

PowerPC

J. Ranade Workstation Series

CHAKRAVARTY • Power RISC System I 6000: Concepts, Facilities, and Architec
ture, 0-07-011047-6

CHAKRAVARTY/CANNON • PowerPC: Concepts, Architecture, and Design,
0-07-011192-8

DEROEST • AIX for RS I 6000: System and Administration Guide, 0-07-036439-7

HENRY/GRAHAM • Solaris 2.X System Administrator's Guide, 0-07-029368-6

JOHNSTON • OS I 2 Connectivity and Networking: A Guide to Communication
Manager I 2, 0-07-032696-7

LAMB • MicroFocus Workbench and Toolset Developer's Guide, 0-07-036123-3

LEININGER • UNIX Developer's Tool Kit, 0-07-911646-9

LOCKHART • OSF DCE: Guide to Developing Distributed Applications,
0-07-911481-4

RANADEIZAMIR • C++Primer for C Programmers, 2/e, 0-07-051487-9

SANCHEz!CANTON • Graphics Programming Solutions, 0-07-911464-4

SANCHEz/CANTON • High Resolution Video Graphics, 0-07-911646-9

SANCHEzlCANTON • PC Programmer's Handbook, 2/e, 0-07-54948-6

WIGGINS • The Internet for Everyone: A Guide for Users and Providers,
0-07-067019-8

Th order or receive additional information on these or any other
McGraw-Hill titles, in the United States please call 1-800-822-8158.
In other countries, contact your local McGraw-Hill representative. BC14BCZ

Power PC
Concepts, Architecture, and Design

Dipto Chakravarty

Casey Cannon

McGraw-Hill, Inc.
New York San Francisco Washington, D.C. Auckland Bogota

Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

ToBapi
-D.C.

To my family for their enthusiasm
and to Don Meyer for his encouragement

-C.C.

Library of Congress Cataloging-in-Publication Data

Chakravarty, Dipto.
PowerPC : concepts, architecture, and design I Dipto Chakravarty, Casey Cannon.

p. cm. - (J. Ranade workstation series)
Includes bibliographical references.
ISBN 0-07-011192-8
1. PowerPC (Microprocessor) I. Title. II. Series.

QA76.8.P67C48 1994
004.165-dc20 94-19135

CIP

Copyright© 1994 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a data base or retrieval system, without the prior writ
ten permission of the publisher.

1 2 3 4 5 6 7 8 9 0 DOH/DOH 9 0 9 8 7 6 5 4

ISBN 0-07-011192-8

The sponsoring editor for this book was Jerry Papke and the production
supervisor was Pamela A. Pelton. This book was set in Century Schoolbook
by North Market Street Graphics.

Printed and bound by R. R. Donnelley & Sons Company.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The author and publisher have exercised care in preparing this book and the pro
grams contained in it. They make no representation, however, that the programs
are error-free or suitable for every application to which the reader may attempt to
apply them. The author and publisher make no warranty of any kind, expressed
or implied, including the warranties of merchantability or fitness for a particular
purpose, with regard to these programs or the documentation or theory contained
in this book, all of which are provided "as is." The author and publisher shall not
be liable for damages in amount greater than the purchase price of this book, or
in any event for incidental or consequential damages in connection with, or aris
ing out of the furnishing, performance, or use of these programs or the associated
descriptions or discussions.

Readers should test any program on their own systems and compare results
with those presented in this book. They should then construct their own test pro
grams to verify that they fully understand the requisite calling conventions and
data formats for each of the programs. Then they should test the specific applica
tion thoroughly.

Trademarks

Alpha and VAX are trademarks of Digital Equipment Corporation.
AFS and Transarc are trademarks of Transarc Corporation.
AIXwindows and AIXwindows Interface Composer/6000 are trademarks of International Busi-

ness Machines Corporation.
AIX 3278/79 Emulation/6000 is a trademark of International Business Machines Corporation.
Apple, Appletalk, and Finder are trademarks of Apple Computer Corp.
C Set ++ is a trademark of International Business Machines Corporation.
CICS is a trademark oflnternational Business Machines Corporation
Ethernet is a trademark of Xerox Corporation.
GL and Graphics Library are trademarks of Silicon Graphics, Inc.
HP is a registered trademark of Hewlett-Packard.
HP Precision Architecture and Laserjet are trademarks of Hewlett-Packard.
InfoExplorer is a trademark of International Business Machines Corporation.
Macintosh is a trademark of Apple Computer Corp.
Microsoft is a trademark of Microsoft Corporation.
Motorola and Motorola 88110 are trademarks of Motorola, Inc.
Micro Channel is a registered trademark of International Business Machines Corporation.
MIPS is a registered trademark of MIPS Computer Systems, Inc.
MS-DOS is a trademark of Microsoft Corporation.
NETBIOS is a trademark oflnternational Business Machines Corporation.
NFS and Sun OS are trademarks of Sun Microsystems, Inc.
OPEN LOOK is a trademark of AT&T.
Open Software Foundation, OSF, OSF/Motif and Motif are trademarks of Open Software Foun-

dation, Inc.
Pentium is a trademark of Intel Corporation.
POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).
POWER Architecture is a trademark of International Business Machines Corporation.
PowerOpen is a trademark of International Business Machines Corporation.
PowerPC, PowerPC Architecture, POWERserver, POWERstation are trademarks oflnterna

tional Business Machines Corporation.
Power PC 601, Power PC 603, Power PC 604, and Power PC 620 are trademarks of International

Business Machines Corporation.
RISC System/6000 is a trademark of International Business Machines Corporation.
RT and RT PC are trademarks of International Business Machines Corporation.
SPARC is a registered trademark of SPARC International, Inc.
Taligent is a registered trademark ofTaligent, Inc.
UNIX is licensed by and is a registered trademark of UNIX System Laboratories, Inc.
Wabi is a trademark of Sun Microsystems, Inc.
X Window System is a trademark of Massachusetts Institute of Technology
Xll is a trademark of Massachusetts Institute of Technology.
XPG3 is a trademark ofX/OPEN Company Limited.

v

Preface xv
Acknowledgments xix

Chapter 1. Introduction

1.1 Overview of the PowerPC
1.2 PowerOpen Environment
1.3 PowerOpen Association
1.4 POWER to PowerPC Architecture
1.5 POWER-PowerPC Deltas
1.6 PowerPC Performance

1.6.1 Why the RISC-based PowerPC Is Faster
1.6.2 601 Microprocessor
1.6.3 603 Microprocessor
1.6.4 604 Microprocessor
1.6.5 620 Microprocessor
1.6.6 601 versus the Pentium

1.7 System Environment Overview
1.7.1 PowerOpen ABI and API
1.7.2 International Language Support

1.8 Summary

Part 1 Hardware

Chapter 2. RISC Technology

2.1 Evolution of RISC
2.2 RISC Characteristics

2.2.1 Load-Store Architecture
2.2.2 Fixed-length Instructions
2.2.3 Hardwired Control
2.2.4 Fused Instructions
2.2.5 Pipelined Implementation

2.3 Superscalar Implementation
2.4 RISC/CISC Tradeoffs
2.5 Effect of Pipelining
2.6 Reduced Instruction Set Cycles
2.7 Summary

Contents

1

2
3

4

5
7
8
8
8
9

10
11

13
14
14

15

19

19

20
20
20
21
21
22
27
28
28
29
29

vii

viii Contents

Chapter 3. Architectural Definition 31

3.1 Evolutionary Road Map of PowerPC 31
3.2 The PowerPC Instruction Set 33
3.3 The 32-bit PowerPC Architecture 34

3.3.1 Instruction Set Architecture 34
3.3.2 Virtual Environment Architecture 41
3.3.3 Operating Environment Architecture 45

3.4 The 64-bit PowerPC Architecture 53
3.4.1 Instruction Set Architecture 53
3.4.2 Virtual Environment Architecture 56
3.4.3 Operating Environment Architecture 59

3.5 Timer Facilities 67
3.6 Summary 68

Chapter 4. Processor Implementations 69

4.1 Understanding the Common CPU Model 69
4.2 The POWER RS 1 Microprocessor 70

4.2.1 Organization 70
4.2.2 Instruction Cache 72
4.2.3 Data Cache 73
4.2.4 Fixed-point Unit 73
4.2.5 Floating-point Unit 74
4.2.6 Packaging 75

4.3 The POWER RS .9 Microprocessor 76
4.3.1 Organization 77
4.3.2 Instruction Cache 77
4.3.3 Data Cache 77
4.3.4 Fixed-point Unit 79
4.3.5 Floating-point Unit 79
4.3.6 Packaging 79

4.4 The POWER RSC Microprocessor 80
4.4.1 Organization 80
4.4.2 Cache 81
4.4.3 Branch Processing and Instruction Fetch Unit 82
4.4.4 Instruction Queue and Dispatch Unit 83
4.4.5 Fixed-point Unit 83
4.4.6 Floating-point Unit 83
4.4.7 Memory Management Unit 83
4.4.8 Memory Interface Unit 84
4.4.9 Sequencer Unit 84

4.4.10 Packaging 84
4.5 The PowerPC 601 Microprocessor 84

4.5.1 Pipelines 85
4.5.2 Organization 86
4.5.3 Instruction Queue and Dispatch Unit 87
4.5.4 Instruction Fetch Unit 87
4.5.5 Branch Processing Unit 87
4.5.6 Fixed-point Unit 88
4.5.7 Floating-point Unit 88
4.5.8 Memory Management Unit 88
4.5.9 Cache 89

4.5.10 Memory Queue 90
4.5.11 Bus Interface 90
4.5.12 Sequencer Unit 90

4.5.13 Multiprocessor Capabilities
4.5.14 Packaging

4.6 The PowerPC 603 Microprocessor
4.6.1 Pipelines
4.6.2 Organization
4.6.3 Instruction and Data Caches
4.6.4 Instruction Fetch and Branch Unit
4.6.5 Dispatcher Unit
4.6.6 Completion/Exception Unit
4.6.7 Fixed-Point Unit
4.6.8 Floating-Point Unit
4.6.9 Load/Store Unit

4.6.10 System Unit
4.6.11 Bus Interface Unit
4.6.12 Packaging and Power Management

4.7 The PowerPC 604 Microprocessor
4.7.1 Pipelines
4.7.2 Organization
4.7.3 Packaging

4.8 The PowerPC 620 Microprocessor
4.9 PowerPC Embedded Processors

4.9.1 The Embedded Controller 403
4.10 Summary

Part 2 Software

Chapter 5. User Interfaces

5.1 Common Desktop Environment
5.1.1 Overview
5.1.2 Getting Started with Common Desktop Environment
5.1.3 Common Desktop Environment Services

5.2 Wabi
5.2.1 Overview
5.2.2 Wabi Capabilities and Functions
5.2.3 Getting Started with Wabi

5.3 X Window System
5.3.1 AIXwindows Environment
5.3.2 AIXwindows 3-D
5.3.3 AIXwindows Interface Composer

5.4 Macintosh Application Services
5.4.1 Overview
5.4.2 Capabilities and Functions
5.4.3 Getting Started with Macintosh Application Services

5.5 Summary

Chapter 6. Operating Systems

6.1 PowerOpen Application Binary Interface
6.2 AIX

6.2.1 AIX Personal Productivity Client Configuration
6.2.2 Operating Environment
6.2.3 End-user Environment
6.2.4 Optimizing AIX

Contents ix

90
91
92
93
94
95
95
96
96
97
97
97
97
98
98
98
98
98
99
99

100
102
103

107

108
108
108
111
118
118
119
120
124
126
127
127
128
128
128
129
131

133

134

135
135
136
140
145

x Contents

6.3 Tali gent 147
6.3.1 Mlcrokernel Paradigm 148
6.3.2 Operating Environment 149
6.3.3 End-user Environment 150

6.4 Solaria 150
6.4.1 Operating Environment 151
6.4.2 End-user Environment 152

6.5 Windows NT 153
6.5.1 End-user Environment 154
6.5.2 Operating Environment 155

6.6 Workplace OS 160
6.6.1 Operating Environment 160
6.6.2 End-user Environment 161

6.7 Summary 161

Chapter 7. Development Tools 163

7.1 Compilers 163
7.1.1 XLCComplier 163
7.1.2 C Set++ Complier 165
7.1.3 AIX XL FORTRAN and Pascal Compliers 165

7.2 Assembler 166
7.3 Debuggers 167

7.3.1 adb 167
7.3.2 fsdb 168
7.3.3 dbxand xde 170
7.3.4 Kernel Debug Program 172
7.3.5 Trace Facility 174

7.4 Source Code Analysis Tools 175
7.4.1 lint 175
7.4.2 cf low 175
7.4.3 cxref 175

7.5 Lexical Analyzer-lex 176
7.6 Parser Generator-yacc 176
7.7 Pattern Matching Language 176

7.7.1 awk 176
7.7.2 sed 177

7.8 Macro Processor-m4 178
7.9 Program Modules Management 178

7.9.1 make 178
7.9.2 imake 179

7.10 Source Code Control System 180
7.11 AIX Performance Tools 181

7.11.1 Monitoring Tools 181
7.11.2 Analysis Tools 188
7.11.3 Tuning Tools 199

7.12 Summary 200

Chapter 8. Standardization and Connectivity 203

8.1 Standardization 203
8.1.1 Compatibility Standards 203
8.1.2 Portablllty Standards 204
8.1.3 Interoperability Standards 209

8.2 Connectivity
8.2.1 Connectivity with Peer UNIX Machines
8.2.2 Connectivity with Host Machines
8.2.3 Connectivity and Access to PC-DOS

8.3 Summary

Chapter 9. Design of AIX: A PowerOpen Implementation

9.1 Components of the Kernel
9.2 Functions of the Kernel
9.3 Kernel Services

9.3.1 System Calls
9.3.2 Kernel Faclllties

9.4 Distinguishing Features of the AIX Kernel
9.5 Extending the Kernel
9.6 Programs, Processes, and Process Groups
9.7 AIX Notifiers
9.8 Internal Representation of Files

9.8.1 File Types
9.8.2 lnode and In-core lnodes
9.8.3 File Links
9.8.4 Files to File System Relationship

9.9 Buffer Cache
9.10 Summary

Chapter 1 o. AIX Process Subsystem Internals

10.1 The Difference Between a Program and a Process
10.2 Process Structure
10.3 Process-affiliated Kernel Structures
10.4 Process States
10.5 Priority Handling
10.6 Context Switching
10.7 Process Scheduling
10.8 The Thread Paradigm

10.8.1 Thread-afflllated Kernel Structures
10.8.2 Thread States
10.8.3 plds and tids
10.8.4 Context Switching
10.8.5 Scheduling

10.9 Process Monitoring
10.10 Interrupt and Exception Handling
10.11 Interprocess Communication

10.11.1 Pipes
10.11.2 Message Queues
10.11.3 Shared Memory
10.11.4 Semaphores
10.11.5 Sockets
10.11.6 Streams

10.12 Summary

Contents xi

223
223
226
228
229

231

231
233
233
233
235
241
245
246
248
252
252
253
253
254
257
259

261

261
262
263
264
266
268
269
271
272
273
275
275
276
277
280
282
282
283
284
285
286
287
290

xii Contents

Chapter 11. AIX File, Memory, and 1/0 Subsystem Internals 291

11.1 AIX File System 291
11.1.1 Physical File System 292
11.1.2 Memory Mapped Flies 293

11.2 Journaled File System 295
11.2.1 Logical Volume Manager 295
11.2.2 Disk Mirroring 301
11.2.3 Bad Block Relocation 302

11.3 Memory Subsystem 303
11.3.1 Memory Addressability 303
11.3.2 Segmented Memory 304
11.3.3 Virtual Memory Management 307
11.3.4 Page Replacement 309
11.3.5 Memory Load Control 310
11.3.6 Code Pinning 311

11.4 UO Subsystem 311
11.4.1 Asynchronous UO 311
11.4.2 UO Pacing 312

11.5 Device Subsystem 312
11.5.1 Device Drivers Overview 313
11.5.2 Major and Minor Numbers 313
11.5.3 Character and Block Device Drivers 313
11.5.4 Device Switch Table 313
11.5.5 Device Head and Device Handler 313

11.6 Object Data Manager 314
11.7 Summary 316

Chapter 12. What You Need to Build a PowerPC 317

12.1 Memory Subsystems 318
12.1.1 System Memory 319
12.1.2 System ROM 320
12.1.3 Nonvolatile Memory 320
12.1.4 UO Memory 320
12.1.5 Memory Mapped System 1/0 320
12.1.6 Secondary Cache 320

12.2 Storage Subsystems 320
12.2.1 Interface 321
12.2.2 Hardfile 321
12.2.3 Diskette 321
12.2.4 CD-ROM 321

12.3 Human Interface Subsystems 321
12.3.1 Alphanumeric Input Device 321
12.3.2 Pointer Device 321
12.3.3 Audio 322
12.3.4 Graphics 322

12.4 Real-Time Clock 322
12.5 Connectivity Subsystems 322

12.5.1 Serial 322
12.5.2 Parallel 323
12.5.3 Network 323

12.6 Expansion Bus Options 323
12.7 Interface Standards 323

12.7.1 SCSI 323
12.7.2 IDE 323

12. 7 .3 Ethernet
12.7.4 Token Ring
12.7.5 Serial
12.7.6 LocalTalk
12.7.7 Parallel Port
12.7.8 PCI Bus
12.7.9 PCMCIA Bus

12.7.10 ISA Bus
12.7.11 Input Device Interfaces

12.8 System Configurations
12.9 Summary

Appendix A. PowerPC Models

Appendix B. Acronyms Used in This Book

Appendix C. PowerPC and POWER Instruction Sets

Bibliography 353
Index 355

Contents xiii

324
324
324
324
324
324
325
325
325
326
326

327

335

343

Preface

This book is a general-purpose reference for the computer professionals who
wish to understand the PowerPC technology, which has evolved as a result of
the IBM-Motorola-Apple alliance. The text is designed to serve as a single
source of reference about the PowerPC hardware and its operating environ
ments. A layer-by-layer introduction of the hardware, middleware, and soft
ware options unveils the diverse capabilities and features of this revolutionary
technology. The subtitle, Concepts, Architecture, and Design, is quite appropri
ate, as the book contains a comprehensive overview of the hardware and the
software concepts from both user as well as system perspectives. The text
introduces the hierarchical architecture of the PowerPC microprocessor and
explains the design rationales for the facilities and features that enable Power
PC to achieve the paramount level of performance.

Architecture and implementation of a computer are two distinct entities.
Perhaps the most popular distinction between the terms was made in a Com
munications of the ACM journal.*

Computer architecture

... is defined as the attributes and behavior of a computer as seen by a machine
language programmer. This definition includes the instruction set, instruction for
mats, operations codes, addressing modes, and all register and memocy locations
that may be directly manipulated by a machine language programmer.

Implementation

... is defined as the actual hardware structure, logic design, and data path orga
nization of a particular embodiment of the architecture.

Thus, architecture is a definition that describes the behavior of all possible
implementations, as compared to implementation that typically references a
single microprocessor. The discussions of PowerPC architecture and its imple
mentations have been kept separate for maximum benefit to the reader. A sur
vey of operating systems and user interfaces has been provided to present to the
reader with a system-level picture of the Power PC-based computer systems.

*Communications of the ACM, vol. 36, no. 2, p. 33, February 1993.
xv

xvi Preface

WHY THIS BOOK

The publicity generated concerning the PowerPC microprocessor has resulted
in the dissemination of a wide variety of information among vendors and devel
opers in the computer industry. What has not been disseminated is a reference
that ties all the aspects of this nascent technology together in a comprehensive
source of reference. Hence, this book.

OBJECTIVES OF THIS BOOK

The first objective of this book is to describe the principles of the PowerPC
architecture (and its implementations), which evolved out of the POWER
architecture. Introduced in 1990, the POWER technology used in the RISC
System/6000 product line acquired a quick reputation for itself in the market
place by virtue of its advanced RISC-based design and achievable level of per
formance. PowerPC is a flexible derivative of the POWER architecture and
shares a wide spectrum of traits with its parent architecture.

The second objective of this book is to depict a system-level picture of com
puters based on the PowerPC processor with emphasis on the operating sys
tems, software development tools, standards, and user interfaces. An array of
technologies is available today, in terms of hardware as well as software, that
can be optimized by using Power PC as its core. With a proliferation of Power
PC-based computer systems in the marketplace, end users will be faced with a
choice of whether to opt for a computer that is PowerPC reference platform
compliant or a computer that uses the PowerPC as its core. Both types of sys
tems offer the power of the PowerPC microprocessor, the difference being in
the varying degrees of compatibility that exist among the applications.

USES OF THIS BOOK

The intended use of this book is threefold:

• It can be used by the computer professionals working on or transitioning to
the PowerPC-based development environment.

• It can be read by the general audience of the computer community wishing to
get acquainted with PowerPC technology. The material delves into adequate
depth to serve a novice as well as a knowledgeable user.

• It can be used as supplemental reading material in a computer system archi
tecture course.

ORGANIZATION OF THIS BOOK

The first part of the book introduces the Power PC in light of RISC technology.
The second part explains the PowerPC architecture and discusses its available
and planned implementations, including a comparative study with the
POWER offerings to explain how POWER developed into the PowerPC. The
third part of the book covers the user interfaces, standards, and tools. It also

Preface xvii

discusses the several operating systems that can/will run on the Power PC. The
final chapter wraps up the concepts by giving a tutorial on how to go about
building one's own Power PC platform. The contents of each of the parts are
stand-alone and can be studied individually.

The book is organized into 12 chapters:

1. Presenting the Power PC

2. RISC Technology

3. Architectural Definition

4. Processor Implementations

5. User Interfaces

6. Choice of Operating Systems

7. Development Tools

8. Supported Standards

9. Design of AIX: A PowerOpen Implementation

10. AIX Process Subsystem Internals

11. AIX File, Memory, and 1/0 Subsystem Internals

12. What You Need to Build a PowerPC

Chapter 1 introduces the PowerPC, discusses its evolution through the forma
tion of the IBM-Motorola-Apple alliance, compares its standing with the Pen
tium, and addresses some of the important highlights such as the PowerOpen
Environment, the application binary interface (ABI), and the application pro
gramming interface (API) definitions. Chapter 2 discusses the RISC technology
in light of its unique traits, performance tradeoffs with CISC, pipelined imple
mentation of the execution units, and the significance of reduced instruction set
cycles. Chapter 3 explains how the layered architecture defines the varying
degree of compatibility from an instruction set level, to the virtual environment
level, all the way up to the operating environment level. Chapter 4 describes the
implementations of the PowerPC architecture, such as the 601, 603, 604, and
the 620, while contrasting them with some of the POWER implementations, the
RS 1, RS .9, and RSC. Chapter 5 discusses the functionality and illustrates the
leading industry standards of user interfaces including the Common Desktop
Environment, Wabi, X Windows, and Macintosh Application Services.

Chapter 6 reviews the PowerOpen Application Binary Interface and then
highlights five of the 32-bit operating systems that the Power PC platform is
intended to support, including Taligent, Windows NT, Solaris, AIX, and Work
place OS. Chapter 7 provides a broad overview of the most widely used devel
opment tools for UNIX operating systems, including discussions of (among
others) the XL C optimizing compiler, assembler, and debuggers. Chapter 8
discusses the compatibility, portability, and interoperability standards for the
Power PC, followed by an overview of the interconnectivity functionalities of the
PowerPC. Chapters 9, 10, and 11 cover in detail the PowerOpen-compliant AIX
operating system, which is based on the COSE (Common Open Software Envi-

xviii Preface

ronment) version of UNIX. Chapter 9 presents the design of AIX, with in-depth
discussions on components of the kernel, structural layout and characteristic
features of the kernel, internal representation of files, related kernel tables,
interprocess communication mechanisms, and allied data structures. Chapter
10 explains AIX process management principles, with emphasis on process
structure, process state, context switching, scheduling principles, affiliated ker
nel structures and their positioning in the kernel address space, the art of mon
itoring processes by traversing through the kmem (running kernel's memory),
and handling of threads. Chapter 11 discusses the file, memory, 1/0, and device
subsystems of the AIX kernel. It begins with a detailed discussion on the AIX
file system in light of its memory mapped files, journaled file system, and the
logical volume manager. The memory architecture topics include the address
ability of the segmented memory, followed by the virtual memory management,
page replacement, and memory load control schemes. The 1/0 subsystem topics
include asynchronous 1/0 and 1/0 pacing, followed by the device subsystem,
which discusses device drivers and the object data manager. In conclusion,
Chapter 12 wraps up the concepts, architecture, and design of the Power PC by
providing a description of the devices and interfaces that are recommended for
designing and building a PowerPC based computer system.

The content of Chapter 1 serves as an introduction to Power PC for everyone.
The material in Chapters 2, 3, and 4 will be of maximum benefit to hardware
engineers who need to know about the registers and the architectural traits of
the PowerPC microprocessor. The information in Chapters 5, 6, 7, and 8 are
meant for end users and system integrators/designers. Chapters 9, 10, and 11
are geared for UNIX gurus who wish to understand how the internals of the
PowerOpen compliant AIX operating system works. The content of Chapter 12
provides an account of the aspects to be considered when building one's own
PowerPC-based computer system.

In conclusion, this book can be thought of as a single source of information
about all technical aspects of the PowerPC. Professionals requiring an immer
sion training in PowerPC, as well as those keen on gaining an insight into the
internals of this complex system, will benefit from this book.

A few caveats need to be mentioned. No attempts have been made to cover
details of implementation-specific hardware components or release-specific soft
ware components. Such attributes are likely to change over a period of time. For
an implementation-specific dependency of a microprocessor, or a release-specific
dependency of an operating system or software component, one is encouraged to
refer to the corresponding product reference manuals. Although we have avoided
predicting the future development of the hardware and software, trends in many
of the characteristics are obvious. In that case, this book will serve as the base
line technical reference for future products based on the PowerPC architecture.

The IBM-Motorola-Apple alliance has resulted in the birth of the PowerPC,
and, consequently, has brought the RISC technology to the desktop computing
world. By blending together the cost-performance and scalable aspects of the
architecture, along with the interoperable software base, the PowerPC has
made the biggest impact in the personal computer industry since the original
Intel-based personal computer itself.

Acknowledgments

The genesis of Power PC has generated an enthusiastic community worldwide.
The technology, which evolved as a result of the IBM-Motorola-Apple alliance,
is rapidly penetrating the computer industry's relentless pursuit for cost
performance computing.

The inspiration and support for writing this book came from our colleagues
and friends too numerous to mention. Of the many individuals who helped us
author this book, we would like to express our gratitude to our colleagues at
IBM, Motorola, and Apple who willingly answered questions about this emerg
ing subject.

We express our sincere thanks and gratitude to each of the following people
whose timely help enabled us to march to an ambitious production schedule.

Gary Leikam provided timely guidance and review of the standards encom-
. passing the PowerPC technology.

Art Adkins provided ongoing advice and help whenever we needed. He also
reviewed the information pertaining to PowerPC reference platform specifi
cation and operating systems.

Morris Grove reviewed the material on architectural definition of the Power PC
and provided useful suggestions regarding the format of the material.

John McKeeman reviewed the material on PowerPC-based embedded con
trollers.

Paul Lugo, Dave Thompson, and Mark Wieland reviewed the material on
Wabi, Macintosh Application Services, and Common Desktop Environment.

Richard Swann helped us with the material on Windows NT.

Mark Hevesh and Sanjoy Chatterji perused the material on PowerOpen
Association and PowerOpen Environment.

Jim Shaffer reviewed the material on AIX. process subsystem internals and
helped fine-tune the topics on processes and threads.

Our warmest thanks to the team at North Market Street Graphics, espe
cially Virginia Carroll, Anne Friedman, Christine Furry, and Nathanael Waite,

xix

xx Acknowledgments

who adhered to a tight schedule to get this book out on time. A special mention
should be made of editors Gerald Papke, Jay Ranade, and Rachel Hirshfield at
McGraw-Hill.

A recognition or an acknowledgment will not be enough, but it will have to do
for my wife, Aloka Chakravarty, without whose support this book would not
have happened.

-D.C.

Special thanks to my management team-Pat Birdsall, Mark Akers, and Tom
Cross-for their support.

-C.C.

Chapter

1

Introduction

Power PC is the result of the 1993 Apple, IBM, and Motorola alliance that has
paved a path for a high-performance, low-cost RISC-based chip to penetrate
the desktop market in high volume across a wide variety of operating environ
ments. The revolutionary PowerPC technology was launched to offer users and
vendors access to binary compatible platforms in the marketplace-a phe
nomenon in the UNIX arena.

The Apple-Motorola-IBM alliance is centered at the Somerset Design Center
in Austin, Texas (Somerset being the county in England where King Arthur's
Knights of the Round Table gathered to strategize). Motorola's manufacturing
expertise, Apple's software support, and IBM's processor architecture make
the alliance a formidable challenger in the microprocessor market.

This chapter discusses the PowerOpen Environment, the PowerOpen Asso
ciation which promotes the environment, the evolution of POWER to Power PC,
and the comparison of PowerPC 601 (which is the first member of the family)
with the Pentium processor.

1.1 OVERVIEW OF THE PowerPC

PowerPC technology is based on a RISC (Reduced Instruction Set Computer)
architecture which is derived from IBM's POWER (Performance Optimized
With Enhanced RISC) architecture. Note that performance was and still is
the core driving force behind RISC-based systems. With a superior cost
performance balance, RISC processors have proven to be a peerless choice for

2 Introduction

systems ranging from entry-level personal computers to high-end servers, and
embedded control applications.

Since the advent of the 8080 microchip, compatibility with existing architec
tures has been a major issue in microprocessor design. While Intel maintained
an upward compatibility within generations of its own product line of 8086,
80286, 80386, 80486, and Pentium, Intel made the architecture more complex
than it would have been otherwise. This is the reason that Motorola's 68000,
upon its introduction into the marketplace, featured a much cleaner and sim
pler design than the 8086, and not surprisingly had an easier time maintain
ing compatibility in its 68020, 68030, and 68040 chips. History repeats itself,
as this decade of computing offers us a new beginning with RISC processors.

Much of RISC's success is tied in with UNIX. Since much of UNIX (over 90
percent) and most UNIX software is written in C, a new microprocessor archi
tecture poses less of a problem than would have been the case for MS-DOS and
Macintosh worlds where the system software is in assembly language. The
other significant advantage that RISC processors like the PowerPC offer is the
ease of emulating existing instruction sets. Since RISC processors have out
distanced CISC processors in terms of performance, a comparable-speed
emulation of CISC instruction sets becomes plausible, which is a monumental
advantage for compatibility in the marketplace. AIX (Advanced Interactive
Executive), IBM's version of UNIX, has been chosen to become the underpin
ning of the PowerOpen Environment.

1.2 PowerOpen ENVIRONMENT

The PowerOpen Environment is an application platform specification enabling
binary-compatible applications to run on multiple vendor PowerPC-based
systems. The PowerOpen Environment consists of the combination of any
binary-compatible PowerOpen multiuser, multitasking UNIX operating sys
tem running on a PowerPC-based platform.

The PowerOpen Environment offers an optional extension, Macintosh Appli
cation Services, which allows users to run Macintosh applications within the
PowerOpen Environment. At the same time, users can run OSF/Motif-based
applications, and character-based applications. No matter what the user inter
face, each application rides on the PowerOpen Environment. The PowerOpen
Environment specification includes an application binary interface, an appli
cation programming interface (which includes XPG4, XTI, and XNFS), and the
PowerPC RISC microprocessor. See Fig. 1.1 for a conceptual layout of the
PowerOpen Environment.

The PowerOpen Environment is designed to enable software vendors to pro
duce shrink-wrapped software and powerful server systems to give users
access to UNIX and Macintosh software. To promote the concept of shrink
wrapped applications in the high-powered workstation market, the Power
Open Association is focusing on the concept of application binary
compatibility-a concept taken for granted in the PC world, but elusive in the
UNIX environment.

PowerOpen
applications

Look and feel

API

ABI

Hardware

AIXJ6000, BOS/X, UNI/XT
applications

Macintosh
applications

Character/Motif/Macintosh

PowerOpen API (XPG4, XTI, XNFS ...)

Operating systems; networking;
install; extensions

PowerPC architecture

Figure 1.1 PowerOpen Environment. (Copied with permission from IBM.)

Introduction 3

Using the PowerPC technology and PowerOpen system standards (derived
from ADC), the PowerOpen Association has goals for a large application base
supported and endorsed by major suppliers. The bottom-line question the
PowerOpen Association wants to deliver on is: "What is needed for shrink
wrapped applications?" The group is modeling their efforts after the PC world
model-to jump start acceptance of the PowerPC in the market, resulting in a
larger base of shrink-wrapped applications (see Fig. 1.2).

1.3 PowerOpen ASSOCIATION

The PowerOpen Association is a not-for-profit association resulting from the
1991 PowerPC technology alliance of Apple, IBM, and Motorola. The Power
Open Association promotes the growth of the PowerPC marketplace, and
develops and supports the PowerOpen specification. Launched in March 1993,
the PowerOpen Association also performs compliance certification or branding
(platform certification based on OSF's Test Environment Toolkit).

The PowerOpen Association is primarily concerned with making the
PowerOpen Environment the most pervasive RISC-based open systems envi-

PC world model ~ ~ Increased revenue

Figure 1.2 Jump starting the volume cycle.

4 Introduction

ronment in the industry. The PowerOpen Association is not in business to
create standards or to compete with standards groups; rather, the PowerOpen
Association harmonizes with and defers to official standards groups including
X/Open's XPG, ISO 9945-1 (POSIX), OSF's AES/OS, and Motif X-Windows.

The PowerOpen Association includes Apple, Bull, Harris, IBM, Motorola,
Tadpole, and Thomson/CSF. Apple, Bull, IBM, Motorola, and Thomson/CSF
function as sponsor companies, and Harris and Tadpole as principal members.
The association functions independently in order to cooperate in establishing
the PowerOpen Environment Standard while simultaneously competing in the
marketplace.

PowerOpen's goals for software developers include:

• An independent corporation providing high-value services (porting assis
tance; ABI compatibility verification tools; branding program; environment
promotion)

• Application development investment leverage (multiple platforms with a
single port)

PowerOpen goals for end users include:

• Broad selection of applications (Macintosh desktop applications; UNIX
based workstation/server class applications)

•Vendor independence (multiple vendor platforms with binacy compatibility)

• Scalable binary-compatible architecture (laptop to high-end m~tiprocessing)

Technical deliverables of the PowerOpen Association include the PowerOpen
Environment Specifications, the PowerPC System Information Library, the
PowerOpen 890 System Verification Test Suite (platform certification), the
PowerOpen Application Verification Test Suite (application certification), and
PowerOpen Cross Platform Technical Support (including fee-based technical
support and porting assistance).

1.4 POWER TO PowerPC ARCHITECTURE

The first seeds for RISC were sown during the development of a telephone
switching network in the midseventies. The progress made on the design of a
prototype machine was taken up as a research project at the T. J. Watson Insti
tute. The low cost-performance ratio of this prototype processor was exceed
ingly encouraging and, as a result, a system called the IBM 801 emerged.
Although the 801 design could handle one instruction per cycle for specialized
code, the rate fell short when used with general purpose code. In the continu
ing effort to smooth out the delays caused by storage access and conditional
branching with additional pipelines, a new design was formulated. Referred to
as the AMERICA architecture, this new design made use of three semi
autonomous processors. The design of AMERICA later evolved into RIOS,

Introduction 5

which came to be known as the POWER RISC System/6000 in the commercial
world. The success of the POWER architecture led researchers and designers
to develop a more flexible and cost-effective derivation of it. The result was the
Power PC.

The primary enhancement of the PowerPC architecture is the extension to
64 bits. All processors run 32-bit applications as a minimum; the 64-bit imple
mentations have a 32/64-bit mode switch selectable from supervisor code. 32-
bit applications can run on a 64-bit kernel. The extension simply increases the
size of the registers to 64 bits and adds a few new instructions for 64-bit oper
ations. In addition, PowerPC specifically extends the POWER architecture to
directly support multiprocessing.

1.5 POWER-PowerPC DELTAS

The conventional traits of POWER architecture adhered to the fundamental
RISC characteristics, and featured fixed-length instructions, a load-store
architecture, and a generous number of general purpose registers.* It was also
organized around the idea of superscalar instruction dispatch, pipelined imple
mentation of instruction processing, and the presence of multiple independent
execution units to increase the throughput for instruction processing. Finally,
the architecture featured a set of unique facilities for handling branches
via condition registers and leading to the concept of zero-cycle branches, and
availability of a set of unique compound instructions that can be executed
atomically.

The PowerPC uses the POWER architecture as its baseline and sculptures it
to address the evolving needs of the computer industry. The IBM-designed
POWER architectural definition was the logical starting point, as it already
offered much of what the multicorporate alliance of Motorola, Apple, and IBM
had in their vision for the next generation of desktop computing. New features,
such as support for 64-bit computing, a more flexible microprocessor design for
the Open Systems marketplace, and enhanced portability for running multiple
operating systems, have been made available to the PowerPC architectural
definition.

From a standpoint of comparative computer architecture, the POWER archi
tecture featured a performance-crafted design, whereas the PowerPC architec
ture emphasizes a more cost-effective and flexible approach. To achieve this,
some of the complex logic was removed and some new features were introduced.

The process of slimming the POWER architecture to formulate the Power PC
derivative consisted of the following highlights:

• Elimination of "load-string and compare-byte" instruction which was the
most complex instruction in the POWER architecture

* Refer to Chap. 2 for a detailed discussion on the RISC characteristics.

6 Introduction

• Elimination of multiply-quotient (MQ) register and all extended precision
shifts and integer multiply-and-divide instructions which use it

• Elimination of instructions whose operation was dependent on source
operand value (to reduce cycle time)

• Elimination of several bit-field instructions that had three source operands

Add-ons to the PowerPC architecture beyond the POWER predecessor con
sisted of the following features:

• Extension of the architecture to a true 64-bit model

• Addition of single-precision floating-point instructions (POWER only sup
ports double-precision, which precludes implementations with fast single
and slower double-precision)

• Addition of unsigned integer multiply and divide

• Provision for a fast-trap-and-emulate mechanism for implementing complex
operations such as string operations (for low-cost implementations)

• Addition of an improved set of instructions for explicitly scheduling data into
and out of the cache under user control

• Definition of a weak storage memory model (to simplify dynamic reordering
of memory operations in hardware) with user storage locking and synchro
nization (for multiprocessors)

• Addition of a little-endian addressing mode switch

The charter of the PowerPC architecture group was to come up with a more
cost-effective derivative of the POWER architecture. Therefore, the features of
POWER architecture that were too restrictive and not as cost-effective, have

Instructions deleted from
POWER (emulation)

Power PC
instructions not

implemented on
the 601 (emulation)

PowerPC architecture

Common mode --

POWER-RS! and RSC

----+-POWER mode _ ____,~1

New 32-bit instructions

New64-bit
/instructions

Figure 1.3 PowerPC and POWER architecture relationship. (Copied with per
mission from IBM.)

Introduction 7

been eliminated in the Power PC. Refer to Fig. 1.3 for a conceptual illustration
of the POWER to PowerPC relationship.

The PowerPC initial focus is on the high-volume, single-chip implementa
tions characteristic of the PC and low-end workstation markets building on the
RSC. The benefits inherent in RISC architectures make the 601 microproces
sor much easier to design and to fabricate at a given clock rate than Pentium,
an implementation of the Intel CISC x86 architecture.

The PowerPC programming model and instruction op-code assignments
remain fully POWER-compatible, enabling PowerPC users to access approxi
mately 4000 AIX applications. However, there are some incompatibilities
between PowerPC and POWER such as:

• Different alignment requirements

• Different interrupt mechanism

• Different 1/0 structure

• Different page table and cache model

• 32-bit and 64-bit implementations

• Support for single-precision floating point

• Instruction set differences

A complete set of POWER and Power PC instructions is provided in App. C for
reference.

1.6 PowerPC PERFORMANCE

The PowerPC architecture has been designed to support computers ranging
from pen-based systems to desktop PCs to multiprocessing servers to multipro
cess supercomputers, including real-time systems and server systems. The 601
and 604 microprocessors give desktop designers a chip for office computing and
have extensive support for multiprocessing. The 603 microprocessor is targeted
towards low-end desktop computers and laptops. The 620 microprocessor is tar
geted to the high-end workstations, server, and multiprocessor systems market.

The PowerPC microprocessor architecture goals include:

• Simplify architecture (smaller chips, faster cycle times, and more aggressive
superscalar implementations)

• Improve architecture (for example, 32-bit single-precision floating-point, bi
endian addressing, low-power modes)

•Maintain compatibility of ABI with POWER (trap and emulate removed
instruction)

• Incorporate multiprocessor support (strong multiprocessor comparabilities
for scalability)

• Add 64-bit extensions (compete with competitive 64-bit architectures includ
ing MIPS R4000 and DEC Alpha while maintaining 32-bit compatibility)

8 Introduction

1.6.1 Why the RISC-based PowerPC is faster

PowerPC CPUs achieve their performance by processing instructions faster
than CISC CPUs. The chips adhere to RISC-specific design principles, whose
goal is to complete one instruction every CPU clock cycle. To complete one
instruction every CPU clock cycle, RISC chips employ uniform instruction size,
which expedites the fetching of instructions. RISC processors do not have to
pause and retrieve additional words to complete a pending instruction, as
CISC processors sometimes do.

The reduced complexity of instructions simplifies instruction processing.
RISC chips have little if any of the microcode instructions. Simple memory
addressing methods allow quicker access to main memory on the system board.
RISC methods do not include complex calculations and multiple memory ref
erences, as the most sophisticated CISC methods do. Limited memory-access
instructions reduce instruction size and simplify instruction processing. RISC
instructions that manipulate data never get or put data in memory, but many
CISC instructions combine those functions. An abundance of registers lessens
memory access. Compared with CISC programs, RISC programs keep more
interim results on the chip in registers and fewer off the chip in main memory.

To gain further understanding of these characteristic traits, refer to Chap. 2.

1.6.2 601 microprocessor

The 601-based machines target Intel's market-601s are for use in desktop
computers, portable systems, and low-end multiprocessor systems. The Power
PC 601-based machines are not the first RISC systems to specifically target
Intel's desktop hold, but they are the most formidable challengers. Designing
competitive systems is not the problem; the problem is winning market share
from the firmly entrenched Intel and getting independent software vendors to
port their applications to PowerPCs.

However, the benefits inherent in RISC architectures make the superscalar
601 the microprocessor of choice. The 601 microprocessor (see Fig. 1.4 for an
illustration) includes the following highlights:

• Capable of running at 50 to 80 MHz

• Bridge support for POWER applications

• Multiprocessing enablement

• Concurrent fixed-point, floating-point, and branch instruction execution
capability

• 32-KB unified eight-way associative cache

1.6.3 603 microprocessor

The 603 microprocessor offers higher performance at low power level. The 7.4-
by 11.5-mm chip features on-chip 8-KB instruction and data caches coupled to
a high-performance 32/64-bit system bus. Peak instruction rates of three

I
I
I
I

Introduction 9

l
Instruction

J queue/dispatch

I
l l

Branch& Fixed- Floating-
prefetch unit point unit point unit

J
l

Memory
management

unit

~ Instruction & data cache

[Memory queue
J

1
[Bus interface

1
~--!
Figure 1.4 601 microprocessor architecture. (Copied with permission from
IBM.)

instructions per cycle, with power levels below 3 W at 3.3 V, offer unparalleled
notebook and portable computer performance at the current time.

The 603 microprocessor, a low-cost, low-power processor primarily for lap
tops and low-end desktop systems, includes the following highlights (see Fig.
1.5 for an illustration):

• Capable of running at 75 MHz

• Low-cost uniprocessor

• Nap and Doze mode for power saving

• 8-KB I-cache and 8-KB D-cache

1.6.4 604 microprocessor

The 604 microprocessor architecture uses superscalar design techniques to
achieve high performance. It is a medium-sized, relatively high-performance

10 Introduction

r---1
I I
I I
I I Control unit
I I
I I
I I
I I
I I
I I l l I

Load/
Floating-Integer unit .__, store .__,

unit point unit

I
Data cache Instruction cache 1---

l I
Bus interface

I Address Joata

System bus

Figure 1.5 603 microprocessor architecture. (Copied with permission from
IBM.)

part for mainstream personal computers, midrange workstations, and multi
processor systems, including the following highlights (see Fig. 1.6 for an illus
tration):

• Capable of running at 100 MHz

• Multiprocessing support

• Fast L2 secondary cache

• 16-KB I-cache and 16-KB D-cache

1.6.5 620 microprocessor

The 620 microprocessor includes .5-µm CMOS process technology and an
embedded secondary cache controller. The 620 microprocessor implements full
64-bit high performance for high-end workstations, servers, and multiproces
sor systems including the following highlights (see Fig. 1. 7 for an illustration):

• Capable of running at 150 MHz

• Single-chip modular 64-bit implementation

Introduction 11

l Control unit L
I

l I I 1
Three General Load/ Floating-

integer 1--1
purpose

I-- store 1--1
Floating-

1--1
point

units register unit point unit register
rename rename

z
Data cache Instruction cache

l l
Bus interface

l Address I Data

System bus

---~

Figure 1.6 604 microprocessor architecture. (Copied with permission from
IBM.)

• Dual fixed-point and floating-point execution units

• Multiprocessing support

• On-chip support for secondary cache

• Eight-way associative cache

• 32-KB I-cache and 32-KB D-cache

1.6.6 601 versus the Pentium

1.6.6.1 Market comparison

Intel's Pentium is primarily for use in servers and high-end microcomputers.
Most of the first Pentium models are on existing systems with Pentiums added
via daughter- or processor cards. Pentium is fully compatible with the existing
suite of x86 software.

An advantage of Intel's Pentium is user acceptance-users have consistently
been moving from 8080 to i286, i286 to i386, and then i386 to i486. A second
primary advantage is the enormous x86 user base-Intel's x86 is the premier
processor architecture in the mainstream computing market, with over 50,000

12 Introduction

r--

I
I
I
I
I
I
I
I
I
I

_f
L

l l
Three

General

integer I--
purpose
register

units rename

Data cache

l

L2 interface /

Control unit L
J

I
Load/

Floating-
........., store, Floating-

I--
point

point unit register
unit rename

L
Instruction cache

l
Bus interface

Address Data

System bus
I I l __ J

Figure 1. 7 620 microprocessor architecture. (Copied with permission from
IBM.)

supported DOS and Windows software products, and an installed base of over
one hundred million PCs. Power PC is a brand new technology. It is difficult to
convince users to risk their heavy investments in software for moves to emerg
ing platforms.

1.6.6.2 Architecture comparison

Both the PowerPC and Pentium are based on superscalar architectures. The
PowerPC 601 has three pipelined execution units capable of issuing and retir
ing three 32-bit instructions per clock cycle. These instructions include one
integer, one floating-point, and a branch processing unit which can be either
integer or floating-point. Each of Pentium's two instruction pipelines includes
an arithmetic logic unit, address-generation circuitry, and data cache inter
face. The Pentium's dual pipelines can only process two integer or one floating
point instruction per clock cycle. This two-to-three difference in instructions
per clock cycle represents a definite performance advantage for the PowerPC
601.

Although both the Power PC and Pentium include an on-chip cache, the Pen
tium's 8-KB data and 8-KB instruction cache is only half of that offered by the
PowerPC 601's 32-KB, 8-way, set-associative, physically addressed unified

Introduction 13

cache. The on-chip cache memory acts as a buffer for instructions and data that
can be accessed at high speeds to avoid loading another segment from the
slower main memory. A larger cache translates into a smaller wait state, which
improves overall processor performance.

The Pentium's floating-point processor, a redesigned version of that found in
the i486, is still much slower than the PowerPC 60l's. Its eight-stage pipeline
can execute only one floating-point operation per clock cycle. Not surprisingly,
the Pentium's 56.9 SPECfp92 is almost 40 percent slower than the 81 SPEC
int92 found on the PowerPC 601.

The PowerPC is based on a .65-µm complementary metal oxide semiconduc
tor (CMOS) technology, while Intel's Pentium uses .8-µm BiCMOS (a combina
tion of bipolar logic and CMOS) technology. The PowerPC 601 has four levels
of metal wiring compared with three on the Pentium. See Fig. 1.8 for an
overview of the 601 versus Pentium architecture.

The PowerOpen alliance is counting on most microcomputer buyers finding
that Intel's i486 processor family can still meet their price and performance
requirements and that the Power PC support of multiple operating systems and
applications running on high-performance hardware is worth the investment.

1.7 SYSTEM ENVIRONMENT OVERVIEW

While PowerPC and PowerOpen directly impact the workstation market, soft
ware running via emulation or natively on the PowerPC promises to break the
x86 software applications barrier. Among the most important developments,
SunSoft's Windows translator, Wabi, opens the Windows x86 application
library to UNIX or any other software or hardware environment. Users can
choose to work in either an OSF/Motif user environment, a Macintosh user
environment, or a combination of both. Once in the Macintosh window, users
interact with the Macintosh look and feel. Using the multifinder, users can cut
and paste between the Macintosh window environment and virtually any other

Features PowerPC601 Pentium

Millions of transistors 2.8 3.1
Size of die 11x11 mm 16.6x17.6 mm
Power consumption 9W at 66MHz; 3.6-V 16W at 66MHz; 5-V
Cache size 32-K combined cache 8-K Instr; 8-K Data
Maximum instr/cycle 3 2
User registers 32 GPRs; 32 FPRs 8 GPRs; FP Stack
Architecture RISC CISC/RISC
Technology CMOS Bi-CMOS
Instruction format Fixed length Variable length
Data bus; Address bus 64 bits; 32 bits 64 bits; 32 bits

Figure 1.8 601 versus Pentium. (Copied with permission from IBM.)

14 Introduction

X-client application on the PowerOpen system. Refer to Chap. 5 for details con
cerning the PowerPC end-user environment and to Chap. 6 to learn more
about the PowerPC operating environments.

The PowerOpen Association's promise of promoting application availability
is primarily achievable by the wide range of operating systems that are Pow
erPC functional. The PowerPC platform supports numerous 32-bit operating
systems (which must be based on the PowerOpen base operating system ABI
specification), including AIX, Solaris, Windows NT, Workplace OS, and Tali
gent. All the operating systems can run DOS and Windows under emulation,
giving users an unending range of applications to choose from.

1. 7 .1 PowerOpen ABI and API

The application binary interface (ABI) defines the structure of the application
as it was in the PowerOpen Environment. This includes such key definitions as
loading and linking, conventions, object formats, the execution environment,
networking infrastructure, and installation and packaging information. The
PowerOpen ABI technical support is provided by a PowerOpen Cross Platform
Support Center which answers questions or concerns about general ABI com
pliance issues and provides a specific company contact for platform-unique
support.

The application programming interface (API) defines the set of system calls,
library function, header files, commands, and utilities that an application
developer is allowed to use to develop a compliant application. The PowerOpen
API supports the following industry standards: XPG4, XNFS, XTI, and X11R5.
The networking API provides the commands and parameter-passing defini
tions for intersystem operations. Both stream and sockets are used for net
working in the PowerOpen Environment. TCPI/IP (discussed in Chap. 10) is
one of the underlying protocols used for networking. See Fig. 1.9 for an illus
tration of how the ABI and API are aligned.

1.7.2 International language support

API

ABI

Hardware

The PowerOpen Environment includes international language support. Char
acter representation is handled by both UNIX's standard 7-bit ASCII, and also

PowerOpen API (XPG4, XTI,
XNFS, X11R5)

Operating systems; networking;
install; extensions

PowerPC architecture

Figure 1.9 API and ABI alignment. (Copied with permission from IBM.)

Introduction 15

by the ISO 8859 family of 8-bit extended ASCII code sets, as well as the de
facto standard PC code set (IBM-850). For Asian languages, character encod
ings are supported by the Extended UNIX Code set, including support for Chi
nese, Japanese, and Korean characters.

Language customs and conventions support is provided for Chinese,
English, French, German, Japanese, and Spanish. The same tools that are
used to develop the language support are provided as a part of the environ
ment, allowing further customization of customs and conventions. Software
developers may also choose to develop additional language support.

1.8 SUMMARY

The PowerOpen alliance has promised to deliver support for binary applica
tions running across PowerOpen compliant systems from multiple vendors. In
an unprecedented effort in the UNIX environment, the evolution of the
PowerOpen effort has geared up to encompass the hardware, system, software,
and applications interfaces required to run both UNIX and Macintosh applica
tions supporting any look and feel a user wants.

The delivery of the 601 and 603, with the 604 and 620 follow-ons, launches
the PowerOpen alliance directly into the PC desktop mass market with an eye
on the low-end laptop and high-end multiprocessing markets as well. IBM's
formation of the Power Personal Systems Division to exclusively sell PowerPC
based systems competes directly with the marketing of IBM's own Intel-based
systems highlighting IBM's commitment to the PowerPC products.

Power PC compatible technology includes Apple's System 7, IBM's OS/2, DOS
via emulation, AIX with the Macintosh GUI, Solaris, NetWare, Taligent, and
Wabi, to name a few. The PowerOpen Environment allows users to work simul
taneously with graphical applications based on a Macintosh- or OSF/Motif
based interface. Supported by the seven suppliers and backed by the POWER
architecture, users have access to a large base of applications running on
proven hardware--users have a standards-driven, open environment today.

Part

1
Hardware

Chapter

2

RISC Technology

The PowerPC features a RISC-based design. This chapter introduces some of
the key concepts behind RISC architecture. The traditional notion of RISC
was to create a machine with a very fast clock cycle that can process instruc
tions at the rate of one per cycle. To achieve this, the idea of pipelining became
a default trait of this type of architecture, since it is a natural technique to
achieve the goal of executing one instruction per machine cycle. Understand
ing the underlying philosophy of RISC-based designs of microprocessors
makes the study of Power PC concepts, facilities, and design more useful and
interesting.

2.1 EVOLUTION OF RISC

The first seeds for RISC were sown as a result of the development of a tele
phone switching network in the midseventies. Maybe nobody remembers the
telephone switching network anymore, but the progress made on the design of
a prototype machine at that time was taken up as a research project at the
T. J. Watson Institute. The low cost-performance ratio of this prototype proces
sor was exceedingly encouraging and, as a result, a system called the IBM 801
emerged. The term "RISC" was coined shortly thereafter by a University of
California research group that was working on a similar project; their system
was called the RISC I. So, when the IBM 801 was further refined and released
commercially as the IBM RT, it was appropriately called a RISC-based system.
Although the 801 design could handle one instruction per cycle for specialized
code, the rate fell short when used with general purpose code. In the continu-

19

20 Hardware

ing effort to smooth out the delays caused by storage access and conditional
branching with additional pipelines, a new design was formulated. Referred to
as the AMERICA architecture, this new design made use of three semi
autonomous processors. The design of AMERICA later evolved into RIOS,
which came to be known as the POWER RISC System/6000 in the commercial
world. Very shortly after its introduction into the market, the success of the
POWER architecture led researchers and designers to develop a more flexible
and cost-effective derivative of it. The result was the PowerPC.

The architectural heritage of the PowerPC-based systems allows all the
existing software applications for POWER architecture to work this new sys
tem, while taking additional advantage of Power PC's new features.

2.2 RISC CHARACTERISTICS

What makes a machine a RISC machine is a set of its characteristic traits.
They all have fixed-size instructions. For performance reasons, instructions
are typically implemented in the hardware instead of being microcoded. A
desired side effect of doing this is that it frees up a lot of the chip area, which
would have been used to store the microcode. Also, a generous supply of gen
eral purpose registers was inherent to the design of RISC machines, since their
architectural design called for instructions to be brought in to registers before
being able to process them. These traits are further elaborated in the ensuing
sections.

Most of the commercially available RISC processors, such as the HP Preci
sion Architecture, Sun SPARC, DEC Alpha, and IBM POWER, incorporate
a few hybrid features from non-RISC types of architectures, marrying the
best of available technologies into one microprocessor to deliver optimal cost
performance ratio. An example of this is the implementation of the integer
division logic in the POWER architecture in microcode instead of in the hard
ware. Note that there is nothing wrong with doing this, but the term RISC is
thereby weakened from a purist's perspective on RISC architecture.

2.2.1 Load-store architecture

Load-store computer architecture is also referred to as a register-register archi
tecture or RR architecture. In this class of machines, operands and results are
retrieved indirectly from the main memory through the use of a large number
of scalar or vector registers. In contrast to an RR architecture, there is a class of
architectures called the storage-storage architecture in which source operands'
intermediate and final results are retrieved directly from the main memory.
The shorter notation for this class of machines is SS architecture. RISC
machines are of the RR type of architecture.

2.2.2 Fixed-length instructions

Fixed-length instructions make it easier for the machine to decode them. By
having simple instructions, it may take more instructions to do the same piece

RISC Technology 21

of work, but exploiting the fast, less-expensive memory devices makes it possi
ble to execute a larger piece of code (a larger number of instructions) faster.
This is consistent with the age-old principle: KISS (keep it simple, stupid!).

2.2.3 Hardwired control

RISC machines feature hardwired controlled instructions, as opposed to
microcoded instructions. Contrary to the idea of using more complex (and often
variable-length) instruction sets to maximize the semantic efficiency of the
processor, simple instructions are found to be easier for the machine to inter
pret. Also, the work done in executing fewer instructions is not necessarily
less, as there is microcode interpretation time involved; therefore, implement
ing instructions in hardware-although more expensive-offer a better perfor
mance equation in terms of execution time. Adding to this is the free-up of the
microstore area on the chip and elimination of the time needed to interpret the
microcode.

2.2.4 Fused instructions

Hardwired control also results in a higher degree of accuracy. This facilitated
the implementation of fused or compound instructions in the design of the
POWER and PowerPC architectures. By making certain frequently occurring
instructions execute atomically as fused instructions, the gain on clock cycle
savings is doubled.

Consider a basic floating-point multiply and floating-point add operation on
a classical machine (Fig. 2.1). Now consider how a greater accuracy could be
achieved. If the two steps of the classical multiplier and adder can be combined
into a fused implementation of a multiply-add logic, an accuracy gain is
achieved by reducing six connections to four connections in the instruction
logic. Figure 2.2 explains this notion by showing how the fused multiply-add
logic is actually implemented. In terms of accuracy, the reduction from six con
nections to four in the fused multiply-add instruction logic of the floating-point
unit of the PowerPC is consistent with the RISC philosophy of producing heav
ily optimized units to tackle the most frequently required functions.

Classical FP multiply Classical FP add

1. Add exponents.

2. Multiply significands.

3. Normalize

4. Round.

1. Subtract exponents.

2. Shift significand with smaller exponent to right
by the difference of exponents.

3. Add significands. Larger exponent is the expo
nent of the result.

4. Normalize.

5. Round.

Figure 2.1 Comparison of steps involved in a classical floating-point multipli
cation and a floating-point addition.

22 Hardware

1 2 3 4 1 2 3

AxB C+R AxB+C

Round Round/normalize Round/normalize

5 6 4

Figure 2.2 Implementation of classical multiplier and adder versus fused mul
tiply-add implementation.

2.2.5 Pipelined Implementation

Instruction execution in the PowerPC takes place in a way that is quite differ
ent from the classical machines that executed one instruction at a time with
a program counter pointing to the instruction currently being executed. A
pipelined architecture of the three execution units of PowerPC adds a new set
of complexities to its instruction execution mechanism while yielding a high
degree of performance. In order to best explain the functions, features, and
benefits of pipelining, we first explain its basic design philosophy, followed by
the implementation.

The basic principle of pipelining is quite natural; it is not specific to com
puter technology. The notion of a pipeline can be conceptualized using quite
a few real-world examples. The first analogy can be made with petroleum
pipelines where a sequence of hydrocarbons is pumped through a pipeline of
treatment phases. The last product may be entering the pipeline before the
first product has been removed from the terminus. Our second analogy is made
with an assembly line in an industrial plant. Consider automobile manufac
turing plants that build cars using an assembly line consisting of phases. The
initial phase could be molding of the chassis itself, with the final phase being
assembly of the engine. The last automobile may very well enter the pipeline
before the first vehicle has been removed from the terminus. In both analogies,
notice the fact that the net yield will be directly proportional to the number of
phases of the pipeline or the assembly line.

The most significant contribution of pipelining is that it provides a way to
start a new task before an existing one has been completed. Hence, the com
pletion rate (or throughput) is not dependent on the total processing time, but
rather on how soon a new process can be introduced in the pipeline.

To further illustrate this concept, consider the aspects of a general purpose
processing operatfon. Figure 2.3 depicts a (simplified) sequential process done
step-by-step over a period of time. Assume that three distinct stages in the
automobile assembly are molding of the chassis, painting of the frame, and

RISC Technology 23

Chassis ~ I I

Paint ~///,1

Wheels fta
Figure 2.3 Pipelined execution for a three-stage automobile assembly line.

installation of the engine. If each stage takes one time unit, then the total time
for the processing will be three units. So, to build three automobiles it will take
nine time units.

To perform the same process using pipelining technique, imagine a continu
ous stream of the jobs going through the three stages. In this case, each hori
zontal row in Fig. 2.3 represents the time history for one job. Each vertical
column represents the activity at a specific time. Note that up to three inde
pendent jobs may be active at any time in our example. Hence, to build three
automobiles using this three-stage pipelining technique, it will definitely take
less time than the nine time units that were required in the earlier case using
sequential processing.

Relating the general ideas presented in Fig. 2.3 to computer design is quite
straightforward. Formulate an analogy between executing a single computer
instruction and the sequence of the automobile assembly line. Instruction
processing is done in a number of pipeline stages. Each phase of computer
instruction processing is conceptualized as a stage in the pipeline. Typically,
an instruction is first fetched, then decoded, and subsequently executed.
So, the three pipeline stages (1) instruction fetch, (2) instruction decode, and
(3) instruction execute, can be correlated to the three stages in the assembly
pipeline.

Figure 2.4 illustrates the analogy by substituting the names of the stages. In
a specific sense, each of the three instruction-processing stages is significant.
The instruction fetch stage consists of obtaining a copy of the instruction from
memory when the program begins. The instruction decode stage comprises
examining the instructions and initializing the control signals that are
required to execute the instruction in the subsequent step. The instruction exe
cution essentially executes the specific instruction in the processor. In this
generic example, we assume that each of the stages takes one time unit to com
plete. This time unit is referred to as a clock cycle throughout the remaining
discussion.

24 Hardware

1 2 3 4

Fetch ii iz i3 i4

Decode ii i2 i3

Execute ii i2

Figure 2.4 Pipelined execution of computer instructions.

In the normal mode of operation, the first stage of the pipeline will continu
ously fetch instructions, the second stage will decode instructions, and the
third stage will continue to execute the decoded instructions. If you were to
have a sequential stream of instructions, this pipelining scheme would be ade
quate to handle a program execution efficiently. But in the real world almost
all programs have branches that lead to nonsequential execution of the code.
When a conditional branch instruction is detected, its address cannot be deter
mined until it is executed. If the branch falls through, the sequence of instruc
tions will remain unaffected. However, if the branch is taken and it happens to
be a forward branch, its address will remain unresolved. AB a result, we will
end up with a hole in the pipeline. The holes are also known as bubbles.

Figure 2.5 illustrates a simplified instruction stream that contains a forward
branch instruction. Its pictorial representation is portrayed in Fig. 2.6, illus
trating the temporal positioning of bubbles in a two-stage pipeline. Iftoo many
of these bubbles were to develop in the pipeline, the performance penalties
(encountered by the idle clock cycles) will increase significantly. Although we
can guarantee the proper execution of the instruction stream in the pipeline by
interlocking the execution of the conditional branch fetched by the first stage
such that no further fetches take place until the execution of the branch
instruction in the next stage, we are penalized by acute performance costs. The
method guarantees proper instruction execution, but it wastes too many clock
cycles. So, one has to be able to deal with these bubbles in the pipeline in a rea
sonable way.

Dealing with bubbles in a pipeline requires an understanding of the fact that
when a processing stage lies idle on a particular cycle due to the lack of avail
able input rather than to a potential future collision, the idleness eventually
propagates through the entire pipeline and deteriorates the overall pipeline
efficiency. Some techniques exist to handle this problem.

A delayed branching technique that is suitable to sustain high performance
is discussed first. It is based on the attempt to manipulate the sequence of

Fetch

Execute

io
ii
Branch
iz

in Branch target
in+l

Figure 2.5 Simplified instruc
tion stream containing a for
ward branch instruction.

RISC Technology 25

instructions in the instruction stream at compilation time. An optimizing com
piler is used to perform this feat. Figure 2. 7 shows how a normal instruction
stream is altered by realigning an independent instruction to execute immedi
ately following the branch instruction fetch. The branch instruction is now fol
lowed by an independent instruction, i 2, so that the execution phase following
the decode phase always remain full, as shown in Fig. 2.8. The machine
attempts to execute one instruction per cycle, and the delay in the execution
pipeline is two or more stages. This technique is well suited for early RISC pro
cessors. When the depth of the pipeline gets longer, it becomes exceedingly dif
ficult to find independent instructions that can fill up all the bubbles. As a
general rule of thumb, this technique becomes difficult to design for pipelines
with a depth of three or greater.

Another way to sustain high performance is a branch prediction technique,
in which the branch target is guessed in advance and the instructions in the
pipeline are marked provisionally. After the outcome has been resolved, the

1 2 3 4 5

ii Branch in in+l

i1 Branch in

Figure 2.6 A two-stage pipeline showing bubbles generated by an instruction
stream.

26 Hardware

1 2

Fetch i1 Branch

Execute i1

3

iz

Branch

i1
Branch

...

i2 (always executed)
i3

in in+l

i2 in
...

Figure 2.7 Delayed branching technique that allows a potential bubble to be
replaced with an independent instruction that can be made to execute.

temporarily tagged results are made permanent if the guessed outcome was
true; these tentative results are purged if the guessed outcome was false and
the operations in progress are all canceled. The algorithm looks like this:

guess branch outcome
proceed on that path

if prediction correct
< no bubble in the pipeline >

if prediction incorrect
partially executed instruction cancelled
< bubble left in the pipeline >

It is obvious that this technique is very effective when the guesses are correct
most of the time.

In the FOR or DO/WHILE statements in programming languages, backward
branches are usually loops. All loop-closing branches are taken except for the
last one. So, for these types of branches, if one were to predict that the default
case is the branch not taken, then the prediction will be true for all except the
last case. In the last iteration of the loop, the value of the loop control variable
will render the comparison logic false. Due to the availability of a branch-and
count instruction in some of the RISC machines' instruction sets, counting the
number of loops becomes easy. The process becomes challenging when branch

Shift branch up

(done by compiler)

ii
Branch
i2 (always executed)
i3

Figure 2.8 Outcome of realigned instruction processing
(1) with and (2) without delayed branching technique.

RISC Technology 27

instructions are used differently by different software, particularly when gen
erated by different compilers. The IFtrHEN statements that generate forward
branches allow a guess to be correct only 50 percent of the time. Moreover, the
branch address of a jump instruction might be the normal-case branch pro
duced by one compiler and might be the exceptional-case branch in the code
produced by Ej.D.Other compiler. Which case should the hardware guess to be the
normal case when deciding whether the branch is to be taken or not? With a
random chance of guessing the outcome, there is the probability of being right
half of the time.

Of the two methods of dealing with bubbles in the pipeline, the PowerPC
makes use of the branch prediction method. For FOR and DO/WHILE loop con
structs, it assumes that a branch is not taken. Due to the availability of its
branch-and-count instruction, counting the number of loops is easy. So, for a
loop of 100 iterations, all but the last iteration will succeed, thereby yielding a
99:1 success ratio. For IFtrHEN constructs, the outcome has a 50:50 chance of
succeeding. In real life, the instruction mix usually consists of three different
types of branches: (1) unconditional, (2) loop-closing, and (3) forward branches.
With all three branches occurring in equivalent proportions, it is imperative
that the unconditional branches occur a third of the time, the loop-closing
branches occur a third of the time, and the forward branches occur for the
remaining third of the time. As the probability of the untaken forward
branches is 0.5, the total likelihood that the branches will be predicted cor
rectly is Ya+ Ya+(~* Ya)=%. So, only 76 of the branches (taken conditionals) may
waste cycles and cause bubbles in the pipeline.

2.3 SUPERSCALAR IMPLEMENTATION

The availability of three independent execution units in the PowerPC that are
capable of concurrent execution of instructions enables the processor to handle
an instruction set so rich that it could execute multiple instructions in a single
clock cycle. In addition to this parallelism, each of the individual execution
units is pipelined, implying that they have the ability to process multiple

28 Hardware

instructions simultaneously. This implementation, i.e., the ability to process
multiple instructions in a single clock cycle, is referred to as superscalar archi
tecture. Available VLSI and CMOS technology is exploited to provide this fea
ture-parallel execution of up to five operations per clock cycle-with the ideal
instruction mix.

2.4 RISC/CISC TRADEOFFS

One of the typical characteristics of RISC machines is their simplified instruc
tion set. This notion that a large set of simplified instructions can deliver a
higher degree of throughput is best explained with the help of a practical
everyday-life scenario. Consider an option to build a wall five feet high using
either (1) a large number of small bricks or (2) fewer large concrete blocks. The
amount of work done in each case is quite different. The larger blocks would be
slower to carry (performance deterioration) but there would be fewer to fetch
(performance amelioration). Likewise, the small bricks would be much faster
to haul (performance amelioration), but there would be more to fetch (perfor
mance deterioration). Now if the rate at which the fetches are performed can
be increased, then the latter method will end up being faster.

This is exactly how the performance metrics for RISC and CISC machines
compare. The pros for CISC machines may be that there are fewer instructions
to fetch and the size of the object code is smaller. But the cons are the time
required to decode variable-length complex instructions and the slower rate of
execution for its microcoded instructions. Table 2.1 describes some of the typi
cal RISC and CISC characteristics.

2.5 EFFECT OF PIPELINING

A pipelined architecture for the three independent execution units of Power PC
has produced a significant yield from the instruction processing rate. In the
earlier sections, the concept of a pipeline was explained in that a yield was
shown to be directly proportional to the number of phases of the pipeline. If the
pipeline can be kept full for any of the execution units, then every clock cycle
will result in multiple instruction processing. The pipeline gains occur not only

TABLE 2.1 Typical RISC and CISC Characteristics

Number of instructions
Number of address modes
Instruction formats
Average cycles per instruction
Memory access
Registers
Control unit
Instruction decode area

RISC

under 100
1-2
1-2

near 1
load/store only

32+
hardwired

10%

CISC

over 200
5-20
3+

3-10
most CPU ops

2-16
microcoded
over 50%

RISC Technology 29

within an execution unit, but also result from the cumulative effect of multiple
execution units processing as many instructions as their pipeline's depth will
allow, per clock cycle.

2.6 REDUCED INSTRUCTION SET CYCLES

Most of the performance leverage resides in making optimal tradeoffs between
instruction set functionality (the power of each instruction) and the clock
cycles per instruction. Hence, the design of the PowerPC instruction set
focuses on optimal functions per instruction. Minimizing the cycles per
instruction (CPI) and reducing the path length as much as possible demon
strates how the net program execution time is affected.

The overall program execution time is really the number of instructions exe
cuted (path length), each using the given number of clock cycles that the archi
tecture supports, while the cycle time is fixed for the given architecture. Thus,
the performance metric can be expressed as

program execution time = path length x CPI x cycle time

All three variables contribute equally to the overall performance of the sys
tem. Note that the first two variables, the path length and cycles per instruc
tion (CPI), can be controlled, while the third variable will remain constant for
a given architecture. Minimizing the first two variables augments the overall
performance. Having understood that this performance leverage results from
making optimal tradeoffs between instruction set functionality and cycles per
instruction, it is easier to appreciate how the Power PC architecture is defined
with as much function per instruction as possible. This reveals the parallelism
that exists among the three independent execution units of this machine with
the compilers, in order to harness the machine's ability to handle multiple
operations per clock cycle.

2.7 SUMMARY

The advent of RISC architecture marks a new milestone in the field of hard
ware technology for computer systems. The architectural traits of a RISC
design have their obvious benefits-so much so that RISC-based architecture
has now reached the level of desktop machines from its original application in
research and engineering environments. With the best cost-versus-performance
ratio, RISC-based personal computers are on their way to becoming the de facto
standard for the forthcoming decade.

The biggest advantage of RISC-based architecture is that we now have the
speed-matching peripheral components to take advantage of the raw perfor
mance that the processor is capable of delivering. Because the RISC architec
ture of the Power PC is scalable, it emerges as a possible leader, not only in the
entry-level market, but also in the high-end computing arena. In the last few
years it has been proven that megahertz is no longer the key criterion for

30 Hardware

speed, since a 20-MHz RISC-based processor (whether it is IBM's POWER or
Hewlett Packard's HP-PA) is able to deliver a completely different level of per
formance than an Intel 80386 running at the same 20 MHz. The parallelism
achieved through the presence of multiple independent execution units propels
the effective performance of the machine above and beyond what was previ
ously characterized as CPU throughput. In time, this parallelism, will be
expanded into massively parallel systems, which would then reach a new
zenith of achievable performance.

Chapter

3

Architectural Definition

This chapter focuses on the architectural definition of the Power PC design and
explains how the layered architecture defines varying degrees of compatibility,
from an instruction set level, to a virtual environment level, all the way up to
the operating environment level.

The domain of 32-bit and 64-bit architectural definition includes the instruc
tion set, addressing modes, and all register and memory locations. The imple
mentation, which is the actual hardware structure, logic design, and data path
organization of a particular embodiment of the architecture, is discussed else
where in the book.

3.1 EVOLUTIONARY ROAD MAP OF PowerPC

When the POWER architecture was introduced in the form of the RISC Sys
tem/6000 product line in 1990, its design philosophy, based on functionally par
titioned execution units to separate the functions of program flow, remained
unique and state of the art. It was unique because it attempted to minimize the
overall throughput of a task instead of executing instructions at the fastest
possible clock rate. It was state of the art because it delivered the best perfor
mance in the marketplace at that time. There were two implementations of the
POWER architecture offered-namely, the RS 1.0 and the RS .9. The RS 1.0
implementation had a wider memory bus, a bigger data cache, and a dedicated
instruction cache reload bus, while the RS .9 featured a memory bus half as
wide, a half-size data cache, and a shared-instruction cache reload bus.

31

32 Hardware

A year later, the subsequent generation of POWER processors offered a single
chip version of the silicon, in which the execution units were integrated on a
single chip, along with the cache and memory management unit. This imple
mentation was referred to as the POWER RSC (refer to Fig. 3.1).

620 1995

604 1994

Power PC

603 1993

601 1992

RSC 1991

RSl 1990

RS.9 1990

'---y---./
Architectures Implementations

Figure 3.1 Evolutionary road map.

Architectural Definition 33

The third generation of POWER processors arrived with the advent of the
PowerPC architecture. Although a slimmer and trimmer derivative of the
POWER architecture, the PowerPC featured a more flexible design, while pre
serving full binary compatibility. The initial implementations consisted of four
offerings, the 601, 603, 604, and 620.*

The common reference architecture that defines the design of PowerPC is
specified at three different levels. From a bottom-up perspective, they are clas
sified as follows:

• Instruction set architecture

• Virtual environment architecture

• Operating environment architecture

The lowest level, the instruction set architecture, refers to the programmer
visible instruction set. It defines the base user-level instruction set, user-level
registers, data types, and addressing modes. Note that the components defined
at this level form the fundamental elements of any software program, specify
ing what registers can be used and how address references can be made. As
this is a baseline definition, it is legitimate for each implementation of the
PowerPC architecture to add its own set of features. The next level, which is
the virtual environment architecture, describes the semantics of the storage
models that software programs have to adhere to. It defines some of the addi
tional instructions, explains the timing facilities, and covers the memory and
cache models as seen by the application programmer. The third level, the oper
ating environment architecture, describes the structure of memory manage
ment, supervisory level registers, and the exception model. It goes into the
details of privileged facilities not available to the application programmer,
which include interrupt and exception handling mechanisms. Viewing this
hierarchical definition, each higher level can be thought of as a superset of the
previous level (Fig. 3.2). In the three following sections, the multilayer Pow
erPC architecture is unveiled layer by layer.

There are two computational modes supported by the PowerPC architecture:
a 32-bit implementation and a 64-bit implementation. This scalable design
provides a major benefit in terms of a structured road map for future enhance
ment with the same underlying architecture.

• 32-bit implementation

• 64-bit implementation

3.2 THE PowerPC INSTRUCTION SET

The complete instruction set is provided in Table 3.1.

* Their unique implementations are explained elsewhere in the book.

34 Hardware

Operating environment architecture

Virtual environment architecture

Instruction
set architecture

~]
Figure 3.2 The common reference architecture of PowerPC illustrated as lay
ered definitions to emphasize the varying degrees of compatibility from an
application perspective.

3.3 THE 32-BIT PowerPC ARCHITECTURE

In this discussion of the 32-bit computational mode, all three layers have been
described individually, providing a full view of the 32-bit architecture.

3.3.1 Instruction set architecture

All registers are 32 bits long, as they were in the original POWER architecture
(the only exceptions are the floating-point registers, which are 64-bits for double
precision computations).

3.3.1.1 Processor implementation

The processor implementation consists of three independent execution units.
The first is referred to as the branch processing unit because it processes the
branch instructions. The second execution unit is called the fixed-point unit or
the instruction unit. It executes fixed-point instructions and the load-and-store
instructions. The third processor, the floating-point unit, is tasked with pro
cessing the floating-point instructions.

The data flow in the logical processing model (Fig. 3.3) for the PowerPC is
essentially identical to that of the POWER architecture. Instructions are
fetched from storage and fed into the branch processing unit, which in turn
dispatches the nonbranch (fixed-point and floating-point instructions) to the
fixed-point and floating-point units for subsequent processing. Together, the
execution units orchestrate the code execution for the Power PC processor.

A point to be noted here is that the PowerPC architecture does not include
any specific VO definitions.

The processor implements three classes of instructions: branch instructions,
fixed-point instructions, and floating-point instructions. All instructions are

TABLE 3.1 PowerPC Instruction Set

Add
Add carrying
Add extended
Add immediate

Instruction

Add immediate carrying
Add immediate carrying and record
Add immediate shifted
Add to minus one extended
Add to zero extended
AND
AND with complement
AND immediate
AND immediate shifted
Branch
Branch conditional
Branch conditional to count register
Branch conditional to link register
Compare
Compare immediate
Compare logical
Compare logical immediate
Count leading zeros doubleword
Count leading zeros word
Condition register AND
Condition register AND with complement
Condition register equivalent
Condition register NAND
Condition register NOR
Condition register OR
Condition register OR with complement
Condition register XOR
Data cache block flush
Data cache block invalidate
Data cache block store
Data cache block touch
Data cache block touch for store
Data cache block set to zero
Divide doubleword
Divide doubleword unsigned
Divide word
Divide word unsigned
External control in word indexed
External control out word indexed
Enforce in-order execution ofl/O
Equivalent
Extend sign byte
Extend sign halfword
Extend sign word
Floating absolute value
Floating add
Floating add single
Floating convert from integer doubleword
Floating compare ordered
Floating compare unordered

Mnemonic

add[o][-]
addc[o][-]
adde[o][-]
addi
addic
addic.
ad dis
addme[o][-]
addze[o][-]
and[-]
andc[-]
an di.
an dis.
b[l][a]
bc[l][a]
bcctr[l]
bclr[l]
cmp
cm pi
cm pl
cmpli
cntlzd[-]
cntlzw[-]
er and
crandc
creqv
crnand
crnor
cror
crorc
crxor
dcbf
dcbi
dcbst
debt
dcbtst
dcbz
divd[o][-]
divdu[o][-]
divw[o][-]
divwu[o][-]
eciwx
ecowx
eieio
eqv[-]
extsb[-]
extsh[-]
extsw[-]
fabs[-]
fadd[-]
fadds[-]
fcfid[-]
fem po
fcmpu

Architectural Definition 35

36 Hardware

TABLE 3.1 PowerPC Instruction Set (Continued)

Instruction

Floating convert to integer doubleword
Floating convert to integer doubleword with round

toward Zero
Floating convert to integer word
Floating convert to integer word with round toward

zero
Floating divide
Floating divide single
Floating multiply-add
Floating multiply-add single
Floating move register
Floating multiply-subtract
Floating multiply-subtract single
Floating multiply
Floating multiply single
Floating negative absolute value
Floating negate
Floating negative multiply-add
Floating negative multiply-add single
Floating negative multiply-subtract
Floating negative multiply-subtract single
Floating reciprocal estimate single
Floating round to single-precision
Floating reciprocal square root estimate
Floating select
Floating square root
Floating square root single
Floating subtract
Floating subtract single
Instruction cache block invalidate
Instruction synchronize
Load byte and zero
Load byte and zero with update
Load byte and zero with update indexed
Load byte and zero indexed
Load doubleword
Load doubleword and reserve indexed
Load doubleword with update
Load doubleword with update indexed
Load doubleword indexed
Load floating-point double
Load floating-point double with update
Load floating-point double with update indexed
Load floating-point double indexed
Load floating-point single
Load floating-point single with update
Load floating-point single with update indexed
Load floating-point single indexed
Load halfword algebraic
Load halfword algebraic with update
Load halfword algebraic with update indexed
Load halfword algebraic indexed
Load halfword byte-reverse indexed
Load halfword and zero

Mnemonic

fetid[-]
fctidz[-]

fctiw[-]
fctiwz[-]

fdiv[-]
fdivs[-]
fmadd[-]
fmadds[-]
fmr[-]
fmsub[-]
fmsubs[-]
fmul[-]
fmuls[-]
fnabs[-]
fneg[-]
fnmadd[-]
fnmadds[-]
fnmsub[-]
fnmsubs[-]
fres[-]
frsp[-]
frsqrte[-]
fsel[-]
fsqrt[-]
fsqrts[-]
fsub[-]
fsubs[-]
icbi
isync
lbz
lbzu
lbzux
lbzx
Id
ldarx
ldu
ldux
ldx
lfd
lfdu
lfdux
lfdx
Ifs
lfsu
lfsux
lfsx
Iha
lhau
lhaux
lhax
lhbrx
lhz

TABLE 3.1 PowerPC Instruction Set (Continued)

Instruction

Load halfword and zero with update
Load halfword and zero with update indexed
Load halfword and zero indexed
Load multiple word
Load string word immediate
Load string word indexed
Load word algebraic
Load word and reserve indexed
Load word algebraic with update indexed
Load word algebraic indexed
Load word byte-reverse indexed
Load word and zero
Load word and zero with update
Load word and zero with update indexed
Load word and zero indexed
Move condition register field
Move to condition register from FPSCR
Move to condition register from XER
Move from condition register
Move from FPSCR
Move from machine state register
Move from special purpose register
Move from segment register
Move from segment register indirect
Move from time base
Move to condition register fields
Move to FPSCR bit 0
Move to FPSCR bit 1
Move to FPSCR fields
Move to FPSCR field immediate
Move to machine state register
Move to special purpose register
Move to segment register
Move to segment register indirect
Multiply high doubleword
Multiply high doubleword unsigned
Multiply high word
Multiply high word unsigned
Multiply low doubleword
Multiply low immediate
Multiply low word
NAND
Negate
NOR
OR
OR with complement
OR immediate
OR immediate shifted
Return from interrupt
Rotate left doubleword then clear left
Rotate left doubleword then clear right
Rotate left doubleword immediate then clear
Rotate left doubleword immediate then clear left
Rotate left doubleword immediate then clear right

Mnemonic

lhzu
lhzux
lhzx
lmw
lswi
lswx
lwa
lwarx
lwaux
lwax
lwbrx
lwz
lwzu
lwzux
lwzx
mcrf
mcrfs
mcrxr
mfcr
mffs[-]
mfmsr
mfspr
mfsr
mfsrin
mftb
mtcrf
mtfsbO[-]
mtfsbl[-]
mtfsft-l
mtfsfi[-]
mtmsr
mtspr
mtsr
mtsrin
mulhd[-]
mulhdu[-]
mulhw[-]
mulhwu[-]
mulld[o][-]
mulli
mullw[o][-]
nand[-]
neg[o][-]
nor[-]
or[-]
ore[-]
ori
oris
rfi
rldcl[-]
rldcr[-]
rldic[-]
rldicl[-]
rldicr[-]

Architectural Definition 37

38 Hardware

TABLE 3.1 PowerPC Instruction Set (Continued)

Instruction

Rotate left doubleword immediate then mask insert
Rotate left word immediate then mask insert
Rotate left word immediate then AND with mask
Rotate left word then AND with mask
System call
SLB invalidate all
SLB invalidate entry
Shift left doubleword
Shift left word
Shift right algebraic doubleword
S~ft right algebraic doubleword immediate
Shift right algebraic word
Shift right algebraic word immediate
Shift right doubleword
Shift right word
Store byte
Store byte with update
Store byte with update indexed
Store byte indexed
Store doubleword
Store doubleword conditional indexed
Store doubleword with update
Store doubleword indexed with update
Store doubleword indexed
Store floating-point double
Store floating-point double with update
Store floating-point double with update indexed
Store floating-point double indexed
Store floating-point as integer word indexed
Store floating-point single
Store floating-point single with update
Store floating-point single with update indexed
Store floating-point single indexed
Store halfword
Store halfword byte-reverse indexed
Store halfword with update
Store halfword with update indexed
Store halfword indexed
Store multiple word
Store string word immediate
Store string word indexed
Store word
Store word byte-reverse indexed
Store word conditional indexed
Store word with update
Store word with update indexed
Store word indexed
Subtract from
Subtract from carrying
Subtract from extended
Subtract from immediate carrying
Subtract from minus one extended
Subtract from zero extended
Synchronize

Mnemonic

rldimi[-]
rlwimi[-]
rlwinm[-]
rlwnm[-]
SC
slbia
slbie
sld[-]
slw[-]
srad[-]
sradi[-]
sraw[-]
srawi[-]
srd[-]
srw[-]
stb
st bu
stbux
st bx
std
std ex.
stdu
stdux
stdx
stfd
stfdu
stfdux
stfdx
stfiwx
stfs
stfsu
stfsux
stfsx
sth
sthbrx
sthu
sthux
sthx
stmw
stswi
stswx
stw
stwbrx
stwcx.
stwu
stwux
stwx
subffo][-]
subfc[o][-]
subfe[o][-]
subfic
subfme[o][-]
subfze[o][-]
sync

Architectural Definition 39

TABLE 3.1 PowerPC Instruction Set (Continued)

Instruction Mnemonic

Trap doubleword td
Trap doubleword immediate
TLB invalidate all

tdi
tlbia
tlbie
tlbsync
tw

TLB invalidate entry
TLB synchronize
Trap word
Trap word immediate
XOR

twi
xor[-]
xori
xoris

XOR immediate
XOR immediate shifted

four bytes long and word-aligned. As stated earlier in Chap. 2, the PowerPC
architecture does not have any computational instructions that modify stor
age, since it follows a load/store architectural model. So, values must be loaded
into registers before they can be manipulated. To facilitate this, a large num
ber of user-level registers are available.

3.3.1.2 User-level registers

The branch processing unit contains several registers. The first one is called
· the link register (LR), and it contains the return address from subroutine calls.
A set link bit in the branch instruction causes the next instruction address to
be placed in the link register. The second register is called the count register
(CTR), and it is used for counting loop iterations. It treats loop iterations as
conditional branches, and causes all enumerated loops to be closed with a
branch-and-count instruction, which, in turn, causes the CTR to decrement by
one each time and branch on the resulting value. This naturally augments the
performance level for code execution by a significant extent. The third register,
the condition register (CR), enhances the traditional branch handling mecha
nism by providing register-level speed to resolve the results. It is worthwhile to
mention here that the aforementioned set of registers in the branch processing
unit form the baseline for the instruction-set-level architecture. As we build up
the architectural definition layer by layer, the additional set of privileged reg
isters that are not visible to the application programmers will be introduced.
They are explained later in the definition of the operating environment archi
tecture of Power PC.

The fixed-point unit's main feature consists of the 32 general purpose regis
ters (referred to hereafter as GPRs), which can be used by the application pro
grammer. There is also an exception register (}CER), which deals with the carry
and overflow flags and contains byte count and comparison byte used by string
instructions. As in the case of the branch processing unit, there are additional
registers in the fixed-point unit that are outside the scope of the PowerPC's
instruction set architecture.

The floating-point unit contains 32 floating point registers, which are
referred to as the FPRs. These are used as source and destination operands

40 Hardware

Branch
processing

Fixed-point Floating-point
processing processing

1 Data to/from storage

•
~

Storage

Figure 3.3 Common logical processing model for PowerPC and POWER archi
tectures.

Architectural Definition 41

for all the arithmetic floating-point operations and their results. There is
also a floating-point status and control register (FPSCR) which handles float
ing-point exceptions and records status resulting from the floating-point
operations.

Figure 3.4 presents all the pertinent user-level registers in the three execu
tion units of Power PC's 32-bit implementation.

3.3.1.3 New instructions for 32-bit implementations only

It should be noted that most of the instructions are available in both the 32-
and the 64-bit modes, although their implementation-specific formats differ.
Those instructions that are provided only for 32-bit implementations are ille
gal in 64-bit implementations. Currently, there is only one instruction defined
(see Table 3.2) that is exclusive to the 32-bit implementation.

3.3.2 Virtual environment architecture

The concept of storage was oversimplified in the earlier section (instruction set
architecture), where it was expressed as an array of bytes ranging from 0 to
(232 - 1) for its 32-bit implementation. In this section, the idea of storage (i.e.,
memory) is further expanded in light of how it is viewed by the virtual envi
ronment architecture.

The storage model encompasses cache(s), virtual storage, and shared storage
multiprocessors.

3.3.2.1 Cache model

The typical implementation of a cache consists of a partitioned set of lines,
where each set contains one or more lines. Lines (also referred to as blocks) are
the basic unit of transfer between the cache itself and the main memory. The
organization of the cache (refer to Fig. 3.5 for an example) is determined by
three parameters: the number of sets in the cache N, the number oflines pres
ent in a set K (i.e., the associativity of the cache), and the size of each line L.
The cache size is given by the formula

cache size =L xKxN

The PowerPC architecture does not specify any rigid cache organization in
terms of its associativity and size. Although many flexible implementations
are allowed, a programmer is expected to assume that there are separate
instruction and data caches in the system. This type of model, which uses two
separate memory spaces to allow simultaneous access of data and instructions,

TABLE 3.2 New Instructions for 32-Bit Implementations Only

mfsrin Move from segment register indirect

42 Hardware

32-bit implementations r-------------------------------------

LR

0 31 ·a =
bll

.!3
"' CTR "' <1)
t.>
0 ..

31 c.
.c: 0
g
<II ..

CR
j;Q

0 31

f-------------------------------------
• •

0 31

XER

0 31

f------------------------------------

FPR31

~ FPRl
·a

FPRO =
~

·S
0 63 ~

·~
FPS CR

0
Ii:;

0 31

Figure 3.4 User-level registers in the three execution units
in a 32-bit implementation: LR = link register; CTR =
count register; CR= condition register; GPR0-31 =general
purpose registers; XER = exception register; FPR0-31 =
floating-point general purpose registers; FPSCR =floating
point status and control register.

Set

1

2

N

Architectural Definition 43

is commonly referred to as the Harvard architectural model (refer to Fig. 3.6).
Some PowerPC implementations, like the 601, use a unified instruction and
data cache (also referred to as a Von Neumann machine model) to gain the flex
ibility of allowing data and instructions to take variable amounts of the same
space at the cost of compromising half the bandwidth of the Harvard architec
ture. The cache management instructions still depend on the Harvard cache
model.

Tag Line Tag Line

Figure 3.5 Organization of a two-way set-associative cache with N sets.

44 Hardware

Address Address

Instruction
Processor

Data
cache cache

Data Data

Harvard architecture

Address

Processor Unified

Data data
and

instruction
cache

Von Neumann machines

Figure 3.6 Harvard architecture versus Von Neumann machines.

3.3.2.2 Memory model

One of the fundamental requirements of an architecture such as the Power PC
that supports a shared storage multiprocessor is being able to support atomic
updates to memory locations-i.e., the ability to perform the access to its
entirety without any visible fragmentation. Atomic accesses are thus serial
ized, each occurring to its entirety even though no particular order is specified.
Atomic stores to a location are said to be coherent* if they are serialized in
some order, and no (other) processor is able to notice any subset of those stores
as occurring in a conflicting order. If the location were to be accessed atomi
cally and coherently by multiple processors, then for any given processor, the
sequence of values loaded from the location during any interval of time would
form a subsequence of the sequence of values the location held during that
interval. In other words, a processor can never load a "newer" value first, fol
lowed by an "older" value.

There are two memory access modes. When a page is accessed in the memory
coherence-required mode, every store to a location is serialized with all stores
to that location by all other processors (that access the location coherently).

* Memory coherence refers to the ability of all processors to "see" the latest update to a location
in memory, regardless of caching.

Architectural Definition 45

This is implemented by an ownership protocol that ensures that, at most, one
processor stores to that location at a time. On the other hand, when a page
is accessed in the memory-coherence-not-required mode for software perfor
mance reasons, the processor does not impose any storage coherence. However,
it is the software's responsibility to ensure that relevant cache management
instructions have been executed to put the memory in a consistent state.

The PowerPC architecture specifies that the memory coherence is managed
in terms oflogical units called coherence blocks, whose size is implementation
dependent.

In terms of shared memory support, different instances of the same or sepa
rate program(s) running on one or more processors may share memory. The
basic unit of memory sharing is blocks. Also, a location may be accessed using
different effective addresses. This is a noteworthy trait, since by using this fea
ture (called address aliasing), each application can be assigned separate access
privileges to aliased pages.

A weakly consistent storage model specified in PowerPC offers an increased
performance level by allowing the processor to run very fast for most storage
accesses. However, the tradeoff is that the programs have to guarantee proper
placement of the ordering or synchronization instructions. In this architecture,
the actual order in which a storage access is issued, executed, and viewed could
be completely different. This is a strategy for sharing resources (storage in this
case) among multiple participants, and is referred to as storage access ordering.

3.3.3 Operating environment architecture

At this level of abstraction, the PowerPC architecture encompasses the super
visory level registers, explains the exception model, and details the structure
of memory management.

3.3.3.1 Privileged registers

In PowerPC architecture, there are several privileged registers that are not vis
ible to the application programmers. These registers control special attributes
of the machine.

The branch processing unit features a register called the machine state reg
ister (MSR) that describes the state of the processor by describing system
states like user/supervisory mode, interrupt enable/disable mode, and address
relocate on/off status.

The next set of registers worth mentioning is the set of machine status save
and restore registers (SRR). The SRRO and SRRl save the old value of MSR
and the address of the interrupted instruction in the event of an interrupt.
Upon returning from the interrupt, they restore the MSR value and resume
execution from the interrupted instruction.

Finally, there is a processor version register (PVR), which identifies the ver
sion and revision model of the microprocessor. Unlike the rest of the privileged
registers, the PVR is a read-only register and is always 32-bit (even in the 64-
bit implementation, discussed later).

46 Hardware

The fixed-point unit's list of privileged registers consists of a data address
register (DAR), which specifies the address of storage access that caused a data
storage or alignment interrupt.* Another privileged register, the data storage
interrupt status register (DSISR) defines the actual cause of the data storage
or alignment interrupt. Note that the DSISR is always 32-bit (even in the 64-
bit implementation). In addition, there are four 32-bit special purpose registers
(SPRGO to SPRG3) provided for the operating system's use.

The floating-point unit contains a special register called the floating-point
status and control register (FPSCR). It enables/disables floating-point excep
tions and records status resulting from the floating-point operations, which is
required by the IEEE 754 standard.

Figure 3.7 shows the pertinent privileged registers within the three execu
tion units of Power PC's 32-bit implementation.

3.3.3.2 Interrupt handling strategies

A standard interrupt processing and exception handling model is provided by
the PowerPC architecture to allow change of state under unusual conditions.

There are several types of interrupts supported by the PowerPC architec
ture. Some of the interrupts are caused by the system (system-caused inter
rupts), while the others may be caused by instructions (instruction-caused
interrupts).

Upon the generation of an interrupt, control is transferred to a set of privi
leged routines called interrupt handlers. The interrupt handler routine ser
vices the interrupt and, after completion, may transfer control back to the
software to continue execution. In general, information (such as the instruc
tion that should be executed after control is returned to the original program
and the contents of the machine state register) is saved to the save/restore reg
isters (SRRO and SRRl), program control passes from user to supervisory
level, and the software continues execution at an address predetermined from
each interrupt.

Occurrence of instruction-caused interrupts in classical machines is not a
new concept, since the program counter is able to maintain a pointer to the pre
cise location of the instruction stream. But on the PowerPC, there is no pro
gram counter per se. With three separate independent execution units,
processing a single instruction stream makes recovering from interrupts not a
simple task. Recognize that since different instructions are executed by differ
ent (and independent) execution units, the instruction stream can be left frag
mented. So, this fragmented state requires the architecture to provide a means
for reconstructing the instruction stream around the point of the interrupt so
that the postinterrupt processing code can recreate the sequential state. Due

* A data storage interrupt is a hardware interrupt that occurs because of a nontranslatable vir
tual address access, a storage protection violation, an access denial owing to data locking, or an 1/0
exception condition. An alignment interrupt is another type of hardware interrupt that occurs
when the effective address generated by a load or a store violates a storage boundary.

32-bit implementations 1------------------------------------
MSR

0 31 ·a =
bl)

SRRl .8
"' "'

SRRO ~
P..

31
fj
= 0
f!
~

PVR

0 31

f-------------------------------------
DAR

0 31

DSISR ·a
= ...

0 31 ·§
'i"

• "O
11)

• SPRG3 :><

• ii:;

SPRGO

0 31

f-------------------------------------

FPS CR

0 31

Figure 3.7 Privileged registers in the three execution units
of the Power PC microprocessor: MSR =machine state reg
ister; SRRO and SRRl = save and restore registers; PVR =
processor version register; DAR = data address register;
DSISR =data storage interrupt status registers; SPRG0-3
= special purpose registers; FPSCR = floating-point status
and control register.

Architectural Definition 47

48 Hardware

to the pipeline complexity of the machine organization, architecting a method
for handling interrupts in an imprecise manner gets costly and complex. There
fore, the architecture has to enforce generation of precise interrupts. Despite
the fact that out-of-order instruction dispatches are supported by the architec
ture and interrupt conditions are recognized out of order, interrupts are han
dled in program order. Except for a catastrophic condition causing a system
reset or machine check interrupt, only one exception is handled at a time. If, for
example, a single instruction encounters multiple interrupt conditions, those
conditions would be encountered sequentially. Following the processing of an
interrupt, the instruction execution will continue until the occurrence of the
next interrupt condition. In this way, recognizing and handling interrupt condi
tions sequentially guarantees that interrupts are recoverable.

3.3.3.3 Types of interrupts

The following types of interrupts are specified in the Power PC architecture:

• System reset

• Machine check

• Data storage

• Instruction storage

•External

•Alignment

•Program

• Decrementer

• System call

•Trace

• Floating-point assist

• Floating-point unavailable

The system reset interrupt causes a system reset (causing the system to reboot),
which can happen in the event of an unlikely catastrophic failure. Sometimes
byzantine anomalies may cause the system to enter a checkstop state* by issu
ing what is called a machine check interrupt. A data storage interrupt is
another type of hardware interrupt that occurs because of a nontranslatable
virtual address access, a storage protection violation, an access denial owing to
data locking, or an 1/0 exception condition. An instruction storage interrupt
occurs because of a nontranslatable effective address, a storage protection vio
lation by a fetch access, or fetch access owing to a direct-store segment. An

* This is a special state in which instruction processing is suspended till the processor has been
reset. It freezes the contents of registers in order to aid in problem determination.

Architectural Definition 49

external interrupt is generated when there is no higher priority exception. An
alignment interrupt occurs when the effective address generated by a load or a
store, violates a storage boundary. There is a program interrupt that can occur
when the system encounters an illegal instruction, a privileged instruction, or
a trap instruction. A decrementer interrupt occurs when no higher priority
interrupt exists and the decrementer register has completed decrementing. A
system call interrupt is generated whenever there is a system call instruction
encountered in the program. Afioating-point unavailable interrupt takes place
whenever a floating-point instruction is executed and the floating point unit is
disabled. A trace interrupt, if implemented, is caused in the event of a branch
and-trap instruction or from single-stepping through instructions. A fioating
point assist interrupt, if implemented, renders a degree of software assistance
to implemented floating-point instructions that require assistance in order to
complete operations such as those involving denormalized numbers, and unim
plemented floating-point instructions that are not optional.

Note that, except for the system reset, machine check, external, and decre
menter interrupts, all other types of interrupts are regarded as instruction
generated interrupts.

3.3.3.4 Structure of the memory management model

The memory model and its management policies form the infrastructure for
any program's execution. Software programs would have to reference storage
using an effective address that is computed by the processor. This effective
address is translated to a real address, as per a set of address translation rules,
and, consequently, accesses are made to location(s) in memory.

In order to best understand the memory management scheme, a set of
parameters needs to be explained. Some of these parameters are consistent
across the architecture, while some depend on the implementation (32-bit or
64-bit) of the architecture.

The design of the memory layout in PowerPC architecture uses a segmented
scheme, with a set of special registers called the segment registers (SRs). There
are 16 SRs that divide the total addressable memory into segments, each of
which is 256 MB in size. Segments can be of two types: (1) Ordinary storage
segment (or regular storage segment) and (2) Direct-store segment.

Direct-store segments are meant for access to an external address space like
an 1/0 bus or device, while the ordinary storage segments refer to internal
address space in memory.

The basic unit of addressing real memory is referred to as a page frame or
simply a page, the size of which is 4 KB. Since the 256-MB segment is accessed
in 4-KB chunks, it can be also be viewed as ifthere are 64,000 (216) pages that
a single segment can access. The rest of the description for the memory model
is implementation-specific, i.e., it varies with 32-bit versus 64-bit implementa
tions, summarized in Fig. 3.8.

In this discussion of 32-bit implementations, the maximum real memory size
is limited to 4 GB. Segments totalling 224 can be accessed, with an effective
address range of 228 and virtual address range of 252•

50 Hardware

32-bit 64-bit

Maximum real memory size 4GB 16EB

Number of addressable segments 224 2s2

Effective address range real 232 264
relocate 228

Virtual address range 2s2 280

Figure 3.8 Comparison of memory model parameters that are implementation
specific.

3.3.3.5 Address translation concept

An address generated by the processor (which is referred to as an effective
address) must undergo a translation step before being able to access an actual
location. The address translation scheme in PowerPC comprises two available
approaches that proceed in parallel (for performance reasons). The two simul
taneously progressing translations are referred to as segmented address trans
lation and block address translation. Typically, one of them ought to succeed,
otherwise, a storage exception will be encountered. If both succeed, then the
block address translation takes precedence.

• Segmented address translation

• Block address translation

When a segmented address translation occurs, it accesses either an ordinary
storage segment or a direct-storage segment. Depending on which type of seg
ment is accessed, this address is either converted into a real address through
an intermediate step and then used to access storage, or it is converted directly
into an 1/0 address and passed to the 1/0 subsystem for further action. When
a block address translation occurs, the effective address is directly converted
into a real address, and then used to access storage. Figure 3.9 further illus
trates these various modes of storage access.

In both cases, a set of four privileged bits, called the mode control bits, are
used to assign a context-specific meaning to the effective address (such as
determining whether a coherence is required for the address).

3.3.3.6 Segmented address translation

The steps consist of starting with a 32-bit effective address and generating a
52-bit virtual address, to get access to a 32-bit real address. Refer to Fig. 3.10
for an overview of the address translation process, and to understand how the
32-bit segment registers play a strategic role in the translation.

Segmented
address translation

Virtual
address translation

Real address

Effective address

1/0 address

Figure 3.9 Types of address translations in PowerPC.

Architectural Definition 51

Block
address translation

Real address

For segmented address translation, out of the 32 bits of the address, 4 bits
(0-3) are used to index into one of the 16 segment registers to yield a virtual
segment ID. A 24-bit segment ID, when concatenated with 16 additional bits
(4-19) of the effective address, yields a 40-bit virtual page number within that
segment. This in turn, is indexed into a structure called the page table to yield
a 20-bit real page number. When the offset, i.e. the remaining 12 bits (20-31),
from the effective address is concatenated to this real page number, the result
is the corresponding real address that can access the storage. Figure 3.11 illus
trates the steps involved in the process of translating the effective address into
a virtual address.

This segmented address translation scheme is used for the 32-bit implemen
tation only. For 64-bit architectures, the scheme is significantly different.

3.3.3. 7 Block address translation

Typically, the smallest unit used to map ranges of virtual addresses into real
memory is a page (where a page is 4 KB in size). The dynamics of program exe-

52 Hardware

32-rut EA 1 ... _se_g_l.__ __ P_a_g_e ____ __ B_y_te __ _.

-.-

Select

Segment registers

24 16 12

52-bitVA Virtual segment ID Page Byte

Lookup

Page table

20 12

32-bit RA Real page number Byte

Figure 3.10 Address translation in 32-bit implementation.

cution typically references a selected set of pages periodically. The block
address translation feature allows clusters of pages to be accommodated onto
contiguous areas of real memory. In this way, it augments the performance of
accesses to nonpageable areas of memory. In general, candidates for this type
of access are memory mapped files or large arrays of numerical data.

The newly introduced block address paradigm imposes some specifications,
the principal one being that the variable size of a block must be boundary
aligned, and consist of a minimum of 32 pages (128 KB) to a maximum of
65,536 pages (256 MB) with a finite set of allowable intermediate sizes. As is
apparent by now, the block address translation areas are all in powers of 2.

The size of, as well as access to, a block address translation (BAT) area is
controlled by a set of special purpose registers called the BAT registers. The
mechanisms for interpreting the block length and address are essentially the
same for the 32-bit and the 64-bit implementations; it is the number of bits in
each field that is different. Figure 3.12 illustrates how a pair of BAT registers
is used to interpret information in the 32-bit implementations.

Architectural Definition 53

32-bit effective addressl '-__ s_R ____P_a_g_e _ __._ __ s_y_te _ __,

8 3 4 19 28 31

0 ,:I
16segment

registers

15

Segment registers
32 bits 24

VSID

0 1 2 8 31

+ 24 16 12

52-bit virtual address VSID Page Byte

- Virtual page number -

Figure 3.11 Translation of 32-bit effective address to virtual address.

3.4 THE 64-BIT PowerPC ARCHITECTURE

In this discussion for the 64-bit computational mode, all three layers are
described individually, enabling an overall focus on the 64-bit architecture in
its entirety, without having to cross-reference the 32-bit counterpart.

3.4.1 Instruction set architecture

The two computational modes (32-bit and 64-bit) supported by the PowerPC
architecture provide not only a scalable design but also a structured road map
for future enhancement using the same underlying architecture.

The 64-bit implementation features all 64-bit registers, with effective
addresses of 64 bits long. The 64-bit implementations have two modes of
operation:

• a 64-bit mode

• a 32-bit mode

54 Hardware

4 11 17

EA

Mask

BL

11 17

4 11

BPRN

Or

4 11 t 17

RA

Figure 3.12 Block address translation in 32-bit implementation.

These modes control how the effective address is interpreted and how status
bits are set.

The two computational modes view storage merely as an array of bytes,
where each byte is identified by its index, called its address.

3.4.1.1 Processor implementation

The processor implementation consists of three independent execution units.
The first of the three execution units is referred to as the branch processing
unit, because it processes the branch instructions. The second execution unit is
called the fixed-point unit or the instruction unit, and it executes fixed-point
instructions and the load-and-store instructions. The third processor, which is
the fl,oating-point unit, processes the floating-point instructions.

Architectural Definition 55

The data flow in the logical processing model (Fig. 3.3) for the PowerPC is
essentially identical to the POWER architecture. Instructions are fetched from
storage and fed into the branch processing unit, which in turn dispatches the
nonbranch (fixed-point and floating-point) instructions to the fixed-point and
floating-point units for subsequent processing. Together, the execution units
orchestrate the code execution for the PowerPC processor.

Note that the PowerPC architecture does not include any specific 1/0 defi
nitions.

The processor implements three classes of instructions:

• branch instructions

• fixed-point instructions

• floating-point instructions

The PowerPC architecture does not have any computational instructions that
modify storage, since it follows a load/store architectural model. So, values
must be loaded into registers before they can be manipulated. To facilitate this,
a large number of user-level registers are available.

3.4.1.2 User-level registers

The branch processing unit contains several registers. The first one is the link
register (LR), which is a 64-bit register and contains the return address from
subroutine calls. A set link bit in the branch instruction causes the next
instruction address to be placed in the link register. The second register, called
the count register (CTR), is used for counting loop iterations. It treats loop iter
ations as conditional branches, and causes all enumerated loops to be closed
with a branch-and-count instruction. This causes the 64-bit count register to
decrement by one each time and branch on the resulting value. This naturally
augments the performance level for code execution to a significant extent. The
third register, the condition register (CR), is a 32-bit register. It enhances the
traditional branch handling mechanism by providing register-level speed to
resolve the results. It is worth mentioning here that this set of registers in
the branch processing unit forms the baseline for the instruction-set-level
architecture. As the architectural definition is constructed layer by layer, the
additional set of privileged registers that are not visible to the application pro
grammers will be introduced. They are explained in the next architectural def
inition, the operating environment architecture of Power PC.

The fixed point unit's main feature consists of the thirty-two 64-bit general
purpose registers (GPRs), which can be used by the application programmer.
There is also an exception register (XER), which deals with the carry and over
flow flags, and contains byte count and comparison byte used by string instruc
tions. Note that the exception register is 32-bit. As in the case of the branch
processing unit, there are additional registers in the fixed-point unit that are
outside the scope of the Power PC's instruction set architecture, and are there
fore discussed in later sections.

56 Hardware

The floating-point unit contains thirty-two 64-bit floating point registers,
which are referred to as FPRs. These are used as source and destination
operands for all the arithmetic floating-point operations and their results.
There is also a floating-point status and control register (FPSCR) which han
dles floating-point exceptions and records status resulting from the floating
point operations. Note that the floating-point status and control register is
32-bit.

Figure 3.13 shows all the pertinent user-level registers within the three exe
cution units.

3.4.1.3 New Instructions for 64-blt Implementations only

It should be noted that most of the instructions are available in both the 64-
and the 32-bit modes, although their implementation-specific formats differ.
Those instructions that are provided only for 64-bit implementations are ille
gal in 32-bit implementations.

Refer to Table 3.3 for a list of instructions that are exclusive to the 64-bit
implementation.

3.4.2 Virtual environment architecture

The concept of storage was oversimplified in the earlier section (instruction set
architecture), where it was expressed as an array of bytes ranging from 0 to
(264 - 1) for its 64-bit implementations. In this section, the idea of storage
(memory) is further expanded with respect to the virtual environment archi
tecture.

The storage model includes cache(s), virtual storage, and shared storage
multiprocessors.

3.4.2.1 Cache model

The typical implementation of a cache consists of a partitioned set of lines,
where each set contains one or more lines. Lines (blocks) are the basic unit of
transfer between the cache itself and the main memory.

The PowerPC architecture does not specify any rigid cache organization in
terms of its associativity and size. Although many flexible implementations
are allowed, a programmer is expected to assume that there are separate
instruction and data caches in the system. In fact, the cache management
instructions depend on a Harvard cache model with separate caches for
instruction and data.

3.4.2.2 Memory model

There are two memory access modes. When a page is accessed in the memory
coherence-required mode, every store to a location is serialized with all stores
to that location by all other processors (that access the location coherently).
This is implemented by an ownership protocol that ensures that, at most, one
processor stores to that location at a time. On the other hand, when a page is

64-bit implementations

LR

0 63 ·s
::I
00
.9
"' "' CTR 1:l
0

0 63
0..
..c

<.)

c::
Cd

!XI
CR

0 31

L------------------------------------~

• • GPR31 •
GPRl

GPRO

0 63

XER

0 31

L------------------------------------~

__,__(_I __ FP_R1FP_R3_1 -~
FPRO ~

0 63

FPS CR

0 31

L------------------------------------
Figure 3.13 User-level registers in the three execution
units in a 64-bit implementation: LR =link register; CTR=
count register; CR= condition register; GPR0-31 =general
purpose registers; XER = exception register; FPR0-31 =
floating-point general purpose registers; FPSCR = float
ing-point status and control register.

Architectural Definition 57

58 Hardware

TABLE 3.3 New Instructions for 64-Blt lmplementatlons Only

cntlzd
divd
divdu
extsw
fcfid
fetid
fctidz
lwa
lwaux
!wax
Id
ldarx
!du
ldux
ldx
mulhd
mulhdu
mulld
rldcl
rider
rldic
rldicl
rldicr
rldimi
slbia
slbie
sld
srad
sradi
srd
std
stdcx
stdu
stdux
stdx
td
tdi

Count leading zeros doubleword
Divide doubleword
Divide doubleword unsigned
Extend sign word
Floating convert from integer doubleword
Floating convert to integer doubleword
Floating convert to integer doubleword with round toward zero
Load word algebraic
Load word algebraic with update indexed
Load word algebraic indexed
Load doubleword
Load doubleword and reserve indexed
Load doubleword with update
Load doubleword with update indexed
Load doubleword indexed
Multiply high doubleword
Multiply high doubleword unsigned
Multiply low doubleword
Rotate left doubleword then clear left
Rotate left doubleword then clear right
Rotate left doubleword immediate then clear
Rotate left doubleword immediate then clear left
Rotate left doubleword immediate then clear right
Rotate left doubleword immediate then mask insert
SLB invalidate all
SLB invalidate entry
Shift left doubleword
Shift right algebraic doubleword
Shift right algebraic doubleword immediate
Shift right doubleword
Store doubleword
Store doubleword conditional indexed
Store doubleword with update
Store doubleword with update indexed
Store doubleword indexed
Trap doubleword
Trap doubleword immediate

accessed in the memory-coherence-not-required mode for software perfor
mance reasons, the processor does not impose any storage coherence. However,
it is the software's responsibility to ensure that relevant cache management
instructions have been executed to put the memory in a consistent state.

The PowerPC architecture specifies that the memory coherence is managed
in terms oflogical units called coherence blocks, whose size is implementation
dependent.

In terms of shared memory support, different instances of the same or sepa
rate program(s) running on one or more processors may share memory. The
basic unit of memory sharing is blocks. Also, a location may be accessed using
different effective addresses. This is a noteworthy trait, since by using this fea
ture (called address aliasing), each application can be assigned separate access
privileges to aliased pages.

Architectural Definition 59

A weakly consistent memory model specified in Power PC offers an increased
performance level by allowing the processor to run very fast for most memory
accesses. However, the tradeoff is that the programs have to guarantee proper
placement of the ordering or synchronization instructions. In this architecture,
the actual order in which a memory access is issued, executed, and viewed
could be totally different. This is a strategy for sharing resources (memory in
this case) among multiple participants, and is referred to as memory or storage
access ordering.

3.4.3 Operating environment architecture

At this level of abstraction, the PowerPC architecture encompasses the super
visory level registers, explains the exception model, and details the structure
of memory management.

3.4.3.1 Privileged registers

In PowerPC architecture there are several privileged registers that are not vis
ible to the application programmers. These registers control special attributes
of the machine.

The branch processing unit features a register called the machine state reg
ister (MSR) that describes the state of the processor by describing system
states like user/supervisory mode, interrupt enable/disable mode, and address
relocate on/off status. The MSR is 64-bit. The next set of registers worth men
tioning is the set of machine status save-and-restore registers (SRR). The SRRO
and SRRl save the old value ofMSR and the address of the interrupted instruc
tion in the event of an interrupt. Upon returning from the interrupt, they
restore the MSR value and resume execution from the interrupted instruction.
Like the MSR, the SRRO and SRRl are 64-bit in case of 64-bit implementation
of the architecture. Last, there is a processor version register (PVR), which
identifies the version and revision model of the microprocessor. Unlike the rest
of the privileged registers, the PVR is a 32-bit read-only register.

The fixed point unit's list of privileged registers consists of a data address
register (DAR), which is 64-bit in size and specifies the address of storage
access that caused a data storage or alignment interrupt.* Another privileged
register, data storage interrupt status register (DSISR) defines the actual
cause of the data storage or alignment interrupt. The DSISR is a 32-bit regis
ter. In addition, there are four 64-bit special purpose registers (SPRG0-3) pro
vided for the operating system's use.

The floating point unit contains a special register called the floating-point
status and control register (FPSCR). It enables/disables floating-point excep-

* A data storage interrupt is a hardware interrupt that occurs because of a nontranslatable vir
tual address access, a storage protection violation, an access denial owing to data locking, or an 1/0
exception condition. An alignment interrupt is another type of hardware interrupt that occurs
when the effective address generated by a load or a store violates a storage boundary.

60 Hardware

tions and records status resulting from the floating-point operations, which is
required by the IEEE 7 54 standard.

Figure 3.14 presents a comprehensive view of all the pertinent privileged reg
isters within the three execution units of Power PC's 64-bit implementations.

3.4.3.2 Interrupt handling strategies

A standard interrupt processing and exception handling model is provided by
the PowerPC architecture to allow change of state under unusual conditions.
There are several types of interrupts supported by the Power PC architecture.
Some of the interrupts are caused by the system, while others may be caused
by instructions.

Upon the generation of an interrupt, control is transferred to a set of privi
leged routines called interrupt handlers. The interrupt handler routine ser
vices the interrupt and, after completion, may transfer control back to the
software to continue execution. In general, information (such as the instruc
tion that should be executed after control is returned to the original program
and the contents of the machine state register) is saved to the save/restore reg
isters (SRRO and SRRl), program control passes from user to supervisory
level, and the software continues execution at an address predetermined from
each interrupt.

Occurrence of instruction-caused interrupts in classical machines is not a
new concept, since the program counter is able to maintain a pointer to the pre
cise location of the instruction stream. But on the Power PC, there is no program
counter per se. With three separate independent execution units, processing a
single instruction stream makes recovering from interrupts not a simple task.
Recognize that since different instructions are executed by different (and inde
pendent) execution units, the instruction stream can be left fragmented. So,
this fragmented state requires the architecture to provide a means for recon
structing the instruction stream around the point of the interrupt so that the
postinterrupt processing code can recreate the sequential state. Due to the
pipeline complexity of the machine organization, architecting a method for han
dling interrupts in an imprecise manner gets costly and complex. Therefore, the
architecture has to enforce generation of precise interrupts. Despite the fact
that out-of-order instruction dispatches are supported by the architecture and
interrupt conditions are recognized out of order, interrupts are handled in pro
gram order. Except for a catastrophic condition causing a system reset or
machine check interrupt, only one exception is handled at a time. If, for exam
ple, a single instruction encounters multiple interrupt conditions, those condi
tions would be encountered sequentially. Following the processing of an
interrupt, the instruction execution will continue until the occurrence of the
next interrupt condition. In this way, recognizing and handling interrupt condi
tions sequentially guarantees that interrupts are recoverable.

3.4.3.3 Types of interrupts

The following types of interrupts are specified in the PowerPC architecture.

64-bit implementations

MSR

0 63 ·a ::s
Oil

SRRl .5
"' "' Q)
(.)

SRRO e
Cl.

'5
63 c:

"' 0
l:Q

PVR

0 31

L------------------------------------~

DAR

0 63
·a

DSISR
::s

= ·5
0 31 -6'

~
~

SPRG3 ii;

SPRGO

0 63

L------------------------------------~

FPS CR

0 31

_____________________________________ J

Figure 3.14 Privileged registers in the three execution units
of the Power PC microprocessor: MSR = machine state reg
ister; SRRO and SRRl = save and restore registers; PVR =
processor version register; DAR = data address register;
DSISR =data storage interrupt status register; SPRG0-3 =
special purpose registers; FPSCR = floating-point status
and control register.

Architectural Definition 61

62 Hardware

• System reset

• Machine check

• Data storage

• Instruction storage

•External

•Alignment

•Program

• Decrementer

• System call

•Trace

• Floating-point assist

• Floating-point unavailable

The system reset interrupt causes a system reset (causing the system to reboot),
which can happen in the event of an unlikely catastrophic failure. Sometimes
byzantine anomalies may cause the system to enter a checkstop state* by issu
ing what is called a machine check interrupt. A data storage interrupt is
another type of hardware interrupt that occurs because of a nontranslatable
virtual address access, a storage protection violation, an access denial owing to
data locking, or an 1/0 exception condition. An Instruction storage interrupt
occurs because of a nontranslatable effective address, a storage protection vio
lation by a fetch access, or fetch access owing to a direct-store segment. An
external interrupt is generated when there is no higher priority exception. An
alignment interrupt occurs when the effective address generated by a load or a
store violates a storage boundary. There is a program interrupt that can occur
when the system encounters an illegal instruction, a privileged instruction, or
a trap instruction. A decrementer interrupt occurs when no higher priority
interrupt exists and the decrementer register has completed decrementing. A
system call interrupt is generated whenever there is a system call instruction
encountered in the program. A floating-point unavailable interrupt takes place
whenever a floating-point instruction is executed and the floating point unit is
disabled. A trace interrupt, if implemented, is caused in the event of a branch
and-trap instruction or from single-stepping through instructions. A fioating
point assist interrupt, if implemented, renders a degree of software assistance
to implemented floating-point instructions that require assistance in order to
complete operations such as those involving denormalized numbers and unim
plemented floating-point instructions that are not optional.

* This is a special state in which instruction processing is suspended till the processor has been
reset. It freezes the contents of registers in order to aid in problem determination.

Architectural Definition 63

Note that, except for the system reset, machine check, external and decre
menter interrupts, all other types of interrupts are regarded as instruction
generated interrupts.

3.4.3.4 Structure of the memory management model

The memory model and its management policies form the infrastructure for
any program's execution. Software programs would have to reference storage
using an effective address that is computed by the processor. This effective
address is translated to a real address, as per a set of address translation rules,
and, consequently, accesses are made to location(s) in memory.

In order to best understand the memory management scheme, a set of
parameters needs to be explained. Some of these parameters are consistent
across the architecture, while some depend on the implementation (32-bit or
64-bit) of the architecture.

The design of the memory layout in PowerPC architecture uses a segmented
scheme, with a set of special registers called the segment registers (SRs). There
are 16 SRs that divide the total addressable memory into segments, each of
which is 256 MB in size. Segments can be of two types: (1) ordinary storage
segment (or regular storage segment) and (2) direct-store segment.

Direct-store segments are meant for access to an external address space like
an 1/0 bus or device, while the ordinary storage segments refer to internal
address space in memory.

The basic unit of addressing real memory is referred to as a page frame or
simply a page, the size of which is 4 KB. Since the 256-MB segment is accessed
in 4-KB chunks, it can be also be viewed as if there are 64,000 (216) pages that
a single segment can access. The rest of the description for the memory model
is implementation-specific, i.e., it varies with 32-bit versus 64-bit implementa
tions, summarized previously in Fig. 3.8.

In 64-bit implementations, the real memory size is extended to 16 EB. There
are 252 segments that can be accessed, with an effective address range of 264

and virtual address range of 280•

3.4.3.5 Address translation concept

An address generated by the processor (which is referred to as an effective
address) requires a translation step before being able to access an actual loca
tion. The address translation scheme in PowerPC comprises two available
approaches that proceed in parallel (for performance reasons). The two simul
taneously progressing translations are referred to as segmented address trans
lation and block address translation. Typically, one of them ought to succeed,
otherwise a storage exception will be encountered. If both succeed, then the
block address translation takes precedence.

• Segmented address translation

• Block address translation

64 Hardware

When a segmented address translation occurs, it accesses either an ordinary
storage segment or a direct-storage segment. Depending on which type of seg
ment is accessed, this address is either converted into a real address through
an intermediate step and then used to access storage, or it is converted directly
into an 1/0 address and passed to the 1/0 subsystem for further action. When
a block address translation occurs, the effective address is directly converted
into a real address and then used to access storage. Refer back to Fig. 3.10 to
see how these various modes of storage access operate.

In both cases, a set of four privileged bits, called the mode control bits, are
used to assign a context-specific meaning to the effective address (such as
determining whether a coherence is required for the address).

3.4.3.6 Segmented address translation

88-bitVA

The basic steps involve using a 64-bit effective address to generate an 80-bit
virtual address, to get access to a 64-bit real address. Refer to Fig. 3.15 for an
overview of the process.

36 16 12

Page Byte

Lookup

Segment table

52 , , 16 12

Virtual segment ID Page Byte

Lookup

Page table

52 12

64-bit RA Real page number Byte

Figure 3.15 Address translation in 64-bit implementation.

Architectural Definition 65

For segmented address translation, out of the 64 bits of the address, 36 bits
(0-35) are used to index into a data structure called the segment table (instead
of segment registers, as in the case of the 32-bit implementation), which yields
a 52-bit virtual segment ID. This virtual segment ID, when concatenated with
16 additional bits (36-51) of the effective address that are the page number
within the segment, forms the virtual page number. This virtual page number,
in turn, is indexed to the page table to yield a real page number. When the byte
offset-Le., the remaining 12 bits (52-63)-from the effective address is con
catenated to this real page number, the corresponding real address to access
the storage is generated. Figure 3.16 illustrates the steps involved in the pro
cess of translating the effective address into a virtual address.

3.4.3. 7 Comparative anatomy of page table and segment table

As stated in earlier, the scheme for segmented address translation in the case
of 64-bit implementation of Power PC varies quite a lot from that of the 32-bit

Address ...--------------.
space

register Real address of segment table

0

(ASR),__ _________ __.

52 5

Hash
function

7

64-bit real address of
segment table entry group

Segment table entry (STE)
36 16 bytes

ESID I I I I I I
35 63

80-bit virtual address

36 16 12

64-bit effective address ._I __ E_si_o __ ...___Pa_g_e__.._B_yt_e__,

31 35 36 51 52 63 -...---

Segment table

52

Virtual segment
ID (VSID)

0 51 63

52 16 12

VSID Page Byte

-----Virtual page number (VPN) ----•

Figure 3.16 Translation of 64-bit effective address to virtual address.

66 Hardware

implementation. These two structures, the page table and the segment table
involved in the 32-bit and 64-bit address translation schemes of the Power PC
processor, have similar as well as dissimilar traits.

A page table is a variable-sized data structure that defines the mapping
between virtual page numbers and real page numbers. The hashed page table
consists of a number of page table entry groups, each of which contains eight
page table entries. Conceptually, the page table is searched by the page reloca
tion hardware to translate every reference. So from a performance standpoint,
it makes sense for the hardware to maintain a translation lookaside buffer
(TLB) that holds the recently used page table entries and is searched prior to
scanning the page table.

A segment table is a one-page (each page is 4 KB in size) data structure that
defines the mapping between effective segment IDs and virtual segment IDs.
The table consists of 32 segment table entry groups, which in turn contain
eight 16-byte segment table entries, each of which maps one effective segment
ID to a virtual segment ID. Essentially, the segment table is searched by the
address relocation hardware to translate every reference. So from a perfor
mance standpoint, it is useful to have the hardware to maintain a segment
lookaside buffer (SLB) to hold the recently used segment table entries and be
searched prior to scanning the segment table. As a consequence, when the soft
ware alters the segment table, changes to corresponding segment table entries
must also be performed to maintain consistency of the SLB with the tables.

The architectural design of the TLBs and SLBs imposes no restriction on the
implementation. Thus, it is possible that the hardware may implement a sep
arate instruction TLB (I-TLB) and a data TLB (D-TLB) for increased perfor
mance. Similarly, the hardware can implement a separate instruction SLB
(I-SLB) and a data SLB (D-SLB). The performance implication-separating
out the caching area for dedicated instructions and data accesses-is that
selection conflicts are minimized.

3.4.3.8 Block address translation

'fypically, the smallest unit used to map ranges of virtual addresses into real
memory is a page (where a page is 4 KB in size). The dynamics of program exe
cution typically references a selected set of pages periodically. The block
address translation feature allows clusters of pages to be accommodated onto
contiguous areas of real memory. In this way, it augments the performance of
accesses to nonpageable areas of memory. In general, candidates for this type
of access are memory mapped files or large arrays of numerical data.

The newly introduced block address paradigm imposes some specifications,
the principal one being that the variable size of a block must be boundary
aligned, and contain a minimum of 32 pages (128 KB) to a maximum of 65,536
pages (256 MB) with a finite set of allowable intermediate sizes. Obviously, the
block address translation areas are all in the powers of 2.

The size of, as well as access to, a block address translation (BAT) area, is
controlled by a set of special purpose registers called the BAT registers. The
mechanisms for interpreting the block length and address are essentially the

Architectural Definition 67

same for the 32-bit and the 64-bit implementations; it is the number of bits in
each field that is different. Figure 3.17 illustrates how a pair of BAT registers
is used to interpret information in the 64-bit implementations.

3.5 TIMER FACILITIES

EA

BL

BPRN

RA

The timer facilities in Power PC consist of a 64-bit register called a time base
and a 32-bit register called the decrementer (shown in Fig. 3.18).

The time base and the decrementer are counters that are driven by an imple
mentation-specific frequency. Updates occur periodically, during which the
low-order bit is incremented in the time base. There is no specification stating
any correlation between the frequency at which the time base ought to be

36 11 17

Mask

Hl 17

36 11

OR

36 11 17

Figure 3.17 Block address translation in 64-bit implementation.

68 Hardware

0

0

Upper 32 bits of
time base

Decrementer

32

32

Lower 32 bits of
time base

63

Figure 3.18 Timer facilities in PowerPC.

updated and other frequencies like the CPU clock. In fact, the update fre
quency of the timer is under the control of the hardware.

3.6 SUMMARY

The multilayered architectural definition of PowerPC specifies varying
degrees of compatibility from an instruction set level, to the virtual environ
ment level, up to the operating environment level. The instruction set archi
tecture defines the base user-level instruction set, registers, and addressing
modes. The next level, the virtual environment architecture, describes the
semantics of the storage models and timing facilities. The subsequent level,
the operating environment architecture, discusses the structure of memory
management, special registers, and the exception model, while delving into the
details of privileged facilities such as interrupt handling mechanisms.

While the 32-bit and 64-bit implementations are alike in some respects, they
differ in numerous aspects as well. The two implementations have been dis
cussed separately in this chapter so that a cohesiveness can be maintained
with respect to the context of individual (32-bit and 64-bit) implementations
and the semantics of the architectural definitions.

Chapter

4

Processor Implementations

This chapter focuses on the implementations of the Power PC architecture. It dis
cusses the internal hardware structure, logic design, and data path organization
of the 601, 603, 604, and 620 microprocessors. In order to contrast the imple
mentations of Power PC, a brief discussion on the implementations of POWER is
also provided.* This is only appropriate because a Power PC implementation
resembles the POWER architecture in more respects than it differs from it. The
POWER architecture features a performance-crafted design, whereas the
PowerPC architecture emphasizes a more cost-effective and flexible approach.
In the discussion that follows, each implementation is described individually,
along with the supported design of cache layout and implementation-specific
features that are not imposed by the PowerPC architectural definition.

The implementations of PowerPC are discussed in their order of evolution
and appearance in the industry. This is done for the convenience of the reader,
as the evolving description of functions and features makes it easier to follow
and understand the trend.

4.1 UNDERSTANDING THE COMMON CPU MODEL

The Power PC microprocessor achieves an exceedingly high level of performance
in both commercial as well as scientific computing areas using a common CPU

* For a detailed description of the POWER architecture and implementation internals, refer to
the text titled POWER RISC System 6000 Concepts, Facilities, and Architecture (ISBN 0-07-
011047-6) from McGraw-Hill, Inc.

69

70 Hardware

model. AB stated earlier, in PowerPC and POWER architectures there is no sin
gle component that can be called the CPU per se, as the microprocessor harnesses
its power from separate execution engines, each performing dedicated duties.
From a neophyte's perspective, the basic CPU inodel features: (1) a branch pro
cessing unit which processes the branch instructions and dispatches instructions
to the other execution units, (2) a fixed-point unit that executes integer instruc
tions and performs the loads/stores, and (3) a floating-point unit that processes
the floating-point instructions. Collectively, these three units are referred to as
the execution units. They form the core of the central electronic complex. Refer to
Fig. 4.1 for a conceptual view of how all the PowerPC and POWER chips operate.

4.2 THE POWER RS 1 MICROPROCESSOR

The RS 1 is a full-scale implementation of the POWER architecture. In addi
tional to being the principal predecessor of the Power PC design, it also serves
as the core of the RISC System/6000 and POWERparallel systems.

4.2.1 Organization

The RS 1 implementation of the POWER processor features multiple execution
units that include: (1) an instruction cache, (2) a branch processing unit, (3) a
fixed-point unit, (4) a floating-point unit, (5) a data cache, (6) a memory manage
ment unit, (7) a sequencer unit, and (8) a COP (common on-chip processor) unit.*

• branch processing unit

• fixed-point unit

• floating-point unit

• instruction cache

•data cache

• memory management unit

• sequencer unit

•COP unit

The memory bus on this implementation is 128 bits wide and serves as the
interface between the instruction cache and the main memory from which
instructions are loaded via the instruction reload bus. A two-word-wide data
path connects the branch processor with each of the floating-point and fixed
point execution units. A one-word data path connects the fixed-point unit with
the data cache, while a two-word data path is present between the floating
point unit and data cache. Refer to Fig. 4.2 for a block diagram of the POWER

* The embedded COP is a processor-independent logic whose function is to control the built-in
self-test, debug, and test features of the chip at boot time.

A

Instruction
cache

A

s

Floating-point
processor

D

Branch
processor

Processor Implementations 71

FP and FX instructions

Sync

A

Data cache

D A

Memory

Fixed-point
processor

D A

A

s

D

D

Figure 4.1 How all Power PC and POWER processors operate. A= address; D =
data; I = instruction; S = status. Note: The 1/0 unit (shaded) is outside the
scope of the processor architecture.

72 Hardware

I-cache reload bus

_t ___
I
I

...... ' I DCU I FPU I
~

t M

EJ a
BPU n
ICU

EJ
m

1---4 e
m
0

EJ
r
y

FXU

._ _________
t

Processor bus

scu

t

SIObus

Figure 4.2 Block diagram of the POWER RS 1 implementation.

RS 1 chip set. Each line represents a one-word-wide path and the arrowhead
indicates the direction of the instruction/data flow.

4.2.2 Instruction cache

The instruction cache is a 2-way set-associative cache. This layout gives the
I-cache a total of 128 lines. As there are 64 bytes per line, the total cache size
adds up to 8 KB. For machine models configured with a bigger I-cache, the num
ber of sets is increased to 256 KB; that way, the total cache size is increased to
32 KB. Figure 4.3 explains the break.down of set and line mapping.

'fype 1 cache organization:

• 2-way

} 128 lin"
• 64 sets

• 64 bytes/line

'fype 2 cache organization:

• 2-way

• 256 sets

• 64 bytes/line

} 32KB

Figure 4.3 Description ofl-cache on RS 1 im
plementation in terms of its sets and lines.

4.2.3 Data cache

Processor lmplementatlons 73

The data cache is a 4-way set-associative cache, consisting of 128 sets. This
blueprint gives the D-cache a total of 512 lines. With 128 bytes per line, the
total cache size adds up to 64 KB. Figure 4.4 explains the breakdown of set and
line mapping in further detail.

4.2.4 Fixed-point unit

The fixed-point unit (FXU) consists of several registers and affiliated compo
nents. The first set of components includes 32 general purpose registers (GPRs)
that can be used by general programs for assists. Second, there is a set of

Cache organization:

•4-way

} 512 IW
• 128 sets

• 128 bytes/line

Figure 4.4 Description of the D-cache on RS 1
implementation in terms of its sets and
lines.

74 Hardware

segment registers (SRs), which aid in address translation. Subsequently, there
is a set of special purpose registers. A data address register (DAR) specifies
the address of storage access that caused a data storage or alignment interrupt.
The data storage interrupt status register (DSISR) defines the actual cause of
the data storage or alignment interrupt. Also, there is an exception register
(XER) which deals with the carry and overflow flags, and contains byte count
and comparison bytes used by string instructions. In addition, there are two
more registers present in the RS 1 implementation. The first one is called the
transaction identifier register (TID) and it holds the transaction ID of the cur
rently executing process in the system. The second one is a multiplier
quotient register (MQ), which is used by multiply, divide, and extended shift
instructions, and also as a temporary storage by store string instructions.

Among the key components of the FXU is the arithmetic logic unit (ALU),
which is used for arithmetic and logic operations. The next component is the
fixed-point multiply/divide unit, and it is used in conjunction with the ALU.
The ensuing component, which is the data translation lookaside buffer (D
TLB), works together with the segment registers (SRs) to aid in address trans
lation, page protection, and data locking. Note here that the page table lookups
for the D-TLB and the instruction translation lookaside buffer CI-TLB) reloads
and page table updates are all performed by the FXU hardware. The FXU chip
also contains the directory part of the D-cache. The address generation task
and D-cache controls for both fixed- and floating-point load/store instructions
as well as for cache operations are performed by the FXU. In addition, there is
a store buffer in the FXU that is used to hold the data and address of a single
fixed-point store instruction while waiting to write it into the D-cache. Conse
quently, the fixed- and floating-point loads can get ahead of the fixed-point
stores, and the FXU and FPU can obtain the data they need sooner. But note
that the instructions are not executed out of order; only the D-cache access is
made out of order (to save cycles).

4.2.5 Floating-point unit

The floating-point unit (FPU) includes a set of registers and dedicated ele
.ments, each contributing to the overall performance-crafted design of the exe
cution unit. The first group of components consists of a set of general purpose
registers called the floating-point registers (FPRs). These are used as source
and destination operands for all the arithmetic floating-point operations and
their results. There are 32 FPRs available for the use of instructions. Each
FPR is 64 bits in size and, thus, is able to deliver double-precision results, with
the only exception being in the case ofload-and-store operations, because they
are handled by the fixed-point unit. The next key component of the FPU is a
special register called the floating-point status and control register (FPSCR).
It handles floating-point exceptions and records status resulting from the
floating-point operations, which is required by the IEEE 754 standard. The
FPSCR is 32 bits in size; its bits 0-19 are status bits and the remaining bits
20-31 are used as control bits.

Processor Implementations 75

Representation for a floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by this number is the prod
uct of the significand and the number 2•xpanent. Encodings are provided in the
data format to represent finite numeric values, ±infinity, and values which are
not a number.

4.2.6 Packaging

The hardware electronics and circuitry related to the central electronic com
plex are laid out on three different planars for this machine: (1) the CPU pla
nar, (2) the I/O planar, and (3) the standard I/O planar. Direct benefits of this
modular design are maintainability, serviceability, and scalability. The compo
nents of each of the three planars are described in Fig. 4.5.

The CPU planar houses the fixed-point unit and floating-point unit as indi
vidual chips, located adjacent to each other. The branch processing unit is
integrated with the instruction cache unit and implemented as a single chip.
The data cache unit is implemented as four separate chips on the planar. The
data cache is 64 KB in size, while the instruction cache can be 8 or 32 KB,
depending on the specific model. Last, the storage control unit, which serves
as the central system controller to arbitrate the CPU-bound and I/0-bound
communications, is located adjacent to the pair of data cache chips. Addi
tional components worth mentioning on the CPU planar are the memory
slots and a special diagnostic port called the ESP (engineering support pro
cessor) port.*

The I/O planar houses the Micro Channel slots which allow end users to con
figure and customize their systems appropriately. The I/O planar connects to
the CPU planar via a 278-pin in-line connector. It also features a component
called the on-card sequencer (OCS); essentially, it is a microcontroller whose
primary task is to initialize the processor complex at boot time and carry out a
self-test to verify proper operation of the modules located on the planar. There
are three additional modules in the I/O planar. They are the nonvolatile RAM
(referred to as NVRAM) for configuration, the operator panel interface for
error display, and the real-time clock for time-of-day functions. The NVRAM
stores vital system information which may be required for the system boot pro
cess (commonly referred to as initial program load or IPL). The 32-KB NVRAM
unit normally derives its power from the system power supply. When the sys
tem is powered off, the NVRAM remains powered by a battery. The operator
panel interface, which is another module on the I/O planar, displays error
codes through the light-emitting diodes (LEDs). The next module, which is the
clock, provides the time-of-day (TOD) functions. Like the NVRAM, this clock

* The ESP socket, though seldom used, plays a vital role when the processor needs to be
debugged. It debugs the processor by loading test programs, single-stepping through the system's
instruction stream, and monitoring the system interactively. The process is performed by connect
ing a separate stand-alone workstation via the ESP port.

76 Hardware

D ESPport

CPU planar
(RS 1 planar
shown here)

ssaaesseesss
esessaeaeaee
eeeeeeeeeaee
S55E5E55959S
55ES5E555BS5
eaeeaaeeaaae
eeaeeeeeaeee
aeaeasasssaa

I/O planar

Parallel port

Serial port
Serial port
Mouse
Keyboard
Tablet

Standard I/O planar

=======;:;:==== ============

EE555EEE5EEE
sssaesaeaaes
esssessaeees

D

Connector

=

Memory slots

FP = Floating-point unit
FX = Fixed-point unit
DC = Data cache
IC = Instruction cache
SC = Storage control unit

C = Combo chips

Micro Channel slots

Diskette connector

Figure 4.5 Packaging of POWER RS 1 and RS .9 imple
mentations. Diagram shows the CPU planar, 1/0 planar,
and the standard 1/0 planar.

also remains powered by battery while the system is powered off. In fact, it is the
same battery unit that provides power to both the NVRAM and the TOD clock.

The standard 1/0 planar connects to the 1/0 planar through a common inter
face connector, which fits underneath the 1/0 planar and contains the inter
faces and connectors to mouse, keyboard, tablet, diskette, parallel port, and
two serial ports.

4.3 THE POWER RS .9 MICROPROCESSOR

The RS .9 is a cost-reduced version of the original POWER architecture that
serves as the core for low-end RISC System/6000 computer systems.

Processor Implementations 77

4.3.1 Organization

This implementation is very similar to that of the RS 1; they share a lot of com
mon features. It has multiple execution units on multiple chips assembled on
a single planar. The components include the following:

• branch processing unit

• fixed-point unit

• floating-point unit

• instruction cache

•data cache

• memory management unit

• sequencer unit

•COP unit

The memory bus is 64 bits wide (as compared to 128 bits for the RS 1 imple
mentation) and serves as the interface between the instruction cache and
the main memory. The path leading from the branch processor to each of the
floating-point and fixed-point execution units is two words wide. A two-word
data path from the floating-point unit and a one-word data path from the fixed
point unit are dotted together, and in turn connect to the data cache. Refer to
Fig. 4.6 for a block diagram of the POWER RS .9 chip sets. Each line in the dia
gram represents a one-word-wide path and the arrowhead indicates the direc
tion of the instruction/data flow. The instruction cache is reloaded using the
SIO (standard 1/0) bus.

The RS .9 implementation is also referred to as a "cost-reduced" version of
the POWER processor. Its memory interface is half as wide; therefore, some of
the bit-scattering features which are applicable for the full-size CPU do not
apply here. Also, note that the fixed-point and floating-point buses are dotted
together, while interfacing with the data cache. Also, instructions are fetched
into the instruction cache via a dedicated instruction-reload bus, whereas in
the RS .9, the SIO bus is used as a shared resource to load instructions.

4.3.2 Instruction cache

The instruction cache is a 2-way set-associative cache. This layout gives the!
cache a total of 128 lines. As there are 64 bytes per line, the total cache size
adds up to 8 KB. For models configured with a bigger I-cache, the number of
sets is increased to 256 KB; that way, the total cache size is increased to 32 KB.
Figure 4.3 explains the breakdown of set and line mapping in further detail.

4.3.3 Data cache

The data cache is a 4-way set-associative cache, consisting of 64 sets. With 128
bytes per line, the total cache size adds up to 32 KB. Figure 4. 7 explains the
breakdown of set and line mapping.

78 Hardware

.--
FPU ,.

~ ~!

ICU
I DCU I

BPU .---..
EJ

........., f-+ FXU I+-
L.+

j

_________ J

t

• ~
Processor bus

scu

SIObus

Figure 4.6 Block diagram of the RS .9 implementation.

Cache organization:

• 4-way

• 64 sets

• 128 bytes/line

} 256li•~
} 32KB

Figure 4.7 Description of the D-cache on RS .9
implementation in terms of its sets and lines.

M
a

n

m
e
m
0

r
y

Processor Implementations 79

4.3.4 Fixed-point unit

This fixed-point unit consists of several registers and affiliated components. Its
organization is identical to that of the RS 1 implementation. First, there are
the 32 general purpose registers (GPRs). Then there is a set of segment regis
ters (SRs) which aid in address translation. Next, there is a set of special
purpose registers. A data address register (DAR) specifies the address of stor
age access that caused a data storage or alignment interrupt. The data storage
interrupt status register (DSISR) defines the actual cause of the data storage
or alignment interrupt. Also, there is an exception register (XER), a transac
tion identifier register (TID), and a multiplier-quotient register (MQ).

Additional components include the arithmetic logic unit (ALU) that is used
for arithmetic and logic operations, the multiply/divide unit that is used in con
junction with the ALU, and the data translation lookaside buffer (D-TLB).
Note that the fixed-point unit also contains the directory part of the D-cache.
The address generation task and D-cache controls for both fixed- and floating
point load/store instructions, as well as for cache operations, are performed by
the fixed-point unit. In addition, there is a store buffer that is used to hold the
data and address of a single fixed-point store instruction while waiting to write
it into the D-cache. Consequently, the fixed- and floating-point loads can get
ahead of the fixed-point stores, and the FXU and FPU obtain the data they
need sooner.

4.3.5 Floating-point unit

The floating-point unit for the RS .9 implementation is essentially the same as
that of the RS 1. First, there are thirty-two 64-bit general purpose registers
called the floating-point registers (FPRs). Each FPR is able to deliver double
precision results, with an exception in the case of load-and-store operations,
because they are handled by the fixed-point unit. Also, there is a special regis
ter called the floating-point status and control register (FPSCR) that handles
floating-point exceptions and records status resulting from the floating-point
operations, which is required by the IEEE 754 standard.

4.3.6 Packaging

The mechanical packaging of the hardware is laid out on three different pla
nars, as in the case of the RS 1 implementation. There are three planars: (1) the
CPU planar, (2) the 1/0 planar, and (3) the standard 1/0 planar.

The CPU planar houses the execution units as individual chips, located adja
cent to each other. The branch processing unit is integrated with the instruc
tion cache unit and implemented as a single chip. The data cache unit is
implemented as two separate chips on the planar. The data cache is 32 KB in
size, while the instruction cache can be 8 or 32 KB, depending on the specific
model. Finally, the storage control unit, which serves as the central system

80 Hardware

controller to arbitrate the CPU-bound and 1/0-bound communications, is
located adjacent to the pair of data cache chips. The additional components,
like the memory slots and the ESP (engineering support processor) port, are
the same as those described for the RS 1 implementation.

The 1/0 planar which houses the slots for add-on cards, the OCS for processor
complex initialization, the NVRAM for configuration, the operator panel inter
face for error display, and the real-time clock for time-of-day functions are also
the same as those in the RS 1 implementation. Likewise, the standard 1/0 pla
nar connecting to the 1/0 planar through a common interface connector is the
same as the RS 1 implementation.

4.4 THE POWER RSC MICROPROCESSOR

The name "RSC" has been derived from RISC single chip, which appropriately
describes the microprocessor. The design of RSC is particularly intended to
address high computational requirements along with reduced system cost.

4.4.1 Organization

The implementation integrates the execution units (a fixed-point unit, a floating
point unit, and a branch unit), a cache, and a memory management unit on a sin
gle die. The memory bus on this implementation is 72 bits wide and connects
directly to memory SIMMs. The 1/0 bus is 32 bits wide and connects to buffering
and bus conversion chips.

The principal functional units in the RSC implementation are: (1) the cache,
(2) the branch processing unit and instruction fetcher, (3) the instruction queue
and dispatch logic, (4) the fixed-point unit, (5) the floating-point unit, (6) the
memory management unit, (7) the memory interface unit, (8) the sequencer
unit, and (9) the COP (common on-chip processor) unit. Their organization is
depicted in Fig. 4.8.

• combined instruction and data cache

• branch processing and instruction fetch unit

• instruction queue and dispatch logic

• fixed-point unit

• floating-point unit

• memory management unit

• memory interface unit

• sequencer unit

•COP unit

Processor Implementations 81

Unified cache unit

l
Branch processor and

instruction fetcher

Instruction queue and
dispatch logic

,.-t--

l
Floating- Fixed- Memory

point point management
unit unit unit

COP Sequencer Memory

unit unit interface
unit

~

COP bus 110 bus Memory bus

Figure 4.8 Block diagram of RSC implementation.

4.4.2 Cache

This implementation features a unified cache for instruction and data. The
cache structure in RSC is a 2-way set-associative cache, consisting of 64 sets.
This layout gives the I-cache a total of 128 lines. As there are 64 bytes per line,
the total cache size adds up to 8 KB.

The cache is managed with no reload on a store miss, and an LRU (least
recently used) replacement scheme. It is kept coherent with all 1/0 traffic. Up
to four words can be read from the cache and up to two double words can be
written to it, per cycle. The cache features two different interfaces: one is a
path with the instruction fetcher, and the other is a multiplexed path with the
fixed-point unit and the memory interface unit. Cache access policy for loads is
delicately balanced among its potential requestors, which can be any one of the
functional units (listed in the previous section). As far as the cache access pol
icy for stores is concerned, a lazy-write approach is implemented in which the
instruction is processed by the fixed-point unit and the information is stored

82 Hardware

away in a store queue, which, in turn, gets written to memory or cache by the
memory interface, as appropriate. Note that coherency with the store queue for
subsequent operations is maintained in the hardware.

4.4.3 Branch processing and instruction fetch unit

Commonly referred to as the branch processing unit or branch unit, the com
ponent consists of two separate logics. It performs two principal functions:
(1) coordinate the execution of the branch instructions and (2) get new instruc
tions into the instruction queue by what is called a prefetch step.

The branch processing unit has two pipeline stages and executes all the
branch instructions. In-page branches, i.e., branches within a 4-KB page
boundary, are completely handled by the branch processing unit, while the out
of-page branches are resolved with the help of the fixed-point unit. A branch
prediction technique is when the branch target is guessed in advance and the
instructions in the pipeline are marked provisionally. After the outcome has
been resolved, the temporarily tagged results are made permanent if the
guessed outcome is true; these tentative results are purged if the guessed out
come was false and the operations in progress are all canceled. The algorithm
looks as follows:

guess branch outcome
proceed on that path

if prediction correct
<no bubbles in the pipeline>

if prediction incorrect
partially executed instruction cancelled
<bubble left in the pipeline>

To facilitate the productivity of this branch prediction scheme, a static predic
tion algorithm (prediction taken if displacement is negative) is implemented
that can be reversed by setting a bit in the instruction.

The instruction fetch unit generates the next sequential address in the event
that no branch or interrupt has occurred. In the event of a branch, the address
is provided by the branch processing unit or the fixed-point unit. Once an
address has been selected, it is forwarded to the cache arbitration logic for pos
sible access. If a cache hit results from it, the instructions are brought in for
consequent processing by the instruction queue and dispatch logic. If a cache
miss were to happen, the item gets fetched after an address translation step,
via the fixed-point unit and the memory management unit. Note that once an
address translation has happened, all subsequent references to that page
require minimal access time because of the presence of a translation shadow
buffer.

Processor Implementations 83

4.4.4 Instruction queue and dispatch logic

This component forms the second half of the branch processing unit. The
instruction queue has two functional components: a primary queue and an
instruction queue. The former is used to dispatch instructions, while the latter
is used for providing buffering in the event of higher-priority operations.

The dispatch logic forwards instructions into the three execution units. Note
that some floating-point and branch instructions may fold directly out of the
instruction queue and without entering the pipeline.

4.4.5 Fixed-point unit

The instructions received through the dispatch logic enter the fixed-point
unit's pipeline. They pass through a three-stage pipeline, which features a
decode, an execute, and a writeback stage. An optional cache access stage that
is contingent upon the data item being found in the cache can occur. If data is
found, the cache is accessed and the data is returned to the fixed-point unit or
floating-point unit, as the case may be.

4.4.6 Floating-point unit

The instructions pass through a four-stage pipeline that features a decode, a
multiply, an add, and a writeback stage. The decode stage contains the instruc
tion decode logic; the multiply stage houses the alignment shifter logic; the add
accepts the sum and carry values to produce an intermediate result; and the
writeback stage performs the rounding, normalization, and register update.

The floating-point unit complies with the IEEE floating-point standards.
Unlike most floating-point coprocessor chips, this floating-point processor is
tightly coupled with the fixed-point unit. It is able to achieve a dramatic degree
of concurrence by being able to handle two separate task-pairs simultaneously.
Its design enables it to exploit (1) floating-point load operations in parallel
with floating-point arithmetic operations, and (2) floating-point multiply oper
ations pipelined with floating-point add operations. The other distinctive fea
ture about it is its ability to deliver a higher degree of accuracy beyond the
capabilities of other currently available IEEE-compatible double-precision
floating-point units. Although the floating-point unit operates independently
of the fixed-point unit and can concurrently execute instructions, a synchro
nization scheme allows for the progressive execution of the two units, and can
still achieve the effect of precise interrupts.

4.4.7 Memory management unit

The function of the memory management unit is to translate the virtual
addresses into real addresses. It remains tightly coupled with the fixed-point
unit, so that the address translation can happen in parallel with the cache
access. The address translation process begins with accessing one of the seg
ment registers to form the 52-bit virtual address. This address is then hashed

84 Hardware

and indexed into a page frame table to yield a 32-bit real address. A TLB
(translation lookaside buffer) structure is maintained here to accelerate the
address translation process.

4.4.8 Memory interface unit

The function ohhis component is to handle operations that require access to or
from memory. It pipelines memory requests in an effort to overlap the address
bus and data bus. Data is requested from memory in quadword blocks into a
four-word reload buffer. When the reload buffer gets full, the memory interface
unit arbitrates for access to the cache to write the data into it. Since a store
through cache is implemented in RSC, all store operations update the cache
and get reflected back in main memory.

4.4.9 Sequencer unit

This component is essentially an embedded support processor that assists the
core CPU in handling many of the algorithmic and area-intensive functions of
the chip.

The sequencer unit on the 601 chip features a 3-KB RAM, a 3-KB ROM (con
taining microcode), 16 general purpose registers, and the control logic to exe
cute its instruction set.

The sequencer unit's multifarious functions include: (1) sequencing of opera
tions between the memory bus and the 1/0 bus, (2) performing the required
tablewalks for 1/0 address translation, (3) providing the system interrupt con
troller function, (4) sequencing the power-on reset during the built-in self-test
(BIST) phase, (5) maintaining the real-time clock, (6) handling the sequencing
of interrupts and errors, and (7) assisting the fixed-point unit in executing
selected (i.e., less frequently used) instructions.

4.4.10 Packaging

The RSC implementation is based on 0.8-µm CMOS technology with three lev
els of metal wiring. The chip uses about 1 million transistors and is imple
mented on a 14.9- by 15.2-mm die. Its typical power consumption is around
4 Wat33MHz.

4.5 THE PowerPC 601 MICROPROCESSOR

The 601 microprocessor is the entry-level member of the Power PC family and
is positioned to be a bridge platform between the original POWER and the
trimmed-down PowerPC architecture. It harnesses its CPU subcomplex
power from the existing POWER RSC technology and its 1/0 subcomplex
attributes from the 88110 microprocessor bus interface. Its highlights
include a 32-bit cache interface to the fixed-point unit, a 64-bit interface to
the floating-point unit, and a 256-bit interface to both the instruction queue
and the memory queue. In terms of 1/0 interface, a 32-bit address data bus

Processor Implementations 85

and a 64-bit data bus are provided. Figure 4.9 illustrates the organizational
layout of the processor complex.

4.5.1 Pipelines

32

Branch
unit

Instruction
fetch
unit

There are three separate pipelines in the processor complex, which together
provide a degree of instruction-level parallelism in the execution of programs.
The pipelines are two, three, and four stages deep. Figure 4.10 gives the
pipeline structure of the 601 microprocessor.

• Branch processing unit-two-stage pipeline

• Fixed-point unit-three-stage pipeline

• Floating-point unit-four-stage pipeline

The two-stage branch instruction pipeline can dispatch, decode, execute,
and, if necessary, predict the direction of a branch instruction in the first of the
two cycles. In the subsequent cycle, new instructions can be accessed from the
cache. This allows the processor to handle branches in a more efficient manner
and reduce latency of subsequent instructions.

Instruction queue and dispatch logic

Sequencer
unit

MMU

32

Fixed
point
unit

256

32

Floating- 64
point
unit

32

Cache tags Cache data

32 256

Memory queue + bus interface unit

32
Address Data

64

a
COPbus I

Figure 4.9 Block diagram of the Power PC 601 microprocessor.

86 Hardware

Branch instructions

Dispatch

Fetch
Decode
Execute
Predict

Integer instructions

Fetch
Dispatch
Decode

Execute Writeback

Load/store instructions

Fetch
Dispatch Address
Decode generation Cache Write back

Floating-point instructions

Fetch Dispatch Decode Executel Execute2 Writeback

Figure 4.10 601 pipeline structure.

The three-stage fixed-point pipeline has several functions to perform in its
dispatch, execute, and writeback stages. In addition to handling all the ALU
(arithmetic logic unit) operations, it performs all the load-and-store instruc
tions for the 601.* Note that this pipeline can optionally be a four-stage
pipeline, when it must handle load instructions that need a cache access to
occur following the address generation phase. The pipeline also manages the
synchronization control that allows the processor to achieve precise interrupts.

The four-stage floating-point pipeline is the deepest of all the pipelines. It
handles the floating-point instructions. The first stage of the pipeline (decode)
consists of the instruction decode logic and the main pipeline control for the
floating-point unit. The second stage (executel) is the multiply stage and con
tains the carry-save adder tree, an alignment shifter, and the booth encoder.
The third stage (execute2) is the add stage, which produces a single result from
the sum and the carry values of the previous stage. Finally, the fourth stage
(writeback) finishes up the operation by rounding the result obtained from the
previous stage, normalizing it, and updating the registers.

4.5.2 Organization

The implementation integrates the three execution units along with a cache
and a memory management unit on a single die. The 60l's organizational high
lights include a 32-bit cache interface to the fixed-point unit, a 64-bit interface

* This includes all the floating-point loads and stores as well.

Processor Implementations 87

to the floating-point unit, and a 256-bit interface to both the instruction queue
and the memory queue. The 1/0 interface is similar to the RSC implementa
tion, providing a 32-bit address data bus and a 64-bit data bus. Figure 4.9 gives
a block diagram of the processor complex. The principal functional units con
sist of: (1) the instruction queue and dispatch unit, (2) the instruction fetch
unit, (3) the branch processing unit, (4) the fixed-point unit, (5) the floating
point unit, (6) the memory management unit, (7) the cache, (8) the memory
queue, (9) the bus interface unit, (10) the sequencer unit, and (11) the COP
(common on-chip processor) unit. Each is described individually.

• instruction queue and dispatch unit

• instruction fetch unit

• branch processing unit

• fixed-point unit

• floating-point unit

• memory management unit

• combined instruction and data cache

• memory queue

• bus interface unit

• sequencer unit

•COP unit

4.5.3 Instruction queue and dispatch unit

The cache feeds into the instruction queue structure. The structure, which is in
the form of a queue, can hold up to eight prefetched instructions. At every
cycle, the dispatch logic considers the bottom four entries for dispatch. As out
of-order dispatches supported by this microprocessor, branches can be pre
dicted ahead of time to reduce the delay due to dispatches.

4.5.4 Instruction fetch unit

The function of this component is to coordinate instruction fetching from the
cache and to aid in address translation of instruction fetch addresses. It fea
tures a structure called the translation shadow array (TSA) that tracks the
recently used instruction address translations and renders support to the
page- and block-oriented address translations.

4.5.5 Branch processing unit

The function of the branch processing unit is to execute all the branch instruc
tions. Branch instructions can be conditional or unconditional in their nature.
Unconditional branches are no problem. But a conditional branch may depend
on the condition register, the count register, or both. Since this branch pro-

88 Hardware

cessing unit executes independently of the fixed-point unit, it is necessary to be
able to guarantee correct program operation when a preceding fixed-point
instruction depends on the outcome of a count and/or condition register. This is
achieved using a register renaming scheme, in which architected values of
these registers are synchronized with the fixed-point unit, and the values are
restored in the event of an exception.

As far as performance goes, the unconditional branches can be executed in a
single cycle, and, as a result, give the effect of zero-cycle branches on the sys
tem. For the conditional branches, if they can be resolved at the time of dis
patch, their performance is equivalent to that of the unconditional branches;
otherwise, they are assumed to be "not taken" if the displacement of the
branched address is positive, and "taken" if it is negative. This static branch
prediction algorithm is supplemented by the presence of additional perfor
mance enhancement features, such as fast alternate address restore mecha
nisms, to facilitate the overall performance on the 601.

4.5.6 Fixed-point unit

The fixed-point unit is responsible for executing all fixed-point instructions in
the system and for generating addresses for all the load-and-store instructions.
Note that while most of the instructions are able to execute in a fully pipelined
manner, some instructions (like multiply, divide, and multiple-word storage)
may have to spend several cycles in the execute stage of the pipeline.

4.5.7 Floating-point unit

The floating-point unit processes all the floating-point operations. It receives
instructions from the instruction dispatch unit. The floating-point unit is able
to pipeline most single-precision operations with the exception of the divide
operation. For double-precision operations, it can pipeline all except the multi
ply and divide operations.

Note that the register renaming scheme (present in the POWER architec
ture) is absent in the floating-point unit of the 601.

Although the floating-point unit operates independently of the fixed-point
unit and can concurrently execute instructions, a synchronization scheme
allows for the progressive execution of the two units, and can still achieve the
effect of precise interrupts. The two units are able to cooperate in the execution
of floating-point load/store instructions and process their respective portions of
the operations independently.

4.5.8 Memory management unit

The role of the memory management unit is to translate virtual addresses to
real addresses for load-and-store instructions. It remains tightly coupled with
the fixed-point unit. If an address translation has to occur in the execute phase
of the fixed-point unit pipeline, the cache access takes place in the subsequent

Read
hit

Write hit

Snoop hit
on a read

SHW =Snoop hit on a write, or read-with-intent-to-modify

Processor Implementations 89

Read
hit

Write
hit

Figure 4.11 Four-state MESI protocol.

cycle (thereby stretching the fixed-point pipeline to a four-stage pipeline for
that access).

4.5.9 Cache

The unified cache is implemented as an 8-way set-associative structure. The line
size is 64 bytes and each line is split into two 32-byte sectors. The cache is indexed
with a real address and the tags are associated with the real address as well. One
of the distinctive features is that a four-state MESI* (modified, exclusive, shared,
invalid) cache coherency protocol is used to maintain coherency on a sector basis.
The state diagram of the four-state MESI protocol is given in Fig. 4.11.

* It is a four-state status of cache sectors in a cache. The acronym MESI stands for
modified/exclusive/shared/invalid. The four states indicate the state of the cache block as follows:
modified-the cache block is modified with respect to system memory; exclusive-this cache block
holds valid data that is identical to the data at this address in system memory, and no other cache
has this data; shared-this cache block holds valid data that is identical to this address in system
memory and at least one other caching device; invalid-this cache block does not hold valid data.
This MESI protocol guarantees coherency in multiprocessor implementations.

90 Hardware

This cache is nonblocking. Burst operations to the cache are buffered such
that the cache update is reduced to two single-cycle operations of four words.
That is, the results of the first two and the last two bursts are buffered and writ
ten to the cache in a single piece. This frees the cache to perform other functions
in the meantime. Multifarious functions are employed to maximize the use of
the available cache bandwidth. When all of the eight-word read interfaces are
not in use during certain transient cycles, they are used for instruction fetching
and snoop pushes. Also, a balanced arbitration scheme is implemented to prior
itize the cache access requests that can occur in each cycle.

4.5.10 Memory queue

Operations requiring access to/from the bus interface are managed by the
memory queue, which consists of a two-entry read queue and a three-entry
write queue. Both queues, as well as the cache itself, have to arbitrate for
access to the bus. Note that rigid program order is not a consideration in the
arbitration logic, which allows dependent read operations to proceed ahead of
pending write operations. The hardware automatically maintains coherency
between the memory queue and the processor cache and memory.

4.5.11 Bus interface

The bus interface unit converts operation in the memory queue into transac
tions on the 601 bus. It provides a 32-bit address bus and 64-bit data bus. The
buses remain decoupled from one another so that the unit's protocols (which
are mostly a derivative of the Motorola 88110 microprocessor) can support sys
tem bus organizations that use pipelined, nonpipelined, or even split-bus
transactions. Usually, the bus is operated at integer multiples of the processor
cycle, so that it may allow use of simple bus structures using minimal external
control logic.

4.5.12 Sequencer unit

The significance of the sequencer unit is greatly reduced from that in the RSC
microprocessor. But its presence allows the 601 chip to minimize redesign
efforts by making use of its existing functions, such as (1) the power-on reset
during the built-in self-test (BIST) at the time of initialization; (2) maintaining
the real-time clock; (3) handling the sequence of interrupts, context synchro
nizing events, and errors; and (4) assisting the fixed-point unit in executing
selected instructions.

The sequencer unit on the 601 chip features a 1-KB ROM (containing
microcode), a 1-KB RAM, eight general purpose registers, and the control logic
to execute its instruction set.

4.5.13 Multiprocessor capabilities

The 601 microprocessor is equipped with the capabilities to facilitate symmet
ric multiprocessor systems. Typically, all multiprocessors have to be able to

Processor lmplementatlons 91

maintain memory coherency, i.e., the ability to perform atomic memory opera
tions and the ability to control the order in which the storage operations are
presented onto the interface.

Memory coherency is maintained in several ways. The processor performs
bus snooping and adheres to a four-state MESI cache coherency protocol. Also,
the processor provides support for a full range of cache control operations
(including a broadcast on a shared address bus to all coherency participants).
Furthermore, there is provision for allowing page- or block-level control of
cacheability and coherency. In terms of storage access, the 601 follows a weakly
ordered storage model that allows a more effective utilization of available bus
bandwidth.

The 60l's multiprocessing features provide enough flexibility to address a
broad spectrum of multiprocessor-based system organizations. Asymmetric
rather than symmetric multiprocessor systems are also feasible. The 60l's
multiprocessing solution focuses on providing a tightly coupled shared memory
system organization. A typical PowerPC multiprocessor system (601-based) is
shown in Fig. 4.12. The highlights of such a system are shared memory for uni
form address space; shared bus to facilitate hardware-enforced coherency
between a number of tightly coupled processors, each with their own local
cache; cache control operations defined on the bus to allow other processors or
external hardware to control the local cache state; and a low latency path to
the shared memory.

4.5.14 Packaging

The 601 implementation uses a 0.6-µm CMOS technology with four levels of
metal wiring. The 601 package is a 304-pin ceramic quad flat pack. The chip
uses 2.8 million transistors and is implemented on a 10.95- by 10.95-mm die.
Its typical power consumption is about 6.5 W at 50 MHz.

Processor Processor Processor

Local Local Local
memory memory memory

,,:. ~ ,,:. ~ ,,:. ~

< "" 7 7 "" 7 -"
Common bus

~ ., ~ v

..; 7

Shared memory

Figure 4.12 601-based multiprocessor system.

92 Hardware

As with any microprocessor, various clock speeds of the 601 are available.
Although the currently offered speeds are 50, 60, 66, and 80 MHz (see Fig. 4.13),
this list is likely to grow over a period of time.

4.6 THE PowerPC 603 MICROPROCESSOR

The 603 microprocessor is the second member of the Power PC family and has
been designed with the intent of being used in portable computers, notebook
PCs, and mobile systems. The implementation represents a new microarchi
tecture organization of the Power PC architecture family. It offers high perfor
mance at a low power level; even with peak instruction rates of three
instructions per cycle, its power consumption remains well below any other
comparable processors in the industry at the current time.

The 603 chip retains the basic three execution units, but adds two dedicated
components. A load I store unit is employed to handle the data movement
between the data cache and the general purpose registers. A system unit is
incorporated to handle all system register operations. In terms of cache, a ded
icated instruction and data cache is implemented. The processor features a
generalized dispatch/rename scheme which utilizes simple rename buses and
autonomous functional units. Perhaps the most distinguished feature in the
603 is the use of a dynamic power management system to control the processor
clocks so that functional unit clocks need run only when specific instructions
are dispatched to the corresponding unit.

80MHz

66MHz

60MHz

50MHz

601 chips

Figure 4.13 Different clock speeds of the 601 microprocessor.

Processor Implementations 93

4.6.1 Pipelines

There are four different pipelines in the processor complex:

• branch processing unit-two-stage pipeline

• fixed-point unit-three-stage pipeline

• floating-point unit-six-stage pipeline

• load/store unit-five-stage pipeline

The first stage of all the pipelines is the same and involves fetching the
instruction(s). The branch instruction pipeline, which is a two-stage pipeline,
can decode, execute, or, if necessary, predict the direction of an unresolved
branch. This allows operation beyond a conditional branch without a delay.

The fixed-point instructions flow through a four-stage pipeline. The first two
stages of the pipeline handle the fetching and decoding/dispatching. The third
stage handles the execution of the fixed-point operation that can include arith
metic, logical, compare, shift, or rotate instructions. The fourth stage writes
back the result to the registers.

The single-precision and double-precision floating-point operations are pro
cessed by a six-stage pipeline (it is the deepest of all the pipelines in the pro
cessor). Like the fixed-point pipeline, the first two stages of the floating-point
pipeline handle the fetching and decoding/dispatching tasks. The execution
phase consists of three stages, as shown in Fig. 4.14. The executel stage
involves the multiply. (Note: It is double-pumped for double-precision opera
tions.) The execute2 stage involves the carry-propagate-add. The execute3 stage
performs the rounding and normalization functions. In the subsequent stage
(writeback), the results are written back to the registers.

Branch instructions

I Fetch I Decode
Execute
Predict

Fixed-point instructions

I Fetch I D~code I Execute I Writeback I Dispatch

Load/store instructions

I Fetch I Decode I Address I Cache I Writeback I
Dispatch generation

Floating-point instructions

I Fetch I g~s~oa~~h I Executel I Execute2 I Execute3 I Writeback I
Figure 4.14 603 pipeline structure.

94 Hardware

To process the load/store instructions, the first two stages of the pipeline
handle the fetching and decoding/dispatching. The third stage calculates the
address for the element to be accessed. The fourth stage involves accessing the
cache, followed by the stage that writes back values to the registers.

4.6.2 Organization

64

603's organizational highlights include a 64-bit interface from the instruction
cache to the instruction fetch and branch unit, which, in turn, feeds into to the
dispatcher. The dispatcher's interface to the fixed-point unit, load/store unit,
floating-point unit, and the system unit is also 64 bits wide. Figure 4.15 gives
a block diagram of the processor complex. The principal functional units con
sist of(l) the instruction cache, (2) the data cache, (3) the instruction fetch and
branch unit, (4) the dispatcher unit, (5) the completion/exception unit, (6) the
fixed-point unit, (7) the floating-point unit, (8) the load/store unit, (9) the sys
tem unit, (10) the bus interface unit, (11) the external bus, and (12) the COP
unit. Each is described individually.

• instruction and data caches

• instruction fetch and branch unit

Instruction fetch and branch unit

System unit Dispatcher

64

Fixed- Load/ Floating-
point unit store point unit

GPRs
32 unit 64

FPRs
Renames Renames

64

I-MMU D-MMU

Instruction cache Data cache

Bus interface unit

Address Data Control Control

Figure 4.15 Block diagram of the Power PC 603 microprocessor.

• dispatcher unit

• completion/exception unit

• fixed-point unit

• floating-point unit

• load/store unit

• system unit

• bus interface unit

• external bus

•COP unit

4.6.3 Instruction and data caches

Processor Implementations 95

The instruction and data caches are both 2-way set-associative caches with 32-
byte cache lines. Because there are 32 bytes per line, the total cache size adds
up to 8 KB. Figure 4.16 explains the breakdown of set and line mapping in fur
ther detail.

The coherency protocol used to update the contents of the cache is a compat
ible subset of the MESI (modified, exclusive, shared, invalid) four-state proto
col. This means that this protocol can operate coherently in systems using the
MESI protocol. Since the 603 does not have to broadcast cache operation
instructions to support symmetric multiprocessing in the hardware, a three
state coherency protocol is implemented. A state diagram of the three-state
MESI protocol is provided in Fig. 4.17.

4.6.4 Instruction fetch and branch unit

The function of the instruction fetcher is to manage the instruction prefetching
from the instruction cache. The function of the branch unit is to execute the
branch instructions.

Instructions are fetched into a prefetch buffer from the instruction cache (or
main memory on a cache miss). Then these instructions are acted upon. The
branch instructions are processed by the branch unit, and, consequently, the
instructions are forwarded to the dispatcher.

Cache organization of 603 microprocessor:

•2-way

• 128 sets

• 32 bytes/line

Figure 4.16 Description of the I-cache and
D-cache of the 603 in terms of its sets and
lines.

96 Hardware

Snoop hit
cacheable read

or any write
(with copyback)

Snoop hit
cacheable read
or any write

Write hit
Read hit

Write hit (no
broadcast)

Snoop hit
(Cache inhibitory read)

(With copyback)

Snoop hit
(Cache inhibitory read)

Read hit

Figure 4.17 Cache coherency state diagram.

4.6.5 Dispatcher unit

The functions of the dispatcher are to decode instructions, decide whether they
can be dispatched to an available execution unit, and manage the register
renaming task. Note that the concept of register renaming is necessitated to
keep the pipeline full and devoid of any stalling owing to the unavailability of
load instructions. This technique of architected registers (used in instructions)
getting mapped to physical registers is achieved by having a pool of free physical
registers available beyond the proclaimed number of 32 floating-point registers.

4.6.6 Completion/Exception unit

The role of this component is to render a mechanism to track instructions from
dispatch through execution, then retire them in program order. Recognize that
completing an instruction implies updating appropriate architectural registers
with the results of that instruction. An in-order completion scheme is used to
ensure that the correct state can be preserved in the event of an exception or a
mispredicted branch. Also, adequate information about an instruction has to
be maintained in the completion registers owing to a possibility of out-of-order
execution. This is the reason that a single completion register is maintained for
every dispatched instruction. As far as exceptions and interrupts are con
cerned, they are monitored separately by the exception logic. The exception

Processor Implementations 97

unit's interrupt mechanism allows the processor to change state as a result of
external errors or any byzantine conditions.

4.6. 7 Fixed-point unit

The fixed-point unit is responsible for executing all fixed-point instructions in
the system. It is capable of processing all arithmetic, logical, compare, shift,
and rotate instructions in a single cycle, and multiply instructions in two to
five cycles. The execution unit interface consists of accepting instruction(s)
from the dispatch unit, performing the specified operation on the operands,
placing the result onto the specific rename bus, and notifying the completion
unit and the dispatch unit, respectively, of the completion status of the current
operation.

4.6.8 Floating-point unit

The floating-point unit processes all the single-precision and double-precision
floating-point operations. Hardware support is provided for divide, float-to
fixed conversion, denormalization, and exceptions. Additionally, the PowerPC
architecture enhancement for graphics is supported with three new floating
point instructions. Although the floating-point unit operates independently of
the fixed-point unit and can concurrently execute instructions, a synchroniza
tion scheme via the load/store unit allows for the progressive execution of the
two units, and still achieves the effect of precise interrupts.

The floating-point unit interface accepts instruction(s) from the dispatch
unit, performs the specified operation on the operands, places the result onto
the specific rename bus, and subsequently notifies the completion unit and the
dispatch unit, respectively, of the completion status of the current operation.

4.6.9 Load/store unit

The load/store unit is responsible for data transfer between the data cache and
internal (fixed-point and floating-point) registers, processing of external access
instructions for graphics applications, as well as handling of the cache and
memory management unit control instructions. The load/store unit calculates
the effective addresses and handles the data alignment to and from the cache.
It also contains the logic to perform normalization and denormalization of
floating-point store data.

4.6.10 System unit

The function of the system unit is to execute a set of miscellaneous instructions
(for example, move to/from special purpose registers instructions). Since these
instructions are relatively infrequently encountered, renaming logic is not pro
vided here.

98 Hardware

4.6.11 Bus interface unit

The bus interface unit is responsible for accepting bus requests from the
instruction and data caches, placing the requests on the external bus, and han
dling the addresses for snooping in the cache.

4.6.12 Packaging and power management

Two levels of power management are implemented in the 603 chip: (1) a
dynamic power management logic, which uses power thriftily everywhere pos
sible during normal operation, and (2) software selectable static power man
agement modes that can be incorporated for periods of processor inactivity.
Using the dynamic power management logic, execution units like the floating
point unit clock logic can be turned off when there are no destined instructions
for that unit. By making use of the static power management logic and its three
varying power modes (doze, nap, and sleep), processor state information can be
maintained during the power-down modes. This power management capability
makes the 603 chip an ideal choice for portable PCs and mobile systems.

The 603 implementation uses a 0.5-µm CMOS technology with four levels of
metal wiring. The package is a 240-pin ceramic pack. The chip uses 1.6 million
transistors and is implemented on a 7.4- by 11.5-mm die. Its typical power con
sumption is about 3 W at 80 MHz. The various available speeds of the 603
microprocessor are 50 and 80 MHz.

4.7 THE PowerPC 604 MICROPROCESSOR

The 604 microprocessor is a 32-bit implementation specifically designed for
mainstream computing environments, including midrange workstations and
multiprocessor systems. It features multiple integer units to harness optimal
performance. It also contains a 16-KB data cache and 16-KB instruction cache.
Refer to Fig. 4.18 for its block diagram.

4.7.1 Pipelines

There are six different pipelines in the processor complex; much of it is the same
as that of the 603, except for the number of integer (i.e., fixed-point) pipelines:

• Branch processing unit-two-stage pipeline

• Integer unit-three separate three-stage pipelines

• Load/store unit-five-stage pipeline

• Floating-point unit-six-stage pipeline

4.7.2 Organization

The 604 features six execution units, the two new ones being the inclusion of
a second and a third integer unit for superior fixed-point performance. Avail-

Processor Implementations 99

l Control unit L
J

l 1
Three Gen Load/ Floating- FP
integer GPR register t----1 store 1-----1 point FPR register
units rename unit unit rename

z
MMU MMU

Data cache Instruction cache

Bus interface

1 Address 1 Data

System bus

Figure 4.18 Block diagram of the PowerPC 604 microprocessor.

ability of three separate integer units in the processor augments the extent
of instruction-level parallelism that modern applications and compilers
exploit.

In the 604, both instruction and data caches contain 16 KB organized as 4-
way set-associative, 32 bytes per line. ·

4.7.3 Packaging

The 604 implementation uses a 0.5-µm CMOS technology with four metal lay
ers. The package is a 304-pin ceramic quad flat pack. The chip uses 3.6 million
transistors and is implemented on a 12.4- by 15.8-mm die. Its power consump
tion is around 10 W at 100 MHz.

4.8 THE PowerPC 620 MICROPROCESSOR

The 620 micropropessor is a 64-bit implementation designed for high-end
machines and multiprocessor systems. In addition to the standard cache, it
includes an embedded secondary cache controller that interfaces to standard
SRAM chips. Multiple integer units are utilized to harness optimal perfor
mance. Figure 4.19 gives a block diagram of the processor.

100 Hardware

l Control unit L
J

I
Three Gen Load/ Floating- FP
integer GPR register 1-- store t-- point FPR register
units rename unit unit rename

z
MMU MMU

Data cache Instruction cache

l l
Bus interface

L Address Data

System bus cache
s econdary [

mterface

Figure 4.19 Block diagram of the PowerPC 620 microprocessor.

4.9 PowerPC EMBEDDED PROCESSORS

A suite of embedded controllers has been developed based on the PowerPC archi
tecture. They are collectively referred to as the 4xx family of Power PC processors.

Using the PowerPC as the core yields a flexible RISC-embedded controller
that can be used in application-specific processors and ASIC cores. Since the
nucleus of the embedded controller is based on the Power PC technology, it har
nesses all the power consumption advantages of the Power PC microprocessor
at a lower price than the competition. Not surprisingly, the 4xx family of
embedded processors has become a favorite choice for cost-sensitive applica
tions like printers, copiers, facsimiles (faxes), personal communicators, per
sonal digital assistants (PDAs), video games, camcorders, video cassette
recorders (VCRs), networking systems, and much more. (See Fig. 4.20.)

It is the scalable nature of the Power PC architecture that makes it a realis
tic choice not just for the personal computer industry, but also for the consumer
electronics and embedded controller market. The 4.xx family of PowerPC
embedded controllers integrates caches and system-level logic to simplify the
system design, lessens the total number of components, and reduces the over
all system power consumption. A business benefit of this is that, beginning
with a family of general purpose embedded controllers, custom systems based
on it can preserve the coherence of application development efforts.

Personal systems

PD A/Personal communicators

Office automation

Printers

D
I iii
I===\
X terminals

liCi:::
Copiers

~
Faxes

Consumer video

Camcorders

0 g o::::::::J
I I I I I I 11111111

VCRs

Digital TV, video games

Networking
and

communications

LAN/WAN

Telecommunications

Figure 4.20 PowerPC embedded controller tar
get markets.

Processor Implementations 101

102 Hardware

DMA
controller

JTAG/
Debug port

SRAM/
Data/address ROM
byte enable control

Bus interface unit

Instruction Data
cache cache

PPC403
processor

core

DRAM
control

Interrupt
controller

Figure 4.21 Block diagram of PPC403GA embedded controller.

4.9.1 The embedded controller 403

Serial
port

-----,
1 Future:
1ASICs1 ·-----·

Based on the PowerPC instruction set architecture, the EC403 processor fam
ily offers a low-range series and a midend series. Each series can have more
than one member in it. Each member acts as the core and may include system
peripherals and application-specific logic as needed.

Consider the midrange embedded controller family, the EC403M, which fea
tures individual members like the EC403MA and the EC403MB. Each member
retains the basic instruction set architecture, but is tailored to application
specific logic by featuring varying cache sizes, system peripherals, and registers.
A description of the EC401MA is provided here, in terms of its core and periph
erals. Figure 4.21 provides a block diagram of it.

The core consists of techniques such as instruction pipelining, branch
prediction, and branch folding to achieve a sustained performance approach
ing one clock cycle per instruction (CPI) for most applications. Low latency
interrupt performance is achieved by providing hardware assist for context
switches and by terminating multicycle instructions which are executing
when an interrupt is received. In terms of on-chip caches, a separate 2-KB
instruction cache (2-way set-associative) and a 1-KB data cache (2-way set
associative and writeback) are employed to reduce bus contention and maxi-

Processor Implementations 103

mize system performance. In terms of operations, the integer, logical, shift,
and rotate/mask are implemented as single-cycle operations. As far as the
interrupt structure goes, it is optimized for embedded applications with a
worst-case interrupt latency less than 1.2 µs at 25 MHz.

The system peripherals consist of a direct memory access (DMA) controller,
JTAG interface, bus interface unit, serial port, and an interrupt controller. The
DMA controller contains four independent DMA channels, which operate in
buffered, fly-by, and memory-to-memory nodes, and have programmable prior
ity levels for bus access. One DMA channel also supports DMA chaining. The
JTAG interface is a debug interface to the processor core and allows user access
to the 403 system. The bus interface unit controls the external bus interface,
and the internal on-chip peripheral bus (OPB) that attaches to application
specific ICs (ASICs). The bus interface unit contains logic which allows SRAM,
ROM, DRAM, and system peripherals to be directly attached to the 403. The
serial port is a memory mapped 1/0 device attached to the on-chip peripheral
bus and can operate at data rates up to 1/32 of the processor clock. Note that
this serial port is the first of the multifarious ASICs that can attach to the on
chip peripheral bus. Future members of the 4xx family may contain customer
designed ASICs that interface directly with the on-chip peripheral bus.

4.10 SUMMARY

This chapter discussed the individual implementations of the Power PC archi
tecture. It explained the internal hardware structure, logic design, and data
path organization of the available PowerPC implementations (601, 603, 604,
620, and 403), along with a comparative anatomy of the POWER implementa
tions (RS 1, RS .9, and RSC), from which the PowerPC evolved.

Every implementation of the PowerPC architecture should be viewed as an
enhancement to the original POWER architecture, optimized for single-chip
implementations and extended to 64 bits. Instructions that restrict super
scalar implementations have been eradicated. Furthermore, instructions that
were deemed as "rarely used" have been removed or altered to improve perfor
mance. System flexibility has been increased dramatically by maintaining
data storage consistency in hardware and implementing primitives to enable
atomic storage access. Also, most implementations of the PowerPC have been
equipped to support multiprocessing. These attributes together constitute an
efficient and scalable processor, regardless of whether it is a 603, a 620, or any
other implementation of PowerPC. As each implementation of PowerPC is a
little different and unique, the implementation-specific description of each one
has been discussed separately.

It is only the beginning of the era for PowerPC-based processors, and diverse
implementations will evolve in the future. When they do, each will feature
unique enhancements while preserving the core baseline technology.

Part

2
Software

Chapter

5

User Interfaces

The PowerPC end user environment enables users to run many of their
favorite applications, to use simple drag-and-drop and double-click, to recog
nize a consistent industrywide look and feel, and to exchange data across these
applications on one computer on one screen. The PowerPC user can run Win
dows, DOS, and AIX applications through the use of emulators, translators,
binary-to-binary converters, and source code port and adaptation.

User interfaces compatible with the PowerPC operating environment
include:

• Common Open Software Environment's Common Desktop Environment

• Wabi

• XWindows

• Macintosh Application Services

These user interfaces provide powerful features while enhancing ease-of-use
for Power PC users. The ability to pick and choose from the array of application
environments available and the ability to cut and paste between applications
gives PowerPC users endless advantages over systems running only DOS,
Windows, UNIX, or Macintosh operating systems and, by default, applications
compatible with those single operating systems.

The Common Desktop Environment provides an industrywide consistent
look and feel by supporting AIX, DOS, Macintosh, and Windows applications.
The Common Desktop Environment provides smooth application integration,
interoperability, and data exchange. The Common Desktop Environment's

107

108 Software

seamless environment supports "shrink-wrapped" end user applications in
cluding AIX applications, MS Windows 3.1 applications, x86 DOS applications,
680x0, and PowerPC Macintosh applications.

The operating system is crucial to effective computer usage-operating sys
tems enable multiple applications to run simultaneously, determine how CPU
time is distributed, store files, and enable users to access information. The
operating systems compatible with the Power PC enable any Common Desktop
Environment, Windows, MS-DOS, X, or Macintosh users to format, access,
retrieve, and archive information without relearning a new environment.

5.1 COMMON DESKTOP ENVIRONMENT

5.1.1 Overview

Developed as a Common Open Software Environment (COSE) technology, the
Common Desktop Environment is a response to industry and user demands for
a powerful, industry-standard desktop environment for UNIX. Based on X
Window System 11.5 and OSF/Motif 1.2, Common Desktop Environment incor
porates technology from IBM, HP, SunSoft, and Novell, Inc.

The UNIX community got its first taste of the Common Desktop Environ
ment by attending a public developer's conference that included education,
documentation, and a CD containing a common-source Common Desktop Envi
ronment Snapshot (portable across multiple platforms and the technology
openly licensable to the industry). Together, leading desktop architects por
trayed the Common Desktop Environment desktop as an environment and
user interface providing significant benefits to end users, system administra
tors, and application programmers.

With the Common Desktop Environment, end users can access networked
devices and tools without having to be aware of their location. Users can
exchange data across applications by simply dragging and dropping objects.
With the right software support, users can even run DOS, Windows, Macin
tosh, and other environments within the Common Desktop Environment.

System administrators will find that many tasks that previously required
complex command line syntax can now be done more easily and similarly from
platform to platform. They can also leverage their investment in existing hard
ware and software by configuring centrally and distributing applications to
users. They can centrally manage the security, availability, and interoperabil
ity of applications for the users they support.

Application developers will find that they can migrate exiting applications
easily-opting to simply port their applications onto the desktop or take
advantage of full desktop services through program design.

5.1.2 Getting started with Common Desktop Environment

The standardized Common Desktop Environment desktop components provide
a single API for developers and support an installed base of applications. The
Common Desktop Environment user interface is based on the OSF/Motif style

User Interfaces 109

of user interface, with pervasive use of the drag-and-drop paradigm. The desk
top starts up in a default configuration, which is adapted to the screen size of
the particular display in use, but which is fully configurable by the user. An
integral part of the desktop is the hypertext-based help system which may be
invoked from the front panel at any time.

The front panel (see Fig. 5.1) contains a collection of frequently used controls
and services. By default, the front panel appears at the bottom of the screen and
contains a useful set of services. The contents and layout of the front panel are
fully configurable. The front panel makes it easy to start applications, use desk
top features such as workspaces and the screen lock, and log out of your session.

The front panel exists in all workspaces. (Workspaces are logical screens in
which you can place groups of windows.) Many of the controls in the front
panel are push buttons for starting applications. Some are drop zones-you
can drag a file from file manager or application manager to the control. Others,
such as the clock, date, and busy light, are indicators.

The front panel includes the following controls and indicators. (Note that the
Common Desktop Environment can be configured for single- or double-click,
with the default being single-click.)

The clock displays the current time (Fig. 5.2).

The date displays the current date (Fig. 5.3).

Clicking on the file manager opens an iconic version of your home directory
(Fig. 5.4). You can specify another directory once the home directory dis
plays. Most of the desktop basic operations are performed by accessing or
invoking files represented in an open directory.

The personal application subpanel functions as a control for the personal
application of your choice (Fig. 5.5). You can add to or customize the default
list of executable programs listed in this subpanel by simply dragging the
executable icon and dropping it on the install icon area. You can select any of
the installed application's toggle buttons to cause that application to be the
default application to be invoked from the front panel.

Figure 5.1 Common Desktop Environment front panel.

Figure 5.2 Clock. Figure 5.3 Date.
Figure 5.4 File manager
icon.

11 O Software

Figure 5.5 Personal application subpanel. Figure 5.6 Mailer.

Clicking on the mail icon starts the mailer (Fig. 5.6). This icon can also be
used as a drop zone and will accept a file icon to mail.

Clicking on the lock (Fig. 5. 7) freezes your workstation, preventing unautho
rized input. Access your workstation by issuing a password.

The busy light (Fig. 5.8) blinks to indicate an activity in progress. If you are
trying to open a very large directory, for instance, you will notice that
progress is occurring because the green light is blinking.

Clicking on the exit button (Fig. 5.9) begins the logout process.

Dropping a file on the printer control (Fig. 5.10) prints it on the default sys
tem printer. Click on the control to display the printer job status on the
default printer.

Clicking on the style manager icon (Fig. 5.11) starts the style manager, which
can be used to customize the appearance and behavior of desktop sessions.
The style manager lets you tailor fonts, background, colors, mouse speed,
click volume, screen saver parameters, and other general desktop environ
ment characteristics.

Clicking on the application manager icon (Fig. 5.12) opens a directory of
easy-to-use tools supporting end user and system administration tasks.

Clicking on the on-line help icon (Fig. 5.13) displays the help manager-a
hypertext-linked list of all of the help volumes that support the desktop.
Clicking on the pointer above the icon displays the top level of the hierarchy
of help information.

Clicking on the trash can icon (Fig. 5.14) opens the trash can window. You
can drop an object on the control to put the object in the trash can. You can
use the trash can window to restore or permanently delete objects that

Figure 5.7 Lock.

Figure 5.10 Printer control.

• Figure 5.13 On-line help
icon.

Ill
Figure 5.8 Busy light.

Figure 5.11 Style manager icon.

Figure 5.14 Trash can icon.

User Interfaces 111

Figure 5.9 Exit session
button.

Figure 5.12 Application
manager icon .

you've moved to the trash can. The trash can collects the files and directories
that you delete. They are not actually removed from the file system until the
trash is "emptied." If you change your mind and want to restore a file you've
put in the trash, you can restore it if the trash hasn't been emptied.

5.1.3 Common Desktop Environment services

Common Desktop Environment desktop and application services include ses
sion management, window management, data interchange, network services,
customization, on-line help, printing, and application integration. Integrated
Common Desktop Environment services enable end users to run existing
application binaries-applications look and feel the same on Common Desktop
Environment as they did on previous platforms. Users can:

• Locate and launch applications quickly and intuitively-click on file man
ager, click on the application icon, and begin work.

112 Software

• Focus on manipulation of data and objects, not on execution and command
line arguments-users manipulate a file from an icon, not from a path.

• Exchange data across applications using direct manipulation-users can
drag-and-drop much more quickly than memorizing command parameters
and performing keystrokes.

In essence, interaction of Common Desktop Environment services maxi
mizes end user productivity. End users can now get transparent access to net
work services and devices on their desktops (such as printers and shared
application folders) and can run stand-alone and networked applications with
out having to be aware of the difference. The Common Desktop Environment
enables end users to run X, Motif, OPENLOOK, and character-based applica
tions-and with additional software support, DOS, Windows, Macintosh, and
other application environments.

5.1.3.1 Session manager and workspace manager

Session manager (Fig. 5.15) preserves the state of the application at logout
(end of session). When the user logs back in, session manager restores the
application's state automatically. For an application to be saved and restored
by session manager, the application must participate in a simple Inter-Client
Communication Conventions Manual (ICCCM) session management protocol.

Session manager supports the notion of a current session and a home ses
sion. The current session enables the user to log in to the same session that
was running when the user last logged out. The home session enables the user
to log in to the same session every time. The user may choose whether the cur
rent or the home session is started at login by customizing the startup dialog
in style manager.

A Common Desktop Environment desktop session starts when the user logs
in. The Common Desktop Environment desktop session manager takes over
after login manager recognizes the login and password. Session manager pro
vides the ability to manage sessions-to remember the state of the most recent
session and return the user there the next time he or she logs in.

Session manager saves and restores:

• The appearance and behavior settings-for example, fonts, colors, and
mouse settings

• The window applications that were running-for example, file manager and
text editor windows.

1 - - - - --- -- - -· I

-1 p 1!Q!iL___J FRAME -

I ~~hiiil
Figure 5.15 Session manager.

User Interfaces 113

Certain types of applications can't be saved and restored by session man
ager. For example, if the vi editor is started from a command line in a terminal
emulator, session manager cannot restore the editing session.

A workspace is the screen area where you bring the applications needed for
your work, arrange them to suit your preferences, and put them away when
you're done. Common Desktop Environment initially comes with four work
spaces as illustrated in Fig. 5.15 (session manager).

You can organize application windows by choosing which applications belong
in each workspace. For example, a workspace could contain applications used
for correspondence, such as a mailer and text editor. Or, you could choose to set
up your workspaces according to projects, such as budget presentations, mar
keting demonstrations, and specific in-house project work.

The workspace menu contains commands that help manage the workspace.
(Access the workspace menu by holding down the right mouse button while
positioning the cursor in the workspace area.) These commands include:

Shuftle up

Shuftle down

Refresh

Minimize/restore front panel

Restart workspace manager

Logout

5.1.3.2 File manager

Puts the bottom window (in a stack of overlapping
windows) on the top of the stack

Puts the top window (in a stack of overlapping
windows) on the bottom of the stack

Repaints the screen should the display become
unreadable

Turns the front panel into an icon; when selected a
second time, restores the front panel

Stops, then restarts, workspace manager after con
figuration files have been customized

Begins the logout process, the same as pressing
the exit button in the front panel

File manager (Fig. 5.16) is a desktop application that lets you create, locate,
organize, and work with desktop objects such as files and directories. The file
manager main window is a view of a directory on your system. The directory
you are currently viewing is called the current working directory. To remove a
file from file manager and place it on the desktop, do the following:

1. Point to the object's icon.

2. Press and hold the right mouse button, known as the drag button. (On a
two-button mouse, press both buttons simultaneously.)

3. Drag the icon to the location where you want to drop it, then release the
mouse button.

The motion for dropping an object is press .. drag .. release. To cancel a drag in
progress, press the Esc key before releasing the mouse button.

To move a file to a certain directory in file manager, drop a file into an open
file manager window or into a directory icon. If you drop an object onto the

114 Software

Figure 5.16 File manager.

workspace backdrop, you are placing a reference to it on the desktop in the cur
rent workspace.

5.1.3.3 Style manager

'

Style manager (Fig. 5.17) makes it easy to customize the visual elements and
system behavior of the desktop. You can choose from lists of color palettes,
change your mouse's double-click speed, or perform other tasks to customize
the desktop according to your preferences. Options that can be customized
include:

• Workspace (screen) colors

• Application font sizes

• Workspace backdrops

• Mouse button click settings, double-click speed, pointer acceleration, or
pointer movement threshold

• Beeper volume, tone, or duration

- - - - - - ~ -
Ii le ~elp

Figure 5.17 Style manager.

User Interfaces 115

• How a window acquires focus, if the window raises when it receives focus, or
where window icons are placed

•Number of minutes before your screen times out or whether or not your
screen is covered and locked at time out

• How your session begins and ends

5.1.3.4 On-line help

You can use desktop on-line help topics in a variety of ways including:

• Press Fl, also known as the help key. The quickest and easiest way to get
help is to press Fl. When you press Fl, the application you are using
responds by displaying the help topic most closely related to your current
activity. Some computers have a dedicated help button on the keyboard
which may take the place of the Fl key.

• Choose a command from application help menus. Most applications have a
help menu that contains additional commands for requesting specific kinds
of help, such as Introduction, Tasks, and Reference. To learn more about
using help windows, choose Using Help from the help menu in any Common
Desktop Environment application. Or, press Fl while using a help window.

• Double-click on the help manager icon to browse all the available help. The
help manager is a special help window that lists all of the on-line help that
has been installed on the system. To browse the Common Desktop Environ
ment help volumes:

1. Choose the help control in the front panel.
2. Choose Common Desktop Environment to display the list of help volumes

for the desktop.
3. Browse the list of titles. To open a volume, choose its title.

• Select the arrow above the help manager icon.

See Fig. 5.18 to view the help subpanel options available when you select the
arrow above the help manager icon.

The help subpanel provides the following:

Install icon

Top level

Desktop introduction

Front panel help

Drop an object on the control to install it into the sub
panel. You can install icons representing applications
(actions), files, and directories.
Choose the control to open the top-level help window,
which is a browser window that lets you access any Com
mon Desktop Environment compliant help registered on
your system.
Displays the help volume entitled "Introducing the Com
mon Desktop Environment Desktop," which contains top
ics covering basic desktop concepts and skills.
Displays the help volume for the front panel, which con
tains topics covering how to use and customize the front
panel.

116 Software

Figure 5.18 On-line help pop-up.

5.1.3.5 Application manager

Application manager (Fig. 5.19) contains all the applications registered on
your system. The top level of application manager contains a set of application
groups, which is a special directory containing the application and, optionally,
other useful files such as sample data files, templates, and readme files .

The application groups in your application manager are either built in or
have been placed there by your system administrator. When an application
group is in your application manager, it is said to be registered on your system.

Figure 5.19 Application manager.

User Interfaces 117

The actual applications and other files may be located on your own system or
can be elsewhere in the network. The registration of application groups into
your application manager occurs each time you log in.

The various types of tools that are distributed by default with Common
Desktop Environment support a broad range of tasks routinely performed by
users and system administrators. There is a UNIX tools directory that con
tains a variety of icon and action associations that enable users to easily cap
ture and display screens, tar files, uncompress files, and search on strings. The
desktop also provides a graphical means to create icons, associate the icon with
a desired command string, and refresh the user's environment with the new
action definitions.

5.1.3.6 Messaging with ToolTalk

ToolTalk is designed to make it easy for applications on one or more hosts to
easily exchange information or control each other by supporting multicast and
point-to-point communication. Through the use of messages and patterns,
requests and notices, handlers and observers, and scope of delivery, ToolTalk:

• Integrates global workspaces

• Is completely transparent to end users

• Supports procedural and object-oriented messaging

• Provides high performance and throughput

• Guarantees message delivery

The ToolTalk service enables independent applications to communicate with
each other without having direct knowledge of each other. Applications create
and send ToolTalk messages to communicate with each other. The ToolTalk
service receives these messages, determines the recipients, and then delivers
the messages to the appropriate applications.

ToolTalk messages are simple structures that contain fields for address, sub
ject, and delivery information. To send a ToolTalk message, an application
obtains an empty message, fills in the message attributes, and sends the mes
sage. Senders need to know little about the recipients because applications
that want to receive messages explicitly state what message they want to
receive. This information is registered with the ToolTalk service in the form of
message patterns.

Applications can provide message patterns to the ToolTalk service at installa
tion time and while the application is running. When the ToolTalk service deter
mines that a message needs to be delivered to a specific process, it creates a copy
of the message and notifies the process that a message is waiting. If a receiving
application is not running, the ToolTalk service looks for instructions (provided
by the application at installation time) on how to start the application.

Before your application can utilize the interoperability functionality pro
vided by the ToolTalk service and the Common Desktop Environment Mes
saging Toolkit, it needs to know where the ToolTalk libraries and Common

118 Software

Desktop Environment Toolkit reside. To use the ToolTalk service, an applica
tion calls ToolTalk functions from the ToolTalk API. The Common Desktop
Environment messaging toolkit provides functions to register with the Tool
Talk service, to create message patterns, to send messages, to receive mes
sages, to examine message information, and so on.

5.2 WABI

5.2.1 Overview

Wabi allows users to run Microsoft Windows 3.1 software-based applications on
the PowerPC operating system platform. An execution environment for Micro
soft Windows 3.1 API compliant applications, Wabi includes a layer of code that
maps the Microsoft Windows APis onto Xll. Wabi converts Windows program
ming calls to equivalent X Windows calls that are then executed in the host pro
cessor. Time spent in the operating system requesting services is remapped to
native UNIX operating system calls. Wabi relies on native services, using the
same instructions as the native instructions on top of the PowerPC.

Wabi's features include:

• Reimplementation of MS Windows dynamically linked libraries (dlls)

• Reimplementation of the following MS Windows executables: program man
ager, control panel, task manager, and write

• Support of cut, paste, and copy between MS Windows applications and AIX
applications

• Support of DOS diskettes and CD ROM for easy installation of MS Windows
and 3.1 applications

• Full access to systems resources including PostScript printers

• Support of MS Windows enhanced (80386) mode applications

• Integration into the Common Desktop Environment

Wabi software resides between an application and the native operating sys
tem. There it redirects an application's requests for services and resources to
the appropriate operating system location. Ai:, users work with applications,
Wabi intercepts instructions and requests and translates them into a language
understood by the native operating system. Wabi then directs these requests to
the appropriate operating system location.

Wabi currently supports PostScript printers attached to the native operating
system. Wabi takes the PostScript file created by an application and passes it
on to the system's print queue, which, in turn, performs the normal printer
control and management. The operating system carries out the print request,
making available print resources in the form of a device or driver.

User Interfaces 119

5.2.2 Wabi capabilities and functions

The Wabi program can run a variety of programs, including Windows 3.1 appli
cations and additional dlls. As a result, the Wabi program can provide a vari
ety of functions. However, the functions available during a Wabi session
depend on the functions supported by the application you are running.

For example, if you are using an application that supports dynamic data
exchange (DDE) and that includes DDE program libraries, the Wabi program
will support DDE operations. The same is true for object-linking and embed
ding (OLE) operations. If your application supports OLE 1.0 operations, and
includes OLE resources, the Wabi program uses the OLE dll supplied by the
end user or the application.

In essence, the Wabi program supports two groups of functions: (1) configu
ration functions intrinsic to the Wabi program, and (2) operational functions
supplied by applications. Configuration functions include the following:

• COM port settings

• Printer settings

• Drive connections

• Diskette connections

• Mouse settings

• Sound settings

• DOS emulator connection

Operational functions supplied by installed applications include:

• Many Windows 3.1 program manager functions

• Windows 3.1 accessory group programs

•Windows 3.1 main group programs

• Windows 3.1 games group programs

• Dynamic data exchange functions

• Object linking and embedding 1.0 functions

Access the configuration functions through the Wabi configuration manager.
Each configuration function is represented by an icon appearing in configura
tion manager, and also by a menu item in the configuration manager options
menu.

If you have a Microsoft Windows 3.1 license, you can access many Windows
3.1 applications and functions. These are available through Wabi's applica
tion manager, which replaces the need to use the MS Windows 3.1 program
manager.

120 Software

5.2.3 Getting started with Wabi

The Wabi program presents the familiar screens, dialog boxes, and menus of
a graphical user interface (GUI). Make menu choices and icon selections by
pointing and clicking with a mouse, or by using keyboard accelerator com
mands.

5.2.3.1 Configuration manager

Use the Wabi configuration manager to establish or change Wabi settings and
connections. The Wabi configuration manager functions as the dashboard of
the Wabi program, where most facets of program operation are controlled.

Some configuration manager settings require you to supply operating sys
tem device names. In most cases, the Wabi program identifies your operating
system and supplies the appropriate default settings. Infrequently, you may
need to enter a unique or unusual setting.

Because of the way your native operating system works, you must change
certain system settings through your native desktop or from the native operat
ing system command line. Examples of such system settings include the sys
tem date and time, desktop (non-Wabi) screen colors and fonts, and the
exporting and mounting of remote filesystems. If a setting you want to change
does not appear within configuration manager, refer to your operating system
documentation for information about how to change the setting. The Wabi con
figuration manager is illustrated in Fig. 5.20.

5.2.3.2 Application manager

The Wabi program provides its own program environment called application
manager. Use application manager to install and run applications. From appli
cation manager the Wabi configuration manager can be accessed.

You don't have to use application manager. You can run an application
directly. You may find application manager useful, however, for organizing and
managing your applications. Use application manager to manage applications
by organizing them into groups. You can create application groups using the

Configuration Manager
.!:!el

Ml lj -PDrtl Pltntlr11 Drlwe Dlekett.e

~ n a
Mou .. Sound DOS

Figure 5.20 Wabi configuration manager.

User Interfaces 121

new command from the file menu. Once you create a group, you can place an
application item (program) or data file within the group. Application manager
initially contains one group: the tools group. More groups appear in application
manager as you install your Wmdows applications.

All application manager commands and functions are accessible through key
combinations (called keyboard accelerators) as well as through the mouse
pointer. Each menu title, menu choice, and dialog box function contains an
underlined character. This character designates an accelerator key. By press
ing the Alt key and the key represented by an underlined letter, you access the
command or function.

Application manager provides several menus:

File

Options

Window

Help

Provides a way to create new application groups and items; open appli
cation groups; move, copy, and delete application items and groups;
examine group and item parameters; run an application; and exit the
Wabi program.
Allows you to automatically control the layout of icons within a group
window, minimize an application on use, and save the window and icon
layout on exiting the Wabi program.
Allows you to control the arrangement of windows and the layout of
icons within a window.
Ifrequired program files are installed, help provides access to the
Wabi on-line help system's table of contents, and allows you to search
for a topic. Instructions about using the help system are also provided.

The Wabi application manager and menu bar is illustrated in Fig. 5.21.

5.2.3.3 Tools group

The tools group is contained within application manager. A tools group appli
cation item is a utility program that allows you to perform a specific Wabi task.
An example of a task is installing the Windows 3.1 program. Application items
within the tools group include:

Configuration manager

Windows install

A program through which you establish and change
most Wabi program settings and connections. Use this
program to set up a drive, assign a port, establish a
default printer, and more.
A program used to install the Microsoft Windows 3.1
program. You must use this tool to install the Windows
software.

Application Manager
Window .!:!el

Figure 5.21 Wabi application manager.

122 Software

•

DOS session

File viewer

A program that starts a DOS session by starting the DOS
emulator specified in the Wabi configuration manager.
A program you can use to view and print text files hav
ing a . wri or a . txt file extension. Files with these
extensions serve as readme files in many application
programs. You can also use this program to view initial
ization (. i n i) files.

The Wabi tools group is illustrated in Fig. 5.22.
When you install an application, it's informative to view the various readme

files included with the application. These files contain information about the
application, and usually some caveats about using the application. Use the file
viewer to view and print an application's readme files. File viewer will selec
tively search for files with the following extensions:

.wri-Files in the Windows 3.1 write format .

. txt-Files in ASCII text format.
.-Files with any file extension. (This combination ofwildcard characters
represents all files, no matter what the file extension.)

To view a file, start file viewer by double-clicking the file viewer icon in the
tools group. When the file viewer window opens, select open from the file menu.

Application Manager
tions Window .t:lel

Tools • ~
Configuration Wirdows DOS Session File Viewer

Install Ma~er

!l
Wabi 1.0
Release
Notes

Figure 5.22 Wabi application manager tools group.

User Interfaces 123

The Select File for Viewing dialog box opens. This dialog box is a file browser,
which is used to locate the file you want to view or print. This Select File for
Viewing dialog box has several panels:

Directory

File

Directory layout

Search list

Drives

File types

Displays the directory path currently selected. You can enter a
path in this panel or construct a path by browsing a file system.

Displays the name of the file selected for viewing in the search
list.

A browser that displays the directories within the current
directory available for browsing. Double-click [..] to move up
one level in the directory hierarchy. Double-click a directory to
select it.

Displays a list of files within the current directory that have
the file extension specified in the file types panel.

Displays a list ofWabi drives and their assignments. Select a
drive for browsing from this list.

Displays a list of file extensions, from which you can select an
extension. Selecting the wildcard item (*. *) returns for view
ing a list of all files in the selected directory, regardless of
extension.

You can print a read.me file using the export as command located in the file
viewer file menu. The export as command converts the file you are viewing to
ASCII format and saves the file with a . txt file extension. Once the file is
saved, you can print it using operating system tools such as vi or a text editor.

5.2.3.4 Wabi installed with Windows 3.1 program installed

If you are running Wabi with Microsoft Windows 3.1 installed, you can access
many of the accessories and programs available in the Windows 3.1 program.
For example, you can use Program Manager as your Wabi operating environ
ment. In addition, you can use most accessory programs and games, including
Paintbrush, Write, Notepad, Calculator, Solitaire, and Minesweeper.

You can also use the Windows control panel color function to change the color
scheme of Wabi windows. This is the only control panel function you can use.
Although additional functions (date/time, printers, international, etc.) appear
in the control panel when Windows 3.1 software is installed under the Wabi
program, these functions are managed by the Wabi program or by your operat
ing system. Note that if you do not install Microsoft Windows 3.1 software, you
will not have access to Microsoft Windows 3.1 accessories and programs.

You do not need to use the Wabi application manager or the Windows 3.1 pro
gram manager to run an application. By specifying the -s argument when
starting the Wabi program, you can run an application directly. If you start the
Wabi program in this way, the initial window that opens is the application win
dow. You can use this technique to run a Windows application from your native
desktop, or from any other UNIX program. Once you've established Wabi set
tings and connections, you may find running an application from your desktop
to be a convenient way of using the Wabi program.

124 Software

5.2.3.5 Wabi on-line help

The Wabi program provides comprehensive, context-sensitive on-line help. On
line help explains the tasks and procedures required to use Wabi functions. If
you have installed Windows 3.1 software in conjunction with the Wabi program,
you will be able to access Wabi on-line help and the help provided with your
applications. Even if you can't access Wabi on-line help, you can view Wabi error
messages and, when using configuration manager, status panel help.

A manual (man) page of information is available for the Wabi program. This
man page describes command-line options, provides examples of various start
up modes, and describes the Wabi environment. Tu access the Wabi man page,
add the Wabi man page directory to the manpath environment variable. This
variable is located in either your . login file or your . cshrc file. Once you've
modified this variable, you can view the Wabi man page.

A Wabi error message appears when you try to perform an "illegal" proce
dure or when Wabi software cannot complete a task. For example, you'll see an
error message if you try to assign a Wabi drive to a file system that you do not
have permission to access.

Status panel help is available within the Wabi configuration manager. Each
configuration manager dialog box includes a help panel. This panel displays
information about the dialog box item that is under the mouse pointer. As you
move the pointer around a dialog box, the displayed help message changes.

5.3 X WINDOW SYSTEM

The X Window System (or X) is a hardware-independent, vendor-independent,
and network-transparent operating environment developed at the Massa
chusetts Institute of Technology in 1984 as a cooperative effort funded by
major computer manufacturers to build a network of graphical workstations.
The enormous success of this program made the X Window System a UNIX
based windowing standard which is now available on virtually every worksta
tion in the industry. Several versions of X have been developed, of which X
Version 11 (Xll) is the most recent. The X Consortium was formed in 1988 to
foster development and support of the X Window System.

X offers many benefits to users. It solves the problem of having a common
interface across a heterogeneous range of computers and operating systems. It
provides a mechanism upon which one can build different user interface styles.
It also addresses the issue of sharing resources among multiple programs-X
allows multiple applications to run simultaneously and permits applications to
be device-independent.Xis operating-system-independent, encouraging the
portability of its software to diverse platforms. Hence, Xis one of the most pop
ular and widely available user interface standards in the workstations arena.

X provides the ability to generate multifont text and graphics in
monochrome or in color on a bitmap display. Graphics such as points, lines,
arcs, and polygons can be generated in a hierarchy of windows. Each window
can be considered a "virtual screen" and can, in turn, contain subwindows of an
arbitrary depth. They may overlap each other and can be moved, resized, or

User Interfaces 125

restacked dynamically. Since windows are relatively inexpensive resources,
applications utilizing several thousand subwindows are common and are often
used to implement user interface components.

X, a network-oriented windowing system, consists of an X server, which
manages a visual display, and client application programs. Client application
programs can perform a variety of tasks, such as processing electronic mail,
managing a database, or simply displaying the current time. Each application
appears in its own window or in a family of associated windows. The server
conveys user input information, such as a click of the mouse or keystroke, to
the appropriate client application. Client applications communicate their
needs for display actions to the server. The X server and client applications can
reside on the same computer or on different computers connected by a net
work. An illustration of the X environment follows (see Fig. 5.23).

The interprocess communication used by the X server and client is defined
by a network protocol. Programmers interface with this protocol using Xlib,
the C language programming interface to X and higher-level "toolkits," such as
Xt and OSF/Motif. Xlib functions as a procedural interface, hiding the details
of the protocol-encoding and transport interactions, and automatically han
dling the buffering of requests for efficient transport to the server.

The X Window System architecture is based on a simple client-server rela
tionship. The display server is the program that controls and draws the output
to the display monitors, tracks client input, and updates the windows accord
ingly. Clients are application programs that perform specific tasks. Since X is,
by design, a distributed environment, its clients and server do not necessarily
have to run on the same machine.

The terminology in the world of X may be somewhat confusing to program
mers from the traditional host or mainframe environment. The location of the
server in the context of X is the reverse of servers in local area network envi
ronments. Consider a traditional database environment in which the server

Application/Window
Mana er/ Term Emulator

X Toolkit

Programming Interface (Xlib)

X Network Protocol

Base Window System

X Server

Device Library

Figure 5.23 X environment.

126 Software

lives on the remote host and the client application resides locally on the PCs
that are attached to it. In X, the server lives on the local workstation, while the
clients run on the remote host machines.

Although Xis fundamentally defined by a network protocol, most application
programmers think about it as a GUI. For ease of use, a higher-level layer is
used to abstract the protocol layer and insulate it from programmers building
X-based interfaces. This higher-level layer is referred to as the XUb, or, more
correctly, as the Xlib Interface Library (refer to Fig. 5.23). This library provides
a familiar procedural interface that masks the detail of the protocol-encoding
and transport interactions. It also automatically handles the buffering of
requests for efficient transport to the server, much as the C language standard
1/0 library buffers output to minimize system calls. Tµe library also provides
an array of utility functions and primitive constructs that do not directly relate
to the protocol but aid in building applications.

5.3.1 AIXwindows Environment

AIXwindows Environment provides a graphical interface to AIX for the Power
PC (see Fig. 5.24). Based on and compatible with the industry-standard X Win
dow System and the OSF/Motif 1.2 GUI, AIXwindows can interact with other
AIX and X-based equipment manufacturer systems implementing the X Win
dow System and OSF/Motifinterfaces. AIXwindows provides a graphical desk
top that can be customized to integrate and launch applications. AIXwindows
enables users to develop and execute X applications, OSF/Motif applications,
or applications requiring Display PostScript support.

Applications

Window Manager

Xt Intrinsics

X Window System

OS and Networking

PowerPC Architecture

Figure 5.24 AIXwindows Environment.

User Interfaces 127

The current AIXwindows environment (Version 1.2.5) provides support for X
Windows Release 5 (X11R5) and is binary-compatible with X11R4. AIXwin
dows supports 2-D as well as 3-D applications.

AIXwindows is a set of guidelines and tools that specify how a user interface
for graphics computers should look and feel. These specifications focus on the
design of the objects that make up the user interface: the menus, buttons, dia
log boxes, text entry, and display areas. AIXwindows implements a flexible
software system layered on top of the X Window System to create individual
visual components, such as scroll bars and menus.

In addition to providing users with the ability to run several applications
simultaneously on the screen, the AIXwindows environment supports various
services that can enhance applications including:

• AIXwindows Style Guide. Provides a framework of behavior specifications
to guide application, widget, user-interface system, and window-manager
developers in the design and implementation of new products consistent
with the operating system user interface. The Style Guide is based on the
OSF I Motif Style Guide.

• AIXwindows Customizing Tuol. Helps to customize the look of an applica
tion. Provides a simple method for users to change attributes including col
ors and fonts.

• AIXwindows National Language Support. Enables programmers to write
internationalized applications that can port easily across systems, each of
which supports a different native language. The environment clients are
internationalized so they can run in the native environment of the user.

5.3.2 AIXwindows 3-D

The most apparent distinguishing characteristic of AIXwindows is its 3-D
appearance. The AIXwindows 3-D feature provides facilities for the develop
ment and execution of 3-D applications using a variety of industry-standard
APis. This includes hardware support for PEXlib, graPHIGS, and GL as well
as a pure software implementation of OpenGL, PEXlib, and graPHIGS
referred to as Softgraphics. Softgraphics allows all 3-D functions to be per
formed by software, in which the graphics adapter is used simply as a frame
buffer to display the image. This implementation makes it possible to run 3-D
applications on any 2-D graphics adapter.

Softgraphics provides a uniform development environment for 3-D applica
tions on systems with entry-level graphics adapters. Programmers can develop
advanced 3-D applications for industry APis, which can then be moved to any
3-D graphics adapter with little or no change to the source code.

5.3.3 AIXwlndows interface composer

The AIXwindows Interface Composer (AIC) is a software development applica
tion that enables application or systems programmers to 'readily create and

128 Software

generate graphical user interfaces and graft them onto existing programs, or
create the interfaces in tandem with code generation. The AIC package pro
vides a library of code modules (objects) that a programmer can use and reuse
to build a graphical user interface. The AIC development package is itself
graphically driven so that a programmer can build a graphics interface by
selecting and working with menus, windows, buttons, and other types of
graphic objects.

5.4 MACINTOSH APPLICATION SERVICES

5.4.1 Overview

The primary advantage of Macintosh Application Services is the availability of
shrink-wrapped applications, as well as the new generation of Power PC Mac
intosh applications. Another powerful feature brought to the PowerOpen sys
tem by Macintosh Application Services is the ability to cut and paste
information from the Macintosh window environment to and from any other X
client application. Both text and graphics can be copied from or pasted to the
Macintosh clipboard, which then can be made available from within other X
client applications on the system.

From a system perspective, Macintosh Application Services is a layered
application execution environment that integrates Macintosh applications into
the X Window System without requiring that the Macintosh environment be
the dominant personality or desktop. The windowing extensions for the
PowerOpen environment consist of a window manager, application commands
and parameters, and the communication protocol. The PowerOpen windowing
system is derived from the X Window System Release 11 Version 5 (X11R5),
which provides a client/server-based graphical windowing system. There is a
native mapping of Macintosh's Toolbox APis onto Xll. A 680x0 instruction set
emulator is provided to support Macintosh applications.

5.4.2 Capabilities and functions

When using Macintosh Application Services, users see the familiar Macintosh
graphical environment inside an X Window on the screen. Within this window,
the user can run several Macintosh programs concurrently, and create new
windows inside the Macintosh environments, just as with any other Macintosh
computer. Macintosh Application Services uses System 7 software, making the
look and feel of the PowerPC Macintosh environment identical to that of a
Macintosh system.

Also available to users are the productivity features of the Macintosh inter
face, enabling users to manipulate files and move information throughout the
PowerOpen environment. For example, users can move files on the system
from one directory or folder to another, copy a file by clicking and dragging a
file icon, cut and paste information between Macintosh and PowerOpen oper
ating system documents, and use Macintosh commands to locate or manipu
late information. Users can also launch both Macintosh or UNIX applications
on the PowerPC by clicking on the appropriate document or application icon.

User Interfaces 129

Apple Macintosh applications run through the Macintosh application ser
vices extension. Macintosh Finder, the Macintosh desktop creator and manager,
runs within a single window. Both PowerPC and 680x0 Macintosh applications
can be run simultaneously from the same system. The Macintosh Finder pro
vides the familiar Macintosh Desktop Graphics User Interface within an X Win
dow on the PowerOpen system. All files (including non-Macintosh documents
and applications) appear as icons; users simply double-click on a Macintosh or
UNIX icon to open a file or launch an application.

5.4.3 Getting started with Macintosh Application Services

The Macintosh Application Engine includes the toolbox, a 68040 emulator, and
a multimode switcher that allows both 680x0 applications and PowerPC appli
cations to run simultaneously. The Macintosh system software component
maps the fundamental services such as memory management and 110 to files
and devices to the underlying operating system. See Fig. 5.25 for an illustra
tion of the Macintosh Application Services architecture.

There are three main components that make up the Macintosh Application
Services software, including:

• Macintosh Desktop Services (the graphical interface through which users
interact with the Macintosh environment)

• Macintosh Application Engine (functions as an intelligent switching device,
ensuring that applications spend the maximum possible time carrying out
functions in native Power PC code)

Macintosh
User Interface
and Desktop
Services

Macintosh
680x0
Applications

Macintosh
Finder PowerPC

Applications

Macintosh
Application
Engine

Macintosh
System
Services

PowerOpen
Environment

68040 Emulator

Macintosh
Toolbox

Mixed Mode
Switcher

Macintosh System Services
~X_W_i-nd_o_w_S_y_st_e_m~I

PowerOpen Operating System

Figure 5.25 Macintosh application services architecture.

Macintosh
Toolbox

130 Software

• Macintosh System Services (handles interaction with physical devices such
as printers and disk drives, as well as memory management and file man
agement)

The first layer, the Macintosh Desktop Services, enables users to manage
both Macintosh and PowerOpen files and launch applications. The primary
component of the Macintosh Desktop Services is the finder, based on Macin
tosh System 7 system software. The finder is the graphical interface (including
the Macintosh desktop) through which users interact with both Macintosh and
PowerPC applications. When the Macintosh Application Services application
is launched, the desktop area created by the finder appears in the POEmac X
window. All finder features are confined to this window, enabling the POEmac
window to function as a self-contained Macintosh environment on the Power
Open screen.

The second layer, the Macintosh Application Engine, consists of the Macin
tosh toolbox, the Macintosh 68040 emulator, and a multimode code switcher,
which determines if the application instructions from the Macintosh Desktop
Services layer are Macintosh 680x0 application code on PowerPC Macintosh
code, and routes the code accordingly. The Macintosh Application Engine is the
core of the Macintosh Application Services. It maximizes the speed of running
Macintosh 680x0 applications on a PowerOpen system. All Macintosh 680x0
applications are supported by an emulator, which interprets the 680x0 code to
instructions usable by the PowerOpen platform. The system is designed to
minimize the time spent in the emulator, and to maximize the time spent exe
cuting application commands in native PowerOpen code, allowing increased
application performance speed.

Included in the Macintosh Application Engine is the Macintosh toolbox (an
interface written in native PowerOpen code) which enables applications to
interact with the PowerOpen system layer. The toolbox supports user interface
calls from the user interface layer to provide windows, menus, graphics, and
fonts and also provides a native PowerPC code interface between the user inter
face and the PowerOpen hardware layer. Since most Macintosh 680x0 applica
tions spend up to 90 percent of their processing time in the Macintosh toolbox,
the application speed increases significantly on the PowerOpen platform.

The third layer, the Macintosh System Services, handles low-level tasks
such as memory management and input/output to files and devices. Its
resource management responsibilities include information exchange and file
management to various devices including hard disks, network file systems,
and printers. Native Macintosh files are displayed with an application-specific
icon, while the nonnative files are shown with a standard Macintosh icon.
Access to files remains transparent regardless of whether it is resident in the
native disk drive or on network-mounted devices. As far as the print facility is
concerned, there is no difference in printing from Macintosh Application Ser
vices as compared to printing from a native Macintosh environment.

The Macintosh Application Services GUI software, designed to work cohe
sively with the PowerOpen Environment, enables users of PowerOpen systems

User Interfaces 131

to take full advantage of the Macintosh environment while harnessing the
power and speed of the PowerOpen Environment.

5.5 SUMMARY

The user interfaces compatible with the PowerPC provide powerful features
while enhancing ease-of-use for users. The ability to pick and choose from the
array of application environments available and the ability to cut and paste
between applications gives PowerPC users endless advantages over systems
running only DOS, Windows, UNIX, or Macintosh operating systems, and, by
default, applications compatible with those single operating systems.

The Common Desktop Environment is a specification providing open sys
tems users with an easy-to-use desktop computing environment that remains
consistent across UNIX platforms and applications. The Common Desktop
Environment will give developers the advantage of working with a single set of
programming interfaces, allowing them to bring products to market faster and
with lower support costs. The Common Desktop Environment was one of sev
eral specifications outlined in March 1993 when the Common Open Software
Environment process was announced. The Common Open Software Environ
ment was formed in order to expedite the adoption of standards and promote
greater consistency and interoperability among UNIX system products.

The Common Desktop Environment incorporates major elements of
Hewlett-Packard's Visual User Environment (VUE); IBM's Common User
Access (CUA) model and Workplace Shell; SunSoft's DeskSet productivity tools
and ToolTalk interapplication communication product; Open Software Foun
dation's Motif Toolkit and Window Manager; USL's UNIX SVR4.2 desktop
manager components and scalable systems technologies; the X Window Sys
tem Vll; and Novell's client software for UNIX.

The COSE process was announced by the Hewlett-Packard Company, IBM,
SunSoft, Inc., The Santa Cruz Operation, Univel, and Unix System Laborato
ries in March 1993 to expedite the adoption of standards and promote greater
consistency and interoperability among UNIX system products in the industry.

Wabi allows users to run Microsoft Windows 3.1 software-based applications
on the PowerPC operating system platform. An execution environment for
Microsoft Windows 3.1 API compliant applications, Wabi includes a layer of code
that maps the Microsoft Windows APis onto Xll. Wabi converts Windows pro
gramming calls to equivalent X Windows calls that are then executed in the host
processor. Time spent in the operating system requesting services is remapped
to native UNIX operating system calls. Wabi relies on native services, using the
same instructions as the native instructions on top of the Power PC.

Wabi's features include reimplementation of MS Windows' dynamically
linked libraries (dlls); reimplementation of MS Windows executables such as
program manager, control panel, task manager, and write; support of cut,
paste, and copy between MS Windows applications and AIX applications; sup
port of DOS diskettes and CDROM for easy installation of MS Windows and
3.1 applications; full access to AIX systems resources, including PostScript

132 Software

printers; support of MS Windows enhanced (80386) mode applications; and
integration into the Common Desktop Environment.

Wabi software resides between an application and the native operating sys
tem, where it redirects an application's requests for services and resources to
the appropriate operating system location. As users work with applications,
Wabi intercepts instructions and requests and translates them into a language
understood by the native operating system. Wabi then directs these requests to
the appropriate operating system location.

Xis a hardware-independent, vendor-independent, and network-transparent
operating environment that solves the problem of having a common interface
across a heterogeneous range of computers and operating systems by providing
a mechanism on which one can build different user interface styles. It also
addresses the issue of sharing resources among multiple programs by allowing
multiple applications to run simultaneously and permitting applications to
be device-independent. X is operating-system-independent, encouraging the
portability of its software to diverse platforms, which makes it one of the most
popular and widely available user interface standards in the workstations
arena.

Macintosh Application Services is a graphical user interface that is compliant
with the UNIX-based graphical interface, X Windows. It brings the functional
ity of the Macintosh environment to PowerOpen systems. With Macintosh
Application Services, users of PowerOpen systems are able to take full advan
tage of the Macintosh environment--the graphical interface, the Macintosh
System 7 system software and the wide range of software applications-and
combine these advantages with the power and open system architecture of the
PowerOpen Environment. Once Macintosh Application Services is installed,
users will be able to run PowerPC Macintosh applications, as well as off-the
shelf Macintosh 680x0 applications, inside a window on the screen of a Power
Open platform.

Chapter

6

Operating Systems

The PowerOpen Association's promise of promoting application availability is
primarily achievable through the wide range of operating systems that have
been ported to the PowerPC. Based on the PowerOpen application binary
interface (ABI), the operating systems will run DOS and Windows under emu
lation, giving users an expanded range of applications to choose from. See Sec.
6.1 for a discussion of the PowerOpen ABI.

The layered architectural definition and design of the PowerPC defines
varying degrees of compatibility starting from the instruction set level, to the
virtual environment level, up to the operating environment level. This lay
ered approach to the processor's architectural framework makes it possible
to run almost any application with minimal porting effort. (See Chap. 3 for
more information concerning this new paradigm defined as architectural
abstraction.)

The PowerPC platform is intended to support numerous 32-bit operating
systems (based on the PowerOpen base operating system ABI specification).
Candidate operating systems include:

• AIX
• Taligent

• Solaris

•Windows NT

• Workplace OS

133

134 Software

The PowerPC support of 32-bit operating systems means that better memory
management, preemptive multitasking, and multithreading/muitiprocessing
are now available to PC users. What do these terms mean to users? With a 32-
bit memory management scheme, programmers are presented with a set oflog
ical memory addresses that start at 0 and end at 4 GB. This is referred to as a
flat memory model. The lack of segmentation in the memory model means that
an application's code and data no longer need to be broken into 64-KB chunks.

Preemptive multitasking means that the PC's CPU is in total control of appli
cation execution. When the operating system is loaded, it establishes a special
scheduling program that uses the memory-management hardware of the CPU
to coordinate how applications operate. In a preemptively multitasking envi
ronment, each application is assigned its own region of system memory and the
operating system scheduler allows the application to execute for a certain
period of time before it interrupts the application and allows another task to
execute. A thread is a single, sequential flow of control.or task within a process.
Multithreading is a paradigm given to self-contained tasks that can execute
concurrently. Symmetrical multiprocessing complements multithreading by
distributing threads across multiple processors.

6.1 PowerOpen APPLICATION BINARY INTERFACE

The PowerOpen environment (POE) provides a platform and 1/0-independent
application interface. The POE application binary interface (ABI) enables soft
ware developers to produce shrink-wrapped software without taking platform
specific functions and 1/0 bus dependencies into consideration. The ABI
defines the structure of the application as it is in the POE, thereby defining a
system interface for compiled application programs. This includes such key
definitions as loading and linking, conventions, object formats, execution
environment, networking infrastructure, and installation and packaging infor
mation.

The ABI consists of the PowerOpen application programming interface
(API), which defines the set of system calls, library function, header files, com
mands, and utilities that an application developer is allowed to use to develop
a compliant application. The POE API also contains the kernel programming
interface which defines the kernel process environment. The PowerOpen API
supports the following industry standards: XPG4, XNFS, XTI, and X11R5.

Through the use of the POE ABI execution environment, applications pro
grams compiled and packaged for POE implementations support all of the
PowerOpen execution environments, interfaces, and headers defined and
listed within the ABI specification. Additionally, systems implementing the
PowerOpen ABI may provide additional or enhanced interfaces, headers, and
facilities.

Adherence to the PowerOpen ABI guarantees application portability to
future versions of an ABI-conformant system and to future PowerPC architec
ture implementations. This portability is guaranteed at the following levels,
depending on the application's origin, as follows:

6.2 AIX

Operating Systems 135

• AB! conforming system. A system that provides all the binary system inter
faces for application programs described in the ABI specification and the
PowerOpen APL

• AB! conforming programs. A program written to include only the following
system routines:

Commands and other resources included in the ABI.
Programs compiled into an executable file that has standardized object file
formats and characteristics specified for such fields, as defined by the
extended common object file format (XCOFF).
Programs whose behavior complies with the rules given in the PowerOpen
ABI specification. A program cannot have the routines defined in the shared
libraries of the PowerOpen ABI statically bound into the program.

• Binary compatibility. Application is a "load-and-go" application-only the
physical availability of the application is needed. Applications adhering to
this level of compatibility can be moved across compliant systems.

AIX, Taligent, Solaris, Windows NT, and Workplace OS operating systems
have been ported to the Power PC platform through modification of their ABis
to be POE ABI compliant. Recognize that complying with the PowerOpen ABI
is necessary for an operating system to run on the PowerPC. A discussion
introducing the features of AIX, Taligent, Solaris, Windows NT, and Workplace
OS follows.

The AIX Personal Productivity Client (the version of AIX which will run on the
PowerPC) is a fully PowerOpen-compliant operating system based on the Com
mon Open Software Environment's (COSE) version of UNIX that includes
COSE's Common Desktop Environment (discussed in Chap. 5). Based on Sys
tem V Release 3 UNIX, the AIX customization facility is tied in with the X11R5
implementation. From the X Windows desktop, it is possible to customize fea
tures of X Windows applications through a graphical interface. AIX also
includes the AIX system management tool (smit), which consists of a series of
menus linked to an object database that builds UNIX commands in an interac
tive way. smit controls almost all system management functions and is also
available in a character-based version. smit can be used as a diagnostic read
out tool and configuration manager was well.

6.2.1 AIX personal productivity client configuration

The PowerPC implementation of the AIX personal productivity client comes in
the following configurations:

1. ASCII client workstation. This system consists of a one- to two-user system
that operates as a stand-alone or client in a network. Software includes a base

136 Software

run-time system, utilities, journaled file system, logical and physical volume
manager, TCP/IP and NFS client support, system management (including
support for remote boot/system management), and UNIX shell user interlace.

2. Graphical client workstation. This system consists of the ASCII client
workstation functions plus 2D X Windows, Motif GUI, the Common Desktop
Environment, Wabi, and a personal productivity user interlace, including
visual system management utilities. This configuration is referred to as Per
sonal AIX.

3. ASCII server. This system includes the ASCII client workstation functions
plus TCP/IP and NFS server functions, multiuser support, and additional
base system and system management utilities.

4. Graphical server. This system includes the functionality of the ASCII
server plus 2D X Windows, Motif GUI, Common Desktop Environment, and
a personal productivity user interlace, including visual system management
utilities.

5. Application development kit. The XL C compiler plus debuggers and soft
ware development utilities. These will run on any of the four base operating
system packages.

The client workstation requires at least 16 MB of main memory; the devel
oper workstation, 24 MB; and a LAN server, 32 MB. The main memory should
start at address zero and should be continuously populated through the maxi
mum amount in the configuration. A secondary cache (L2 cache) exterior to the
processor is optional on a PowerPC configured system. However, to optimize
perlormance for the developer workstation, include a 256-KB L2 cache, and to
optimize perlormance for the LAN server, include a 512-KB L2 cache.

All configurations should have an alphanumeric input device. Note that if a
LAN server does not function as a developer or client workstation, a simple
console (for example, an ASCII terminal) may be used. A pointing device (typ
ically a mouse) is required on the client and developer workstations.

The client workstation requires a graphics system capable of at least 800x600
pixels; a developer workstation, 1024x768 pixels; and a LAN server, only an
ASCII character video system (unless it also functions as a client or developer
workstation).

Only the developer workstation requires a serial port for the kernel debug
ger. However, all configurations require a parallel port and a minimum of one
network interlace.

The AIX personal productivity client supports a SCSI interlace and some
IDE disks. All configurations require one PCI bus; the ISA bus is optional for
all configurations. However, the ISA bus decoder is required for native 1/0 sup
port for such interlaces as parallel, serial, keyboard, and mouse.

6.2.2 Operating environment

The AIX software distribution is arranged in a hierarchical structure, resem
bling an inverted tree. Program modules are grouped in directories in this file

Operating Systems 137

tree. This logical organization of data and files allows control over the man
agement of multiple directories and files at one time. The basic layout of vital
programs has not changed from the standard UNIX file structure. However, a
set of modifications has been made in terms of file organization to optimize
storage, accommodate enhancements, and comply with standards.

6.2.2.1 Layout of files

The root directory in AIX is represented by a slash (/) symbol. All directories
under this root directory are considered subdirectories and may contain files
and/or directories in them. At the top of the AIX file system hierarchy is the
system-defined root directory. This root directory contains a set of standard
subdirectories. Described here are the names and functions of some of the
main directories found under root:

bin

dev

etc

mnt

lib

shin

tmp

home

usr

var

Contains binary programs that the users use as commands

Holds special files for I/O devices

Contains miscellaneous files for system initialization and system manage
ment (the name etc being derived from etcetera)

Provides a place to mount devices or external data from other machines

Contains common libraries; later releases of AIX have linked /lib with
/usr/lib
Holds system utilities and files needed to boot the machine

Contains temporary files that may get created by the users or the system
itself; typically this directory is purged on a periodic basis

Contains login directories for the system users; for compatibility reasons,
later releases of AIX have linked /u to /home

Contains system programs and licensed program products that users
would use

Serves as a mount point for directories and files which change size, such
as things found in the /usr/spool directory of UNIX or older AIX systems.

An individual system may also have some additional directories occurring
under root. However, the general convention for system maintenance is to keep
the root directory as clean as possible. The standard layout of an AIX file tree,
as it appears on the PowerPC, is shown in Figs. 6.1, 6.2, and 6.3.

6.2.2.2 Command language interpreters (shells)

In addition to providing a computer-human interface, a shell offers a variety of
tools which may be used to automate repetitive user activities at the keyboard.
The shell is a hard casing that provides a private workspace for the user. This
private workspace is also referred to as the user's environment.

Shell commands can be thought of as filters. As Fig. 6.4 depicts, the com
mands have a single input, called standard input (abbreviated to stdin), that
accepts characters one at a time. Each shell command also has two outputs
including standard output (abbreviated to stdout) and standard error (abbrevi
ated to stderr). The typical control flow in a shell command execution involves

138 Software

~-------;

Legend:
* : Symbolic links

~:File systems

Figure 6.1 AIX file tree (version 3.2).

~
~
~
~

three discrete phases. The first stage is when data is input from stdin, the sec
ond is when the data is acted upon by the shell, and the final phase is passing
data to stdout. In this way, each shell command acts upon the data that comes
in from the stdin stream, and subsequently hands it off to the stdout stream.

The three primary shells provided by AIX for end users include the Bourne
shell (sh), C shell (csh), and the Korn shell (ksh). While the basic functionality
of each shell is similar, the actual look and feel of particular shells vary.

The Bourne shell, developed by S. R. Bourne of Bell Labs, is referred to as
"sh." The Bourne shell is available on every AIX and UNIX system and is the
industry-standard shell.

The C shell (called "csh") syntax is very much like the C language, since it
was developed primarily for the use of C programmers at the University of Cal
ifornia at Berkeley. The C shell provides some added functionalities to mini
mize repetitive typing of commands and to optimize job control. Although the

~
G::>
~

Legend:
* : Symbolic links

~:File systems

Figure 6.2 usr file system.

~

~

~ ~

~

~

Legend:
* : Symbolic links

~:File systems

Figure 6.3 var file system.

~
~
~
~
~
E3>
~
~
C§V

Operating Systems 139

140 Software

stdin Command
(filter)

Figure 6.4 Shell filter.

stdout

C shell became quite popular in universities and among programmers, it has
never been standardized in industry.

The newest of the shells is the Korn shell (called "ksh"), named after its
developer S. Korn of Bell Labs. In pursuit of standardizing a shell for indus
trywide use, the Korn shell was shipped with every newer version of UNIX.
The Korn shell was successful because of its backward compatibility with the
Bourne shell (C shell is not). All existing shell programs that were written in
Bourne shell over the years could be executed under the Korn shell without
modification. The Korn is also attractive because it incorporated the best of the
C shell features, providing a well-paved path for convergence and standard
ization of this shell as the industry-standard command language interpreter.

6.2.3 End-user environment

6.2.3.1 Positioning of programs and utilities

The PowerPC layout of programs and utilities resembles a doughnut as shown
in Fig. 6.5. The hollow core represents the hardware. The outer layer repre
sents the application programs, which can also be user commands. The inner
layer depicts the system programs. The insulation between the two layers is
provided by a command language interpreter (also referred to as a shell) that
provides an interface between the user and the system.

For a more detailed view of AIX, consider a sectional view of the doughnut
model and imagine it under magnification. At this level of detail, some addi
tional components of the system software can be identified. In the sectional
view (Fig. 6.6), the outermost layer of the figure consists of application pro
grams and utilities that users use. When invoked, these perform a designated
task. Flow of control passes from the user's application program down to the
system programs through the shell layer. The vehicle used for this transfer of
control is referred to as a system call. Use of system calls is the primary means
of requesting information from the operating system and its resources. Details
on system calls are covered in Chap. 9.

The third layer in the sectional view of the doughnut model serves as the
manager who is responsible for supervising and scheduling requests from
application programs. This layer is referred to as the kernel. The kernel ser
vices request and subsequently coordinate with the resources in the machine
to schedule access to physical devices for information retrieval or storage.

Operating Systems 141

Figure 6.5 Doughnut model.

The fourth level in the sectional view consists of a set of low-level privileged
system programs. Once a request has been scheduled by the kernel to access a
device, these low-level routines take over the active control. These routines
access the physical device (platters on a hard drive) upon request and send up
the retrieved information via the same path it was sent down. These low-level
routines are highly device-dependent and are collectively referred to as device
drivers. For every device on the system, there are device drivers responsible for
that physical device and for shielding applications from the hardware specifics
of the machine.

To consider AIX from a user's point of view, consider a typical scenario: a doc
ument is created using a text editor. First, the editor program is invoked by the
shell when its name is typed in at the user's command line prompt. New text
is typed in and saved, and the editor program is terminated. This may seem
like a trivial task to the user, but how do the layers of the doughnut model
depict this scenario? Upon initiation of the editor (the application program) by
the shell (the command language interpreter), a request to create a document
is made to the operating system. Upon the granting of this request (from the
operating system), new text is added into storage (a buffer in memory) set
aside for this task. Each character typed at the terminal gets sent to some
device driver (low-level routines) which is responsible for the terminal device
I/0. In this way, a document is created.

142 Software

User

Figure 6.6 Sectional view of the doughnut model.

6.2.3.2 Moving files between DOS and AIX

Moving files between DOS and AIX. is achieved using the suite of facilities that
permit reading and writing of files in DOS format, that allow users access to
DOS directories, and that give users the ability to format diskettes in DOS for
mat. To use these utilities, some conflicting conventions between UNIX and
DOS were resolved. As the backslash character(\) can have special meaning
to the AIX. operating system, the slash character (I) was used as the delimiter
to specify subdirectory names in a DOS path name. For other functionality,
DOS file-naming conventions were used consistently. AIX. utilities used for
moving files between DOS and AIX. include:

dosread

doswrite

dosdir

dosformat

dosdel

Copies the contents of a DOS file to a specified AIX file

Copies the contents of an AIX file to the specified DOS file

Displays information about the specified DOS directory

Formats a diskette with the DOS format

Deletes DOS files

Operating Systems 143

6.2.3.3 AIX file editors

Four editors are included with AIX: ed, ex, vi, and sed. In addition to these
editors, a wide variety of other editors may be obtained from commercial or
public domain sources. The ed editor is the original editor under UNIX that
was developed at Bell Labs and was shipped with the very first distribution of
UNIX. The ed editor is found on every UNIX and AIX system. As a line editor,
ed is able to alter files without full-screen terminal support. The ed editor
works on only one file at a time by copying it into a temporary edit buffer and
making changes to that copy. It does not alter the file itself until you exit the
editing session.

The ex editor was developed at the University of California at Berkeley. It
was the first step toward full-screen editing. Shortly thereafter, the vi editor
was developed (also at Berkeley). This vi editor was built on the primitives of
ed and ex. It provides full-screen editing capabilities, multiple file editing, and
many other features. If you're choosing an editor to start with, vi is a good
choice.

The final AIX standard editor is sed, which is a noninteractive stream
oriented editor that is used more like a filter than like an actual text editor.
The sed editor interprets a script that controls the actions performed. Use sed
if you need to automate editing actions to be performed on one or more files or
to write conversion programs that would be used like filters on input or output
data streams.

In addition to the standard AIX text editors, one can acquire commercially
available editors. One worth mentioning is emacs. The emacs editor can be
obtained through the Free Software Foundation or from the public domain
sites on the Internet.

6.2.3.4 Help access

Two kinds of help facilities will be discussed in this section: the standard facil
ity available on all UNIX machines and InfoExplorer, the AIX-specific online
library.

UNIX man pages. UNIX machines are usually shipped with a set of standard
manuals for reference. However, these multivolume manuals are not always
the most convenient option for end users. So, in addition to these manuals, an
on-line help facility has also been provided on most UNIX systems. This on
line help facility is referred to as man pages-"man" being short for manual.
man pages are a subset of the standard UNIX documentation and contain syn
opses of the commands and tools used by users and programmers.

To access the man pages on a specific command, you must type in the man
command, followed by the name of the command on which help is being sought.

$ man who

A scrolling screen appears, displaying the text on the usage of the who com
mand (who command shows the currently logged-on users on the system). At

144 Software

info File Edit Qjltions !!_elp - -

Software
~·

Base 0...l!_erati~ System I

[Gettin_g_ St arte~

!system User's Guide: Operating System and Devices!
I'

: !Editing Concepts and Procedures!
~

!system Management Guide: Operating system and Devices! j !Messages Guide and Reference!

!Problem Solv ing Guide and Reference! l

l!
!Performance Monitoring and Tuning Gu ide!

!Installation Guide!

!Remote Services User's Guide and Reference!

i !General Programming Conce12tsl

I

!Kernel Extensions and Device su12port Programming Concepts!

IM- Video Ca12ture Ada12ter Device Driver and Sample Programs!

!Files Reference!

\

tf echnical Reference: Base 012erating System!

Technical Reference: !Kerne ll and !Subsystems!

tf echn ical Reference: Keyboard! li.
~ = ~~ ~ fii1·

Topic & Task Index] , Commands II Books 1 -..,s1
~ ~ ~ ~d ~d Of

s r!! ' Seard\ ks

Figure 6.7 InfoExplorer books listing interface.

this time, one may continue to scroll through the documentation by pressing
the spacebar or quit out of it at any time by hitting the "q" key.

lnfoExplorer. AIX includes a Motif system navigator called InfoExplorer,
which provides on-line hypertext documentation via point-and-click interface.
The InfoExplorer text retrieval tool contains more than 35,000 pages of arti
cles, tutorials, and technical references on machine- and software-specific top
ics. See Fig. 6. 7.

Operating Systems 145

The essential difference between InfoExplorer and standard UNIX man
pages is that instead of being a mere subset of the AIX documentation, Info
Explorer contains the complete set of AIX and PowerPC documentation. This
on-line access to the entire AIX and PowerPC library is made possible by the
design and implementation of a text retrieval system based on hypertext.
Hypertext technology provides a nonsequential method of organizing text in a
manner that enables rapid retrieval and efficient storage. Users point and
click on selected items such as topics, books, and commands, and the selected
information is displayed in a browsable GUI.

To access the InfoExplorer facility, enter the info command:

$ info

To use InfoExplorer, simply follow the menu selections. Note that the screen
drawing process that occurs is based on the type of terminal that you are using.
In addition to supporting ASCII terminals, the InfoExplorer also provides an
interface for X terminals. When using an ASCII terminal, a character-based
user interface menu appears which may be operated using the hot keys that
appear in inverse video. In an X environment, the InfoExplorer tool displays an
X-based graphical user interface with icons that support the mouse and other
standard X features (see Fig. 6.8).

In addition to being a completely menu-driven help facility, InfoExplorer
also offers compound word(s) searches to locate key words across multiple doc
uments, bookmarks to index selected pages, user notes to tag bookmarks with
comments, on-line tutorials for beginners, and a built-in print facility for print
ing out selected documents.

InfoExplorer can be placed either on the hard drive or be made available on
a removable medium like CD-ROM. The latter is generally preferred as it frees
up a significant amount of valuable disk space.

6.2.4 Optimizing AIX

To fine-tune the AIX operating system, first identify the workloads on the sys
tem. Characterizing this workload is often the most time-consuming phase of
performance tuning, as it involves queueing effects of network-mounted file
systems and LAN traffic beyond the system's native I/O. Once the workload is
defined, formulate a set of objectives to determine how the results are to be
measured. The next step is to identify the "critical" resources that are limiting
the system's performance with the help of one or more of the AIX performance
monitoring, analysis, and tuning tools. Having identified the hot spots, the
subsequent aim is to minimize the workload's critical resource requirements,
while modifying the allocation of resources to reflect priorities. This allocation
and reallocation of resources is termed performance tuning. The most com
monly tuned critical resources are the disk drive subsystem, real memory, run
ning processes, and communications I/O.

146 Software

-c

!nfo ~ !di.t Qptions !!_eJp

.Topic & Task Index
~

!About the Topi c & Task lndea
~··

!Using!

IManagingl

IProgrammingl •
!Problem Solving!

IGLOSSARYJ

~nswers to Customer Questions!

!Licensed Program Specifications (LPSD

IREADME Filesl
To send a comment to IBM, see !lnfoExplorer Reader's Comment(

ljl
.... ~ ·~·

Fop.-: T.-.~11 emm:..1 r- = 1 ~ogratmnh1gRefer1
[.;::-] I LmOf I Bookmarks @] s b\l f- -1 (!) Path ~ I ~ear'.h]

Figure 6.8 InfoExplorer topic and task interface.

Disk drives in traditional UNIX systems have always needed periodic atten
tion. Since the logical organization of bytes in a file can be completely different
than the physical layout on the disk, data can get fragmented over a period of
time. When this occurs, file access results in longer seeks and, as a result, dete
riorates I/O performance. The typical remedy for this is to recompact the disks
and, if needed, redistribute the frequently accessed components across multiple
disk drives. However, AIX is different because AIX implements what is known
as memory mapped I I 0 and I I 0 pacing paradigms. The memory mapped file

Operating Systems 147

concept maps files directly in memory, thus bypassing traditional block 1/0 and
kernel buffers. It alleviates the 1/0 penalties due to the effect of a file's place
ment and possible fragmented state on disk. All files are memory mapped by
default. The second paradigm, 1/0 pacing, prevents 1/0-intensive programs
from building up long 1/0 queues. It ensures a fair share of 1/0 resources for
both heavily demanding as well as less demanding programs. If a workload is
performing poorly because it constitutes an uneven mix of acutely 1/0-bound
and lightly 1/0-bound tasks, one should look into enabling the 1/0 pacing option
in smit by experimenting with the high-water/low-water marks to suitable val
ues (other than the default value of zero, which disables the feature).

Fine-tuning communications 1/0 is primarily a matter of configuration. Most
network protocols use sockets to communicate across the network, which are
made up of smaller memory buffers called mbufs. It is the availability of mbuf
pools in the network subsystem that governs the performance of the communi
cations 1/0. Since the mbufs store traffic for inbound and outbound network
traffic, having mbuf pools of the right size can have a very favorable effect on
network performance. The key element to tuning mbufs is to know how and
when to adjust them. Since mbufpools consist of pinned pieces of virtual mem
ory, they always remain in physical memory and are never paged out, reducing
the real memory size. For ideal network performance, the minimum number of
free buffers should be maintained in the pools, without degrading network per
formance. There are options (refer to the no command) to specify the minimum
number of free buffers for the pool and to control the amount of memory that is
to be allocated for mbuf management. When or if the number of buffers in the
pool drops below the specified threshold level, the pools are expanded by the
same amount.

6.3 TALIGENT

Formed by Apple Computer, Inc. and IBM in 1991, Taligent combines the
leading-edge technology from both companies. The name Taligent comes from
the combination of the two words "talent" and "intelligent." Taligent's object
oriented software environment is a result of a radical paradigm shift from
structured procedural programming to object-oriented programming that in
herently supports networked environments distributed across heterogeneous
platforms.

Taligent provides a complete and integrated object-oriented environment.
The operating system is built around the core elements of the object-oriented
programming paradigm, and includes the following:

• Objects

• Classes

•Messages

• Inheritance

• Polymorphism

148 Software

Objects provide an abstraction of state and behavior, in which a state is rep
resented by an aggregated set of data elements and a behavior is depicted by
functions-a set of rules that can alter the state. The object's methods provide
the interface, and the programs that use this interface are referred to as its
clients. The strength of the object paradigm is that new items can be added to
the state without changing the interface.

Class is an abstraction of objects. Since reusing object definitions for every
program can be tedious, a higher-level abstraction is made available, thereby
allowing the class paradigm to be used as a template for the object. It is essen
tial to note that a class is not an entity on its own; it exists only to make object
definitions possible.

Communication between clients and objects takes place in the form of a
series of messages, in which a message can be thought of as an instruction to
the object to execute one of its methods.

Inheritance refers to the genealogical relationship that exists between newly
created classes and old ones. It is an abstraction of the relationship between
objects.

Polymorphism (the occurrence of different forms or stages) is a technique for
allowing the specialized behavior of new classes to be used in existing proce
dures, even if they were written without knowledge of the new subclass. This
attribute provides a framework for basic activities that can later be extended
in ways not considered by the original designers.

Together, these five attributes reflect the architectural framework of Tali
gent. It does not use screen icons masquerading as objects, or monolithic pro
cedural codes encapsulated with object code. Its entire infrastructure is
object-based. From the bottom layer to the top layer, the design of Taligent
emphasizes extendibility, portability, adaptability, and scalability as its key
attributes.

Taligent's native implementation is based on the Mach kernel. The Mach
kernel has been slimmed down and turned into a true microkernel implemen
tation. It makes use of the standard protocols and supports OSF's DCE, Sun's
RPC and NFS, AppleShare, Apple Events, and the Object Management
Group's Common Object Request Broker Architecture mechanism for dis
tributed computing.

6.3.1 Microkernel paradigm

The term microkernel implies a highly modular and extensible architecture as
compared to the traditional operating system kernel. Extensibility allows
many of the traditional kernel-based operating services to reside outside the
kernel at the user process level. In traditional operating systems like AIX or
UNIX, standard services-such as process management, virtual memory man
agement, and file and device management-are all built into the kernel.

The microkernel operates on system resource objects, such as virtual memory
space, files, and processors. User-level tasks access these objects by sending
messages over communication channels, called ports. Even the device drivers

Operating Systems 149

are implemented at the user process level, thereby greatly increasing the ease
of portability across heterogeneous hardware platforms.

6.3.2 Operating environment

As an object-oriented operating system, Taligent's microkernel architecture is
portable and scalable. The Taligent kernel-as opposed to layered products
acts as the hardware-specific interface in place of current operating systems.
Application interfaces such as the Apple Macintosh user interface and workplace
shell are modules that run on top of these kernels. The kernel retains as little
code as possible. The kernel code is used for execution management, memory
management, and communication services with all other system services. They
execute as threads, eliminating the distinction between user and system code.

The operating environment has two distinct layers designed to enhance the
portability of application software and the operating environment itself. The
software layer that directly supports the processor hardware on which the sys
tem runs is the kernel, called the operating environment system (OES). The
systems programming interface (SPI) functions as the interface from the OES
to the second layer of the operating environment, the application environment
system (AES), which can run on multiple kernel layers. See Fig. 6.9 for an illus
tration of the Taligent OES.

The Taligent OES provides programmers with object frameworks, which are
a set of classes that are designed to execute some particular activity. Program
mers then provide objects to accomplish specific tasks not completely provided
by the object frameworks. During program execution, object frameworks call
the code necessary to complete a task. Rather than the code containing the
entire programming function, programmers add code wherever it is needed to
change or extend the framework's behavior to suit a particular program.

The Taligent run-time environment provides programming language sup
port, including the object programming model of C++, storage allocation and
memory management, a system of shared libraries, semaphores for synchro
nization of share memory, support for debuggers, and support for handling of
software exceptions and hardware (processor) faults. The run-time environ-

Application environment system :. : :::. --w:_-~ = =
SPI SPI

.....--~~~~ ~~~~---.

~---- -----
Operating environment system

Hardware layer

Figure 6.9 Positioning of the Taligent operating environment layers.

150 Software

ment includes the standard C, C++, and SANE (Standard Apple Numerics
Environment) function libraries.

6.3.3 End-user environment

Users organize their data in documents on the Taligent workspace. The
workspace is defined by classes whose actions are determined by predefined
protocols. The workspace provides services such as access to documentation,
communication between documents, tool organization, and hardware configu
ration.

Taligent's workspace user interface is based on the concept of users (the pri
mary user of the computer and other users with whom the primary user collab
orates or who simply share the environment), places (desktop environments),
and things (workspace tools, icons, applications). This environment enables a
user to have a multiple-desktop environment with the workspace people,
places, and things providing the ability to create, manage, and navigate among
documents.

The document is the fundamental user-level program entity of the Taligent
Operating Environment. Users see documents as data holders. A user wanting
to deal with some data looks on the desktop to find the appropriate document.
When the document is opened, the code and tools associated with the document
start and are displayed to the user. The code and tools associated with the doc
ument have been integrated into the "document as object" framework which is
organized into models, presentations, selections, and commands. Simply put,
programmers encapsulate the information needed to manipulate data in a doc
ument object, giving documents a particular behavioral procedure.

Taligent's use of a document approach for the end-user environment deem
phasizes the role of the application and reemphasizes the role of information.
Users deal directly with information-the data in which they are interested
and the information is contained in documents. The executable routines that
operate on the data reside in individual shared libraries. The system automat
ically starts and stops these programs to respond to user actions and other
events.

Note that actual data exchange is accomplished using the class of TModel as
the data type. (TModel is an abstract base class from which programmers derive
their own classes.) This protocol supports the standard editing commands: cut,
copy, past, clear, push data, and pull data, alleviating the need to reimple
ment these commands for each new data type.

6.4 SOLARIS

SunSoft introduced the Solaris 1.0 operating environment in 1991 and
announced delivery of Solaris 2.3 in the fall of 1993. Based on SunOS 5.1, a
derivative of System V Release 4 (SVR4), Solaris 2.3 offers symmetric multipro
cessing, multithreading, built-in networking, a suite of software development
tools, ToolTalk interapplication software, and LIVE! multimedia. Additional fea-

Operating Systems 151

Solaris

I OPEN LOOK and DeskSet I

Open Windows

SunOS and ONC

Hardware

Figure 6.10 Solaris platform.

tures of Solaris 2.3 include Adobe Display PostScript, security, networking, sys
tem administration, and multimedia capabilities.

6.4.1 Operating environment

The SunSoft Solaris platform is a distributed computing environment featur
ing the SunOS; ONC (open network computing), a suite of networking prod
ucts and services which includes NFS (network file system); the Open Windows
windowing environment; and the DeskSet desktop productivity applications.
The SunOS adheres to the SVR4 standard, enabling the SunOS code to run on
any platforms having the same CPU architecture. The Solaris platform is illus
trated in Fig. 6.10.

The SunOS kernel handles system operation support including the file sys
tem, interprocess communications, devices, processes and protection, and
memory management. The ONC networking services include NFS and remote
execution service (REX). The ONC networking services provide access to dis
tributed data and computer resources, as well as RPC (remote procedure call)
technology.

RPC is a library of procedures from which one process (the caller process)
can have another process (the server process) execute a procedure call, as ifthe
caller process had executed the procedure call in its own address space. Two
forms of RPC are available: secure RPC and transport-independent RPC.
Secure RPC implements user ids and passwords in a distributed environment;
transport-independent RPC provides a single programming interface to multi
ple network protocols with distributed applications, determining the appropri
ate network transport protocol at run-time using system software.

NFS is a network protocol that allows a user at one machine to work with
files on other machines connected to the network. NFS's biggest asset is that it
is independent of hardware, operating systems, and network architectures.
This independence was achieved through the use of two lower-level protocols:

152 Software

remote procedure call (RPC) protocol, and data standardizing external data
representation (XDR) protocol.

6.4.2 End-user environment

OpenWindows Version 3.0 includes the merged Xll/NeWS window system,
which combines the X Window System Version 11 with the PostScript version
of NeWS. It also includes the OPEN LOOK GUI, similar to the system appli
cation architecture (SAA) common user access (CUA) model. Based on OPEN
LOOK, Open Windows places a simple, object-oriented shell on top of a complex
operating system. Open Windows is a network-based, distributed window sys
tem providing a complete interactive environment-Open Windows enables
software applications to run on a machine other than the one on which the user
interface is displayed.

Based on the client-server model, Open Windows client applications commu
nicate with the display server through a connection transporting X messages.
Communications to the client applications are managed by two adjacent inter
preters, which share a common underlying graphics library. The software
application is stored centrally on a server with the user's individual desktop
workstation functioning as the server's client.

Open Windows includes an extensive set of desktop utilities, including a text
editor and calendar program. The Open Windows file manager resembles the
Windows file manager; it allows users to navigate the UNIX file system graph
ically, supports drag-and-drop, and enables configuration of object properties
using object menus.

The standard window manager provided for OpenWindows is the OPEN
LOOK window manager (OLWM). The OPEN LOOK standard exists indepen
dently of any software with the OPEN LOOK GUI defining what the various
controls and buttons of the user's interface should look like and how they
should behave. Note that the OPEN LOOK GUI is not architecture-dependent
or vendor-dependent. The Open Windows Developer's Guide user interface
design editor enables programmers to build and test interfaces using icons
rather than writing code.

Open Windows offers a single window server to create and manage windows:
Xll/NeWS. Xll/NeWS provides both Xlib and PostScript graphics in a single
window server by combining the Xll Window System with NeWS. The Open
Windows architecture includes the DeskSet environment, which enables devel
opers to create applications, built on top of the user interface toolkits. Toolkits
provided for building user interfaces include XView, the NeWS Toolkit (TNT),
and the OPEN LOOK Intrinsics Toolkit (OLIT). OpenWindows offers two
imaging models, Xlib and PostScript, that you can use to create graphic images
and text. Scalable fonts can be rendered using the OpenFonts package. See
Figure 6.11 for an illustration of the Open Windows Architecture.

ToolTalk, the interapplication messaging service, is a key feature of Open
Windows. ToolTalk allows applications to exchange information and automati
cally update one another using procedural multicast or object-based messaging
technology.

DeskSet Environment

OLIT, TNT, XView

X11/NeWS server, OPEN LOOK window manager

Xlib, Postscript, OpenFonts

SunOS

Figure 6.11 Solaris Open Windows architecture.

Operating Systems 153

Applications that use the ToolTalk service cooperate by sending and receiv
ing messages; they do not share stored data. As long as message protocols are
observed, cooperating applications can be modified without affecting one
another. Applications can use ToolTalk directly, calling functions from the
ToolTalk API library to create, send, and receive messages. Applications can
also use a service built on top of the ToolTalk service. These application ser
vices use the ToolTalk service as a communication backbone and object man
ager. These types of services can provide linking, drag, and drop.

The ToolTalk service is built on top of SunSoft's ONC remote procedure call
product. While both provide communication capabilities, the ToolTalk service
has a higher-level interface for application developers. ToolTalk allows appli
cation developers multicast messaging for developers of procedure-based, self
contained applications and object-oriented messaging for developers of
applications based on a distributed object paradigm.

6.5 WINDOWS NT

Microsoft Windows NT is a 32-bit, preemptive, multitasking operating system
with an architecture based on modular design principles. It is extensible and
provides compatibility with several other operating systems, file systems, and
networks. Windows NT also includes security and networking, peer-to-peer
services as fundamental components of the base operating system.

Additionally, Windows NT is portable across heterogeneous processor archi
tectures and runs on both CISC and RISC computers. Windows NT also sup
ports high-performance computing by providing kernel support for computers
that have symmetric multiprocessor configurations.

Although the Windows NT user interface is similar to the standard Windows
user interface and can support 16-bit DOS and Windows applications, Win
dows NT does not require DOS or any other operating system or network soft
ware in order to interface on a LAN. In addition, Windows NT is capable of
supporting OS/2 and POSIX applications.

154 Software

Windows NT is delivered in two configurations:

• Windows NT Workstation

• Windows NT Advanced Server

The Windows NT Workstation configuration is a single-user system which
operates either stand-alone or as a client in a network. Utilities are included,
such as performance/event monitoring, backup, remote access, network client
support, disk maintenance, and user configuration/account profile utility. In
addition, the product includes electronic mail and personal/workgroup
scheduling applications. The Workstation is capable of supporting one or two
microprocessors in the SMP (symmetric multiprocessing) mode of operation.

The Windows NT Advanced Server configuration is intended to act in a net
work as a multiuser applications and resource server. This version is a super
set of the Workstation version, adding additional fault tolerance (disk
mirroring/striping), enhanced user and server maintenance and account con
trol utilities, and multiple-user RAS (remote access services). This version also
includes the capability to interact with other servers in a group of servers and
clients known as a domain, allowing a user to use a single network login to
access all network resources. The Server is capable of supporting up to four
microprocessors in the SMP mode.

6.5.1 End-user environment

Windows NT uses the Windows 3.1 GUI and can simultaneously run DOS,
Windows 3.1, and native Windows NT applications using the Intel x86 CPU
and Virtual 8086 environments. For DOS applications, Windows NT creates
virtual DOS machines (VDMs) and provides each with a set of DOS resources,
including the DOS API interfaces and functions.

Users familiar with the Windows user interface will recognize Windows NT's
similar features, including the mouse and keyboard techniques for working
with windows, menus, icons, and desktop tools.

Windows NT features advanced built-in network support, including security
features. It has administrative tools group applications that enable users to
manage user accounts, control network services, audit system events, and
manage and back up files. It also includes the Windows NT file system (NTFS)
that provides error-correction capabilities and security. Windows NT supports
three types of file systems:

• File allocation table (FAT)

• High-performance file system (HPFS)

•Windows NT file system (NTFS)

FAT is the basic file system used in DOS and OS/2. HPFS is the augmented
file system offered by OS/2. NTFS is Windows NT's native file system that is
capable ofC2 level security certification. It provides support for Unicode, recov
erability, long file names, and POSIX file naming support.

Operating Systems 155

A TrueType font containing Unicode extensions and providing internal sup
port for Unicode is included with Windows NT. Windows NT has two points of
entry for every function that requires a character string parameter. Header
files perform program conversion functions so users do not have to convert
their programs to one name or the other. To facilitate localization, the Win32
subsystem provides a national language support (NLS) API that gives applica
tions access to culturally correct string comparisons; collation tables for sort
ing the characters of different languages; date, time, and currency formatting
routines; and routines for determining the locale that is in effect and the other
locales present on the system.

A unified command prompt is provided from which programs and batch files
can be started and from which all Windows NT commands and most MS-DOS,
OS/2, and POSIX commands can be issued.

6.5.2 Operating environment

Advanced operating system capabilities are available to applications by
enabling multithreaded processed and enhanced synchronization, security,
1/0, and object management. Windows NT is interoperable with other Micro
soft systems, with the Apple Macintosh, and with UNIX-based operating sys
tems on a Microsoft LAN manager or other network. When configured as a
server, Windows NT can work as a multiuser operating system, enabling each
workstation to support one interactive user and multiple remote users. Note
that each user (or application) is required to log on before accessing the system.

Additional features include high-performance disk and network subsystems
that can invoke sophisticated recovery mechanisms, such as a transaction log,
and implement device drivers that directly manipulate disk hardware, result
ing in better performance and more consistent throughput than what has been
available on traditional PC-like operating systems. Windows NT's use of a flat
memory model gives each application its own set of logical memory addresses,
with up to 2 GB available for code and data.

Multitasking with Windows NT implies that an application thinks it's the
only program running, so it's unaware of (and not likely to interfere with) other
applications. Multitasking discourages applications attempting to write to a
memory location holding another application's code or data. This dismissal of
the cooperative system model for the preemptive system model means that
NT's CPU retains control, determining how its time is allocated.

Windows NT's highly modular operating system implements operating sys
tem functions as a subsystem. Subsystems, in turn, are self-contained and eas
ily updated, thus enabling portability, extensibility, compatibility, and
reliability to the operating environment. See Fig. 6.12 for an illustration of the
modular layout of Windows NT.

The infrastructure of Windows NT can be divided into two parts: the user
mode portion of the system (the Windows NT protected subsystems) and the
kernel-mode portion (the Windows NT executive). Windows NT servers are
called protected subsystems because each one resides in a separate process

156 Software

User mode{ OS/2
subsystem

___ l ______ t ______ j ______ l _______ l_

~m•I{ mode

Figure 6.12

1/0 Object Process Virtual Procedure
memory call

manager manager manager
manager manager

Kernel

Hardware abstraction layer

t t t
PowerPC hardware

Windows NT modular architecture.

whose memory is protected from other processes by the Windows NT execu
tive's virtual memory system. Because the subsystems do not automatically
share memory, they communicate by passing messages. All messages pass
through the Windows NT executive.

The user-mode domain of Windows NT supports the following subsystems,
as depicted in Fig. 6.12:

OS I 2 subsystem: This subsystem is automatically loaded at login time and
always remains active. But like the POSIX subsystem, the OS/2 subsystem
will get paged out of real memory if not accessed in a short while.

DOS subsystem: All MS-DOS applications run within the context of a pro
cess called virtual DOS machine (VDM). VDM is actually a Win32 applica
tion that emulates a virtual 80x86 computer running MS-DOS. Note that
there is no limit on the number of VDMs that can be run. In the PowerPC
environment, Windows NT emulates selected x86 instructions since real
hardware support is not available. A hardware visualization is provided
with the aid of a set of virtual device drivers (VDDs).

POSIX subsystem: POSIX.l, which is a standard that describes an operat
ing system interface for C language programs written to be ported across
diverse systems, is supported by the Windows NT subsystem in conjunction
with the NTFS file system. This subsystem is loaded at login time (as in the
case of the OS/2 subsystem).

Win32 subsystem: The Win32 subsystem is responsible for running the 32-
bit applications, as well as managing the keyboard and mouse input and
screen output (for all the subsystems). It collects all inputs and delivers

Operating Systems 157

them to the appropriate applications. The input model takes advantage of
the preemptive multitasking capabilities that are available under Windows
NT. A desynchronized input model is used to handle the 1/0 for 32-bit appli
cations, as compared to a synchronized model for the 16-bit applications.
This enables the Win32 subsystem to transfer a message to the input queue
thread on the first available instant. By contrast, the input messages for 16-
bit applications sit in a common queue, until the input queue is blocked.

Win16 subsystem: The Win16 subsystem is emulated using the MS-DOS
based VDM support. All Win16 applications run in one VDM. Note that only
the Win16-on-Win32 subsystem (WOW) VDM is preemptively multitasked
with respect to other processes running on the system. Each Win16 applica
tion is nonpreemptively multitasked with respect to another. In other words,
only one application runs while the others are blocked, and if the WOW VDM
is preempted when the system returns, it always unblocks the Win16 appli
cation that was running before the WOW VDM got preempted. The thunking
process (i.e., translation to and from 16-bit) for application code and libraries
is achieved with the use of WOW VDM stubs and APis.

When an API call is made, the appropriate stub initiates the thunking pro
cess: parameters are pushed onto the stack and the call is converted into the
equivalent 32-bit call and subsequently issued to the Win32 subsystem.
Returned parameters are similarly converted back into 16 bits, thereafter
being passed back to the original application.

The kernel mode includes the Windows NT Executive, the kernel, and the
hardware abstraction layer, which resides on the PowerPC hardware. The
Windows NT Executive includes:

I I 0 manager: The 1/0 manager is the part of the Windows NT Executive
that manages all input and output for the operating system. A large part of the
1/0 manager's role is to manage communications between drivers-the 1/0
manager supports all file system drivers, hardware device drivers, and net
work device drivers and provides a heterogeneous environment for them while
also providing a formal interface that all drivers can call. This uniform inter
face allows the 1/0 manager to communicate with all drivers in the same way,
without any knowledge of how the devices they control actually work. The 1/0
manager also includes device driver help routines specifically designed for file
system drivers, for hardware device drivers, and for network device drivers.

The Windows NT 1/0 model utilizes a layered architecture that allows sep
arate drivers to implement each logically distinct layer ofl/O processing. For
example, drivers in the lowest layer manipulate the computer's physical
devices (these are called device drivers). Other drivers are then layered on
top of the device drivers. These higher-level drivers do not know any details
about the physical devices. With the help of the 1/0 manager, they simply
pass logical 1/0 requests down to the device drivers, which access the physi
cal devices on their behalf. Installable file systems in Windows NT and net
work redirectors are examples of high-level drivers that work in this way.

158 Software

Object manager: The Windows NT Executive object manager provides uni
form rules for object retention, naming, and security. If a process wishes to
manipulate a Windows NT object, it must first acquire a handle to the object.
As far as the Executive is concerned, there is no difference between a file
handle and a process handle, and thus the same routines that are used to
create a file handle can be used to create a process handle. All object handle
creation originates from the object manager; the object manager is thus able
to satisfy some important Windows NT design requirements, including:

• A uniform, global name space for all objects. The object manager can track
creation and the use of objects by any process.

•Uniform rules and mechanisms for protecting objects from unauthorized
access.

• A uniform model for the safe sharing of objects.

Like other Windows NT components, object manager is extensible, so that
new object types can be defined as technology grows and changes. The object
manager manages the global name space for Windows NT. This name space
is used to access all named objects that are contained in the local machine.
Some of the objects that can have names include the following:

Directory objects

Symbolic link objects

Object type objects

Semaphore and event objects

Process and thread objects Section and segment objects

Port objects Device objects

File system objects File objects

The object name space is modeled after a hierarchical file system, where
directory names in a path are separated by a backslash(\).

Process manager: The process manager manages the creation and deletion
of processes. The process manager does not provide any hierarchical process
structure or grouping or enforce any parent/child relationships. The Windows
NT process structure includes only two types of objects: process objects and
thread objects. A process object represents an address space, a set of objects
(resources) visible to the process, and a set of threads that runs in the context
of the process. A thread object represents the basic schedulable entity in the
system. It contains its own set of machine registers, its own kernel stack, a
thread environment block, and a user stack in the address space of its pro
cess. The Windows NT process structure works in conjunction with the secu
rity architecture and the virtual memory manager to provide i:q.terprocess
protection. Each process is assigned a security-access token, called the pri
mary token of the process. The token is used by the access-validation routines
of Windows NT when threads in the process reference protected objects.

Virtual memory manager: The memory architecture of Windows NT is a
demand-paged, virtual memory system based on a flat, linear address space
accessed via 32-bit addresses. A process's virtual address space is a set of
addresses available for the process's threads to use. Every process has a

Operating Systems 159

unique virtual address space that appears to be 4 GB in size, with 2 GB
reserved for program storage and 2 GB reserved for system storage.

The virtual memory manager maps virtual addresses in the process's
address space to physical pages in the computer's memory. In doing so, it
hides the physical organization of memory from the process's threads. This
ensures that the threads can access its process's memory as needed, but not
the memory of other processes.

Procedure call manager: The procedure call manager provides the commu
nication mechanism between client and server processes. Note that the
client-server relationship exists between applications and environment sub
systems. The Executive implements a message-passing facility called a local
procedure call (LPC). The LPC facility works like an RPC but is optimized
for two processes running on the same computer.

When an application makes an API call to the server, it is intercepted by a
stub in the client process that packages up the parameters to the call and
sends them to a server process that actually implements the APL

The Windows NT kernel layer resides below the Executive and is responsible
for thread dispatching, multiprocessor synchronization, hardware exception
handling, and the implementation oflow-level machine-dependent functions. It
is used by the executive layer of the system to synchronize its activities and to
implement the higher levels of abstraction that are exported in user-level APis.
Generally speaking, the kernel does not implement any policy, since this is the
province of the executive. However, policy decisions made by the kernel include
the way in which thread priority is manipulated to maximize responsiveness to
dispatching events (for example, the input of a character from the keyboard).

The hardware abstraction layer resides beneath the kernel and above the
Power PC hardware. The hardware abstraction layer is a layer of software pro
vided by the hardware manufacturer that hides, or abstracts, hardware dif
ferences from higher layers of the operating system. Thus, through the filter
provided by the hardware abstraction layer, different types of hardware look
alike to the operating system, removing the need to specifically tailor the oper
ating system to the hardware it communicates with. The goal of the hardware
abstraction layer is to provide routines that allow a single device driver to sup
port the same device on all platforms. The hardware abstraction layer allows
a large number of variations in hardware platforms for a single-processor
architecture without requiring a separate version of the operating system for
each one.

The hardware abstraction layer routines are called from both the base oper
ating system and from device drivers. For drivers, the hardware abstraction
layer provides the ability to support a wide variety ofl/O architectures, instead
of being restricted to a single hardware model or performing extensive adapta
tion, as in the current PC industry. The hardware abstraction layer is also
responsible for hiding the details of symmetric multiprocessing hardware from
the rest of the system. For more information about the hardware abstraction
layer, see Chap. 3.

160 Software

6.6 WORKPLACE OS

Workplace OS is a general-user operating system which consists of the IBM
Microkernel, Personality Neutral Services, and multiple Personalities. Per
sonalities currently available on Workplace OS include OS/2 and MVM (DOS).
Workplace OS with an OS/2 interface runs recompiled OS/2 applications
natively.

Based on a core layer of services developed by IBM and Taligent, Workplace
OS incorporates Taligent frameworks on top of the Carnegie Mellon University
Mach microkernel (as depicted in Fig. 6.13). Workplace OS is portable across
hardware architectures, including Intel, POWER, and PowerPC.

Workplace OS consists of a single scalable configuration which may be used
as a client or developer workstation. It can also be used as a server through the
addition of products such as the IBM LAN Server for Workplace OS. A Work
place OS client workstation requires at least 8 MB of main memory (note that
16 MB is recommended). A developer workstation requires 16 MB of main
memory. The video system must be capable of showing 640x480x8. For better
performance when emulating DOS applications which require planar graphics,
all configurations should have a VGA-compatible video system. All Workplace
OS configurations require a keyboard and a pointing device; a business audio
device is recommended. Workplace OS supports one or more PCI buses; multi
ple SCSI interfaces; PCMCIA, including socket services; and IDE access to
disks. Inclusion of an ISA bus is optional.

6.6.1 Operating environment

Due to the use of a microkernel as the foundation of the operating system,
Workplace OS is portable to multiple hardware platforms. This microkernel
based architecture implements object orientation, portability, and support for
multiple CPUs. OS offers memory protection, multitasking, and multithread-

OS/2 for PowerPC

OS/2 Personality I DOS/Win I Personality Neutral
Services I Personality Services I Services

I I

IBM Microkernel (Mach-based)

Figure 6.13 Workplace OS.

Other Personality
Services

Operating Systems 161

ing. OS also enables users to run other operating systems as personalities on
top of the base system software layers, enabling PowerPC users to run Macin
tosh software without learning UNIX or figuring out Taligent.

The underlying hardware is managed by the microkernel. Device drivers,
the file system, and the OS/2 personality are user-level processes, and applica
tions are written to the interfaces exported by the OS/2 personality.

The term microkernel implies a highly modular and extensible architecture
as compared to the traditional operating system kernel. Extensibility allows
many of the traditional kernel-based operating services to reside outside the
kernel at the user process level. In traditional operating systems like AIX or
UNIX, standard services-such as process management, virtual memory man
agement, and file and device management-are all built into the kernel.

6.6.2 End-user environment

The microkernel operates on system resource objects, such as virtual memory
space, files, and processors. User-level tasks access these objects by sending
messages over communication channels, called ports. Even the device drivers
are implemented at the user process level, greatly increasing the ease of porta
bility across heterogeneous hardware platforms.

6.7 SUMMARY

A variety of operating systems have been ported to the PowerPC-the Power
PC's ability to run a variety of operating systems is one of its greatest assets.
The Power PC's support of Taligent, Solaris, Windows NT, and Workplace OS
gives users the ability to cut and paste between applications across operating
systems. This chapter introduced the supported operating systems, emphasiz
ing the importance of the PowerPC to users looking for a single integrated
platform.

Early UNIX systems, such as UNIX Version 6, were much simpler than
today's flavors of UNIX, requiring less configuring of devices and simpler exe
cution environments for program execution. However, as the UNIX operating
system evolved, its architectural layout increased in complexity. AIX is a fully
PowerOpen compliant operating system based on the Common Open Software
Environment's (COSE) version of UNIX. Based on System V Release 3, the AIX
customization facility is tied in with the X11R5 implementation. From the X
Windows desktop, it is possible to customize features of X Windows applica
tions through a graphical interface. AIX also includes the AIX system man
agement tool (smit), which consists of a series of menus linked to an object
database that builds UNIX commands in an interactive way.

Taligent has applied the object-oriented paradigm and technology directly to
the system architecture, creating a software platform designed for extension
and innovation on three well-defined levels: applications, system software, and
hardware. Code can be reused, industry extensions can be integrated without
compromising either function or compatibility, and the encapsulated modular
objects can be maintained in a structured and easy manner.

162 Software

The ability to run Solaris on the PowerPC platform paves a path for the wide
base of the existing Sun OS user community to harness the power of the Power
PC processor. Its networking services and integration of a familiar GUI enable
programmers to develop applications that can be distributed across multiple
platforms while adhering to industry standards and complying with vendor
demands for multiple-platform compatibility.

Windows NT supports high-performance disk and network subsystems while
enabling users to continue to use DOS and/or Windows applications. NT's 32-bit
environment lets applications address up to 4 GB of storage, making it a good
choice for high-end applications. NT has removed the constraints of segmented
memory management by implementing a flat memory model and giving each
application its own set oflogical memory addresses. NT is the operating system
of choice for users wanting superior multiprocessor and security features at the
cost of significant memory and disk size upgrades from existing PCs.

Workplace OS is a general-user operating system which consists of the IBM
Microkernel, Personality Neutral Services, and multiple Personalities. Per
sonalities currently available on Workplace OS include OS/2 and MVM (DOS).
Workplace OS with an OS/2 interface runs recompiled OS/2 applications
natively. Based on a core layer of services developed by IBM and Taligent,
Workplace OS incorporates Taligent frameworks on top of the Carnegie Mellon
University Mach microkernel. Workplace OS is portable across hardware
architectures, including Intel, POWER, and PowerPC.

Chapter

7

Development Tools

This chapter provides a brief overview of the most popular and standard devel
opment tools available for UNIX operating systems, specifically AIX. The
advantages of using the XL C optimizing compiler (to exploit the fast Power PC
hardware) are discussed, followed by a brief discussion of the other compilers
in the XL family. A look at how Assembler translates machine language into
machine object code is also discussed. The review of debugging tools and facil
ities and the uses of source code debugging tools will foster an understanding
of what troubleshooting options are available with AIX. We discuss yacc, lex,
make, imake, grep, sed, and awk, highlighting the best uses of each. Finally,
a quick overview of UNIX/ AIX tuning theory and practices is provided.

7.1 COMPILERS

7.1.1 XL C compiler

The XL C, or C compiler, is an optimizing compiler. In addition to source code
optimization, the compiler also performs certain preprocessor and common
back-end optimization tasks. The architecture of the Power PC demands that an
optimizing compiler be used to make intelligent use of its underlying capabili
ties. Together, the POWER-based architecture and the XL optimizing compiler
make possible an efficient computing environment, as depicted in Fig. 7.1.

The need for an optimizing compiler depends on the applications. For many
general purpose applications, inherent efficiencies will provide a level of per
formance. However, for engineering and scientific applications that process

163

164 Software

Source
code

l
Preprocessed

code

l
Intermediate

language
code

I
Optimized
object code Figure 7.1 Optimizing com

piler.

vast amounts of data and tend to perform repeated operations on each data ele
ment, a structured and methodical approach to compile-time optimization is
required.

From a programmer's perspective, a program may be executing optimally.
But, if tuned properly, even to a minuscule extent, its performance can be dou
bled or tripled. This is especially true of the Power PC hardware performance
due to the pipelined execution units in the central electronic complex of the
PowerPC, and the central electronic complex dependency on the sequence of
instructions. An instruction dependency between the currently executing
instruction and its predecessor can cost precious cycles owing to data unavail
ability. A tight piece of code fragment spilling outside of the cache boundary
can waste several cycles. The former can be controlled (to a certain extent) by
implementing an optimized instruction-scheduling algorithm that resequences
selected assembly language instructions to minimize idle machine cycles. The
latter, however, is likely to require hand-optimization. The optimizing compiler
on the PowerPC needs a great deal of built-in intelligence to identify potential
hot spots during compile time and perform necessary tuning actions.

Development Tools 165

The instruction scheduling algorithm in the XL C compiler is its most signif
icant component. The XL C compiler processes the output of the optimizer, con
structing a dependency graph for each basic block of the code and finally
arranges the instructions in the order in which they would execute the fastest.
The algorithm used in the XL family of compilers is essentially the same.

The XL C compiler uses the cc, xlc, and c89 commands to compile C source
files. These commands are essentially the same except for the default language
level. For cc, the default language level is extended; for xlc and c89, the
default language level is ansi. These commands can also process assembler
source files and object files. Unless the -c option is specified, these commands
call the linkage editor to produce a single object file. The input file(s) can be a
C language source file (file name with . c suffix), preprocessed C source (. i suf
fix), object file (. o suffix), or assembler source file (. s suffix).

7.1.2 C Set++ compiler

The C Set++ compiler is a native, optimizing compiler based on the common C
and C++ front-end and the latest optimizing back-end technology. The C++
compiler, consisting of a browser, a Help View debugger, a test coverage ana
lyzer, and a set of class libraries, provides improved compilation speed, opti
mization, and debugging.

The C++ browser is a postcompilation static analysis tool which allows users
to examine their programs by formulating queries of the program database.
Using a menu-driven interface, the browser can be used to view and edit pro
gram source text, view lists of program elements, and display graphical rela
tionships among program elements. The Help View debugger enables users to
debug difficult memory allocation errors and identify memory allocation prob
lem areas. The dbx symbolic debugger is also supported. The test coverage tool
provides information about how often different statements in the code are used
when the program is executing.

The C Set++ includes the USL C++ Language System Release 3.0 Class
Libraries and sample libraries including the NIH Library and the lnterViews
Library. National Language Support is also provided.

7.1.3 AIX XL FORTRAN and Pascal compilers

The XL family of compilers is designed to provide consistency and high perfor
mance across multiple programming languages by sharing the same code opti
mization technology.

The XL FORTRAN compiler conforms to the FORTRAN 90 standard, provid
ing functionality such as array language, derived data types, pointed, modules,
NAMELIST statement, defined operators, and dynamic storage allocation.
Language extensions include facilities for interlanguage calls, extended preci
sion floating point, optional checking of array bounds, typeless constants, and
INTEGER*S and LOGICAL*S. The XL FORTRAN three-pass compilation tech
nology includes a front end which translates source into intermediate text (IL),

166 Software

optimizations applied to IL, allocation of hardware registers, and generation of
an object file from the final form of IL.

The XL Pascal compiler is an enhanced version of the existing AIX XL Pas
cal compiler. The XL Pascal compiler provides 4-byte pointer support and
National Language Support for single- and double-byte character sets.

7.2 ASSEMBLER

The assembler takes machine language instructions and translates them into
machine object code. The assembler used on the PowerPC is a two-pass assem
bler, which refers to the fact that the assembler makes two passes over a source
program. An assembler listing is produced in the first and second passes of the
assembler.

On the first pass, the assembler (1) checks to see ifthe instructions are legal
in the current assembly mode, (2) allocates space for instructions and storage
area, (3) assigns the values of constants wherever appropriate, and (4) con
structs a symbol table where an entry is made for symbols encountered in the
label of statements. The source file is read a line at a time. For every new sym
bol encountered, an entry is added to the symbol table while assigning the
value of the current location counter to the symbol.

Note: The only PowerPC instructions recognized by the assembler are those
in the 32-bit subset PowerPC architecture.

Next, the assembler examines the instruction's mnemonic. If the mnemonic is
for a machine instruction that is legal for the current assembly mode, the assem
bler determines the format of the instruction. The assembler then allocates the
number of bytes necessary to hold the machine code for the instruction. The con
tents of the location counter are incremented by this number of bytes.

On the second pass, the assembler (1) examines the operands for symbolic
references to storage locations and resolves these symbolic references using
information in the symbol table, (2) ensures that no instructions contain an
invalid instruction form, (3) translates source statements into machine code
and constants, thus filling the allocated space with object code, and (4) pro
duces a file containing error messages, if any have occurred.

Assembly language source code is assembled using the as command. The file
that as reads and assembles ends with a . s suffix (by convention). Also, the file
that as builds as its output is called a. out. If no source file is specified, as
attempts to read and assemble standard input. A symbol cross-reference is also
available. If the -x flag is used with the as command, a symbol cross-reference
file is produced. This file contains information for all symbols defined and refer
enced in an assembler source program. However, if the -x flag is used, the assem
bly process terminates after the first pass and does not generate any object code.

The assembler command can also be used to produce an assembler listing. as
gives a default name to the listing file, by replacing the suffix extension of the
source file name with an . 1 st extension.

Development Tools 167

7.3 DEBUGGERS

7.3.1 adb

Debuggers available with AIX include:

adb

dbx

xde

kernel debugger

Debugs executable binary files and examines non-ASCII data
files

Allows source-level debugging for C, FORTRAN, Pascal,
COBOL, and assembly language programs

Provides windows for viewing source, context, and variables for
application programs

Determines errors in code running in the kernel

These debuggers as well as the trace facility, which helps isolate system prob
lems by monitoring selected system events, are discussed as follows.

adb is a general purpose debugging utility used to examine object files and
core files, and to provide a controlled environment for running a program.
Users can debug any executable C or assembly language program file by enter
ing the following command:

adb FileName

where Fi 7 eName is the name of the executable program file to be debugged. The
adb program opens the file and prepares its text (instructions) and data for
subsequent debugging.

When processing an executable program file that has been compiled, adb
requires it to have a symbol table. Without the symbol table, adb will not be
able to show the value of static, automatic, and external variables of the pro
gram. However, executable programs that have been stripped off the symbol
table can still be examined for other information.

When no name is specified for the executable program, adb looks for the
default file named a. out. If the a. out file does not exist, the adb program starts
without a file and does not display an error message. adb may also be used

• to read core file images of programs that caused fatal system errors

• to examine data files containing non-ASCII data by giving the name of the
data file in place of the program or core file

• with the -w flag to modify an executable file or a data file by writing directly
to memory after running the program

adb can take input from standard input (keyboard) and write to standard
output (terminal). One can also enter more than one command by separating
each command with a semicolon as a delimiter. Use of expressions, operators,
commands, variables, and addresses is supported. However, to use adb effec
tively and set breakpoints at appropriate places in the executable program,

168 Software

one has to be familiar with the assembly language instructions that the C com
piler generates. One way to do this is to create an assembly language listing of
a C program using the -S or -qlist flag of the cc command and then consulting
the complete instruction set for the Power PC described in Chap. 3.

adb features a set of subcommands for setting breakpoints and examining
variables, including:

:r Starts executing the program from the beginning
:b Sets a breakpoint in a program

7.3.2 fsdb

:k Stops the program being debugged

fsdb is a file system debug utility that can be used to examine and patch a
damaged file system after a system crash. The fsdb command allows access to
blocks and inodes and examines various parts of an inode. Components of the
inode can be referenced symbolically. These features simplify procedures for
correcting control-block entries and for descending the file system tree.

The file system to be examined can be specified by a block device name, a
raw device name, or a mounted file system name. In the last case, the fsdb
command determines the associated file system name by reading the
/etc/fi l esystems file. Any numbers entered are considered decimal by
default, unless it is prefixed with a 0 to indicate octal numbers or Ox to indicate
hex numbers.

To examine a file system, specify it by a block device name, a raw device
name, or a mounted file system name. In the last case, the fsdb command
determines the associated file system name by reading the /etc/fi l esystems
file. Mounted file systems cannot be modified.

The subcommands for fsdb allow you to access, view, or change the informa
tion in a file system. Any number you enter in the subcommand is considered
decimal by default, unless you prefix it with either 0 to indicate an octal num
ber or Ox to indicate a hexadecimal number. All addresses are printed in hexa
decimal.

Because the fsdb command reads and writes one block at a time, it works
with raw as well as with block 1/0. It uses a buffer management routine to
retain commonly used blocks of data in order to reduce the number of read
subroutines. All assignment operations write the corresponding block imme
diately.

System information can be generated by specifying the following flags:

Disables the error-checking routines used to verify inodes and block addresses.
The 0 subcommand switches these routines on and off. When these routines
are running, the fsdb command reads the inode size and file system size
entries from the superblock of the file system. The obtained information allows
the fsdb command to access the various file system objects successfully and to
perform various error checks.

Development Tools 169

The subcommands given to the fsdb command are requests to locate and
display or modify information in the file system. Use the location subcom
mands to access the information in the file system, the display subcommands
to view the information, and the modification subcommands to change the
information. A location subcommand is made up of a number and is optionally
followed by an address specification. The location subcommands are:

Number

inode map-block-number!

Disk map-block-numberm

I-Numberi

Block-addressb

Accesses data at the absolute disk address specified
by the Number parameter

Accesses data at the inode map block # inode-map
block number parameter

Accesses data at the Disk map block #Disk-map
block number parameter

Accesses data at the I-Number parameter

Accesses data at the Block-address parameter

These location subcommands can be combined with the d address specification
to form a location subcommand that accesses information by directory entry.
The form of the d address specification is:

dDirectory-slot-offset Accesses data at the Directory-slot-offset parameter.

To request information relative to the address specification, use a display
subcommand made up of one of the display facilities in conjunction with one of
the display formats. The display facilities are:

p

f

General facilities

File facility

If you enter a number after the p symbol, the fsdb command displays that
number of entries. A check is made to detect block boundary overflows because
logically sequential blocks are generally not physically sequential. If you enter
a count of O or * (asterisk), the fsdb command displays all entries to the end of
the current block.

Use the f symbol to display data blocks associated with the current inode. If
you enter a number after the f symbol, the fsdb command displays that block
of the file. Block numbering begins at 0. The desired display format follows the
block number, or the f symbol.

The fsdb subcommands are requests to locate and display or modify infor
mation in the file system. The main categories of subcommands are:

Category

Location

Display

Modification

Function

Access the information in the file system

View the information in the file system

Change the information in the file system

170 Software

7.3.3 dbx and xde

dbx is a full-featured symbolic debugger that supports debugging of a program
at both a source level and assembler language level. Its source-level debugging
features allows debugging of C, Pascal, COBOL, and FORTRAN programs; its
assembler-language-level debug facility enables debugging of executable pro
grams at the machine level. Standard operations the tool supports include:

• Examination of object and core files

• Controlled environment for running a program

• Setting of breakpoints at selected statements or running of the program one
line at a time

• Analysis of symbolic variables

The dbx program can be started with several flags, including:

• Running the dbx command on a specified object file

• Using the -r flag to run the dbx command on a program that ended abnor
mally

• Using the -a flag to run the dbx command on a process that is already in
progress

To use the dbx program, an executable file must be compiled with a debug
flag to contain the symbol table information, and the symbol references must
not be stripped from the executable file. dbx can be customized by including a
set of dbx subcommands in a file named . db xi nit, enabling the included sub
commands to execute automatically upon initiation of a debug session.

The -c option and . db xi n i t provide mechanisms for executing dbx subcom
mands before reading from standard input. Use the source subcommand to
read dbx subcommands from a file once the debugging session has begun.

Use the dbx subcommands for setting breakpoints, tracing program execu
tion, displaying the source file, printing variables and expressions, handling
signals, calling procedures, displaying and modifying memory addresses, dis
playing assembler instructions, and examining registers during machine-level
debugging. Some of the commonly used subcommands include:

run

step

stepi

stop

clear

cleari

cont

listi

Begins running of the application program

Runs one source line

Runs one source instruction

Stops execution of the application program

Removes all stops at a given source line

Removes all breakpoints at an address

Continues running of the program from the current breakpoint until
another breakpoint is encountered or the program completes its execution

Displays a specified set of instructions from the source file

next

nexti

trace

where

help

quit

Development Tools 171

Runs the application up to the next source line

Runs the application up to the next source instruction

Displays tracing information

Displays all active procedures and functions

Displays an on-line list of dbx commands

Quits dbx

An X Window interface for dbx called xde can also be used to debug appli
cation programs. xde provides an integrated debug environment with the X
interface that allows viewing of the program's source code, stack traceback,
and variables (shown in Fig. 7.2, 7.3, and 7.4, respectively). Other windows are
available that enable users to issue dbx debug programs, view the output of
these commands, and control the operating of the xde program.

The same prerequisites for dbx apply to xde (for example, an executable file
must be compiled with a debug flag to contain the symbol table information,
and the symbol references must not be stripped from the executable file). The

window execution line variable address function help

UneNumber
Subwlndow

Source
SUbwlndow

Figure 7.2 XDE file window. (Copied with permission from IBM.)

window execution line variable addrass function help

Stack Traceback Ust

function

Figure 7.3 XDE context window. (Copied with permission from
IBM.)

172 Software

execution variable help

Extemal

Extemal Variable
UstWindow

:: I • ~
Local

Variable Expansion Window

Local Variable
UstWindow

::- -~

Figure 7.4 XDE variable window. (Copied with permission from
IBM.)

xde tool and its X interface may be customized by modifying the . db xi nit
and/or . Xdefaul ts files, which execute automatically upon initiation of a debug
session.

The subcommands available in dbx appear as objects within pull-down menus
in the xde environment. Thus, navigating within xde windows involves working
with buttons and scroll bars.

7.3.4 Kernel debug program

The kernel debug program is used for debugging device drivers and kernel
extensions. It provides an efficient mechanism for detecting errors in the code
running in the kernel. The debug program can run in any configuration that
includes an asynchronous terminal connected to a serial adapter. The debug
program does not support any displays connected to any of the graphics
adapters.

Note: The kernel debugger disables all external interrupts while it is in oper
ation. The kernel debug program must be loaded by using the bosboot
command before it can be started. Once loaded, users can start the
debugger one of two ways. One way to start the debugger is through the
use of breakpoints. These breakpoints can be set by either embedding
static debugger program traps (SDTs) in the object code or by use of the
break command. After the debug program is started, SDTs are treated
the same as other processor instructions. Use the step command to step

Development Tools 173

over SDTs; use the go or loop commands to resume execution at the instruction
following the SDT. Using the break command sets a breakpoint from within the
kernel debug program. If you use the break command, breakpoints will not dis
play in the debug program code.

To set a breakpoint, do the following:

1. Locate the assembler instruction corresponding to the C standard.

2. Get the offset of the assembler instruction from the listing.

3. Locate the address of where the kernel extension is loaded.

4. Add the address of the assembler instruction to the kernel extension
address.

5. Set the breakpoint with the break command.

Simultaneously pressing the Control, left Alternate key and the number
4 numeric pad keys also loads and starts the kernel debug program sending
a nonmaskable interrupt to the processor. You can now use the kernel debug
ger interactively by entering kernel debugger commands at the system
prompt.

Note: The kernel debugger is also executed as a result of a system crash. If a
system crashes (and the debugger is available), the last line of the dis
played text will normally describe the cause of the event and an 888
code will flash on the LED display of the operator panel. At that point,
a dump may be taken if desired (using the quit dump command) and
the system can subsequently be rebooted.

A full suite of interactive commands is available for use in kernel debugger.
These commands can be used to set breakpoints, manipulate memory, and per
form manipulation of variables and registers. An extensive reference of the
commands may be found in the on-line help facility. Enter ? or Help to display
the list of valid commands. Some commands are stand-alone, while others
accept numeric and string arguments. Limited expression processing can also
be performed using the addition, subtraction, multiplication, division, and ref
erence operators. The program also allows use of variables to represent loca
tions or values that are used repeatedly. Frequently used kernel debug
commands include:

origin

alter

xlate

break

breaks

user

proc

Sets the origin of instruction address register

Alters memory

Translates a virtual address to a real address

Sets a breakpoint

Lists the currently set breakpoints

Displays a formatted user area

Displays the formatted process table

174 Software

stack

drivers

tty

find

sregs

vmm

help

quit

7 .3.5 Trace facility

Displays a formatted kernel stack trace

Displays the contents of the device driver table

Displays the tty structure

Finds a string in memory

Displays segment registers

Displays the virtual memory data structure

Displays the on-line help commands

Ends the debugging session

The trace facility helps isolate system problems by monitoring selected sys
tem events. Events that can be monitored include entry and exit to selected
subroutines, kernel routines, kernel extension routines, and interrupt han
dlers. The trace facility captures a sequential flow of system events, providing
a fine level of detail on system activity. Events are shown in time sequence
and in the context of other events. The trace facility is useful in expanding
the trace event information to understand who, when, how, and even why the
event happened.

When the trace facility is active, information about system events is recorded
in a system trace log file. This facility includes commands for activating and
controlling traces and for generating trace reports. Applications and kernel
extensions can use several subroutines to record additional events.

The data recorded for each traced event consist of a word containing the trace
hook identifier and the hook type followed by a variable number of words of
trace data optionally followed by a time stamp. The word containing the trace
hook identifier and the hook type is called the hook word. The remaining two
bytes of the hook word are called hook data and are available for recording
event data.

The trace facility supports up to eight active trace sessions at a time. Each
trace session uses a channel of the multiplexed trace special file /dev I syst race.
Channel 0 is used by the trace facility to record system events. The tracing of
system events is started and stopped by the trace and trcstop commands.
Channels 1 through 7 are referred to as generic trace channels and may be used
by subsystems for other types of tracing such as data link tracing.

When the trace is configured, the trace facility controls trigger the collection
of data on or off and stop the trace facility (stop deconfigures the trace com
mand and unpins buffers).

Frequently used trace commands include:

trace

trcdead

trcrpt

trcstop

trcupdate

Starts the tracing of system events

Extracts trace information from a system dump

Formats reports of trace event data contained in the trace log file

Stops the tracing of system events

Updates the trace formatting templates stored in the I etc/trcfmt
file

Development Tools 175

7.4 SOURCE CODE ANALYSIS TOOLS

7.4.1 lint

Source code analysis tools available under AIX aid in checking the source code
for integrity and analyzing the flow of control. These tools are intended for use
by software engineers and programmers to enhance productivity.

The lint utility checks C source code for coding integrity. The benefit of using
lint prior to compilation is significant, as it aids in identifying overlooked and
trouble-prone code constructs. It also enforces orthodox type-checking rules
that help in eliminating possible future bugs.

The lint tool also identifies the following:

• Source code and library incompatibility

• Potential problems with variables

• Potential problems with functions

• Problems with flow control

• Legal constructs that may be inefficient

• Unused variable and function declarations

• Nonportable code

To run lint, simply supply the source file as an argument to lint.

7.4.2 cflow

The ctlow utility generates a flow graph of external references. It is capable of
analyzing C assembler as well as object files, and producing a chart of their
external references to the standard output.

The input file can be a C language source file (file name with . c suffix), a pre
processed C source (. i suffix), a yacc source file (. y suffix), a lex source file (. l
suffix), an object file (. o suffix), or an assembler source file (. s suffix). Based on
the kind of file it is, the contents of the file are sent to the C preprocessor cpp,
the yacc compiler yacc, or the lexical analyzer lex, and subsequently run
through the first pass of lint. Files suffixed with . s are assembled and infor
mation is extracted (as in . o files) from the symbol table.

The output of all this nontrivial processing is collected, converted into a graph
of external references, and subsequently displayed with line numbers and
indentation levels to show the flow of control and call sequences of functions
and procedures.

7.4.3 cxref

cxref creates a C program cross-reference listing by analyzing C program files,
creating a cross-reference table. cxref generates a list of all external references
for each module of a C language source program, including where the reference
is resolved (if it is resolved in the program). cxref uses the cpp command to
include #define directives in its symbol table.

176 Software

7.5 LEXICAL ANALYZER-lex

lex is a program-generating tool that produces code to handle lexical processing
of character input streams. It accepts high-level, problem-oriented specifications
for character string matching. The regular expressions are specified in the source
specification to lex. The lex program generator is a table of regular expressions
and corresponding program fragments. The table is translated to a program that
reads an input stream, copies the input stream to an output stream, and parti
tions the inputs into strings that match the given expressions. As each string is
recognized, the corresponding program fragment gets executed. This process of
expression recognition is done by a deterministic finite state automation gener
ated by lex. The program fragments written by the user are executed in the order
in which the corresponding regular expressions occur in the input stream.

The lex command reads a file or standard input, generates a C language pro
gram, and writes it to a file named lex. yy. c. This file is a compilable C language
program, which can be linked with or called from other routines.

7.6 PARSER GENERATOR-yacc

The name yacc is an acronym for "yet another compiler compiler." It is a gen
eral purpose tool used for imposing structure on the input to programs. A set
of specifications (also referred to as the grammar rules) for the input process,
prepared by the user, describes the input structure, code to be invoked when
these rules get recognized, and a low-level routine (the lexical analyzer) to con
trol the basic input. yacc then generates a function to parse the input process.
This function calls the lexical analyzer to pick up the basic items (referred to
as tokens) from the input stream. These tokens are organized according to the
input structure rules. When one of these rules has been recognized, the corre
sponding user code (supplied for this rule as an action) gets invoked. In this
way, yacc converts a context-free grammar specification into a set of tables for
a simple automaton that executes a parsing algorithm.

The output generated by yacc (called y . tab . c) needs to be compiled with a C
language compiler to produce a function yyparse. This function is loaded with
the lexical analyzer function yylex and the user's main C routine.

7.7 PATTERN MATCHING LANGUAGE

7.7.1 awk

sed and awk are tools used by programmers to edit text files. sed, a stream
editor, is used to apply a series of edits to multiple files. awk, a programming
language, allows manipulation of structured data and the generation of for
matted reports. The following sections highlight the features of sed and awk.

awk is a programming language that makes it possible to handle data manip
ulations efficiently. An awk program is a sequence of patterns and actions that
tell what to look for in the input data and what to do when it is found. awk

7.7.2 sed

Development Tools 177

searches a set of files for lines matched by any of the patterns; when a match
ing pattern is found, the corresponding action is performed. A pattern can
select lines by combinations of regular expressions and comparison operations
on strings, numbers, fields, variables, and array elements. Actions may per
form arbitrary processing on selected lines. The action language looks like C,
but there are no declarations. Strings and numbers are the built-in data types.

awk scans input files and splits each input line into fields automatically.
Because of the automatic nature of its input, field splitting, storage manage
ment, and initialization, awk programs are usually much smaller than they
would be in a more conventional language. The same brevity of expression and
convenience of operations make awk valuable for prototyping larger pro
grams. One starts with a few lines, then refines the program until it does the
desired job, experimenting with designs by trying alternatives. Since programs
are short, it is easy to get started, and easy to start over when experience sug
gests a different direction. It is straightforward to translate an awk program
into another language once the design is right.

awk was originally designed and implemented by the authors of UNIX in
1977, in part as an experiment to see how the UNIX tools grep and sed could be
generalized to deal with numbers as well as text. An enhanced version was
made available in 1985. The main add-on feature in new awk (available in AIX
and newer versions of UNIX) is the ability for users to define their own func
tions, support dynamic regular expressions with text substitution and pattern
matching functions, and make use of additional built-in functions and variables.

sed is a noninteractive stream editor that automates edits to be done on mul
tiple files. As an editing filter, sed modifies a specified file according to an edit
script and then writes the modified file to standard or redirected output. sed
can also be used for writing conversion programs. For example, sed can trans
late formatting codes (such as Scribe/TeX) into troff. Invoke sed by entering:

command [-n, -e(script), -f(sourcefile) J file

The -f option is used to specify the name of the sourcefile, -n suppresses all
information normally written to standard output, and -e uses the script string
as the editing script. The script specifies to the program what instructions to
perform. sed can also be invoked by putting your editing instructions in a file
and then entering the name of the file.

How does sed work?

• All editing commands in an edit script are applied (in order) to each input line.

• Commands are globally applied to all lines.

• The original input file is unchanged by editing commands. The editing com
mands modify the copy of the original input line and then a copy is sent to
standard output.

178 Software

7.8 MACRO PROCESSOR-m4

m4 is a macro processor facility which is used as a preprocessor for C and other
languages for expanding macro definitions. Built-in macros or user-defined
macros can be processed using m4. m4 processes each file in the order in which
it is specified on the command line. A command reads standard input if a file
is not specified or if a minus (-) is specified as a file name and writes the pro
cessed macros to standard output. To redirect the output to a file, enter:

m4 (FileNameJ >Outputfile

m4 reads every alphanumeric token input and determines if the token is the
name of a macro; if it is a macro, the name is replaced by its defining text and
the resulting string is pushed back onto the input to be rescanned. Macros may
also be called with arguments. The arguments are collected and substituted
into the right places in the defining text before the defining text is rescanned.

The macro calls have the following syntax:

macroname(argument ...)

A left parenthesis must immediately follow macroname. If the left parenthesis
does not follow the name of a defined macro, the m4 command reads it as a
macro call with no arguments. Macro names consist of tokens: strings of ASCII
alphabetic letters, digits, and the underscore character(_). Extended characters
are not allowed in macro names. The first character cannot be a digit. While col
lecting arguments, the m4 command ignores unquoted leading blanks, tabs,
and newline characters. Use single quotation marks to quote strings. The value
of a quoted string is the string with the quotation marks stripped off.

Users can also define macros using the define macro. For example:

define (option, misc)

m4 defines the string option as mi s c. Wherever option appears in the program,
m4 replaces it with misc. (The string name must comply with the conventions
discussed previously.)

7.9 PROGRAM MODULES MANAGEMENT

7.9.1 make

The make program is primarily used for maintaining a set of programs by
building up-to-date versions of programs. make simplifies the process of
recompiling and relinking programs during software development by allowing
programmers to record the specific relationships among files once only. The
make command can then be used to automatically perform all the updates.
Using this versatile utility, instructions can be combined to create large pro
grams in a single file, macros can be defined to be used within the make com
mand description file, and many basic types of files can be created.

Development Tools 179

To make the latest version of a program, enter:

make programname

make automates the compilation and linking required to update and create
the programname file by carrying out tasks resulting from work done since the
last issuance of the make command. make issues commands resulting from
tracing dependencies of files being built.

The following example illustrates the relationship of make to its target.

reads Makefile
make - program (target of operation)

i
builds on

dependent files

make requires a description file (to build the target file), file names, specified
sets of rules to construct many standard types of files, and time stamps of all
system files. The description file tells the make command how to build the tar
get file, which files are to be used, and what the file relationships are. The
description file contains information on target and parent file name, macro def
initions, commands and user-specified rules to build the target file. Each line
in the description file involving target file is called a dependency line. If any
parent file was changed more recently than the target file, make creates the
files affected by the changes, including the target file. For example:

test:

test:

dependency listl ...
command listl ...

dependency list2 ...
command list2 ...

defines two separate processes to create the target file, test. If any of the files
in dependency 1 i stl changes, the make command runs command 1 i stl. If any
of the files in dependency 1 i st2 changes, the make command runs command
1 i st2. To avoid conflict, a parent file cannot appear in both dependency 1 i stl
and dependency l i st2.

The make program does not perform any program operations; it simply
writes all the steps to build the program, including outputs from lower-level
calls to the make command. This makes it an extremely powerful and versa
tile tool for managing a large number of program modules.

7.9.2 imake

imake enables programmers to write portable software. Using imake, pro
grammers can move software from one system to another without extensive

180 Software

code revision. imake aids in software portability by enabling programmers to
avoid rewriting the Makefile (used by make to identify dependencies). Rather,
programmers write an !makefile, which is a machine-independent description
of targets. An I makefile localizes machine dependencies in configuration files.
When you run imake, imake replicates the configuration files in the Makefile.
For example:

I makefile

""'imake - Makefile - make
/'

configuration files

To use imake, programmers need imake, cpp, and make, a set of configura
tion files, and xmkmf (xmkmf uses xmkmf plus configuration files to gener
ate a Makefile from an empty !makefile). imake programming variants
include a user environment, utilities for building programs, and an install
method and location.

7.10 SOURCE CODE CONTROL SYSTEM

Source Code Control System (SCCS) is a complete system of commands that
allows specified users to control and maintain an audit trail of changes made
to an SCCS file. It allows simultaneous existence of multiple versions of a file
and supports Multibyte Character Set (MBCS) characters. It provides a com
plete system for creating, converting, or changing controls on SCCS files. All
SCCS files use the prefix . s.

An SCCS file is any text file controlled with SCCS commands. An SCCS file
is made up of three parts: (1) a delta table, (2) access and tracking flags, and
(3) the body of the text. Deltas are changes recorded for each version of a file.
Tracking flags are essentially a list of flags with the @ designation; tracking
flags define who may edit which files, which releases of files are available, and
which files are available for joint editing. The body of an SCCS file contains
information about all the versions of the file.

Frequently used SCCS commands include:

admin
cdc

comb

delta
get

rmdel
SCCS

Creates an SCCS file or changes an existing SCCS file

Changes the comments associated with delta

Combines two or more consecutive deltas in an SCCS file

Adds a set of changes (deltas) to the text of an SCCS file

Gets a specified version of an SCCS file for editing or compiling

Removes the most recent delta on a branch from an SCCS file

Performs most SCCS services, using a set of pseudocommands (adminis
trative program for the SCCS system)

Development Tools 181

7.11 AIX PERFORMANCE TOOLS

To maximize performance tuning, it is necessary to identify the critical
resources on the system that can be tuned, improved, or upgraded, since it is
the availability of these resources that determines the performance of a work
load on a system. Tools, when used, usually report the availability and utiliza
tion of these resources.

It is a common practice to partition the resources into physical resources and
logical resources. Physical resources are real components, while logical
resources are programming abstractions. Physical and logical resources are
identified as follows:

Physical resources

CPU
Memory

1/0 bus
Adapters

Disk

Network interface

Logical resources

Process time slice

Page frames
Stacks
Buffers
Queues
Tables

Logical volumes
File systems
Files

Packets
Channels

The tools of the trade in performance tuning do one or more of the following:
timing, counting, and sampling. Based on how they work, they have been
grouped under three categories: monitoring tools, analysis tools, and tuning
tools.

7.11.1 Monitoring tools

Overviews of popular AIX monitoring and tuning tools follow. Details on flags
and options are not included due to the variability of these commands. For
"how to" information on these commands, refer to the AIX Commands Refer
ence series.

7.11.1.1 iostat

The iostat command displays utilization data for CPU, disks, tty devices, and
CDs. The command can be run singly to produce cumulative statistics since
system boot, or it can be run repetitively to display statistics in real time for
successive intervals over a defined duration of time. The report produced can
have two types of format: the first type contains terminal-related and CPU
statistics, and the second describes disk statistics. Sample output of both types
of reports follows.

182 Software

Type 1
tty: tin tout cpu: % user % sys % idle % iowait

0.4 30.2 1. 4 1. 7 96.3 0.6
3.4 3.6 0.1 2.9 97.0 0.0
2.3 73.4 1. 2 2.0 96.4 0.4
1. 4 1. 6 0.2 0.4 99.4 0.0
0.5 616.6 2.0 7.4 90.1 0.5
0.5 8.0 0 .1 1. 0 98.9 0.0
0.9 0.9 0.2 1. 2 95.3 3.3

Type2
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdiskO 0.0 0.0 0.0 224 0
hdiskl 0.3 3.4 0.2 1713775 165156
hdisk2 0.3 3.2 0.2 1623159 126396
hdisk3 0.4 1. 3 0.2 219649 479864

System information can be generated by specifying the following flags:

-d The -d option is exclusive of the -t option and displays only the disk utiliza
tion report.

-t The -t option is exclusive of the -d option and displays only the tty and CPU
usage reports.

7.11.1.2 netstat

The netstat command presents statistics on network and communications
activity including:

• Active sockets in use

• Contents of network data structures (which are specified in /etc/protocols),
such as TCP, IP, UDP, and ICMP

• Packet traffic (inbound and outbound) distribution for each of the network
adapter interfaces configured

• Statistics on participating network device drivers including the Ethernet
adapter device driver, token-ring adapter device driver, and X.25 adapter
device driver

• Utilization of assigned network memory management routines and size of
the page pool being managed by network services

System information can be generated by specifying the following flags:

·A

-a

Shows the address of any protocol control blocks associated
with the sockets. This flag acts with the default display and is
used for debugging purposes.

Shows the state of all sockets. Without this flag, sockets used
by server processes are not shown.

-f AddressFamily

-i

-I Interface

-m

-n

-pProtocol

-r

-s

-u
-v

7.11.1.3 nfsstat

Development Tools 183

Limits reports of statistics or address control blocks to those
items specified by the AddressFamily variable. The following
address families are recognized:

inet Indicates the AF _INET address family

ns Indicates the AF _NS address family

unix Indicates the AF_ UNIX address family

Shows the state of all configured interfaces.
Note: The collision count for Ethernet interfaces is not sup
ported.

Shows the state of the configured interface specified by the
Interface variable.

Shows statistics recorded by the memory management rou
tines.

Shows network addresses as numbers. When this flag is not
specified, the netstat command interprets addresses where
possible and displays them symbolically. This flag can be used
with any of the display formats.

Shows statistics about the value specified for the Protocol
variable, which is either a well-known name for a protocol or
an alias for it. Some protocol names and aliases are listed in
the I etc Ip rot o col s file. A null response means that there
are no numbers to report. The program report of the value
specified for the Protocol variable is unknown if there is no
statistics routine for it.

Shows the routing tables. When used with the -s flag, the
-r flag shows routing statistics.

Shows statistics for each protocol.

Dislays information about domain sockets.

Shows statistics for the Ethernet adapter device driver, the
token-ring adapter device driver, the X.25 adapter device
driver, and the 802.3 adapter device driver.

The nfsstat utility is meant for displaying information about the server and
client activity [the network file system (NFS) and the remote procedure calls
used by it] The information reported relates to either NFS's server and/or
client data, or the server and/or client data used by the remote procedure calls
used in NFS.

System information can be generated by specifying the following flags:
-c Allows the user to limit the report to client data only. The nfsstat command

provides information about the number ofRPC and NFS calls sent and
rejected by the client. To limit the report exclusively to NFS or RPC data,
combine this flag with the -n or -r option.

-s Restricts the report to server data only. This option causes the nfsstat com
mand to display information about the number of NFS and RPC calls
received and rejected by the server. The user can also combine this option
with the -n and -r options to further limit the report to NFS or RPC data.

184 Software

7.11.1.4 no

-n Displays and prints NFS information for both the client and server. To limit
the report to NFS client or server information only combine this flag with the
-c and -s options.

-r Displays RPC information for the client and server. This option can be com-
bined with the -c and -s options to limit the report to client or server data only.

-z Initializes statistics. This flag is for use by the root user only and can be com
bined with any of the other flags listed here to zero particular sets of statis
tics after printing them.

This command displays (and changes) the values of network options including
socket buffer sizes, low-water marks for the mbuf pools, and amount of mem
ory used in mbufs in the AIX kernel.

7.11.1.5 ps

System information can be generated by specifying the following flags:

-a

-d Option

-o Option [=New Value]

Prints a list of all configurable options and their current
values.

Sets the Option variable back to its default value.

Shows the value of the option specified by the Option
variable if the New Value variable is not specified. If a
new value is specified, the Option variable is set to that
value.
Note: When using the -o flag, do not enter space char

acters before or after the equal sign. If you do, the
command will fail.

The ps tool displays process status. Its multifarious options allow reporting of
information on a variety of system resources, on a per process basis. Some of
the key information reported for each process includes CPU usage, memory
usage, nice value, number ofl/0 requests, resident set size, size of the code seg
ment, amount of paging space used, and virtual size of the process.

System information can be generated by specifying the following flags:

-A

-a

-d

·e

. f

-F-oFormat

Writes to standard output information about all processes.

Writes to standard output information about all processes, except
the process group leaders and processes not associated with a ter
minal.

Writes information to standard output about all processes, except
the process group leaders.

Writes information to standard output about all processes, except
kernel processes.

Generates a full listing .

Displays information in the format specified by the Format vari
able. Multiple field specifiers can be specified for the Format vari
able. The Format variable is either a comma-separated list of field

7.11.1.6 sar

Development Tools 185

specifiers or a list of field specifiers enclosed within a set of" "
(double quotation marks) and separated from one another by a
comma or by one or more spaces, or both.

Each field specifier has a default header. The default header can be overridden by
appending an= (equal sign) followed by the user-defined text for the header. The
fields are written in the order specified on the command line in column format. The
field widths are specified by the system to be at least as wide as the default or user
defined header text. If the header text is null, (such as, if - F - o user= is specified),
the field width is at least as wide as the default header text. If all header fields are
null, no header line is written.

sar collects and exhibits system accounting reports and is very useful for
obtaining an overall view of ongoing system activities and resource usage. It
can be used as a display tool to monitor system performance as well as to view
captured data from a previous date. Both the sampling interval as well as the
granularity can be defined for sar. Internally, sar calls a program named sadc
to access system data. Common information reported by sar includes CPU uti
lization, paging activity, disk access, system call frequency, kernel process
statistics, request statistics on the run queue and the wait queue, process
switching activity, message and semaphore operations, and terminal-related
1/0 activity.

System information can be generated by specifying the following flags:

-A

·a

-b

-c

-e hh[:mm[:ss]]

-f File

-i Seconds

-k

-m
msg/s

Reports all data.

Reports use of file access system routines specifying how many
times per second several of the system file access routines have
been called.

Reports buffer activity for transfers, accesses, and cache (kernel
block buffer cache) hit ratios per second. Access to most files in
AIX bypasses kernel block buffering, and therefore does not gen
erate these statistics. However, if a program opens a block
device or a raw character device for 1/0, traditional access mech
anisms are used, making the generated statistics meaningful.

Reports system calls.

Sets the ending time of the report. The default ending time is
18:00.

Extracts records from File (created by -o File flag). The default
value of the File parameter is the current daily data file, the
I v a r I ad m I s a I s add file.

Selects data records at seconds as close as possible to the num
ber specified by the Seconds parameter. Otherwise, the sar com
mand reports all seconds found in the data file.

Reports kernel process activity.

Reports message and semaphore activities per second.

Reports the number of IPC message primitives.

186 Software

-oFile

-q

-r

-s hh[:mm[:ss]]

-u

-v

-w

-y

7.11.1.7 schedtune

Saves the readings in the file in binary form. Each reading is in
a separate record and each record contains a tag identifying the
time of the reading.

Reports queue statistics.

Reports paging statistics.

Sets the starting time of the data, causing the sar command to
extract records time-tagged at, or following, the time specified.
The default starting time is 08:00.

Reports system unit activity.

Reports status of the process, inode, and file tables.

Reports system switching activity.

Reports tty device activity per second.

schedtune displays (and changes) the virtual memory manager's memory
load control parameters and the paging-space-low retry level.

System information can be generated by specifying the following flags:

-D Restores the default values (h=6, p=4, w=l, m=2, e=2, f=lO, t=O).

-e n Specifies that a recently resumed suspended process is eligible to be sus-
pended again when it has been active for at least n seconds.

-f n Specifies the number of (10-m) clock ticks to delay before retrying a fork
call that has failed because of insufficient paging space. The system retires
the fork call up to five times.

-h n Specifies the systemwide criterion for determining when process suspension
begins and ends. A value of zero effectively turns off memory load control.

-m n Sets the minimum multiprogramming level.

-p n Specifies the per-process criterion for determining which processes to sus-
pend.

-t n Increases the duration of the time slice-the maximum amount of time
before another process is scheduled to run. The default time-slice duration
is 10 m. The parameter n is in units of 10 ms each. If n=O, the time-slice
duration is 10 ms. If n=2, the time-slice duration is 30 ms.

-w n Specifies the number of seconds to wait, after thrashing ends, before reac
tivating any suspended processes.

-? Displays a brief description of the command and its parameters.

7.11.1.8 vmstat

vmstat monitors memory statistics like page fault activity. In addition, it pro
vides path lengths on disk transfers and system traps. Like iostat, this utility
can be run singly or iteratively with a count to produce rate statistics. Common
events reported include page ins and page outs by the virtual memory manager
(VMM), paging space page ins and paging space page outs that depict the
VMM initiated page ins/outs from/to paging space, address translation faults;
device interrupts (related to hardware interrupts), and software interrupts.

Development Tools 187

System information can be generated by specifying the following flags:

Note: Both the -f and -s flags can be entered on the command line, but the sys
tem will only accept the first flag specified and override the second flag.

-f Reports the number of forks since system start-up.

-i Displays the number of interrupts taken by each device since system start-up.

-s Writes to standard output the contents of the sum structure, which contains
an absolute count of paging events since system initialization. The -s option
is exclusive of the other vmstat command options. These events are
described as follows.

7.11.1.9 vmtune

vmtune changes the parameters of the virtual memory manager page replace
ment algorithm. The virtual memory manager (VMM) maintains a list of free
real-memory page frames. These page frames are available to hold virtual
memory pages needed to satisfy a page fault. When the number of pages on the
free list falls below that specified by the MinFree parameter, the VMM begins to
steal pages to add to the free list. The VMM continues to steal pages until the
free list has at least the number of pages specified by the MaxFree parameter.

If the number of file pages (permanent pages) in memory is less than the
number specified by the MinPerm parameter, the VMM steals frames even
handedly from either computatonal or file pages. If the number of file pages is
greater than the number specified by the MaxPerm parameter, the VMM
steals frames only from file pages. Between the two, the VMM uses repaging
rates to determine which frames are stolen.

If a process appears to be reading sequentially from a file, the values speci
fied by the MinPgAhead parameter determine the number of pages to be read
ahead when the condition is first detected. The value specified by the MaxPg
Ahead parameter sets the maximum number of pages that will be read ahead,
regardless of the number of preceding sequential reads.

System information can be generated by specifying the following flags:

-fMinFree

-F MaxFree

-pMinPerm

-PMaxPerm

Specifies the minimum number of frames on the free list. This
number can range from 8 to 204800.

Specifies the number of frames on the free list at which page
stealing is to stop. This number can range from 16 to 204800
but must be greater than the number specified by the MinFree
parameter by at least the value of MaxPgAhead.

Specifies the point below which file pages are protected from
the repage algorithm. This value is a percentage of the total
real-memory page frames in the system. The specified value
must be greater than or equal to 5.

Specifies the point above which the page stealing algorithm
steals only file pages. This value is expressed as a percentage of
the total real-memory page frames in the system. The specified
value must be greater than or equal to 5.

188 Software

-r MinPgAhead Specifies the number of pages with which sequential read
ahead starts. This value can range from 0 through 32. It
should be a power of 2.

-R MaxPgAhead Specifies the maximum number of pages to be read ahead. This
value can range from 0 through 64. It should be a power of 2
and should be greater than or equal to MinPgAhead.

7 .11.2 Analysis tools

For the following analysis tools to generate output, the accounting system
must be running. It shoudl be noted that running the accounting system con
tinuously slows system performance to a certain extent.

7.11.2.1 acctcoFm

acctcom reads from specific files (usually the I us r I ad m Ip acct) and provides
accounting information on processes that have completed. Reporting statistics
on the already completed processes is the main difference between this tool
and ps. Typical information reported includes start time, stop time, CPU uti
lization, login name of the user who executed the process, the terminal on
which the process was executed, and the status of how the process ended.

System information can be generated by specifying the following flags:

-a

-b

-C Seconds

-e Time

-E Time

-f

-gGroup

-h

Shows some average statistics about the processes selected. The
statistics are displayed after the output records.

Reads backwards, showing the most recent commands first. This
flag has no effect when the acctcom command reads standard
input.

Shows only processes whose total CPU time (system time + user
time) exceeds the value specified by the Seconds variable.

Selects processes existing at or before the specified time. You can
use the NLTIME environment variable to specify the order of hours,
minutes, and seconds. The default order is hh:mm:ss.

Selects processes ending at or before the specified time. You can use
the NLTIME environment variable to specify the order of hours,
minutes, and seconds. The default order is hh:mm:ss. If you specify
the same time for both the -E and -S flags, the acctcom command
displays the processes that existed at the specified time.

Displays two columns related to the ac_fl ag field of the acct. h file:
the first indicates use of the fork command to create a process; the
second indicates the system exit value. Refer to the acct structure
described in the acct file format in AIX 'Version 3.2 Files Reference.

Selects processes belonging to the specified group. You can specify
either the group ID or the group name.

Instead of mean memory size, shows the fraction of total available
CPU time consumed by the process (hog factor). This factor is com
puted as:

(total CPU time)
(elapsed time)

-HFactor

-i

-k

-I Line

-I Number

-m

-nPattern

-o File

-0 Seconds

-q

-r

-s Time

-S Time

-t

-u User

-v

Development Tools 189

Shows only the processes that exceed the value of the Factor param
eter. This factor, called the hog factor, is computed as:

(total CPU time)
(elapsed time)

Displays columns showing the number of characters transferred in
read or write operations (the I/O counts).

Instead of memory size, shows total kcore minutes (memory mea
surement in kilobyte segments used per minute ofrun time).

(lowercase L) Shows only processes belonging to workstation
/dev/Line.

(uppercase i) Shows only processes transferring more than the speci
fied number of characters.

Shows mean main memory size. This is the default. The -h flag or -k
flag turn off the -m flag.

Shows only commands matching the value of the Pattern variable,
where Pattern is a regular expression. Regular expressions are
described in the ed command. In addition to the usual characters,
the acctcom command allows you to use a + (plus sign) as a special
symbol for the preceding character.

Copies selected process records to the specified file, keeping the
input data format. This flag suppresses writing to standard output.
This flag cannot be used with the -q flag.

Shows only processes with CPU system time exceeding the specified
number of seconds.

Displays statistics but not output records. The statistics are the
same as those displayed using the -a flag. The -q flag cannot be used
with the -o flag.

Shows CPU factor. This factor is computed as:

(user-time)
(system-time +user-time)

Shows only those processes that existed on or after the specified
time. You can use the NLTIME environment variable to specify the
order of hours, minutes, and seconds. The default order is hh:mm:ss.

Shows only those processes starting at or after the specified time.
You can use the NLTIME environment variable to specify the order
of hours, minutes, and seconds. The default order is hh:mm:ss.

Shows separate system and user CPU times.

Shows only processes belonging to the specified user. Enter one of
the following for the User variable: a user ID, a login name to be
converted to a user ID, a# (pound sign) to select processes run by
the root user, or a? (question mark) to select processes associated
with unknown user IDs.

Eliminates column headings from the output.

190 Software

7.11.2.2 acctcms

acctcms provides accounting information on processes that have completed,
in a manner similar to acctcom. The key difference is that this utility com
bines all the records for identically named processes and reports a combined
total for that process name.

System information can be generated by specifying the following flags:

-a Displays output in ASCII summary format rather than binary summary for
mat. Each output line contains the command name, the number of times the
command was run, total kcore time (memory measurement in kilobyte seg
ments), total CPU time, total real time, mean memory size (in KB), mean
CPU ti~e per invocation of the command, and the CPU usage factor. The
listed times are all in minutes. The acctcms command normally sorts its
output by total kcore minutes. The unit kcore minutes is a measure of the
amount of memory used (in kilobytes) multiplied by the amount of time it
was in use. This flag cannot be used with the -t flag.

-c Sorts by total CPU time rather than total kcore minutes. This flag cannot be
used with the -n flag. When this flag is used with the -n flag, only the -n flag
takes effect.

-j Combines all commands called only once under the heading other.

-n Sorts by the number of times the commands were called. This flag cannot be
used with the -c flag. When this flag is used with the -c flag, only the -n flag
takes effect.

-o Displays a command summary ofnonprime time commands. You can use this
flag only when the -a flag is used.

-p Displays a command summary of prime time commands. You can use this
flag only when the -a flag is used.

-s Assumes that any named files that follow this flag are already in binary
format.

-t Processes all records as total accounting records. The default binary format
splits each field into prime and nonprime time sections. This flag cannot be
used with the -a flag.

7.11.2.3 accton

accton works like a toggle switch in enabling and disabling the collection of
process accounting statistics.

System information can be generated by specifying the following flags:

-1 File

-oFile

(lowercase L) Writes a line-usage summary file showing the line name,
the number of minutes used, the percentage of total elapsed time, the
number of sessions charged, the number oflogins, and the number of
logoffs. If you do not specify a file name, the system creates the informa
tion in the Ivar I adml acct/ n i te /l i neus e file.

Writes to the specified file an overall record for the accounting period,
giving starting time, ending time, number of restarts, and number of date
changes. If you do not specify a file name, the system creates the
Iv a r I adml a cct/n i te/ reboots file.

Development Tools 191

·p Displays only input. Line name, login name, and time are shown in both
numeric and date/time formats. Without the ·P flag specified, the acct
conl command would display input, converting input to session records,
and write reports.

·t Uses the last time found in the input as the ending time for any current
processes. This, rather than current time, is necessary in order to have
reasonable and repeatable values for files that are not current.

7.11.2.4 filemon

The fl.lemon command uses the trace facility to report 1/0 activity at four sep
arate levels: logical file system, virtual memory segments, logical volumes, and
physical volumes. Tracking at the logical file system level yields information
on read, write, open, and lseek system calls. Analyzing the virtual memory sys
tem results in availability of physical 110 operations (for example, paging).
Reporting of information at the logical volume level gives 1/0 statistics on a
per-logical-volume basis. Monitoring at the physical volume level allows anal
yses of physical resource utilization enabling any combination of levels to be
monitored. This tool normally runs in the background and monitors file system
and 1/0 events in real time. An alternate way to use it is to use it like an off
line monitor on previously collected trace files.

System information can be generated by specifying the following flags:

-i File

-oFile

-d

-Tn

Reads the 1/0 trace data from the specified File, instead of from the
real-time trace process. The filemon report summarizes the 1/0 activ
ity for the system and period represented by the trace file.
Note: Trace data files are usually written in a circular manner. If the

trace data has wrapped around, the chronological beginning and
end of the trace may occur in the middle of the file. Use the raw
mode of the trcrpt command to rewrite the data sequentially,
before invoking the filemon command, as follows:

trcrpt -r file >new.file

For the report to be accurate, the trace file must contain all the hooks
required by the filemon command.

Writes the 1/0 activity report to the specified File, instead of to the std
out file.

Starts the filemon command, but defers tracing until the trcon com
mand has been executed by the user. By default, tracing is started
immediately.

Sets the kernel's trace buffer size to n bytes. The default size is 32,000
bytes. The buffer size can be increased to accommodate larger bursts of
events, if any. (A typical event record size is 30 bytes.)
Note: The trace driver in the kernel uses double buffering, so, in fact,

there will be two buffers allocated of size n bytes. Also, note that
these buffers are pinned in memory, so they are not subject to
paging. Large buffers may affect the performance of paging and
other 1/0.

192 Software

-P Pins monitor process in memory. The -P flag causes the fiiemon com
mand's text and data pages to be pinned in memory for the duration of
the monitoring period. This flag can be used to ensure that the real
time filemon process is not paged out when running in a memory-con
strained environment.

-v Prints extra information in the report. The most significant effect of the
-v flag is that all logical files and all segments that were accessed are
included in the I/O activity report, instead of only the 20 most active
files and segments.

-0 Levels Monitors only the specified file system levels. Valid level identifiers are:

If Logical file level

vm Virtual memory level

Iv Logical volume level

pv Physical volume level

all Short for If, vm, Iv, pv

The vm, Iv, and pv levels are implied by default.

-u Reports on files that were opened prior to the start of the trace dae
mon. The process ID (PID) and the file descriptor (FD) are substituted
for the file name.

7.11.2.5 fileplace

fileplace shows the physical or logical placement of the blocks that constitute
a file. This tool can also be made to report fragmented files within a volume,
the indirect block numbers for the file, as well as the file's placement on phys
ical volume blocks. Note that this tool is good for local files only; it does not
report information on remote files that may be mounted over NFS file systems.

System information can be generated by specifying the following flags:

-i Displays the indirect blocks for the file, if any. The indirect blocks are dis
played in terms of either their logical or physical volume block addresses
numbers, depending on whether the -I or -p flag was specified.

-I Displays file placement in terms oflogical volume fragmentsblocks, for the
logical volume containing the file. The -I and -p flags are mutually exclusive.

-p Displays file placement in terms of physical volume blocks, for the physical
volumes that contain the file. If the logical volume containing the file is mir
rored, the physical placement is displayed for each mirror copy. The -I and -p
flags are mutually exclusive.

-v Displays more information about the file and its placement, including statis
tics on how widely the file is spread across the volume and the degree of frag
mentation in the volume. The statistics are expressed in terms of either the
logical or physical volume block numbers, depending on whether the -I or ·P
flag is specified.

7.11.2.6 gprof

gprof reports flow of control among subroutines of a program and the amount of
CPU time consumed by each subroutine. It provides visibility to the sections of

Development Tools 193

the code that are most active and points out spots that require optimization
efforts. Two kinds ofreports may be generated on a program's run-time behavior
including (1) a flat profile showing the CPU time consumption along with fre
quency of occurrence on a per subroutine basis, and (2) a call-graph profile lay
ing out the CPU time consumed by each subroutine plus its child subroutines.

The mechanics of how gprof works is straightforward. A special library
function (called mcount) is embedded in the application code when the code is
compiled for profiling. This causes a counter to increment each time a parent
function calls a child function which enables tracking the frequency of subrou
tine calls. A second mechanism (also activated by gprofs compile time option)
facilitates sampling of the program's current program counter location each
clock tick (every 10 ms) to quantify the time spent in each routine. Another
command called prof is also available for profiling programs; however, data
reported by it is a proper subset of the data available from gprof.

System information can be generated by specifying the following flags:

-b

-EName

-eName

-F Name

-fName

-LPathName

-s

-z

7.11.2.7 lsattr

Suppresses the printing of a description of each field in the profile.

Suppresses the printing of the graph profile entry for routine
Name and its descendants, similar to the -e flag, but excludes the
time spent by routine Name and its descendants from the total
and percentage time computations. (-E MonitorCount -E Monitor
Cleanup is the default.)

Suppresses the printing of the graph profile entry for routine
Name and all its descendants (unless they have other ancestors
that are not suppressed). More than one -e flag can be given. Only
one routine can be specified with each -e flag.

Prints the graph profile entry of the routine Name and its descen
dants similar to the -f flag, but uses only the times of the printed
routines in total time and percentage computations. More than
one -F flag can be given. Only one routine can be specified with
each -F flag. The -F flag overrides the -E flag.

Prints the graph profile entry of the specified routine Name and
its descendants. More than one -f flag can be given. Only one rou
tine can be specified with each -fflag.

Uses an alternate pathname for locating shared objects.

Produces the gmon. sum profile file, which represents the sum of
the profile information in all the specified profile files. This sum
mary profile file may be given to subsequent executions of the
gprof command (using the -s flag) to accumulate profile data
across several runs of an a • out file.

Displays routines that have zero usage (as indicated by call
counts and accumulated time).

lsattr lists the attributes affecting performance, their current values, and
whether or not they are tunable.

194 Software

System information can be generated by specifying the following flags:

-a Attribute

-c Class

-D

-E

-f File

-F Format

-H

-h

-I Name

-0

Displays information for the specified attributes of a specific device
or kind of device. You can use one -a flag for each attribute name or
multiple attribute names. If you use one -a flag for multiple
attribute names, the list of attribute names must be enclosed in
quotes with spaces between the names. Using the -R flag, you must
specify only one -a flag with only one attribute name. If you do not
specify either the -a or -R flag, the lsattr command displays all
information for all attributes of the specified device.

Specifies a device class name. This flag can be used to restrict the
output to that for devices of a specified class. This flag cannot be
used with the -E or -I flags.

Displays the attribute names, default values, descriptions, and
user-settable flag values for a specific device when not used with
the -0 flag. The -D flag displays only the attribute name and
default value in colon format when used with the -0 flag. This flag
can be used with any combination of the -c, -s, and -t flags that
uniquely identifies a device from the predefined devices object class
or with the -I flag. This flag cannot be used with the -E, -F, or -R
flags.

Displays the attribute names, current values, descriptions, and
user-settable flag values for a specific device when not used with
the -0 flag. The -E flag displays only the attribute name and cur
rent value in colon format when used with the -0 flag. This flag
cannot be used with the -c, -D, -F, -R, -s, or -t flags.

Reads the needed flags from the File parameter.

Displays the output in a user-specified format, where the Format
parameter is a quoted list of column names separated by nonal
phanumeric characters or white space. Using white space as the
separator, the lsattr command displays the output in aligned
columns. Only column names from the predefined attributes and
customized attributes object classes can be specified. In addition to
the column names, there are two special purpose names that can be
used. The name description can be used to obtain a display of
attribute descriptions and user-settable can be used to obtain an
indication as to whether or not an attribute can be changed. This
flag cannot be used with the -E, -D, -0, or -R flags.

Displays headers above the column output. To use the -H flag with
the -0 flag is meaningless; the -0 flag prevails. To use the -H flag
with the -R flag is meaningless; the -R flag prevails.

Displays the command usage message.

Specifies the device logical name in the customized devices object
class whose attribute names or values are to be displayed.

Displays all attribute names separated by colons and, on the second
line, displays all the corresponding attribute values separated by
colons. The attribute values are current values when the -E flag is
also specified and default values when the -D flag is specified. This
flag cannot be used with the -F and -R flags.

-R

-s Subclass

-t Type

7.11.2.8 nulladm

Development Tools 195

Displays the legal values for an attribute name. The -R flag cannot
be used with the -D, -E, -F and-0 flags, but can be used with any
combination of the -c, -s, and -t flags that uniquely identifies a device
from the predefined devices object class or with the -1 flag. The -R
flag displays the list attribute values in a vertical column as follows:

Valuel
Value2

ValueN

The -R flag displays the range attribute values as x ... n (+i) where
xis the start of the range, n is the end of the range, and i is the
increment.

Specifies a device subclass name. This flag can be used to restrict
the output to that for devices of a specified subclass. This flag can
not be used with the -E or -1 flags.

Specifies a device type name. This flag can be used to restrict the
output to that for devices of a specified class. This flag cannot be
used with the -E or -I flags.

nulladm creates a process accounting file with the proper permissions.

7.11.2.9 netpmon

netpmon uses the trace facility to report network 1/0 and network-related
CPU usage. Normally, this tool runs in the background and monitors network
related system events in real time. An alternate way to use it is as an off-line
monitor on previously collected trace files. CPU-related information includes
the amount of CPU consumed in network-related events and CPU idle due to
network 1/0. Device driver 1/0 related activities reflect statistics on 1/0 traffic
through Ethernet and token-ring device drivers, and queue lengths for trans
mission 1/0. Remote or NFS 1/0 statistics include remote procedure call
requests on a per process, per file, per server basis. Communication interface
data includes an inventory of socket-related system calls that have been
issued, on a per protocol (such as TCP, UDP) basis.

System information can be generated by specifying the following flags:

-oFile

-d

-0 ReportType ...

Writes the reports to the specified File, instead of to standard
output.

Starts the netpmon command, but defers tracing until the
trcon command has been executed by the user. By default,
tracing is started immediately.

Produces the specified report types. Valid report type values
are:

cpu CPU usage

dd Network device driver I/O

196 Software

.p

-T n

-t
-v

7.11.2.10 rmap

so Internet socket call 1/0

nfs NFS 110

all All reports are produced; this is the default value

Pins monitor process in memory. This flag will cause the
netpmon text and data pages to be pinned in memory for the
duration of the monitoring period. This flag can be used to
ensure that the real-time netpmon process does not run out
of memory space when running in a memory-constrained
environment.

Sets the kernel's trace buffer size to n bytes. The default size
is 64000 bytes. The buffer size can be increased to accommo
date larger bursts of events, if any. (A typical event record
size is on the order of 30 bytes.)
Note: The trace driver in the kernel uses double buffering, so

actually two buffers of size n bytes will be allocated.
These buffers are pinned in memory, so they are not
subject to paging.

Prints CPU reports on a per-thread basis.

Prints extra information in the report. All processes and all
accessed remote files are included in the report instead of
only the 20 most active processes and files.

rmap uses the trace facility to report system calls, process utilization, and 1/0
events.

System information can be generated by specifying the following flags:

-o OutFile

-q

7.11.2.11 rmss

Redirects standard output to the specified file. The output generated
by rmap will be formatted for either 80 columns and 66 lines or 138
columns and 88 lines depending on the reports selected.

Suppresses the configuration file listing.
Note: One or more options may be present on the command line.

However, each option should only appear once on the com
mand. If an option appears more than once, only the last spec
ification of the option is used.

rmss simulates various memory sizes. It temporarily reduces the effective
RAM to assess the probable performance of a workload on smaller configura
tions. Although the tool tends to be optimistic for applications that access too
many files, it comes across as a handy step-saver for scaling memory sizes to
study the effect on a workload.

System information can be generated by specifying the following flags:

-cMemSize Changes the simulated memory size to the MemSize value,
which is an integer or decimal fraction in units of megabytes.
The MemSize variable must be between 4 MB and the real
memory size of the machine. There is no default for the -c flag.

-dMemSize

-fMemSize

-n Numlterations

-o OutputFile

-p

·r

-sMemSize

Command

7.11.2.12 svmon

Development Tools 197

Specifies the increment between memory sizes to be simulated.
The MemSize value is an integer or decimal fraction in units of
megabytes. If the -d flag is omitted, the increment will be 8 MB.

Specifies the final memory size. You should finish testing the
simulated system by executing the command being tested at a
simulated memory size given by the MemSize variable, which
is an integer or decimal fraction in units of megabytes. The
MemSize variable must be between 4 MB and the real mem
ory size of the machine. If the -fflag is omitted, the final mem
ory size will be 8 MB.

Specifies the number of times to run and measure the com
mand, at each memory size. There is no default for the -n flag.
If the -n flag is omitted, during rmss command initialization,
the rmss command will determine how many iterations of the
command being tested are necessary to accumulate a total run
time of 10 s, and then run the command that many times at
each memory size.

Specifies the file into which to write the rmss report. If the -o
flag is omitted, then the rmss report is written to the file
rmss. out. In addition, the rmss report is always written to
standard output.

Display the current simulated memory size.

Reset the simulated memory size to the real memory size of
the machine.

Specifies the starting memory size. Start by executing the
command at a simulated memory size specified by the Mem
Size variable, which is an integer or decimal fraction in units
of megabytes. The MemSize variable must be between 4 MB
and the real memory size of the machine. If the -s flag is omit
ted, the starting memory size will be the real memory size of
the machine.

Specifies the command to be run and measured at each mem
ory size. The Command parameter may be an executable or
shell script file, with or without command line arguments.
There is no default command.

svmon reports memory status at system, process, and segment levels. It can
create four types of reports: global, process, segment, and detailed segment,
which are useful for analyzing memory statistics of varying granularities.

System information can be generated by specifying the following flags:

-D sidl ... sidN

-G

-i Interval [Numintervals]

Displays detailed memory-usage statistics for
segments sidl ... sidN. If N sids are specified,
then N detailed segment reports are displayed.

Displays a global report.

Instructs the svmon command to print out
statistics repetitively. Statistics are collected
and printed every Interval seconds.

198 Software

-P [n Is I a] [pidl ... pidN] Displays memory usage statistics for processes
pidl ... pidN. If no process IDs (PIDs) are spec
ified, then memory usage statistics are dis
played for all active processes.

-P [n Is I a] {u Ip I g Ir} [Count] Sorts processes by memory usage and displays
the memory usage statistics for the top Count
processes. If a Count value is not specified, then
memory usage statistics are displayed for all
active processes.

-r Displays statistics about the number ofreal
memory frames with reference bits on. The
refernce bit is used in the virtual memory man
ager (VMM) page-stealing algorithm. When the
-r flag is specified, page space and address
range statistics are replaced by statistics about
the number of frames in use that have been
recently referenced, and the number of pinned
frames that have been recently referenced.

-S sidl ... sidN Displays memory-usage statistics for segments
sidl ... sidN. One segment report is printed.

-S {[n Is I a] [u Ip I g Ir]} [Count] Sorts segments by memory usage and displays
the memory usage statistics for the top Count
segments. If Count is not specified, then a
Count of 10 is implicit.

7.11.2.13 time/timex

These tools report elapsed time, user CPU time, and system CPU time used by
the execution of a command.

System information can be generated by specifying the following flags:

-o Reports the total number of blocks read or written and total characters
transferred by a command and all its children.

-p Lists process accounting records for a command and all its children. The
number of blocks read or written and the number of characters transferred
are reported. The -p flag takes the f, h, k, m, r, and t arguments defined in
the acctcom command to modify other data items.

-s Reports total system activity during the execution of the command. All the
data items listed in the sar command are reported.

7.11.2.14 tprof

tprof reports utilization statistics for kernel services, library subroutines,
application programs, and even individual lines of source code (of an applica
tion program) using the trace facility.

System information can be generated by specifying the following flags:

-d This flag is not needed to microprofile shared libraries. It has been
retained for compatibility purposes.

-e

-k

-pProgram

-s

-t Process_ld

-v

-xCommand

7.11.3 Tuning tools

7.11.3.1 lvedit

Profiles the kernel extension.

Profiles the kernel.

Development Tools 199

Profiles the user program; also microprofiles the user program if
that program is compiled with the -g flag.

Profiles shared libraries.

Constrains reporting to the specified process and its children and
parents.

Specifies verbose mode, which creates additional files required
when microprofiling shared libraries.

Allows the execution of an arbitrary Command. Subprograms of
the program specified by the -p flag are profiled.

lvedit alters the location and attributes of a logical volume.

7.11.3.2 nice

This utility executes a process with a specified priority level.

7.11.3.3 no

System information can be generated by specifying the following flags:

-Increment

-n Increment

Increments a command's priority up or down. You can specify a
positive or negative number. Positive increment values lower pri
ority. Negative increment values increase priority. Only users with
root authority can specify a negative increment. If you specify an
Increment variable that exceeds the range ofO to 39, then the limit
whose value was exceeded is used. This flag is equivalent to the
-n Increment flag.

This flag is equivalent to the -Increment flag.

In addition to being an analysis tool, no is also used to change (and display)
values of network parameters, including, among others, mbufs, lowclust, and
lowmbufs in the running kernel of the PowerPC. Extreme care should be taken
in using this command since there is no range checking in the values that one
specifies for the kernel-tunable parameters.

System information can be generated by specifying the following flags:

-a

-d Option

-o Option [=NewValue]

Prints a list of all configurable options and their current
values.

Sets the Option variable back to its default value.

Shows the value of the option specified by the Option
variable if the New Value variable is not specified. If a
new value is specified, the Option variable is set to that
value.

200 Software

7 .11.3.4 renice

This utility is similar to nice; it changes the priority of a process.
System information can be generated by specifying the following flags:

-g GroupID Interprets numeric IDs as process group IDs.

-g Interprets all IDs as unsigned decimal integer process group IDs.

-n Increment Specifies how to alter the system scheduling priority. The Incre-
ment variable is a positive or negative decimal integer used to
modify the scheduling priorities. Positive increment values cause a
lower system scheduling priority. Negative increment values may
require appropriate privileges and cause a higher system schedul
ing priority.

-p ProcessID Interprets numeric IDs as process IDs (the default interpretation).

-p Interprets all IDs as unsigned integer process IDs. The -p flag is
the default if you specify no other flags.

-u UserName Interprets user names.

-u Interprets all IDs as user name or numerical user IDs.

7 .11.3.5 reorgvg

This utility reorganizes elements of a volume group (the details on volume
groups are covered in Chap. 11).

System information can be generated by specifying the following flags:

-i

7.12 SUMMARY

Specifies physical volume names read from standard input. Only
the partitions on these physical volumes are organized.

The development tools reviewed in this chapter help create the optimal devel
opment environment for AIX programmers. This chapter discusses the XL
family of compilers which provides source code and back-end optimization
tasks, as well as the AIX two-pass Assembler which translates machine lan
guage instructions into machine object code.

Also discussed is the dbx or xde symbolic debugger which can be used to
debug programs written in C, FORTRAN, Pascal, and Assembler languages;
and the adb debugger which provides commands to examine, debug, and
repair executable binary files and to examine non-ASCII data files, such as
core dumps. The kernel debug program can help determine errors in code run
ning in the operating system kernel, while the trace facility isolates system
problems by monitoring and timestamping selected system events.

Source code analysis tools available under AIX aid in checking the source
code for integrity and in analyzing the flow of control in the order of execution.
lex is a program-generating tool that produces code to handle lexical process
ing of character input streams; yacc is a general purpose tool used for impos
ing structure on the input to programs; awk is a programming language that
makes it possible to handle data manipulations efficiently.

Development Tools 201

We also review m4, which is a macro processor command used as a prepro
cessor for C and other languages for expanding macro definitions. As well as
the make program, which is primarily used for maintaining a set of programs
by building up-to-date versions of programs. The importance of imake to soft
ware portability and the role of SCCS as a file tracker is also discussed.

Finally, the suite of AIX performance-tuning tools, including monitoring
tools, analysis tools, and tuning tools, are reviewed.

Chapter

8

Standardization and Connectivity

Standardization and connectivity are discussed together because today's busi
ness environment relies on complex and diverse computer systems that, in
order to be effective, must be open and integrated-an environment of open sys
tems. System administrators need to ensure that a collection of personal com
puters, mainframes, and workstations can interact effectively and properly.
Managers and system administrators must also have portable software-soft
ware that can be used in various environments on a variety of operating sys
tems. A review of compatibility, portability, and interoperability standards is
followed by a discussion of the interconnectivity functionalities of the PowerPC
andAIX.

8.1 STANDARDIZATION

Standardization is necessary to realize the promise of open distributed sys
tems and to take advantage of advanced networking technologies. Some of
the standards groups discussed below have formed to promulgate their own
standards while other standards groups and standards have evolved due to
widespread industry use. Official standards organizations are discussed fol
lowed by a review of industry consensus standards.

8.1.1 Compatibility standards

8.1.1.1 International Organization for Standardization (ISO)

ISO is a Geneva-based agency created under the auspices of the United
Nations. ISO is a nongovernment, independent agency which promotes stan-

203

204 Software

dardization for materials and products traded internationally. Acceptance of
ISO standards is the result of agreement by member bodies, leading to adop
tion worldwide by participating countries. Membership is composed of the
national standards bodies of over 90 countries, including ANSI (American
National Standards Institute) representing the United States, BSI (British
Standards Institute) representing Great Britain, and DIN (Deutches Institut
fiir Normung) representing Germany. These member groups represent the
commercial and industrial interests of their respective countries. The work of
ISO is divided across various technical committees (TCs), which are then
divided into subcommittees (SCs) and work groups (WGs).

8.1.1.2 American National Standards Institute (ANSI)

ANSI, like all standards groups in the United States, is a voluntary organiza
tion and coordinates the activities of the various United States representatives
to ISO. ANSI does not actually create standards itself, but oversees and
accredits standards produced by Accredited Standards Committees (ASCs).
ANSI also accredits trade organizations such as the the IEEE (Institute of
Electrical and Electronics Engineers), the accredited body in the area of com
puter operating systems.

8.1.1.3 Institute of Electrical and Electronic Engineers (IEEE)

An ANSI-accredited professional society, the IEEE has over 325,000 members
consisting of electrical and electronic engineers and computer professionals
organized by subfield into approximately 35 "societies" (such as Aerospace
and Electronic Systems, Antennas and Propagation, Consumer Electronics,
Electromagnetic Compatibility, and Information Theory). The IEEE board
approves IEEE standards developed by its member societies and forwards
them to ANSI for approval as American National Standards. Until early 1993,
the IEEE's Computer Society designated its TCOS (Technical Committee on
Operating Systems) as the supervising body over the subcommittee that
directed the POSIX (Portable Operating System Interface) effort. In early
1993, this responsibility was transferred to the newly formed PASC (Portable
Applications Standards Committee).

8.1.2 Portability standards

8.1.2.1 Portable Operating System Interface for Computer Environments (POSIX)

The IEEE 1003.1 (POSIX.1) system application program interface (API), writ
ten assuming a C language interface, became a standard in 1988. (POSIX in
the generic usually refers to POSIX 1003.1.) This initial POSIX standard
spawned a family of open system standards related to the UNIX operating sys
tem. POSIX.1 was the basis for the Federal Information Processing Standard
(FIPS) issued in 1989, as well as a point ofreference for the development of the
X/Open Portability Guide.

The full title of the current standard is "ISO/IEC 9945-1:1990 IEEE Standard
1003.1-1990 Information Technology-Portable Operating System Interface

Standardization and Connectivity 205

(POSIX.) Part 1: System Application Program Interface (API) (C Language)."
This standard, which most members of the POSIX community call dotl (pro
nounced "dot one"), is available from the IEEE Customer Service Department.*

POSIX is divided into roughly two dozen committees labeled from POSIX
1003.0 to 1003.19. Major POSIX committees, other than 1003.1, are 1003.2,
which deals with commands and utilities, as well as 1003.10, which deals with
systems administration. Many of the other working groups are defining Appli
cations Environment Profiles (AEPs), which specify optional features that can
be added to a base standard (such as 1003.1). The POSIX Real-Time Working
Group (1003.4) enhanced POSIX.l to include binary semaphores, process
memory locking, real-time signal extensions, timers, and interprocess commu
nication.

A list of POSIX related committees follows:

1003.0

1003.1

1003.2

1003.3

1003.4

1003.5

1003.6

1003.10

1003.8

1003.9

1003.10

1003.11

1003.12

1003.13

1003.14

1003.15

1003.16

1003.110

1003.18

1003.19

1201.1

1201.2

1224.0

POSIXGuide

System Interfaces

Shell and Utilities

Test Methods

Real Time

ADA Bindings

POSIX Security

System Administration

Transparent File Access-Distribution Services

FORTRAN Binding

Supercomputing Application Environment Profile

Transaction Processing Application Environment Profile

Protocol Independent Interfaces

Real-Time Application Environment Profile (Application Support)

Multiprocessing Application Environment Profile (Application Support)

Batch Services (Batch Environment Amendment)

C Language Binding

Directory Service Applications Programming Interface

POSIX Platform Application Environment Profile

POSIXADA Language Interface BDG. for Real-Time Extensions

Windowing Tuolkit Applications Programming Interface
Window Interface for User and Applications Portability

User Interface Driveability
Recommended Practice on Driveability

X.400 and X.500 Object Management
X.400 Mail Services Application Program Interface

*IEEE Customer Service, 445 Hoes Lane, Piscataway, New Jersey 08854.

206 Software

1224.1

1238

1238.1

X.400 Gateway Applications Programming Interface
OSI Applications Interface-X.400 Based Electronic Messaging

Common OSI API and FTAM API

Dependent Document

8.1.2.2 Federal Information Processing Standards (FIPS)

The FIPS define procurement requirements for the federal government. Those
who work with the United States Federal Government should specifically refer
to the FIPS, which are written by the NIST (National Institute for Standards
and Technology) and are available from the National Technical Information
Service. The current FIPS standard for POSIX.1 (ISO/IEC 9945-1 : 1990) is
FIPS 151-2, issued in 1993, which specifies, with a few minor changes and clar
ifications, that the POSIX 1003.1 (issued in 1990) is to be used as the man
dated federal standard. [Both FIPS 151-1and151-2 cite POSIX 1003.1. FIPS
151-1 maps to 1003.1 (1988) and FIPS 151-2 maps to POSIX 1003.1 (1990).]
The differences between the 1988 and 1990 versions of POSIX 1003.1 consist
primarily in corrections and clarification.

Those wishing to check their compliance with FIPS 151-1 should refer to the
PCTS (POSIX Compliance Test Suite) that was developed by the NIST and can
be administered by any one of seven accredited POSIX conformance test labo
ratories. NIST can supply the names of currently accredited test facilities, as
well as information on the current requirements and test procedures.

8.1.2.3 X/Open

X/Open is an international consortium of hardware vendors, software vendors,
and users who have developed and published the XI Open Portability Guide
CXPG). XPG4, the fourth issue of the X/Open Portability Guide, was issued
in 1992. Founded in 1984 by Bull, ICL, Siemends, Ollivetti, and Nixdorf,
X/Open's mission is to broaden the market for open systems by developing and
promoting Common Applications Environment (CAE) specifications. CAE
specifications are a set of open, vendor-neutral specifications based on inter
national and industry consensus standards.

X/Open brands products: products that comply with the XPG standards and
have guaranteed to fix any errors (discovered by the rigorous independent
compliance testing) may carry the X/Open seal. X/Open also ensures its align
ment with emerging international standards by working closely with other for
mal standards organizations and by entering cooperative efforts with other
groups to expedite high-priority standardization efforts. For example, in 1992
X/Open and OSF (discussed in 10.1.2.4) agreed to expedite OSF's Distributed
Computing Environment Application Environment Specifications (DCE AES)
for inclusion in X/Open's CAE.

8.1.2.4 Open Software Foundation (OSF)

OSF consists of approximately 350 members who input requirements and
direction to OSF through special interest groups (SIGs). OSF is primarily con-

Standardization and Connectivity 207

cerned with determining the scope and requirements for new technology
initiatives through the use of request for technology (RFT) solicitations to
the computer industry. Organized in 1988 by seven major system vendors
including DEC, HP, Apollo, IBM, Group Bull, Siemens, and Nixdorf, OSF uses
RFT evaluation and testing to promote the development of portable software
applications.

The OSF Application Environment Specifications (AES) are the specifica
tions for the components malting up OSF's operating system environment,
which currently includes the OSF/1 operating system component, the Motif
user interface component, and the distributed computing environment (DCE)
interoperability component. OSF's AES describe portability interfaces for one
functional area of the application environment including operating systems,
network services, user environment services, graphics services, database man
agement services, and programming languages. OSF's AES are used for com
pliance branding and certification.

Primary OSF offerings include the OSF/Motif, an X-based GUI (introduced
in 1988), and DCE (introduced in 1992). OSF's operating system, OSF/1, is
based on Carnegie-Mellon University's Mach microkernel architecture and
implements the AES interface.

8.1.2.5 X Window System

The X Window System (or X) is a hardware, vendor-independent, and network
transparent operating environment developed at the Massachusetts Institute
of Technology in 1984 as a cooperative effort funded by major computer manu
facturers to build a network of graphical workstations. The enormous success
of this program made the X Window System a UNIX based windowing stan
dard which is now available on virtually every workstation in the industry.
Several versions of X have been developed, of which X Version 11 (Xll) is the
most recent. The X Consortium was formed in 1988 to foster development and
support of the X Window System.

X offers many benefits to users. It solves the problem of having a common
interface across a heterogeneous range of computers and operating systems. It
provides a mechanism upon which one can build different user interface styles.
It also addresses the issue of sharing resources among multiple programs. Xis
operating-system-independent, encouraging the portability of its software to
diverse platforms. Hence, X is one of the most popular and widely available
user interface standards in the workstations arena.

X provides the ability to generate multifont text and graphics in mono
chrome or in color on a bitmap display. Graphics like points, lines, arcs, and
polygons can be generated in a hierarchy of windows. Each window can be con
sidered as a "virtual screen" and can, in turn, contain subwindows of an arbi
trary depth. They may overlap each other and can be moved, resized, or
restacked dynamically. Since windows are relatively inexpensive resources,
applications utilizing several thousand subwindows are common and are often
used to implement user interface components.

208 Software

The X window system architecture is based on a simple client-server rela
tionship. The display server is the program that controls and draws the output
to the display monitors, tracks client input, and updates the windows accord
ingly. Clients are application programs that perform specific tasks. Since X is,
by design, a distributed environment, its clients and server do not necessarily
have to run on the same machine.

The terminology in the world of X may be somewhat misleading to program
mers from the traditional host or mainframe environment. The word server in
the context ofX means the reverse of what servers mean in local area network
environments. Consider a traditional database environment where the server
lives on the remote host and the client application resides locally on the PCs
that are attached to it. In X, the server lives on the local workstation, while the
clients run on the remote host machines.

Although X is fundamentally defined by a network protocol, most applica
tion programmers think about it as a graphical user interface (GUI). For ease
of use, a higher-level layer is used to abstract the protocol layer and insulate
it from programmers building X-based interfaces. This higher-level layer is
referred to as the Xlib or more correctly as the Xlib Interface Library (refer to
Fig. 8.1). This library provides a familiar procedural interface that masks the
detail of the protocol encoding and transport interactions. It also automati
cally handles the buffering of requests for efficient transport to the server,
much as the C language standard 1/0 library buffers output to minimize
system calls. The library also provides a suite of utility functions and primi
tive constructs that do not directly relate to the protocol but aid in building
applications.

High-level
Application X toolkit

Xlib

Xprotocol

Figure 8.1 X window system.

Standardization and Connectivity 209

8.1.3 Interoperability standards

8.1.3.1 Trusted Computing Base (TCB)

TCB is the aggregation of system mechanisms that enforce and ensure the AIX
operating system's security policies. (A conceptual view of a TCB boundary is
shown in Fig. 8.2.) Selected components from both the hardware as well as the
software domains participate in the TCB's domain base to effectively police its
compliance.

The TCB software includes:

• An operating system kernel that manages the system

• Configuration files that control system operation

• Programs executed with privilege or access permission to alter the kernel
and/or configuration files

The hardware includes:

• A processor that operates in a dual execution mode: system mode and prob
lem mode

The programs running in problem mode are functionally independent and
can access only limited resources, whereas the programs running in system
mode are relatively unconstrained. The kernel always runs in system mode
and is henceforth considered a part of TCB. Processes running in problem
mode interface to kernel modules through the system call mechanism, causing
the processor to change to system mode. However, those processors are part of
the TCB only if they run with kernel privilege.

The system state (information indicating the state of the system) consists of
a static system state that may be changed only at system start time based on
administrative privileges and a dynamic system state that may change at any

Trusted Application

processes programming
interface

Kernel

Hardware

Figure 8.2 Conceptual base of trusted computer base.

21 O Software

time based on kernel privileges. The static system state is stored in configura
tion files such as /etc/master and /etc/system. The Dynamic system state is
stored in kernel data structures and the state files of trusted programs such as
kernel process table and the /etc/utmp file. The system security state is the
part of the system state that handles security-relevant aspects of the system,
the reading or modifying of which can be authorized by administrative or ker
nel privileges.

All programs that are installed with privilege or invoked by a privileged pro
gram are denoted as trusted programs (TPs). Additionally, a TP is any process
that may alter or read the system security state.

There are three main components in the security policies identified in the
AIX operating system, including:

Access control. Addresses how information resources are created and dis
tributed.

Accountability. Addresses how users are identified on the system and
for what actions they are accountable. Can detect actual and potential non
compliance.

Administrative. Addresses issues pertaining to administrative users on the
system, provides principle of least privilege, and ensures role separation.

8.1.3.2 Network File System (NFS)

Originally developed by Sun Microsystems, NFS has become a de facto net
working standard. NFS's biggest asset is that it is independent of hardware,
operating systems, and network architectures. This independence was achieved
through the use of two sets of protocols:

• Remote procedure call (RPC) protocols

• Data standardizing External Data Representation (XDR) protocols

In addition to the RPC and XDR, NFS uses the TCP/IP protocol to imple
ment data transmission. NFS requires TCP/IP to be installed, configured, and
operational. The NFS facility can be started upon request or simply configured
to start up when the operating system is booted.

NFS functions are controlled by a set of daemons. The master daemon asso
ciated with NFS is called inetd. inetd is not just for NFS but is also the mas
ter for all other daemons on the system. It essentially triggers the start-up of
other daemons when or if needed. In addition to the inetd, there is a suite of
daemons that are associated with NFS, as seen in Fig. 8.3. NFS daemons
include: portmapd, mounted, nfsd, pcnfsd, and biod. The biod daemons is
required to run on all of the machines that are serving as NFS clients. The
pcnfsd daemon is needed on the server machine only if a PC's files are
mounted. The rest of the daemons run on the server machine.

NFS also supports access control lists (ACL), which is a separate function
handled by an RPC program to exchange information about ACLs between
clients and servers.

portmapd
mountd

nsfd

biod

Standardization and Connectivity 211

On the server On the client

Figure 8.3 Participating daemons in NFS.

Mapped files are also supported under NFS on the PowerPC running AIX.
This feature allows programs on clients to be accessed as if they were in real
memory. Using the shmat system call, users can map areas of a file into their
address space. AB the program reads/writes into this region of memory, the file
is read into the memory from the server or updated as needed. Multiple files on
the same client can also share data effectively using a mapped file.

Secure NFS is also implemented under AIX in addition to the standard
UNIX authentication. NFS uses the Data Encryption Standard (DES) and
public key cryptography to authenticate users and machines in networks. A
DES key is generated from two components: a public key published for general
availability and a private key used to encrypt and decrypt data.

The NFS-compatible network lock manager supports file and record locking
over the network. Local lock requests are handled by the kernel. When a lock
is attempted on a remote file on an NFS-mounted directory, the kernel issues
a local RPC request to rpc.lockd, the network lock daemon, to make a lock
request to the network lock manager daemon on the NFS server. The network
lock manager contains both the client and server functions. The client services
requests from the kernel and sends them to the network server lock manager
at the server end, while the server processes lock requests from the network
and enforces lock operations in the kernel. Figure 8.4 delineates the coordina
tion among the kernel and lock manager on individual machines at both ends,
while showing the information exchange between the client and the server
machines. The status monitor shown in the diagram performs health-check
duties and keeps a record of relevant failures at the client and the server end,
so that the lock information may be recovered if a crash occurs. When a lock
request is issued, the kernel ascertains if it is a local request. If so, it processes
the lock request itself. If not, it transmits the request to the network lock dae
mon. This locking system is essentially stateless.

Frequently used NFS commands follow:

Command

exportfs

mount
nfsstat

on

Description

Exports and unexports directories to NFS clients.

Makes a file system available for use.

Displays statistics pertaining to the ability of clientlserver to
receive calls.

Executes commands on remote systems.

212 Software

Client Server

Status Status Status
Application monitor messages monitor

Lock 1 request

Lock Lock Lock
manager requests/ manager

responses

Re!11ote I I RPC
flies

Kernel Kernel

Figure 8.4 NFS lock manager.

ruse rs
rup

rpcinfo

rpcgen

rwall
showmount

Displays a list of users currently logged in on remote machines.
Displays status of a remote host.
Reports the status of RPC servers.
Generates C code to implement an RPC protocol.
Sends messages to all users on the network.
Displays a list of all clients that have remotely mounted a file
system spray. Sends a specific number of packets to a host to
report performance statistics.

8.1.3.3 Network Information Service (NIS)

NIS is a centralized database service that offers centralized control of net
worked machines. NIS was formerly known as ''Yellow Pages" (YP). Rather
than having to manage each host's files (for example lets/hosts, /ets/passwd,
and /etc/group), system administrators maintain one database for each file on
one central server. Machines that are using NIS retrieve information as
needed from these databases.

NIS consists of clients and servers, logically grouped together in domains
using maps (databases) that provide information such as host names or pass
words. An NIS server can be thought of as a host providing resources for other
computers on the network. An NIS slave is a client that uses the maps to share
information. These maps are essentially copies of the data to be shared, stored
in a machine-independent standardized form called XDR format. The map files
are created using the NIS command makedbm. After creation, each map has
two files: a file named map. key. pag (containing key and value pairs) and a file
named map. key. di r (containing index for large . pag files).

ietc/passwd
/etc/hosts

Site 1 Site 2

Standardization and Connectivity 213

Site 3

Figure 8.5 NIS: sharing user password and hostname information.

NIS reduces the effort of maintaining repetitive databases of information. It
also helps users by making their password, directories, and files available on
other systems. Network administration becomes easier and less time consum
ing. Typical information stored in an NIS database includes password files and
host files (as seen in Fig. 8.5) whose contents are essentially the same for dif
ferent nodes on a single network.

Frequently used NIS commands follow:

Commands

domainname

makedbm

ypbind

ypcat

ypinit

ypmatch

yppasswd

yppoll

yppush

ypserv

ypset

ypwhich

ypxfr

Description

Lists the name of the current NIS domain system for an NIS
host.

Creates the NIS database maps.

Enables a client process to connect to a server.

Lists the contents ofNIS maps.

Builds and installs NIS maps on an NIS server.

Displays the values of one or more keys within an NIS map.

Allows users to change NIS passwords from any NIS host.

Identifies the version of a NIS map on the NIS server.

Forces propagation of updated NIS maps from the master server
to slave servers.

Looks up information in the local NIS databases.

Points the ypbind process to a specific server.

Identifies which machine is the NIS server of an NIS client.

Transfers an NIS map from an NIS server to a local host.

8.1.3.4 Andrew File System (AFS)

The AFS distributed file system joins the file systems of individual machines
allowing users to access information stored anywhere on a network. AFS uses

214 Software

a client/server model: file server machines store data and transfer it to client
machines, which perform computations for users. AFS uses a hierarchical file
structure-a tree with lafs as the root. The next level of directories consist of
cells. Cells are subtrees of the AFS file space and consist of related directories
and files. The cell controlling a specific user workstation is termed a local cell;
other cells in the AFS file space are termed foreign cells. The directories and
files under /afs make up the AFS file space.

AFS client machines use a cache manager to access information stored in the
AFS file space. When a user accesses a file, the cache manager requests the file
from the file server machine and stores the file as a copy on the client work
station's local disk. This enables the client to use the local copy of the cached
file rather than continuously sending network requests to the file server
machines for data. When the file closes, the cache manager sends the changed
file back to the appropriate file server, and the changed version replaces the
file stored on the server.

Because AFS is a distributed file system, several security techniques are
used to protect the many users, including passwords, mutual authentication,
and access control lists (ACLs). Passwords and mutual authentication ensure
that users accessing files are valid AFS users. ACLs allow individual users to
restrict access to their own directories. Each ACL entry has two parts: a user
or group name and the access control rights. Access control rights include:

r read

lookup

i insert

d delete

w write

k lock

a administer

For example

fs setacl . jenny rl

would give Jenny read permission only.
Frequently used AFS commands follow:

Command

fs listacl

fs setacl

fs setacl-dir

fs copyacl

kpasswd

fs whereis

Description

Lists a directory's ACL

Sets one directory's ACL

Sets multiple directories' ACLs

Copies a directory's ACL to one or more other directories
' Changes AFS password

Lists the file server housing a file or directory

Standardization and Connectivity 215

fs checkservers
[-all] [<cell name>]

Checks the status of file servers

klog

tokens

Authenticates with authentication server to obtain
tokens

Displays all tokens

8.1.3.5 Transmission Control Protocol/Internet Protocol (TCP/IP)

TCP/IP is a set of communication protocols that specify standards and conven
tions for routing and interconnecting computer networks. The de facto stan
dard for local area networks, TCP/IP has proliferated to wide area network
environments like the Internet. From a conceptual perspective, TCP and IP
are two separate protocol layers. Figure 8.6 shows the protocol stack for
TCP/IP. Applications use both the TCP and the IP layers to communicate with
the network interface (which is the physical layer).

TCP/IP is a network technology independent of and capable of running on
virtually all standard hardware platforms. It supports universal interconnec
tion so that one computer may communicate with any other computer on the
same network or another network. TCP/IP can handle a diverse variety of net
work-related tasks. Some of the routine uses of TCP/IP are for electronic mail,
computer-to-computer file transfer, remote login, executing commands on a
remote machine, printing files on remote systems, and managing a network.
Frequently used TCP/IP commands follow:

Command

finger

ftp

host

ping

Description

Displays user information on specified host

Utility is used to transfer files between hosts

Resolves a host name

Determines status of a network or host

Application

TCP

IP

Link

Physical Figure 8.6 . TCP/IP protocol stack.

216 Software

rep

rexec
rlogin

rsh
rwho

telnet (tn)

tftp

who is

Copies one or more files between local and remote host, between
two remote hosts, or between files at a single remote host
Allows a command to be executed on a remote machine
Used to log in to a similar remote host
Used to execute commands on a foreign host
Displays user information on local area network hosts
Provides capability for a user to have a remote session on a similar
or dissimilar remote host
Provides a minimal file transfer capability to transfer files to and
from hosts; provides a stripped set of commands in ftp
Identifies the owner of a user ID or nickname

Multiple sets of commands for remote file transfer, remote command execu
tion, and remote login are found under most UNIX systems because each set of
the utilities has descended from the System V and Berkeley domains. TCP/IP
is mentioned here for reference only. To gain an understanding of the protocol
suite, refer to product reference manuals.

8.1.3.6 Network Computing System (NCS)

NCS is a set of tools for distributing computer processing tasks across
resources either in a network or several interconnected networks. NCS is an
implementation of the network computing architecture, which distributes soft
ware applications across networks encompassing a variety of computers and
programming environments. Programs based on Network Computing Archi
tecture take advantage of computing resources throughout a network by allo
cating different parts of each program to be executed on host computers best
suited for that task. NCS consists of three major components:

• Remote Procedure Call (RPC) run-time library

• Location broker

•Network Interface Definition Language (NIDL) compiler

The RPC run-time library and the location broker provide run-time support
for network computing. Together, these two components make up what is
called the network computing kernel (NCK). The NCK contains all the software
required to run a distributed application. The third component, the NIDL com
piler, is a tool for developing applications.

The RPC run-time library provides library routines for local programs to
execute procedures on remote hosts. These routines transfer requests and
responses between clients (the programs calling the procedures) and servers
(the programs executing the procedures). When a user writes a distributed
application, he or she usually need not use RPC routines directly. Instead, an
interface definition in NIDL can be created, and the NIDL compiler can be
used to generate the required RPC routines.

The NIDL compiler takes an interface definition written in NIDL as an
input. An interface definition specifies the interface between the user and the

Standardization and Connectivity 217

provider of a service. Once the interface is established, the compiler defines the
way in which a client application sees a remote service as well as the way in
which a remote server sees requests for its service. From this definition, the
NIDL compiler generates client and server stub source code and header files.
The client stub program performs the conversion between requests (and
responses) that are meaningful to the client and packets that are transmitted
(and received) on the network. The server stub program provides similar sup
port for the server. The stub programs produced by an NIDL compiler contain
nearly all of the remoteness for a distributed application. They perform data
conversions, assembly and disassembly of packets, and provide interaction
with the RPC run-time library. It is much easier to write an interface definition
in NIDL than it would be to write the stub code that the NIDL compiler gener
ates from a definition.

The location broker provides information about the network or Internet
resources to clients. It maintains a database that contains the identification
and locations of objects on a network. Through a client agent, the location bro
ker maintains information about the local brokers that manage information
about resources on the local host, the global brokers that manage information
about resources on all hosts, and the administrative tools.

Network communications between systems in an NCS environment are han
dled through the RPC run-time library. It is possible that one program can
access different hosts that listen on two different ports or have two different
addresses.

The remote procedure calls extend the procedure call mechanism from a sin
gle system to a distributed computing environment. The calls distribute the
execution of a program among multiple computers in a way that is transparent
to the application-level code. Figure 8. 7 shows the flow of ordinary local proce
dure calls between the calling client and the called procedures.

Frequently used NCS commands follow:

Command

lb_adm.in

libd

nidl

nrglbd

Client

Description

Monitors and administers location broker registrations

Manages the information in the local location broker database

Compiles program definitions written in NIDL

Manages the global location broker database

~

Call I

l Return
I
I
I
I
I

Interface

Procedures

Figure 8.7 NCS single-process procedure call flow.

218 Software

8.1.3.7 X.25 communications

X.25 is a communications protocol conforming to international standards that
is particularly useful for communicating with diverse computer systems and
for applications that access public databases. Both public networks and private
networks can be based on X.25 protocol. Public networks are provided on a
national basis by the National Post, Telegraph and Telecommunications
authority. Private networks are operated by individual corporations.

X.25 is designed for a form of communication known as packet switching.
Figure 8.8 presents a simplified view of how packet switching works. Data is
sent in basic entities called frames. There are three main levels in X.25. The
first level is the physical or electrical level. The second level is the frame level,
also known as the data link or link level. The third level is called the packet
level. Packets are sent to the network within the information frames of second
level.

In a packet-switching network, the data to be sent is combined in a packet
with addressing and control information. This results in an independent unit
that can be sent through any suitable path in the network. Packets from many
different users can share the same network routes and lines. X.25 uses the
network user address to route both incoming and outgoing calls to the correct
system.

In communication terminology, the computer or workstation that sends and
receives data is known as data terminal equipment (DTE). The network equip
ment that is physically connected to the DTE is the data circuit-terminating
equipment (DCE). When a user makes a call to another user over the X.25 net
work, one of the predefined number of logical channels is assigned to the call
at each end. Each DTE includes a logical channel number in each packet sent.
The number identifies the logical channel that connects the DTE with its DCE.
The two logical channel numbers at two ends may be different, but each DTE
needs to know only the number it assigned to the channel. When the two logical
channels are assigned to a call, a virtual circuit is established from one DTE to
the other by DCEs on the network. Each logical channel is either for outgoing
calls only, incoming calls only, or two-way calls that are permanently connected.
However, the virtual circuit is established only for two-way communication.

The virtual circuit may be either switched or permanent. A switched virtual
circuit (SVC) is a virtual circuit that exists only for the duration of the call, act-

t-- I Telnet

Terminal

PowerPC-based computer

Figure 8.8 X.25 connection.

x.25

PC

Standardization and Connectivity 219

ing like a connection over a standard telephone network. A permanent virtual
circuit (PVC) is like a leased line that can be established between two
addresses, to save time in establishing calls. A PVC ties up a logical channel
permanently.

Using X.25 on the PowerPC requires an X.25 adapter to connect to the X.25
network. Software requirements include the X.25 interface protocol code, real
time control microcode, applications programming interface, an X.25 device
driver, and qualified logical link control (QLLC). X25 commands which enable
users to use the X.25 network without doing any application programming
include:

Commands

xcomms

xtalk

:xroute

:xmanage

:xmonitor

Description

Starts one of the other commands.

Communicates with other systems and manages address lists for
outgoing calls

Manages a routing list for incoming calls

Displays status information for an X.25 port. Connects and discon
nects an X.25 port. Gets statistics for an X.25 port.

Monitors the activity on an X.25 port.

8.1.3.8 Simple Network Management Protocol (SNMP)

The SNMP is used by network managers to troubleshoot, locate, and correct
problems in a network. SNMP is also used by network hosts to exchange infor
mation used in management of networks.

In 1992, a security enhancement to SNMP was adopted, and an upgrade,
known as SNMP version 2 (SNMP v2), was adopted in 1993. SNMP v2 runs on
open systems interconnection-based networks as well as TCP/IP-based net
works.

Network management for SNMP is based on a client-server model. The
client agent is run on the local workstation that needs to be managed and used
to contact one or more SNMP server agents that execute on remote machines,
usually gateways. The server agent is a process that maintains certain
databases for the host. Hosts involved in network management run a monitor
process called xgmon, that generates requests for MIB (management informa
tion base) information and processes responses.

The MIB is a separate standard (from SNMP) that defines the set of vari
ables and the semantics of each variable that SNMP servers maintain. The
MIB database contains information pertinent to network management, which
may be used to record the traffic statistics, error counts, and status of each con
nected network.

SNMP uses a formal specification language called Abstract Syntax Notation
One (ASN.1) to define and specify the format ofMIB variable names and mes
sages. ASN.1 defines a hierarchical name space, so the name of each variable
reflects its position in the hierarchy. The ASN.1 hierarchy carefully distributes
authority to assign names to multiple organizations. The scheme allows many

220 Software

organizations to assign names concurrently while ensuring that the resulting
names are unique and absolute.

Network management can be passive or active. Passive management
involves the collection of statistical data so that network activity on each host
can be profiled. Active network management, on the other hand, involves the
use of a subset of the MIB variables that are designated read-write. The
request sent to an SNMP server agent is accepted by the server, which per
forms the specified operations and returns a response to the requester. The
SNMP server agent first parses the message sent by the client and translates
it to internal form. SNMP then maps the MIB variable specification to the local
data item that stores the needed information and then performs the fetch or
store operations as requested. An information flow path illustrated in Fig. 8.9
shows how SNMP works in general.

For fetch operations, SNMP replaces the data area in the message with the
new value that it has fetched. If more than one variable value was requested,
SNMP fetches the value of each variable and replaces the value with the
fetched value in the message. After all the specified operations are completed,
the server translates the reply from its internal form to the external form and
returns it to the client that requested the values.

8.1.3.9 Distributed Computing Environment (DCE)

DCE is a standardized approach to distributed computing that enables system
administrators to create, use, support, and maintain distributed applications
on a diverse network. DCE allows applications to exploit the potential resources
in the network environment and thus improve the performance. Basic features
of DCE include:

• Remote procedure call and presentation services

• Security services

• Management services

Receive incoming Parse and Map MIB variables - SNMP request 1----j translate to 1----j to local equivalent I--,
internal form

- Send response
1---1

Translate reply
~

Perform requested
i--to client to external form fetch I store

Figure 8.9 Information flow in SNMP.

Standardization and Connectivity 221

RPC enables software developers to partition tasks in an application into
separate procedure models that can be executed on different systems. It
makes use of what are called threads to allow multiple sequential flows of exe
cution within a single process. This feature provides better service availabil
ity by simultaneous handling multiple clients. The security services ensure
against unauthorized access. Management services provide utilities to man
age DCE.

DCE offers a whole suite of services, as seen in Fig. 8.10. The directory ser
vice assigns a unique name or attribute to a physical device, making it acces
sible from any location in the network. Within this paradigm, there are four
components:

1. DCE cell directory service (CDS) stores names and attributes within a DCE
cell, a group of systems administered as one entity.

2. DCE global directory agent (GDA) is a naming gateway connecting adminis
trative domains through the X.500 worldwide directory service and domain
name service (DNS).

3. DCE global directory service (GDS) is used to locate objects in a global envi
ronment.

Manage
ment

Diskiess
support
service

Applications

Other
distributed

services
(future)

Distributed file services

BB Other
fundamental

Time services
(future)

Remote procedure call
and presentation services

Threads

Operating system and transport services

Figure 8.10 Distributed computing environment.

Security

222 Software

4. X/Open directory service (XDS) defines an application programming inter
face (API) that can be used to create, delete, modify, or search for directory
service calls.

Several other services are also available, such as time services, which provide
a consistent view of time. The distributed file system offers a consistent and
unified view of all files in the distributed system. Diskless support service
extends DCE to low-cost, diskless nodes.

A basic architectural difference between DCE and message 1/0 should be
noted. DCE provides direct dialogue between the client and server application
programs through RPCs, unlike message 1/0 where all interactions between
the client and server applications are dependent on the communication service
provider.

DCE for AIX is a layer between the AIX operating system and network and
the distributed application (see Fig. 8.11). Built on a threads-based model,
DCE provides support for remote procedure calls, the client functionality for
cell directory service and security, time, and the basic distributed file system
services.

DCE is used as a strategic base to build distributed applications, including
on-line transaction processing (OLTP) for the AIX environment. Additionally,
selected DCE interfaces and protocols are available on certain system applica
tion architecture (SAA) platforms.

8.1.3.10 Open Systems Interconnect (OSI)

In early 1977, ISO Technical Committee 97 on Information Processing formed
a subcommittee on OSI to develop an architecture to serve as the reference for
development of multivendor interconnectivity standards. However, the final
ISO standard, ISO 7 498, was not published until 1984. OSI is not concerned
with the internal operations of individual systems; rather it is interested in
promoting commonality and consistency among all standards related to sys
tems interconnection.

The framework for standardization provided by OSI is based on the seven
layer OSI reference model (refer to Fig. 8.12). The OSI layers consists of the
physical (transmission of an unstructured bit stream over a physical link); the
data link (provides for the reliable transfer of data across the physical link);

Distributed applications

DCE

AIX and network services
Figure 8.11 DCE in relation
toAIX.

Standardization and Connectivity 223

Application

Presentation

Session

Transport

Network

Data link

Physical

Figure 8.12 OSI protocol stack.

the network (provides a network connection path); transport (provides reliable,
transparent transfer of data between end points); session (establishes, man
ages, and disconnects communicators); presentation (provides standardized
application interface); and application (information processing applications
including file-transfer protocol and network management).

OSI's primary contribution has been the identifying of functions that are
necessary for effective network communication. And in conjunction with this
contribution, the OSI conformance testing standards and the internationalized
standardized profiles (ISPs) have enabled OSI to guarantee OSI-branded prod
ucts as interoperable and compatible.

8.2 CONNECTIVITY

8.2.1 Connectivity with peer UNIX machines

Connectivity with peer nodes can be provided using the Basic Network Utili
ties programs (BNU) that are standard with the AIX regular distribution.
BNU comprises a suite of utilities that are used to communicate with peer
nodes. BNU is a version of UUCP and is often better known as UUCP in the
traditional UNIX communities. The acronym UUCP stands for UNIX-to-UNIX
Copy Program. It should be noted that, although the availability of the BNU or
UUCP facility predates most networking suites, it is still one of the most

224 Software

widely used means of exchanging files across the Internet. Built in 1976 by
Mike Lesk at AT&T Bell Labs, the research project became a de facto net
working standard when it was shipped as part of the standard software distri
bution of UNIX Version 7 in 1977. An update was released in 1981. Although
less sophisticated in terms of functionality, UUCP provides basic connectivity
with peer machines over regular serial lines and does not require any addi
tional network interface hardware.

UUCP performs the following primary functions:

• Electronic mail

• Transfer of files to and from remote systems

• Execution of commands on remote systems

UUCP is a store-and-forward network. That is, requests for mail forwarding,
file transfers, or remote execution of commands are not executed immediately
but are spooled for execution when communication is established between the
two systems. Depending of how the configurations files have been set up, com
munication may be established immediately or may wait till a later time.
Figure 8.13 presents a conceptual view of how UUCP works for forwarding
electronic mail.

Although the suite of programs is referred to as UUCP, the actual UUCP
program only participates in copying files. For mail handling, remote com
mand execution, and other tasks, there are separate stand-alone program files
(described later). Perhaps it would have been more appropriate to refer to the
UUCP as UU because the name more clearly indicates that UUCP is a collec
tion of many programs, all which have a name prefixed with the letters "uu."
Referring to this suite of network utilities as BNU eliminates the misleading
reference.

UUCP works in multiple steps. When mail is sent, a file transfer command
is invoked, or a remote command execution request is issued, two things hap
pen. First, a work file containing logistic information such as the name of the
source file, name of the destination file, and command request type (for exam
ple, send file, receive file, or execute file) is created in a spooling directory on
the PowerPC. The second phase involves starting a command called uusched
to scan the contents of the work file, and subsequently invoking other pro
grams like uucico if needed, to call another system, connect to it, and transfer
the data in or out.

Requirements for BNU/UUCP installation are minimal. The simplest hard
ware requirement involves connecting a null-modem serial cable between the
ports of two machines. A modem will be required at both ends if the connection
is being made between two remote machines. There is no additional software
requirement as such, but the software must be configured to define the
machine name(s) to call or connect to, must place the phone call (if connecting
to a remote machine over a modem), and optionally must specify when to call
the remote machine to forward files and receive incoming files.

Standardization and Connectivity 225

mail neighbor! remote 1! remote 2! john

Home

uucico Queued request
,____ _ __ J

rm ail

Neighbor uux

uucico Queued request
___ .J

rm ail

Remote 1 uux

uucico Queued request
___ .J

Remote2 rm ail >> /usr/spool/mail/john

Figure 8.13 UUCP forwarding electronic mails.

Once UUCP/BNU is installed and configured, the following commands can
be run by any AIX user to log in to remote systems, transfer files, run processes
on remote systems, and report the status of jobs and transfers.

Command

uucp

uuencode

uudecode

uuname

uupick

uupoll

uuq

uusend

Description

Copies file(s) to another AOOUNIX system running BNU or another
version of UUCP.

Encodes a binary file.

Decodes a binary file encoded by the uuencode command.

Provides information about peer systems accessible to the local
system.

Completes the transfer of files sent by the uuto command.

Forces a call to a remote system so queued jobs can be transferred.

Displays the BNU job queue.

Sends a file to a remote host that is running BNU or another version
of UUCP.

226 Software

uusnap

uustat

uuto

ct

cu

Displays a snapshot summary of the status ofBNU.

Reports the status of and provides limited control over BNU opera
tions.

Copies files to a peer system running BNU or another version of
UUCP uux. Runs a command on a remote AIX or UNIX system run
ning BNU or another version of UUCP.

Dials a remote system and initiates a login process.

Connects directly or indirectly to another system.

8.2.2 Connectivity with host machines

Connectivity with the mainframe world of machines requires the use of a soft
ware interface so that the user can access applications on the host. The hard
ware interface requirements are referred in Chap. 3 of this book. The term
emulator has been used in this section to refer to a software application that
allows the native system to mimic a terminal session on the host machine. The
objective of using an emulator is to provide a transparent interface for a user
on the PowerPC to work with applications resident on the host (Fig. 8.14).

There are two primary types of emulators available on the PowerPC to work
with host sessions including:

• 3270 host connection program

• 3278/79 emulation

8.2.2.1 3270 host connection program (HCON)

The host connection program (HCON) is a 3270 connectivity application for the
AIX environment. HCON emulates a subset of 327X functions and features,
and allows end users at AIX terminals to connect to an IBM System/370 host
and appear to the host as an attached IBM 3270 display terminal or printer.
HCON facilitates file transfers between the workstation and the IBM System/
370 host, allows printer emulation, and provides High-Level Language Appli
cation Programming Interface (HLLAPI) support for user-provided work
station applications to communicate with 3270 sessions. HCON connectivity
can be:

lEmulation

PowerPC
based computer

Network

Figure 8.14 Connectivity with host.

Host computer

Standardization and Connectivity 227

• System network architecture (SNA) connection in a Type 2.1 low-entry net
working (LEN) node attachment

• 5088/6098 graphics control unit attachment

•Distributed function terminal (DFT) SNA attachment to an IBM 3274/3174
or IBM 9370 workstation subsystem controller

• Transmission Control Protocol/Internet Protocol (TCP/IP) Telnet 3270 con
nection

HCON establishes multiple sessions with System/370 mainframes. Each
session emulates either a 3278/79 display or a 3286/87 printer. A session emu
lating a display is a display session. A session emulating a printer is a printer
session. HCON provides file transfer capabilities within display sessions. It
also includes the HLLAPI to write programs that communicate with main
frame host programs.

Each HCON user can have up to 26 sessions, allowing one or more simulta
neous invocations of sessions to communicate with one or more hosts using dif
ferent session characteristics and communication protocols. The parameters
defining the session characteristics are established by a session profile.

To communicate with a mainframe host, HCON uses one or more of the
following:

• 3270 connection adapter in distributed function terminal (DFT) mode

• Host interface adapter (HIA)

•Group of adapters supported by System Network Architecture (SNA) Ser
vices/6000

• Group of adapters supported by Transmission Control Protocol/Internet Pro
tocol (TCP/IP)

If the local system has more than one of these devices installed, users can
implement different devices for different HCON sessions:

DFT sessions

HIA sessions

SNA stand-alone
sessions

TCP/IP sessions

Use the 3270 connection adapter. The 3270 connection
adapter emulates a display (by establishing an SNA DFT or
non-SNA DFT display session) or a printer (by establishing a
non-SNA DFT printer session). The SNA Services/6000 is not
required.

Use the host interface adapter (HIA). The HIA emulates a
display by establishing an HIA display session.

Use SNA Node Type 2.1 over SNA Services/6000. NO
TAGHCON-supported adapters supported by SNA Ser
vices/6000 establish an SNA stand-alone printer sessio:µ or
SNA stand-alone display session.

Use TCP/IP with the appropriate adapters. HCON-supported
adapters supported by TCP/IP emulate a 3270 display by
establishing a TCP/IP display session.

228 Software

The system can have any combination of supported adapters:

Each 3270 connection adapter supports up to five sessions.

HIA supports up to 16 sessions.

Each SNA Node T2.1 attachment supports up to 253 logical units (LUs) per
connection.

For TCP/IP, the maximum number of sessions per connection depends upon
the user's system resources.

8.2.2.2 327Bn9 emulation (EM78)

The 3278/79 emulation (EM78) program allows your machine to imitate a
3278/79 device attached to a System 3270 computer. Emulators provide the
functions of the device being emulated as if you were actually using that
device. The emulator must be installed on your system.

The em78 command invokes a 3278/79 emulation (EM78) session. At the
beginning of an emulation session, the emulator acts as if you had just turned
on a 3278/79 terminal. After you log in to the System 3270 host, you can run
commands and programs from your workstation.

The emrcv and em.send commands upload and download files to and from
a host, changing the format of the data in the files as you transfer them. Either
an MVSfl'SO host session or a VM/CMS host session can be specified during
file transfer. For example, you can translate files from ASCII to EBCDIC or
add or remove carriage-return characters.

You can customize the keyboard mapping, color, and field attributes for the
EM78 emulator. To customize the emulator, you must edit a file following the
EM78 customization file format and then install the changes with the emkey
command.

8.2.3 Connectivity and access to PC-DOS

Using AIX Access for DOS Users (AADU), a product that provides transparent
access to the AIX file system for PC-DOS users through the use of virtual
drives, system administrators and programmers can use the PowerPC's disk
space to store PC-DOS files. AADU allows PC-DOS users to share the AIX file
system of the host machine without requiring knowledge of the AIX operating
system. Access to printers on the PowerPC machine is also provided to PC
DOS users via network interface drivers. The minimum machine hardware
requirements for AADU are 512 KB of physical memory and 1 MB of disk space
on a PS/2, AT, or XT class machine that is equipped with an Ethernet, token
ring, or asynchronous serial connection. Performance is affected by the amount
of memory and disk storage available on the PC-DOS. Software requirements
call for DOS Version 3.3 or later and Microsoft Windows 3.1 or later. Figure
8.15 shows the connectivity layout of a PC-DOS and a PowerPC.

Standard AIX file permission modes are used by AADU to protect all the PC
DOS files stored on the AIX system disk. Users can selectively protect files and

Standardization and Connectivity 229

PowerPC-based computer PC

Network AAouj

------------------------8--,\
/tmp D:\)

I ' /
'~--

Figure 8.15 Connection with DOS-based PCs.

directories from other users. User management is responsible for evaluation,
selection, and implementation of security features, administrative procedures,
and communication facilities. Although files are accessible to users via the vir
tual drives, recognize that the AIX operating system will not be able to create
file names which include PC-DOS graphic characters or use PC-DOS com
mands such as ASSIGN, FDISK, FORMAT, PRINT, SYS, BACKUP, RESTORE,
JOIN, TREE, and SHARE on the virtual disk.

8.3 SUMMARY

Connectivity among systems must be maintained and fostered for smooth inte
gration and operation of the wide variety of computers available to business
and research communities. Standards must be complied with for the portabil
ity of application software systems and system networking. In an effort to
emphasize the importance of open systems, this chapter has briefly reviewed
the standards and standards groups shaping the details of open systems
including ISO, ANSI, OSI, POSIX, DCE, TCP/IP, NFS, and AFS, among oth
ers. The ability of the PowerPC and the AIX operating system to interact with
a variety of machines and other operating systems has also been discussed.
The crucial elements of an open system-interoperability, portability, and inte
gration-have been reviewed to demonstrate the ability of the PowerPC and
its operating environment to interact with today's computing environment.

Chapter

9

Design of AIX:
A PowerOpen Implementation

This chapter introduces a system perspective for the AIX based operating sys
tem. It introduces the kernel in light of its characteristic components, infras
tructure, and communication mechanisms. Although some basic terms and
concepts are reviewed, familiarity with "stock" UNIX is assumed.

9.1 COMPONENTS OF THE KERNEL

There have been references made about the fact that the AIX system supports
the illusion that the processes have "life" and files have "places." These two
entities, processes and files, are the central concepts in the AIX system model.
A file (defined as a collection of bytes logically grouped together) and a process
(defined as an instance of a program in its state of execution) together form an
operational entity, in which the file is the piece of data and the process is the
rule that acts upon the file. If the idea is extended further, it becomes evident
that working with files involves devices and management of devices, while
working with processes involves the management of processes. A logical block
diagram of an AIX kernel displayed in Fig. 9.1 shows the two main subsystems
for process and device management side-by-side. This well-known layout is
similar to a traditional UNIX system. The vertical separation between the
device management subsystem and the process management subsystem
reflects their functional roles. The two horizontal separations emphasize the
positioning of the functional components of AIX between the application level
and the hardware level.

231

232 Software

User or
application

level

Operating
system

level

Hardware
level

User
program

J Libraries J l
! _!_

l l
System call interface

i-
Process Interprocess
control communications

File system
110

Scheduler

J
Buffer
cache

J
Device driver

PowerPC hardware

Figure 9.1 Logical block diagram of an AIX kernel.

The roles of each component are significant in their own ways as each
affects the overall working of the operating system. User programs make use
of libraries (using subroutine calls) to communicate with the kernel via sys
tem calls. Libraries are repositories for common routines that programs use
to perform a task. They are linked with the programs at compile, load, or run
time and become a part of the program. System calls are similar to ordinary
functions in high-level languages like C. For the purpose of this discussion,
they can be thought of as primitives that allow a program to enter the oper-

Design of AIX: A PowerOpen Implementation 233

ating system. When a program enters the operating system, it accesses the
file subsystem and/or the process subsystem. The I I 0 subsystem handles
data flow and the file 1/0 aspect of program execution. It uses a buffered as
well as a nonbuffered mode to interface with the 1/0 device drivers and coor
dinate file 110. The process subsystem, on the other hand, handles the orches
tration of processes. This orchestration is a top-level abstraction of all the
tasks, including interprocess communication and process scheduling man
agement.

9.2 Functions of the kernel

In generic operating system terminology, a kernel denotes a nucleus of soft
ware that plays the role of system orchestrator and provides facilities neces
sary for implementing system services. These services can be functions to
access file systems, support for network protocols, or similar facilities.

From a structural perspective, the kernel is a single binary image that
supervises all process management, scheduling, and 1/0, using system calls to
interface to the application world. The majority of the kernel source code is
written in C, with a small amount in assembly language.

The kernel's responsibilities can be split up into the following functional
domains: (1) task management and (2) 1/0 management.

9.3 KERNEL SERVICES

In order to understand how the numerous kernel services work, it is necessary
to comprehend how the system calls operate.

9.3.1 System calls

Execution of a user process is divided into two levels: user and kernel. When
ever a user process requires an operating system service, it executes a system
call. This system call performs a momentary mode switch from the user mode
to the kernel mode in order to respond to the process's request (refer to Fig.
9.2). A mode switch is obligatory in order to make use of the privileged ser
vices that the kernel has access to, such as manipulation of the process status
register. Although the kernel distinguishes one process from another by refer
encing its internal data structures, the underlying hardware has no clue
about processes. The hardware merely views the system in terms of kernel
mode and user mode. As illustrated in Fig. 9.3, a kernel is able to differentiate
between processes Pi. P 2, P3 , and P4 along the horizontal axis and the hard
ware distinguishes the mode of execution on the vertical axis. It should be
understood that execution of a user process in two modes does not mean that

· there are two processes at any instant; it merely means that the kernel runs
on behalf of the user process to handle allocation of resources, etc. For execut
ing any simple program or command, mode switching happens more oftep.
than one would expect. Consider catenating a file called /tmp/foo and redi-

234 Software

User domain

syscall ()

Symbol
hash
table

Kernel domain

Array of system
call addresses

Figure 9.2 Mode switch in ADC

User
mode

Kernel
mode

u

K

Processes

u u

Figure 9.3 Processes and modes of execution.

recting its contents to the terminal device I dev/ ttyOl. The sequence of mode
switches (system calls) that takes place is highlighted in boldfaced fonts
within the algorithm that describes the example from the system perspective
of AfX.

Commandissued: cat /tmp/foo > /dev/ttyOl

Participating process

shell

child

child

cat

cat

cat

shell

Design of AIX: A PowerOpen Implementation 235

Participant's action

read the command line

parse the command line arguments

fork a child process
and wait for it to finish

close stdout and open! dev /ttyOl

exit if open fails
else dup!dev /ttyOl

exec/bin/cat
open/tmp/foo

read/tmp/foo

write stdout (ldev /ttyOl)

exit and signal the parent (the shell)

write out a prompt for next command

This scenario of redirecting the contents of a file to a terminal device mani
fests several sets of underlying system calls. The process-related calls are
fork(), exec(), wait(), exit(), and signal(). File-related system calls used are
open(), dup(), and close(). The 1/0-related system calls are read() and write().
All of the system calls shown in this example are standard on traditional UNIX
systems as well as AIX, and, hence, are not discussed in any further depth.
When invoked from user programs, these system calls perform a mode switch,
make use of the kernel services, and continue executing the user application.

Each mode switch from user mode to kernel mode can be categorized on the
basis of the action that initiates it. There are two primary kinds of hardware
and software actions that gain an entry into the kernel: (1) hardware inter
rupts and traps and (2) software interrupts and traps. System calls are
referred to as being a special case of software interrupts. The CPU is allowed
to be interrupted asynchronously. The occurrence of an interrupt normally
causes the kernel to save its current context, service the interrupt, and then
resume processing its current context.

Although system calls are invoked just like subroutines, there are some fun
damental differences between them. It is necessary to reiterate that they run
in the kernel mode when invoked. By doing so, they use certain kernel pro
cesses to perform miscellaneous asynchronous tasks. In addition to these basic
traits, system calls on AIX are unique in the sense that they are pageable (with
some restrictions). They are also preemptable by higher-priority processes to
facilitate real-time processing support. Also, new system calls may be added
dynamically. Recognize that adding a new system call essentially means
extending the kernel by adding to its base set of kernel services.

9.3.2 Kernel facilities

AIX furnishes a set of routines that provide the run-time kernel environment
to programs executing in kernel mode. This basic set of routines is referred to

236 Software

as kernel facilities or services. The programs that run in kernel mode are
not conspicuously visible to the user, but they can be displayed using the
pstat or ps commands, if required. Kernel services offered by AIX span a
very wide range offunctional areas. These services are primarily used by ker
nel extensions. The main categories of kernel services are shown in Fig. 9.4,
and each is discussed in terms of its features, functions, and commonly used
routines.

Process and exception management (P&EM) kernel services are provided by
the base AIX kernel and are responsible for new kernel process creation, seri
alization of processes, and signal handling. In addition, certain traditional
UNIX kernel services are also incorporated in here, in order to support ported
code from other variants of UNIX and previous versions of AIX. Commonly
used P&EM kernel services are:

creatp

initp

e_post

e_wait

wakeup

lockl

unlockl

setjmpx

Creates a new kernel process

Initializes a kernel process after its creation

Notifies a process of the occurrence of event(s)

Forces a process to wait for the occurrence of an event

Activates processes sleeping on the specified channel

Imposes a lock to serialize access to a resource

Releases a conventional process lock

Allows saving of the current execution state or context

Logical file system (LFS) services allow processes running in kernel mode to
open and manipulate files in the same way that user-mode processes do. Since
system calls can have data access limitations, a set of file system calls is pro
vided with a kernel-only interface. Commonly used LFS kernel services are:

fp_open

fp_opendev

fp_close

fp_read

fp_write

fp_access

fpJstat

fp_ioctl

Opens a regular file

Opens a device special file

Closes a file

Performs a read operation on an open file

Performs a write operation on an open file

Checks for access permission to an open file

Acquires the attributes of an open file

Issues a control command to an open file

Virtual file system (VFS) kernel services provide a standard interface and act
as the basic building blocks for writing a virtual file system. They can be used
to create and/or free vnodes across various file system types without having to
worry about physical file system dependencies. VFS services that can be used
across the various file system types to enable the logical file system to operate
independently of the file system type are:

~

0 0 0
?!~

0 0 0 0 0 0 0 0
Timer and Virtual

exc~;~io~ntfile sys~e of \day file system

Process Logical Memory 1/0 RAS Security Network Kernel Message Queue

managem/ /

0 0 0 0
Time

of day
Timer

compatibility
Watchdog

timer
High-resolution
timer

00 0 0
Block

1/0
Buffer Character Memory
cache 1/0 buffer

Figure 9.4 Taxonomy of kernel services.

// ~
xtensi~n

and device
driver
management

0 0 0 0 0
Loopback Routing Protocol Address

0 0

and family
interface domain
address and

Communication
device
driver

interface

network
interface
device
driver

DMA Interrupt
management management

services services

queue management

6"o
Device Ring
queue queue

management management

238 Software

gfsadd

gfsdel

vn_get

vnJree

vfsrele

lookupvp

Adds a file system type to the gfs table

Deletes a file system type from the gfs table

Adds a vnode to the existing list ofvnodes for the designated file system

Frees a previously allocated vnode

Points to a virtual file system structure

Retrieves the vnode that corresponds to the named path

Memory kernel services offer the ability to dynamically allocate and free
memory, pin and unpin processes, manipulate virtual memory objects, and move
data between user and kernel memory. Data can also be moved between the ker
nel and an address space other than the current process address space, using a
cross-memory service feature. Commonly used memory kernel services are:

xmalloc

xmfree

init_heap

pin

unpin

Allocates memory (similar to malloc in the user mode)

Frees allocated memory

Initializes a new heap

Pins the address range in the system address space

Unpins the address range

Message queue kernel services render the equivalent of normal message
queuing functions for programs executing in user mode to the kernel exten
sions. The most frequent use for these message queue kernel services is as IPC
channels to allied kernel processes or user-mode processes. Available message
queue kernel services are:

kmsgctl

kmsgget

kmsgsnd

kmsgrcv

Queries the status of the message queue, sets selected status fields, or
removes the queue, when needed

Opens or creates a message queue by traversing the message queue
array to locate a possible match, and allocating a new queue structure
if no match is found

Sends a message using a previously defined message queue
Receives a message from a message queue

Reliability-availability-serviceability services are collectively referred to as
the RAS kernel services. They address the reliability, availability, and service
ability aspects of the software and hardware. Occurrences of errors and fail
ures are recorded so that they may be examined at a later time. In the event of
a fatal error, a kernel service called panic is invoked, which triggers a system
dump and captures the data areas that are cataloged in the master dump
table. Some of the RAS kernel services are:

panic

errs ave

Crashes the system. (Note: It is invoked in the event of a catastrophic
failure to perform a system dump.)
Writes an entry in the system error log when a hardware or software
failure is detected.

Timing kernel services furnish an array of utilities that address various
timing-related aspects of the global system. In order to structure their roles,

Design of AIX: A PowerOpen Implementation 239

the services are further grouped into four functional categories referred to as
(1) time-of-day (TOD) kernel services, (2) timer compatibility kernel services,
(3) watchdog timer kernel services, and (4) high-resolution timer (HRT) kernel
services. Each type of service contributes to the time-and timer-related issues
of the kernel. The TOD service maintains the systemwide time-of-day timer
values and can be used to access or set the time on the system. The timer com
patibility service provides backward compatibility with earlier versions of AIX
by handling application timeouts and the callout table entries. The watchdog
timer service furnishes a low-overhead, moderate-resolution timer, which can
be used to timestamp events without causing any serious overhead. The HRT
services provide fine-grain timing functions that can be used to conduct criti
cal measurements with as fine as 10 ms granularity. Following are the com
monly used kernel services:

curtime

ksettimer

tstart

tstop

delay

talloc

tfree

Readsthecurrenttim.e

Sets the systemwide TOD timer

Submits a tim.er request

Cancels a pending timer request

Suspends the calling process for the specified number of timer ticks

Allocates a timer request block (structure is called trb)

Deallocates a timer request block

Security kernel services determine the privilege state of a process and, as a
result, facilitate controlling the auditing system and access rights. There is
only one security kernel service in the current implementation of AIX.

suser Determines the privilege state of a process by checking to see if the pro
cess has any effective privilege

Network kernel services are a cluster of four types of network-related func
tions. The first is the address family domain and network interface device
driver (AFD/NIDD) services, and this facilitates addition or removal of proto
cols and network interface drivers from network switching tables. The second
set of functions is the routing and interface address kernel services, which sup
port the network route addition and deletion functionalities for remote hosts
and gateways. The third set of functions is referred to as the loopback kernel
services; it allows debugging in a simulated environment for development of
new network protocols without introducing network variables. The fourth
function is the protocol kernel service, which enables a raw protocol handler to
pass packets up through sockets so a protocol can be implemented in the user
space. Finally, there is a set of functions called the communications device han
dler interface (CDHI) kernel service that provides a standardized interface
between network interface drivers and AIX communications device drivers.

Commonly used Network kernel services are:

if_attach

if_detach

Adds a network interface to the network interface list

Removes a network interface from the network interface list

240 Software

rtalloc

rtfree

rtrequest

rtredirect

net_attach

net_detach

Allocates a route consisting of a destination address and a reference
to a routing entry
Frees the routing table entry by freeing the mbuf structure that is
associated with the route

Carries out a request to alter the contents of the routing table

Forces a routing table entry to be redirected through a given gateway

Opens a communications 1/0 device handler

Closes a communications 1/0 device handler

1/0 kernel services are better described as six separate categories: (1) block
1/0 services which enable asynchronous 1/0 transfers to take place in fixed-size
blocks; (2) buffer cache services which manage user access to device drivers
through block special files for file system compatibility services and mounts;
(3) character 110 services that manage the read and write operations to char
acter devices like keyboards, terminals, etc.; (4) DMA management services
that coordinate the DMA operations between adapters and memory; (5) inter
rupt management services that enable and disable interrupt levels in the sys
tem; and, finally, (6) memory buffer services which provide facilities to acquire,
release, and manipulate memory buffers.

Commonly used 1/0 kernel services are:

bread

bwrite

getblk

purblk

getc

putc

waitcfree

m_get

m_pullup

mJree
d_init

d_clear

d_mask

d_move

Reads the specified block's data into a buffer.

Writes the specified buffer's data.

Assigns a buffer to the specified block.

Purges the specified block from the buffer cache.

Retrieves a character from a character list.

Places a character at the end of a character list.

Checks the availability of a free character buffer.

Allocates a memory buffer from the memory buffer pool.

Shuffles an mbuf chain so that a given number of bytes is in contigu
ous memory in the data area of the head mbuf structure.

Frees an mbuf structure.
Initializes a DMA channel.

Frees a DMA channel.

Disables a DMA channel.

Provides a means of accessing the data while a DMA transfer is being
performed on it. Since this service accesses the data through the
same system hardware as that used to perform the DMA transfer, it
can guarantee the data to be consistent.

device and ring queue kernel services are methods of queuing requests from
one kernel process to another. They are based on a client-server model. These
services primarily serve as compatibility structures for software ports from
previous versions of the AIX. operating system. Commonly used services are:

creatq

dstryq

attchq

detchq

enque

deque

waitq

queryi

rqc

rqd

rqputw

rqgetw

Design of AIX: A PowerOpen Implementation 241

Creates a device queue

Deletes the specified device queue

Creates a path to a device queue

Removes a path to a device queue

Places a queue element into a specified device queue

Removes an element from the device queue

Waits for a queue element to be placed on a device queue

Provides information about device queues

Creates a ring queue in the kernel heap

Deletes a ring queue from the kernel queue

Puts a queue element on the specified ring queue

Returns the next element from the specified ring queue

Device driver management I kernel extension services include general pur
pose kernel loading and binding services and device driver binding services.
Commonly used services are:

devswadd

devswdel

iostadd

pio_assist

uexadd

uexdel

Adds a device entry to the device switch table

Removes a device driver entry from the device switch table

Registers an 1/0 statistics structure used for updating 1/0 statistics
reported by the iostat facility (covered in Chap. 8)

Provides a programmed I/O exception handling mechanism for rou
tines performing programmed 1/0

Adds a systemwide exception handler for catching user-mode process
exceptions

Deletes a previously added systemwide exception handler

A kernel service, in general, can either be called in both the process and the
interrupt environments or exclusively in the process environment. Table 9.1
provides the names of the available kernel services under AIX, along with the
environment from which they can be called.

9.4 DISTINGUISHING FEATURES OF THE AIX KERNEL

The AIX kernel distinguishes itself from traditional UNIX systems by virtue of
its unique characteristics. Although its infrastructure is based upon a System
V Version 2 kernel, a myriad of characteristic features sets it apart from tradi
tional UNIX systems.

The kernel structure in AIX has been extended to support preemption and
real-time processing capabilities. The second distinguishing feature of the AIX
operating system is that its kernel is pageable. The next noteworthy feature is
its virtual memory management scheme, which provides support for an
exceedingly large address space. Additionally, support for a dynamic load facil
ity in AIX is adopted to allow parts of programs and kernel extensions to be

242 Software

TABLE9.1 Kernel Services

Process Interrupt Process Interrupt
Command environment environment Command environment environment

ackque ,,- devswadd ,,-
add_arp_iftype ,,- ,,- devswdel ,,-
add_domain_af ,,- ,,- devswqry ,,-
add_input_type ,,- ,,- dmp_add ,,-
add_netisr ,,- ,,- dmp_del ,,-
add_netopt ,,- ,,- dmp_prinit ,,-
as_att ,,- dstryd ,,-
as_det ,,- DTOMmacro ,,- ,,-
attchq ,,- epost ,,- ,,-
audit_svcbcopy ,,- e_sleep ,,-
audit_svcfinis ,,- e_sleepl ,,-
audit_svcstart ,,- e_wait ,,-
bawrite ,,- e_wakeup ,,- ,,-
bdwrite ,,- enque ,,-
bflush ,,- errsave ,,- ,,-
bin val ,,- find_arp_iftype ,,- ,,-
blkflush ,,- find_input_af ,,- ,,-
bread ,,- find_input_type ,,- ,,-
breada ,,- fp_access ,,-
brelse ,,- fp_close ,,-
bwrite ,,- fp_fstat ,,-
canclq ,,- fp_getdevno ,,-
cfgnadd ,,- fp_getf ,,-
cfgndel ,,- fp_hold ,,-
clrbuf ,,- ,,- fp_ioctl ,,-
clrjmpx ,,- ,,- fp_lseek ,,-
cop yin ,,- fp_open ,,-
copyinstr ,,- fp_opendev ,,-
copyout ,,- fp_poll ,,-
creatd ,,- fp_read ,,-
creatp ,,- fp_readv ,,-
creatq ,,- fp_rwuio ,,-
curtime ,,- ,,- fp_select ,,-
d_align ,,- ,,- fp_write ,,-
d_cflush ,,- ,,- fp_writev ,,-
d_clear ,,- ,,- fubyte ,,-
d_complete ,,- ,,- fubyte ,,-
d_init ,,- ,,- fuword ,,-
d_mask ,,- ,,- getadsp ,,-
d_master ,,- ,,- getblk ,,-
d_move ,,- ,,- getc ,,- ,,-
d_roundup ,,- ,,- getcb ,,- ,,-
d_slave ,,- ,,- getcbp ,,- ,,-
d_unmask ,,- ,,- getcf ,,- ,,-
del_arp_iftype ,,- ,,- getcx ,,- ,,-
del_domain_af ,,- ,,- geteblk ,,-
del_input_type ,,- ,,- geterror ,,- ,,-
del_netisr ,,- ,,- getexcept ,,- ,,-
del_netopt ,,- ,,- getpid ,,- ,,-
delay ,,- getppidx ,,-
deque ,,- getuerror ,,-
detchq ,,- gfsadd ,,-
devdump ,,- ,,- gfsdel ,,-
devstrat ,,- ,,- i_clear ,,-

Design of AIX: A PowerOpen Implementation 243

TABLE9.1 Kernel Services (Continued)

Process Interrupt Process Interrupt
Command environment environment Command environment environment

i_disable ,,, ,,, m_getclustm ,,, ,,,
i_enable ,,, ,,, m_gethdr ,,, ,,,
Unit ,,, M_HASCL macro ,,, ,,,
i_mask ,,, ,,, m_pullup ,,, ,,,
i_reset ,,, ,,, m_reg ,,,
i_sched ,,, ,,, MTOCLmacro ,,, ,,,
i_unmask ,,, ,,, MTODmacro ,,, ,,,
if_attach ,,, ,,, M_XMEMD macro ,,, ,,,
if_ detach ,,, ,,, net_attach ,,,
if_down ,,, ,,, net_ detach ,,,
if_nostat ,,, ,,, net_ error ,,,
ifa_ifwithaddr ,,, ,,, net_sleep ,,,
ifa_ifdstwithaddr ,,, ,,, net_start ,,,
ifa_ifwithnet ,,, ,,, net_start_done ,,, ,,,
ifunit ,,, ,,, net_ wakeup ,,, ,,,
init_heap ,,, net_xmit ,,, ,,,
initp ,,, net_xmit_trace ,,, ,,,
io_att ,,, ,,, NLuprintf ,,,
io_det ,,, ,,, panic ,,, ,,,
iodone ,,, ,,, peekq ,,, ,,,
iostadd ,,, pfctlinput ,,, ,,,
iostdel ,,, pffindproto ,,, ,,,
iowait ,,, pidsig ,,, ,,,
kgethostname ,,, ,,, pgsignal ,,, ,,,
kgettickd ,,, ,,, pin ,,,
kmod_entrypt ,,, pin cf ,,,
kmod_load ,,, pin code ,,,
kmod_unload ,,, pinu ,,,
kmsgctl ,,, pio_assist ,,,
kmsgget ,,, prochadd ,,,
kmsgsnd ,,, prochdel ,,,
ksettickd ,,, purblk ,,,
ksettimer ,,, putc ,,, ,,,
lockl ,,, putcb ,,, ,,,
loifp ,,, ,,, putcbp ,,, ,,,
longjmpx ,,, ,,, putcf ,,, ,,,
lookupvp ,,, putcfl ,,, ,,,
looutput ,,, ,,, putcx ,,, ,,,
m_adj ,,, ,,, qryds ,,,
m_cat ,,, ,,, queryd ,,,
m_clattach ,,, ,,, queryi ,,, ,,,
m_clget macro ,,, ,,, queryp ,,,
m_clgetm ,,, ,,, raw_input ,,, ,,,
m_clgetx ,,, ,,, raw_usrreq ,,, ,,,
m_collapse ,,, ,,, readq ,,,
m_copy macro ,,, ,,, rqc ,,,
m_copydata ,,, ,,, trqd ,,,
m_copym ,,, ,,, rqgetw ,,,
m_dereg ,,, rqputw ,,,
m_free ,,, ,,, rtalloc ,,, ,,,
m_freem ,,, ,,, rtfree ,,, ,,,
m_get ,,, ,,, rtinit ,,_ ,,,
m_getclr ,,, ,,, rte direct ,,, ,,,
m_getclust macro ,,, ,,, rtrequest ,,, ,,,

244 Software

TABLE 9.1 Kernel Services (Continued)

Process Interrupt Process Interrupt
Command environment environment Command environment environment

schednetisr
selnotify
setjmpx
setpinit
setuerror
sig_chk
sleep
subyte
suser
suword
talloc
tfree
timeout
timeoutcf
trcgenk
trcgenkt
tstart
tstop
uexadd
uexblock
uexclear
uexdel
uiomove
unlockl
unpin
unpincode
unpinu
uprintf
untimeout
uphysio
ureadc
uwritec
vec_clear
vec_init

"' "' vfsrele "'
"' "' vm_att "' "'
"' "' vm_cflush "' "' "' vm_det "' "' "' vm_handle "' "' vm_makep "' "' vm_mount "'
"' vm_move "' "' vm_protectp "'
"' vm_qmodify "' "' vm_release "'
"' "' vm_releasep "'
"' "' vm_unmount "'
"' vm_write "' "' "' vm_writep "' "' "' vms_create "' "' "' vms_delete "' "' "' vms_iowait "' "' vn_free "' "' "' vn__get v

"' "' w_clear v v

"' w_init "' "' "' w_start "' v

"' w_stop "' v

"' "' waitcfree "' v waitq "'
"' "' wakeup "'
"' xmalloc "' "' v xmattach "' v xmdetach "' "' v xmemdma "' "' v xmemin "' "' v xmemout "' "' v xmfree "'

dynamically loaded without intervention. Also, a true system management
architecture is implemented to provide definition and management of the com
plex relationships of the objects in the system. In addition to the kernel struc
ture modifications and support for threads, some of the key components, such
as the file system, have been enhanced to provide greater reliability. The stor
age subsystem generalizes the storage space concept by implementing logical
volumes, and optimizes the storage capacity by implementing fragments. The
1/0 subsystem of AIX supports functions like mapped files, prepaging, data
pacing, and asynchronous I I 0. Observe that, while a lot of the AIX kernel
essentially adheres to the same concepts as traditional UNIX systems, much of
it has been augmented to provide a superior environment above and beyond
what UNIX had demonstrated before.

Design of AIX: A PowerOpen Implementation 245

9.5 EXTENDING THE KERNEL

I

I
t

The kernel can be expanded by adding kernel extensions. This is a unique char
acteristic of AIX in which kernel extensions can be added to an operational
environment without preempting any ongoing activity. Attributes such as new
device drivers, system calls, kernel services, and private kernel routines can be
added to the existing kernel to extend its functions. The direct benefit of being
able to customize the kernel allows implementation of new timer services, cus
tomized interrupt handlers, pinned shared memory segments, and other use
ful facilities. Figure 9.5 demonstrates the different types of kernel extensions
that can be implemented.

Applications and commands

l l J l
t t • •

File system
interface

System
calls

System call interface

Virtual Device Extended
file system drivers system

calls

Private routines I
Extended kernel services

Basic services

Figure 9.5 Types of kernel extensions.

246 Software

Extending the kernel essentially means the same thing as altering the ker
nel. As useful as this feature is when correctly implemented, it can be equally
as disadvantageous if exercised without caution. Any process executing in the
user mode can extend (or alter) the kernel, provided it has root privilege. The
operation is done by invoking a privileged subroutine called sysconfig. The
other way of altering the kernel configuration is by changing the tunable
parameters. Values of the tunable parameters, when modified, update the
information in the ODM (object data manager) database.

The set of base kernel services available under AIX. can be used by the ker
nel extensions. A kernel extension knows about these services by importing the
symbols that are to be added to the kernel name space during the binding
phase. The symbols are specified through a file called kernex. exp. This file also
works as an export file for kernel extensions that are to be added to the kernel
name space.

There are two ways to load a new kernel extension into the kernel name space:

1. The sysconfig routine can be used to load the kernel extension. Symbols
defined in the kernel extension's exports file during the linking time are
added to the kernel name space.

2. The loader can load additional object files into the kernel to resolve symbols
referenced by the new kernel extension. In this case, there are no symbols
added to the kernel name space since the exported symbols are only used to
resolve references needed during the load of a new kernel extension.

The kernel name space can only be expanded by explicitly loading a kernel
object file. The symbols added to the kernel name space are made available to
any subsequently loaded kernel object file in the form of imported symbols.

A set of privileged system calls that can be used for writing one's own kernel
extensions is provided here. The list in Table 9.2 shows which system calls are
available to the kernel extensions and which ones are restricted to kernel pro
cesses.

9.6 PROGRAMS, PROCESSES, AND PROCESS GROUPS

A program is an executable piece of code, and process is the name given to the
program in its state of execution. When a program executes, it essentially sub
mits a pattern of bytes to the CPU. This byte stream is interpreted as instruc
tions (called text), data, and stack. The bytes that are instructions traverse
through the maze of the CPU subcomplex, tracing a pipelined flow through the
branch processing unit, the fixed-point unit, and/or the floating-point unit. The
bytes that are data are made available when needed (either through the cache,
TLB, or memory) by the instructions. The bytes that are stack-related facili
tate a collated sequence of subroutine calls during the program's execution.

Like traditional UNIX systems, AIX. is able to handle the execution of sev
eral programs simultaneously by scheduling them in a time-shared manner.
Just as several programs may be executed as multiple processes, multiple pro-

Design of AIX: A PowerOpen Implementation 247

TABLE 9.2 System Calls

Kernel Kernel Kernel Kernel
System calls extensions processes System calls extensions processes

disclaim ,,, sethostid ,,, ,,,
getdomainname ,,, sethostname ,,,
getgidx ,,, ,,, setpgid ,,, ,,,
getgroups ,,, setpgrp ,,, ,,,
gethostid ,,, ,,, setpri ,,, ,,,
gethostname ,,, setpriority ,,, ,,,
getpeername ,,, setreuid ,,, ,,,
getpgrp ,,, ,,, setrlimit ,,,
getppid ,,, ,,, setsid ,,, ,,,
getpri ,,, ,,, settimer ,,,
getpriority ,,, ,,, setuid ,,, ,,,
getrlimit ,,, setuidx ,,, ,,,
getrusage ,,, shmat ,,,
getsockname ,,, shmctl ,,,
getsockopt ,,, shmdt ,,,
gettimer ,,, shmget ,,,
getuidx ,,, sigaction ,,,
res abs ,,, sigprocmask ,,,
resinc ,,, sigstack ,,,
restimer ,,, sigsuspend ,,,
semctl ,,, sysconfig ,,,
semget ,,, times ,,,
semop ,,, ulimit ,,, ,,,
setdomainname ,,, um ask ,,, ,,,
seteuid
setgid
setgidx
setgroups

,,, ,,, uname ,,, ,,, ,,, unamex ,,, ,,, ,,, usrinfo ,,, ,,, utimes ,,,

cesses can also execute a copy of a single program. Since the sequence of
instructions in an individual process is self-contained, one process does not
cross over or violate another process's private space. When and if processes do
need to communicate with each other, they do so via system calls.

An executable program is created by compiling a high-level language or
assembly language source code. The process entity is created using system
calls. The fork system call is the primary vehicle for creating user processes
under UNIX and AIX systems. Every time a fork system call creates a new pro
cess, it invokes an internal routine called newproc to allocate and initialize a
new proc structure. Subsequently, another internal routine, procdup, is
invoked to create a new child process that is a duplicate of the caller (parent)
process. Recognize that a parent may have more than one child. However, the
converse is not true; a child cannot have more than one parent. The operating
system tracks each process by a unique tag called the process identification
number or pid, which is assigned to a newly created process as soon as it is cre
ated. As in the case of human reproduction, where a child inherits its parents'
traits, the genealogy of inheritance in the case of process creation follows the

248 Software

same principle. A child process duplicates all of its parent's characteristics,
except for the process identification number (pid).

An executable program is loaded into memory for execution using the exec
system call. Once loaded, the program becomes a process and begins executing.
During its execution, the process changes states constantly, depending on
whether it is active or waiting with regard to the other processes on the sys
tem. It is often easier to think about processes being in a state of dynamic equi
librium. Every time a process changes its state, it follows a well-defined set of
rules, as illustrated by the state transition digraph in Fig. 9.6. The nodes in the
directed graph represent the permissible states that the process can assume.
The edges in the graph represent the events in a process's state change. How
does one determine what state transitions are permitted? A state transition
between two states is legal as long as there is an edge from the first state to the
second state.

A process is terminated using the exit system call. Usually the parent is noti
fied upon the termination of a process. If a process needs to suspend execution
until one of its child processes has terminated, it may do so using the wait sys
tem call. Sometimes a variation of wait is used, called wait3, which allows the
parent process to acquire information about the cause of child process termi
nation and resource utilization during its life span.

These mechanisms for process creation, suspension, and termination form
the basics of how processes operate under AIX. Figure 9.7 illustrates the effect
that fork, exec, wait, and exit have on the fate of a process. In fact, to execute
any program on AIX, one has to make use of the exec system call (in one of its
six variations). In a simple example of a user executing the ls command, the
command language interpreter (i.e., the shell) first forks off a child process,
which subsequently execs to overlay its image with that of the new program, ls.
ls completes execution and exits thereafter; consequently, the parent process
(the shell), whose execution was halted until now, comes out of the wait state.

Processes under AIX are organized into process groups. It is a term applied
to a group of processes that are related. Typically, a set of processes under a
process group have the same parent and, very often, they are associated with
the same terminal. Process groups provide a means of communicating with a
collection of related processes. The system never changes the process group of
a process that has one. However, a new process group can be assigned to any
process when there is a need to deliberately dissociate a process from its
default process group. This is done with the help of a system call called setpgrp.
Disassociating a process from its process group is a common practice in the
writing of daemons or programs that need to remain detached from termi
nal(s).

9.7 AIX NOTIFIERS

AIX provides a number of ways to inform itself and the rest of the system about
the occurrence of miscellaneous events. There are three primarily vehicles for
notification: signals, interrupts, and traps.

Design of AIX: A PowerOpen Implementation 249

interrupt interrupt

fork

Figure 9.6 Digraph showing state transitions.

250 Software

wait () -------------------------

exec ()

Figure 9.7 Process management system calls.

Signals are notification events used to notify a process or group of processes.
Each signal has an associated action that defines how a signal is to be handled
when it is delivered to a process. Since signals are asynchronous, a process
never knows when or if it is going to receive a signal. So, upon receiving a sig
nal, a process succumbs to the signal's default action (unless an explicit signal
handler has been coded into the application). Signals can be sent by the kernel
to a process (or processes), or by one process to another process (or to itself).

Every sign~l is associated with a type of event or condition and has a unique
number representing it. For purposes of making a signal more readable, every
signal has been assigned a name tag which is defined in a header file on the
system called s i g n al . h. The primary method of posting a signal for process(es)
and process groups is through the usage of the system calls, kill and killpg. The
method used to handle a signal on the recipient's side is specific to the signal's
action. But, in general, signals are either ignored, blocked, or caught (with the
exception of two signals, SIG KILL and SIGSTOP). A list of defined signals is
presented as follows:*

SIGHUP 1 hangup, generated when terminal disconnects

SIG INT 2 interrupt, generated from terminal special character

SIGQUIT 3 quit, generated from terminal special character

SIG ILL 4 illegal instruction

SIG TRAP 5 trace trap

SIGABRT 6 abort process

SIG EMT 7 EMT instruction

SIGFPE 8 floating-point exception

SIG KILL 9 kill (cannot be caught or ignored)

SIG BUS 10 bus error (specification exception)

SIGSEGV 11 segmentation violation

* The undefined values between 1 and 63 are reserved for future use.

Design of AIX: A PowerOpen Implementation 251

SIGSYS 12 bad argument to system call

SIG PIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock timeout

SIG TERM 15 software termination signal

SIGURG 16 urgent contention on I/O channel

SIGSTOP 17 stop (cannot be caught or ignored)

SIGTSTP 18 interactive stop

SIGCONT 19 continue (cannot be caught or ignored)

SIGCHLD 20 sent to the parent process on child stop or exit

SIGTTIN 21 background read attempted from control terminal

SIGTTOU 22 background write attempted to control terminal

SIG IO 23 I/O possible, or completed

SIGXCPU 24 CPU time limit exceeded

SIGXFSZ 25 file size limit exceeded

SIG MSG 27 input data is in the HFT ring buffer

SIG WINCH 28 window size changed

SIGPWR 29 power-fail restart

SIGUSRl 30 user defined signal 1

SIGUSR2 31 user defined signal 2

SIG PROF 32 profiling time alarm

SIG DANGER 33 system crash imminent; free up some page space

SIGVTALRM 34 virtual time alarm

SIG MIGRATE 35 migrate process

SIG PRE 36 programming exception

SIGVIRT 37 AIX virtual time alarm

SIGALRMl 38 m:n condition variables

SIGWAITING 39 m:n scheduling

SIG KAP 60 keep alive poll from native keyboard (same as SIGGRANT)

SIG RETRACT 61 HFT monitor mode should be relinquished

SIGSOUND 62 HFT sound control has completed

SIGSAK 63 secure attention key

Interrupts are asynchronous events that are generated by the kernel or a
device. The name is so given to them as they indeed "interrupt" the execution
of the current process. When a process is preempted, the control is transferred
to a special set of routines in the kernel called interrupt handlers. Interrupt
handler routines service the interrupt and, after completion, transfer control
back to the current process to continue execution.

Traps are synchronous events that are normally caused by the system hard
ware. As in the case of interrupts, a process may not decide how to react to the
trap. Control is passed on to trap handlers in the kernel and the trap handler

252 Software

code takes control. In the case of a trap, a process may or may not resume exe
cution, depending on the nature of the trap. There is a another type of notifier,
exceptions, which are also synchronous events like the traps. They directly
relate to the currently executing instruction. A common example is a divide-by
zero error. The only notable difference between exceptions and traps is in the
resulting handler code modules.

9.8 INTERNAL REPRESENTATION OF FILES

AIX features a variety of files. The word file is so generic that one cannot be
sure if a file is a piece of data on disk or the disk itself. Since the early days of
UNIX, one of its hallmarks has been to treat files, disks, terminals, etc. the
same way. The same is still true today. As much as this abstraction facilitates
the portability of a UNIX system and application software, it can also confuse
users. This section describes the different file types and explains how the ker
nel handles access to files.

9.8.1 File types

A regular file in AIX is not different from that in traditional UNIX systems.
It is just a sequence of bytes with one or more names. A file can be created
using either the open or creat system calls, and can be written to or read from
using the basic read or write system calls. Directories that organize files hier
archically are no different than regular files, except they have a structure
imposed on them by the system. They are commonly referred to as directory
files.

AIX also supports two other file types: pipes and device special files. Pipes
are like regular files and data is stored in them in the same manner as in the
case of regular files. But they differ from regular files in that their data is
ephemeral. The contents, being transient in nature, can only be read in a first
in first-out (FIFO) manner. Also, once the data is read from the pipe, the data
disappears and cannot be read again. Pipes are useful in a variety of applica
tions where a transient data stream makes more sense than a regular file, or
in a situation where arbitrary processes need to be communicated with, even
though one does not know the process(es) at the other end of the pipe (refer
Fig. 9.8).

Hardware devices on AIX and other UNIX systems have file names and can
be accessed by the same system calls that are used for regular files. The jargon
used to refer to these devices is device special files. All device special files spec
ify devices and, therefore, their file inodes do not reference any data. Instead,
the inode indicates the device type and its logical unit number. Direct reference
to these device special files is primarily made by the kernel. Users and appli
cations never have to worry about these dependencies. Even the kernel does
not care much about the device-specific dependencies-most dependencies are
segregated in the device drivers. The kernel completely insulates the device
dependencies from application programs.

Design of AIX: A PowerOpen Implementation 253

Process A

FIFO

Process B

Ip

ProcessC

Figure 9.8 Process communicating through a pipe.

9.8.2 lnode and in-core inodes

The internal representation of a file on a UNIX system is specified in an index
block (sometimes called an index node) which contains the description of the
disk layout of the file data and allied information such as permissions and
ownerships. The term index node has been abbreviated to inode over the years,
and today most of the UNIX community knows it by this shortened name. This
inode is the most precious structure as far as files are concerned. It holds infor
mation describing access permissions, ownership of the file, timestamps mark
ing last modification and access times for the file, and an array of indices that
point to the data blocks for the file. In essence, it contains all the pertinent
information about the file, except for the file name. Initially, inodes exist in a
static form on disk. Thereafter, they are read into an in-core inode table and
remain resident in memory (see Fig. 9.9). Whenever a new file is created, an
unused inode is assigned to it.

9.8.3 File links

In general, there is a one-to-one mapping (i.e., a single link) between a file and
its referenced inode. But the file may have multiple names in the file system
referencing it. This is the same as saying that multiple directories in the same
file system may reference a file by multiple names. This is done by having the
directory entry create a hard link of a file name to the inode that describes its

254 Software

Copy of
....... __________ -+---..disk inode

Logical
disk

In-core inode

Figure 9.9 Two different representations of the same inode.

contents. In the case of a file having multiple names, all of the hard links map
back into the same inode as shown in Fig. 9.10. Note that the reference count
in the figure, as a result of this hard link, is 2.

The other kind oflink is a soft link or a symbolic link, which uses a new inode
for the file or directory being linked. It is treated like a regular file by the sys
tem, rather than as part of the file system structure. Therefore, this kind of
link can point at files across file systems. A soft link is implemented as a file
that contains a path name. The way it works is that the contents of the link are
prepended to the rest of the path name, and this name is interpreted to yield
the resulting path name.

The advantage of a soft link over a hard link is that a soft link can refer to a
directory file or to a regular file on a different file system, whereas a hard link
can only refer to regular files within the same file system. In contrast, the
advantage of a hard link over a soft link is performance; resolving soft links are
significantly slower because of housekeeping checks that have to be performed
to ensure there are no loops in the file system resulting from the erroneous use
of soft links.

9.8.4 Files to file system r~lationshlp

As far as accessing data is concerned, each inode contains eight pointers
which point directly to data blocks. Each data block is 4 KB in size. For larger
files, the inode contains a pointer which points to a block of indirect pointers;
this block contains 1024 pointers which, in turn, point to data blocks. For even

Reference count = 2

/home/laurel Description
... of

file
foo

...

/home/hardy
...

bar

...

Invoking "ls-Ii" in hardy's directory shows:

399 -rwxr--r-- 2 hardy 7512 Aug 15 07:35 bar

t
reference
count=2

Reference count = 1

/home/laurel Description
... of

file

11 foo

...

Reference count = 1

/home/hardy
... /home/laurel/foo r'\

bar

...

Invoking "ls-Ii" in hardy's directory shows:

568 -rwxr--r-- 1 hardy 36 Jan 26 06:45 bar-+ /home/laurel/foo

t
reference
count= 1

Figure 9.1 O Hard and soft file links.

255

256 Software

Direct
blocks

larger files, the inode contains a pointer which points to a block of pointers
(1024), each of which points to a further block of pointers (512), each of which
points to a data block. Figure 9.11 represents the structural layout of how
data block addresses are stored and accessed in the inode, depending on the
size of the file. In principle, this single, double, and triple indirect access
method can be extended to handle quadruple and quintuple indirect blocks,
but the current structure has sufficed in practice and no immediate extension
is deemed necessary, keeping in mind the current requirements of file sizes
demanded by the computer industry. The size of data blocks is usually consis
tent within a file system, but may vary between two dissimilar file systems.
For example, the size of each data block on the native AIX file system is 4 KB,
whereas each data block of the CD-ROM file system is 512 bytes. Besides data
blocks, a file system also contains what is called a superblock to describe the
state of the file system. It contains information about the size of the file sys
tem, the number of inodes, the list of free inodes, and other housekeeping
data.

In ode

0

1

2

3

4

5

6

7

Single
indirect
block

Double
indirect
block

I
· Data

blocks

Figure 9.11 Three schemes for storing data block addresses, depending on the
size of the file.

Design of AIX: A PowerOpen Implementation 257

From the perspective of the kernel, there are three primary data structures
associated with every opened file on the system:

• the file table

• the in-core inode table

• the user file descriptor table

The first two tables are global structures, while the third one is local to a user
process. The user file descriptor table is organized using the file descriptors
associated with opened files of that process as indices to each cell. By default,
three file descriptors are assigned for every process in order to support the
standard input (stdin), standard output (stdout), and standard error (stderr)
streams. Whenever a file is opened by a process for reading or writing, a new
entry is entered into this table. Each entry of this user file descriptor table
indexes into the file table, which maintains the byte offset in the file where the
subsequent read/write will start. This file table, in turn, points to the in-core
inode table. Each entry of the in-core inode table is a generic inode and is right
fully referred to as agnode. It is this gnode that locates the whereabouts of the
data in the file. The three-step linkage of the tables for a traditional UNIX sys
tem is shown in Fig. 9.12. In the case of AIX, the file table to the in-core inode
table mapping is further abstracted by indexing into a virtual file system
structure called vnode, seen in Fig. 9.13. This abstraction of virtual inodes or
vnodes allows the system to deal with remotely mounted non-AIX and non
UNIX file systems.

9.9 BUFFER CACHE

The design of the UNIX file systems implies a lot of disk 1/0. If the UNIX
kernel were really to perform every implied disk transfer, the CPU would
be idling constantly, waiting for 1/0. To address this issue, the kernel allo
cates a pool of buffers, called the buffer cache.* Its intent is twofold. The first
is to minimize frequency of disk access by buffering read/write requests, and
the second is to act as a cache of recently used disk blocks. A buffer cache is
composed of two parts: (1) a data buffer that contains the disk 1/0 data and
(2) a buffer header that points to the data array buffer. The buffer header also
contains a (logical) device number field and a block number field that
uniquely identifies the buffer, along with a status field summarizing the cur
rent status of the buffer, as seen in Fig. 9.14. Individual buffer headers are
linked together in a buffer pool and remain connected through a doubly
linked list.

The overall significance of the buffer cache has diminished in AIX, since AIX
uses mapped files in its augmented file system. This concept of mapped files

* The buffer cache is a software data structure and should not be confused with the hardware
caches.

258 Software

In-core
inode table

File table User file
descriptor

table

Figure 9.12 Three-step linkage and relationship of in-core inode table, file
table, and user file descriptor table in UNIX.

D
D

lL

I/
If vnode I

V1
F

D
In-core VFS File table User file
in ode descriptor
table table

~ mount or
rmount

Filesystem

Figure 9.13 Four-step linkage and relationship of ICIT, FT, UFDT, and
inode in AIX.

Design of AIX: A PowerOpen Implementation 259

Device#

Block#

Status

Next buffer

Previous buffer

'
Buffer header

l Maxbsize J
J

Data buffer

Figure 9.14 Structure of a buffer cache.

not only greatly minimizes disk access (when reading from or writing to a file),
but also provides a better performance over the traditional buffer cache. The
buffer cache continues to have responsibilities for the page device table lists
and handling of the superblock during a file system mount operation. The
buffer header part of the buffer cache is used to handle 1/0 requests to block
devices.

9.10 SUMMARY

The seemingly mysterious properties of AIX can be understood in light of its
infrastructure. Its architectural layout and the functional characteristics point
to the fact that a lot of the AIX kernel is essentially the same as traditional
UNIX systems, while much of its 1/0 subsystem components-like the virtual
memory manager and the file system-have been enhanced to provide a supe
rior environment above and beyond what UNIX vendors had attempted before.

Processes employ system calls to access the resources on the system. Since
the kernel owns all the resoµrces on the system, it becomes necessary for the
user processes to go through a mode switch before being able to use the kernel's
services. System calls on AIX are preemptable by higher-priority processes to
facilitate real-time processing support. Also, the kernel can be dynamically
extended beyond its base set of services. Extensions to the kernel are possible

260 Software

in any of the subsystems including device drivers, system calls, kernel ser
vices, and even private kernel routines. While some kernel services can be
called in either by the process or the interrupt environment, others are
restricted to the process environment. The set of base kernel services available
under AIX are used by kernel extensions.

In addition to user processes on the system, there are privileged processes
that run in the kernel address space, /unix. These processes running in the
kernel mode have access to additional system calls for carrying out privileged
tasks. Even in the kernel address space, there is a distinction made between
two types of system calls. There is a set of system calls that can be used by ker
nel extensions and another set that is available to kernel processes only. User
mode processes in kernel mode can only use system calls that have their
parameters passed by value, and the kernel routines executing under user
mode processes can not directly use a system call having reference parameters.
The latter restriction is imposed because when system calls with reference
parameters access a caller's data, they are accessing storage across a protected
domain.

Chapter

10

AIX Process Subsystem Internals

This chapter describes the process management subsystem for AIX. As such,
the low-level process management tasks for AIX are not too different from tra
ditional UNIX systems, but it is the availability of certain enhancements in the
operating system that makes process control worth revisiting in AIX. The basic
task management concepts are evolved and extended to provide an insight into
process-level abstractions.

A section on thread-level abstraction is also included to explain the new
paradigm introduced in the newer release of the AIX operating system to har
ness multiprocessor architectures. While the concept of threads (or pthreads as
termed in the case of POSIX threads) introduces a layer of abstraction in terms
of the dispatchable unit of work in the system, its implementation remains
transparent when applied to a uniprocessor environment or previous imple
mentations of AIX.

10.1 THE DIFFERENCE BETWEEN A PROGRAM
AND A PROCESS

A source code is compiled to produce an executable file. This newly created file
or program sits on a disk until ready to be used. The executable program on
disk consists of three areas:

1. A text area which is the code

2. An initialized area consisting of the data

3. A noninitialized area known as the bss* or heap

* This name comes from an assembly language pseudo-operator on the IBM 7090 machine,
which was an acronym for "block started by symbol."

261

262 Software

Different parts of the source code map to different areas of the executable file on
disk. Refer to the example of C source code in Fig. 10.l to understand the spe
cific mappings. It is important to realize how static variables map differently
than automatic variables, and how the stack is used differently than the heap.

10.2 PROCESS STRUCTURE

When an executable file is loaded into memory and undergoes transition to a
process, the text area is mapped to one of the 16 segments of virtual memory
accessible per process, known as the text segment. This segment is read-only
and can be shared by other processes running the same code. The data and bss

I * sample.c */
char let = 'x';
float rec [50 l ;
static int w;

main()
{

int i;
int j = 1;
char *p, *malloc () ;

i = j*2;
i = funct(j);
printf ("%d\n", i);
p = malloc(256);

funct(val)
int val;
{

int a;

a = val * val;
return (val);

}-
--

--

--

u_block

~
main, i, j' p

(malloc

(~ funct, val

(~ printf
I

_j/ I
I
I
I
1 VMhole
I

-l__.,1 I
I

-1______/ I

-~ -> *p

"--1

Text

Data

BSS

_.,,., rec, w

let

The code for
sample·c program

Binary executable
to process to

process image

I
I
I
I
I
I
I
I
I
I

IS tac~
growmg

l:~~ng
Non-initialized
data

Initialized data

Text

Figure 10.1 Mapping of source code to its corresponding object code and process image.

AIX Process Subsystem Internals 263

areas are mapped to another virtual memory segment referred to as the data
segment. This segment is both readable and writable, and private to that pro
cess. This data segment can be further broken down into two areas: a user area
(meant for use when a process is executing in user mode) and a kernel area
(meant for use when the process has undergone a mode change and is execut
ing in kernel mode). The kernel area, located at the end of the segment, con
tains machine-state information for that process, its file descriptor table, and
environmental information such as the user-ID, current working directory, etc.
The user area is at the start of the data segment; here space is allocated for ini
tialized data used for variable declarations, noninitialized data used for func
tion declarations, and dynamically allocated memory. Note that the stacks for
the user area and the kernel area are separate.

The data segment is referred to as working storage. Unlike the text segment,
it contains data which is created dynamically as the process runs. Note that
this data has no persistent storage on the file system; therefore, if memory is
overcommitted, its contents will be written out to the preallocated area on the
paging space.

10.3 PROCESS-AFFILIATED KERNEL STRUCTURES

A process, when executing, has no knowledge of other processes on the system.
It is the scheduler that manages how and when each process gets the CPU to
execute its instructions.

Affiliated with each process is a set of data structures. The pertinent ones are
proc and user (also referred to as u_area or user area). Each process is managed
by the kernel through the global structure called proc. The user structure,
which points to the proc structure, contains local data pertinent to that process.

Information contained in the proc structure includes:

• State of the process

• User identifier

• Process identifier

• Process identifier of the parent process

• Process priority

• Nice value of the process

• Process statistics

• Process link pointers pointing to child and sibling processes

•Number of threads in the process, etc.

The user structure, which points to the proc structure, includes information
about

• signal management

• resource usage per process

264 Software

• user-mode address space mapping

• controlling terminal (if any)

• user's file descriptor table

• pointer to the current directory of process

• cumulative number of ticks, etc.

Note that there is a proc structure for every process, including kernel pro
cesses, running in the system. Each structure is represented by a slot in the
process table. There is also a user structure for every running process and it is
stored in the process's private data segment. The difference in their contents is
that the proc structure contains information that is needed in memory when a
process is swapped out, while the user structure contains information that
need not be in memory when the process is swapped out. Regardless, the pro
cesses that are in use remain pinned in order to avoid page faults in critical
sections.

10.4 PROCESS STATES

A typical process moves through multiple states during its life cycle. Unlike
the human life cycle, a process can revisit a state during its life. There are six
possible states that are stored in the process table entry for every process, and
these describe a process's state at any given time. The states are described
below and their transition states are depicted in Fig. 10.2.

State Description

SN ONE process slot available

SSLEEP awaiting an event

SRUN runnable

SIDL being created

SZOMB being terminated

SSTOP stopped

The SN ONE state is a part of the initialization of the fork system call that
checks for an available process slot in the process table. The SIDL state indi
cates a process being created by allocation of space in memory to commence
execution in the later part of the fork system call. The SRUN state can repre
sent a new or a preempted process that is ready to run and is waiting for the
CPU. If the process is not a new one, it can be a sleeping process returning to
be scheduled again, or a waiting process resuming execution after having
waited on a signal or event, or simply an exiting process from the run state
reverting for its next time quantum (recall that exactly one process can run at
any given time). The sleep state SSLEEP is encountered for processes that are
waiting for an I/O to complete or a resource to become available. The stop state
SSTOP represents processes which are waiting for a signal to transition them

SS LEEP

1--------1
I I
I I
I I
1 SNONE I
I I
I I
I I

•--- ---·

SIDL

RUN

---1
I
I

I I
1 SZOMB I
I I
I I
I I ·--------•

SSTOP

Figure 10.2 AIX process state transitions.

AIX Process Subsystem Internals 265

into the SRUN state. Note that a signal issued by the kernel can result in a
sleeping process to transition into a stopped state, or a stopped process (that
was previously in a sleep state) to transition to a sleep state. Last but not least,
there is a terminating state called the zombie state, SZOMB, which indicates
that a process is in a state of exiting, but is still occupying its process table slot.
Although this SZOMB state ought to be short-lived, some processes hang
around longer than desired, usually because of a parent process's failure to
check on the death of its child. Zombie processes can be identified by display
ing the process table entries and finding the processes that appear as
<defunct> in the displayed output.

266 Software

10.5 PRIORITY HANDLING

The dispatcher and the scheduler are the two main components of the kernel
that drive a process. The dispatcher is a function which facilitates having the
most-favored priority process run at any given time. The dispatcher is
invoked at the occurrence of an interrupt or when the currently running pro
cess relinquishes control of the CPU in order to perform 1/0 or to time-slice
with other processes. Note that the dispatcher does not recompute process pri
orities, but instead chooses the best-suited process to run, based on its exist
ing priority.

The AIX scheduler consists of two parts. One of them is the real-time clock
interrupt handler that executes every system timer tick (which is 10 ms). The
second part recomputes the process priority every hundred clock ticks (which
is 1 s). A nonfixed priority process is charged for every timer tick of CPU it uses
by incrementing a field calledp_cpu in the process table entry for that process.
Then every hundredth timer tick (which is 1 s), the priority of all processes is
recalculated. Subsequently, the dispatcher is called to ensure that a process
which may now have a more-favored priority gets dispatched. Note that the
recomputation task is performed by halving the CPU value (p_cpu) for all pro
cesses, be they in a runnable, sleep, or stopped state, and then converting the
value into a new priority for each process. This explanation is better under
stood from the algorithm below.

priority= nice value+ PUSER + (p_c;:u)

The value of PUSER is a constant, with a default value of 40. It is not a tun
able parameter.

The scheduler is often referred to as the swapper. The duality of terms can
lead to confusion. As stated before, the swapper is the process that handles
context switching, i.e., it swaps processes in and out of the CPU and does so
based on a priority scheme. A context switch does not, however, involve a swap
ping out of the process from main memory to disk. AIX implements two policies
for managing memory:

•swapping

• demand paging

When the system is running normally-that is, it is not thrashing-the pol
icy used is demand paging. This mechanism will, when memory is overcom
mitted, free up memory by "stealing" pages of memory belonging to a process.
(Note that this may or may not involve 1/0). When the system thrashes, the
policy implemented is swapping. Here the most memory-intensive processes
are suspended for a period of time until the system has recovered. When a pro
cess is suspended, all memory belonging to that process is freed up. So, the pro
cess is said to be swapped out of memory. In summary, the process named
swapper, performs dispatching, scheduling, and swapping. It only performs
swapping when the system is deemed to be thrashing.

AIX Process Subsystem Internals 267

What has been described until now pertains to normal processes only. For
real-time processes, the priority has to remain unaffected-in other words, the
value ofp_cpu should not be subjected to recomputation. It becomes necessary
that the real-time processes be run at a higher priority than the swapper. In
general, the swapper process runs with an execution priority of 16. To avoid
preemption by the swapper, the time-constrained real-time processes run at a
fixed priority more favored than 16.

In the hierarchy ladder there are three categories of priorities: (1) interrupt
handler priority, (2) real-time priority, and (3) user process priority. An inter
rupt handler enjoys the most-favored priority on the system in order for it to be
able to preempt a running process to respond on time to an external event. The
real-time processes have the next level of precedence in the priority hierarchy
(Fig. 10.3). Any process that has been assigned a fixed value between 0 and 40
behaves as a real-time process. Such processes run until they voluntarily relin
quish the CPU by entering a sleep state, or an interrupt causes it to get
bumped by causing the dispatcher to run a process with a more-favored prior
ity. Recollect that this trait of the dispatcher was mentioned earlier in this
chapter, where a timer interrupt occurring every 10 ms was inevitable. Thus,
it can be stated that the dispatcher's running of the most-favored process at
least as frequently as 10 ms is tied to the inherent design of AIX. The user pro
cess priority is a volatile entity and is constantly redefined throughout its life
span. At its birth, a process inherits its parent's priority and, over a period of
time, its value changes based upon its CPU consumption. A process priority

High

Interrupt
handler
priority

Real-time
priority

User process
priority

Low Figure 10.3 Priority hierarchy.

268 Software

has a large degree of variance and can assume up to 86 possible values. There
are several catalysts that govern a user process priority, the prime one being
the CPU usage.

Permissible priority values for real-time processes= 0 to 40
Permissible priority values for user processes = 41 to 127

10.6 CONTEXT SWITCHING

Context switching is not specific to AIX or UNIX; instead, it is a generic phe
nomenon found in operating systems schedulers, in which, at the end of each
time, quantum, an interrupt is generated from the timer. Processing the timer
to switch the CPU to another process requires saving all the registers for the
current process and loading the registers for the new process. This task is
known as a context switch. Context switch time is pure overhead. The time
required to perform a context switch depends on the cause of the context switch.
The cost of a context switch owing to an external interrupt is different from that
of one caused from expiration of a process's time-slice, which, in turn, is differ
ent from a context switch occurring due to voluntary sleep of a process. These
varying costs of context switches directly affect the performance of the system.

AIX supports a set of unique features that enables it to achieve an exceed
ingly fast context switch time. Traditional UNIX systems do not allow a context
switch while executing in the kernel mode. But AIX has a fully preemptable
kernel which does permit such a context switch to happen. Not only is a context
switch possible under AIX, but the mechanism is speeded up dramatically
because of the presence of a unique data structure for the dispatcher.

There are 128 process-scheduling run queues under AIX that correspond
directly to the 128 priorities supported by the dispatcher. Each run queue is a
circularly linked list of runnable processes having the same priority. An array
of pointers, called the run queue pointer array (RQ-PA), serves as the repository
for head pointers to each of the circular doubly linked lists. The system main
tains another array, called the bit array, with 1-bit flags to indicate which of the
run queues are nonempty. This complex data structure is laid out in Fig. 10.4.
As long as there is one process in the run queue of that priority level, the bit flag
in the bit array remains enabled. So, when choosing which process should be
run next, the dispatcher only has to look at the bit array to determine the most
favored priority run queue that is occupied. The algorithm is as follows:

compute the most favored priority level
index into the array of run queues
access the head pointer pointing to the run queue
select the process at the head of the run queue
dispatch the process

Following the expiration of the scheduler's time quantum, if the process is still
runnable, it is placed at the end of the run queue, and the new head of the
linked list is dispatched. In this way, the dispatcher is able to implement a

0

0

\0

\0

plr

\0 121..._ _____ _,

AIX Process Subsystem Internals 269

Circular doubly linked list of
process table entries (PTE) _______ ./..._ ____ __

I ~

Figure 10.4 Data structure layout for the AIX process dispatcher. Indices 0 to
40 of the RQPA point to real-time processes and indices 41to127 point to user
processes.

round robin scheme within processes of equal priority. The main gain of this
implementation in AIX over traditional UNIX is an exceedingly fast context
switch, since the dispatcher does not have to traverse through long queues,
even ifthere were several runnable processes outstanding.

10.7 PROCESS SCHEDULING

The process scheduling mechanism in AIX is no different from that in traditional
UNIX systems. The scheduler belongs to a general class of operating schedulers
known as round robin with multilevel feedback. UNIX process management uni
fies the temporal diversification in the activities by merging all the computations
as processes, thereby making a process the only schedulable entity. Processes are
given a time quantum when the scheduler selects one for the CPU from its mul
tilevel priority queue. The highest run-queue level at which incoming user pro
cesses can enter the process-scheduling subsystem is 40 (recall that all processes
inherit a PUSER value of 40 plus a nice value varying between 0 or 39, which can
be changed via the nice or renice system calls). New processes start life with a
CPU value (p_cpu) of 0 as shown in Fig. 10.5. In all of the 128 circularly linked
process scheduling run queues that correspond to the 128 permissible priorities

270 Software

LevelO

Level 1

Level2

supported by the dispatcher, the time quantum for time-slicing increases the
lower the level. In other words, CPU-bound processes tend to stay at lower levels
and 1/0-bound processes hover around higher levels. A process is time-sliced
every quantum, and the CPU time used in this interim is charged to that process.

When a context switch occurs to make another process runnable, the over
head encountered in the operation may or may not be charged to the right pro
cess. Although the enhanced context switch mechanism in AIX lessens the
context switch overhead time, it does not eliminate it.

The process time measurement activity is tied to the clock handler and is
carried out by sampling the usage of the CPU at the clock tick instants. The
system keeps time with a hardware clock that interrupts the CPU at a fixed,
hardware-dependent rate. The frequency of this interrupt is 100 times a sec
ond. This means that the best granularity of time that the AIX kernel can pro-

New

Figure 10.5 Process scheduling.

AIX Process Subsystem Internals 271

t
... ...

A . r ·1
't'

~
... __ .,.

... --... _

begin clock clock end
burst tick tick burst

Figure 10.6 Process time measurement.dis the clock-tick interval
(10 ms); tis the time quantum (CPU burst); 't and t' are the positive
and negative errors created in measuring the interval.

vide is 10 ms. If a process is to wake up after one clock tick and then go away
before the next tick, no CPU utilization would be attributed to its p_cpu field.
Due to the coarse clock granularity and the snapshot-oriented mechanism of
process timing in UNIX and AIX, errors occur easily, as depicted in the time
line in Fig. 10.6. The occurrence of an interrupt (such as the clock interrupt)
affects the CPU utilization of the running process. But there is no feature to
account for the time spent by the CPU in handling interrupts caused by other
processes. The small magnitude of errors, when added up and compared
against cumulative system statistics, results in a rather significant quantity
not small enough to be ignored, especially on loaded systems. Those familiar
with the mainframe world may recall the problems oflow resolution and large
variability in time measurements.

Timing is done at three nested levels (diagrammed in Fig. 10.7)-i.e., the
scheduler, the dispatcher, and the clock cycle level. While the scheduler recom
putes the priority of all processes every second, and the dispatcher increments
the utilization of the current process by one for every hundredth of a second,
the system has several thousand opportunities in the interim to raise inter
rupt(s). In order to address finer time measurements, a hardware-based timer
facility is available, which enables programs to measure time intervals with
high resolution.

10.8 THE THREAD PARADIGM

Thread is a new paradigm planned for AIX version 4 and later releases. A
thread is defined as an object that performs computations in the context of a
process. The concept of thread* has descended from the Mach operating sys
tem which is based upon a set of programming abstractions to exploit multi
processor environments.

Using the Mach design principles, traditional AIX processes have been divided
into two separate components, emphasizing the notions of tasks and threads.

*Threads are often described as "lightweight processes." Note: This is not to be confused with
Sun's lightweight processes (LWP).

272 Software

Scheduler

Dispatcher

, , , ,
, , ,

, ,
, ,
, ,

, ,
,

1 time a second

, , , , ' '

100 times a second

, ' , ' , ' , ' , '

' '

, ' , '

' '

, ' , '

' '

, ' , '

' '

, ' , '

' '

, ' , '

' '

, ' , '

' '

, ' , '

' ' ' '

, ' , . '
/ Several thousand times a second ',

Clock cycle ,(, I }.

Figure 10.7 A conceptual layout for timing done at three nested levels
the scheduler, dispatcher, and the clock.

Both entities are intricately tied together. A task contains a passive collection of
resources for a group of cooperating entities. Refer to Fig. 10.8 for an example. A
thread is the active execution environment that is perceived as a basic schedu
lable entity. A task may have many threads, all running simultaneously.

Much of the power of the Mach programming model, which is supported by
newer releases of AIX, comes from the fact that all threads in a task share the
task's resources. For instance, the threads share the same virtual memory
address space. However, each thread in a task has its own private execution
state. Compared to a UNIX process, which encapsulates a processing state
along with all of the resources required for execution, a thread has only one
physical attribute (i.e., the processing state specified by the thread's program
counter, stack pointer, and the hardware registers). From a performance
standpoint, creation of a UNIX process is far more expensive than creation of
a thread.

10.8.1 Thread-affiliated kernel structures

Just as there are global and local structures calledproc and user affiliated with
each process (discussed earlier in this chapter), there is a set of new data struc
tures that relate to threads. Each thread is managed through a structure
called thread. Associated with it is an allied structure called uthread, which is
local in scope and contains data that is private to the thread. Figure 10.9
depicts the important relationship between processes and threads. Informa
tion contained in the thread structure includes:

AIX Process Subsystem Internals 273

Execution state

Execution state

Execution state

Execution state

Process management Process management
., .,
Q.l

Memory and 1/0 mgmt Memory and I/O mgmt <..>
0

~ ~

Timing and statistics Timing and statistics
po:"

Resource control Resource control

UNIX Mach

Figure 10.8 UNIX process versus Mach task and threads.

• State of the thread

• Pointer to the proc structure

• Pointer to the next thread

• Thread's priority

• Thread identifier

• Processor usage for the thread

• Processor ID to which the thread is bound

The uthread structure, which points to the thread structure, includes infor
mation about

•User mode-stack pointer

•User-mode machine state register value

• Pointer to the thread's kernel stack

• File system transaction identifier

• Timer structures

10.8.2 Thread states

Like processes, a thread may be represented with states. In the newer releases
of ADC, threads happen to be the schedulable entity. This entity has an execution
state that specifies whether or not the thread is executing or can be scheduled for
execution. At any given time, a thread is in one of the following execution states:

274 Software

Proc table

proc thread

user uthread

Figure 10.9 Process-to-thread relationship.

State

TSNONE

TSIDL

TSRUN and TWCPU

TSRUN and TNOWAIT

Description

thread does not exist

thread is being created

thread can be scheduled to execute

thread is executing

TSSWAP

TSSLEEP

TSSTOP

TSZOMB

AIX Process Subsystem Internals 275

thread is swapped and cannot be executed until it is
swapped in by the scheduler or until a signal is posted
to the thread or process

waiting for resource(s) to become available and cannot
be executed until those are provided

thread is suspended and cannot be scheduled to execute

thread is being terminated

The TSNONE state indicates that a process slot is available in the process
table, and the TSIDL state marks that a thread is in the process of being cre
ated. A thread that is runnable is represented by the TSRUN state. If a thread
has been swapped out, it is indicated by the TSSWAP state. The TSSLEEP
state is encountered for threads that are waiting on an I/O to complete or a
resource to become available, while the TSSTOP state represents threads
which have been stopped and are waiting on a signal to transition them into the
TSRUN state. Last, there is a TSZOMB state, which indicates that a thread has
exited. Figure 10.10 illustrates the possible state transitions of a thread.

10.8.3 plds and tlds

Processes are the fundamental schedulable entities from the operating sys
tem's perspective in traditional UNIX and in AIX (up to Version 3). At birth,
each process is assigned a unique process identifier number called its pid.

With the introduction of the thread paradigm and its consequent abstraction
as being the schedulable entity, it becomes imperative that there be a thread
identifier, tid, in addition to the pid. It is essential that one be able to distin
guish between a tid and apid. Apid on AIX is a 32-bit number derived from a
combination of proc table slot* index and a generation count index that aids in
avoiding rapid reallocation of pids. By setting the least significant bit to 0, only
even number pids are generated (except for the init process). The opposite is
true for tid; all tids are odd number entities. tids are derived from a combina
tion of thread table slott index and a generation count index that aids in avoid
ing rapid reallocation of pids. In this way, one is able to tell the difference
between a pid and a tid.

10.8.4 Context switching

With the implementations of threads, context switching happens at a thread
level instead of at a process level. The context switching task consists of saving
the user, kernel, and the hardware state of the currently executing thread, and
restoring the corresponding state of a different thread. When a thread exe
cutes, its computational state is maintained in the hardware registers. When

* Slots in the proc table are recycled. They are made available to newborn processes on a first
come first-serve basis.

t Slots in the thread table are recycled. When a tid is to be allocated, its value is predicated on
the first available thread table entry.

276 Software

Terminating

Figure 10.10 Possible state transitions of a thread.

the thread is not executing, its state information is held in a special area called
its mst area (mst means machine state). The mst is a data structure that spec
ifies the value of the thread's stack pointer and the contents of its hardware
registers. An abbreviated listing of the mst area is shown in Fig. 10.11.

Context switching may take place because of different situations. For exam
ple, the current thread may generate an interrupt due to a page fault and, in
turn, block the thread's execution to allow another thread to execute. The cur
rent thread can issue a system call to access a resource that is not available.
Furthermore, the current thread can be preempted by a hardware interrupt
and, when the interrupt has been processed, a different thread is resumed.

10.8.5 Scheduling

With the support of threads, the scheduling becomes thread-based instead of
process-based. The scheduler now traverses the thread table instead of the
proc table.

AIX Process Subsystem Internals 2n

MSTSAVE AREA AT ADDRESS Ox00004100

curid:Ox41424344 m/q:OxOOOOOOOO iar:OxOOOOOOOO cr:Ox41424344

MSTSAVE AREA AT ADDRESS Ox00264db0

Exception Struct
oxoooooooo OxOOOOOOOO OxOOOOOOOO Oxoooooooo OxOOOOOOOO

MSTSAVE AREA AT ADDRESS Ox2fee0000

curid:OxOOOOle24
msr:Ox400090b0
backtrack:OxOO
ctr:Ox41424344

m/q:OxOOOOOObc
lr:Ox01864370
tid:OxOOOOOOOO

iar:Ox41424344 cr:Ox84242822
xer:OxOOOOOOOO kjmpbuf :OxOOOOOOOO
fpeu:OxOl excp_type:OxOOOOOOOO

*prevmst:OxOOOOOOOO •stackfix:OxOOOOOOOO intpri:OxOb
o_iar:OxOOOOOOOO o_toc:OxOOOOOOOO o_argl:OxOOOOOOOO excbranch:OxOOOOOOOO
o_vaddr:Ox41424344

Exception Struct
Ox41424344 Ox400090b0 Ox007fffff Ox41424344 Ox00000106

Segment Regs
O:OxOOOOOOOO
4:0x007fffff
8:0x007fffff

12:0x007fffff

1: Ox007fffff
5:0x007fffff
9:0x007fffff

13:0x4000140a

General Purpose Regs

2:0x00003359
6:0x007fffff

10: Ox007fffff
14:0x00000804

3:0x007fffff
7:0x007fffff

11 :Ox007ff ff f
15:0x40001d4e

O:Ox41424344 l:Ox2fedff88 2:0xOOOOOOOO 3:0x41424344
4:0xOOOOOOOl 5:0x01864468 6:0x0002f0b0 7:0xfOOaaac8

28:0xe300le00 29:0xe6001220 30:0x0024d914 3l:Ox00039f0d

Floating Point Regs
Fpscr: OxOOOOOOOO

O:OxOOOOOOOO OxOOOOOOOO l:OxOOOOOOOO OxOOOOOOOO 2:0xOOOOOOOO OxOOOOOOOO
3:0x00000000 OxOOOOOOOO 4:0x00000000 OxOOOOOOOO S:OxOOOOOOOO OxOOOOOOOO

30:0x00000000 OxOOOOOOOO 3l:OxOOOOOOOO OxOOOOOOOO

Figure 10.11 State information held in mst area (mst means machine state).

10.9 PROCESS MONITORING

It makes understanding AIX even more meaningful if one is to monitor the dis
patchable units of work at run-time.

Most information on processes can be obtained with the use of crash, which
is a useful dump analyzer and operating system monitoring tool. Hard-to-find
information includes process-subsystem-related details regarding sibling and
child processes, state of signals, dispatcher- and scheduler-related information
for the process, and memory subsystem details such as address space.

Aproc structure is displayed in Fig. 10.12 from an AIX Version 3 system to
show the kind of detailed information that is available about a process. The
slot number (SLT) occupied by the process in the process table is displayed,
along with its status (ST), process ID (PID), parent process ID (PPID), user ID
(UID), effective user ID (EUID), and numerous affiliated fields pointing to
vital information. The links are chain pointers. There is a child pointer that
points to a child, a sibling pointer that links sibling processes together, and a
uidl pointer that links processes for a given user ID. The dispatch fields are

278 Software

used by the dispatcher: the prior pointer links to a chain of processes with the
same priority, the next pointer points to the succeeding process on the run list,
and pevent and wevent are the pending and awaiting events, respectively. The
suspend field shows the signal nesting level and the process-waiting-for field
shows what the process is waiting for (in this example, events). The scheduler
uses the scheduler fields in which the pri field marks the dispatch priority, nice
gives the nice value, lpri gives the lock priority, and wpri gives the wait prior
ity. In the miscellaneous field, the adspace represents the handle of the process
private segment. The signal information field gives details about the pending,
masked, caught, and ignored signals in double-word formats, where each bit
represents a signal number. The statistics field displays information about the
auditing flags and gives the size of the process image in terms of pages.

Recall that newer releases of the AIX operating system (i.e., beyond version
3) support threads. Aproc structure listing in Fig. 10.13 shows the additional
fields and points out the differences. Since the advent of threads has caused
much of the vital information to be moved from the process table to the threads
structure, a thread table entry listing is provided for gathering detailed infor
mation at a thread level. In addition to the process's slot number, status, pro
cess ID, etc., a new thread count (TCNT) field is present in the proc structure.
An additional link, ganchor, points to the process group anchor. The dispatch
and the scheduler fields' significance is reduced as processes are no longer the
unit of dispatchable entity. A new set of thread fields is used to reference the
process's threads: threadcount gives the number of threads for a process, active
and suspend show the number of active and suspended threads, a threadlist
pointer points to the list of threads for this process, and a synch pointer points
to the threads waiting for this process to be suspended. In the miscellaneous

> proc - 1

SLT ST PID PPID PGRP UID EUID PRI CPU EVENT NAME
1 s 1 O 0 0 0 60 0 init

FLAGS: swapped_in no_swap wake/sig locks

Links: *child:Oxe3003600 *siblings:OxOOOOOOOO *uidl:Oxe3000100
*wchanl(real) :OxOOOOOOOO *lcklst:OxOOOOOOOO
selchn:OxOOOOOOOO

Dispatch Fields: *prior:Oxe3000100 *next:Oxe3000100
pevent:Ox00000020 wevent:Ox00000004
polevel:OxOOOOOOad *lockwait:OxOOOOOOOO
*eventlst:OxOOOOOOOO *wchan(hashed) :OxOOOOOOOO suspend:OxOOOl
process waiting for: event(s)

Scheduler Fields: pri: 60 nice: 20 lpri:l27 wpri:l27 flags:Ox O
repage:OxOOOOOOOO scount:OxOOOOOOOO *snext:OxOOOOOOOO *sback:OxOOOOOOOO

Misc: adspace:Ox00001004 *ttyl:OxOOOOOOOO
*p_ipc:OxOOOOOOOO *p_dblist:OxOOOOOOOO *p_dbnext:OxOOOOOOOO

Signal Information: cursig:OxOO sigstate:OxOO
pending:hi OxOOOOOOOO,lo OxOOOOOOOO sigmask:hi OxOOOOOOOO,lo OxOOOOOOOO
sigcatch:hi OxOOOOOOOl,lo Oxl8783eff sigignore:hi Ox7ffffffe,lo Oxe786c000

Statistics: size:Ox0000008a(pages) audit:OxOOOOOOOO

Figure 10.12 proc structure of AIX version 3.

AIX Process Subsystem Internals 279

> proc - 24

SLT ST PID PPID PGRP UID EUID TCNT NAME
24 a 18e0 lOcc 18e0 0 0 1

FLAGS: swapped_in no_swap

Links: *child:OxOOOOOOOO *siblings:OxOOOOOOOO *uidl:Oxe3000000
*ganchor:Oxe3001800

Dispatch Fields: pevent:OxOOOOOOOO wevent:OxOOOOOOOO
*p_synch:Oxffffffff

Thread Fields: *threadlist:Oxe6000a00 threadcount: 1
active: 1 suspended: 0 local: 0 localsleep: 0
*synch:Oxffffffff

Scheduler Fields: nice: 20 repage:OxOOOOOOOO scount:OxOOOOOOOO
Misc: adspace:OxOOOOOlOO *ttyl:OxOOOOOOOO

*p_ipc:OxOOOOOOOO *p_dblist:OxOOOOOOOO *p_dbnext:OxOOOOOOOO
*lock:OxOOOOOOOO kstackseg:Ox007fffff *pgrpl:Ox08x

Signal Information:
pending:hi OxOOOOOOOO,lo OxOOOOOOOO
sigcatch:hi OxOOOOOOOO,lo Ox00086001 sigignore:hi Ox80000000,lo Ox18408006

Statistics: size:Ox00000026(pages) audit:OxOOOOOOOO

Figure 10.13 proc structure of AIX beyond version 3.

field, a set of new pointers, lock and pgrpl, point to the process lock and the pro
cess group list, while a kstakseg field points to the segment for additional ker
nel stacks. The signal information and the statistics fields remain unchanged.

Thread, which is a part of the process that gets scheduled to execute, can be
thought about as a subprocess. The thread structure provides information that
resembles the proc structure in AIX Version 3. Refer to Fig. 10.14 for an under
standing of the thread structure. In addition to the thread's slot number, sta
tus, process ID, etc., several new fields are present that need mentioning.
There is a thread ID (TID) field which has the same relation to its slot number
as does the process ID. For example, the thread in slot 20 of the thread table
will have a thread ID of Ox14nn (where Ox14 is 20 in a decimal system and nn
is a sequence number). There is another new field indicating the type of
scheduling policy (POLICY) in use by the operating system. Because the sched
uler is a pluggable entity in terms of the kernel, any type of nonpreemptive
scheduling algorithms such as FCFS (first-come first-serve) and SJF (shortest
job-first), or preemptive scheduling algorithms such as RR (round robin) or
SRTF (shortest-remaining-time-first) can be noted by examining this POLICY
field, if a custom scheduler is in use in a fault-tolerant or real-time environ
ment. The next field of interest is PROCNAME which gives the name of the
process for this relevant thread. The relevant link pointers consist of procp,
pointing to the associated process block; uthreadp, pointing to the work area;
and userp referring to the owing process's u_block structure. The prevthread
and nextthread refer to the previous and subsequent threads. The dispatch
fields, used by the dispatcher, are similar to the proc structure of AIX Version
3: the prior pointer links to a chain of threads with the same priority, and the
next pointer points to the succeeding thread on the run or wait list. The SUS
PEND field shows the signal nesting level and the THREAD-WAITING-FOR
field shows what the thread is waiting for. The use of the scheduler fields

280 Software

> thread - 16

SLT ST TIO PIO CPUIO POLICY PRI CPU EVENT PROCNAME
16 s lOel 18e0 0 other 3c 0

FLAGS: wakeonsig sel

Links: *procp:Oxe3001800 *uthreadp:Ox2fee0000 *userp:Ox2fee02e0
*prevthread:Oxe6000a00 *nextthread:Oxe6000a00
*wchanl(real) :OxOOOOOOOO *wchan2(VMM) :OxOOOOOOOO

Dispatch Fields: *prior:Oxe6000a00 *next:Oxe6000a00
polevel:Ox000001c4 ticks:OxOOOl *synch:Oxffffffff result:Ox08x
*eventlst:OxOOOOOOOO *wchan(hashed):OxOOOOOOOO suspend:OxOOOl
thread waiting for: event(s)

Scheduler Fields: cpuid:OxOOOO scpuid:OxOOOO pri: 60 policy:other
lpri:127 wpri:127 tirne:Oxff

Misc: t_lockcount:OxOOOOOOOO t_lock:OxOOOOOOOO
t_dispct:Ox00000044 t_fpuct:OxOOOOOOOO

Signal Information: cursig:OxOO
pending:hi OxOOOOOOOO,lo OxOOOOOOOO sigrnask:hi OxOOOOOOOO,lo OxOOOOOOOO

Figure 10.14 thread structure of AIX beyond version 3.

remains unchanged from that of the proc structure in AIX Version 3 where the
pri, lpri, and wpri give the dispatch, lock, and wakeup priorities, respectively.
Two new fields, cpuid and scpuid, specify the ID of the current and the previ
ous processor to which the thread is/was bound to. The miscellaneous fields
provide assorted information about the thread, including the number of dis
patches, locks, and floating-point-unavailable interrupts. The signal informa
tion fields give details about the pending and masked signals in double-word
formats, with each bit representing a signal number.

The proc and the thread structures described here are intended to serve the
needs of beginner to advanced-level users. Using the crash tool, one can dis
play any kernel data structure or memory locations in the system for debug
ging or learning purposes.

10.10 INTERRUPT AND EXCEPTION HANDLING

The hardware uses the same mechanism to report both interrupts and excep
tions. When either event occurs, the machine saves its current state and takes
an unconditional branch to a special location, where the handler code is located.
Depending on the cause for the preemption, the handler code determines
whether the event is an exception or an interrupt, and, consequently, performs
different processings accordingly.

Interrupts are triggered asynchronously and seldom have anything to do
with the currently executing instruction. Exceptions are synchronous events
and are directly related to the currently executing instruction. Timer ticks
are interrupts and the divide-by-zero operation is an example of an excep
tion. Page faults are also treated like interrupts, with the difference being
that the interrupted program is made nondispatchable until the page fault is
resolved.

Interrupts are asynchronous events that are generated by the operating sys
tem or a device. The occurrence of an interrupt indeed interrupts the execution

AIX Process Subsystem Internals 281

of the current process.* The process* is preempted and the control is transferred
to what are called interrupt handlers. The appropriate interrupt handler routine
services the interrupt and, after its completion, it transfers control back to the
current process* to continue execution. Since an interrupt itself can be inter
rupted by a higher-priority interrupt, AIX saves an abbreviated context for the
interrupt and links a representation of each one together using a region called
current machine state area or csa. The system tracks these regions by the user's
user structure and a pointer to the csa area. Although there are numerous types
of interrupts with different interrupt priorities on the system, there are essen
tially two types of interrupt levels (see Fig. 10.15) associated with them. The
first is called a system interrupt; these are generated by base hardware compo
nents, such as the real-time clock. The second kind of interrupt is referred to as
a device interrupt, and these are caused as a result of the system's interaction
with assorted devices. Interrupt priorities associated with the individual inter
rupts are essentially hierarchies by which pending interrupts are serviced. A
device's interrupt is selected based on its maximum interrupt latency require
ments and the corresponding device driver's interrupt execution time. As far as
interrupt processing within the system is concerned, this operation is provided
by the branch processing unit hardware and its three registers, namely, the MSR
(machine status register), the SRRO (save and restore register), and the SRRl.

The exception handling mechanism enables the executing instruction to
specify the type of action to take. Exceptions are handled differently depending
on whether they occur while executing in user mode or kernel mode. The
default consequence of an exception in user mode causes a signal to be sent to
the process* indicating the type of exception. If an exception handler is
defined, cleanup action is taken to free up the process's storage and affiliated
resources. Exception handling in the kernel mode extends the capability of the
traditional UNIX mechanism by allowing these exception handlers to be
stacked on a per-process or per-interrupt handler basis.

* Thread in the case of AIX beyond version 3.

System
interrupts

Interrupt
levels

Figure 10.15 Interrupt levels.

Device
interrupts

282 Software

10.11 INTERPROCESS COMMUNICATION

The choice of interprocess communication (IPC) is generally governed by the
quantity of data to be communicated between processes, and the frequency of
exchange between processes. No matter which IPC mechanism is used, each
has a minimum overhead cost associated with it and an upper limit on the
bandwidth that it can handle gracefully. In the context ofIPCs, overhead refers
to the time required to transfer the smallest message, and bandwidth refers to
the maximum permissible rate at which transfer can occur.

There are several IPC mechanisms available under AIX. The list includes:

Pipes

Message queues

Shared memory

Semaphores

Sockets

Streams

10.11.1 Pipes

Process A

Pipes are the most basic of the IPC mechanisms. They are like regular files,
and data is stored in them in the same manner. Where they differ from regular
files is that their data is ephemeral. Their contents are transient in nature and
can only be read in a first-in first-out manner. Once the data is read from pipes,
the data disappears and cannot be read again.

Pipes are used in applications where a simple transient data stream makes
more sense than a regular file, or in situations where arbitrary processes need
to communicate, even though the processes at the other end of the pipe are
unknown (refer to Fig. 10.16). When multiple processes write to a pipe, the
write operations remain atomic and data from one write operation never gets
interleaved with data from other processes. However, it should be noted that

Process X

Process Y

Figure 10.16 Pipes.

AIX Process Subsystem Internals 283

the pipes do not preserve message boundaries. So, if one process is to write two
32-byte messages into the pipe, the reader process at the other end of the pipe
has no way of interpreting whether the contents represent two 32-byte mes
sages or four 16-byte messages. Here the application needs to do its own house
keeping for maintaining message boundaries.

There are two kinds of pipes, unnamed pipes and named pipes. When using
unnamed pipes there is no way for processes without a common ancestor to
communicate. So a process has to create a pipe and then fork off a child pro
cess, in order to be able to have both processes (i.e., the parent and the child)
share the same set of file descriptors to read and write from the pipe. Named
pipes (also called FIFOs) overcome this shortcoming. Since they are identified
by a file name, the file descriptor information can be passed to another process
which may be unrelated.

• unnamed pipes

• named pipes

Unnamed pipes are opened using the pipe system call and named pipes are cre
ated using the mknod system call.

10.11.2 Message queues

Message queues provide a more flexible means of communications than pipes
or sockets. Unlike pipes or sockets, message queues do not require a process to
be waiting on a message.

All messages have an associated message queue identifier, using which, pro
cesses can read or write messages to arbitrary queues. This identifier is like a
file descriptor in the case of an open system call, and is used to reference the
queue header. In comparison to pipes, there is no requirement that a process be
waiting for a message on a particular queue before another process can write a
message to that queue. This means that a process is able to write a message to
a queue and exit, and have the message read by another process at some later
time. Unlike pipes, messages provide a specific header format so that applica
tions do not have to worry about interpreting message boundaries. Every mes
sage on a queue has three attributes: a message type, length of the data portion
of the message, and the data itself. With a variable-length data field available,
it is easier to structure and manage the data using message queues.

A message queue is a linked list of messages which has been grouped and
named as a set. Figure 10.17 exhibits messages on a queue, showing queue
headers, a linked list of message headers, and pointers from the message head
ers to a data area.

The most frequent operations performed with this IPC facility are (1) creat
ing or accessing a message queue, (2) removing or controlling the parameters
associated with a message descriptor, and (3) transmitting (sending or receiv
ing) a message. There are four system calls to handle these operations. The
msgget system call opens or creates a message queue by traversing the mes-

284 Software

Queue
headers Message headers Data area

Figure 10.17 Messages on a queue showing queue headers, a linked list of
message headers, and pointers from the message area to a data area.

sage queue array to locate a possible match, and allocating a new queue struc
ture if no match is found. The msgctl system call is used to query the status of
the message queue, set selected status fields, or to remove the queue, when
needed. The remaining two system calls, msgsnd and msgrcv, are similar; one
sends and the other receives a message.

10.11.3 Shared memory

Shared memory provides IPC capability to processes. It is unique in that it is
the only IPC method that does not require the data to be communicated
between processes to be copied. For large chunks of data this is ideal, as it
eliminates severe performance problems that can arise from large data move
ments inside the system. Although AIX protects one process from accessing the
memory space of another process, a common memory space can be made avail
able among multiple processes using a set of special system calls. Even though
a shared memory capability allows data sharing under AIX, it remains the
responsibility of the processes sharing the memory to devise a synchronization
scheme to serialize access to it. On its own, this IPC facility does not provide
locks or access control among the processes. Although reading from shared
memory may be safe, writing to it can result in severe contention problems
leading to deadlocks if proper care is not taken. A conceptual diagram of how
shared memory works is given in Fig. 10.18.

Process
A

Shared
memory

AIX Process Subsystem Internals 285

Process
B

Figure 10.18 Data movement between two cooperating processes using shared
memory.

The system calls for manipulating shared memory are similar to the system
calls for messages queues. The shmget system call creates a new region of
shared memory or returns an existing one; the shmat system call logically
attaches a region to the virtual address space of a process; the shmdt system
call detaches a region from the virtual address space of a process; and the
shmctl manipulates various parameters associated with the shared memory.
Note that the low-level instructions to read/write to shared memory are no dif
ferent from how processes read from and write to standard memory.

Access to a shared memory region is gained by invoking the shmget system
call that searches the shared memory table for a matching key and subse
quently returns a numeric id. A per-process segment table entry provides
access to the descriptor associated with the id. The id references entries in the
kernel's segment information table, which, in turn, describes a segment of
memory. Under the current implementation of AIX, a process may attach to a
maximum of ten shared memory segments at any given time. Chapter 11 elab
orates on the memory segments and explains how a memory of a process is
divided into sixteen segments of which eight (segments 3 to 10) are always
available for shared memory and two more (segments 11 and 12) can be made
available, if needed.

10.11.4 Semaphores

Semaphores are a synchronization primitive. Although semaphores are not
exactly IPC mechanisms, they can be regarded as IPC catalysts, since they
provide a means to synchronize access to shared resources (most commonly,
shared memory segments). Semaphores can be used by a variable number of
unrelated processes. The semaphore facilities found in AIX have their earliest
root going back to Dijkstra's Dekker algorithm, published in 1968, which
described an implementation of two atomic operations which incremented and

286 Software

decremented an integer counter, depending on the value. Being atomic in their
operation, only one of them could succeed at any given time. The semaphores
in AIX and UNIX are a generalization of Dijkstra's atomic operations, in which
they are used as flags to prevent cooperating processes from using the same
resource at the same time.

The most common use of semaphores is in synchronizing access to shared
memory segments. A semaphore's value can be 1 when memory is available
and its value can toggle to 0 when the memory becomes unavailable. A process
accessing this shared memory is required to check the availability of the
resource (i.e., when the value is 1) prior to accessing it. Assuming the resource
is available, the first thing the process does is to decrement the value (to
ensure that it can retain exclusive access to the resource). After the process has
finished modifying the shared memory, the last thing it does is to increment
the value (to allow another process to access the resource). When a
semaphore's value toggles between 0 and 1, as seen in the preceding example,
the type of semaphore is ref erred to as a binary semaphore. On the other hand,
when a semaphore takes up general values (0 or positive) to deal with situa
tions with more than two participants, it is called a counting semaphore.

The semaphore-related system calls are similar to the system calls for mes
sage queues and shared memory. Allocation of and access to semaphores is based
on possession of a key, so that processes without a common ancestry can coordi
nate use of the same sets of semaphores. The semget system call creates and
gains access to a semaphore set associated with the key; the system returns an
integer that serves as the semaphore identifier (called semid) for the semaphore
set created. Each semid points to a set of semaphores and a data structure that
contain information about the semaphores. There is a semop system call which
performs an atomic set of operations on the semaphores associated with the
semid. It reads the list of semaphore operations (supplied to semop as a param
eter), verifies that the semaphore numbers are legal, and ensures that there is
permission to perform the operations. In case of a violation, the semop request
fails. The third semaphore-related system call is semctl, and it controls miscel
laneous operations on the set, such as initialization or removal of a set. The basic
data structures for semaphores are illustrated in Fig. 10.19.

Of the IPC mechanisms discussed so far, the message queues, shared mem
ory, and semaphores are exceedingly similar in their implementation. Each of
them features an equivalent set of system calls, as shown in Fig. 10.20.

10.11.5 Sockets

Sockets are communication channels that enable unrelated processes to
exchange data locally or over networks. They are invoked using the socket sys
tem call. Although they can be used for IPC on the local machine, their primary
use has been for remote communications across hosts.

Sockets move associated data in accordance with a referenced protocol. They
make use of underlying drivers to transport information from a process on one
system to a participating process on the other, as seen in Fig. 10.21.

Semaphore
table

0

0

0

1

1

1

AIX Process Subsystem Internals 287

2 3 4 5

2 3

Semaphore arrays

Figure 10.19 Semaphore data structures.

The kernel structure for a socket consists of a layered implementation. It has
three layers: a socket layer which provides the interface with the system calls, a
protocol layer containing the protocol modules for communication, and a device
layer holding the drivers that control the network devices. Using sockets, pro
cesses can communicate in a client-server mode: a server process listens to a
socket from one end of a bidirectional communications path, and client processes
communicate with the server via another socket on the other end of a communi
cations path (which may be on a different machine). The internal connections
and routing of data from client to the server is maintained by the kernel itself.

10.11.6 Streams

Streams is an adaptable suite of tools and facilities for development of AIX and
traditional UNIX system communication services. It supports implementation
of services ranging from networking protocol suites to device drivers. Streams
allow one to define standard interfaces for 1/0 within the kernel and between
the kernel and the rest of the AIX system. The key benefit is that the associa
tion mechanism is simple and open-ended. A plethora of applications ranging

288 Software

Operations Message queue Semaphore Shared memory

system calls to create or open msgget semget shmget

system call for control operations msgctl semctl shmctl

system calls for IPC operations msgsnd semop sh mat
msgrcv shmdt

Figure 10.20 System calls used for message queue, semaphore, and shared memory.

Data

from networking protocol suites to device driver specifications are supported
by this versatile set.

To describe how streams work, they can be thought of as a full-duplex pro
cessing and data transferring path between a driver in kernel space and a pro
cess in user space. It provides a conduit by linking three components together:
a stream head, a driver, and one or more modules in between. Figure 10.22
shows the layout of the components. The system calls made by the user-level
process on a stream are processed by the stream head. The stream head, in
turn, communicates with the module(s). Modules modify the data representa
tion and pass the information downstream to the driver, which, in turn, com
municates with the external interface.

Streams uses queues as a basic data structure that includes status informa
tion and pointers for message-processing routines and stream administration.
Queues are allocated in pairs, one with a lower address for read-side
(upstream) and the other for write-side (downstream). Each driver, module,
and the stream head are assigned a pair of queues, as a module is added to the
stream. Data is passed between the driver, stream head, and modules in sets

MachineB

ProcB

Machine A

Data Protocol

Driver

Physical network

Figure 10.21 Socket.

AIX Process Subsystem Internals 289

User space

Kernel space
Downstream

Stream head

Module

Driver

Upstream External interface

Figure 10.22 Structure of a simple stream.

of data structures, called messages. A streams message consists of one or more
message blocks, each forming a triplet consisting of a header, a data block, and
a data buffer. Within a stream, messages are distinguished by a type indicator.
Some message types sent upstream may induce specific action by the stream
head, such as sending a signal to the user process, while others carry informa
tion only within the stream.

The basic operation of a streams driver is similar to that of a traditional 1/0
driver. It consists of multiple associated nodes accessed by using an open system
call. Typically, each file system node corresponds to a separate minor device for
that driver. If one minor device is opened multiple times, subsequent open calls
return a file descriptor referencing the stream. Processes sharing the same
minor device share the same stream to the device driver. A user process sends
data to the device using a write system call, and receives data from the device
using a read system call once the device is open. These calls are compatible with
the traditional character of the 1/0 mechanism. A close system call closes the

290 Software

driver and dismantles the associated streams once the last open reference to the
stream is completed. The rate of message transfer between modules, drivers,
stream head, and the processes is controlled by a mechanism called fiow con
trol. It is a local and voluntary process to each stream that limits the number of
characters that can be queued for processing. This, in turn, limits buffer and
related processing at any queue. If the stream exercises flow control on the user,
the write call blocks until flow control is relinquished, and does not return until
count bytes are sent to the device. Then exit is called to finish the user process,
close open files, and dismantle the stream, if appropriate.

The benefit of streams is that it provides a flexible, reusable, and portable
set of tools for development. It standardizes service interfaces that are gov
erned by a set of protocols. It creates data communication service modules and
provides the capability to manipulate modules from user level. This allows
interchange of modules with common service interfaces and changes the ser
vice interface to a streams user process. Thus, user-level programs, network
architectures, and higher-level protocols can be independent of underlying pro
tocols and physical communication media. Further, higher-level services can
be created by selecting and connecting lower-level services and protocols. The
same protocol module can be used with different drivers on different machines
by implementing compatible service interfaces. From a user's perspective,
modules can be dynamically selected and interconnected without the hassle of
kernel programming, assembly, or linking.

10.12 SUMMARY

An understanding of the concept of a program or process is only complete when
one is able to understand not only the structure of a process but also the allied
data structures in the user's and the kernel's world. The process life cycle
under AIX is no different than traditional UNIX systems, but it is the presence
of advanced context switching mechanisms, priority queue handling, and a
preemptable kernel that makes the AIX process different in terms of process
subsystem internals.

The basics of UNIX process management concepts have been kept concise
here, as that material can be found in any of the numerous textbooks on the
UNIX operating system. Concepts that highlight the unique capabilities of the
operating system in areas such as support for real-time computing, threads
(also called pthreads), and support for multiprocessor platforms have been
emphasized in this discussion.

Chapter

11

AIX File, Memory,
and 1/0 Subsystem Internals

This chapter provides a tour of the 1/0 subsystem of AIX. Internal data struc
tures related to file, 1/0, and memory are explained in light of their functions,
features, and benefits. The discussion begins with a design overview of the file
system and is followed by a detailed description of the logical file system, phys
ical file system, mapped files, and journaled file system. The virtmµ memory
subsystem is discussed next, with regard to its page replacement, memory load
control, and code pinning policies. Finally, a description of the 110 management
and its key features is presented from a systems point of view.

11.1 AIX FILE SYSTEM

The AIX file system can be described through a logical view of the file layout,
as well as through a physical view of the file organization. The logical perspec
tive is referred to as the logical file system, and the physical view of the file lay
out is called AIX's physical file system. The logical file system includes the
traditional inverted tree structure as seen on all UNIX systems. Directories,
links, etc. are all considered a part of the logical file system. Three different file
system types are supported by AIX:

• Journaled file system

• Network file system

• CD-ROM file system
291

292 Software

The journaled file system specifies the native AIX file system. The network
file system specifies the file system type that permits files residing on remote
machines to be accessed as though they resided on a local machine. The CD
ROM file system allows the contents of a CD-ROM to be accessed through the
normal file system interface (such as open, read, and close).

11.1.1 Physical file system

The physical file system maintains the system's perspective of the devices. To
interface the logical file system with the physical file system, an intermediate
layer of abstraction is introduced, which is the virtual file system. Because of
this abstraction, AIX is able to support foreign file and file system types. Fig
ure 11.1 illustrates the interfacing role of the virtual file system. The virtual
file system permits user processes to access files using a universal system call
interface, regardless of the location or the type of the file. Figure 11.2 demon
strates how the presence of a virtual file system changes the "standard UNIX"
access to a file.

Virtual
file system

OLJ
Figure 11.1 Virtual file system.

Logical
file system

Physical
file systems or
remote
file systems

AIX File, Memory and 1/0 Subsystem Internals 293

Application

Kernel

File subsystem

VFS

CD-ROM NFS JFS

Figure 11.2 Virtual file system permitting
generalization for file access.

Access to a file begins with one of the user file descriptors pointing to the file
table, and the file table, in turn, pointing to the vnodes. The vnode references
an affiliated gnode in the in-core inode table and also points to a structure
called vfs that describes the mount (for example I home or I usr) that supports
the file in question. This vfs structure has a reference pointing to a data struc
ture called gfs, which describes the type of the file system, and another refer
ence pointing back to the directory vnode upon which it is mounted. The gfs
structure states whether the file system in question is a journaled file system,
a network file system, or a CD-ROM file system. Depending on which file sys
tem type is being pointed to, the gfs structure indexes into two structures: a
structure called vfsops that determines the set of operations apropos to this file
system (such as mount, unmount, sync, etc.), and a structure named vnodeops
that describes a set of functions (such as link, mkdir, mknod) that can be per
formed on vnodes from this file system. Figure 11.3 represents the tour
through the tables and structures that completes the picture.

11.1.2 Memory mapped files

When one opens a normal file under AIX to read from, write to, or append to,
the file is automatically mapped to memory to provide what are called mapped
files. That is, normal file access under AIX bypasses the buffer cache subsys
tem that traditional UNIX systems use. By having files mapped to the system
memory, the cost for a read-from or write-to a file is diminished to merely the
cost for a memory write. This greatly enhances 1/0 performance. Although,

294 Software

In-core inode table Vnodes File table

D
gnode

D
vfs

gfs

Figure 11.3 VFS data structures.

AIX File, Memory and 1/0 Subsystem Internals 295

upon being opened, files get mapped implicitly by default, explicit mapping can
also be requested using a set of special purpose system calls.

There are two system calls, mmap and shmat, that provide the capability for
multiple processes to map the same region of an object such that they share
addressability to that object. As far as choosing one over the other, the shmat
call is used when there are a few files to be mapped simultaneously to their
entirety and memory regions need to be shared among unrelated processes.
The mmap call, on the other hand, is used when many files are to be mapped
simultaneously, portability of the application is vital across other UNIX plat
forms, and there is a need to map a portion of the file.

If mapped explicitly, the file is accessed by address rather than by read
and/or write system calls. There could be a performance tradeoff here; while
explicitly mapped files save on the overhead cost of the read I write system
calls, they lose the benefit of the system write-behind feature.

11.2 JOURNALED FILE SYSTEM

Traditional UNIX systems could not guarantee recovery from a crash without
loss of files. The method of recovery depended excessively on utilities and the
savvy of the system administrator. AIX does away with the UNIX-like way of
storing and recovering information by implementing a persistent storage man
agement scheme. The mechanisms implemented by AIX in this area are radi
cally different from those in traditional UNIX systems. AIX implements a level
of abstraction on top of the physical media called logical volume. This logical
volume not only enhances the reliability of the files in the file systems but also
eradicates the limitations of static file system size.

11.2.1 Logical volume manager

The logical volume manager (referred to as LVM from here on) is a paradigm
that addresses the concept of virtual disks (called logical volumes) to address
the evolving need of the storage subsystem. The LVM provides a layer of
abstraction between the logical partition perceived by the users and the actual
physical partition viewed by the operating system (refer to Fig. 11.4). LVM con
sists of two major subsystems:

• LVM subroutines

• Logical volume device driver (LVDD)

The LVM subroutines can be accessed through the logical volume data struc
tures and the logical volume device driver configuration routines, as seen in
Fig. 11.5. The logical volume device driver interface is at a higher level than
that of a physical device and allows an abstraction of device-specific dependen
cies (refer to Fig. 11.6 for viewing the interface layout).

The principal benefit of implementing the LVM paradigm is that it allows
the extension of files, file systems, and raw partitions to multiple physical

Logical partitions

Logical view

Physical view

Physical volumes

Figure 11.4 Abstraction oflogical and physical partitions using the LVM.

smit Application
commands programs

User space

System call boundary

Kernel space

Filesystem

~
---- ----------------------------- ---- ---/ ' I

I
LVDD I LV data LVDD I configuration

I structures IIO routines routines I
\

' -- /
LVDD subspace

Figure 11.5 LVM execution model.

' \
I
I
I
I

I
I

Character
1/0

LVDD
read/write

Physical
DD

strategy

User space

1/0 system call interface

Kernel space

Device switch

LVDD
strategy

Device switch

D

AIX File, Memory and 1/0 Subsystem Internals 297

Filesystem
1/0

Filesystem
read/write

Physical
DD

strategy

Figure 11.6 Logical volume device driver interface.

media, without modification to the existing system or application software.
Since the logical volume is an abstraction, it can be made larger than the
underlying physical volumes. Logical volumes can also be mirrored on multiple
physical volumes to improve performance for data access and provide a greater
reliability for sensitive data sets. The LVM supports transparent software bad
sector remapping, which means that it has the ability to detect and relocate
bad sectors autonomously. The size of a logical volume can be increased
dynamically on a running system without impacting logged-on users. The only
thing a user notices is that, before increasing the logical volume size, the file

298 Software

system is fuller than it is after the resizing operation. The access to logical vol
mnes is transparent with no alteration to the interface through which users
and system administrators communicate with the AIX file system.

Before delving into the details of the LVM, there are some terms that need
explaining.

• Physical volume. Physical volume (PV) refers to a physical disk.

• Logical volume. The term logical volume (LV) refers to a logically grouped
area. This area appears as if it were a device to the applications, and as a
disk to the users. A logical volume, in actuality, is simply a mapping to areas
of physical volume(s). Since a logical volume can map to multiple physical
volumes, its size can be larger than any one physical volume. The most com
mon use of a logical volmne is for a file system.

• Volume group. As the name suggests, a volume group (VG) is a collection of
physical volumes. A volmne group may contain different disk types.

• Physical partition. For the LVM, a physical partition (PP) is the smallest
unit of disk space allocation.

• Logical partition. A single logical partition (LP) points to one or more phys
ical partitions

Figure 11. 7 maps the newly introduced terms to an illustration to further
explain the positioning each of these components. As shown, the physical vol
ume is the primary system storage device. The information pertinent to the
physical volume and the volume group to which it belongs are organized within
selected data areas within the physical volume. The areas are referred to as
the physical volume reserved area and the volume group reserved area. LVM
uses the information stored in these reserved areas to orchestrate its tasks.
Note that the size of these areas needed to describe a physical volume may
vary from system to system, since its description depends upon the nmnber of
physical volumes and logical volumes constituting the storage space. Following
the contents of these two essential reserved areas, a small fraction of the space
is used to store the bad sector relocation pool. The remainder of the space on
the physical volmne stores the user data. Figure 11.8 shows the organization of
the data area, bad-sector relocation pool, volume group reserved area, and
physical volmne reserved area on a physical volume.

The LVM acts as a device driver. It receives requests like open, read, write,
ioctl, and close, and performs the necessary tasks to complete the operations.
For example, a read call to a logical volume is converted to the appropriate
operation on physical volmnes, and is subsequently passed to the physical
device driver. The LVM synchronizes the 1/0 and, in turn, responds to the ini
tial logical request for that read operation.

In general, applications use the logical volume device nodes as a "normal
device" and access it using standard read, write, and ioctl system calls. The
flow of block as well as character (raw) 1/0 are handled by the LVDD's strategy
routine. The driver strategy entry point then translates the logical address to a

AIX File, Memory and 1/0 Subsystem Internals 299

/j DIRECTORY

.

§

p

. .

PVl INDIRECT BLOCKS

/ § //
p

p
I

I
I

LVl

\
\

\ \
\ PV2

I DISK ALWCA TION MAP

§ I
p

p

\
\
\
\

PV3
\

LV2

DATAFILE

. . .

SYSTEMWIDE VJRTUAL
MEMORY SPACE

Figure 11.7 Mapping of physical and logical volumes.

physical address (handling bad-sector relocation and mirroring) and calls the
appropriate physical disk device drivers. Once the 1/0 has completed, the phys
ical device driver calls a routine named biodone, which, in turn, invokes the LV
110 completion handling routine. Once this has been completed, biodone is
called upon again to notify the requester that the 1/0 is now completed.

Like any regular device driver, the LVM driver is split into two parts, the top
half and the bottom half. The top half contains the open, close, read, write, and
ioctl entry points. The bottom half contains the strategy entry point-block
read and write code.

The code in the top half of the LVM device driver runs in the context of a user
process address space. When commands like ioctl are used to manipulate a vol-

300 Software

}
Physical volume
reserved area

}
Volume group
reserved area

Logical volume
manager user
data area

} Common bad sector
relocation pool

Figure 11.8 Physical volume organization.

ume group and its associated logical and physical volumes, the ioctl call passes
through an entry point called lv_ioctl (an abstraction for the logical volume
layer) A complete set of I/O entry point routines like this one is provided. The
entry points are:

lv_open

lv_close

lv_read

lv_write

lv_ioctl

Called by the file system when a device is opened or a logical volume is
mounted

Called by the file system when a logical volume is unmounted or
when the last close has occurred on the open file corresponding to
the device

Called by the read system call to translate character 1/0 to block 1/0
requests

Called by the write system call to translate character 1/0 to block 1/0
requests

Serves as an entry point for the ioctl call and also implements most of
the driver programming interface

The bottom half of the LVM device driver features several layers, including
the device strategy entry point. This strategy routine is a code that is called to
process all logical block requests. This part of the LVM, the bottom half, vali
dates I/O requests, translates logical addresses to physical addresses, handles
mirroring and bad-sector relocation, and actually starts the I/O. Unlike the top
half of the LVM device driver, this part runs in the interrupt context and is not
permitted to block.

AIX File, Memory and 1/0 Subsystem Internals 301

The different layers of the bottom half of the LVM device driver are:

• Strategy. Performs logical request validation, initialization, termination,
and serialization oflogical requests (when block ranges overlap).

• Mirror consistency manager. Ensures integrity of the mirrored data (i.e., if
mirroring is enabled on the system).

• Scheduler. Schedules physical requests for logical operations.

• Status area manager. Tracks availability of physical volumes and the state
of physical extents.

11.2.2 Disk mirroring

Mirroring refers to the replication of data stored in a logical block. The LVM
controls mirroring through the use of ioctl system call, as seen in Fig. 11.9. AIX
can be singly mirrored, i.e., configured to maintain two copies of a data. Ifthere

Logical view

Physical view

Physical volumes

Figure 11.9 Disk mirroring (singly mirrored).

Logical partitions

Physical partitions

302 Software

are three copies, then data is said to be doubly mirrored. As implied from its
definition, mirroring, if enabled, requires double the disk space (at a mini
mum) for the mirrored data. This feature remains disabled by default. If
required, mirroring may be enabled using the smit tool. Data may be mirrored
for high availability or for higher performance.

Mirroring for high availability is done to deal with situations when or if data
becomes unavailable owing to media defects, a catastrophic drive failure, con
troller malfunction, etc. By mirroring data, the LVM is able to transparently
recover from the loss of one copy of the data. When access to one copy of data is
denied, the LVM redirects 1/0 intended for the missing data to the secondary
or tertiary copy. Although this is a very useful feature for handling critical
data, careful planning is a prerequisite when setting up the volume group for
mirroring. Consider an example, where a configuration of two physical vol
umes is being used with a file system that has been singly mirrored for a total
of two separate copies of the file system. If the two copies of the file system are
housed on separate disks, then one disk's failure would still mean retaining
access to an alternate copy of the data. But had only one disk maintained both
physical volumes, a disk failure would have resulted in a complete loss of data,
thereby defeating the purpose of mirroring for high availability.

Mirroring for higher performance is carried out if there are data blocks that
are subjected to intensive 1/0, primarily owing to excessively frequent read
operations. Having multiple copies of a data block which can be accessed in
parallel by concurrent read requests renders quicker data access than one
without disk mirroring. If implemented, the mirrored copies should be dis
tributed across multiple physical disks for optimal performance. On systems
equipped with sufficient hard drives and disk space to spread the mirrored
blocks, performance for read access is achieved by the system by scheduling to
access the copy of the mirrored block that costs the least to retrieve. For write
operations, copies of a mirrored block get scheduled to be written whenever
feasible, meaning that the block is not considered written until the last copy of
its associated mirrored block has been updated. Usually the total time
required to write the copies of a mirrored block approximates the time it takes
to write the slowest copy of a mirrored block. Note that lack of careful configu
ration planning to ensure proper distribution of mirror copies across disjoint
physical disks can result in performance degradation instead of performance
enhancement. In conclusion, mirroring is not always the best way to achieve
high performance. Its gain is significant when data is mirrored for the pur
poses of frequent read access, rather than for frequent write access.

11.2.3 Bad block relocation

This is another configurable feature that can be enabled or disabled based on
the need. There are two kinds of errors that may be encountered by the LVM:
(1) soft errors and (2) hard errors. Based on the type of error encountered, the
LVM takes the appropriate actions.

When the LVM detects a soft (correctable) read error, it attempts to rewrite
the data, with write verification to the physical drive, potentially correcting

AIX File, Memory and 110 Subsystem Internals 303

the error. Either of two things can happen. If there is no support for write ver
ification on the disk drive and the LVM rewrite fails, the soft error gets treated
as a hard error. On the other hand, ifthe disk drive supports write verification,
the read succeeds; this is followed by the LVM performing a write operation to
the relocated area and relocating the sector.

When the LVM detects a hard (uncorrectable) error, it relocates the sector.
The operation is performed using a pool of data sectors that is maintained for
this purpose. All subsequent I/O is then directed to the new sector. If the data
is mirrored, then LVM redirects the failed read to another copy of the data and
subsequently relocates and rewrites the relocated bad sector. When no mirror
ing of the data is available, the LVM returns an error. Later, when the sector is
updated, it gets relocated and is again capable of storing data.

11.3 MEMORY SUBSYSTEM

The memory subsystem internals of AIX is one of the areas that differs funda
mentally from traditional UNIX operating systems. The memory management
scheme of the operating system was rearchitected to make the best use of the
processor's architectural features. In regard to the storage space, there are
three fundamental objects that form the infrastructure of the memory subsys
tem: (1) real memory, (2) virtual memory, and (3) disk space. The real memory
frames and the virtual memory pages are divided up into basic units, each of
which is 4 KB in size. The disk space is also partitioned into basic units called
blocks, each of which is 4 KB.

real memory~ frames (each 4 KB in size)

virtual memory ~ pages (each 4 KB in size)

page space ~ blocks (each 4 KB in size)

From the system's perspective, virtual memory encompasses both real mem
ory and disk (the file system and the paging space). A virtual memory address
may point to a page on disk or to a page in real memory, depending on whether
the reference is being made to an active or an inactive portion of the program.
A road map of the general page mapping concept is illustrated in Fig. 11.10,
where a virtual page number from the virtual address space indexes into a
table called the external page table (XPT) to resolve whether to go to the pag
ing area or to go to the real memory. If the address is meant for the paging
space, then it directly points to the location on the paging space. But if the
address were to point to the real memory, it must derive its real page number
prior to accessing the real memory. This real page number is generated from a
structure called the page frame table (PFT).

11.3.1 Memory addressability

As far as addressability goes, the AIX kernel, in conjunction with the processor,
provides a per-process address space of 4 GB (232) and a total system address
space of 4 PB (252). Note that the upper limit on real memory supported by the

304 Software

Virtual
address space

page
number

External
page table

Page frame
table

Real memory

Paging space

Figure 11.10 Road map of the general page mapping mechanism.

32-bit implementation of the POWER and PowerPC architectures is 4 GB,
whereas the upper limit on real memory supported by the 64-bit implementa
tion of the Power PC architecture is 16 EB. Think about the total systemwide
virtual address space consisting of 252 bytes that is divided into approximately
224 segments for a 32-bit implementation. In the future, when AIX offers a
64-bit implementation, the total systemwide virtual address space will consist
of 280 bytes that is divided into 252 segments. To understand the hardware
architectural dependencies on memory addressability, refer to Sec. 3.3.3.4 and
Fig. 3.8.

11.3.2 Segmented memory

Associated with each process is an array that holds the addresses of 16 seg
ments, which happen to be the range of virtual memory addressable by that
process. For a running process, its array containing the addresses of the 16 seg
ments addressable by the process itself are held in the 16 segment registers.

AIX Fiie, Memory and 1/0 Subsystem Internals 305

oj Kernel text and data

1 J User text segment

2 l Process private data

3_ ! Shared segment data

10 l Shared segment data

11 l Reserved segment

12 J Reserved segment ...-...-
13 l Shared text segment ...-

14

15

l Kernel data segment

Reserved segment

t--'

I-' ...-
...-...-...-

Figure 11.11 Segmented memory.

Access to segments is regulated by the mode (i.e., kernel mode versus user
mode) in which the process is serving at that instant. For kernel processes, this
is not a problem, as they always run in kernel mode. But processes executing
in user mode have access to a limited number of segments; they have
read/write access to segment 2 and any shared data segments that the process
may have attached, and read access to segments 1 and 13. The remaining seg
ments cannot be accessed by user-mode processes directly.* This description of
the process address space is better understood with the help of a diagram; the
layout of the segments is illustrated in Fig. 11.11.

From the kernel's perspective, text and data in segments 0 and 11 through
15 serve all processes, while the other segments are process-specific. Segment
0 houses the text and data for the base kernel along with kernel extensions (if
any). Segments 1and2 are private for each process and remain protected from
being accessed by other processes. Segments 3 through 10 are shared data seg
ments and can be used to hold explicitly mapped files, or as shared memory for
processes that have requested access via a shared memory system call (refer to
Sec. 11.1.2). Segments 11 and 12 are used to manage the kernel structures
used by the virtual memory manager (VMM). Segment 13 is the shared text
segment and holds text loaded from shared objects, such as libc.a. Segment 14
serves as the kernel data segment, which holds kernel structures, data, and,
most important of all, the proc table. Last, segment 15 is reserved for I/O

* In order to access an area other than what is referenced by segments 1, 2, 13, and shared data
segments (if attached), a user process has to either be in kernel mode or access an address in the
virtual memory address space indirectly by opening a pseudodevice called kmem, located in the
I dev directory.

306 Software

addresses. Figure 11.12 is a graphical depiction of where each of the sixteen
segments points to.

Segments which point to additional data structures require some more
explanation. Segment 0, which contains the kernel text and data, includes the
heap and its allied control structures. Segment 1 contains the user process
text-i.e., the code. Segment 2 is the process private segment and it includes
the initialized data, uninitialized data (bss), user heap, user stack, system call

Base
kernel text,

data and
heap

U= text (ood<) 16 S<gm<ot regi•t</
I~ Kernel ;::::::::::::

User data

User heap

+
Userstack1

Kernel mode
stack

u_block

1 User text

J Process private

3 s
4 H

5 A

6 R

7 E D

8 D A
1---------1

9 T
1--------1

11 Reserved
1---------1

Memory
shared by
processes

Shared
text

101---------iA v_J::

12 Reserved__ ____ _,
1---------1 ~-----

13 Shared text

14 Kernel data

15 110 address Kernel
structures

and
data

Figure 11.12 Segmented memory of the AIX kernel.

AIX File, Memory and 1/0 Subsystem Internals 307

error code variable errno, *kernel mode stack (used by auto variables in kernel
extensions), user block, and kernel mode heap. Segment 11 is allocated for use
by the VMM to refer to kernel structures such as the page frame table, hash
anchor table, page device table, and segment control block. The page frame
table (PFT) is a structure that is allocated at boot time with one entry for each
frame of physical memory. This PFT is referenced whenever the cache and the
TLBt has failed to provide a real address. The PFT is actually two parallel non
pageable tables with a hash anchor table to hold the hashed list of pages and
to refer back to a segment information table. This segment information table
contains entries (each of which is called a segment control block) to describe
each segment in the system. The different kinds of segments recognized by the
VMM are discussed later in this section.

Continuing with the description of subsequent segments, segment 12 is allo
cated for use by the VMM to reference the page table area containing the exter
nal page table and area page map. The external page table (XPT) is a collection
of structures that is used to construct an external page table for every working
segment by having each of its entries describe the location of that page, pri
marily pointing out whether the page in question is in real memory or on the
paging space. References made by the remaining segments are straightfor
ward and has been discussed in the previous paragraph.

11.3.3 Virtual memory management

As described earlier, virtual memory segments are partitioned into fixed-size
units called pages. Each page's size is 4 KB. A page can be in real memory or
on disk until needed. Similarly, real memory is divided into fixed-sized units
called page frames. The role of the virtual memory manager (VMM) is to man
age the allocation of real memory page frames and to resolve process refer
ences to virtual memory pages that are not currently in real memory. Figure
11.13 shows how a 4-bit index into the segment registers is used and a page off
set into the virtual segment table is derived from an effective address, to access
an element.

There are several subcomponents within the VMM. They are:

• Segment manager

• Virtual page manager

• Page frame manager

• Page fault handler

• Persistent storage manager

* It is a global variable that holds an error code to indicate why a system call failed.

t TLB is an acronym for translation lookaside buffer, a hardware structure which is responsible
for translating virtual page numbers to real page numbers.

308 Software

Segment
index Virtual page offset

Effective address

Byte offset

4-bit 1 16-bit 12-bit

I
ByteO I

I PageO I
I Byte 1

I
I

0 Page 1 I
I

I
I

I
I

'
I

~ n ' I

' I
' ' I

' ' I L+l Byten ' ', I
' ' '

15
',~ Pagen

'
' Segment ' ' register ' ' ' ' ' Page 65535 ' ' ' Byte 4095

' Virtual se gm ent '
Figure 11.13 Accessing an element in virtual memory using the 16 segment
registers, virtual segment, and byte offset.

The segment manager provides functions to create, modify, copy, and destroy
virtual memory segments. The virtual page manager manages the mapping of
virtual memory pages to disk slots on external storage. The page frame man
ager orchestrates the allocation and deallocation of physical memory page
frames to virtual pages, and the lists of free page frames, mapped page frames,
and page frames in use, for I/O operations. The page fault handler is responsi
ble for handling the page faults which occur when a referenced virtual address
is not mapped within the PFT. The persistent storage manager providesa
tabase memory, transaction processing, locking, and logging services for the
physical file system.

The VMM distinguishes between types of segments based upon the function
performed by them and the way they are backed to external storage when
paging occurs. There are three kinds of segments that are recognized by the
VMM:

Real
memory

Persistent

AIX File, Memory and 1/0 Subsystem Internals 309

F------:1
I I

_____ ,. I J

Remote
file system

Local file system
(Permanent storage)

Page space
(Temporary storage)

Figure 11.14 Different segment types supported by AIX.

• Working storage segments. These include dynamically allocated structures
and variables, and copy-on-write mapped pages* that do not have a perma
nent backing storage.

• Persistent storage segments. AIX accesses all files as mapped files. This
means that program and/or file access begins with a few initial pages getting
copied into virtual storage segments. Subsequent pages are "page-faulted in"
on demand.

• Client segments. This type of segment includes pages that are brought in
via NFS or any other type of remote file system.

Figure 11.14 shows the different segment types supported by AIX.

11.3.4 Page replacement

The VMM maintains a list of free page frames that it uses to accommodate
pages that must be brought into memory. Unless a virtual memory page is
pinned, it may become paged out when extra memory frames are needed. In a
memory-constrained environment, the VMM occasionally replenishes the free
list (number of empty page frames in memory) by removing some of the current
data from real memory, effectively "stealing" the real memory frames. The vir-

* Mapped files may be read-only, read-write, or copy-on-write. The phrase "copy-on-write" refers
to the fact that any changes made to the data are stored in the paging area and not written back
to the original file. Only an {sync system call will cause the pages to be written back to disk.

310 Software

tual memory pages, whose page frames are to be stolen, are selected using an
algorithm called the page replacement algorithm.

The page replacement algorithm is governed by two key artifacts. The first
one is the use of repaging statistics. A repage fault differs from a new page
fault in the sense that the page in question, which is known to have been ref
erenced recently, is referenced again and is not found in memory because the
page has been replaced since it was last accessed. A perfect page replacement
scheme would eliminate repage faults entirely (excluding memory-size con
straints) by always stealing frames from pages that are not going to be refer
enced again. This is not feasible to implement, as it requires knowledge of
future page references. However, it is possible to reduce the effect of the repag
ing phenomenon by using statistics of its past behavior. The second criterion
used is the distinction between computational memory and file memory among
the memory-resident pages. A computational memory differs from file memory
in the sense that the former consists of the pages belonging to working storage
segments or program text segments and the latter consists of the remaining
pages.

The technique used to select pages to be replaced is based on one of the
generic page replacement algorithms known as the clock hand algorithm. It
makes use of a referenced bit for each page to determine what pages have been
used, or referenced recently. When the page replacement routine is invoked, it
cycles through the page frame table, examining each page's referenced bit. If a
page is found unreferenced and is replaceable, it is placed on the free list. If a
selected page is found modified since it was last written to the disk (file system
space or the page space), the page is written out prior to being placed on the
free list. If a page was referenced, it is not selected for page out; instead, its ref
erence bit is reset. Additional intelligence, added to the page replacement pol
icy under ADC, ensures that the computational pages get fair treatment. What
this means is that, if a huge data file was to be read into memory sequentially,
it ought not to page out text pages which are likely to be reused soon. The
VMM attempts to keep the size of the free list around a fixed range. If page
faults or system demands cause the free list size to fall below the low thresh
old, the page replacement algorithm frees up enough pages to make the free
list larger than the high threshold, thus maintaining a consistent size for the
free list.

11.3.5 Memory load control

When a process references virtual memory pages that are on disk, the refer
enced page must be paged in. This creates 1/0 traffic and delay. If the main
memory is fully occupied and there aren't any free pages left, thrashing may
happen. Thrashing is the result of incessant I/O to the paging disk, wherein
processes encounter page faults almost as soon as they are dispatched. To erad
icate this phenomenon, a load control algorithm is implemented that detects
when the system is beginning to thrash, and consequently suspends active pro-

AIX File, Memory and 1/0 Subsystem Internals 311

cesses (by putting them to sleep and freeing up all the memory they are using)
until the system has recovered from thrashing.

This load control feature is settable as well as tunable. This means that one
can disable the memory load control feature of the operating system if no sus
pension of active processes owing to detection of thrashing is desired, or if com
patibility with earlier versions of AIX, which lacked this load control feature,
is needed. As far as tuning goes, the memory load control feature can be fine
tuned to best meet the requirements of an individual system and its workload.

The memory load control mechanism works by attempting to determine if
there is a scarcity of memory frames for the set of active processes on the sys
tem. This inference is made by the scheduler once every second. Based on an
analysis of the previous second's snapshot, the scheduler determines if pro
cesses are to be suspended or activated. lfit is to suspend processes, the nom
inated processes are marked up and are consequently suspended at the
earliest opportunity that the system gets to have the processes in user mode.

11.3.6 Code pinning

When code and data associated with a device driver is pinned in real memory
that is, it is exempt from being paged out to disk-response time for that device
improves dramatically, as there is no time lost to page faults. If not used prop
erly, pinning can result in serious performance problems on the system
throughput.

11.4 1/0 SUBSYSTEM

1/0 management under AIX has two characteristic traits, namely an asyn
chronous 1/0 facility and a page-hiding property. Other functionalities are no
different than on traditional UNIX systems.

11.4.1 Asynchronous 1/0

The term synchronous I I 0 alludes to the notion that 1/0 occurs while one waits
for it to complete. In contrast, asynchronous 1/0 does not cause applications to
wait. This, in general, improves performance, since the 1/0 operations and the
applications can both progress at the same time. Transaction-processing appli
cations like databases are able to take generous advantage of this feature for
performing overlapped compute tasks and 1/0.

This facility is an implementation of the POSIX Asynchronous Input and
Output Interface 1003.4 document. The functions provided by the asyn
chronous 1/0 facilities are (1) nonblocking 1/0, (2) cancellation of 1/0 requests,
and (3) notification of 1/0 event completions. The nonblocking 1/0 facility
allows the applications to proceed with their execution without being blocked;
it does so, by queuing the requests and allowing the application to continue
execution. Cancellation of 1/0 requests works only if the request is still in the

312 Software

queue and its 110 operations have not yet started. Notification of 1/0 event
completions are handled by either having the application poll for the status of
that 1/0 operation periodically, or by sending an asynchronous notification sta
tus to the application.

Multiple asynchronous 1/0 requests may be issued on the same device by one
or more applications. But remember that, since the operations are performed
asynchronously, the order in which the 1/0 calls are handled may not be the
order in which they were issued.

11.4.2 1/0 pacing

Interactive processes on the system occasionally suffer from long response
times when used in environments with heavy 1/0 on a moderately loaded sys
tem. Although this is quite normal in multiuser time-sliced environments, the
interactive applications in particular are noticed by the user community. The
reason for this symptom should be evident: it has to do with pending 1/0
requests being the bottleneck. I I 0 pacing is a feature of the memory manager
that can put an upper limit on the number of 1/0 requests that can be out
standing against a file at any given time. When this limit is exceeded, the pro
cess with pending 1/0 requests is suspended (by putting it to sleep) long
enough so that the outstanding requests can be processed and a lower thresh
old level is reached. In traditional UNIX systems, including previous releases
of AIX, users occasionally encountered a multiple-second delay when another
application was performing a large number of writes to disk. As most writes
are asynchronous, long queues can build up, which cause several seconds
worth of delay. The disk 1/0 pacing feature eliminates this problem. However,
there may be instances with real-time computing requirements where this fea
ture can hurt processes performing intensive 1/0. Keeping in mind the diverse
requirements for response time, this feature has been made a selectable option
rather than hard-coded.

By default, pacing remains disabled. One may enable pacing in AIX using
smit and specifying the number of pages for upper and lower limits to suitable
values, if large 1/0-intensive jobs on the system inhibit interactive response
time.

11.5 DEVICE SUBSYSTEM

The device 1/0 subsystem allows a process to communicate with devices such
as disks, tapes, terminals, printers, and networks. Its low-level modules, which
actually control these devices, are referred to as device drivers. In its simplest
form, a device driver moves data between hardware devices and user applica
tions, where the user applications supply and consume information. In gen
eral, there is a one-to-one correspondence between device drivers and device
types: systems may contain one disk driver to control all disk drives, one ter
minal driver to control all terminals, etc. But note that installations that have
devices from more than one manufacturer-for example, two brands of 4-mm

AIX Fiie, Memory and 1/0 Subsystem Internals 313

tape drives-may treat the devices as two different device types and have two
separate drivers, because such devices may require different command
sequences to operate properly. The system also supports software devices that
have no associated physical device. For instance, the kernel treats the physical
memory as a device to allow a process access to physical memory outside its
address space, even though memory is not a physical device.

11.5.1 Device drivers overview

Device drivers run in a privileged state as kernel extensions. This implicitly
indicates that device drivers have access to a number of functions or services
that are not available to normal application programs.

11.5.2 Major and minor numbers

Devices are identified in the kernel through major and minor numbers. Usu
ally a major number identifies a particular device driver. A minor number
identifies various device instances known to the device driver. Note that a
device driver may be assigned multiple major numbers. Also, minor numbers
can be used to identify different modes of operation for a device as well as dif
ferent device instances.

11.5.3 Character and block device drivers

There are two types of devices: block devices and character devices. Devices
such as disk that appear like random-access storage are denoted as block
devices, whereas devices like terminals and network interfaces are referred to
as character (or raw) devices. Note that those which act as block devices may
have a separate character device interface, too.

11.5.4 Device switch table

The kernel-to-driver interface is described by a structure called the device
switch table. Each device type has entries in that table that direct the kernel to
the appropriate driver interfaces for the system calls.

11.5.5 Device head and device handler

A device driver consists of a device head and a device handler. A device head is
the portion of a driver that provides interfaces to application programs
through the standard open, close, read, write, and related system calls. The
device head accepts 1/0 requests from application programs and communicates
them to a device handler. The interface between application programs and a
device head is rigidly defined by the kernel. Its prime functions are converting
requests from the form of a file 1/0 function call to a form that is recognizable
by the device handler, performing 1/0 blocking and data buffering, handling
error recovery, and managing the 1/0 request queues.

314 Software

Device handler is the portion of a device driver that communicates with the
actual device and/or adapter. It takes requests from a device head and imple
ments the requests on actual hardware. It should be noted that the interface
between a device head and a device handler is not defined, though the operat
ing system provides a large number of primitives to assist in constructing an
interface. The details are always device-driver-specific, and are mostly left up
to the preference of the device driver author.

Device driver routines providing support for physical devices typically run in
two different types of environments. The top half of the driver always runs in
the environment of the calling process. This is normally pageable. The bottom
part of the device driver runs in the process or interrupt environment. This
performs the actual 1/0 and needs to be pinned so that page faults are not
taken in the interrupt execution environment.

11.6 OBJECT DATA MANAGER

ODM (object data manager) is an object-oriented database. It is sort oflike an
unsung hero, as it maintains all the metadata on a running system in the back
ground at all times, but no one directly sees its contribution.

The ODM fully supports the concepts of object classes and objects. An object
class is a group of objects with the same definition. An object, a member of a
defined object class, is an entity that needs storage and management of data.
In fact, an object class is conceptually similar to an array of structures, with
each object being a structure that is an element of the array. A given object
class is also associated with a set of descriptor(s). These descriptors take up
values when the object is added to an object class.

Although ODM's configuration information in its entirety is complex, it can
be viewed as a set of predefined and customized information. The predefined
information pertains to all the possible devices (and their default configura
tions) that AIX supports, while the customized information includes the
actually installed devices along with their current configurations. In other
words, the predefined object class defines what can be there, while the cus
tomized object class describes what is actually there. Unlike traditional
UNIX, AIX categorizes devices hierarchically, allowing for structured device
management. Not only are similar devices clustered under the same func
tional class, but their dependencies with allied devices are also mapped out.
The benefit of this is in the degree of control that devices have with one
another. This scheme guarantees that a higher-level device such as a SCSI
adapter always retains a cohesive bond with all its lower-level members such
as disk drives and tape drives, and does not get reconfigured or unconfigured
by accident. In order to store these device-to-device mappings, the location of
devices is also stored by ODM. As a result, the location code becomes handy
for identifying the paths and dependencies of each device. A typical location
code looks as follows:

DD-SS-CC-PP

AIX Fiie, Memory and VO Subsystem Internals 315

·------------------· I I
I I
1 Nonexistent 1

T I

1------------------J
Undefine Define

Defined

Unconfigure Configure

'--

Unconfigure

,.......
Stopped Configure

t-----;

Stop Start

Available

Figure 11.15 Device-state transition diagram.

In it, PP gives the port number,* CC points out the connector location, SS rep
resents the slot in which the adapter is installed, and DD indicates the drawer
number.

While using smit (system management interface tool) to install and/or con
figure devices, one may find that devices are either "available" or "defined" in
the ODM database of the system. There is a subtle difference between the two
states which is often confusing. Overall, a device may be either usable or unus
able on the system, based on its state. This state is a function of the object
classes of the ODM. As seen in the device state transition diagram in Fig.
11.15, a state can be defined, configured, reconfigured (changed), undefined, or
unconfigured. When undefined, a device implicates that the entry is in the pre
defined object class of the ODM, but it is not resident in the customized object

*This convention has a slight exception for SCSI devices. The two digits of the PP field identify
the SCSI id number and logical unit number (LUN).

316 Software

class. An unconfigured state means that a device's definition has been moved
from the available to the defined state in the customized devices object class. A
device becomes defined upon detection, and this happens when the ODM's
device-specific define method is invoked to load a device driver into the run
ning kernel. This is a very powerful statement, since it describes the automatic
device definition property of the ODM along with the dynamic binding feature
of the AIX kernel. This ability of the base kernel to dynamically load kernel
extensions sets AIX apart from the other variants of UNIX.

11.7 SUMMARY

The three key concepts used in the evolution of the augmented 1/0 storage
facility of AIX are derivatives of some of the well-known early computer sys
tems. The large virtual memory of this machine and the integration of file sub
system with logical volumes and virtual memory were evolved from computer
systems like the IBM System/38 and the earlier operating system, MULTICS,
which is regarded as the ancestor of the present-day UNIX. The innovation of
database memory was derived from the IBM 801, an experimental machine
developed at the Thomas J. Watson Research Center. All of these traits were
combined and first implemented in an integrated manner on the IBM RT.
Later, the concepts were improved upon and incorporated in the POWER and
PowerPC architectures. This made it possible to deliver AIX as the only imple
mentation of the UNIX operating system with unique 1/0 and storage features
that stand out above and beyond the traditional UNIX based systems.

Chapter

12

What You Need to Build a PowerPC

This chapter provides a description of the devices, interfaces, and data formats
required to design and build a PowerPC based industry standard computer
system. The hardware standard, when coupled with the hardware abstraction
software of operating systems, enables one to build PowerPC systems which
run compliant operating systems and shrink-wrapped applications for those
operating environments.

Today's diverse base of computer systems limits the system designer's ability
to add new features without jeopardizing compatibility and interoperability. To
sustain and continue to grow, one has to be able to construct computer archi
tectures that are modular in nature and provided scalable scope of growth,
expansion, and upgrade.

Any computer system has a set of key subsystems like the memory, connec
tivity, storage, expansion, and human interface, which are independent of the
processor type and can be characterized on their own accord. There is always a
variety of options available as to how to implement these subsystems. For
example, the requirements for the system expansion bus subsystem can be met
using a VME, EISA, ISA, NUBUS, or MCA bus. However, what kind of bus is
to be used is left up to the vendor or integrator.

The guidelines provided here are intended to make the reader's choices eas
ier regarding the selections of each of the subsystems. Note that this informa
tion can also be found in the PowerPC Reference Platform Specification Guide.
This chapter includes excerpts that provide an overview of what it would take
to build a PowerPC based computer system.

317

318 Software

Dataflow through the computer emphasizes a hierarchical pyramid of
resources (depicted in Fig. 12.1). The highest level resource is the processor. It
is followed by the cache subsystem, and, subsequently, the memory subsystem.
Beyond that, there is the connectivity subsystem, followed by the storage and
expansion subsystems. As stated before, there can be a choice for implement
ing each of the levels in the hierarchical pyramid. To understand the position
ing of the various types of buses that link the different subsystems in the
computer with one another, refer to Fig. 12.2.

12.1 MEMORY SUBSYSTEMS

The memory subsystems are broken down into the subcomponents discussed
in the following subsections.

Cache

Memory

Connectivity

Storage

Figure 12.1 Hierarchical pyramid of resources.

What You Need to Build a PowerPC 319

Processor

I
Host

Main memory Memory Bus
Cache

Graphics
I- Video frame

adapter buffer

PCI bridge

PCI local bus 1
I

SCSI Network Audio ISA or

adapter adapter adapter PCM CIA
bridge

ISA or PCMCIA
SCSI Bus ~ Expansion Bus

l 1 l l
Disk Tape CD-ROM I/O Memory Bus

slave slave master

Figure 12.2 Positioning of various buses in a typical system. Hierarchical layout of the processor
bus, memory bus, PCI bus, SCSI bus, and the system expansion buses (e.g., ISA or PCMCIA).

12.1.1 System memory

PowerPC Reference Platform (PReP) system configurations require a mini
mum of 8 MB of system memory with at least 8 MB of expansion capability. It
is recommended that a minimum of at least 16 MB of memory be supplied on a
system which is to support any of the operating systems. In addition, at least
24 MB of system memory expansion capability is advised beyond the minimum
of 8 MB that is implemented. Expansions to system memory are added directly
to the same bus on which the base system memory exists. System memory and
expansions to system memory may be located elsewhere as long as coherency
is maintained. The systems processor must be able to read and write system
memory. The state of this memory must be valid as long as power is applied to
the memory subsystem. The system memory must also support cache line
burst operations from the target processor.

320 Software

12.1.2 System ROM

System ROM contains the firmware required by the system. Typically, system
ROM is implemented using ROM, EPROM, or flash ROM. It is strongly rec
ommended that system ROM be writable by the system processor. This mem
ory must be readable by the system processors, but it may not be accessible to
the system 1/0 processors. The size of this memory is dictated by the size
required to implement the systems firmware. Normally, system ROM is not
cached. If system ROM is cached, then system ROM must support burst trans
fers to the target processor.

12.1.3 Nonvolatile memory

Non volatile memory is required to maintain the system in the absence of sys
tem power. This memory must be readable and writable by the system proces
sor. A minimum of 4 KB of nonvolatile memory is required for the PReP system
configuration.

12.1.4 1/0 memory

1/0 memory can exist on the system expansion bus and is part of the 1/0 sub
systems. It is typically not cached. If an implementor chooses to cache 1/0
memory, then software must manage the coherence. 1/0 memory may also be
located on the primary processor bus. If it is located on the primary processor
bus, the 1/0 memory will participate in the hardware managed coherency pro
tocol. 1/0 memory is configured separately from the system memory in the
memory map. Candidates for 1/0 memory include graphics buffers, communi
cations buffers, and 1/0 processor memory.

12.1.5 Memory mapped system 1/0

Part of the memory subsystem is the addressing and communications with
diverse 1/0 devices. Within the PowerPC architecture, 1/0 is performed by
loads and stores to or from areas of the memory space, which are mapped to the
1/0 addresses. To communicate with 1/0 on a secondary bus, PReP systems are
required to generate 1/0 addresses. Addresses in the memory space must be
converted by the bus bridges to the addresses of the 1/0 on the bus. These 1/0
addresses must be compatible with existing adaptors and be configurable at
boot time.

12.1.6 Secondary cache

A secondary (also referred to as L2) cache may be included as an optional part
of the system.

12.2 STORAGE SUBSYSTEMS

The following components are included in the storage subsystems.

What You Need to Build a PowerPC 321

12.2.1 Interface

The storage subsystem should use a fast SCSI-2 interface to support hardfiles
and CD-ROMs. This interface will also support scanners, tapes, optical stor
age, and RAID based storage systems.

12.2.2 Hardfile

PReP system configurations should have either a hardfile or hardfile capabil
ity (which is storage provided remotely via a network). In either case, the
minimum size for this storage is 80 MB. Systems requiring hardfile capability
can achieve this by direct connection through SCSI or IDE, networking, or
an expansion adapter. It is strongly recommended that PReP systems capable
of containing a hardfile have one with a capacity greater than 200 MBs. This
size will be sufficient to support any of the operating systems in their basic
configurations.

12.2.3 Diskette

Diskette drives must support 3.5-in, 1.44-MB MFM format diskettes achieved
through direct connection to a floppy drive. Optional features of the floppy
drive include autoeject, which allows the software to control ejection of the
media and media presence detection.

12.2.4 CD-ROM

The CD-ROM device should support, at a minimum, the ISO 9660 standard
which is achieved through direct connection, such as SCSI or IDE. It may also
be achieved through networking or expansion adaptor connection.

12.3 HUMAN INTERFACE SUBSYSTEMS

The human interface subsystem consists of an alphanumeric input device,
pointing device, audio capability, and graphics options as discussed in the fol
lowing subsections.

12.3.1 Alphanumeric input device

PReP system configurations require an alphanumeric input device, typically a
keyboard. Even though no particular keyboard interface is specified, it is essen
tial that the input device be capable of generating at least 101 scan codes that
can be interpreted by the machine-specific layer of the device driver. Typically,
most system environments require a direct attached keyboard; those that do not
include servers or multiuser systems with terminals attached.

12.3.2 Pointer device

Some of the system configurations such as workstations, which have directly
attached keyboards, typically require a pointing device, like a mouse, tablet, or

322 Software

touch screen. The pointing device is required to provide two-dimensional posi
tioning as well as the capability of generating at least mouse up and down
events. Some operating systems may require additional scan codes. The point
ing device should be able to report the positioning information with at least the
pixel resolution of the largest display supported by that system.

12.3.3 Audio

PReP compliant configurations require audio capability. Audio must be capa
ble of analog audio in and out. The audio capability should provide 16-bit
stereo samples at sample rates of 44.lKHz and 22.05 KHz.

12.3.4 Graphics

Configurations in an operating environment that requires directly attached
graphics subsystems must support at least a 640 x 480, direct-mapped, 8-bit
per-pixel display device. The software interface to the graphics subsystem is
accomplished through an implementation-bus-interface-specific device driver.
Most systems require directly attached graphics systems. An example of a sys
tem that does not require a directly attached graphics device is a server (data
server or a computer screen).

For the colors and resolution capabilities, the graphics subsystem should
support color depth of 16 or 24 bits and higher resolutions of at least 1024 x 768
pixels. Note that these graphics resolution specification requirements apply to
the graphics adapter and frame buffer, and not to the graphics mode or display
requirements. It is also recommended that the graphics subsystem support
Big-Endian operations to allow the Endianness of the graphics frame buffer
and registers to be set independently of the Endian mode of the processor.

12.4 REAL-TIME CLOCK

PReP compliant configurations require a real-time clock (RTC). The RTC must
operate in the absence of external power via a battery power source. It is
required that the RTC provide the necessary information to determine year,
month, day, hour, minutes, and seconds. The recommended day accuracy of the
RTC should be at least +/- .001 percent, which is about one second per day.

12.5 CONNECTIVITY SUBSYSTEMS

The following components are included in the connectivity subsystems.

12.5.1 Serial

All configurations require at least one serial port. Compliant systems should
implement this serial port using EIA-232C signal compatibility. This serial port
must support asynchronous protocol with Baud rates up to at least 19.2 K. Con
sole functionality via an ASCII terminal may be provided by this serial port.

What You Need to Build a PowerPC 323

12.5.2 Parallel

A minimum of one parallel port is required on the compliant systems. The par
allel port should use the Centronics 8-bit bidirectional protocol. However, it is
recommended that the Extended Capability Port (ECP) protocol be used if pos
sible instead of the Centronics protocol.

12.5.3 Network

LocalTalk (EIA-422) is a direct network connection recommended for low-end
connections. LocalTalk is compatible with the SCC 8530 controller and is
defined by interface standards and protocols. A LAN connectivity option is rec
ommended for high-performance environments, preferably Ethernet or Token
Ring. Additional options for network connections include ATM, ISDN, FDDI,
and Isochronous Ethernet.

12.6 EXPANSION BUS OPTIONS

No particular expansion bus is mandatory. It is recommended that systems
implementing an expansion bus should probably use PCI, PCMCIA, and/or an
ISA bus. These buses are supported by the current operating system ports to
PReP systems. Other buses which could be used with modifications to the
abstraction software of each hosted operating system include VME, EISA,
NUBUS, VL, and MCA.

12.7 INTERFACE STANDARDS

This sections lists and describes standards applicable to the PowerPC Refer
ence Platform subsystems. Implementation recommendations for these stan
dards are also provided.

12.7.1 SCSI

Small computer system interface (SCSI) is an ANSI standard specification for
a peripheral bus. PowerPC based systems that implement SCSI must comply
with the ANSI standard X3.131-1990 (Revision lOc) for SCSI-2 (Fast SCSI).
This standard specifies the electrical interface as well as the internal system
connector. It is recommended that SCSI implementations use nondifferential
signaling with active termination. Use of this standard provides a convenient
method for accessing CD-ROM, tape, hardfile, scanner, optical, and floptical
drives.

12.7.2 IDE

IDE is an optional interface for hardfiles. IDE implementations should comply
with the X3.221 AT Attachment: Proposed American National Standards. A

324 Software

local-bus, enhanced-IDE standard has been developed for PowerPC systems
using IDE.

12. 7 .3 Ethernet

If Ethernet is implemented, it must adhere to the Ethernet and IEEE 802.3
standards. This specification covers both the electrical interface and the con
nectors. Refer to Fig. 12.2 to understand the positioning of the Ethernet net
work adapter.

12.7.4 Token ring

If Token Ring is implemented, it must adhere to IEEE 802.5 standards. This
specification covers both the electrical interface and the connector. Refer to
Fig. 12.2 to understand the positioning of the token-ring adapter.

12.7.5 Serial

The EIA-232C standard for computer serial port connectors should be used. It
is recommended that compliant systems implement EIA-232C using a 9-pin
D-shell male connector and pin assignments as defined in Fig. 12.3.

12.7.6 LocalTalk

LocalTalk is the standard Macintosh serial port. It is recommended that com
pliant systems implement EIA-422 using the 9-pin connector and the pin-out,
as shown in Fig. 12.4.

12.7.7 Parallel port

This port is specified by IEEE P1284, Standard Signaling Method for a Bi
directional Parallel Peripheral Interface for Personal Computers. P1284 is the
formalized and enhanced version of the popular Centronics interface.

12.7.8 PCI bus

The PCI (peripheral component interconnect) bus is a system board-resident
bus that can be populated with adapters requiring fast accesses to each other
and/or system memory. Refer to Fig. 12.2 to understand the positioning of a PCI

1 5

\000000000)

6 9

Figure 12.3 9-pin D-shell serial connector. Figure 12.4 9-pin LocalTalk connector.

What You Need to Build a PowerPC 325

with respect to other buses in a system. One of the characteristic features of this
bus is that all its read/write transfers are burst transfers and the variable-size
length of the bursts are negotiated between the initiator and target devices.

The PCI bus, if implemented, must adhere to its standards developed by
Intel Corporation, and now managed by a consortium known as the PCI Spe
cial Interest Group.

12.7.9 PCMCIA bus

The PCMCIA standard defines the physical requirements, electrical specifica
tions, and software architecture for the 68-pin cards and their sockets. Release
1.0 cards and sockets of the PCMCIA supported only memory operations and
had no I/O capabilities. Release 2.0 and later releases of the specification allow
the full range of I/O capabilities. The PReP compliant systems should support
the sockets that are Release 2.0 and beyond compatible.

The PCMCIA software architecture has two key elements: Socket Services
and Card Services. Socket Services is a hardware-dependent interface that
masks the socket's actual hardware implementation from higher-level soft
ware components that utilize it. Card Services is a software layer that sits
above the Socket Services, coordinating access among the cards, the sockets,
and system resources, such as interrupts and memory map. Card Services
accesses cards via Socket Services. The card drivers interact with the car via
Card Services. Card Services is generally operating-system-dependent.

For maximum compatibility and interoperability, PowerPC system platform
vendors should provide Socket Services and the operating system vendors
should provide the Card Services extension. For PowerPC Reference Platform
compliant systems, both Socket Services and Card Services should be provided
in the system abstraction layer.

12.7.10 ISA bus

The ISA (Industry Standard Architecture) bus is the most widely used system
bus in the PC industry. Originally, the ISA bus was referred to as the PC-AT
bus, and there were no official definition or standards for it. Later on, its spec
ifications were defined by the IEEE standards group. The ISA bus, if imple
mented, allows a transfer rate of up to 8.3 MB/s. Transfers over the ISA bus are
synchronized around 8 MHz, and they usually take a minimum of two cycles of
the bus clock to perform a data transfer. As the data path of an ISA bus is 16
bits wide, up to 2 bytes may be transferred during each transaction.

The IEEE definition of ISA is used to implement ISA buses for the PReP
systems.

12.7.11 Input device interface

This is the interface for the alphanumeric and pointing devices; for example,
the ADB standard as used in Apple computers or the PC/AT, PS/2 interface as
used in an Intel 8042AH chip.

326 Software

12.8 SYSTEM CONFIGURATIONS

Configurations of Power PC Reference Platform systems include:

Portable System

Medialess System

Desktop System

Technical Workstation
System

Server System

12.9 SUMMARY

A PowerPC compliant machine that is capable of bat
tery operation.

A PowerPC compliant medialess system that relies
on network connections for storage. Boot is from the
network; software, data, and paging space are
attained from the network.

A PowerPC compliant desktop system that is an
entry level system for commercial or technical
applications.

A PowerPC compliant technical workstation con
figuration that specifies a technical user's desktop or
deskside machine.

A PowerPC compliant server configuration specifies a
machine that serves multiple users and does not
required a locally attached keyboard and display.

The information included in this chapter provides an introduction to the
aspects to be considered when building a PowerPC system. The memory sub
system, storage subsystem, and computer-human interface subsystem that
form the infrastructure of any nascent system are addressed. The discussion of
the connectivity subsystem and expansion buses form the next level of building
a system, where one decides on the choices of expandability (networking and
interfacing with exiting bases). The information on storage subsystem
addresses the industry-standard interfaces. Together, the discussion on differ
ent subsystems provides a thorough and comprehensive overview of what it
would take for you to build your own PowerPC.

Appendix

A

PowerPC Models

The PowerPC microprocessor has been used to build a wide array of computer
systems by a diverse number of companies. Apple and IBM are among the first
companies to have built complete computer systems using the PowerPC 601
processor as the core of the computer system. Existing models of complete com
puter systems, such as the RISC System/6000 200 series and the Macintosh
series are described here.

A.1 CHIP VERSUS SYSTEM

Recognize that Power PC is an architecture and the 601 processor is one of its
many implementations that can be manufactured to run at varying clock
speeds to deliver optimal performance with multifarious 110 subsystems
(buses). Therefore, it makes sense to keep the discussion of PowerPC-based
computer systems separate from discussions of the PowerPC chip's concepts,
facilities, and architecture, which has been the main premise of this book.

A.2 IBM IMPLEMENTATIONS

The 7011 RISC System/6000 POWERstation/POWERserver 200 series is a set
oflow-priced, entry-level desktop workstations or servers with multiuser, com
mercial applicability. They are binary-compatible with the other RISC System/
6000 POWERstation/POWERserver family of systems and the AIX/6000 oper
ating system, with support for paging over LAN s and remote boot. In the 200

327

328 Appendix A

series, some models are based on the POWER RSC processor (the predecessor
to the PowerPC), while others are based on the PowerPC 601 processor.

The 220 and 230 feature the POWER RSC processor with 16-MB to 64-MB
memory, optional internal fixed disk up to 2 GB, two Micro Channel slots, one
Gtl graphics card slot, one integrated SCSI controller, one Ethernet controller,
one diskette drive bay, and standard device ports/connectors. The 230 series
offers an additional 128-KB level-2 cache. (Note that the level-2 cache is also
referred to as a secondary cache.)

The 250 series offers a range of models featuring the Power PC 601 processor,
along with some additional features, including 16-MB to 256-MB memory
and provision for a GXT graphics card and integrated SCSI-2 controller (over
SCSI-1 controller). Each model can be enhanced to include more features in
place of the standard ones. With an optional diskette drive and fixed disk,
these systems can operate stand-alone or can be attached to a LAN for diskless
or dataless configurations. In terms of connecting the computer to different
Ethernet media, one can use any of the thick (10Base5), thin (10Base2), or
twisted pair (lOBaseT) interfaces.

Highlights of the POWERstation/POWERserver 200 series include:

• The introduction of the PowerPC 601 microprocessor and the first imple
mentation of the PowerPC architecture in the System/6000 product line

• High-performance graphics adapters which connect directly to the PowerPC
601 local processor bus and provide accelerated 2-D performance

• Binary compatibility with the current family of RISC System/6000 systems
and the latest version of AIX

• Industry-standard memory and SCSI-2 and Ethernet controllers for addi
tional growth capability

• The ability to function as LAN-dependent, LAN-attached, or stand-alone
workstations

A.2.1 RISC System/6000 POWERstation N40

The RISC System/6000 N40 is the industry's first PowerPC-based notebook
workstation. It combines the power of the PowerPC 601 microprocessor and
the AIX operating system in a lightweight color notebook computer. Running
at 50 MHz, the N40 achieves an exceedingly high level of performance, making
it more powerful than not only any notebook computer but also many desktop
workstations.

The 6.9-lb N40 features a 9.4-in TFT (thin-film transistor) active matrix
color screen that offers wide-angle viewing in 256 colors. The N40's video mem
ory supports up to a 1280 x 1024 image, which can be viewed via a pan-and
zoom feature on the TFT display or via an externally connected monitor. Also
featured is a pointing device, which is located in the center of the keyboard and
eliminates the need for a separate mouse. The N40 operates from an external
battery pack that has a battery life of up to four hours.

PowerPC Models 329

Highlights of the N40 include:

• 50-MHz PowerPC 601 processor

• Main memory support from 16 MB to 64 MB

• SCSI-2 diskette drive support

•Removable disk drive with a 340-MB capacity

• Ethernet network support

• Support for PCMCIA adapters providing token-ring network support

• An external display port supporting 1280 x 1024 resolution and up to 256
colors

• Ports for an external mouse, keyboard, and Appletalk printers, and a built-
in speaker and microphone

The N40 also features Tadpole's Nomadic Computing Environment, providing
users with a rapid save-and-resume, power management, portability tools, and
other UNIX mobile computing innovations.

A.2.2 RISC System/6000 POWERstatlon/POWERserver 25S

The RISC System/6000 POWERserver 25S is an entry server model with 16
MB of memory, 1 GB of internal fixed disk, and an 8-port EIA-232 adapter with
fan-out cable. This entry-level configuration can function without a fixed disk
in a LAN environment or, with a fixed disk and diskette drive added, in a
stand-alone environment. Customers can upgrade memory and add features to
enhance the system, making the system ideal for attaching multiple async ter
minals such as in retail, data entry, small office, banking, and insurance envi
ronments.

Highlights of the 25S include:

• 66-MHz PowerPC 601 processor

• 16-MB memory

• One integrated SCSl-2 controller

• One integrated Ethernet controller

• Standard device ports/connectors:

Keyboard/speaker port
Mouse port
Tablet port
Two serial ports
Parallel port
SCSI-2 port
Ethernet port

• Two Micro Channel card slots (form factor 3) for expansion

330 Appendix A

• One PowerPC 601 local processor bus slot for an optional graphics adapter

• 1-GB SCSI-2 disk drive

• 2-GB SCSI-2 disk drive select option

• 8-port async adapter with the multiport interface cable

• Async select options for 16- and 128-port configurations

A.2.3 RISC System/6000 POWERstation/POWERserver 25W

The RISC System/6000 POWERstation 25W is a midrange graphics worksta
tion in the 250 series that offers the same base function as the 250, as well as
the POWER GXTlOO graphics adapter, 16 MB of memory, 540 MB of internal
fixed disk, keyboard, and mouse.

Highlights of the 25W include:

• 66-MHz PowerPC 601 processor

• POWERGXTlOO graphics adapter

• Keyboard and mouse

• Graphics select options-POWER GXT150 graphics adapter, POWERGt4e
or GTO accelerator

• 540-MB SCSI-2 disk drive

•Disk drive select options-1 GB, 2 GB

• Eight slots for SIMM memory cards

• 16-MB memory

• One integrated SCSI-2 controller

• One integrated Ethernet controller

• Standard device ports/connectors:

Keyboard/speaker port
Mouse port
Tablet port
Two serial ports
Parallel port
SCSI-2 port
Ethernet port

• Two Micro Channel card slots (form factor 3) for expansion

• One PowerPC 601 local processor bus slot for an optional graphics adapter

A.2.4 RISC System/6000 POWERstation/POWERserver 250

The RISC System/6000 POWERstation/POWERserver 250 has a 66-MHz
PowerPC 601 processor which offers the highest performance of the 200 series
family. It has extensive expansion capability from 16 MB up to 256 MB of

PowerPC Models 331

memory, optional internal fixed disk up to 2 GB, up to a maximum of seven
SCSI devices on the SCSI bus, an optional 2.88-MB diskette drive, an optional
graphics adapter, and two 32-bit Micro Channel card slots.

Highlights of the 250 include:

• 66-MHz PowerPC 601 processor

• 16-MB memory

• Eight slots for SIMM memory cards

• One integrated SCSI-2 controller

• One integrated Ethernet controller

• Standard device ports/connectors:

Keyboard/speaker port
Mouse port
Tablet port
Two serial ports
Parallel port
SCSI-2 port
Ethernet port

• Two Micro Channel card slots (form factor 3) for expansion

• One PowerPC 601 local processor bus slot for an optional graphics adapter

A.2.5 RISC System/6000 POWERstation/POWERserver 25T

The IBM RISC System/6000 POWERstation 25T is a high-performance
graphics workstation that offers the same base function as the POWERstation/
POWERserver 250, as well as the POWER GXT150 graphics adapter with
appropriate cable, 16 MB of memory, 540 MB of internal fixed disk, keyboard,
mouse, and 17-in display.

Highlights of the 25T include:

• 66-MHz PowerPC 601 processor

• 16-MB memory

• Eight slots for SIMM memory cards

• One integrated SCSI-2 controller

• One integrated Ethernet controller

• Standard device ports/connectors:

Keyboard/speaker port
Mouse port
Tablet port
Two serial ports
Parallel printer port

332 Appendix A

SCSI-2 port
Ethernet port

• Two Micro Channel card slots (form factor 3) for expansion

• One PowerPC 601 local processor bus slot for an optional graphics adapter

• POWER GXT150 graphics adapter and cable that attaches to the display

• POWERdisplay 17 (17-in display)

• Graphics select options-POWER Gt4e or GTO accelerator

• 540-MB SCSI-2 disk drive

•Display select option POWERdisplay 19

•Disk drive select options-I GB, 2 GB

A.3 APPLE IMPLEMENTATIONS

Power PC based systems offered by Apple consist of the following:

A.3.1 Power Macintosh 6100/60

The Apple Power Macintosh 6100/60 is an entry-level workstation that offers
the performance of a 601 processor in Apple's System 7 environment.

Highlights of the 6100/60 include:

• 60-MHz PowerPC 601 processor

• 8 MB of memory, expandable to 72 MB

• 2 SIMM slots

• 17-in Nu-Bus expansion slot

• On-board Ethernet controller

• Integrated SCSI controller

• Disk drive select options-160 to 250 MB

• Standard video support

A.3.2 Power Macintosh 7100/66

The Apple Power Macintosh 7100/66 is a midrange workstation that offers the
performance of a 601 processor under Apple's System 7 environment.

Highlights of the 7100/66 include:

• 66-MHz PowerPC 601 processor

• 8 MB of memory, expandable to 136 MB

• 4 SIMM slots

• 3 full-size Nu-Bus expansion slots

• On-board Ethernet controller

• Integrated SCSI controller

• Disk drive select options-250 to 500 MB

•Standard video support with 1 MB ofVRAM

A.3.3 Power Macintosh 8100/80

PowerPC Models 333

The Apple Power Macintosh 8100/80 is a high-end workstation that offers the
performance of a 601 processor under Apple's System 7 environment.

Highlights of the 8100/80 include:

• 80-MHz PowerPC 601 processor

• 256-KB secondary cache

• 8 MB of memory, expandable to 256 MB

• 8 SIMM slots

• 3 full-size Nu-Bus expansion slots

• On-board Ethernet controller

• Integrated SCSI controller

• Disk drive select options-250 MB to 1 GB

• Standard video support with 2 MB of VRAM

Appendix

B

Acronyms Used in This Book

The following acronyms have been referred to in this book:

Acronym

AA
AADU
AIX

ABI

ACL

AES

AES/OS

AFS

AIC

AIX
ALU

ANSI
API

ASCII

ASIC

ATM

BAT
BE

Definition

Absolute Address

AIX Access for DOS Users

Advanced Interactive Executive

Application Binary Interface

Access Control List

Application Environment Specifications

Application Environment Specifications

Andrew File System

AIXwindows Interface Composer

Advanced Interactive Executive

Arithmetic Logic Unit
American National Standards Institute

Application Programming Interface

American National Standard Code for Information Interchange

Application Specific Integrated Circuit

Asynchronous Transfer Mode

Block Address Translation

Big-Endian

335

336 AppendlxB

Acronym

BI CMOS

BCD

BIST

BNU

BPU

BSC

BSI

CAE

CAR

CC ITT

CDE

CDS

CICS

CISC

CMOS

COP

COSE

CPI

CPU

CR

CRC

CSMA

CSMA/CD

CTR

CUA

DCE

DCEAES

DDE

DEC

DES

DFT

DIN

DMA

DRAM

DSSC

Definition

Bipolar Complementary Metal-oxide Semiconductor

Binary Coded Decimal

Built-in Self-test

Basic Network Utilities

Branch Processing Unit

Bisync
Binary Synchronous Communications

British Standards Institute

Common Applications Environment

Cache Address Register

Comite Consultatif Internationale de Telegraphique et Telephonique

Common Desktop Environment

DCE Cell Directory Service

Customer Information Control System

Complex Instruction Set Computer

Complementary Metal-oxide Semiconductor

Common On-chip Processor

Common Open Software Environment

Cycles Per Instruction

Central Process Unit

Condition Register

Cyclic Redundancy Check

Carrier Sense Multiple Access

Carrier Sense Multiple Access with Collision Detection

Count Register

Common User Access

Distributed Computing Environment
Data Circuit-terminating Equipment

Distributed Computing Environment Application Environment
Specifications

Dynamic Data Exchange

Digital Equipment Corporation

Data Encryption Standard

Distributed Function Terminal

Deutches Institut fiir Normung

Direct Memory Access

Dynamic Random Access Memory

Distributed Services Steering Committee

DTE

EB

EBCDIC

ECC

EIA

EM78

EPROM

EEPROM

EISA

EPOST

FAL
FDDI

FIFO

FIPS

FPR

FPU

FXU

GDA

GDS

GL

GPR

GUI

HAL

HANFS
HAS

HCON

HIA

HLLAPI

HP

I/O

IBM

ICCCM

IDE

IEC

IEEE

IEEE-CS

IPI

Data Terminal Equipment

Exabyte

Acronyms Used In This Book 337

Extended Binary Coded Decimal Interchange Code

Error Checking and Correcting

External Interface Adapter
Electronic Interface Adapter
Electronics Industries Association

3278179 Emulation

Erasable Programmable Read Only Memory

Electrically Erasable Programmable Read-Only Memory

Extension to Industry Standard Architecture

Extended Power-on Self-test

Firmware Abstraction Layer

Fiber Distributed Data Interface

First-In First-Out

Federal Information Processing Standard

Floating-point Register

Floating-point Unit

Fixed-point Unit

DCE Global Directory Agent

DCE Global Directory Service

Graphics Library

General Purpose Register

Graphical User Interface

Hardware Abstraction Layer

High Availability for Network File System

Hardware Abstraction Software

Host Connection Program

Host Interface Adapter

High-Level Language Application Programming Interface

Hewlett-Packard

Input/Output

International Business Machines

Inter-Client Communication Conventions Manual.

Integrated Device Electronics

International Electrotechnical Commission

Institute of Electrical and Electronics Engineers

IEEE Computer Society

Initial Program Load

338 Appendix&

Acronym Definition

ISA Industry Standard Architecture
Instrument Society of America
Initial Storage Area
Invalid Storage Address

ISDN Integrated-Services Digital Network

ISE Instruction Set Emulator

ISO International Organization for Standards

ISP Internationalized Standardized Profiles

ISV Independent Software Vendor

KB Kilobyte

Ll First-level Cache

L2 Second-level Cache

LAN Local Area Network

LE Little-Endian

LED Light-emitting Diode

LEN Low Entry Networking

LRU Least Recently Used

LU Logical Units

LVM Logical Volume Manager

MB Megabyte

MBCS Multibyte Character Set

MCA Micro Channel Architecture
Machine Check Analysis
Machine Configuration Analysis
Machine Check Adapter

MESI Modified-exclusive-shared-invalid Protocol

MFM Modified Frequency Modulation (Recording)

MHz Megahertz

MIB Management Information Base

MIPS Millions of Instructions per Second

MMIO Memory Mapped Input/Output

MMU Memory Management Unit

MP Multiprocessing
Massively Parallel

MS-DOS Microsoft Disk Operating System

NCK Network Computing Kernel

NCS Network Computing System

NFS Network File System

NIC Numerically Intensive Computing
Network Information Center

NIDL

NIS

NIST

NLS
NVRAM

ODM

OEM

OLE

OLTP

ONC

OS

OSF

OSI

PAD

PAL

PASC

PB
PCD

PCI

PCM CIA

PMC

POE

POSIX

POST

POWER

PSC

PVC
QIC
QLLC

RAID
REX

RFT

RISC

ROM
RPC

RSC

RT

Acronyms Used In This Book 339

Network Interface Definition Language
Network Information Service

National Institute for Standards and Technology
National Language Support

Non-Volatile Random Access Memory

Object Data Manager

Original Equipment Manufacturer

Object-linking and Embedding Operations

On-line Transaction Processing

Open Network Computing

Operating System

Open Software Foundation

Open Systems Interconnect

Packet Assembler/Disassembler

Portability Assist Layer

Portable Applications Standards Committee

Petabyte

POSIX Conformance Document

Program Controlled Interrupt
Peripheral Component Interconnect

Personal Computer Memory Card Interface Association

Project Management Committee

PowerOpen Environment

Portable Operating System Interface

Power-on Self-test

Performance Optimized With Enhanced RISC

Profiles Steering Committee

Permanent Virtual Circuit
Quarter Inch Cartridge
Qualified Logical Link Control
Redundant Array of Independent Disks

Remote Execution Service
Request for Technology

Reduced Instruction Set Computer
Read Only Memory
Remote Procedure Call
Remote Service Console
Remote Support Center
RISC Technology/Model of the PC (PC/RT)

340 AppendixB

Acronym

RTC

SAA

SANE

SCCS

SCCT

SCSI

SCWUI

SDN

SDO

SDT

SEC

SGFS

SICC

SIG

SMP

SNA

SNMP

SPRG

SRAM

SVC

TAG

TCB

TCF

TCOS

TCP/IP
TEA

TFA
TLB

TP

TPWG

UART

UDP

ULSI

UMCU
UUCP

Definition

Real Time Clock
Real Time Controller

System Application Arc~tecture

Standard Apple Numerics Environment

Source Code Control System

Steering Committee on Conformance Testing

Small Computer System Interface

Steering Committee on Windowing User Interfaces

Software Defined Network
System Defined Network
Software Designed Network (AT&T)

Standards Development Organization

Static Debugger Program Traps

Sponsor Executive Committee

Special Group on Functional Standards

Systems Interface Coordination Committee

Special Interest Group

System Modification Program
Symmetric Multiprocessor

System Network Architecture

Simple Network Management Protocol

Special Purpose Register Group

Static Random Access Memory

Switched Virtual Circuit
Supervisory Call

Technical Advisory Group

Trusted Computing Base

Transparent Computing Facility

Technical Committee on Operating Systems

Transmission Control Protocol/Internet Protocol
Transaction Error Acknowledgment

Transparent File Access

Translation Lookaside Buffer

Trusted Programs

Transaction Processing Working Group

Universal Asynchronous Receiverfl'ransmitter
User Datagram Protocol

Ultra Large-scale Integration
Universal Micro Control Unit
UNIX-to-UNIX Copy Program

VESA

VL

VLSI

VMD
VME
VMM
VPD

VUE

WAN

wow
x
XDR

XDS

XNFS
XPG

X11R5

Acronyms Used In This Book 341

Video Electronics Standards Association

Volume License

Very Large Scale Integration

Vector Memory Display

VERSA Module Eurocard

Virtual Memory Manager

Vital Product Data

Visual User Environment

Wide Area Network

Windows-16 on Windows-32

X Window System

External Data Representation

X/Open Directory Service

Network File System for X Windows System

X/Open Portability Guide

X Windows Release 5

Appendix

c

PowerPC and POWER Instruction Sets

PowerPC Instruction Set

Add
Add carrying
Add extended
Add immediate

Instruction

Add immediate carrying
Add immediate carrying and record
Add immediate shifted
Add to minus one extended
Add to zero extended
AND
AND with complement
AND immediate
AND immediate shifted
Branch
Branch conditional
Branch conditional to count register
Branch conditional to link register
Compare
Compare immediate
Compare logical
Compare logical immediate
Count leading zeros doubleword
Count leading zeros word
Condition register AND
Condition register AND with complement
Condition register equivalent
Condition register NAND

Mnemonic

add[o][-]
addc[o][-]
adde[o)[-)
addi
addic
addic.
ad dis
addme[o][-]
addze[o][-]
and[-]
andc[-)
an di.
andis.
b[l][a]
bc[l][a]
bcctr[l]
bclr[l]
cmp
cm pi
cm pl
cmpli
cntlzd[-]
cntlzw[-]
crand
crandc
creqv
crnand

343

344 Appendix C

PowerPC Instruction Set (Continued)

Instruction

Condition register NOR
Condition register OR
Condition register OR with complement
Condition register XOR
Data cache block flush
Data cache block invalidate
Data cache block store
Data cache block touch
Data cache block touch for store
Data cache block set to zero
Divide doubleword
Divide doubleword unsigned
Divide word
Divide word unsigned
External control in word indexed
External control out word indexed
Enforce in-order execution of 1/0
Equivalent
Extend sign byte
Extend sign halfword
Extend sign word
Floating absolute value
Floating add
Floating add single
Floating convert from integer doubleword
Floating compare ordered
Floating compare unordered
Floating convert to integer doubleword
Floating convert to integer doubleword with round

toward Zero
Floating convert to integer word
Floating convert to integer word with round toward

zero
Floating divide
Floating divide single
Floating multiply-add
Floating multiply-add single
Floating move register
Floating multiply-subtract
Floating multiply-subtract single
Floating multiply
Floating multiply single
Floating negative absolute value
Floating negate
Floating negative multiply-add
Floating negative multiply-add single
Floating negative multiply-subtract
Floating negative multiply-subtract single
Floating reciprocal estimate single
Floating round to single-precision
Floating reciprocal square root estimate
Floating select
Floating square root
Floating square root single
Floating subtract

Mnemonic

crnor
cror
crorc
crxor
dcbf
dcbi
deb st
debt
dcbtst
dcbz
divd[o][-]
divdu[o][-]
divw[o][-]
divwu[o][-]
eciwx
ecowx
eieio
eqv[-]
extsb[-]
extsh[-]
extsw[-]
fabs[-]
fadd[-]
fadds[-]
fetid[-]
fem po
fcmpu
fetid[-]
fctidz[-]

fctiw[-]
fctiwz[-]

fdiv[-]
fdivs[-]
fmadd[-]
fmadds[-]
fmr[-]
fmsub[-]
fmsubs[-]
fmul[-]
fmuls[-]
fnabs[-]
fneg[-]
fnmadd[-]
fnmadds[-]
fnmsub[-]
fnmsubs[-]
fres[-]
frsp[-]
frsqrte[-]
fsel[-]
fsqrt[-]
fsqrts[-]
fsub[-]

PowerPC Instruction Set (Continued)

Instruction

Floating subtract single
Instruction cache block invalidate
Instruction synchronize
Load byte and zero
Load byte and zero with update
Load byte and zero with update indexed
Load byte and zero indexed
Load doubleword
Load doubleword and reserve indexed
Load doubleword with update
Load doubleword with update indexed
Load doubleword indexed
Load floating-point double
Load floating-point double with update
Load floating-point double with update indexed
Load floating-point double indexed
Load floating-point single
Load floating-point single with update
Load floating-point single with update indexed
Load floating-point single indexed
Load halfword algebraic
Load halfword algebraic with update
Load halfword algebraic with update indexed
Load halfword algebraic indexed
Load halfword byte-reverse indexed
Load halfword and zero
Load halfword and zero with update
Load halfword and zero with update indexed
Load halfword and zero indexed
Load multiple word
Load string word immediate
Load string word indexed
Load word algebraic
Load word and reserve indexed
Load word algebraic with update indexed
Load word algebraic indexed
Load word byte-reverse indexed
Load word and zero
Load word and zero with update
Load word and zero with update indexed
Load word and zero indexed
Move condition register field
Move to condition register from FPSCR
Move to condition register from XER
Move from condition register
Move from FPSCR
Move from machine state register
Move from special purpose register
Move from segment register
Move from segment register indirect
Move from time base
Move to condition register fields
Move to FPSCR bit 0
Move to FPSCR bit 1
Move to FPSCR fields

POWER and PowerPC Instruction Sets 345

Mnemonic

fsubs[-]
icbi
isync
lbz
lbzu
lbzux
lbzx
ld
ldarx
ldu
ldux
ldx
lfd
lfdu
lfdux
lfdx
Ifs
lfsu
lfsux
lfsx
Iha
lhau
lhaux
lhax
lhbrx
lhz
lhzu
lhzux
lhzx
lmw
lswi
lswx

· lwa
lwarx
lwaux
lwax
lwbrx
lwz
lwzu
lwzux
lwzx
mcrf
mcrfs
mcrxr
mfcr
mffs[-]
mfmsr
mfspr
mfsr
mfsrin
mftb
mtcrf
mtfsbO[-]
mtfsbl[-]
mtfsfH

346 Appendix C

PowerPC Instruction Set (Continued)

Instruction

Move to FPSCR field immediate
Move to machine state register
Move to special purpose register
Move to segment register
Move to segment register indirect
Multiply high doubleword
Multiply high doubleword unsigned
Multiply high word
Multiply high word unsigned
Multiply low doubleword
Multiply low immediate
Multiply low word
NAND
Negate
NOR
OR
OR with complement
OR immediate
OR immediate shifted
Return from interrupt
Rotate left doubleword then clear left
Rotate left doubleword then clear right
Rotate left doubleword immediate then clear
Rotate left doubleword immediate then clear left
Rotate left doubleword immediate then clear right
Rotate left doubleword immediate then mask insert
Rotate left word immediate then mask insert
Rotate left word immediate then AND with mask
Rotate left word then AND with mask
System call
SLB invalidate all
SLB invalidate entry
Shift left doubleword
Shift left word
Shift right algebraic doubleword
Shift right algebraic doubleword immediate
Shift right algebraic word
Shift right algebraic word immediate
Shift right doubleword
Shift right word
Store byte
Store byte with update
Store byte with update indexed
Store byte indexed
Store doubleword
Store doubleword conditional indexed
Store doubleword with update
Store doubleword indexed with update
Store doubleword indexed
Store floating-point double
Store floating-point double with update
Store floating-point double with update indexed
Store floating-point double indexed
Store floating-point as integer word indexed
Store floating-point single

Mnemonic

mtfsfi[-]
mtmsr
mtspr
mtsr
mtsrin
mulhd[-]
mulhdu[-]
mulhw[-]
mulhwu[-]
mulld[o][-]
mulli
mullw[o][-]
nand[-]
neg[o][-]
nor[-]
or[-]
ore[-]
ori
oris
rfi
rldcl[-]
rider[-]
rldic[-]
rldicl[-]
rldicr[-]
rldimi[-]
rlwimi[-]
rlwinm[-]
rlwnm[-]
SC

slbia
slbie
sld[-]
slw[-]
srad[-]
sradi[-]
sraw[-]
srawi[-]
srd[-]
srw[-]
stb
stbu
stbux
stbx
std
std ex.
stdu
stdux
stdx
stfd
stfdu
stfdux
stfdx
stfiwx
stfs

PowerPC Instruction Set (Continued)

Instruction

Store floating-point single with update
Store floating-point single with update indexed
Store floating-point single indexed
Store halfword
Store halfword byte-reverse indexed
Store halfword with update
Store halfword with update indexed
Store halfword indexed
Store multiple word
Store string word immediate
Store string word indexed
Store word
Store word byte-reverse indexed
Store word conditional indexed
Store word with update
Store word with update indexed
Store word indexed
Subtract from
Subtract from carrying
Subtract from extended
Subtract from immediate carrying
Subtract from minus one extended
Subtract from zero extended
Synchronize
Trap doubleword
Trap doubleword immediate
TLB invalidate all
TLB invalidate entry
TLB synchronize
Trap word
Trap word immediate
XOR
XOR immediate
XOR immediate shifted

POWER and PowerPC Instruction Sets 347

Mnemonic

stfsu
stfsux
stfsx
sth
sthbrx
sthu
sthux
sthx
stmw
stswi
stswx
stw
stwbrx
stwcx.
stwu
stwux
stwx
subflo][-]
subfc[o][-]
subfe[o][-]
subfic
subfme[o][-]
subfze[o][-]
sync
td
tdi
tlbia
tlbie
tlbsync
tw
twi
xor[-]
xori
xoris

348 Appendix C

POWER Instruction Set

Add
Absolute
Add extended
Add immediate

Command

Add immediate and record
Add to minus one extended
AND
AND with complement
AND immediate lower
AND immediate upper
Add to zero extended
Branch
Branch conditional
Branch conditional to count register
Branch conditional register
Compute address lower
Compute address upper
Compute address
Cache line compute size
Cache line flush
Cache line invalidate
Compare
Compare immediate
Compare logical
Compare logical immediate
Count leading zeroes
Condition register AND
Condition register AND with complement
Condition register equivalent
Condition register NAND
Condition register NOR
Condition register OR
Condition register OR with complement
Condition register XOR
Data cache line store
Data cache line set to zero
Data cache synchronize
Divide
Divide short
Difference or zero
Difference or zero immediate
Equivalent
Extend sign
Floating add
Floating absolute value
Floating compare ordered
Floating compare unordered
Floating divide
Floating multiply
Floating multiply add
Floating move register
Floating multiply subtract
Negative absolute value
Floating negate

Mnemonic

a
abs
ae
ai
ai.
ame
and
andc
andil.
andiu.
aze
b
be
bee
her
cal
cau
cax
cl cs
elf
cli
cmp
cm pi
cm pl
cmpli
cntlz
crand
er an de
creqv
cm and
cm or
cror
crorc
crxor
deist
dclz
des
div
divs
doz
dozi
eqv
exts
fa
fabs
fem po
fcmpu
fd
fm
fma
fmr
fms
fnabs
fneg

POWER Instruction Set (Continued)

Command

Floating negative multiply add
Floating negative multiply subtract
Floating round to single precision
Floating subtract
Instruction cache synchronize
Load
Load byte reverse indexed
Load byte and zero
Load byte and zero with update
Load byte and zero with update indexed
Load byte and zero indexed
Load floating-point double
Load floating-point double with update
Load floating-point double with update indexed
Load floating-point double indexed
Load floating-point single
Load floating-point single with update
Load floating-point single with update indexed
Load floating-point single indexed
Load half algebraic
Load half algebraic with update
Load half algebraic with update indexed
Load half algebraic indexed
Load half byte reverse indexed
Load half and zero
Load half and zero with update
Load half and zero with update indexed
Load half and zero indexed
Load multiple
Load string and compare bytes indexed
Load string immediate
Load string indexed
Load with update
Load with update indexed
Load indexed
Mask generate
Mask insert from register
Move condition register field
Move to condition register from FPSCR
Move to condition register from XER
Move from condition register from XER
Move from FPSCR
Move from machine state register
Move from special purpose register
Move from segment register
Move from segment register indirect
Move to condition register fields
Move to FPSCR bit 0
Move to FPSCR bit 1
Move to FPSCR fields
Move to FPSCR field immediate
Move to machine state register
Move to special purpose register
Move to segment register

POWER and PowerPC Instruction Sets 349

Mnemonic

fnma
fnms
frsp
fs
ics
1
lbrx
lbz
lbzu
lbzux
lbzx
lfd
lfdu
lfdux
lfdx
lfs
lfsu
lfsux
lfsx
lha
lhau
lhaux
lhax
lhbrxO
lhz
lhzu
lhzux
lhzx
Im
lscbx
lsi
Isx
lu
lux
lx
maskq
maskir
mcrf
mcrfs
mcrxr
mfcr
mffs
mfmsr
mfspr
mfsr
mfsri
mtcrf
mtfsbO
mtfsbl
mtfsf
mtfsfi
mtmsr
mtspr
mtsr

350 Appendix C

POWER Instruction Set (Continued)

Command

Move t.o segment register indirect
Multiply
Multiply immediate
Multiply short
Negative absolute
NAND
Negate
NOR
OR
OR with complement
OR immediate lower
OR immediate upper
Real address compute
Return from interrupt
Return from SVC
Rotate left immediate then mask insert
Rotate left immediate then AND with mask
Rotate left then mask insert
Rotate left then AND with mask
Rotate right and insert bit
Subtract from
Subtract from extended
Subtract from immediate
Subtract from minus one extended
Subtract from zero extended
Shift left
Shift left extended
Shift left extended with MQ
Shift left immediate with MQ
Shift left long immediate with MQ
Shift left long with MQ
Shift left with MQ
Shift right
Shift right algebraic
Shift right algebraic immediate
Shift right algebraic immediate with MQ
Shift right algebraic with MQ
Shift right extended
Shift right extended algebraic
Shift right extended with MQ
Shift right immediate with MQ
Shift right long immediate with MQ
Shift right long with MQ .
Shift right with MQ
St.ore
St.ore byte
St.ore byte reverse indexed
Store byte with update
St.ore byte with update indexed
St.ore byte indexed
St.ore floating-point double
St.ore floating-point double with update
St.ore floating-point double with update indexed
St.ore floating-point double indexed
St.ore floating-point single

Mnemonic

mtsri
mul
mull
mule
nabs
nand
neg
nor
or
ore
oril
oriu
rac
iii
rfsvc
rlimi
rlinmlux
rlini
rinmq
rrib
sf
sfe
sfi
sfme
sfze
sl
sle
sleq
sliq
slliq
sllq
slq
er
era
srai
sraiq
sraq
ere
srea
sreq
sriq
srliq
srlq
srq
st
stb
stbrx
stbu
stbux
stbx
stfd
stfdu
stfdux
stfdx
stfs

POWER Instruction Set (Continued)

Command

Store floating-point single with update
Store floating-point single with update indexed
Store floating-point single indexed
Store half
Store half byte reverse indexed
Store half with update
Store half with update indexed
Store half indexed
Store multiple
Store string immediate
Store string indexed
Store with update
Store with update indexed
Store indexed
Supervisor call
Trap
Trap immediate
TLB invalidate entry
XOR
XOR immediate lower
XOR immediate upper

Mnemonic

stfsu
stfsux
stfsx
sth
sthbrx
sthu
sthux
sthx
stm
stsi
stsx
stu
stux
stx
SVC

t
ti
tlbi
xor
xoril
xoriu

Architectural Definition 351

Bibliography

Adkins, A., and M. Dean, PowerPC Reference Platform: Specifications Guide (beta version), IBM
Corporation, Mar. 1994.

Agarwal, A., J. Hennessy, and M. Horowitz, "Cache Performance of Operating Systems and Multi-
programming Workloads," ACM Transactions on Computer Systems, 6(4):393-431 (Nov. 1988).

AlX ~rsion 3.1 RISC System/ 6000 As A Real Time System, IBM Corporation, 1991.
AlX ~rsion 3.2 Commands Reference, IBM Corporation, 1994.
AlX ~rsion 3.2 for RISC System I 6000: Assembly Language Reference, IBM Corporation, 1992.
AlX ~rsion 3.2 for RISC System I 6000: Thchnical Reference: Kernel and Subsystems, Volume 4,

IBM Corporation, 1992.
AlX ~rsion 3.2 Performance Monitoring and Tuning Guide, IBM Corporation, 1993.
AlX ~rsion 3.2 Problem Solving Guide and Reference, IBM Corporation, 1994.
AlX ~rsion 3.2 System Management Guide: Communications and Networks, IBM Corporation,

1993.
Allen, M., and M. Becker, "Multiprocessing Aspects of the PowerPC 601 Microprocessor," Proceed

ings of COMPCON 1993, Feb. 1993
Alpert, D., "Memory Hierarchies for Directly Executed Language Microprocessors," Ph.D. thesis,

Stanford University, 1984.
Anderson, D., and T. Shanley, Pentium Processor System Architecture, MindShare, Inc., Richard

son, TX, 1993.
Appel, A. W., and K. Li, "Virtual Memory Primitives for User Programs," Proceedings of ACM

Fourth Symposium on Architectural Support for Programming Languages and Operating Sys
tems (ASPLOS IV), Apr. 1991, pp. 96-107.

Auslander, M. A., "Managing Programs and Libraries in AIX Version 3 for RISC System/6000 Pro
cessors," IBM Journal of Research and Technology 34 (Jan. 1990).

Bach, M. J., The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, N.J.,
1986.

Boykin, J., D. Kirschen, A. Langerman, and S. LoVerso, Programming Under Mach, Addison
Wesley, Reading, 1993.

Cannon, C., and D. Chakravarty, "PowerPC-Architecture and Design," Worldwide Software
Development Conference, San Jose, 1994.

Chakravarty, D., "The AIX Process Structure," AIXpert, Nov. 1993.
Chakravarty, D., "Automation in Clinical Biochemistry and Laboratory: Computer Applications in

Medicine," in K. L. Mukherjee (ed.), Medical Laboratory Thchnology: Procedure Manual for Rou
tine Diagnostic Thsts, Tata-McGraw-Hill, vol. 3, chap. 32, pp. 960-984, 1988.

Chakravarty, D., "Benchmarking Under AIX," Focus J, 1 (4) (1989).
Chakravarty, D., POWER RISC System/ 6000 Concepts, Facilities, and Architecture, McGraw-Hill,

New York, 1993.
Chakravarty, D., and A. Chakravarty, "Architectural Dependencies Related to Performance Mea

surements Under UNIX," Computer Measurements Group Transactions, Summer 1992. Repub
lished in International CMG Conference Proceedings, Dec. 1992.

Cocke, J., and V. Markstein, "The Evolution of RISC Technology at IBM," IBM Journal of Research
and Technology 34 (Jan. 1990).

Common Desktop Environment: Getting Started Using ToolTalk Messaging, Sun Microsystems,
Inc., 1994.

Diefendorff, K., and M. Allen, "Organization of the Motorola 88110 Superscalar RISC Micropro
cessor," IEEE Micro, 12(2):40-63 (Apr. 1992).

353

354 Blbllography

Guide to OSF I 1: A Technical Synopsis, O'Reilly & Associates, Inc., Sebastopol, Calif., 1991.
Handy, J., The Cache Memory Handbook, Academic Press, San Diego, 1993.
Hennessy, J. L., and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan

Kaufmann Publishers, Palo Alto, 1990.
P. D. Hester, "RISC System 6000 Hardware Background and Philosophies," IBM RISC System/

6000 Technology, IBM Corporation, Austin, Texas, 1990.
Hester, P. D., J. T. Hollaway, and F. T. May, "Hardware Description," RT Personal Computer Tech

nology, IBM Corporation, 1986.
Hill, M. D., "Aspects of Cache Memory and Instruction Buffer Performance," Ph.D. thesis, Univer

sity of California, Berkeley, 1989.
Hill, M. D., and A. J. Smith, "Evaluating Associativity in CPU Caches," IEEE Transactions on

Computers 38(12):1612-1630 (Dec. 1989).
Host Connection Program I 6000 Guide and Reference, IBM Corporation, 1993.
Hwang, K, Advanced Computer Architecture: Parallelism Scalability, Programmability, McGraw

Hill, New York, 1993.
Hwang, K, and F. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, New

York, 1984.
Jain, R., The Art of Computer Systems Performance Analysis, John Wiley & Sons, New York, 1991.
Kahle, J. A., and D. Ogden, "PowerPC 603 Microprocessor," IBM RISC System/6000 Technology:

Volume II, Prentice-Hall, Englewood Cliffs, N.J., 1994.
Keller, T. W., "AfX 3.2 Memory Load Control," A!Xpert, pp. 17-25, Feb. 1992
Lewis, E., "Performance Tuning: Theory and Practice," ADitra, Mar. 1993, pp. 48-56.
McKusick, M. K, and M. Karels, "Performance Improvements and Functional Enhancements in

4.3BSD," Computer System Research Group, Dept. of CS and EE, University of California at
Berkeley, Calif.

Microsoft Windows NT Resource Guide, Microsoft Press, Redmond, Wash., 1993.
Montoye, R. K, E. Hokenek, and S. L. Runyon, "Design of the IBM RISC System/6000 Floating

Point Execution Unit," IBM Journal of Research and Technology 34 (Jan. 1990).
Moore, C. R., "PowerPC 601 Microprocessor," IBM RISC System/6000 Technology: Volume II,

Prentice-Hall, Englewood Cliffs, N.J., 1994.
Moore, C. R., D. M. Balser, J. S. Muhich, and R. E. East, "IBM Single Chip RISC Microprocessor

(RSC)," Proceedings of the 1992 International Conference on Computer Design, 1992
Patterson, D. A., and J. L. Hennessy, Computer Organization and Design: The Hardware I Soft-

ware Interface, Morgan Kaufmann Publishers, Palo Alto, 1994.
Patterson, D. A., and C. N. Sequin, "A VLSI RISC," Computer 15(9):8-21 (Sep. 1982).
PowerPC Architecture, IBM Corporation, 1993.
PowerPC 601 RISC Microprocessor User's Manual, Motorola Press, 1993.
Przybylski, S. A., Cache and Memory Hierarchy Design: A Performance-Directed Approach, Mor

gan Kaufmann Publishers, 1990.
Przybylski, S. A., "Performance-Directed Memory Hierarchy Design," Ph.D. thesis, Stanford Uni

versity, 1988.
Puzak, T. R., "Cache Memory Design," Ph.D. diss., University of Massachusetts, 1985.
Rashid, R. F., et al., "Mach-A Foundation for Open Systems," Proceedings of Second IEEE Com-

puter Society Workshop on Workstation Operating Systems (WWOS-11), Sep. 1989, pp. 109-113.
Ritchie, D. M., and K Thompson, "UNIX Timesharing," CACM 57 (6) part 2:1931-1946 (Jul. 1978).
SCSI-Architecture and Implementation, IBM Corporation, 1990.
SCSI-Understanding the Small Computer System Interface, NCR Corporation, Prentice-Hall,

Englewood Cliffs, N.J., 1990.
Silha, E., and G. Paap, "Power PC: A High-Performance Architecture," Proceedings of COMPCON

1993, Feb. 1993.
Special Issue on Software Performance Engineering of CMG Transactions, No. 60, Spring 1988.
Stone, H. S., High-Performance Computer Architecture, Addison-Wesley Series in Electrical and

Computer Engineering, 1987.
Tims, S., and M. Chow, "Apple's Macintosh Application Services: A Component of the PowerOpen

Environment," AIJ[tra, Mar. 1994, pp. 51-58.
UNIX Programmer's Reference Manual (PRM), 4.3 Berkeley Software Distribution, Computer Sys

tems Research Group, Computer Science Division, University of California, Berkeley, 1986.
Wabi 1.1 for AIX: User's Guide, IBM Corporation, 1994.
Writing Applications for the Solaris Environment: A Guide for Windows Programmers, Volume II,

Sun Microsystems, Inc., Addison Wesley, 1992.

32-bit applications, 5, 156
32-bit implementation, 33
32-bit operating systems, 14, 133, 134
32/64-bit mode switch, 5
3270 host connection program (HCON), 225,

226
3278/79 emulation, 225, 227
403 microprocessor (embedded processor), 101
601microprocessor,1, 7, 8, 9, 13, 33, 84
603 microprocessor, 7, 8, 9, 10, 33, 92
604 microprocessor, 7, 9, 11, 33, 98
620 microprocessor, 7, 10, 12, 33
64-bit implementation, 33, 60
64-bit kernel, 5
64-bit model, 6
801,4, 19,316
88110,84,90

AADU,229
Access control lists (ACLs), 210, 214
Accredited Standards Committees (ASCs), 204
acctcms command, 190
acctcom command, 188, 189, 190
accton command, 190
ACLs, 210, 214
adb debugger, 167
Address aliasing, 45
admin command, 180
AEP,205
AES,207
AFS, 213
AIX Access for DOS Users (AADU), 229
AIX Personal Productivity Client, 135-136
AIX, 2, 3, 14, 132, 133, 135-147, 231-316
AIXwindows customizing tool, 127
AIXwindows Environment/6000, 126
AIXwindows interface composer, 127
AIXwindows national language support, 127
AIXwindows style guide, 127
AIXwindows 3-D, 127

Index

Alignment interrupt, 46
alter command, 172
AMERICA, 4, 20
American National Standards Institute

(ANSI), 204
Andrew File System (AFS), 213
ANSl,204
Application Environment Profiles (AEPs), 205
Application Environment Specifications (AES),

207
Application environment system (AES), 149
Application groups, 116
Application manager, 116, 120
as command, 166
ASC, 204
Assembler, 166
Asynchronous 1/0, 244, 311
Atomic updates, 44
attchq call, 241
awk, 163, 176-177

Bad sector relocation pool, 298
Basic Network Utilities Programs (BNU), 223
Binary compatibility, 135
Bit-field instruction, 6
Block address translation, 50, 51
Block device, 313
BNU,223
bosbootcommand, 172
Bourne shell (sh), 138
Branch-and-count instruction, 27
Branch instructions, 34, 55, 84
Branch prediction, 25, 82, 88
Branch processing unit (BPU), 54, 70, 77, 80,

87,93
break command, 172
breaks command, 172
Bridge platform, 84
Buffer cache, 258
Built-in self-test (BIST), 90

355

356 Index

Cache model, 41
Cache organization, 41
Cache size, 41
C compiler, 163
C Set++ compiler, 165
C shell (csh), 138
C++ browser, 165
cc command, 165
cdc command, 180
CD-ROM, 256
CD-ROM file system, 291
cfiow, 175
cfiow command, 175
Character device, 313
CISC, 28
classes, 148
Client segment, 309
Clock cycle, 23, 24, 28
close call, 235, 289, 298
CMOS, 10
Code pinning, 311
Coherence blocks, 45, 58
comb command, 180
Common CPU model, 69
Common Desktop Environment (CDE), 107,

108, 132
Common on-chip processor (COP), 70, 87, 95
Common open software environment (COSE),

107, 135
Common user access model (CUA), 131, 152
Communications device handler interface, 239
Compare-byte instruction, 5
Completion/exception unit, 96
Computational memory, 310
Condition register, 39, 55
Configuration functions, 119
Configuration manager, 120
Context switch, 268, 270
Cost-versus-performance ratio, 29
Count register, 39, 55
CPI, 29
cpp command, 175
crash command, 277
creatp call, 236
csa, 281
curtime call, 239
cxref command, 175
Cycles per instruction (CPI), 29
c89 command, 165

Data address register, 46, 73
Data cache, 31, 41, 72, 77
Data pacing, 244
Data storage interrupt, 46, 48
Data storage interrupt status register, 46, 59

Data terminal equipment (DTE), 218
dbx debugger, 167, 170
dbx subcommands, 170
dbx symbolic debugger, 165
DCE,220
Defunct, 265
delay call, 239
Delayed branching, 24
delta command, 180
Demand paging, 266
deque call, 241
DeskSet productivity applications, 151
DeskSet productivity tools, 131
detchq call, 241
Device and ring queue kernel services, 240
Device driver, 141
Device driver management, 241
Device handler, 313
Device head, 313
Device switch table, 313
devswadd call, 241
devswdel call, 241
Dispatcher, 266, 268, 271
Dispatcher unit, 94, 96
Display postscript, 126
Distributed Computing Environment (DCE),

220
DMA management services, 240
d_move call, 240
domainname command, 213
dosdel command, 142
dosdir command, 142
dosformat command, 142
dosread command, 142
doswrite command, 142
DO/WHILE statements, 27
Double-precision computation, 34
drivers command, 17 4
DTE,218
dup call, 235
Dynamic data exchange (DDE), 119
Dynamic load, 241
Dynamically linked libraries (dlls), 118, 132

ed editor, 143
emacs editor, 143
Engineering support processor (ESP) port,

75
enque call, 241
e_post call, 236
e_wait, 236
errsave call, 238
Exception register, 39, 55
ex editor, 143
exec call, 235, 247

Execution units, 70
exit call, 235, 290
Exponent, 75
exportfs command, 211
External data representation (XDR) protocol,

152,210
External page table (XPT), 303

Federal Information Processing Standards
(FIPS), 206

File, 231, 252
File allocation table (FAT), 154
File links, 253
File manager, 113
File memory, 310
File viewer, 122
filemon command, 191
fileplace command, 192
find command, 17 4
Finder(l\1acintosh), 129
finger command, 215
FIPS,206
Fixed-length instructions, 5
Fixed-point instructions, 34, 55
Fixed-point unit (FXU), 34, 54, 70, 77, 80, 83,

93
Flat memory model, 134
Floating-point assist interrupt, 49
Floating-point status and control register, 41,

46,55
Floating-point instructions, 34, 55
Floating-point unavailable interrupt, 49
Floating-point unit (FPU), 34, 54, 70, 77, 80,

83,93
Flow control, 290
FOR statements, 27
fork call, 186, 188, 247, 261
Forward branch, 27
fp _access call, 236
fp _close call, 236
fp _{stat call, 236
fp_ioctl call, 236
fp_open call, 236
fp_opendev call, 236
fp _read call, 236
fp_write call, 236
Fragments, 244
fs copyacl command, 214
fs listacl command, 214
fs setacl command, 214
fs setacl-dir command, 214
fs whereis command, 214
fsdbcommand,168-169
ftp command, 215
Fused instructions, 21

General purpose registers, 5
get command, 180
gfs structure, 293
Gnode, 257
go command, 172
gprofcommand, 192-193
grep, 163, 177

Hard link, 254

Index 357

Hardware abstraction layer, 159
Harvard architectural model, 43, 56
HCON,226
help command, 174
Help manager icon, 115
Help volumes, 115
HelpView debugger, 165
High-performance file system (HPFS), 154
High-resolution timer, 239
hostcommand,215

IBJ.\1 RT, 316
IBJ.\1 801, 4, 19, 316
IEEE, 46, 204
imake, 163, 179, 180
In-core inode table, 257
inetd daemon, 210
info command, 145
InfoExplorer, 144
InfoExplorer books listing, 144
InfoExplorer topic and task index, 146
Inheritance, 148
init_heap call, 238
initp call, 236
Inode, 253
Institute of Electrical and Electronic Engi-

neers (IEEE), 204
Instruction cache, 41, 72, 77
Instruction-caused interrupts, 46
Instruction decode, 23
Instruction execute, 23
Instruction execution, 22
Instruction fetch, 23
Instruction fetch unit, 82, 87, 94
Instruction processing, 23
Instruction queue, 83, 87
Instruction set architecture, 33, 34
Instruction storage interrupt, 48
Instruction unit, 34
Inter-client Communication Conventions l\1an-

ual (ICCCJ.\1), 112
Interprocess communication (IPC), 233
International language support, 14
International Organization for Standardiza-

tion (ISO), 203
Interrupt,248,251,270,271,280

358 Index

Interrupt handler, 46, 281
Interrupt handler priority, 267
ioctl call, 298-301
1/0 kernel services, 239
1/0 pacing, 312
iostat command, 181, 186
ISA bus, 325
ISO, 203

Journaled file system, 291, 292

Kernel debug program, 167, 172-17 4
Kerneldebugge~167, 172-174
Kernel extension, 245
Kernelmode,233,235
kill call, 250
killpg call, 250
kmem, 305
kmsgctl call, 238
kmsgget call, 238
kmsgrcv call, 238
kmsgsnd call, 238
Korn shell (ksh), 138, 140
kpasswd command, 214

Layered architectural definition, 31, 133
lex, 163, 175, 176
libc.a, 305
libd command, 217
Link register, 39, 55
lint, 175
Little-endian addressing, 6
Load-store architecture, 5, 20, 39
Load/store unit, 92, 97
Load-string instruction, 5
Local procedure call (LPC), 159
LocalTalk, 323
lockl call, 236
Logical file system (LFS), 236, 291
Logical partition, 298
Logical volume, 244, 295, 298
Logical volume device driver (LVDD), 295,

298
Logical volume manager (LVM), 293-301
lookupvp call, 238
Loop closing branch, 27
loop command, 172
lsattr command, 193-194
lv_close call, 300
lvedit command, 199
lv_ioctl call, 300
LVM,295
lv_open call, 300
lv_read call, 300
lv_write call, 300

Mach microkernel, 148, 207
Machine check, 48
Machine state register, 45, 59
Macintosh application engine, 129, 130
Macintosh application services, 2, 107, 128,

130, 132
Macintosh desktop graphics user interface,

129
Macintosh desktop services, 129
Macintosh system services, 129, 131
Macintosh toolbox APis, 128
Major device number, 313
make, 163, 178, 180
makedbm command, 212, 213
man command, 143
Man pages, 124, 143
Management information base (MIB), 219
Mapped file, 244, 259, 293
mbufs, 147, 184
mcount command, 193
Memory buffer, 240
Memory bus, 31, 70
Memory-coherence-not-required mode, 45, 58
Memory-coherence-required mode, 44, 56
Memory coherency, 91
Memory interface unit, 84
Memory kernel service, 238
Memory management, 134
Memory model, 44
MESI cache coherency protocol, 89, 91, 95
Message queue, 283
Message queue kernel service, 238
MIB, 219
Microkernel, 148, 160
Minor device number, 313
Mirror consistency manager, 301
Mirroring, 302
mmap call, 295
Mode control bits, 50
Mode switch, 233, 235
Motorola 88110, 84, 90
mount command, 211
msgctl call, 284
msgget call, 283
msgrcv call, 284
msgsnd call, 284
mst structure, 276
Multibyte character set (MBCS) characters,

180
Multiple personalities, 160
Multiply-add logic, 21
Multiply-quotient register, 6, 74, 79
Multiprocessor, 90
Multithreading, 134
m4, 178

National Institute for Standards and Technol-
ogy (NIST), 206

National language support (NLS), 155
NCS,216
net_attach call, 240
net_detach call, 240
netpmon command, 195, 196
netstat command, 182
Network Computing System (NCS), 216
Network file system (NFS), 151, 210, 291
Network Information Service (NIS), 212
Network Interface Definition Language

(NIDL) compiler, 216
Network kernel services, 239
newproc call, 24 7
NeWS Toolkit (TNT), 152
NFS,210
nfsstat command, 183, 211
nice command, 199, 200
nidlcommand,217
NIDL compiler, 216
NIS, 212
NIST, 206
nocommand,147,184,199
Nonsequential execution, 24
nrglbd command, 217
nulladm command, 195

Object data manager (ODM), 314, 315
Object-linking and embedding (OLE), 119
Objects, 128, 148
ODM,314
OLTP, 222
on command, 211
On-card sequencer (OCS), 75
On-line help topics, 115
On-line transaction processing (OLTP), 222
open call, 289
OPEN LOOK GUI, 152
OPEN LOOK intrinsic toolkit (OLIT), 152
OPEN LOOK standard, 152
OPEN LOOK window manager (OLWM), 152
Open network computing (ONC), 151
Open Software Foundation (OSF), 206
Open Systems Interconnect (OSI), 222
Open Windows architecture, 152
Operating environment architecture, 33, 45,

59
Operating environment layers (Taligent), 149
Operating environment system (OES), 149
Operational functions, 119
Optimizing compiler, 25
origin command, 172
OSF,206
OSI, 222

Page hiding, 311
Page fault, 280, 310
Page fault handler, 307, 311
Page frame manager, 307

Index 359

Page frame table (PFT), 303, 307, 308
Page replacement, 309
Page replacement algorithm, 310
Page space, 303
panic call, 238
PASC, 204
PCibus, 325
PCMCIA bus, 325
p_cpu,266,267,269,271
Pentium, 11-13
Performance metrics, 28
Performance tuning (A!X), 145
Persistent storage manager, 307
Persistent storage segment, 309
Personality neutral services, 160
Physical file system, 291
Physical partition, 298
pid, 275
pin call, 238
ping command, 215
pio_assist call, 241
Pipe,252,282
Pipelines, 85, 93
Pipelining, 19,22
Polymorphism, 148
Portable Applications Standards Committee

(PASC), 204
Portable Operating System Interface (POSIX),

204
POSIX, 204, 311
POSIX. l, 204
POWER architecture, 5, 8, 163
POWER-based architecture, 5, 8, 163
PowerOpen, 133
PowerOpen ABI, 134
PowerOpen API, 134
PowerOpen association, 133
PowerOpen environment standard, 4
PowerOpen 890 system verification test suite,

4
PowerOpen application verification test suite,

4
PowerOpen cross platform technical support,

4, 14
PowerOpen cross platform support center, 4,

14
PowerOpen environment, 134
PowerPC alliance, 1, 15
PowerPC Reference Platform Specification

Guide, 317-326
PowerPC system information library, 4

360 Index

Precise interrupts, 88
Preemptable kernel, 268
Preemptive multitasking, 134
Prepaging,244
PReP specification, 317-326
PReP system configurations, 326
Privileged registers, 45
proc command, 174
procstructure,247,263,264,271,277,305
procdup call, 24 7
Procedure call manager, 159
Process, 231, 248, 261
Process and exception management, 236
process group, 248
Process objects, 158
Processor version register, 45
Program counter, 22
Program execution time, 29
Programinterrupt,47,48
ps command, 184, 235
pstat command, 235
Pthreads,261

QLLC,219
Qualified logical link control (QLLC), 219
quit command, 174

read call, 295, 298
Real memory, 303
Real-time clock (RTC), 322
Real-time priority, 267
Real-time processing, 241
Register renaming scheme, 88
Reliability-availability-serviceability (RAS)

services, 238
Remote access service (RAS), 154
Remote execution service (REX), 151
Remote procedure call (RPC), 151, 152, 159
renice command, 200
reorgvg command, 200
rep command, 216
Repage fault, 310
rexeccommand,216
RIOS,4
RISC, 1,2,4,8,20,29, 153
rlogin command, 216
rmap command, 196
rmdel command, 180
rmsscommand,196-197
Round robin, 269
RPC run-time library, 216
rpcgen command, 212
rpcinfo command, 212
RR architecture, 20
RS 1, 31, 70

RS .9, 31, 76
RSC,32, 80
rsh command, 216
Run queue pointer array, 268
rup command, 212
rusers command, 212
rwall command, 212
rwhocommand,216

sadc command, 185
sarcommand,185,198
Save/restore registers, 45, 46
secs command, 180
schedtune command, 186
Scheduler, 266
SCSI, 314
sed editor, 143, 163, 177
Segment lookaside buffer (SLB), 66
Segment manager, 307
Segment registers, 49, 73, 79
Segment table, 285
Segmented address translation, 50, 51
Segmented memory, 304
Semaphore, 285
semctl call, 286
semget call, 286
semop call, 286
Sequencer unit, 84
Session manager, 112
setjmpx call, 236
Shared-instruction cache reload bus, 31
Shared memory, 284, 286
shmat call, 285, 293
shmctl call, 285
shmdt call, 285
shmget call, 285
showmount command, 212
Shrink-wrapped applications, 108, 128
Signal, 248, 250
Significand, 75
Simple Network Management Protocol

(SNMP), 219
smit, 302
SNA,226
SNMP,219
Socket, 286
Soft link, 254
Solaris Open Windows architecture, 153
Solaria, 14, 133, 150-153
Solaria 1.0, 150
Solaria 2.3, 150
Source code control system (SCCS), 180
Special purpose registers, 46
sregs command, 17 4
SS architecture, 20

stack command, 17 4
Standard Apple Numerics Environment

(SANE), 150
Start-up dialog, 112
stderr, 257
stdin, 257
stdout, 257
step command, 172
Storage access ordering, 45
Strategy call, 298-300
Stream, 287
Style manager, 114
SunSoft ONC, 153
Superscalar, 5, 27, 28
SVC,218
svmon command, 197-198
SVR4 standard, 151
Swapper, 266
Switched virtual circuit (SVC), 218
Symmetrical multiprocessing, 134
sysconfig, 246
System application architecture (SAA), 152
System calls, 232
System 1/0 (SIO) bus, 77
System management interface tool (SMIT),

135
System network architecture (SNA), 226
System reset, 48
System 7, 128, 129
Systems programming interface (SPI), 149
System unit, 92, 98

Taligent,14,133,147-150
Taligent document, 150
Taligent workspace, 150
talloc call, 239
TCB,209
TCP/IP, 215
telnet command, 216
tfree call, 239
tftp command, 216
Thrashing,266,310,311
Thread objects, 158
Threads,134,244,271
Throughput,22,23
Thunking, 157
tid (thread identifier), 275
Time base, 67
Timer facilities, 67, 68
timex command, 198
Timing kernel services, 238
TLB, 307
TModel, 150
tn command, 216
'lbolTalk, 117, 131, 150, 152, 153

1bolTalk API, 118, 153
1bolTalk libraries, 117
tprofcommand, 198-199
trace command, 17 4
trace daemon, 192
trace facility, 17 4
Trace interrupt, 49
trace log file, 17 4

Index 361

Transaction identifier (TID) register, 74
Transistors, 84, 91, 98
Translation lookaside buffer (TLB), 66, 307
Transmission Control Protocol/Internet Proto-

col (TCP/IP), 215
Trap,248
trcdead command, 174
trcon command, 195
trcrpt command, 174, 191
trcstop command, 17 4
trcupdate command, 174
Trusted Computing Base (TCB), 209
tstart call, 239
tstop call, 239
tty command, 174

u_block, 262
Unconditional branch, 27
Unified cache, 89
UNIX, 244, 246, 247, 258, 261, 292
/unix, 260
unlockl call, 236
unpin call, 238
User file descriptor table, 257
User-level registers, 55
User mode, 233, 235
User-mode domain (Wmdows NT), 156
User process priority, 267
user structure, 263
USL C++ Language System, 165
uthread structure, 272
UUCP,223

vfs structure, 293
vfsrele call, 238
vi editor, 143
Virtual DOS machines (VDMs), 154
Virtual environment architecture, 33, 41, 56
Virtual file system (VFS), 236, 292
Virtual memory, 303
Virtual memory manager (VMM), 158, 186,

305,307
Virtual page manager, 307
Visual user environment (VUE), 131
vmstat command, 186
vmtunecommand,187
vn_get call, 238

362 Index

vn_free call, 238
vnode, 236, 257
Volume group, 298
Von Neumann machine model, 43

Wabi, 13, 107
wait call, 235, 247
waitcfree call, 240
waitq call,waitq call, 241
wait3 call, 24 7
wakeup call, 236
Watchdog timer, 239
who command, 143
whois command, 216
Windows NT, 14, 133, 153-160
Windows NT advanced server, 154
Windows NT file system (NTFS), 154
Windows NT executive, 155, 157
Windows NT kernel layer, 159
Windows NT protected subsystems, 155
Windows NT workstation, 154
Windows 3.1, 123
Windows 3.1 control panel color function,

123
Win16 subsystem, 157
Win32 subsystem, 156-157
Working storage, 263, 309
Workplace OS, 14, 133, 160-161
Workspace, 113
wow, 157
write call, 289, 295, 298

X consortium, 124
X environment, 125
X terminals, 145
X window calls, 118
X window system, 207
X windows, 4, 107, 108, 124, 131, 135
X.25 communications, 218
X/Open, 206
XCOFF, 135

xcomms command, 219
xde debugger, 167, 171
XL C compiler, 136
XL C optimizing compiler, 163
XL FORTRAN compiler, 165
XL Pascal compiler, 166
xlate command, 172
xlc command, 165
Xlib, 208
Xlib interface library (Xlib), 125, 126
xmalloc call, 238
xmanage command, 219
xmfree call, 238
xmkmf, 180
xmonitor command, 219
XNFS,2, 14
XPG4, 2, 14
xroute command, 219
xtalk, 219
XTI, 2, 14
XView, 152
Xll/NeWS window system, 152
X11R5, 14

yac~ 163, 175,176
Yellow Pages, 212
ypbind command, 213
ypcat command, 213
ypinit command, 213
ypmatch command, 213
yppasswd command, 213
yppoll command, 213
yppush command, 213
ypserv command, 213
ypset command, 213
ypwhich command, 213
ypxfr command, 213

Zero-cycle branches, 88
Zombie state, 265
Zombie process, 265

ABOUT THE AUTHOR

DIPTo CHAKRAVARTY has been a developer and an instructor of AIX
and POWER architectures for the IBM Advanced Workstation
Division and worldwide. His prior experience includes expert
consulting with Bellcore, DEC, HP, Intel, Motorola, OSF, Sun, and
several other organizations. A recognized expert in performance
tuning of Unix on RISC architectures, he is the author of POWER
RISC System I 6000: Concepts, Facilities, and Architecture, also
available from McGraw-Hill. His research interests include
performance monitoring of massively parallel systems,
microarchitectures, and VLSI.

CASEY CANNON is in AIX and RISC System/6000 information design
and development. She is the project lead for Wabi, RAS architecture,
multimedia, and 3D graphics as well as the lead IBM writer for the
Common Desktop Environment. She has authored multiple
publications on topics ranging from multimedia and object-oriented
applications to problem solving and system recovery. Ms. Cannon is
also a faculty member at Austin Community College.

ABOUT THE SERIES

The J. Ranade Workstations Series is McGraw-Hill's primary vehicle
for providing professionals with timely concepts, solutions, and
applications. Jay Ranade is also Series Editor in Chief of more than
100 books in the J. Ranade IBM and DEC Series and Series Advisor
to the McGraw-Hill Series on Computer Communications.

Jay Ranade, Series Editor in Chief and best-selling computer author,
is a Senior Systems Architect and Assistant V.P. at Merrill Lynch.

