Sharing on or off. If you leave the appli
cation on the Desktop, you can drag and drop any volume icon onto
SwitchBank. SwitchBank automatically launches, stops File Sharing if
required, ejects the volume, restarts File Sharing, and quits.

Rpply to open project •

II
.i)>

~ Project Type: I Rppllcotlon -..1
liii!' Rpplicotion Info:

PPC Processor li!!!'
I SwitchBonk n mi1; File Nome I llilli

,il!i!1
Creotor I SWCH! I PPC Linker 'SIZE' Flogs~

D I· Type~ !I!!:
11111: Preferred Heop Size (kl~ PPC PEF

il~I: ml. Minimum Heop Size (kl~
:!~I: Stock Size (k) ~ l!!~H li!J n 1· ([l) Rez -0- [Foctory Settings J (Reuert Ponel J (Concel J DK

Figure 5.9 Adjusting the project settings for the SwitchBank application.

The end result is a small utility application that makes my life easier. It also
taught me a lot about the Power Mac's operating system. With the release of
System 7.5.1, Apple modified the behavior of File Sharing so that it no longer
holds a shared CD-ROM captive. Fine and well, but many Power Macs still
run System 7.1.2 or System 7.5, so SwitchBank is still of value to some users.
For the gentle reader, it's a good example of how to write a custom function
and its routine descriptor. You should also have a better picture of how the
Mac OS works.

Making a Fat Binary
You know I think that you should support 680x0-based Macs, if only for the
simple reason there are millions of them out there. For the next several years
or so, count on them to outnumber the Power Macs, although the installed

. _____________________________ - _____ E~'~"'C ~ ! f"."~'-' !"~ T2'1."'!!'C -0
base of Power Macs is growing rapidly. It makes sense to support this large
existing hardware base with your software. However, you might be wonder
ing how you're going to maintain and manage two copies of your applica
tion, one for each type of Mac. The first issue, maintenance, is simple. If you
write the C code carefully, one set of source files can be used to generate
both 680x0 and PowerPC machine code (or binaries). In fact, all of the
programs presented in this book can be compiled without modification in
the Code Warrior IDE using either the 680x0 or PowerPC processor as the
target.

The second issue appears to be more serious. How do you ensure that a
680x0 Mac owner gets a 680x0 version of your application and not the
PowerPC version? The answer is that Apple's PowerPC application design
enables you to create one copy of an application that runs on both a 680x0
Mac and a Power Mac. As you'll recall in Chapter 4, a PowerPC application's
code resides in a file's data fork, while a 680x0 application's code is com
posed of CODE resources in the file's resource fork. Both applications use a
common set of resources such as MENU, WIND, DLOG, and others to
implement the user interface. Because each program's code is in a different
file fork, yet they draw on the same graphical resources, it's possible to make
what's known as a "fat binary," as shown in Figure 5.10. Now each version of
the Mac OS sees what it expects: the 680x0 Mac OS finds CODE resources in
the application's resource fork, and the PowerPC Mac OS finds PowerPC
code in the application's data fork. (Note: The Process Manager won't look
for code fragments in an application unless a cfrg resource is present.) Due
to smart planning on Apple's part, the issue of managing two different
versions of the same application goes away, because one version will suffice.
There are exceptions where it makes better sense to support two copies of
the application. One case might be where the application is a large file, say,
several megabytes. Making this application into a fat binary can double the
file's size, resulting in a box of floppies and a lengthy installation for the user.
In this situation, separate application binaries would keep the installation
job to a manageable size and reduce the application's footprint on the
system.

0- ".<':'.:"'~ f'.''!il~"lm~c:<; "'~lk~ ___ _______ _____________________ _______ .

Resource fork
"'I_

Jump table - CODEO

CODE 1
~;

CODE2
f~fi

!~

~~ CODEx

rff
[:~ DLOG

~-
WIND

~!.~ MENU

cfrg

':.~.'

Figure 5.1 O The file structure for a fat binary application.

Data fork

Power PC
code fragment

I~

Making a fat binary with the Metrowerks Code Warrior isn't difficult and has
two stages. By way of example, let's make "SwitchBank" into a fat binary. The
first stage involves making the 680x0 version of the program. To begin,
construct a new project called SwitchBank.µ .68K that you'll use to build
SwitchBank as a 680x0 application. When the Standard File Save dialog box
appears, go to the Project Stationary item and choose MacOS 68k CIC++.µ
from the popup menu. This informs the Code Warrior IDE that you're using
the 680x0 tools for this project. As a final check, go to the Target pane in the
Preferences window and ensure that Macintosh 68 K is selected as the target.
Remove any surplus library files from the project window, except MacOS.lib.
Now add SwitchBank.c and SwitchBank.r, as shown in Figure 5.11. Before
you make the application, go to the 68 K Project pane in the Preferences
window and name the output file SwitchBank.rsrc. Build the project. This
results in the stand-alone application, complete with the oddball name. This
completes the first stage.

- i''!'e!'l ~ ! ~,~;~gJt!'!. r21l."!!'l -0
= SwltchBank.p,68K

File Code Data1
V Sources 24~1 233i --~ ~ SwttchBanlc.o 2331 • ID

V Mac Libraris It: 301(1 ---~UI 1----!.!.!.!'_05. lib I 301s2

lo
3ffle(s) 321C 233 Ii!:!

Figure 5.11 The Project window for building the 680x0 version of SwitchBank.

The second stage uses the results of the first stage, plus the output from
compiling the same source code with the CodeWarrior PowerPC compiler.
Start by creating a project named "SwitchBank.µ.PPC." Be sure to pick
MacOS PPC CIC++.µ from the Project Stationary popup menu, and check
that Macintosh Power PC is set in the Target pane of the Preferences window.
Add the SwitchBank.c file, and remove any surplus library files so that only
MWCRuntime.Lib and "InterfaceLib" are in the project file. Don't bother to
add the SwitchBank.r file, because you are going to use the compiled re
sources from the 680x0 version of SwitchBank. To do this, add the file
SwitchBank.rsrc to the project, as shown in Figure 5.12.

~llll SwitchBenk •. Jl.PPC lli'i!l
File Code Data:![

V Sources 3lC 5551 • 1:1 ~ SwttohBank.c 3700 555' • ID VRe'Source.5_ .. ____ .. _ .. , ..
01 0 ---·-[%i-

:. ID -v Hae Libraries It: 61C tlC a
lnterfacelib a a : HYCRantime.Lib 6608 1318

izy
4 flle(s) tOIC 11C Iii

Figure 5.12 The Project window for building the SwitchBank fat binary.

0- ~"'!: ~"!ll~"!.m!:'~ !"!!Ii<;)_ -

Go to the Preferences item in the Edit menu and select the PPC Project panel.
Set the project type to application and name the output file SwitchBank.
Set the output file's type to 'APPL' and its creator to 'SWCH'. Go to the SIZE
flags po pup menu and check the following flag bits: is32Bi tCompatible and
isHighLevelEventAware. Uncheck the acceptSuspendResumeEvents,

doesActivateOnFGSwi tch, and canBackGround flags. Now make the PowerPC
project, which produces a native code application. This completes the
second stage, resulting in a fat binary application called SwitchBank. This
one file runs on both 680x0 Macs and Power Macs.

Hazard
"Danger. Will Robinson!" says the robot. If you name the 680x0 file
SwitchBank. and then try to create an PowerPC output file called
SwitchBank, you can potentially confound the CodeWarrior IDE into a
crash, or at least have it complain that the output file is busy. That's
because it attempts to read resources from a file with the very same name
as one to which you're trying to write PowerPC code.

To recap, by adding the 680x0 version of the application to the PowerPC
project file, you fool Code Warrior into automatically copying all of its
resources-including the 680x0 CODE resources-into the PowerPC
application at the completion of the second stage. You can confirm this by
examining SwitchBank with ResEdit and seeing both cfrg and CODE re
sources. Although you could copy these resources using either ResEdit or
Rez, the technique just described does the job using the two compilation
stages you have to do anyway to make the 680x0 and PowerPC binaries.

There's one other thing you can do to SwitchBank so that it conserves
memory on a Power Mac. CODE resources have an attribute bit set called
Preload that makes the Resource Manager load them into memory automati
cally, whether they're used or not. You can fix this waste of memory with
ResEdit. Launch ResEdit, and open the SwitchBank application. Open the
CODE resource, and select all CODE segments but CODE 0. (For SwitchBank,
there's only CODE segment 1.) Choose Get Resource Info from the Resource
menu, or type Command-I. A Get Info box appears. Under the Attributes
section, uncheck the Preload checkbox (see Figure 5.13). Save the file and
quit ResEdit.

- O''!_o~te! ~ ! ~ti~Q2t_!'~ T~9!'!!'! -0
s File Edit Control Data Window

§Iii SwltchBank

Ox 11 BDC4
Ox4CA2C
--Start

no local 1•'8ria!J/es

- .
_I
_ l

lni tOi al ogs <NI L >;

if ((theMenuBar = Ge tNewMBar(MENU...BAR_I D)) == NIL)
re turn FALSE;

Se t MenuBar < theMenuBar) ;
0 i sposHand I e (theMenuBar >;
AppendAesMenu (Ge tMenuHand I e <APPLE.J1ENU), ' ORUR ') ;
DrawMenuBar < >;

I* Go t our menu resour ces OK? * /

I* Add our menus t o menu I i s t */

I* Bu i Id App le menu */

-! /* Look for specif i c f eatures or set up handl ers t his opp needs */
i f < ! Check....Sys t ern <)) /* Need Sys tern 7 * /

re turn FALSE;

if < ! l ni L .AE.....Events<))
re turn FALSE;

I* Set up our hi gh-l eve I even t hand I ers

- : if <F i ndFo I der<kOnSystemO i sk, kSystemFo I derType, kOontCreateFo Ider,
&gsysURe fNum, &gSysO i r I D > ! = no Err >

lill Line: 78 4 Source

Figure 5.13 Changing the Preload attribute on a CODE resource.

Important
The CodeWarrior application supports a number of high-level Apple Events.

including the four core Apple Events. The Metrowerks CodeWarrior /OE
User's Guide describes the suite of Apple Events events that CodeWarrior

IDE supports. These events let you create projects, adjust some of the

preference settings of both project and output files, add or remove files

from a project. compile files, and specify an output file. This capability

enables you to automate portions of the development cycle, which is

valuable for large or complex projects. Here's a sample AppleScript that

generates a fat binary out of the SwitchBank code, using the settings in

the SwitchBank project fi les to combine the two sets of code. Because you

clear out the binaries, the PPC version of the project will automatically

incorporate the latest 680x0 code present in SwitchBank.rsrc.

continues

0-~~ ~~"2.m!C~ !~'!! -

continues

(* 1st stage - Make 680x0 version of application *)

tell application "YourHardDisk:CodeWarrior 8:MetroWerks
CodeWarrior:CodeWarrior IDE 1 .4"

activate
open file "YourHardDisk:CodeWarrior 8:Code Examples

.. PPC:SwitchBank:SwitchBank.µ.68K"
(* Project file should already have settings *)
(* such as output file name and its creator and type set*)

Remove Binaries
make project "SwitchBank.µ.68K"

close project "SwitchBank.µ.68K"

(* 2nd stage - Make PPC version, using resources from 680x0 output file *)

open file "YourHardDisk:CodeWarrior 8:Metrowerks CodeWarrior:Code
.. Examples PPC:SwitchBank:SwitchBank.µ.PPC"

(* Project file should already have settings *)

(* such as output file name and its creator and type set*)
Remove Binaries
make project "SwitchBank.µ.PPC"
close project "SwitchBank.µ.PPC"
quit

end tell

Important
This is just a basic script. with the pathnames to the CodeWarrior IDE and

project files hard-wired in. You'll have to edit these pathnames for this

script to work on your system.

Handling a Code Fragment
Thus far you have seen how to supply the Mixed Mode Manager the informa
tion it needs to handle an instruction set switch when your custom function
is called. Now it's time to go for an excursion into the Power Mac's basement,
to get a glimpse of a code fragment close up. This brings you to the next
utility, FlipDepth. Like SwitchBank, FlipDepth was a utility extension that I
wrote to make my life easier. My work and interests are often at odds on a
Mac's screen. The reason is that I make my living writing, with an occasional
bit of code writing thrown in. In these situations, I need the utmost in
scrolling speed when I examine a lengthy chunk of text or code listing. The

easiest fix, which costs you nothing, is to set the Mac's screen to black-and
white mode. This makes text scrolling very fast, because at this 1-bit pixel
depth the Macintosh doesn't have as much data to pump to the screen as it
does with color data. A color screen requires more bits per pixel, which
means more data must be moved, and thus results in a slower scrolling
process.

This wouldn't be an issue except that what I usually write about is heavy
duty graphics applications-the stuff that uses buckets of 24-bit pixels. So I
was constantly clicking at the Monitors Control Panel, switching the Mac's
screen depth from black-and-white to 24-bit color mode and back, depend
ing upon what I was doing. If I could reduce the means of changing the
screen depth to just a keystroke or two, it would make the job just a little
easier. The real challenge is how to do this, of course.

Interlude: The Anatomy of a Trap
In Chapter 4, you learned that the 680x0 Mac's Toolbox routines are accessed
via a dispatch table. Because much of the Power Mac's Toolbox is still 680x0
code, this remains true, although portions of the underlying mechanism that
accomplishes this have changed.

Background Info
The Power Mac's 68LC040 emulator is made up of two components: a

dispatch table (not to be confused with the 680x0 Mac's dispatch table)

and a PowerPC code block. This dispatch table has an array of 64 K pairs

of PowerPC instructions. The entries in the dispatch table correspond to

680x0 instructions. The main loop of the emulator fetches a 680x0 instruc

tion word and uses it as a 16-bit unsigned index into the dispatch table.

For simple 680x0 instructions, the first PowerPC instruction handles the

operation, and the second instruction jumps back to the emulator loop.

For complex 680x0 instructions, the first PowerPC instruction starts the

emulation process, and the second instruction is a PC-relative branch into

the code block. At this entry point are the PowerPC instructions that

implement the 680x0 instruction. The emulator dispatch table also has

entries for some of the A trap words, which point to native Toolbox

routines. All A traps get routed through the standard 680x0 Mac dispatch

continues

0-~!~ ~'~~":!.m~c~ co~lk~ -

fC)\
~

continued

table, which exists on the Power Mac for compatibility. Execution either
proceeds into the 680x0 emulator, or jumps to the emulator's dispatch
table, and then to PowerPC code.

With System 7.5.2, a dynamic recompiling (DR) emulator boosts the
execution speed of 680x0 instructions. The DR emulator is an add-on to
the existing emulator, and uses the 680x0 dispatch table. Because of this,
existing extensions and control panels that modify the trap tables still
function.

The Mac Toolbox itself provides the means for you to reroute a Toolbox
routine call to custom functions. Four routines, GetosrrapAddress (),
SetOSTrapAddress (), GetTool TrapAddress (), and SetTool TrapAddress (), provide a high
level interface that lets you change a 680x0 dispatch table entry, either for an
OS call or Toolbox call. They accomplish this no matter how the run-time
architecture establishes the connection between the Trap word and Toolbox
routine's code. GetOSTrapAdd ress () and GetTool TrapAdd ress (J accept a Toolbox
trap word, and obtain from their respective dispatch table an address that
points to the requested routine. (Recall in Chapter 4 that Trap dispatcher has
two dispatch tables: one for OS services and the other for low-level routines.)
setOSTrapAddress () and setTool TrapAddress () accept an address to your custom
function and the Toolbox trap word. Both change the dispatch table's entry
for this trap to point to your custom function instead.

Background Info
In the "classic" Mac era, the routines GetTrapAddress() and setTrapAddress()
patched the entries in one unified dispatch table. Because of the number
of new services introduced with the Mac Plus, such as the Hierarchal File
System and SCSI Manager, the dispatch table was divided into OS and
low-level services. The routines NGetTrapAddress() and NSetTrapAddress()
provided the means by which you modified these tables. Both routines
required a third argument, TrapType, that specified the dispatch table to
operate on. The initial version of FlipDepth used these routines, and they
are Still Supported for Compatibility. GetOSTrapAddress (), SetOSTrapAddress (),
GetToo1TrapAddress (), and SetToo1TrapAddress () are the latest implementa
tions of Apple's extension mechanism. They simplify extension writing by
clearly stating what type of service they modify.

. -----------------------------------~~te" ~ ! !."!"!!ii.!'.!'~ CO!l."C>'! -0
A bit of nomenclature here: These custom functions you write to modify a
trap's behavior are called patch code because the term "patch" refers to fixing
a hole in a wall by adding a little material, or fixing a software bug by adding
a little code. Apple's system patches, which fix bugs or add enhancements,
modify the dispatch table the same way to install additional code.

Now when an application calls the modified Toolbox routine, your function
is called instead. If each Extension file's patch code does its job correctly, a
call to a Toolbox routine can be reliably daisy-chained through several
separate code enhancements before the actual Toolbox routine is invoked.
Your function handles such a call one of two ways. The pseudo code for the
first method looks like this:

My_Trap_Enhancement()
{

Do_My_Stuff();
Original_Trap_Routine();

} II end

This is called a head patch, because the function does its job first, then calls
the Toolbox routine itself. Bear in mind that the pseudo code implies that
the trap routine returns control to this function, when in reality it doesn't.
Typically, Do_My_Stuff () performs its task, then jumps to Original_Trap_Routine (),
never to return. You'll see an example of this shortly.

The second method uses this pseudo code:

My_Trap_Enhancement()
{

result= Original_Trap_Routine();
if (result == WHAT_WE_WANT)

Do_My_Stuff();
} II end

This is called a tail patch, because you call the Toolbox routine first, then
perhaps act on a result returned by the routine. For example, you might call
Men use le ct c > and examine what it returns in order to act on a specific menu
selection. Or, you might ignore what Original_Trap_Routine() does and instead
perform a task based on the frequency that original_ Trap_Routine () gets called.
Unlike the head patch, control does return to your function when the routine
completes. On the 680x0 Mac, tail patches are considered evil because the
return to your patch code can interfere with some of Apple's code patches

that work by examining the return address on the stack. For the Power Mac,
the issue of how the patch is applied to a trap is moot, because its architec
ture is fundamentally different.

There are just a few more details you need to be aware of before you write a
line of code. The Mac OS divides its memory into two sections: a system
partition (or system zone) and an application partition (or application zone).
Naturally, the Mac OS uses the system partition for its own use. The system
partition contains the operating system's global variables (known as low
memory globals because they occupy some of the lowest physical addresses
in RAM) and the system heap. The system heap is where drivers, patch code,
and other resources hang out. Resources loaded here are typically shared by
all applications. The application partition is where the Process Manager
loads and launches applications. This section of memory is in constant flux
as applications load and unload.

Your patch code has an important requirement: It can't move in memory. If
it moves, even by accident, the pointer in the dispatch table (or in another
Extension) winds up pointing at random data in memory, rather than at
code. Thus a call to the patched Toolbox routine becomes a jump to no
where, and the Mac crashes. You can lock the code in memory to prevent
this, but you need to avoid creating an immoveable memory block that
fragments the application partition. Thus, the system heap is an ideal place
for the code.

Finally, there's the issue of accessing the global variables your patch code
uses. At the very least, you need one global variable that stores the address
you got from GetOSTrapAddress (l or GetTool TrapAddress (), so that you can call the
original routine. For the 680x0 Mac run-time architecture, this is a tricky
matter. As you recall from the last chapter, register AS points to an
application's globals and jump table. When an application calls the patched
Toolbox routine and your patch code executes, you have an immediate
conflict of interest. Because the code is located somewhere else in memory,
register AS doesn't point to your globals. If you mess with AS to correct this,
there's the very real danger that you can mangle the application's AS world.
The application then loses track of its global variables and function refer
ences, which means certain death.

- ~~·eie.!: ~ ~ ~~;!!."_• !'~ r211.~'.!: -0
Important
Some more nomenclature: patch code typically belongs to a group of
objects known as stand-alone code. Stand-alone code resources encapsu
late pure machine code. These resources are loaded from a file into
memory and executed directly. This is quite different from how an applica
tion loads. For an application, the Process Manager uses the file's CODE O

resource to build an A5 world for it. Then the Process Manager jumps to
another code resource that has the application's main () function. Because
stand-alone code is executed without the benefit of any set up by the
Process Manager. the value in A5 is meaningless. Also, stand-alone code
has to be practically self-contained, because it can't rely on other re
sources being available, other than those supplied by the operating system.

Typical resources that include stand-alone code are drivers (DRVRs).
custom window handlers (WDEFs), custom menu handlers (MDEFs).
Control Panel code (cdev), and Extension code (INID. Remember that last
type, because you'll be returning to it shortly.

Fortunately, there's an easy fix, that was first pioneered by Symantec's
THINK C, and is used by Metrowerks Code Warrior. When you create a stand
alone code resource with the CodeWarrior IDE, it assumes that such code
might be running concurrently inside of an application. The code it gener
ates has all the references to global variables and to functions made with
respect to register A4, rather than A5. When your code is called, all you need
to do is call some glue code provided in a header file that sets up A4 to point
to your code (and thereby our globals) for you.

The Power Mac's new run-time architecture simplifies how you handle
globals. Because each code fragment has a separate data space, and a TOC
that points to objects within it, ready access to global data is built in. To
locate a certain global, you first find the code fragment you want by asking
for it by name, and then asking for the global itself by name. You'll appreci
ate this more when you look at the actual code.

0- ~"!e ~~e!~m!'! :i:o~lk! ______________________________________ _

There is one problem to avoid when you patch a trap on a Power Mac. You
want to avoid creating a performance hit with your patch code. Let's see why.
Certain Toolbox routines in the Mac OS get called often by other Toolbox
routines. (For example, NewWindow() calls QuickDraw routines to create a
window on the screen, as does orawMenu (l in order to draw a menu.) Because
the Power Mac's Toolbox is an amalgam of 680x0 and Power PC code, these
routines might get called by a 680x0 Toolbox routine one time, and then by a
Power PC Toolbox routine the next. A problem arises if this heavily called
routine was only written in Power PC code. The overhead of the Mixed Mode
Manager performing the instruction set context switch for any 680x0 routine
calling this particular routine becomes considerable. For small Toolbox
routines, the context switch overhead becomes large enough to seriously
degrade performance. Apple's solution was to implement these critical
routines as "fat traps." That is, the routine is written in both 680x0 and
Power PC code. Regardless of what routine calls the fat trap, no context
switch is required, and so the performance hit is minimized. The point here
is that on the Power Mac, to avoid degrading performance of critical rou
tines, you have to write a fat trap. This is very convenient, because it allows
you to compare how to do a patch for both system architectures. However,
be aware that not all traps have to be fat. For example, a heavily called
routine that does a lot of processing would probably be better off patched
only with PowerPC code, where the performance boost of native execution
readily compensates for the overhead of the Mixed Mode Manager switch. A
rough rule of thumb is that the overhead of the Mixed Mode Manager
context switch takes approximately fifty 680x0 instruction equivalents or five
hundred PowerPC instructions. If your patch function is roughly larger than
fifty 680x0 instructions, then it's a candidate for being written as native code.

Writing a Fat Trap
With all of this information in hand, let's go write Flip Depth. Open the
FlipDepth.µ.PPC file in the Code Examples PPC:FlipDepth:Projects folder.
Or, start a new project in the Code Warrior IDE and select -Min MacOS PPC
CIC++.µ from the Project Stationarypopup menu. Use the editor to open
FlipDepth.c in the FlipDepth:Sources folder:
,.

Portions © 1994 Rock Ridge Enterprises.
All Rights Reserved.

____________________________________ .f'!:'etel ~ ! fu!.'!!!l_•!'~ r2~'l -0
*/

/*

This tells MixedMode.h that you want _real_
versions of the various RoutineDescriptor
functions and not dummy stubs.

*/
#define USESROUTINEDESCRIPTORS GENERATINGCFM

/*

This #define is for testing only. Without it,
only the 68K version of your patch is called.

*/
#undef DO_PPC_CODE_ONLY
//#define DO_PPC_CODE_ONLY

#pragma once on

#include <Memory.h>
#include <Gestalt.h>
#include <QuickDraw.h>
#include <Windows.h>

#include <TextEdit.h>
#include <Files.h>
#include <Devices.h>
#include <Resources.h>
#include <Errors.h>
#include <Traps.h>
#include <LowMem.h>
#include <Events.h>
#include <Palettes.h>
#include <MixedMode.h>
#include <ConditionalMacros.h>
#include <CodeFragments.h>

#ifndef powerc
#include <A4Stuff.h>
#include <SetUpA4.h>

#endif

#define FALSE
#define TRUE
#define NIL

false
true

0L

0- ~~f !'.'"ll~"'.m.!''! !'0'!' -

/*
Some low memory globals.
You'd rather not use these, but they're
necessary because you'll be operating

in a trap that doesn't move memory.

*/
#define lowMemKeyStroke (*(KeyMap *) KeyMapLM)[0]
#define lowMemKeyModifiers (*(KeyMap *) KeyMapLM)[1]

/* Some constants that define the bits
you'll see in KeyMap */

#define SHIFT_KEY 1L
#define CAPS_LOCK 2L
#define OPTION_KEY 4L
#define CONTROL_KEY BL
#define COMMAND_KEY 0x8000L

#define KEY_COMBO SHIFT_KEY + COMMAND_KEY
#define T_KEYCODE 0x0200L
#define BLACK_WHITE 128

/* First video mode ID in sResource list */

#define FALSE
#define TRUE
#define NIL

false
true

0L

#define kOldSystemErr 10000
#define kMinSystemVersion (0x0605)

Here's your usual complement of header files, plus definitions for the
address of a low memory global and some constants. The header files you see
here define information required by your job-specific code that controls the
screen depth. One important thing to note is that you set
USESROUTINEDESCRIPTORS to GENERATINGCFM (true) immediately before you include
any header files. (Actually, you need this to happen before the MixeclMode.h
header file is used.) This way you signal the CodeWarrior IDE's 680x0 com
piler that you are serious about supporting two processor instruction sets.
The compiler then uses the universal header file's UPP-based descriptions
for any Toolbox calls. A 680x0-specific compilation (#ifndef powerc), requires
the SetUpA4.h and A4Stuff.h header files for the production of stand-alone
code. Because you are using out-of-the-ordinary routines and settings here,

____________________________________ P.!.'~"! ~ ! ~~g_!t_!'~ T~'!!'!: -0
you may want to avoid use of the precompiled header files, such as
MacHeaders.h, which ultimately calls MacHeaders68K.h or
MacHeadersPPC.h (depending upon the target processor). If you really need
the performance of the precompiled headers, edit and compile the
MacHeaders68K.c or MacHeadersPPC.c files with the appropriate options
set. Onward with your source code:

/*===========================*/
#define kPPCRezType 'PPC
#define kPPCRezID 300

/*==========================
The 68k code goes in a normal INIT resource.
Be sure this is set to "system heap/locked".

===========================*/
#define klnitRezType 'INIT'
#define klnitRezID 128

/*================
This is the name of the ppc fragment; for debugging only.

====================*/
#define klnitName "\pEricslnit"

/*==========================
To save some screen space, you'll use 'UPP"
instead of "UniversalProcPtr"

===========================*/
typedef UniversalProcPtr UPP;

Here are some more definitions, but now you are describing the characteris
tics of your generated code. Notice that you are declaring a resource type and
ID number for a PowerPC code fragment here. What gives, when code
fragments don't live in a file's resource fork? There are ways to access a code
fragment from a file's data fork, but occasionally it's easier to load it from a
resource. In taking this tack, you must make the Power PC code fragment
resemble a stand-alone code resource, so that the Mac OS treats it like one.
This is accomplished by copying the PowerPC code fragment from a file's
data fork into its resource fork, and then assigning the newly minted re
source a type and ID number. The resource type doesn't have to be 'INIT',
because you'll use a 680x0 INIT resource to actually install the Power PC
resource. Instead, define the resource as type 'PPC' so you can recognize it as
PowerPC code. Now it's time to define your function prototypes:

0-~~ ~"'.Jl~"!.m!:'~ !'£"~ -

!*==========================
PostEvent Information

=========================== */
en um

} ;

kPostEventinfo = kRegisterBased
RESULT_SIZE(SIZE_CODE(sizeof(OSErr)))
REGISTER_RESULT_LOCATION(kRegisterD0)
REGISTER_ROUTINE_PARAMETER(1, kRegisterA0,

SIZE_CODE(sizeof(short)))
REGISTER_ROUTINE_PARAMETER(2, kRegisterD0,

SIZE_CODE(sizeof(long)))

typedef pascal OSErr (*PostEventFuncPtr) (short eventNum,
long eventMsg);

#define kPostEventFuncName "\pMyPostEventPPC"

/* Note separate functions */
short MyPostEvent68k(short eventNum, long eventMsg);
OSErr MyPostEventPPC(short eventNum, long eventMsg);

/*==========================
GetMouse Information

=========================== */
en um
{

kGetMouseinfo = kPascalStackBased
: STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Point)))

} ;

typedef pascal void (*GetMouseFuncPtr) (Point *mouseloc);
#define kGetMouseFuncName "\pMyGetMouse"

/* Only one function required */
void MyGetMouse (Point *mouseloc);

!*==========================
An original trap is called differently from PowerPC
code than from 68k code because CallUniversalProc() and
CallOSTrapUniversalProc isn't implemented for 68k code.

===========================*!
#ifdef powerc

- E~'~"": ~ ! ~~'1'!'!. T~~·~ -0
#define CallPostEvent(eventNum, eventMsg) \
CallOSTrapUniversalProc(gGlobalsPtr->gOrigPostEvent,

kPostEventinfo, eventNum, eventMsg)
#define CallGetMouse(mouseloc) \
CallUniversalProc(gGlobalsPtr->gOrigGetMouse, kGetMouseinfo,

mouseloc)
#else

#define CallGetMouse(mouseLoc)
(*(GetMouseFuncPtr)
gGlobalsPtr->gOrigGetMouse)
(mouseloc);

#endif

I*==========================
Showiniticon() defintions

=========================== *I
en um
{

} j

kShowiniticoninfo = kPascalStackBased
STACK_ROUTINE_PARAMETER(1, SIZE_COOE(sizeof(short)))

: STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Boolean)))

II Function to display startup icon

typedef pascal void (*ShowinitProcPtr)
(short iconFamilyID, Boolean advance);

#if powerc
typedef UPP ShowiniticonProcUPP;

#define CallShowiniticonProc(userRoutine,
iconFamilyID, advance)

CallUniversalProc((UPP)(userRoutine), kShowiniticoninfo,
(iconFamilyID), (advance))

#else
typedef ShowinitProcPtr ShowiniticonProcUPP;

#define CallShowiniticonProc(userRoutine,

#endif

iconFamilyID, advance)
(*(userRoutine))((iconFamilyID), (advance))

0- ~~~ ~'!9~".'.m~C! l~'!!- -

II Here you supply in-line definitions for NewRoutineDescriptor()
II and NewFatRoutineDescriptor() for a finicky linker
#ifdef NewRoutineDescriptor
#undef NewRoutineDescriptor

#endif
#ifdef NewFatRoutineDescriptor

#undef NewFatRoutineDescriptor
#endif

extern pascal UPP NewFatRoutineDescriptor(ProcPtr theM68kProc,
ProcPtr thePowerPCProc, ProcinfoType theProcinfo)

TWOWORDINLINE(0x7002, 0xAA59);

extern pascal UPP NewRoutineDescriptor(ProcPtr theProc,
ProcinfoType theProcinfo, ISAType theISA)

TWOWORDINLINE (0X7000, 0xAA59);

I* Custom function to place your patch *I
I* code in the system heap *I
Handle Get1ResourceSys(OSType rezType, short rezID);

I* Functions that change screen depth. *I
I* Works one both platforms *I
void Change_Depth(long newDepth);
long Fetch_Depth(void);

These are the definitions for the Toolbox traps PostEvent (J, GetMouse (J, and
ShowinitProcPtr(). ShowinitProcPtr() points to Showiniticon(), a custom function
that displays the Extension file's icon on-screen during the boot process. The
icon displayed by Showiniticon (J indicates whether the patch code was in
stalled properly or not. You examine Showiniticon(J in more detail later. You
also define the inline 680x0 macros for NewRoutineoescriptor() and
NewFatRoutineoescriptor(J so that these routines can be merged into your 680x0
initialization code.

Notice the scary macros CallPostEvent (), callGetMouse (), and
CallShowini ticonProc () define access to PostEvent (), GetMouse (), and
Showini Ucon (), respectively. They reduce using these routines to that of easy
to-.read function calls. Otherwise, you would have to rely on extremely
cryptic C code to do the job. Better still, the macros define a common way to
call these routines, whether from 680x0 code or PowerPC code. On the
PowerPC side of the fence, the macros handle the routine call by passing a

UPP and a routine descriptor to CallOSTrapUniversalProc () for an OS trap, or to
cauuniversalProc() for either a Toolbox trap or function call. The only differ
ence between these two routines is that cauosTrapuniversalProc () preserves
some additional 680x0 registers for register-based OS traps. For the 680x0
side, the macros just pass a pointers to the routines. Both techniques
rely on addresses stored in a global block of memory. The macro
CallShowiniticonProc () performs similar duties for the Showini ti con() display
function, which is located in a separate resource. Note that for the 680x0
code, you don't declare a macro for Post Event (l. That's because a separate
function is necessary to extract the values from this register-based OS
routine.

Let's backtrack here a moment to explain why you are patching these two
routines, Post Event () and GetMouse (). I wanted to patch a trap that handled
events, so that I could monitor the event stream for keystrokes. This way I
could watch for the magic key combination that tells me the user wants to
change the screen depth. Post Event () is a Toolbox routine used by the Event
Manager to place events in the event queue. It has two advantages: First,
because it's actually responsible for creating the event stream, it's the perfect
routine to monitor for keyboard events. Second, Post Event () gets called
frequently, so you can respond quickly to the user.

However, Post Event () does have a down side. I've mentioned that it's an
Operating System routine (or trap). Operating System routines typically
perform low-level functions such as file 110, network 1/0, and memory
management. In the Mac's early days, such routines were register-based.
That is, the calling function passes information to the Operating System
routine by placing the values in certain processor registers. This "calling"
arrangement means that you are going to have to write assembly language to
examine any values passed into or returned from this type of routine. The
other problem is that PostEvent (l doesn't move memory. Put another way, the
routine's memory demands are fixed, so it's not going to force the Memory
Manager to purge memory, or relocate data items whenever it's called. Lots
of Toolbox routines and applications count on Post Event () and certain other
low-level OS routines being well-behaved about memory this way. Whatever
the patch does, it has to be very simple lest you unexpectedly jar the location
of objects in memory and cause a system crash. The safest thing to do is have
the patched PostEvent () routine detect the right combination of key presses,
and set a global flag. You'll use this flag to signal another patched routine to
actually change the screen depth.

0-~!~ !)"o.Jl~":'.m~c~ !<>£"~ ______________________________________ .

The function that handles the depth change should be patched into a
Toolbox routine that doesn't have such strict memory requirements. That's
because every application will be redrawing its chunk of the screen after the
depth change, and this sort of thing definitely affects memory usage. Also,
like PostEvent () , this routine should be called frequently for a fast response
time. The routine GetMouse (J fits these requirements.

GetMouse () is a stack-based Toolbox trap. That is, arguments are passed to this
type of routine by pushing them on the stack. The result is typically returned
on the stack, but there are exceptions. Ironically, GetMouse (J is one of these
exceptions, because it returns a result via a pointer you passed to the routine.

Important
Until now. I've used the term Toolbox loosely to mean any and all routines
that implement services defined by the Mac API. For the moment, you'll
have to make the distinction between Toolbox and OS traps. This is
important because, as mentioned previously, the 680x0 Trap Dispatcher
maintains two different dispatch tables: one for Toolbox traps and one for
OS traps.

Keep in mind the discussion of these routines' memory behavior is based
on the Mac's 680x0 architecture. However, because some of the Toolbox
is emulated 680x0 code. you can assume similar behavior on a Power Mac.
This will change over time as more of the Toolbox is rewritten as native
code. Also, if you want the Extension to operate on the installed base of
680x0-based Macs, you need to follow the guidelines described previously.

Background Info
Historically, the OS traps were designed to be register-based because it
was expected that these low-level routines would only be accessed by
system programmers writing in assembly language. Toolbox traps, on the
other hand, were made stack-based to make them easy to use. This was
because application programmers would use these high-level routines in
their applications.

- S'~'~"l ~ ! fu!'!!.9.!1!"!.T.!'<l!''!!'l -0
Nowadays, the distinction between the two trap types has blurred, because
most compilers provide high-level access to OS traps using glue code. The
definitions blur even further with the Power Macs, because all the routines
pass their arguments through the PowerPC processor's registers, as
described in Chapter 4.

Back to your code. These macros build routine descriptors that describe the
makeup of the traps patched to the Mixed Mode Manager. Remember that
your patch code ultimately calls the original trap, so you have to hand a
routine descriptor to the Mixed Mode Manager so it can field an instruction
set switch when one is required. You declare (no surprise) Post Event (J as a
register-based routine and GetMouse(J as a stack-based Pascal routine.
Showini tr con (J is defined as a stack-based Pascal procedure, a requirement
brought about by the structure of a stand-alone code resource. You also
define function prototypes for the routines and your patch code here.
Observe that the PostEvent (J patch code has both a PowerPC function and a
680x0 function. That's because for the 680x0 version, you have to do some
processing in assembly language to retrieve Post Event (J's arguments from the
680x0 processor registers. As you'll see, such gymnastics are unnecessary for
the Power PC version of the patch. Thus, the two different versions of the
same patch.

Because you place the patch code in the system heap, you declare a custom
function Get1 Resourcesys (J for this purpose. You also declare the screen
control functions, Get_Depth() and Change_Depth(J, here. You don't need to set
up routine descriptors for these functions because they are called locally
inside the patch code. Finally, you declare two function name strings,
kPostEventFuncName and kGetMouseFuncName. The Code Fragment Manager uses
these strings to locate your native patch functions.

/*==========================
This structure is shared between the PowerPC
version of the code and the 68K version.

Both the PowerPC code and the 68k code have a single
global variable, "gGlobalsPtr". They point to the
same area of memory.

===========================*/

0-~~~ !Jo.Jlo:!".!.m~c! !"'!'!- _____________________________________ .

#ifdef powerc
#pragma options align;mac68k

#endif

I*
Note: do not move these fields around!
The assembly code in PostEvent68kStub()

depends on their locations. It must be
compiled with the 68K packing conventions

*/

typedef struct

{

UPP gOrigPostEvent;

II Address of original PostEvent trap
UPP gOrigGetMouse;
II Address of original GetMouse trap
SysEnvRec gSysteminfo;

II Holds info on system config
Boolean gRequestFlag;
II Signals screen depth change

GDHandle gOurGDevice;
II The GDevice of the screen
short gDevRefNum;
II Driver num. for video board's slot
long gOldScreenDepth;
II Mode num. for color screen setting
} MylnitGlobals;

#ifdef powerc

#pragma options align;reset
#endif

I*;;;;;;;;;;;;;;;;;;;;;;;;;;

Global Variables

-- Each side of the code maintains its own
pointer to the same block of memory.

-- You reference the globals ptr by name, so
these two must be changed together.

;;;;;;;;;;;;;;;;;;;;;;;;;;;*I

MyinitGlobals
#define kGlobalsSymName

*gGlobalsPtr;
"\pgGlobalsPtr"

. ____________________________________ ~~>C"'C ~ ! ~"~'~'-'!'!. r2o_"!!'C -0
Here's your globals block, called MyinitGlobals. Note that you use the #pragma

options align=mac6Bk to force word-alignment on the data structures so
MyinitGlobals can be used on a 680x0 processor (or the 68LC040 emulator).
The globals hold the original trap routine addresses (as UPPs, of course) and
other sundry variables, such as the reference number to the device driver
that controls the Mac's screen (goevRefNum) and the logical device that man
ages it (gourGDevice). Like your patch code, you also define a name string for
the pointer to your globals. You'll pass this name to the Code Fragment
Manager when you want to locate the globals block.

/*

@@@@@@@@@@@@@@@ 68000 Exclusive Code @@@@@@@@@@@@@@@

*/
#ifndef powerc

/*==========================
Prototypes for 68K code

===========================*/
OSErr DolnitForOldMacs(void);
OSErr DolnitForPPCMacs(void);
OSErr CreateFatDescriptorSys(void *mac68Code,

void *ppcCode,
ProclnfoType proclnfo,

UPP *result) ;
OSErr PatchTrapsForPPCMac(ConnectionID connID);

void PostEvent68kStub(void);
pascal void GetMouse68kStub (Point •mouseloc);

You now define some processor-specific functions. You'll use a 680x0-based
INIT resource to set up and install your patch code, no matter what proces
sor the Mac uses.

/*==========================
This is *always* the INIT's entry point. This is
the only routine called by system software at startup.

This requires that the INIT resource be set to
System Heap/Locked.

===========================*/
void main(void

long oldA4;

0- ~~"!' ~'!!'"'~'!!.~' !~"!?'- -

Handle ini tH = nil;
/* Handle to your own !NIT resource */

OSErr err = noErr;
long ginfo;
ShowiniticonProcUPP showCode;
Handle showResource = NIL;

/******************************

Global variable support
Place proper value for A4 into hole in !NIT resource.

******************************/

oldA4 = SetCurrentA4();
/* Get proper value of A4 into A4 */

RememberA4(); /*save into self-modifying code*/

/*******************************

Allocate your global variables
*******************************/

gGlobalsPtr = (MyinitGlobals*) NewPtrSysClear(sizeof
(MyinitGlobals));

if lgGlobalsPtr)

err = memFullErr;
goto DONE;
}

/*******************************

Get some basic system information
*******************************/

err= SysEnvirons(1, &gGlobalsPtr->gSysteminfo);
if (err)

goto DONE;

/*******************************

Check the system version
*******************************/

if (gGlobalsPtr->gSysteminfo.systemVersion <

kMinSystemVersion)
{

err = kOldSystemErr;
goto DONE;
}

- !:"~~~ ~ ! ~,~;~g_lt!'~ T2il.~'~ -0
Here's the Extension's main() function, which loads and executes at boot time
by the Mac OS. You first call the Metrowerks functions setcurrentA4(J and
RememberA4 (J, which preserves register A4, then adjusts it to point at your code,
and thus your globals. Next, you allocate a block of zeroed memory in the
system heap, using NewPtrSysClear (J. If you succeed at obtaining the memory,
you then call SysEnvirons (J to determine what operating system you are
running under. If it's less than System 6.0.5, bail out, as you need the Gestalt
Manager to tell you whether you are running on a Power Macintosh.

/*******************************

Get a handle to your own !NIT resource
*******************************/

initH = Get1Resource(kinitRezType, kinitRezID);
if (I initH)

{

err = resNotFound;
goto DONE;

/*******************************

See whether you are running on a PowerPC
*******************************/

err= Gestalt(gestaltSysArchitecture, &ginfo);

/*******************************

Patch all the traps and get everything ready.
*******************************/

if (err : : (ginfo == gestalt68k)
err= DoinitForOldMacs();

else
err DoinitForPPCMacs();

DONE:
II Get Showiniticon() code
showResource = Get1Resource('sdes', 128);
if (showResource I= NIL)

showCode = (ShowiniticonProcUPP) (*showResource);
II Get pointer to resource header.
II Don't need to lock down
II this resource because its
II attribute flags are marked

0-~~ ~!!'~"l'C' _T<:<>~I_ -

II as Locked and SysHeap

II Something went wrong, clean up and display failure icon
if (err)

{

if (gGlobalsPtr
DisposPtr((Ptr)gGlobalsPtr);

if (showResource I= NIL)
CallShowiniticonProc(showCode, (kinitRezID + 1),

TRUE); // Display bad load icon
}

else
II No initialization problems, do final setup and
//display success icon

gGlobalsPtr->gRequestFlag = FALSE;
II Clear request flag

gGlobalsPtr->gOldScreenDepth = Fetch_Depth();
II Get screen depth for later

II Make sure the !NIT code stays in memory when Extension
II file closes. You do nothing for showResource
II because you want it purged.

DetachResource(initH);

if (showResource I= NIL) //Display success icon
CallShowiniticonProc(showCode, kinitRezID, TRUE);

} /* end else */

RestoreA4(oldA4);
/* end main() */

/* restore previous value of A4 */

Now, you set up a handle for your INIT resource. This resource contains the

code you see here, the functions that patch the dispatch table, and your

patch code. You load it into memoryusingGet1Resource(). Next, you use the

Gestalt Manager to determine whether you are running on a Power Mac. If
not, you call the function Doini tForOldMacs () to install the 680x0 patches.

Otherwise, you call DoinitForPPCMacs() to handle the PowerPC patches.

Next, you load the code resource that contains Showiniticon(), to which

ShowinitProcPtr points. You'll use this function to display the appropriate

. - - - - - - - - - - - - - - - ~ - E~icte" ~ ~ ~"!"!ll-"!"~ T21!.~'" -0
installation icon, depending upon the results returned by ooinitForOldMacs(J or
ooini tForPPCMacs (). You access the function this way, rather than embedding it
in your own code so that when you have completed FlipDepth's setup, the
Showiniticon() code gets purged from the system heap. Because Showiniticon()

is used only once, you can conserve memory by letting the Resource Man
ager dispose of the resource when it closes the Extension file. Ideally, you
would organize Flip Depth so that main () and the initialization functions it
calls are purged the same way, leaving only the actual patch code in the
system heap. For the purposes of clarity and simplicity of design, however,
I've kept the initialization code and patch code in one code segment.

If the patching operation fails, you clean up by releasing the memory allo
cated for your globals, and display the failure icon. In this case the Resource
Manager eliminates the INIT code resource containing main (J and your other
setup functions when it closes the Extension file. If the patching process
succeeds, you obtain the system's current screen depth for later use by your
screen control functions, take steps to keep your code in the system heap,
and display the success icon.

To ensure that the Resource Manager doesn't purge your INIT code from
memory, you call DetachResource (J. This Toolbox routine severs the logical link
between ~e Resource Manager and this resource, so that the resource
remains in memory when the Resource Manager closes the file. Because you
don't detach the Showiniticon (J resource, it's disposed for you automatically.
Note that you check for a valid handle to Showiniticon (J's code resource before
attempting to use it. Finally, restore register A4 and exit.

OSErr DoinitForOldMacs(void

/* patch the traps */

gGlobalsPtr·>gOrigPostEvent = GetOSTrapAddress(_PostEvent);
SetOSTrapAddress((UPP)PostEvent68kStub, _PostEvent);
gGlobalsPtr->gOrigGetMouse = GetToolTrapAddress(_GetMouse);
SetToolTrapAddress((UPP)GetMouse68kStub, _GetMouse);

return noErr;
/* end DoinitForOldMacs() */

Here's where you modify the 680x0 Mac's dispatch table to point to your
patch code, and it's pretty straightforward. You first obtain the original trap
address from the appropriate dispatch table using either GetOSTrapAddress (J or

0- ~!'P ~'!.'~"2.'C' !~'~"- .

GetToolTrapAddress (),and save it in your globals block, MyinitGlobals. Next, use
SetOSTrapAddress () or Set Tool TrapAddress (J to replace the original address with a
UPP (actually, a 680x0 procedure pointer) to your patch code. Now let's see
how it's done for a Power Mac:

/*==========================
DoinitForPPCMacs

Initialization code for powerpc Macs.
===========================*/
OSErr DoinitForPPCMacs(void)
{

OSErr err = noErr;
Handle ppcCodeH = nil;
SymClass theSymClass;
Ptr theSymAddr;
ConnectionID connID = kNoConnectionID;
Str255 errName;
Ptr mainAddr;

/*******************************

Load the powerpc version of the code into
memory. Because some of your trap patches may be
called at interrupt time, don't use disk-based
versions of the code.

*******************************/

ppcCodeH = Get1ResourceSys(kPPCRezType, kPPCRezID);
if (!ppcCodeH)

return resNotFound;
HLock(ppcCodeH);

/*******************************

Open a connection with the code fragment you just loaded
*******************************/

err= GetMemFragment(•ppcCodeH, GetHandleSize(ppcCodeH),
kinitName, kLoadNewCopy, &connID,
&mainAddr, errName);

if (err)
{

connID = kNoConnectionID;
goto DONE;
}

- E'!!'~".!: ~ ! ~~_!t !-~ T29_ef!!e!: -0
Because the container for your Code Fragment is a resource, you must first
load it into memory with the Resource Manager. You do this using your
custom function Get1 Resourcesys (),which loads the fragment into the system
heap and returns a handle, ppcCodeH, to it. Get1 Resourcesys (),described later,
sets memory accesses to the system partition and then calls the Resource
Manager to load the resource into that partition. You lock this code in place
using HLock (). Because your PostEvent () patch code might get called during an
interrupt, it requires that the patch code remain in memory at all times,
which is why you load the fragment into the system heap and lock it in place.
Now you pass the code fragment's handle to GetMemFragment(), which prepares
the fragment for execution. You use GetMemFragment () over other Code Frag
ment Manager routines because it operates on fragments in memory. The
constant kLoadNewCopy has GetMemFragment () make a new copy of any of the
fragment's writable data (like your globals), and conn ID returns an ID value
that specifies a connection to this fragment. You could also use the constant
kLoadLib. The connection ID is analogous to the file reference number that the
File Manager routines use for file I/O. You supply this connection ID to other
Code Fragment routines to obtain information on fragments, or the ad
dresses of functions or global data within fragments. Now it's time to find
those globals:

/*******************************

find the global variable ptr that the powerpc
code uses.

*******************************/

err = FindSymbol(connID, kGlobalsSymName, &theSymAddr,
&theSymClass);

if (err)
goto DONE;

/*******************************

Modify the powerpc global variable pointer to point
to the area of memory you have already allocated.

*******************************/

*(MyinitGlobals **)theSymAddr = gGlobalsPtr;
err= PatchTrapsForPPCMac(connID);

/*******************************

Cleanup
*******************************/

DONE:

0-~~ !'!:9!.'~'!!.'C' .I"?'!?'_ -

if (err)
{

/* Close the code frag mgr connection if you got an error */
if (connID I= kNoConnectionID

CloseConnection(&connID);

/* ... and release the memory you allocated*/
if (ppcCodeH)

ReleaseResource(ppcCodeH);
} /* end if *I

else
{

/* No error ·> keep the ppc code around when file closes */
DetachResource(ppcCodeH);
} /* end else */

return err;
} /* end DolnitForPPCMacs() */

You use the Code Fragment Manager routine FindSymbol(l to locate the
PowerPC version of your globals pointer, gGlobalsPtr. You pass it the connec
tion ID obtained with GetMemFragment (l, and the export name of your globals
pointer in the string kGlobalsSymName. FindSymbol() returns the address of the
pointer in theSymAddr. You then direct this pointer toward your globals block.
Now that you can locate your globals, you call PatchTrapsForPPCMac < l to patch
the dispatch table. If all goes well, you call DetachResource () on the Power PC
resource to make the Resource Manager "forget" about the fragment and
leave it in memory. If there is an error, you close the connection to the code
fragment using Closeconnection (), and follow that with a call to
ReleaseResource() to dispose of the code fragment.

Let's see how you patch traps on the Power PC run-time architecture:

/*==========================
PatchTrapsForPPCMac

===========================*/
OSErr PatchTrapsForPPCMac(ConnectionID connID
{

Ptr
SymClass

symAddr;
symType;

OSErr err = noErr;
UniversalProcPtr upp = nil;

- - - - - - - - - - - - - - - .- E~e''" ~ ! !'"C'~'"'!'~ T29_"'!.'<!: -0
II Fat Patch _PostEvent

err = FindSymbol(connID, kPostEventFuncName, &symAddr,
&symType);

if (err)
return err;

err = CreateFatDescriptorSys(PostEvent68kStub, symAddr,
kPostEventlnfo, &upp);

if (err)
return memFullErr;

gGlobalsPtr->gOrigPostEvent = GetOSTrapAddress(_PostEvent);
SetOSTrapAddress((UPP)PostEvent68kStub, _PostEvent);

II Fat Patch _GetMouse

err = FindSymbol(connID, kGetMouseFuncName,
&symAddr, &symType);

if (err)
return err;

err = CreateFatDescriptorSys(GetMouse68kStub, symAddr,
kGetMouseinfo, &upp);

if (err)
return memFullErr;

gGlobalsPtr->gOrigGetMouse = GetToolTrapAddress(_GetMouse);
SetToolTrapAddress((UPP)GetMouse68kStub, _GetMouse);

return noErr;
} I* end PatchTrapsForPPCMac() *I

FindSymbol (> greatly simplifies matters here. You provide this routine with the

name of your patch code functions, and it returns the entry points to them in
the code fragment Because the course of execution could be hopping from
one instruction set to another, you next build a routine descriptor for these
functions. CreateFatDescriptorsys () is a custom function that places the de
scriptor information in the system heap. You examine its code shortly. You
call this function with the address of your 680x0 patch code, the address of
your PowerPC patch code, and the routine descriptor information provided
at the start of this file. createFatDescriptorsys () returns a UPP that points to

0- ~!PP £'~9C'~"2.'C' _T~~;~ ______________________________________ .

both the 680x0 patches and PowerPC patches. At this point, patching the
Power Mac's dispatch table is nearly identical to how it's managed with the
680x0 dispatch table. The original trap address is copied from the proper
dispatch table using either GetOSTrapAddress (), or Get Tool TrapAddress (), and it's
replaced with the UPP to your patch code by calling setosrrapAddress () or
SetTrapAddress ().You could make this section of code more robust by per
forming the memory allocations (via CreateFatDescriptorSys ()) and symbol
locations in the main() function. This way, if there's a problem applying either
of the patches, you have a chance to back out gracefully.

/*==========================
CreateFatDescriptorSys

Creates a fat routine descriptor in the system heap.

===========================*/
OSErr CreateFatDescriptorSys(void •mac68Code, void *ppcCode,

ProcinfoType procinfo, UPP *result)
{

THz oldZone;
OSErr err = noErr;

oldZone = Getzone();
SetZone(SystemZone());

#ifndef DO_PPC_CODE_ONLY

t• Save current zone •t
/* Get you in the system heap */

*result = NewFatRoutineDescriptor(mac68Code, ppcCode,
procinfo);

#else /* debugging only */
•result = NewRoutineDescriptor(ppcCode, procinfo,

kPowerPCISA) j
#endif

SetZone(oldZone);

return (•result? noErr : memFullErr);
/* end CreateFatDescriptorSys() */

Here's that custom function that generates routine descriptors in the system
heap. You begin by saving the current zone (or memory partition). This is
done by first calling Getzone () to obtain a pointer to this zone, and saving it in
oldZone. Then you change the zone that you operate in to the system zone. To

. - !''!;'~le!~ ! ~~g_!t _!'~ T29_"!!'! -0
do this, you call systemzone () to get a pointer to the system heap, and make it
the active zone by passing this pointer to setzone < >. Now when you generate a
new data structure, such as your fat descriptor, the memory gets drawn from
the system heap. Then you call NewFatRoutineoescriptor (),which makes the
UPP containing a fat descriptor. Once that's done, you restore the current
zone by passing oldZone to Setzone (), and exit.

I*==========================
PostEvent68kStub

===========================*I

asm void PostEvent68kStub(void
{

II Reserve space on stack for "real" PostEvent address
sub.I #4, SP

II Save registers (not A0 & 00, though)
movem.l A1-A5101-07, -(SP)

II Push A0 & 00 on stack for call to MyPostEvent68k below
II You must do this before SetUpA4 because it modifies registers

move.I 00, -(SP) II push event message
move.w A0, -(SP) II push event code

jsr SetUpA4 II give you global access

II Put address of "real" postevent in place reserved on stack
II Note that it is the first field in the gGlobals structure

move.I
move.I

gGlobalsPtr, A0
(A0), 54(SP)

II Call MyPostEvent68k
II Parameters are on the stack already
II 00.w returns with the new event code

jsr MyPostEvent68k

move.w
add.I
move.I

00, A0 II A0.w =event code
#2, SP II Clear old event code from stack
(SP)+, 00 II Restore event message from stack

II restore registers
movem.l (SP)+, A1-A5101-07

0- ~!Pi' f'~'"'~'!!.'C' .I~0~'- _________________________ - _ - __ - _ - __ - - - •

II Jump directly to original PostEvent code
II The address was placed on the stack in the above code

rts
/* end PostEvent68kStub() *I

pascal void GetMouse68kStub(Point *mouseloc

long oldA4i

oldA4 = SetUpA4()i
MyGetMouse (mouseloc)i
RestoreA4(oldA4)i

I* end GetMouse68kStub() */

#endif I* 68K code *I

These are the 680x0 code stubs for your patch code. These stubs minimally
fix up register A4 to point to your globals before calling your patch code, and
restore A4 when they exit. As you'll see in a moment, for OS traps the stub
has a lot more work to do. PostEvent6BkStub () is the entry point for the 680x0
PostEvent() patch code and is a head patch. You use CodeWarrior's built-in
68K assembler to write 680x0 assembly-language code that fetches the
contents of register AO, which contains the event code (or type), and the
contents of register DO, which holds the event's message. It's a nasty busi
ness, because you have to keep careful track of where things are on the stack.
There are two things to be aware of with the CodeWarrior's built-in 68K
assembler. First, you can't place assembly language instructions directly in
line with C code, as you can with Symantec's THINK compiler. The assembly
language code must be wrapped inside a function. This function is declared
asm, as you can see in the code. Second, to comment assembly-language
statements you use C++ style comments, where each comment is lead with a
double-slash (!I).

When PostEventsakstub < > gets called, you first save room on the stack where
you'll stow the address of the original PostEvent (l trap. Then you save most of
the processor registers. Next, you retrieve PostEvent () 's arguments out of
register AO and DO and push them onto the stack, for use in your patch
function MyPostEvent68K (l. Now you call setUpA4 (l to fix up register A4 so you
can get at your globals. This lets you obtain the pointer to your globals block,
gGlobalsPtr. Once that's done, you fetch the address of the original PostEvent()

from gOrigPostEvent and drop it on the stack. Because gOrigPostEvent starts the

. _____________________________ - - - ____ E'!!'~'" ~ ! !:"!'!!92'!-~ r2,_".J!'" -0
globals block, you don't need an offset from the pointer to access it. You stuff
this address into the location on the stack where you allocated room for it.
Because of all of the items you have pushed onto the stack so far, this loca
tion is 54 bytes from the current stack top.

With all the preliminary setup done, you at last call MyPostEvent68k < l, the patch
code which processes the event. When it returns, you place the event code it
returns back into AO. You then toss the original event code into the bit bucket
(because MyPostEvent6ak () might have changed it), move the original event
message back into DO, and restore the registers. At the end of all this work,
the address of the original Postevent < l has moved to the top of the stack, and
so that routine gets called when your function exits.

Because GetMouse() is a stack-based routine, all GetMouse68kStub(l does is set up
access to your globals using setUpA4 < l before calling the real patch code in
MyGetMouse <) • You restore A4 as the function exits.

/*

*/

@@@@@@@@@@@@@@@ Shared Code @@@@@@@@@@@@@@@

This code gets compiled into both 68k and powerpc object code.
The 68k code gets called from 68k patches & code.
The powerpc code gets called from powerpc patches & code.

If these routines were very large, or called infrequently, you
could just have a single version that is called by the

"other" object code, but it's not worth the hassle
& context switch.

Handle Get1ResourceSys(OSType rezType, short rezID)
{

THz

Handle
oldZone;
h;

oldZone = Getzone();
Setzone(Systemzone());
h = Get1Resource(rezType, rezID);
Setzone(oldZone);
return h;

/* Your custom GetMouse function. You do your screen stuff here because _GetMouse
is allowed to ,move memory, and is called frequently.

0- ~·C"S ~!."~".!.'C' .!~'~- -

*/

void MyGetMouse(Point *pt
{

long currentDepth;

if (gGlobalsPtr->gRequestFlag /* Event is for you ? */

gGlobalsPtr->gRequestFlag = FALSE; /* Clear flag */
currentDepth = Fetch_Depth();
if ((currentDepth == BLACK_WHITE) &&

(currentDepth I= gGlobalsPtr->gOldScreenDepth))
Change_Depth(gGlobalsPtr->gOldScreenDepth);

else
Change_Depth(BLACK_WHITE);

} /* end if */

CallGetMouse(pt); /* Hop to original GetMouse() */

} /* end ourGetMouse() */

Most of the functions here, with the exception of the PostEvent < l patch code,
are compiled for both processors. The resulting machine code goes into
separate resources ('INIT' for 680x0 code and 'PPC ' for PowerPC code) to
build the fat trap, with a fat descriptor pointing to the function entry points
in each resource.

The function Get1 Resourcesys (l loads the specified resource into the system
heap. MyGetMouse() is the patch code for the GetMouse() routine. When it's called,
it checks to see whether gRequestFlag has been set. If so, it knows that the user
requested a screen depth change. The function first clears this flag so that it
won't respond again the next time the routine gets called. MyGetMouse (l next
has Fetch_Depth (l determine the current screen depth. This is checked against
the constant BLACK_WHITE and the mode of the screen depth that was saved
when the Extension loaded. If the screen depth mode doesn't match
BLACK_WHITE, then it calls Change_Depth (l to set the video hardware to display the
shallower pixel depth. If the screen depth matches BLACK_WHITE, it calls
Change_Depth () to switch the video hardware back to the original display mode
with a deeper pixel depth. The reason for the complicated if statement is to
head off potential trouble if you start the Mac with its screen at the shallow
est pixel depth, typically the black-and-white mode (hence the name of the
constant). In this case, FlipDepth has no idea what other screen depths the

-- P'!'.'~'! ~ ! E"!."~'"' !'!. T2'!."!!'! -0
video hardware supports, so the code locks the screen into this mode. If it
didn't, Change_Depth () would be called with a garbage value, which might
result in an interesting, if unusable, screen. Once you have changed the
screen depth, you call the original GetMouse (> routine to finish the call.

#ifdef powerc

OSErr MyPostEventPPC(short eventNum, long eventMsg)
{

OSErr result;

if ((eventNum == keyDown) : : (eventNum == autoKey)
{

if ((lowMemKeyModifiers == KEY_COMBO) &&
(lowMemKeyStroke == T_KEYCODE))
{

eventNum = nullEvent; I* Supress the event *I
gGlobalsPtr->gRequestFlag = TRUE;
} I* end if KEY_COMBO && T_KEYCODE *I
I* end if *I

result= CallPostEvent(eventNum, eventMsg);
return result;
I* end MyPostEventPPC() *I

#else II 68K code

I*

*I

Note:
returns the (possibly modified) event code

Don't modify the local variables eventNum & eventMsg
they're used by the stub routine and modifying

·· locals here can have a global effect

short MyPostEvent68k(short eventNum, long eventMsg

short newEventCode = eventNum;

if ((eventNum == keyoown) : : (eventNum == autoKey)
{

if ((lowMemKeyModifiers == KEY_COMBO) &&
(lowMemKeyStroke == T_KEYCODE))

0-~!~ ~'~'"'~'!!.'C' .!~'~'- .

newEventCode = nullEvent; /* Supress the event */

gGlobalsPtr->gRequestFlag = TRUE;
} /* end if KEY_COMBO && T_KEYCODE */

} I* end if *I

return newEventCode;
} /* end MyPostEvent6Bk() */

#endif

These functions are the 680x0 and Power PC versions of the PostEvent < l patch.
Basically, they watch the event code (or its type) passed to the routine.
Because you are looking for a special key-combination, the code ignores all
events but key down and auto key events. If a keyboard event occurs, you
examine a low memory global, KeyMapLM, to determine what keys were pressed.
You would rather not use a low memory global because it introduces an
absolute address in your code, but other routines that could do the job also
happen to move memory.

Hazard
Apple will eventually phase out certain low memory globals, because they
hamper moving the Mac OS to a preemptive multitasking operating system,
particularly Copland. Therefore. the use of low memory globals is strongly
discouraged. However. for the FlipDepth example you have two choices.
The first is to perform a safe head-patch on PostEvent (l that uses a low
memory global still supported on second-generation Power Macs to obtain
the modifier keys. In short, FlipDepth, as implemented here, works reliably
on machine architectures both now and for the immediate future. Or, the
second choice is to avoid using the low memory global by performing a
tail-patch on a Toolbox call such as GetosEvent(), to capture both the event
and the modifier keys. This might buy you trouble immediately if your tail
patch interferes with Apple's patch software. When you're dealing with the
Mac OS at this level, sometimes there are no easy choices.

Post Event o's flaw is that monitoring the keyboard this way isn't very
portable. Specifically, the same key code can mean something entirely
different on a French or Kanji keyboard. A better routine to patch was

PPostEvent (), where you can peek into the event queue after the event is

posted to obtain the status of the modifier keys. This works in favor of

code portability, because the Event Manager OS processes the keystrokes

so that these raw key codes map to the country-specific modifier keys.

If Command-Shift-Tis pressed, it's a request to change the screen depth.
You respond by clearing the event code to discard the event. If you don't do
this, the keyboard event is forwarded to the application, which might re
spond in undesirable ways. Then, you set the global gRequestFlag and exit.

Before you could call the 680x0 version of this function (MyPostEvent6Bk ()), you
had to do some scary assembly code to position the arguments onto the
stack where you could use them. This isn't the case for the PowerPC version.
Even though PostEvent () is register-based, when MyPostEventPPC() is called,
these values appear in the function's arguments, as ifthe routine were stack
based. This simplifies use of the OS trap routines immensely, thanks to the
Mixed Mode Manager.

As a final note, when MyPostEvent6Bk () exits, it has to traverse more assembly
code to clean up the stack, restore register A4, and jump to the original
PostEvent (). The Power PC version simply calls the callPostEvent () macro and
exits. Although it's possible to write a Post Event () function using
CodeWarrior's PowerPC assembler, there's no good reason to do so. As
you've just seen, writing the patch code in C is adequate.

But I digress. Onward to the screen depth control software:

/* Get the current screen depth. Also get the GDevice of main screen and its */
/* device number (to use the driver) */

long Fetch_Depth(void)
{

long screenDepth;
/* Current bit depth of your screen */

GDHandle thisGDevice;

/* Get start ;0f GDevice list */

thisGDevice = GetMainDevice();
/* Get GDevice of main screen */

gGlobalsPtr->gOurGDevice = thisGDevice;
screenDepth = (**thisGDevice).gdMode;

0-~~ ~!:'~".!.'~' _T~~- .

/*Get pixel's size */
/* Driver # */

gGlobalsPtr->gDevRefNum = (**thisGDevice).gdRefNum;
return screenDepth;

} /* end Fetch_Depth() */

Fetch_Depth(l's job is to find the Mac's main active screen. It uses a call to the
routine GetMainDevice (),which fetches the GDevice for the main screen. A GDevice

is a data structure used to maintain screen information for both the display
hardware and the Mac OS. It stores information, such as the screen's size,
current color palette, the device driver controlling the display hardware, and
the screen's pixel depth. Next, you obtain the driver reference number and
current screen mode from this Goevice, and place this data in the globals
gdRefNum and gdMode. The mode value is the ID number of a special resource
used to handle the screen.

void Change_Depth(long newDepth)
{

GrafPtr oldPort;
Rect ourGDRect;
RgnHandle thisScreenBoundary;
GrafPtr theBigPicture;
WindowPtr theFrontWindow;

HideCursor ();
/* Hide pointer because its depth will change */

InitGDevice(gGlobalsPtr->gDevRefNum, newDepth,
gGlobalsPtr->gOurGDevice);

/*At last you change the screen depth! */
theFrontWindow = FrontWindow();
ActivatePalette(theFrontWindow);

/* Use active window's color palette */
AllocCursor(); /*Draw cursor at new screen depth*/
ShowCursor(); /* Put it back on-screen */

/* The desktop's still a mess: redraw it */
thisScreenBoundary =

if (IMemError())
{

NewRgn(); /*Get region to hold screen */

/* Trouble? */
/*No */

ourGDRect = (**gGlobalsPtr->gOurGDevice).gdRect;
/* Get gDevice boundary */

RectRgn(thisScreenBoundary, &ourGDRect);

. - 9!'1!.te~ ~ ! ~!ll.!' .!"~ r211."'!!'!: -0
GetPort(&oldPort); /*Save current port*/
GetWMgrPort(&theBigPicture); /*Get Desktop's port*/
SetPort(theBigPicture); /*Make it the current port*/
DrawMenuBar();
PaintOne(NIL, thisScreenBoundary); /* Paint background*/

/* Now the other windows */
PaintBehind(*(WindowPeek *) WindowList,

thisScreenBoundary);
SetPort(oldPort);
DisposeRgn(thisScreenBoundary);
} /* end if IMemError() */

else
SysBeep(30); /*Couldn't make the region, complain */

} /* end Change_Depth() */

Last but not least, here's the function that changes the video hardware's pixel
depth. The second line of code, where InitGDevice() is called, does the actual
depth change. You pass this routine the device reference number so that it
can communicate with the driver that controls the screen's video hardware,
the new screen mode value, and the Goevice that manages the screen.
Fetch_Depth c) conveniently obtained the display' s driver reference number
and its associated GDevice that you now use in this InitGDevice(J call. The rest
of the code in this function basically cleans up the screen after the depth
change.

Let's talk about those screen modes a bit more. The screen mode number
derives from the ID numbers of special resources (called sResources, be
cause they're Slot Manager resources) in a display board's firmware (either
NuBus or PCI), or in firmware that manages the Mac's built-in video circuits.
Each different pixel depth that the display supports has its own sResource ID
number. These sResources contain information that describes the screen's
characteristics to both the operating system and the device driver for a
particular screen depth (say, 8 bits per pixel).

What's key here is that these sResources are handled a lot like actual re
sources, where the first available ID number begins at 128. The Macintosh
API dictates that the first screen mode always have the shallowest pixel
depth, and its mode sResource value must always be 128. If you call
InitGDevice() with a mode value of 128, the screen turns switches to the
shallowest pixel depth. How do you handle other screen depths? You punt on
that issue, because there's no guarantee as to what pixel depth the next

0- ~!'!' .!'~,!.'~'!!.'C' !~0~'- ______________________________________ •

sResource (ID = 129) supports. A display board might support 1-, 2-, 4-, and
8-bit color, so its sResource IDs would be 128, 129, 130, and 131, respectively.
Another board might support 1-, 8-, 16-, and 32-bit screen modes, and its
sResources would also be 128, 129, 130, 131. FlipDepth grabs the current
screen mode (and thus its sResource ID number) when the Extension loads,
and saves it in the globals block. You simply pass this value, and whatever
screen depth it represents, to Ini tGoevice < l whenever the user wants to leave
the shallowest pixel-depth mode. While this all sounds complicated, the
code shows that it's fairly simple. The big payoff is that this mechanism is
hardware independent: this identical code works on Mac Ils, PowerBooks,
Quadras, and Power Macs, including the second-generation Power Macs,
which use PCI rather than NuBus display boards.

Important
Why don't I use the high-level routines Hasoepth() and setDepth(), which
obtain a screen mode and set a screen's mode, respectively? I wrote this
code long before these routines appeared on the scene. Also, the initial
release of these routines was slightly buggy. As a fast hack for a screen
utility, this code has served me well for many years, and is still hardware
independent. The second-generation Power Macs use an Expansion
Manager, rather than a Slot Manager, to handle communications between
the Mac OS and the display hardware. Nevertheless, the Expansion
Manager still uses the Goevice data structure for housekeeping, which
means the display mode value is still valid, even though its meaning has
changed slightly. Originally, a screen mode value of 128 represented a
black-and-white screen depth. Depending upon some Power Mac configu
rations, this is no longer true. For example, the shallowest pixel depth on
ATl's PCI display board is 256 colors (8-bits).

The rest of this function handles repainting the screen after the depth
changes. You start by hiding the cursor, and do the depth change. Next, you
fix up the color palette so that it uses the color palette of the foreground
application (which owns the front window) with a call to ActivatePalette().
Then you fix the cursor's pixel depth.

- ~~~'.!: ~ ! ~!!'~' Jt .::'IC T~f!!'.!: -0
Redrawing the screen itself requires that you obtain a region that you use to
map the desktop onto so that you can redraw the background pattern. You
use NewRegion c) to make this region structure. You plug into this region the
boundaries defined by the screen's GDevice, using RectRgn c). The current
drawing port is saved, and you use GetWMgrPort cl to fetch the port that handles
the entire desktop. You make this the current drawing port and call
DrawMenuBar c) to reconstruct the menus. Pain tone c) is a Window Manager
routine that, when called with a value of NIL for the window argument,
knows that the "window" is the desktop and paints it with the background
pattern. PaintBehind c) then redraws all the windows in the region. At this
point, the Mac's screen is rebuilt, so you clean up by restoring the port and
releasing the memory used to make the region.

Building a Fat Trap
At last, you are ready to use this code to build your fat trap. Similar to what
you did to make a fat binary of your SwitchBank program, you have two
project files. The project FlipDepth.µ.PPC generates PowerPC patch code
from FlipDepth.c, while FlipDepth.µ.68K generates the 680x0 half of the
patch code. Because a 680x0 INIT resource handles the Extension's setup,
you build the Power PC version of the patch code first, and then integrate the
results of this operation into the 680x0 version of the Extension file. You have
already opened the project file FlipDepth.µ.PPC in the Projects folder, and its
project window should already have InterfaceLib, MathLib, and
MWCRuntime.Lib. Remove the last two files from the project, leaving only
InterfaceLib.

Now it's time to adjust the project's preferences for your Extension file. You
want to make a shared library in order to handle the code fragment as stand
alone code. If you don't, the. linker will add some run-time code that pre
pares the code fragment for execution as an application when it loads. First,
select Preferences from the CodeWarrior IDE's Edit menu and go to the PPC
Linker panel. On the Entry Points section of this panel, clear all three text
boxes, Initialization, Main, and Termination, of their default entry point
names. To recap, as a stand-alone resource, you don't want any run-time
code trying to do something with your code fragment as it loads, which is
why you jettisoned MWCRuntime.Lib and cleared the fragment's entry
points.

0- ~"'P ~~,!.'~"l'C' !!!!'~- _______ - _ - - - _________________ - - __ - - - - _ .

Now, onward to the other project settings. First, select the PPC Processor
panel, and chose 68K alignment from the StructAlignment's popup menu.
Inside the PPC PEP panel, go to the Export Symbols popup menu item and
select Use ".exp" file. Choose the Fragment Name item in this panel and type
PPC (don't forget to add the space at the end of this resource type name!).
Make sure that the item Share Data Section is checked. The next stop is the
PPC Project panel. Click the Project Type's popup menu and choose Shared
Library. The window's contents change, displaying items that modify the
shared library's characteristics. Go to the Shared Library Info section. Type
the name FlipDepth.lib for the library's name and leave the file's type and
creator alone. Confirm that the file type is 'shlb.' Save all settings by clicking
the OK button. Click the Make button in the Toolbar, or select Make from the
Project menu, to compile the code and create the library. If all has gone well,
you should have the files FlipDepth.lib and FlipDepth.µ.PPC.exp in your
FlipDepth:Projects folder. If the files don't appear, recheck the settings in the
PEP panel.

You'll recall in the PPC PEP panel that you selected an" .exp" file for handling
symbol export, and a "FlipDepth.µ.PPC.exp" file was made. This file contains
the symbols that you wish to export, or make public, to other code frag
ments. You would use this to, say, make public the entry points into a shared
library you wrote, while hiding the functions that implement the library's
services. By minimizing the number of public functions, you also reduce
clutter in the code fragment's TOC. Now let's see how this is done. Use the
editor to open the "FlipDepth.µ.PPC.exp" file.

In it, you'll see a number of function and global variable names: Change_Depth,

Fetch_Depth, Get1 ResourceSys, MyPostEventPPC, MyGetMouse, and gGlobalsPtr. Delete all
of these names except gGlobalsPtr, MyPostEventPPC, and MyGetMouse. The next time
you build FlipDepth, the PPC linker uses the information in the modified
FlipDepth.µ.PPC.exp file to make only these three items (the globals data
block, and the entry points into your patch code) public to other code
fragments. Other functions, such as Change_Depth (l, whose names you deleted
from the .exp file, are now private to the code fragment.

Why did you build a PowerPC shared library, rather than a code resource?
While the CodeWarrior IDE lets you build a native resource, doing so re
quires that you kludge a dummy main (l function. (Code resources must have
one entry point. The linker will demand one.) It's much easier to build the
shared library, minus the default entry points that you removed via the PPC

- E'!:'~te~ ~ ! ~~92'.!''C T29_ot~·~ -0
PEP Panel. Unfortunately, there's a problem going the shared library route:
You need to move the Power PC code out of the file's data fork and into the
resource fork, so it looks like a resource. Mathemresthetic Inc.'s Resorcerer is
a resource editor similar to ResEdit that lets you cut and paste between file
forks. However, with CodeWarrior in hand, you can manage this chore
ourselves. Start a new project, called "Klepto. µ", and type:

#include <Types.h>
#include <QuickDraw.h>
#include <Windows.h>
#include <Fonts.h>
#include <Memory.h>
#include <ToolUtils.h>
#include <StandardFile.h>
#include <Errors.h>
#include <Resources.h>

/* Various constants */
#define NIL 0L
#define FALSE false
#define TRUE true
#define DEFAULT_VOL 0
#define ONE_FILE_TYPE
#define POWER_PC_FRAG
#define FRAG_ID

'PPC '
300

void Move_Fork(short input);
void main(void);

void Move_Fork(short input)

OSErr
long
Handle

finputErr;
codeFragSize;
fragBuff;

/* Resource type */
/* Resource ID */

finputErr = GetEOF(input, &codeFragSize); /*Get file length*/
/* Enough memory? */

if ((fragBuff = NewHandle(codeFragSize)) I= NIL)

/* Read in fragment */
if (l(finputErr = FSRead(input, &codeFragSize, *fragBuff)))

/* Treat as a resource */

0- ~~.>:"!' ~"·~~'C' .!~'~'- .

AddResource(fragBuff, POWER_PC_FRAG, FRAG_ID, NIL);

if (!ResError(}) /* No trouble? */
{ /* Write frag to resource fork */

WriteResource(fragBuff);

if (ResError())
SysBeep(30);

} /* end if IResError */

/* lfinputErr */

} /* end if I= NIL */

ReleaseResource(fragBuff);
} /* end Move_Fork() */

/* Free the memory */

The function Move_Fork (> performs the operations necessary to copy the
PowerPC code from the file's data fork to the resource fork of a new file. The
file will already be opened by routines in main (>. Let's see how this is done.
First, you use the GetEOF < > routine to obtain the size of the file's data fork. This
size value is passed to NewHandle < > to create a memory buffer large enough to
hold the shared library. The File Manager routine FSRead () reads the code
fragment into this buffer. With the PowerPC code in memory, you next call
AddResource (>. This routine creates a resource entry for this buffer within a
file's resource fork. (Remember, this file must have been opened by a previ
ous Resource Manager call.) You use writeResource{) to write the PowerPC
code into the file's resource fork. Finally, you call ReleaseResource() to discard
the memory used by f rag Buff, because this buffer is now considered a re
source by the Mac OS. To change the resource's type and ID number, you
can edit the definitions for POWER_PC_FRAG, and FRAG_ID.

Now let's add main(J where you open and close the files:

void main(void)

unsigned char file name[21] = {"\pFlipDepth .. PPC.rsrc"};
I* Output file's creator and type */

OSType fileCreator = { 'RSED'};
OSType fileType = { 'rsrc'};
OSErr fileError;
short inFileRefNum, outFileRefNum;
StandardFileReply inputReply, outputReply;
short oldVol;
/* File type for shared library */

SFTypeList shlbType = {'shlb'};
CursHandle theCursor; /* Current pointer icon */

. - fl!'e!"~ ~ ! ~!!!>-"-"'-'~'!: -0
/* Lunge after all the memory you can get */

MaxApplZone();

/* Make sure you have got some master pointers */
MoreMasters();
MoreMasters();
MoreMasters();
MoreMasters();

/* Initialize managers */
InitGraf(&qd.thePort);
Ini tFonts () ;
FlushEvents(everyEvent, 0);
InitWindows();
Ini tMenus () ;
TEinit ();
InitDialogs(NIL);

/* Open the input file */
StandardGetFile(NIL, ONE_FILE_TYPE, shlbType, &inputReply);
if (inputReply.sfGood)

{

GetVol (NIL, &oldVol); /*Save current volume*/
if ((fileError = FSpOpenDF (&inputReply.sfFile, fsCurPerm,

&inFileRefNum)) I= noErr)
{

SysBeep(30);
return;
} /* end if error */

/* Open the output file */
StandardPutFile("\pSave code fragment in:", file name,

&outputReply);
if (outputReply.sfGood)

{

SetVol(NIL, outputReply.sfFile.vRefNum);
fileError = FSpCreate(&outputReply.sfFile, fileCreator,

fileType, smSystemScript);
switch(fileError)

{

case noErr:
break;

0-~~ E'~,!:'~".!.'C' _T~t_ ______________________________________ _

case dupFNErr: /* File already exists */

if ((fileError = FSpDelete(&outputReply.sfFile)) == noErr)

if ((fileError = FSpCreate(&outputReply.sfFile,
fileCreator,
fileType,
smSystemScript)) !=

else

noErr)

SysBeep(30);
FSClose(inFileRefNum);
SetVol(NIL, oldVol);
return;

/* end if != noErr */

/* end == noErr */

SysBeep(30);
FSClose (inFileRefNum);
SetVol(NIL, oldVol);
return;
} /* end else */

break; /* end case dupFNErr */

default:
SysBeep(30);
FSClose(inFileRefNum);

/* Close the input file */

SetVol(NIL, oldVol);
/* Restore original volume */

return;
} /* end switch */

/* Open file's data fork. Do this only to get a file ref number */

if (l(FSpOpenDF (&outputReply.sfFile, fsCurPerm,
&outFileRefNum)))

/* MUST create resource map in resource fork or no resource
writing occurs */

FSpCreateResFile (&outputReply.sfFile, fileCreator,
fileType, smSystemScript);

if (!ResError())
{ /* Open resource fork */

FSpOpenResFile (&outputReply.sfFile, fsCurPerm);

. - E~~! ~ ! !'."!."!'.'!.!' !'!. r211."!!'!: -0
if (IResError())

{ /* Change cursor */
theCursor = GetCursor(watchCursor);
SetCursor(&**theCursor);
Move_Fork(inFileRefNum);
FSClose(outFileRefNum);
SetCursor(&qd.arrow);

/* Restore cursor */
} /* end if IResError */

} /* end if IResError */
FlushVol (NIL, outputReply.sfFile.vRefNum);
} /* end if IFSpOpenDF */

} /* end if outputReply.sfGood */
FSClose (inFileRefNum);
SetVol(NIL, oldVol);

/* Restore current volume */
} /* end if inputReply.sfGood */

} /* end main() */

You'll notice there's no event loop in this program. That's OK, because the
Standard File Dialog boxes have enough built-in smarts to manage most of
the events required to make a file selection, and Move_Fork (> manages all of the
file 1/0. That's all you need for this quick and dirty little program. Once you
get past the initialization code, you can see most of the code came from the
Ask_File () function in SonOMunger. I did remove all the error reporting calls,
replacing them with sysBeep (a0 >. This simplifies the making of the application
while still providing some measure of safety. This is not the sort of thing you
would do for a program for public distribution, but for in-house work it's
quite adequate.

The C code for picking and opening the input file remains the same as
SonOMunger' s, except that standardGetFile <) filters out all files but types of
'shlb'. The code for opening the output file is the same, up to a point. You
first open the output file using FSpOpenDF < >, only so that you can get a file
reference number in order to close the file when you are done. Next, you call
FspcreateResFile (> to create a resource reference map in the file's resource
fork. If you fail to perform this step, no resource writing can be done to the
file. The final step before calling Move_Fork (> is to open the resource fork using
FSpOpenResFile (>. Note that the resource file routines report errors back
through the ResError (> function. These routines also don't use a file reference
number. That's because once a link is established between the file and the

0- ~l'!' E'~'"'~"'-''' !'!?~''- -

Resource Manager, it persists through all subsequent uses of the resource
routines until the file is closed.

Because this code steals PowerPC code from a file's data fork, I named this
source file "Klepto.c." Add it to the Klepto. project. Set the project's prefer
ences as follows: in the project panel (either PPC or 681<) set the project type
to an application (use the factory defaults other than to name the output file
"Klepto."), compile, and make the application. That's right-you didn't build
any resources with Rez in order to make" .Klepto." Because "Klepto" doesn't
use any special resources, and the resources for Standard File Dialog boxes
come from the System file, the program code runs as it is.

Double-click Klepto to launch it, and a Standard File Dialog box appears.
The only file that should appear in the dialog is your shared library file,
"FlipDepth.lib." Click on the Open button or press Return to choose the file.
Immediately, a second Standard File Dialog box appears. The default output
name for this dialog box is FlipDepth .. PPG. rsrc. Either click the Save button, or
type in another file name and press Return. Klepto should quit shortly,
leaving you a resource file with the given name. If you double-click this file,
ResEdit launches, and you can examine the PPC resource to see the PowerPC
code within it. When you make the 680x0 version of your Extension, you'll
simply add this resource file to the project. CodeWarrior copies this file's
resources-and thus the PowerPC code in it-to the resulting Extension file.

I'm sure you can build and link multisegmented code resources. However, I
think you're going to have to explicitely add code to deal with this, per my
description in the text. Because stand-alone resources execute in place
without preparation by the Process Manager, you have to add the support
code yourself.

While on the subject, it's now time to build the 680x0 project. Close the
Klepto. µproject window, and create a project called Flip Depth. µ.68K, using
the -Min MacOS PPC CIC++.µ template. Add the file FlipDepth.c and
remove the file "CPlusPlus.lib" from this project. Select Preferences from the
Edit menu and choose the 68K Processor panel. Click the Code Model popup
menu and select Small. In the 68K Linker panel, go to the Linker Info section
and check the item Link Single Segment. Unless you're adding your own
code that handles multiple code segments, the Small memory model and
Link Single Segment settings are required. Optionally, in the Debugger Info
section of this panel, you might want to uncheck the Generate A6 Stack

- !'!'~!: ~ ! ~!.'!!!>-" _!llLT2~'!: -0
Frames item. The A6 stack frame code that's produced when this item is
checked provides hooks for a debugger program. This isn't necessary for this
example unless you want to experiment with a debugger on the Extension
file. Next, pick the 68K Project panel. For the Project Type, click the popup
menu and choose Code Resource. The panel's contents will change. In
the Code Resource section, type FlipDepth for the output file's name, for
the ResType item, type INIT, and for the ResID item type 12e. This sets up the
resource's type and ID number. The last thing to do is set the output file's
type and creator. Go to the Creator item and type FLDP, and for the Type item
enter INIT. Finally, go to the Resource flags and click the popup menu. Check
the System Heap and Locked items. These settings ensure that the Resource
Manager loads the 68K code resource into the system heap, and locks it in
place. Leave the Header Type item as Standard. Click the OK button to save
the new settings.

Like SwitchBank, FlipDepth is going to have its own cool icon, which means
you need some resources that describe the icon and other particulars. This
information is stored as Rez source text in the file FlipDepth.r, which you
should add to the project via the Add Files ... selection on the Project menu.
Double-click this file and examine some of the Rez code in the editor:

#include "SysTypes.r"
#include "Types.r•

/* Resource IDs for file refs & icons */

#define EXTENSION_FREF 128

#define BAD_LOAD_FREF 129
#define FLIPDEPTH_ICON 128
#define BAD_LOAD_ICON 129

resource 'BNDL' (128)
{

'FLOP', 0,
{

'FREF', { 0, EXTENSION_FREF, 0, BAD_LOAD_FREF },
'ICN#', { 0, FLIPDEPTH_ICON, 1, BAD_LOAD_ICON}
}

};

resource 'FREF' (EXTENSION_FREF)
{

0- ~l"f ~!"~".!.'!'.' _T~m!?'_ - .

} ;

'INIT',

0,

resource 'FREF' (BAO_LOAO_FREF)

{

} ;

'BAOL',

1'

/* Signature resource - all 'STR ' */

/* resources must be declared before this! */

type 'FLOP' as 'STR . ;

resource 'FLOP' (0) {
"FlipOepth 1 .2"

} ;

data 'ICN#' (FLIPOEPTH_ICON) {

} ;

$"0000 0000 0000 0000 0000 0000 1FFF FFF8"

$"6000 0006 4000 0002 8000 0001 83FF FFC1"

$"83FF FFC1 8EAA AA81 8055 5511 8EAA AA11"

$"8055 5411 8EAA A811 8055 4011 8EAA 8011"

$"8055 0011 8EAA 0011 8054 0011 8EA0 0011"

$"8040 0011 8E80 0011 8000 0011 8000 0001"

$"83FF FFC1 8000 0001 4E00 0002 6000 0006"

$"1FFF FFF8 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 1FFF FFF8"
$"7FFF FFFE 7FFF FFFE FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF 7FFF FFFE 7FFF FFFE"

$"1FFF FFF8 0000 0000 0000 0000 0000 0000"

data 'ICN#' (BAO_LOAO_ICON) {

$"0000 0000 0000 0000 0000 0000 1FFF FFF8"

$"6800 0026 5C00 0072 8E00 00E1 87FF FFC1"
$"83FF FFC1 8FEA AF91 80F5 5F11 8EFA BE11"

. -- - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -- - - E~e."~ ~ ! ~,~;~_·!'~ T21l!'':!'~ -0

} ;

$"8070 7C11 BEBE F811 805F E011 BEAF C011"
$"8057 C011 BEAF E011 BOSE 7011 BEBC 3811"
$"8078 1C11 8EF0 0E11 8DE0 0711 81C0 0381"
$"83BF FDC1 8700 00E1 4E00 0072 6400 0026"
$"1FFF FFFB 0000 0000 0000 0000 0000 0000"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

Important
This listing doesn't include all of the data for the colored icons. For the
complete listing, check Appendix C or the file on the CD. Like the
SwitchBank Rez file, this is where the bundle resource (BNDL) and file
reference resource (FREF) are defined. The ID numbers 128 and 129 tie
things together. Resource ID 128 manages everything related to the file
icon. The file icon also serves double-duty as the initialization success icon
that Showiniticon() displays. ID 129 handles the failure icon only.

You need to pick up your PowerPC code resource in order to build the fat
trap. This is just a matter of choosing Add Files ... from the Project menu and
selecting the file "FlipDepth.µ.PPC.rsrc." This file name should appear in the
project window.

Now make the project. "FlipDepth.c" and "FlipDepth.r" will compile, and a
"Flip Depth" file will appear, sporting your custom monitor icon. If the linker
reports problems, double-check the 68K Linker panel and 68K Project panel
settings. If the file sports a generic puzzle-piece Extension icon, make sure, in
the 68K Project panel, that you've entered 'FLDP' as the file creator. Drag
"FlipDepth" to the System Folder, and the Finder should request to place the
file in the Extensions folder. Make sure that the Mac is set in a display mode
other than its shallowest pixel depth, and reboot. When the Desktop appears,
try typing Command-Shift-T. The screen should toggle to the shallowest
pixel mode and then back when you hit the key sequence again.

0- ~!"':: ~!:.'~".!.'C' _T~ol~t- ______________________________________ _

Building a Fat Resource
You may have noticed something (or actually the lack thereof) when your
Mac booted with the FlipDepth Extension. Namely, what happened to its
success icon? The FlipDepth icon didn't appear during the boot process
because you haven't added the code resource that contains the Showini tr con (l

function. This slipup illustrates the value of defensive coding. By performing
a safety check for the presence of this particular resource, you avoided a
crash, yet ensured that your patch code installed. Not all situations can be
handled this gracefully, of course, but anything you can do to shield the user
from a disastrous crash will be much appreciated.

With that lesson over, let's proceed to add Showrnitrcon(l to the FlipDepth
Extension. You'll be building another code resource that implements the
function as both 680x0 and PowerPC code. Such a code resource is termed,
not surprisingly, a fat resource. Before I can describe a fat resource, however,
you have to back up a moment to explain the organization of stand-alone
code resources.

A 680x0 stand-alone code resource typically starts with a sequence of bytes
(called a header) that points to the start of executable code inside the re
source. Put another way, the header contains a function pointer to the
resource's main (l function. This way when a program such as Flip Depth loads
and calls a stand-alone resource (or an application such as Adobe Photoshop
accesses a plug-in tool), the thread of execution gets routed into that
resource's functions.

Important
Other types of stand-alone code resources, such as WDEF, CDEF, and

DRVR, have a special header that encodes extra information. In DRVR, for

example, this information describes whether the driver needs periodic

service calls from the OS, and whether it responds to certain 1/0 requests.

After this comes a set of function pointers that aim to the various 1/0

functions that the driver implements. The Mac OS understands the pre

defined format for a DRVR resource, and knows where in the header to

pick up these function pointers. This isn't the case for the custom re

sources you write, so the resource header must start with a function

pointer.

. - E~0·~ ~ ! ~"~'~'"'.!"~ T~·~ -0
A fat resource has a predefined resource type of 'fdes' and both 680x0 and
PowerPC code embedded inside it. It requires a special header that points
both to the start of the resource's 680x0 code and to the start of its PowerPC
code. That is, the header must have function pointers to both the 680x0
version of main<) and to the Power PC version of main () in the resource. If
you're a real stickler for accuracy, the function pointers don't have to point
to a main cl. They can point to whatever function you like. However, because
the linkers of most development tools expect you to tell them where execut
able code starts through use of the symbol main, you're better off writing code
this way. The Code Warrior PowerPC tools let you specify another function
name for the start of executable code, but not the 680x0 tools. So, for
consistency's sake and to avoid cluttering the code with a lot of conditional
compilation statements, you'll stick with main.

So what does a fat resource header look like, exactly? It simply consists of a
routine descriptor, followed by two routine records, and then two chunks of
executable code. One routine record describes and points to the 680x0 code,
and the other routine record describes and points to the PowerPC code.
From your discussion of routine descriptors in Chapter 4, you thereby
conclude that a fat resource starts with the A-trap word _goMixedModeMagic

(hexadecimal OxAAFE). When executed, the _goMixedModeMagic trap invokes the
Mixed Mode Manager. The Mixed Mode Manager determines what ISA is
currently active, and then uses the routine descriptor to locate the start of the
appropriate code section inside the resource. Execution proceeds from that
function.

This elegant mechanism works fine for Power Macs, but what if a 'fdes'
resource is called on a 680x0-based Mac? Usually, the processor trips over an
unimplemented instruction exception and crashes, because the
_goMixedModeMagic trap word is undefined on these systems. I say usually,
because if a 680x0-based Mac is running OpenDoc, the resource executes as
described. That's because OpenDoc uses a 680x0 implementation of the
Code Fragment Manager, which relies on the Mixed Mode Manager. Because
OpenDoc isn't currently part of the system software, there's no guarantee
that it, and the 680x0 Code Fragment Manager, will be present. In recogni
tion that programmers want their code resources to work on the largest set of
Macs, Apple devised a safe fat resource of type 'sdes.' A safe fat resource's
header starts with some 680x0 glue code. The first time a program loads an
'sdes' into memory, it locks it, and then calls it. This glue code checks the

0- ~!Pf E":!.O!.'~":!.'C' !~0~'- .

operating system version number and determines whether the Mixed Mode
Manager is present. If it isn't, and the resource is executing on a 680x0 Mac,
the glue code patches a function pointer into the resource header. Other
wise, it writes a routine descriptor into the header. Finally, the thread of
execution jumps back into the modified header. While this design incurs
some overhead on the initial function call, subsequent calls to the sdes
resource execute rapidly, because now the resource has a standard header
(either function pointer or routine descriptor) tacked onto it.

Background Info
You use the Rez tool to build a fat resource. A set of templates, located in
the header file "MixedMode.r," directs Rez to combine 680x0 and PowerPC
code blocks into a single resource, along with the appropriate header data.
If you want to examine the structure of the 'fdes' and 'sdes' headers in
excruciating detail, use the CodeWarrior editor to examine the code in the
Rez header file "MixedMode.r." This file is located on the path
CodeWarrior:MacOS Support:Rlncludes. It's worth examining this code to
learn how fat resources are put together. Also. you'll be using these
templates to build the Showrniticon o resource.

Showlnitlcon Code
Now that you have learned what a fat resource is, it's time to examine the
code that produces one. The Showiniticon(J function is responsible for dis
playing an icon onscreen during the boot process. Recall that FlipDepth's
main (J calls this function to display one icon if the patch code installs success
fully (the success icon), and another icon that indicates the installation, due
to an error, aborted (the failure icon). Showiniticon() has a long history,
starting as an idea by Steve Capps (one of the original authors of the Finder).
It was initially written in assembly language by Paul Mercer, Darin Adler, and
Paul Snively. Showiniticon() was converted to the C language by Eric Shapiro.
It was later rewritten by Peter N. Lewis, Jim Walker, and Franc;ois Pottier.
Their version is presented here. Go to the Showlnitlcon folder inside the
Flip Depth folder and open the file "Showlnitlcon.h." It consists of the
following declarations:

. - Sf'!'!!'!:~~ ~!!'!!92' !"!. T~'!!'!: -0
#ifndef ~Showiniticon~
#define ~Showiniticon~

#include <Types.h>

II Usage: pass the ID of your icon family (ICN#licl41icl8) to have
II it drawn in the right spot.
II If 'advance' is true, the next !NIT icon will be drawn to
II the right of your icon. If it is false, the next !NIT icon
II will overwrite yours. You can use it to create animation
II effects by calling Showiniticon several times with 'advance' II
false.

#ifdef ~cplusplus
extern "C" {
#end if

pascal void Showiniticon (short iconFamilyID, Boolean advance);

#ifdef ~cplusplus

#endif

#endif I* ~Showiniticon~ *I

set to

This header file contains the function prototype for Showrnitrcon(), and it sets
up some compiler environment variables. The environment variables are
useful if you're linking this code directly into your Extension. Otherwise, you
can delete the Showlnitlcon.h file and drop the function prototype declara
tion seen here and the #include statement for the Types.h file into
Showlnitlcon.c. This simplifies tracking these declarations, but keep in mind
that Showlnitlcon.h works fine even if you're producing a code resource with
Showlnitlcon.c. While on the subject, let's examine that file.

II Showiniticon · version 1 .0.1, May 30th, 1995
II This code is intended to let !NIT writers easily display an icon at II startup
time.

II This version features:
II Short and readable code.
II Correctly wraps around when more than one row of icons has
II been displayed.

0-~~ !'£9!.'~~' !~'~- -

II works with System 6
II Built with Universal Headers & CodeWarrior. Should work with
II other headers/compilers.

#define USESROUTINEDESCRIPTORS GENERATINGCFM

#include <Memory.h>

#include <Resources.h>
#include <Icons.h>
#include <OSUtils.h>

#include <LowMem.h>

#include "Showiniticon.h"

#define SYSTEM_7 0x0700

II You should set SystemSixOrLater in your headers to avoid

II including glue for SysEnvirons.

II --
//Set this flag to 1 if you want to compile this file into a

II stand-alone resource (see note below).
II Set it to 0 if you want to include this source file into your

II INIT project.

#define STAND_ALONE_RESOURCE

#if STAND_ALONE_RESOURCE

#define Showiniticon main II For the linker, which expects
//a "main" symbol

en um

kShowiniticoninfo = kPascalStackBased
STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))

: STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Boolean)))

};

ProcinfoType ~procinfo

#endif

kShowiniticoninfo; //Resource argument

II info, is 0x180

- Eti~J!''! ~ ! ~!'~9 21 !Jl T.!'<l_"!!'! -0
Here's your familiar set of header files, followed by the definition
(STAND_ALONE_RESOURCE) that determines whether the generated code behaves as
a function to be linked into your code, or as a stand-alone resource. In the
instance of stand-alone code, the conditional if sets up several items. First,
the symbol Showiniticon is defined as main to assist the linker locate the start of
executable code in the resource. Next, the size and type of Showini ti con o's
arguments are defined (via kShowiniticoninfo and ProcinfoType) in order to build
a routine descriptor.

11 · - · - - · - · - - · - · · - · · - · - - · - · · - · -

II The ShowINIT mechanism works by having each INIT read/write
II data from these globals. The MPW C compiler doesn't accept
/I variables declared at an absolute address, so I use these
II macros instead. Only one macro is defined per variable;
II there is no need to define a
II Set and a Get accessor like in <LowMem.h>.

#define LMVCoord (*(short *) (LMGetCurApName() + 32 - 6))
//#define LMVCoord (* (short*) 0x92A)
#define LMVCheckSum (* (short*) (LMGetCurApName() + 32 - 8))
//#define LMVCheckSum (* (short*) 0x928)
#define LMHCoord
//#define LMHCoord
#define LMHCheckSum

(* (short*) (LMGetCurApName() + 32 · 4))
(* (short*) 0x92C)

(* (short *) (LMGetCurApName() + 32 - 2))
//#define LMHCheckSum (* (short*) 0x92E)

11 · · · - · · - · - · · · · · - · - · · - · - - - - - · - · - - - - - - - - - - · - - - · · - - · - · · - · - - · - · - - · -
II Prototypes for the subroutines. The main routine comes first
II (in Showlnitlcon.h); this is necessary to make THINK C's
II "Custom Header" option work.

static unsigned short Checksum (unsigned short x);
static void ComputelconRect (Rect* iconRect, Rect* screenBounds);
static void AdvancelconPosition (Rect* iconRect);
static void DrawBWicon (short iconID, Rect *iconRect);

Showini ucon () reads screen position information from a low memory global,
curApName. This is so that each Extension knows where to plot its icon without
overwriting an existing one. The Mac OS uses curApName to hold the name of
the foreground application and is a 32-byte Pascal string. Because this global

0- ~!"!' ~'~'"'~~'C' .!~~·- -

is used occasionally during the boot process, you only tinker with the last
four bytes in the string. These macros assign a descriptive name to each of
the bytes and their address. Two bytes (LMVCoord and LMHCoord) hold the vertical
and horizontal screen coordinates, while the other two bytes, LMVCheckSum and
LMHCheckSum, hold running checksums to ensure that the coordinate data
hasn't been corrupted.

On the off-chance that a later version of System 7.5.x might meddle with the
location of some low memory globals, I rewrote these macros to use the
accessor function LMGetcu rApName (J. The offsets help show where in the string
the data is stored. These offsets are reduced to constants by the optimizer in
the Metrowerks compiler, so that there's no performance penalty for making
the code readable.

The various function prototype come next. Now, at last, comes the main (J

function.

II ···········---
11 Main routine.

typedef struct {
QDGlobals qd; II Storage for the QuickDraw globals
long qdGlobalsPtr; II A5 points to this place;

II it will contain a pointer to qd
QDStorage;

pascal void Showlnitlcon (short iconFamilyID, Boolean advance)

long oldA5;
QDStorage qds;

II Original value of register A5
II Fake QD globals

CGrafPort colorPort;
Graf Port bwPort;
Rect destRect;
SysEnvRec environment; II Machine configuration.

oldA5 = SetA5((long) &qds.qdGlobalsPtr)
II Tell A5 to point to the end of the fake

II QD Globals
InitGraf(&qds.qd.thePort);

II Initialize the fake QD Globals

SysEnvirons(curSysEnvVers, &environment);
II Find out what kind of machine this is

. - E~~ ~ ~ ~~'"'~~ T2!J_et!!•!: -0
ComputeiconRect(&destRect, &qds.qd.screenBits.bounds);

II Compute where the icon should be drawn

if (environment.systemVersion >= SYSTEM_7 &&
environment.hasColorQD) {
OpenCPort(&colorPort);
PloticonID(&destRect, atNone, ttNone, iconFamilyID);
CloseCPort(&colorPort);

else {
OpenPort(&bwPort);
DrawBWicon(iconFamilyID, &destRect);
ClosePort(&bwPort);

if (advance)
AdvanceiconPosition (&destRect);

SetA5(oldA5); II Restore A5 to its previous value

Here's where all the magic happens. First, define a storage area, qd, for your
QuickDraw globals. Unlike building an application, where the development
software automatically sets up the QuickDraw global storage (as described in
Chapter 3), you must do this yourselves. Now comes the executable code.
The first thing Showini Ucon (l does is save the current value in register AS
(680x0 processor or 68LC040 emulator) using the macro setA5 (l. This macro
also sets AS to point to your qd globals. You are creating a temporary stand
alone AS world for QuickDraw to use when it draws your icon.

You might be cringing at this point because you are messing with register AS.
Earlier in this chapter, didn't I mention that that tampering with AS was a
bad idea? It is, but because you need QuickDraw to display your icon and
QuickDraw is so intimately tied to the use of AS, you must take this step. The
purpose here is to preserve the QuickDraw globals that the boot process
uses, while still drawing your icon. Once Showini Ucon (l quits, your qd globals
get scrapped, along with the Showiniticon() code. Recall also that the
CodeWarrior IDE's 680x0 compiler generates stand-alone code such that any
global variable access relies on register A4. This eliminates any conflicts

0- ~C'S ~'!.'~'!!.'C' !~0~'- _____________________________________ _

between your Extension and the boot process as far as register usage goes.
This code shows you how to safely make use of QuickDraw in your Exten
sion, ifit is necessary. You can even go as far as using windows and dialog
boxes. At boot time, for example, the AppleShare Extension uses a dialog box
that prompts you for a password to a mount a server volume.

Hazard
For human interface reasons, it's not a good idea to interrupt the boot
process to ask for information. This stalls the system startup until the user
enters data, which might be a long wait if she has wandered off for a cup
of coffee. No matter how good it is, this sort of behavior is guaranteed to
get your Extension yanked if it hangs the unattended restart of a Mac after
a power failure. This is especially true if that Mac functions as a file server
or as a remote access node.

Now, initialize QuickDraw (InitGraf (>) and call SysEnvirons () to check out the
system. Next, call ComputelconRect(), passing it the global qd. screenBits. bounds,

which contains the dimensions (in pixels) of the main screen.
ComputeiconRect () uses this information, and the data stored in curApName, to
position the 32- by 32-pixel rectangle that frames your icon. The code then
checks to see whether the Mac is running System 7 and has a color display. If
so, open a color grafport and use the Toolbox call PloticonID () to draw
FlipDepth's color icon. If you are running on a Mac without a color display,
open a black-and-white grafport and call the custom function orawBWicon () to
draw the icon. With that done, the function AdvanceiconPosi tion () is called. It
updates the coordinate data in curApName, so that LMVCoord and LMHCoord point to
a new screen position for the next icon. If you're presenting a series of icons
for an animation, call Showlni ti con () repeatedly with the advance argument set
to FALSE. In this case, AdvanceiconPosition () isn't executed, and each icon
appears one on top of the other at the same screen location. When you
complete the animiation sequence, the last call to Showini ti con () should be
made with advance set to TRUE to bump the screen position for the next
Extension.

II --
11 A checksum is used to make sure that the data in

II there was left by another ShowINIT-aware INIT.

- -- - -- - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - -'~~'!: ~ ! ~,~;~'"'.!'.!.T21!.'1!'': -0
static unsigned short Checksum (unsigned short x)

return ((x << 1) : (x >> 15)) • 0x1021;

I I · - · - · · · · · · · · · · · ·
II ComputeiconRect computes where the icon
II should be displayed.

static void ComputeiconRect (Rect* iconRect, Rect* screenBounds)

II If you are first, you need to initialize the shared data.
if (CheckSum(LMHCoord) != LMHCheckSum)

LMHCoord = 8;
if (CheckSum(LMVCoord) I= LMVCheckSum)

LMVCoord = screenBounds->bottom - 40;

II Check whether you must wrap
if (LMHCoord + 34 > screenBounds->right) {

iconRect->left = 8;
iconRect->top = LMVCoord - 40;

else {
iconRect->left = LMHCoord;
iconRect->top LMVCoord;

iconRect->right = iconRect->left + 32;
iconRect->bottom = iconRect->top + 32;

II AdvanceiconPosition updates the shared global variables
II so that the next extension will draw its icon beside ours.

static void AdvanceiconPosition (Rect* iconRect)
{

LMHCoord = iconRect->left + 40; II Update the shared data
LMVCoord = iconRect->top;
LMHCheckSum CheckSum(LMHCoord);
LMVCheckSum = CheckSum(LMVCoord);

0- ~.?'f ~9!.'~".!.'C' _T~l~t_ ______________________________________ _

Here are the functions that manage the running checksum (checksum()) and
the icon screen position (ComputelconRect () and AdvancePosi tion ()).
computelconRect () first verifies the stored screen coordinates by passing LMVCoord
and LMHCoord to Checksum () and then compares these values to those held in
LMVChecksum and LMHChecksum. Notice the watchdog code that handles the default
screen coordinate setup if the checksums fail to pass muster. This situation
should only occur if, by some miracle, your Extension happens to execute
first. (Extension files are loaded and executed by the Mac OS in alphabetical
order.) In this case, Showiniticon() sets up the initial coordinates of the icon's
rectangle 8 pixels, horizontally and vertically, from the bottom left comer of
the screen.

If you're puzzling over the value of-40 for the vertical displacement, here's
the score. Negative displacements move the current plotting position up
wards or to the left in QuickDraw's coordinate system. Because QuickDraw
plots rectangles starting from their upper left comer, and icons are 32 pixels
wide, then the bottom of the icon appears 8 pixels above screen's bottom.

If an icon's rectangle comes within 34 pixels of the right of the main screen,
more watchdog code wraps the rectangle's location by moving it back to 8
pixels from screen's left side, and up another 40 pixels. Advance IconPosi tion ()
simply bumps the icon rectangle 40 pixels to the right, computes new
checksums based on these coordinates, and updates the locations in
CurApName.

II DrawBWicon draws the 'ICN#' member of the icon family.
II It works under System 6.

static void DrawBWicon (short iconID, Rect *iconRect)

Handle icon;
BitMap source, destination;
GrafPtr port;

icon= Get1Resource('ICN#', iconID);
if (icon I= NULL) {

HLock(icon);
II Prepare the source and destination bitmaps.

source.baseAddr =*icon+ 128; II Mask address.
source.rowBytes = 4;

- !'~~! ~ ! "'.!'~Jt_!llC T21l."!!'! -0
SetRect(&source.bounds, 0, 0, 32, 32);

Get Port (&port) ;
destination = port->portBits;

II Transfer the mask.
CopyBits(&source, &destination, &source.bounds, iconRect,

srcBic, nil);
II Then the icon.

source.baseAddr = *icon;
CopyBits(&source, &destination, &source.bounds, iconRect,

srcor, nil);

The function orawBWicon <) supports Macs running System 6. Because Power
Macs require System 7.1.2 or later (7.5.2 for second-generation PCI-bus
Power Macs), this code probably never runs. It serves, however, as a terrific
example of how to use the Toolbox routine copyBits <),which is often used to
draw custom images or dialog controls onscreen. These same principles can
be applied to color icons and images, because copyBi ts<) is a color-capable
routine.

As usual, orawBWicon() does a safety check for the presence of the black-and
white icon's ICN# resource. If it's present, you set up a handle (icon) that
points to the icon's mask. An ICN# resource typically starts with an icon's
image data and is followed by its mask data. Because a 32- by 32-bit icon
consists of 128 bytes, the starting (or base) address of the mask's data is 128
bytes past the icon data (*icon + 12a). Next, you indicate that there are 4 bytes
of data per row (rowBytes = 4) in the icon's image. Last, set up the drawing
rectangle's size for the source image, and arrange the current grafport as
the destination for the drawing. The first call to copyBits () uses the icon's
mask data and QuickDraw's bit clear drawing mode (srcBic) to punch an
appropriately shaped hole in the Desktop's background pattern. Then, adjust
icon to point toward the actual icon data. A second call to copyBits () uses the
or drawing mode (srcor) to drop the icon's image into this hole without
disturbing the background pattern.

Compiling the Fat Resource
Now that you have toured the code, it's time to generate the resource. Open
the project file "Showlnitlcon.µ.PPC." You'll see a project window, as shown
in Figure 5.14.

0- ~~".:"!:' ~"'.'!""'-"'.'C' _T~o~"- •

19 Showlnitlcon.µ.PPC
File-

V SourcPs

·v Hae Libr arieos
lnteorface-Lib

.............. ~.~~.~~~~.?.~!..:~~~

3 file(s)

Code- Data
IKi 12 i

7K IK

Figure 5.14 The PowerPC version of the Showlnitlcon project.

Check the preference settings for the project. The CIC++ Language and Cl
C++ Warnings should be the same as those in previous projects. Under the
PPC Processor panel, ensure that the data structure alignment popup menu
is set to 68K. For the PPC Linker panel, make sure that the Entry Point's
Initialization and Termination items are empty. For the Main item, type in
main (no leading underscores). If you weren't making a fat code resource, you
could do away with the #define statement in Showlnitlcon.c, and type
Showiniticon instead for the Main entry point. For the PPC PEF panel, make
sure that the item Expand Uninitialized Data is checked.

Hazard
Unless you want to spend a lot of time debugging crashes, you must

check this setting in the PPC PEF panel! Here's why. The PowerPC linker

normally compacts any initialized data structures that the code fragment's

data area contains. Nor does it allocate space for the uninitialized data

variables in this area. These actions can conserve disk space for the code

fragment file. particularly when the fragment deals with large data struc

tures.

Recall in Chapter 4 that the Code Fragment Manager prepares a fragment

for execution. Glance back at the installation code for FlipDepth, and you'll

see that you used GetMemFragment (J to load your code fragment into

memory and prepare it. One of the Code Fragment Manager's jobs is to

create the run-time links for the fragment's globals and functions; another

- _c;~~te! !_ ! !:"!_ti~g_lt!<!_ T21l!'~'! -0
is to build the fragment's memory-resident data area. It does this by
decompressing any initialized data structures and stashing these objects in
the data area. It also allocates storage for the data area's uninitialized
variables and zeroes this section of memory.

Stand-alone code resources, even when they're PowerPC code fragments.
are loaded into memory and executed in place. Because the fragment isn't
prepared for execution. any initialized data structures it has can't be
compacted. Also, there must be file space allocated for all of the variables.
even the unused ones. Now when the file image gets loaded into RAM,
this arrangement creates the appropriately sized area in memory for these
variables.

Important
The native patch code in FlipDepth's 'PPC · resource is a private resource.
The native code resource for Showinitrcon() is an accelerated resource. The
difference between the two is that a private resource acts more as a
shared library, while an accelerated resource is just a code resource
composed of PowerPC code.

The distinction is important. A private resource can have its own interface
and multiple entry points. Witness FlipDepth's own patch code. It has two
entry points, one for each of the patched Toolbox routines. An accelerated
resource, on the other hand, must operate within the bounds of a code
resource. As you've just seen in the hazard box, it can't rely upon services
that the Code Fragment Manager provides. Furthermore. an accelerated
code resource has only one entry point. although you can write the code
such that a selector function calls different functions inside the resource.

Why would you write an accelerated resource? One reason is that it
enables you to rapidly port existing 680x0 code resources to PowerPC
code. The same expertise used to write code resources for 680x0 Macs
can be applied to write native code resources. Another reason to write
programs this way is that it enables you to use one code base that works
for either processor.

0- ~l"!:' !'~''::'~":!.'C' !~~"- ______________________________________ _

The final stop for your PowerPC project's preferences is the PPC Project
panel, as shown in Figure 5.15.

Rpply to open project.

Project Type: I C:ode Resource .,.. I
C:ode Resource Info:

File Nome

Sym Nome

Resource Nome

C:reotor Type ResType Res ID

jRsED j jrsrc j jMWC:W 1 J 120

Resource Flogs ~ He11der I None I
D Dlsploy Dlolog D Merge To Fiie

(Foctory Settings J [Reuert Pon el J (C:oncel J [(OK)J

Figure 5.15 The PPC Project settings to make a native code resource.

There are several things to note here. The Project Type is set to Code Re
source in the popup menu, the output file name is "PPCCodeResource," the
resource's Type is 'MWCW', and its ID number is 128. It's important that you
use these values, because the Rez file that builds the fat resource relies on
this information. For this same reason, the Header popup menu item is set to
None, because Rez builds the resource header later.

If everything is in order, build the project, and the output file
"PPCCodeResource" should appear.

Now, it's time to make the 680x0 version of the resource. Open the project
file "Showlnitlcon. µ.68K." The project window is shown in Figure 5.16.

As with the PowerPC version of the project, the settings are crucial. They're
going to resemble the settings you used to produce the 680x0 version of
FlipDepth, but they're worth reviewing again. In the 68K Processor panel, set
the Code Model item to Small in the po pup menu and the Struct Alignment
popup menu to 68K. The 68K Linker panel, check the Link Single Segment
and Merge Compiler Glue into Segment 1. The 68K Project window should
appear as shown in Figure 5.17.

. - E'o'~''. ~ ! ~"~'~' 21 !'C T2'!'~''. -0
Showlnit.µ.68K

File Code Data
V Sources l 572 i 4 ! • El 0

MAM@ I I .. ~-
v H.ic Libr.iries 't j 30K! O I l:I
--·--.!:'~~1!~_,!!!!__ ____________ ~z.:gL ______ Q.L ...JD..

2 file(s) l!OK 4

Figure 5.16 The 680x0 project window for Showlnitlcon.

Rpply to open project.

Project Type: Code Resource

Ii Code Resource Info:~~~~~~~~~~~----,
Access Paths

Ii
Extras

G
68K Processor

n
68K linker

File Name

Sym Name
1@131iti!i.1;14jHl!Yi'

Resource Name

Creator Type ResType Res ID SegType

~ E:=J lt1-1wcwl ~
Resource Flags ~ Header Type: I Standard .., I

D Display Dialog D EHtended Resource D Merge To File

L-m __ l-=.c.......cliW-'-'"--"~ Hrn [Factory Settings J [Reuert Panel J [Cancel J ([OK

Figure 5.17 Creating the 680x0 code resource for Showlnitlcon.

]J

Again, the Project Type is set to Code Resource. The name of the output file
name and the resource type and ID should correspond to what's shown here.
Leave the Header Type chosen as Standard, because either the 680x0 proces
sor or the 68LC040 emulator expects a code resource to have a standard
header. Leave the Resource Flag settings alone, because these are set when
the fat resource is built. Make the project and the output file
68KCodeResource appears.

Now that you have made both parts of the fat resource, it's time to put them
together. You'll use the ToolServer version of Rez to accomplish this. To
understand what's going on, open the file FatCodeResource.r with the
CodeWarrior editor.

#include "MixedMode.r"
II Enter the Proclnfo type as a hexadecimal value,
II as either $01, or 0x01. Use the CodeWarrior
II disassembler to determine this value

II Use resource type 'fdes' for a fat resource

II (PPC and SK Macs running Mixed Mode)
II Use resource type 'sdes' for a safe fat resource

II (runs on all Macs)

resource 'sdes' (128, sysheap, locked) {

} j

$180, II 68K Procinfo
$180, II PowerPC Proclnfo
II Specify file name, type, and ID of resource

II containing 68K code
$$Resource ("68KCodeResource", 'MWCW', 128),

II Specify file name, type, and ID of resource

II containing a PEF container
$$Resource("PPCCodeResource", 'MWCW', 128),

These Rez commands build the fat resource. The include file,
"MixedMode.r,'' contains the templates (either 'fdes' or 'sdes') that create the
fat resource header and copy the two disparate chunks of machine code into
a single file. As you can see, the Rez commands in FatCodeResource.r are
hard-wired for the file names built by your projects, plus the resource's type
and ID.

The ProcinfoType value, which becomes part of the routine record that de
scribes each code resource, is missing. Because Showiniticon() is a Pascal
based stack function with two arguments and doesn't return a result, its
ProcinfoType is Oxl80. If you're writing a different function, you can readily
obtain its ProcinfoType value. After you've compiled the code, invoke the
Disassemble command from the Project menu, and search the resulting
dump window for the symbol _procinfo, as shown in Figure 5.18.

. - ?~~"'!: ~ ! !'."!.'~'"' !'C T20~'!!'!: -0
Show I nit I con.c.dum.J!_

178: lconRect Find
179 : scr-eenBounds

Find: I I
180: . Gel 1Resource 13 II Find] 181: .HLock
182: .SelRecl
183: .OelPol"l

Replace: l J [3 (Replace J
184: .CopyBI ls
105: lconlO (Replace & Find J
186: pol"l

~a D Botch D Ignore Case D Regexp (Replace All J 187: desllnalion
108: source 181 Wrap D Entire Word
189: Icon
190: main
191: TOC

Hunk: KI nd=HUNJUll.OBRLI ORTA Al ign=4 Class=RJ.I Name=" ~l"OClnfo"(1 > Size=4
00000000: :JO oo o 1 aa •... A·

Hunk: KI nd=HUNl<-.ClLOBRLCODE Al ign=4 Class=PR Name=" . ma In"' C2) Size=252
00000000: 7C0802R6 mflr rO
00000004: 93E 1FFFC slw r31,-4(5P)
00000008 : 93C 1 FFF8 slw r30,-8C5Pl
oooooooc: 900 10008 slw i"0,8(5P)
00000010: 9421FOFO slwu SP,-52B<SPl
00000014: 7C7E1878 ml" r30,r3
00000018: 9881022F slb 1"4,559CSP>
0000001C: 386101F6 add I r3,SP,502
00000020: 4800000 1 bl .SelA5
00000024: 60000000 nop
00000028 : 7C7F 1878 mr r31,r3
0000002C: 38610 1 F2 addi r3,SP,498
00000030: 4800000 1 bl .lnllGraf

b.. I }Line: 196 I

Figure 5.18 Getting the ProcinfoType for the Showlnitlcon () function. This value is
the hexadecimal number associated with the symbol _procinfo.

The hexadecimal value linked to this name is the ProcinfoType value you type
into the appropriate slot in FatCodeResource.r. Because this file already has
the proper values for Showinitlcon(), it's time to start ToolServer to build the
code resource. Choose Start ToolServer from the CodeWarrior IDE's Tools
menu. Select ToolServer Tools from the ToolServer menu, followed by Rez ...
from the hierarchial menu. When the Rez options window appears, go the
the Rez Output File area and type rsrc in the Type item, press Tab to select
the Creator item, and type RSED. Next, go to the popup menu with the default
file name Rez.out and select Write Output to a New File from this menu. A
Standard File dialog box appears. Check that you're in the FlipDepth:Projects
folder. Type the name Showini Ucon. rsrc and press Return. With the output
file's name, type, and creator chosen, let's specify the input. Start by clicking
the Files & Paths button. Rez places another window titled Files & Paths ...
on the screen. Now, point Rez to the location of your code resources and
click the Include Paths ... button (not the #Include Paths ... button). A modi
fied Standard File dialog box appears. Check that the current directory is the
FlipDepth:Showlnitlcon folder. If so, click the Add Current Directory button,
and this pathname is appended into a list at the bottom of the window. Click
the Done button, and you're returned to the Files & Paths window.

0-~!'E ~~!.'~"2.'C' !~~"- ______________________________________ _

Now, go to the Redirection item in this window and click the Input popup
menu. Select Existing File from this menu, and a Standard File dialog box
appears. Choose FatCodeResource.r, and press Return. Finally, click the
Continue button to exit the Files & Paths window. Double-check all the
settings, and then click the Rez button. You should hear some hard disk
activity, and the status pane indicates that Rez is active. When the cursor
changes from the rotating beach ball busy indicator back to an arrow, click
the Worksheet window. Switch to the Finder and check that the file
Showlnitlcon.rsrc was created. If the file exists, go back to the CodeWarrior
IDE and stop the ToolServer.

At long last, you are ready to add the Showini tr con() fat resource to the
FlipDepth Extension file. There are two ways to do this. You can double-click
the Showlnitlcon.rsrc file to launch RezEdit, because you set the file's creator
to this utility. You can use ResEdit to cut and paste the 'sdes' resource from
this file into "FlipDepth." Or, because the CodeWarrior IDE is still active, you
can open the FlipDepth.µ.68K project file, select Add Files ... from the Project
menu. Navigate the Standard File dialog box into the FlipDepth:Projects
folder, and add the file "Showlnitlcon.rsrc" to this project. Build the project
again. The Toolbar should indicate that the file was copied to the output file.
Drag the new FlipDepth Extension to the System Folder, reboot your Mac,
and you should see FlipDepth's monitor icon appear when the Extension
files load.

The nice thing about this design is that it's modular. If a new version of
Showiniticon() should appear on the Internet, you can easily update
Flip Depth's icon display without recompiling the Extension's source code.

You might be wondering if FlipDepth itself can be made into a fat resource.
The answer is no, for a number of reasons. The major reason is the asymme
try between the 680x0 and the Power PC versions of the patch code for the
PostEvent () OS trap. Because it is a register-based routine, you had to resort
to assembly language and a batch of conditional compilation statements to
make both versions of the patch code. If you had used a different event
gathering routine, such as SystemEvent (),which is stack-based, you could
have written all your your code C and gone the fat resource route. The other
major problem is that the glue code in safe fat resource headers modifies the
680x0 registers AO, DO, and Al-the very same registers that an OS Toolbox
routine uses to receive arguments and return results.

-- E'!!'~"'.!: ~ ! ~~'1' c"'C r2'!!'~'~ -0
Summary
In this chapter, you have seen how to apply the knowledge you've gained
about the PowerPC run-time architecture to solve specific programming
problems, especially to guarantee an orderly switch from one instruction set
to another when calling your custom function. As you have walked through
the code of these two programs, you can see that this isn't difficult. Further
more, it should be obvious that access to the global data of any program and
OS Toolbox routines is far simpler on a PowerPC system than it is with a
680x0 system. This goes a long way toward helping developers write more
Power Macintosh software. Finally, you have seen how to build fat resources,
which are the fundamental building blocks for any cross-processor applica
tion.

Now that you have developed your programs, let's get to the other stuff
debugging.

The Art of
Debugging

The material in this chapter will be of no interest to
those programmers who write perfect programs, every
time.

Seriously though, it is inevitable that program code
has bugs. Programming is where you give the com
puter precise directions in what amounts to a second
language for you. Despite C's elegant terseness of
syntax (or because of it), there's the inevitable conver
sational misstep that causes the Mac to freeze up like a
social misfit at a debutante' s ball. In this chapter you'll
look at the high-level debugging tools CodeWarrior
provides in the form of MW Debug; Apple's low-level
debugger, MacsBug; and The Debugger-a hybrid
low- and high-level debugger. The chapter finishes
with some common sense debugging techniques.
Keep in mind that the Power PC versions of these tools
are changing rapidly, and some features and capabili
ties may differ from what you see here.

0- ~!"!' ~'~"'~":!.'C' !~'~'- .

Important
The text of this book was written using the full version of Metrowerks
CodeWarrior. You'll have to use slightly different steps when using
CodeWarrior Lite from the CD. The commands New, New Projects, and
Add File ... are not available. Because of these limitations, it can only work
with the sample files provided on the CD.

So, if you are following along using CodeWarrior Lite, when the text tells
you to use the New. New Project..., or Add File ... commands, you should
instead open the related project file and keep it open throughout the
exercise. All the associated files will already be in the project. so you won't
need the Add File ... command. Then, you can follow the same procedures
as if you were using the full version of CodeWarrior.

About Debuggers
You've just completed writing that next killer application that users will flock
to, with their wallets open. The code passes muster with the Code Warrior
IDE's C compiler, and after a few minor revisions the linker approves, too.
But when you launch the application, either from within Code Warrior or by
double-clicking the resulting file, you get the infamous "bomb box," com
plete with a sizzling bomb icon. This dialog box is produced by the System
Error Handler, which the operating system calls when it detects a fatal error
or exception. This assumes that the cause of the error hasn't seriously
trashed the operating system in the process. In that case, you might be
spared the pyrotechnics, and the Mac instead simply seizes up with no
warning at all. Despite this, consider yourself lucky that such a bug manifests
itself so rapidly. It's those slowly ticking logic bombs lurking within the
program code that go off minutes or hours later which can drive seasoned
programmers to drink-and I don't mean Jolt cola, either.

No matter what type of program bug it is, or how long it takes the bug to bite,
programmers rely on their wits, intuition, and debuggers to rid their code of
these pests. A debugger is a highly specialized program designed to help you
track down program bugs, hence the name. The debugger program installs
its own exception handlers or uses advanced system routines so that when
an exception occurs, it can seize control and halt the program. You then use

. - ~~~re~~! !h~ ~'!. o! ~"~l"I! -0
the debugger to investigate the exception's cause by examining the
program's variables and data structures. If necessary, you can have the
debugger take charge at designated points in the program, and single-step
through the program's instructions, tracing the path of execution up to the
crash. These debugger features enable you to reconstruct the crash scene.
This usually gives you a good idea of where the bug is and how to fix it.

Background Info
It's nomenclature time again. Debuggers generally fall into two categories:

hardware and software. A hardware debugger uses dedicated hardware to

perform the debugging process, and a software debugger is a special

computer program.

A typical hardware debugger is an In Circuit Emulator, or ICE for short. As

its name implies, an ICE is a dedicated set of hardware that connects in

line with the test computer's processor, or replaces the processor entirely

with custom circuitry. Special software lets you halt a program's execution

based on hardware accesses, such as read/write operations to a memory

location or an 1/0 port. Such fine control is possible because the ICE

hardware eavesdrops on the bus signals and detects when a bus access

touches the memory locations you request. An ICE is not usually necessary

for development at the application level. It's used by the hardware and

firmware designers as they build the prototype computer system and its

ROM code. Because you are debugging programs here. not building a

computer, this is the last mention of hardware debuggers.

Software debuggers are used to debug applications or software compo

nents such as plug-in modules or stand-alone code resources. These

software debuggers may be further subdivided into two categories: low

level and high-level. A low-level debugger operates by using as few of the

operating system resources as it can. Because of this. these debuggers are

very robust. They continue to function even though a buggy application

may have done heavy damage to the operating system. On the other hand.

such debuggers typically have a minimalist interface and display. You can

examine the program, but usually only as machine code instructions. and

you need to know memory addresses of a program variable to view its

contents. Apple's MacsBug is an example of a low-level debugger.

continues

0- ~~""'.:' ~'!.'~~'C' .!~'~'- ______________________________________ _

continued

High-level debuggers rely heavily on the operating system to provide

services such as windows and menus. In turn, they provide an easier to

use interface and a sophisticated display. They can show a test program's

code as either source or assembly language statements. Variables can be

monitored simply by knowing the variable's name, not its memory location.

Their values can be displayed in a variety of formats. On the other hand,

because these capabilities depend on the operating system's health.

substantial damage to it by a program error causes high-level debuggers

to go down in flames along with the buggy program. Another limitation is

that you can't debug certain types of code, such as MDEF (menu definition

handlers), completion functions, or interrupt tasks. That's because some of

these code types function on the fringes of the operating system (such as

the interrupt task), and others pose reentrancy problems (you can't debug

a new menu handler when the debugger itself uses menus). CodeWarrior's

MW Debug is an example of a high-level debugger.

Despite these limitations, a high-level debugger is a good way to confirm

that a program works as it should. Also, it's very good at quickly locating

the vicinity of the problem code, which helps reduce the time it takes to

zero in and fix the error. Also. a low-level debugger requires that you learn

a lot of details about the processor, the operating system. and the

compiler's output before you can make sense of what's going on. In short,

a low-level debugger has a steep learning curve. whereas high-level

debuggers only require that you know the programming language.

Both types of debuggers let you step through the statements one line at a

time, or set control points called breakpoints. A breakpoint marks the

instruction where the program's path of execution breaks (or halts) out of

its normal course. and the debugger program takes control. Breakpoints

thus allow you to run a program up to a suspect location. You can exam

ine critical program variables and begin single-stepping from the breakpoint

location to gather additional information.

Another valuable capability these debuggers offer is another control feature

called a watchpoint. A watchpoint is similar to a breakpoint, but instead of

halting the program flow on the execution of a particular instruction. the

triggering event is a change in a data variable. For example, you might

- ~~"''" ~ ! !h~ ~'!. <'! ~'£"~9l'~ -0
monitor the value in a key global variable and halt the program if it
changes. Or, you might keep watch on a memory block in your application
heap that seems to get inexplicably hammered by your program.

So far, you have been reading about debuggers that run on the one target
machine. There is another category of debugger here: a two-machine
debugger. A two-machine debugger uses a small code "nub" (a control
program) on the target machine, while the debugger itself runs on a
different machine (called the host). The host machine communicates to the
nub on the target via a wire, typically a serial cable. The big advantage to
a two-machine debugger is that the host can support a high-level front
end, while the low-level nub can usually survive the target machine's
operating system being destroyed. A two-machine debugger can also
provide source-level debugging for virtually any code in the target system.
The big disadvantage is that this type of debugger requires two machines.
Apple's initial PowerPC debugger, Macintosh Debugger for PowerPC, was a
two-machine debugger. It has been modified recently to operate as a
single machine debugger.

The concept of a debugging code nub also exists for single-machine
debuggers. For example, CodeWarrior has a "MetroNub" file that estab
lishes low-level communications and control between your test program
and MW Debug.

As a high-level debugger, MW Debug can be used to single-step through the
source code, and set breakpoints. It also displays the contents of variables,
and lets you change their value. This way, as you step through the program,
you observe what the code is actually doing and what values it's working
with. By changing the values of function results, you can force the program
through an error handler to check the application's robustness. MW Debug
also allows you to examine a program as assembly language instructions.

Currently MW Debug can debug applications, shared libraries, and certain
code resources. If, however, you're writing interrupt-level code, or code
resources that can create reentrancy problems, you'll have to use a low-level
debugger. Examples of code resources that have reentrancy issues are MDEF
(menu definition resource), CDEF (control definition resource), and LDEF

0- ~!Pi' .!'~!.'~"2.'C' !~~'- -

(list definition resource). Another hard-to-debug code type is the Drag and
Drop callback functions, because the Drag and Drop mechanism operates at
interrupt time.

Using the CodeWarrior Debugger
In order for MW Debug to display variables and trace through the source
code, it requires specific information about your program. You supply this
vital data by preparing the program for debugging in the Metrowerks IDE.
This preparation involves only a few changes to the project's preferences
settings, and simply recompiling the program to make a new version. Along
with the new executable application file, Code Warrior also generates a
symbolics, or symbols file. This symbols file contains the names of the
variables and functions used in your program, plus their location in both the
source code file and in the application file. MW Debug uses this symbol file
information to manage the debugging session.

The symbols file CodeWarrior makes has the same name as the application's
name, plus an extension of .SYM for the 680x0 code, and .xSYM for the
PowerPC code. For example, let's assume you compile the source file in
project "Klepto.µ" for debugging, and name the application Klepto. The
CodeWarrior IDE generates a file named "Klepto.SYM" for the 680x0 version
of the program, and "Klepto.xSYM" for the PowerPC version.

Let's take the "SwitchBank" program and run through parts of it with MW
Debug. First, go to the folder labeled SwitchBank (debug). Now launch
CodeWarrior by double-clicking on the "SwitchBank.µ.PPC" project file. Go
to the Project window, and in "SwitchBank.c" file slot, click on the area
beneath the bug icon. A small dot appears (see Figure 6.1). This dot is the
Generate SYM Info marker. Now whenever the linker generates an output
file, it creates the required symbolic debug information for the marked file.
You can choose one or more files for debugging.

. - "~"''" ~ ! ~ ~ ~ ~·£"Jl9~"g -0
~11!1 SwitchBenk.)l.PPC !iij

File Code Data 'If
V Sources oI o• •_I:! Q

Ill
SwitchBankr ~ nl•J ..!,li,I

V Hae Libraries
01 ~l : lnterfaceoL ;b I

Mathlib I ~J ol lll tzy MYCRuntime .Lib I o ol iii
5 flle(s) 0 0 lil

Figure 6.1 Marking a file for debug output

Now that you've marked the source file, you need the CodeWarrior linker to
actually generate the debug information. Select Preferences from the Edit
menu, and select the PPC Linker Panel. Under the Link Options section, click
on the Generate SYM File item to check it. Also check the Use Full Path
Names item (see Figure 6.2). The Full Path Names has the linker generate a
complete path specification for a file, such as Tachyon:CodeWarrior:Code
Examples PPC:SwitchBank (debug):SwitchBank.c. While checking this item
isn't necessary, it helps MW Debug locate the files it needs, especially if
they're located somewhere other than the CodeWarrior folder or the project
folder. If you're using the CodeWarrior IDE to produce 680x0 code, go to the
68K Linker Panel and check the Generate A6 Stack Frames item.

Remaking the application is the last step in the preparation sequence.
Choose Make from the Project menu or type):::C-M. CodeWarrior first
recompiles the source, and then the linker produces the application file and
the symbols file.

At this point, you have two options. If you're tight on memory, quit the
Code Warrior IDE and manually launch MW Debug, as described next. If
you've got lots of spare memory, you can launch both MW Debug and your
program from within the CodeWarrior IDE.

To do this, select the Enable Debugger item from the CodeWarrior IDE's
Project menu. You'll notice that the Run item in this menu has changed to
Debug. Now when you run the program (either by selecting Debug from this
menu or clicking on the Run icon in the Tool bar), MW Debug automatically
starts. Starting MW Debug this way allows you to do a quick program check
out, with the option to drop back into the CodeWarrior IDE if you spot a
problem. Note that this feature is for use with applications only.

0- ~""!'!~ f".!9C'~'!!.'C' _f ~0~'- ______________________________________ •

Hpply to open project.

~ '°' mil df
Extras ff

a ~i
C /C++ Language Ii~.

1'1"1

Entry Points:------------~
~ Gener11te SYM File

~ Use Full P11th N11me\

D Gener11te Link M11p

D Suppress W11mlng Mess11ges

I Norm11I Linking "' I iP!'I 1!1~ I.iii ll!lli '------------------~
Link Options:------------~ C/C.tngs ~I.

PPC Processor I. m& il

lnit1111iz11tlon:

Termin11tion:

(F11ctory Settings J (Reuert P11nel J (C11ncel J ([OK J)

Figure 6.2 Setting the linker to produce symbols for the debugger.

Important
Before you start the CodeWarrior source debugger. check that you have
installed the auxiliary files it requires to operate. All 680x0 and Power Macs
running System 7.5 or later require the Extension file "MetroNub" for low
level support. Power Macs must also have "ObjectSupportlib" in the
Extension folder. For a Power Mac running System 7 .1.2, the
"PPCTraceEnabler" file must also be located in this folder. If these files
aren't present, look for them in the System Extensions folder on the
CodeWarrior CD. Copy these files to the pertinent System Folder directo
ries on your target system and reboot it.

To launch CodeWarrior's high-level debugger, double-click on the MW
Debug application, or drag the project's .xSYM file icon onto the MW Debug
icon. MW Debug launches, and after a brief interval, two windows appear
(see Figure 6.3) The front window, titled SwitchBank, is the Program Win
dow. It displays the source code file that has the active function (in this case,

. - .'?~&! ~ ! !h.!: ~"-01 ~·~"9'""~ -0
main ()) • The other window, titled SwitchBank.xSYM, is the Browser window.
It's used to select other source files in the project, so that you can examine
them and set up breakpoints. The floating Toolbar provides ready access to
often-used items in the Control menu. If you're more comfortable using the
keyboard to step through a debugger, you can get rid of the Toolbar by
clicking on its Close box.

s File Edit Control Data Window

Clo/Jal Varia/J/es
" Lin ke r-Generated"
MWCRunti me.Lib
SwitchBank .c

SwitchBank.HSYM

Ox 06C74 0
0 Ox 4B 25C

~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~~__start

/IQ local l"Bria/Jles

re turn FALSE;
) /* end if */

In i tCursor() ;
re turn TRUE ;

} /* end lnit...J1ac<>*/

, vo id main<vo id)
-:· {

if < lni t...J1ac<))
Mai n....Even t...l..oop<) ;

else
SysBeep < 30) ;

} /* end main */

Figure 6.3 MW Debug displaying the Program and Browser windows.

Let's take a closer look at the Program Window (see Figure 6.4). It's com
posed of three panes, or sections. The bottom section is the Source Pane. It
shows the source code of the active function. It's where you step through
your program, one line at a time. Tick marks on the pane's left indicate
executable statements. The small arrow adjacent to these marks points to the
currently executing statement.

0- ~~!"" ~'£'C'~°"'C'_T~o~it- ______________________________________ _

s File Edit Control Data Window

=Iii SwitchBanlc

OxCA554
Ox4825C
__,tart
main
Mai n_EvenLLoop
oo_command
Toggle_file....Shari ng

0 extentFDi r l D
I> fileShari ngExtl nfo
I> fileShari ngMaskl nfo
I> nil Point
I> searchPB
I> searchSpec 1
I> searchSpec2

·gsysVRefNum
I> gthisfileSpec

3010
Ox0050E2AB
OxOOSOE298
OxOOSOE 1 BC
Ox0050E2BB
Ox0050E22C
OxOOSOE 1CO
-1
Ox004AE708

-: searchPB. csPoram. i oURefNum = gsysURefNum;
searchPB . csParom . i oMa tchP tr = &g th i sF i I eSpec;
searchPB . csParom , i oReqMo tchCoun t = 1 ;
searchPB.csParam . ioSearchBi ts = fsSBFIFndrlnfo;
searchPB. csParam . i oSeorch Info 1 = &seor"'chSpec 1;
searchPB . csParam . i oSearch I n f o2 = &seorchSpec2;
searchPB . csParam . i oSeorch T i me = 0;
searchPB.csParam. ioCatPosition . initialize= O;
searchPB . csParam . i oOp tBu ff er = N I L ;

I* Search on startup volume */
/* Search resu I t goes here *I
I* Looking for 1 file *I
/* Search based on f i I e character i st i cs *I

I* Don't time out */
I* Start at the begining */
/* t~o search cache required *I

searchPB . csParam . i oOp tBu fS i ze = 0;

if <PBCatSearchSync:: (<CSParamPtr) &searchPB) == noErr)
re turn TRUE ;

else

~epor L.Err J1essage <CANT ...LOCATE_F I LE) ; ~
re turn FALSE ;
} /*end else */

/'*"end Find_Fi le-8haring<) */

void Togg I e_F i I e...Shar i ng <vo id)

!ill Line: 410 Source

Figure 6.4 Details of the Program Window.

At the Source Pane's bottom left are various indicators and controls. Starting
at the left is an icon with the character "T." This indicator manages thread
debugging (680x0 Macs only). When you click it, a popup menu displays any
program threads operating under the Thread Manager. An underlined thread
name on this menu indicates the currently executing thread. A checkmarked
thread name indicates that the Program window shows the source and
variables for this thread. In other words, you can examine that thread's
variables, call chain, and source code even though it's not currently exe
cuting.

The small braces, or Function, icon operates like its counterpart in the
CodeWarrior IDE's editor window. When you click on it, a popup menu
appears that displays all of the functions in this file. The checkmark in this
menu flags the active function. If you select another function, the Source
Pane displays the source code of that function, starting at its entry point. To
the right of the Function icon is an indicator that shows, for this file, the

- P"!'~'~ ~ ! .!h~ ~ oC ~'~"~g~og -0
source line number of the currently executing statement. Finally, next to the
line number indicator there's a popup menu that lets you change the Source
Pane's display from C source code to the corresponding assembly language
statements generated by the compiler (see Figure 6.5). You can single-step
through 680x0 or PowerPC assembly language code, and set breakpoints if
you choose to do so.

s File Edit Control Data Window

OxCA554
Ox4B25C
__start
main
Main_EvenLLoop
Do....Co mmand
Toggle_File...Shari ng

- ' 004AA09C : stw
- 004AAOAO : cddi
- ' 004AAOA4 : stw

004AAOAB : Ii
- ' 004AAOAC : stw
- 004AAOBO : Ii
-1 004AAOB4: stw

004AAOBB : I i
- ' 004AAOBC: stw
- 004AAOCO : I i
- . 004AAOC4 : stw
• i• 004AAOC8 : addi

t
004AAOCC: bl

- 004AAOOO: lwz
- . 004AA004 : ex t.sh .
- 004AAOD8 : bne

004AAODC : Ii
004AAOEO : be

- : 004AAOE4 : Ii
- 004AAOE8 : bl
-· 004AAOEC: Ii

004AAOFO : lwz

tzy
r5 , 352<SP)
r6 , SP , 64
r6,356<SP)
r7 , 0
r7 , 360(SP)
rB,O
r8,364 (SP)
r9 , 0
r9 , 380 <SP)
r10,0
r10,384 (SP l
r3,SP, 3 12
*+58 16
RTOC , 20<SP)
r3, r3
*+12
r3, 1

SwitchBank

extentFDirlD
I> fil eS hari ngExtl nfo
I> fileShari ngMask l nfo
I> nil Point
I> sea rchPB
I> sea rchSpec 1
I> sea rchSpec2

iisiisvR"efi-iiiiTi
I> gthi sFileSpec

; $004AB784

; $004AAOE4

ALWAYS, crO...L T , * + 16 ; $004AAOFO
r3 , 7
*- 1272 ; $004A9BFO
r3,0
r0, 456 <SP >

j 3010
i Ox 0050E2A8
l 0x0050E298
f OxOOSOE 1 BC
f0x0050E2B8
l Ox0050E22C

Jg~ o.~~~E.1~~
i -1
i Ox004AE708

Figure 6.5 Viewing the program's code as PowerPC assembly language.

I +

The pane in the Program Window's upper left is termed the Call Chain Pane.
It displays the list of functions called prior to the function shown in the
Source Pane. In Figure 6.5, the highlighted name, Find_File_Sharing , is the
active function. From the list, you can see the main() called Main_Event_Loop(),

Do_Command () ' and Toggle_ File_Sharing () before calling Find_File_Sharing () . The
Source Pane's output is tied to the highlighted choice in the Call Chain Pane.
Clicking on another function name in the Call Chain Pane highlights that
name and immediately takes you to that function in the Source Pane. The

0- ~l'P !'!!il~~~'C' _r~~'c __ - .

Source Pane displays this function's source code at the point where it called
the next function in the chain.

The pane in the upper right portion of the Program Window is the Locals
Pane. It lists the function's local variables, plus any static or global variables
referenced by the function. A dashed line separates the function's local
variables (at the top of the pane) from the global variables (at the pane's
bottom). When the flow of execution moves to a different function, the
Locals Pane's contents are updated accordingly. Like the Source Pane,
the Locals Pane always displays the variables of the function highlighted
in the Call Chain Pane.

The small triangle to the variable name's left indicates that it is a structure.
When you click on the triangle, the variable expands to show all of the
structure's elements. Clicking on the triangle again hides the structure's
elements. When you hold down the Option key when expanding a handle to
a structure, the multiple dereferences are processed so that the display
shows the structure's data elements. If the size of the Locals Pane is too
confining, especially for large data structures, just double-click on the
variable name. A new, independent window appears, displaying the entire
structure. You can create as many independent windows as you want (see
Figure 6.6).

The current value of each variable appears to its right. If the displayed format
of the variable's data is unsuitable, you can change it. First, click on the value
to highlight it. Then, go to MW Debug's Data menu and choose another data
type, say, character. The value is shown in the new format. If you intend to
single-step through PowerPC assembly language instructions, the Locals
Pane still displays the variable's contents as you continue through the
program.

You can edit the contents of certain variables by double-clicking on the
value. The data becomes framed (surrounded by a box). This indicates that
you can enter a new value. The types of data you can enter are decimal
(signed and unsigned), hexadecimal, floating-point, fixed-point, characters,
and strings (C or Pascal style). Character data must be enclosed in single
quotes; Pascal strings must be enclosed in double quotes and include the
" \ p" escape sequence. The values of pointers to data structures cannot be
edited.

. ____________________________________ E~~'! ~ ! !h." "'!. 0! ~'~"9'~'~ -0
s File Edit Control Data Window

fileSharingEHtl nfo
v fileSheringExtlnfo !Ox004FBB74

fdType ! 'I NIT'
SwitchBan

fdCreator ••mn••••I
fdflegs ! 0

I> fdlocetion l0x 004FB87E

I> fileSheringExtl nfo v cs Pe rem
I> fileSheringMeskln I> qlink

fdfldr i 0
I> nilPoint qTy pe
I> seerchPB ioTrep
I> seerchSpec 1 I> ioCmdAddr

lir-.,....,.,rTlll'".,.,.,,,,,.,..,,,,..-------.--hrl I> see rchSpec2 I> ioCompletion
98'\jSV'Ref'N'u'in ioResult Toggle-File...Sheri ng

I> gthisfileSpec I> ioNemePtr

- .
_j

searchPB . csParam . i oReqNa tchCoun t = 1 ;
searchPB . csParam . i oSearchB its = fsSBF I Fndr Info
searchPB . csParam . i oSearch I n f o 1 = &searchSpec 1 ;
searchPB . csParam . i oSearch I n f o2 = &searchSpec2 ;
searchPB . csParam . i oSearch T i me = O;
s earchPB.csParom . ioCatPosi lion. ini ti ell ize = O;
seorchPB . csParam . i oOp t8l.l ff er = N I L ;
searchPB . csParom . i oOp tBu fS i ze = 0;

; f <PB Ca tSearchSync < < CSParomP tr) &searchPB) ==
re turn TRUE;

else
{

ioVRefNum
I> ioMetc hPt r

ioReqMetchCount
ioAct Mete hCo u nt
i oSee re h Bits

I> ioSeerchl nfo 1
I> ioSeerchl nfo2

i oSee re h Ti me
I> ioCet Position
I> ioO ptBuffer

ioOptBufSize

i Ox004FBB84
l OxOOOOOOOO
is
\53 5
l Ox4083C4D4
! OxOOOOOOOO
io
t OxOOOOOOOO
! -1
l Ox00498888
i1
!1
is
i Ox004FBAF8
l Ox004FBA8C
io
i Ox004FBBB8
! OxOOOOOOOO
io

~:~~~~1~~~~ssoge <CANT ..LOCATE...F I LE> ; ~~~lii!iii~ii~t~h~is~F]il~e~S~pe~c~~~~~ti
) I* end e I se */ v gthisfil . i Ox00498888

' I* end Find...Fi le....ShoringO •/ v~ .. !-1

_I { oid Toggle...Fi le--Shoring<vo id > ~:~~ l~\Op~~ eS haring Exte nsion"

Source .,..

Figure 6.6 Displaying data structures in their own windows.

The Browser Window operates basically like the Program Window. However,
while the Program Window is focused on the active function in a file, the
Browser Window is oriented toward dealing with the program's files and
variables as a whole. The bottom area is the Source Pane, and it displays the
contents of the selected file. The upper part of this window has three panes,
similar to a class browser. The left pane is the File Pane, which displays the
names of the files used to produce the application. The middle pane displays
all of the functions in the chosen file. The upper right pane is the Globals
Pane, and displays the global and static variables that are shared across all of
the files (see Figure 6. 7). Notice that for array AEinstalls [J, you get a special
window where you can alter the array's size and bind it to an address, a
variable, or a register.

0- ".<'~'C'~ £'~'!.'~~'C' -'~'~'~ - .

SwitchBank.HSYM

OX003B129E
Glob61 ~8nables JJ. l •Gmeu111s1_i11n~11o·····

lniLMec HandlersTol nst all$52[0)
ll fil l ·. J!lliliii!lllllilllli!!lil!!ill!!i!.]il

[rnI:Jllll KEJmm
v [OJ Mel n-Event-Loop

mei n theCless
ReporLErr _Messege the Eve nt

~li~~}H~a~n~d~le~rs~T~o~I n~s~t~affi11sgs~2~~~~;;;;;;;;;;;;;;;;!:;;~'--~ I> theProc
v AEi nstells[4] f> Ox0038129E

I Ox 003B 129E
!'eevt '

did·
i Ox0034FS22

J
l [

l~~~!!:~~In!J~Ii~~~~~=~=~=~.~~.~·~=-=~-~~-~=~~-~-=~=~J 1 = 1,. The 4 ·r-...,..,-,,.--H_a_n_dl_e_rs_T_o,,,I n_s,_,t ..,,al.,..1$,....,5...,.2.,...l _l l _ ____,--1

v I 1 J i Ox 003812AA Bind to : 0 Address @Variable 0 R•gister
I icotion, CAEEven theCless i·eevt'

Array size: 1~4-;:::::====I-~ 11: ~~:~~n'. A~~~8!~ theEvent pm;
~s.:.tr.::uo:.:.,t M:_::•::.:m::::b•::_r~: l=:sh;:ow::;:•ll:::m:::•m:::b:=er::;s=•=-1 __ ,...,...fcuments, <AEEvent I> theProc !Ox0034F54C

I> [OJ ! Ox 003B129E ~
I> [1 J i ox003B12AA f+ >
I> [2J i ox003B1286 ler In app l icatlo,,__~_H_a_n_d_le_rs_T_o~ln_s_·t_a_11$_5_2_(2_)_----.--<
I> IR Ox 003B12C2 tzy HandlersTolnstal I V [2] !Ox00381286

tj ~~:A~~~~~7~~~1~~ theCless !'aevt '
....,....,

1
,.--------,(,.---------"'_, the Event N

Aepor~rJ1essage <PAOBLEM..JHTIU1E...HANDL I> theProc j0x0034F706

•

re turn FALSE;
} /,.endif '"/

} /* end for *I

re turn TRUE ;
) /,. end In I t.JlE...Even ts() ,. /

Handlers To I nstall$52[3)
v [3J

theCless
t he Event

i Ox 0038 12C2
! 'eevt'

1---'--/,._H~lg_h-_l_ev~e_I _op~e_n_a~pp_l_lc_a_tl~o_n _ev_e_n_t._ .. _I ___ ---< I> theProc
I Source -.. I l Ox0034F6DA

Figure 6.7 The Browser Window. with a display of the application's high-level event

dispatch table.

H

H

Now it's time to control the program. You do this using commands from the
Control menu. The Run, Stop, and Kill commands provide gross program
control. The Run command simply starts the program from main () , or the
location where the program was halted. The Stop command suspends
program execution. If you issue another Run command, the program re
sumes execution from this point. The Kill command terminates the program
under test. If you issue a Run command after a Kill command, the program's
execution starts over in main ().

The Step Over, Step Into, and Step Out commands apply fine control over
the test program. The Step Over command executes program code, a line at a
time. You'll use the Step Over command frequently to single-step through a
program, observing the results of Toolbox calls and tracking the course of C
control statements. If the current line of code is a function or Toolbox trap,
MW Debug calls the function call or trap, returns, and advances to the next

. - ~'!!'~!~ ! !'~ ~'!!~911~"!!.-0
source line. In this sense, the debugger appears to "step over" function calls,
even though their code actually executes. The Step Into command, when
invoked, carries you inside the function called by the current source line.
This allows you to examine what values get passed to the target function, and
examine the operation of that function's code. Note: You can Step Into the
code of libraries or other files that don't supply a symbols file, but you can
only view the trace as assembly language in the Source Pane. The Step Out
command executes the remaining code in the current function and halts the
program once it returns to the calling function.

The VCR-style button icons on the Toolbar correspond to the gross and fine
program control commands on the Control menu. The three icons that make
up the Toolbar's left correspond to the Run, Stop, and Kill commands, while
the trio of icons on the right represent Step Over, Step In, and Step Out.

To mark or place a breakpoint in a program, use the Function icon and
popup the function list to jump to a suspect function. Next, scroll through
the source code to the questionable statement. Place the pointer on the
statement's tick mark (it's located on the left side of the Source Pane) and
click on it. A circle appears, replacing the tick mark. The circle indicates that
a breakpoint is set for this statement (see Figure 6.8). You can set as many
breakpoints as you like. To remove a breakpoint, click on the circle again. To
remove all of the breakpoints at once, choose Clear All Breakpoints from the
Control menu.

If you're in the middle of a marathon debugging session, and wonder
what breakpoints you've set, you can display all of them by selecting the
Breakpoints item in MW Debug's Window menu. This window displays
every breakpoint and includes information on the function name where each
breakpoint is set, and the corresponding line number of the source code
statement in the file. A double-click on a breakpoint takes you to the Browser
Window, which displays the source code statement that has the breakpoint.

You can also monitor critical sections of memory using watchpoints, if your
Mac is running System 7.5 or later. (680:x0 Macs must also have virtual
memory turned on.) To do this, halt the program in the suspect area by use
of a breakpoint. Now, select a target variable in the Locals pane by clicking
on it, and pick Set Watchpoint from MW Debug' s Data menu. (You'll use a
different method to select a range of memory.) Start the program.

0- ~~"!"!? ~'£'"'~""'C' !~''~''- - - - - - - - - -- - - - - - - - -- - - - - - - - - - - - -- - - - - - - .

s File Edit Control Data Window

15 SwitchBank

Ox 11 BDC4
Ox 4CA2C
__,tart

LaunchParamB I ockAec: th i sAppPorams ;

gth i sF i I eSpecPtr = >h i sF i 1 eSpec ;
th i sAppPBP t r = & th i sAppPor ams ;

110 loco! "'Bn ab!es

th i sAppPorams . I aunchB I eek I 0 = ex tendedB I ock ;
th i sAppParams . I aunchEPBLeng th = ex tendedB I ocklen ;

I* Use the new format * /
thisAppParams . launc:hFi leFlags = O; /*Don't care about fi l e flags*/
th i sAppParams . I aunc hCon tro I F I ags = (I ounchNoF i I eF I ags + I aunchCon t i nue + I aunchOon tSw i tch);
th i sAppParams . I ounchAppSpec = g t h i sF i I eSpec:P t r ; /* G i ve i t f i I e name grabbed * /

/* by Ge L .FS_lnfo() be fore Fi le*'/
/* Shar i ng was stopped *I

th i sAppParams . I aunchAppPar ameter s = NIL ; /* Send j us t Open event * /
i f < < I ounchErr = Lounc hApp I i cot i on (th i sAppPBP tr)) == noErr)

Wa i t Nex tEven t<everyEv en t , &gmyEven t , SHORT JiAP, NO_GURSOR);
e lse

Repor L.Err J1essag e < PROBLEM....START I NG...FS) ;

} /*end StorLFi le.-Shoring() */

I* Look for the F i l e Sharing Ex tens i on fi l e . User might not have started F i le Shor i ng yet, */

!ill Line: 784 l Source

Figure 6.8 Setting a breakpoint.

I

When the variable changes, you get an alert, and the program halts. Now you
can snoop around, observing where the program stopped, and check the
values of other variables. Like breakpoints, a Watch point window display
what watchpoints you've set. Note that watchpoints work only with globals,
variables, or objects allocated on the application's heap. You cannot set
watchpoints on register-based and stack-based variables, or low-memory
globals.

Important
Under System 7.1 .2, MW Debug uses the "PPCTraceEnabler" and

"MetroNub" Extensions to access the Power Mac's debugging facilities.

MetroNub provides access to low-level debugging services that seVreset

breakpoints, kill processes, and perform memory reads and writes. MW

Debug uses low-level message blocks (via the PPCToolbox) to communicate

. - E'!'~te! ~ ! !h~ ~ <! e•!!"9<!'."!! -0
with these services. These services in turn control the test application, and
return information about its behavior back to MW Debug.

PPCTraceEnabler is a native Extension written by Apple. It gives MW
Debug access to the single-step trace bit in the PowerPC processor's
Machine State Register (MSR). The MSR is a supervisor-level register, and
is not normally accessible by user-level application code. The
PPCTraceEnabler Extension sets up this access. On Power Macs running
System 7.5 or later, all that's required is the MetroNub file. On 680x0
Macs, MetroNub patches the appropriate trap entries in the dispatch table
to provide low-level debugging services to MW Debug.

For your application to be controlled properly by MW Debug, it must have
the canBackGround bit set in the SIZE resource, and the program must make
frequent calls to waitNextEvent(). For more information on the SIZE re
source, see Chapters 3 and 5.

MW Debug remembers the size and location of the Program and Browser
Windows, and the locations of all the breakpoints. This information is stored
in a file with an extension of .dbg. Continuing with the earlier example, if
you debug the application Klepto and set some breakpoints, MW Debug
produces a file named "Klepto.dbg." If you want to quit MW Debug, and
resume the job later with all the breakpoints in place, don't delete the .dbg
file.

Because you've got SwitchBank up and running under MW Debug, let's do a
short tour. In the Program Window, click on the Function icon and select
Init_Mac() from the popup menu. Scroll through Init_Maco's code and set a
breakpoint on the statement containing the Apple Event initialization
function, Ini t_AE_Events (), as shown in Figure 6.9. Now pick Run from the
Control menu, or type :>:\-R. After a short delay, SwitchBank should halt in
Init_Mac(), atthe call to Init_AE_Events(). Note: If you hold down the Option
key when you set a breakpoint marker, the program automatically executes
to that breakpoint, unless it encounters another breakpoint.

0- ~~'!"!? ~'~'"'~<:!.'C' _T ~''~'- .

s File Edit Control Data Window

:§rai SwitchBank

Ox 11BDC4
Ox4CA2C __.,.,,

no local 1·"Bria/Jles

- '
- !

In i to i a I ogs (N I U ;

if ((theMenuBor = GetNewMBar <MENU....BAR_I 0)) == NIL) /* Got our menu resour c es OK? *I
re tur n FALSE;

SetMenuBor<theMenuBar>; /* Add our menus to rrenu I i s t */
D i sposHond I e < theMenuBor >;
AppendAesMenu(GetMenuHandle <APPLE...J1ENU> , 'DRUR ' >; /*Sui Id Appl e menu */
DrawMenuBar <) ;

I* Look for spec i f i e features or se t up handl ers t h i s opp needs * /
if < !Check....System()) /* Need Sys t em 7 >;to/

re turn FALSE;

if < ! ln i L.AE....Events< >>
re t urn FALSE;

I* Set up our h i gh-l eve l

if CF i ndFo I der<kOnSys t emD i sk , kSystemFo I derType, kOontCreoteFo Ider,
&gsysURe fNum , &gSysO i r I D) ! = no Err)

lill Line: 784 Source

Figure 6.9 Setting a breakpoint for the Apple Event initialization function.

If you wanted to step over this function, you would simply pick Step Over in
the Control menu or type J:e-S. (After single-stepping through lots of code,
you'll soon appreciate this command's keyboard equivalent.) However, let's
examine how this function operates. Type J:e -T to step into Ini t_AE_Events ().

The Source Pane now displays this function's entry point (see Figure 6.10).

s File Edit Control Data Window

_iii SwitchBank

err
i

Ox 11 BDC4
Ox4CA2C
--"tart
main
lniLMac

~ Riiilciierstoiilsiaiil64

mt_;,E_E ent-::

i -30532
i-28468

-' if <Find_Fi le-5hciring()) /*Find the F i le Sharing Ex tension file*/
- ' Start....Fi le-5haring< >; /* Launch i t */

} /* end else */

- : /* end Toggle-Fi le-8horing() */

l /* Bui Id high-level event dispatch table and add our hcmdlers to it. Hust use static*/
j /* dee I arat ion so that the di spat.ch tab I e doesn't move in memory . *I
j Boo I eon In i t....flE....Events<vo id)

-!• {
· OSErr err; ~

short i;
static RE inst.al ts Hand lersTo lnstal 1 (] =

{
I* The 4 required Apple Even ts */

};

IQ) Line: 438

{kCoreEventC I ass, kAEOpenApp I i cation, Core....AE_DpenJ-land I er},
{kCoreEven t.C I ass , kAEOpenDocumen ts, Core...RE....DpenOocJtand I er} ,
{kCoreEventC I ass, kAEQui tApp I i cation, Core....AE-Ou i tJiandl er},
{kCoreEventC I ass , kAEPri ntOocuments , Core....AE_pr i ntJiand l er},

L Source

Figure 6.10 Inside the Apple Event initialization function.

Type J::C-S several times and watch the variable i get initialized by the for
loop. Single-step and observe the result passed back by
AEinstallEventHandler(), and how the if statement within the loop checks for
an error result. Step through the loop once or twice, and when the execution
pointer arrives back at the if statement again, go to the Locals Pane and type
a negative number in err's value area to simulate an error (see Figure 6.11).

0- ~!'P ."~~"2.'C' _T~~t_ - •

When you single step this time, the flow of execution calls Report_Err _Message ()

instead, and Init_AE_Events(J returns immediately with a value of FALSE. If you
continue to single-step, you'll see Init_Mac (J also return immediately with a
FALSE value, main(J calls sysBeep(J, and exits. This is obviously a simple ex
ample, but it shows what you can do with MW Debug.

• File Edit Control Data Window

[liii.I SwltchBank

Ox11 BDC4
Ox4CA2C
__start
main
lniLMac

err
j !2 A

~ ·H"aniiiersroTilsiii"ff$6·4· ··· .. iox"Dci"43·as·ac

I -~ I short i; ·1·1

i stal~c AEinstal Is HandlersTolnstal I [l = /* The 4 required Apple Events */ ~lJJi
i {kCoreEventClass, kAEOpenAppl ication, Core-AE....Open..Jicmdler}, 11lm
l {kCoreEventClass, kAEOpenDocuments, Core-AE....OpenOoc..Jiandler}, l.mi

: :~ ~~~:~~=~~:::·~::::::::::: t

!ill Line: 453

{ /* lnstal I each handler in appl icotion dispatch table, with a routine descriptor*"!•:
err = AElnstal IEventHandler<HandlersTolnslal I [i l. theClass, HandlersTolnstal IC i J. theEvent,

NewAEEventHandlerProc<HandlersTolnstal I [i J. theProc>, 0, FALSE>.iID
if <err) /* If there was i::i problem, bai I out */ WJ*

{ ft
Aepor t...Err Jlessage < PAOBLEM...J.11 TH..AEJiANDLEA) ; ~ljil
re turn FALSE; ~~
} /* end if */ !~li!

/* end for */ ~11t

I Source

~ .e.

Figure 6.11 Changing the value of err.

Let's look at another section of SwitchBank. If you had let SwitchBank
terminate from the last example, the Source Pane in MW Debug's Program
Window states that SwitchBank is not running. Go to the Control menu and
choose Clear All Breakpoints. Type :J::C-R to run SwitchBank again. After a
brief delay, the Program Window's panes should fill with source code. The
Source Pane should be positioned in main (), ready to go. Click on the Func
tion icon, popup the function list menu, and pick core_AE_Openooc_Handler().

You'll wind up at the entry point to this function, as shown in Figure 6.12.
Now set a breakpoint at the first executable statement in the function.

- E~0'" ~ ! !h_: ~rt_'! ~e£09g~o~ -0
s File Edit Control Data Window

Oxl 1 BDC4
Ox4CA2C
__.start

re turn TRUE ;
} /* end lni t....AE....Events<) */

SwitchBank

fl(J 1oca1 l•'Bria/J!es

I* High-level open application event. */

-
I ~asca I OSErr Core....AE.....Open_Hand I er(App I eEvent *message in , App I eEvent *rep I y , I ong ref In)

re turn< no Err) ;
} /* end CoreJIE....Dpen_Hand I er () *I

I* H i gh-1 eve I open doc::umen t event *I
pasca I OSErr Core-AE_QpenOoc....Hcmd I er (App I eEvent *message in, App I eEvent *rep I y , I ong ref In)

·~ fong dummyResul t; /'If'. Dummy variable for delay<) */
reg ister i, j ;
Boo I eon f i I eShor"eWasOn;
AEDesc VO I Oesc; /* Container for sent volume names */
OSErr vo I Err , h i ghleve I Err;
I ong numberOUo I umes; /* fiumber of vo I um es dropped on to us *I
AEKeyword i gnoredKeyWord; /* Bit buckets for high-l evel event info we dori't need*/
OescType i gnoredType ;
Size i gnoredS i ze;

!ill Line: 769 I Source

Figure 6.12 Adding a breakpoint to the high-level Open Document function .

Once that's done, type)::C -R to run SwitchBank. The panes in the Program
Window should clear, and the Source Pane contains a message stating that
SwitchBank is executing. So far, so good. Now you need to create a high-level
Open Document Apple Event. Go to the edge of Program Window, hold
down the Option key, and click on the desktop pattern. MW Debug' s two
windows should disappear, leaving a clear view of the Macintosh desktop. If
you pull down the Application menu, you can see that MW Debug and
SwitchBank are running, but not visible. The SwitchBank icon doesn't
appear to be active (it doesn't display the "hollow" icon that active applica
tions use), but that's because MW Debug had the Process Manager launch
SwitchBank behind the Finder's back. Not knowing this, the Finder hasn't
updated SwitchBank's Desktop icon to reflect this fact. Click on the startup
volume's icon, drag it to the SwitchBank folder, and drop it onto SwitchBank.
MW Debug should reappear, with SwitchBank's execution suspended inside
the core_AE_OpenDoc_Handler(} function. You can single-step through this
function, and observe how information is obtained from the Apple Event

message. You'll also see SwitchBank's safety logic balk at ejecting a drive with
the active system software on it. When you're done experimenting with
SwitchBank, quit MW Debug, which also terminates SwitchBank.

Debugging a shared library file requires that you open it in MW Debug first,
followed by the application that's linked to the library. An example should
help illustrate the procedure. Suppose that you're working on a set of handy
utility functions in a shared library named "CoolLib." First, mark the source
file for debugging in the Project window, and set the linker preferences so
that an .xSYM file is produced. Make the shared library, which results in the
files "CoolLib" and "CoolLib.xSYM." You also have to prepare the test appli
cation that gets linked to your library. Mark the file for debugging in the
Project Window and use the same linker settings as you did for "CoolLib."
Make the test application. Let's call the output of this project "TestApp" and
"TestApp.xSYM." Now you have all the components you need to debug the
shared library.

To start the debugging session, first drag "CoolLib.xSYM" to MW Debug. MW
Debug launches, and a Browser Window for the library file appears. Option
click on the desktop to hide the MW Debug window, and drag
"TestApp.xSYM" onto the hollow MW Debug icon. TestApp should launch,
and you have three windows on-screen: the Browser Window for
"CoolLib.xSYM," the Browser Window for "TestApp.xSYM," and the Program
Window for TestApp (see Figure 6.13). Next, you set breakpoints in the
shared library code using the CoolLib.xSYM window. To reach the
breakpoint so that you can begin code tracing, start TestApp in the Program
Window by selecting Run from the Control menu.

MW Debug can debug certain types of code resources, such as Photoshop
plug-in modules and HyperCard XCMDs. To debug a code resource that's
been copied and pasted into an application, first rename its .xSYM file using
a bogus name. Drag and drop this file on MW Debug. When MW Debug
launches, it uses the name of the symbols file to find the proper executable
file. When MW Debug can't locate your fictitious executable file, it prompts
you for its location using the Standard File dialog box. Navigate to the
application hosting the code resource, click on Open, and begin your
debugging.

. - ~~~'" ~ ! """ ~<!_ O! ~0~09g~O[-0
s File Edit Control Data Window

Coollib.HSYM

tilq/Jal l"ariables
Li nker-Generoted

/****************************
open a connect i on w i th th

err = GetMemFrogment<

if < err >
{
conn I D = kNoConnec t i on I D;
goto DONE ;
)

Clo/Jal •»nobles

Figure 6.13 Debugging a shared library.

m local l"ana/Jles

} /* end for */
if (!highLevelErr)

(
i f (! (flnErr = FSpOpenOF(&i nFSS,

(

Source

MW Debug also offers some surprisingly low-level debugger features. These
are available whether you're debugging an application, a shared library, or
code resource. If you select the Show Registers item under the Windows
menu, a window displaying the processor registers for either the 680x0 or
PowerPC processor appears. Better still, by double-clicking on a register
value, the value is framed so that you can modify the register's contents (see
Figure 6.14) . Because you're messing with the state of the processor itself,
use this capability with extreme caution. Another menu item, Show FPU
Registers, lets you examine the floating-point registers of the 68040 or
Power PC.

0- ~~'C'." ~'~1"~":!.'C' !'!!''~'- ______________________________________ .

s File Edit Control 08t8 Window

Switch Bank

OxD6C74 ~ fileShsri ngExtl nfo i Ox00402874
Ox4825C ~ fileShsri ngMsskl nfo ! Ox00402864
___stsrt ~ nil Point i Ox00402788
msi n sesrchPB ! Ox00402884

Msin_EvenLt~~-!j~~~~~~iiiJn~ei!is~t~e~r!s~~~~~~~~~~-~04027F8
Do....Commend SvitcbBant 040 278C
Toggle_file...S -R-O--Ox_0_0_39_E_O_AO_R_8 _________________ ~

OxOOOOOOOO Rl6 OxOOOOOOOO R24 Ox00003oOF

- i
_i
_ :

SP Ox00402750 RQ

RTOCl"'"'":"&"'I R 10
R3 Ox004027F8 ~ R 11

Ox0040278C R 12
OxOODOODOO R 13
OxOOOOOOOO R 14

OxOOOOOOOO R 15
LR

OxFFFFFFFF Rl7
Ox003A28A8 RIB
OxOOOOOOOI Rl9
Ox00000008 R20

OxOOOOOOOO R21
OxOOOOOOOO R22
OxOOOOOOOO R23
Ox0039EOAO CTR

OxOOOOOOOO R25 OxOOODoC74

OxOOOOOOOO R26 Ox00830001

OxOOOOOOOO R27 Ox00830001
OxOOOOOOOO R28 Ox00000083
OxOOOOOOOO R29 Ox003A2940
OxOOOOOOOO R30 OxOOOOOOOO

OxOOOOOOOO R31 Ox00830001
Ox0004080C

searc . cs tJram . 10 a os1 ion. 1n1 1a 1ze = ; or a e eg1n1ng

03A28A8

cterist ics */

_ l searchPB .csParam . ioOptBuffer =NIL; /*No search cache required* /
searchPB . csParam . i oOp tBu fS i ze = 0 ;

i f (PB Ca tSearchSync (< CSParamP tr) &searchPB > == no Err >
re turn TRUE ;

else
{
Reper L.Err J1essage (CANTLOCATE....F I LE) ;
re turn FALSE;
} /* end e l se *I

I* end Flnd....Fi le....Sharing< > *I

Figure 6.14 Changing the TOC register on the PowerPC processor in MW Debug.

You can view the contents of raw memory by using the View Memory com -
mand from the Data Menu. A window appears, displaying the contents of
RAM starting at the default address of OxO. You can use the View Memory
as ... item in this menu to display the memory in a form convenient for you to
interpret. For example, select View Memory as ... , and click on the 'char' data
type in the dialog box. Now, choose View Memory. A window labeled
Memory 1 appears. Go to the address slot at the top of this window, and type
0x910. You should see the Pascal string" \pSwitchBank " as the current applica
tion. (Remember from the walkthrough of the Show I nit r con< } code that Ox9 l 0
is the low-memory global that stores the currently running application.)

-- E'o'~te~ ~ ! !"!: ~ O! ~'~"B'~"[-0
Low-Level Debuggers
For PowerPC program debugging using a single Power Mac, two low-level
debuggers are available: Apple's MacsBug 6.5.2 and Jasik Design's The
Debugger.

Macs Bug
MacsBug is a combination of 680x0 and Power PC code, and can thus debug
either 680x0- or PowerPC-based Macs. This capability makes its installation
simple-you just drag it to the System Folder, and reboot. MacsBug isn't an
Extension file: During the early stages of the boot process, the Mac OS looks
for a file by this name in the System Folder. If the file is present, the boot
strap code loads MacsBug's code into memory. MacsBug then installs its
own exception handlers to field system errors and to implement breakpoint
and single-stepping capabilities. Finally, it patches entries in the A-trap
table. If everything goes smoothly, you'll see a message "Debugger installed"
on the "Welcome to Macintosh" splash screen.

The initial 6.5 release didn't offer much PowerPC support, but version 6.5.2
has been updated to let you examine Power PC code and the state of the
PowerPC processor registers, even after the worst of system crashes.
MacsBug is a lean and mean low-level debugger, and uses only about 150K of
RAM. This sparing use of system resources makes MacsBug virtually crash
proof, and lets you debug tricky code resources such as MDEFs, INITs,
interrupt handlers, and drivers. Unfortunately, such minimalist use of the
system forces MacsBug to offer a horrendous character-only display. You
also have to remember what commands to type into its command line. Until
you become familiar with MacsBug's commands, keep its manual nearby.

MacsBug lets you single-step through PowerPC code, and it handles any
Mixed Mode context switches when the thread of execution hops to a 680x0
Toolbox trap or plug-in module. This is handy for situations when your
program Calls CallOSTrapUniversalProc() Or CallUniversalProc() to hop into a
function with a different ISA. You don't see any Mixed Mode Manager code
or switch frames; instead, the debugger halts in the module's first 680x0
instruction, and MacsBug automatically displays emulated 680x0 processor
registers and 680x0 disassembly code. Finally, you can disassemble code
fragments into their respective PowerPC assembly language statements.

0- ~l'f E'£1l!.'~"2.'C' _T<;!'l~t_ -

Important
All too often while testing new code, the Mac simply seizes and hangs.
Sometimes. the program hangs in an infinite loop. More often, critical low
memory globals that maintain the operating system get clobbered. You can
occasionally recover by issuing a non-maskable hardware interrupt (NMI),
which activates a low-level debugger. You use the debugger to assess
the damage, and then kill the buggy application process. If the Mac OS is
in reasonable health, the debugger will eventually exit and you'll be back in
the Finder. You should immediately close any other applications. (It's not a
good idea to run other applications during your development work, unless
you need them to test AppleEvent communications or an OpenDoc part.)
Now pick Restart from the Finder's Special menu. This sequence saves
critical data, updates the hard drive's file directories, and lets you resume
debugging with a clean system.

If the Mac OS is badly cooked so that the NMI has no effect, you have to
resort to a hardware reset. This forces the processor through a reset,
which in turn reboots the computer. In the old days, Macs had a
programmer's switch with two buttons on it. One button triggers the
hardware interrupt; the other is for the hardware reset. Today's Power
Macs lack a programmer's switch, but with the appropriate keystrokes. you
can initiate an NMI or a reset:

Key Sequence

j::C-Power Key

j::C-Control-Power Key

processor and system.

Result

Interrupt

Reset

Purpose

Starts low-level debugger.

Forces hardware reset. restarts

Of course, you don't have to wait for the Mac to crash to invoke MacsBug.
The best way to use MacsBug is to launch the errant application, hit the
interrupt sequence (J:::e-Power Key) to summon MacsBug, and start exploring
the application's partition. It's a good idea to type Hz (Heap Zone), press
Return, and look at a list of memory partitions for the various processes
and the system heap. If your program seems to be striking out at random,

-- E~~~ ~ ! !".!: ~ o! ~'~"!!'~'[-0
clobbering itself or other applications, you might want to jot down the
addresses of some of these other zones.

When you're ready for a walk on the wild side, type G (for go) and press
Return. The application talces control, and resumes execution from the
current PC (program counter). The next step is to run the program through
the event sequence that triggers the crash; when the crash occurs you should
see MacsBug.

Afterward, the first thing you need to do is check that you're still in your
application. Look in the status region of the MacsBug screen (it's sandwiched
between the stack display and the register display at the screen's left) to
check for the current application name. If the name isn't your program, an
errant access by your program may have trashed another application. This
application in turn crashed when it got processor time.

To figure out what happened, the first thing to check is instructions located
around the crash site. To do that, type IP and press Return; this command
displays a half page (approximately 64 bytes) of disassembled machine code
centered around the address in the PC. You can also type an HD (heap dis
play); MacsBug will show the status of blocks in memory, such as master
pointers, and various resources. You can display memory by typing DM

(display memory) and an address. Type sc and Return to get a stack crawl.
This command displays a section of memory starting at the top of the stack,
where you can examine the chain of functions that were called just before
the crash. If another application has crashed, and you want to spelunk down
into your application's heap, type Hx (Heap Exchange), followed by the
starting address of your program's partition (which you obtained using the
HZ command). Press Return, and this will display the memory zone your
program occupies.

After you examine the crash site, you might want to kill the program. Nor
mally, typing Es (Exit to Shell) kills the process, backs out ofMacsBug, and
gives you access to the Finder. If that doesn't work, try typing RS, for restart.
This command unmounts all of the volumes or drives, and restarts the
computer. In tough cases, you will need to type RB for reboot. This command
is nearly equivalent to the hardware reset in that the system reboots uncon
ditionally. However, where it differs is that the RB command first attempts
to unmount the startup drive in an effort to minimize damage to its file
directories.

0-~~ ~,~,~~'C' .! ~'~'- .

Although it is not complete or exhaustive in detail, Table 6.1 includes the
most useful MacsBug commands. For additional information check out the
MacsBug Ref & Debugging Guide, published by Apple.

Table 6.1 MacsBug's Most Useful Commands

Command Action

ATB trap A-trap break

BR addr Breakpoint

BRC addr Breakpoint clear

CS [[addr] addr] Checksum

OM [[addr] nbytes] Display, Memory

EA Exit to application

ES Exit to shell

G addr Go

GTP addr Go until PowerPC code

Description

Stops program execution on

the specified trap.

Sets breakpoint at address. If

no address is specified,

displays list of breakpoints.

Clears the breakpoint at the

address. If no address is

specified, all breakpoints are

cleared.

Checksums memory at the

address. If two addresses are

specified. the memory

between these addresses is

checksummed.

Displays nbytes of memory

starting at the address

specified. Default is 16 bytes.

Kills the current application

and restarts it.

Kills the current application

and exits to the Finder.

Resumes program execution

from the specified address. If

an address is absent.

execution resumes using the

current PC.

Resumes program from

specified address until

PowerPC code is reached.

. ____________________________________ E'!'~'" ~ ! !".!: ~-~ '<"~9•~"~ -0
Command Action Description

HC Heap Check After a crash. use this

command to validate the

integrity of the current heap.

HD Heap Display Displays memory blocks in the

current heap.

HELP command Help Provides a brief explanation of

the command.

HS Heap Scramble Relocates heap blocks after

every A-trap call. Useful for

uncovering memory problems.

HX addr Heap Exchange Changes the current heap to

the one specified by the

address.

IL [addr] n] Disassemble from address Disassembles (680x0 or

PowerPC) machine codes.

starting at address. Default

address is current PC. The n

is the number of lines to

display.

ILP [addr] nJ Disassemble PowerPC code Disassembles PowerPC code

starting at address for n lines.

IP addr Disassemble around address Disassembles (680x0 or

PowerPC) machine codes

around the address. Default

address is the current PC.

RB Reboot Unmounts all volumes and

restarts system.

RS Restart Unmounts hard drive. forces

system reset.

S [n I expression] Step Single-steps through code n

instructions. or until condition

determined by expression is

met.

continues

0- ~"Pp i'.'£9~~~' _T!'_O"?' _______________________________________ .

Table 6.1 Continued

Command

SC6 [addr] nbytes]

SC [addr] nbytes]

SM addr value

The Debugger

Action

Stack crawl

Stack crawl

Set memory

Description

Tracks usage of A6, the frame

pointer (680x0 processor).

Crawl starts at specified

address for nbytes.

Tracks usage of A7 (680xO)

or rl (PowerPC) the stack

pointer. Crawl starts at

specified address for nbytes.

Sets memory at the specified

address to value.

There's another low-level debugger available that also gives you access to the
PowerPC registers, displays native instructions, and lets you debug a native
program. It's appropriately named The Debugger and is written by Steve
Jasik ofJasik. Designs. Because it's a low-level debugger, The Debugger can
be used to debug stand-alone code such as Extensions, MDEFs, and CDEFs.
For a low-level debugger, it sports some sophisticated high-level debugger
features, including windows and menus. Because of the high-level interface,
you don't have to remember any commands: you just point and shoot from
the menus.

Background Info
How does The Debugger provide a high-level system interface while
maintaining a low-level debugger's robustness and capabilities? The
Debugger copies the required system resources into a private area owned
by it. This enables The Debugger to provide high-level debugger services,
yet still continue to function when the operating system gets mangled by a
program bug. It performs this sleight of hand at boot time using a support
file called "MacsBug." The MacsBug name fools the Mac OS into loading

. - "'~~"" ~ ! !h~ ~'!. '!! "'£"9•~"!1 -0
a program that first allocates a block of memory, and then copies the
system code resources into this area. A second Extension file,
"xDbgrStartup," loads The Debugger into this private memory area and
starts it.

The Debugger requires a number of other support files. One such file is a
specially modified version of "PPCTraceEnabler." Another file, "ROM.snt,"
contains information about the Power Mac ROMs that The Debugger uses
to set up the private area. It's also used to help The Debugger track
patches made by operating system code and third-party Extension files.

Another critical support file is MacNosy II, which is a 680x0 and PowerPC
disassembler program. MacNosy is how Steve first established a reputation
in the Mac community, and it's a vital component of The Debugger.
Because of fundamental changes in the second-generation Power Macs'
hardware (the PCI bus, and the Open Transport network interface), they
have radically different ROMs from the original Power Macs. This in turn
creates a problem for The Debugger because the standard Power Mac
ROM.snt file was out of sync with these new ROMs.

Fortunately, because MacNosy is bundled with The Debugger, you can use
it to create an up-to-date ROM.snt file. Power Mac 9500 owners in June of
1995 had to manually create the ROM.snt file, as did 7200/7500/8500
owners in August 1995. However, with the October 1995 release of The
Debugger, Steve remedied this problem by making the ROM.snt update
automatic. Here's how it works. At boot time, the startup files just de
scribed determine whether the current ROM.snt file matches the host
system's ROMs. If not, once the Finder loads, it's commanded to launch
MacNosy II. MacNosy II scans the ROMs and installed patch code, and
then uses this information to build a new ROM.snt file. After this file is
made, MacNosy II quits, completing the setup. This enables The Debugger
to be used immediately with the latest Power Mac systems released from
Apple or clone vendors without a major configuration hassle.

When a Mac boots with The Debugger installed, you'll see a "Debugger
installed" banner, just like when MacsBug loads. You then see various icons

0- ~""'° i:r~'!.'~~'C' .!~'~'- .

appear as the Extensions install. After the xDbgrStartup Extension loads, a
dialog box pops up, in which you can adjust various debugger settings, such
as the amount of memory to allocate for The Debugger, and which screen it
uses on a multiple-monitor system.

When you click on the Launch "The Debugger" button or press Return, the
screen displays lots of windows temporarily as The Debugger sets up house
keeping. The Control Panels then load, followed by the Finder, and the boot
process completes. Like MacsBug, you can summon The Debugger by
pressing the NMI key sequence (you can also type the alternate key se
quence, Option-\). When a system crash occurs, The Debugger appears with
a window that displays either 680x0 or Power PC disassembled code. The
disassembly begins with the current PC.

When you launch a 680x0 program, The Debugger automatically reads the
.SYM files that CodeWarrior generated for it. (The .SYM file must be in the
same folder as the program.) An exception activates The Debugger, and it
provides a source code display (see Figure 6.15). The Sigma symbols () to
the left of the source code indicate executable statements. If you highlight a
statement and type ~-B, a small bullet symbol appears that indicates a
breakpoint has been set. You can mark either C source statements or 680x0
instructions with breakpoints. By holding down the ~ key and clicking on
the source window, you can toggle the view between C source code, and C
source interspersed with 680x0 machine code instructions. You can single
step through the program as either 680x0 assembly or C source code, viewing
the processor registers, and the stack.

On the Power Mac, The Debugger reads the .xSYM file and lets you view a
native program as C source code or PowerPC machine code instructions. You
can examine the PowerPC processor registers and set breakpoints.
A "training wheels" feature attaches comments beside each instruction to
assist you in learning the PowerPC machine code (see Figure 6.16). Like
MacsBug, The Debugger automatically handles Mixed Mode switches, and
displays the appropriate set of processor registers and disassembled code
when the mode switch occurs.

-------------------------------------""'et'"~! !h~ ~'!. '! ~'£"~'~"[-0
I* 1st spec block */

l: searchSpec1.hFi lelnfo . ioNamePtr = NIL ; /*Search by file type , not name */
I searchSpec1 .hFileinfo . ioFlFndrlnfo = fileSharingEx tinfo ; /If'. Type & creator to look for
I searchSpec1 .hFilelnfo . ioF1At.trib = 0x00 ; /*Match only files, not folders* /

I* 2nd spec block */ 6
I• searchSpec2 . hF i 1 e!nfo . i oNamePtr = NIL;
I searchSpec2 .hFilelnfo. ioFlFndrlnfo = fileSharingMasklnfo; /*Mask*/ 6
I searchSpec1 .hFilelnfo . ioFlAttrib = 0x01 ; /*Match only files ~ not folders* /

6
I* Set up search cal 1 */ ~

I searchPB . csPoram . ioCompletion =NIL; ~~~liiiii[:-~n~e~g~is~t~e~r~s~-~~~j~~~@I
I searchPB . csPoram . i oNamePtr = NIL; /*~
I searchPB . csParam . i oURe fNum = gsysURe fNum ; PC =004 730A8 SR= t t~m . ooo ... ~nZvc
I searchPB . csParam . i oNa tchP tr = &g th i sF i 1 esp curPor ~ : gp@31 ~40 ~MgrPor t
I searchPB .csParam. ioAeqMatchCount = 1; • At <A1 > 01 Aux...Reg~7051~5
I searchPB . csParam . ioSearchBi ts = fsSBFlFndr 0 405840 0 0000 0008
I searchPB . csParam . i oSearch Inf 0 1 = &searchSp 1 405870 0 6578 746E ' e x tn '
I searchPB , csParam . i oSearch Inf o2 = &searchSp 2 4 7C53C 4 7C538 0000 0000
I searchPB csParam i oSearch T I me = 0 · 3 0 0 0000 0001
I searchPB :csParam : ioCatPosition . initialize 4 0 0 0000 0000
I searchPB . csParam . ; oOptBuffer = NIL; 5 407060 4D6F76 0000 0083

I searchPB . csParam . i oOp tBu fS i ze = 0; ~ :g~~~~ 406~~~ ~~~~ ~~~~
I Debugger< >;

*-Stack State-

~ ·
.E .. ,
'. 0'

I return TRUE ; --at AODA--Name-------------------Cal 1 s--------------- Frame-Addr--S i ze
e 1 {e =004 730A8 F i nd....F i 1 e-8har i ng+0E5 bytes i n use = $2E0

I Aeport...Err-11essage(C ~:::~~~~: 6~:f~~~~~e-8haring ~~~:~~~J!~~!~f ng :ggg~~ 17~
I return FALSE ; =004742C5 Mai n...Event..J...oop Do....Command 40500C 11E

) I* end else */ =00474416 main Main...£venLLoop 4D6DEC 8

I) I* end F i nd...F i 1 e...Shar i =004 73368 -5 tar tup ma i n 4D6DF 4 4

Figure 6.15 The Debugger displaying a 680x0 program as source code; the bullet

symbols mark breakpoints.

On either a 680x0 Macintosh or a Power Mac, you can activate a continuous
step mode in The Debugger, and watch it run through the program. This is
handy when you have to run the program extensively to get to the point in
the program where the bug occurs. The stack and register displays are
automatically updated during this trace. Pressing :J:e-period stops the con
tinuous trace.

Because The Debugger can use Metrowerks CodeWarrior symbolics files, it is
a valuable companion to MW Debug. However, MW Debug uses its own
code nub, and The Debugger uses a modified PPCTraceEnabler file. This

0- ~~'!~ f~9"'~"2.'C' _T ~o"?t_ -

means you can't use MW Debug while The Debugger is present, or vice
versa. (Because MacsBug requires no special support files, you can use it
simultaneously with MW Debug.) You can use MW Debug and The Debugger
in concert to track down a bug. First, use MW Debug to march through the
program code until you find the problem area. Then move some files around
(MacsBug, xDbgrStartup, and PPCTraceEnabler) in order to install The
Debugger. Reboot the Power Mac, and let The Debugger load. Launch the
offending program and type Option-\ to bring up The Debugger. Now set
your breakpoints or single-step through the program.

472goo: 3801 013s
472gQ4: > $473F04
472gos : so41 oo 14
4 72goc : 7Co3 0735
472g 10 : > $472g IC
472g14 : 3850 0001
472g1s : > $472g2s
4 72g I c : 3850 0007
472g20 : > $472420
4 72g24 : 3850 0000
472g2s : 8001 OICS
472g2c : 3821 0 ICO
4 72g30 : 7C08 03Ao
4 72g34 : 4E80 0020
4 72g3s : 7Cos 02Ao
4 72g3c : goo 1 ooos
472940 : 9421 FFCO
4 72944 : > $4 724FO
4 72948 : 5453 Oo3F
4 7294C : > $4 72958
4 72950 : > $4 725 74
4 72954 :) $4 72968
4 72958 : > $4 727AC
4 7295C : 5453 Oo3F
4 72900 : > $4 72ge;s
4 72904 :) $4 72708
4 72958 : 800 I 0048
4 729oC : 3821 0040
4 72970 : 7C08 03Ao
4 72974 : 4E80 0020
4 72978 : 7C08 02A6
4 7297C : 8F81 FFFO
4 72980 : 900 1 0008
472984 : 9421 FFBO
4 72988 : 38C2 02CC
4 7298C : 38EO 0000
4 72990 : > $4 72A08
472994: 7FE4 0734

la r3,$138<SP)
bl $+$1500
lwz RTOC , 20 <SP)
ex tsh . r3, r3
be I F JiOT, crO....EQ , $+$C
Ii r3, 1
jp $+$10
Ii r3, 7
b I $-$500
Ii r3, 0
lwz r0, $1CS <SP)
la SP , $1CO <SP)
mtspr LR, rO
blr

Load Address
Branch , set LR
Load Word ond Zero
Ex tend Sign Ha I fword
Branch Cond i t i ona I
Load lmmed
Branch
Load lmmed
Branch , set LR
Load lmmed
Load Word and Zero
Lood Address
Move To S ecial Pur ose Re

-Registers-
mfspr rO, LR
stw r O, B<SP > C =004728FC crO er 1 cr2 cr3 cr4 crS cr6 cr7
stwu SP, -64 (S
b I $-$454
ctrlwi . r3,r3,24
be IF, crO....EQ, $+
bl $-$2DC
jp $+$14
bl $-$1AC

LR 004728FC npZs xEvo npzs npzs npzs npzs npZs npZs
CTR 40A1E938 XER : soc Cmp : OO Cnt :OO MSR : 0000

curPor t : gp@3 I 840 "WMgrPor t"
rO 40A IE938 re o r lo
SP 40o9CO r9 0 r 17

TDC 18704 r 10 0 r 18
r3 0 rl 1 FFFFFFFF rl9
r4 8 r 12 4728FC r20
rS 40oAoC r 13 0 r 2 I
ro 40oAOO r 14 o r22
r7 0 r 15 0 r23

"'-Stack State-

O r24
0 r25
o r2o
0 r27
0 r28
0 r29
0 r30
0 r31

0
CA884

830001
830001

83
476FF4

0
830001

--at ADDR--Name-------------------Ca I Is--------------- Frame-Addr--S i ze
=004728FC bytes in use = $505
=004 728F8 c@004 728F8 c@004 73F8C 40o9CO 45F8
=00472958 c@00472958 c@004727AC 405880 ICO
=004 72E20 c@004 72E20 c@004 72938 40oBCO 40
=00472F2C c@00472F2C c@00472CFC 405020 loO
=00473 IA8 c@00473 IA8 c@00472E48 405080 oO
=00473A28 c@00473A28 c@00473 190 40oOCO 40
=00048258 r0A_404 I 40oEOO 40

Figure 6.16 The Debugger displaying a PowerPC program as machine code.

. ____________________________________ Ei!!'e!'~ ~ ! :!h.: ~ '!! Q0~"!!'!"[-0
One of The Debugger's best features is that you can use it to source-code
debug native Extensions. To do this, first move the folder containing your
project and source files into the Extensions folder. Next, edit the source code
to add a breakpoint statement (oebugstr()) inside the Extension's main()

function. This breakpoint interrupts the boot process so that The Debugger
takes control. Open the project, and in the PPC Linker preferences panel,
ensure that a symbols file is created (the Generate Sym File item is checked).
Go to the PPC Project preferences panel and rename the output file so that
the Extension loads after xDbgrStartup. For example, to debug FlipDepth,
you name the output file "zFlipDepth." This guarantees that The Debugger
loads before your Extension does. Now build the Extension. Continuing with
your file example, drag the zFlipDepth Extension and zFlipDepth.xSYM file
out of the project folder into the Extension folder. Reboot the system.

When The Debugger's configuration dialog box appears, hold down the
:l=C key and press Return. Keep holding the :l=C key down until The Debugger
appears, with its array of windows. Move the pointer to the -Dbgr Status
window, and double-dick on the item named Dbg_Rsrc. Its status should
switch from OFF to ON. Type :l=C-E to resume the boot process, and several
moments later, the breakpoint statement in your Extension's code should
activate The Debugger. At this point, The Debugger should be displaying the
source code of your Extension. Now you can readily set other breakpoints or
watch the values of variables change as you single-step through the Exten
sion.

The best feature that The Debugger provides is a memory-protection mecha
nism called 'Soft MMU.' As its name implies, this is a software implementa
tion of the PowerPC's memory management unit (MMU). With it, you can
assign memory protection for various blocks of memory in your application's
partition. Only one PowerPC application at a time can be protected. Access
can be set to read-only (block is write-protected), no access (the memory
block can't be read or written to), or no protection (the block is accessible to
everyone). Once you've assigned the access rights for sections of the
program's memory, you switch on Soft MMU by choosing Soft MMU in the
Stops Menu and clicking on the OK button in the dialog box that appears.

0- ~!'P ~'~"'~":!.'C' !~ll<i'- .

Because The Debugger's protection mechanism is a software program, the
suspect application's execution rate slows by a factor of 30. However, any
errant memory access-such as a memory write into a low memory global, or
into the application's own PEF container-triggers a warning message. This
lets you catch this type of bug immediately, rather than the application
inexplicably crashing much later when either the operating system uses a
corrupt variable, or the application tours a mangled section of memory.

Future Directions
Copland will use memory protection to safeguard its operating system
kernel, device drivers, and Copland-savvy faceless background applications.
This prevents wild accesses from an ill-behaved application from crashing
the system. However, this doesn't relieve you from tracking down such
bugs in your program. For starters, if your application misbehaves and
touches the kernel's memory space, Copland responds by killing the
process. Simply put, your application goes away, which can be traumatic
for the user. Applications also reside in a Compatibility Space. which offers
little memory protection among the applications themselves. This arrange
ment was necessary in order to support certain non-reentrant Toolbox
Managers. such as QuickDraw. This means that a bad-mannered applica
tion might trash another application. Or. take out the entire Compatibility
Space. bringing down all of the applications within it. Blowing up the
Compatibility Space requires that your application hammer a precise area
of memory used by the non-reentrant Toolbox code, so such an occur
rence should be rare. Nevertheless, remember that Murphy's Laws apply,
particularly for computers, so take the time to purge memory access bugs
from your program.

Debugging Techniques
To the uninitiated, the debugging process might seem arcane, but essentially
what it amounts to is gathering information or clues. You observe the
program's behavior carefully up to the moment it crashes, taking note of
what events trigger the crash. The debugging tools mentioned here serve an

_____________________________________ E~~te~ ~ ! !h~ ~'!. ~ '!<'£"~9~cg -0
important purpose-they help you prod the remains for additional informa
tion, or let you take the program for a tightly controlled stroll over the brink.

This information allows you to determine two things, where the program
crashed, and why that particular statement caused the crash. It might seem
that all you really need to know is where the program crashed, but some
times that's not the complete picture. After all, a for loop that reads control
values out of an array is going to work flawlessly-up until a logic error has
the loop read past the end of the array.

There's no exact formula or procedure that you can follow to track down and
fix program bugs. Debugging techniques vary on a case-by-case situation
because each program is unique. The best technique to minimize program
bugs is to code defensively, especially in the user interface code. Remember
that the user might perform actions in any sequence. Also, initialize the
program with a set of reasonable defaults, because the user might not
explore that portion of program where the values of key variables get set.
From my own experience writing shareware, it's definitely worth having
outside testers try out the program in the early phases. Their efforts invari
ably point out holes in the interface code. Keep an open mind to the testers'
critiques of the program. They often make worthwhile suggestions that can
streamline the interface, which in turn results in simpler and more solid
interface code.

I mentioned this rule earlier in the book when you wrote your first program,
but it's worth repeating: Always check for errors. Many Toolbox routines
return a value that indicates whether the request completed successfully. In
case of a failure, the value returned often indicates what condition caused
the error, such as the program ran out of memory, or the disk is full. When
using the Resource Manager, you can check the status of calls made to it
using the function ResError(). Use the MemError() function to validate Memory
Manager calls. You can obtain the status of some QuickDraw calls using
aoError(). One of the first functions I add to a new program is Report_Error(), so
that it can trap any major errors I make when calling unfamiliar Toolbox
routines.

I realize it's difficult trying to code for all the possibilities. For example, the
apparently simple act of saving a file to disk involves an army of safety
checks. You have to see whether a file of the same name exists, ask whether
to overwrite the existing file, see if there's enough room on the volume to

0-~ ~'"'~~'C' !~'~;~ -

save the data, and then constantly monitor the file 1/0 routines during the
save operation. Use MW Debug to modify the results of Toolbox calls so that
your error handling code gets thoroughly tested. The benefits from such an
effort are a reliable program and robust code that can be reused in future
projects.

Of course, if you're doing a quick and dirty in-house program hack, such as
the Klepto application, you need not be as exhaustive monitoring the results
of the Toolbox routines. Nevertheless, you'll notice that even Klepto per
forms some safety checks. A lot ofKlepto's file setup code came out of the
SonOMunger program, and I just replaced the Munge_File (l function with
Move_Fork (). This let me knock out a solid and reliable utility program in a
short time. However, if you're writing code that you expect other folks to use,
do them a favor and do all the safety checking, plus report errors using plain
explanations. (Putting an error code in an alert is not adequate.) They might
not appreciate getting warning or error messages, but users have no patience
at all with a program that bombs.

A Bug Taxonomy
There are countless categories and types of bugs. Here I discuss three par
ticular bugs that can be divided into several broad categories. First there are
the logic bugs, which are flaws in the algorithms and plague programmers no
matter what platform they're working on. The second type is where the
Toolbox is called improperly, which either crashes the Mac quickly, or
creates hidden damage to the operating system so that trouble rears its ugly
head hundreds of instructions later. Finally, there are those bugs that mani
fest themselves because of side effects that occur in the Mac run-time
environment. I will provide some general guidelines for each.

Logic bugs can sometimes be found without resorting to debuggers. A "code
walkthrough," where you explain the operation of the program to a coworker
or friend, often uncovers gaps or flaws in a program's logic. Also, sit down
with a program listing and some paper, and step through the listing line by
line, jotting down the values of variables as you manually evaluate each
statement. This process, although tedious, can spot some problems. It's also
valuable in making you really look at the code, rather than skimming through
it with a program editor. Finally, a code walkthrough gives you a pretty good

- _G'!;'~te~ ~ ! !".!: ~ ~ ~'~"J!9.!.'[-0
sense of how the program operates. This operation lets you recognize a
problem when some of the variables abruptly acquire new and unexpected
values.

During the program's development phase, add code that does limit checks
on arrays and other program resources. The overhead of this type of code
slows the program, but it will pay for itself when it snares a bug or two while
the program is taking form. Limit checks also help in those situations where
you're trying to integrate portions of the application that were written by
different programmers. Bracket the limit check code with conditional
compilation statements so that it can be quickly eliminated during the final
build of the shipping application.

Finally, use the compiler to help eliminate logic bugs created by typos, such
as the if statement that uses a single equal sign in the comparison statement.
CodeWarrior's C compilers have a large set of syntax-checking functions you
should use to weed out these types of problems. Access the CIC++ Language
preference panel and make sure Require Function Prototypes is checked.
This setting eliminates the possibility of writing improper Toolbox calls,
which is discussed in a moment. Another change you need to make is to
access the CIC++ Warnings preferences panel and check most of the items,
such as Possible Errors, Unused Variables, Unused Arguments, and Extended
Error Checking. These settings force the compiler to watch out for these
coding goofs and other syntax problems. Don't hesitate to use MW Debug to
step through the code and see what's going on. If you've already done a code
walkthrough and have some values you can reference, MW Debug's Locals
Pane can uncover algorithmic and syntax bugs quickly.

The next category of bug occurs when you call the Macintosh Toolbox
routines improperly. If you're lucky (and usually are), such mistakes take out
the Mac fast. You might think that making this sort of goof would be difficult,
given the copious documentation on the Toolbox routines. However, such
errors do have a way of sneaking up on you.

One type of improper Toolbox usage is calling a routine with arguments that
are the wrong size (say, passing a long where a short was expected). For
performance reasons, the Toolbox routines don't carry out any argument
checks. On a 680x0 Mac, the stack is used to pass function arguments. If the
wrong-sized argument is pushed when making a Toolbox call, it mangles the

0- ~!"P !"£'!!'~'!!.'C' .I~0~•- ______________________________________ _

stack. The reason for this mess is that when the routine attempts to return, it
first pops the expected proper-sized arguments off the stack, even though an
improper larger- or smaller-sized argument was pushed onto it by your
program. This skews the stack pointer, and consequently the routine fash
ions a return address out of bogus values sitting on the stack. 680x0-based
Macs seize up solid on this type of mistake.

Part of this problem stems from the ambiguity in the size of an integer
variable. Depending upon the development tools you use and their settings,
an int could be 16 or 32 bits in size. My recommendation: Remove int from
your C vocabulary. Declare variables as short or long instead.

This type of problem shouldn't occur as often on the Power Macintosh for a
number of reasons. AB you saw in Chapter 4, Toolbox arguments get stuffed
into PowerPC registers rather than pushed on the stack, so a wrong-sized
argument isn't as lethal as it would be on the 680x0 architecture, although
it's possible to hose the 68LC040 emulator this way. Finally, the ANSI C
requirement for Power Mac software reduces this problem because of
function prototypes. The header files for all of the Toolbox routines contain
function prototypes, and so an argument mismatch in your code is quickly
recognized and flagged by the compiler. If you haven't yet checked the
Require Function Prototypes item in the CIC++ Language preferences panel,
do yourself a favor and set it now.

Another type of Toolbox usage error is where you simply don't supply all the
information the routine requires. Guess what happens when that routine
uses random data as a source of information? This sort of mistake crops up
on those Toolbox routines that use selectors or parameter blocks to pass
information.

Background Info
Routines that have selectors operate as follows: they use a single trap

word that acts as the entry point into a package of related system ser

vices. The selector is a value passed to the routine that determines which

function in the package to use. Toolbox routines that fall into this group

belong to the Standard File. Alias. Sound, List. Process, Apple Events, Slot,

and File Manager.

. - f'!:'~'! ~ ! !h~ ~'!. o! ~'~99l"~ -0
Sometimes it appears that a routine doesn't use a parameter block or
selector, such as in the case of the Apple Event and File 1/0 routines you
used in the Chapters 3 and 5. However, if you dissect the header files, and
pay close attention to what the in-line 680x0 assembly macros do, you'll
see that these routines actually use selectors.

For such calls, pay close attention to what arguments the routine requires. I
once spent an afternoon trying to figure out why the Slot Manager call
SNextTypeSRs re () in my program was reading video sResources from a second
display board in a Mac II, rather than the one I wanted. (sResources are
special code objects used in expansion board firmware, and are accessed like
regular resources, using a name and ID number.) I eventually discovered that
I wasn't supplying a value for an argument handling the sResource's ID,
called sprn. So SNextTypeSRsrc () looked for the next video resource, indexing off
the large nonsense value left in spID. With relentless logic, SNextTypeSRsrc ()
dutifully went to the next slot with a video board and found the next
sResource for me. Adding a statement to zero sprn fixed the bug.

Another gotcha lurks in the optional completion functions some Toolbox
routines expect. Even if you don't use an 1/0 completion function with the
call to PBCatsearchSync () or similar Toolbox routines, place a value of NIL in the
parameter block to make the fact perfectly clear to the Mac OS. Finally, some
routines pass results back to you via a pointer to a buffer you provide. Not to
single out PBCatsearchSync () here, but you'll recall this routine places the
search results in a buffer you allocated for it. Be sure to set up this buffer, or
else the routine will hammer at some random memory location with the data
you requested.

The last type of bug is what I loosely term "side-effect" bugs. These occur
because of side effects induced by certain Toolbox calls or the Mac OS. These
bugs are hard to find, because there's nothing obviously wrong with the
code. Also, the bug may only bite based upon the application's memory
usage and the state of the operating system at certain times. One bug of this
type is the memory leak. Certain Toolbox routines create copies of buffers
that you're then expected to dispose of. If you don't, eventually the
application's memory dries up. As an example of this, look again at the use of
the AEGetParamDesc () or GetNewDialog (). Both allocate buffers that you must

0-~~ ~0!."~".!."~'-T~o~t_ ______________________________________ .

delete when you're finished using them. You might lump this sort of problem
under the improper use of the Toolbox, but I make the distinction because
you're not actually calling the routines improperly. The program won't crash,
but it will eventually run out of memory. This can mislead you as to the real
root of the problem. Again, this sort of bug can be avoided by a thorough
understanding of what each Toolbox call does.

The other side effect issue is where a Toolbox call or the allocation of a buffer
causes the Memory Manager to shuffle things around in memory. For
example, if you're accessing a PICT resource (usually to display an image),
trouble can occur if the image data gets moved. Here's code that shows how
to update a PICT image in a window:

/* Globals */
WindowPtr
PicHandle

/Locals */

Re ct
GrafPtr

WindowPtr

gBannerWindow;

gThePict;

thisFrame;

oldPort;
whichWindow;

main event loop code ...

case updateEvt: /* Update the window */

whichWindow = (WindowPtr) myEvent.message;
if (whichWindow == gBannerWindow)

/* It's the banner window */

BeginUpdate(whichWindow);

/* Start the update */
GetPort(&oldPort);
SetPort(whichWindow);
if (gThePict I= NIL)

/* Do you have the image? */
{ /* Display image */
DrawPicture(gThePict, (*gThePict)->picFrame);

} /* end if *I

else

SysBeep(30);
} /* end else */

- E'!'~" ~ ! !h~ ~- '.! ~"99~"~ -0
SetPort(oldPort); /*Restore port*/
EndUpdate(whichWindow);

/* Update completed */
} /* end if == gBannerWindow */

break;

This code works fine as long as the PICT resource gThePict stays put. How
ever, if the image data gets relocated, the code that obtains the display
rectangle out of gThePict ((*gThePict) ->picFrame) is liable to pass junk masquer
ading as a Rect to orawPicture (). It happens that DrawPicture () itself moves
memory, so by the time this routine gets to the code (*gThePict) ->picFrame, the
buffer may have moved somewhere else. You'll either get a very weird image
onscreen, or a crash. What makes this type of goof deadly is that it occurs
only if gThePict happens to move. This may or may not happen, depending
upon the state of your application's heap at a given moment. You either have
to use a handle to extract the rectangle information out of gThePict, or lock it
in memory, like so:

/* Global */
PicHandle gThePict;

/* Banner intialization code */
Re ct
Handle

theFrame;
theLogo;

(hasColor) 7 (theLogo = GetNamedResource('PICT',
"\pColor Banner'))

(theLogo = GetNamedResource('PICT',
"\pB&W Banner"));

if (ResError() == noErr)
{

gThePict = (PicHandle) theLogo;
HLockHi((Handle) gThePict);
theFrame = (*gThePict)->picFrame;
SizeWindow(gBannerWindow, theFrame.right,

theFrame.bottom, TRUE);
DrawPicture(gThePict, (*gThePict)->picFrame);
HUnlock((Handle) gThePict);
} /* end if == noErr */

Note that you use the Memory Manager routine HLockHi (J, which moves the
data block referenced by gThePict high in the application heap before locking
it. This helps minimize heap fragmentation. You then unlock the block once

0- ~""!"'!"£ ~"2.'"'~"2.'C' -'~'~'- .

you are done with it so that the application can recover the memory later, if
necessary.

For 680x0 Macs, there are lists in Inside Macintosh that mention those
Toolbox routines that move memory, and thus trigger the memory relocation
problems described here. There are other less obvious interactions that
Toolbox calls or the Mac OS can do to objects in memory. A good reference
work on this subject for the 680x0 Macs is Scott Knaster's How to Write
Macintosh Software.

Power Macs have a unique set of problems. The most common problem is
tripping over unexpected Mixed Mode switches. If the Power Mac seizes up
solid, a function probably exists that you failed to provide a UPP for, or you
mangled the routine descriptor that's subsequently passed to
CallOSTrapUniversalProc () or CallUniversalProc ().

Debugging Miscellany
When testing fat trap code, you have to ensure that both sections of the trap
get called. This is because the Mixed Mode Manager attempts to avoid an
instruction set context switch whenever possible. In the case of Flip Depth,
the Power Mac's Event Manager is still emulated 680x0 code. Therefore, the
Mixed Mode Manager always calls the 680x0 side of the fat trap. To test the
Power PC patches in Flip Depth, I had to compile a Power PC-only version of
the patches to guarantee that the native version of the patch gets called. For
"FlipDepth.c," in the declarations area at the start of the file, locate the flag
oo_PPc_cooE_ONLY. (There's a statement that undefines it located here.) Edit the
statement to define oo_PPc_cooE_ONLY, and recompile the project with the
CodeWarrior IDE. This ensures that only a PowerPC version of the routine
descriptor is generated, and not a fat routine descriptor. As an example of
this technique, here's the specific code from FlipDepth:

/*=======================
CreateFatDescriptorSys

Creates a fat routine descriptor
in the system heap.

========================*/

. - "'~"''" ~ ! !"~ Y!_ O! ~'~"99~og -0
OSErr CreateFatDescriptorSys(void *mac68Code, void *ppcCode, ProclnfoType

.. proclnfo, UPP *result

THz oldZone;
OSErr err = noErr;

oldZone = GetZone();

/* Save current zone */

SetZone(SystemZone());
I* Get you in the system heap */

#ifndef DO_PPC_CODE_ONLY

•result= NewFatRoutineDescriptor(mac68Code, ppcCode, procinfo);
#else

*result= NewRoutineDescriptor(ppcCode, procinfo, kPowerPCISA); /*debugging

.. only */

#endif

SetZone(oldZone);

return (•result? noErr : memFullErr);

/*end CreateFatDescriptorSys() */

It's possible to test the 680x0 portion of a fat binary application on a Power
Mac. To do this, open the application with ResEdit and then open the · cfrg'

resource. There will only be one, with an ID of 0. Select Get Resource Info
from the Resource menu, or type j::t:-1. When the Info box appears, change
the ID number to something other than zero. Without a cfrg resource ofID 0,
the operating system is fooled into thinking the application is a 680x0 appli
cation, and so it loads and executes the 680x0 CODE resources. To test the
PowerPC side of the program, change the cfrg resource ID back to 0. Of
course, you'll want to test the application on some real 680x0 Macs to
eliminate timing and emulator side effects. Testing on a 680x0 Mac can help
flush out some improper Toolbox usage bugs as well.

Occasionally you'll want a debugger to break into the execution of an appli
cation at certain points. To do this, there are specialized statements that you
can add to the program code to cause an exception and invoke a high-level
or low-level debugger.

0-~ ~9!_'~~' _T~o~- ______________________________________ _

These statements are as follows:

Debugger();
/* Break into low-level debugger */

DebugStr("\perror msg");
/* Break into low-level debugger, */

/* display error message */

SysBreak();
/* Break into high-level debugger */

SysBreakStr("\perror msg");
/* Break into high-level debugger with message */

The Debugger(l statement invokes a low-level debugger on both Power Macs
and 680x0 Macs. DebugStr() accomplishes the same end, but also displays a
Pascal-style message string when the debugger kicks in. This message can
inform you which Debug st r (l statement out of several executed. sysBreak < l and
SysBreakStr(l function as breakpoints that transfer execution from the test
program to a high-level debugger, such as MW Debug.

Be aware that the behavior of these statements varies, depending upon your
development tools and their settings. For example, MW Debug lets you
choose whether it or a low-level debugger takes control when Debugger () or
Debugst r < l statements execute. In MW Debug' s preferences, you can have it
halt whenever a SysBreak() or sysBreakStr(l statement is encountered. You can
also configure MW Debug so that it uses the current processor ISA to deter
mine whether it intercepts Debugger (l statements or forwards them to a low
level debugger. For example, you might have MW Debug take control when a
Debugger () or DebugStr () statement fires in 680x0 code, but it passes these same
statements to a low-level debugger when they execute in Power PC code. If
MW Debug isn't running, the low-level debugger always takes control.

Hazard
Even with MW Debug running, you must have a low-level debugger such
as MacsBug installed when using these statements. Otherwise, you might
crash the system.

Get to know AppleScript. It can help you set up test events for debugging
high-level event handlers. It's also useful for writing scripts to automate parts
of the development cycle.

. ____________________________________ f~~'! ~ ! :!.".! ~ <>! ~'~"l!'l"a -0
Finally, there are a couple of shareware/freeware utilities that can expedite
the debugging process. MacErrors, by Marty Wachter and Phil Kearney, is a
small application that translates those cryptic error codes into a readable
explanation. If a File Manager routine reports a -43, you type this value into
MacErrors and press Return. MacErrors explains that the error number
means "file not found; folder not found." This message should pinpoint the
trouble to that part of your file 1/0 code that handles a FSSpec or related data
structure.

Enough Debugging
In this chapter, you've received an overview of the types of debuggers. You
have looked at MW Debug and two low-level Power PC debuggers for testing
your native applications, and you've read about the various types of bugs. Be
careful while you write code; you will reduce many of the debugging prob
lems. Proper use of the available debugging tools will minimize the job of
finding and eliminating those pesky bugs that do sneak in.

In the next chapter, you learn how to obtain the maximum performance out
of your native programs.

Performance
and Processors

Most of this book discusses the Power Mac's architecture and
how to write native C programs for it. This final chapter discusses
how to make your programs better: that is, faster. Some of this
discussion will be common-sense code optimizations. However,
some aspects of the Mac OS run-time environment and certain
processor-specific characteristics exist that can impair a program's
performance if you're not careful.

0- ~"!"P ~'!!'~~'C' .!~0~'- ______________________________________ •

Planning and Profiling
Like writing program code, optimizing code requires some careful thought
up front. To begin, you should carefully consider what you're trying to do
here. Are you simply trying to make the program more snappy and respon
sive to the user? Are you trying to boost disk I/O so that the user doesn't
become frustrated watching a progress bar slowly crawl across the screen
during a file save? Or are you looking for the ultimate in screaming perfor
mance, to make a game more playable? Each of these examples points to
different solutions.

A more responsive user interface might only require tweaking the code that
draws and updates the windows, not a major code overhaul. File operations
take some careful consideration because you need to balance the opposing
requirements of fast file 1/0 performance, versus giving the operating system
time to handle background tasks and responding to a user's request to abort
the operation. Game design requires all the tricks in the book: loop unrolling,
heavy-duty buffering, custom-built bit functions, and minimal use of the
operating system. In most cases, these solutions might not require fancy
code optimization at all, just a careful redesign of certain parts of the pro
gram. After you've thought about these issues, you need to do three other
things before you consider changing a line of code: profile, profile, profile.

Profiling for a Purpose
Code profiling consists of the addition of special code to a program that
measures where it spends most of its time. For example, in the Code Warrior
IDE, you must adjust some preference settings, add several source lines to
your program to initialize the profiler and gather results, and link in special
purpose libraries that contain the profiling functions. This extra code in your
program gathers timing statistics that the Metrowerks Profiler application
uses to display the program's overhead by function. Other development tools
are available and have different ways to measure and display this timing
information.

Why profile the program's operation? It doesn't do much good to spend
hours or days fine-tuning a function that's rarely called. Instead, you want to
concentrate your efforts on those heavily used functions that contribute the
most overhead to the program's operation. As a general rule of thumb for

- _C!_>oeto_c Z ! .!"'~~~"!! ~"~ ~ -0
code optimization, a variant of the 90-10 rule applies. You only want to
optimize the 10 percent of the code where the program spends 90 percent of
its time. Any fine-tuning of these key functions delivers a noticeable im
provement in the program's operation, making your time well spent. Also,
code profiling sometimes uncovers certain logic bugs (perhaps a function
being inadvertently called too often) that you'll want to fix anyway. It's quite
possible that some of these bugs (especially an often-called function) are the
culprit in your program's lackluster performance, so fixing them will help
you toward reaching your goal.

It goes without saying that your program should be fully tested and bug-free
before attempting performance enhancements. Code optimization efforts
unfortunately can introduce their own bugs. By using reliable code as a
starting point, when a bug bites you have a good idea where it was intro
duced.

Performance Issues
Now that you've identified the bottlenecks in your program, you can focus
on these key functions. Don't touch that editor yet because you still need to
determine why these functions consume most of the time. Is it because this
function uses another function that contributes the overhead? Is because the
function is compute-intensive? Or is it because the function is called often?

The answer to the first question is obvious: examine the offending function
instead. This is why you always profile the program before changing a line of
code. The answer to the second question is that you study the compute
intensive code carefully. If the function is making heavy use of the Mac
Toolbox, determine whether you can call these routines less often (see next
section). Or try to substitute your own routine that accomplishes the same
thing. Most game designers, for example, use QuickDraw to set up a port and
then use their own drawing functions, rather than QuickDraw, to blast bits
into this port. If the compute-intensive function is mostly custom program
code, you should definitely optimize it.

The answer to the third question gets tricky. Why exactly is this function
called often? If the function is performing file I/ 0, you might rewrite the code
so that the File Manager calls use larger a.mounts of data, thus reducing the
number of calls to the function. Another "called-too-often" problem occurs

0- ~~·!'P ~~,C'~'!:'C'.' _T~ol~i'c ______________________________________ .

with screen updates. While you want controls and status displays to be crisp
and responsive, you don't need to update them more than several times a
second to achieve this effect. If you're doing this dozens of time per second,
you can impair your program's operation by doing needless screen updates.
The matter gets worse if these updates involve a Mixed Mode switch. (See
Chapter 4.) Finally, if you must update a status display, draw only those
items that have changed. As you can see from the varied answers to these
three questions, you need to have a good idea of what's causing the bottle
neck so that you apply the proper fixes.

Code Tuning
With a clear picture of what functions are dragging down performance, and
why they're causing it, now it's time to do the code optimizations. If you're
aching to learn how to program in Power PC assembly, settle down, because
that's the method oflast resort. You first want to examine the code in the
offending function. It's possible a more efficient algorithm, written in C or
another high-level language, might do the job. A high-level language that
uses an efficient algorithm will always outclass an assembly-language
function that implements a poor algorithm. Furthermore, a better-written
algorithm in C might boost performance adequately so that you don't have
to resort to assembly language programming. This is not to say that
assembly-language isn't a solution in some cases. But because assembly
language is hard to write and harder to debug, it's better to take your initial
stab at code optimization by rewriting better algorithms in C. Finally, from a
cross-platform point of view, steer clear of assembly language because your
program's portability goes out the window.

What's likely to happen is that you're hankering to rewrite these offending
functions anyway. All too often after the program is done, you realize a better
way to do things within a particular function. If this function happens to be a
proven bottleneck, that's justification to go back and rewrite the code.

Another thing to do is to rethink what the function does. If it's a general
purpose function trying to be everything for every situation, you might want
to rewrite it so that the function does a few condition checks and then calls
one of several smaller special-case functions. This lets you write tight code in
these sub-functions that efficiently deals with each particular condition. At
best, you can wind up with several fast functions that together can deal with

. - _c~'E''-' ! ~ -""!'~~'~'!: ;!."~ ".!'<'_~'! -0
every possible circumstance. At worst, you might have a mix of slow and fast
functions. If the fast functions handle the majority of the cases that the
program deals with, then you've obtained a performance win.

As an example of this rethinking process, the programmers for Marathon (a
really cool dungeon-style maze game with 3D effects) originally had a
general-purpose texture-mapping engine draw the maze's walls and ceiling.
Because the algorithms used to generate textures on the walls were different
from those used to handle the floors and ceilings, the game designers de
cided to special-case these operations. They split the engine's general
purpose texture-mapping algorithms into two separate operations: one for
the walls, and another for the ceiling/floors. Next, they fine-tuned each
algorithm for its specific purpose. The end result was a faster engine. In
addition, this implementation gave the user the option to turn off the floor I
ceiling texture-mapping. These objects might look duller with the texture
mapping switched off, but it improved the game's performance. This meant
that a larger number of people, some owning slower machines, could still
enjoy the game.

A Word about Caches
This book has touched on the fact that much program improvement can be
accomplished by use of better algorithms or special-purposing the functions.
After you've done that, other areas exist where improved performance is
possible. This category of optimizations requires that you understand how a
PowerPC system operates.

While the processor in a Power Mac might be blazing along at 150 MHz, the
memory subsystem typically is loafing along at a fraction of that speed. A 132
MHz Power Mac 9500's system bus, for example, runs at 44 MHz. In short,
any read request to system memory is going to have to wait several cycles or
more for the slower DRAM to deliver the goods. Why is this done? There are
two reasons. The first reason is that fast buses are expensive and difficult to
build. The second reason is that fast memory is expensive. By using slower
memory, the system is affordable.

These memory delays are offset by the PowerPC's on-chip caches. Caches are
special buffers that hold small amounts of the most recently used data.
Because these buffers sit on the processor, instruction fetches from the cache

0- ~!"!' !'~,!.'~"2.'C'.!~0~"- _____________________________________ _

occur at processor speeds. Ditto for the data: if the data set occupies the data
cache, these accesses fly. If, however, the processor has to go outside the
cache for program code or data, its pipelines can stall waiting for this infor
mation. This sort of delay can be reduced by a secondary level of cache
memory, called the level 2 (12) cache. An 12 cache consists of fast RAM
(typically with an access time of around 14 nanoseconds, versus 50 to 70
nanoseconds for the system DRAM), which lowers the penalty of an off
processor memory access. Because this fast memory is expensive, 12 caches
range in size from 256K to 2MB in size, and are an option on certain systems.

Cache Operation
Both the 12 cache and on-chip caches operate on the assumption that the
processor's next read request will be in the neighborhood of the last one.
Because a processor typically executes instructions in sequential order
through memory, or in loops, this assumption makes sense. The cache logic
takes advantage of this situation. When the processor demands the next
instruction, the cache's read logic fetches additional instructions from
memory addresses adjacent to the target instruction's address. These extra
fetches are done to fill buffers within the on-chip cache. When the processor
needs the next instruction at the next sequential address, it happens to
already be in the cache. This advantageous situation is termed a cache hit.
Under ideal situations, such as a tight code loop, the processor can execute
its repeating cycle of instructions without further accesses to system RAM.

This scheme breaks down when a branch instruction (usually part of a
control statement or a function call) requires the processor to jump to
another location in memory that's nowhere near the PC's current address.
The situation where the cache doesn't possess the target code or data is
called a cache miss. In this case, a portion of the cache must be refilled with
code from the new address. This activity takes time and briefly disrupts the
flow in the processor pipelines. It's important to note that the effect of
branch instructions can be minimized by the cache. If this particular branch
instruction was executed recently-perhaps inside a loop-it's possible that
the target code of the branch still occupies the cache.

A RISC processor's operation is analogous to that of a jet engine, in that both
machines run smoothly as long as they're fed at a prodigious rate. A momen
tary break in the data or air flow causes the machine to stall. You can see why

. - _c~'E'!!.' z ~ -~~'!!"~"!! ~"~ ~ -0
processor designers go through a lot of trouble designing circuitry that
predicts the outcome of branch instructions. A mispredicted branch can
hamper performance because of the time delay between when the pipelines
empty, until instructions at the cache miss address begin entering the
pipelines. With today's processors running far faster than the system
memory, such disruptions take longer to correct.

Cache Details
Caches wouldn't be very efficient if their entire contents were dumped on
a cache miss. Thus caches typically are subdivided into lines consisting of a
certain number of bytes. The cache line may be further subdivided into
separate addressable elements called sectors, or blocks. An algorithm deter
mines which cache lines are to be replaced with the new data. The PowerPC
processor family currently uses a least recently used (LRU) algorithm for this
purpose. Future PowerPC implementations might use a different algorithm.
Data is read into these cache lines on demand, overwriting the previous
contents. (Note: If this line contains a data variable whose value was changed
by the program, the processor has to write this new data out to system
memory before it is replaced.) This arrangement where the cache is made of
groups oflines enables it to hold several pieces of frequently used code or
data.

The size of a cache line varies among the PowerPC family, and in some
instances the terms line and block describe the same 32-byte element. For
the PowerPC 601 processor, a cache line is 64 bytes in size, and consists of
two blocks. Each line loads 64 bytes from system memory, starting along a
64-byte boundary (that is, bits 26 through 31 of the effective address are
zero).

While the processor deals with the cache at the resolution of blocks, 601
cache operations typically work on a per-line basis. That is, if one block in a
cache line gets filled from system memory, the processor attempts to load
the other block as well. However, there's no guarantee that the second block
will be read in properly. The 601 has a 32K unified cache that can hold both
code and data.

The 603 and 604 implement a Harvard architecture that uses separate caches
for code and data. In these processors, the caches consist of 32-byte blocks.

0- ~~!F'S ~,~,~~'C' !~'~"- - - - - -- - - - - - - - - - - - -- - - - - -- - -- - - - - - - - - - -.

The size ranges from BK (603) to 32K (604e) in size. Blocks are loaded from a
32-byte boundary in memory (that is, bits 27 through 31 of an effective
address are zero).

Another thing to keep in mind is that even under the best conditions, a data
set or a function might not fit into a cache. The size of the caches varies
among the PowerPC processor family, with the worst-case situation being
the PowerPC 603, which has BK caches. This size typically is adequate for
most code. Programs usually work with the large amounts of data, so you
might think a small cache wouldn't offer a performance win. However, stack
variables tend to hit very well in a data cache. Structure and vector opera
tions also do well, even if they aren't reused, because cache line fills bring in
the subsequent elements before they get referenced. Finally, by holding
critical control variables in a cache, it's possible to improve the performance
of certain operations.

Important
So far, this discussion has covered reading information into the cache.
There are other cache issues related to writing data to a cache. especially
to keep the contents of system memory up-to-date, or coherent. with the
cache's contents. Usually the system memory is updated on-the-fly auto
matically, and you need not worry about how this is done. Certain situa
tions exist, however, where this problem requires that the program have
explicit control of the cache. This is the sort of thing that only folks writing
operating systems or device drivers need worry about. Such details are
beyond the scope of this book.

Before you read about optimization techniques, it's worth mentioning that
you should optimize one function, and then run the program through the
profiler again. The Power Mac environment is a complex one, and it's
possible that what seems like a reasonable code optimization might actually
make things worse. This is particularly true if your function makes several
calls to emulated Toolbox code, or somehow causes numerous cache misses.
As you gain a better understanding of the system's behavior, you'll write
better code.

-- _c~·~ Z ~ ~~~·~~ ~"~ ~ -0
General Caching Principles
Because accessing system memory can be expensive from a performance
perspective, a rule emerges: Make your requests work with the cache. The
geometry of your program's logic flow can affect its performance by reducing
cache misses. How you accomplish this depends on whether you're working
with code or data.

For code, when you write loops, keep them small if possible. This way they
stand a good chance of fitting in the code cache. When using switch state
ments to handle decision paths (such as in the main event loop), keep them
compact. Instead of writing a big switch statement crammed with lots of
inline code, write a compact one that calls functions. This reduces the
possibility of cache misses occurring when the flow of execution tours the
switch statement. Of course, there will be a cache miss when the switch calls a
function, but the point is to keep cache misses from occurring on the deci
sion path up to the function call.

As a counterpoint to this rule, don't be too liberal about piling everything
into functions. If a loop repeatedly calls a function that does a simple opera
tion, it's worth moving that function's code within the loop. By adding the
code inline to the loop body, the overhead of a function call goes away (see
Chapter 4 about what a function call involves), as does the possibility of its
branch instruction creating a cache miss. Note that functions don't have to
be inside a loop to be a candidate for inlining, just small and simple.

If you're writing C++ code, you can use the inline keyword to assist you with
function inlining. Start by declaring the candidate function in line, like so:

inline long High_Use_Func()
{

II small section of program code

} II end High_Use_Func()

With the inline keyword in place, go to the CodeWarrior !DE'S CIC++ Lan
guage preferences panel and confirm that the Don't Inline item is un
checked. If the function meets certain requirements, the Metrowerks C++
compiler places this code inline within the calling function's code. Consult
the Metrowerks CIC++/ASM Lang Ref for the criteria the compiler uses to
determine whether it can inline a function. This arrangement gives you code

0- ~"Pp!"~'::'~""'~' _T!!?~'- .

inlining without having to do a massive edit to your source code. However,
be aware that code inlining can create serious code expansion, particularly if
a key function is called dozens of times throughout the program. Be sure to
run the program through the profiler again to evaluate the results.

If you're using a jump table to control program flow, try to keep it small to
minimize cache misses. An example of the problems that can occur with a
large jump table is Apple's 680x0 emulator. This jump table functions as a
680x0 instruction decoder, but it flooded the PowerPC 603's small code
cache. For the Power Mac 5200, Apple's workaround was to integrate 256K of
level 2 cache RAM onto the Mac ROM SIMM. The PowerBook 5300 and Duo
2300 use the PowerPC 603e, which has a larger (161<) code cache. To be fair,
the 68040 has about 200 instructions, with numerous variations brought
about by eighteen different addressing modes. A large jump table was
probably the best way to implement a high-speed decoder.

Where possible, try to keep seldom-used code out of the direct flow of the
program. Good subjects for this rule are error-handling code blocks. If an
operation fails (say, you can't allocate some memory), rather than have the
code that displays the error dialog box following the statement that does the
condition check, have it call an error-reporting function instead. Otherwise,
the processor has to fetch lots of rarely used code as part of the program's
normal operation, and this can cause cache misses to occur. This is the sort
of stuff you'd do anyway to make a well-organized, readable program, but it
doesn't hurt to emphasize that it can affect performance as well.

A final tip is to group your PowerPC functions according to their purpose.
You can do this using the #pragma segment directive available in the Metrowerks
CIC++ compiler. Here's a code fragment that illustrates how you arrange a
program's functions:

#pragma segment setUpModule
OSErr Init_Memory()
{ ... }
OSErr Init_Draw(grafPort)
{ ... }

OSerr Init_Files(volNum)
{ ... }

#pragma segment drawModule
long Brush_Tool(grafPort)
{ ... }

- _c~,£~ Z ~ _,.~~~"!: ~"!! ~-"'-"2'! -0
#pragma segment printModule
long Print_Window(grafport)
{ ... }

#pragma segment drawModule
long Pen_Tool(grafPort)
{ ... }

long Eraser_Tool(grafPort)
{ ... }

#pragma segment fileModule
OSErr Save_Window(volNum)
{ ... }

OSErr Import_TIFF(volNum)
{ ... }

Read_Disk(volNum)
{ ... }
Write_Disk(volNum)
{ ... }

#pragma segment printModule
long Get_Printer()
{ ... }

The functions Init_Memory(), Init_Draw(), and Init_Files() are combined in a
group called setUpModule. Brush_ Tool (), Pen_ Tool (), and Eraser_ Tool () hang OUt in
the drawModule group, While Get_Printer() and Print_Window() are in printModule.
Finally, fileModule contains Save_Window()' Import_ TIFF ()' Read_Disk()' and
write_Disk(). When the linker generates the code fragment, the code for these
functions is organized by group name, rather than by where the functions
appear in the source file. Now when the Mac OS loads the code fragment,
these similar functions are placed in proximity to one another in memory.
For example, when this hypothetical program wants to write a disk file, all of
the 1/0 functions it uses (save_Window() and Write_Disk()) are clustered together
in memory. Although all of the functions probably can't fit in the processor
caches, it's possible that they will land in the L2 cache. This shaves a few
clocks off a cache miss when the processor obtains the target function's code
in the faster 12 cache RAM instead of system memory.

0- ~!'E £'!'9!.'~'!!'C' !~0~'"- ______________________________________ •

Important
For the PowerPC processor. the #pragma segment doesn't place native object
code in anything that corresponds to 680x0 code segment. It only deter
mines how the object code gets arranged inside a code fragment.

Also, for the CodeWarrior IDE to honor this #pragma segment organization,
you have to check the item Order Code Section by #pragma segment in the
PPC PEF preferences panel.

Data handling has a different set of issues. Basically, you want to avoid
making read requests that are scattered all through memory. Instead, do
them in bulk, and preferably from a contiguous set of addresses so that the
processor can fetch all of them at once through filling cache lines. This
almost guarantees that subsequent accesses to these variables hit the cache.
For this reason, when you write data structures, keep the most often-used
variables for a particular operation clustered together so that they occupy a
cache line.

Watch your use of global variables. Because they're located elsewhere,
typically in the code fragment's TOC, they can create a cache miss. If the
global variable happens to be a state flag that isn't going to change rapidly,
make a copy of it into a variable local to the function and use the copy
instead. This way you're only penalized once for the cache miss accessing the
global variable that one time.

If you're using a look-up table of data values to speed a computation, recon
sider using the PowerPC floating-point instructions. They're pretty fast, and
they might provide the desired accuracy. This way you get a more compact
function code-wise, and avoid the use of a large look-up table that can create
all sorts of cache misses.

Finally, try using large block sizes when moving data around. The sequence
of load/ store operations used to copy the contents of buffer A into buffer B
can cause a pipeline stall. By moving more data with each load/store opera
tion, you can reduce the effects of the stall. Also, if you cast the pointers so
that they reference a float data type, you can get the FPU to assist you by
having it move 8 bytes of data at a time.

. - _c!!'e~ z ~ -~!r~~"!: ~"~ ~~ -0
The 604 processor has two special registers whose purpose is to count basic
events within the processor. Apple has released a tool called 4PM that uses
these registers to supply various processor statistics. These numbers can be
used to help you profile a program's activity. Three of these events,
mispredicted branch instructions, instruction cache misses, and data cache
misses, are of interest to you. 4PM thus enables you to monitor cache activity
so that you can fine-tune your program to minimize cache misses. Your
program's cache usage will be similar on other PowerPC processors, so any
adjustments made on a 604-based system should be applicable to all Power
Macintoshes.

Simple Optimizations
So far, you have read about how the arrangement of your program code can
affect performance. Now let's look at how your development tools can do
code optimization for you. First and foremost, get your compiler on the job.
It can do a large number of code optimizations for you. Best of all, many of
these optimizations are free in that you just change some compiler settings
and recompile. If your performance goals are modest, a recompile alone
might do the job.

Another approach to this problem is to use one compiler to write the code,
and another compiler to generate the final executable. Some programmers
use CodeWarrior to write a program because it's fast and automatically
handles a lot of the bookkeeping chores. Then they use Apple's MrC or
Motorola's PPC SOK to do the final compile, because these compilers gener
ate very efficient code.

Instruction Scheduling
Each PowerPC processor has a certain number of execution units that
operate in parallel to boost performance. The PowerPC has three execution
units; the 603, 603e, and 166 MHz 603e have five; and the 604 and 604e have
six. (Note that one of the execution units in the 603 family handles certain
system- and power-management functions, and so you may consider that
this family actually has four execution units.)

Suppose, however, that all the code the processor fetches and executes is
floating-point instructions. In this case, the floating-point execution unit

0- ~C"'? ~c·~~'~' _r~,'~'- --------------------------------------.

backs up, while the integer and branch execution units sit idle. Ideally, you
want to order (or schedule) a mix of different instructions throughout the
program's operation so that all of the processor's execution units remain
busy, rather than having one execution unit become a bottleneck. Practi
cally, such an ideally scheduled stream of code doesn't occur often. Again,
the compiler can help you out here. As it generates processor instructions
from your source code, the compiler can also shuffle them about to balance
the load to the various execution units.

To initiate instruction scheduling in the CodeWarrior IDE, go to the PPC
Processor preferences panel. Under the Optimizations section, use the
Instruction Ordering pop up menu to select 601, 603, or 604. Now when you
make your program, the compiler attempts to schedule the code sequence
for the chosen processor. This way, say, the 603 processor encounters a
blend of different instructions that it can dispatch to every execution unit.
The default setting for this item is None, because rearranging the instruction
sequence also obscures the program's operation, which makes it hard to
debug. Take the hint from this and ensure that your program is tested and
debugged before applying any optimizations to it.

Although compilers are very good at rearranging the instruction stream,
there are things that you can do to help. Consider converting some of your
integer-math algorithms so that they use some floating-point math. This
gives the compiler an opportunity to schedule a mixture of integer and
floating-point instructions. Be careful about doing this if you plan to convert
data to the floating-point format and back. Although the PowerPC has two
instructions for converting float-point values into integers, there are no
corresponding processor instructions for converting integers into floating
point values. These conversions must be implemented in software, and such
overhead can negate the benefits of the better instruction scheduling. Your
best bet is to rewrite the algorithm slightly so that certain variables remain as
floating-point values throughout the program. This is one of those areas
where you have to use a profiler to see if your modification improves the
situation.

Another trick to improve instruction scheduling is loop unrolling. Say you
have a code loop that looks like this:

for (i = 0; i < 300; i++)

red[i)= 0xFFFF;

-- _c!"e"-' z ~_Pe_"!'."!!'~'!~"~~ -0
green[i] = 0xFFFF;
blue[i] = 0xFFF;
} II end for

You can "unroll" the code so that the loop looks like this:

for (i = 0; i < 150;
{

red[i]= 0xFFFF;
green[i] = 0xFFFF;
blue[i] = 0xFFF;
i++;

red[i]= 0xFFFF;
green[i] = 0xFFFF;
blue[i] = 0xFFF;
} //end for

This is a very simplistic example, used to illustrate the technique. Such loop
codes normally perform some scary computations. By unrolling the loop, the
redundant code presents a larger number of mixed instructions to the
compiler. It can then organize these instructions into a balanced sequence
that keeps the processor's execution units busy.

An added benefit to loop unrolling is that the new code reduces the number
of iterations the loop performs. This in turn reduces the effect of the branch
instruction that takes the flow of execution back to the start of the loop. The
farther the branch instruction that ends the loop is moved away from the
compare instruction that starts the loop, the less impact the branch instruc
tion has. Be careful, however, about unrolling loops too much. The code
expansion this technique produces might create cache misses. A general rule
of thumb is to not unroll the loop more than four times.

These are a few suggestions for improving the performance of your programs
without resorting to assembly language. Your best course of action is to try
some compiler settings, add code improvements in small increments, and
measure the outcome every time with a profiler.

Processor Specific Issues
One of the purposes of the PowerPC 601 processor was to serve as a bridge
that let developers migrate programs from a variety of processors, such as
POWER (IBM workstations running AfX), 680x0 (Macintosh running Mac

0- ~'!:"'l'~ !:'!'!:'~":!.'C' !~~;'- ______________________________________ .

OS), and x86 (systems running Windows NT). Because of the myriad ways
these processors organize data in memory, the 601 was designed to be flexible

in how it accesses memory. One such capability was that the Power PC 601

(and all members of the PowerPC family) handles bi-Endian addressing
modes. That is, it can fetch data regardless of its memory organization.

Background Info
Endian addressing modes determine how data bytes get placed in memory.

This affects the organization of data quantities larger than a byte. This

book uses a 16-bit word or short as an example, but the situation applies

equally to larger data types such as longs and ftoats. Processors such as

the Motorola 680x0 and IBM's POWER store the most significant byte

(MSB) in the lowest byte address, whereas the least significant byte (LSB)

of a word quantity occupies the higher byte address. This memory organi

zation "is known as Big-Endian addressing. Intel's x86 processors place the

word's LSB at the lower address, while the MSB gets stored in the higher

address. This memory arrangement is known as Little-Endian. There is no

performance benefit to either memory addressing scheme. It does, how

ever. make porting say, a Little-Endian Windows NT program to a proces

sor using a Big-Endian operating system difficult because the way the

processor arranges bytes in memory is "backwards" from how the NT

program expects it. By supporting both addressing modes, the PowerPC

processor allows x86-based programs to be ported rapidly to it.

The PowerPC processor actually offers the capability of running both Little

Endian and Big-Endian programs simultaneously through the use of separate

address mode bits for both programs and interrupt handlers. The overhead

involved in switching between the two addressing modes, however, is so

large that such a feat isn't practical for the time being. However, this capabil

ity allows a PowerPC Platform system to run different operating systems at

different times. You might run a Little-Endian OS first, then you can restart

the computer into the Big-Endian mode and run the Mac OS.

Another one of the 60l's capabilities is that it is tolerant on how data is

positioned in memory. As anyone who has programmed the 680x0 processor
knows, it's particular about having data types larger than a byte

- _c~'E"! 2 ~ _P~°'!.~'~'" '-"~ ~~':"'."'! -0
word-aligned. (That is, the memory location occupied by a variable that is a
short or long in size must start on an even address.) PowerPC processors favor
memory alignment that corresponds to the data's size. They access bytes at
any address, shorts (16 bits) at every even address, and longs (32 bits) at every
address divisible by four. While the PowerPC actually can access data ele
ments at any address, those that follow the preferred alignment scheme
require fewer bus cycles to fetch than unaligned ones. Because emulator
programs have to fetch a non-PowerPC program's instructions from any
where in system RAM, the PowerPC 60l's bus fetch circuitry was designed to
be flexible and fast in handling misaligned data accesses.

The Power PC 603 and 604 demand that your program structures respect data
alignment. They can handle misaligned data, but at the expense of using
more clock cycles. Worse, when these processors operate in the Little-Endian
addressing mode and software accesses misaligned data (such as when a 4-
byte quantity straddles a 2-byte boundary), an exception occurs and a
millicode exception handler fields the access.

Important
Microcode is an on-chip program that decodes various processor instruc

tions and operates the appropriate sections of the processor's logic to

execute the requested action. Microcode can be considered a computer

program embedded inside the processor. In complex processors, separate

programs, called nanocode, operate their own sections of the processor.

such as a floating-point unit and the integer unit.

Mil/icode, as its name implies, operates at a higher level. outside the

processor. It implements highly efficient routines for frequently used

functions. As you saw in Chapter 4, a PowerPC function uses a set of

calling conventions, such as placing arguments in processor registers and

adjusting either the branch or link register to point to the target function's

address. To reduce overhead, millicode doesn't follow these conventions.

Instead, it uses the branch absolute and link instruction (bla). This reduces

the function call overhead to that of a single bla instruction to enter the

handler, followed by a register-based branch (using the link register) to

return when the function exits. Such unconditional branches typically take

zero cycles to execute because the processor's branch unit can resolve

them well in advance.

continues

0-~~~ ~~~·~~'C' !~'~'- .

continued

The 603 and 604 processors use millicode to handle certain misaligned
data accesses, and to resolve the byte order in Little-Endian accesses.
(Big-Endian byte-ordering is handled by the processor hardware.) As
efficient as millicode is, it can add substantial overhead if the handler is
called frequently.

With the 166 MHz PowerPC 603e and the PowerPC 604e, the hardware
now keeps track of the byte ordering for both Big- and Little-Endian
addressing. Because this eliminates the overhead of a millicode handler,
load/store operations now take the same number of cycles to execute
regardless of the Endian addressing mode on these processors.

The upshot is that misaligned data can impair your program's performance
because it slows the completion of read requests for 603 and 604. In certain
situations, the performance degradation can be substantial. The 603e and
604e have improved load/store logic that reduces this misaligned access
penalty. However, just as you should tailor your code with respect to the
smallest cache size, you should be proactive and write your code keeping
data alignment in mind. This lets your program work with any processor to
achieve optimal throughput. Fortunately, by using the proper compiler
settings, you can align your program's data so that many of these problems
are eliminated.

You can head off trouble caused by misaligned data a number of ways. After
each description I'll offer some possible fixes. As usual, after you've made a
change to the program, measure the results with a profiler to determine
whether it has the desired effect.

The roots of one source of data alignment trouble is historic. Developers
who ported 680x0-based Mac programs to the Power Mac kept their data
structures aligned on 2-byte boundaries because that was the preferred data
alignment for that processor. On the 601, this minimalist coding approach
incurred little or no loss in performance. On the 603 and 604, however, the
misaligned data can exact a heavy performance hit, making the program up
to 40 times slower under the right circumstances. The solution is to modify
the program's data structures so that they present an optimal alignment for

- _c!!'E'!:.' l ~_Pe_~"!!'~~ ~"~ f!o_ce_"2'! -0
the PowerPC processor. Remember that short data types should be aligned
on 2-byte address boundaries, and longs should be aligned on 4-byte address
boundaries. You can have the Metrowerks PPC compiler handle these details
automatically by going to the PPC Processor preferences panel and choosing
PowerPC from the popup menu for the Struct alignment item. Alternatively,
you can bracket key data structures with #pragma options align=power and
#pragma options align=reset statements so that the compiler applies PowerPC
data alignment to them.

Another gotcha is mixing up different data types in your structures. Suppose
you write the following data structure:

struct rgbBlock

short seed;
Boolean redlsDirty;
long red;
Boolean greenlsDirty;
long green;
Boolean bluelsDirty;
long blue;
short colorSpace;
Boolean hasAGWorld;

A PowerPC compiler will try to organize each element in this structure along
its desired memory boundary. That is, it will place red, green, and blue on a
4-byte boundary, seed and colorSpace on 2-byte boundaries, and so on. It does
this by inserting padding bytes after certain elements to reposition the others
in memory. For example, it will add several padding bytes after redisDirty to
position red on a 4-byte boundary. The size of this structure is 28 bytes. If,
however, you reorganize rgbBlock like in the code fragment that follows, every
element falls on its proper alignment boundary, and the compiler doesn't
have to supply padding bytes:

struct rgbBlock
{

long red;
long green;
long blue;
short seed;
short colorSpace;

0- ~:'.:"'"'~ ~~,!:'~":!.'C' !~~"- ______________________________________ _

Boolean redlsDirty;
Boolean greenlsDirty;
Boolean bluelsDirty;
Boolean hasAGWorld;
}

This might seem like a minor issue, but it can have important consequences
in complex structures. First, the smart arrangement of data elements con
serves memory. The revised version of rgbBlock now requires only 20 bytes of
memory. Second, from a performance standpoint, by eliminating extra
padding bytes, the structure is more likely to fit in a cache line. It didn't
happen in this example, but suppose you have a structure that becomes 33
bytes in size if the compiler adds padding bytes? You'll suffer a huge perfor
mance hit when a heavily used data structure causes frequent cache misses.
Bear in mind that you're working with a structure used for a specific purpose
here. Don't attempt to organize all your program variables by type, because
in moving the variables about, you might unintentionally create cache
misses. Organize data elements by purpose and frequency of use first, then
arrange them by data type.

When copying large blocks of data, try to ensure that both the source and
destination buffers are properly aligned in memory. You might consider
using BlockMove() to handle the job, although a custom special-purpose move
function might execute faster. Again, try a solution and profile the result.

Finally, you'll have to decouple how you handle data in memory from how
you handle data on a disk drive. Some programmers took C structures in
memory and wrote them to disk as a stream of bytes. To reconstitute these
structures at a later date, all they did was read the bytes from disk back into
memory. However, such structures can contain misaligned data elements.
The fix is to write wrapper code that optimally organizes the data for the
target medium. Data transfers into memory would be properly aligned, and
data written to the disk would be in a format that conserves disk space.

As was mentioned in Chapter 5, be careful if you expect this program to run
on a 680x0-based Mac, or share data with them. Data structures optimally
aligned for a PowerPC-based system might cause an exception when used on
a 680x0 processor. There are two solutions. First, live with using 2-byte
aligned data structures, and take the performance hit. Or, use the wrapper
code just described to properly align the data for the host processor.

- _C!."£'!: I~ _Pe_rt~'!!"~O: ~'~ ~~"'2'! -0
Important
As a last resort, you can use the Gestalt Manager (which you met in
Chapter 5) to obtain hardware-specific information on the Power Mac
running your program. You shouldn't use this information to control your
program's operation; it creates problems because you can't anticipate what
results future (and faster systems) might return. The 'bclk • and · pclk •

selectors are available only on systems running System 7.5.2 or later. If you
must, here's the processor-specific data:

Gestalt Selector Purpose

cput CPU type

bclk Bus clock speed

pclk Processor clock

Summary

Return Value

Ox 101 = PowerPC 601

Ox103 = PowerPC 603

Ox 1 04 = PowerPC 604

Ox106 = PowerPC 603e

Bus clock speed in Hz.

Processor clock speed in Hz

speed.

Your journey has at last come to an end. I hope your trip with me has been
an interesting one. If you learned something of value between these pages,
my trip with you has been rewarded.

Appendix A:
The PowerPC RISC
Processor Family

The first-generation Power Macintoshes are based on the PowerPC
601, a RISC microprocessor jointly developed by Apple, IBM, and
Motorola. Later Power Macs use the PowerPC 603 to address a
low-cost market, or they use the PowerPC 604 to target high
performance work. The PowerPC processor family is designed to
be a low-cost processor architecture that supports a wide range of
applications from embedded applications (such as in automobiles)
to hand-held Personal Digital Assistants (PDAs) and desktop
computers. This processor uses a high-performance processor
core; other portions of the design provide versatility by being
tailored to the target application. For example, a PowerPC fabri
cated for a desktop computer might have a large cache, and a PDA
version might reduce the cache size and eliminate multiprocessing
features to minimize power consumption.

Currently, four members make up the PowerPC family, with
variants that address specific needs such as larger caches. The
previously mentioned PowerPC 601 targets mid-range desktop
computers, such as Apple's Power Macs and IBM's Power Personal
desktop systems. The Power PC 602 is a low-power version of the
architecture, tailored specifically for hand-held devices. The
Power PC 603 is a low-power implementation of the Power PC
processor that's optimized for use in notebook and sub-notebook

0- ~~"'P ~£9!:'~"2.'C' _T ~'U<i'- - -- - - - - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - - .

computers, and low-end desktop systems. The PowerPC 604 is a high
performance processor with larger caches and smart branch prediction logic
that makes it suitable for workstations.

Several elements of the PowerPC design enable it to achieve the diametri
cally opposed goals of high performance and low cost. First, the RISC design
facilitates high instruction throughput. By using basic, fixed-length instruc
tions, RISC processors have a simple hardware instruction decoder that can
dispatch instructions in one clock cycle. This differs from the Complex
Instruction Set Computing (CISC) processor, whose decoder is more com
plex and requires several clock cycles to read in variable-length instructions
and dispatch them.

Important
When the processor dispatches an instruction, the decoder passes the

translated instruction to the appropriate sections of the processor for

execution. These sections, which are organized around the instruction's

purpose (such as integer math, floating-point math, and program

branches), are called execution units. Note that while it takes only one

clock cycle to dispatch an instruction, it might take one or more clock

cycles for the instruction to actually execute.

The RISC design also uses pipelining to improve instruction throughput.
A pipeline is where the instruction's actions are broken into several stages
inside the execution unit. To illustrate this, suppose the decoder dispatches
the translated instruction to the pipeline in, say, a floating-point execution
unit. Each stage in the floating-point unit's pipeline handles a portion of the
instruction's execution. For example, the first stage of the floating-point
pipeline might obtain the first number from a register; the second stage
would obtain the second number from another register; the third stage
would perform the calculation; and the fourth stage would write the result
back into a register.

Pipelines improve throughput by processing several instructions at once,
where each instruction is at a different stage of execution in a different
section of the pipeline. As long as the various pipelines are kept filled,
instruction processing occurs at a constant rate. Under ideal conditions

. _____________________________ !'~~"~;,_A_'!. C!'~ ~~,"~ ~l~C _P~'O'';:;'" F"_a~;;~ -0
when the processor's on-chip cache keeps the pipelines full, one instruction
completes execution for every tick of the processor clock.

The PowerPC processor architecture also uses multiple execution units.
Furthermore, the instruction set was carefully designed so that most instruc
tions don't overlap, or depend, on other instructions. Otherwise, the flow of
instructions in a pipeline might be interrupted or stalled because one of the
instructions has to wait on a result from an instruction in a different pipeline.
This way a floating-point unit can work concurrently on its floating-point
instructions as an integer unit works on its set of instructions.

To reduce design costs, the PowerPC architecture was based on IBM's
POWER (Performance Optimization With Enhanced RISC) 64-bit architec
ture. This decision gave the PowerPC designers a ready-made instruction set
and RISC processor core for the chip. The PowerPC architecture differs from
POWER in its support for multiple processors and single-precision (32-bit)
floating-point instructions. (POWER's 64-bit floating-point instructions are
also supported.) The PowerPC 601 implements most POWER instructions
(certain complex or nonscalable POWER instructions were deleted), and thus
a host of IBM software development tools was immediately available to write
PowerPC software.

Another cost reduction became possible because the initial PowerPC proces
sor bus is based on the bus of the Motorola's 88110 RISC processor. This bus
has high throughput and also supports multiprocessing. This decision
provided another ready-made portion of the PowerPC design.

IBM and Motorola have boosted the performance of these processors using
different process technologies, higher clock rates, larger pipelines, larger
caches, and more execution units. The following sections examine the
current members of the Power PC family.

PowerPC 601
The PowerPC 601packs2.8 million transistors onto a die that's 132 mm2• It's
fabricated using a 3.6 volt, 0.65-micron four-metal-layer CMOS process.
Early versions of the 601 operate at clock speeds from 50 MHz to 80 MHz. At
66 MHz, the 601dissipates9 watts of power, peak. Faster versions of the 601
use a 0.5-micron process that reduces the die to 74 mm2 and lowers power
consumption to 4 watts.

0- ~~·~ !'r£9!'~"!":'.']~o~t_ ______________________________________ .

The 601isa32-bit implementation of the 64-bit PowerPC architecture. It has
a 32-bit address bus that can access 4G of physical memory. A built-in
Memory Management Unit (MMU) supports 52-bit virtual addresses. The
601 supports 64-bit data and has a 64-bit data bus. It has a massive 32K on
chip unified cache. The term unified means that both data and code occupy
the cache. Additional buffers and arbitration logic are required to keep both
data and code moving in and out of the cache. Three independent execution
units (integer, floating-point, and branch unit) allow up to three different
types of instructions to execute at once on the 601.

The 601 can be viewed as a bridge chip for moving from the POWER architec
ture to the PowerPC architecture. For IBM, POWER workstation applications
can be migrated quickly to Power PC systems. Current Power Personal
desktop systems also support other operating systems such as Windows NT
and AIX. It is also a bridge for Apple's shift from CISC to RISC computing.
It supplies formidable processing power, enough to operate the 68LC040
emulator that makes much of the Power Mac's system software possible.

PowerPC 603
The PowerPC 603 is the 60l's low-power sibling. It uses a 3.3 volt, 0.5-rnicron
four-metal-layer static CMOS technology to place 1.6 million transistors on a
die 85.1 mm2• At 3.3 volts and 80 MHz, the 603 dissipates 3 watts, peak.

Like the 601, the 603 is a 32-bit version of the PowerPC architecture, with a
32-bit address bus and 64-bit data bus. The 603 also uses the same pipelined
architecture and thus is able to dispatch three instructions at a time.

The 603 differs from the 601 in several ways. First, it uses a Harvard architec
ture, where data and code are handled separately. It has two independent
8K caches-one for code and one for data-each with its own MMU. The
smaller cache size is offset by the reduced complexity of the circuitry re
quired to manage the caches. The arbitration logic needed to manage the
60 l's unified cache is gone, and the temporary buffers are smaller. The net
result is that the 603 musters nearly the same performance as the 601 while
using fewer transistors. Also, because the 603 is expected to be used in small,
portable systems, the multiprocessor support has been stripped from the
design.

. - !'P~"'.';,_ A_·-~~~~ ~'~ -"2'!'."'~ ~,~;~ -0
Next, the 603 has five, rather than three, execution units. It's important to
note that these two extra units provide support functions to manage the
energy-saving features and data transfer rather than execute instructions.
It still has the same integer, floating-point, and branch units. The first new
execution unit is a load/ store execution unit that manages data transfers
between the data cache and various registers. It executes the load and store
instructions, thus freeing the integer unit from the burden of computing
effective addresses. The other execution unit is a system register unit that
handles the power-saving functions in the 603.

The 603 uses static logic, so the contents of registers and the caches are
preserved even when the clock to the processor is stopped to conserve
power. The 603 provides three different power-saving modes that implement
different levels of energy consumption. These modes are under software
control. Dynamic Power Management (DPM) logic switches off idle sub
systems or execution units. The power management logic watches the
instruction stream and powers up an idle unit-say, the branch unit-on an
incoming branch instruction.

Finally, the 603 has a phased lock loop (PLL) clock multiplier circuit. This
enables the 603 to operate reliably even though the system clock might be
slowed to reduce a notebook computer's overall power consumption. Also, it
acts as a multiplier so that the processor can operate at 66 MHz internally,
while the rest of the system runs at 33 MHz.

The 603's low power consumption, combined with its near 601 performance,
makes it suitable for notebook designs. Because it is nearly code-compatible
with the 601, applications written for Power Macs or Power Personal systems
should run on these low-power systems with little or no modifications. The
PowerPC 603 lacks certain POWER instructions in order to conserve die
space. Therefore, exercise caution with programs that rely heavily on POWER
instructions when moving them to this processor and the Power PC 604.

603e
The 603e is, simply put, an enhanced version of the 603. It's a 3.3 V part, and
uses a 0.5-micron four-level-metal static CMOS technology. It packs 2.6
million transistors on a die that's 98mm2• The obvious enhancement is that

0- ~"!"'.? £"~'"'~'!!.'C' !~'~'- .

the 603e supports a faster clock: it operates at 100 MHz to 120 MHz, while the
603 tops out at 80 MHz. The processor also supports a wider range of clock
multipliers, which allows systems designers to hold down power system
consumption by using slower clock rates in the system. Like its predecessor,
the 603e has DPM logic that manages the activity of the various subsystems.
At 100 MHz, the 603e typically dissipates 3 W.

The most prominent change to the overall processor design is the large on
chip cache size: it has two separate, 16K four-way set associative caches
while the vanilla 603 has two BK, two-way set associative caches. The larger
caches are possibly in response to Apple's reported difficulties in getting its
680x0 emulator to function on the 603. This emulator uses the 680x0 opcode
as an index into a large look-up table that points to the corresponding
PowerPC instructions. It was this large table that flooded the 603's caches.
Another enhancement is the optimized load/store instructions: they now
take only a single cycle to execute. Saving one cycle might not appear signifi
cant, but because a processor is either executing instructions or fetching and
writing data, this savings adds up to better overall performance.

166 MHz PowerPC 603e
This enhanced 603e design was called the 603++ or 603ev, before the engi
neers settled on using the clock speed to differentiate this part from its
predecessors. It's a 2.5 V part made with a 0.35-micron five-layer-metal static
CMOS process. The 166 MHz 603e contains 2.6 million transistors, approxi
mately the same as the 100 MHz 603e, packed onto a die that's 8lmm2• This
makes it smaller than the original 603e. Despite operating at the higher clock
rate, the 166 MHz 603 consumes only 3 Wat 166 MHz, identical to a 603e
running at 100 MHz. The design achieves some of its reduced power con
sumption by operating the processor core at 2.5 V while the bus and I/ 0
interface still operate at 3.3 V. It's pin-compatible with the 100 MHz 603e.

A modification to the 166 MHz 603e's load/store logic provides better
performance and support for little-endian addressing modes under Windows
NT. Formerly, when the PowerPC operated in little-endian mode and soft
ware accessed misaligned data (such as when a 32-bit word straddles a 32-bit
word boundary), an exception occurs. A software exception handler then
fields the access. Put another way, the processor first had to perform two
accesses to read data crossing a word boundary. The lower-address word was

- !'!'~"!!'-A_'!.~~~'~~ ~I~ _P~"!'~'" i:_.~;~ -0
accessed first, regardless of the memory addressing mode. The processor
then spent additional cycles in the exception handler that determined the
endian order of the data. In the 166 MHz 603e, the hardware keeps track of
the data order. With the overhead of a software handler absent, misaligned
data accesses complete several cycles faster. As a result, move operations
now take the same number of cycles, regardless of the endian addressing
mode.

PowerPC 602
The 602 is a 3.3 Vpart fabricated using a 0.5 micron four-level-metal static
CMOS technology. The die measures 7.07 mm2, and contains one million
transistors-making it smaller than the 603. The 602 implements a 32-bit
version of the 64-bit PowerPC RISC architecture, where the processor
supports 32-bit addresses and 64-bit data. However, where the 603 has
separate data and address pins, the 602 time-multiplexes the address and
data signals on one set of bus pins. This enables the 602 to be housed in a
144-pin plastic QFP, while the 603 uses a 240-pin ceramic QFP. Although this
trade-off requires extra bus cycles for data accesses, IBM and Motorola
expect the 602's bus to out-perform any memory subsystem using 70 nano
second or slower RAM. Its small die size and fewer signal lines make the 602
attractive for low-cost applications, where design issues of price and logic
board real estate are critical.

The 602 has two separate on-chip caches for instructions and data. These
caches are 4K in size, and each is managed by a separate MMU. The smaller
cache size is balanced by the performance of the cache's two-way set asso
ciative organization. Like the 603, these caches support a three-state cache
coherency protocol (modified, exclusive, and invalid) that's tailored for a
stand-alone system design. The 602 has four independent execution units
(integer unit, branch processing unit, load/store unit, and floating-point
unit). The 602 lacks the system unit found in the 603. Because the 602 is
expected to operate in single-user environments such as in PDAs, the OS
services that this unit managed were deemed superfluous by the designers.

The 602's floating-point unit (FPU) handles only single-precision (32-bit)
IEEE-754 standard arithmetic, while the 601, 603, and 604 handle both
single- and double-precision (64-bit) arithmetic. Software emulation rou
tines support double-precision calculations where necessary.

0- ~°"!'.Oi".? ~'~'~"!'C' _T~o"'.'1_ -

The 602 uses static logic, which preserves the internal state of the caches and
execution units when the clock signals to these devices are disabled. The 602
uses the same power-saving modes as those found in the 603: doze, nap, and
sleep. The doze mode switches off most of the processor except for the bus
snooping logic, which maintains the coherency of the internal caches. The
nap mode disables the bus snooping, for further power savings. The sleep
mode disables the clock to all internal units, for maximum power conserva
tion. Even operating at the full power, the 602 uses the same dynamic power
management (DPM) techniques found in the 603.

PowerPC 604
The PowerPC 604 is the high-performance member of the PowerPC family,
featuring larger caches, smart branch prediction logic, and more exeuction
units. It's a 3.3 V part, made from a 0.5-micron four-level-metal CMOS
process. It has 3.6 million transistors packed on a die 196 mm2• At 100 MHz,
the 604 dissipates less than 10 W. It supports several different bus multipliers
so that the system bus can operate at lower clock speeds while the processor
itself runs at the maximum clock speed.

The 604 is a 32-bit implemenation of the PowerPC architecture, with a 32-bit
address bus and 64-bit data bus. It has two separate 16K four-way set
associative data and code caches. To boost perform~ce, the 604 has six
execution units: three integer, an IEEE 754-compatible floating-point execu
tion unit, a load/ store unit, and a branch unit. Two of the integer units
handle single-cycle register-to-register instructions. The third unit handles
more the complex integer multiply and divide operations. The 604's decoder
can dispatch up to four instructions per clock cycle. Each execution unit is
fronted with a two-stage reservation station. The purpose of the reservation
station is to prevent a stalled execution unit from blocking the dispatch logic
from issuing instructions to other execution units. When the first stage of the
execution unit clears, the reservation station issues the queued instructions.

The 604 uses dynamic branch prediction to minimize the delays that occur
when a branch instruction alters the course of the program's flow. This is
unlike the 601and603 processors, which use a hint bit in the branch
instruction's coding to determine the direction of the branch. The 604

- ~~~O_A_'!. ~~~ ~~-""'~~~!!.'~ -0
ignores the hint bit, and instead creates a branch history table to predict the
course of the current branch instruction. This history table supplies a branch
target address cache with both the address of a branch instruction and the
target address of the branch. The fetch logic accesses this cache as it oper
ates. If a fetch address matches an address in the cache, the branch target
address in the cache is used rather than the current fetch address. Subse
quent instructions are executed speculatively (that is, they don't update the
processor's internal state) until the outcome of branch instruction is actually
resolved. If the 604' s prediction is accurate, the overhead of a program
branch is only a few cycles. If the prediction is wrong, the processor can flush
all of the six execution pipelines in a single clock cycle. Of course, it will take
a number of cycles to refill the pipelines, but as long as the branch prediction
logic is accurate, such stalls should be kept to a minimum.

PowerPC 604e
The 604e is an enhanced version of the 604. It's a 2.5 V part made with a 0.35-
micron five-layer-metal CMOS process. It has 5.6 million transistors, of
which 3.8 million implement the large on-chip caches. The die size is 196
mm2, smaller than the original 604. At its named clock rate, the 166 MHz
604e dissipates an estimated IO W. It supports a wide range of processor to
bus frequency ratios, which can simplify a system design.

The logic of the load/ store unit was beefed up to reduce the number of cycles
spent fetching and writing data. Many of the move operations now complete
within a single cycle on a cache access. This is accomplished by simulta
neously writing the data to both the cache and the requesting execution unit.
Additionally, the cache logic forwards a subsequent non-speculative move
operation immediately to the load/ store unit, rather than waiting for the
cache fill to complete as it does on the 100 MHz 604. The 604e has separate
code and data caches, each that's 32 KB in size, while the 100 MHz 604 had
two separate 16 KB caches. The caches are logically organized as four-way set
associative using 256 sets, instead of the 128 sets on the 604. By keeping the
cache organization as four-way, this allows the 604e to be pin-compatible
with the 604. The processor core operates at 2.5 V, while the bus interface
still operates at 3.3V.

Appendix B:
Porting to the Power
Mac
In this book, you have looked at how to write a Macintosh applica
tion so that the C code compiles and runs on both 68K-based Macs
and Power Macs. This is fine if you're starting a program from
scratch. Of course, the luxury of writing programs this way doesn't
exist for vendors with software already on the market. For these
folks, the real issue becomes: How hard is it to port existing Mac
code to a Power Macintosh? Overall, porting working Mac C code
isn't difficult. There will be some problem areas for certain types of
applications, which are covered in this appendix.

The program's code should be ANSI C compliant. This is because
PowerPC compilers originated from ANSI C compilers. The ANSI C
function prototyping is an asset here because it can flag problems
with improperly written calls to functions or Toolbox routines.

Some portions of the program might rely on certain compiler
dependencies to operate. Obviously, such program elements
should be removed. One such dependency is the size of the int

variable, which can be 16 or 32 bits, depending on a compiler's
settings. Eliminate int variables from your source code and explic
itly declare them as short or long. If you've ported the code from
another platform, most of these dependencies have probably been
eliminated. The name powerc is defined for use in conditional
compilation.

0- ~'C'!' f'!:''..'~"2.'C' !~'~'.. ______________________________________ .

The application code must be well-behaved. That is, it only accesses the
hardware through the Toolbox, not by hammering at certain addresses. Also,
it must be 32-bit clean. The various hardware configurations that make up
the Mac line should have discouraged a misbehaved program, and retooling
an application to work with System 7 should have taken care of ensuring the
program is 32-bit clean.

The use of low memory globals is strongly discouraged. To this end, the
"SysEqu.h" header file has been eliminated. In its place you should use the
header file "LowMem.h." Although direct accesses to these areas of memory
are still supported (for the moment), you should start using the "accessor
functions" in "LowMem.h" to obtain these values. For example, instead of
obtaining the value of AS from the global currentA5 (address Ox904), use the
function LMGetcurrentA5 () and let the Power Mac OS return a value for you.

If you use callback or completion routines, such as those used in the high
level event handlers, custom window controls, or an event filter function in a
dialog box, you'll need to build a UPP for the function. This enables the
Mixed Mode Manager to deal with your code when it's called by the
Macintosh OS. Basically, ifthe function is accessed using a ProcPtr, it better
have a UPP set up for it. Fortunately, the PowerPC header files provide
macros that handle most of these details for you.

Search for functions prefaced with "New" or "Call" in the header files that
you use with the program. If you're writing a custom PowerPC plug-in
module to enhance a 680x0 application (as Adobe did with Photo shop 2.5),
you'll have to write the UPPs yourself. (See Chapter 5 for details.) If you're
writing a PowerPC plug-in module for a PowerPC application, you can use
PowerPC procedure pointers and avoid the overhead of a mode switch or the
useofUPPs.

If you're passing data structures to the Toolbox, remember that it's mostly
emulated 680x0 code and you have to word-align the data for it. Use the
compiler declaration #pragma options align=mac68k to achieve this. Don't forget
to use #pragma options align=reset after such structures to provide optimal
Power PC data alignment. If the program and its data are expected to run on
680x0 Macs and Power Macs, you'll need to enforce word-alignment
throughout the program. This is also true if you expect to exchange files with
680x0Macs.

- ~~~d~ ~ .!' -"~"~'-·~ '!!·-'~-''-"'-'" -0
If your program makes heavy use of floating-point math you'll have to make
some modifications. The extended 80- or 96-bit values, and the 64-bit comp used
by SANE are not supported in the PowerPC hardware. For compatibility, the
PowerPC SANE implementation supports these data types in emulation. To
obtain the fastest processing possible, rewrite the code to support the
processor's native 32- or 64-bit values. These data types are declared float or
double, respectively.

An 80-bit long double type is supported for SANE. Discontinue use of the
"sane.h" and "math.h" header files. Instead, use the functions provided in
the header file "fp.h," which provides data conversions and transcendental
math functions. These functions follow the Floating-Point C Extensions
(FPCE) specification, which defines support for IEEE 754/854 floating-point
math. As a developing standard, this should enable the program to be ported
to other platforms.

Important
Metrowerks defines the symbol #pragma IEEEdoubles. If it is defined (set to
1), the CodeWarrior compiler generates PowerPC 32- and 64-bit values for
float and double. If this name is not defined, the compiler generates 80-bit
values that SANE routines use. This allows the same code to be supported
on 680x0 Macs and Power Macs, but you might have to rework the code
anyway to compensate for the loss in precision if you were relying on 96-
bit values.

Be aware that if you've fine tuned the application's processing around the
680x0 environment, you might need to make some readjustments for the
PowerPC. The Power Macs use a new Modern Memory Manager that has
been optimized for a RISC processor. This memory manager might cause
problems with a program that's adapted for the old Memory Manager.
Likewise, calling some Toolbox routines can create an ISA context switch.
Avoid making Toolbox calls in tight loops. If the loop isn't running as fast as
expected, a mode switch is probably occurring.

The pascal keyword is ignored by PowerPC compilers. This keyword was used
to reorder how a C function's arguments get passed to the target function.

0- f'.o~!"P !'°~'!.'~~'C' .I~0~'- ______________________________________ •

It's primarily used when calling Toolbox functions whose interface was
based on the Pascal programming language. This isn't a big issue, because C
calling conventions are the norm for the Power Mac software, and the Mixed
Mode Manager sorts the rest out for you. However, be aware that Pascal
automatically passes arguments larger than 4 bytes by reference, and you'll
have to declare such arguments as pointers in C.

Avoid patching traps if you can help it. The Power Macintosh's run-time
architecture allows the ready enhancement of applications and other code
fragments without resorting to trap patches. If you must patch, take into
consideration what the code is doing, versus the overhead of the Mode
switch. Write a fat patch if necessary.

Appendix C:
Program Listings

Chapter 2

munger.c

#include <stdio.h>

#define CR 0x0D

#define LF 0x0A

FILE *istream, *ostream;

void main(void)

crflag; short

long

char

int

icount, ocount;

ifile[64], ofile[64];

nextbyte;

/* Path names must be 64 chars or less */

printf (' Enter input file: ');

gets (ifile);

if ((istream = fopen(ifile, 'rb")) ==NULL) /*Open the file OK?*/

printf ("\ nError opening input\n'); /* NO, say so */

return; /* Bail out */

} I* end if *I

0- ~~!"!' ~'~'"'~"'.'C' .!~''!'- .

printf ("Enter output file: ");

gets (ofile);
if ((ostream = fopen(ofile, "wb")) ==NULL) /*Can we write an output file */

{

fclose (istream); /*NO. First close input file*/
printf ("\nError opening output\n"); /* then warn, and bail out*/

return;
} /* end if *I

icount 0L;

ocount 0L;
crflag 0;

/* Set counters */

while((nextbyte fgetc(istream)) != EOF) /* Read chars until end of file */

icount++; /* Bump input char counter */

switch (nextbyte)
{

case CR:
if (crflag >= 1)

{

/* What char was read? */

/* Two in a row, end of paragraph */

fputc(nextbyte, ostream); /*Write two CRs to the output*/

fputc(nextbyte, ostream);
crflag = 0; /* Reset the flag */

ocount++;
} /* end if *I

else
crflag++;

break;
case LF:
break;
default:

/* Bump the flag, and toss the CR */

/*Toss LF, but don't touch crflag */

fputc(nextbyte, ostream); /*All other chars get written*/
ocount++;
crflag = 0;

} /* end switch */
/* end while */

fclose (istream);
fclose (ostream);

/* Clear the flag */

/* Clean up */

printf("Bytes read: %ld\n", icount);
printf("Bytes written: %ld\n", ocount);

. -~"!?< E ~ !~'l."2'-u!'~'! -0
process.c

#include <processes.h>
#include <memory.h>
#include <strings.h>
#include <stdio.h>

void main (void)
{

register int i;
ProcessinfoRec thisProcess;
ProcessserialNumber process;
FSSpec thisFileSpec;
unsigned char typeBuffer[5] = {0};
unsigned char signatureBuffer[5] = {0};

thisProcess.processAppSpec = &thisFileSpec; /* Aim pointer at our storage */
thisProcess.processinfolength = sizeof(ProcessinfoRec);/* Store record size*/
thisProcess.processName = (unsigned char*) NewPtr(32);
/*Allocate room for the name */
process.highLongOfPSN = kNoProcess; /* Clear out process serial number */
process.lowLongOfPSN = kNoProcess;

while (GetNextProcess(&process) == noErr) /* Loop until all processes found */
{

if (GetProcessinformation(&process, &thisProcess) == noErr)
/* Obtain detailed info */

{

for (i = 0; i <= 3; i++) /* Copy type & sig info into string buffers */
{

typeBuffer[i] = ((char*) &thisProcess.processType)[iJ;
signatureBuffer[i] = ((char*) &thisProcess.processSignature)[iJ;
} /* end for */

printf ("Process SN: %ld, %ld, Type: %s, Signature: %s, Name: '
thisProcess.processNumber.highlongOfPSN,
thisProcess.processNumber.lowLongOfPSN,
typeBuffer,
signatureBuffer);

printf (" %s \n', P2CStr(thisProcess.processName));
/* Now print the name */

} /* end if */
/* end while */

} /* end main() */

0- ~"Pf !'"~!."~".!.'C' _T<:!!>~I_ - •

Chapter 3

hellol.c
#include <Types.h>
#include <OuickDraw.h>
#include <Fonts.h>
#include <Windows.h>
#include. <Memory.h>
#include <Events.h>
#include <OSUtils.h>

#define TRUE
#define FALSE

true
false

#define NIL 0L
#define IN_FRONT (-1)

#define IS_VISIBLE TRUE
#define NO_CLOSE_BOX FALSE

void main(void)

WindowPtr thisWindow;
Rect windowRect;

/* Lunge after all the memory we can get */

MaxApplZone () ;
MoreMasters();
MoreMasters () ;

/* Initialize the various Managers */

InitGraf(&qd.thePort);
Ini tFonts () ;
FlushEvents(everyEvent, 0);
Ini tWindows () ;

/* Set up the window */

windowRect.top = windowRect.left 40;
windowRect.bottom = 200;
windowRect.right = 300;
if ((thisWindow = NewWindow(NIL, &windowRect,

"\pHello world", IS_VISIBLE, documentProc,

_______________________________________ ~~~d£< p _• _"J~ra_T _U~i~g~ -0
(WindowPtr) IN_FRONT, NO_CLOSE_BOX, NIL)) !=NIL)
{

SetPort(thisWindow); /*Make window current drawing port*/
MoveTo (20, 20);
Drawstring(" \pHello world");
Ini tCursor ();

while (!Button()) /*Wait until mouse button clicked*/

DisposeWindow(thisWindow);
} /* end if */

else
SysBeep(30);

} /*end main() */

macmunger.c
/* Simple app to modify a text file */
/* Copyright © 1994 Tom Thompson, for Hayden */

/* Creation date: 20-Jan-94 */

#include <Types.h>
#include <QuickDraw.h>

#include <Windows.h>
#include <Fonts.h>
#include <Controls.h>
#include <Dialogs.h>
#include <Menus.h>
#include <Devices.h>
#include <Memory.h>
#include <Events.h>
#include <Desk.h>
#include <OSEvents.h>
#include <OSUtils.h>
#include <ToolUtils.h>
#include <TextUtils.h>
#include <StandardFile.h>
#include <Errors.h>
#include <Resources.h>
#include <Diskinit.h>

0-~!~ E'~~~"2.'C' !'!?'~"- ______________________________________ _

#define LAST_MENU 3 /* Number of menus */

#define APPLE_MENU 128 /* Menu ID for Apple menu */

#define FILE_ MENU 129 /* Menu ID for File menu */

#define EDIT_MENU 130 /* Menu ID for Edit menu */

#define RESOURCE_ID 127 /* Starting index into the menu array */

#define ABOUT_BOX
/* About box menu item# in Apple menu */

#define OPEN_FILE

I* - · - - - - - - - - - - - - - - - - - -*I
#define !_QUIT 3

/* Open item# in File menu */

/* Separator line is item # 2 */

/* Quit item # in File menu */

#define ABOUT_BOX_ID 128
/* Resource IDs for our windows & dialogs */

#define STATUS_BOX_ID 129
#define ERROR_BOX_ID 130

/* Various constants */

#define NIL
#define FALSE

#define TRUE

#define INIT_X

0L
false

true

112
/* Coords for disk init dialog box */

#define INIT_Y 80

#define APPEND_MENU 0
#define CHAR_CODE_MASK 255
#define IN_FRONT -1
#define NO_CURSOR 0L
#define ONE_FILE_TYPE
#define LONG_NAP 60L

#define CR 0x0D
#define LF 0x0A

/* Function prototypes */

Boolean Do_Command (long mResult);

Boolean Init_Mac(void);
void Main_Event_Loop(void);

void Report_Error(OSErr errorCode);

- ~!:"~'~ E -" -"'"'~"'!!' _u~;~ -0
/*Application-specific functions */
void Ask_File(void);

void Munge_File(short input, short output, unsigned char *fileName);

/* Globals */

Menu Handle
EventRecord
WindowPtr

gmyMenus[LAST_MENU+1]; /*Handle to our menus*/
gmyEvent; /* Holds the event returned by the OS */

geventWindow; /* Our private window */
Boolean guserDone;
/* Indicates user wants to quit (== TRUE) */

gtheCursor; /* Current pointer icon */

gwindowCode;

CursHandle
short

WindowPtr gwhichWindow; /* The window that got an event */

OSType gfileCreator = {'MUNG'};
/* File type and creator for our output file */

OSType gfileType {'TEXT'};

/* Function to report error conditions. Error ID only. */

void Report_Error(OSErr errorCode)

unsigned char errNumString[8J;

NumToString((long) errorCode, errNumString);

ParamText(errNumString, NIL, NIL, NIL);
StopAlert(ERROR_BOX_ID, NIL);

/* end Report_Error() */

/* Function to read and write a file. Passed in are the input and output file's */
/*volume */

/* reference numbers, and the name string of the input file */
void Munge_File(short input, short output, unsigned char *fileName)

long amount;
unsigned char buffer;
short crflag;
long dummyResult; /* Dummy variable for delay() */
long icount, ocount;
unsigned char inNumString[12], outNumString[12];
DialogPtr statusDialog;

amount 1 L;
crflag 0;

0- ~~C'~ ~~9!:'~".!.'C' _T~~'c -

icount = 0;

ocount = 0;
while (FSRead(input, &amount, &buffer) == noErr)

icount++; /* Bump input char counter */
switch (buffer) /* What char was read? */

{

case CR:
if (crflag >= 1) /*Two in a row, end of paragraph*/

FSWrite(output, &amount, &buffer);
/*Write two CRs to the output */

FSWrite(output, &amount, &buffer);
crflag = 0; /* Reset the flag */

ocount++;

} I* end if *I

else
crflag++;

/* Bump the flag, and toss the CR */

break; /* end case CR */
case LF: /* Toss LF, but don't touch crflag */
break; /* end case LF */

default:
FSWrite(output, &amount, &buffer);
ocount++;

crflag = 0;
/* end switch */

/* end while */

/* Display processing statistics */

/* Clear the flag */

if ((statusDialog = GetNewDialog(STATUS_BOX_ID, NIL, (WindowPtr) IN_FRONT)) I=
•NIL)

NumToString(icount, inNumString);
/* Convert bytes read to string */

NumToString(ocount, outNumString);
ParamText (fileName, inNumString, outNumString, NIL);
DrawDialog(statusDialog);
Delay (120L, &dummyResult);
DisposDialog(statusDialog);
} /* end if != NIL */

else
SysBeep(30);

. -~~d!.'<f !'_~ll."2'-Li!'i~!-0
} /* end Munge_file() */

/* Obtain info on file to munge and output file */
void Ask_File(void)
{

unsigned char
short

fileName[14) = {"\pMunge.out"};
inFileRefNum, outFileRefNum;
fileError; OSErr

short
SFTypeList

oldVol;
textType ={'TEXT'};

StandardFileReply inputReply, outputReply;

/* Open the input file */
StandardGetFile(NIL, ONE_FILE_TYPE, textType, &inputReply);
if (inputReply.sfGood)

{

GetVol (NIL, &oldVol); /*Save current volume*/
if ((fileError = FSpOpenDF (&inputReply.sfFile, fsCurPerm, &inFileRefNum))
•I= noErr)

{

Report_Error(fileError);
return;
} /* end if error */

/* Open the output file */

StandardPutFile ("\pSave text in:", fileName, &outputReply);
if (outputReply.sfGood)

{

SetVol(NIL, outputReply.sfFile.vRefNum); /*Make the destination volume*/
/*current */

fileError = FSpCreate(&outputReply.sfFile, gfileCreator, gfileType,
•smsystemScript};

switch(fileError) /* Process result from File Manager */

case noErr:
break;
case dupFNErr: /* File already exists, wipe it out */

if ((fileError = FSpDelete(&outputReply.sfFile)) noErr)
{

if ((fileError FSpCreate(&outputReply.sfFile, gfileCreator,
gfileType, smSystemScript)) I= noErr)

{

0- ~""!' £"2.'C'~"2.'C' .I~0~'- ___________________________ - - - - - - - - - - -

Report_Error(fileError);
FSClose (inFileRefNum);

SetVol(NIL, oldVol);
return;

t• end if != noErr */
/* end == noErr •/

else

Report_Error(fileError);
FSClose (inFileRefNum);

SetVol(NIL, oldVol);

return;
} /* end else */

break; /* end case dupFNErr */
default: /* Unknown error, try to abort cleanly */

Report_Error(fileError);

FSClose (inFileRefNum); /*Close the input file•/

SetVol(NIL, oldVol); /*Restore original volume•/

return;
/* end switch */

if (!(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum)))
/* Open data fork •/

gtheCursor = GetCursor(watchCursor);
t• Change the cursor •/

SetCursor(&**gtheCursor);
Munge_File (inFileRefNum, outFileRefNum, (unsigned char *)

.. inputReply.sfFile.name);

FSClose (outFileRefNum);
SetCursor(&qd.arrow); /* Restore the cursor */
} /* end if !fileError */

FlushVol (NIL, outputReply.sfFile.vRefNum);
} /* end if outputReply.sfGood */

FSClose (inFileRefNum);
SetVol(NIL, oldVol); /*Restore current volume*/
} /* end if inputReply.sfGood */

} /* end Ask_File() */

/*Handle a command thru menu activation. Don't */
/* forget to unhighlight the selection to indicate */
/* the application is done. (Menu is highlighted */

______________________________________ ~~o~d!;< E ~ _Pr.?!l.ra~ -""'~'~ -0
/* automagically by MenuSelect.) */

Boolean Do_Command (long mResult)

unsigned char accName[255J;
short itemHit;
Boolean quitApp;
short refNum;
DialogPtr theDialog;
short theitem, theMenu;
GrafPtr savePort;
/* place to stow current GrafPort when we activate a */
/* Desk Accessory (DA) */

quitApp FALSE; /* Assume Quit not activated */
theMenu HiWord(mResult);
theitem LoWord(mResult);

/* Extract the menu selected */
/* Get the item on the menu */

switch (theMenu)

case APPLE_MENU:
if (theitem == ABOUT_BOX)

/* "About ... " selected, describe ourself*/

if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, (WindowPtr)
.. IN_FRONT)) I= NIL)

{

ModalDialog(NIL, &itemHit);
DisposDialog(theDialog);
} /* end if != NIL */

else
SysBeep(30);

/* end if theitem == ABOUT_BOX */
else

{

GetPort(&savePort);

/* It's a DA*/

/* Save port (in case the DA doesn't) */
GetMenuitemText(gmyMenus[(APPLE_MENU - RESOURCE_ID)J, theitem,
.. accName);

refNum = OpenDeskAcc(accName); /*Start it*/
SetPort(savePort);

/* Done, restore the port */
}

break; /* end APPLE_MENU case */

0-~~ ~'!."~".!.":'.·!~~"- -

case FILE_MENU:
switch(theitem)

case OPEN_FILE:
Ask_File();
break;

case I_OUIT:
quitApp = TRUE;

break;
} /* end switch */

break; /* end FILE_MENU case */

case EDIT_MENU:
SystemEdit(theitem - 1);

break;
default:

break;
/* end switch */

HiliteMenu(0);
/* Switch off highlighting on the menu just used */

return quitApp;
} /* end Do_Command() */

/* The main chunk of code that processes events as they occur. Execution remains */

/* in this loop until Do_Command returns TRUE, indicating the user wants to quit. */

/* In most cases, an event should call a subroutine to handle the event, but in */

/* this example the actions are so simple most code can be placed in-line. */

void Main_Event_Loop(void)
{

Point where;

FlushEvents(everyEvent, 0);
/* Clear out left over events */

guserDone = FALSE;

do
{

. ______________________________________ ~[!"~d~ !': ~ _":?il':!' _U!ti~g! -0
if (WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR))

/* We have an event ... */
switch(gmyEvent.what) /* Field each type of event */

case mouseDown: /* In what window, and where?? */
gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow);

switch(gwindowCode)

case inSysWindow:
/* It's a Desk Accessory (DA) */

SystemClick(&gmyEvent, gwhichWindow);
break;
case inDrag: /* Drag the window */
break;
case inGrow:

/* Grow the window, if size has changed */

break;
case inContent:

/* Bring window to front if it's not, and that's all*/
break;
case inMenuBar:

/* In a menu, handle the command */
guserDone = Do_Command(MenuSelect(gmyEvent.where));

break;
} /* end switch gwindowCode */

break; /* end mouseDown */

case keyDown:
case autoKey:

/* Command key pressed, pass to MenuKey */

if((gmyEvent.modifiers & cmdKey) I= 0)

guserDone = Do_Command(MenuKey((char) (gmyEvent.message
& CHAR_CODE_MASK)));

break; /* end key events */

case updateEvt: /* Update the window */

gwhichWindow = (WindowPtr) gmyEvent.message;
break;

case diskEvt: /* Handle disk insertion event */

if (HiWord(gmyEvent.message) != noErr)

DILoad();
where.h INIT_X;
where.v = INIT_Y;
DIBadMount(where, gmyEvent.message);

0- ~"'P ~~,!."~°"''' !~''!?'- -

DIUnload ();
} /* end if I= noErr */

break; /* end disk event */
case activateEvt: /*Activate event */

gwhichWindow = (WindowPtr) gmyEvent.message;
break;
default:
break;
} /* end switch gmyEvent.what */

} /* end if on next event */
/* end do */

while (guserDone ==FALSE); /*Loop until told to stop*/
/* end Main_Event_Loop() */

Boolean Init_Mac(void)

short i•
'

/* Lunge after all the memory we can get */
MaxApplZone () ;

/*Make sure we've got some master pointers */
MoreMasters ();
MoreMasters();
MoreMasters();
MoreMasters () ;

/* Initialize managers */
InitGraf(&qd.thePort);
Ini tFonts ();
FlushEvents(everyEvent, 0);
InitWindows();
Ini tMenus ();
TEI nit();
InitDialogs(NIL)j

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++)
/* Loop to setup menus */

gmyMenus[(i - RESOURCE_ID)] = GetMenu(i);
/* Get menu resource */

if (gmyMenus[(i - RESOURCE_ID)] ==NIL)

- _ lj>£•~•!;< E _. !c"'l.ra~ _u!'~'! -0
/* Didn't get resource? */

return FALSE;
/* No, sure didn't, bail out */

} ; /* end for */

AppendResMenu(gmyMenus[(APPLE_MENU - RESOURCE_ID)), 'DRVR');
/* Build Apple menu */

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++)
/* Add the menus */

InsertMenu(gmyMenus[(i - RESOURCE_ID)], APPEND_MENU);

OrawMenuBar();
InitCursor(); /* Tell user app is ready */

return TRUE;
/* end Init_Mac() */

void main(void)

if (Init_Mac())
Main_Event_Loop();

else
SysBeep(30);

} /* end main */

SonOMunger.c
/* Enhanced app to modify a text file */

/* Copyright© 1994 Tom Thompson, for Hayden */

/* Creation date: 20-Jan-94 */

#include <Types.h>
#include <QuickDraw.h>
#include <Windows. h>
#include <Fonts.h>
#include <Controls.h>
#include <Dialogs.h>
#include <Menus.h>
#include <Devices.h>
#include <Memory.h>
#include <Events.h>
#include <Desk.h>
#include <OSEvents.h>

0- !'."~"'P !'°~'!."~".!.'C' _r~"'.''- .

#include <OSUtils.h>
#include <ToolUtils.h>

#include <TextUtils.h>

#include <StandardFile.h>

#include <Errors.h>

#include <Resources.h>
#include <Diskinit.h>

#include <AppleTalk.h>
#include <AppleEvents.h>
#include <EPPC.h>

#include <PPCToolBox.h>

#include <Processes.h>

#include <LowMem.h>

struct AEinstalls

AEEventClass theClass;
AEEventID theEvent;
AEEventHandlerProcPtr theProc;

} ;

typedef struct AEinstalls AEinstalls;

#define LAST_HANDLER

#define LAST_MENU
3 /* Number of Apple Event handlers - 1 */

3 /* Number of menus */

.
#define APPLE_MENU 128 /* Menu ID for Apple menu */

#define FILE_MENU
#define EDIT_MENU

129 /* Menu ID for File menu */

130 /* Menu ID for Edit menu */

#define RESOURCE_ID 127
/* Starting index into the menu array */

#define ABOUT_BOX /* About box menu

#define OPEN_FILE /* Open item # in

/*-··-·-··---·····-···--*/ /* Separator line
#define I_QUIT 3 /* Quit item # in

#define ABOUT_BOX_ ID 128
/* Resource IDs for our windows & dialogs */

#define STATUS_BOX_ID 129
#define ERROR_BOX_ID 130
#define ERROR_MESS_ID 131

item # in

File menu
is item #

File menu

Apple menu

*/

2 */

*/

*/

-- -~~~'!:< f -• -~'L".!!' _u~;!!'!. -0
/* various constants */
#define NIL 0L
#define FALSE false
#define TRUE true

#define INIT_X
#define INIT_Y

#define APPEND_MENU
#define CHAR_CODE_MASK
#define DEFAULT_VOL
#define IN_FRONT
#define NO_CURSOR
#define ONE_FILE_TYPE
#define SHORT_NAP

#define CR
#define LF

112 /* Coords for disk init dialog box */
80

0
255

0

· 1
0L
1

60L

0x0D
0x0A

/* Function prototypes */
Boolean Do_Command (long mResult);
Boolean Init_Mac(void);
void Main_Event_Loop(void);
void Report_Error(OSErr errorCode);
void Report_Err_Message(unsigned char *errMess);

/* High-level Apple Event functions */

Boolean Init_AE_Events(void); /* Install the handlers*/
void Do_High_Level(EventRecord *AERecord);

t• Post high-level event to the dispatch table */
pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein, AppleEvent •reply, long

•refin); /*Handlers*/
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent •messagein, AppleEvent •reply,

•long refin);
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, AppleEvent •reply, long

•refln);
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein, AppleEvent •reply, long

•refln);

/* Application-specific functions */
void Ask_File(void);
OSErr Munge_File(short input, short output, unsigned char *fileName);

0- ~!'!'£'~~"'.'~'.I~,~·- -

/* Globals */
MenuHandle
EventRecord
WindowPtr

gmyMenus[LAST_MENU+1J; /*Handle to our menus*/
gmyEvent; /* Holds the event returned by the OS */
geventWindow; /* Our private window */

Boolean guserDone;
/* Indicates user wants to quit (== TRUE) */
CursHandle gtheCursor;
/* Current pointer icon */
short gwindowCode;
WindowPtr gwhichWindow; /* The window that got an event */

OSType gfileCreator = {'MUNG'};
/* File type and creator for our output file */
OSType gfileType ={'TEXT'};

void Report_Err_Message(unsigned char *errMess)

ParamText(errMess, NIL, NIL, NIL);
CautionAlert(ERROR_MESS_ID, NIL);

} /* end Report_Err_Message() */

/* Function to report error conditions. Error ID only. */
void Report_Error(OSErr errorCode)

unsigned char errNumString[BJ;

NumToString((long) errorCode, errNumString);
ParamText(errNumString, NIL, NIL, NIL);
StopAlert(ERROR_BOX_ID, NIL);

} /* end Report_Error() */

/* Function to read and write a file. Passed in are the input and output file's */
/* volume */
/* reference numbers, and the name string of the input file */
OSErr Munge_File(short input, short output, unsigned char *fileName)

long amount;
unsigned char buffer;
short crflag;
long dummyResult;
EventRecord dummyBuffer;
OSErr finOutErr;

- ~~'!!°!:< s -· -"'"'~".'." -'~~'! -0
long icount, ocount;
unsigned char inNumString[12), outNumString[12J;

short nextTime, startTime;
DialogPtr statusDialog;

amount 1 L;

crflag 0;

icount 0;

ocount 0;
nextTime = 0;
startTime = LMGetTicks();

while (FSRead(input, &amount, &buffer) == noErr)
{

icount++;
switch (buffer)

/* Bump input char counter */
/*What char was read? */

case CR:
if (crflag >= 1) /*Two in a row, end of paragraph */

{

if (!(flnOutErr = FSWrite(output, &amount, &buffer)))

if ((finOutErr = FSWrite(output, &amount, &buffer)) I= noErr)

{

Report_Error(flnOutErr);

else

return finOutErr;
/* end if I= */

/* end if ! */

Report_Error(finOutErr);
return finOutErr;
} /* end else */

crflag = 0;
ocount++;
} /* end if */

else
crflag++;

/* Bump the flag, and toss the CR */
break; /* end case CR */

/* Reset the flag */

case LF: /* Toss LF, but don't touch crflag */

break; /* end case LF */

default: /* Write a character out */

0- ~<of'!' ~,~,c·~~'C' !~'~"'- .

if ((finOutErr = FSWrite(output, &amount, &buffer)) != noErr)

Report_Error(finOutErr);
return finOutErr;

} / * end if • /

ocount++;
crflag = 0;

break;
t• end switch */

t• end while •/

t• Display processing statistics */

t• Clear the flag •/

if ((statusDialog = GetNewDialog(STATUS_BOX_ID, NIL, (WindowPtr) IN_FRONT)) !=
•NIL)

{

NumToString(icount, inNumString);
t• Convert bytes read to string •/

NumToString(ocount, outNumString);

ParamText (fileName, inNumString, outNumString, NIL);
DrawDialog(statusDialog);
Delay (120L, &dummyResult);

DisposDialog(statusDialog);
} ,. end if != NIL .,

else
SysBeep(30);

return finOutErr;
t• end Munge_file() */

t• Obtain info on file to munge and output file •t
void Ask_File(void)

unsigned char
short
OSErr
short
SFTypeList

fileName[14] = {'\pMunge.out'};
inFileRefNum, outFileRefNum;
fileError;
oldVol;

textType ={'TEXT'};
StandardFileReply inputReply, outputReply;

t• Open the input file •t
StandardGetFile(NIL, ONE_FILE_TYPE, textType, &inputReply);
if (inputReply.sfGood)

{

- -~~'~'!:< P ~ -~!l."2' _u!';~g! -0
GetVol (NIL, &oldVol); /*Save current volume*/
if ((fileError = FSpOpenOF (&inputReply.sfFile, fsCurPerm, &inFileRefNum))

•I= noErr)
{

Report_Error(fileError);
return;
} /* end if error */

/* Open the output file */
StandardPutFile ("\pSave text in:", fileName, &outputReply);
if (outputReply.sfGood)

{

SetVol(NIL, outputReply.sfFile.vRefNum);
/* Make the destination volume current */

fileError = FSpCreate(&outputReply.sfFile, gfileCreator, gfileType,
•smSystemScript);

switch(fileError)
/* Process result from File Manager */

case noErr:
break;
case dupFNErr:

/* File already exists, wipe it out */
if ((fileError = FSpDelete(&outputReply.sfFile)) == noErr)

{

if ((fileError FSpCreate(&outputReply.sfFile, gfileCreator,
gfileType, smSystemScript)) I= noErr)

else

Report_Error(fileError);
FSClose (inFileRefNum);
SetVol(NIL, oldVol);
return;
} /* end if I= noErr */

/* end == noErr */

{

Report_Error(fileError);
FSClose (inFileRefNum);
SetVol(NIL, oldVol);
return;
} /* end else */

break;
default:

/* end case dupFNErr */
/* Unknown error, try to abort cleanly */

0- ~"Pf £'~9C'~"2."C' _T!>!>'!?l_ ______________ c ______________________ _

Report_Error(fileError);
FSClose (inFileRefNum);

/* Close the input file */
SetVol(NIL, oldVol); /*Restore original volume*/

return;
/* end switch */

if (l(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum))) /*
Open data fork */

gtheCursor = GetCursor(watchCursor);
/* Change the cursor */

SetCursor(&**gtheCursor);
Munge_File (inFileRefNum, outFileRefNum, (unsigned char *)

.. inputReply.sfFile.name);

FSClose (outFileRefNum);
SetCursor(&qd.arrow); /*Restore the cursor*/
} /* end if lfileError */

FlushVol (NIL, outputReply.sfFile.vRefNum);
} /* end if outputReply.sfGood */

FSClose (inFileRefNum);
SetVol(NIL, oldVol); /*Restore current volume*/
} /* end if inputReply.sfGood */

} /* end Ask_File() */

Boolean lnit_AE_Events(void)

OSErr err;
short i;
static AEinstalls HandlersTolnstall[]
/* The 4 required Apple Events */

{

} ;

{kCoreEventClass, kAEOpenApplication, (AEEventHandlerProcPtr)
.. Core_AE_Open_Handler},

{kCoreEventClass, kAEOpenDocuments, (AEEventHandlerProcPtr)
.. Core_AE_OpenDoc_Handler},

{kCoreEventClass, kAEQuitApplication, (AEEventHandlerProcPtr)
.. Core_AE_Quit_Handler},

{kCoreEventClass, kAEPrintDocuments, (AEEventHandlerProcPtr)
.. Core_AE_Print_Handler}

for (i 0; i < LAST_HANDLER; i++)

- -~~·~'~ E !' _P!?!l."~ -"~;~,~ -0
err= AEinstallEventHandler(HandlersTolnstall[i].theClass,

HandlersTolnstall[iJ .theEvent,

NewAEEventHandlerProc(HandlersTolnstall[iJ.theProc}, 0, FALSE};

if (err} /* If there was a problem, bail out */
return FALSE;

/* end for */

return TRUE;
/* end Init_AE_Events(} */

/* High-level open application event. */
pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein,

.. AppleEvent *reply, long refin}

return noErr;
/* end Core_AE_Open_Handler(} */

/* High-level open document event */
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein,

,.AppleEvent *reply, long refln}

short
AEDesc
OSErr
AEKeyword
DescType
Size

i, j j

fileDesc;
highLevelErr;

ignoredKeyWord;
ignoredType;

ignoredSize;
long numberOFiles;
unsigned char outFileName[64J;
FSSpec inFSS, outFSS;
short
OSErr

inFileRefNum, outFileRefNum;
flnErr, fOutErr, mungeResult;

gtheCursor = GetCursor(watchCursor};
/*Change the cursor to indicate we're busy*/

SetCursor(&**gtheCursor};
mungeResult = 0; /* Clear result so for loop will operate •/

t• Get parameter info (a list of file names} out of Apple Event•/
if (!(highLevelErr = AEGetParamDesc(messagein, keyDirectObject, typeAEList,

.. &fileDesc}})

0- !'."~!Pf E'~'~'~"C"C• _T~~t_ - .

if {{highLevelErr = AECountltems{&fileDesc, &numberOFiles)) == noErr)
/* Count files */

for (i = 1; ({i <= numberOFiles) && {lhighLevelErr) && (lmungeResult)); ++i)

{

if (l(highLevelErr = AEGetNthPtr(&fileDesc, i, typeFSS,
&ignoredKeyWord, &ignoredType,

{char *)&inFSS, sizeof(inFSS), &ignoredSize)))
/* Get each name */

for (j 1 ; (j <= inFSS. name [0]) ; j ++)

/* Copy input file name to file output name */

outFileName[j] = inFSS.name[j];
} /* end for */

outFileName[j] = '. ';
/*Tack on a '.out' extension */

outFileName[j + 1] 'o';
outFileName[j + 2] 'u';

outFileName[j + 3] 't';

outFileName[0] = (j + 3);
/* Update the string's length */

if {l(flnErr = FSpOpenDF{&inFSS, fsCurPerm, &inFileRefNum)))
{

if ((fOutErr = FSMakeFSSpec(DEFAULT_VOL, NIL, outFileName,
.. &outFSS)) == fnfErr)

if (l(fOutErr = FSpCreate(&outFSS, gfileCreator, gfileType,
.. smSystemScript)))

{

if (l(fOutErr = FSpOpenDF(&outFSS, fsCurPerm,
.. &outFileRefNum)))

{

mungeResult = Munge_File(inFileRefNum, outFileRefNum,
.. inFSS.name); /*Process the data*/

FlushVol{NIL, outFileRefNum);
FSClose(outFileRefNum);
} /* end if lfOutErr */

else

else

Report_Err_Message("\pError opening output file");
/* end if lfOutErr */

Report_Err_Message{"\pError creating output file");

- ~~~'!:< E -" -"'"''l."'2' .!-;~;~ -0
/* end else */

/* end if == fnfErr */
else

if (fOutErr == noErr)
/* No error means a file already has that name */

Report_Err_Message("\pCan't write, file already exists");
} /* end else */

FSClose(inFileRefNum);
} /* end if JflnErr */

else
Report_Err_Message("\pError opening input file");

/* end if lhighlevelErr */

/* end for*/
} /* end if == noErr */
highLevelErr = AEDisposeDesc(&fileDesc);

/* Dispose of the copy made by AEGetParamDesc() */
} /* end if JhighLevelErr */

SetCursor(&qd.arrow);
guserDone = TRUE;
return highLevelErr;

/* Restore the cursor */
/* We're done, stop the application */

} /* end Core_AE_OpenDoc_Handler() */

/* High-level print event */
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein,

.. AppleEvent *reply, long refln)
{

return errAEEventNotHandled;
/* No printing done here, so no print handler */
} /* end Core_AE_Print_Handler() */

/* High-level quit event */
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein,

.. AppleEvent •reply, long refln)

guserDone = TRUE;
/* Tell main event loop we want to stop */

return noErr;
} /* Core_AE_Quit_Handler() */

void Do_High_Level(EventRecord *AERecord)
{

0- ~!"!? ~~~~'C' !~~'- -

AEProcessAppleEvent(AERecord);
/* end Do_High_Level() */

/* Handle a command thru menu activation. Don't forget to unhighlight the
selection to indicate the application is done. (Menu is highlighted
automagically by MenuSelect.) */

Boolean Do_Command (long mResult)

unsigned char
short

accName[255];
itemHit;

Boolean
short
DialogPtr
short
Graf Ptr

quitApp;
refNum;
theDialog;

theitem, theMenu;
savePort; /* place to stow current Graf Port when we

activate a Desk Accessory (DA) */

quitApp FALSE; /* Assume Quit not activated */
theMenu HiWord(mResult); /*Extract the menu selected*/
theitem LoWord(mResult); /* Get the item on the menu */

switch (theMenu)

ca§e APPLE_MENU:
if (theitem == ABOUT_BOX)

/* "About ... " selected, describe ourself*/
{

if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, (WindowPtr)
,,.IN_FRONT)) I= NIL)

{

ModalDialog(NIL, &itemHit);
DisposDialog(theDialog);
} /* end if != NIL */

else
SysBeep(30);

/* end if theitem == ABOUT_BOX */
else I* It 's a DA *I

{

GetPort(&savePort); /*Save port (in case the DA doesn't) */
GetMenuitemText(gmyMenus[(APPLE_MENU - RESOURCE_ID)], theitem,

,,.accName);
refNum = OpenDeskAcc(accName); /*Start it*/

- ~~~'!.' E ~ -""'~"!' -'~'!!'~ -0
SetPort(savePort); /*Done, restore the port*/
}

break; /* end APPLE_MENU case */

case FILE_MENU:

switch(theltem)

case OPEN_FILE:
Ask_File();
break;

case I_QUIT:
quitApp = TRUE;

break;
} /* end switch */

break; /* end FILE_MENU case */

case EDIT_MENU:
SystemEdit(theltem - 1);

break;
default:

break;
} /* end switch */

HiliteMenu(0);
/* Switch off highlighting on the menu just used */

return quitApp;
} /* end Do_Command() */

/* The main chunk of code that processes events as they occur. Execution remains*/
/* in this loop until Do_Command returns TRUE, indicating the user wants to quit.*/
/* In most cases, an event should call a subroutine to handle the event, but in*/
/* this example the actions are so simple most code can be placed in-line. */

void Main_Event_Loop(void)
{

Point where;

FlushEvents(everyEvent, 0); /*Clear out left over events*/
guserDone = FALSE;

0- ~~!"!' ~,~,!.'~°"'C' .!~'~'- - - - - -- - - - - - - - - - - - -- - - - - - - - - -- -- - - - - - - - -

do

if (WaitNextEvent(everyEvent, &gmyEvent, SHORT_NAP, NO_CURSOR))
{ /* We have an event ... */
switch(gmyEvent.what) /* Field each type of event */

case mouseDown: /* In what window, and where?? */
gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow);

switch(gwindowCode)

case inSysWindow: /* It's a Desk Accessory (DA) */
SystemClick(&gmyEvent, gwhichWindow);

break;
case inDrag:
break;
case inGrow:

/* Drag the window */

/* Grow the window, if size has changed */
break;
case inContent:

/* Bring window to front if it's not, and that's all*/
break;
case inMenuBar:

/* In a menu, handle the command */
guserDone = Do_Command(MenuSelect(gmyEvent.where));

break;
} /* end switch gwindowCode */

break; /* end mouseDown */
case keyDown:
case autoKey:

/* Command key pressed, pass to MenuKey */
if((gmyEvent.modifiers & cmdKey) I= 0)

guserDone = Do_Command(MenuKey((char) (gmyEvent.message
& CHAR_CODE_MASK)));

break; /* end key events */
case updateEvt: /* Update the window */

gwhichWindow (WindowPtr) gmyEvent.message;
break;

case diskEvt:
/* Handle disk insertion event */

if (HiWord(gmyEvent.message) I= noErr)

DILoad();
where.h = INIT_X;

. -~~,~~~-·-":!'ll."!!'.!-~~ -0
where.v = INIT_Y;
DIBadMount(where, gmyEvent.message};
DIUnload (} ;
} /* end if I= noErr */

break; /* end disk event */

case activateEvt: /* Activate event */

gwhichWindow = (WindowPtr} gmyEvent.message;
break;
case kHighLevelEvent: /* Handle Apple Event */

Do_High_Level(&gmyEvent};
break;
default:
break;
} /* end switch gmyEvent.what */

/* end if on next event */

/* end do */

while (guserDone ==FALSE);
} /* end Main_Event_Loop(} */

Boolean Init_Mac(void}

short i;

/* Loop until told to stop */

/* Lunge after all the memory we can get */

MaxApplZone();

/* Make sure we've got some master pointers */

MoreMasters (};
MoreMasters(};
MoreMasters (};
MoreMasters (};
MoreMasters (} ;
MoreMasters();
MoreMasters(};
MoreMasters (};

/* Initialize managers */

InitGraf(&qd.thePort};
Ini tFonts (} ;
FlushEvents(everyEvent, 0);
InitWindows (} ;
InitMenus(};

0- ~!PP ~'!.'~".!!'C'_T~o~t_ - .

TEI nit();
InitDialogs(NIL)j

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++)
/* Loop to setup menus */

{

gmyMenus[(i - RESOURCE_ID)] = GetMenu(i);
/* Get menu resource */

if (gmyMenus[(i - RESOURCE_ID)] ==NIL)
/* Didn't get resource? */

return FALSE; /* No, sure didn't, bail out */
}; /* end for */

AppendResMenu(gmyMenus[(APPLE_MENU - RESOURCE_ID)], 'DRVR');
/* Build Apple menu */

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++)
/* Add the menus */

InsertMenu(gmyMenus[(i - RESOURCE_ID)], APPEND_MENU);

DrawMenuBar();

if (llnit_AE_Events())
/* Set up our high-level event handlers */

return FALSE;

,.

InitCursor(); /*Tell user app is ready*/
return TRUE;

/* end Init_Mac() */

void main(void)

if (Init_Mac())
Main_Event_Loop();

else
SysBeep(30);

/* end main */

. -~~~'~ E !' -~"~ ~~·~~ -0
Chapter 5

SwitchBank.c

/* SwitchBank - Apple Event application that can eject "captive*/
/*

/*

/*

volumes". (The volume, usually a CD, can't be*/
ejected because File Sharing (FS) is on.) */

*/

/* Creation date: 23-Jan-94 */
/* Added server call to halt FS, instead of using a */
/* Quit Apple Event (I'm told this is the safer*/
/* way to do this.) 26-Jan-94 */
/* Changed code to look at volume to see if it's shared,*/
/* rather than just snoop for the File Sharing*/
/* Extension. This way we can eject other volumes*/
/* without restarting FS frequently, thereby*/
/* fragmenting the heap. This also lets us eject*/
/* a volume as FS starts up, without interfering 30-Jan-94*/
/* with that operation. */
/* Changed code to use FindFolder() to locate startup 24-Feb-94 */
/* volume. Also moved error messages into strings.*/
/* Fixed a bug where the program wasn't releasing*/
/* the memory used by AEGetParamDesc(). */

#include <Types.h>
#include <ConditionalMacros.h>
#include <QuickDraw.h>
#include <Windows.h>
#include <Fonts.h>
#include <Controls.h>
#include <Dialogs.h>
#include <Menus.h>
#include <Devices.h>
#include <Memory.h>
#include <Files.h>
#include <Events.h>
#include <Desk.h>
#include <OSEvents.h>
#include <ToolUtils.h>
#include <Diskinit.h>
#include <Folders.h>

0- ~!'!' ~~'"'~~'C' !~'~'- .

#include <AppleTalk.h>

#include <AppleEvents.h>

#include <EPPC.h>

#include <PPCToolBox.h>

#include <Processes.h>

/* Definitions */

#define LAST_MENU

#define LAST_HANDLER

4

3

/* Number of menus */

/* Number of Apple Event handlers - 1 */

#define

#define

#define

#define

#define

MENU_BAR_ID

APPLE_MENU

FILE_MENU

EDIT_MENU

SWITCH_MENU

128 /* ID for MBAR resource */

128 /* Menu ID for Apple menu */

129 /* Menu ID for File menu */

130 /* Menu ID for Edit menu */

131

/* Menu ID for File Share control */

#define RESOURCE_ID 127

/* Starting index into the menu array */

#define ABOUT_BOX

/* About box menu item # in Apple menu */

#define !_QUIT

/* Various constants */
#define NIL

#define FALSE

#define TRUE

#define INIT_X

/* Coords for disk in it
#define INIT_Y

#define APPEND_MENU

#define CHAR_CODE_MASK
#define DEFAULT_VOL
#define IN_FRONT
#define MAX_ TRIES

#define NO_CURSOR

#define LONG_NAP

#define SYSTEM_?

/*Quit item# in File menu */

0L

false

true

112

dialog box

80

0
255

0

(-1)
6
0L

60L

0x0700

*/

#define FILE_SHARING_CREATOR 'hhgg'

. ______________________________________ ~d!:' p _• !~ll.ra~ _U!ti~~ -0
#define FILE_SHARING_TYPE 'INIT'

#define ABOUT_BOX_ID 12B
/* Resource IDs for our windows & dialogs •/
#define ERROR_BOX_ID 130
#define ERROR_MESS_ID

#define LOG_ID_STR
#define PROBLEM_STOPPING_FS
#define PROBLEM_STARTING_FS

#define PROBLEM_ON_EJECT
#define DONT_EJECT_STARTUP_VOL

#define CANT_FIND_STARTUP_VOL

131

128/* Resource ID for the message strings •/
1 /* ID numbers of the messages */

2

3

4

#define PERSONAL_ACCESS_MASK 0x00000200L
/* Bit 9 in vMAttrib field = volume is shared */
#define SEND_MESSAGE 13

/* Send a message to the file server */
#define SHUT_DOWN 2

/* csCode to shut down the server */

/* Function prototypes •/

Boolean Check_System(void); /* Standard application functions */

Boolean Do_Command (long mResult);
void Main_Event_Loop(void);
Boolean Init_Mac(void);
void Report_Error(OSErr errorCode);
void Report_Err_Message(long messageID);

Boolean Init_AE_Events(void); /* High level Apple Events */

void Do_High_Level(EventRecord *AERecord);
pascal OSErr Core_AE_Open_Handler(AppleEvent •messagein, AppleEvent •reply, long

•refin); /*Handlers*/
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent •messagein, AppleEvent •reply,

•long refln);
pascal OSErr Core_AE_Print_Handler(AppleEvent •messagein, AppleEvent •reply, long

•refln);
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein, AppleEvent •reply, long

•ref In);

0-~~ ~!:'~"'."~' !~"'!?'- -

Boolean File_Share_On(short vRefNum);
/* Functions to handle details of file sharing */

void Stop_File_Sharing(void);
void Start_File_Sharing(void);
void Toggle_File_Sharing(void);
Boolean Get_FS_Info(void);
Boolean Find_File_Sharing(void);

/*Assorted structures for server trap */
typedef long *LonglntPtr;

#if defined(powerc) : : defined <~powerc)
#pragma options align=mac6Bk
#endif

struct DisconnectParam

QElemPtr qlink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
OSErr ioResult;

LongintPtr scDiscArrayPtr;
short scArrayCount;
short reserved;
short scCode;
short scNumMinutes;
short scFlags;
StringPtr scMessagePt r;
} ;

#if defined(powerc) : : defined(~powerc)
#pragma options align=reset
#endif

typedef struct DisconnectParam DisconnectParam;
typedef union SCParamBlockRec SCParamBlockRec;
typedef SCParamBlockRec *SCParamBlockPtr;

/*Structure for installing handlers into AE event dispatch table*/
struct AEinstalls

{

. - .j>I!'~'!!< E -" !C!'ll.ra2' _u~;~~ -0
AEEventClass theClass;
AEEventID theEvent;
AEEventHandlerProcPtr theProc;

} ;

typedef struct AEinstalls AEinstalls;

/* Globals - standard */

WindowPtr geventWindow; /* our private window
EventRecord gmyEvent;
Curs Handle gtheCursor; /* Current pointer
Boolean guserDone;
WindowPtr gwhichWindow;
short gwindowCode;

/* Application-specific globals */

short gdragNDropFlag;
ProcessinfoRec gprocess;
ProcessSerialNumber gprocessSN;
long gSysDirID;
short
FSSpec
FSSpecPtr

gsysVRefNum;
gthisFileSpec;
gthisFileSpecPtr;

void Report_Err_Message(long messageID)

unsigned char errorString[256];

icon

*/

*/

GetindString((unsigned char*) errorString, LOG_ID_STR, messageID);
if (errorString[0) 0) /* Is there a string present? */

SysBeep(30);
return;

/* No, give up */

} I* end if *I
ParamText(errorString, NIL, NIL, NIL);
CautionAlert(ERROR_MESS_ID, NIL);

/* end Report_Err_Message() */

void Report_Error(OSErr errorCode)

unsigned char errNumString[SJ;

0- ~"'P ~~!.'~"'.'C' !<>?!" _______________________________________ .

NumToString((long) errorCode, errNumString);
ParamText(errNumString, NIL, NIL, NIL);
StopAlert(ERROR_BOX_ID, NIL);

/* end Report_Error() */

/* Look for File Sharing Extension process in memory. Do search by signature */
/* creator & type rather than by file name, so that code works overseas. */
Boolean Get_FS_Info(void)
{

gthisFileSpecPtr = >hisFileSpec;
gprocessSN.highLongOfPSN = kNoProcess;
gprocessSN.1owLongOfPSN = kNoProcess;

gprocess.processlnfoLength = sizeof(ProcesslnfoRec);
/* Store size of record */

gprocess.processAppSpec = gthisFileSpecPtr;
/* Direct towards our storage */

while (GetNextProcess(&gprocessSN)
/* Loop until all processes found */

noErr)

if (GetProcesslnformation(&gprocessSN, &gprocess)
/* Obtain detailed info */

if (gprocess.processType == FILE_SHARING_TYPE &&
/* Is the process File */

noErr)

gprocess.processSignature
Sharing Extension? */

FILE_SHARING_CREATOR)

/*
return TRUE;

I* end if *I
/* end while */

return FALSE;
}/* end Get_FS_Info() */

/* Determine if the volume in question is being shared.*/
/* If it is, save the File */

/* Sharing process info so that we can restart it later. */

Boolean File_Share_On(short volRefNum)

HParamBlockRec ioHPB, volHPB;
GetVolParmslnfoBuffer vo1InfoBuffer;

- ~E'!!dJ!< S ~ -~2'-"!'!ll!. -0
/* Get volume reference number */

volHPB.volumeParam.ioCompletion = NIL;
/* No completion routine */

volHPB.volumeParam.ioNamePtr =NIL; /* No volume name */
volHPB.volumeParam.ioVRefNum = volRefNum;
volHPB.volumeParam.ioVolindex = 0;

/* 0 =Use only volRefNum to obtain the info */
if (IPBHGetVInfo(&volHPB, FALSE))

{

/* Get volume's characteristics */
ioHPB.ioParam.ioCompletion = NIL;
ioHPB.ioParam.ioNamePtr = NIL;
ioHPB.ioParam.ioVRefNum = volHPB.volumeParam.ioVRefNum;

/* from PBHGetVInfo() */
ioHPB.ioParam.ioBuffer = (char *) &volinfoBuffer;
ioHPB.ioParam.ioReqCount = sizeof(volinfoBuffer);
if (IPBHGetVolParms(&ioHPB, FALSE))

{

if (volinfoBuffer.vMAttrib & PERSONAL_ACCESS_MASK)
/*The disk is shared */

{

if (Get_FS_Info()) /* Look for the File Sharing Extension */
return TRUE;

/* Got the file info we need to restart sharing */
} /* end if */

} /* end if IPBHGetVolParms */
} /* end if IPBHGetVInfo */

return FALSE;
} /* end File_Share_On() */

/* Launch the file that has the File Sharing application in it. The file name used
*/ for the launch was obtained from the process when it's memory, or by */
*/searching the start up disk */
void Start_File_Sharing(void)
{

OS Err
LaunchPBPtr

launchErr;
thisAppPBPtr;

LaunchParamBlockRec thisAppParams;

gthisFileSpecPtr >hisFileSpec;
thisAppPBPtr = &thisAppParams;
thisAppParams.launchBlockID = extendedBlock;

0-~!Pf f'!ll!.'~"'.'".' !'!!"~'.. -

/* Use the new format */
thisAppParams.launchEPBLength extendedBlockLen;
thisAppParams.launchFileFlags 0;

/*Don't care about file flags */

thisAppParams.launchControlFlags = (launchNoFileFlags + launchContinue +
.. launchDontSwitch);

thisAppParams.launchAppSpec = gthisFileSpecPtr;
/* Give it file name grabbed */
/* by Get_FS_Info() before File */
/* Sharing was stopped */

thisAppParams.launchAppParameters NIL;
/* Send just Open event */

if ((launchErr = LaunchApplication(thisAppPBPtr)) == noErr)
WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);

else
Report_Err_Message(PROBLEM_STARTING_FS);

} /* end Start_File_Sharing() */

/* Look for the File Sharing Extension file. User might not have started File */
/* Sharing yet, so we can't grab the name from a process that isn't there. So, we */
/* search the boot disk. */

Boolean Find_File_Sharing(void)
{

HParamBlockRec searchPB;
Finfo fileSharingExtinfo, fileSharingMaskinfo;
CinfoPBRec searchSpec1, searchSpec2;
Point nilPoint = {0, 0};

/* Set up creator and type for File Sharing Extension */

fileSharingExtinfo.fdType = FILE_SHARING_TYPE;
fileSharingExtinfo.fdCreator = FILE_SHARING_CREATOR;
fileSharingExtinfo.fdFlags = 0;
fileSharingExtinfo.fdLocation = nilPoint;
fileSharingExtinfo.fdFldr = 0;

/* Set up masks */

fileSharingMaskinfo.fdType = (OSType) 0xffffffff;
fileSharingMaskinfo.fdCreator = (OSType) 0xffffffff;
fileSharingMaskinfo.fdFlags = 0;

_______________________________________ ~ee!!"!!' E ..!' -~'"!' _'-'!."~ -0
fileSharingMaskinfo.fdLocation = nilPoint;
fileSharingMaskinfo.fdFldr = 0;

/* 1st spec block */

searchSpec1.hFileinfo.ioNamePtr =NIL;
/* Search by file type, not name */

searchSpec1.hFileinfo.ioF1Fndrinfo = fileSharingExtinfo;
/* Type & creator to look for */

/* 2nd spec block */

searchSpec2.hFileinfo.ioNamePtr = NIL;
searchSpec2.hFileinfo.ioF1Fndrinfo = fileSharingMaskinfo;

/* Mask */

/* Set up search call */

searchPB.csParam.ioCompletion = NIL;
searchPB.csParam.ioNamePtr NIL;

/* No volume name */

searchPB.csParam.ioVRefNum gsysVRefNum;
/* Search on startup volume */

searchPB.csParam.ioMatchPtr = >hisFileSpec;
/* Search result goes here */

searchPB.csParam.ioReqMatchCount = 1;
/* Looking for 1 file */

searchPB.csParam.ioSearchBits = fsSBFlFndrinfo;
/* Search based on file characteristics */

searchPB.csParam.ioSearchinfo1 = &searchSpec1;
searchPB.csParam.ioSearchinfo2 = &searchSpec2;
searchPB.csParam.ioSearchTime = 0; /* Don't time out */

searchPB.csParam.ioCatPosition.initialize = 0;
/* Start at the begining */

searchPB.csParam.ioOptBuffer = NIL;
/* No search cache required */

searchPB.csParam.ioOptBufSize = 0;

if (PBCatSearchSync((CSParamPtr) &searchPB)
return TRUE;

else
{

Report_Err_Message(CANT_LOCATE_FILE);
return FALSE;
} /* end else */

noErr)

0- ~~!F'S~~'"'~'!!."~'!~,~·- -

} /* end Find_File_Sharing() */

void Toggle_File_Sharing(void)

{

if (Get_FS_Info())
/* File Sharing already on (and in memory)? */

Stop_File_Sharing(); /*Yes, turn it off*/
else /* No, look for the file */

{

if (Find_File_Sharing()) /* Find the File Sharing Extension file */

Start_File_Sharing();

} /* end else */

/* Launch it */

} /* end Toggle_File_Sharing() */

/* Build high-level event dispatch table and add our handlers to it. Must use*/

/* static declaration so that the dispatch table has file scope. */

Boolean Init_AE_Events(void)

OSErr err;

short i;
static AEinstalls HandlersToinstall[J = /* The 4 required Apple Events */

{kCoreEventClass, kAEOpenApplication, (AEEventHandlerProcPtr)
Core_AE_Open_Handler},

{kCoreEventClass, kAEOpenDocuments, (AEEventHandlerProcPtr)
Core_AE_OpenDoc_Handler},

{kCoreEventClass, kAEQuitApplication, (AEEventHandlerProcPtr)
Core_AE_Quit_Handler},

{kCoreEventClass, kAEPrintDocuments, (AEEventHandlerProcPtr)
Core_AE_Print_Handler},

} j

for (i 0; i < LAST_HANDLER; i++)
/* Install each handler in application dispatch table, with a routine*/
/* descriptor */

err= AEinstallEventHandler(HandlersToinstall[i].theClass,
HandlersToinstall[i].theEvent,

if (err)
{

NewAEEventHandlerProc(HandlersToinstall[i].theProc), 0,
•FALSE);

/* If there was a problem, bail out */

Report_Err_Message (PROBLEM_WITH_AE_HANDLER);

. -~'!:' S ! !c"'!.ra!!' _u~~'~ -0
return FALSE;

/* end if */
/* end for */

return TRUE;
/*end Init_AE_Events() */

/* High-level open application event. */

pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein, AppleEvent *reply,
•long refin)

return noErr;
/*end Core_AE_Open_Handler() */

/* High-level open document event */
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent •reply,

•long refin)

long dummyResult; /* Oummy variable for delay() */
register short i, j;
Boolean fileShareWasOn;
AEDesc volDesc; /* Container for sent volume names */
OS Err
long
AEKeyword

volErr, highLevelErr;
numberOVolumes;

ignoredKeyWord;
/* Number of volumes dropped onto us */

/* Bit buckets for high-level event info we don't need */
DescType ignoredType;
Size
FSSpec

ignoredSize;
volFSS; /* Container for volume names as FSSPecs */

gtheCursor = GetCursor(watchCursor);
/* Change the cursor to indicate we're busy */

SetCursor(&**gtheCursor);
fileSharewasOn = FALSE; /* Assume File Sharing on */

if (l(highLevelErr = AEGetParamDesc(messagein, keyDirectObject, typeAEList,
•&volDesc)))

if ((highLevelErr = AECountltems(&volDesc, &numberOVolumes))
/* How many? */

{

for (i = 1; ((i <= numberOVolumes) && (!highLevelErr)); ++i)
/* Process each vol */

noErr)

0-~~ ~!:'~"2.'C' _T~~t_ -

if (l(highLevelErr = AEGetNthPtr(&volDesc, i, typeFSS,
.,.&ignoredKeyWord, &ignoredType,

{

(char *)&volFSS, sizeof(volFSS),
.,.&ignoredSize)))

if (volFSS.vRefNum I= gsysVRefNum)
/* Chosen volume the boot drive? */

if (File_Share_On(volFSS.vRefNum))
/* This volume being shared? */

Stop_File_Sharing();
/* Yes, turn it off, set flag */

fileShareWasOn = TRUE;
} /* end if */

= 0; /* Set retry count */
while (((volErr = Eject(volFSS.name,volFSS.vRefNum)) != noErr) &&

(j < MAX_ TRIES))

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);
Delay(10L, &dummyResult);
j++;

} /* end while */
if (volErr == noErr) /* Volume ejected OK? */

UnmountVol(volFSS.name, volFSS.vRefNum);
else

Report_Err_Message(PROBLEM_ON_EJECT);
} /* end if I= gsysVRefNum */

else
Report_Err_Message(DONT_EJECT_STARTUP_VOL);

} /* end if lhighLevelErr */
/* end for */

/* end if */
highLevelErr = AEDisposeDesc(&volDesc);

/* Release memory copy of the AE parameter */
} /* end if lhighLevelErr */

if (fileShareWasOn)
Start_File_Sharing();

if (gdragNDropFlag >= 0)
guserDone = TRUE;

/* Did user drag & drop onto us? */
/* Yes, stop the application */

- - - - - - - - - - - - - - -- -~~~d!;<!.'!'_"Jq_ra21_"!'~ -0
SetCursor(&qd.arrow);
return highLevelErr;

/* Restore the cursor */
I* Kick back any high-level problems to calling app * /

} /* end Core_AE_OpenDoc_Handler() */

/* High-level print event */

{

pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, AppleEvent *reply,
•long refln)

return errAEEventNotHandled; /* No printing done here, so no print handler */
} /* end Core_AE_Print_Handler() */

/* High-level quit event */

{

pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein, AppleEvent *reply,
•long refln)

guserDone = TRUE; /* Tell main event loop we want to stop */
return noErr;

} /* Core_AE_Quit_Handler() */

void Do_High_Level(EventRecord *AERecord)
{

AEProcessAppleEvent(AERecord);
} /* end Do_High_Level() */

/* Do our checks for system-specific characteristics here. You can use
the Gestalt Manager for this, but it requires System 7. Here, we're
using the old SysEnvirons() routine to see if we have System 7. For
SwitchBank, System 7 alone should have everything we need. */

Boolean Check_System(void)

SysEnvRec machineinfo; /* Record with machine-specific data */

short sysVersion; /* System version # */

short versionRequested;
/* Version of SysEnvirons() to use */

sysVersion = SYSTEM_7;
versionRequested = 2; /* MUST set this value if you want valid results */

if (SysEnvirons(versionRequested, &machinelnfo) == noErr)
sysVersion = machineinfo.systemVersion;

0- ~-"'E ~~'!!.•C•.I!!!>'!"_ -

else
{

Report_Err_Message(TROUBLE_WITH_SYS_INFO);
return FALSE;
} /* end else */

if (sysVersion < SYSTEM_?)
{

/* Running System 7.0? */

Report_Err_Message (SYSTEM_7_REQUIRED)j
return FALSE;
} /* end if */

return TRUE;

/* No. Sorry, can't run without it */

} /* end Check_System() */

/* Handle a command through menu activation. Don't forget to unhighlight the
selection to indicate the application is done. (Menu is highlighted
automagically by MenuSelect.) */

Boolean Do_Command (long mResult)
{

unsigned char
short

accName[255];
itemHit;

Boolean
short
DialogPtr
short
GrafPtr

quitApp;
refNum;
theDialog;

theitem, theMenu;
savePort; /* place to stow current GrafPort when we

activate a Desk Accessory (DA) */

quitApp = FALSE;/* Assume Quit not activated */
theMenu = HiWord(mResult); /*Extract the menu selected*/
theltem = LoWord(mResult); /*Get the item on the menu */

switch (theMenu)
{

case APPLE_MENU:
if (theitem == ABOUT_BOX)/* "About .•. " selected, describe ourself*/

{

if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, (WindowPtr)
'-IN_FRONT)) != NIL)
{

ModalDialog(NIL, &itemHit);
DisposDialog(theDialog);

- ~E'!!"!:<}; ~ _":?Q.ra!" _~~'! -0
} /* end if I= NIL */

else
SysBeep(30);

/* end if theitem == ABOUT_BOX */
else /* It's a DA*/

{

GetPort(&savePort); /*Save port (in case the DA doesn't) */
GetMenuitemText(GetMenuHandle(APPLE_MENU), theitem, accName);
refNum = OpenDeskAcc(accName); /*Start it*/
SetPort(savePort);
}

/* Done, restore the port */

break; /* end APPLE_MENU case */

case FILE_MENU:
switch (the Item)

{

case I_QUIT:
quitApp = TRUE;

break;
} /* end switch */

break; /* end FILE_MENU case */

case EDIT_MENU:
SystemEdit(theitem · 1);

break;

case SWITCH_MENU:
Toggle_File_Sharing();

break;

default:
break;

} /* end switch */

HiliteMenu(0);
return quitApp;

/* end Do_Command() */

/* Switch off highlighting on the menu just used */

/* The main chunk of code that processes events as they occur. Execution remains */

/* in this loop until Do_Command returns TRUE, indicating the user wants to quit. */

/* In most cases, an event should call a subroutine to handle the event, but in */

0- ~!'£ ~,~,!."~":!.'C' !~''~"- -

/* this example the actions are so simple most code can be placed in-line. */
void Main_Event_Loop(void)

Point where;

gdragNDropFlag = 1;
FlushEvents(everyEvent, 0);
guserDone = FALSE;

/* Clear out left over events */

do

if (WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR))
{ I* We have an event. . . *I

switch(gmyEvent.what)/* Field each type of event */

{

case mouseDown: /* In what window, and where?? */

gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow);
switch(gwindowCode)

case inSysWindow:
/* It's a Desk Accessory (DA) */

SystemClick(&gmyEvent, gwhichWindow);
break;
case inDrag:
break;
case inGrow:

/* Drag the window */

/* Grow the window, if size has changed */

break;
case inContent:

Bring window to front if it's not, and that's all/

break;
case inMenuBar:

/* In a menu, handle the command */

guserDone = Do_Command(MenuSelect(gmyEvent.where));
break;
} /* end switch gwindoWCode */

break; /* end mouseDown */
case keyDown:
case autoKey:

/* Command key pressed, pass to MenuKey */
if((gmyEvent.modifiers & cmdKey) != 0)

guserDone = Do_Command(MenuKey((char) (gmyEvent.message
& CHAR_CODE_MASK)));

- ~!"'~'!.' E ~ !~IL"2' .!-;!"~ll!. -0
break; /* end key events */

case updateEvt: /* Update the window */
gwhichWindow = (WindowPtr) gmyEvent.message;

break;
case diskEvt: /* Handle disk insertion event */

if (HiWord(gmyEvent.message) I= noErr)
{

DILoad();
where.h INIT_X;
where.v = INIT_Y;
DIBadMount(where, gmyEvent.message);
DIUnload();
} /* end if I= noErr */

break; /* end disk event */
case activateEvt:/* Activate event */

gwhichWindow = (WindowPtr) gmyEvent.message;
break;
case kHighLevelEvent: /* Handle Apple Event */

Do_High_Level(&gmyEvent);
break;
default:
break;

/* end switch gmyEvent.what */
/* end if on next event */

else I* Null event *I
/* Do idle or background stuff here */

/* use this flag to tell Core_AE_OpenDoc_Handler() whether to shut down app when */
/*done (user dragged file onto app) or not (user left app running). We bump this*/
/* flag down twice, after which point we stop, because more than 2 events */
/* indicates the app is running */

if (gdragNDropFlag >= 0)
gdragNDropFlag--;

} /* end do */

while (guserDone == FALSE)
/* Loop until told to stop */

} /*end Main_Event_Loop() */

0- ~!Pi' £'~,!.'~"2.'C' !~0'~"- ______________________________________ _

Boolean Init_Mac(void)

Handle theMenuBar;

/* Lunge after all the memory we can get */

MaxApplZone();

/* Make sure we've got some master pointers */
MoreMasters();
MoreMasters ();
MoreMasters ();
MoreMasters ();
MoreMasters ();
MoreMasters () ;
MoreMasters();
MoreMasters();

/* Initialize managers */

InitGraf(&qd.thePort);
I nit Fonts() ;
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus () ;
TEinit();
InitDialogs(NIL)j

if ((theMenuBar = GetNewMBar(MENU_BAR_ID)) NIL)
/* Got our menu resources OK? */

return FALSE;

SetMenuBar(theMenuBar); /*Add our menus to menu list*/
DisposHandle(theMenuBar);
AppendResMenu (GetMenuHandle (APPLE_MENU)' 'DRVR') j

/* Build Apple menu */
DrawMenuBar();

/* Look for specific features or set up handlers this app needs */

if (!Check_System()) /* Need System 7 * /

return FALSE;

if (!Init_AE_Events())
/* Set up our high-level event handlers */

return FALSE;

- -~~'!:< !i ~ _"!>il."!!' .!-~~"!. -0
if (FindFolder(kOnSystemOisk, kSystemFolderType, kOontCreateFolder,

&gsysVRefNum, &gSysOirIO) I= noErr)
{

Report_Err_Message (CANT_FINO_STARTUP_VOL);

return FALSE;
} I* end if *I

InitCursor();
return TRUE;

I* Tell user app is ready *I

} I* end Init_Mac() *I

void main(void)
{

if (Init_Mac())
Main_Event_Loop();

else
SysBeep(30);

} I* end main */

I* Glue to call the ServerOispatch trap *I
#if USES68KINLINES
#pragma parameter ~00 mySyncServerOispatch(~A0)
#endif
pascal OSErr mySyncServerOispatch(SCParamBlockPtr PBPtr)

FOURWOROINLINE(0x7000, 0xA094, 0x3028, 0x0010);

I* {

I* 0x7000,I* MOVEQ #$00, II Input must be 0

I* 0xA094,I* _ServerOispatch II Hop to the trap

I* 0X3028,0x0010 I* MOVE.W ioResult(A0),00 II Move

I* }; II File Sharing doesn't.

#ifdef powerc

*I
*I

*I
result to 00 because

*I

I* Call the 68K code from the PowerPC through the Mixed Mode Manager *I
static pascal OSErr mySyncServerOispatch(SCParamBlockPtr PBPtr)
{

ProcinfoType myProcinfo;
OSErr result;
I* Need an RTS at the end to return ... *I
static short code[] = {0x7000, 0xA094, 0x3028, 0x0010, 0x4E75};

*I

0- ~!Pf £'~9!.'"'."'.'~' _T~o~t_ -

/* Build the procinfo (note use of register based calls) */

myProclnfo = kRegisterBased
RESULT_SIZE(SIZE_CODE(sizeof(OSErr)))
REGISTER_RESULT_LOCATION(kRegisterD0)

I
I

REGISTER_ROUTINE_PARAMETER(1,kRegisterA0,SIZE_CODE(sizeof(SCParamBlockPtr)));

result= CallUniversalProc((UniversalProcPtr) code, myProclnfo, (PBPtr));
return result;

/* mySyncServerDispatch() */

#endif

/* Send a shut down immediately message to the File Sharing Server */

void Stop_File_Sharing(void)
{

DisconnectParam serverBlock;
SCParamBlockPtr serverBlockPtr;

serverBlockPtr = (SCParamBlockPtr) &serverBlock;
/* Point to our message block */

serverBlock.scCode = SHUT_DOWN;
/* Server command to shut down */

serverBlock. scNumMinutes = 0; I* Do it immediately .*I

serverBlock.scFlags = SEND_MESSAGE;
serverBlock.scMessagePtr = NIL;

if (mySyncServerDispatch(serverBlockPtr) == noErr)
{

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);
/* Let the OS get at the event */

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);

} I* end if *I
else

Report_Err_Message(PROBLEM_STOPPING_FS);

} /* end Stop_File_Sharing() */

SwitchBank.r

#include "SysTypes.r"
#include "Types.r"

- ~e•!"'!:< £ .!' -"'"'~"!!' .!-~~'! -0
#define Allitems 0b1111111111111111111111111111111

/* 31 flags */

#define Noitems 0b0000000000000000000000000000000

#define Menuitem1 0b0000000000000000000000000000001

#define Menuitem2 0b0000000000000000000000000000010

#define Menuitem3 0b0000000000000000000000000000100

#define Menuitem4 0b0000000000000000000000000001000

#define MENU_BAR_ID 128

/* Menu bar resource for our menus */

#define APPLE_MENU 128 /* Menu ID for Apple menu */

#define FILE_MENU

#define EDIT_MENU

129 /* Menu ID for File menu */

130
/* Menu ID for Edit menu */

#define SWITCH_MENU 131

/* Menu ID for File Share control */

#define ABOUT_BOX_ID 128

/* Resource IDs for our windows & dialogs */

#define ERROR_BOX_ID 130

#define ERROR_MESS_ID 131

#define APPL_FREF 128

/* Resource IDs for file refs & icons */

#define DISK_FREF 129

#define SWITCH_ICON 128

/* Version info for the Finder's Get Info box

resource 'vers' (1, purgeable)

} ;

0x01,

0x10,

beta,

0x00,

verus,
11 1 • 1 B II J

"1 .1 B, by Tom Thompson"

/* Menu resources */

resource 'MBAR' (MENU_BAR_ID, preload)

0- ~l'E ~!ll!."~"l'C' .!<:?~"- ________________________ - - - - - - - - - - - - - - -

{ APPLE_MENU, FILE_MENU, EDIT_MENU, SWITCH_MENU };
} ;

resource 'MENU' (APPLE_MENU, preload)
{

APPLE_MENU, textMenuProc,
Allltems & -Menultem2,

/* Disable separator line, enable About Box and DAs */

enabled, apple,

"About SwitchBank 1.1...", noicon, nokey, nomark, plain;
noicon, nokey, nomark, plain

} ;

resource 'MENU' (FILE_MENU, preload)

} ;

FILE_MENU, textMenuProc,
Allltems,
enabled, 'File',
{

11 Quit 11 ,

}

noicon, "Q", nomark, plain

resource 'MENU' (EDIT_MENU, preload)

} ;

EDIT_MENU, textMenuProc,
Allltems & -Menultem2,
enabled, "Edit",

11 Undo 11 ,

11 Cut 11 J

"Copy",
"Paste 11 ,

/* Disable separator line */

noicon, "Z', nomark, plain;
noicon, nokey, nomark, plain;

noicon, "X", nomark, plain;
noicon, "C", nomark, plain;

noicon, "V", nomark, plain

resource 'MENU' (SWITCH_MENU, preload)
{

SWITCH_MENU, textMenuProc,
Allltems,

______________________________________ ~'!:' p _• -~'L"."' _u~u~~ -0
enabled, "Controls",

"Toggle File Sharing", noicon, "T', nomark, plain

}j

/* Our error messages */

resource 'STR#' (128, purgeable)

/* [1] */ 'A problem occured stopping File Sharing.";
/* [2] */ 'A problem occured starting File Sharing.";
/* [3] */ 'A problem occured while ejecting the volume.';
/* [4] */ 'You can't eject the startup volume.";
/* [5] */ 'Couldn't find the startup volume.';
/* [6] */ 'Couldn't get valid system information.";
/* [7] */ "Couldn't locate the File Sharing Extension file.';

/* [8] */ 'A problem occurred while loading the Apple Event handlers.

/* [9] */ 'Sorry, SwitchBank requires System 7 or later to run.";

}

} ;

/* This ALRT and DITL are used as an About Box */

resource 'DLOG' (ABOUT_BOX_ID, purgeable)

} ;

{31, 6, 224, 265},
altDBoxProc,
visible,
noGoAway,
0x0, /* No refCon */

ABOUT_BOX_ID,
/* No window title */

resource 'DITL' (ABOUT_BOX_ID, purgeable)

/* Item 1 */

{154, 80, 175, 180},
/* Item 2 */

Button { enabled, 'OK' } ,

.. ,

{ 4, 68, 38, 193} ,
•Thompson" },

StaticText { disabled, " SwitchBank 1 .1\nby Tom

/* Item 3 */

0- ~"'P ~~!.'~":!.'C' _r~;~ _____ - - - - - - - - - - __ -

} j

{86, 11, 102, 250},
.. Thompson. " } ,

/* Item 4 */

{44 1 114 1 76, 146} I

/* Item 5 */

{107, 43, 133, 217},

StaticText { disabled, " Copyright e 1994 Tom

Icon { disabled, 128 },

StaticText { disabled, "Written in Metrowerks C " }

/* The ALRT and DITL for the basic error screen */

resource 'ALRT' (ERROR_BOX_ID, purgeable)

} j

{40, 40, 127, 273},
ERROR_BOX_ID,
{

OK, visible, silent,
OK, visible, silent,
OK, visible, silent,
OK, visible, silent

resource 'DITL' (ERROR_80X_ID, purgeable)

{

} j

{ 52, 162, 72, 220 },

{ 54 l 17 l 70 l 151 } J

Button { enabled, "OK" } ,
StaticText { disabled, "I/0 error, ID "0" }

/* Alert and DITL for error message screen */

resource 'ALRT' (ERROR_MESS_ID, purgeable)
{

{ 40, 40, 147, 280 },
ERROR_MESS_ID,
{

OK, visible, silent,
OK, visible, silent,
OK, visible, silent,
OK, visible, silent

}

} j

- ~E'~d!:< !; -' J'.?'l.ra~ -"!'~'! -0
resource 'DITL' (ERROR_MESS_ID, purgeable)

};

73, 168, 93, 226 },

{ 53, 14, 97 I 157 },

/* File reference resources */

resource 'FREF' (DISK_FREF)

} j

'disk' I

1,

resource 'FREF' (APPL_FREF)
{

};

'APPL',

0,

/* Bundle resource */

resource 'BNDL' (128)
{

'SWCH', 0,
{

'ICN#', { 0, SWITCH_ICON },

Button { enabled, "OK" },

StaticText { disabled, '"0"

/* Only icon */

'FREF', { 0, APPL_FREF, 1, DISK_FREF

/* Two types of files */

}

};

/* Signature resource - all 'STR ' resources must be declared before this! */

type 'SWCH' as 'STR ';

resource 'SWCH' (0)
"SwitchBank 1.1B"

} j

0- ~!F'S ~9C'~"'."'~' .!~'~- _____________________________________ _

/* Our icon data */

data 'ICON' (SWITCH_ICON)

} j

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA"

$"5008 108A 4108 1082 4108 1082 4108 1082"

$"4188 1082 4110 0882 4110 0882 4110 0882"

$"471C 38E2 4514 28A2 4514 28A2 4514 28A2"

$"471C 38E2 4110 0882 411F F882 4110 0882"

$"4110 0882 4110 0882 41FF FF82 4004 2002"

$"4004 2002 4004 2002 4004 2002 5C04 203A"

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE"

data 'ICN#' (SWITCH_ICON)

};

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA"

$"5008 108A 4108 1082 4108 1082 4108 1082"

$"4188 1082 4110 0882 4110 0882 4110 0882"

$"471C 38E2 4514 28A2 4514 28A2 4514 28A2"

$"471C 38E2 4110 0882 411F F882 4110 0882"

$"4110 0882 4110 0882 41FF FF82 4004 2002"

$"4004 2002 4004 2002 4004 2002 5C04 203A"

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE"

/* Switch8ank's color icon in icl8 format */

data 'icl8' (SWITCH_ICON)
{

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A FFFF FF2A FF00"

$"00FF 2AFF 2AFF 2AFF FFFF FFFF FF2A 2A2A"

. - ~E'~d!:< E ~ -".?'l.ra!!' _Li!_ti~o~ -0
$"2A2A 2AFF FFFF FFFF FF2A FF2A FF2A FF00"

$"00FF 2AFF FFFF 2AFF F52A F52A FF2A 2A2A"

$"2A2A 2AFF F52A F52A FF2A FFFF FF2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A2A 2A2A FF2A 2A2A"

$"2A2A 2AFF 2A2A 2A2A FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 5454 5454 FF2A 2A2A"

$"2A2A 2AFF 5454 5454 FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 7F7F 7F7F FF2A 2A2A"

$"2A2A 2AFF 7F7F 7F7F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF FF7F FFFF FF2A 2A2A"

$"2A2A 2AFF FFFF 7FFF FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 7F7F 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF7F 7F7F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 5454 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF54 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A"

$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00"

$"00FF 2A2A 2AFF F5FF 2A54 7FFF F5FF 2A2A"

$'2A2A FFF5 FF2A 547F FFF5 FF2A 2A2A FF00"

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A"

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00"

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A"

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00"

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A"

$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A"

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF FFFF FFFF"

$"FFFF FFFF FF2A 547F FF2A 2A2A 2A2A FF00"
$"00FF 2A2A 2A2A 2AFF 2A54 7FFF F52A F52A"

$"F52A F52A FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 5454 5454"
$"5454 5454 FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 7F7F 7F7F"

$"7F7F 7F7F FF2A 547F FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2AFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FF2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"
$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

0- ~!"'.? ~,~,~·~~'C' !~'~"- .

} j

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A"

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF 54F5"

$"2A7F FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00"

$"00FF 2AFF 2AFF 2A2A 2A2A 2A2A 2AFF 542A"

$"2A7F FF2A 2A2A 2A2A 2A2A FF2A FF2A FF00"

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF FFFF"

$"FFFF FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00"

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00"

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00"

/* SwitchBank's color icon, in cicn format */

data 'cicn' (SWITCH_ICON)
{

$"0000 0000 8010 0000 0000 0020 0020 0000"

$"0000 0000 0000 0048 0000 0048 0000 0000"

$"0004 0001 0004 0000 0000 0000 0000 0000"

$"0000 0000 0000 0004 0000 0000 0020 0020"

$"0000 0000 0004 0000 0000 0020 0020 0000"

$"0000 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF"

$"FFFE 7FFF FFFE 4000 0002 5C00 003A 55F8"

$"1FAA 5008 10BA 4108 1082 4108 1082 4108"

$"1082 4188 1082 4110 0882 4110 0882 4110"

$"0882 471C 38E2 4514 28A2 4514 28A2 4514"

$"28A2 471C 38E2 4110 0882 411F F882 4110"

$"0882 4110 0882 4110 0882 41FF FF82 4004"

$"2002 4004 2002 4004 2002 4004 2002 5C04"

$"203A 5404 202A 5C07 E03A 4000 0002 7FFF"

$"FFFE 0000 0000 0000 0005 0000 FFFF FFFF"

$"FFFF 0001 CCCC CCCC FFFF 0002 9999 9999"

$"FFFF 0003 6666 6666 CCCC 0004 EEEE EEEE"

- '1>E'~dJ:< ~ ~ _"'J!l.'"2'-~~'! -0
$"EEEE 000F 0000 0000 0000 0FFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFF0 0F11 1111 1111"

$"1111 1111 1111 1111 11F0 0F1F FF11 1111 "

$"1111 1111 1111 11 FF F1F0 0F1 F 1F1F FFFF"

$" F111 111 F FFFF F1F1 F1F0 0F1F FF1F 4141"

$" F111 111F 4141 F1FF F1F0 0F11 111F 1111"

$" F111 111F 1111 F111 11 F0 0F11 111F 2222"

$" F111 111 F 2222 F111 11F0 0F11 111F 3333"

$" F111 111 F 3333 F111 11F0 0F11 111F F3FF"

$" F111 111 F FF3F F111 11 F0 0F11 111F 333F"

$"1111 1111 F333 F111 11 F0 0F11 111F 223F"

$"1111 1111 F223 F111 11 F0 0F11 111F 123F'

$"1111 1111 F123 F111 11 F0 0F11 1FFF 123F"

$"FF11 11FF F123 FFF1 11 F0 0F11 1F4F 123F"

$"4F11 11 F4 F123 F4F1 11 F0 0F11 1F2F 123F"

$"2F11 11 F2 F123 F2F1 11 F0 0F11 1F2F 123F"

$"2F11 11 F2 F123 F2F1 11 F0 0F11 1FFF 123F"

$"FF11 11FF F123 FFF1 11 F0 0F11 111 F 123F"

$"1111 1111 F123 F111 11F0 0F11 111F 123F"

$"FFFF FFFF F123 F111 11F0 0F11 111 F 123F"

$"4141 4141 F123 F111 11 F0 0F11 111 F 123F"

$"2222 2222 F123 F111 11 F0 0F11 111F 123F"

$"3333 3333 F123 F111 11 F0 0F11 111F FFFF"

$"FFFF FFFF FFFF F111 11 F0 0F11 1111 1111 "

$" 1 F24 13F1 1111 1111 11 F0 0F11 1111 1111 "

$" 1 F21 13F1 1111 1111 11 F0 0F11 1111 1111 "

$"1F24 13F1 1111 1111 11 F0 0F11 1111 1111 "

$" 1 F21 13F1 1111 1111 11F0 0F1F FF11 1111 "

$"1F24 13F1 1111 11FF F1F0 0F1F 1F11 1111 "

$" 1 F21 13F1 1111 11 F1 F1 F0 0F1 F FF11 1111 "

$"1FFF FFF1 1111 11 FF F1 F0 0F11 1111 1111 "

$"1111 1111 1111 1111 11 F0 0FFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFF0"

} ;

/* The system's color caution alert icon */
data 'cicn' (2)

{

$"0000 0000 8010 0000 0000 0020 0020 0000"

$"0000 0000 0000 0048 0000 0048 0000 0000"

$"0004 0001 0004 0000 0000 0000 0000 0000"

$"0000 0000 0000 0004 0000 0000 0020 0020"

$'0000 0000 0004 0000 0000 0020 0020 0000"

0-~ £'£9!:'~'!'.'~' J~o~_ ______________________________________ .

$"0000 0001 8000 0003 C000 0007 E000 0007"

$"E000 000F F000 000F F000 001F F800 001F"

$"F800 003F FC00 003F FC00 007F FE00 007F"

$"FE00 00FF FF00 00FF FF00 01FF FF80 01FF"

$"FF80 03FF FFC0 03FF FFC0 07FF FFE0 07FF"

$"FFE0 0FFF FFF0 0FFF FFF0 1FFF FFF8 1FFF"

$"FFF8 3FFF FFFC 3FFF FFFC 7FFF FFFE 7FFF"

$"FFFE FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF 0001 8000 0003 C000 0003 C000 0006"

$"6000 0006 6000 000C 3000 000C 3000 0018"

$"1800 0019 9800 0033 CC00 0033 CC00 0063"

$"C600 0063 C600 00C3 C300 00C3 C300 0183"

$"C180 0183 C180 0303 C0C0 0303 C0C0 0603"

$"C060 0601 8060 0C01 8030 0C00 0030 1800"

$"0018 1801 8018 3003 C00C 3003 C00C 6001"

$"8006 6000 0006 C000 0003 FFFF FFFF 7FFF"

$"FFFE 0000 0000 0000 0006 0000 FFFF FFFF"

$"FFFF 0001 FFFF CCCC 3333 0002 CCCC 9999"

$"0000 0003 9999 6666 0000 0004 3333 3333"

$"3333 0005 BBBB BBBB BBBB 000F 0000 0000"

$"0000 0000 0000 0000 000F F000 0000 0000"

$"0000 0000 0000 0000 004F F400 0000 0000"

$"0000 0000 0000 0000 05FF FF50 0000 0000"

$"0000 0000 0000 0000 04F3 3F40 0000 0000"

$"0000 0000 0000 0000 5FF1 1FF5 0000 0000"

$"0000 0000 0000 0000 4F31 13F4 0000 0000"

$"0000 0000 0000 0005 FF11 11FF 5000 0000"

$"0000 0000 0000 0004 F311 113F 4000 0000"

$"0000 0000 0000 005F F12F F21F F500 0000"

$"0000 0000 0000 004F 314F F413 F400 0000"

$"0000 0000 0000 05FF 11FF FF11 FF50 0000"

$"0000 0000 0000 04F3 11FF FF11 3F40 0000"

$"0000 0000 0000 5FF1 11FF FF11 1 FF5 0000"

$"0000 0000 0000 4F31 11FF FF11 13F4 0000"

$"0000 0000 0005 FF11 11FF FF11 11FF 5000"

$"0000 0000 0004 F311 11FF FF11 113F 4000"

$"0000 0000 005F F111 11 FF FF11 111F F500"

$"0000 0000 004F 3111 11FF FF11 1113 F400"

$"0000 0000 05FF 1111 11FF FF11 1111 FF50"

$"0000 0000 04F3 1111 114F F411 1111 3F40"

$"0000 0000 5FF1 1111 112F F211 1111 1FF5"

$"0000 0000 4F31 1111 111F F111 1111 13F4"

$"0000 0005 FF11 1111 1112 2111 1111 11 FF"

- '1'E'~d!>< E ~ -".?'!'~ -"~~'! -0
$"5000 0004 F311 1111 1111 1111 1111 113F"

$"4000 005F F111 1111 112F F211 1111 111 F"

$"F500 004F 3111 1111 11 FF FF11 1111 1113"

$"F400 05FF 1111 1111 11FF FF11 1111 1111 "

$"FF50 04F3 1111 1111 112F F211 1111 1111 "

$"3F40 5FF1 1111 1111 1111 1111 1111 1111 "
$"1FF5 FF31 1111 1111 1111 1111 1111 1111 "

$"13FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF 5FFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFF5"

} ;

FlipDepth.c
!*

Portions © 1994 Rock Ridge Enterprises. All Rights Reserved.

*/

/*
This #define is for testing only. Without it, only the

68k version of our patch is called.

*/

#undef DO_PPC_CODE_ONLY

//#define DO_PPC_CODE_ONLY

#define USESROUTINEDESCRIPTORS GENERATINGCFM

#pragma once on

#include <Memory.h>

#include <Gestalt.h>

#include <QuickDraw.h>

#include <Windows.h>

#include <Menus.h>

#include <TextEdit.h>

#include <Files.h>

#include <Devices.h>

#include <Resources.h>

#include <Errors.h>

#include <OSUtils.h>

#include <Traps.h>

#include <LowMem.h>

#include <Events.h>

0- ~~'l'~ ~~,!!'~'!!.'C' !':!."~'- ______________________________________ .

#include <Palettes.h>
#include <MixedMode.h>

#include <ConditionalMacros.h>
#include <CodeFragments.h>

#ifndef powerc
#include <A4Stuff.h>

#include <SetUpA4.h>

#end if

#define FALSE
#define TRUE
#define NIL

/*

false
true

0L

Some low memory globals. We'd rather not use these, but they're

necessary because we'll be operating in a trap that doesn't move memory.

*/

#define KeyMapLM 0x174
#define lowMemKeyStroke (*(KeyMap *) KeyMapLM)[0J
#define lowMemKeyModifiers (*(KeyMap *) KeyMapLM)[1)

/* Some constants that define the bits we'll see in KeyMap
#define SHIFT_KEY 1L

#define CAPS_LOCK 2L
#define OPTION_KEY 4L

#define CONTROL_KEY BL
#define COMMAND_KEY 0x8000L

#define KEY_COMBO SHIFT_KEY + COMMAND_KEY

#define T_KEYCODE 0x0200L
#define BLACK_WHITE 128
/* First video mode ID in sResource list */

#define kOldSystemErr 10000

/*==========================
We take the PowerPC code from the data fork
and put it into a resource using a utility
like Resorcerer.

===========================*/

*/

_______________________________________ JY£•~d!>< p ~ _P<_"'l.ra.!:" _U!fl~ -0
#define kPPCRezType
#define kPPCRezID

'PPC '
300

/*==========================
The 68k code goes in a normal !NIT resource.
Be sure this is set to "system heap/locked".

===========================*!
#define kinitRezType '!NIT'
#define kinitRezID 128

#define kMinSystemVersion (0x0605)

/*==========================
This is the name of the ppc fragment - for debugging only.

===========================*/
#define kinitName "\pEricsinit"

/*==========================
to save some screen space, we'll use "UPP" instead of "UniversalProcPtr"

===========================*!
typedef UniversalProcPtr UPP;

/*==========================
PostEvent Information

=========================== */
en um
{

} ;

kPostEventinfo = kRegisterBased
RESULT_SIZE(SIZE_CODE(sizeof(OSErr)))
REGISTER_RESULT_LOCATION(kRegisterD0)
REGISTER_ROUTINE_PARAMETER(1, kRegisterA0, SIZE_CODE(sizeof(short)))
REGISTER_ROUTINE_PARAMETER(2, kRegisterD0, SIZE_CODE(sizeof(long)))

typedef pascal OSErr (*PostEventFuncPtr) (short eventNum, long eventMsg);
#define kPostEventFuncName "\pMyPostEventPPC"

/* Note separate functions */
short MyPostEvent68k(short eventNum, long eventMsg);
//OSErr MyPostEventPPC(unsigned short trapNum, short eventNum, long eventMsg);
OSErr MyPostEventPPC(short eventNum, long eventMsg);

0- ~!"P ~~!:'~".!.'C' !!!."~;'- -

I*==========================
GetMouse Information

=========================== *I
en um

kGetMouseinfo = kPascalStackBased
: STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Point)))

};

typedef pascal void (*GetMouseFuncPtr) (Point *mouseLoc);

#define kGetMouseFuncName "\pMyGetMouse"

void MyGetMouse (Point *mouseLoc); I* Only one function required *I

I*==========================
An original trap is called differently from PowerPC
code than from 68k code because CallUniversalProc() and

CallOSTrapUniversalProc isn't implemented for 68k code.

===========================*I
#ifdef powerc

#define CallPostEvent(eventNum, eventMsg)

,,.CallOSTrapUniversalProc(gGlobalsPtr->gOrigPostEvent,
,_kPostEventinfo, eventNum, eventMsg)

#define CallGetMouse(mouseLoc) CallUniversalProc(gGlobalsPtr->gOrigGetMouse,
,_kGetMouseinfo, mouseLoc)

#else

#define CallGetMouse(mouseLoc)
(*(GetMouseFuncPtr)gGlobalsPtr->gOrigGetMouse)(mouseloc);
#end if

I*==========================
Showiniticon() defintions

=========================== *I
en um
{

kShowiniticoninfo = kPascalStackBased
STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))

: STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Boolean)))
} ;

II Function to display startup icon

typedef pascal void (*ShowinitProcPtr) (short iconFamilyID, Boolean advance);

#if powerc

- -~'!!<Si~ J"_"'l'!!' _Li~~ll!. -0
typedef UPP ShowlnitlconProcUPP;

#define CallShowlnitlconProc(userRoutine, iconFamilyID, advance)
CallUniversalProc((UPP)(userRoutine), kShowlnitlconlnfo, (iconFamilyID),

• (advance))
#else
typedef ShowlnitProcPtr ShowlnitlconProcUPP;

#define CallShowlnitlconProc(userRoutine, iconFamilyID, advance)
(*(userRoutine))((iconFamilyID), (advance))

#endif

II Here we supply in-line definitions for NewRoutineDescriptor() and
•NewFatRoutineDescriptor()

II for a finicky linker

#ifdef NewRoutineDescriptor
#undef NewRoutineDescriptor

#endif
#ifdef NewFatRoutineDescriptor

#undef NewFatRoutineDescriptor
#end if

extern pascal UPP NewFatRoutineDescriptor(ProcPtr theM68kProc, ProcPtr
•thePowerPCProc, ProclnfoType theProclnfo)

1WOWORDINLINE(0x7002, 0xAA59);

extern pascal UPP NewRoutineDescriptor(ProcPtr theProc, ProclnfoType theProclnfo,
•ISAType theISA)

lWOWORDINLINE (0X7000, 0xAA59);

I* Custom function to place our patch code in the system heap *I
Handle Get1ResourceSys(OSType rezType, short rezID);

I* Functions that change screen depth. Works one both platforms. *I

void Change_Depth(long newDepth);
long Fetch_Depth(void);

I*==========================
This structure is shared between the power pc
version of the code and the 68k version.

0-~~ ~oca~"''C' !~'~- -

Both the PowerPC code and the 68k code have a single
global variable, "gGlobalsPtr". They point to the
same area of memory.

===========================*!

#ifdef powerc
#pragma options align=mac68k

#endif

I*
Note: do not move these fields around!
The assembly code in PostEvent68kStub()
depends on their locations. It must be
compiled with the 68K packing conventions

*I

typedef struct
{

UPP
I* Address of
UPP

I* Address of
SysEnvRec
Boolean

gOrigPostEvent;
original PostEvent trap •I

gOrigGetMouse;
original GetMouse trap */
gSystemlnfo;
gRequestFlag;

I* Flag that signals screen depth change */
GDHandle gOurGDevice;
I* The GDevice of the screen we're working with */
short gDevRefNum;
I* Driver ref number for video board's slot */
long gOldScreenDepth;
} MylnitGlobals;

#ifdef powerc

#pragma options align=reset
#endif

!*==========================
Global Variables

each side of the code maintains its own pointer to the
same block of memory.

we reference the globals ptr by name, so these two must be
changed together.

. ______________________________________ ~"!!d!:' E ~ _Pr_CJ!l.raE' _u!_ll~~ -0
===========================*/
MylnitGlobals *gGlobalsPtr;
#define kGlobalsSymName "\pgGlobalsPtr"

/*

@@@@@@@@@@@@@@@ 68000 Exclusive Code @@@@@@@@@@@@@@@

*/

#ifndef powerc

/*==========================
Prototypes for 68k code

===========================*/
OSErr
OS Err
OSErr

OSErr

DoinitForOldMacs(void);
DolnitForPPCMacs(void);
CreateFatDescriptorSys(void *mac68Code, void *ppcCode,

ProcinfoType proclnfo, UPP *result);
PatchTrapsForPPCMac(ConnectionID connID);

void PostEvent68kStub(void);
pascal void GetMouse68kStub Point *mouseLoc);

/*==========================
This is *always* the INIT's entry point. This is
the only routine called by system software at startup.

This requires that the INIT resource be set to
System Heap/Locked.

===========================*/
void main(void
{

long oldA4;
Handle initH = nil;
/* Handle to our own INIT resource */
OSErr err = noErr;
long ginfo;
ShowlnitlconProcUPP showCode;
Handle showResource;

/******************************

global variable support
Place proper value for A4 into hole in !NIT resource.

******************************/

oldA4 = SetCurrentA4();
/* Get the proper value of A4 into A4 */

RememberA4();
/* save into self-modifying code */

/*******************************

Allocate our global variables
*******************************/

gGlobalsPtr = (MyinitGlobals*) NewPtrSysClear(sizeof(MyinitGlobals));
if !gGlobalsPtr)

err = memFullErr;
goto DONE;

/*******************************

Get some basic system information
*******************************/

err= SysEnvirons(1, &gGlobalsPtr->gSysteminfo);
if (err)

goto DONE;

/*******************************

Check the system version
*******************************/

if gGlobalsPtr->gSysteminfo.systemversion < kMinSystemVersion)

err = kOldSystemErr;
goto DONE;

/*******************************

Get a handle to our own !NIT resource
*******************************/

initH = Get1Resource(kinitRezType, kinitRezID);
if !initH)

err = resNotFound;
goto DONE;
}

/*******************************

See if we're running on a PowerPC
*******************************/

. -~~'!' E ~ _Pc"fl.ra!' .!-;~;!!9!. -0
err= Gestalt(gestaltSysArchitecture, &ginfo);

/*******************************

Patch all the traps and get everything ready.
*******************************/

if (err : : (ginfo == gestalt68k)
err DoinitForOldMacs();

else
err DoinitForPPCMacs();

DONE:

showResource = Get1Resource('sdes', 128);

if (showResource != NIL)
II Get Showiniticon() code

showCode = (ShowiniticonProcUPP) (*showResource);

II Get pointer to resource header

II Don't need to lock down

II the resource because its

II attribute flags are marked

II as Locked and SysHeap

if (err)
{

II Something went wrong, clean up and display failure icon

if (gGlobalsPtr)

DisposPtr((Ptr)gGlobalsPtr);

if (showResource != NIL)
CallShowiniticonProc(showCode, (kinitRezID + 1), TRUE);

II Display bad load icon
}

else
II No initialization problems, do final setup and display success icon

{

gGlobalsPtr->gRequestFlag FALSE;

0- ~!"!: E~,!"~"2.'C'l~'~;~ -

II Clear request flag
gGlobalsPtr->gOldScreenDepth Fetch_Depth();

II Get screen depth for later

II Make sure the !NIT code stays in memory when the Extension file closes. We
II do nothing
II for showResource because we want it purged.

DetachResource(initH);

if (showResource I= NIL)
CallShowiniticonProc(showCode, kinitRezID, TRUE);

II Display success icon
} I* end else *I

RestoreA4(oldA4);
I* end main() *I

I*==========================
DoinitForOldMacs

I* restore previous value of A4 *I

Initialization code for non-powerpc Macs.

===========================*I
OSErr DolnitForOldMacs(void
{

I* patch the traps *I

gGlobalsPtr->gOrigPostEvent = GetOSTrapAddress(PostEvent);
SetOSTrapAddress((UPP)PostEvent68kStub, _PostEvent);
gGlobalsPtr->gOrigGetMouse = GetToolTrapAddress(_GetMouse);
SetToolTrapAddress((UPP)GetMouse68kStub, _GetMouse);

return noErr;
} I* end DoinitForOldMacs() *I

I*==========================
DolnitForPPCMacs

Initialization code for powerpc Macs.

===========================*I
OSErr DoinitForPPCMacs(void)
{

_______________________ ~~,~~ ~ !' _":!'~'!!' _L~ti~g~ -0
OSErr err = noErr;

ppcCodeH = nil; Handle
SymClass theSymClass;

theSymAddr; Ptr
Connection ID
Str255

connID = kNoConnectionID;
errName;

Ptr mainAddr;

/*******************************

load the powerpc version of the code into
memory. since some of our trap patches may be
called at interrupt time, don't use disk-based
versions of the code.

*******************************/

ppcCodeH = Get1ResourceSys(kPPCRezType, kPPCRezID);
if (I ppcCodeH)

return resNotFound;
HLock(ppcCodeH);

/*******************************

open a connection with the code fragment we just loaded
*******************************/

err = GetMemFragment(*ppcCodeH, GetHandleSize(ppcCodeH), kinitName,
kLoadNewCopy, &connID, &mainAddr, errName);

if err)

connID = kNoConnectionID;
goto DONE;

/*******************************

find the global variable ptr that the powerpc
code uses.

*******************************/

err= FindSymbol(connID, kGlobalsSymName, &theSymAddr, &theSymClass);
if (err)

goto DONE;

/*******************************

Modify the powerpc global variable pointer to point
to the area of memory we've already allocated.

*******************************/

*(MylnitGlobals **)theSymAddr = gGlobalsPtr;

0- ~!"!' ~'"'~":!.'C' !~''~''- - - - - -- - - - - - - - - - - -- - - - - - -- - - - - - - - - -- - - - .

err= PatchTrapsForPPCMac(connID);

/*******************************

Cleanup
*******************************/

DONE:
if err

/*Close the code frag mgr connection if we got an error ... */

if (connID I= kNoConnectionID

CloseConnection(&connID);

/* ... and release the memory we allocated*/
if ppcCodeH)

ReleaseResource(ppcCodeH);
/* end if */

else

/* No error -> keep the ppc code around when file closes */

DetachResource(ppcCodeH);
} /* end else */

return err;
} /* end DoinitForPPCMacs() */

/*==========================

PatchTrapsForPPCMac
===========================*/
OSErr PatchTrapsForPPCMac(ConnectionID connID)

Ptr symAddr;
SymClass symType;
OSErr err = noErr;
UniversalProcPtr upp = nil;

II Fat Patch _PostEvent

err= FindSymbol(connID, kPostEventFuncName, &symAddr, &symType);
if (err)

return err;

err= CreateFatDescriptorSys(PostEvent68kStub, symAddr, kPostEventinfo, &upp);

- ~E~d!;< p _• _P~'l."~ _Li!'~ -0
if (err)

return memFullErr;

gGlobalsPtr->gOrigPostEvent = GetOSTrapAddress(~PostEvent);
SetOSTrapAddress((UPP)PostEvent68kStub, _PostEvent);

II Fat Patch _GetMouse

err= FindSymbol(connID, kGetMouseFuncName, &symAddr, &symType);
if (err)

return err;

err= CreateFatDescriptorSys(GetMouse68kStub, symAddr, kGetMouseinfo, &upp);
if (err)

return memFullErr;

gGlobalsPtr->gOrigGetMouse = GetToolTrapAddress(_GetMouse);
SetToolTrapAddress((UPP)GetMouse68kStub, _GetMouse);

return noErr;
I* end PatchTrapsForPPCMac() *I

I*==========================
CreateFatDescriptorSys

Creates a fat routine descriptor in the system heap.
===========================*I

OSErr CreateFatDescriptorSys(void •mac68Code, void •ppcCode,
.,. ProcinfoType procinfo, UPP •result)

THz oldZone;
OSErr err = noErr;

oldZone = GetZone();
SetZone(Systemzone());

#ifndef DO_PPC_CODE_ONLY

I* Save current zone *I
I* Get us in the system heap *I

•result
#else

NewFatRoutineDescriptor(mac68Code, ppcCode, procinfo);

•result NewRoutineDescriptor(ppcCode, procinfo, kPowerPCISA);
I* debugging only *I
#endif

0-~ ~'!:'~"'.'C' _T~o~'- -

SetZone(oldZone);

return(*result? noErr : memFullErr);
I* end CreateFatOescriptorSys() *I

I*==========================
PostEvent6BkStub

This is the 6Bk version of PostEvent. Because it's a
register-based trap, we have to use assembly code
to see what was passed to it. Because the routine
can't move memory (it might get called during an
interrupt), we also have to call a custom 6BK
function that doesn't disturb the machine environment.

===========================*I

asm void PostEvent6BkStub(void

II reserve space on stack for "real" PostEvent address
sub.l #4, SP

II save registers (not A0 & 00, though)
movem.l A1-A5I01-07, -(SP)

II push A0 & 00 on stack for call to MyPostEvent6Bk below
II we must do this before SetUpA4 since it modifies registers

move.! 00, -(SP) II push event message
move. w A0, - (SP) I I push event code

jsr SetUpA4 II give us global access

II put address of "real" postevent in place reserved on stack
II note that it is the first field in the gGlobals structure

move.!
move.!

gGlobalsPt r, A0
(A0), 54(SP)

jsr

II call MyPostEvent6Bk
II parameters are on the stack already
II 00.w returns with the new event code

MyPostEvent6Bk

______________________________________ ~"!!d!:< S ! _f'<.?'l_ra_!!> _Li~~~ -0
move.w
add.!
move.!

00, A0
#2, SP

(SP)+, 00

II restore registers

II A0.w =event code
II clear old event code from stack
II restore event message from stack

movem.l (SP)+, A1·A5ID1·D7

II jump directly to original PostEvent code
II the address was placed on the stack in the above code

rts
} I* end PostEvent68kStub() *I

pascal void GetMouse68kStub(Point *mouseLoc)

long oldA4;

oldA4 = SetUpA4();
MyGetMouse (mouseloc);
RestoreA4(oldA4);

I* end GetMouse68kStub() *I

#endif I* 68k code *I

I*

*I

@@@@@@@@@@@@@@@ Shared Code @@@@@@@@@@@@@@@

This code gets compiled into both 68k and powerpc object code.
The 68k code gets called from 68k patches & code.
The powerpc code gets called from powerpc patches & code.

If these routines were very large, or called infrequently, we could
just have a single version that is called by the "other" object code,
but it's not worth the hassle & context switch.

Handle Get1ResourceSys(OSType rezType, short rezID
{

THz
Handle

oldZone;
hj

oldZone = Getzone();
SetZone(SystemZone());
h = Get1Resource(rezType, rezID);

I':::\,_ PowerPC Programmer's Toolkit
~--

SetZone(oldZone);
return h;

/* end Get1ResourceSys() */

/* Our custom GetMouse function. We do our screen stuff here because
_GetMouse is allowed to move memory, and is called frequently.

*/

void MyGetMouse(Point *pt)

long currentDepth;

if (gGlobalsPtr->gRequestFlag)/* Event is for us ? */

gGlobalsPtr->gRequestFlag = FALSE;
/* Clear flag or else get called indefinitely */

currentDepth = Fetch_Depth();
if ((currentDepth == BLACK_WHITE) && (currentDepth != gGlobalsPtr

•>gOldScreenDepth))
Change_Depth(gGlobalsPtr->gOldScreenDepth);

else
Change_Depth(BLACK_WHITE);

} /* end if *I

CallGetMouse(pt); /* Hop to original GetMouse() */

/* end ourGetMouse() */

#ifdef powerc

OSErr MyPostEventPPC(short eventNum, long eventMsg)
{

OSErr result;

if (eventNum == keyDown) : : (eventNum == autoKey))

if ((lowMemKeyModifiers == KEY_COMBO) && (lowMemKeyStroke == T_KEYCODE))

eventNum = nullEvent; /* Supress the event */

gGlobalsPtr->gRequestFlag = TRUE;
/* end if KEY_COMBO && T_KEYCODE */

/* end if */

- ~E'~•! E ~ _Pr.?Q.ra~ -"~~'~ -0
result= CallPostEvent(eventNum, eventMsg);
return result;

I* end MyPostEventPPC() *I

#else II 68K code

I*

*I

Note:
returns the (possibly modified) event code

Don't modify the local variables eventNum & eventMsg
they're used by.the stub routine and modifying
locals here can have a global effect

short MyPostEvent68k(short eventNum, long eventMsg)

short newEventCode = eventNum;

if ((eventNum == keyDown) : : (eventNum == autoKey))

if ((lowMemKeyModifiers == KEY_COMBO) && (lowMemKeyStroke
{

newEventCode = nullEvent; I* Supress the event *I
gGlobalsPtr->gRequestFlag TRUE;

I* end if KEY_COMBO && T_KEYCODE *I
I* end if *I

return newEventCode;
} I* end MyPostEvent68k() *I

#end if

T_KEYCODE))

I* Get the current screen depth. Also get the GDevice of main screen and its
device number (to use the driver) *I

long Fetch_Depth(void)
{

long screenDepth; I* Current bit depth of our screen *I
GDHandle thisGDevice;

thisGDevice = GetMainDevice(); I* Get GDevice of main screen *I
gGlobalsPtr->gOurGDevice = thisGDevice; I* Hang onto this gDevice's handle *I

screenDepth = (**thisGDevice).gdMode; I* Get current video mode *I

0-~~ ~~,!."~~,, l~''!!i'c -

/*

*/

gGlobalsPtr->gDevRefNum = (**thisGDevice).gdRefNum;
/* Get screen's device ref. number */
return screenDepth;

/* end Fetch_Depth() */

Change screen depth. New screen depth is resource ID of
a display mode the video hardware supports.

void Change_Depth(long newDepth)

GrafPtr oldPort;

Rect ourGDRect;
RgnHandle thisScreenBoundary;
GrafPtr theBigPicture;

WindowPtr theFrontWindow;

HideCursor(); /* Hide pointer since it's depth will change */
InitGDevice(gGlobalsPtr->gDevRefNum, newDepth, gGlobalsPtr->gOurGDevice);

/* At last we change the screen depth! */

theFrontWindow = FrontWindow();

ActivatePalette(theFrontWindow);
/*Use active window's color palette */

AllocCursor();

Showcursor();

/* Draw cursor at new screen depth */

/* Put it back on-screen */

/* The desktop's still a mess: redraw it */
thisScreenBoundary

if (IMemError())
{

NewRgn();/* Get a region to hold this screen*/
/* Trouble? */

/* No */

ourGDRect = (**gGlobalsPtr->gOurGDevice).gdRect;
RectRgn(thisScreenBoundary, &ourGDRect);

/* Get boundary of gDevice */

GetPort(&oldPort); /*Save current port*/
GetWMgrPort(&theBigPicture); /*Get Desktop's port*/
SetPort(theBigPicture); /* Make it the current port */
DrawMenuBar();
PaintOne(NIL, thisScreenBoundary);

/* Paint the background */
PaintBehind(LMGetWindowList(), thisScreenBoundary);

/* Now the other windows */

SetPort(oldPort);
DisposeRgn(thisScreenBoundary);
} /* end if IMemError() */

else
SysBeep(30);

/* Couldn't make the region, complain */

} /* end Change_Depth() */

FlipDepth.IJ.PPC.exp
gGlobalsPtr
Change_Depth
Fetch_Depth
MyPostEventPPC
MyGetMouse
Get1ResourceSys

FlipDepth.r

#include "SysTypes.r"
#include 'Types.r"

#define EXTENSION_FREF 128
/* Resource IDs for file refs & icons */

#define BAD_LOAD_FREF 129
#define FLIPDEPTH_ICON 128
#define BAD_LOAD_ICON 129

resource 'BNDL' (128)
{

'FLOP', 0,
{

'FREF', { 0, EXTENSION_FREF, 0, BAD_LOAD_FREF },
'ICN#', { 0, FLIPDEPTH_ICON, 1 ' BAD_LOAD_ICON }
}

};

0- ~":~ f'!!.9C'~'!!.'C'.!~0~'- ______________________________________ •

resource 'FREF' (EXTENSION_FREF)

{

} j

'!NIT',

0,

resource 'FREF' (BAO_LOAO_FREF)

{

} j

'BAOL',

1 '

/* Signature resource - all 'STR ' resources must be declared before this! */

type 'FLOP' as 'STR 'j

resource 'FLOP' (0)

"FlipOepth 1.2"

} j

data 'ICN#' (FLIPOEPTH_ICON) {

};

$"0000 0000 0000 0000 0000 0000 1 FFF FFF8"

$"6000 0006 4000 0002 8000 0001 83FF FFC1"

$"83FF FFC1 8EAA AA81 8055 5511 8EAA AA11"

$"8055 5411 8EAA A811 8055 4011 8EAA 8011"

$"8055 0011 8EAA 0011 8054 0011 8EA0 0011"

$"8040 0011 8E80 0011 8000 0011 8000 0001"

$"83FF FFC1 8000 0001 4E00 0002 6000 0006"

$"1FFF FFF8 0000 0000 0000 0000 0000 0000"
$"0000 0000 0000 0000 0000 0000 1FFF FFF8"
$"7FFF FFFE 7FFF FFFE FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF 7FFF FFFE 7FFF FFFE'

$"1FFF FFF8 0000 0000 0000 0000 0000 0000"

data 'ICN#' (BAO_LOAO_ICON) {
$"0000 0000 0000 0000 0000 0000 1FFF FFF8"

. - ~~~'!:< E ~ -"-"'l.ra~ -"~;~~ -0

} ;

$"6B00 0026 5C00 0072 BE00 00E1 B7FF FFC1"

$"B3FF FFC1 BFEA AF91 BDF5 5F11 BEFA BE11"

$"BD7D 7C11 BEBE FB11 BD5F E011 BEAF C011"

$"BD57 C011 BEAF E011 BOSE 7011 BEBC 3B11"

$"BD7B 1C11 BEF0 0E11 BDE0 0711 B1C0 03B1"

$"B3BF FDC1 B700 00E1 4E00 0072 6400 0026"

$"1FFF FFFB 0000 0000 0000 0000 0000 0000"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

data 'icl8' (FLIPDEPTH_ICON, purgeable) {

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 00FF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FF00 0000"

$"00FF FF00 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 00FF FC00"

$"00FF 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 FF00"

$"FF00 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 002B 2BFF"

$"FF00 0000 0000 FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF 0000 2B2B 2BFF"

$"FF00 0000 0000 FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF 002B 2B2B 2BFF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF00 FF00"

$"FF00 FF00 FF00 FF00 FF2A 0000 2B2B 2BFF"

$"FF00 0000 FFFF 00FF 00FF 00FF 00FF 00FF"

$"00FF 00FF 00FF 00FF 2A2A 0000 2B2B 2BFF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF00 FF00"

$"FF00 FF00 FF00 FF2A 2A2A 0000 2B2B 2BFF"

$"FF00 0000 FFFF 00FF 00FF 00FF 00FF 00FF"

0- ~!"!' E'!'.'C'~'!'.'~' !~0~'- ______________________________________ •

} ;

$"00FF 00FF 00FF 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF00 FF00"

$"FF00 FF2A FF2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 00FF 00FF 00FF"

$"00FF 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF00 FF00"

$"FF2A 2A2A 2A2A 2A2A 2A2A 0000 2828 2BFF"

$"FF00 0000 FFFF 00FF 00FF 00FF 00FF 00FF"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF00 FF2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 00FF 2AFF 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 2A2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF2A 2A2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 2A2A 2A2A 2A2A 2A2A"

$"2A2A 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 2828 2828 28FF"

$"FF00 0000 0028 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 2828 2828 28FF"

$"FF00 0000 2828 2828 2828 2828 2828 2828"

$"2828 2828 2828 2828 2828 2828 2828 2BFF"

$"00FF 0028 0808 0828 2828 2828 2828 2828"

$"2828 2828 2828 2828 2828 2828 2828 FF00"

$"00FF FF28 2828 2828 2828 2828 2828 2828"

$"2828 2828 2828 2828 2828 2828 28FF FC00"

$"0000 00FF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FF00 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

data 'icl8' (8AO_LOAO_ICON) {

$"0000 0000 0000 0000 0000 0000 0000 0000"

- ~~·~dj:< s ..!' -"'"''!'~ -"~~'~ -0
$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 00FF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FF00 0000"

$"00FF FF00 0800 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0800 00FF FC00"

$"00FF 0008 0808 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0008 0808 0000 FF00"

$"FF00 0000 0808 0800 0000 0000 0000 0000"

$"0000 0000 0000 0000 0808 0800 0028 28FF"

$"FF00 0000 0008 0808 FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FF08 0808 0000 2828 28FF"

$"FF00 0000 0000 0808 08FF FFFF FFFF FFFF"

$"FFFF FFFF FFFF 0808 08FF 0028 2828 28FF"

$"FF00 0000 FFFF FF08 0808 FF00 FF00 FF00"

$"FF00 FF00 FF08 0808 FF2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 0808 08FF 00FF 00FF"

$"00FF 00FF 0808 08FF 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF08 0808 FF00 FF00"

$"FF00 FF08 0808 FF2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 0808 08FF 00FF"

$"00FF 0808 08FF 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF08 0808 FF00"

$"FF08 0808 FF2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 00FF 0808 08FF"

$"0808 082A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF08 0808"

$"0808 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 00FF 00FF 0808"

$"0808 2A2A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF00 FF08 0808"

$"0808 082A 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 00FF 0808 082A"

$"2A08 0808 2A2A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF00 FF08 0808 2A2A"

$"2A2A 0808 082A 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF 00FF 00FF 0808 082A 2A2A"

$"2A2A 2A08 0808 2A2A 2A2A 0000 2828 28FF"

$"FF00 0000 FFFF FF00 FF08 0808 2A2A 2A2A"

$"2A2A 2A2A 0808 082A 2A2A 0000 2828 28FF"

0- ~!'!' f'~'"'~":!.'C' !~0~;"- _____________________________________ _

} ;

$"FF00 0000 FFFF 00FF 0808 082A 2A2A 2A2A"

$"2A2A 2A2A 2A08 0808 2A2A 0000 2828 28FF"

$"FF00 0000 0000 0008 0808 0000 0000 0000"

$"0000 0000 0000 0808 0800 2828 2828 28FF"

$"FF00 0000 0028 0808 0800 0000 0000 0000"

$"0000 0000 0000 0008 0808 2828 2828 28FF"

$"FF00 0000 2808 0808 2828 2828 2828 2828"

$"2828 2828 2828 2828 0808 0828 2828 28FF"

$"00FF 0028 0808 0828 2828 2828 2828 2828"

$"2828 2828 2828 2828 2808 0808 2828 FF00"

$"00FF FF28 2808 2828 2828 2828 2828 2828"

$"2828 2828 2828 2828 2828 0828 28FF FC00"

$"0000 00FF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FF00 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

data 'cicn' (FLIPOEPTH_ICON) {

$"0000 0000 8010 0000 0000 0020 0020 0000"

$"0000 0000 0000 0048 0000 0048 0000 0000"

$"0004 0001 0004 0000 0000 0000 0000 0000"

$"0000 0000 0000 0004 0000 0000 0020 0020"

$"0000 0000 0004 0000 0000 0020 0020 0000"

$"0000 0000 0000 0000 0000 0000 0000 1FFF"

$"FFF8 7FFF FFFE 7FFF FFFE FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF 7FFF FFFE 7FFF"

$"FFFE 1FFF FFF8 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 1FFF"

$"FFF8 6000 0006 4000 0002 8000 0001 83FF"

$"FFC1 83FF FFC1 8EAA AA81 8055 5511 8EAA"

$"AA11 8055 5411 8EAA A811 8055 4011 8EAA"

$"8011 8055 0011 8EAA 0011 8054 0011 8EA0"

$"0011 8040 0011 8E80 0011 8000 0011 8000"

$"0001 83FF FFC1 8000 0001 4E00 0002 6000"

- -~~~d!:< !.' ~ -~!l!'2' .!-~;!ll! -0

} j

$"0006 1FFF FFF8 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0005 0000 FFFF FFFF"

$"FFFF 0001 DODD 0000 0000 0002 CCCC CCCC"

$"FFFF 0003 CCCC CCCC CCCC 0004 4444 4444"

$"4444 000F 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 000F FFFF FFFF"

$"FFFF FFFF FFFF FFFF F000 0FF0 0000 0000"

$'0000 0000 0000 0000 0F40 0F00 0000 0000'

$"0000 0000 0000 0000 00F0 F000 0000 0000"

$"0000 0000 0000 0000 033F F000 00FF FFFF"

$"FFFF FFFF FFFF FF00 333F F000 00FF FFFF"

$"FFFF FFFF FFFF FF03 333F F000 FFF0 F0F0"

$'F0F0 F0F0 F0F0 F200 333F F000 FF0F 0F0F"

$"0F0F 0F0F 0F0F 2200 333F F000 FFF0 F0F0"

$"F0F0 F0F0 F0F2 2200 333F F000 FF0F 0F0F"

$"0F0F 0F0F 0F22 2200 333F F000 FFF0 F0F0"

$"F0F0 F0F2 F222 2200 333F F000 FF0F 0F0F"

$"0F0F 0F22 2222 2200 333F F000 FFF0 F0F0'

$'F0F0 F222 2222 2200 333F F000 FF0F 0F0F"

$"0F0F 2222 2222 2200 333F F000 FFF0 F0F0"

$"F0F2 2222 2222 2200 333F F000 FF0F 0F0F"

$"2F22 2222 2222 2200 333F F000 FFF0 F0F2"

$"2222 2222 2222 2200 333F F000 FF0F 0F22"

$"2222 2222 2222 2200 333F F000 FFF0 F222"

$"2222 2222 2222 2200 333F F000 FF0F 2222"

$"2222 2222 2222 2200 333F F000 0000 0000"

$"0000 0000 0000 0033 333F F000 0300 0000"

$"0000 0000 0000 0033 333F F000 3333 3333"

$'3333 3333 3333 3333 333F 0F03 1113 3333"

$'3333 3333 3333 3333 33F0 0FF3 3333 3333"

$'3333 3333 3333 3333 3F40 000F FFFF FFFF"

$"FFFF FFFF FFFF FFFF F000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$'0000 0000 0000 0000 0000'

data 'cicn' (BAD_LOAD_ICON) {

$"0000 0000 8010 0000 0000 0020 0020 0000"

$'0000 0000 0000 0048 0000 0048 0000 0000'

$'0004 0001 0004 0000 0000 0000 0000 0000"

0-~ ~'"'~~'C'_T~o~it- _____________________________________ _

$"0000 0000 0000 0004 0000 0000 0020 0020"

$"0000 0000 0004 0000 0000 0020 0020 0000"

$"0000 0000 0000 0000 0000 0000 0000 1FFF"

$"FFFB 7FFF FFFE 7FFF FFFE FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

$"FFFF FFFF FFFF FFFF FFFF 7FFF FFFE 7FFF"

$"FFFE 1FFF FFFB 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 1FFF"

$"FFFB 6B00 0026 5C00 0072 BE00 00E1 B7FF"

$"FFC1 83FF FFC1 BFEA AF91 8DF5 5F11 BEFA"

$"BE11 BD7D 7C11 BEBE FB11 BD5F E011 BEAF"

$"C011 BD57 C011 BEAF E011 BOSE 7011 BEBC"

$"3B11 BD7B 1C11 BEF0 0E11 BDE0 0711 B1C0"

$"03B1 B3BF FDC1 B700 00E1 4E00 0072 6400"

$"0026 1FFF FFFB 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0005 0000 FFFF FFFF"

$"FFFF 0001 DODD 0000 0000 0002 cccc cccc·
$"FFFF 0003 CCCC CCCC CCCC 0004 4444 4444"

$"4444 000F 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 000F FFFF FFFF"

$"FFFF FFFF FFFF FFFF F000 0FF0 1000 0000"

$"0000 0000 0000 0010 0F40 0F01 1100 0000"

$"0000 0000 0000 0111 00F0 F000 1110 0000"

$"0000 0000 0000 1110 033F F000 0111 FFFF"

$"FFFF FFFF FFF1 1100 333F F000 0011 1FFF"

$'FFFF FFFF FF11 1F03 333F F000 FFF1 11 F0"

$"F0F0 F0F0 F111 F200 333F F000 FF0F 111 F"

$"0F0F 0F0F 111F 2200 333F F000 FFF0 F111"

$"F0F0 F0F1 11F2 2200 333F F000 FF0F 0F11"

$"1F0F 0F11 1F22 2200 333F F000 FFF0 F0F1"

$"11F0 F111 F222 2200 333F F000 FF0F 0F0F"

$"111F 1112 2222 2200 333F F000 FFF0 F0F0"

$" F111 1122 2222 2200 333F F000 FF0F 0F0F"

$"0F11 1122 2222 2200 333F F000 FFF0 F0F0"

$"F111 1112 2222 2200 333F F000 FF0F 0F0F"

$"1112 2111 2222 2200 333F F000 FFF0 F0F1"

$"1122 2211 1222 2200 333F F000 FF0F 0F11"

$"1222 2221 1122 2200 333F F000 FFF0 F111"

. - ~!!"~d~ f; _• _P~fl.ra2' _!j~!lJ! -0
$"2222 2222 1112 2200 333F F000 FF0F 1112"

$"2222 2222 2111 2200 333F F000 0001 1100"

$"0000 0000 0011 1033 333F F000 0311 1000"

$"0000 0000 0001 1133 333F F000 3111 3333"

$"3333 3333 3333 1113 333F 0F03 1113 3333"

$"3333 3333 3333 3111 33F0 0FF3 3133 3333"

$"3333 3333 3333 3313 3F40 000F FFFF FFFF"

$"FFFF FFFF FFFF FFFF F000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000 0000 0000 0000"

$"0000 0000 0000 0000 0000"

} ;

Klepto.c

#include <Types.h>

#include <OuickDraw.h>

#include <Windows.h>

#include <Fonts.h>

#include <Memory.h>

#include <ToolUtils. h>

#include <StandardFile.h>

#include <Errors.h>

#include <Resources.h>

/* Various constants */

#define NIL 0L

#define FALSE false

#define TRUE true

#define DEFAULT_VOL 0
#define ONE_FILE_TYPE

#define POWER_PC_FRAG 'PPC '

#define FRAG_ID 300

void Move_Fork(short input);

void main(void);

void Move_Fork(short input)

{

OS Err

long

Handle

finputErr;

codeFragSize;

fragBuff;

/* Resource type */

/* Resource ID */

finputErr = GetEOF(input, &codeFragSize); /*Get file length*/
if ((fragBuff = NewHandle(codeFragSize)) I= NIL)/* Enough data buffer memory?*/

if (l(finputErr = FSRead(input, &codeFragSize, *fragBuff)))
/* Read in fragment */

{

AddResource(fragBuff, POWER_PC_FRAG, FRAG_ID, NIL);
/* Treat buffer as a resource */

if (!ResError()) /* Trouble? */
{

WriteResource(fragBuff);
if (ResError())

SysBeep(30);
} /* end if !ResError */

/* lfinputErr */
/* end if I= NIL */

UpdateResFile(CurResFile());
ReleaseResource(fragBuff);

/* end Move_Fork() */

void main(void)
{

/* Write frag to resource fork */

/* Update resource map */

/* Free the memory */

unsigned char fileName[21] = {"\pFlipDepth.µ.PPC.rsrc"};
OSType fileCreator = {'RSED'}j
/* File type and creator for our output file */

OSType
OSErr

fileType = {'rsrc'};
fileError;

short inFileRefNum, outFileRefNum;
StandardFileReply inputReply, outputReply;

oldVol;
shlbType = {'shlb'}; /* File type for shared libraries */

short
SFTypeList
CursHandle theCursor; /* Current pointer icon */

/* Lunge after all the memory we can get */
MaxApplZone();

/* Make sure we've got some master pointers */

MoreMasters();
MoreMasters ();
MoreMasters ();
MoreMasters();

_______________________________________ ~~o~d~ £ ~ _":!><!'~ _L~b~g! -0
/* Initialize managers */

InitGraf(&qd.thePort);

InitFonts ();

FlushEvents(everyEvent, 0);

InitWindows ();

InitMenus();
TEI nit ();

InitDialogs(NIL);

/*Open the input file */

StandardGetFile(NIL, ONE_FILE_TYPE, shlbType, &inputReply);

if (inputReply.sfGood)

{

GetVol (NIL, &oldVol); /* Save current volume */

if ((fileError = FSpOpenDF (&inputReply.sfFile, fsCurPerm,
•&inFileRefNum)) != noErr)

SysBeep(30);

return;

} /* end if error */

/* Open the output file */

StandardPutFile ("\pSave code fragment in:", fileName, &outputReply);

if (outputReply.sfGood)

SetVol(NIL, outputReply.sfFile.vRefNum);
/* Make the destination volume current */

fileError = FSpCreate(&outputReply.sfFile, fileCreator, fileType,
•smSystemScript) ;

switch(fileError) /* Process result from File Manager */

case noErr:

break;
case dupFNErr /* File already exists, wipe it out */

if ((fileError = FSpDelete(&outputReply.sfFile)) == noErr)

if ((fileError FSpCreate(&outputReply.sfFile, fileCreator,

fileType, smSystemScript)) != noErr)

SysBeep(30);

FSClose (inFileRefNum);

SetVol(NIL, oldVol);

0-~!~ E'!!<l!.'~'!!'~' _,-~,~- -

return;
/* end if I= noErr */

/* end == noErr */

else
{

SysBeep(30);
FSClose (inFileRefNum);
SetVol(NIL, oldVol);
return;
} /* end else */

break; /* end case dupFNErr */
default: /* Unknown error, try to abort cleanly */

SysBeep(30);
FSClose (inFileRefNum);

/* Close the input file */
SetVol(NIL, oldVol);

/* Restore original volume */
return;

/* end switch */

/* Open file's data fork.*/
/* We do this only to get a file ref number */

if (l(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum)))
/* Open data fork */

/* MUST create resource map in resource fork or no resource writing occurs */
FSpCreateResFile (&outputReply.sfFile, fileCreator, fileType,

.. smSystemScript);
if (!ResError())

{

FSpOpenResFile (&outputReply.sfFile, fsCurPerm);
/* Open resource fork */

if (!ResError())
{

theCursor = GetCursor(watchCursor);
/* Change the cursor */

SetCursor(&**theCursor);
Move_Fork (inFileRefNum);
FSClose (outFileRefNum);
SetCursor(&qd.arrow); /*Restore the cursor*/
} /* end if !ResError */

/* end if !ResError */
FlushVol (NIL, outputReply.sfFile.vRefNum);

_______________________________________ ~E'!!'!' E ~ .!".?<!'~ -~~'~ -0
I* end if IFSpOpenDF *I

} I* end if outputReply.sfGood *I
FSClose (inFileRefNum);
SetVol(NIL, oldVol); I* Restore current volume *I

I* end if inputReply.sfGood *I

} I* end main() *I

Showlnitlcon.h

#ifndef ~Showiniticon~
#define ~Showiniticon~

#include <Types.h>

II Usage: pass the ID of your icon family (ICN#licl4licl8) to have it drawn in the
II right spot.
II If 'advance' is true, the next INIT icon will be drawn to the right of your
II icon. If it is false, the next INIT icon will overwrite
II yours. You can use it to create animation effects by calling Showiniticon
II several times with 'advance' set to false.

#ifdef ~cplusplus
extern "C" {
#endif

pascal void Showiniticon (short iconFamilyID, Boolean advance);

#ifdef ~cplusplus

#endif

#endif I* ~Showiniticon~ *I

Showlnitlcon.c
II Showiniticon - version 1.0.1, May 30th, 1995
11 This code is intended to let !NIT writers easily display an icon at startup time.
II View in Geneva 9pt, 4-space tabs

II Written by: Peter N Lewis <peter@mail.peter.com.au>, Jim Walker
II <JWWalker@aol.com>

0-~~ !:'!R'~'!!'~' _T~o~~ -

/I and FranQois Pottier <pottier@dmi.ens.fr>, with thanks to previous ShowINIT
II authors.
fl Send comments and bug reports to FranQois Pottier.

II This version features:
II Short and readable code.
/I Correctly wraps around when more than one row of icons has been displayed.

II works with System 6
/I Built with Universal Headers & CodeWarrior. Should work with other headers/
II compilers.

#define USESROUTINEDESCRIPTORS GENERATINGCFM

#include <Memory.h>

#include <Resources.h>

#include <Icons.h>

#include <OSUtils. h>
#include <LowMem.h>

#include "Showlniticon.h"

#define SYSTEM_7 0x0700

/I You should set SystemSixOrLater in your headers to avoid including glue for
SysEnvirons.

11 - · - · · · · · • · - - - • • · - - · • • · · • • - • · · • · • • · - · - • · - • · - · • • •

/I Set this flag to 1 if you want to compile this file into a stand-alone resource
II (see note below).
fl Set it to 0 if you want to include this source file into your INIT project.

#define STAND_ALONE_RESOURCE

#if STAND_ALONE_RESOURCE

#define Showiniticon main
/I For the linker, which expects a "main" symbol

en um

kShowiniticoninfo = kPascalStackBased

} j

STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Boolean)))

- -~~'!.>< E -• ."c"'l.ra!" -"~~'! -0
ProcinfoType ~procinfo = kShowiniticoninfo;
II Resource header info, is 0x180

#endif

I I ·
II The ShowINIT mechanism works by having each INIT read/write data from these
II globals.
II The MPW C compiler doesn't accept variables declared at an absolute address, so
II I use these macros instead.
II Only one macro is defined per variable; there is no need to define a Set and a
II Get accessor like in <LowMem.h>.

#define LMVCoord (*(short *) (LMGetCurApName() + 32 - 6))

//#define LMVCoord (* (short*) 0x92A)
#define LMVCheckSum (* (short *) (LMGetCurApName() + 32 8))
//#define LMVCheckSum (* (short*) 0x928)
#define LMHCoord (* (short *) (LMGetCurApName() + 32 4))

//#define LMHCoord (* (short*) 0x92C)
#define LMHCheckSum (* (short *) (LMGetCurApName() + 32 . 2))
//#define LMHCheckSum (* (short*) 0x92E)

I I ·
II Prototypes for the subroutines. The main routine comes first; this is necessary
II to make THINK C's "Custom Header" option work.

static unsigned short Checksum (unsigned short x);
static void ComputeiconRect (Rect* iconRect, Rect* screenBounds);
static void AdvanceiconPosition (Rect* iconRect);
static void DrawBWicon (short iconID, Rect *iconRect);

I I ·

II Main routine.

typedef struct {
QDGlobals qd; // Storage for the QuickDraw globals
long qdGlobalsPtr;

II A5 points to this place; it will contain a pointer to qd
} QDStorage;

~ PowerPC Programmer's Toolkit
~--

pascal void Showiniticon (short iconFamilyID, Boolean advance)

long
QDStorage

CGraf Port
Graf Port
Re ct

SysEnvRec

oldA5; // Original value of register A5
qds; II Fake QD globals
colorPort;

bwPort;
destRect;

environment; II Machine configuration.

oldA5 = SetA5((long) &qds.qdGlobalsPtr);

II Tell A5 to point to the end of the fake QD Globals
InitGraf(&qds.qd.thePort); II Initialize the fake QD Globals

SysEnvirons(curSysEnvVers, &environment);
II Find out what kind of machine this is

ComputeiconRect(&destRect, &qds.qd.screenBits.bounds);

II Compute where the icon should be drawn

if (environment.systemVersion >= SYSTEM_? && environment.hasColorQD)
OpenCPort(&colorPort);
PloticonID(&destRect, atNone, ttNone, iconFamilyID);

CloseCPort(&colorPort);

else {
OpenPort{&bwPort);
DrawBWicon(iconFamilyID, &destRect);

ClosePort(&bwPort);

if (advance)

AdvanceiconPosition (&destRect);

SetA5(oldA5); II Restore A5 to its previous value

11 -
II A checksum is used to make sure that the data in there was left by another
II ShowINIT-aware !NIT.

static unsigned short Checksum (unsigned short x)

return ((x « 1) : (x » 15)) ' 0x 1021 ;

_______________________________________ ~~~d!:' _c _• _P~ra~ _Li!'~'! -0
II ---
11 ComputeiconRect computes where the icon should be displayed.

static void ComputeiconRect (Rect* iconRect, Rect* screenBounds)
{

if (CheckSum(LMHCoord) I= LMHCheckSum)
II If we are first, we need to initialize the shared data.

LMHCoord = 8;
if (CheckSum(LMVCoord) I= LMVCheckSum)

LMVCoord = screenBounds->bottom - 40;

if (LMHCoord + 34 > screenBounds->right)
II Check whether we must wrap

iconRect->left = B;
iconRect->top = LMVCoord - 40;

}

else {
iconRect->left = LMHCoord;
iconRect->top = LMVCoord;

iconRect->right = iconRect->left + 32;
iconRect->bottom = iconRect->top + 32;

II AdvanceiconPosition updates the shared global variables so that the next
II extension will draw its icon beside ours.

static void AdvanceiconPosition (Rect* iconRect)
{

LMHCoord = iconRect->left + 40;
II Update the shared data

}

LMVCoord = iconRect->top;
LMHCheckSum CheckSum(LMHCoord);
LMVCheckSum = CheckSum(LMVCoord);

II DrawBWicon draws the 'ICN#' member of the icon family. It works under System 6.

static void DrawBWicon (short iconID, Rect *iconRect)

0-~~ !'£9!.'~".!.'".' _T ~l~t- ______________________________________ _

Handle

BitMap
GrafPtr

icon;
source, destination;

port;

icon Get1Resource('ICN#', iconID);

if (icon I= NULL)

HLock(icon);
II Prepare the source and destination bitmaps.
source.baseAddr =*icon+ 128; II Mask address.
source.rowBytes = 4;
SetRect(&source.bounds, 0, 0, 32, 32);

GetPort(&port);
destination = port->portBits;

II Transfer the mask.
CopyBits(&source, &destination, &source.bounds, iconRect, srcBic, nil);

II Then the icon.

source.baseAddr = *icon;
CopyBits(&source, &destination, &source.bounds, iconRect, srcor, nil);

11 - · - - - - - - - - - - -

II Notes

II Checking for PloticonID:
II We (PNL) now check for system 7 and colour QD, and use colour graf ports and
II PloticonID only if both are true
II Otherwise we use B&W grafport and draw using PlotBWicon.

FatCodeResource.r

#include "MixedMode.r"

II Enter the Procinfo type as a hexadecimal value,
II as either $01, or 0x01. Use the CodeWarrior
II disassembler to determine this value

II Use resource type 'fdes' for a fat resource (PPC and 6BK Macsrunning Mixed Mode)

_______________________________________ ~~o~d!!' S ~ _h_o~ra~ _u!'~9! -0
II Use resource type 'sdes' for s safe fat resource (runs on all Macs)

resource 'sdes' (128, sysheap, locked)
$180, II 68K Procinfo
$180, II PowerPC Procinfo
$$Resource ("68KCodeResource" , 'wicw' , 128) ,

II Specify filename, type, and ID of resource

};

II containing 68K code
$$Resource ("PPCCodeResource", 'WICW', 128),
II Specify filename, type, and ID of resource

II containing a PEF container

Index

Symbols
16-bit PC-relative addressing, 136
166 MHz PowerPC 603e processors,

372-373
3-D image rendering, 12
32-bit absolute addressing, 136
32K PC-relative addressing limit, 137
601cache,351
603 cache, 351
604 cache, 351
680x0 processors, 10, 135-144, 154-156

A
AS world, memory, 137
About Box dialog box, 61
activate events, 104
ActivatePalette() function, 266
Add Files command (Project menu),

62,194
AECountltems() function, 119
AEDisposeDesc() function, 120
AEGetNthPtr() function, 120
AEGetParamDesc() function, 119
AEIMP (Apple Event Interprocess

Messaging Protocol), 110

AEinstallEventHandler() function, 114
AEProcessAppleEvent() function, 113
alerts

dialog box windows, 76-82
SonOMunger, adding, 124-125

algorithmic bugs, 336
ALRT resource, 135
ANSI C code, 377
ANSI C Standard Library, 30
AppendResMenu() function, 107
Apple, 12-15
Apple events, 110
Apple menu

creating, 64
Desk Accessories, 99
MultiFinder, 99

Apple's Human Interface Guidelines,
84

AppleScript, 110
application functions, 97-99
application run-time architecture,

PowerPC, 144-154
application-specific functions, 206
arrays, data arrays, descriptor lists, 119
Ask_File()function,88,92,94
ATB trap command (MacsBug), 324
auto key events, 103

0- -"''~~PP"?~'~~':.''!:"!'- -

B
basic application functions, 97-99
Big-Endian addressing, 360
Big-Endian processors, 18
binaries, creating fat, 223-229
blocks,caches,351
BNDL resource, adding, SonOMunger,

125-130
booting, interrupting, 285
BR addr command (MacsBug), 324
BRC addr command (MacsBug), 324
breakpoints, 300
bugs, 335-341

algorithmic bugs, 336
logic bugs, 335-338
syntax bugs, 336

building
fat resources, 277-280
munger program, 108-110
resources, SwitchBank, 175-196
traps, 266-277

Button() routine, 56
buttons, dialog boxes

adding, 72-73
dragging, 78

c
C Standard Library, 1/0 functions,

47-48
caches, 349-357

601 cache, 351
603 cache, 351
604 cache, 351
L2 caches, 350
least recently used (LRU) algorithm,

351
lines, 351
on-chip caches, 350-351
processors, 351
sectors, 351
subdivisions, 351

callback functions, 115

CallGetMouse() function, 241
CallOSTrapUniversalProc() function,

241,322
CallPostEvent() function, 241
CallShowlnitlconProc() function, 241
CallUniversalProc() function, 322
CautionAlert() function, 121, 206
CDEF (control definition resource),

302
cdev resource, 59, 234
Centris, 9
Check_System() function, 218-219
CHRP system, 18
cicn resource, 59
CISC (Complex Instruction Set

Computing) processors, 11, 368
classic Macs, 8
cloning, 143
code

binaries, creating fat, 223-229
breakpoints, 300
bugs

algorithmic bugs, 336
logic bugs, 335-338
syntax bugs, 336

CodeWarrior, editor's window, 30-32
compilers, dependencies, 377
debuggers, 298-302
debugging, 297-298, 335-341
event loop code, modifying, 112-113
File Sharing, 174
FlipDepth, 235-266
fragments, handling, 229-230
hellol.c, 51
instruction scheduling, 357-365
jump table entries, 138
low memory globals, 378
menu commands, 97-99
Mixed Mode Manager, 378
munger program, 85-88
optimizing, 346-348, 357-359
performance, 347-348
porting, 377-380
profiling, 346-347
requirements, 377
running, 58-59

- _dOb~g~'~'- -0
Showinitlcon() function, 280-289
stand-alone code, 234
subroutine jumps, 138
tuning, 348-349
writing, styles, 88

Code Examples PPC folder,
CodeWarrior, 30

Code Fragment Loader, 147
Code Fragment Manager, 147, 150
CODE resource, 59, 135
CodeWarrior, 30, 302-321

Code Examples PPC folder, 30
debugging, 297-298
editor's window, 30-32
IDE (Integrated Development

Environment), 30, 62
MacHeaders.h file, 51
MPW (Macintosh Programmer's

Workshop), 82
Munger folder, 30
munger program, 32-35
Rez, 194-196
SIOUX (Simple Input/Output User

exchange) library, 30
Target preferences panel, 51

CodeWarrior IDE, 62
code,profiling,346
instruction scheduling, 358
SwitchBank, opening, 176-188

CodeWarrior IDE User's Guide, 228
CodeWarrior Lite, 35
commands

Edit menu, Preferences, 303
File menu

Duplicate, 111
Get File/Folder Info, 148
New Project, 35
Open, 109

MacsBug, 324-327
Project menu

Add Files, 62, 194
Remove Files, 36

Resource menu, Create New Resource,
62

Tools menu, Start Toolserver, 83
View menu, Show Invisibles, 40

compilers
CodeWarrior, 30, 51, 302-321
dependencies, 377

compiling
code, 58-59
processes, 45-46
SwitchBank program, 222

completion functions, debugging, 300
Controls menu, SwitchBank program,

211
coordinates, QuickDraw, 53
Copland (Mac OS), 24-25, 43

daemons, 175
File Manager, 60
memory protection, 333
switches, 103

Core_AE_ Open_Handler() function,
116, 130

Core_AE_ OpenDoc_Handler()
function, 130

Core_AE_Print_Handler() function,
116, 130

Core_AE_Quit_Handler() function, 130
CPUs (Central Processing Units),

see processors
CR (carriage-return) characters, word

processors,29-30
CR (Condition Register), 159
Create New Resource command

(Resource menu), 62
CreateFatDescriptorSys() function, 258
CS [[addr] addr] command (MacsBug),

325
custom functions, writing, 203-204

D
daemons, 17 4
data arrays, descriptor lists, 119
data forks, 59
DayStar Digital, clones, 144
debuggers, 298-302

CodeWarrior, 297-298, 302-321
high-level debuggers, 300
ICE (In Circuit Emulator), 299

0- debuggers --

low-level debuggers, 299, 321-333
MacsBug, 297, 300, 321-327
MW Debug, 331-333
The Debugger, 326-333
two-machine debugger, 301
watchpoint, 301

debugging,297-300,335-343
DebugStr() function, 343
definitions, SwitchBank program,

196-223
Delay() function, 102
delivering high-level events, 113-115
depth, pixels, changing, 264
DeRez tool, 176
descriptor lists, 119
design, SwitchBank program, 175
Desk Accessories, Apple menu, 99
development tools, 25
dialog boxes, 80-82

About Box, 61
alerts, 76-82
buttons,

adding, 72-73
dragging, 78

creating, 68-74
editing, 70-72
items, numbering, 73-7 4
Standard File, 35, 62, 188

DIBadMount() function, 105
DILoad()function,105
disk insertion events, 104
dispatch tables, 231
DisposeWindow() function, 56
DITL resource editor, 70
DIUnload() function, 106
DLOG editor, 74
DLOG resource, 74, 135
DM [[addr] nbytes] command

(MacsBug), 325
Do_ Command() function, 87, 98, 100,

308
Do_High_Level() function, 113
Do_My_Stuff() function, 232
DolnitForOldMacs() function, 249-250
DolnitForPPCMacs() function,

249-250

DPM (Dynamic Power Management),
371

DR (dynamic recompiling), 167, 230
dragging dialog box buttons, 78
DrawMenuBar() function, 108
DrawString() routine, 56
DRVR resource, 234
Duplicate command (File menu), 111

E
EA command (MacsBug), 324
Edit menu

commands, Preferences, 303
creating, 67

editor's window, CodeWarrior, 30-32
endian addressing modes, 360
enhancements, 143
ES command (MacsBug), 324
event loop code, modifying, 112-113
EventManager,50
events, 83-84

AEIMP (Apple Event Interprocess
Messaging Protocol), llO

Apple events, llO
categories, 103
gmyEvent global, 87
handlers, writing, ll6-123
handling, l ll- ll2
high-level events, ll0-ll5
loops, 83
main event loops, 100-106

Exception Handler, 160
exceptions, 141
execution units, processors, 368
Expand Uninitialized Data, checking,

295
Extensions folder, The Debugger, 332

F
faceless background applications, 174
fat binaries, building, 223-229

fatresources,building,277-280
fatresources,headers,278
fat traps

building, 266-277
writing, 235-266

FatCodeResource.r listing, 477
File Manager, 50, 60
File menu

commands
Duplicate, 111
Get File/Folder Info, 148
New Project, 35
Open, 109

creating, 67
File Sharing, 172-175
File_Share_On() function, 208
files

forks, 59-61
pathnames, 32
process.c file, 43
Read Me files, 33

Find_File_Sharing()function,212,308
FindSymbol() function, 254
FlipDepth, writing, 235-266
FlipDepth.µ.PPC.exp listing, 469-471
FlipDepth.c listing, 441-459
FlipDepth.r listing, 469-471
FlushEvents() function, 54
Flush Vol() function, 96
FontManager,50,54
fopen() function, 33
forks,files,59-61
FP (frame pointer), 155
FPCE (Floating-Point C Extensions),

379
FPRO register, 155
FPRs (floating-point registers), 157
FPU (Floating-Point Unit), 21, 155
fputc() function, 91
fragments, code, handling, 228-229
FSMakeFSSpec()function,120
FSpCreate() function, 96
FSpCreateResFile() function, 273
FSpDelete() function, 96
FSpOpenDF() function, 95, 169
FSRead() function, 91-92
FSWrite() function, 91-92

functions, 28
680x0 PostEvent(), 261
ActivatePalette(), 266
AECountltems(), 119
AEDisposeDesc(), 120
AEGetNthPtr(), 120
AEGetParamDesc(), 119
AEinstallEventHandler(), 114
AEProcessAppleEvent(), 113
AppendResMenu(), 107
application-specific functions, 206
Ask_File(), 88, 92, 94
basic application functions, 97-99
Button(), 56

functions

callback functions, 115
CallGetMouse(), 241
CallOSTrapUniversalProc(), 241, 322
CallPostEvent(), 241
CallShowlnitlconProc(), 241
CallUniversalProc(), 322
CautionAlert(), 121, 206
Check_System(), 218-219
code array implementation,

processors, 205
Core_AE_Open_Handler(), 116, 130
Core_AE_OpenDoc_Handler(), 130
Core_AE_Print_Handler(), 116, 130
Core_AE_ Quit_Handler(), 130
CreateFatDescriptorSys(), 258
custom functions, writing, 203-204
DebugStr(), 343
Delay() , 102
DIBadMount(), 105
DILoad(), 105
DisposeWindow(), 56
DIUnload(), 106
Do_Command(), 87, 98, 100, 308
Do_High_Level(), 113
Do_My_Stuff(), 232
DolnitForOldMacs() , 249-250
DolnitForPPCMacs() , 249-250
DrawMenuBar(), 108
DrawString(), 56
File_Share_On(), 208
Find_File_Sharing(), 212, 308
FindSymbol(), 258

0- functions

FlushEvents() , 54
FlushVol(), 96
fopen() , 33
fputc(), 91
FSMakeFSSpec(), 120
FSpCreate(), 96
FSpCreateResFile(), 273
FSpDelete(), 96
FSpOpenDF(), 95, 169
FSRead(), 91 -92
FSWrite(), 91-92
Get_FS_Info(), 207-208
GetlResource(), 249
getc(), 91
GetCursor(), 96
GetlndString(), 206
GetMenultemText(), 99
GetMouse(), 241
GetNewDialog(), 91, 99
GetNewMBar(), 222
GetNextProcess(), 45
GetOSTrapAddress(), 231
GetProcesslnformation(), 45
gets() , 32
GetToo!TrapAddress(), 231
GetVol(), 95
GetWMgrPort(), 266
GetZone(), 259
HasDepth() , 265
HiWord(), 98
Init_AE_Events(), 114
lnit_Mac(), 87
InitCursor(), 56
InitFonts(), 54
InitGDevice(), 265
InitGraf(), 54
InitWindows(), 54
LMGetCurrentA5(), 378
LoadSeg(), 138-139
LoWord(), 98
Macmunger.c, first function, 88-89
main(), 108, 308
Main_Event_Loop(), 87, 101, 308
MaxApp!Zone(), 53
MemError(), 334
MenuKey(), 105
Moda!Dialog(), 99

MoreMasters() , 53
Move_Fork() , 269, 335
Munge_File() , 90, 92, 335
My _Trap_Enhancement(), 232
MyPostEvent68K() , 257
NewAEEventHandlerProc(), 114, 170
NewFatRoutineDescriptor(), 241
NewModa!FilterProc(), 170
NewPtr(), 45
NewRoutineDescriptor(), 241
NewWindow(), 55
NumToString(), 88
OpenDeskAcc(), 99
ParamText(), 88, 121, 206
PBCatSearchSync(), 214, 338
PBHGetVInfo(), 208
PBHGetVo!Parms() , 208
PostEvent() , 241
PostEvent68kStub(), 257
printf(), 32, 47
prototypes, 87
QDError(), 334
ReallySuperbService(), 143
RectRgn(), 266
Report_Err_Message(), 120, 124, 206
Report_Error(), 88, 123, 334
ResError(), 334
SetDepth(), 265
SetOSTrapAddress(), 231
SetPort(), 55-56
SetToo!TrapAddress(), 231
SetZone(), 259
Showlnitlcon(), 241
ShowinitProcPtr(), 241
SNextTypeSRsrc() , 338
StandardGetFile(), 94
StandardPutFile(), 95, 107
StopAlert(), 89
SwitchBank program, 215-216
SyncServerDispatch(), 204
SysBreak() , 343
SysBreakStr(), 343
SysEnvirons(), 286
SystemC!ick() , 105
SystemEdit(), 99
Toggle_File_Sharing(), 308
Toolbox Eject(), 217

UnloadSeg(), 140
WaitNextEvent(), 83, 101-102, 113, 152,

218

G
G addr command (MacsBug), 324
general-purpose registers (GPR2), 150
Gestalt Manager, 219, 365
Get File/Folder Info command (File

menu), 148
Get FS Info() function, 207-208
GetlRe~ource() function, 249
getc() function, 91
GetCursor() function, 96
GetlndString() function, 206
GetMenultemText() function, 99
GetMouse() function, 241
Get.1'TewDialog() function, 91, 99
GetNewMBar() function, 222
GetNextProcess() function, 45
GetOSTrapAddress() function, 231
GetProcesslnformation() function, 45
gets() function, 32
GetToolTrapAddress() function, 231
GetVol() function, 95
GetWMgrPort() function, 266
GetZone() function, 259
globals

gmyEvent global, 87
handling, 234
low memory globals, 261, 378

gmyEvent global, 87
GPRs (general purpose registers), 157
grafports, QuickDraw, 56
GTP addr command (MacsBug), 324
GUI (Graphical User Interface), 8

H
handlers

Exception Handler, 160
Trap Dispatcher, 142
writing, 116-123, 169

handling
code fragments, 229-230
events, 111-112
globals, 234

hard drives, pathnames, 32
hardware,processors,13-25

680x0 processors, 10
CISC (Complex Instruction Set

Computing), 11
Intel x86 processors, 11
Motorola 88000 RISC processors, 10
RISC (Reduced Instruction Set

Computing), 10-12
HasDepth() function, 265
HC command (MacsBug), 325
HD command (MacsBug), 325
head patches, 232
header files, 51
headers, fat resources, 278
heaps,137
Hello world program, writing, 51
hellol.c listing, 384-385
HELP command (MacsBug), 325
Hierarchal File System, dispatch table,

231
high-level debuggers, 300
high-level events, 104, llO-lll

AEIMP (Apple Event Interprocess
Messaging Protocol), 110

delivering, 113-115
handling, 111-112

history, Macintosh, 7-12
HiWord() function, 98
HS command (MacsBug), 325
HX addr command (MacsBug), 325
HZ (Heap Zone), MacsBug, 323

IBM, Apple, 13-25
ICE (In Circuit Emulator), 299
ICON resource, 125
ID numbers, processes, 43
IDE (Integrated Development

Environment), CodeWarrior, 30

IL [addr] n] command (MacsBug), 325
ILP [addr] n] command (MacsBug), 325
import/export information, attaining,

148
INIT resource, 234
Init_AE_Events() function, 114
Init_Mac() function, 87
InitCursor() function, 56
InitFonts() function, 54
InitGDevice() function, 265
initialization functions, 106-108
Initialization Manager, 105
initializing

Font Manager, 54
Managers, 54-58
QuickDraw, 54
Window Manager, 54

InitWindows() function, 54
input filenames, queries, 92-96
Inside Macintosh, 8
Inside Macintosh: Files, 60
Inside Macintosh: Imagi,ng, 59
Inside Macintosh: Interapplication

Communication, 110
Inside Macintosh: Macintosh Toolbox

Essentials, 55, 59
Inside Macintosh: Memory, 55
Inside Macintosh: Processes, 43
instruction scheduling, 357-365
int variable, compilers, 377
Intel x86 processors, 11
interrupt tasks, debugging, 300
interrupting booting process, 285
IP addr command (MacsBug), 325
ISA (instruction set architecture), 163

J-L
jump table entries, 138

key down events, 103
key up events, l 03
Klepto.c listing, 4 77

L2 caches, 350
LDEF (list definition resource), 302

least recently used (LRU) algorithm,
caches,351

LF (linefeed), 33
library files, munger program,

changing, 36
lines, caches, 351
linkers, 138, 148
listings

FatCodeResource.r (chapter 5), 477
FlipDepth.µ.PPC.exp (chapter 5),

469-471
FlipDepth.c (chapter 5), 455-459
FlipDepth.r (chapter 5), 469-471
hellol.c (chapter 3), 384-385
Klepto.c (chapter 5), 477
macmunger.c (chapter 3), 385-395
munger.c (chapter 2), 381-382
process.c (chapter 2), 383-384
Showlnitlcon.c (chapter 5), 477
Showlnitlcon.h (chapter 5), 477
SonOMunger.c (chapter 3), 395-411
SwitchBank.c (chapter 5), 411-430

Little-Endian addressing, 360
LMGetCurrentA5() function, 378
LoadSeg()function,I38,139
Locate ResEdit, 61
logic bugs, 335-338
loop unrolling, instruction scheduling,

358
loops

events, 83
main event loops, 100-106

low memory globals, 261, 378
low-level debuggers, 299, 321-333
low-level events, 83, 111-112
LoWord() function, 98
LR (link register), 152, 159
LSB (least significant byte), 360

Mac II, 9
Macintosh

classic Mac, 8
cloning, 143

M

- ~"~'"' .!'~'!'!!' - -e
File Sharing, 1 72
history, 7-12

Macmunger.c, first function, 88-89
macmunger.c listing, 385-395
MacNosy II file, The Debugger, 328
MacsBug, 297, 300, 321-327

commands, 324-327
HZ (Heap Zone), 323

main event loops, 100-106
main() function, 108, 308
Main_Event_Loop() function, 87, 101,

308
Managers, 51-54

Code Fragment Manager, 147, 150
EventManager,50
File Manager, 50
FontManager,50,54
Gestalt Manager, 219, 365
Initialization Manager, 105
initializing, 54-58
Memory Manager, 50
Mixed Mode Manager, 162-170, 235
Process Manager, 50
QuickDraw, 50, 54
SCSI Manager, 231
Window Manager, 50, 54

Marathon, 349
MaxApplZone() function, 53
MDEF (menu definition) resource,

234,300,302
MemError() function, 334
memory

A5 world, 137
caches, 349-357
heaps, 137
partitions, sections, 137
stacks, 137

Memory Manager, 50, 81
memory protection, Copland, 333
MENU resource, 59, 135
menu resources, munger program,

problems, 108
MenuKey() function, 105
menus

Apple menu
Desk Accessories, 99
MultiFinder, 99

commands, code, 97-99
Controls menu, SwitchBank program,

211
creating, 63-68
munger program, 61

Metrowerks Profiler application, 346,
379

Microcodes, 361
millicodes, 361
Mixed Mode Manager, 162-170, 235,

378
MMU (memory management unit),

PowerBooks, 21
ModalDialog() function, 99
Modem Memory Manager, 379
modifiers, 102
MoreMasters() function, 53
Motorola 88000 RISC processors, 10
mouse down events, 103
mouse up events, 103
Move_Fork()function,269,335
MPW (Macintosh Programmer's

Workshop), 82
MPW Shells, 189
MSB (most significant byte), 360
MultiFinder, 99, 140
Munge_File() function, 90, 92, 335
Munger folder, CodeWarrior, 30
munger program, 32-35, 89-92

building, 108-110
code, 85-92
creating, 35-39
Edit menu, 99
event loop code, modifying, 112-113
events, handling, 83-84, 111-112
File menu, 99
handlers, writing, 116-123
initialization function, 106-108
input filenames, queries, 92-96
library files, changing, 36
menu resources, problems, 108
menus, 61
output filenames, queries, 92-96
resources, 81
running, 40-42
SonOMunger, 123

adding alerts, 124-125

0- -me'~~ E'~'"'~ -

BNDL resource, 125-130
finishing, 130-131
modifying, 123-124

status displays, 7 4-76
munger.c listing, 381-382
MW Debug, 302, 331-333
My_Trap_Enhancement() function,

232
MyPostEvent68K() function, 257

N
nanocodes, 361
Native PowerPC plug-in modules, 115
New Project command (File menu), 35
NewAEEventHandlerProc() function,

114, 170
NewFatRoutineDescriptor() function,

241
NewModalFilterProc() function, 170
NewPtr() function, 45
NewRoutineDescriptor() function, 241
NewWindow() function, 55
NMI (non-maskable hardware

interrupt), 322
novice programming, 27-48
NuBus slots, 9
null events, 104
numbering dialog box items, 73-7 4
NumToString() function, 88

0-P
on-chip caches, 350-351
Open Application event, 110
Open command (File menu), 109
Open Documents event, 110
OpenDeskAcc() function, 99
opening SwitchBank, 176-188
optimizing code, 346-348, 357-359
OS events, 104
OS traps, 243
output filenames, queries, 92-96

ParamText() function, 88, 121, 206
partitions, memory sections, 137
patches, 233
patching traps, avoiding, 380
pathnames, 32
PBCatSearchSync() function, 213, 338
PBHGetVInfo() function, 208
PBHGetVolParms() function, 208
PC (program counter), 136
PDAs (Personal Digital Assistants), 367
PEF (Preferred Executable Format),

147
Performa, 10
performance issues, code, 347-348
pipelines, 368
pixels, depth, changing, 264
PLL (phased lock loop), 371
porting code, 377-380
PostEvent() function, 241
PostEvent68kStub() function, 257
POWER (Performance Optimization

With Enhanced RISC), 369
Power Computing, clones, 144
Power Mac 5200, 16
Power Mac 6100/60, 15
Power Mac 7100/66, 16
Power Mac 7200175, 20
Power Mac 7500, 20
Power Mac 7500/90, 20
PowerMac8100/80, 15
Power Mac 8500/120, 16
Power Mac 9500, 16
Power Macs

Copland operating system, 24-25
development tools, 25
history, 7-12

first-generation, 10-12
second-generation, 18-25

PowerBook 5300, 21
PowerBooks, 9
PowerPC, 13-25

application run-time architecture,
144-153

function calls, 154-162
plug-in modules, ll5

PowerPC 601, 13, 359, 369-370
PowerPC 602, 373-374

PowerPC 603, 13, 370-371
DPM (Dynamic Power Management),

371
PLL (phased lock loop), 371

PowerPC 603e, 13, 371-372
Power PC 604, 13, 37 4-375
PowerPC 604e, 375
PowerPC 620, 13
PowerPC 680x0, function calls, 154-156
PPCTraceEnabler file, The Debugger,

328
Preferences command (Edit menu),

303
Print Documents event, 110
printf() function, 32, 47
Processl\'lanager,44,50,56
process.c file, 43
process.c listing, 383-384
processAppSpec container, 45
processes (active applications), 42-45

compiling, 45-46
ID numbers, 43

ProcesslnfoRec container, 44
processors,359-365

166 MHz PowerPC 603e processors,
372-373

680x0, 10, 154-156
Big-Endian processors, 18
caches, 351
CISC (Complex Instruction Set

Computing), 11, 368
CR (Condition Register), 159
Endian addressing modes, 360
exceptions, detection, 141
execution units, 368
FP (frame pointer), 155
FPRs (floating-point registers), 157
FPU (Floating-Point Unit), 155
functions, code array implementation,

205
GPRs (general purpose registers),

150, 157
Intel x86 processors, 11
LR (Link Register), 152, 159
LSB (least significant byte), 360
Microcodes, 361

millicodes, 361
Motorola 88000 RISC processors, 10
MSB (most significant byte), 360
nanocodes, 361
PC (program counter), 136
PowerPCs, 13-25, 157-162, 371-372
RISC (Reduced Instruction Set

Computing) processor, 10-12,
367-375

stack frames, 157-162
stalls, 369
traps, detection, 141

profiling code, 346-347
programming

code
debugging, 297-298
FlipDepth, 235-266
instruction scheduling, 357-365
Mixed Mode Manager, 378
optimizing, 346-348, 357-359
performance, 347-348
porting, 377-380
profiling, 346-34 7
requirements, 377
tuning, 348-349

Hello world program, writing, 51
munger program, code, 85-88
novice, 27-48
processes (active applications), 42-43

programs
munger program

code, 89-92
creating, 35-39
running, 40-42

processes, compiling, 45-46
Project menu commands

Add Files, 62, 194
Remove Files, 36

prototypes, functions, 87
PSN (process serial number), 43

Q-R
QDError() function, 334
Quadra, 10

Quadra -0

a- -°"''~k~c:ft_ ,~,!!'~": - - - -- - - -- - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -- .

QuickDraft, grafports, 56
QuickDraw, 50

coordinates, 53
initializing, 54

Quit Application event, 110

Radius, clones, 144
RAM (random access memory),

second-generation Power Macs, 20
RB command (MacsBug), 325
Read Me files, 33
ReallySuperbService()function,143
RectRgn()function,266
redrawingscreen,266
reentrants, 151
Remove Files command

(Project menu), 36
Report_Err_Message() function,

120,124,206
Report_Error() function, 88, 123, 334
ResEdit, 64-68, 176
ResError() function, 334
resource forks, 59
Resource menu commands, Create

New Resource, 62
resources

ALRT resource, 135
BNDL, 125
building

fat, 277-280
SwitchBank, 175-196

cdev,234
CODE, 135
creating, 61-63, 188-194

· DLOG, 135
DRVR,234
fat resources, headers, 278
ICON, 125
INIT,234
MDEF,234
MENU, 135
SonOMunger, 123
WDEF, 234
WIND, 135

Reztoolprogram,82
CodeWarrior, 194-196
fat resources, building, 279

SwitchBank program, 175-196
ToolServer, resource construction,

188-194
RISC (Reduced Instruction Set

Computing) processor, 10-12,
367-375
execution units, 368
pipelines, 368
POWER (Performance Optimization

With Enhanced RISC), 369
PowerPC 601, 369-370
PowerPC 602, 373-374
PowerPC 603, 370-371
PowerPC 603e, 371
PowerPC 604, 374-375
PowerPC 604e, 375
stalls, 369

ROM.snt file, The Debugger, 328
RoutineDescriptor, 163
routines, Toolbox, location, 50
RS command (MacsBug), 325
run-time architecture, global handling,

234
running, Munger program, 40-42

s
S [n I expression) command (MacsBug),

325
SC [addr) nbytes) command

(MacsBug), 326
SC6 [addr) nbytes) command

(MacsBug), 326
Scott, Ridley, "1984" commercial, 8
screens

depth, changing, 262
redrawing, 266

SCSI Manager, dispatch table, 231
second-generation Power Macs, 18-25
sectors, caches, 351
SetDepth()function,265
SetOSTrapAddress() function, 231
SetPort() function, 55
SetPort() routine, 56
SetToolTrapAddress() function, 231

SetZone()function,259
Show Invisibles command (View

menu),40
Showlnitlcon() function, 241, 280-289
Showlnitlcon.c listing, 4 77
Showlnitlcon.h listing, 4 77
ShowlnitProcPtr() function, 241
SIOUX (Simple Input/Output User

exchange) library
I/O functions, 47-48
CodeWarrior, 30

SM addr value command (MacsBug),
326

SNextTypeSRsrc() function, 338
Soft MMU (memory management

unit), The Debugger, 332
SonOMunger

alerts, adding, 124-125
BNDL resource, adding, 125-130
finishing, 130-131
modifying, 123-124

SonOMunger.c listing, 395-411
stack frames, 157-162
stacks,memory,137
stalls,processors,369
stand-alone code, 234
Standard File dialog box, 35, 62, 188
StandardGetFile() function, 94
StandardPutFile() function, 95, 107
Start Toolserver command

(Tools menu), 83
status displays, 7 4-76
StopAlert() function, 89
subroutinejumps,138
support files, The Debugger, 328
SwitchBank, 173-175

binaries, creating fat, 223-229
code, handling, 229-230
compiling, 222
Controls menu, 211
custom functions, writing, 203-204
definitions, 196-223
design, 175
fat resources, building, 175-196,

277-280
fat traps, building, 266-277
functions, 215-216

opening, 176-188
Rez tool, 175-196
Showlnitlcon() function, 280-289
system features, checking, 219

SwitchBank.c listing, 411-430
switches, 103
SyncServerDispatch() function, 204
syntax bugs, 336
SysBreak() function, 343
SysBreakStr() function, 343
SysEnvirons() function, 286
System Error Handler, 298
SystemClick() function, 105
SystemEdit() function, 99

T
tail patches, 232
Target preferences panel,

CodeWarrior, 51
TEXT resource, 60
The Debugger, 327-333

Extensions folder, 332
interface, 327
low-level events, mistakes, 189
MacNosy II file, 328
PPCTraceEnabler file, 328
ROM.snt file, 328
Soft MMU (memory management

unit), 332
starting, 329
support files, 328
zFlipDepth Extension, 332

THINKC,234
third-party vendors, enhancements,

143
TIFF resource, 60
TOC (table of contents), 149
TOC Register (RTOC), 150
Toggle_File_SharingO function, 308
Toolbox, 8, 28-29, 49-50

bugs, 336
Managers, 51 -54
Rez tool, 82
routines, location, 50
trap words, 230-235

Toolbox -a

0- -'~'!!'~' ~j~o~l_f~o~i~o ______________________________________ _ _ .

Toolbox Eject() function, 217
Tools menu commands, Start

Toolserver, 83
ToolServer, 83, 189
transition vectors, 149
Trap Dispatcher, 142, 243
trap words, 230-235
traps, 141

building, 266-277
OS traps, 243
writing, 235-266

tuning code, 348-349
two-machine debugger, 301

U-V
UnloadSeg() function, 140
update events, 104
UPP (Universal Procedure Pointer),

162-170

View menu commands, Show
Invisibles, 40

volumes,pathnames,32

W-Z
WaitNextEvent() function, 83, 101-102,

113, 152, 218
watchpoint, debuggers, 301
WDEF resource, 234
WIND resource, 59, 135
Window Manager, 50, 54
word processors, CR (carriage-return)

characters, 29-30
Worksheet window, ToolServer, 189
writing

code, styles, 88
custom functions, 203-204
event handlers, 116-123
FlipDepth, 235-266
handlers, 169
Hello world program, 51

XCOFF (executable formats), 146

zFlipDepth Extension, The Debugger,
332

Become a CodeWarrior now!
Order the commercial version of
Metrowerks CodeWarrior!
see other side for ordering information

Metrowerks CodeWarrior delivers three times a year.
When you buy CodeWarrior and register with
Metrowerks, you will receive free updates
throughout the year.

Bronze (For 68K Macintosh) $149.00
Gold (For Power & 68K Macintosh,
Win32, Magic Cap, Be, Java) $399.00

Metrowerks CodeWarrior.
The world's best-selling

Macintosh development tools.

Metrowerks is continually adding new features and products.
Check our website for the latest products, prices and Geekware.

Gold @US$399 ea. X _ =
Bronze @US$149 ea. X _ = First & Last name

Subtotal
Plus sales tax & shipping Street

{as may apply)

Total City/State/Prov.

Method of Payment
O VISA rnrn Email address

0 Mastercard Exp. Date (M/Y)

1111111111111111111
Phone number

Credit Card Number

Signature

Fax to: {512) 305-0440 or call {800) 377-5416

or Mail to: Metrowerks Corp
Dept 334
P.O. Box 9700
Austin, TX 78766-9700

For Sales info:
WWW: http://www.metrowerks.com
Voice: (512) 305-0400
Fax: (512) 305-0440
Email : sales@metrowerks.com

Zi p/Posta I Code

Date Ordered

Prices and product availability may change without notice - check our website for the
latest information.

Software License
PLEA.SE READ THIS LICENSE CAREFULLY BEFORE USING THE
SOFTWARE.

BY USING THE SOFTWARE, YOU AREAGREEING TO BE BOUND BY
THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE
TERMS OF THIS LICENSE, PROMPTLY RETURN THE UNUSED
SOFTWARE TO THE PI.ACE WHERE YOU OBTAINED IT AND YOUR
MONEY WILL BE REFUNDED.

I. License. The application, demonstration, system, and other
software accompanying this License, whether on disk, in read only
memory, or on any other media (the "Software"), the related docu
mentation, and fonts are licensed to you by Metrowerks. You own the
disk on which the Software and fonts are recorded, but Metrowerks
and/or Metrowerks' Licensors retain title to the Software, related
documentation, and fonts. This License allows you to use the Soft
ware and fonts on a single Apple computer and make one copy of the
Software and fonts in machine-readable form for backup purposes
only. You must reproduce on such copy the Metrowerks copyright
notice and any other proprietary legends that were on the original
copy of the Software and fonts. You may also transfer all your license
rights in the Software and fonts, the backup copy of the Software and
fonts, the related documentation, and a copy of this License to
another party, provided the other party reads and agrees to accept the
terms and conditions of this License.

2. Restrictions. The Software contains copyrighted material, trade
secrets, and other proprietary material. In order to protect them, and
except as permitted by applicable legislation, you may not decompile,
reverse engineer, disassemble, or otherwise reduce the Software to a
human-perceivable form. You may not modify, network, rent, lease,

~ PowerPC Programmer's Toolkit

~··

loan, distribute, or create derivative works based upon the Software in whole or in
part. You may not electronically transmit the Software from one computer to
another or over a network.

3. Termination. This License is effective until terminated. You may terminate this
License at any time by destroying the Software, related documentation and fonts,
and all copies thereof. This License will terminate immediately without notice
from Metrowerks if you fail to comply with any provision of this License. Upon
termination you must destroy the Software, related documentation and fonts, and
all copies thereof.

4. Export Law Assurances. You agree and certify that neither the Software nor any
other technical data received from Metrowerks, nor the direct product thereof, will
be exported outside the United States except as authorized and as permitted by
the laws and regulations of the United States. If the Software has been rightfully
obtained by you outside of the United States, you agree that you will not re-export
the Software nor any other technical data received from Metrowerks, nor the
direct product thereof, except as permitted by the laws and regulations of the
United States and the laws and regulations of the jurisdiction in which you ob
tained the Software.

5. Government End Users. If you are acquiring the Software and fonts on behalf of
any unit or agency of the United States Government, the following provisions
apply. The Government agrees:

(i) if the Software and fonts are supplied to the Department of Defense (DoD),
the Software and fonts are classified as "Commercial Computer Software"
and the Government is.acquiring only "restricted rights" in the Software, its
documentation and fonts as that term is defined in Clause 252.227-7013(c) (1)
of the DFARS; and

(ii) if the Software and fonts are supplied to any unit or agency of the United
States Government other than DoD, the Government's rights in the Software,
its documentation and fonts will be as defined in Clause 52.227-19(c)(2) of
the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of the NASA
Supplement to the FAR.

6. Limited Warranty on Media. Metrowerks warrants the diskettes and/ or com
pact disc on which the Software and fonts are recorded to be free from defects in
materials and workmanship under normal use for a period of ninety (90) days
from the date of purchase as evidenced by a copy of the receipt. Metrowerks'
entire liability and your exclusive remedy will be replacement of the diskettes and/

• Software License 0.
···~

or compact disc not meeting Metrowerks' limited warranty and which is returned
to Metrowerks or a Metrowerks authorized representative with a copy of the
receipt. Metrowerks will have no responsibility to replace a disk/ disc damaged by
accident, abuse, or misapplication. ANY IMPLIED WARRANTIES ON THE DIS
KETTES AND/OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED
IN DURATION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY. THIS
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE
OTHER RIGHTS WHICH VARY BY JURISDICTION.

7. Disclaimer of Warranty on Apple Software. You expressly acknowledge and
agree that use of the Software and fonts is at your sole risk. The Software, related
documentation and fonts are provided "AS IS" and without warranty of any kind
and Metrowerks and Metrowerks' Licensor(s) (for the purposes of provisions 7
and 8, Metrowerks and Metrowerks' Licensor(s) shall be collectively referred to as
"Metrowerks") EXPRESSLY DISCIAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. METROWERKS
DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFT
WARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE AND THE FONTS WILL BE CORRECTED. FURTHERMORE,
METROWERKS DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE AND
FONTS OR REIATED DOCUMENTATION IN TERMS OF THEIR CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN INFORMA
TION OR ADVICE GIVEN BYMETROWERKS ORA METROWERKS AUTHORIZED
REPRESENTATIVE SHALL CREATE A WARRANTY OR IN ANYWAY INCREASE
THE SCOPE OF THIS WARRANTY. SHOULD THE SOFTWARE PROVE DEFEC
TIVE, YOU (AND NOT METROWERKS ORA METROWERKS AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVIC
ING, REPAIR OR CORRECTION. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU.

8. Umitadon of liability. UNDER NO CIRCUMSTANCES INCLUDING NEGLI
GENCE, SHALL METROWERKS BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY TO
USE THE SOFTWARE OR REIATED DOCUMENTATION, EVEN IF METROWERKS
ORA METROWERKS AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF

~ PowerPC Programmer's Toolkit
~···

THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE
QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

In no event shall Metrowerks' total liability to you for all damages, losses, and
causes of action (whether in contract, tort (including negligence) or otherwise)
exceed the amount paid by you for the Software and fonts.

9. Controlling Law and Severability. This License shall be governed by and
construed in accordance with the laws of the United States and the State of
California, as applied to agreements entered into and to be performed entirely
within California between California residents. If for any reason a court of compe
tent jurisdiction finds any provision of this License, or portion thereof, to be
unenforceable, that provision of the License shall be enforced to the maximum
extent permissible so as to effect the intent of the parties, and the remainder of
this License shall continue in full force and effect.

10. Complete Agreement. This License constitutes the entire agreement between
the parties with respect to the use of the Software, the related documentation and
fonts, and supersedes all prior or contemporaneous understandings or agree
ments, written or oral, regarding such subject matter. No amendment to or
modification of this License will be binding unless in writing and signed by a duly
authorized representative of Metrowerks.

METROWERKS AND METROWERKS' LICENSOR(S), AND THEIR DIRECTORS,
OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELYMETROWERKS) MAKE NO
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FORA PARTICU
LAR PURPOSE, REGARDING THE SOFTWARE. METROWERKS DOES NOT WAR
RANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE
OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECT
NESS, ACCURACY, RELIABILITY, CURRENTNESS OR OTHERWISE. THE ENTIRE
RISKAS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS AS
SUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMIT
TED BY SOME JURISDICTIONS. THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU.

• Software License 0.
··~

IN NO EVENT WILL METROWERKS AND METROWERKS' LICENSOR(S), AND

THEIR DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY
METROWERKS) BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL

OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND

THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE

EVEN IF METROWERKS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. BECAUSE SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION

OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAM
AGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Metrowerks liability
to you for actual damages from any cause whatsoever, and regardless of the form
of the action (whether in contract, tort (including negligence), product liability or

otherwise), will be limited to $1.

~ PowerPC Programmer's Toolkit
~··

What You'll Find on the CD
The PowerPC Programmer's Toolkit CD contains Metrowerks CodeWarrior
8.0 .Lite as well as all the sample code discussed in this book. This version of
Metrowerks CodeWarrior is limited in that it can be used only with the code
provided on the CD. Certain commands (such as New Project and Add File ...)
have been disabled. But, this version retains the functionality of Code Warrior
except for those functions. So, you can use almost all of Code Warrior's
features to learn to program your PowerMac.

Metrowerks cannot provide technical support for this limited version of
CodeWarrior bundled with this book. If you have trouble, call Hayden Books
at 1-800-858-767 4 or email us at hayden@hayden.com.

Using the CD is simple; just pop it into your drive and dive in!

