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Preface 

This book is a general-purpose reference for the computer professionals who 
wish to understand the PowerPC technology, which has evolved as a result of 
the IBM-Motorola-Apple alliance. The text is designed to serve as a single 
source of reference about the PowerPC hardware and its operating environ
ments. A layer-by-layer introduction of the hardware, middleware, and soft
ware options unveils the diverse capabilities and features of this revolutionary 
technology. The subtitle, Concepts, Architecture, and Design, is quite appropri
ate, as the book contains a comprehensive overview of the hardware and the 
software concepts from both user as well as system perspectives. The text 
introduces the hierarchical architecture of the PowerPC microprocessor and 
explains the design rationales for the facilities and features that enable Power
PC to achieve the paramount level of performance. 

Architecture and implementation of a computer are two distinct entities. 
Perhaps the most popular distinction between the terms was made in a Com
munications of the ACM journal.* 

Computer architecture 

... is defined as the attributes and behavior of a computer as seen by a machine 
language programmer. This definition includes the instruction set, instruction for
mats, operations codes, addressing modes, and all register and memocy locations 
that may be directly manipulated by a machine language programmer. 

Implementation 

... is defined as the actual hardware structure, logic design, and data path orga
nization of a particular embodiment of the architecture. 

Thus, architecture is a definition that describes the behavior of all possible 
implementations, as compared to implementation that typically references a 
single microprocessor. The discussions of PowerPC architecture and its imple
mentations have been kept separate for maximum benefit to the reader. A sur
vey of operating systems and user interfaces has been provided to present to the 
reader with a system-level picture of the Power PC-based computer systems. 

*Communications of the ACM, vol. 36, no. 2, p. 33, February 1993. 
xv 
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WHY THIS BOOK 

The publicity generated concerning the PowerPC microprocessor has resulted 
in the dissemination of a wide variety of information among vendors and devel
opers in the computer industry. What has not been disseminated is a reference 
that ties all the aspects of this nascent technology together in a comprehensive 
source of reference. Hence, this book. 

OBJECTIVES OF THIS BOOK 

The first objective of this book is to describe the principles of the PowerPC 
architecture (and its implementations), which evolved out of the POWER 
architecture. Introduced in 1990, the POWER technology used in the RISC 
System/6000 product line acquired a quick reputation for itself in the market
place by virtue of its advanced RISC-based design and achievable level of per
formance. PowerPC is a flexible derivative of the POWER architecture and 
shares a wide spectrum of traits with its parent architecture. 

The second objective of this book is to depict a system-level picture of com
puters based on the PowerPC processor with emphasis on the operating sys
tems, software development tools, standards, and user interfaces. An array of 
technologies is available today, in terms of hardware as well as software, that 
can be optimized by using Power PC as its core. With a proliferation of Power
PC-based computer systems in the marketplace, end users will be faced with a 
choice of whether to opt for a computer that is PowerPC reference platform 
compliant or a computer that uses the PowerPC as its core. Both types of sys
tems offer the power of the PowerPC microprocessor, the difference being in 
the varying degrees of compatibility that exist among the applications. 

USES OF THIS BOOK 

The intended use of this book is threefold: 

• It can be used by the computer professionals working on or transitioning to 
the PowerPC-based development environment. 

• It can be read by the general audience of the computer community wishing to 
get acquainted with PowerPC technology. The material delves into adequate 
depth to serve a novice as well as a knowledgeable user. 

• It can be used as supplemental reading material in a computer system archi
tecture course. 

ORGANIZATION OF THIS BOOK 

The first part of the book introduces the Power PC in light of RISC technology. 
The second part explains the PowerPC architecture and discusses its available 
and planned implementations, including a comparative study with the 
POWER offerings to explain how POWER developed into the PowerPC. The 
third part of the book covers the user interfaces, standards, and tools. It also 
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discusses the several operating systems that can/will run on the Power PC. The 
final chapter wraps up the concepts by giving a tutorial on how to go about 
building one's own Power PC platform. The contents of each of the parts are 
stand-alone and can be studied individually. 

The book is organized into 12 chapters: 

1. Presenting the Power PC 

2. RISC Technology 

3. Architectural Definition 

4. Processor Implementations 

5. User Interfaces 

6. Choice of Operating Systems 

7. Development Tools 

8. Supported Standards 

9. Design of AIX: A PowerOpen Implementation 

10. AIX Process Subsystem Internals 

11. AIX File, Memory, and 1/0 Subsystem Internals 

12. What You Need to Build a PowerPC 

Chapter 1 introduces the PowerPC, discusses its evolution through the forma
tion of the IBM-Motorola-Apple alliance, compares its standing with the Pen
tium, and addresses some of the important highlights such as the PowerOpen 
Environment, the application binary interface (ABI), and the application pro
gramming interface (API) definitions. Chapter 2 discusses the RISC technology 
in light of its unique traits, performance tradeoffs with CISC, pipelined imple
mentation of the execution units, and the significance of reduced instruction set 
cycles. Chapter 3 explains how the layered architecture defines the varying 
degree of compatibility from an instruction set level, to the virtual environment 
level, all the way up to the operating environment level. Chapter 4 describes the 
implementations of the PowerPC architecture, such as the 601, 603, 604, and 
the 620, while contrasting them with some of the POWER implementations, the 
RS 1, RS .9, and RSC. Chapter 5 discusses the functionality and illustrates the 
leading industry standards of user interfaces including the Common Desktop 
Environment, Wabi, X Windows, and Macintosh Application Services. 

Chapter 6 reviews the PowerOpen Application Binary Interface and then 
highlights five of the 32-bit operating systems that the Power PC platform is 
intended to support, including Taligent, Windows NT, Solaris, AIX, and Work
place OS. Chapter 7 provides a broad overview of the most widely used devel
opment tools for UNIX operating systems, including discussions of (among 
others) the XL C optimizing compiler, assembler, and debuggers. Chapter 8 
discusses the compatibility, portability, and interoperability standards for the 
Power PC, followed by an overview of the interconnectivity functionalities of the 
PowerPC. Chapters 9, 10, and 11 cover in detail the PowerOpen-compliant AIX 
operating system, which is based on the COSE (Common Open Software Envi-
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ronment) version of UNIX. Chapter 9 presents the design of AIX, with in-depth 
discussions on components of the kernel, structural layout and characteristic 
features of the kernel, internal representation of files, related kernel tables, 
interprocess communication mechanisms, and allied data structures. Chapter 
10 explains AIX process management principles, with emphasis on process 
structure, process state, context switching, scheduling principles, affiliated ker
nel structures and their positioning in the kernel address space, the art of mon
itoring processes by traversing through the kmem (running kernel's memory), 
and handling of threads. Chapter 11 discusses the file, memory, 1/0, and device 
subsystems of the AIX kernel. It begins with a detailed discussion on the AIX 
file system in light of its memory mapped files, journaled file system, and the 
logical volume manager. The memory architecture topics include the address
ability of the segmented memory, followed by the virtual memory management, 
page replacement, and memory load control schemes. The 1/0 subsystem topics 
include asynchronous 1/0 and 1/0 pacing, followed by the device subsystem, 
which discusses device drivers and the object data manager. In conclusion, 
Chapter 12 wraps up the concepts, architecture, and design of the Power PC by 
providing a description of the devices and interfaces that are recommended for 
designing and building a PowerPC based computer system. 

The content of Chapter 1 serves as an introduction to Power PC for everyone. 
The material in Chapters 2, 3, and 4 will be of maximum benefit to hardware 
engineers who need to know about the registers and the architectural traits of 
the PowerPC microprocessor. The information in Chapters 5, 6, 7, and 8 are 
meant for end users and system integrators/designers. Chapters 9, 10, and 11 
are geared for UNIX gurus who wish to understand how the internals of the 
PowerOpen compliant AIX operating system works. The content of Chapter 12 
provides an account of the aspects to be considered when building one's own 
PowerPC-based computer system. 

In conclusion, this book can be thought of as a single source of information 
about all technical aspects of the PowerPC. Professionals requiring an immer
sion training in PowerPC, as well as those keen on gaining an insight into the 
internals of this complex system, will benefit from this book. 

A few caveats need to be mentioned. No attempts have been made to cover 
details of implementation-specific hardware components or release-specific soft
ware components. Such attributes are likely to change over a period of time. For 
an implementation-specific dependency of a microprocessor, or a release-specific 
dependency of an operating system or software component, one is encouraged to 
refer to the corresponding product reference manuals. Although we have avoided 
predicting the future development of the hardware and software, trends in many 
of the characteristics are obvious. In that case, this book will serve as the base
line technical reference for future products based on the PowerPC architecture. 

The IBM-Motorola-Apple alliance has resulted in the birth of the PowerPC, 
and, consequently, has brought the RISC technology to the desktop computing 
world. By blending together the cost-performance and scalable aspects of the 
architecture, along with the interoperable software base, the PowerPC has 
made the biggest impact in the personal computer industry since the original 
Intel-based personal computer itself. 
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Chapter 

1 

Introduction 

Power PC is the result of the 1993 Apple, IBM, and Motorola alliance that has 
paved a path for a high-performance, low-cost RISC-based chip to penetrate 
the desktop market in high volume across a wide variety of operating environ
ments. The revolutionary PowerPC technology was launched to offer users and 
vendors access to binary compatible platforms in the marketplace-a phe
nomenon in the UNIX arena. 

The Apple-Motorola-IBM alliance is centered at the Somerset Design Center 
in Austin, Texas (Somerset being the county in England where King Arthur's 
Knights of the Round Table gathered to strategize). Motorola's manufacturing 
expertise, Apple's software support, and IBM's processor architecture make 
the alliance a formidable challenger in the microprocessor market. 

This chapter discusses the PowerOpen Environment, the PowerOpen Asso
ciation which promotes the environment, the evolution of POWER to Power PC, 
and the comparison of PowerPC 601 (which is the first member of the family) 
with the Pentium processor. 

1.1 OVERVIEW OF THE PowerPC 

PowerPC technology is based on a RISC (Reduced Instruction Set Computer) 
architecture which is derived from IBM's POWER (Performance Optimized 
With Enhanced RISC) architecture. Note that performance was and still is 
the core driving force behind RISC-based systems. With a superior cost
performance balance, RISC processors have proven to be a peerless choice for 
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systems ranging from entry-level personal computers to high-end servers, and 
embedded control applications. 

Since the advent of the 8080 microchip, compatibility with existing architec
tures has been a major issue in microprocessor design. While Intel maintained 
an upward compatibility within generations of its own product line of 8086, 
80286, 80386, 80486, and Pentium, Intel made the architecture more complex 
than it would have been otherwise. This is the reason that Motorola's 68000, 
upon its introduction into the marketplace, featured a much cleaner and sim
pler design than the 8086, and not surprisingly had an easier time maintain
ing compatibility in its 68020, 68030, and 68040 chips. History repeats itself, 
as this decade of computing offers us a new beginning with RISC processors. 

Much of RISC's success is tied in with UNIX. Since much of UNIX (over 90 
percent) and most UNIX software is written in C, a new microprocessor archi
tecture poses less of a problem than would have been the case for MS-DOS and 
Macintosh worlds where the system software is in assembly language. The 
other significant advantage that RISC processors like the PowerPC offer is the 
ease of emulating existing instruction sets. Since RISC processors have out
distanced CISC processors in terms of performance, a comparable-speed 
emulation of CISC instruction sets becomes plausible, which is a monumental 
advantage for compatibility in the marketplace. AIX (Advanced Interactive 
Executive), IBM's version of UNIX, has been chosen to become the underpin
ning of the PowerOpen Environment. 

1.2 PowerOpen ENVIRONMENT 

The PowerOpen Environment is an application platform specification enabling 
binary-compatible applications to run on multiple vendor PowerPC-based 
systems. The PowerOpen Environment consists of the combination of any 
binary-compatible PowerOpen multiuser, multitasking UNIX operating sys
tem running on a PowerPC-based platform. 

The PowerOpen Environment offers an optional extension, Macintosh Appli
cation Services, which allows users to run Macintosh applications within the 
PowerOpen Environment. At the same time, users can run OSF/Motif-based 
applications, and character-based applications. No matter what the user inter
face, each application rides on the PowerOpen Environment. The PowerOpen 
Environment specification includes an application binary interface, an appli
cation programming interface (which includes XPG4, XTI, and XNFS), and the 
PowerPC RISC microprocessor. See Fig. 1.1 for a conceptual layout of the 
PowerOpen Environment. 

The PowerOpen Environment is designed to enable software vendors to pro
duce shrink-wrapped software and powerful server systems to give users 
access to UNIX and Macintosh software. To promote the concept of shrink
wrapped applications in the high-powered workstation market, the Power
Open Association is focusing on the concept of application binary 
compatibility-a concept taken for granted in the PC world, but elusive in the 
UNIX environment. 
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Figure 1.1 PowerOpen Environment. (Copied with permission from IBM.) 
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Using the PowerPC technology and PowerOpen system standards (derived 
from ADC), the PowerOpen Association has goals for a large application base 
supported and endorsed by major suppliers. The bottom-line question the 
PowerOpen Association wants to deliver on is: "What is needed for shrink
wrapped applications?" The group is modeling their efforts after the PC world 
model-to jump start acceptance of the PowerPC in the market, resulting in a 
larger base of shrink-wrapped applications (see Fig. 1.2). 

1.3 PowerOpen ASSOCIATION 

The PowerOpen Association is a not-for-profit association resulting from the 
1991 PowerPC technology alliance of Apple, IBM, and Motorola. The Power
Open Association promotes the growth of the PowerPC marketplace, and 
develops and supports the PowerOpen specification. Launched in March 1993, 
the PowerOpen Association also performs compliance certification or branding 
(platform certification based on OSF's Test Environment Toolkit). 

The PowerOpen Association is primarily concerned with making the 
PowerOpen Environment the most pervasive RISC-based open systems envi-

PC world model ~ ~ Increased revenue 

Figure 1.2 Jump starting the volume cycle. 
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ronment in the industry. The PowerOpen Association is not in business to 
create standards or to compete with standards groups; rather, the PowerOpen 
Association harmonizes with and defers to official standards groups including 
X/Open's XPG, ISO 9945-1 (POSIX), OSF's AES/OS, and Motif X-Windows. 

The PowerOpen Association includes Apple, Bull, Harris, IBM, Motorola, 
Tadpole, and Thomson/CSF. Apple, Bull, IBM, Motorola, and Thomson/CSF 
function as sponsor companies, and Harris and Tadpole as principal members. 
The association functions independently in order to cooperate in establishing 
the PowerOpen Environment Standard while simultaneously competing in the 
marketplace. 

PowerOpen's goals for software developers include: 

• An independent corporation providing high-value services (porting assis
tance; ABI compatibility verification tools; branding program; environment 
promotion) 

• Application development investment leverage (multiple platforms with a 
single port) 

PowerOpen goals for end users include: 

• Broad selection of applications (Macintosh desktop applications; UNIX
based workstation/server class applications) 

•Vendor independence (multiple vendor platforms with binacy compatibility) 

• Scalable binary-compatible architecture (laptop to high-end m~tiprocessing) 

Technical deliverables of the PowerOpen Association include the PowerOpen 
Environment Specifications, the PowerPC System Information Library, the 
PowerOpen 890 System Verification Test Suite (platform certification), the 
PowerOpen Application Verification Test Suite (application certification), and 
PowerOpen Cross Platform Technical Support (including fee-based technical 
support and porting assistance). 

1.4 POWER TO PowerPC ARCHITECTURE 

The first seeds for RISC were sown during the development of a telephone 
switching network in the midseventies. The progress made on the design of a 
prototype machine was taken up as a research project at the T. J. Watson Insti
tute. The low cost-performance ratio of this prototype processor was exceed
ingly encouraging and, as a result, a system called the IBM 801 emerged. 
Although the 801 design could handle one instruction per cycle for specialized 
code, the rate fell short when used with general purpose code. In the continu
ing effort to smooth out the delays caused by storage access and conditional 
branching with additional pipelines, a new design was formulated. Referred to 
as the AMERICA architecture, this new design made use of three semi
autonomous processors. The design of AMERICA later evolved into RIOS, 
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which came to be known as the POWER RISC System/6000 in the commercial 
world. The success of the POWER architecture led researchers and designers 
to develop a more flexible and cost-effective derivation of it. The result was the 
Power PC. 

The primary enhancement of the PowerPC architecture is the extension to 
64 bits. All processors run 32-bit applications as a minimum; the 64-bit imple
mentations have a 32/64-bit mode switch selectable from supervisor code. 32-
bit applications can run on a 64-bit kernel. The extension simply increases the 
size of the registers to 64 bits and adds a few new instructions for 64-bit oper
ations. In addition, PowerPC specifically extends the POWER architecture to 
directly support multiprocessing. 

1.5 POWER-PowerPC DELTAS 

The conventional traits of POWER architecture adhered to the fundamental 
RISC characteristics, and featured fixed-length instructions, a load-store 
architecture, and a generous number of general purpose registers.* It was also 
organized around the idea of superscalar instruction dispatch, pipelined imple
mentation of instruction processing, and the presence of multiple independent 
execution units to increase the throughput for instruction processing. Finally, 
the architecture featured a set of unique facilities for handling branches 
via condition registers and leading to the concept of zero-cycle branches, and 
availability of a set of unique compound instructions that can be executed 
atomically. 

The PowerPC uses the POWER architecture as its baseline and sculptures it 
to address the evolving needs of the computer industry. The IBM-designed 
POWER architectural definition was the logical starting point, as it already 
offered much of what the multicorporate alliance of Motorola, Apple, and IBM 
had in their vision for the next generation of desktop computing. New features, 
such as support for 64-bit computing, a more flexible microprocessor design for 
the Open Systems marketplace, and enhanced portability for running multiple 
operating systems, have been made available to the PowerPC architectural 
definition. 

From a standpoint of comparative computer architecture, the POWER archi
tecture featured a performance-crafted design, whereas the PowerPC architec
ture emphasizes a more cost-effective and flexible approach. To achieve this, 
some of the complex logic was removed and some new features were introduced. 

The process of slimming the POWER architecture to formulate the Power PC 
derivative consisted of the following highlights: 

• Elimination of "load-string and compare-byte" instruction which was the 
most complex instruction in the POWER architecture 

* Refer to Chap. 2 for a detailed discussion on the RISC characteristics. 
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• Elimination of multiply-quotient (MQ) register and all extended precision 
shifts and integer multiply-and-divide instructions which use it 

• Elimination of instructions whose operation was dependent on source 
operand value (to reduce cycle time) 

• Elimination of several bit-field instructions that had three source operands 

Add-ons to the PowerPC architecture beyond the POWER predecessor con
sisted of the following features: 

• Extension of the architecture to a true 64-bit model 

• Addition of single-precision floating-point instructions (POWER only sup
ports double-precision, which precludes implementations with fast single
and slower double-precision) 

• Addition of unsigned integer multiply and divide 

• Provision for a fast-trap-and-emulate mechanism for implementing complex 
operations such as string operations (for low-cost implementations) 

• Addition of an improved set of instructions for explicitly scheduling data into 
and out of the cache under user control 

• Definition of a weak storage memory model (to simplify dynamic reordering 
of memory operations in hardware) with user storage locking and synchro
nization (for multiprocessors) 

• Addition of a little-endian addressing mode switch 

The charter of the PowerPC architecture group was to come up with a more 
cost-effective derivative of the POWER architecture. Therefore, the features of 
POWER architecture that were too restrictive and not as cost-effective, have 

Instructions deleted from 
POWER (emulation) 

Power PC 
instructions not 

implemented on 
the 601 (emulation) 

PowerPC architecture 

Common mode --

POWER-RS! and RSC 

----+-POWER mode _ ____,~1 

New 32-bit instructions 

New64-bit 
/instructions 

Figure 1.3 PowerPC and POWER architecture relationship. (Copied with per
mission from IBM.) 



Introduction 7 

been eliminated in the Power PC. Refer to Fig. 1.3 for a conceptual illustration 
of the POWER to PowerPC relationship. 

The PowerPC initial focus is on the high-volume, single-chip implementa
tions characteristic of the PC and low-end workstation markets building on the 
RSC. The benefits inherent in RISC architectures make the 601 microproces
sor much easier to design and to fabricate at a given clock rate than Pentium, 
an implementation of the Intel CISC x86 architecture. 

The PowerPC programming model and instruction op-code assignments 
remain fully POWER-compatible, enabling PowerPC users to access approxi
mately 4000 AIX applications. However, there are some incompatibilities 
between PowerPC and POWER such as: 

• Different alignment requirements 

• Different interrupt mechanism 

• Different 1/0 structure 

• Different page table and cache model 

• 32-bit and 64-bit implementations 

• Support for single-precision floating point 

• Instruction set differences 

A complete set of POWER and Power PC instructions is provided in App. C for 
reference. 

1.6 PowerPC PERFORMANCE 

The PowerPC architecture has been designed to support computers ranging 
from pen-based systems to desktop PCs to multiprocessing servers to multipro
cess supercomputers, including real-time systems and server systems. The 601 
and 604 microprocessors give desktop designers a chip for office computing and 
have extensive support for multiprocessing. The 603 microprocessor is targeted 
towards low-end desktop computers and laptops. The 620 microprocessor is tar
geted to the high-end workstations, server, and multiprocessor systems market. 

The PowerPC microprocessor architecture goals include: 

• Simplify architecture (smaller chips, faster cycle times, and more aggressive 
superscalar implementations) 

• Improve architecture (for example, 32-bit single-precision floating-point, bi
endian addressing, low-power modes) 

•Maintain compatibility of ABI with POWER (trap and emulate removed 
instruction) 

• Incorporate multiprocessor support (strong multiprocessor comparabilities 
for scalability) 

• Add 64-bit extensions (compete with competitive 64-bit architectures includ
ing MIPS R4000 and DEC Alpha while maintaining 32-bit compatibility) 
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1.6.1 Why the RISC-based PowerPC is faster 

PowerPC CPUs achieve their performance by processing instructions faster 
than CISC CPUs. The chips adhere to RISC-specific design principles, whose 
goal is to complete one instruction every CPU clock cycle. To complete one 
instruction every CPU clock cycle, RISC chips employ uniform instruction size, 
which expedites the fetching of instructions. RISC processors do not have to 
pause and retrieve additional words to complete a pending instruction, as 
CISC processors sometimes do. 

The reduced complexity of instructions simplifies instruction processing. 
RISC chips have little if any of the microcode instructions. Simple memory
addressing methods allow quicker access to main memory on the system board. 
RISC methods do not include complex calculations and multiple memory ref
erences, as the most sophisticated CISC methods do. Limited memory-access 
instructions reduce instruction size and simplify instruction processing. RISC 
instructions that manipulate data never get or put data in memory, but many 
CISC instructions combine those functions. An abundance of registers lessens 
memory access. Compared with CISC programs, RISC programs keep more 
interim results on the chip in registers and fewer off the chip in main memory. 

To gain further understanding of these characteristic traits, refer to Chap. 2. 

1.6.2 601 microprocessor 

The 601-based machines target Intel's market-601s are for use in desktop 
computers, portable systems, and low-end multiprocessor systems. The Power
PC 601-based machines are not the first RISC systems to specifically target 
Intel's desktop hold, but they are the most formidable challengers. Designing 
competitive systems is not the problem; the problem is winning market share 
from the firmly entrenched Intel and getting independent software vendors to 
port their applications to PowerPCs. 

However, the benefits inherent in RISC architectures make the superscalar 
601 the microprocessor of choice. The 601 microprocessor (see Fig. 1.4 for an 
illustration) includes the following highlights: 

• Capable of running at 50 to 80 MHz 

• Bridge support for POWER applications 

• Multiprocessing enablement 

• Concurrent fixed-point, floating-point, and branch instruction execution 
capability 

• 32-KB unified eight-way associative cache 

1.6.3 603 microprocessor 

The 603 microprocessor offers higher performance at low power level. The 7.4-
by 11.5-mm chip features on-chip 8-KB instruction and data caches coupled to 
a high-performance 32/64-bit system bus. Peak instruction rates of three 
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instructions per cycle, with power levels below 3 W at 3.3 V, offer unparalleled 
notebook and portable computer performance at the current time. 

The 603 microprocessor, a low-cost, low-power processor primarily for lap
tops and low-end desktop systems, includes the following highlights (see Fig. 
1.5 for an illustration): 

• Capable of running at 75 MHz 

• Low-cost uniprocessor 

• Nap and Doze mode for power saving 

• 8-KB I-cache and 8-KB D-cache 

1.6.4 604 microprocessor 

The 604 microprocessor architecture uses superscalar design techniques to 
achieve high performance. It is a medium-sized, relatively high-performance 
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part for mainstream personal computers, midrange workstations, and multi
processor systems, including the following highlights (see Fig. 1.6 for an illus
tration): 

• Capable of running at 100 MHz 

• Multiprocessing support 

• Fast L2 secondary cache 

• 16-KB I-cache and 16-KB D-cache 

1.6.5 620 microprocessor 

The 620 microprocessor includes .5-µm CMOS process technology and an 
embedded secondary cache controller. The 620 microprocessor implements full 
64-bit high performance for high-end workstations, servers, and multiproces
sor systems including the following highlights (see Fig. 1. 7 for an illustration): 

• Capable of running at 150 MHz 

• Single-chip modular 64-bit implementation 
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Figure 1.6 604 microprocessor architecture. (Copied with permission from 
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• Dual fixed-point and floating-point execution units 

• Multiprocessing support 

• On-chip support for secondary cache 

• Eight-way associative cache 

• 32-KB I-cache and 32-KB D-cache 

1.6.6 601 versus the Pentium 

1.6.6.1 Market comparison 

Intel's Pentium is primarily for use in servers and high-end microcomputers. 
Most of the first Pentium models are on existing systems with Pentiums added 
via daughter- or processor cards. Pentium is fully compatible with the existing 
suite of x86 software. 

An advantage of Intel's Pentium is user acceptance-users have consistently 
been moving from 8080 to i286, i286 to i386, and then i386 to i486. A second 
primary advantage is the enormous x86 user base-Intel's x86 is the premier 
processor architecture in the mainstream computing market, with over 50,000 



12 Introduction 

r----------------------------------------------------

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_f 
L 

l l 
Three 

General 

integer I--
purpose 
register 

units rename 

Data cache 

l 

L2 interface / 

Control unit L 
J 

I 
Load/ 

Floating-
........., store ........., Floating-

I--
point 

point unit register 
unit rename 

L 
Instruction cache 

l 
Bus interface 

Address Data 

System bus 
I I l ____________________________________________________ J 

Figure 1. 7 620 microprocessor architecture. (Copied with permission from 
IBM.) 

supported DOS and Windows software products, and an installed base of over 
one hundred million PCs. Power PC is a brand new technology. It is difficult to 
convince users to risk their heavy investments in software for moves to emerg
ing platforms. 

1.6.6.2 Architecture comparison 

Both the PowerPC and Pentium are based on superscalar architectures. The 
PowerPC 601 has three pipelined execution units capable of issuing and retir
ing three 32-bit instructions per clock cycle. These instructions include one 
integer, one floating-point, and a branch processing unit which can be either 
integer or floating-point. Each of Pentium's two instruction pipelines includes 
an arithmetic logic unit, address-generation circuitry, and data cache inter
face. The Pentium's dual pipelines can only process two integer or one floating
point instruction per clock cycle. This two-to-three difference in instructions 
per clock cycle represents a definite performance advantage for the PowerPC 
601. 

Although both the Power PC and Pentium include an on-chip cache, the Pen
tium's 8-KB data and 8-KB instruction cache is only half of that offered by the 
PowerPC 601's 32-KB, 8-way, set-associative, physically addressed unified 
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cache. The on-chip cache memory acts as a buffer for instructions and data that 
can be accessed at high speeds to avoid loading another segment from the 
slower main memory. A larger cache translates into a smaller wait state, which 
improves overall processor performance. 

The Pentium's floating-point processor, a redesigned version of that found in 
the i486, is still much slower than the PowerPC 60l's. Its eight-stage pipeline 
can execute only one floating-point operation per clock cycle. Not surprisingly, 
the Pentium's 56.9 SPECfp92 is almost 40 percent slower than the 81 SPEC
int92 found on the PowerPC 601. 

The PowerPC is based on a .65-µm complementary metal oxide semiconduc
tor (CMOS) technology, while Intel's Pentium uses .8-µm BiCMOS (a combina
tion of bipolar logic and CMOS) technology. The PowerPC 601 has four levels 
of metal wiring compared with three on the Pentium. See Fig. 1.8 for an 
overview of the 601 versus Pentium architecture. 

The PowerOpen alliance is counting on most microcomputer buyers finding 
that Intel's i486 processor family can still meet their price and performance 
requirements and that the Power PC support of multiple operating systems and 
applications running on high-performance hardware is worth the investment. 

1.7 SYSTEM ENVIRONMENT OVERVIEW 

While PowerPC and PowerOpen directly impact the workstation market, soft
ware running via emulation or natively on the PowerPC promises to break the 
x86 software applications barrier. Among the most important developments, 
SunSoft's Windows translator, Wabi, opens the Windows x86 application 
library to UNIX or any other software or hardware environment. Users can 
choose to work in either an OSF/Motif user environment, a Macintosh user 
environment, or a combination of both. Once in the Macintosh window, users 
interact with the Macintosh look and feel. Using the multifinder, users can cut 
and paste between the Macintosh window environment and virtually any other 

Features PowerPC601 Pentium 

Millions of transistors 2.8 3.1 
Size of die 11x11 mm 16.6x17.6 mm 
Power consumption 9W at 66MHz; 3.6-V 16W at 66MHz; 5-V 
Cache size 32-K combined cache 8-K Instr; 8-K Data 
Maximum instr/cycle 3 2 
User registers 32 GPRs; 32 FPRs 8 GPRs; FP Stack 
Architecture RISC CISC/RISC 
Technology CMOS Bi-CMOS 
Instruction format Fixed length Variable length 
Data bus; Address bus 64 bits; 32 bits 64 bits; 32 bits 

Figure 1.8 601 versus Pentium. (Copied with permission from IBM.) 
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X-client application on the PowerOpen system. Refer to Chap. 5 for details con
cerning the PowerPC end-user environment and to Chap. 6 to learn more 
about the PowerPC operating environments. 

The PowerOpen Association's promise of promoting application availability 
is primarily achievable by the wide range of operating systems that are Pow
erPC functional. The PowerPC platform supports numerous 32-bit operating 
systems (which must be based on the PowerOpen base operating system ABI 
specification), including AIX, Solaris, Windows NT, Workplace OS, and Tali
gent. All the operating systems can run DOS and Windows under emulation, 
giving users an unending range of applications to choose from. 

1. 7 .1 PowerOpen ABI and API 

The application binary interface (ABI) defines the structure of the application 
as it was in the PowerOpen Environment. This includes such key definitions as 
loading and linking, conventions, object formats, the execution environment, 
networking infrastructure, and installation and packaging information. The 
PowerOpen ABI technical support is provided by a PowerOpen Cross Platform 
Support Center which answers questions or concerns about general ABI com
pliance issues and provides a specific company contact for platform-unique 
support. 

The application programming interface (API) defines the set of system calls, 
library function, header files, commands, and utilities that an application 
developer is allowed to use to develop a compliant application. The PowerOpen 
API supports the following industry standards: XPG4, XNFS, XTI, and X11R5. 
The networking API provides the commands and parameter-passing defini
tions for intersystem operations. Both stream and sockets are used for net
working in the PowerOpen Environment. TCPI/IP (discussed in Chap. 10) is 
one of the underlying protocols used for networking. See Fig. 1.9 for an illus
tration of how the ABI and API are aligned. 

1.7.2 International language support 

API 

ABI 

Hardware 

The PowerOpen Environment includes international language support. Char
acter representation is handled by both UNIX's standard 7-bit ASCII, and also 

PowerOpen API (XPG4, XTI, 
XNFS, X11R5) 

Operating systems; networking; 
install; extensions 

PowerPC architecture 

Figure 1.9 API and ABI alignment. (Copied with permission from IBM.) 
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by the ISO 8859 family of 8-bit extended ASCII code sets, as well as the de 
facto standard PC code set (IBM-850). For Asian languages, character encod
ings are supported by the Extended UNIX Code set, including support for Chi
nese, Japanese, and Korean characters. 

Language customs and conventions support is provided for Chinese, 
English, French, German, Japanese, and Spanish. The same tools that are 
used to develop the language support are provided as a part of the environ
ment, allowing further customization of customs and conventions. Software 
developers may also choose to develop additional language support. 

1.8 SUMMARY 

The PowerOpen alliance has promised to deliver support for binary applica
tions running across PowerOpen compliant systems from multiple vendors. In 
an unprecedented effort in the UNIX environment, the evolution of the 
PowerOpen effort has geared up to encompass the hardware, system, software, 
and applications interfaces required to run both UNIX and Macintosh applica
tions supporting any look and feel a user wants. 

The delivery of the 601 and 603, with the 604 and 620 follow-ons, launches 
the PowerOpen alliance directly into the PC desktop mass market with an eye 
on the low-end laptop and high-end multiprocessing markets as well. IBM's 
formation of the Power Personal Systems Division to exclusively sell PowerPC
based systems competes directly with the marketing of IBM's own Intel-based 
systems highlighting IBM's commitment to the PowerPC products. 

Power PC compatible technology includes Apple's System 7, IBM's OS/2, DOS 
via emulation, AIX with the Macintosh GUI, Solaris, NetWare, Taligent, and 
Wabi, to name a few. The PowerOpen Environment allows users to work simul
taneously with graphical applications based on a Macintosh- or OSF/Motif
based interface. Supported by the seven suppliers and backed by the POWER 
architecture, users have access to a large base of applications running on 
proven hardware--users have a standards-driven, open environment today. 
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RISC Technology 

The PowerPC features a RISC-based design. This chapter introduces some of 
the key concepts behind RISC architecture. The traditional notion of RISC 
was to create a machine with a very fast clock cycle that can process instruc
tions at the rate of one per cycle. To achieve this, the idea of pipelining became 
a default trait of this type of architecture, since it is a natural technique to 
achieve the goal of executing one instruction per machine cycle. Understand
ing the underlying philosophy of RISC-based designs of microprocessors 
makes the study of Power PC concepts, facilities, and design more useful and 
interesting. 

2.1 EVOLUTION OF RISC 

The first seeds for RISC were sown as a result of the development of a tele
phone switching network in the midseventies. Maybe nobody remembers the 
telephone switching network anymore, but the progress made on the design of 
a prototype machine at that time was taken up as a research project at the 
T. J. Watson Institute. The low cost-performance ratio of this prototype proces
sor was exceedingly encouraging and, as a result, a system called the IBM 801 
emerged. The term "RISC" was coined shortly thereafter by a University of 
California research group that was working on a similar project; their system 
was called the RISC I. So, when the IBM 801 was further refined and released 
commercially as the IBM RT, it was appropriately called a RISC-based system. 
Although the 801 design could handle one instruction per cycle for specialized 
code, the rate fell short when used with general purpose code. In the continu-
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ing effort to smooth out the delays caused by storage access and conditional 
branching with additional pipelines, a new design was formulated. Referred to 
as the AMERICA architecture, this new design made use of three semi
autonomous processors. The design of AMERICA later evolved into RIOS, 
which came to be known as the POWER RISC System/6000 in the commercial 
world. Very shortly after its introduction into the market, the success of the 
POWER architecture led researchers and designers to develop a more flexible 
and cost-effective derivative of it. The result was the PowerPC. 

The architectural heritage of the PowerPC-based systems allows all the 
existing software applications for POWER architecture to work this new sys
tem, while taking additional advantage of Power PC's new features. 

2.2 RISC CHARACTERISTICS 

What makes a machine a RISC machine is a set of its characteristic traits. 
They all have fixed-size instructions. For performance reasons, instructions 
are typically implemented in the hardware instead of being microcoded. A 
desired side effect of doing this is that it frees up a lot of the chip area, which 
would have been used to store the microcode. Also, a generous supply of gen
eral purpose registers was inherent to the design of RISC machines, since their 
architectural design called for instructions to be brought in to registers before 
being able to process them. These traits are further elaborated in the ensuing 
sections. 

Most of the commercially available RISC processors, such as the HP Preci
sion Architecture, Sun SPARC, DEC Alpha, and IBM POWER, incorporate 
a few hybrid features from non-RISC types of architectures, marrying the 
best of available technologies into one microprocessor to deliver optimal cost
performance ratio. An example of this is the implementation of the integer 
division logic in the POWER architecture in microcode instead of in the hard
ware. Note that there is nothing wrong with doing this, but the term RISC is 
thereby weakened from a purist's perspective on RISC architecture. 

2.2.1 Load-store architecture 

Load-store computer architecture is also referred to as a register-register archi
tecture or RR architecture. In this class of machines, operands and results are 
retrieved indirectly from the main memory through the use of a large number 
of scalar or vector registers. In contrast to an RR architecture, there is a class of 
architectures called the storage-storage architecture in which source operands' 
intermediate and final results are retrieved directly from the main memory. 
The shorter notation for this class of machines is SS architecture. RISC 
machines are of the RR type of architecture. 

2.2.2 Fixed-length instructions 

Fixed-length instructions make it easier for the machine to decode them. By 
having simple instructions, it may take more instructions to do the same piece 
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of work, but exploiting the fast, less-expensive memory devices makes it possi
ble to execute a larger piece of code (a larger number of instructions) faster. 
This is consistent with the age-old principle: KISS (keep it simple, stupid!). 

2.2.3 Hardwired control 

RISC machines feature hardwired controlled instructions, as opposed to 
microcoded instructions. Contrary to the idea of using more complex (and often 
variable-length) instruction sets to maximize the semantic efficiency of the 
processor, simple instructions are found to be easier for the machine to inter
pret. Also, the work done in executing fewer instructions is not necessarily 
less, as there is microcode interpretation time involved; therefore, implement
ing instructions in hardware-although more expensive-offer a better perfor
mance equation in terms of execution time. Adding to this is the free-up of the 
microstore area on the chip and elimination of the time needed to interpret the 
microcode. 

2.2.4 Fused instructions 

Hardwired control also results in a higher degree of accuracy. This facilitated 
the implementation of fused or compound instructions in the design of the 
POWER and PowerPC architectures. By making certain frequently occurring 
instructions execute atomically as fused instructions, the gain on clock cycle 
savings is doubled. 

Consider a basic floating-point multiply and floating-point add operation on 
a classical machine (Fig. 2.1). Now consider how a greater accuracy could be 
achieved. If the two steps of the classical multiplier and adder can be combined 
into a fused implementation of a multiply-add logic, an accuracy gain is 
achieved by reducing six connections to four connections in the instruction 
logic. Figure 2.2 explains this notion by showing how the fused multiply-add 
logic is actually implemented. In terms of accuracy, the reduction from six con
nections to four in the fused multiply-add instruction logic of the floating-point 
unit of the PowerPC is consistent with the RISC philosophy of producing heav
ily optimized units to tackle the most frequently required functions. 

Classical FP multiply Classical FP add 

1. Add exponents. 

2. Multiply significands. 

3. Normalize 

4. Round. 

1. Subtract exponents. 

2. Shift significand with smaller exponent to right 
by the difference of exponents. 

3. Add significands. Larger exponent is the expo
nent of the result. 

4. Normalize. 

5. Round. 

Figure 2.1 Comparison of steps involved in a classical floating-point multipli
cation and a floating-point addition. 
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1 2 3 4 1 2 3 

AxB C+R AxB+C 

Round Round/normalize Round/normalize 

5 6 4 

Figure 2.2 Implementation of classical multiplier and adder versus fused mul
tiply-add implementation. 

2.2.5 Pipelined Implementation 

Instruction execution in the PowerPC takes place in a way that is quite differ
ent from the classical machines that executed one instruction at a time with 
a program counter pointing to the instruction currently being executed. A 
pipelined architecture of the three execution units of PowerPC adds a new set 
of complexities to its instruction execution mechanism while yielding a high 
degree of performance. In order to best explain the functions, features, and 
benefits of pipelining, we first explain its basic design philosophy, followed by 
the implementation. 

The basic principle of pipelining is quite natural; it is not specific to com
puter technology. The notion of a pipeline can be conceptualized using quite 
a few real-world examples. The first analogy can be made with petroleum 
pipelines where a sequence of hydrocarbons is pumped through a pipeline of 
treatment phases. The last product may be entering the pipeline before the 
first product has been removed from the terminus. Our second analogy is made 
with an assembly line in an industrial plant. Consider automobile manufac
turing plants that build cars using an assembly line consisting of phases. The 
initial phase could be molding of the chassis itself, with the final phase being 
assembly of the engine. The last automobile may very well enter the pipeline 
before the first vehicle has been removed from the terminus. In both analogies, 
notice the fact that the net yield will be directly proportional to the number of 
phases of the pipeline or the assembly line. 

The most significant contribution of pipelining is that it provides a way to 
start a new task before an existing one has been completed. Hence, the com
pletion rate (or throughput) is not dependent on the total processing time, but 
rather on how soon a new process can be introduced in the pipeline. 

To further illustrate this concept, consider the aspects of a general purpose 
processing operatfon. Figure 2.3 depicts a (simplified) sequential process done 
step-by-step over a period of time. Assume that three distinct stages in the 
automobile assembly are molding of the chassis, painting of the frame, and 
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Chassis ~ I I 

Paint ~///,1 

Wheels fta 
Figure 2.3 Pipelined execution for a three-stage automobile assembly line. 

installation of the engine. If each stage takes one time unit, then the total time 
for the processing will be three units. So, to build three automobiles it will take 
nine time units. 

To perform the same process using pipelining technique, imagine a continu
ous stream of the jobs going through the three stages. In this case, each hori
zontal row in Fig. 2.3 represents the time history for one job. Each vertical 
column represents the activity at a specific time. Note that up to three inde
pendent jobs may be active at any time in our example. Hence, to build three 
automobiles using this three-stage pipelining technique, it will definitely take 
less time than the nine time units that were required in the earlier case using 
sequential processing. 

Relating the general ideas presented in Fig. 2.3 to computer design is quite 
straightforward. Formulate an analogy between executing a single computer 
instruction and the sequence of the automobile assembly line. Instruction 
processing is done in a number of pipeline stages. Each phase of computer 
instruction processing is conceptualized as a stage in the pipeline. Typically, 
an instruction is first fetched, then decoded, and subsequently executed. 
So, the three pipeline stages (1) instruction fetch, (2) instruction decode, and 
(3) instruction execute, can be correlated to the three stages in the assembly 
pipeline. 

Figure 2.4 illustrates the analogy by substituting the names of the stages. In 
a specific sense, each of the three instruction-processing stages is significant. 
The instruction fetch stage consists of obtaining a copy of the instruction from 
memory when the program begins. The instruction decode stage comprises 
examining the instructions and initializing the control signals that are 
required to execute the instruction in the subsequent step. The instruction exe
cution essentially executes the specific instruction in the processor. In this 
generic example, we assume that each of the stages takes one time unit to com
plete. This time unit is referred to as a clock cycle throughout the remaining 
discussion. 
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1 2 3 4 

Fetch ii iz i3 i4 

Decode ii i2 i3 

Execute ii i2 

Figure 2.4 Pipelined execution of computer instructions. 

In the normal mode of operation, the first stage of the pipeline will continu
ously fetch instructions, the second stage will decode instructions, and the 
third stage will continue to execute the decoded instructions. If you were to 
have a sequential stream of instructions, this pipelining scheme would be ade
quate to handle a program execution efficiently. But in the real world almost 
all programs have branches that lead to nonsequential execution of the code. 
When a conditional branch instruction is detected, its address cannot be deter
mined until it is executed. If the branch falls through, the sequence of instruc
tions will remain unaffected. However, if the branch is taken and it happens to 
be a forward branch, its address will remain unresolved. AB a result, we will 
end up with a hole in the pipeline. The holes are also known as bubbles. 

Figure 2.5 illustrates a simplified instruction stream that contains a forward 
branch instruction. Its pictorial representation is portrayed in Fig. 2.6, illus
trating the temporal positioning of bubbles in a two-stage pipeline. Iftoo many 
of these bubbles were to develop in the pipeline, the performance penalties 
(encountered by the idle clock cycles) will increase significantly. Although we 
can guarantee the proper execution of the instruction stream in the pipeline by 
interlocking the execution of the conditional branch fetched by the first stage 
such that no further fetches take place until the execution of the branch 
instruction in the next stage, we are penalized by acute performance costs. The 
method guarantees proper instruction execution, but it wastes too many clock 
cycles. So, one has to be able to deal with these bubbles in the pipeline in a rea
sonable way. 

Dealing with bubbles in a pipeline requires an understanding of the fact that 
when a processing stage lies idle on a particular cycle due to the lack of avail
able input rather than to a potential future collision, the idleness eventually 
propagates through the entire pipeline and deteriorates the overall pipeline 
efficiency. Some techniques exist to handle this problem. 

A delayed branching technique that is suitable to sustain high performance 
is discussed first. It is based on the attempt to manipulate the sequence of 
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Figure 2.5 Simplified instruc
tion stream containing a for
ward branch instruction. 
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instructions in the instruction stream at compilation time. An optimizing com
piler is used to perform this feat. Figure 2. 7 shows how a normal instruction 
stream is altered by realigning an independent instruction to execute immedi
ately following the branch instruction fetch. The branch instruction is now fol
lowed by an independent instruction, i 2, so that the execution phase following 
the decode phase always remain full, as shown in Fig. 2.8. The machine 
attempts to execute one instruction per cycle, and the delay in the execution 
pipeline is two or more stages. This technique is well suited for early RISC pro
cessors. When the depth of the pipeline gets longer, it becomes exceedingly dif
ficult to find independent instructions that can fill up all the bubbles. As a 
general rule of thumb, this technique becomes difficult to design for pipelines 
with a depth of three or greater. 

Another way to sustain high performance is a branch prediction technique, 
in which the branch target is guessed in advance and the instructions in the 
pipeline are marked provisionally. After the outcome has been resolved, the 

1 2 3 4 5 

ii Branch in in+l 

i1 Branch in 

Figure 2.6 A two-stage pipeline showing bubbles generated by an instruction 
stream. 
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Figure 2.7 Delayed branching technique that allows a potential bubble to be 
replaced with an independent instruction that can be made to execute. 

temporarily tagged results are made permanent if the guessed outcome was 
true; these tentative results are purged if the guessed outcome was false and 
the operations in progress are all canceled. The algorithm looks like this: 

guess branch outcome 
proceed on that path 

if prediction correct 
< no bubble in the pipeline > 

if prediction incorrect 
partially executed instruction cancelled 
< bubble left in the pipeline > 

It is obvious that this technique is very effective when the guesses are correct 
most of the time. 

In the FOR or DO/WHILE statements in programming languages, backward 
branches are usually loops. All loop-closing branches are taken except for the 
last one. So, for these types of branches, if one were to predict that the default 
case is the branch not taken, then the prediction will be true for all except the 
last case. In the last iteration of the loop, the value of the loop control variable 
will render the comparison logic false. Due to the availability of a branch-and
count instruction in some of the RISC machines' instruction sets, counting the 
number of loops becomes easy. The process becomes challenging when branch 
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Figure 2.8 Outcome of realigned instruction processing 
(1) with and (2) without delayed branching technique. 
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instructions are used differently by different software, particularly when gen
erated by different compilers. The IFtrHEN statements that generate forward 
branches allow a guess to be correct only 50 percent of the time. Moreover, the 
branch address of a jump instruction might be the normal-case branch pro
duced by one compiler and might be the exceptional-case branch in the code 
produced by Ej.D.Other compiler. Which case should the hardware guess to be the 
normal case when deciding whether the branch is to be taken or not? With a 
random chance of guessing the outcome, there is the probability of being right 
half of the time. 

Of the two methods of dealing with bubbles in the pipeline, the PowerPC 
makes use of the branch prediction method. For FOR and DO/WHILE loop con
structs, it assumes that a branch is not taken. Due to the availability of its 
branch-and-count instruction, counting the number of loops is easy. So, for a 
loop of 100 iterations, all but the last iteration will succeed, thereby yielding a 
99:1 success ratio. For IFtrHEN constructs, the outcome has a 50:50 chance of 
succeeding. In real life, the instruction mix usually consists of three different 
types of branches: (1) unconditional, (2) loop-closing, and (3) forward branches. 
With all three branches occurring in equivalent proportions, it is imperative 
that the unconditional branches occur a third of the time, the loop-closing 
branches occur a third of the time, and the forward branches occur for the 
remaining third of the time. As the probability of the untaken forward 
branches is 0.5, the total likelihood that the branches will be predicted cor
rectly is Ya+ Ya+(~* Ya)=%. So, only 76 of the branches (taken conditionals) may 
waste cycles and cause bubbles in the pipeline. 

2.3 SUPERSCALAR IMPLEMENTATION 

The availability of three independent execution units in the PowerPC that are 
capable of concurrent execution of instructions enables the processor to handle 
an instruction set so rich that it could execute multiple instructions in a single 
clock cycle. In addition to this parallelism, each of the individual execution 
units is pipelined, implying that they have the ability to process multiple 
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instructions simultaneously. This implementation, i.e., the ability to process 
multiple instructions in a single clock cycle, is referred to as superscalar archi
tecture. Available VLSI and CMOS technology is exploited to provide this fea
ture-parallel execution of up to five operations per clock cycle-with the ideal 
instruction mix. 

2.4 RISC/CISC TRADEOFFS 

One of the typical characteristics of RISC machines is their simplified instruc
tion set. This notion that a large set of simplified instructions can deliver a 
higher degree of throughput is best explained with the help of a practical 
everyday-life scenario. Consider an option to build a wall five feet high using 
either (1) a large number of small bricks or (2) fewer large concrete blocks. The 
amount of work done in each case is quite different. The larger blocks would be 
slower to carry (performance deterioration) but there would be fewer to fetch 
(performance amelioration). Likewise, the small bricks would be much faster 
to haul (performance amelioration), but there would be more to fetch (perfor
mance deterioration). Now if the rate at which the fetches are performed can 
be increased, then the latter method will end up being faster. 

This is exactly how the performance metrics for RISC and CISC machines 
compare. The pros for CISC machines may be that there are fewer instructions 
to fetch and the size of the object code is smaller. But the cons are the time 
required to decode variable-length complex instructions and the slower rate of 
execution for its microcoded instructions. Table 2.1 describes some of the typi
cal RISC and CISC characteristics. 

2.5 EFFECT OF PIPELINING 

A pipelined architecture for the three independent execution units of Power PC 
has produced a significant yield from the instruction processing rate. In the 
earlier sections, the concept of a pipeline was explained in that a yield was 
shown to be directly proportional to the number of phases of the pipeline. If the 
pipeline can be kept full for any of the execution units, then every clock cycle 
will result in multiple instruction processing. The pipeline gains occur not only 

TABLE 2.1 Typical RISC and CISC Characteristics 

Number of instructions 
Number of address modes 
Instruction formats 
Average cycles per instruction 
Memory access 
Registers 
Control unit 
Instruction decode area 

RISC 

under 100 
1-2 
1-2 

near 1 
load/store only 

32+ 
hardwired 

10% 

CISC 

over 200 
5-20 
3+ 

3-10 
most CPU ops 

2-16 
microcoded 
over 50% 
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within an execution unit, but also result from the cumulative effect of multiple 
execution units processing as many instructions as their pipeline's depth will 
allow, per clock cycle. 

2.6 REDUCED INSTRUCTION SET CYCLES 

Most of the performance leverage resides in making optimal tradeoffs between 
instruction set functionality (the power of each instruction) and the clock 
cycles per instruction. Hence, the design of the PowerPC instruction set 
focuses on optimal functions per instruction. Minimizing the cycles per 
instruction (CPI) and reducing the path length as much as possible demon
strates how the net program execution time is affected. 

The overall program execution time is really the number of instructions exe
cuted (path length), each using the given number of clock cycles that the archi
tecture supports, while the cycle time is fixed for the given architecture. Thus, 
the performance metric can be expressed as 

program execution time = path length x CPI x cycle time 

All three variables contribute equally to the overall performance of the sys
tem. Note that the first two variables, the path length and cycles per instruc
tion (CPI), can be controlled, while the third variable will remain constant for 
a given architecture. Minimizing the first two variables augments the overall 
performance. Having understood that this performance leverage results from 
making optimal tradeoffs between instruction set functionality and cycles per 
instruction, it is easier to appreciate how the Power PC architecture is defined 
with as much function per instruction as possible. This reveals the parallelism 
that exists among the three independent execution units of this machine with 
the compilers, in order to harness the machine's ability to handle multiple 
operations per clock cycle. 

2.7 SUMMARY 

The advent of RISC architecture marks a new milestone in the field of hard
ware technology for computer systems. The architectural traits of a RISC 
design have their obvious benefits-so much so that RISC-based architecture 
has now reached the level of desktop machines from its original application in 
research and engineering environments. With the best cost-versus-performance 
ratio, RISC-based personal computers are on their way to becoming the de facto 
standard for the forthcoming decade. 

The biggest advantage of RISC-based architecture is that we now have the 
speed-matching peripheral components to take advantage of the raw perfor
mance that the processor is capable of delivering. Because the RISC architec
ture of the Power PC is scalable, it emerges as a possible leader, not only in the 
entry-level market, but also in the high-end computing arena. In the last few 
years it has been proven that megahertz is no longer the key criterion for 
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speed, since a 20-MHz RISC-based processor (whether it is IBM's POWER or 
Hewlett Packard's HP-PA) is able to deliver a completely different level of per
formance than an Intel 80386 running at the same 20 MHz. The parallelism 
achieved through the presence of multiple independent execution units propels 
the effective performance of the machine above and beyond what was previ
ously characterized as CPU throughput. In time, this parallelism, will be 
expanded into massively parallel systems, which would then reach a new 
zenith of achievable performance. 
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3 

Architectural Definition 

This chapter focuses on the architectural definition of the Power PC design and 
explains how the layered architecture defines varying degrees of compatibility, 
from an instruction set level, to a virtual environment level, all the way up to 
the operating environment level. 

The domain of 32-bit and 64-bit architectural definition includes the instruc
tion set, addressing modes, and all register and memory locations. The imple
mentation, which is the actual hardware structure, logic design, and data path 
organization of a particular embodiment of the architecture, is discussed else
where in the book. 

3.1 EVOLUTIONARY ROAD MAP OF PowerPC 

When the POWER architecture was introduced in the form of the RISC Sys
tem/6000 product line in 1990, its design philosophy, based on functionally par
titioned execution units to separate the functions of program flow, remained 
unique and state of the art. It was unique because it attempted to minimize the 
overall throughput of a task instead of executing instructions at the fastest 
possible clock rate. It was state of the art because it delivered the best perfor
mance in the marketplace at that time. There were two implementations of the 
POWER architecture offered-namely, the RS 1.0 and the RS .9. The RS 1.0 
implementation had a wider memory bus, a bigger data cache, and a dedicated 
instruction cache reload bus, while the RS .9 featured a memory bus half as 
wide, a half-size data cache, and a shared-instruction cache reload bus. 

31 
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A year later, the subsequent generation of POWER processors offered a single
chip version of the silicon, in which the execution units were integrated on a 
single chip, along with the cache and memory management unit. This imple
mentation was referred to as the POWER RSC (refer to Fig. 3.1). 

620 1995 

604 1994 

Power PC 

603 1993 

601 1992 

RSC 1991 

RSl 1990 

RS.9 1990 

'---y---./ 
Architectures Implementations 

Figure 3.1 Evolutionary road map. 
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The third generation of POWER processors arrived with the advent of the 
PowerPC architecture. Although a slimmer and trimmer derivative of the 
POWER architecture, the PowerPC featured a more flexible design, while pre
serving full binary compatibility. The initial implementations consisted of four 
offerings, the 601, 603, 604, and 620.* 

The common reference architecture that defines the design of PowerPC is 
specified at three different levels. From a bottom-up perspective, they are clas
sified as follows: 

• Instruction set architecture 

• Virtual environment architecture 

• Operating environment architecture 

The lowest level, the instruction set architecture, refers to the programmer
visible instruction set. It defines the base user-level instruction set, user-level 
registers, data types, and addressing modes. Note that the components defined 
at this level form the fundamental elements of any software program, specify
ing what registers can be used and how address references can be made. As 
this is a baseline definition, it is legitimate for each implementation of the 
PowerPC architecture to add its own set of features. The next level, which is 
the virtual environment architecture, describes the semantics of the storage 
models that software programs have to adhere to. It defines some of the addi
tional instructions, explains the timing facilities, and covers the memory and 
cache models as seen by the application programmer. The third level, the oper
ating environment architecture, describes the structure of memory manage
ment, supervisory level registers, and the exception model. It goes into the 
details of privileged facilities not available to the application programmer, 
which include interrupt and exception handling mechanisms. Viewing this 
hierarchical definition, each higher level can be thought of as a superset of the 
previous level (Fig. 3.2). In the three following sections, the multilayer Pow
erPC architecture is unveiled layer by layer. 

There are two computational modes supported by the PowerPC architecture: 
a 32-bit implementation and a 64-bit implementation. This scalable design 
provides a major benefit in terms of a structured road map for future enhance
ment with the same underlying architecture. 

• 32-bit implementation 

• 64-bit implementation 

3.2 THE PowerPC INSTRUCTION SET 

The complete instruction set is provided in Table 3.1. 

* Their unique implementations are explained elsewhere in the book. 
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Operating environment architecture 

Virtual environment architecture 

Instruction 
set architecture 

~ ] 
Figure 3.2 The common reference architecture of PowerPC illustrated as lay
ered definitions to emphasize the varying degrees of compatibility from an 
application perspective. 

3.3 THE 32-BIT PowerPC ARCHITECTURE 

In this discussion of the 32-bit computational mode, all three layers have been 
described individually, providing a full view of the 32-bit architecture. 

3.3.1 Instruction set architecture 

All registers are 32 bits long, as they were in the original POWER architecture 
(the only exceptions are the floating-point registers, which are 64-bits for double
precision computations). 

3.3.1.1 Processor implementation 

The processor implementation consists of three independent execution units. 
The first is referred to as the branch processing unit because it processes the 
branch instructions. The second execution unit is called the fixed-point unit or 
the instruction unit. It executes fixed-point instructions and the load-and-store 
instructions. The third processor, the floating-point unit, is tasked with pro
cessing the floating-point instructions. 

The data flow in the logical processing model (Fig. 3.3) for the PowerPC is 
essentially identical to that of the POWER architecture. Instructions are 
fetched from storage and fed into the branch processing unit, which in turn 
dispatches the nonbranch (fixed-point and floating-point instructions) to the 
fixed-point and floating-point units for subsequent processing. Together, the 
execution units orchestrate the code execution for the Power PC processor. 

A point to be noted here is that the PowerPC architecture does not include 
any specific VO definitions. 

The processor implements three classes of instructions: branch instructions, 
fixed-point instructions, and floating-point instructions. All instructions are 



TABLE 3.1 PowerPC Instruction Set 

Add 
Add carrying 
Add extended 
Add immediate 

Instruction 

Add immediate carrying 
Add immediate carrying and record 
Add immediate shifted 
Add to minus one extended 
Add to zero extended 
AND 
AND with complement 
AND immediate 
AND immediate shifted 
Branch 
Branch conditional 
Branch conditional to count register 
Branch conditional to link register 
Compare 
Compare immediate 
Compare logical 
Compare logical immediate 
Count leading zeros doubleword 
Count leading zeros word 
Condition register AND 
Condition register AND with complement 
Condition register equivalent 
Condition register NAND 
Condition register NOR 
Condition register OR 
Condition register OR with complement 
Condition register XOR 
Data cache block flush 
Data cache block invalidate 
Data cache block store 
Data cache block touch 
Data cache block touch for store 
Data cache block set to zero 
Divide doubleword 
Divide doubleword unsigned 
Divide word 
Divide word unsigned 
External control in word indexed 
External control out word indexed 
Enforce in-order execution ofl/O 
Equivalent 
Extend sign byte 
Extend sign halfword 
Extend sign word 
Floating absolute value 
Floating add 
Floating add single 
Floating convert from integer doubleword 
Floating compare ordered 
Floating compare unordered 

Mnemonic 

add[o][-] 
addc[o][-] 
adde[o][-] 
addi 
addic 
addic. 
ad dis 
addme[o][-] 
addze[o][-] 
and[-] 
andc[-] 
an di. 
an dis. 
b[l][a] 
bc[l][a] 
bcctr[l] 
bclr[l] 
cmp 
cm pi 
cm pl 
cmpli 
cntlzd[-] 
cntlzw[-] 
er and 
crandc 
creqv 
crnand 
crnor 
cror 
crorc 
crxor 
dcbf 
dcbi 
dcbst 
debt 
dcbtst 
dcbz 
divd[o][-] 
divdu[o][-] 
divw[o][-] 
divwu[o][-] 
eciwx 
ecowx 
eieio 
eqv[-] 
extsb[-] 
extsh[-] 
extsw[-] 
fabs[-] 
fadd[-] 
fadds[-] 
fcfid[-] 
fem po 
fcmpu 
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TABLE 3.1 PowerPC Instruction Set (Continued) 

Instruction 

Floating convert to integer doubleword 
Floating convert to integer doubleword with round 

toward Zero 
Floating convert to integer word 
Floating convert to integer word with round toward 

zero 
Floating divide 
Floating divide single 
Floating multiply-add 
Floating multiply-add single 
Floating move register 
Floating multiply-subtract 
Floating multiply-subtract single 
Floating multiply 
Floating multiply single 
Floating negative absolute value 
Floating negate 
Floating negative multiply-add 
Floating negative multiply-add single 
Floating negative multiply-subtract 
Floating negative multiply-subtract single 
Floating reciprocal estimate single 
Floating round to single-precision 
Floating reciprocal square root estimate 
Floating select 
Floating square root 
Floating square root single 
Floating subtract 
Floating subtract single 
Instruction cache block invalidate 
Instruction synchronize 
Load byte and zero 
Load byte and zero with update 
Load byte and zero with update indexed 
Load byte and zero indexed 
Load doubleword 
Load doubleword and reserve indexed 
Load doubleword with update 
Load doubleword with update indexed 
Load doubleword indexed 
Load floating-point double 
Load floating-point double with update 
Load floating-point double with update indexed 
Load floating-point double indexed 
Load floating-point single 
Load floating-point single with update 
Load floating-point single with update indexed 
Load floating-point single indexed 
Load halfword algebraic 
Load halfword algebraic with update 
Load halfword algebraic with update indexed 
Load halfword algebraic indexed 
Load halfword byte-reverse indexed 
Load halfword and zero 

Mnemonic 

fetid[-] 
fctidz[-] 

fctiw[-] 
fctiwz[-] 

fdiv[-] 
fdivs[-] 
fmadd[-] 
fmadds[-] 
fmr[-] 
fmsub[-] 
fmsubs[-] 
fmul[-] 
fmuls[-] 
fnabs[-] 
fneg[-] 
fnmadd[-] 
fnmadds[-] 
fnmsub[-] 
fnmsubs[-] 
fres[-] 
frsp[-] 
frsqrte[-] 
fsel[-] 
fsqrt[-] 
fsqrts[-] 
fsub[-] 
fsubs[-] 
icbi 
isync 
lbz 
lbzu 
lbzux 
lbzx 
Id 
ldarx 
ldu 
ldux 
ldx 
lfd 
lfdu 
lfdux 
lfdx 
Ifs 
lfsu 
lfsux 
lfsx 
Iha 
lhau 
lhaux 
lhax 
lhbrx 
lhz 



TABLE 3.1 PowerPC Instruction Set (Continued) 

Instruction 

Load halfword and zero with update 
Load halfword and zero with update indexed 
Load halfword and zero indexed 
Load multiple word 
Load string word immediate 
Load string word indexed 
Load word algebraic 
Load word and reserve indexed 
Load word algebraic with update indexed 
Load word algebraic indexed 
Load word byte-reverse indexed 
Load word and zero 
Load word and zero with update 
Load word and zero with update indexed 
Load word and zero indexed 
Move condition register field 
Move to condition register from FPSCR 
Move to condition register from XER 
Move from condition register 
Move from FPSCR 
Move from machine state register 
Move from special purpose register 
Move from segment register 
Move from segment register indirect 
Move from time base 
Move to condition register fields 
Move to FPSCR bit 0 
Move to FPSCR bit 1 
Move to FPSCR fields 
Move to FPSCR field immediate 
Move to machine state register 
Move to special purpose register 
Move to segment register 
Move to segment register indirect 
Multiply high doubleword 
Multiply high doubleword unsigned 
Multiply high word 
Multiply high word unsigned 
Multiply low doubleword 
Multiply low immediate 
Multiply low word 
NAND 
Negate 
NOR 
OR 
OR with complement 
OR immediate 
OR immediate shifted 
Return from interrupt 
Rotate left doubleword then clear left 
Rotate left doubleword then clear right 
Rotate left doubleword immediate then clear 
Rotate left doubleword immediate then clear left 
Rotate left doubleword immediate then clear right 

Mnemonic 

lhzu 
lhzux 
lhzx 
lmw 
lswi 
lswx 
lwa 
lwarx 
lwaux 
lwax 
lwbrx 
lwz 
lwzu 
lwzux 
lwzx 
mcrf 
mcrfs 
mcrxr 
mfcr 
mffs[-] 
mfmsr 
mfspr 
mfsr 
mfsrin 
mftb 
mtcrf 
mtfsbO[-] 
mtfsbl[-] 
mtfsft-l 
mtfsfi[-] 
mtmsr 
mtspr 
mtsr 
mtsrin 
mulhd[-] 
mulhdu[-] 
mulhw[-] 
mulhwu[-] 
mulld[o][-] 
mulli 
mullw[o][-] 
nand[-] 
neg[o][-] 
nor[-] 
or[-] 
ore[-] 
ori 
oris 
rfi 
rldcl[-] 
rldcr[-] 
rldic[-] 
rldicl[-] 
rldicr[-] 
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TABLE 3.1 PowerPC Instruction Set (Continued) 

Instruction 

Rotate left doubleword immediate then mask insert 
Rotate left word immediate then mask insert 
Rotate left word immediate then AND with mask 
Rotate left word then AND with mask 
System call 
SLB invalidate all 
SLB invalidate entry 
Shift left doubleword 
Shift left word 
Shift right algebraic doubleword 
S~ft right algebraic doubleword immediate 
Shift right algebraic word 
Shift right algebraic word immediate 
Shift right doubleword 
Shift right word 
Store byte 
Store byte with update 
Store byte with update indexed 
Store byte indexed 
Store doubleword 
Store doubleword conditional indexed 
Store doubleword with update 
Store doubleword indexed with update 
Store doubleword indexed 
Store floating-point double 
Store floating-point double with update 
Store floating-point double with update indexed 
Store floating-point double indexed 
Store floating-point as integer word indexed 
Store floating-point single 
Store floating-point single with update 
Store floating-point single with update indexed 
Store floating-point single indexed 
Store halfword 
Store halfword byte-reverse indexed 
Store halfword with update 
Store halfword with update indexed 
Store halfword indexed 
Store multiple word 
Store string word immediate 
Store string word indexed 
Store word 
Store word byte-reverse indexed 
Store word conditional indexed 
Store word with update 
Store word with update indexed 
Store word indexed 
Subtract from 
Subtract from carrying 
Subtract from extended 
Subtract from immediate carrying 
Subtract from minus one extended 
Subtract from zero extended 
Synchronize 

Mnemonic 

rldimi[-] 
rlwimi[-] 
rlwinm[-] 
rlwnm[-] 
SC 
slbia 
slbie 
sld[-] 
slw[-] 
srad[-] 
sradi[-] 
sraw[-] 
srawi[-] 
srd[-] 
srw[-] 
stb 
st bu 
stbux 
st bx 
std 
std ex. 
stdu 
stdux 
stdx 
stfd 
stfdu 
stfdux 
stfdx 
stfiwx 
stfs 
stfsu 
stfsux 
stfsx 
sth 
sthbrx 
sthu 
sthux 
sthx 
stmw 
stswi 
stswx 
stw 
stwbrx 
stwcx. 
stwu 
stwux 
stwx 
subffo][-] 
subfc[o][-] 
subfe[o][-] 
subfic 
subfme[o][-] 
subfze[o][-] 
sync 
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TABLE 3.1 PowerPC Instruction Set (Continued) 

Instruction Mnemonic 

Trap doubleword td 
Trap doubleword immediate 
TLB invalidate all 

tdi 
tlbia 
tlbie 
tlbsync 
tw 

TLB invalidate entry 
TLB synchronize 
Trap word 
Trap word immediate 
XOR 

twi 
xor[-] 
xori 
xoris 

XOR immediate 
XOR immediate shifted 

four bytes long and word-aligned. As stated earlier in Chap. 2, the PowerPC 
architecture does not have any computational instructions that modify stor
age, since it follows a load/store architectural model. So, values must be loaded 
into registers before they can be manipulated. To facilitate this, a large num
ber of user-level registers are available. 

3.3.1.2 User-level registers 

The branch processing unit contains several registers. The first one is called 
· the link register (LR), and it contains the return address from subroutine calls. 
A set link bit in the branch instruction causes the next instruction address to 
be placed in the link register. The second register is called the count register 
(CTR), and it is used for counting loop iterations. It treats loop iterations as 
conditional branches, and causes all enumerated loops to be closed with a 
branch-and-count instruction, which, in turn, causes the CTR to decrement by 
one each time and branch on the resulting value. This naturally augments the 
performance level for code execution by a significant extent. The third register, 
the condition register (CR), enhances the traditional branch handling mecha
nism by providing register-level speed to resolve the results. It is worthwhile to 
mention here that the aforementioned set of registers in the branch processing 
unit form the baseline for the instruction-set-level architecture. As we build up 
the architectural definition layer by layer, the additional set of privileged reg
isters that are not visible to the application programmers will be introduced. 
They are explained later in the definition of the operating environment archi
tecture of Power PC. 

The fixed-point unit's main feature consists of the 32 general purpose regis
ters (referred to hereafter as GPRs), which can be used by the application pro
grammer. There is also an exception register (}CER), which deals with the carry 
and overflow flags and contains byte count and comparison byte used by string 
instructions. As in the case of the branch processing unit, there are additional 
registers in the fixed-point unit that are outside the scope of the PowerPC's 
instruction set architecture. 

The floating-point unit contains 32 floating point registers, which are 
referred to as the FPRs. These are used as source and destination operands 
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Figure 3.3 Common logical processing model for PowerPC and POWER archi
tectures. 
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for all the arithmetic floating-point operations and their results. There is 
also a floating-point status and control register (FPSCR) which handles float
ing-point exceptions and records status resulting from the floating-point 
operations. 

Figure 3.4 presents all the pertinent user-level registers in the three execu
tion units of Power PC's 32-bit implementation. 

3.3.1.3 New instructions for 32-bit implementations only 

It should be noted that most of the instructions are available in both the 32-
and the 64-bit modes, although their implementation-specific formats differ. 
Those instructions that are provided only for 32-bit implementations are ille
gal in 64-bit implementations. Currently, there is only one instruction defined 
(see Table 3.2) that is exclusive to the 32-bit implementation. 

3.3.2 Virtual environment architecture 

The concept of storage was oversimplified in the earlier section (instruction set 
architecture), where it was expressed as an array of bytes ranging from 0 to 
(232 - 1) for its 32-bit implementation. In this section, the idea of storage (i.e., 
memory) is further expanded in light of how it is viewed by the virtual envi
ronment architecture. 

The storage model encompasses cache(s), virtual storage, and shared storage 
multiprocessors. 

3.3.2.1 Cache model 

The typical implementation of a cache consists of a partitioned set of lines, 
where each set contains one or more lines. Lines (also referred to as blocks) are 
the basic unit of transfer between the cache itself and the main memory. The 
organization of the cache (refer to Fig. 3.5 for an example) is determined by 
three parameters: the number of sets in the cache N, the number oflines pres
ent in a set K (i.e., the associativity of the cache), and the size of each line L. 
The cache size is given by the formula 

cache size =L xKxN 

The PowerPC architecture does not specify any rigid cache organization in 
terms of its associativity and size. Although many flexible implementations 
are allowed, a programmer is expected to assume that there are separate 
instruction and data caches in the system. This type of model, which uses two 
separate memory spaces to allow simultaneous access of data and instructions, 

TABLE 3.2 New Instructions for 32-Bit Implementations Only 

mfsrin Move from segment register indirect 
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Figure 3.4 User-level registers in the three execution units 
in a 32-bit implementation: LR = link register; CTR = 
count register; CR= condition register; GPR0-31 =general 
purpose registers; XER = exception register; FPR0-31 = 
floating-point general purpose registers; FPSCR =floating
point status and control register. 
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is commonly referred to as the Harvard architectural model (refer to Fig. 3.6). 
Some PowerPC implementations, like the 601, use a unified instruction and 
data cache (also referred to as a Von Neumann machine model) to gain the flex
ibility of allowing data and instructions to take variable amounts of the same 
space at the cost of compromising half the bandwidth of the Harvard architec
ture. The cache management instructions still depend on the Harvard cache 
model. 

Tag Line Tag Line 

Figure 3.5 Organization of a two-way set-associative cache with N sets. 
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Figure 3.6 Harvard architecture versus Von Neumann machines. 

3.3.2.2 Memory model 

One of the fundamental requirements of an architecture such as the Power PC 
that supports a shared storage multiprocessor is being able to support atomic 
updates to memory locations-i.e., the ability to perform the access to its 
entirety without any visible fragmentation. Atomic accesses are thus serial
ized, each occurring to its entirety even though no particular order is specified. 
Atomic stores to a location are said to be coherent* if they are serialized in 
some order, and no (other) processor is able to notice any subset of those stores 
as occurring in a conflicting order. If the location were to be accessed atomi
cally and coherently by multiple processors, then for any given processor, the 
sequence of values loaded from the location during any interval of time would 
form a subsequence of the sequence of values the location held during that 
interval. In other words, a processor can never load a "newer" value first, fol
lowed by an "older" value. 

There are two memory access modes. When a page is accessed in the memory
coherence-required mode, every store to a location is serialized with all stores 
to that location by all other processors (that access the location coherently). 

* Memory coherence refers to the ability of all processors to "see" the latest update to a location 
in memory, regardless of caching. 
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This is implemented by an ownership protocol that ensures that, at most, one 
processor stores to that location at a time. On the other hand, when a page 
is accessed in the memory-coherence-not-required mode for software perfor
mance reasons, the processor does not impose any storage coherence. However, 
it is the software's responsibility to ensure that relevant cache management 
instructions have been executed to put the memory in a consistent state. 

The PowerPC architecture specifies that the memory coherence is managed 
in terms oflogical units called coherence blocks, whose size is implementation
dependent. 

In terms of shared memory support, different instances of the same or sepa
rate program(s) running on one or more processors may share memory. The 
basic unit of memory sharing is blocks. Also, a location may be accessed using 
different effective addresses. This is a noteworthy trait, since by using this fea
ture (called address aliasing), each application can be assigned separate access 
privileges to aliased pages. 

A weakly consistent storage model specified in PowerPC offers an increased 
performance level by allowing the processor to run very fast for most storage 
accesses. However, the tradeoff is that the programs have to guarantee proper 
placement of the ordering or synchronization instructions. In this architecture, 
the actual order in which a storage access is issued, executed, and viewed could 
be completely different. This is a strategy for sharing resources (storage in this 
case) among multiple participants, and is referred to as storage access ordering. 

3.3.3 Operating environment architecture 

At this level of abstraction, the PowerPC architecture encompasses the super
visory level registers, explains the exception model, and details the structure 
of memory management. 

3.3.3.1 Privileged registers 

In PowerPC architecture, there are several privileged registers that are not vis
ible to the application programmers. These registers control special attributes 
of the machine. 

The branch processing unit features a register called the machine state reg
ister (MSR) that describes the state of the processor by describing system 
states like user/supervisory mode, interrupt enable/disable mode, and address 
relocate on/off status. 

The next set of registers worth mentioning is the set of machine status save 
and restore registers (SRR). The SRRO and SRRl save the old value of MSR 
and the address of the interrupted instruction in the event of an interrupt. 
Upon returning from the interrupt, they restore the MSR value and resume 
execution from the interrupted instruction. 

Finally, there is a processor version register (PVR), which identifies the ver
sion and revision model of the microprocessor. Unlike the rest of the privileged 
registers, the PVR is a read-only register and is always 32-bit (even in the 64-
bit implementation, discussed later). 
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The fixed-point unit's list of privileged registers consists of a data address 
register (DAR), which specifies the address of storage access that caused a data 
storage or alignment interrupt.* Another privileged register, the data storage 
interrupt status register (DSISR) defines the actual cause of the data storage 
or alignment interrupt. Note that the DSISR is always 32-bit (even in the 64-
bit implementation). In addition, there are four 32-bit special purpose registers 
(SPRGO to SPRG3) provided for the operating system's use. 

The floating-point unit contains a special register called the floating-point 
status and control register (FPSCR). It enables/disables floating-point excep
tions and records status resulting from the floating-point operations, which is 
required by the IEEE 754 standard. 

Figure 3.7 shows the pertinent privileged registers within the three execu
tion units of Power PC's 32-bit implementation. 

3.3.3.2 Interrupt handling strategies 

A standard interrupt processing and exception handling model is provided by 
the PowerPC architecture to allow change of state under unusual conditions. 

There are several types of interrupts supported by the PowerPC architec
ture. Some of the interrupts are caused by the system (system-caused inter
rupts), while the others may be caused by instructions (instruction-caused 
interrupts). 

Upon the generation of an interrupt, control is transferred to a set of privi
leged routines called interrupt handlers. The interrupt handler routine ser
vices the interrupt and, after completion, may transfer control back to the 
software to continue execution. In general, information (such as the instruc
tion that should be executed after control is returned to the original program 
and the contents of the machine state register) is saved to the save/restore reg
isters (SRRO and SRRl), program control passes from user to supervisory 
level, and the software continues execution at an address predetermined from 
each interrupt. 

Occurrence of instruction-caused interrupts in classical machines is not a 
new concept, since the program counter is able to maintain a pointer to the pre
cise location of the instruction stream. But on the PowerPC, there is no pro
gram counter per se. With three separate independent execution units, 
processing a single instruction stream makes recovering from interrupts not a 
simple task. Recognize that since different instructions are executed by differ
ent (and independent) execution units, the instruction stream can be left frag
mented. So, this fragmented state requires the architecture to provide a means 
for reconstructing the instruction stream around the point of the interrupt so 
that the postinterrupt processing code can recreate the sequential state. Due 

* A data storage interrupt is a hardware interrupt that occurs because of a nontranslatable vir
tual address access, a storage protection violation, an access denial owing to data locking, or an 1/0 
exception condition. An alignment interrupt is another type of hardware interrupt that occurs 
when the effective address generated by a load or a store violates a storage boundary. 
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Figure 3.7 Privileged registers in the three execution units 
of the Power PC microprocessor: MSR =machine state reg
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to the pipeline complexity of the machine organization, architecting a method 
for handling interrupts in an imprecise manner gets costly and complex. There
fore, the architecture has to enforce generation of precise interrupts. Despite 
the fact that out-of-order instruction dispatches are supported by the architec
ture and interrupt conditions are recognized out of order, interrupts are han
dled in program order. Except for a catastrophic condition causing a system 
reset or machine check interrupt, only one exception is handled at a time. If, for 
example, a single instruction encounters multiple interrupt conditions, those 
conditions would be encountered sequentially. Following the processing of an 
interrupt, the instruction execution will continue until the occurrence of the 
next interrupt condition. In this way, recognizing and handling interrupt condi
tions sequentially guarantees that interrupts are recoverable. 

3.3.3.3 Types of interrupts 

The following types of interrupts are specified in the Power PC architecture: 

• System reset 

• Machine check 

• Data storage 

• Instruction storage 

•External 

•Alignment 

•Program 

• Decrementer 

• System call 

•Trace 

• Floating-point assist 

• Floating-point unavailable 

The system reset interrupt causes a system reset (causing the system to reboot), 
which can happen in the event of an unlikely catastrophic failure. Sometimes 
byzantine anomalies may cause the system to enter a checkstop state* by issu
ing what is called a machine check interrupt. A data storage interrupt is 
another type of hardware interrupt that occurs because of a nontranslatable 
virtual address access, a storage protection violation, an access denial owing to 
data locking, or an 1/0 exception condition. An instruction storage interrupt 
occurs because of a nontranslatable effective address, a storage protection vio
lation by a fetch access, or fetch access owing to a direct-store segment. An 

* This is a special state in which instruction processing is suspended till the processor has been 
reset. It freezes the contents of registers in order to aid in problem determination. 
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external interrupt is generated when there is no higher priority exception. An 
alignment interrupt occurs when the effective address generated by a load or a 
store, violates a storage boundary. There is a program interrupt that can occur 
when the system encounters an illegal instruction, a privileged instruction, or 
a trap instruction. A decrementer interrupt occurs when no higher priority 
interrupt exists and the decrementer register has completed decrementing. A 
system call interrupt is generated whenever there is a system call instruction 
encountered in the program. Afioating-point unavailable interrupt takes place 
whenever a floating-point instruction is executed and the floating point unit is 
disabled. A trace interrupt, if implemented, is caused in the event of a branch
and-trap instruction or from single-stepping through instructions. A fioating
point assist interrupt, if implemented, renders a degree of software assistance 
to implemented floating-point instructions that require assistance in order to 
complete operations such as those involving denormalized numbers, and unim
plemented floating-point instructions that are not optional. 

Note that, except for the system reset, machine check, external, and decre
menter interrupts, all other types of interrupts are regarded as instruction
generated interrupts. 

3.3.3.4 Structure of the memory management model 

The memory model and its management policies form the infrastructure for 
any program's execution. Software programs would have to reference storage 
using an effective address that is computed by the processor. This effective 
address is translated to a real address, as per a set of address translation rules, 
and, consequently, accesses are made to location(s) in memory. 

In order to best understand the memory management scheme, a set of 
parameters needs to be explained. Some of these parameters are consistent 
across the architecture, while some depend on the implementation (32-bit or 
64-bit) of the architecture. 

The design of the memory layout in PowerPC architecture uses a segmented 
scheme, with a set of special registers called the segment registers (SRs). There 
are 16 SRs that divide the total addressable memory into segments, each of 
which is 256 MB in size. Segments can be of two types: (1) Ordinary storage 
segment (or regular storage segment) and (2) Direct-store segment. 

Direct-store segments are meant for access to an external address space like 
an 1/0 bus or device, while the ordinary storage segments refer to internal 
address space in memory. 

The basic unit of addressing real memory is referred to as a page frame or 
simply a page, the size of which is 4 KB. Since the 256-MB segment is accessed 
in 4-KB chunks, it can be also be viewed as ifthere are 64,000 (216) pages that 
a single segment can access. The rest of the description for the memory model 
is implementation-specific, i.e., it varies with 32-bit versus 64-bit implementa
tions, summarized in Fig. 3.8. 

In this discussion of 32-bit implementations, the maximum real memory size 
is limited to 4 GB. Segments totalling 224 can be accessed, with an effective 
address range of 228 and virtual address range of 252• 
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32-bit 64-bit 

Maximum real memory size 4GB 16EB 

Number of addressable segments 224 2s2 

Effective address range real 232 264 
relocate 228 

Virtual address range 2s2 280 

Figure 3.8 Comparison of memory model parameters that are implementation
specific. 

3.3.3.5 Address translation concept 

An address generated by the processor (which is referred to as an effective 
address) must undergo a translation step before being able to access an actual 
location. The address translation scheme in PowerPC comprises two available 
approaches that proceed in parallel (for performance reasons). The two simul
taneously progressing translations are referred to as segmented address trans
lation and block address translation. Typically, one of them ought to succeed, 
otherwise, a storage exception will be encountered. If both succeed, then the 
block address translation takes precedence. 

• Segmented address translation 

• Block address translation 

When a segmented address translation occurs, it accesses either an ordinary 
storage segment or a direct-storage segment. Depending on which type of seg
ment is accessed, this address is either converted into a real address through 
an intermediate step and then used to access storage, or it is converted directly 
into an 1/0 address and passed to the 1/0 subsystem for further action. When 
a block address translation occurs, the effective address is directly converted 
into a real address, and then used to access storage. Figure 3.9 further illus
trates these various modes of storage access. 

In both cases, a set of four privileged bits, called the mode control bits, are 
used to assign a context-specific meaning to the effective address (such as 
determining whether a coherence is required for the address). 

3.3.3.6 Segmented address translation 

The steps consist of starting with a 32-bit effective address and generating a 
52-bit virtual address, to get access to a 32-bit real address. Refer to Fig. 3.10 
for an overview of the address translation process, and to understand how the 
32-bit segment registers play a strategic role in the translation. 
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Figure 3.9 Types of address translations in PowerPC. 
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Block 
address translation 

Real address 

For segmented address translation, out of the 32 bits of the address, 4 bits 
(0-3) are used to index into one of the 16 segment registers to yield a virtual 
segment ID. A 24-bit segment ID, when concatenated with 16 additional bits 
(4-19) of the effective address, yields a 40-bit virtual page number within that 
segment. This in turn, is indexed into a structure called the page table to yield 
a 20-bit real page number. When the offset, i.e. the remaining 12 bits (20-31), 
from the effective address is concatenated to this real page number, the result 
is the corresponding real address that can access the storage. Figure 3.11 illus
trates the steps involved in the process of translating the effective address into 
a virtual address. 

This segmented address translation scheme is used for the 32-bit implemen
tation only. For 64-bit architectures, the scheme is significantly different. 

3.3.3. 7 Block address translation 

Typically, the smallest unit used to map ranges of virtual addresses into real 
memory is a page (where a page is 4 KB in size). The dynamics of program exe-
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Figure 3.10 Address translation in 32-bit implementation. 

cution typically references a selected set of pages periodically. The block 
address translation feature allows clusters of pages to be accommodated onto 
contiguous areas of real memory. In this way, it augments the performance of 
accesses to nonpageable areas of memory. In general, candidates for this type 
of access are memory mapped files or large arrays of numerical data. 

The newly introduced block address paradigm imposes some specifications, 
the principal one being that the variable size of a block must be boundary
aligned, and consist of a minimum of 32 pages (128 KB) to a maximum of 
65,536 pages (256 MB) with a finite set of allowable intermediate sizes. As is 
apparent by now, the block address translation areas are all in powers of 2. 

The size of, as well as access to, a block address translation (BAT) area is 
controlled by a set of special purpose registers called the BAT registers. The 
mechanisms for interpreting the block length and address are essentially the 
same for the 32-bit and the 64-bit implementations; it is the number of bits in 
each field that is different. Figure 3.12 illustrates how a pair of BAT registers 
is used to interpret information in the 32-bit implementations. 
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Figure 3.11 Translation of 32-bit effective address to virtual address. 

3.4 THE 64-BIT PowerPC ARCHITECTURE 

In this discussion for the 64-bit computational mode, all three layers are 
described individually, enabling an overall focus on the 64-bit architecture in 
its entirety, without having to cross-reference the 32-bit counterpart. 

3.4.1 Instruction set architecture 

The two computational modes (32-bit and 64-bit) supported by the PowerPC 
architecture provide not only a scalable design but also a structured road map 
for future enhancement using the same underlying architecture. 

The 64-bit implementation features all 64-bit registers, with effective 
addresses of 64 bits long. The 64-bit implementations have two modes of 
operation: 

• a 64-bit mode 

• a 32-bit mode 
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Figure 3.12 Block address translation in 32-bit implementation. 

These modes control how the effective address is interpreted and how status 
bits are set. 

The two computational modes view storage merely as an array of bytes, 
where each byte is identified by its index, called its address. 

3.4.1.1 Processor implementation 

The processor implementation consists of three independent execution units. 
The first of the three execution units is referred to as the branch processing 
unit, because it processes the branch instructions. The second execution unit is 
called the fixed-point unit or the instruction unit, and it executes fixed-point 
instructions and the load-and-store instructions. The third processor, which is 
the fl,oating-point unit, processes the floating-point instructions. 
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The data flow in the logical processing model (Fig. 3.3) for the PowerPC is 
essentially identical to the POWER architecture. Instructions are fetched from 
storage and fed into the branch processing unit, which in turn dispatches the 
nonbranch (fixed-point and floating-point) instructions to the fixed-point and 
floating-point units for subsequent processing. Together, the execution units 
orchestrate the code execution for the PowerPC processor. 

Note that the PowerPC architecture does not include any specific 1/0 defi
nitions. 

The processor implements three classes of instructions: 

• branch instructions 

• fixed-point instructions 

• floating-point instructions 

The PowerPC architecture does not have any computational instructions that 
modify storage, since it follows a load/store architectural model. So, values 
must be loaded into registers before they can be manipulated. To facilitate this, 
a large number of user-level registers are available. 

3.4.1.2 User-level registers 

The branch processing unit contains several registers. The first one is the link 
register (LR), which is a 64-bit register and contains the return address from 
subroutine calls. A set link bit in the branch instruction causes the next 
instruction address to be placed in the link register. The second register, called 
the count register (CTR), is used for counting loop iterations. It treats loop iter
ations as conditional branches, and causes all enumerated loops to be closed 
with a branch-and-count instruction. This causes the 64-bit count register to 
decrement by one each time and branch on the resulting value. This naturally 
augments the performance level for code execution to a significant extent. The 
third register, the condition register (CR), is a 32-bit register. It enhances the 
traditional branch handling mechanism by providing register-level speed to 
resolve the results. It is worth mentioning here that this set of registers in 
the branch processing unit forms the baseline for the instruction-set-level 
architecture. As the architectural definition is constructed layer by layer, the 
additional set of privileged registers that are not visible to the application pro
grammers will be introduced. They are explained in the next architectural def
inition, the operating environment architecture of Power PC. 

The fixed point unit's main feature consists of the thirty-two 64-bit general 
purpose registers (GPRs), which can be used by the application programmer. 
There is also an exception register (XER), which deals with the carry and over
flow flags, and contains byte count and comparison byte used by string instruc
tions. Note that the exception register is 32-bit. As in the case of the branch 
processing unit, there are additional registers in the fixed-point unit that are 
outside the scope of the Power PC's instruction set architecture, and are there
fore discussed in later sections. 
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The floating-point unit contains thirty-two 64-bit floating point registers, 
which are referred to as FPRs. These are used as source and destination 
operands for all the arithmetic floating-point operations and their results. 
There is also a floating-point status and control register (FPSCR) which han
dles floating-point exceptions and records status resulting from the floating
point operations. Note that the floating-point status and control register is 
32-bit. 

Figure 3.13 shows all the pertinent user-level registers within the three exe
cution units. 

3.4.1.3 New Instructions for 64-blt Implementations only 

It should be noted that most of the instructions are available in both the 64-
and the 32-bit modes, although their implementation-specific formats differ. 
Those instructions that are provided only for 64-bit implementations are ille
gal in 32-bit implementations. 

Refer to Table 3.3 for a list of instructions that are exclusive to the 64-bit 
implementation. 

3.4.2 Virtual environment architecture 

The concept of storage was oversimplified in the earlier section (instruction set 
architecture), where it was expressed as an array of bytes ranging from 0 to 
(264 - 1) for its 64-bit implementations. In this section, the idea of storage 
(memory) is further expanded with respect to the virtual environment archi
tecture. 

The storage model includes cache(s), virtual storage, and shared storage 
multiprocessors. 

3.4.2.1 Cache model 

The typical implementation of a cache consists of a partitioned set of lines, 
where each set contains one or more lines. Lines (blocks) are the basic unit of 
transfer between the cache itself and the main memory. 

The PowerPC architecture does not specify any rigid cache organization in 
terms of its associativity and size. Although many flexible implementations 
are allowed, a programmer is expected to assume that there are separate 
instruction and data caches in the system. In fact, the cache management 
instructions depend on a Harvard cache model with separate caches for 
instruction and data. 

3.4.2.2 Memory model 

There are two memory access modes. When a page is accessed in the memory
coherence-required mode, every store to a location is serialized with all stores 
to that location by all other processors (that access the location coherently). 
This is implemented by an ownership protocol that ensures that, at most, one 
processor stores to that location at a time. On the other hand, when a page is 
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TABLE 3.3 New Instructions for 64-Blt lmplementatlons Only 

cntlzd 
divd 
divdu 
extsw 
fcfid 
fetid 
fctidz 
lwa 
lwaux 
!wax 
Id 
ldarx 
!du 
ldux 
ldx 
mulhd 
mulhdu 
mulld 
rldcl 
rider 
rldic 
rldicl 
rldicr 
rldimi 
slbia 
slbie 
sld 
srad 
sradi 
srd 
std 
stdcx 
stdu 
stdux 
stdx 
td 
tdi 

Count leading zeros doubleword 
Divide doubleword 
Divide doubleword unsigned 
Extend sign word 
Floating convert from integer doubleword 
Floating convert to integer doubleword 
Floating convert to integer doubleword with round toward zero 
Load word algebraic 
Load word algebraic with update indexed 
Load word algebraic indexed 
Load doubleword 
Load doubleword and reserve indexed 
Load doubleword with update 
Load doubleword with update indexed 
Load doubleword indexed 
Multiply high doubleword 
Multiply high doubleword unsigned 
Multiply low doubleword 
Rotate left doubleword then clear left 
Rotate left doubleword then clear right 
Rotate left doubleword immediate then clear 
Rotate left doubleword immediate then clear left 
Rotate left doubleword immediate then clear right 
Rotate left doubleword immediate then mask insert 
SLB invalidate all 
SLB invalidate entry 
Shift left doubleword 
Shift right algebraic doubleword 
Shift right algebraic doubleword immediate 
Shift right doubleword 
Store doubleword 
Store doubleword conditional indexed 
Store doubleword with update 
Store doubleword with update indexed 
Store doubleword indexed 
Trap doubleword 
Trap doubleword immediate 

accessed in the memory-coherence-not-required mode for software perfor
mance reasons, the processor does not impose any storage coherence. However, 
it is the software's responsibility to ensure that relevant cache management 
instructions have been executed to put the memory in a consistent state. 

The PowerPC architecture specifies that the memory coherence is managed 
in terms oflogical units called coherence blocks, whose size is implementation
dependent. 

In terms of shared memory support, different instances of the same or sepa
rate program(s) running on one or more processors may share memory. The 
basic unit of memory sharing is blocks. Also, a location may be accessed using 
different effective addresses. This is a noteworthy trait, since by using this fea
ture (called address aliasing), each application can be assigned separate access 
privileges to aliased pages. 
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A weakly consistent memory model specified in Power PC offers an increased 
performance level by allowing the processor to run very fast for most memory 
accesses. However, the tradeoff is that the programs have to guarantee proper 
placement of the ordering or synchronization instructions. In this architecture, 
the actual order in which a memory access is issued, executed, and viewed 
could be totally different. This is a strategy for sharing resources (memory in 
this case) among multiple participants, and is referred to as memory or storage 
access ordering. 

3.4.3 Operating environment architecture 

At this level of abstraction, the PowerPC architecture encompasses the super
visory level registers, explains the exception model, and details the structure 
of memory management. 

3.4.3.1 Privileged registers 

In PowerPC architecture there are several privileged registers that are not vis
ible to the application programmers. These registers control special attributes 
of the machine. 

The branch processing unit features a register called the machine state reg
ister (MSR) that describes the state of the processor by describing system 
states like user/supervisory mode, interrupt enable/disable mode, and address 
relocate on/off status. The MSR is 64-bit. The next set of registers worth men
tioning is the set of machine status save-and-restore registers (SRR). The SRRO 
and SRRl save the old value ofMSR and the address of the interrupted instruc
tion in the event of an interrupt. Upon returning from the interrupt, they 
restore the MSR value and resume execution from the interrupted instruction. 
Like the MSR, the SRRO and SRRl are 64-bit in case of 64-bit implementation 
of the architecture. Last, there is a processor version register (PVR), which 
identifies the version and revision model of the microprocessor. Unlike the rest 
of the privileged registers, the PVR is a 32-bit read-only register. 

The fixed point unit's list of privileged registers consists of a data address 
register (DAR), which is 64-bit in size and specifies the address of storage 
access that caused a data storage or alignment interrupt.* Another privileged 
register, data storage interrupt status register (DSISR) defines the actual 
cause of the data storage or alignment interrupt. The DSISR is a 32-bit regis
ter. In addition, there are four 64-bit special purpose registers (SPRG0-3) pro
vided for the operating system's use. 

The floating point unit contains a special register called the floating-point 
status and control register (FPSCR). It enables/disables floating-point excep-

* A data storage interrupt is a hardware interrupt that occurs because of a nontranslatable vir
tual address access, a storage protection violation, an access denial owing to data locking, or an 1/0 
exception condition. An alignment interrupt is another type of hardware interrupt that occurs 
when the effective address generated by a load or a store violates a storage boundary. 
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tions and records status resulting from the floating-point operations, which is 
required by the IEEE 7 54 standard. 

Figure 3.14 presents a comprehensive view of all the pertinent privileged reg
isters within the three execution units of Power PC's 64-bit implementations. 

3.4.3.2 Interrupt handling strategies 

A standard interrupt processing and exception handling model is provided by 
the PowerPC architecture to allow change of state under unusual conditions. 
There are several types of interrupts supported by the Power PC architecture. 
Some of the interrupts are caused by the system, while others may be caused 
by instructions. 

Upon the generation of an interrupt, control is transferred to a set of privi
leged routines called interrupt handlers. The interrupt handler routine ser
vices the interrupt and, after completion, may transfer control back to the 
software to continue execution. In general, information (such as the instruc
tion that should be executed after control is returned to the original program 
and the contents of the machine state register) is saved to the save/restore reg
isters (SRRO and SRRl), program control passes from user to supervisory 
level, and the software continues execution at an address predetermined from 
each interrupt. 

Occurrence of instruction-caused interrupts in classical machines is not a 
new concept, since the program counter is able to maintain a pointer to the pre
cise location of the instruction stream. But on the Power PC, there is no program 
counter per se. With three separate independent execution units, processing a 
single instruction stream makes recovering from interrupts not a simple task. 
Recognize that since different instructions are executed by different (and inde
pendent) execution units, the instruction stream can be left fragmented. So, 
this fragmented state requires the architecture to provide a means for recon
structing the instruction stream around the point of the interrupt so that the 
postinterrupt processing code can recreate the sequential state. Due to the 
pipeline complexity of the machine organization, architecting a method for han
dling interrupts in an imprecise manner gets costly and complex. Therefore, the 
architecture has to enforce generation of precise interrupts. Despite the fact 
that out-of-order instruction dispatches are supported by the architecture and 
interrupt conditions are recognized out of order, interrupts are handled in pro
gram order. Except for a catastrophic condition causing a system reset or 
machine check interrupt, only one exception is handled at a time. If, for exam
ple, a single instruction encounters multiple interrupt conditions, those condi
tions would be encountered sequentially. Following the processing of an 
interrupt, the instruction execution will continue until the occurrence of the 
next interrupt condition. In this way, recognizing and handling interrupt condi
tions sequentially guarantees that interrupts are recoverable. 

3.4.3.3 Types of interrupts 

The following types of interrupts are specified in the PowerPC architecture. 
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• System reset 

• Machine check 

• Data storage 

• Instruction storage 

•External 

•Alignment 

•Program 

• Decrementer 

• System call 

•Trace 

• Floating-point assist 

• Floating-point unavailable 

The system reset interrupt causes a system reset (causing the system to reboot), 
which can happen in the event of an unlikely catastrophic failure. Sometimes 
byzantine anomalies may cause the system to enter a checkstop state* by issu
ing what is called a machine check interrupt. A data storage interrupt is 
another type of hardware interrupt that occurs because of a nontranslatable 
virtual address access, a storage protection violation, an access denial owing to 
data locking, or an 1/0 exception condition. An Instruction storage interrupt 
occurs because of a nontranslatable effective address, a storage protection vio
lation by a fetch access, or fetch access owing to a direct-store segment. An 
external interrupt is generated when there is no higher priority exception. An 
alignment interrupt occurs when the effective address generated by a load or a 
store violates a storage boundary. There is a program interrupt that can occur 
when the system encounters an illegal instruction, a privileged instruction, or 
a trap instruction. A decrementer interrupt occurs when no higher priority 
interrupt exists and the decrementer register has completed decrementing. A 
system call interrupt is generated whenever there is a system call instruction 
encountered in the program. A floating-point unavailable interrupt takes place 
whenever a floating-point instruction is executed and the floating point unit is 
disabled. A trace interrupt, if implemented, is caused in the event of a branch
and-trap instruction or from single-stepping through instructions. A fioating
point assist interrupt, if implemented, renders a degree of software assistance 
to implemented floating-point instructions that require assistance in order to 
complete operations such as those involving denormalized numbers and unim
plemented floating-point instructions that are not optional. 

* This is a special state in which instruction processing is suspended till the processor has been 
reset. It freezes the contents of registers in order to aid in problem determination. 
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Note that, except for the system reset, machine check, external and decre
menter interrupts, all other types of interrupts are regarded as instruction
generated interrupts. 

3.4.3.4 Structure of the memory management model 

The memory model and its management policies form the infrastructure for 
any program's execution. Software programs would have to reference storage 
using an effective address that is computed by the processor. This effective 
address is translated to a real address, as per a set of address translation rules, 
and, consequently, accesses are made to location(s) in memory. 

In order to best understand the memory management scheme, a set of 
parameters needs to be explained. Some of these parameters are consistent 
across the architecture, while some depend on the implementation (32-bit or 
64-bit) of the architecture. 

The design of the memory layout in PowerPC architecture uses a segmented 
scheme, with a set of special registers called the segment registers (SRs). There 
are 16 SRs that divide the total addressable memory into segments, each of 
which is 256 MB in size. Segments can be of two types: (1) ordinary storage 
segment (or regular storage segment) and (2) direct-store segment. 

Direct-store segments are meant for access to an external address space like 
an 1/0 bus or device, while the ordinary storage segments refer to internal 
address space in memory. 

The basic unit of addressing real memory is referred to as a page frame or 
simply a page, the size of which is 4 KB. Since the 256-MB segment is accessed 
in 4-KB chunks, it can be also be viewed as if there are 64,000 (216) pages that 
a single segment can access. The rest of the description for the memory model 
is implementation-specific, i.e., it varies with 32-bit versus 64-bit implementa
tions, summarized previously in Fig. 3.8. 

In 64-bit implementations, the real memory size is extended to 16 EB. There 
are 252 segments that can be accessed, with an effective address range of 264 

and virtual address range of 280• 

3.4.3.5 Address translation concept 

An address generated by the processor (which is referred to as an effective 
address) requires a translation step before being able to access an actual loca
tion. The address translation scheme in PowerPC comprises two available 
approaches that proceed in parallel (for performance reasons). The two simul
taneously progressing translations are referred to as segmented address trans
lation and block address translation. Typically, one of them ought to succeed, 
otherwise a storage exception will be encountered. If both succeed, then the 
block address translation takes precedence. 

• Segmented address translation 

• Block address translation 
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When a segmented address translation occurs, it accesses either an ordinary 
storage segment or a direct-storage segment. Depending on which type of seg
ment is accessed, this address is either converted into a real address through 
an intermediate step and then used to access storage, or it is converted directly 
into an 1/0 address and passed to the 1/0 subsystem for further action. When 
a block address translation occurs, the effective address is directly converted 
into a real address and then used to access storage. Refer back to Fig. 3.10 to 
see how these various modes of storage access operate. 

In both cases, a set of four privileged bits, called the mode control bits, are 
used to assign a context-specific meaning to the effective address (such as 
determining whether a coherence is required for the address). 

3.4.3.6 Segmented address translation 

88-bitVA 

The basic steps involve using a 64-bit effective address to generate an 80-bit 
virtual address, to get access to a 64-bit real address. Refer to Fig. 3.15 for an 
overview of the process. 
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Figure 3.15 Address translation in 64-bit implementation. 
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For segmented address translation, out of the 64 bits of the address, 36 bits 
(0-35) are used to index into a data structure called the segment table (instead 
of segment registers, as in the case of the 32-bit implementation), which yields 
a 52-bit virtual segment ID. This virtual segment ID, when concatenated with 
16 additional bits (36-51) of the effective address that are the page number 
within the segment, forms the virtual page number. This virtual page number, 
in turn, is indexed to the page table to yield a real page number. When the byte 
offset-Le., the remaining 12 bits (52-63)-from the effective address is con
catenated to this real page number, the corresponding real address to access 
the storage is generated. Figure 3.16 illustrates the steps involved in the pro
cess of translating the effective address into a virtual address. 

3.4.3. 7 Comparative anatomy of page table and segment table 

As stated in earlier, the scheme for segmented address translation in the case 
of 64-bit implementation of Power PC varies quite a lot from that of the 32-bit 
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Figure 3.16 Translation of 64-bit effective address to virtual address. 
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implementation. These two structures, the page table and the segment table 
involved in the 32-bit and 64-bit address translation schemes of the Power PC 
processor, have similar as well as dissimilar traits. 

A page table is a variable-sized data structure that defines the mapping 
between virtual page numbers and real page numbers. The hashed page table 
consists of a number of page table entry groups, each of which contains eight 
page table entries. Conceptually, the page table is searched by the page reloca
tion hardware to translate every reference. So from a performance standpoint, 
it makes sense for the hardware to maintain a translation lookaside buffer 
(TLB) that holds the recently used page table entries and is searched prior to 
scanning the page table. 

A segment table is a one-page (each page is 4 KB in size) data structure that 
defines the mapping between effective segment IDs and virtual segment IDs. 
The table consists of 32 segment table entry groups, which in turn contain 
eight 16-byte segment table entries, each of which maps one effective segment 
ID to a virtual segment ID. Essentially, the segment table is searched by the 
address relocation hardware to translate every reference. So from a perfor
mance standpoint, it is useful to have the hardware to maintain a segment 
lookaside buffer (SLB) to hold the recently used segment table entries and be 
searched prior to scanning the segment table. As a consequence, when the soft
ware alters the segment table, changes to corresponding segment table entries 
must also be performed to maintain consistency of the SLB with the tables. 

The architectural design of the TLBs and SLBs imposes no restriction on the 
implementation. Thus, it is possible that the hardware may implement a sep
arate instruction TLB (I-TLB) and a data TLB (D-TLB) for increased perfor
mance. Similarly, the hardware can implement a separate instruction SLB 
(I-SLB) and a data SLB (D-SLB). The performance implication-separating 
out the caching area for dedicated instructions and data accesses-is that 
selection conflicts are minimized. 

3.4.3.8 Block address translation 

'fypically, the smallest unit used to map ranges of virtual addresses into real 
memory is a page (where a page is 4 KB in size). The dynamics of program exe
cution typically references a selected set of pages periodically. The block 
address translation feature allows clusters of pages to be accommodated onto 
contiguous areas of real memory. In this way, it augments the performance of 
accesses to nonpageable areas of memory. In general, candidates for this type 
of access are memory mapped files or large arrays of numerical data. 

The newly introduced block address paradigm imposes some specifications, 
the principal one being that the variable size of a block must be boundary
aligned, and contain a minimum of 32 pages (128 KB) to a maximum of 65,536 
pages (256 MB) with a finite set of allowable intermediate sizes. Obviously, the 
block address translation areas are all in the powers of 2. 

The size of, as well as access to, a block address translation (BAT) area, is 
controlled by a set of special purpose registers called the BAT registers. The 
mechanisms for interpreting the block length and address are essentially the 
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same for the 32-bit and the 64-bit implementations; it is the number of bits in 
each field that is different. Figure 3.17 illustrates how a pair of BAT registers 
is used to interpret information in the 64-bit implementations. 

3.5 TIMER FACILITIES 

EA 

BL 

BPRN 

RA 

The timer facilities in Power PC consist of a 64-bit register called a time base 
and a 32-bit register called the decrementer (shown in Fig. 3.18). 

The time base and the decrementer are counters that are driven by an imple
mentation-specific frequency. Updates occur periodically, during which the 
low-order bit is incremented in the time base. There is no specification stating 
any correlation between the frequency at which the time base ought to be 
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Figure 3.17 Block address translation in 64-bit implementation. 
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Figure 3.18 Timer facilities in PowerPC. 

updated and other frequencies like the CPU clock. In fact, the update fre
quency of the timer is under the control of the hardware. 

3.6 SUMMARY 

The multilayered architectural definition of PowerPC specifies varying 
degrees of compatibility from an instruction set level, to the virtual environ
ment level, up to the operating environment level. The instruction set archi
tecture defines the base user-level instruction set, registers, and addressing 
modes. The next level, the virtual environment architecture, describes the 
semantics of the storage models and timing facilities. The subsequent level, 
the operating environment architecture, discusses the structure of memory 
management, special registers, and the exception model, while delving into the 
details of privileged facilities such as interrupt handling mechanisms. 

While the 32-bit and 64-bit implementations are alike in some respects, they 
differ in numerous aspects as well. The two implementations have been dis
cussed separately in this chapter so that a cohesiveness can be maintained 
with respect to the context of individual (32-bit and 64-bit) implementations 
and the semantics of the architectural definitions. 
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4 

Processor Implementations 

This chapter focuses on the implementations of the Power PC architecture. It dis
cusses the internal hardware structure, logic design, and data path organization 
of the 601, 603, 604, and 620 microprocessors. In order to contrast the imple
mentations of Power PC, a brief discussion on the implementations of POWER is 
also provided.* This is only appropriate because a Power PC implementation 
resembles the POWER architecture in more respects than it differs from it. The 
POWER architecture features a performance-crafted design, whereas the 
PowerPC architecture emphasizes a more cost-effective and flexible approach. 
In the discussion that follows, each implementation is described individually, 
along with the supported design of cache layout and implementation-specific 
features that are not imposed by the PowerPC architectural definition. 

The implementations of PowerPC are discussed in their order of evolution 
and appearance in the industry. This is done for the convenience of the reader, 
as the evolving description of functions and features makes it easier to follow 
and understand the trend. 

4.1 UNDERSTANDING THE COMMON CPU MODEL 

The Power PC microprocessor achieves an exceedingly high level of performance 
in both commercial as well as scientific computing areas using a common CPU 

* For a detailed description of the POWER architecture and implementation internals, refer to 
the text titled POWER RISC System 6000 Concepts, Facilities, and Architecture (ISBN 0-07-
011047-6) from McGraw-Hill, Inc. 
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model. AB stated earlier, in PowerPC and POWER architectures there is no sin
gle component that can be called the CPU per se, as the microprocessor harnesses 
its power from separate execution engines, each performing dedicated duties. 
From a neophyte's perspective, the basic CPU inodel features: (1) a branch pro
cessing unit which processes the branch instructions and dispatches instructions 
to the other execution units, (2) a fixed-point unit that executes integer instruc
tions and performs the loads/stores, and (3) a floating-point unit that processes 
the floating-point instructions. Collectively, these three units are referred to as 
the execution units. They form the core of the central electronic complex. Refer to 
Fig. 4.1 for a conceptual view of how all the PowerPC and POWER chips operate. 

4.2 THE POWER RS 1 MICROPROCESSOR 

The RS 1 is a full-scale implementation of the POWER architecture. In addi
tional to being the principal predecessor of the Power PC design, it also serves 
as the core of the RISC System/6000 and POWERparallel systems. 

4.2.1 Organization 

The RS 1 implementation of the POWER processor features multiple execution 
units that include: (1) an instruction cache, (2) a branch processing unit, (3) a 
fixed-point unit, (4) a floating-point unit, (5) a data cache, (6) a memory manage
ment unit, (7) a sequencer unit, and (8) a COP (common on-chip processor) unit.* 

• branch processing unit 

• fixed-point unit 

• floating-point unit 

• instruction cache 

•data cache 

• memory management unit 

• sequencer unit 

•COP unit 

The memory bus on this implementation is 128 bits wide and serves as the 
interface between the instruction cache and the main memory from which 
instructions are loaded via the instruction reload bus. A two-word-wide data 
path connects the branch processor with each of the floating-point and fixed
point execution units. A one-word data path connects the fixed-point unit with 
the data cache, while a two-word data path is present between the floating
point unit and data cache. Refer to Fig. 4.2 for a block diagram of the POWER 

* The embedded COP is a processor-independent logic whose function is to control the built-in 
self-test, debug, and test features of the chip at boot time. 
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Figure 4.1 How all Power PC and POWER processors operate. A= address; D = 
data; I = instruction; S = status. Note: The 1/0 unit (shaded) is outside the 
scope of the processor architecture. 
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Figure 4.2 Block diagram of the POWER RS 1 implementation. 

RS 1 chip set. Each line represents a one-word-wide path and the arrowhead 
indicates the direction of the instruction/data flow. 

4.2.2 Instruction cache 

The instruction cache is a 2-way set-associative cache. This layout gives the 
I-cache a total of 128 lines. As there are 64 bytes per line, the total cache size 
adds up to 8 KB. For machine models configured with a bigger I-cache, the num
ber of sets is increased to 256 KB; that way, the total cache size is increased to 
32 KB. Figure 4.3 explains the break.down of set and line mapping. 



'fype 1 cache organization: 
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Figure 4.3 Description ofl-cache on RS 1 im
plementation in terms of its sets and lines. 

4.2.3 Data cache 
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The data cache is a 4-way set-associative cache, consisting of 128 sets. This 
blueprint gives the D-cache a total of 512 lines. With 128 bytes per line, the 
total cache size adds up to 64 KB. Figure 4.4 explains the breakdown of set and 
line mapping in further detail. 

4.2.4 Fixed-point unit 

The fixed-point unit (FXU) consists of several registers and affiliated compo
nents. The first set of components includes 32 general purpose registers (GPRs) 
that can be used by general programs for assists. Second, there is a set of 

Cache organization: 

•4-way 

} 512 IW 
• 128 sets 

• 128 bytes/line 

Figure 4.4 Description of the D-cache on RS 1 
implementation in terms of its sets and 
lines. 
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segment registers (SRs), which aid in address translation. Subsequently, there 
is a set of special purpose registers. A data address register (DAR) specifies 
the address of storage access that caused a data storage or alignment interrupt. 
The data storage interrupt status register (DSISR) defines the actual cause of 
the data storage or alignment interrupt. Also, there is an exception register 
(XER) which deals with the carry and overflow flags, and contains byte count 
and comparison bytes used by string instructions. In addition, there are two 
more registers present in the RS 1 implementation. The first one is called the 
transaction identifier register (TID) and it holds the transaction ID of the cur
rently executing process in the system. The second one is a multiplier
quotient register (MQ), which is used by multiply, divide, and extended shift 
instructions, and also as a temporary storage by store string instructions. 

Among the key components of the FXU is the arithmetic logic unit (ALU), 
which is used for arithmetic and logic operations. The next component is the 
fixed-point multiply/divide unit, and it is used in conjunction with the ALU. 
The ensuing component, which is the data translation lookaside buffer (D
TLB ), works together with the segment registers (SRs) to aid in address trans
lation, page protection, and data locking. Note here that the page table lookups 
for the D-TLB and the instruction translation lookaside buffer CI-TLB) reloads 
and page table updates are all performed by the FXU hardware. The FXU chip 
also contains the directory part of the D-cache. The address generation task 
and D-cache controls for both fixed- and floating-point load/store instructions 
as well as for cache operations are performed by the FXU. In addition, there is 
a store buffer in the FXU that is used to hold the data and address of a single 
fixed-point store instruction while waiting to write it into the D-cache. Conse
quently, the fixed- and floating-point loads can get ahead of the fixed-point 
stores, and the FXU and FPU can obtain the data they need sooner. But note 
that the instructions are not executed out of order; only the D-cache access is 
made out of order (to save cycles). 

4.2.5 Floating-point unit 

The floating-point unit (FPU) includes a set of registers and dedicated ele
.ments, each contributing to the overall performance-crafted design of the exe
cution unit. The first group of components consists of a set of general purpose 
registers called the floating-point registers (FPRs). These are used as source 
and destination operands for all the arithmetic floating-point operations and 
their results. There are 32 FPRs available for the use of instructions. Each 
FPR is 64 bits in size and, thus, is able to deliver double-precision results, with 
the only exception being in the case ofload-and-store operations, because they 
are handled by the fixed-point unit. The next key component of the FPU is a 
special register called the floating-point status and control register (FPSCR). 
It handles floating-point exceptions and records status resulting from the 
floating-point operations, which is required by the IEEE 754 standard. The 
FPSCR is 32 bits in size; its bits 0-19 are status bits and the remaining bits 
20-31 are used as control bits. 
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Representation for a floating-point number consists of a signed exponent 
and a signed significand. The quantity expressed by this number is the prod
uct of the significand and the number 2•xpanent. Encodings are provided in the 
data format to represent finite numeric values, ±infinity, and values which are 
not a number. 

4.2.6 Packaging 

The hardware electronics and circuitry related to the central electronic com
plex are laid out on three different planars for this machine: (1) the CPU pla
nar, (2) the I/O planar, and (3) the standard I/O planar. Direct benefits of this 
modular design are maintainability, serviceability, and scalability. The compo
nents of each of the three planars are described in Fig. 4.5. 

The CPU planar houses the fixed-point unit and floating-point unit as indi
vidual chips, located adjacent to each other. The branch processing unit is 
integrated with the instruction cache unit and implemented as a single chip. 
The data cache unit is implemented as four separate chips on the planar. The 
data cache is 64 KB in size, while the instruction cache can be 8 or 32 KB, 
depending on the specific model. Last, the storage control unit, which serves 
as the central system controller to arbitrate the CPU-bound and I/0-bound 
communications, is located adjacent to the pair of data cache chips. Addi
tional components worth mentioning on the CPU planar are the memory 
slots and a special diagnostic port called the ESP (engineering support pro
cessor) port.* 

The I/O planar houses the Micro Channel slots which allow end users to con
figure and customize their systems appropriately. The I/O planar connects to 
the CPU planar via a 278-pin in-line connector. It also features a component 
called the on-card sequencer (OCS); essentially, it is a microcontroller whose 
primary task is to initialize the processor complex at boot time and carry out a 
self-test to verify proper operation of the modules located on the planar. There 
are three additional modules in the I/O planar. They are the nonvolatile RAM 
(referred to as NVRAM) for configuration, the operator panel interface for 
error display, and the real-time clock for time-of-day functions. The NVRAM 
stores vital system information which may be required for the system boot pro
cess (commonly referred to as initial program load or IPL). The 32-KB NVRAM 
unit normally derives its power from the system power supply. When the sys
tem is powered off, the NVRAM remains powered by a battery. The operator 
panel interface, which is another module on the I/O planar, displays error 
codes through the light-emitting diodes (LEDs). The next module, which is the 
clock, provides the time-of-day (TOD) functions. Like the NVRAM, this clock 

* The ESP socket, though seldom used, plays a vital role when the processor needs to be 
debugged. It debugs the processor by loading test programs, single-stepping through the system's 
instruction stream, and monitoring the system interactively. The process is performed by connect
ing a separate stand-alone workstation via the ESP port. 
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Figure 4.5 Packaging of POWER RS 1 and RS .9 imple
mentations. Diagram shows the CPU planar, 1/0 planar, 
and the standard 1/0 planar. 

also remains powered by battery while the system is powered off. In fact, it is the 
same battery unit that provides power to both the NVRAM and the TOD clock. 

The standard 1/0 planar connects to the 1/0 planar through a common inter
face connector, which fits underneath the 1/0 planar and contains the inter
faces and connectors to mouse, keyboard, tablet, diskette, parallel port, and 
two serial ports. 

4.3 THE POWER RS .9 MICROPROCESSOR 

The RS .9 is a cost-reduced version of the original POWER architecture that 
serves as the core for low-end RISC System/6000 computer systems. 
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4.3.1 Organization 

This implementation is very similar to that of the RS 1; they share a lot of com
mon features. It has multiple execution units on multiple chips assembled on 
a single planar. The components include the following: 

• branch processing unit 

• fixed-point unit 

• floating-point unit 

• instruction cache 

•data cache 

• memory management unit 

• sequencer unit 

•COP unit 

The memory bus is 64 bits wide (as compared to 128 bits for the RS 1 imple
mentation) and serves as the interface between the instruction cache and 
the main memory. The path leading from the branch processor to each of the 
floating-point and fixed-point execution units is two words wide. A two-word 
data path from the floating-point unit and a one-word data path from the fixed
point unit are dotted together, and in turn connect to the data cache. Refer to 
Fig. 4.6 for a block diagram of the POWER RS .9 chip sets. Each line in the dia
gram represents a one-word-wide path and the arrowhead indicates the direc
tion of the instruction/data flow. The instruction cache is reloaded using the 
SIO (standard 1/0) bus. 

The RS .9 implementation is also referred to as a "cost-reduced" version of 
the POWER processor. Its memory interface is half as wide; therefore, some of 
the bit-scattering features which are applicable for the full-size CPU do not 
apply here. Also, note that the fixed-point and floating-point buses are dotted 
together, while interfacing with the data cache. Also, instructions are fetched 
into the instruction cache via a dedicated instruction-reload bus, whereas in 
the RS .9, the SIO bus is used as a shared resource to load instructions. 

4.3.2 Instruction cache 

The instruction cache is a 2-way set-associative cache. This layout gives the!
cache a total of 128 lines. As there are 64 bytes per line, the total cache size 
adds up to 8 KB. For models configured with a bigger I-cache, the number of 
sets is increased to 256 KB; that way, the total cache size is increased to 32 KB. 
Figure 4.3 explains the breakdown of set and line mapping in further detail. 

4.3.3 Data cache 

The data cache is a 4-way set-associative cache, consisting of 64 sets. With 128 
bytes per line, the total cache size adds up to 32 KB. Figure 4. 7 explains the 
breakdown of set and line mapping. 
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Figure 4.6 Block diagram of the RS .9 implementation. 
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4.3.4 Fixed-point unit 

This fixed-point unit consists of several registers and affiliated components. Its 
organization is identical to that of the RS 1 implementation. First, there are 
the 32 general purpose registers (GPRs). Then there is a set of segment regis
ters (SRs) which aid in address translation. Next, there is a set of special 
purpose registers. A data address register (DAR) specifies the address of stor
age access that caused a data storage or alignment interrupt. The data storage 
interrupt status register (DSISR) defines the actual cause of the data storage 
or alignment interrupt. Also, there is an exception register (XER), a transac
tion identifier register (TID), and a multiplier-quotient register (MQ). 

Additional components include the arithmetic logic unit (ALU) that is used 
for arithmetic and logic operations, the multiply/divide unit that is used in con
junction with the ALU, and the data translation lookaside buffer (D-TLB). 
Note that the fixed-point unit also contains the directory part of the D-cache. 
The address generation task and D-cache controls for both fixed- and floating
point load/store instructions, as well as for cache operations, are performed by 
the fixed-point unit. In addition, there is a store buffer that is used to hold the 
data and address of a single fixed-point store instruction while waiting to write 
it into the D-cache. Consequently, the fixed- and floating-point loads can get 
ahead of the fixed-point stores, and the FXU and FPU obtain the data they 
need sooner. 

4.3.5 Floating-point unit 

The floating-point unit for the RS .9 implementation is essentially the same as 
that of the RS 1. First, there are thirty-two 64-bit general purpose registers 
called the floating-point registers (FPRs). Each FPR is able to deliver double
precision results, with an exception in the case of load-and-store operations, 
because they are handled by the fixed-point unit. Also, there is a special regis
ter called the floating-point status and control register (FPSCR) that handles 
floating-point exceptions and records status resulting from the floating-point 
operations, which is required by the IEEE 754 standard. 

4.3.6 Packaging 

The mechanical packaging of the hardware is laid out on three different pla
nars, as in the case of the RS 1 implementation. There are three planars: (1) the 
CPU planar, (2) the 1/0 planar, and (3) the standard 1/0 planar. 

The CPU planar houses the execution units as individual chips, located adja
cent to each other. The branch processing unit is integrated with the instruc
tion cache unit and implemented as a single chip. The data cache unit is 
implemented as two separate chips on the planar. The data cache is 32 KB in 
size, while the instruction cache can be 8 or 32 KB, depending on the specific 
model. Finally, the storage control unit, which serves as the central system 
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controller to arbitrate the CPU-bound and 1/0-bound communications, is 
located adjacent to the pair of data cache chips. The additional components, 
like the memory slots and the ESP (engineering support processor) port, are 
the same as those described for the RS 1 implementation. 

The 1/0 planar which houses the slots for add-on cards, the OCS for processor
complex initialization, the NVRAM for configuration, the operator panel inter
face for error display, and the real-time clock for time-of-day functions are also 
the same as those in the RS 1 implementation. Likewise, the standard 1/0 pla
nar connecting to the 1/0 planar through a common interface connector is the 
same as the RS 1 implementation. 

4.4 THE POWER RSC MICROPROCESSOR 

The name "RSC" has been derived from RISC single chip, which appropriately 
describes the microprocessor. The design of RSC is particularly intended to 
address high computational requirements along with reduced system cost. 

4.4.1 Organization 

The implementation integrates the execution units (a fixed-point unit, a floating
point unit, and a branch unit), a cache, and a memory management unit on a sin
gle die. The memory bus on this implementation is 72 bits wide and connects 
directly to memory SIMMs. The 1/0 bus is 32 bits wide and connects to buffering 
and bus conversion chips. 

The principal functional units in the RSC implementation are: (1) the cache, 
(2) the branch processing unit and instruction fetcher, (3) the instruction queue 
and dispatch logic, (4) the fixed-point unit, (5) the floating-point unit, (6) the 
memory management unit, (7) the memory interface unit, (8) the sequencer 
unit, and (9) the COP (common on-chip processor) unit. Their organization is 
depicted in Fig. 4.8. 

• combined instruction and data cache 

• branch processing and instruction fetch unit 

• instruction queue and dispatch logic 

• fixed-point unit 

• floating-point unit 

• memory management unit 

• memory interface unit 

• sequencer unit 

•COP unit 
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Figure 4.8 Block diagram of RSC implementation. 

4.4.2 Cache 

This implementation features a unified cache for instruction and data. The 
cache structure in RSC is a 2-way set-associative cache, consisting of 64 sets. 
This layout gives the I-cache a total of 128 lines. As there are 64 bytes per line, 
the total cache size adds up to 8 KB. 

The cache is managed with no reload on a store miss, and an LRU (least 
recently used) replacement scheme. It is kept coherent with all 1/0 traffic. Up 
to four words can be read from the cache and up to two double words can be 
written to it, per cycle. The cache features two different interfaces: one is a 
path with the instruction fetcher, and the other is a multiplexed path with the 
fixed-point unit and the memory interface unit. Cache access policy for loads is 
delicately balanced among its potential requestors, which can be any one of the 
functional units (listed in the previous section). As far as the cache access pol
icy for stores is concerned, a lazy-write approach is implemented in which the 
instruction is processed by the fixed-point unit and the information is stored 
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away in a store queue, which, in turn, gets written to memory or cache by the 
memory interface, as appropriate. Note that coherency with the store queue for 
subsequent operations is maintained in the hardware. 

4.4.3 Branch processing and instruction fetch unit 

Commonly referred to as the branch processing unit or branch unit, the com
ponent consists of two separate logics. It performs two principal functions: 
(1) coordinate the execution of the branch instructions and (2) get new instruc
tions into the instruction queue by what is called a prefetch step. 

The branch processing unit has two pipeline stages and executes all the 
branch instructions. In-page branches, i.e., branches within a 4-KB page 
boundary, are completely handled by the branch processing unit, while the out
of-page branches are resolved with the help of the fixed-point unit. A branch 
prediction technique is when the branch target is guessed in advance and the 
instructions in the pipeline are marked provisionally. After the outcome has 
been resolved, the temporarily tagged results are made permanent if the 
guessed outcome is true; these tentative results are purged if the guessed out
come was false and the operations in progress are all canceled. The algorithm 
looks as follows: 

guess branch outcome 
proceed on that path 

if prediction correct 
<no bubbles in the pipeline> 

if prediction incorrect 
partially executed instruction cancelled 
<bubble left in the pipeline> 

To facilitate the productivity of this branch prediction scheme, a static predic
tion algorithm (prediction taken if displacement is negative) is implemented 
that can be reversed by setting a bit in the instruction. 

The instruction fetch unit generates the next sequential address in the event 
that no branch or interrupt has occurred. In the event of a branch, the address 
is provided by the branch processing unit or the fixed-point unit. Once an 
address has been selected, it is forwarded to the cache arbitration logic for pos
sible access. If a cache hit results from it, the instructions are brought in for 
consequent processing by the instruction queue and dispatch logic. If a cache 
miss were to happen, the item gets fetched after an address translation step, 
via the fixed-point unit and the memory management unit. Note that once an 
address translation has happened, all subsequent references to that page 
require minimal access time because of the presence of a translation shadow 
buffer. 
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4.4.4 Instruction queue and dispatch logic 

This component forms the second half of the branch processing unit. The 
instruction queue has two functional components: a primary queue and an 
instruction queue. The former is used to dispatch instructions, while the latter 
is used for providing buffering in the event of higher-priority operations. 

The dispatch logic forwards instructions into the three execution units. Note 
that some floating-point and branch instructions may fold directly out of the 
instruction queue and without entering the pipeline. 

4.4.5 Fixed-point unit 

The instructions received through the dispatch logic enter the fixed-point 
unit's pipeline. They pass through a three-stage pipeline, which features a 
decode, an execute, and a writeback stage. An optional cache access stage that 
is contingent upon the data item being found in the cache can occur. If data is 
found, the cache is accessed and the data is returned to the fixed-point unit or 
floating-point unit, as the case may be. 

4.4.6 Floating-point unit 

The instructions pass through a four-stage pipeline that features a decode, a 
multiply, an add, and a writeback stage. The decode stage contains the instruc
tion decode logic; the multiply stage houses the alignment shifter logic; the add 
accepts the sum and carry values to produce an intermediate result; and the 
writeback stage performs the rounding, normalization, and register update. 

The floating-point unit complies with the IEEE floating-point standards. 
Unlike most floating-point coprocessor chips, this floating-point processor is 
tightly coupled with the fixed-point unit. It is able to achieve a dramatic degree 
of concurrence by being able to handle two separate task-pairs simultaneously. 
Its design enables it to exploit (1) floating-point load operations in parallel 
with floating-point arithmetic operations, and (2) floating-point multiply oper
ations pipelined with floating-point add operations. The other distinctive fea
ture about it is its ability to deliver a higher degree of accuracy beyond the 
capabilities of other currently available IEEE-compatible double-precision 
floating-point units. Although the floating-point unit operates independently 
of the fixed-point unit and can concurrently execute instructions, a synchro
nization scheme allows for the progressive execution of the two units, and can 
still achieve the effect of precise interrupts. 

4.4.7 Memory management unit 

The function of the memory management unit is to translate the virtual 
addresses into real addresses. It remains tightly coupled with the fixed-point 
unit, so that the address translation can happen in parallel with the cache 
access. The address translation process begins with accessing one of the seg
ment registers to form the 52-bit virtual address. This address is then hashed 
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and indexed into a page frame table to yield a 32-bit real address. A TLB 
(translation lookaside buffer) structure is maintained here to accelerate the 
address translation process. 

4.4.8 Memory interface unit 

The function ohhis component is to handle operations that require access to or 
from memory. It pipelines memory requests in an effort to overlap the address 
bus and data bus. Data is requested from memory in quadword blocks into a 
four-word reload buffer. When the reload buffer gets full, the memory interface 
unit arbitrates for access to the cache to write the data into it. Since a store
through cache is implemented in RSC, all store operations update the cache 
and get reflected back in main memory. 

4.4.9 Sequencer unit 

This component is essentially an embedded support processor that assists the 
core CPU in handling many of the algorithmic and area-intensive functions of 
the chip. 

The sequencer unit on the 601 chip features a 3-KB RAM, a 3-KB ROM (con
taining microcode), 16 general purpose registers, and the control logic to exe
cute its instruction set. 

The sequencer unit's multifarious functions include: (1) sequencing of opera
tions between the memory bus and the 1/0 bus, (2) performing the required 
tablewalks for 1/0 address translation, (3) providing the system interrupt con
troller function, (4) sequencing the power-on reset during the built-in self-test 
(BIST) phase, (5) maintaining the real-time clock, (6) handling the sequencing 
of interrupts and errors, and (7) assisting the fixed-point unit in executing 
selected (i.e., less frequently used) instructions. 

4.4.10 Packaging 

The RSC implementation is based on 0.8-µm CMOS technology with three lev
els of metal wiring. The chip uses about 1 million transistors and is imple
mented on a 14.9- by 15.2-mm die. Its typical power consumption is around 
4 Wat33MHz. 

4.5 THE PowerPC 601 MICROPROCESSOR 

The 601 microprocessor is the entry-level member of the Power PC family and 
is positioned to be a bridge platform between the original POWER and the 
trimmed-down PowerPC architecture. It harnesses its CPU subcomplex 
power from the existing POWER RSC technology and its 1/0 subcomplex 
attributes from the 88110 microprocessor bus interface. Its highlights 
include a 32-bit cache interface to the fixed-point unit, a 64-bit interface to 
the floating-point unit, and a 256-bit interface to both the instruction queue 
and the memory queue. In terms of 1/0 interface, a 32-bit address data bus 
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and a 64-bit data bus are provided. Figure 4.9 illustrates the organizational 
layout of the processor complex. 

4.5.1 Pipelines 

32 

Branch 
unit 

Instruction 
fetch 
unit 

There are three separate pipelines in the processor complex, which together 
provide a degree of instruction-level parallelism in the execution of programs. 
The pipelines are two, three, and four stages deep. Figure 4.10 gives the 
pipeline structure of the 601 microprocessor. 

• Branch processing unit-two-stage pipeline 

• Fixed-point unit-three-stage pipeline 

• Floating-point unit-four-stage pipeline 

The two-stage branch instruction pipeline can dispatch, decode, execute, 
and, if necessary, predict the direction of a branch instruction in the first of the 
two cycles. In the subsequent cycle, new instructions can be accessed from the 
cache. This allows the processor to handle branches in a more efficient manner 
and reduce latency of subsequent instructions. 
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Figure 4.9 Block diagram of the Power PC 601 microprocessor. 
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Figure 4.10 601 pipeline structure. 

The three-stage fixed-point pipeline has several functions to perform in its 
dispatch, execute, and writeback stages. In addition to handling all the ALU 
(arithmetic logic unit) operations, it performs all the load-and-store instruc
tions for the 601.* Note that this pipeline can optionally be a four-stage 
pipeline, when it must handle load instructions that need a cache access to 
occur following the address generation phase. The pipeline also manages the 
synchronization control that allows the processor to achieve precise interrupts. 

The four-stage floating-point pipeline is the deepest of all the pipelines. It 
handles the floating-point instructions. The first stage of the pipeline (decode) 
consists of the instruction decode logic and the main pipeline control for the 
floating-point unit. The second stage (executel) is the multiply stage and con
tains the carry-save adder tree, an alignment shifter, and the booth encoder. 
The third stage (execute2) is the add stage, which produces a single result from 
the sum and the carry values of the previous stage. Finally, the fourth stage 
(writeback) finishes up the operation by rounding the result obtained from the 
previous stage, normalizing it, and updating the registers. 

4.5.2 Organization 

The implementation integrates the three execution units along with a cache 
and a memory management unit on a single die. The 60l's organizational high
lights include a 32-bit cache interface to the fixed-point unit, a 64-bit interface 

* This includes all the floating-point loads and stores as well. 
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to the floating-point unit, and a 256-bit interface to both the instruction queue 
and the memory queue. The 1/0 interface is similar to the RSC implementa
tion, providing a 32-bit address data bus and a 64-bit data bus. Figure 4.9 gives 
a block diagram of the processor complex. The principal functional units con
sist of: (1) the instruction queue and dispatch unit, (2) the instruction fetch 
unit, (3) the branch processing unit, (4) the fixed-point unit, (5) the floating
point unit, (6) the memory management unit, (7) the cache, (8) the memory 
queue, (9) the bus interface unit, (10) the sequencer unit, and (11) the COP 
(common on-chip processor) unit. Each is described individually. 

• instruction queue and dispatch unit 

• instruction fetch unit 

• branch processing unit 

• fixed-point unit 

• floating-point unit 

• memory management unit 

• combined instruction and data cache 

• memory queue 

• bus interface unit 

• sequencer unit 

•COP unit 

4.5.3 Instruction queue and dispatch unit 

The cache feeds into the instruction queue structure. The structure, which is in 
the form of a queue, can hold up to eight prefetched instructions. At every 
cycle, the dispatch logic considers the bottom four entries for dispatch. As out
of-order dispatches supported by this microprocessor, branches can be pre
dicted ahead of time to reduce the delay due to dispatches. 

4.5.4 Instruction fetch unit 

The function of this component is to coordinate instruction fetching from the 
cache and to aid in address translation of instruction fetch addresses. It fea
tures a structure called the translation shadow array (TSA) that tracks the 
recently used instruction address translations and renders support to the 
page- and block-oriented address translations. 

4.5.5 Branch processing unit 

The function of the branch processing unit is to execute all the branch instruc
tions. Branch instructions can be conditional or unconditional in their nature. 
Unconditional branches are no problem. But a conditional branch may depend 
on the condition register, the count register, or both. Since this branch pro-
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cessing unit executes independently of the fixed-point unit, it is necessary to be 
able to guarantee correct program operation when a preceding fixed-point 
instruction depends on the outcome of a count and/or condition register. This is 
achieved using a register renaming scheme, in which architected values of 
these registers are synchronized with the fixed-point unit, and the values are 
restored in the event of an exception. 

As far as performance goes, the unconditional branches can be executed in a 
single cycle, and, as a result, give the effect of zero-cycle branches on the sys
tem. For the conditional branches, if they can be resolved at the time of dis
patch, their performance is equivalent to that of the unconditional branches; 
otherwise, they are assumed to be "not taken" if the displacement of the 
branched address is positive, and "taken" if it is negative. This static branch 
prediction algorithm is supplemented by the presence of additional perfor
mance enhancement features, such as fast alternate address restore mecha
nisms, to facilitate the overall performance on the 601. 

4.5.6 Fixed-point unit 

The fixed-point unit is responsible for executing all fixed-point instructions in 
the system and for generating addresses for all the load-and-store instructions. 
Note that while most of the instructions are able to execute in a fully pipelined 
manner, some instructions (like multiply, divide, and multiple-word storage) 
may have to spend several cycles in the execute stage of the pipeline. 

4.5.7 Floating-point unit 

The floating-point unit processes all the floating-point operations. It receives 
instructions from the instruction dispatch unit. The floating-point unit is able 
to pipeline most single-precision operations with the exception of the divide 
operation. For double-precision operations, it can pipeline all except the multi
ply and divide operations. 

Note that the register renaming scheme (present in the POWER architec
ture) is absent in the floating-point unit of the 601. 

Although the floating-point unit operates independently of the fixed-point 
unit and can concurrently execute instructions, a synchronization scheme 
allows for the progressive execution of the two units, and can still achieve the 
effect of precise interrupts. The two units are able to cooperate in the execution 
of floating-point load/store instructions and process their respective portions of 
the operations independently. 

4.5.8 Memory management unit 

The role of the memory management unit is to translate virtual addresses to 
real addresses for load-and-store instructions. It remains tightly coupled with 
the fixed-point unit. If an address translation has to occur in the execute phase 
of the fixed-point unit pipeline, the cache access takes place in the subsequent 
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Figure 4.11 Four-state MESI protocol. 

cycle (thereby stretching the fixed-point pipeline to a four-stage pipeline for 
that access). 

4.5.9 Cache 

The unified cache is implemented as an 8-way set-associative structure. The line 
size is 64 bytes and each line is split into two 32-byte sectors. The cache is indexed 
with a real address and the tags are associated with the real address as well. One 
of the distinctive features is that a four-state MESI* (modified, exclusive, shared, 
invalid) cache coherency protocol is used to maintain coherency on a sector basis. 
The state diagram of the four-state MESI protocol is given in Fig. 4.11. 

* It is a four-state status of cache sectors in a cache. The acronym MESI stands for 
modified/exclusive/shared/invalid. The four states indicate the state of the cache block as follows: 
modified-the cache block is modified with respect to system memory; exclusive-this cache block 
holds valid data that is identical to the data at this address in system memory, and no other cache 
has this data; shared-this cache block holds valid data that is identical to this address in system 
memory and at least one other caching device; invalid-this cache block does not hold valid data. 
This MESI protocol guarantees coherency in multiprocessor implementations. 
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This cache is nonblocking. Burst operations to the cache are buffered such 
that the cache update is reduced to two single-cycle operations of four words. 
That is, the results of the first two and the last two bursts are buffered and writ
ten to the cache in a single piece. This frees the cache to perform other functions 
in the meantime. Multifarious functions are employed to maximize the use of 
the available cache bandwidth. When all of the eight-word read interfaces are 
not in use during certain transient cycles, they are used for instruction fetching 
and snoop pushes. Also, a balanced arbitration scheme is implemented to prior
itize the cache access requests that can occur in each cycle. 

4.5.10 Memory queue 

Operations requiring access to/from the bus interface are managed by the 
memory queue, which consists of a two-entry read queue and a three-entry 
write queue. Both queues, as well as the cache itself, have to arbitrate for 
access to the bus. Note that rigid program order is not a consideration in the 
arbitration logic, which allows dependent read operations to proceed ahead of 
pending write operations. The hardware automatically maintains coherency 
between the memory queue and the processor cache and memory. 

4.5.11 Bus interface 

The bus interface unit converts operation in the memory queue into transac
tions on the 601 bus. It provides a 32-bit address bus and 64-bit data bus. The 
buses remain decoupled from one another so that the unit's protocols (which 
are mostly a derivative of the Motorola 88110 microprocessor) can support sys
tem bus organizations that use pipelined, nonpipelined, or even split-bus 
transactions. Usually, the bus is operated at integer multiples of the processor 
cycle, so that it may allow use of simple bus structures using minimal external 
control logic. 

4.5.12 Sequencer unit 

The significance of the sequencer unit is greatly reduced from that in the RSC 
microprocessor. But its presence allows the 601 chip to minimize redesign 
efforts by making use of its existing functions, such as (1) the power-on reset 
during the built-in self-test (BIST) at the time of initialization; (2) maintaining 
the real-time clock; (3) handling the sequence of interrupts, context synchro
nizing events, and errors; and (4) assisting the fixed-point unit in executing 
selected instructions. 

The sequencer unit on the 601 chip features a 1-KB ROM (containing 
microcode), a 1-KB RAM, eight general purpose registers, and the control logic 
to execute its instruction set. 

4.5.13 Multiprocessor capabilities 

The 601 microprocessor is equipped with the capabilities to facilitate symmet
ric multiprocessor systems. Typically, all multiprocessors have to be able to 
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maintain memory coherency, i.e., the ability to perform atomic memory opera
tions and the ability to control the order in which the storage operations are 
presented onto the interface. 

Memory coherency is maintained in several ways. The processor performs 
bus snooping and adheres to a four-state MESI cache coherency protocol. Also, 
the processor provides support for a full range of cache control operations 
(including a broadcast on a shared address bus to all coherency participants). 
Furthermore, there is provision for allowing page- or block-level control of 
cacheability and coherency. In terms of storage access, the 601 follows a weakly 
ordered storage model that allows a more effective utilization of available bus 
bandwidth. 

The 60l's multiprocessing features provide enough flexibility to address a 
broad spectrum of multiprocessor-based system organizations. Asymmetric 
rather than symmetric multiprocessor systems are also feasible. The 60l's 
multiprocessing solution focuses on providing a tightly coupled shared memory 
system organization. A typical PowerPC multiprocessor system (601-based) is 
shown in Fig. 4.12. The highlights of such a system are shared memory for uni
form address space; shared bus to facilitate hardware-enforced coherency 
between a number of tightly coupled processors, each with their own local 
cache; cache control operations defined on the bus to allow other processors or 
external hardware to control the local cache state; and a low latency path to 
the shared memory. 

4.5.14 Packaging 

The 601 implementation uses a 0.6-µm CMOS technology with four levels of 
metal wiring. The 601 package is a 304-pin ceramic quad flat pack. The chip 
uses 2.8 million transistors and is implemented on a 10.95- by 10.95-mm die. 
Its typical power consumption is about 6.5 W at 50 MHz. 

Processor Processor Processor 
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Figure 4.12 601-based multiprocessor system. 
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As with any microprocessor, various clock speeds of the 601 are available. 
Although the currently offered speeds are 50, 60, 66, and 80 MHz (see Fig. 4.13), 
this list is likely to grow over a period of time. 

4.6 THE PowerPC 603 MICROPROCESSOR 

The 603 microprocessor is the second member of the Power PC family and has 
been designed with the intent of being used in portable computers, notebook 
PCs, and mobile systems. The implementation represents a new microarchi
tecture organization of the Power PC architecture family. It offers high perfor
mance at a low power level; even with peak instruction rates of three 
instructions per cycle, its power consumption remains well below any other 
comparable processors in the industry at the current time. 

The 603 chip retains the basic three execution units, but adds two dedicated 
components. A load I store unit is employed to handle the data movement 
between the data cache and the general purpose registers. A system unit is 
incorporated to handle all system register operations. In terms of cache, a ded
icated instruction and data cache is implemented. The processor features a 
generalized dispatch/rename scheme which utilizes simple rename buses and 
autonomous functional units. Perhaps the most distinguished feature in the 
603 is the use of a dynamic power management system to control the processor 
clocks so that functional unit clocks need run only when specific instructions 
are dispatched to the corresponding unit. 

80MHz 

66MHz 

60MHz 

50MHz 

601 chips 

Figure 4.13 Different clock speeds of the 601 microprocessor. 
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4.6.1 Pipelines 

There are four different pipelines in the processor complex: 

• branch processing unit-two-stage pipeline 

• fixed-point unit-three-stage pipeline 

• floating-point unit-six-stage pipeline 

• load/store unit-five-stage pipeline 

The first stage of all the pipelines is the same and involves fetching the 
instruction(s). The branch instruction pipeline, which is a two-stage pipeline, 
can decode, execute, or, if necessary, predict the direction of an unresolved 
branch. This allows operation beyond a conditional branch without a delay. 

The fixed-point instructions flow through a four-stage pipeline. The first two 
stages of the pipeline handle the fetching and decoding/dispatching. The third 
stage handles the execution of the fixed-point operation that can include arith
metic, logical, compare, shift, or rotate instructions. The fourth stage writes 
back the result to the registers. 

The single-precision and double-precision floating-point operations are pro
cessed by a six-stage pipeline (it is the deepest of all the pipelines in the pro
cessor). Like the fixed-point pipeline, the first two stages of the floating-point 
pipeline handle the fetching and decoding/dispatching tasks. The execution 
phase consists of three stages, as shown in Fig. 4.14. The executel stage 
involves the multiply. (Note: It is double-pumped for double-precision opera
tions.) The execute2 stage involves the carry-propagate-add. The execute3 stage 
performs the rounding and normalization functions. In the subsequent stage 
(writeback), the results are written back to the registers. 

Branch instructions 

I Fetch I Decode 
Execute 
Predict 

Fixed-point instructions 

I Fetch I D~code I Execute I Writeback I Dispatch 

Load/store instructions 

I Fetch I Decode I Address I Cache I Writeback I 
Dispatch generation 

Floating-point instructions 

I Fetch I g~s~oa~~h I Executel I Execute2 I Execute3 I Writeback I 
Figure 4.14 603 pipeline structure. 
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To process the load/store instructions, the first two stages of the pipeline 
handle the fetching and decoding/dispatching. The third stage calculates the 
address for the element to be accessed. The fourth stage involves accessing the 
cache, followed by the stage that writes back values to the registers. 

4.6.2 Organization 

64 

603's organizational highlights include a 64-bit interface from the instruction 
cache to the instruction fetch and branch unit, which, in turn, feeds into to the 
dispatcher. The dispatcher's interface to the fixed-point unit, load/store unit, 
floating-point unit, and the system unit is also 64 bits wide. Figure 4.15 gives 
a block diagram of the processor complex. The principal functional units con
sist of(l) the instruction cache, (2) the data cache, (3) the instruction fetch and 
branch unit, (4) the dispatcher unit, (5) the completion/exception unit, (6) the 
fixed-point unit, (7) the floating-point unit, (8) the load/store unit, (9) the sys
tem unit, (10) the bus interface unit, (11) the external bus, and (12) the COP 
unit. Each is described individually. 

• instruction and data caches 

• instruction fetch and branch unit 

Instruction fetch and branch unit 

System unit Dispatcher 

64 

Fixed- Load/ Floating-
point unit store point unit 

GPRs 
32 unit 64 

FPRs 
Renames Renames 

64 
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Instruction cache Data cache 
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Address Data Control Control 

Figure 4.15 Block diagram of the Power PC 603 microprocessor. 



• dispatcher unit 

• completion/exception unit 

• fixed-point unit 

• floating-point unit 

• load/store unit 

• system unit 

• bus interface unit 

• external bus 

•COP unit 

4.6.3 Instruction and data caches 
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The instruction and data caches are both 2-way set-associative caches with 32-
byte cache lines. Because there are 32 bytes per line, the total cache size adds 
up to 8 KB. Figure 4.16 explains the breakdown of set and line mapping in fur
ther detail. 

The coherency protocol used to update the contents of the cache is a compat
ible subset of the MESI (modified, exclusive, shared, invalid) four-state proto
col. This means that this protocol can operate coherently in systems using the 
MESI protocol. Since the 603 does not have to broadcast cache operation 
instructions to support symmetric multiprocessing in the hardware, a three
state coherency protocol is implemented. A state diagram of the three-state 
MESI protocol is provided in Fig. 4.17. 

4.6.4 Instruction fetch and branch unit 

The function of the instruction fetcher is to manage the instruction prefetching 
from the instruction cache. The function of the branch unit is to execute the 
branch instructions. 

Instructions are fetched into a prefetch buffer from the instruction cache (or 
main memory on a cache miss). Then these instructions are acted upon. The 
branch instructions are processed by the branch unit, and, consequently, the 
instructions are forwarded to the dispatcher. 

Cache organization of 603 microprocessor: 

•2-way 

• 128 sets 

• 32 bytes/line 

Figure 4.16 Description of the I-cache and 
D-cache of the 603 in terms of its sets and 
lines. 
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Figure 4.17 Cache coherency state diagram. 

4.6.5 Dispatcher unit 

The functions of the dispatcher are to decode instructions, decide whether they 
can be dispatched to an available execution unit, and manage the register 
renaming task. Note that the concept of register renaming is necessitated to 
keep the pipeline full and devoid of any stalling owing to the unavailability of 
load instructions. This technique of architected registers (used in instructions) 
getting mapped to physical registers is achieved by having a pool of free physical 
registers available beyond the proclaimed number of 32 floating-point registers. 

4.6.6 Completion/Exception unit 

The role of this component is to render a mechanism to track instructions from 
dispatch through execution, then retire them in program order. Recognize that 
completing an instruction implies updating appropriate architectural registers 
with the results of that instruction. An in-order completion scheme is used to 
ensure that the correct state can be preserved in the event of an exception or a 
mispredicted branch. Also, adequate information about an instruction has to 
be maintained in the completion registers owing to a possibility of out-of-order 
execution. This is the reason that a single completion register is maintained for 
every dispatched instruction. As far as exceptions and interrupts are con
cerned, they are monitored separately by the exception logic. The exception 
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unit's interrupt mechanism allows the processor to change state as a result of 
external errors or any byzantine conditions. 

4.6. 7 Fixed-point unit 

The fixed-point unit is responsible for executing all fixed-point instructions in 
the system. It is capable of processing all arithmetic, logical, compare, shift, 
and rotate instructions in a single cycle, and multiply instructions in two to 
five cycles. The execution unit interface consists of accepting instruction(s) 
from the dispatch unit, performing the specified operation on the operands, 
placing the result onto the specific rename bus, and notifying the completion 
unit and the dispatch unit, respectively, of the completion status of the current 
operation. 

4.6.8 Floating-point unit 

The floating-point unit processes all the single-precision and double-precision 
floating-point operations. Hardware support is provided for divide, float-to
fixed conversion, denormalization, and exceptions. Additionally, the PowerPC 
architecture enhancement for graphics is supported with three new floating
point instructions. Although the floating-point unit operates independently of 
the fixed-point unit and can concurrently execute instructions, a synchroniza
tion scheme via the load/store unit allows for the progressive execution of the 
two units, and still achieves the effect of precise interrupts. 

The floating-point unit interface accepts instruction(s) from the dispatch 
unit, performs the specified operation on the operands, places the result onto 
the specific rename bus, and subsequently notifies the completion unit and the 
dispatch unit, respectively, of the completion status of the current operation. 

4.6.9 Load/store unit 

The load/store unit is responsible for data transfer between the data cache and 
internal (fixed-point and floating-point) registers, processing of external access 
instructions for graphics applications, as well as handling of the cache and 
memory management unit control instructions. The load/store unit calculates 
the effective addresses and handles the data alignment to and from the cache. 
It also contains the logic to perform normalization and denormalization of 
floating-point store data. 

4.6.10 System unit 

The function of the system unit is to execute a set of miscellaneous instructions 
(for example, move to/from special purpose registers instructions). Since these 
instructions are relatively infrequently encountered, renaming logic is not pro
vided here. 
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4.6.11 Bus interface unit 

The bus interface unit is responsible for accepting bus requests from the 
instruction and data caches, placing the requests on the external bus, and han
dling the addresses for snooping in the cache. 

4.6.12 Packaging and power management 

Two levels of power management are implemented in the 603 chip: (1) a 
dynamic power management logic, which uses power thriftily everywhere pos
sible during normal operation, and (2) software selectable static power man
agement modes that can be incorporated for periods of processor inactivity. 
Using the dynamic power management logic, execution units like the floating
point unit clock logic can be turned off when there are no destined instructions 
for that unit. By making use of the static power management logic and its three 
varying power modes (doze, nap, and sleep), processor state information can be 
maintained during the power-down modes. This power management capability 
makes the 603 chip an ideal choice for portable PCs and mobile systems. 

The 603 implementation uses a 0.5-µm CMOS technology with four levels of 
metal wiring. The package is a 240-pin ceramic pack. The chip uses 1.6 million 
transistors and is implemented on a 7.4- by 11.5-mm die. Its typical power con
sumption is about 3 W at 80 MHz. The various available speeds of the 603 
microprocessor are 50 and 80 MHz. 

4.7 THE PowerPC 604 MICROPROCESSOR 

The 604 microprocessor is a 32-bit implementation specifically designed for 
mainstream computing environments, including midrange workstations and 
multiprocessor systems. It features multiple integer units to harness optimal 
performance. It also contains a 16-KB data cache and 16-KB instruction cache. 
Refer to Fig. 4.18 for its block diagram. 

4.7.1 Pipelines 

There are six different pipelines in the processor complex; much of it is the same 
as that of the 603, except for the number of integer (i.e., fixed-point) pipelines: 

• Branch processing unit-two-stage pipeline 

• Integer unit-three separate three-stage pipelines 

• Load/store unit-five-stage pipeline 

• Floating-point unit-six-stage pipeline 

4.7.2 Organization 

The 604 features six execution units, the two new ones being the inclusion of 
a second and a third integer unit for superior fixed-point performance. Avail-
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Figure 4.18 Block diagram of the PowerPC 604 microprocessor. 

ability of three separate integer units in the processor augments the extent 
of instruction-level parallelism that modern applications and compilers 
exploit. 

In the 604, both instruction and data caches contain 16 KB organized as 4-
way set-associative, 32 bytes per line. · 

4.7.3 Packaging 

The 604 implementation uses a 0.5-µm CMOS technology with four metal lay
ers. The package is a 304-pin ceramic quad flat pack. The chip uses 3.6 million 
transistors and is implemented on a 12.4- by 15.8-mm die. Its power consump
tion is around 10 W at 100 MHz. 

4.8 THE PowerPC 620 MICROPROCESSOR 

The 620 micropropessor is a 64-bit implementation designed for high-end 
machines and multiprocessor systems. In addition to the standard cache, it 
includes an embedded secondary cache controller that interfaces to standard 
SRAM chips. Multiple integer units are utilized to harness optimal perfor
mance. Figure 4.19 gives a block diagram of the processor. 
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Figure 4.19 Block diagram of the PowerPC 620 microprocessor. 

4.9 PowerPC EMBEDDED PROCESSORS 

A suite of embedded controllers has been developed based on the PowerPC archi
tecture. They are collectively referred to as the 4xx family of Power PC processors. 

Using the PowerPC as the core yields a flexible RISC-embedded controller 
that can be used in application-specific processors and ASIC cores. Since the 
nucleus of the embedded controller is based on the Power PC technology, it har
nesses all the power consumption advantages of the Power PC microprocessor 
at a lower price than the competition. Not surprisingly, the 4xx family of 
embedded processors has become a favorite choice for cost-sensitive applica
tions like printers, copiers, facsimiles (faxes), personal communicators, per
sonal digital assistants (PDAs), video games, camcorders, video cassette 
recorders (VCRs), networking systems, and much more. (See Fig. 4.20.) 

It is the scalable nature of the Power PC architecture that makes it a realis
tic choice not just for the personal computer industry, but also for the consumer 
electronics and embedded controller market. The 4.xx family of PowerPC 
embedded controllers integrates caches and system-level logic to simplify the 
system design, lessens the total number of components, and reduces the over
all system power consumption. A business benefit of this is that, beginning 
with a family of general purpose embedded controllers, custom systems based 
on it can preserve the coherence of application development efforts. 
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Figure 4.21 Block diagram of PPC403GA embedded controller. 

4.9.1 The embedded controller 403 

Serial 
port 
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1 Future: 
1ASICs1 ·-----· 

Based on the PowerPC instruction set architecture, the EC403 processor fam
ily offers a low-range series and a midend series. Each series can have more 
than one member in it. Each member acts as the core and may include system 
peripherals and application-specific logic as needed. 

Consider the midrange embedded controller family, the EC403M, which fea
tures individual members like the EC403MA and the EC403MB. Each member 
retains the basic instruction set architecture, but is tailored to application
specific logic by featuring varying cache sizes, system peripherals, and registers. 
A description of the EC401MA is provided here, in terms of its core and periph
erals. Figure 4.21 provides a block diagram of it. 

The core consists of techniques such as instruction pipelining, branch 
prediction, and branch folding to achieve a sustained performance approach
ing one clock cycle per instruction (CPI) for most applications. Low latency 
interrupt performance is achieved by providing hardware assist for context 
switches and by terminating multicycle instructions which are executing 
when an interrupt is received. In terms of on-chip caches, a separate 2-KB 
instruction cache (2-way set-associative) and a 1-KB data cache (2-way set
associative and writeback) are employed to reduce bus contention and maxi-
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mize system performance. In terms of operations, the integer, logical, shift, 
and rotate/mask are implemented as single-cycle operations. As far as the 
interrupt structure goes, it is optimized for embedded applications with a 
worst-case interrupt latency less than 1.2 µs at 25 MHz. 

The system peripherals consist of a direct memory access (DMA) controller, 
JTAG interface, bus interface unit, serial port, and an interrupt controller. The 
DMA controller contains four independent DMA channels, which operate in 
buffered, fly-by, and memory-to-memory nodes, and have programmable prior
ity levels for bus access. One DMA channel also supports DMA chaining. The 
JTAG interface is a debug interface to the processor core and allows user access 
to the 403 system. The bus interface unit controls the external bus interface, 
and the internal on-chip peripheral bus (OPB) that attaches to application
specific ICs (ASICs). The bus interface unit contains logic which allows SRAM, 
ROM, DRAM, and system peripherals to be directly attached to the 403. The 
serial port is a memory mapped 1/0 device attached to the on-chip peripheral 
bus and can operate at data rates up to 1/32 of the processor clock. Note that 
this serial port is the first of the multifarious ASICs that can attach to the on
chip peripheral bus. Future members of the 4xx family may contain customer
designed ASICs that interface directly with the on-chip peripheral bus. 

4.10 SUMMARY 

This chapter discussed the individual implementations of the Power PC archi
tecture. It explained the internal hardware structure, logic design, and data 
path organization of the available PowerPC implementations (601, 603, 604, 
620, and 403), along with a comparative anatomy of the POWER implementa
tions (RS 1, RS .9, and RSC), from which the PowerPC evolved. 

Every implementation of the PowerPC architecture should be viewed as an 
enhancement to the original POWER architecture, optimized for single-chip 
implementations and extended to 64 bits. Instructions that restrict super
scalar implementations have been eradicated. Furthermore, instructions that 
were deemed as "rarely used" have been removed or altered to improve perfor
mance. System flexibility has been increased dramatically by maintaining 
data storage consistency in hardware and implementing primitives to enable 
atomic storage access. Also, most implementations of the PowerPC have been 
equipped to support multiprocessing. These attributes together constitute an 
efficient and scalable processor, regardless of whether it is a 603, a 620, or any 
other implementation of PowerPC. As each implementation of PowerPC is a 
little different and unique, the implementation-specific description of each one 
has been discussed separately. 

It is only the beginning of the era for PowerPC-based processors, and diverse 
implementations will evolve in the future. When they do, each will feature 
unique enhancements while preserving the core baseline technology. 
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User Interfaces 

The PowerPC end user environment enables users to run many of their 
favorite applications, to use simple drag-and-drop and double-click, to recog
nize a consistent industrywide look and feel, and to exchange data across these 
applications on one computer on one screen. The PowerPC user can run Win
dows, DOS, and AIX applications through the use of emulators, translators, 
binary-to-binary converters, and source code port and adaptation. 

User interfaces compatible with the PowerPC operating environment 
include: 

• Common Open Software Environment's Common Desktop Environment 

• Wabi 

• XWindows 

• Macintosh Application Services 

These user interfaces provide powerful features while enhancing ease-of-use 
for Power PC users. The ability to pick and choose from the array of application 
environments available and the ability to cut and paste between applications 
gives PowerPC users endless advantages over systems running only DOS, 
Windows, UNIX, or Macintosh operating systems and, by default, applications 
compatible with those single operating systems. 

The Common Desktop Environment provides an industrywide consistent 
look and feel by supporting AIX, DOS, Macintosh, and Windows applications. 
The Common Desktop Environment provides smooth application integration, 
interoperability, and data exchange. The Common Desktop Environment's 
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seamless environment supports "shrink-wrapped" end user applications in
cluding AIX applications, MS Windows 3.1 applications, x86 DOS applications, 
680x0, and PowerPC Macintosh applications. 

The operating system is crucial to effective computer usage-operating sys
tems enable multiple applications to run simultaneously, determine how CPU 
time is distributed, store files, and enable users to access information. The 
operating systems compatible with the Power PC enable any Common Desktop 
Environment, Windows, MS-DOS, X, or Macintosh users to format, access, 
retrieve, and archive information without relearning a new environment. 

5.1 COMMON DESKTOP ENVIRONMENT 

5.1.1 Overview 

Developed as a Common Open Software Environment (COSE) technology, the 
Common Desktop Environment is a response to industry and user demands for 
a powerful, industry-standard desktop environment for UNIX. Based on X 
Window System 11.5 and OSF/Motif 1.2, Common Desktop Environment incor
porates technology from IBM, HP, SunSoft, and Novell, Inc. 

The UNIX community got its first taste of the Common Desktop Environ
ment by attending a public developer's conference that included education, 
documentation, and a CD containing a common-source Common Desktop Envi
ronment Snapshot (portable across multiple platforms and the technology 
openly licensable to the industry). Together, leading desktop architects por
trayed the Common Desktop Environment desktop as an environment and 
user interface providing significant benefits to end users, system administra
tors, and application programmers. 

With the Common Desktop Environment, end users can access networked 
devices and tools without having to be aware of their location. Users can 
exchange data across applications by simply dragging and dropping objects. 
With the right software support, users can even run DOS, Windows, Macin
tosh, and other environments within the Common Desktop Environment. 

System administrators will find that many tasks that previously required 
complex command line syntax can now be done more easily and similarly from 
platform to platform. They can also leverage their investment in existing hard
ware and software by configuring centrally and distributing applications to 
users. They can centrally manage the security, availability, and interoperabil
ity of applications for the users they support. 

Application developers will find that they can migrate exiting applications 
easily-opting to simply port their applications onto the desktop or take 
advantage of full desktop services through program design. 

5.1.2 Getting started with Common Desktop Environment 

The standardized Common Desktop Environment desktop components provide 
a single API for developers and support an installed base of applications. The 
Common Desktop Environment user interface is based on the OSF/Motif style 
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of user interface, with pervasive use of the drag-and-drop paradigm. The desk
top starts up in a default configuration, which is adapted to the screen size of 
the particular display in use, but which is fully configurable by the user. An 
integral part of the desktop is the hypertext-based help system which may be 
invoked from the front panel at any time. 

The front panel (see Fig. 5.1) contains a collection of frequently used controls 
and services. By default, the front panel appears at the bottom of the screen and 
contains a useful set of services. The contents and layout of the front panel are 
fully configurable. The front panel makes it easy to start applications, use desk
top features such as workspaces and the screen lock, and log out of your session. 

The front panel exists in all workspaces. (Workspaces are logical screens in 
which you can place groups of windows.) Many of the controls in the front 
panel are push buttons for starting applications. Some are drop zones-you 
can drag a file from file manager or application manager to the control. Others, 
such as the clock, date, and busy light, are indicators. 

The front panel includes the following controls and indicators. (Note that the 
Common Desktop Environment can be configured for single- or double-click, 
with the default being single-click.) 

The clock displays the current time (Fig. 5.2). 

The date displays the current date (Fig. 5.3). 

Clicking on the file manager opens an iconic version of your home directory 
(Fig. 5.4). You can specify another directory once the home directory dis
plays. Most of the desktop basic operations are performed by accessing or 
invoking files represented in an open directory. 

The personal application subpanel functions as a control for the personal 
application of your choice (Fig. 5.5). You can add to or customize the default 
list of executable programs listed in this subpanel by simply dragging the 
executable icon and dropping it on the install icon area. You can select any of 
the installed application's toggle buttons to cause that application to be the 
default application to be invoked from the front panel. 

Figure 5.1 Common Desktop Environment front panel. 

Figure 5.2 Clock. Figure 5.3 Date. 
Figure 5.4 File manager 
icon. 
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Figure 5.5 Personal application subpanel. Figure 5.6 Mailer. 

Clicking on the mail icon starts the mailer (Fig. 5.6). This icon can also be 
used as a drop zone and will accept a file icon to mail. 

Clicking on the lock (Fig. 5. 7) freezes your workstation, preventing unautho
rized input. Access your workstation by issuing a password. 

The busy light (Fig. 5.8) blinks to indicate an activity in progress. If you are 
trying to open a very large directory, for instance, you will notice that 
progress is occurring because the green light is blinking. 

Clicking on the exit button (Fig. 5.9) begins the logout process. 

Dropping a file on the printer control (Fig. 5.10) prints it on the default sys
tem printer. Click on the control to display the printer job status on the 
default printer. 

Clicking on the style manager icon (Fig. 5.11) starts the style manager, which 
can be used to customize the appearance and behavior of desktop sessions. 
The style manager lets you tailor fonts, background, colors, mouse speed, 
click volume, screen saver parameters, and other general desktop environ
ment characteristics. 

Clicking on the application manager icon (Fig. 5.12) opens a directory of 
easy-to-use tools supporting end user and system administration tasks. 

Clicking on the on-line help icon (Fig. 5.13) displays the help manager-a 
hypertext-linked list of all of the help volumes that support the desktop. 
Clicking on the pointer above the icon displays the top level of the hierarchy 
of help information. 

Clicking on the trash can icon (Fig. 5.14) opens the trash can window. You 
can drop an object on the control to put the object in the trash can. You can 
use the trash can window to restore or permanently delete objects that 



Figure 5.7 Lock. 

Figure 5.10 Printer control. 

• Figure 5.13 On-line help 
icon. 

Ill 
Figure 5.8 Busy light. 

Figure 5.11 Style manager icon. 

Figure 5.14 Trash can icon. 
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Figure 5.9 Exit session 
button. 

Figure 5.12 Application 
manager icon . 

you've moved to the trash can. The trash can collects the files and directories 
that you delete. They are not actually removed from the file system until the 
trash is "emptied." If you change your mind and want to restore a file you've 
put in the trash, you can restore it if the trash hasn't been emptied. 

5.1.3 Common Desktop Environment services 

Common Desktop Environment desktop and application services include ses
sion management, window management, data interchange, network services, 
customization, on-line help, printing, and application integration. Integrated 
Common Desktop Environment services enable end users to run existing 
application binaries-applications look and feel the same on Common Desktop 
Environment as they did on previous platforms. Users can: 

• Locate and launch applications quickly and intuitively-click on file man
ager, click on the application icon, and begin work. 
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• Focus on manipulation of data and objects, not on execution and command 
line arguments-users manipulate a file from an icon, not from a path. 

• Exchange data across applications using direct manipulation-users can 
drag-and-drop much more quickly than memorizing command parameters 
and performing keystrokes. 

In essence, interaction of Common Desktop Environment services maxi
mizes end user productivity. End users can now get transparent access to net
work services and devices on their desktops (such as printers and shared 
application folders) and can run stand-alone and networked applications with
out having to be aware of the difference. The Common Desktop Environment 
enables end users to run X, Motif, OPENLOOK, and character-based applica
tions-and with additional software support, DOS, Windows, Macintosh, and 
other application environments. 

5.1.3.1 Session manager and workspace manager 

Session manager (Fig. 5.15) preserves the state of the application at logout 
(end of session). When the user logs back in, session manager restores the 
application's state automatically. For an application to be saved and restored 
by session manager, the application must participate in a simple Inter-Client 
Communication Conventions Manual (ICCCM) session management protocol. 

Session manager supports the notion of a current session and a home ses
sion. The current session enables the user to log in to the same session that 
was running when the user last logged out. The home session enables the user 
to log in to the same session every time. The user may choose whether the cur
rent or the home session is started at login by customizing the startup dialog 
in style manager. 

A Common Desktop Environment desktop session starts when the user logs 
in. The Common Desktop Environment desktop session manager takes over 
after login manager recognizes the login and password. Session manager pro
vides the ability to manage sessions-to remember the state of the most recent 
session and return the user there the next time he or she logs in. 

Session manager saves and restores: 

• The appearance and behavior settings-for example, fonts, colors, and 
mouse settings 

• The window applications that were running-for example, file manager and 
text editor windows. 

1 - - - - --- -- - -· I 
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Figure 5.15 Session manager. 
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Certain types of applications can't be saved and restored by session man
ager. For example, if the vi editor is started from a command line in a terminal 
emulator, session manager cannot restore the editing session. 

A workspace is the screen area where you bring the applications needed for 
your work, arrange them to suit your preferences, and put them away when 
you're done. Common Desktop Environment initially comes with four work
spaces as illustrated in Fig. 5.15 (session manager). 

You can organize application windows by choosing which applications belong 
in each workspace. For example, a workspace could contain applications used 
for correspondence, such as a mailer and text editor. Or, you could choose to set 
up your workspaces according to projects, such as budget presentations, mar
keting demonstrations, and specific in-house project work. 

The workspace menu contains commands that help manage the workspace. 
(Access the workspace menu by holding down the right mouse button while 
positioning the cursor in the workspace area.) These commands include: 

Shuftle up 

Shuftle down 

Refresh 

Minimize/restore front panel 

Restart workspace manager 

Logout 

5.1.3.2 File manager 

Puts the bottom window (in a stack of overlapping 
windows) on the top of the stack 

Puts the top window (in a stack of overlapping 
windows) on the bottom of the stack 

Repaints the screen should the display become 
unreadable 

Turns the front panel into an icon; when selected a 
second time, restores the front panel 

Stops, then restarts, workspace manager after con
figuration files have been customized 

Begins the logout process, the same as pressing 
the exit button in the front panel 

File manager (Fig. 5.16) is a desktop application that lets you create, locate, 
organize, and work with desktop objects such as files and directories. The file 
manager main window is a view of a directory on your system. The directory 
you are currently viewing is called the current working directory. To remove a 
file from file manager and place it on the desktop, do the following: 

1. Point to the object's icon. 

2. Press and hold the right mouse button, known as the drag button. (On a 
two-button mouse, press both buttons simultaneously.) 

3. Drag the icon to the location where you want to drop it, then release the 
mouse button. 

The motion for dropping an object is press .. drag .. release. To cancel a drag in 
progress, press the Esc key before releasing the mouse button. 

To move a file to a certain directory in file manager, drop a file into an open 
file manager window or into a directory icon. If you drop an object onto the 
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Figure 5.16 File manager. 

workspace backdrop, you are placing a reference to it on the desktop in the cur
rent workspace. 

5.1.3.3 Style manager 

' 

Style manager (Fig. 5.17) makes it easy to customize the visual elements and 
system behavior of the desktop. You can choose from lists of color palettes, 
change your mouse's double-click speed, or perform other tasks to customize 
the desktop according to your preferences. Options that can be customized 
include: 

• Workspace (screen) colors 

• Application font sizes 

• Workspace backdrops 

• Mouse button click settings, double-click speed, pointer acceleration, or 
pointer movement threshold 

• Beeper volume, tone, or duration 

- - - - - - ~ -
Ii le ~elp 

Figure 5.17 Style manager. 
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• How a window acquires focus, if the window raises when it receives focus, or 
where window icons are placed 

•Number of minutes before your screen times out or whether or not your 
screen is covered and locked at time out 

• How your session begins and ends 

5.1.3.4 On-line help 

You can use desktop on-line help topics in a variety of ways including: 

• Press Fl, also known as the help key. The quickest and easiest way to get 
help is to press Fl. When you press Fl, the application you are using 
responds by displaying the help topic most closely related to your current 
activity. Some computers have a dedicated help button on the keyboard 
which may take the place of the Fl key. 

• Choose a command from application help menus. Most applications have a 
help menu that contains additional commands for requesting specific kinds 
of help, such as Introduction, Tasks, and Reference. To learn more about 
using help windows, choose Using Help from the help menu in any Common 
Desktop Environment application. Or, press Fl while using a help window. 

• Double-click on the help manager icon to browse all the available help. The 
help manager is a special help window that lists all of the on-line help that 
has been installed on the system. To browse the Common Desktop Environ
ment help volumes: 

1. Choose the help control in the front panel. 
2. Choose Common Desktop Environment to display the list of help volumes 

for the desktop. 
3. Browse the list of titles. To open a volume, choose its title. 

• Select the arrow above the help manager icon. 

See Fig. 5.18 to view the help subpanel options available when you select the 
arrow above the help manager icon. 

The help subpanel provides the following: 

Install icon 

Top level 

Desktop introduction 

Front panel help 

Drop an object on the control to install it into the sub
panel. You can install icons representing applications 
(actions), files, and directories. 
Choose the control to open the top-level help window, 
which is a browser window that lets you access any Com
mon Desktop Environment compliant help registered on 
your system. 
Displays the help volume entitled "Introducing the Com
mon Desktop Environment Desktop," which contains top
ics covering basic desktop concepts and skills. 
Displays the help volume for the front panel, which con
tains topics covering how to use and customize the front 
panel. 



116 Software 

Figure 5.18 On-line help pop-up. 

5.1.3.5 Application manager 

Application manager (Fig. 5.19) contains all the applications registered on 
your system. The top level of application manager contains a set of application 
groups, which is a special directory containing the application and, optionally, 
other useful files such as sample data files, templates, and readme files . 

The application groups in your application manager are either built in or 
have been placed there by your system administrator. When an application 
group is in your application manager, it is said to be registered on your system. 

Figure 5.19 Application manager. 
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The actual applications and other files may be located on your own system or 
can be elsewhere in the network. The registration of application groups into 
your application manager occurs each time you log in. 

The various types of tools that are distributed by default with Common 
Desktop Environment support a broad range of tasks routinely performed by 
users and system administrators. There is a UNIX tools directory that con
tains a variety of icon and action associations that enable users to easily cap
ture and display screens, tar files, uncompress files, and search on strings. The 
desktop also provides a graphical means to create icons, associate the icon with 
a desired command string, and refresh the user's environment with the new 
action definitions. 

5.1.3.6 Messaging with ToolTalk 

ToolTalk is designed to make it easy for applications on one or more hosts to 
easily exchange information or control each other by supporting multicast and 
point-to-point communication. Through the use of messages and patterns, 
requests and notices, handlers and observers, and scope of delivery, ToolTalk: 

• Integrates global workspaces 

• Is completely transparent to end users 

• Supports procedural and object-oriented messaging 

• Provides high performance and throughput 

• Guarantees message delivery 

The ToolTalk service enables independent applications to communicate with 
each other without having direct knowledge of each other. Applications create 
and send ToolTalk messages to communicate with each other. The ToolTalk 
service receives these messages, determines the recipients, and then delivers 
the messages to the appropriate applications. 

ToolTalk messages are simple structures that contain fields for address, sub
ject, and delivery information. To send a ToolTalk message, an application 
obtains an empty message, fills in the message attributes, and sends the mes
sage. Senders need to know little about the recipients because applications 
that want to receive messages explicitly state what message they want to 
receive. This information is registered with the ToolTalk service in the form of 
message patterns. 

Applications can provide message patterns to the ToolTalk service at installa
tion time and while the application is running. When the ToolTalk service deter
mines that a message needs to be delivered to a specific process, it creates a copy 
of the message and notifies the process that a message is waiting. If a receiving 
application is not running, the ToolTalk service looks for instructions (provided 
by the application at installation time) on how to start the application. 

Before your application can utilize the interoperability functionality pro
vided by the ToolTalk service and the Common Desktop Environment Mes
saging Toolkit, it needs to know where the ToolTalk libraries and Common 
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Desktop Environment Toolkit reside. To use the ToolTalk service, an applica
tion calls ToolTalk functions from the ToolTalk API. The Common Desktop 
Environment messaging toolkit provides functions to register with the Tool
Talk service, to create message patterns, to send messages, to receive mes
sages, to examine message information, and so on. 

5.2 WABI 

5.2.1 Overview 

Wabi allows users to run Microsoft Windows 3.1 software-based applications on 
the PowerPC operating system platform. An execution environment for Micro
soft Windows 3.1 API compliant applications, Wabi includes a layer of code that 
maps the Microsoft Windows APis onto Xll. Wabi converts Windows program
ming calls to equivalent X Windows calls that are then executed in the host pro
cessor. Time spent in the operating system requesting services is remapped to 
native UNIX operating system calls. Wabi relies on native services, using the 
same instructions as the native instructions on top of the PowerPC. 

Wabi's features include: 

• Reimplementation of MS Windows dynamically linked libraries (dlls) 

• Reimplementation of the following MS Windows executables: program man
ager, control panel, task manager, and write 

• Support of cut, paste, and copy between MS Windows applications and AIX 
applications 

• Support of DOS diskettes and CD ROM for easy installation of MS Windows 
and 3.1 applications 

• Full access to systems resources including PostScript printers 

• Support of MS Windows enhanced (80386) mode applications 

• Integration into the Common Desktop Environment 

Wabi software resides between an application and the native operating sys
tem. There it redirects an application's requests for services and resources to 
the appropriate operating system location. Ai:, users work with applications, 
Wabi intercepts instructions and requests and translates them into a language 
understood by the native operating system. Wabi then directs these requests to 
the appropriate operating system location. 

Wabi currently supports PostScript printers attached to the native operating 
system. Wabi takes the PostScript file created by an application and passes it 
on to the system's print queue, which, in turn, performs the normal printer 
control and management. The operating system carries out the print request, 
making available print resources in the form of a device or driver. 
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5.2.2 Wabi capabilities and functions 

The Wabi program can run a variety of programs, including Windows 3.1 appli
cations and additional dlls. As a result, the Wabi program can provide a vari
ety of functions. However, the functions available during a Wabi session 
depend on the functions supported by the application you are running. 

For example, if you are using an application that supports dynamic data 
exchange (DDE) and that includes DDE program libraries, the Wabi program 
will support DDE operations. The same is true for object-linking and embed
ding (OLE) operations. If your application supports OLE 1.0 operations, and 
includes OLE resources, the Wabi program uses the OLE dll supplied by the 
end user or the application. 

In essence, the Wabi program supports two groups of functions: (1) configu
ration functions intrinsic to the Wabi program, and (2) operational functions 
supplied by applications. Configuration functions include the following: 

• COM port settings 

• Printer settings 

• Drive connections 

• Diskette connections 

• Mouse settings 

• Sound settings 

• DOS emulator connection 

Operational functions supplied by installed applications include: 

• Many Windows 3.1 program manager functions 

• Windows 3.1 accessory group programs 

•Windows 3.1 main group programs 

• Windows 3.1 games group programs 

• Dynamic data exchange functions 

• Object linking and embedding 1.0 functions 

Access the configuration functions through the Wabi configuration manager. 
Each configuration function is represented by an icon appearing in configura
tion manager, and also by a menu item in the configuration manager options 
menu. 

If you have a Microsoft Windows 3.1 license, you can access many Windows 
3.1 applications and functions. These are available through Wabi's applica
tion manager, which replaces the need to use the MS Windows 3.1 program 
manager. 
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5.2.3 Getting started with Wabi 

The Wabi program presents the familiar screens, dialog boxes, and menus of 
a graphical user interface (GUI). Make menu choices and icon selections by 
pointing and clicking with a mouse, or by using keyboard accelerator com
mands. 

5.2.3.1 Configuration manager 

Use the Wabi configuration manager to establish or change Wabi settings and 
connections. The Wabi configuration manager functions as the dashboard of 
the Wabi program, where most facets of program operation are controlled. 

Some configuration manager settings require you to supply operating sys
tem device names. In most cases, the Wabi program identifies your operating 
system and supplies the appropriate default settings. Infrequently, you may 
need to enter a unique or unusual setting. 

Because of the way your native operating system works, you must change 
certain system settings through your native desktop or from the native operat
ing system command line. Examples of such system settings include the sys
tem date and time, desktop (non-Wabi) screen colors and fonts, and the 
exporting and mounting of remote filesystems. If a setting you want to change 
does not appear within configuration manager, refer to your operating system 
documentation for information about how to change the setting. The Wabi con
figuration manager is illustrated in Fig. 5.20. 

5.2.3.2 Application manager 

The Wabi program provides its own program environment called application 
manager. Use application manager to install and run applications. From appli
cation manager the Wabi configuration manager can be accessed. 

You don't have to use application manager. You can run an application 
directly. You may find application manager useful, however, for organizing and 
managing your applications. Use application manager to manage applications 
by organizing them into groups. You can create application groups using the 

Configuration Manager 
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Figure 5.20 Wabi configuration manager. 
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new command from the file menu. Once you create a group, you can place an 
application item (program) or data file within the group. Application manager 
initially contains one group: the tools group. More groups appear in application 
manager as you install your Wmdows applications. 

All application manager commands and functions are accessible through key 
combinations (called keyboard accelerators) as well as through the mouse 
pointer. Each menu title, menu choice, and dialog box function contains an 
underlined character. This character designates an accelerator key. By press
ing the Alt key and the key represented by an underlined letter, you access the 
command or function. 

Application manager provides several menus: 

File 

Options 

Window 

Help 

Provides a way to create new application groups and items; open appli
cation groups; move, copy, and delete application items and groups; 
examine group and item parameters; run an application; and exit the 
Wabi program. 
Allows you to automatically control the layout of icons within a group 
window, minimize an application on use, and save the window and icon 
layout on exiting the Wabi program. 
Allows you to control the arrangement of windows and the layout of 
icons within a window. 
Ifrequired program files are installed, help provides access to the 
Wabi on-line help system's table of contents, and allows you to search 
for a topic. Instructions about using the help system are also provided. 

The Wabi application manager and menu bar is illustrated in Fig. 5.21. 

5.2.3.3 Tools group 

The tools group is contained within application manager. A tools group appli
cation item is a utility program that allows you to perform a specific Wabi task. 
An example of a task is installing the Windows 3.1 program. Application items 
within the tools group include: 

Configuration manager 

Windows install 

A program through which you establish and change 
most Wabi program settings and connections. Use this 
program to set up a drive, assign a port, establish a 
default printer, and more. 
A program used to install the Microsoft Windows 3.1 
program. You must use this tool to install the Windows 
software. 

Application Manager 
Window .!:!el 

Figure 5.21 Wabi application manager. 
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• 

DOS session 

File viewer 

A program that starts a DOS session by starting the DOS 
emulator specified in the Wabi configuration manager. 
A program you can use to view and print text files hav
ing a . wri or a . txt file extension. Files with these 
extensions serve as readme files in many application 
programs. You can also use this program to view initial
ization ( . i n i ) files. 

The Wabi tools group is illustrated in Fig. 5.22. 
When you install an application, it's informative to view the various readme 

files included with the application. These files contain information about the 
application, and usually some caveats about using the application. Use the file 
viewer to view and print an application's readme files. File viewer will selec
tively search for files with the following extensions: 

.wri-Files in the Windows 3.1 write format . 

. txt-Files in ASCII text format. 
*.*-Files with any file extension. (This combination ofwildcard characters 
represents all files, no matter what the file extension.) 

To view a file, start file viewer by double-clicking the file viewer icon in the 
tools group. When the file viewer window opens, select open from the file menu. 

Application Manager 
tions Window .t:lel 
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Figure 5.22 Wabi application manager tools group. 
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The Select File for Viewing dialog box opens. This dialog box is a file browser, 
which is used to locate the file you want to view or print. This Select File for 
Viewing dialog box has several panels: 

Directory 

File 

Directory layout 

Search list 

Drives 

File types 

Displays the directory path currently selected. You can enter a 
path in this panel or construct a path by browsing a file system. 

Displays the name of the file selected for viewing in the search 
list. 

A browser that displays the directories within the current 
directory available for browsing. Double-click [ .. ] to move up 
one level in the directory hierarchy. Double-click a directory to 
select it. 

Displays a list of files within the current directory that have 
the file extension specified in the file types panel. 

Displays a list ofWabi drives and their assignments. Select a 
drive for browsing from this list. 

Displays a list of file extensions, from which you can select an 
extension. Selecting the wildcard item (*. *) returns for view
ing a list of all files in the selected directory, regardless of 
extension. 

You can print a read.me file using the export as command located in the file 
viewer file menu. The export as command converts the file you are viewing to 
ASCII format and saves the file with a . txt file extension. Once the file is 
saved, you can print it using operating system tools such as vi or a text editor. 

5.2.3.4 Wabi installed with Windows 3.1 program installed 

If you are running Wabi with Microsoft Windows 3.1 installed, you can access 
many of the accessories and programs available in the Windows 3.1 program. 
For example, you can use Program Manager as your Wabi operating environ
ment. In addition, you can use most accessory programs and games, including 
Paintbrush, Write, Notepad, Calculator, Solitaire, and Minesweeper. 

You can also use the Windows control panel color function to change the color 
scheme of Wabi windows. This is the only control panel function you can use. 
Although additional functions (date/time, printers, international, etc.) appear 
in the control panel when Windows 3.1 software is installed under the Wabi 
program, these functions are managed by the Wabi program or by your operat
ing system. Note that if you do not install Microsoft Windows 3.1 software, you 
will not have access to Microsoft Windows 3.1 accessories and programs. 

You do not need to use the Wabi application manager or the Windows 3.1 pro
gram manager to run an application. By specifying the -s argument when 
starting the Wabi program, you can run an application directly. If you start the 
Wabi program in this way, the initial window that opens is the application win
dow. You can use this technique to run a Windows application from your native 
desktop, or from any other UNIX program. Once you've established Wabi set
tings and connections, you may find running an application from your desktop 
to be a convenient way of using the Wabi program. 
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5.2.3.5 Wabi on-line help 

The Wabi program provides comprehensive, context-sensitive on-line help. On
line help explains the tasks and procedures required to use Wabi functions. If 
you have installed Windows 3.1 software in conjunction with the Wabi program, 
you will be able to access Wabi on-line help and the help provided with your 
applications. Even if you can't access Wabi on-line help, you can view Wabi error 
messages and, when using configuration manager, status panel help. 

A manual (man) page of information is available for the Wabi program. This 
man page describes command-line options, provides examples of various start
up modes, and describes the Wabi environment. Tu access the Wabi man page, 
add the Wabi man page directory to the manpath environment variable. This 
variable is located in either your . login file or your . cshrc file. Once you've 
modified this variable, you can view the Wabi man page. 

A Wabi error message appears when you try to perform an "illegal" proce
dure or when Wabi software cannot complete a task. For example, you'll see an 
error message if you try to assign a Wabi drive to a file system that you do not 
have permission to access. 

Status panel help is available within the Wabi configuration manager. Each 
configuration manager dialog box includes a help panel. This panel displays 
information about the dialog box item that is under the mouse pointer. As you 
move the pointer around a dialog box, the displayed help message changes. 

5.3 X WINDOW SYSTEM 

The X Window System (or X) is a hardware-independent, vendor-independent, 
and network-transparent operating environment developed at the Massa
chusetts Institute of Technology in 1984 as a cooperative effort funded by 
major computer manufacturers to build a network of graphical workstations. 
The enormous success of this program made the X Window System a UNIX
based windowing standard which is now available on virtually every worksta
tion in the industry. Several versions of X have been developed, of which X 
Version 11 (Xll) is the most recent. The X Consortium was formed in 1988 to 
foster development and support of the X Window System. 

X offers many benefits to users. It solves the problem of having a common 
interface across a heterogeneous range of computers and operating systems. It 
provides a mechanism upon which one can build different user interface styles. 
It also addresses the issue of sharing resources among multiple programs-X 
allows multiple applications to run simultaneously and permits applications to 
be device-independent.Xis operating-system-independent, encouraging the 
portability of its software to diverse platforms. Hence, Xis one of the most pop
ular and widely available user interface standards in the workstations arena. 

X provides the ability to generate multifont text and graphics in 
monochrome or in color on a bitmap display. Graphics such as points, lines, 
arcs, and polygons can be generated in a hierarchy of windows. Each window 
can be considered a "virtual screen" and can, in turn, contain subwindows of an 
arbitrary depth. They may overlap each other and can be moved, resized, or 



User Interfaces 125 

restacked dynamically. Since windows are relatively inexpensive resources, 
applications utilizing several thousand subwindows are common and are often 
used to implement user interface components. 

X, a network-oriented windowing system, consists of an X server, which 
manages a visual display, and client application programs. Client application 
programs can perform a variety of tasks, such as processing electronic mail, 
managing a database, or simply displaying the current time. Each application 
appears in its own window or in a family of associated windows. The server 
conveys user input information, such as a click of the mouse or keystroke, to 
the appropriate client application. Client applications communicate their 
needs for display actions to the server. The X server and client applications can 
reside on the same computer or on different computers connected by a net
work. An illustration of the X environment follows (see Fig. 5.23). 

The interprocess communication used by the X server and client is defined 
by a network protocol. Programmers interface with this protocol using Xlib, 
the C language programming interface to X and higher-level "toolkits," such as 
Xt and OSF/Motif. Xlib functions as a procedural interface, hiding the details 
of the protocol-encoding and transport interactions, and automatically han
dling the buffering of requests for efficient transport to the server. 

The X Window System architecture is based on a simple client-server rela
tionship. The display server is the program that controls and draws the output 
to the display monitors, tracks client input, and updates the windows accord
ingly. Clients are application programs that perform specific tasks. Since X is, 
by design, a distributed environment, its clients and server do not necessarily 
have to run on the same machine. 

The terminology in the world of X may be somewhat confusing to program
mers from the traditional host or mainframe environment. The location of the 
server in the context of X is the reverse of servers in local area network envi
ronments. Consider a traditional database environment in which the server 

Application/Window 
Mana er/ Term Emulator 

X Toolkit 

Programming Interface (Xlib) 

X Network Protocol 

Base Window System 

X Server 

Device Library 

Figure 5.23 X environment. 
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lives on the remote host and the client application resides locally on the PCs 
that are attached to it. In X, the server lives on the local workstation, while the 
clients run on the remote host machines. 

Although Xis fundamentally defined by a network protocol, most application 
programmers think about it as a GUI. For ease of use, a higher-level layer is 
used to abstract the protocol layer and insulate it from programmers building 
X-based interfaces. This higher-level layer is referred to as the XUb, or, more 
correctly, as the Xlib Interface Library (refer to Fig. 5.23). This library provides 
a familiar procedural interface that masks the detail of the protocol-encoding 
and transport interactions. It also automatically handles the buffering of 
requests for efficient transport to the server, much as the C language standard 
1/0 library buffers output to minimize system calls. Tµe library also provides 
an array of utility functions and primitive constructs that do not directly relate 
to the protocol but aid in building applications. 

5.3.1 AIXwindows Environment 

AIXwindows Environment provides a graphical interface to AIX for the Power
PC (see Fig. 5.24). Based on and compatible with the industry-standard X Win
dow System and the OSF/Motif 1.2 GUI, AIXwindows can interact with other 
AIX and X-based equipment manufacturer systems implementing the X Win
dow System and OSF/Motifinterfaces. AIXwindows provides a graphical desk
top that can be customized to integrate and launch applications. AIXwindows 
enables users to develop and execute X applications, OSF/Motif applications, 
or applications requiring Display PostScript support. 

Applications 

Window Manager 

Xt Intrinsics 

X Window System 

OS and Networking 

PowerPC Architecture 

Figure 5.24 AIXwindows Environment. 
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The current AIXwindows environment (Version 1.2.5) provides support for X 
Windows Release 5 (X11R5) and is binary-compatible with X11R4. AIXwin
dows supports 2-D as well as 3-D applications. 

AIXwindows is a set of guidelines and tools that specify how a user interface 
for graphics computers should look and feel. These specifications focus on the 
design of the objects that make up the user interface: the menus, buttons, dia
log boxes, text entry, and display areas. AIXwindows implements a flexible 
software system layered on top of the X Window System to create individual 
visual components, such as scroll bars and menus. 

In addition to providing users with the ability to run several applications 
simultaneously on the screen, the AIXwindows environment supports various 
services that can enhance applications including: 

• AIXwindows Style Guide. Provides a framework of behavior specifications 
to guide application, widget, user-interface system, and window-manager 
developers in the design and implementation of new products consistent 
with the operating system user interface. The Style Guide is based on the 
OSF I Motif Style Guide. 

• AIXwindows Customizing Tuol. Helps to customize the look of an applica
tion. Provides a simple method for users to change attributes including col
ors and fonts. 

• AIXwindows National Language Support. Enables programmers to write 
internationalized applications that can port easily across systems, each of 
which supports a different native language. The environment clients are 
internationalized so they can run in the native environment of the user. 

5.3.2 AIXwindows 3-D 

The most apparent distinguishing characteristic of AIXwindows is its 3-D 
appearance. The AIXwindows 3-D feature provides facilities for the develop
ment and execution of 3-D applications using a variety of industry-standard 
APis. This includes hardware support for PEXlib, graPHIGS, and GL as well 
as a pure software implementation of OpenGL, PEXlib, and graPHIGS 
referred to as Softgraphics. Softgraphics allows all 3-D functions to be per
formed by software, in which the graphics adapter is used simply as a frame 
buffer to display the image. This implementation makes it possible to run 3-D 
applications on any 2-D graphics adapter. 

Softgraphics provides a uniform development environment for 3-D applica
tions on systems with entry-level graphics adapters. Programmers can develop 
advanced 3-D applications for industry APis, which can then be moved to any 
3-D graphics adapter with little or no change to the source code. 

5.3.3 AIXwlndows interface composer 

The AIXwindows Interface Composer (AIC) is a software development applica
tion that enables application or systems programmers to 'readily create and 
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generate graphical user interfaces and graft them onto existing programs, or 
create the interfaces in tandem with code generation. The AIC package pro
vides a library of code modules (objects) that a programmer can use and reuse 
to build a graphical user interface. The AIC development package is itself 
graphically driven so that a programmer can build a graphics interface by 
selecting and working with menus, windows, buttons, and other types of 
graphic objects. 

5.4 MACINTOSH APPLICATION SERVICES 

5.4.1 Overview 

The primary advantage of Macintosh Application Services is the availability of 
shrink-wrapped applications, as well as the new generation of Power PC Mac
intosh applications. Another powerful feature brought to the PowerOpen sys
tem by Macintosh Application Services is the ability to cut and paste 
information from the Macintosh window environment to and from any other X 
client application. Both text and graphics can be copied from or pasted to the 
Macintosh clipboard, which then can be made available from within other X 
client applications on the system. 

From a system perspective, Macintosh Application Services is a layered 
application execution environment that integrates Macintosh applications into 
the X Window System without requiring that the Macintosh environment be 
the dominant personality or desktop. The windowing extensions for the 
PowerOpen environment consist of a window manager, application commands 
and parameters, and the communication protocol. The PowerOpen windowing 
system is derived from the X Window System Release 11 Version 5 (X11R5), 
which provides a client/server-based graphical windowing system. There is a 
native mapping of Macintosh's Toolbox APis onto Xll. A 680x0 instruction set 
emulator is provided to support Macintosh applications. 

5.4.2 Capabilities and functions 

When using Macintosh Application Services, users see the familiar Macintosh 
graphical environment inside an X Window on the screen. Within this window, 
the user can run several Macintosh programs concurrently, and create new 
windows inside the Macintosh environments, just as with any other Macintosh 
computer. Macintosh Application Services uses System 7 software, making the 
look and feel of the PowerPC Macintosh environment identical to that of a 
Macintosh system. 

Also available to users are the productivity features of the Macintosh inter
face, enabling users to manipulate files and move information throughout the 
PowerOpen environment. For example, users can move files on the system 
from one directory or folder to another, copy a file by clicking and dragging a 
file icon, cut and paste information between Macintosh and PowerOpen oper
ating system documents, and use Macintosh commands to locate or manipu
late information. Users can also launch both Macintosh or UNIX applications 
on the PowerPC by clicking on the appropriate document or application icon. 
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Apple Macintosh applications run through the Macintosh application ser
vices extension. Macintosh Finder, the Macintosh desktop creator and manager, 
runs within a single window. Both PowerPC and 680x0 Macintosh applications 
can be run simultaneously from the same system. The Macintosh Finder pro
vides the familiar Macintosh Desktop Graphics User Interface within an X Win
dow on the PowerOpen system. All files (including non-Macintosh documents 
and applications) appear as icons; users simply double-click on a Macintosh or 
UNIX icon to open a file or launch an application. 

5.4.3 Getting started with Macintosh Application Services 

The Macintosh Application Engine includes the toolbox, a 68040 emulator, and 
a multimode switcher that allows both 680x0 applications and PowerPC appli
cations to run simultaneously. The Macintosh system software component 
maps the fundamental services such as memory management and 110 to files 
and devices to the underlying operating system. See Fig. 5.25 for an illustra
tion of the Macintosh Application Services architecture. 

There are three main components that make up the Macintosh Application 
Services software, including: 

• Macintosh Desktop Services (the graphical interface through which users 
interact with the Macintosh environment) 

• Macintosh Application Engine (functions as an intelligent switching device, 
ensuring that applications spend the maximum possible time carrying out 
functions in native Power PC code) 
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Figure 5.25 Macintosh application services architecture. 
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• Macintosh System Services (handles interaction with physical devices such 
as printers and disk drives, as well as memory management and file man
agement) 

The first layer, the Macintosh Desktop Services, enables users to manage 
both Macintosh and PowerOpen files and launch applications. The primary 
component of the Macintosh Desktop Services is the finder, based on Macin
tosh System 7 system software. The finder is the graphical interface (including 
the Macintosh desktop) through which users interact with both Macintosh and 
PowerPC applications. When the Macintosh Application Services application 
is launched, the desktop area created by the finder appears in the POEmac X 
window. All finder features are confined to this window, enabling the POEmac 
window to function as a self-contained Macintosh environment on the Power
Open screen. 

The second layer, the Macintosh Application Engine, consists of the Macin
tosh toolbox, the Macintosh 68040 emulator, and a multimode code switcher, 
which determines if the application instructions from the Macintosh Desktop 
Services layer are Macintosh 680x0 application code on PowerPC Macintosh 
code, and routes the code accordingly. The Macintosh Application Engine is the 
core of the Macintosh Application Services. It maximizes the speed of running 
Macintosh 680x0 applications on a PowerOpen system. All Macintosh 680x0 
applications are supported by an emulator, which interprets the 680x0 code to 
instructions usable by the PowerOpen platform. The system is designed to 
minimize the time spent in the emulator, and to maximize the time spent exe
cuting application commands in native PowerOpen code, allowing increased 
application performance speed. 

Included in the Macintosh Application Engine is the Macintosh toolbox (an 
interface written in native PowerOpen code) which enables applications to 
interact with the PowerOpen system layer. The toolbox supports user interface 
calls from the user interface layer to provide windows, menus, graphics, and 
fonts and also provides a native PowerPC code interface between the user inter
face and the PowerOpen hardware layer. Since most Macintosh 680x0 applica
tions spend up to 90 percent of their processing time in the Macintosh toolbox, 
the application speed increases significantly on the PowerOpen platform. 

The third layer, the Macintosh System Services, handles low-level tasks 
such as memory management and input/output to files and devices. Its 
resource management responsibilities include information exchange and file 
management to various devices including hard disks, network file systems, 
and printers. Native Macintosh files are displayed with an application-specific 
icon, while the nonnative files are shown with a standard Macintosh icon. 
Access to files remains transparent regardless of whether it is resident in the 
native disk drive or on network-mounted devices. As far as the print facility is 
concerned, there is no difference in printing from Macintosh Application Ser
vices as compared to printing from a native Macintosh environment. 

The Macintosh Application Services GUI software, designed to work cohe
sively with the PowerOpen Environment, enables users of PowerOpen systems 
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to take full advantage of the Macintosh environment while harnessing the 
power and speed of the PowerOpen Environment. 

5.5 SUMMARY 

The user interfaces compatible with the PowerPC provide powerful features 
while enhancing ease-of-use for users. The ability to pick and choose from the 
array of application environments available and the ability to cut and paste 
between applications gives PowerPC users endless advantages over systems 
running only DOS, Windows, UNIX, or Macintosh operating systems, and, by 
default, applications compatible with those single operating systems. 

The Common Desktop Environment is a specification providing open sys
tems users with an easy-to-use desktop computing environment that remains 
consistent across UNIX platforms and applications. The Common Desktop 
Environment will give developers the advantage of working with a single set of 
programming interfaces, allowing them to bring products to market faster and 
with lower support costs. The Common Desktop Environment was one of sev
eral specifications outlined in March 1993 when the Common Open Software 
Environment process was announced. The Common Open Software Environ
ment was formed in order to expedite the adoption of standards and promote 
greater consistency and interoperability among UNIX system products. 

The Common Desktop Environment incorporates major elements of 
Hewlett-Packard's Visual User Environment (VUE); IBM's Common User 
Access (CUA) model and Workplace Shell; SunSoft's DeskSet productivity tools 
and ToolTalk interapplication communication product; Open Software Foun
dation's Motif Toolkit and Window Manager; USL's UNIX SVR4.2 desktop 
manager components and scalable systems technologies; the X Window Sys
tem Vll; and Novell's client software for UNIX. 

The COSE process was announced by the Hewlett-Packard Company, IBM, 
SunSoft, Inc., The Santa Cruz Operation, Univel, and Unix System Laborato
ries in March 1993 to expedite the adoption of standards and promote greater 
consistency and interoperability among UNIX system products in the industry. 

Wabi allows users to run Microsoft Windows 3.1 software-based applications 
on the PowerPC operating system platform. An execution environment for 
Microsoft Windows 3.1 API compliant applications, Wabi includes a layer of code 
that maps the Microsoft Windows APis onto Xll. Wabi converts Windows pro
gramming calls to equivalent X Windows calls that are then executed in the host 
processor. Time spent in the operating system requesting services is remapped 
to native UNIX operating system calls. Wabi relies on native services, using the 
same instructions as the native instructions on top of the Power PC. 

Wabi's features include reimplementation of MS Windows' dynamically 
linked libraries (dlls); reimplementation of MS Windows executables such as 
program manager, control panel, task manager, and write; support of cut, 
paste, and copy between MS Windows applications and AIX applications; sup
port of DOS diskettes and CDROM for easy installation of MS Windows and 
3.1 applications; full access to AIX systems resources, including PostScript 
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printers; support of MS Windows enhanced (80386) mode applications; and 
integration into the Common Desktop Environment. 

Wabi software resides between an application and the native operating sys
tem, where it redirects an application's requests for services and resources to 
the appropriate operating system location. As users work with applications, 
Wabi intercepts instructions and requests and translates them into a language 
understood by the native operating system. Wabi then directs these requests to 
the appropriate operating system location. 

Xis a hardware-independent, vendor-independent, and network-transparent 
operating environment that solves the problem of having a common interface 
across a heterogeneous range of computers and operating systems by providing 
a mechanism on which one can build different user interface styles. It also 
addresses the issue of sharing resources among multiple programs by allowing 
multiple applications to run simultaneously and permitting applications to 
be device-independent. X is operating-system-independent, encouraging the 
portability of its software to diverse platforms, which makes it one of the most 
popular and widely available user interface standards in the workstations 
arena. 

Macintosh Application Services is a graphical user interface that is compliant 
with the UNIX-based graphical interface, X Windows. It brings the functional
ity of the Macintosh environment to PowerOpen systems. With Macintosh 
Application Services, users of PowerOpen systems are able to take full advan
tage of the Macintosh environment--the graphical interface, the Macintosh 
System 7 system software and the wide range of software applications-and 
combine these advantages with the power and open system architecture of the 
PowerOpen Environment. Once Macintosh Application Services is installed, 
users will be able to run PowerPC Macintosh applications, as well as off-the
shelf Macintosh 680x0 applications, inside a window on the screen of a Power
Open platform. 
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The PowerOpen Association's promise of promoting application availability is 
primarily achievable through the wide range of operating systems that have 
been ported to the PowerPC. Based on the PowerOpen application binary 
interface (ABI), the operating systems will run DOS and Windows under emu
lation, giving users an expanded range of applications to choose from. See Sec. 
6.1 for a discussion of the PowerOpen ABI. 

The layered architectural definition and design of the PowerPC defines 
varying degrees of compatibility starting from the instruction set level, to the 
virtual environment level, up to the operating environment level. This lay
ered approach to the processor's architectural framework makes it possible 
to run almost any application with minimal porting effort. (See Chap. 3 for 
more information concerning this new paradigm defined as architectural 
abstraction.) 

The PowerPC platform is intended to support numerous 32-bit operating 
systems (based on the PowerOpen base operating system ABI specification). 
Candidate operating systems include: 

• AIX 
• Taligent 

• Solaris 

•Windows NT 

• Workplace OS 
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The PowerPC support of 32-bit operating systems means that better memory 
management, preemptive multitasking, and multithreading/muitiprocessing 
are now available to PC users. What do these terms mean to users? With a 32-
bit memory management scheme, programmers are presented with a set oflog
ical memory addresses that start at 0 and end at 4 GB. This is referred to as a 
flat memory model. The lack of segmentation in the memory model means that 
an application's code and data no longer need to be broken into 64-KB chunks. 

Preemptive multitasking means that the PC's CPU is in total control of appli
cation execution. When the operating system is loaded, it establishes a special 
scheduling program that uses the memory-management hardware of the CPU 
to coordinate how applications operate. In a preemptively multitasking envi
ronment, each application is assigned its own region of system memory and the 
operating system scheduler allows the application to execute for a certain 
period of time before it interrupts the application and allows another task to 
execute. A thread is a single, sequential flow of control.or task within a process. 
Multithreading is a paradigm given to self-contained tasks that can execute 
concurrently. Symmetrical multiprocessing complements multithreading by 
distributing threads across multiple processors. 

6.1 PowerOpen APPLICATION BINARY INTERFACE 

The PowerOpen environment (POE) provides a platform and 1/0-independent 
application interface. The POE application binary interface (ABI) enables soft
ware developers to produce shrink-wrapped software without taking platform
specific functions and 1/0 bus dependencies into consideration. The ABI 
defines the structure of the application as it is in the POE, thereby defining a 
system interface for compiled application programs. This includes such key 
definitions as loading and linking, conventions, object formats, execution 
environment, networking infrastructure, and installation and packaging infor
mation. 

The ABI consists of the PowerOpen application programming interface 
(API), which defines the set of system calls, library function, header files, com
mands, and utilities that an application developer is allowed to use to develop 
a compliant application. The POE API also contains the kernel programming 
interface which defines the kernel process environment. The PowerOpen API 
supports the following industry standards: XPG4, XNFS, XTI, and X11R5. 

Through the use of the POE ABI execution environment, applications pro
grams compiled and packaged for POE implementations support all of the 
PowerOpen execution environments, interfaces, and headers defined and 
listed within the ABI specification. Additionally, systems implementing the 
PowerOpen ABI may provide additional or enhanced interfaces, headers, and 
facilities. 

Adherence to the PowerOpen ABI guarantees application portability to 
future versions of an ABI-conformant system and to future PowerPC architec
ture implementations. This portability is guaranteed at the following levels, 
depending on the application's origin, as follows: 
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• AB! conforming system. A system that provides all the binary system inter
faces for application programs described in the ABI specification and the 
PowerOpen APL 

• AB! conforming programs. A program written to include only the following 
system routines: 

Commands and other resources included in the ABI. 
Programs compiled into an executable file that has standardized object file 
formats and characteristics specified for such fields, as defined by the 
extended common object file format (XCOFF). 
Programs whose behavior complies with the rules given in the PowerOpen 
ABI specification. A program cannot have the routines defined in the shared 
libraries of the PowerOpen ABI statically bound into the program. 

• Binary compatibility. Application is a "load-and-go" application-only the 
physical availability of the application is needed. Applications adhering to 
this level of compatibility can be moved across compliant systems. 

AIX, Taligent, Solaris, Windows NT, and Workplace OS operating systems 
have been ported to the Power PC platform through modification of their ABis 
to be POE ABI compliant. Recognize that complying with the PowerOpen ABI 
is necessary for an operating system to run on the PowerPC. A discussion 
introducing the features of AIX, Taligent, Solaris, Windows NT, and Workplace 
OS follows. 

The AIX Personal Productivity Client (the version of AIX which will run on the 
PowerPC) is a fully PowerOpen-compliant operating system based on the Com
mon Open Software Environment's (COSE) version of UNIX that includes 
COSE's Common Desktop Environment (discussed in Chap. 5). Based on Sys
tem V Release 3 UNIX, the AIX customization facility is tied in with the X11R5 
implementation. From the X Windows desktop, it is possible to customize fea
tures of X Windows applications through a graphical interface. AIX also 
includes the AIX system management tool (smit), which consists of a series of 
menus linked to an object database that builds UNIX commands in an interac
tive way. smit controls almost all system management functions and is also 
available in a character-based version. smit can be used as a diagnostic read
out tool and configuration manager was well. 

6.2.1 AIX personal productivity client configuration 

The PowerPC implementation of the AIX personal productivity client comes in 
the following configurations: 

1. ASCII client workstation. This system consists of a one- to two-user system 
that operates as a stand-alone or client in a network. Software includes a base 
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run-time system, utilities, journaled file system, logical and physical volume 
manager, TCP/IP and NFS client support, system management (including 
support for remote boot/system management), and UNIX shell user interlace. 

2. Graphical client workstation. This system consists of the ASCII client 
workstation functions plus 2D X Windows, Motif GUI, the Common Desktop 
Environment, Wabi, and a personal productivity user interlace, including 
visual system management utilities. This configuration is referred to as Per
sonal AIX. 

3. ASCII server. This system includes the ASCII client workstation functions 
plus TCP/IP and NFS server functions, multiuser support, and additional 
base system and system management utilities. 

4. Graphical server. This system includes the functionality of the ASCII 
server plus 2D X Windows, Motif GUI, Common Desktop Environment, and 
a personal productivity user interlace, including visual system management 
utilities. 

5. Application development kit. The XL C compiler plus debuggers and soft
ware development utilities. These will run on any of the four base operating 
system packages. 

The client workstation requires at least 16 MB of main memory; the devel
oper workstation, 24 MB; and a LAN server, 32 MB. The main memory should 
start at address zero and should be continuously populated through the maxi
mum amount in the configuration. A secondary cache (L2 cache) exterior to the 
processor is optional on a PowerPC configured system. However, to optimize 
perlormance for the developer workstation, include a 256-KB L2 cache, and to 
optimize perlormance for the LAN server, include a 512-KB L2 cache. 

All configurations should have an alphanumeric input device. Note that if a 
LAN server does not function as a developer or client workstation, a simple 
console (for example, an ASCII terminal) may be used. A pointing device (typ
ically a mouse) is required on the client and developer workstations. 

The client workstation requires a graphics system capable of at least 800x600 
pixels; a developer workstation, 1024x768 pixels; and a LAN server, only an 
ASCII character video system (unless it also functions as a client or developer 
workstation). 

Only the developer workstation requires a serial port for the kernel debug
ger. However, all configurations require a parallel port and a minimum of one 
network interlace. 

The AIX personal productivity client supports a SCSI interlace and some 
IDE disks. All configurations require one PCI bus; the ISA bus is optional for 
all configurations. However, the ISA bus decoder is required for native 1/0 sup
port for such interlaces as parallel, serial, keyboard, and mouse. 

6.2.2 Operating environment 

The AIX software distribution is arranged in a hierarchical structure, resem
bling an inverted tree. Program modules are grouped in directories in this file 
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tree. This logical organization of data and files allows control over the man
agement of multiple directories and files at one time. The basic layout of vital 
programs has not changed from the standard UNIX file structure. However, a 
set of modifications has been made in terms of file organization to optimize 
storage, accommodate enhancements, and comply with standards. 

6.2.2.1 Layout of files 

The root directory in AIX is represented by a slash (/) symbol. All directories 
under this root directory are considered subdirectories and may contain files 
and/or directories in them. At the top of the AIX file system hierarchy is the 
system-defined root directory. This root directory contains a set of standard 
subdirectories. Described here are the names and functions of some of the 
main directories found under root: 

bin 

dev 

etc 

mnt 

lib 

shin 

tmp 

home 

usr 

var 

Contains binary programs that the users use as commands 

Holds special files for I/O devices 

Contains miscellaneous files for system initialization and system manage
ment (the name etc being derived from etcetera) 

Provides a place to mount devices or external data from other machines 

Contains common libraries; later releases of AIX have linked /lib with 
/usr/lib 
Holds system utilities and files needed to boot the machine 

Contains temporary files that may get created by the users or the system 
itself; typically this directory is purged on a periodic basis 

Contains login directories for the system users; for compatibility reasons, 
later releases of AIX have linked /u to /home 

Contains system programs and licensed program products that users 
would use 

Serves as a mount point for directories and files which change size, such 
as things found in the /usr/spool directory of UNIX or older AIX systems. 

An individual system may also have some additional directories occurring 
under root. However, the general convention for system maintenance is to keep 
the root directory as clean as possible. The standard layout of an AIX file tree, 
as it appears on the PowerPC, is shown in Figs. 6.1, 6.2, and 6.3. 

6.2.2.2 Command language interpreters (shells) 

In addition to providing a computer-human interface, a shell offers a variety of 
tools which may be used to automate repetitive user activities at the keyboard. 
The shell is a hard casing that provides a private workspace for the user. This 
private workspace is also referred to as the user's environment. 

Shell commands can be thought of as filters. As Fig. 6.4 depicts, the com
mands have a single input, called standard input (abbreviated to stdin), that 
accepts characters one at a time. Each shell command also has two outputs 
including standard output (abbreviated to stdout) and standard error (abbrevi
ated to stderr). The typical control flow in a shell command execution involves 
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three discrete phases. The first stage is when data is input from stdin, the sec
ond is when the data is acted upon by the shell, and the final phase is passing 
data to stdout. In this way, each shell command acts upon the data that comes 
in from the stdin stream, and subsequently hands it off to the stdout stream. 

The three primary shells provided by AIX for end users include the Bourne 
shell (sh), C shell (csh), and the Korn shell (ksh). While the basic functionality 
of each shell is similar, the actual look and feel of particular shells vary. 

The Bourne shell, developed by S. R. Bourne of Bell Labs, is referred to as 
"sh." The Bourne shell is available on every AIX and UNIX system and is the 
industry-standard shell. 

The C shell (called "csh") syntax is very much like the C language, since it 
was developed primarily for the use of C programmers at the University of Cal
ifornia at Berkeley. The C shell provides some added functionalities to mini
mize repetitive typing of commands and to optimize job control. Although the 
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C shell became quite popular in universities and among programmers, it has 
never been standardized in industry. 

The newest of the shells is the Korn shell (called "ksh"), named after its 
developer S. Korn of Bell Labs. In pursuit of standardizing a shell for indus
trywide use, the Korn shell was shipped with every newer version of UNIX. 
The Korn shell was successful because of its backward compatibility with the 
Bourne shell (C shell is not). All existing shell programs that were written in 
Bourne shell over the years could be executed under the Korn shell without 
modification. The Korn is also attractive because it incorporated the best of the 
C shell features, providing a well-paved path for convergence and standard
ization of this shell as the industry-standard command language interpreter. 

6.2.3 End-user environment 

6.2.3.1 Positioning of programs and utilities 

The PowerPC layout of programs and utilities resembles a doughnut as shown 
in Fig. 6.5. The hollow core represents the hardware. The outer layer repre
sents the application programs, which can also be user commands. The inner 
layer depicts the system programs. The insulation between the two layers is 
provided by a command language interpreter (also referred to as a shell) that 
provides an interface between the user and the system. 

For a more detailed view of AIX, consider a sectional view of the doughnut 
model and imagine it under magnification. At this level of detail, some addi
tional components of the system software can be identified. In the sectional 
view (Fig. 6.6), the outermost layer of the figure consists of application pro
grams and utilities that users use. When invoked, these perform a designated 
task. Flow of control passes from the user's application program down to the 
system programs through the shell layer. The vehicle used for this transfer of 
control is referred to as a system call. Use of system calls is the primary means 
of requesting information from the operating system and its resources. Details 
on system calls are covered in Chap. 9. 

The third layer in the sectional view of the doughnut model serves as the 
manager who is responsible for supervising and scheduling requests from 
application programs. This layer is referred to as the kernel. The kernel ser
vices request and subsequently coordinate with the resources in the machine 
to schedule access to physical devices for information retrieval or storage. 
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Figure 6.5 Doughnut model. 

The fourth level in the sectional view consists of a set of low-level privileged 
system programs. Once a request has been scheduled by the kernel to access a 
device, these low-level routines take over the active control. These routines 
access the physical device (platters on a hard drive) upon request and send up 
the retrieved information via the same path it was sent down. These low-level 
routines are highly device-dependent and are collectively referred to as device 
drivers. For every device on the system, there are device drivers responsible for 
that physical device and for shielding applications from the hardware specifics 
of the machine. 

To consider AIX from a user's point of view, consider a typical scenario: a doc
ument is created using a text editor. First, the editor program is invoked by the 
shell when its name is typed in at the user's command line prompt. New text 
is typed in and saved, and the editor program is terminated. This may seem 
like a trivial task to the user, but how do the layers of the doughnut model 
depict this scenario? Upon initiation of the editor (the application program) by 
the shell (the command language interpreter), a request to create a document 
is made to the operating system. Upon the granting of this request (from the 
operating system), new text is added into storage (a buffer in memory) set 
aside for this task. Each character typed at the terminal gets sent to some 
device driver (low-level routines) which is responsible for the terminal device 
I/0. In this way, a document is created. 
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Figure 6.6 Sectional view of the doughnut model. 

6.2.3.2 Moving files between DOS and AIX 

Moving files between DOS and AIX. is achieved using the suite of facilities that 
permit reading and writing of files in DOS format, that allow users access to 
DOS directories, and that give users the ability to format diskettes in DOS for
mat. To use these utilities, some conflicting conventions between UNIX and 
DOS were resolved. As the backslash character(\) can have special meaning 
to the AIX. operating system, the slash character (I) was used as the delimiter 
to specify subdirectory names in a DOS path name. For other functionality, 
DOS file-naming conventions were used consistently. AIX. utilities used for 
moving files between DOS and AIX. include: 

dosread 

doswrite 

dosdir 

dosformat 

dosdel 

Copies the contents of a DOS file to a specified AIX file 

Copies the contents of an AIX file to the specified DOS file 

Displays information about the specified DOS directory 

Formats a diskette with the DOS format 

Deletes DOS files 
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6.2.3.3 AIX file editors 

Four editors are included with AIX: ed, ex, vi, and sed. In addition to these 
editors, a wide variety of other editors may be obtained from commercial or 
public domain sources. The ed editor is the original editor under UNIX that 
was developed at Bell Labs and was shipped with the very first distribution of 
UNIX. The ed editor is found on every UNIX and AIX system. As a line editor, 
ed is able to alter files without full-screen terminal support. The ed editor 
works on only one file at a time by copying it into a temporary edit buffer and 
making changes to that copy. It does not alter the file itself until you exit the 
editing session. 

The ex editor was developed at the University of California at Berkeley. It 
was the first step toward full-screen editing. Shortly thereafter, the vi editor 
was developed (also at Berkeley). This vi editor was built on the primitives of 
ed and ex. It provides full-screen editing capabilities, multiple file editing, and 
many other features. If you're choosing an editor to start with, vi is a good 
choice. 

The final AIX standard editor is sed, which is a noninteractive stream
oriented editor that is used more like a filter than like an actual text editor. 
The sed editor interprets a script that controls the actions performed. Use sed 
if you need to automate editing actions to be performed on one or more files or 
to write conversion programs that would be used like filters on input or output 
data streams. 

In addition to the standard AIX text editors, one can acquire commercially 
available editors. One worth mentioning is emacs. The emacs editor can be 
obtained through the Free Software Foundation or from the public domain 
sites on the Internet. 

6.2.3.4 Help access 

Two kinds of help facilities will be discussed in this section: the standard facil
ity available on all UNIX machines and InfoExplorer, the AIX-specific online 
library. 

UNIX man pages. UNIX machines are usually shipped with a set of standard 
manuals for reference. However, these multivolume manuals are not always 
the most convenient option for end users. So, in addition to these manuals, an 
on-line help facility has also been provided on most UNIX systems. This on
line help facility is referred to as man pages-"man" being short for manual. 
man pages are a subset of the standard UNIX documentation and contain syn
opses of the commands and tools used by users and programmers. 

To access the man pages on a specific command, you must type in the man 
command, followed by the name of the command on which help is being sought. 

$ man who 

A scrolling screen appears, displaying the text on the usage of the who com
mand (who command shows the currently logged-on users on the system). At 
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Figure 6.7 InfoExplorer books listing interface. 

this time, one may continue to scroll through the documentation by pressing 
the spacebar or quit out of it at any time by hitting the "q" key. 

lnfoExplorer. AIX includes a Motif system navigator called InfoExplorer, 
which provides on-line hypertext documentation via point-and-click interface. 
The InfoExplorer text retrieval tool contains more than 35,000 pages of arti
cles, tutorials, and technical references on machine- and software-specific top
ics. See Fig. 6. 7. 
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The essential difference between InfoExplorer and standard UNIX man 
pages is that instead of being a mere subset of the AIX documentation, Info
Explorer contains the complete set of AIX and PowerPC documentation. This 
on-line access to the entire AIX and PowerPC library is made possible by the 
design and implementation of a text retrieval system based on hypertext. 
Hypertext technology provides a nonsequential method of organizing text in a 
manner that enables rapid retrieval and efficient storage. Users point and 
click on selected items such as topics, books, and commands, and the selected 
information is displayed in a browsable GUI. 

To access the InfoExplorer facility, enter the info command: 

$ info 

To use InfoExplorer, simply follow the menu selections. Note that the screen 
drawing process that occurs is based on the type of terminal that you are using. 
In addition to supporting ASCII terminals, the InfoExplorer also provides an 
interface for X terminals. When using an ASCII terminal, a character-based 
user interface menu appears which may be operated using the hot keys that 
appear in inverse video. In an X environment, the InfoExplorer tool displays an 
X-based graphical user interface with icons that support the mouse and other 
standard X features (see Fig. 6.8). 

In addition to being a completely menu-driven help facility, InfoExplorer 
also offers compound word(s) searches to locate key words across multiple doc
uments, bookmarks to index selected pages, user notes to tag bookmarks with 
comments, on-line tutorials for beginners, and a built-in print facility for print
ing out selected documents. 

InfoExplorer can be placed either on the hard drive or be made available on 
a removable medium like CD-ROM. The latter is generally preferred as it frees 
up a significant amount of valuable disk space. 

6.2.4 Optimizing AIX 

To fine-tune the AIX operating system, first identify the workloads on the sys
tem. Characterizing this workload is often the most time-consuming phase of 
performance tuning, as it involves queueing effects of network-mounted file 
systems and LAN traffic beyond the system's native I/O. Once the workload is 
defined, formulate a set of objectives to determine how the results are to be 
measured. The next step is to identify the "critical" resources that are limiting 
the system's performance with the help of one or more of the AIX performance 
monitoring, analysis, and tuning tools. Having identified the hot spots, the 
subsequent aim is to minimize the workload's critical resource requirements, 
while modifying the allocation of resources to reflect priorities. This allocation 
and reallocation of resources is termed performance tuning. The most com
monly tuned critical resources are the disk drive subsystem, real memory, run
ning processes, and communications I/O. 
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Figure 6.8 InfoExplorer topic and task interface. 

Disk drives in traditional UNIX systems have always needed periodic atten
tion. Since the logical organization of bytes in a file can be completely different 
than the physical layout on the disk, data can get fragmented over a period of 
time. When this occurs, file access results in longer seeks and, as a result, dete
riorates I/O performance. The typical remedy for this is to recompact the disks 
and, if needed, redistribute the frequently accessed components across multiple 
disk drives. However, AIX is different because AIX implements what is known 
as memory mapped I I 0 and I I 0 pacing paradigms. The memory mapped file 
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concept maps files directly in memory, thus bypassing traditional block 1/0 and 
kernel buffers. It alleviates the 1/0 penalties due to the effect of a file's place
ment and possible fragmented state on disk. All files are memory mapped by 
default. The second paradigm, 1/0 pacing, prevents 1/0-intensive programs 
from building up long 1/0 queues. It ensures a fair share of 1/0 resources for 
both heavily demanding as well as less demanding programs. If a workload is 
performing poorly because it constitutes an uneven mix of acutely 1/0-bound 
and lightly 1/0-bound tasks, one should look into enabling the 1/0 pacing option 
in smit by experimenting with the high-water/low-water marks to suitable val
ues (other than the default value of zero, which disables the feature). 

Fine-tuning communications 1/0 is primarily a matter of configuration. Most 
network protocols use sockets to communicate across the network, which are 
made up of smaller memory buffers called mbufs. It is the availability of mbuf 
pools in the network subsystem that governs the performance of the communi
cations 1/0. Since the mbufs store traffic for inbound and outbound network 
traffic, having mbuf pools of the right size can have a very favorable effect on 
network performance. The key element to tuning mbufs is to know how and 
when to adjust them. Since mbufpools consist of pinned pieces of virtual mem
ory, they always remain in physical memory and are never paged out, reducing 
the real memory size. For ideal network performance, the minimum number of 
free buffers should be maintained in the pools, without degrading network per
formance. There are options (refer to the no command) to specify the minimum 
number of free buffers for the pool and to control the amount of memory that is 
to be allocated for mbuf management. When or if the number of buffers in the 
pool drops below the specified threshold level, the pools are expanded by the 
same amount. 

6.3 TALIGENT 

Formed by Apple Computer, Inc. and IBM in 1991, Taligent combines the 
leading-edge technology from both companies. The name Taligent comes from 
the combination of the two words "talent" and "intelligent." Taligent's object
oriented software environment is a result of a radical paradigm shift from 
structured procedural programming to object-oriented programming that in
herently supports networked environments distributed across heterogeneous 
platforms. 

Taligent provides a complete and integrated object-oriented environment. 
The operating system is built around the core elements of the object-oriented 
programming paradigm, and includes the following: 

• Objects 

• Classes 

•Messages 

• Inheritance 

• Polymorphism 
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Objects provide an abstraction of state and behavior, in which a state is rep
resented by an aggregated set of data elements and a behavior is depicted by 
functions-a set of rules that can alter the state. The object's methods provide 
the interface, and the programs that use this interface are referred to as its 
clients. The strength of the object paradigm is that new items can be added to 
the state without changing the interface. 

Class is an abstraction of objects. Since reusing object definitions for every 
program can be tedious, a higher-level abstraction is made available, thereby 
allowing the class paradigm to be used as a template for the object. It is essen
tial to note that a class is not an entity on its own; it exists only to make object 
definitions possible. 

Communication between clients and objects takes place in the form of a 
series of messages, in which a message can be thought of as an instruction to 
the object to execute one of its methods. 

Inheritance refers to the genealogical relationship that exists between newly 
created classes and old ones. It is an abstraction of the relationship between 
objects. 

Polymorphism (the occurrence of different forms or stages) is a technique for 
allowing the specialized behavior of new classes to be used in existing proce
dures, even if they were written without knowledge of the new subclass. This 
attribute provides a framework for basic activities that can later be extended 
in ways not considered by the original designers. 

Together, these five attributes reflect the architectural framework of Tali
gent. It does not use screen icons masquerading as objects, or monolithic pro
cedural codes encapsulated with object code. Its entire infrastructure is 
object-based. From the bottom layer to the top layer, the design of Taligent 
emphasizes extendibility, portability, adaptability, and scalability as its key 
attributes. 

Taligent's native implementation is based on the Mach kernel. The Mach 
kernel has been slimmed down and turned into a true microkernel implemen
tation. It makes use of the standard protocols and supports OSF's DCE, Sun's 
RPC and NFS, AppleShare, Apple Events, and the Object Management 
Group's Common Object Request Broker Architecture mechanism for dis
tributed computing. 

6.3.1 Microkernel paradigm 

The term microkernel implies a highly modular and extensible architecture as 
compared to the traditional operating system kernel. Extensibility allows 
many of the traditional kernel-based operating services to reside outside the 
kernel at the user process level. In traditional operating systems like AIX or 
UNIX, standard services-such as process management, virtual memory man
agement, and file and device management-are all built into the kernel. 

The microkernel operates on system resource objects, such as virtual memory 
space, files, and processors. User-level tasks access these objects by sending 
messages over communication channels, called ports. Even the device drivers 
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are implemented at the user process level, thereby greatly increasing the ease 
of portability across heterogeneous hardware platforms. 

6.3.2 Operating environment 

As an object-oriented operating system, Taligent's microkernel architecture is 
portable and scalable. The Taligent kernel-as opposed to layered products
acts as the hardware-specific interface in place of current operating systems. 
Application interfaces such as the Apple Macintosh user interface and workplace 
shell are modules that run on top of these kernels. The kernel retains as little 
code as possible. The kernel code is used for execution management, memory 
management, and communication services with all other system services. They 
execute as threads, eliminating the distinction between user and system code. 

The operating environment has two distinct layers designed to enhance the 
portability of application software and the operating environment itself. The 
software layer that directly supports the processor hardware on which the sys
tem runs is the kernel, called the operating environment system (OES). The 
systems programming interface (SPI) functions as the interface from the OES 
to the second layer of the operating environment, the application environment 
system (AES), which can run on multiple kernel layers. See Fig. 6.9 for an illus
tration of the Taligent OES. 

The Taligent OES provides programmers with object frameworks, which are 
a set of classes that are designed to execute some particular activity. Program
mers then provide objects to accomplish specific tasks not completely provided 
by the object frameworks. During program execution, object frameworks call 
the code necessary to complete a task. Rather than the code containing the 
entire programming function, programmers add code wherever it is needed to 
change or extend the framework's behavior to suit a particular program. 

The Taligent run-time environment provides programming language sup
port, including the object programming model of C++, storage allocation and 
memory management, a system of shared libraries, semaphores for synchro
nization of share memory, support for debuggers, and support for handling of 
software exceptions and hardware (processor) faults. The run-time environ-

Application environment system :. : :::. --w:_-~ = = 
SPI SPI 

.....--~~~~ ~~~~---. 

~---- -----
Operating environment system 

Hardware layer 

Figure 6.9 Positioning of the Taligent operating environment layers. 
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ment includes the standard C, C++, and SANE (Standard Apple Numerics 
Environment) function libraries. 

6.3.3 End-user environment 

Users organize their data in documents on the Taligent workspace. The 
workspace is defined by classes whose actions are determined by predefined 
protocols. The workspace provides services such as access to documentation, 
communication between documents, tool organization, and hardware configu
ration. 

Taligent's workspace user interface is based on the concept of users (the pri
mary user of the computer and other users with whom the primary user collab
orates or who simply share the environment), places (desktop environments), 
and things (workspace tools, icons, applications). This environment enables a 
user to have a multiple-desktop environment with the workspace people, 
places, and things providing the ability to create, manage, and navigate among 
documents. 

The document is the fundamental user-level program entity of the Taligent 
Operating Environment. Users see documents as data holders. A user wanting 
to deal with some data looks on the desktop to find the appropriate document. 
When the document is opened, the code and tools associated with the document 
start and are displayed to the user. The code and tools associated with the doc
ument have been integrated into the "document as object" framework which is 
organized into models, presentations, selections, and commands. Simply put, 
programmers encapsulate the information needed to manipulate data in a doc
ument object, giving documents a particular behavioral procedure. 

Taligent's use of a document approach for the end-user environment deem
phasizes the role of the application and reemphasizes the role of information. 
Users deal directly with information-the data in which they are interested
and the information is contained in documents. The executable routines that 
operate on the data reside in individual shared libraries. The system automat
ically starts and stops these programs to respond to user actions and other 
events. 

Note that actual data exchange is accomplished using the class of TModel as 
the data type. (TModel is an abstract base class from which programmers derive 
their own classes.) This protocol supports the standard editing commands: cut, 
copy, past, clear, push data, and pull data, alleviating the need to reimple
ment these commands for each new data type. 

6.4 SOLARIS 

SunSoft introduced the Solaris 1.0 operating environment in 1991 and 
announced delivery of Solaris 2.3 in the fall of 1993. Based on SunOS 5.1, a 
derivative of System V Release 4 (SVR4), Solaris 2.3 offers symmetric multipro
cessing, multithreading, built-in networking, a suite of software development 
tools, ToolTalk interapplication software, and LIVE! multimedia. Additional fea-
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Figure 6.10 Solaris platform. 

tures of Solaris 2.3 include Adobe Display PostScript, security, networking, sys
tem administration, and multimedia capabilities. 

6.4.1 Operating environment 

The SunSoft Solaris platform is a distributed computing environment featur
ing the SunOS; ONC (open network computing), a suite of networking prod
ucts and services which includes NFS (network file system); the Open Windows 
windowing environment; and the DeskSet desktop productivity applications. 
The SunOS adheres to the SVR4 standard, enabling the SunOS code to run on 
any platforms having the same CPU architecture. The Solaris platform is illus
trated in Fig. 6.10. 

The SunOS kernel handles system operation support including the file sys
tem, interprocess communications, devices, processes and protection, and 
memory management. The ONC networking services include NFS and remote 
execution service (REX). The ONC networking services provide access to dis
tributed data and computer resources, as well as RPC (remote procedure call) 
technology. 

RPC is a library of procedures from which one process (the caller process) 
can have another process (the server process) execute a procedure call, as ifthe 
caller process had executed the procedure call in its own address space. Two 
forms of RPC are available: secure RPC and transport-independent RPC. 
Secure RPC implements user ids and passwords in a distributed environment; 
transport-independent RPC provides a single programming interface to multi
ple network protocols with distributed applications, determining the appropri
ate network transport protocol at run-time using system software. 

NFS is a network protocol that allows a user at one machine to work with 
files on other machines connected to the network. NFS's biggest asset is that it 
is independent of hardware, operating systems, and network architectures. 
This independence was achieved through the use of two lower-level protocols: 
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remote procedure call (RPC) protocol, and data standardizing external data 
representation (XDR) protocol. 

6.4.2 End-user environment 

OpenWindows Version 3.0 includes the merged Xll/NeWS window system, 
which combines the X Window System Version 11 with the PostScript version 
of NeWS. It also includes the OPEN LOOK GUI, similar to the system appli
cation architecture (SAA) common user access (CUA) model. Based on OPEN 
LOOK, Open Windows places a simple, object-oriented shell on top of a complex 
operating system. Open Windows is a network-based, distributed window sys
tem providing a complete interactive environment-Open Windows enables 
software applications to run on a machine other than the one on which the user 
interface is displayed. 

Based on the client-server model, Open Windows client applications commu
nicate with the display server through a connection transporting X messages. 
Communications to the client applications are managed by two adjacent inter
preters, which share a common underlying graphics library. The software 
application is stored centrally on a server with the user's individual desktop 
workstation functioning as the server's client. 

Open Windows includes an extensive set of desktop utilities, including a text 
editor and calendar program. The Open Windows file manager resembles the 
Windows file manager; it allows users to navigate the UNIX file system graph
ically, supports drag-and-drop, and enables configuration of object properties 
using object menus. 

The standard window manager provided for OpenWindows is the OPEN 
LOOK window manager (OLWM). The OPEN LOOK standard exists indepen
dently of any software with the OPEN LOOK GUI defining what the various 
controls and buttons of the user's interface should look like and how they 
should behave. Note that the OPEN LOOK GUI is not architecture-dependent 
or vendor-dependent. The Open Windows Developer's Guide user interface 
design editor enables programmers to build and test interfaces using icons 
rather than writing code. 

Open Windows offers a single window server to create and manage windows: 
Xll/NeWS. Xll/NeWS provides both Xlib and PostScript graphics in a single 
window server by combining the Xll Window System with NeWS. The Open
Windows architecture includes the DeskSet environment, which enables devel
opers to create applications, built on top of the user interface toolkits. Toolkits 
provided for building user interfaces include XView, the NeWS Toolkit (TNT), 
and the OPEN LOOK Intrinsics Toolkit (OLIT). OpenWindows offers two 
imaging models, Xlib and PostScript, that you can use to create graphic images 
and text. Scalable fonts can be rendered using the OpenFonts package. See 
Figure 6.11 for an illustration of the Open Windows Architecture. 

ToolTalk, the interapplication messaging service, is a key feature of Open
Windows. ToolTalk allows applications to exchange information and automati
cally update one another using procedural multicast or object-based messaging 
technology. 
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Applications that use the ToolTalk service cooperate by sending and receiv
ing messages; they do not share stored data. As long as message protocols are 
observed, cooperating applications can be modified without affecting one 
another. Applications can use ToolTalk directly, calling functions from the 
ToolTalk API library to create, send, and receive messages. Applications can 
also use a service built on top of the ToolTalk service. These application ser
vices use the ToolTalk service as a communication backbone and object man
ager. These types of services can provide linking, drag, and drop. 

The ToolTalk service is built on top of SunSoft's ONC remote procedure call 
product. While both provide communication capabilities, the ToolTalk service 
has a higher-level interface for application developers. ToolTalk allows appli
cation developers multicast messaging for developers of procedure-based, self
contained applications and object-oriented messaging for developers of 
applications based on a distributed object paradigm. 

6.5 WINDOWS NT 

Microsoft Windows NT is a 32-bit, preemptive, multitasking operating system 
with an architecture based on modular design principles. It is extensible and 
provides compatibility with several other operating systems, file systems, and 
networks. Windows NT also includes security and networking, peer-to-peer 
services as fundamental components of the base operating system. 

Additionally, Windows NT is portable across heterogeneous processor archi
tectures and runs on both CISC and RISC computers. Windows NT also sup
ports high-performance computing by providing kernel support for computers 
that have symmetric multiprocessor configurations. 

Although the Windows NT user interface is similar to the standard Windows 
user interface and can support 16-bit DOS and Windows applications, Win
dows NT does not require DOS or any other operating system or network soft
ware in order to interface on a LAN. In addition, Windows NT is capable of 
supporting OS/2 and POSIX applications. 
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Windows NT is delivered in two configurations: 

• Windows NT Workstation 

• Windows NT Advanced Server 

The Windows NT Workstation configuration is a single-user system which 
operates either stand-alone or as a client in a network. Utilities are included, 
such as performance/event monitoring, backup, remote access, network client 
support, disk maintenance, and user configuration/account profile utility. In 
addition, the product includes electronic mail and personal/workgroup 
scheduling applications. The Workstation is capable of supporting one or two 
microprocessors in the SMP (symmetric multiprocessing) mode of operation. 

The Windows NT Advanced Server configuration is intended to act in a net
work as a multiuser applications and resource server. This version is a super
set of the Workstation version, adding additional fault tolerance (disk 
mirroring/striping), enhanced user and server maintenance and account con
trol utilities, and multiple-user RAS (remote access services). This version also 
includes the capability to interact with other servers in a group of servers and 
clients known as a domain, allowing a user to use a single network login to 
access all network resources. The Server is capable of supporting up to four 
microprocessors in the SMP mode. 

6.5.1 End-user environment 

Windows NT uses the Windows 3.1 GUI and can simultaneously run DOS, 
Windows 3.1, and native Windows NT applications using the Intel x86 CPU 
and Virtual 8086 environments. For DOS applications, Windows NT creates 
virtual DOS machines (VDMs) and provides each with a set of DOS resources, 
including the DOS API interfaces and functions. 

Users familiar with the Windows user interface will recognize Windows NT's 
similar features, including the mouse and keyboard techniques for working 
with windows, menus, icons, and desktop tools. 

Windows NT features advanced built-in network support, including security 
features. It has administrative tools group applications that enable users to 
manage user accounts, control network services, audit system events, and 
manage and back up files. It also includes the Windows NT file system (NTFS) 
that provides error-correction capabilities and security. Windows NT supports 
three types of file systems: 

• File allocation table (FAT) 

• High-performance file system (HPFS) 

•Windows NT file system (NTFS) 

FAT is the basic file system used in DOS and OS/2. HPFS is the augmented 
file system offered by OS/2. NTFS is Windows NT's native file system that is 
capable ofC2 level security certification. It provides support for Unicode, recov
erability, long file names, and POSIX file naming support. 
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A TrueType font containing Unicode extensions and providing internal sup
port for Unicode is included with Windows NT. Windows NT has two points of 
entry for every function that requires a character string parameter. Header 
files perform program conversion functions so users do not have to convert 
their programs to one name or the other. To facilitate localization, the Win32 
subsystem provides a national language support (NLS) API that gives applica
tions access to culturally correct string comparisons; collation tables for sort
ing the characters of different languages; date, time, and currency formatting 
routines; and routines for determining the locale that is in effect and the other 
locales present on the system. 

A unified command prompt is provided from which programs and batch files 
can be started and from which all Windows NT commands and most MS-DOS, 
OS/2, and POSIX commands can be issued. 

6.5.2 Operating environment 

Advanced operating system capabilities are available to applications by 
enabling multithreaded processed and enhanced synchronization, security, 
1/0, and object management. Windows NT is interoperable with other Micro
soft systems, with the Apple Macintosh, and with UNIX-based operating sys
tems on a Microsoft LAN manager or other network. When configured as a 
server, Windows NT can work as a multiuser operating system, enabling each 
workstation to support one interactive user and multiple remote users. Note 
that each user (or application) is required to log on before accessing the system. 

Additional features include high-performance disk and network subsystems 
that can invoke sophisticated recovery mechanisms, such as a transaction log, 
and implement device drivers that directly manipulate disk hardware, result
ing in better performance and more consistent throughput than what has been 
available on traditional PC-like operating systems. Windows NT's use of a flat 
memory model gives each application its own set of logical memory addresses, 
with up to 2 GB available for code and data. 

Multitasking with Windows NT implies that an application thinks it's the 
only program running, so it's unaware of (and not likely to interfere with) other 
applications. Multitasking discourages applications attempting to write to a 
memory location holding another application's code or data. This dismissal of 
the cooperative system model for the preemptive system model means that 
NT's CPU retains control, determining how its time is allocated. 

Windows NT's highly modular operating system implements operating sys
tem functions as a subsystem. Subsystems, in turn, are self-contained and eas
ily updated, thus enabling portability, extensibility, compatibility, and 
reliability to the operating environment. See Fig. 6.12 for an illustration of the 
modular layout of Windows NT. 

The infrastructure of Windows NT can be divided into two parts: the user
mode portion of the system (the Windows NT protected subsystems) and the 
kernel-mode portion (the Windows NT executive). Windows NT servers are 
called protected subsystems because each one resides in a separate process 
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whose memory is protected from other processes by the Windows NT execu
tive's virtual memory system. Because the subsystems do not automatically 
share memory, they communicate by passing messages. All messages pass 
through the Windows NT executive. 

The user-mode domain of Windows NT supports the following subsystems, 
as depicted in Fig. 6.12: 

OS I 2 subsystem: This subsystem is automatically loaded at login time and 
always remains active. But like the POSIX subsystem, the OS/2 subsystem 
will get paged out of real memory if not accessed in a short while. 

DOS subsystem: All MS-DOS applications run within the context of a pro
cess called virtual DOS machine (VDM). VDM is actually a Win32 applica
tion that emulates a virtual 80x86 computer running MS-DOS. Note that 
there is no limit on the number of VDMs that can be run. In the PowerPC 
environment, Windows NT emulates selected x86 instructions since real 
hardware support is not available. A hardware visualization is provided 
with the aid of a set of virtual device drivers (VDDs). 

POSIX subsystem: POSIX.l, which is a standard that describes an operat
ing system interface for C language programs written to be ported across 
diverse systems, is supported by the Windows NT subsystem in conjunction 
with the NTFS file system. This subsystem is loaded at login time (as in the 
case of the OS/2 subsystem). 

Win32 subsystem: The Win32 subsystem is responsible for running the 32-
bit applications, as well as managing the keyboard and mouse input and 
screen output (for all the subsystems). It collects all inputs and delivers 
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them to the appropriate applications. The input model takes advantage of 
the preemptive multitasking capabilities that are available under Windows 
NT. A desynchronized input model is used to handle the 1/0 for 32-bit appli
cations, as compared to a synchronized model for the 16-bit applications. 
This enables the Win32 subsystem to transfer a message to the input queue 
thread on the first available instant. By contrast, the input messages for 16-
bit applications sit in a common queue, until the input queue is blocked. 

Win16 subsystem: The Win16 subsystem is emulated using the MS-DOS
based VDM support. All Win16 applications run in one VDM. Note that only 
the Win16-on-Win32 subsystem (WOW) VDM is preemptively multitasked 
with respect to other processes running on the system. Each Win16 applica
tion is nonpreemptively multitasked with respect to another. In other words, 
only one application runs while the others are blocked, and if the WOW VDM 
is preempted when the system returns, it always unblocks the Win16 appli
cation that was running before the WOW VDM got preempted. The thunking 
process (i.e., translation to and from 16-bit) for application code and libraries 
is achieved with the use of WOW VDM stubs and APis. 

When an API call is made, the appropriate stub initiates the thunking pro
cess: parameters are pushed onto the stack and the call is converted into the 
equivalent 32-bit call and subsequently issued to the Win32 subsystem. 
Returned parameters are similarly converted back into 16 bits, thereafter 
being passed back to the original application. 

The kernel mode includes the Windows NT Executive, the kernel, and the 
hardware abstraction layer, which resides on the PowerPC hardware. The 
Windows NT Executive includes: 

I I 0 manager: The 1/0 manager is the part of the Windows NT Executive 
that manages all input and output for the operating system. A large part of the 
1/0 manager's role is to manage communications between drivers-the 1/0 
manager supports all file system drivers, hardware device drivers, and net
work device drivers and provides a heterogeneous environment for them while 
also providing a formal interface that all drivers can call. This uniform inter
face allows the 1/0 manager to communicate with all drivers in the same way, 
without any knowledge of how the devices they control actually work. The 1/0 
manager also includes device driver help routines specifically designed for file 
system drivers, for hardware device drivers, and for network device drivers. 

The Windows NT 1/0 model utilizes a layered architecture that allows sep
arate drivers to implement each logically distinct layer ofl/O processing. For 
example, drivers in the lowest layer manipulate the computer's physical 
devices (these are called device drivers). Other drivers are then layered on 
top of the device drivers. These higher-level drivers do not know any details 
about the physical devices. With the help of the 1/0 manager, they simply 
pass logical 1/0 requests down to the device drivers, which access the physi
cal devices on their behalf. Installable file systems in Windows NT and net
work redirectors are examples of high-level drivers that work in this way. 
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Object manager: The Windows NT Executive object manager provides uni
form rules for object retention, naming, and security. If a process wishes to 
manipulate a Windows NT object, it must first acquire a handle to the object. 
As far as the Executive is concerned, there is no difference between a file 
handle and a process handle, and thus the same routines that are used to 
create a file handle can be used to create a process handle. All object handle 
creation originates from the object manager; the object manager is thus able 
to satisfy some important Windows NT design requirements, including: 

• A uniform, global name space for all objects. The object manager can track 
creation and the use of objects by any process. 

•Uniform rules and mechanisms for protecting objects from unauthorized 
access. 

• A uniform model for the safe sharing of objects. 

Like other Windows NT components, object manager is extensible, so that 
new object types can be defined as technology grows and changes. The object 
manager manages the global name space for Windows NT. This name space 
is used to access all named objects that are contained in the local machine. 
Some of the objects that can have names include the following: 

Directory objects 

Symbolic link objects 

Object type objects 

Semaphore and event objects 

Process and thread objects Section and segment objects 

Port objects Device objects 

File system objects File objects 

The object name space is modeled after a hierarchical file system, where 
directory names in a path are separated by a backslash(\). 

Process manager: The process manager manages the creation and deletion 
of processes. The process manager does not provide any hierarchical process 
structure or grouping or enforce any parent/child relationships. The Windows 
NT process structure includes only two types of objects: process objects and 
thread objects. A process object represents an address space, a set of objects 
(resources) visible to the process, and a set of threads that runs in the context 
of the process. A thread object represents the basic schedulable entity in the 
system. It contains its own set of machine registers, its own kernel stack, a 
thread environment block, and a user stack in the address space of its pro
cess. The Windows NT process structure works in conjunction with the secu
rity architecture and the virtual memory manager to provide i:q.terprocess 
protection. Each process is assigned a security-access token, called the pri
mary token of the process. The token is used by the access-validation routines 
of Windows NT when threads in the process reference protected objects. 

Virtual memory manager: The memory architecture of Windows NT is a 
demand-paged, virtual memory system based on a flat, linear address space 
accessed via 32-bit addresses. A process's virtual address space is a set of 
addresses available for the process's threads to use. Every process has a 



Operating Systems 159 

unique virtual address space that appears to be 4 GB in size, with 2 GB 
reserved for program storage and 2 GB reserved for system storage. 

The virtual memory manager maps virtual addresses in the process's 
address space to physical pages in the computer's memory. In doing so, it 
hides the physical organization of memory from the process's threads. This 
ensures that the threads can access its process's memory as needed, but not 
the memory of other processes. 

Procedure call manager: The procedure call manager provides the commu
nication mechanism between client and server processes. Note that the 
client-server relationship exists between applications and environment sub
systems. The Executive implements a message-passing facility called a local 
procedure call (LPC). The LPC facility works like an RPC but is optimized 
for two processes running on the same computer. 

When an application makes an API call to the server, it is intercepted by a 
stub in the client process that packages up the parameters to the call and 
sends them to a server process that actually implements the APL 

The Windows NT kernel layer resides below the Executive and is responsible 
for thread dispatching, multiprocessor synchronization, hardware exception 
handling, and the implementation oflow-level machine-dependent functions. It 
is used by the executive layer of the system to synchronize its activities and to 
implement the higher levels of abstraction that are exported in user-level APis. 
Generally speaking, the kernel does not implement any policy, since this is the 
province of the executive. However, policy decisions made by the kernel include 
the way in which thread priority is manipulated to maximize responsiveness to 
dispatching events (for example, the input of a character from the keyboard). 

The hardware abstraction layer resides beneath the kernel and above the 
Power PC hardware. The hardware abstraction layer is a layer of software pro
vided by the hardware manufacturer that hides, or abstracts, hardware dif
ferences from higher layers of the operating system. Thus, through the filter 
provided by the hardware abstraction layer, different types of hardware look 
alike to the operating system, removing the need to specifically tailor the oper
ating system to the hardware it communicates with. The goal of the hardware 
abstraction layer is to provide routines that allow a single device driver to sup
port the same device on all platforms. The hardware abstraction layer allows 
a large number of variations in hardware platforms for a single-processor 
architecture without requiring a separate version of the operating system for 
each one. 

The hardware abstraction layer routines are called from both the base oper
ating system and from device drivers. For drivers, the hardware abstraction 
layer provides the ability to support a wide variety ofl/O architectures, instead 
of being restricted to a single hardware model or performing extensive adapta
tion, as in the current PC industry. The hardware abstraction layer is also 
responsible for hiding the details of symmetric multiprocessing hardware from 
the rest of the system. For more information about the hardware abstraction 
layer, see Chap. 3. 
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6.6 WORKPLACE OS 

Workplace OS is a general-user operating system which consists of the IBM 
Microkernel, Personality Neutral Services, and multiple Personalities. Per
sonalities currently available on Workplace OS include OS/2 and MVM (DOS). 
Workplace OS with an OS/2 interface runs recompiled OS/2 applications 
natively. 

Based on a core layer of services developed by IBM and Taligent, Workplace 
OS incorporates Taligent frameworks on top of the Carnegie Mellon University 
Mach microkernel (as depicted in Fig. 6.13). Workplace OS is portable across 
hardware architectures, including Intel, POWER, and PowerPC. 

Workplace OS consists of a single scalable configuration which may be used 
as a client or developer workstation. It can also be used as a server through the 
addition of products such as the IBM LAN Server for Workplace OS. A Work
place OS client workstation requires at least 8 MB of main memory (note that 
16 MB is recommended). A developer workstation requires 16 MB of main 
memory. The video system must be capable of showing 640x480x8. For better 
performance when emulating DOS applications which require planar graphics, 
all configurations should have a VGA-compatible video system. All Workplace 
OS configurations require a keyboard and a pointing device; a business audio 
device is recommended. Workplace OS supports one or more PCI buses; multi
ple SCSI interfaces; PCMCIA, including socket services; and IDE access to 
disks. Inclusion of an ISA bus is optional. 

6.6.1 Operating environment 

Due to the use of a microkernel as the foundation of the operating system, 
Workplace OS is portable to multiple hardware platforms. This microkernel
based architecture implements object orientation, portability, and support for 
multiple CPUs. OS offers memory protection, multitasking, and multithread-
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ing. OS also enables users to run other operating systems as personalities on 
top of the base system software layers, enabling PowerPC users to run Macin
tosh software without learning UNIX or figuring out Taligent. 

The underlying hardware is managed by the microkernel. Device drivers, 
the file system, and the OS/2 personality are user-level processes, and applica
tions are written to the interfaces exported by the OS/2 personality. 

The term microkernel implies a highly modular and extensible architecture 
as compared to the traditional operating system kernel. Extensibility allows 
many of the traditional kernel-based operating services to reside outside the 
kernel at the user process level. In traditional operating systems like AIX or 
UNIX, standard services-such as process management, virtual memory man
agement, and file and device management-are all built into the kernel. 

6.6.2 End-user environment 

The microkernel operates on system resource objects, such as virtual memory 
space, files, and processors. User-level tasks access these objects by sending 
messages over communication channels, called ports. Even the device drivers 
are implemented at the user process level, greatly increasing the ease of porta
bility across heterogeneous hardware platforms. 

6.7 SUMMARY 

A variety of operating systems have been ported to the PowerPC-the Power
PC's ability to run a variety of operating systems is one of its greatest assets. 
The Power PC's support of Taligent, Solaris, Windows NT, and Workplace OS 
gives users the ability to cut and paste between applications across operating 
systems. This chapter introduced the supported operating systems, emphasiz
ing the importance of the PowerPC to users looking for a single integrated 
platform. 

Early UNIX systems, such as UNIX Version 6, were much simpler than 
today's flavors of UNIX, requiring less configuring of devices and simpler exe
cution environments for program execution. However, as the UNIX operating 
system evolved, its architectural layout increased in complexity. AIX is a fully 
PowerOpen compliant operating system based on the Common Open Software 
Environment's (COSE) version of UNIX. Based on System V Release 3, the AIX 
customization facility is tied in with the X11R5 implementation. From the X 
Windows desktop, it is possible to customize features of X Windows applica
tions through a graphical interface. AIX also includes the AIX system man
agement tool (smit), which consists of a series of menus linked to an object 
database that builds UNIX commands in an interactive way. 

Taligent has applied the object-oriented paradigm and technology directly to 
the system architecture, creating a software platform designed for extension 
and innovation on three well-defined levels: applications, system software, and 
hardware. Code can be reused, industry extensions can be integrated without 
compromising either function or compatibility, and the encapsulated modular 
objects can be maintained in a structured and easy manner. 
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The ability to run Solaris on the PowerPC platform paves a path for the wide 
base of the existing Sun OS user community to harness the power of the Power
PC processor. Its networking services and integration of a familiar GUI enable 
programmers to develop applications that can be distributed across multiple 
platforms while adhering to industry standards and complying with vendor 
demands for multiple-platform compatibility. 

Windows NT supports high-performance disk and network subsystems while 
enabling users to continue to use DOS and/or Windows applications. NT's 32-bit 
environment lets applications address up to 4 GB of storage, making it a good 
choice for high-end applications. NT has removed the constraints of segmented 
memory management by implementing a flat memory model and giving each 
application its own set oflogical memory addresses. NT is the operating system 
of choice for users wanting superior multiprocessor and security features at the 
cost of significant memory and disk size upgrades from existing PCs. 

Workplace OS is a general-user operating system which consists of the IBM 
Microkernel, Personality Neutral Services, and multiple Personalities. Per
sonalities currently available on Workplace OS include OS/2 and MVM (DOS). 
Workplace OS with an OS/2 interface runs recompiled OS/2 applications 
natively. Based on a core layer of services developed by IBM and Taligent, 
Workplace OS incorporates Taligent frameworks on top of the Carnegie Mellon 
University Mach microkernel. Workplace OS is portable across hardware 
architectures, including Intel, POWER, and PowerPC. 



Chapter 

7 

Development Tools 

This chapter provides a brief overview of the most popular and standard devel
opment tools available for UNIX operating systems, specifically AIX. The 
advantages of using the XL C optimizing compiler (to exploit the fast Power PC 
hardware) are discussed, followed by a brief discussion of the other compilers 
in the XL family. A look at how Assembler translates machine language into 
machine object code is also discussed. The review of debugging tools and facil
ities and the uses of source code debugging tools will foster an understanding 
of what troubleshooting options are available with AIX. We discuss yacc, lex, 
make, imake, grep, sed, and awk, highlighting the best uses of each. Finally, 
a quick overview of UNIX/ AIX tuning theory and practices is provided. 

7.1 COMPILERS 

7.1.1 XL C compiler 

The XL C, or C compiler, is an optimizing compiler. In addition to source code 
optimization, the compiler also performs certain preprocessor and common 
back-end optimization tasks. The architecture of the Power PC demands that an 
optimizing compiler be used to make intelligent use of its underlying capabili
ties. Together, the POWER-based architecture and the XL optimizing compiler 
make possible an efficient computing environment, as depicted in Fig. 7.1. 

The need for an optimizing compiler depends on the applications. For many 
general purpose applications, inherent efficiencies will provide a level of per
formance. However, for engineering and scientific applications that process 
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vast amounts of data and tend to perform repeated operations on each data ele
ment, a structured and methodical approach to compile-time optimization is 
required. 

From a programmer's perspective, a program may be executing optimally. 
But, if tuned properly, even to a minuscule extent, its performance can be dou
bled or tripled. This is especially true of the Power PC hardware performance 
due to the pipelined execution units in the central electronic complex of the 
PowerPC, and the central electronic complex dependency on the sequence of 
instructions. An instruction dependency between the currently executing 
instruction and its predecessor can cost precious cycles owing to data unavail
ability. A tight piece of code fragment spilling outside of the cache boundary 
can waste several cycles. The former can be controlled (to a certain extent) by 
implementing an optimized instruction-scheduling algorithm that resequences 
selected assembly language instructions to minimize idle machine cycles. The 
latter, however, is likely to require hand-optimization. The optimizing compiler 
on the PowerPC needs a great deal of built-in intelligence to identify potential 
hot spots during compile time and perform necessary tuning actions. 
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The instruction scheduling algorithm in the XL C compiler is its most signif
icant component. The XL C compiler processes the output of the optimizer, con
structing a dependency graph for each basic block of the code and finally 
arranges the instructions in the order in which they would execute the fastest. 
The algorithm used in the XL family of compilers is essentially the same. 

The XL C compiler uses the cc, xlc, and c89 commands to compile C source 
files. These commands are essentially the same except for the default language 
level. For cc, the default language level is extended; for xlc and c89, the 
default language level is ansi. These commands can also process assembler 
source files and object files. Unless the -c option is specified, these commands 
call the linkage editor to produce a single object file. The input file(s) can be a 
C language source file (file name with . c suffix), preprocessed C source (. i suf
fix), object file (. o suffix), or assembler source file (. s suffix). 

7.1.2 C Set++ compiler 

The C Set++ compiler is a native, optimizing compiler based on the common C 
and C++ front-end and the latest optimizing back-end technology. The C++ 
compiler, consisting of a browser, a Help View debugger, a test coverage ana
lyzer, and a set of class libraries, provides improved compilation speed, opti
mization, and debugging. 

The C++ browser is a postcompilation static analysis tool which allows users 
to examine their programs by formulating queries of the program database. 
Using a menu-driven interface, the browser can be used to view and edit pro
gram source text, view lists of program elements, and display graphical rela
tionships among program elements. The Help View debugger enables users to 
debug difficult memory allocation errors and identify memory allocation prob
lem areas. The dbx symbolic debugger is also supported. The test coverage tool 
provides information about how often different statements in the code are used 
when the program is executing. 

The C Set++ includes the USL C++ Language System Release 3.0 Class 
Libraries and sample libraries including the NIH Library and the lnterViews 
Library. National Language Support is also provided. 

7.1.3 AIX XL FORTRAN and Pascal compilers 

The XL family of compilers is designed to provide consistency and high perfor
mance across multiple programming languages by sharing the same code opti
mization technology. 

The XL FORTRAN compiler conforms to the FORTRAN 90 standard, provid
ing functionality such as array language, derived data types, pointed, modules, 
NAMELIST statement, defined operators, and dynamic storage allocation. 
Language extensions include facilities for interlanguage calls, extended preci
sion floating point, optional checking of array bounds, typeless constants, and 
INTEGER*S and LOGICAL*S. The XL FORTRAN three-pass compilation tech
nology includes a front end which translates source into intermediate text (IL), 
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optimizations applied to IL, allocation of hardware registers, and generation of 
an object file from the final form of IL. 

The XL Pascal compiler is an enhanced version of the existing AIX XL Pas
cal compiler. The XL Pascal compiler provides 4-byte pointer support and 
National Language Support for single- and double-byte character sets. 

7.2 ASSEMBLER 

The assembler takes machine language instructions and translates them into 
machine object code. The assembler used on the PowerPC is a two-pass assem
bler, which refers to the fact that the assembler makes two passes over a source 
program. An assembler listing is produced in the first and second passes of the 
assembler. 

On the first pass, the assembler (1) checks to see ifthe instructions are legal 
in the current assembly mode, (2) allocates space for instructions and storage 
area, (3) assigns the values of constants wherever appropriate, and (4) con
structs a symbol table where an entry is made for symbols encountered in the 
label of statements. The source file is read a line at a time. For every new sym
bol encountered, an entry is added to the symbol table while assigning the 
value of the current location counter to the symbol. 

Note: The only PowerPC instructions recognized by the assembler are those 
in the 32-bit subset PowerPC architecture. 

Next, the assembler examines the instruction's mnemonic. If the mnemonic is 
for a machine instruction that is legal for the current assembly mode, the assem
bler determines the format of the instruction. The assembler then allocates the 
number of bytes necessary to hold the machine code for the instruction. The con
tents of the location counter are incremented by this number of bytes. 

On the second pass, the assembler (1) examines the operands for symbolic 
references to storage locations and resolves these symbolic references using 
information in the symbol table, (2) ensures that no instructions contain an 
invalid instruction form, (3) translates source statements into machine code 
and constants, thus filling the allocated space with object code, and (4) pro
duces a file containing error messages, if any have occurred. 

Assembly language source code is assembled using the as command. The file 
that as reads and assembles ends with a . s suffix (by convention). Also, the file 
that as builds as its output is called a. out. If no source file is specified, as 
attempts to read and assemble standard input. A symbol cross-reference is also 
available. If the -x flag is used with the as command, a symbol cross-reference 
file is produced. This file contains information for all symbols defined and refer
enced in an assembler source program. However, if the -x flag is used, the assem
bly process terminates after the first pass and does not generate any object code. 

The assembler command can also be used to produce an assembler listing. as 
gives a default name to the listing file, by replacing the suffix extension of the 
source file name with an . 1 st extension. 
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7.3 DEBUGGERS 

7.3.1 adb 

Debuggers available with AIX include: 

adb 

dbx 

xde 

kernel debugger 

Debugs executable binary files and examines non-ASCII data 
files 

Allows source-level debugging for C, FORTRAN, Pascal, 
COBOL, and assembly language programs 

Provides windows for viewing source, context, and variables for 
application programs 

Determines errors in code running in the kernel 

These debuggers as well as the trace facility, which helps isolate system prob
lems by monitoring selected system events, are discussed as follows. 

adb is a general purpose debugging utility used to examine object files and 
core files, and to provide a controlled environment for running a program. 
Users can debug any executable C or assembly language program file by enter
ing the following command: 

adb FileName 

where Fi 7 eName is the name of the executable program file to be debugged. The 
adb program opens the file and prepares its text (instructions) and data for 
subsequent debugging. 

When processing an executable program file that has been compiled, adb 
requires it to have a symbol table. Without the symbol table, adb will not be 
able to show the value of static, automatic, and external variables of the pro
gram. However, executable programs that have been stripped off the symbol 
table can still be examined for other information. 

When no name is specified for the executable program, adb looks for the 
default file named a. out. If the a. out file does not exist, the adb program starts 
without a file and does not display an error message. adb may also be used 

• to read core file images of programs that caused fatal system errors 

• to examine data files containing non-ASCII data by giving the name of the 
data file in place of the program or core file 

• with the -w flag to modify an executable file or a data file by writing directly 
to memory after running the program 

adb can take input from standard input (keyboard) and write to standard 
output (terminal). One can also enter more than one command by separating 
each command with a semicolon as a delimiter. Use of expressions, operators, 
commands, variables, and addresses is supported. However, to use adb effec
tively and set breakpoints at appropriate places in the executable program, 
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one has to be familiar with the assembly language instructions that the C com
piler generates. One way to do this is to create an assembly language listing of 
a C program using the -S or -qlist flag of the cc command and then consulting 
the complete instruction set for the Power PC described in Chap. 3. 

adb features a set of subcommands for setting breakpoints and examining 
variables, including: 

:r Starts executing the program from the beginning 
:b Sets a breakpoint in a program 

7.3.2 fsdb 

:k Stops the program being debugged 

fsdb is a file system debug utility that can be used to examine and patch a 
damaged file system after a system crash. The fsdb command allows access to 
blocks and inodes and examines various parts of an inode. Components of the 
inode can be referenced symbolically. These features simplify procedures for 
correcting control-block entries and for descending the file system tree. 

The file system to be examined can be specified by a block device name, a 
raw device name, or a mounted file system name. In the last case, the fsdb 
command determines the associated file system name by reading the 
/etc/fi l esystems file. Any numbers entered are considered decimal by 
default, unless it is prefixed with a 0 to indicate octal numbers or Ox to indicate 
hex numbers. 

To examine a file system, specify it by a block device name, a raw device 
name, or a mounted file system name. In the last case, the fsdb command 
determines the associated file system name by reading the /etc/fi l esystems 
file. Mounted file systems cannot be modified. 

The subcommands for fsdb allow you to access, view, or change the informa
tion in a file system. Any number you enter in the subcommand is considered 
decimal by default, unless you prefix it with either 0 to indicate an octal num
ber or Ox to indicate a hexadecimal number. All addresses are printed in hexa
decimal. 

Because the fsdb command reads and writes one block at a time, it works 
with raw as well as with block 1/0. It uses a buffer management routine to 
retain commonly used blocks of data in order to reduce the number of read 
subroutines. All assignment operations write the corresponding block imme
diately. 

System information can be generated by specifying the following flags: 

Disables the error-checking routines used to verify inodes and block addresses. 
The 0 subcommand switches these routines on and off. When these routines 
are running, the fsdb command reads the inode size and file system size 
entries from the superblock of the file system. The obtained information allows 
the fsdb command to access the various file system objects successfully and to 
perform various error checks. 
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The subcommands given to the fsdb command are requests to locate and 
display or modify information in the file system. Use the location subcom
mands to access the information in the file system, the display subcommands 
to view the information, and the modification subcommands to change the 
information. A location subcommand is made up of a number and is optionally 
followed by an address specification. The location subcommands are: 

Number 

inode map-block-number! 

Disk map-block-numberm 

I-Numberi 

Block-addressb 

Accesses data at the absolute disk address specified 
by the Number parameter 

Accesses data at the inode map block # inode-map
block number parameter 

Accesses data at the Disk map block #Disk-map
block number parameter 

Accesses data at the I-Number parameter 

Accesses data at the Block-address parameter 

These location subcommands can be combined with the d address specification 
to form a location subcommand that accesses information by directory entry. 
The form of the d address specification is: 

dDirectory-slot-offset Accesses data at the Directory-slot-offset parameter. 

To request information relative to the address specification, use a display 
subcommand made up of one of the display facilities in conjunction with one of 
the display formats. The display facilities are: 

p 

f 

General facilities 

File facility 

If you enter a number after the p symbol, the fsdb command displays that 
number of entries. A check is made to detect block boundary overflows because 
logically sequential blocks are generally not physically sequential. If you enter 
a count of O or * (asterisk), the fsdb command displays all entries to the end of 
the current block. 

Use the f symbol to display data blocks associated with the current inode. If 
you enter a number after the f symbol, the fsdb command displays that block 
of the file. Block numbering begins at 0. The desired display format follows the 
block number, or the f symbol. 

The fsdb subcommands are requests to locate and display or modify infor
mation in the file system. The main categories of subcommands are: 

Category 

Location 

Display 

Modification 

Function 

Access the information in the file system 

View the information in the file system 

Change the information in the file system 
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7.3.3 dbx and xde 

dbx is a full-featured symbolic debugger that supports debugging of a program 
at both a source level and assembler language level. Its source-level debugging 
features allows debugging of C, Pascal, COBOL, and FORTRAN programs; its 
assembler-language-level debug facility enables debugging of executable pro
grams at the machine level. Standard operations the tool supports include: 

• Examination of object and core files 

• Controlled environment for running a program 

• Setting of breakpoints at selected statements or running of the program one 
line at a time 

• Analysis of symbolic variables 

The dbx program can be started with several flags, including: 

• Running the dbx command on a specified object file 

• Using the -r flag to run the dbx command on a program that ended abnor
mally 

• Using the -a flag to run the dbx command on a process that is already in 
progress 

To use the dbx program, an executable file must be compiled with a debug 
flag to contain the symbol table information, and the symbol references must 
not be stripped from the executable file. dbx can be customized by including a 
set of dbx subcommands in a file named . db xi nit, enabling the included sub
commands to execute automatically upon initiation of a debug session. 

The -c option and . db xi n i t provide mechanisms for executing dbx subcom
mands before reading from standard input. Use the source subcommand to 
read dbx subcommands from a file once the debugging session has begun. 

Use the dbx subcommands for setting breakpoints, tracing program execu
tion, displaying the source file, printing variables and expressions, handling 
signals, calling procedures, displaying and modifying memory addresses, dis
playing assembler instructions, and examining registers during machine-level 
debugging. Some of the commonly used subcommands include: 

run 

step 

stepi 

stop 

clear 

cleari 

cont 

listi 

Begins running of the application program 

Runs one source line 

Runs one source instruction 

Stops execution of the application program 

Removes all stops at a given source line 

Removes all breakpoints at an address 

Continues running of the program from the current breakpoint until 
another breakpoint is encountered or the program completes its execution 

Displays a specified set of instructions from the source file 



next 

nexti 

trace 

where 

help 

quit 
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Runs the application up to the next source line 

Runs the application up to the next source instruction 

Displays tracing information 

Displays all active procedures and functions 

Displays an on-line list of dbx commands 

Quits dbx 

An X Window interface for dbx called xde can also be used to debug appli
cation programs. xde provides an integrated debug environment with the X 
interface that allows viewing of the program's source code, stack traceback, 
and variables (shown in Fig. 7.2, 7.3, and 7.4, respectively). Other windows are 
available that enable users to issue dbx debug programs, view the output of 
these commands, and control the operating of the xde program. 

The same prerequisites for dbx apply to xde (for example, an executable file 
must be compiled with a debug flag to contain the symbol table information, 
and the symbol references must not be stripped from the executable file). The 

window execution line variable address function help 

UneNumber 
Subwlndow 

Source 
SUbwlndow 

Figure 7.2 XDE file window. (Copied with permission from IBM.) 

window execution line variable addrass function help 

Stack Traceback Ust 

function 

Figure 7.3 XDE context window. (Copied with permission from 
IBM.) 
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execution variable help 

Extemal 

Extemal Variable 
UstWindow 

:: I • ~ 
Local 

Variable Expansion Window 

Local Variable 
UstWindow 

::- -~ 

Figure 7.4 XDE variable window. (Copied with permission from 
IBM.) 

xde tool and its X interface may be customized by modifying the . db xi nit 
and/or . Xdefaul ts files, which execute automatically upon initiation of a debug 
session. 

The subcommands available in dbx appear as objects within pull-down menus 
in the xde environment. Thus, navigating within xde windows involves working 
with buttons and scroll bars. 

7.3.4 Kernel debug program 

The kernel debug program is used for debugging device drivers and kernel 
extensions. It provides an efficient mechanism for detecting errors in the code 
running in the kernel. The debug program can run in any configuration that 
includes an asynchronous terminal connected to a serial adapter. The debug 
program does not support any displays connected to any of the graphics 
adapters. 

Note: The kernel debugger disables all external interrupts while it is in oper
ation. The kernel debug program must be loaded by using the bosboot 
command before it can be started. Once loaded, users can start the 
debugger one of two ways. One way to start the debugger is through the 
use of breakpoints. These breakpoints can be set by either embedding 
static debugger program traps (SDTs) in the object code or by use of the 
break command. After the debug program is started, SDTs are treated 
the same as other processor instructions. Use the step command to step 
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over SDTs; use the go or loop commands to resume execution at the instruction 
following the SDT. Using the break command sets a breakpoint from within the 
kernel debug program. If you use the break command, breakpoints will not dis
play in the debug program code. 

To set a breakpoint, do the following: 

1. Locate the assembler instruction corresponding to the C standard. 

2. Get the offset of the assembler instruction from the listing. 

3. Locate the address of where the kernel extension is loaded. 

4. Add the address of the assembler instruction to the kernel extension 
address. 

5. Set the breakpoint with the break command. 

Simultaneously pressing the Control, left Alternate key and the number 
4 numeric pad keys also loads and starts the kernel debug program sending 
a nonmaskable interrupt to the processor. You can now use the kernel debug
ger interactively by entering kernel debugger commands at the system 
prompt. 

Note: The kernel debugger is also executed as a result of a system crash. If a 
system crashes (and the debugger is available), the last line of the dis
played text will normally describe the cause of the event and an 888 
code will flash on the LED display of the operator panel. At that point, 
a dump may be taken if desired (using the quit dump command) and 
the system can subsequently be rebooted. 

A full suite of interactive commands is available for use in kernel debugger. 
These commands can be used to set breakpoints, manipulate memory, and per
form manipulation of variables and registers. An extensive reference of the 
commands may be found in the on-line help facility. Enter ? or Help to display 
the list of valid commands. Some commands are stand-alone, while others 
accept numeric and string arguments. Limited expression processing can also 
be performed using the addition, subtraction, multiplication, division, and ref
erence operators. The program also allows use of variables to represent loca
tions or values that are used repeatedly. Frequently used kernel debug 
commands include: 

origin 

alter 

xlate 

break 

breaks 

user 

proc 

Sets the origin of instruction address register 

Alters memory 

Translates a virtual address to a real address 

Sets a breakpoint 

Lists the currently set breakpoints 

Displays a formatted user area 

Displays the formatted process table 
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stack 

drivers 

tty 

find 

sregs 

vmm 

help 

quit 

7 .3.5 Trace facility 

Displays a formatted kernel stack trace 

Displays the contents of the device driver table 

Displays the tty structure 

Finds a string in memory 

Displays segment registers 

Displays the virtual memory data structure 

Displays the on-line help commands 

Ends the debugging session 

The trace facility helps isolate system problems by monitoring selected sys
tem events. Events that can be monitored include entry and exit to selected 
subroutines, kernel routines, kernel extension routines, and interrupt han
dlers. The trace facility captures a sequential flow of system events, providing 
a fine level of detail on system activity. Events are shown in time sequence 
and in the context of other events. The trace facility is useful in expanding 
the trace event information to understand who, when, how, and even why the 
event happened. 

When the trace facility is active, information about system events is recorded 
in a system trace log file. This facility includes commands for activating and 
controlling traces and for generating trace reports. Applications and kernel 
extensions can use several subroutines to record additional events. 

The data recorded for each traced event consist of a word containing the trace 
hook identifier and the hook type followed by a variable number of words of 
trace data optionally followed by a time stamp. The word containing the trace 
hook identifier and the hook type is called the hook word. The remaining two 
bytes of the hook word are called hook data and are available for recording 
event data. 

The trace facility supports up to eight active trace sessions at a time. Each 
trace session uses a channel of the multiplexed trace special file /dev I syst race. 
Channel 0 is used by the trace facility to record system events. The tracing of 
system events is started and stopped by the trace and trcstop commands. 
Channels 1 through 7 are referred to as generic trace channels and may be used 
by subsystems for other types of tracing such as data link tracing. 

When the trace is configured, the trace facility controls trigger the collection 
of data on or off and stop the trace facility (stop deconfigures the trace com
mand and unpins buffers). 

Frequently used trace commands include: 

trace 

trcdead 

trcrpt 

trcstop 

trcupdate 

Starts the tracing of system events 

Extracts trace information from a system dump 

Formats reports of trace event data contained in the trace log file 

Stops the tracing of system events 

Updates the trace formatting templates stored in the I etc/trcfmt 
file 
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7.4 SOURCE CODE ANALYSIS TOOLS 

7.4.1 lint 

Source code analysis tools available under AIX aid in checking the source code 
for integrity and analyzing the flow of control. These tools are intended for use 
by software engineers and programmers to enhance productivity. 

The lint utility checks C source code for coding integrity. The benefit of using 
lint prior to compilation is significant, as it aids in identifying overlooked and 
trouble-prone code constructs. It also enforces orthodox type-checking rules 
that help in eliminating possible future bugs. 

The lint tool also identifies the following: 

• Source code and library incompatibility 

• Potential problems with variables 

• Potential problems with functions 

• Problems with flow control 

• Legal constructs that may be inefficient 

• Unused variable and function declarations 

• Nonportable code 

To run lint, simply supply the source file as an argument to lint. 

7.4.2 cflow 

The ctlow utility generates a flow graph of external references. It is capable of 
analyzing C assembler as well as object files, and producing a chart of their 
external references to the standard output. 

The input file can be a C language source file (file name with . c suffix), a pre
processed C source ( . i suffix), a yacc source file (. y suffix), a lex source file ( . l 
suffix), an object file ( . o suffix), or an assembler source file ( . s suffix). Based on 
the kind of file it is, the contents of the file are sent to the C preprocessor cpp, 
the yacc compiler yacc, or the lexical analyzer lex, and subsequently run 
through the first pass of lint. Files suffixed with . s are assembled and infor
mation is extracted (as in . o files) from the symbol table. 

The output of all this nontrivial processing is collected, converted into a graph 
of external references, and subsequently displayed with line numbers and 
indentation levels to show the flow of control and call sequences of functions 
and procedures. 

7.4.3 cxref 

cxref creates a C program cross-reference listing by analyzing C program files, 
creating a cross-reference table. cxref generates a list of all external references 
for each module of a C language source program, including where the reference 
is resolved (if it is resolved in the program). cxref uses the cpp command to 
include #define directives in its symbol table. 
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7.5 LEXICAL ANALYZER-lex 

lex is a program-generating tool that produces code to handle lexical processing 
of character input streams. It accepts high-level, problem-oriented specifications 
for character string matching. The regular expressions are specified in the source 
specification to lex. The lex program generator is a table of regular expressions 
and corresponding program fragments. The table is translated to a program that 
reads an input stream, copies the input stream to an output stream, and parti
tions the inputs into strings that match the given expressions. As each string is 
recognized, the corresponding program fragment gets executed. This process of 
expression recognition is done by a deterministic finite state automation gener
ated by lex. The program fragments written by the user are executed in the order 
in which the corresponding regular expressions occur in the input stream. 

The lex command reads a file or standard input, generates a C language pro
gram, and writes it to a file named lex. yy. c. This file is a compilable C language 
program, which can be linked with or called from other routines. 

7.6 PARSER GENERATOR-yacc 

The name yacc is an acronym for "yet another compiler compiler." It is a gen
eral purpose tool used for imposing structure on the input to programs. A set 
of specifications (also referred to as the grammar rules) for the input process, 
prepared by the user, describes the input structure, code to be invoked when 
these rules get recognized, and a low-level routine (the lexical analyzer) to con
trol the basic input. yacc then generates a function to parse the input process. 
This function calls the lexical analyzer to pick up the basic items (referred to 
as tokens) from the input stream. These tokens are organized according to the 
input structure rules. When one of these rules has been recognized, the corre
sponding user code (supplied for this rule as an action) gets invoked. In this 
way, yacc converts a context-free grammar specification into a set of tables for 
a simple automaton that executes a parsing algorithm. 

The output generated by yacc (called y . tab . c) needs to be compiled with a C 
language compiler to produce a function yyparse. This function is loaded with 
the lexical analyzer function yylex and the user's main C routine. 

7.7 PATTERN MATCHING LANGUAGE 

7.7.1 awk 

sed and awk are tools used by programmers to edit text files. sed, a stream 
editor, is used to apply a series of edits to multiple files. awk, a programming 
language, allows manipulation of structured data and the generation of for
matted reports. The following sections highlight the features of sed and awk. 

awk is a programming language that makes it possible to handle data manip
ulations efficiently. An awk program is a sequence of patterns and actions that 
tell what to look for in the input data and what to do when it is found. awk 
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searches a set of files for lines matched by any of the patterns; when a match
ing pattern is found, the corresponding action is performed. A pattern can 
select lines by combinations of regular expressions and comparison operations 
on strings, numbers, fields, variables, and array elements. Actions may per
form arbitrary processing on selected lines. The action language looks like C, 
but there are no declarations. Strings and numbers are the built-in data types. 

awk scans input files and splits each input line into fields automatically. 
Because of the automatic nature of its input, field splitting, storage manage
ment, and initialization, awk programs are usually much smaller than they 
would be in a more conventional language. The same brevity of expression and 
convenience of operations make awk valuable for prototyping larger pro
grams. One starts with a few lines, then refines the program until it does the 
desired job, experimenting with designs by trying alternatives. Since programs 
are short, it is easy to get started, and easy to start over when experience sug
gests a different direction. It is straightforward to translate an awk program 
into another language once the design is right. 

awk was originally designed and implemented by the authors of UNIX in 
1977, in part as an experiment to see how the UNIX tools grep and sed could be 
generalized to deal with numbers as well as text. An enhanced version was 
made available in 1985. The main add-on feature in new awk (available in AIX 
and newer versions of UNIX) is the ability for users to define their own func
tions, support dynamic regular expressions with text substitution and pattern 
matching functions, and make use of additional built-in functions and variables. 

sed is a noninteractive stream editor that automates edits to be done on mul
tiple files. As an editing filter, sed modifies a specified file according to an edit 
script and then writes the modified file to standard or redirected output. sed 
can also be used for writing conversion programs. For example, sed can trans
late formatting codes (such as Scribe/TeX) into troff. Invoke sed by entering: 

command [-n, -e(script), -f(sourcefile) J file 

The -f option is used to specify the name of the sourcefile, -n suppresses all 
information normally written to standard output, and -e uses the script string 
as the editing script. The script specifies to the program what instructions to 
perform. sed can also be invoked by putting your editing instructions in a file 
and then entering the name of the file. 

How does sed work? 

• All editing commands in an edit script are applied (in order) to each input line. 

• Commands are globally applied to all lines. 

• The original input file is unchanged by editing commands. The editing com
mands modify the copy of the original input line and then a copy is sent to 
standard output. 
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7.8 MACRO PROCESSOR-m4 

m4 is a macro processor facility which is used as a preprocessor for C and other 
languages for expanding macro definitions. Built-in macros or user-defined 
macros can be processed using m4. m4 processes each file in the order in which 
it is specified on the command line. A command reads standard input if a file 
is not specified or if a minus (-) is specified as a file name and writes the pro
cessed macros to standard output. To redirect the output to a file, enter: 

m4 (FileNameJ >Outputfile 

m4 reads every alphanumeric token input and determines if the token is the 
name of a macro; if it is a macro, the name is replaced by its defining text and 
the resulting string is pushed back onto the input to be rescanned. Macros may 
also be called with arguments. The arguments are collected and substituted 
into the right places in the defining text before the defining text is rescanned. 

The macro calls have the following syntax: 

macroname(argument ... ) 

A left parenthesis must immediately follow macroname. If the left parenthesis 
does not follow the name of a defined macro, the m4 command reads it as a 
macro call with no arguments. Macro names consist of tokens: strings of ASCII 
alphabetic letters, digits, and the underscore character(_). Extended characters 
are not allowed in macro names. The first character cannot be a digit. While col
lecting arguments, the m4 command ignores unquoted leading blanks, tabs, 
and newline characters. Use single quotation marks to quote strings. The value 
of a quoted string is the string with the quotation marks stripped off. 

Users can also define macros using the define macro. For example: 

define (option, misc) 

m4 defines the string option as mi s c. Wherever option appears in the program, 
m4 replaces it with misc. (The string name must comply with the conventions 
discussed previously.) 

7.9 PROGRAM MODULES MANAGEMENT 

7.9.1 make 

The make program is primarily used for maintaining a set of programs by 
building up-to-date versions of programs. make simplifies the process of 
recompiling and relinking programs during software development by allowing 
programmers to record the specific relationships among files once only. The 
make command can then be used to automatically perform all the updates. 
Using this versatile utility, instructions can be combined to create large pro
grams in a single file, macros can be defined to be used within the make com
mand description file, and many basic types of files can be created. 
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To make the latest version of a program, enter: 

make programname 

make automates the compilation and linking required to update and create 
the programname file by carrying out tasks resulting from work done since the 
last issuance of the make command. make issues commands resulting from 
tracing dependencies of files being built. 

The following example illustrates the relationship of make to its target. 

reads Makefile 
make - program (target of operation) 

i 
builds on 

dependent files 

make requires a description file (to build the target file), file names, specified 
sets of rules to construct many standard types of files, and time stamps of all 
system files. The description file tells the make command how to build the tar
get file, which files are to be used, and what the file relationships are. The 
description file contains information on target and parent file name, macro def
initions, commands and user-specified rules to build the target file. Each line 
in the description file involving target file is called a dependency line. If any 
parent file was changed more recently than the target file, make creates the 
files affected by the changes, including the target file. For example: 

test: 

test: 

dependency listl ... 
command listl ... 

dependency list2 ... 
command list2 ... 

defines two separate processes to create the target file, test. If any of the files 
in dependency 1 i stl changes, the make command runs command 1 i stl. If any 
of the files in dependency 1 i st2 changes, the make command runs command 
1 i st2. To avoid conflict, a parent file cannot appear in both dependency 1 i stl 
and dependency l i st2. 

The make program does not perform any program operations; it simply 
writes all the steps to build the program, including outputs from lower-level 
calls to the make command. This makes it an extremely powerful and versa
tile tool for managing a large number of program modules. 

7.9.2 imake 

imake enables programmers to write portable software. Using imake, pro
grammers can move software from one system to another without extensive 



180 Software 

code revision. imake aids in software portability by enabling programmers to 
avoid rewriting the Makefile (used by make to identify dependencies). Rather, 
programmers write an !makefile, which is a machine-independent description 
of targets. An I makefile localizes machine dependencies in configuration files. 
When you run imake, imake replicates the configuration files in the Makefile. 
For example: 

I makefile 

""'imake - Makefile - make 
/' 

configuration files 

To use imake, programmers need imake, cpp, and make, a set of configura
tion files, and xmkmf (xmkmf uses xmkmf plus configuration files to gener
ate a Makefile from an empty !makefile). imake programming variants 
include a user environment, utilities for building programs, and an install 
method and location. 

7.10 SOURCE CODE CONTROL SYSTEM 

Source Code Control System (SCCS) is a complete system of commands that 
allows specified users to control and maintain an audit trail of changes made 
to an SCCS file. It allows simultaneous existence of multiple versions of a file 
and supports Multibyte Character Set (MBCS) characters. It provides a com
plete system for creating, converting, or changing controls on SCCS files. All 
SCCS files use the prefix . s. 

An SCCS file is any text file controlled with SCCS commands. An SCCS file 
is made up of three parts: (1) a delta table, (2) access and tracking flags, and 
(3) the body of the text. Deltas are changes recorded for each version of a file. 
Tracking flags are essentially a list of flags with the @ designation; tracking 
flags define who may edit which files, which releases of files are available, and 
which files are available for joint editing. The body of an SCCS file contains 
information about all the versions of the file. 

Frequently used SCCS commands include: 

admin 
cdc 

comb 

delta 
get 

rmdel 
SCCS 

Creates an SCCS file or changes an existing SCCS file 

Changes the comments associated with delta 

Combines two or more consecutive deltas in an SCCS file 

Adds a set of changes (deltas) to the text of an SCCS file 

Gets a specified version of an SCCS file for editing or compiling 

Removes the most recent delta on a branch from an SCCS file 

Performs most SCCS services, using a set of pseudocommands (adminis
trative program for the SCCS system) 



Development Tools 181 

7.11 AIX PERFORMANCE TOOLS 

To maximize performance tuning, it is necessary to identify the critical 
resources on the system that can be tuned, improved, or upgraded, since it is 
the availability of these resources that determines the performance of a work
load on a system. Tools, when used, usually report the availability and utiliza
tion of these resources. 

It is a common practice to partition the resources into physical resources and 
logical resources. Physical resources are real components, while logical 
resources are programming abstractions. Physical and logical resources are 
identified as follows: 

Physical resources 

CPU 
Memory 

1/0 bus 
Adapters 

Disk 

Network interface 

Logical resources 

Process time slice 

Page frames 
Stacks 
Buffers 
Queues 
Tables 

Logical volumes 
File systems 
Files 

Packets 
Channels 

The tools of the trade in performance tuning do one or more of the following: 
timing, counting, and sampling. Based on how they work, they have been 
grouped under three categories: monitoring tools, analysis tools, and tuning 
tools. 

7.11.1 Monitoring tools 

Overviews of popular AIX monitoring and tuning tools follow. Details on flags 
and options are not included due to the variability of these commands. For 
"how to" information on these commands, refer to the AIX Commands Refer
ence series. 

7.11.1.1 iostat 

The iostat command displays utilization data for CPU, disks, tty devices, and 
CDs. The command can be run singly to produce cumulative statistics since 
system boot, or it can be run repetitively to display statistics in real time for 
successive intervals over a defined duration of time. The report produced can 
have two types of format: the first type contains terminal-related and CPU 
statistics, and the second describes disk statistics. Sample output of both types 
of reports follows. 
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Type 1 
tty: tin tout cpu: % user % sys % idle % iowait 

0.4 30.2 1. 4 1. 7 96.3 0.6 
3.4 3.6 0.1 2.9 97.0 0.0 
2.3 73.4 1. 2 2.0 96.4 0.4 
1. 4 1. 6 0.2 0.4 99.4 0.0 
0.5 616.6 2.0 7.4 90.1 0.5 
0.5 8.0 0 .1 1. 0 98.9 0.0 
0.9 0.9 0.2 1. 2 95.3 3.3 

Type2 
Disks: % tm_act Kbps tps Kb_read Kb_wrtn 
hdiskO 0.0 0.0 0.0 224 0 
hdiskl 0.3 3.4 0.2 1713775 165156 
hdisk2 0.3 3.2 0.2 1623159 126396 
hdisk3 0.4 1. 3 0.2 219649 479864 

System information can be generated by specifying the following flags: 

-d The -d option is exclusive of the -t option and displays only the disk utiliza
tion report. 

-t The -t option is exclusive of the -d option and displays only the tty and CPU 
usage reports. 

7.11.1.2 netstat 

The netstat command presents statistics on network and communications 
activity including: 

• Active sockets in use 

• Contents of network data structures (which are specified in /etc/protocols), 
such as TCP, IP, UDP, and ICMP 

• Packet traffic (inbound and outbound) distribution for each of the network 
adapter interfaces configured 

• Statistics on participating network device drivers including the Ethernet 
adapter device driver, token-ring adapter device driver, and X.25 adapter 
device driver 

• Utilization of assigned network memory management routines and size of 
the page pool being managed by network services 

System information can be generated by specifying the following flags: 

·A 

-a 

Shows the address of any protocol control blocks associated 
with the sockets. This flag acts with the default display and is 
used for debugging purposes. 

Shows the state of all sockets. Without this flag, sockets used 
by server processes are not shown. 



-f AddressFamily 

-i 

-I Interface 

-m 

-n 

-pProtocol 

-r 

-s 

-u 
-v 

7.11.1.3 nfsstat 
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Limits reports of statistics or address control blocks to those 
items specified by the AddressFamily variable. The following 
address families are recognized: 

inet Indicates the AF _INET address family 

ns Indicates the AF _NS address family 

unix Indicates the AF_ UNIX address family 

Shows the state of all configured interfaces. 
Note: The collision count for Ethernet interfaces is not sup
ported. 

Shows the state of the configured interface specified by the 
Interface variable. 

Shows statistics recorded by the memory management rou
tines. 

Shows network addresses as numbers. When this flag is not 
specified, the netstat command interprets addresses where 
possible and displays them symbolically. This flag can be used 
with any of the display formats. 

Shows statistics about the value specified for the Protocol 
variable, which is either a well-known name for a protocol or 
an alias for it. Some protocol names and aliases are listed in 
the I etc Ip rot o col s file. A null response means that there 
are no numbers to report. The program report of the value 
specified for the Protocol variable is unknown if there is no 
statistics routine for it. 

Shows the routing tables. When used with the -s flag, the 
-r flag shows routing statistics. 

Shows statistics for each protocol. 

Dislays information about domain sockets. 

Shows statistics for the Ethernet adapter device driver, the 
token-ring adapter device driver, the X.25 adapter device 
driver, and the 802.3 adapter device driver. 

The nfsstat utility is meant for displaying information about the server and 
client activity [the network file system (NFS) and the remote procedure calls 
used by it] The information reported relates to either NFS's server and/or 
client data, or the server and/or client data used by the remote procedure calls 
used in NFS. 

System information can be generated by specifying the following flags: 
-c Allows the user to limit the report to client data only. The nfsstat command 

provides information about the number ofRPC and NFS calls sent and 
rejected by the client. To limit the report exclusively to NFS or RPC data, 
combine this flag with the -n or -r option. 

-s Restricts the report to server data only. This option causes the nfsstat com
mand to display information about the number of NFS and RPC calls 
received and rejected by the server. The user can also combine this option 
with the -n and -r options to further limit the report to NFS or RPC data. 
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7.11.1.4 no 

-n Displays and prints NFS information for both the client and server. To limit 
the report to NFS client or server information only combine this flag with the 
-c and -s options. 

-r Displays RPC information for the client and server. This option can be com-
bined with the -c and -s options to limit the report to client or server data only. 

-z Initializes statistics. This flag is for use by the root user only and can be com
bined with any of the other flags listed here to zero particular sets of statis
tics after printing them. 

This command displays (and changes) the values of network options including 
socket buffer sizes, low-water marks for the mbuf pools, and amount of mem
ory used in mbufs in the AIX kernel. 

7.11.1.5 ps 

System information can be generated by specifying the following flags: 

-a 

-d Option 

-o Option [=New Value] 

Prints a list of all configurable options and their current 
values. 

Sets the Option variable back to its default value. 

Shows the value of the option specified by the Option 
variable if the New Value variable is not specified. If a 
new value is specified, the Option variable is set to that 
value. 
Note: When using the -o flag, do not enter space char

acters before or after the equal sign. If you do, the 
command will fail. 

The ps tool displays process status. Its multifarious options allow reporting of 
information on a variety of system resources, on a per process basis. Some of 
the key information reported for each process includes CPU usage, memory 
usage, nice value, number ofl/0 requests, resident set size, size of the code seg
ment, amount of paging space used, and virtual size of the process. 

System information can be generated by specifying the following flags: 

-A 

-a 

-d 

·e 

. f 

-F-oFormat 

Writes to standard output information about all processes. 

Writes to standard output information about all processes, except 
the process group leaders and processes not associated with a ter
minal. 

Writes information to standard output about all processes, except 
the process group leaders. 

Writes information to standard output about all processes, except 
kernel processes. 

Generates a full listing . 

Displays information in the format specified by the Format vari
able. Multiple field specifiers can be specified for the Format vari
able. The Format variable is either a comma-separated list of field 
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specifiers or a list of field specifiers enclosed within a set of" " 
(double quotation marks) and separated from one another by a 
comma or by one or more spaces, or both. 

Each field specifier has a default header. The default header can be overridden by 
appending an= (equal sign) followed by the user-defined text for the header. The 
fields are written in the order specified on the command line in column format. The 
field widths are specified by the system to be at least as wide as the default or user
defined header text. If the header text is null, (such as, if - F - o user= is specified), 
the field width is at least as wide as the default header text. If all header fields are 
null, no header line is written. 

sar collects and exhibits system accounting reports and is very useful for 
obtaining an overall view of ongoing system activities and resource usage. It 
can be used as a display tool to monitor system performance as well as to view 
captured data from a previous date. Both the sampling interval as well as the 
granularity can be defined for sar. Internally, sar calls a program named sadc 
to access system data. Common information reported by sar includes CPU uti
lization, paging activity, disk access, system call frequency, kernel process 
statistics, request statistics on the run queue and the wait queue, process 
switching activity, message and semaphore operations, and terminal-related 
1/0 activity. 

System information can be generated by specifying the following flags: 

-A 

·a 

-b 

-c 

-e hh[:mm[:ss]] 

-f File 

-i Seconds 

-k 

-m 
msg/s 

Reports all data. 

Reports use of file access system routines specifying how many 
times per second several of the system file access routines have 
been called. 

Reports buffer activity for transfers, accesses, and cache (kernel 
block buffer cache) hit ratios per second. Access to most files in 
AIX bypasses kernel block buffering, and therefore does not gen
erate these statistics. However, if a program opens a block 
device or a raw character device for 1/0, traditional access mech
anisms are used, making the generated statistics meaningful. 

Reports system calls. 

Sets the ending time of the report. The default ending time is 
18:00. 

Extracts records from File (created by -o File flag). The default 
value of the File parameter is the current daily data file, the 
I v a r I ad m I s a I s add file. 

Selects data records at seconds as close as possible to the num
ber specified by the Seconds parameter. Otherwise, the sar com
mand reports all seconds found in the data file. 

Reports kernel process activity. 

Reports message and semaphore activities per second. 

Reports the number of IPC message primitives. 
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-oFile 

-q 

-r 

-s hh[:mm[:ss]] 

-u 

-v 

-w 

-y 

7.11.1.7 schedtune 

Saves the readings in the file in binary form. Each reading is in 
a separate record and each record contains a tag identifying the 
time of the reading. 

Reports queue statistics. 

Reports paging statistics. 

Sets the starting time of the data, causing the sar command to 
extract records time-tagged at, or following, the time specified. 
The default starting time is 08:00. 

Reports system unit activity. 

Reports status of the process, inode, and file tables. 

Reports system switching activity. 

Reports tty device activity per second. 

schedtune displays (and changes) the virtual memory manager's memory 
load control parameters and the paging-space-low retry level. 

System information can be generated by specifying the following flags: 

-D Restores the default values (h=6, p=4, w=l, m=2, e=2, f=lO, t=O). 

-e n Specifies that a recently resumed suspended process is eligible to be sus-
pended again when it has been active for at least n seconds. 

-f n Specifies the number of (10-m) clock ticks to delay before retrying a fork 
call that has failed because of insufficient paging space. The system retires 
the fork call up to five times. 

-h n Specifies the systemwide criterion for determining when process suspension 
begins and ends. A value of zero effectively turns off memory load control. 

-m n Sets the minimum multiprogramming level. 

-p n Specifies the per-process criterion for determining which processes to sus-
pend. 

-t n Increases the duration of the time slice-the maximum amount of time 
before another process is scheduled to run. The default time-slice duration 
is 10 m. The parameter n is in units of 10 ms each. If n=O, the time-slice 
duration is 10 ms. If n=2, the time-slice duration is 30 ms. 

-w n Specifies the number of seconds to wait, after thrashing ends, before reac
tivating any suspended processes. 

-? Displays a brief description of the command and its parameters. 

7.11.1.8 vmstat 

vmstat monitors memory statistics like page fault activity. In addition, it pro
vides path lengths on disk transfers and system traps. Like iostat, this utility 
can be run singly or iteratively with a count to produce rate statistics. Common 
events reported include page ins and page outs by the virtual memory manager 
(VMM), paging space page ins and paging space page outs that depict the 
VMM initiated page ins/outs from/to paging space, address translation faults; 
device interrupts (related to hardware interrupts), and software interrupts. 
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System information can be generated by specifying the following flags: 

Note: Both the -f and -s flags can be entered on the command line, but the sys
tem will only accept the first flag specified and override the second flag. 

-f Reports the number of forks since system start-up. 

-i Displays the number of interrupts taken by each device since system start-up. 

-s Writes to standard output the contents of the sum structure, which contains 
an absolute count of paging events since system initialization. The -s option 
is exclusive of the other vmstat command options. These events are 
described as follows. 

7.11.1.9 vmtune 

vmtune changes the parameters of the virtual memory manager page replace
ment algorithm. The virtual memory manager (VMM) maintains a list of free 
real-memory page frames. These page frames are available to hold virtual 
memory pages needed to satisfy a page fault. When the number of pages on the 
free list falls below that specified by the MinFree parameter, the VMM begins to 
steal pages to add to the free list. The VMM continues to steal pages until the 
free list has at least the number of pages specified by the MaxFree parameter. 

If the number of file pages (permanent pages) in memory is less than the 
number specified by the MinPerm parameter, the VMM steals frames even
handedly from either computatonal or file pages. If the number of file pages is 
greater than the number specified by the MaxPerm parameter, the VMM 
steals frames only from file pages. Between the two, the VMM uses repaging 
rates to determine which frames are stolen. 

If a process appears to be reading sequentially from a file, the values speci
fied by the MinPgAhead parameter determine the number of pages to be read 
ahead when the condition is first detected. The value specified by the MaxPg
Ahead parameter sets the maximum number of pages that will be read ahead, 
regardless of the number of preceding sequential reads. 

System information can be generated by specifying the following flags: 

-fMinFree 

-F MaxFree 

-pMinPerm 

-PMaxPerm 

Specifies the minimum number of frames on the free list. This 
number can range from 8 to 204800. 

Specifies the number of frames on the free list at which page 
stealing is to stop. This number can range from 16 to 204800 
but must be greater than the number specified by the MinFree 
parameter by at least the value of MaxPgAhead. 

Specifies the point below which file pages are protected from 
the repage algorithm. This value is a percentage of the total 
real-memory page frames in the system. The specified value 
must be greater than or equal to 5. 

Specifies the point above which the page stealing algorithm 
steals only file pages. This value is expressed as a percentage of 
the total real-memory page frames in the system. The specified 
value must be greater than or equal to 5. 
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-r MinPgAhead Specifies the number of pages with which sequential read
ahead starts. This value can range from 0 through 32. It 
should be a power of 2. 

-R MaxPgAhead Specifies the maximum number of pages to be read ahead. This 
value can range from 0 through 64. It should be a power of 2 
and should be greater than or equal to MinPgAhead. 

7 .11.2 Analysis tools 

For the following analysis tools to generate output, the accounting system 
must be running. It shoudl be noted that running the accounting system con
tinuously slows system performance to a certain extent. 

7.11.2.1 acctcoFm 

acctcom reads from specific files (usually the I us r I ad m Ip acct) and provides 
accounting information on processes that have completed. Reporting statistics 
on the already completed processes is the main difference between this tool 
and ps. Typical information reported includes start time, stop time, CPU uti
lization, login name of the user who executed the process, the terminal on 
which the process was executed, and the status of how the process ended. 

System information can be generated by specifying the following flags: 

-a 

-b 

-C Seconds 

-e Time 

-E Time 

-f 

-gGroup 

-h 

Shows some average statistics about the processes selected. The 
statistics are displayed after the output records. 

Reads backwards, showing the most recent commands first. This 
flag has no effect when the acctcom command reads standard 
input. 

Shows only processes whose total CPU time (system time + user 
time) exceeds the value specified by the Seconds variable. 

Selects processes existing at or before the specified time. You can 
use the NLTIME environment variable to specify the order of hours, 
minutes, and seconds. The default order is hh:mm:ss. 

Selects processes ending at or before the specified time. You can use 
the NLTIME environment variable to specify the order of hours, 
minutes, and seconds. The default order is hh:mm:ss. If you specify 
the same time for both the -E and -S flags, the acctcom command 
displays the processes that existed at the specified time. 

Displays two columns related to the ac_fl ag field of the acct. h file: 
the first indicates use of the fork command to create a process; the 
second indicates the system exit value. Refer to the acct structure 
described in the acct file format in AIX 'Version 3.2 Files Reference. 

Selects processes belonging to the specified group. You can specify 
either the group ID or the group name. 

Instead of mean memory size, shows the fraction of total available 
CPU time consumed by the process (hog factor). This factor is com
puted as: 

(total CPU time) 
(elapsed time) 



-HFactor 

-i 

-k 

-I Line 

-I Number 

-m 

-nPattern 

-o File 

-0 Seconds 

-q 

-r 

-s Time 

-S Time 

-t 

-u User 

-v 
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Shows only the processes that exceed the value of the Factor param
eter. This factor, called the hog factor, is computed as: 

(total CPU time) 
(elapsed time) 

Displays columns showing the number of characters transferred in 
read or write operations (the I/O counts). 

Instead of memory size, shows total kcore minutes (memory mea
surement in kilobyte segments used per minute ofrun time). 

(lowercase L) Shows only processes belonging to workstation 
/dev/Line. 

(uppercase i) Shows only processes transferring more than the speci
fied number of characters. 

Shows mean main memory size. This is the default. The -h flag or -k 
flag turn off the -m flag. 

Shows only commands matching the value of the Pattern variable, 
where Pattern is a regular expression. Regular expressions are 
described in the ed command. In addition to the usual characters, 
the acctcom command allows you to use a + (plus sign) as a special 
symbol for the preceding character. 

Copies selected process records to the specified file, keeping the 
input data format. This flag suppresses writing to standard output. 
This flag cannot be used with the -q flag. 

Shows only processes with CPU system time exceeding the specified 
number of seconds. 

Displays statistics but not output records. The statistics are the 
same as those displayed using the -a flag. The -q flag cannot be used 
with the -o flag. 

Shows CPU factor. This factor is computed as: 

(user-time) 
(system-time +user-time) 

Shows only those processes that existed on or after the specified 
time. You can use the NLTIME environment variable to specify the 
order of hours, minutes, and seconds. The default order is hh:mm:ss. 

Shows only those processes starting at or after the specified time. 
You can use the NLTIME environment variable to specify the order 
of hours, minutes, and seconds. The default order is hh:mm:ss. 

Shows separate system and user CPU times. 

Shows only processes belonging to the specified user. Enter one of 
the following for the User variable: a user ID, a login name to be 
converted to a user ID, a# (pound sign) to select processes run by 
the root user, or a? (question mark) to select processes associated 
with unknown user IDs. 

Eliminates column headings from the output. 
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7.11.2.2 acctcms 

acctcms provides accounting information on processes that have completed, 
in a manner similar to acctcom. The key difference is that this utility com
bines all the records for identically named processes and reports a combined 
total for that process name. 

System information can be generated by specifying the following flags: 

-a Displays output in ASCII summary format rather than binary summary for
mat. Each output line contains the command name, the number of times the 
command was run, total kcore time (memory measurement in kilobyte seg
ments), total CPU time, total real time, mean memory size (in KB), mean 
CPU ti~e per invocation of the command, and the CPU usage factor. The 
listed times are all in minutes. The acctcms command normally sorts its 
output by total kcore minutes. The unit kcore minutes is a measure of the 
amount of memory used (in kilobytes) multiplied by the amount of time it 
was in use. This flag cannot be used with the -t flag. 

-c Sorts by total CPU time rather than total kcore minutes. This flag cannot be 
used with the -n flag. When this flag is used with the -n flag, only the -n flag 
takes effect. 

-j Combines all commands called only once under the heading other. 

-n Sorts by the number of times the commands were called. This flag cannot be 
used with the -c flag. When this flag is used with the -c flag, only the -n flag 
takes effect. 

-o Displays a command summary ofnonprime time commands. You can use this 
flag only when the -a flag is used. 

-p Displays a command summary of prime time commands. You can use this 
flag only when the -a flag is used. 

-s Assumes that any named files that follow this flag are already in binary 
format. 

-t Processes all records as total accounting records. The default binary format 
splits each field into prime and nonprime time sections. This flag cannot be 
used with the -a flag. 

7.11.2.3 accton 

accton works like a toggle switch in enabling and disabling the collection of 
process accounting statistics. 

System information can be generated by specifying the following flags: 

-1 File 

-oFile 

(lowercase L) Writes a line-usage summary file showing the line name, 
the number of minutes used, the percentage of total elapsed time, the 
number of sessions charged, the number oflogins, and the number of 
logoffs. If you do not specify a file name, the system creates the informa
tion in the Ivar I adml acct/ n i te /l i neus e file. 

Writes to the specified file an overall record for the accounting period, 
giving starting time, ending time, number of restarts, and number of date 
changes. If you do not specify a file name, the system creates the 
Iv a r I adml a cct/n i te/ reboots file. 
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·p Displays only input. Line name, login name, and time are shown in both 
numeric and date/time formats. Without the ·P flag specified, the acct
conl command would display input, converting input to session records, 
and write reports. 

·t Uses the last time found in the input as the ending time for any current 
processes. This, rather than current time, is necessary in order to have 
reasonable and repeatable values for files that are not current. 

7.11.2.4 filemon 

The fl.lemon command uses the trace facility to report 1/0 activity at four sep
arate levels: logical file system, virtual memory segments, logical volumes, and 
physical volumes. Tracking at the logical file system level yields information 
on read, write, open, and lseek system calls. Analyzing the virtual memory sys
tem results in availability of physical 110 operations (for example, paging). 
Reporting of information at the logical volume level gives 1/0 statistics on a 
per-logical-volume basis. Monitoring at the physical volume level allows anal
yses of physical resource utilization enabling any combination of levels to be 
monitored. This tool normally runs in the background and monitors file system 
and 1/0 events in real time. An alternate way to use it is to use it like an off
line monitor on previously collected trace files. 

System information can be generated by specifying the following flags: 

-i File 

-oFile 

-d 

-Tn 

Reads the 1/0 trace data from the specified File, instead of from the 
real-time trace process. The filemon report summarizes the 1/0 activ
ity for the system and period represented by the trace file. 
Note: Trace data files are usually written in a circular manner. If the 

trace data has wrapped around, the chronological beginning and 
end of the trace may occur in the middle of the file. Use the raw 
mode of the trcrpt command to rewrite the data sequentially, 
before invoking the filemon command, as follows: 

trcrpt -r file >new.file 

For the report to be accurate, the trace file must contain all the hooks 
required by the filemon command. 

Writes the 1/0 activity report to the specified File, instead of to the std
out file. 

Starts the filemon command, but defers tracing until the trcon com
mand has been executed by the user. By default, tracing is started 
immediately. 

Sets the kernel's trace buffer size to n bytes. The default size is 32,000 
bytes. The buffer size can be increased to accommodate larger bursts of 
events, if any. (A typical event record size is 30 bytes.) 
Note: The trace driver in the kernel uses double buffering, so, in fact, 

there will be two buffers allocated of size n bytes. Also, note that 
these buffers are pinned in memory, so they are not subject to 
paging. Large buffers may affect the performance of paging and 
other 1/0. 
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-P Pins monitor process in memory. The -P flag causes the fiiemon com
mand's text and data pages to be pinned in memory for the duration of 
the monitoring period. This flag can be used to ensure that the real
time filemon process is not paged out when running in a memory-con
strained environment. 

-v Prints extra information in the report. The most significant effect of the 
-v flag is that all logical files and all segments that were accessed are 
included in the I/O activity report, instead of only the 20 most active 
files and segments. 

-0 Levels Monitors only the specified file system levels. Valid level identifiers are: 

If Logical file level 

vm Virtual memory level 

Iv Logical volume level 

pv Physical volume level 

all Short for If, vm, Iv, pv 

The vm, Iv, and pv levels are implied by default. 

-u Reports on files that were opened prior to the start of the trace dae
mon. The process ID (PID) and the file descriptor (FD) are substituted 
for the file name. 

7.11.2.5 fileplace 

fileplace shows the physical or logical placement of the blocks that constitute 
a file. This tool can also be made to report fragmented files within a volume, 
the indirect block numbers for the file, as well as the file's placement on phys
ical volume blocks. Note that this tool is good for local files only; it does not 
report information on remote files that may be mounted over NFS file systems. 

System information can be generated by specifying the following flags: 

-i Displays the indirect blocks for the file, if any. The indirect blocks are dis
played in terms of either their logical or physical volume block addresses
numbers, depending on whether the -I or -p flag was specified. 

-I Displays file placement in terms oflogical volume fragmentsblocks, for the 
logical volume containing the file. The -I and -p flags are mutually exclusive. 

-p Displays file placement in terms of physical volume blocks, for the physical 
volumes that contain the file. If the logical volume containing the file is mir
rored, the physical placement is displayed for each mirror copy. The -I and -p 
flags are mutually exclusive. 

-v Displays more information about the file and its placement, including statis
tics on how widely the file is spread across the volume and the degree of frag
mentation in the volume. The statistics are expressed in terms of either the 
logical or physical volume block numbers, depending on whether the -I or ·P 
flag is specified. 

7.11.2.6 gprof 

gprof reports flow of control among subroutines of a program and the amount of 
CPU time consumed by each subroutine. It provides visibility to the sections of 
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the code that are most active and points out spots that require optimization 
efforts. Two kinds ofreports may be generated on a program's run-time behavior 
including (1) a flat profile showing the CPU time consumption along with fre
quency of occurrence on a per subroutine basis, and (2) a call-graph profile lay
ing out the CPU time consumed by each subroutine plus its child subroutines. 

The mechanics of how gprof works is straightforward. A special library 
function (called mcount) is embedded in the application code when the code is 
compiled for profiling. This causes a counter to increment each time a parent 
function calls a child function which enables tracking the frequency of subrou
tine calls. A second mechanism (also activated by gprofs compile time option) 
facilitates sampling of the program's current program counter location each 
clock tick (every 10 ms) to quantify the time spent in each routine. Another 
command called prof is also available for profiling programs; however, data 
reported by it is a proper subset of the data available from gprof. 

System information can be generated by specifying the following flags: 

-b 

-EName 

-eName 

-F Name 

-fName 

-LPathName 

-s 

-z 

7.11.2.7 lsattr 

Suppresses the printing of a description of each field in the profile. 

Suppresses the printing of the graph profile entry for routine 
Name and its descendants, similar to the -e flag, but excludes the 
time spent by routine Name and its descendants from the total 
and percentage time computations. (-E MonitorCount -E Monitor
Cleanup is the default.) 

Suppresses the printing of the graph profile entry for routine 
Name and all its descendants (unless they have other ancestors 
that are not suppressed). More than one -e flag can be given. Only 
one routine can be specified with each -e flag. 

Prints the graph profile entry of the routine Name and its descen
dants similar to the -f flag, but uses only the times of the printed 
routines in total time and percentage computations. More than 
one -F flag can be given. Only one routine can be specified with 
each -F flag. The -F flag overrides the -E flag. 

Prints the graph profile entry of the specified routine Name and 
its descendants. More than one -f flag can be given. Only one rou
tine can be specified with each -fflag. 

Uses an alternate pathname for locating shared objects. 

Produces the gmon. sum profile file, which represents the sum of 
the profile information in all the specified profile files. This sum
mary profile file may be given to subsequent executions of the 
gprof command (using the -s flag) to accumulate profile data 
across several runs of an a • out file. 

Displays routines that have zero usage (as indicated by call 
counts and accumulated time). 

lsattr lists the attributes affecting performance, their current values, and 
whether or not they are tunable. 
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System information can be generated by specifying the following flags: 

-a Attribute 

-c Class 

-D 

-E 

-f File 

-F Format 

-H 

-h 

-I Name 

-0 

Displays information for the specified attributes of a specific device 
or kind of device. You can use one -a flag for each attribute name or 
multiple attribute names. If you use one -a flag for multiple 
attribute names, the list of attribute names must be enclosed in 
quotes with spaces between the names. Using the -R flag, you must 
specify only one -a flag with only one attribute name. If you do not 
specify either the -a or -R flag, the lsattr command displays all 
information for all attributes of the specified device. 

Specifies a device class name. This flag can be used to restrict the 
output to that for devices of a specified class. This flag cannot be 
used with the -E or -I flags. 

Displays the attribute names, default values, descriptions, and 
user-settable flag values for a specific device when not used with 
the -0 flag. The -D flag displays only the attribute name and 
default value in colon format when used with the -0 flag. This flag 
can be used with any combination of the -c, -s, and -t flags that 
uniquely identifies a device from the predefined devices object class 
or with the -I flag. This flag cannot be used with the -E, -F, or -R 
flags. 

Displays the attribute names, current values, descriptions, and 
user-settable flag values for a specific device when not used with 
the -0 flag. The -E flag displays only the attribute name and cur
rent value in colon format when used with the -0 flag. This flag 
cannot be used with the -c, -D, -F, -R, -s, or -t flags. 

Reads the needed flags from the File parameter. 

Displays the output in a user-specified format, where the Format 
parameter is a quoted list of column names separated by nonal
phanumeric characters or white space. Using white space as the 
separator, the lsattr command displays the output in aligned 
columns. Only column names from the predefined attributes and 
customized attributes object classes can be specified. In addition to 
the column names, there are two special purpose names that can be 
used. The name description can be used to obtain a display of 
attribute descriptions and user-settable can be used to obtain an 
indication as to whether or not an attribute can be changed. This 
flag cannot be used with the -E, -D, -0, or -R flags. 

Displays headers above the column output. To use the -H flag with 
the -0 flag is meaningless; the -0 flag prevails. To use the -H flag 
with the -R flag is meaningless; the -R flag prevails. 

Displays the command usage message. 

Specifies the device logical name in the customized devices object 
class whose attribute names or values are to be displayed. 

Displays all attribute names separated by colons and, on the second 
line, displays all the corresponding attribute values separated by 
colons. The attribute values are current values when the -E flag is 
also specified and default values when the -D flag is specified. This 
flag cannot be used with the -F and -R flags. 



-R 

-s Subclass 

-t Type 

7.11.2.8 nulladm 
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Displays the legal values for an attribute name. The -R flag cannot 
be used with the -D, -E, -F and-0 flags, but can be used with any 
combination of the -c, -s, and -t flags that uniquely identifies a device 
from the predefined devices object class or with the -1 flag. The -R 
flag displays the list attribute values in a vertical column as follows: 

Valuel 
Value2 

ValueN 

The -R flag displays the range attribute values as x ... n ( +i ) where 
xis the start of the range, n is the end of the range, and i is the 
increment. 

Specifies a device subclass name. This flag can be used to restrict 
the output to that for devices of a specified subclass. This flag can
not be used with the -E or -1 flags. 

Specifies a device type name. This flag can be used to restrict the 
output to that for devices of a specified class. This flag cannot be 
used with the -E or -I flags. 

nulladm creates a process accounting file with the proper permissions. 

7.11.2.9 netpmon 

netpmon uses the trace facility to report network 1/0 and network-related 
CPU usage. Normally, this tool runs in the background and monitors network
related system events in real time. An alternate way to use it is as an off-line 
monitor on previously collected trace files. CPU-related information includes 
the amount of CPU consumed in network-related events and CPU idle due to 
network 1/0. Device driver 1/0 related activities reflect statistics on 1/0 traffic 
through Ethernet and token-ring device drivers, and queue lengths for trans
mission 1/0. Remote or NFS 1/0 statistics include remote procedure call 
requests on a per process, per file, per server basis. Communication interface 
data includes an inventory of socket-related system calls that have been 
issued, on a per protocol (such as TCP, UDP) basis. 

System information can be generated by specifying the following flags: 

-oFile 

-d 

-0 ReportType ... 

Writes the reports to the specified File, instead of to standard 
output. 

Starts the netpmon command, but defers tracing until the 
trcon command has been executed by the user. By default, 
tracing is started immediately. 

Produces the specified report types. Valid report type values 
are: 

cpu CPU usage 

dd Network device driver I/O 
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.p 

-T n 

-t 
-v 

7.11.2.10 rmap 

so Internet socket call 1/0 

nfs NFS 110 

all All reports are produced; this is the default value 

Pins monitor process in memory. This flag will cause the 
netpmon text and data pages to be pinned in memory for the 
duration of the monitoring period. This flag can be used to 
ensure that the real-time netpmon process does not run out 
of memory space when running in a memory-constrained 
environment. 

Sets the kernel's trace buffer size to n bytes. The default size 
is 64000 bytes. The buffer size can be increased to accommo
date larger bursts of events, if any. (A typical event record 
size is on the order of 30 bytes.) 
Note: The trace driver in the kernel uses double buffering, so 

actually two buffers of size n bytes will be allocated. 
These buffers are pinned in memory, so they are not 
subject to paging. 

Prints CPU reports on a per-thread basis. 

Prints extra information in the report. All processes and all 
accessed remote files are included in the report instead of 
only the 20 most active processes and files. 

rmap uses the trace facility to report system calls, process utilization, and 1/0 
events. 

System information can be generated by specifying the following flags: 

-o OutFile 

-q 

7.11.2.11 rmss 

Redirects standard output to the specified file. The output generated 
by rmap will be formatted for either 80 columns and 66 lines or 138 
columns and 88 lines depending on the reports selected. 

Suppresses the configuration file listing. 
Note: One or more options may be present on the command line. 

However, each option should only appear once on the com
mand. If an option appears more than once, only the last spec
ification of the option is used. 

rmss simulates various memory sizes. It temporarily reduces the effective 
RAM to assess the probable performance of a workload on smaller configura
tions. Although the tool tends to be optimistic for applications that access too 
many files, it comes across as a handy step-saver for scaling memory sizes to 
study the effect on a workload. 

System information can be generated by specifying the following flags: 

-cMemSize Changes the simulated memory size to the MemSize value, 
which is an integer or decimal fraction in units of megabytes. 
The MemSize variable must be between 4 MB and the real 
memory size of the machine. There is no default for the -c flag. 



-dMemSize 

-fMemSize 

-n Numlterations 

-o OutputFile 

-p 

·r 

-sMemSize 

Command 

7.11.2.12 svmon 
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Specifies the increment between memory sizes to be simulated. 
The MemSize value is an integer or decimal fraction in units of 
megabytes. If the -d flag is omitted, the increment will be 8 MB. 

Specifies the final memory size. You should finish testing the 
simulated system by executing the command being tested at a 
simulated memory size given by the MemSize variable, which 
is an integer or decimal fraction in units of megabytes. The 
MemSize variable must be between 4 MB and the real mem
ory size of the machine. If the -fflag is omitted, the final mem
ory size will be 8 MB. 

Specifies the number of times to run and measure the com
mand, at each memory size. There is no default for the -n flag. 
If the -n flag is omitted, during rmss command initialization, 
the rmss command will determine how many iterations of the 
command being tested are necessary to accumulate a total run 
time of 10 s, and then run the command that many times at 
each memory size. 

Specifies the file into which to write the rmss report. If the -o 
flag is omitted, then the rmss report is written to the file 
rmss. out. In addition, the rmss report is always written to 
standard output. 

Display the current simulated memory size. 

Reset the simulated memory size to the real memory size of 
the machine. 

Specifies the starting memory size. Start by executing the 
command at a simulated memory size specified by the Mem
Size variable, which is an integer or decimal fraction in units 
of megabytes. The MemSize variable must be between 4 MB 
and the real memory size of the machine. If the -s flag is omit
ted, the starting memory size will be the real memory size of 
the machine. 

Specifies the command to be run and measured at each mem
ory size. The Command parameter may be an executable or 
shell script file, with or without command line arguments. 
There is no default command. 

svmon reports memory status at system, process, and segment levels. It can 
create four types of reports: global, process, segment, and detailed segment, 
which are useful for analyzing memory statistics of varying granularities. 

System information can be generated by specifying the following flags: 

-D sidl ... sidN 

-G 

-i Interval [Numintervals] 

Displays detailed memory-usage statistics for 
segments sidl ... sidN. If N sids are specified, 
then N detailed segment reports are displayed. 

Displays a global report. 

Instructs the svmon command to print out 
statistics repetitively. Statistics are collected 
and printed every Interval seconds. 
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-P [n Is I a] [pidl ... pidN] Displays memory usage statistics for processes 
pidl ... pidN. If no process IDs (PIDs) are spec
ified, then memory usage statistics are dis
played for all active processes. 

-P [n Is I a] {u Ip I g Ir} [Count] Sorts processes by memory usage and displays 
the memory usage statistics for the top Count 
processes. If a Count value is not specified, then 
memory usage statistics are displayed for all 
active processes. 

-r Displays statistics about the number ofreal 
memory frames with reference bits on. The 
refernce bit is used in the virtual memory man
ager (VMM) page-stealing algorithm. When the 
-r flag is specified, page space and address 
range statistics are replaced by statistics about 
the number of frames in use that have been 
recently referenced, and the number of pinned 
frames that have been recently referenced. 

-S sidl ... sidN Displays memory-usage statistics for segments 
sidl ... sidN. One segment report is printed. 

-S {[n Is I a] [u Ip I g Ir]} [Count] Sorts segments by memory usage and displays 
the memory usage statistics for the top Count 
segments. If Count is not specified, then a 
Count of 10 is implicit. 

7.11.2.13 time/timex 

These tools report elapsed time, user CPU time, and system CPU time used by 
the execution of a command. 

System information can be generated by specifying the following flags: 

-o Reports the total number of blocks read or written and total characters 
transferred by a command and all its children. 

-p Lists process accounting records for a command and all its children. The 
number of blocks read or written and the number of characters transferred 
are reported. The -p flag takes the f, h, k, m, r, and t arguments defined in 
the acctcom command to modify other data items. 

-s Reports total system activity during the execution of the command. All the 
data items listed in the sar command are reported. 

7.11.2.14 tprof 

tprof reports utilization statistics for kernel services, library subroutines, 
application programs, and even individual lines of source code (of an applica
tion program) using the trace facility. 

System information can be generated by specifying the following flags: 

-d This flag is not needed to microprofile shared libraries. It has been 
retained for compatibility purposes. 



-e 

-k 

-pProgram 

-s 

-t Process_ld 

-v 

-xCommand 

7.11.3 Tuning tools 

7.11.3.1 lvedit 

Profiles the kernel extension. 

Profiles the kernel. 
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Profiles the user program; also microprofiles the user program if 
that program is compiled with the -g flag. 

Profiles shared libraries. 

Constrains reporting to the specified process and its children and 
parents. 

Specifies verbose mode, which creates additional files required 
when microprofiling shared libraries. 

Allows the execution of an arbitrary Command. Subprograms of 
the program specified by the -p flag are profiled. 

lvedit alters the location and attributes of a logical volume. 

7.11.3.2 nice 

This utility executes a process with a specified priority level. 

7.11.3.3 no 

System information can be generated by specifying the following flags: 

-Increment 

-n Increment 

Increments a command's priority up or down. You can specify a 
positive or negative number. Positive increment values lower pri
ority. Negative increment values increase priority. Only users with 
root authority can specify a negative increment. If you specify an 
Increment variable that exceeds the range ofO to 39, then the limit 
whose value was exceeded is used. This flag is equivalent to the 
-n Increment flag. 

This flag is equivalent to the -Increment flag. 

In addition to being an analysis tool, no is also used to change (and display) 
values of network parameters, including, among others, mbufs, lowclust, and 
lowmbufs in the running kernel of the PowerPC. Extreme care should be taken 
in using this command since there is no range checking in the values that one 
specifies for the kernel-tunable parameters. 

System information can be generated by specifying the following flags: 

-a 

-d Option 

-o Option [=NewValue] 

Prints a list of all configurable options and their current 
values. 

Sets the Option variable back to its default value. 

Shows the value of the option specified by the Option 
variable if the New Value variable is not specified. If a 
new value is specified, the Option variable is set to that 
value. 
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7 .11.3.4 renice 

This utility is similar to nice; it changes the priority of a process. 
System information can be generated by specifying the following flags: 

-g GroupID Interprets numeric IDs as process group IDs. 

-g Interprets all IDs as unsigned decimal integer process group IDs. 

-n Increment Specifies how to alter the system scheduling priority. The Incre-
ment variable is a positive or negative decimal integer used to 
modify the scheduling priorities. Positive increment values cause a 
lower system scheduling priority. Negative increment values may 
require appropriate privileges and cause a higher system schedul
ing priority. 

-p ProcessID Interprets numeric IDs as process IDs (the default interpretation). 

-p Interprets all IDs as unsigned integer process IDs. The -p flag is 
the default if you specify no other flags. 

-u UserName Interprets user names. 

-u Interprets all IDs as user name or numerical user IDs. 

7 .11.3.5 reorgvg 

This utility reorganizes elements of a volume group (the details on volume 
groups are covered in Chap. 11). 

System information can be generated by specifying the following flags: 

-i 

7.12 SUMMARY 

Specifies physical volume names read from standard input. Only 
the partitions on these physical volumes are organized. 

The development tools reviewed in this chapter help create the optimal devel
opment environment for AIX programmers. This chapter discusses the XL 
family of compilers which provides source code and back-end optimization 
tasks, as well as the AIX two-pass Assembler which translates machine lan
guage instructions into machine object code. 

Also discussed is the dbx or xde symbolic debugger which can be used to 
debug programs written in C, FORTRAN, Pascal, and Assembler languages; 
and the adb debugger which provides commands to examine, debug, and 
repair executable binary files and to examine non-ASCII data files, such as 
core dumps. The kernel debug program can help determine errors in code run
ning in the operating system kernel, while the trace facility isolates system 
problems by monitoring and timestamping selected system events. 

Source code analysis tools available under AIX aid in checking the source 
code for integrity and in analyzing the flow of control in the order of execution. 
lex is a program-generating tool that produces code to handle lexical process
ing of character input streams; yacc is a general purpose tool used for impos
ing structure on the input to programs; awk is a programming language that 
makes it possible to handle data manipulations efficiently. 
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We also review m4, which is a macro processor command used as a prepro
cessor for C and other languages for expanding macro definitions. As well as 
the make program, which is primarily used for maintaining a set of programs 
by building up-to-date versions of programs. The importance of imake to soft
ware portability and the role of SCCS as a file tracker is also discussed. 

Finally, the suite of AIX performance-tuning tools, including monitoring 
tools, analysis tools, and tuning tools, are reviewed. 



Chapter 

8 

Standardization and Connectivity 

Standardization and connectivity are discussed together because today's busi
ness environment relies on complex and diverse computer systems that, in 
order to be effective, must be open and integrated-an environment of open sys
tems. System administrators need to ensure that a collection of personal com
puters, mainframes, and workstations can interact effectively and properly. 
Managers and system administrators must also have portable software-soft
ware that can be used in various environments on a variety of operating sys
tems. A review of compatibility, portability, and interoperability standards is 
followed by a discussion of the interconnectivity functionalities of the PowerPC 
andAIX. 

8.1 STANDARDIZATION 

Standardization is necessary to realize the promise of open distributed sys
tems and to take advantage of advanced networking technologies. Some of 
the standards groups discussed below have formed to promulgate their own 
standards while other standards groups and standards have evolved due to 
widespread industry use. Official standards organizations are discussed fol
lowed by a review of industry consensus standards. 

8.1.1 Compatibility standards 

8.1.1.1 International Organization for Standardization (ISO) 

ISO is a Geneva-based agency created under the auspices of the United 
Nations. ISO is a nongovernment, independent agency which promotes stan-
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dardization for materials and products traded internationally. Acceptance of 
ISO standards is the result of agreement by member bodies, leading to adop
tion worldwide by participating countries. Membership is composed of the 
national standards bodies of over 90 countries, including ANSI (American 
National Standards Institute) representing the United States, BSI (British 
Standards Institute) representing Great Britain, and DIN (Deutches Institut 
fiir Normung) representing Germany. These member groups represent the 
commercial and industrial interests of their respective countries. The work of 
ISO is divided across various technical committees (TCs), which are then 
divided into subcommittees (SCs) and work groups (WGs). 

8.1.1.2 American National Standards Institute (ANSI) 

ANSI, like all standards groups in the United States, is a voluntary organiza
tion and coordinates the activities of the various United States representatives 
to ISO. ANSI does not actually create standards itself, but oversees and 
accredits standards produced by Accredited Standards Committees (ASCs). 
ANSI also accredits trade organizations such as the the IEEE (Institute of 
Electrical and Electronics Engineers), the accredited body in the area of com
puter operating systems. 

8.1.1.3 Institute of Electrical and Electronic Engineers (IEEE) 

An ANSI-accredited professional society, the IEEE has over 325,000 members 
consisting of electrical and electronic engineers and computer professionals 
organized by subfield into approximately 35 "societies" (such as Aerospace 
and Electronic Systems, Antennas and Propagation, Consumer Electronics, 
Electromagnetic Compatibility, and Information Theory). The IEEE board 
approves IEEE standards developed by its member societies and forwards 
them to ANSI for approval as American National Standards. Until early 1993, 
the IEEE's Computer Society designated its TCOS (Technical Committee on 
Operating Systems) as the supervising body over the subcommittee that 
directed the POSIX (Portable Operating System Interface) effort. In early 
1993, this responsibility was transferred to the newly formed PASC (Portable 
Applications Standards Committee). 

8.1.2 Portability standards 

8.1.2.1 Portable Operating System Interface for Computer Environments (POSIX) 

The IEEE 1003.1 (POSIX.1) system application program interface (API), writ
ten assuming a C language interface, became a standard in 1988. (POSIX in 
the generic usually refers to POSIX 1003.1.) This initial POSIX standard 
spawned a family of open system standards related to the UNIX operating sys
tem. POSIX.1 was the basis for the Federal Information Processing Standard 
(FIPS) issued in 1989, as well as a point ofreference for the development of the 
X/Open Portability Guide. 

The full title of the current standard is "ISO/IEC 9945-1:1990 IEEE Standard 
1003.1-1990 Information Technology-Portable Operating System Interface 
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(POSIX.) Part 1: System Application Program Interface (API) (C Language)." 
This standard, which most members of the POSIX community call dotl (pro
nounced "dot one"), is available from the IEEE Customer Service Department.* 

POSIX is divided into roughly two dozen committees labeled from POSIX 
1003.0 to 1003.19. Major POSIX committees, other than 1003.1, are 1003.2, 
which deals with commands and utilities, as well as 1003.10, which deals with 
systems administration. Many of the other working groups are defining Appli
cations Environment Profiles (AEPs), which specify optional features that can 
be added to a base standard (such as 1003.1). The POSIX Real-Time Working 
Group (1003.4) enhanced POSIX.l to include binary semaphores, process 
memory locking, real-time signal extensions, timers, and interprocess commu
nication. 

A list of POSIX related committees follows: 

1003.0 

1003.1 

1003.2 

1003.3 

1003.4 

1003.5 

1003.6 

1003.10 

1003.8 

1003.9 

1003.10 

1003.11 

1003.12 

1003.13 

1003.14 

1003.15 

1003.16 

1003.110 

1003.18 

1003.19 

1201.1 

1201.2 

1224.0 

POSIXGuide 

System Interfaces 

Shell and Utilities 

Test Methods 

Real Time 

ADA Bindings 

POSIX Security 

System Administration 

Transparent File Access-Distribution Services 

FORTRAN Binding 

Supercomputing Application Environment Profile 

Transaction Processing Application Environment Profile 

Protocol Independent Interfaces 

Real-Time Application Environment Profile (Application Support) 

Multiprocessing Application Environment Profile (Application Support) 

Batch Services (Batch Environment Amendment) 

C Language Binding 

Directory Service Applications Programming Interface 

POSIX Platform Application Environment Profile 

POSIXADA Language Interface BDG. for Real-Time Extensions 

Windowing Tuolkit Applications Programming Interface 
Window Interface for User and Applications Portability 

User Interface Driveability 
Recommended Practice on Driveability 

X.400 and X.500 Object Management 
X.400 Mail Services Application Program Interface 

*IEEE Customer Service, 445 Hoes Lane, Piscataway, New Jersey 08854. 
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1224.1 

1238 

1238.1 

X.400 Gateway Applications Programming Interface 
OSI Applications Interface-X.400 Based Electronic Messaging 

Common OSI API and FTAM API 

Dependent Document 

8.1.2.2 Federal Information Processing Standards (FIPS) 

The FIPS define procurement requirements for the federal government. Those 
who work with the United States Federal Government should specifically refer 
to the FIPS, which are written by the NIST (National Institute for Standards 
and Technology) and are available from the National Technical Information 
Service. The current FIPS standard for POSIX.1 (ISO/IEC 9945-1 : 1990) is 
FIPS 151-2, issued in 1993, which specifies, with a few minor changes and clar
ifications, that the POSIX 1003.1 (issued in 1990) is to be used as the man
dated federal standard. [Both FIPS 151-1and151-2 cite POSIX 1003.1. FIPS 
151-1 maps to 1003.1 (1988) and FIPS 151-2 maps to POSIX 1003.1 (1990).] 
The differences between the 1988 and 1990 versions of POSIX 1003.1 consist 
primarily in corrections and clarification. 

Those wishing to check their compliance with FIPS 151-1 should refer to the 
PCTS (POSIX Compliance Test Suite) that was developed by the NIST and can 
be administered by any one of seven accredited POSIX conformance test labo
ratories. NIST can supply the names of currently accredited test facilities, as 
well as information on the current requirements and test procedures. 

8.1.2.3 X/Open 

X/Open is an international consortium of hardware vendors, software vendors, 
and users who have developed and published the XI Open Portability Guide 
CXPG). XPG4, the fourth issue of the X/Open Portability Guide, was issued 
in 1992. Founded in 1984 by Bull, ICL, Siemends, Ollivetti, and Nixdorf, 
X/Open's mission is to broaden the market for open systems by developing and 
promoting Common Applications Environment (CAE) specifications. CAE 
specifications are a set of open, vendor-neutral specifications based on inter
national and industry consensus standards. 

X/Open brands products: products that comply with the XPG standards and 
have guaranteed to fix any errors (discovered by the rigorous independent 
compliance testing) may carry the X/Open seal. X/Open also ensures its align
ment with emerging international standards by working closely with other for
mal standards organizations and by entering cooperative efforts with other 
groups to expedite high-priority standardization efforts. For example, in 1992 
X/Open and OSF (discussed in 10.1.2.4) agreed to expedite OSF's Distributed 
Computing Environment Application Environment Specifications (DCE AES) 
for inclusion in X/Open's CAE. 

8.1.2.4 Open Software Foundation (OSF) 

OSF consists of approximately 350 members who input requirements and 
direction to OSF through special interest groups (SIGs). OSF is primarily con-
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cerned with determining the scope and requirements for new technology 
initiatives through the use of request for technology (RFT) solicitations to 
the computer industry. Organized in 1988 by seven major system vendors 
including DEC, HP, Apollo, IBM, Group Bull, Siemens, and Nixdorf, OSF uses 
RFT evaluation and testing to promote the development of portable software 
applications. 

The OSF Application Environment Specifications (AES) are the specifica
tions for the components malting up OSF's operating system environment, 
which currently includes the OSF/1 operating system component, the Motif 
user interface component, and the distributed computing environment (DCE) 
interoperability component. OSF's AES describe portability interfaces for one 
functional area of the application environment including operating systems, 
network services, user environment services, graphics services, database man
agement services, and programming languages. OSF's AES are used for com
pliance branding and certification. 

Primary OSF offerings include the OSF/Motif, an X-based GUI (introduced 
in 1988), and DCE (introduced in 1992). OSF's operating system, OSF/1, is 
based on Carnegie-Mellon University's Mach microkernel architecture and 
implements the AES interface. 

8.1.2.5 X Window System 

The X Window System (or X) is a hardware, vendor-independent, and network
transparent operating environment developed at the Massachusetts Institute 
of Technology in 1984 as a cooperative effort funded by major computer manu
facturers to build a network of graphical workstations. The enormous success 
of this program made the X Window System a UNIX based windowing stan
dard which is now available on virtually every workstation in the industry. 
Several versions of X have been developed, of which X Version 11 (Xll) is the 
most recent. The X Consortium was formed in 1988 to foster development and 
support of the X Window System. 

X offers many benefits to users. It solves the problem of having a common 
interface across a heterogeneous range of computers and operating systems. It 
provides a mechanism upon which one can build different user interface styles. 
It also addresses the issue of sharing resources among multiple programs. Xis 
operating-system-independent, encouraging the portability of its software to 
diverse platforms. Hence, X is one of the most popular and widely available 
user interface standards in the workstations arena. 

X provides the ability to generate multifont text and graphics in mono
chrome or in color on a bitmap display. Graphics like points, lines, arcs, and 
polygons can be generated in a hierarchy of windows. Each window can be con
sidered as a "virtual screen" and can, in turn, contain subwindows of an arbi
trary depth. They may overlap each other and can be moved, resized, or 
restacked dynamically. Since windows are relatively inexpensive resources, 
applications utilizing several thousand subwindows are common and are often 
used to implement user interface components. 
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The X window system architecture is based on a simple client-server rela
tionship. The display server is the program that controls and draws the output 
to the display monitors, tracks client input, and updates the windows accord
ingly. Clients are application programs that perform specific tasks. Since X is, 
by design, a distributed environment, its clients and server do not necessarily 
have to run on the same machine. 

The terminology in the world of X may be somewhat misleading to program
mers from the traditional host or mainframe environment. The word server in 
the context ofX means the reverse of what servers mean in local area network 
environments. Consider a traditional database environment where the server 
lives on the remote host and the client application resides locally on the PCs 
that are attached to it. In X, the server lives on the local workstation, while the 
clients run on the remote host machines. 

Although X is fundamentally defined by a network protocol, most applica
tion programmers think about it as a graphical user interface (GUI). For ease 
of use, a higher-level layer is used to abstract the protocol layer and insulate 
it from programmers building X-based interfaces. This higher-level layer is 
referred to as the Xlib or more correctly as the Xlib Interface Library (refer to 
Fig. 8.1). This library provides a familiar procedural interface that masks the 
detail of the protocol encoding and transport interactions. It also automati
cally handles the buffering of requests for efficient transport to the server, 
much as the C language standard 1/0 library buffers output to minimize 
system calls. The library also provides a suite of utility functions and primi
tive constructs that do not directly relate to the protocol but aid in building 
applications. 

High-level 
Application X toolkit 

Xlib 

Xprotocol 

Figure 8.1 X window system. 
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8.1.3 Interoperability standards 

8.1.3.1 Trusted Computing Base (TCB) 

TCB is the aggregation of system mechanisms that enforce and ensure the AIX 
operating system's security policies. (A conceptual view of a TCB boundary is 
shown in Fig. 8.2.) Selected components from both the hardware as well as the 
software domains participate in the TCB's domain base to effectively police its 
compliance. 

The TCB software includes: 

• An operating system kernel that manages the system 

• Configuration files that control system operation 

• Programs executed with privilege or access permission to alter the kernel 
and/or configuration files 

The hardware includes: 

• A processor that operates in a dual execution mode: system mode and prob
lem mode 

The programs running in problem mode are functionally independent and 
can access only limited resources, whereas the programs running in system 
mode are relatively unconstrained. The kernel always runs in system mode 
and is henceforth considered a part of TCB. Processes running in problem 
mode interface to kernel modules through the system call mechanism, causing 
the processor to change to system mode. However, those processors are part of 
the TCB only if they run with kernel privilege. 

The system state (information indicating the state of the system) consists of 
a static system state that may be changed only at system start time based on 
administrative privileges and a dynamic system state that may change at any 

Trusted Application 

processes programming 
interface 

Kernel 

Hardware 

Figure 8.2 Conceptual base of trusted computer base. 
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time based on kernel privileges. The static system state is stored in configura
tion files such as /etc/master and /etc/system. The Dynamic system state is 
stored in kernel data structures and the state files of trusted programs such as 
kernel process table and the /etc/utmp file. The system security state is the 
part of the system state that handles security-relevant aspects of the system, 
the reading or modifying of which can be authorized by administrative or ker
nel privileges. 

All programs that are installed with privilege or invoked by a privileged pro
gram are denoted as trusted programs (TPs). Additionally, a TP is any process 
that may alter or read the system security state. 

There are three main components in the security policies identified in the 
AIX operating system, including: 

Access control. Addresses how information resources are created and dis
tributed. 

Accountability. Addresses how users are identified on the system and 
for what actions they are accountable. Can detect actual and potential non
compliance. 

Administrative. Addresses issues pertaining to administrative users on the 
system, provides principle of least privilege, and ensures role separation. 

8.1.3.2 Network File System (NFS) 

Originally developed by Sun Microsystems, NFS has become a de facto net
working standard. NFS's biggest asset is that it is independent of hardware, 
operating systems, and network architectures. This independence was achieved 
through the use of two sets of protocols: 

• Remote procedure call (RPC) protocols 

• Data standardizing External Data Representation (XDR) protocols 

In addition to the RPC and XDR, NFS uses the TCP/IP protocol to imple
ment data transmission. NFS requires TCP/IP to be installed, configured, and 
operational. The NFS facility can be started upon request or simply configured 
to start up when the operating system is booted. 

NFS functions are controlled by a set of daemons. The master daemon asso
ciated with NFS is called inetd. inetd is not just for NFS but is also the mas
ter for all other daemons on the system. It essentially triggers the start-up of 
other daemons when or if needed. In addition to the inetd, there is a suite of 
daemons that are associated with NFS, as seen in Fig. 8.3. NFS daemons 
include: portmapd, mounted, nfsd, pcnfsd, and biod. The biod daemons is 
required to run on all of the machines that are serving as NFS clients. The 
pcnfsd daemon is needed on the server machine only if a PC's files are 
mounted. The rest of the daemons run on the server machine. 

NFS also supports access control lists (ACL), which is a separate function 
handled by an RPC program to exchange information about ACLs between 
clients and servers. 
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On the server On the client 

Figure 8.3 Participating daemons in NFS. 

Mapped files are also supported under NFS on the PowerPC running AIX. 
This feature allows programs on clients to be accessed as if they were in real 
memory. Using the shmat system call, users can map areas of a file into their 
address space. AB the program reads/writes into this region of memory, the file 
is read into the memory from the server or updated as needed. Multiple files on 
the same client can also share data effectively using a mapped file. 

Secure NFS is also implemented under AIX in addition to the standard 
UNIX authentication. NFS uses the Data Encryption Standard (DES) and 
public key cryptography to authenticate users and machines in networks. A 
DES key is generated from two components: a public key published for general 
availability and a private key used to encrypt and decrypt data. 

The NFS-compatible network lock manager supports file and record locking 
over the network. Local lock requests are handled by the kernel. When a lock 
is attempted on a remote file on an NFS-mounted directory, the kernel issues 
a local RPC request to rpc.lockd, the network lock daemon, to make a lock 
request to the network lock manager daemon on the NFS server. The network 
lock manager contains both the client and server functions. The client services 
requests from the kernel and sends them to the network server lock manager 
at the server end, while the server processes lock requests from the network 
and enforces lock operations in the kernel. Figure 8.4 delineates the coordina
tion among the kernel and lock manager on individual machines at both ends, 
while showing the information exchange between the client and the server 
machines. The status monitor shown in the diagram performs health-check 
duties and keeps a record of relevant failures at the client and the server end, 
so that the lock information may be recovered if a crash occurs. When a lock 
request is issued, the kernel ascertains if it is a local request. If so, it processes 
the lock request itself. If not, it transmits the request to the network lock dae
mon. This locking system is essentially stateless. 

Frequently used NFS commands follow: 

Command 

exportfs 

mount 
nfsstat 

on 

Description 

Exports and unexports directories to NFS clients. 

Makes a file system available for use. 

Displays statistics pertaining to the ability of clientlserver to 
receive calls. 

Executes commands on remote systems. 
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Client Server 

Status Status Status 
Application monitor messages monitor 

Lock 1 request 

Lock Lock Lock 
manager requests/ manager 

responses 
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flies 

Kernel Kernel 

Figure 8.4 NFS lock manager. 

ruse rs 
rup 

rpcinfo 

rpcgen 

rwall 
showmount 

Displays a list of users currently logged in on remote machines. 
Displays status of a remote host. 
Reports the status of RPC servers. 
Generates C code to implement an RPC protocol. 
Sends messages to all users on the network. 
Displays a list of all clients that have remotely mounted a file 
system spray. Sends a specific number of packets to a host to 
report performance statistics. 

8.1.3.3 Network Information Service (NIS) 

NIS is a centralized database service that offers centralized control of net
worked machines. NIS was formerly known as ''Yellow Pages" (YP). Rather 
than having to manage each host's files (for example lets/hosts, /ets/passwd, 
and /etc/group), system administrators maintain one database for each file on 
one central server. Machines that are using NIS retrieve information as 
needed from these databases. 

NIS consists of clients and servers, logically grouped together in domains 
using maps (databases) that provide information such as host names or pass
words. An NIS server can be thought of as a host providing resources for other 
computers on the network. An NIS slave is a client that uses the maps to share 
information. These maps are essentially copies of the data to be shared, stored 
in a machine-independent standardized form called XDR format. The map files 
are created using the NIS command makedbm. After creation, each map has 
two files: a file named map. key. pag (containing key and value pairs) and a file 
named map. key. di r (containing index for large . pag files). 
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Site 3 

Figure 8.5 NIS: sharing user password and hostname information. 

NIS reduces the effort of maintaining repetitive databases of information. It 
also helps users by making their password, directories, and files available on 
other systems. Network administration becomes easier and less time consum
ing. Typical information stored in an NIS database includes password files and 
host files (as seen in Fig. 8.5) whose contents are essentially the same for dif
ferent nodes on a single network. 

Frequently used NIS commands follow: 

Commands 

domainname 

makedbm 

ypbind 

ypcat 

ypinit 

ypmatch 

yppasswd 

yppoll 

yppush 

ypserv 

ypset 

ypwhich 

ypxfr 

Description 

Lists the name of the current NIS domain system for an NIS 
host. 

Creates the NIS database maps. 

Enables a client process to connect to a server. 

Lists the contents ofNIS maps. 

Builds and installs NIS maps on an NIS server. 

Displays the values of one or more keys within an NIS map. 

Allows users to change NIS passwords from any NIS host. 

Identifies the version of a NIS map on the NIS server. 

Forces propagation of updated NIS maps from the master server 
to slave servers. 

Looks up information in the local NIS databases. 

Points the ypbind process to a specific server. 

Identifies which machine is the NIS server of an NIS client. 

Transfers an NIS map from an NIS server to a local host. 

8.1.3.4 Andrew File System (AFS) 

The AFS distributed file system joins the file systems of individual machines 
allowing users to access information stored anywhere on a network. AFS uses 
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a client/server model: file server machines store data and transfer it to client 
machines, which perform computations for users. AFS uses a hierarchical file 
structure-a tree with lafs as the root. The next level of directories consist of 
cells. Cells are subtrees of the AFS file space and consist of related directories 
and files. The cell controlling a specific user workstation is termed a local cell; 
other cells in the AFS file space are termed foreign cells. The directories and 
files under /afs make up the AFS file space. 

AFS client machines use a cache manager to access information stored in the 
AFS file space. When a user accesses a file, the cache manager requests the file 
from the file server machine and stores the file as a copy on the client work
station's local disk. This enables the client to use the local copy of the cached 
file rather than continuously sending network requests to the file server 
machines for data. When the file closes, the cache manager sends the changed 
file back to the appropriate file server, and the changed version replaces the 
file stored on the server. 

Because AFS is a distributed file system, several security techniques are 
used to protect the many users, including passwords, mutual authentication, 
and access control lists (ACLs). Passwords and mutual authentication ensure 
that users accessing files are valid AFS users. ACLs allow individual users to 
restrict access to their own directories. Each ACL entry has two parts: a user 
or group name and the access control rights. Access control rights include: 

r read 

lookup 

i insert 

d delete 

w write 

k lock 

a administer 

For example 

fs setacl . jenny rl 

would give Jenny read permission only. 
Frequently used AFS commands follow: 

Command 

fs listacl 

fs setacl 

fs setacl-dir 

fs copyacl 

kpasswd 

fs whereis 

Description 

Lists a directory's ACL 

Sets one directory's ACL 

Sets multiple directories' ACLs 

Copies a directory's ACL to one or more other directories 
' Changes AFS password 

Lists the file server housing a file or directory 
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fs checkservers 
[-all] [<cell name>] 

Checks the status of file servers 

klog 

tokens 

Authenticates with authentication server to obtain 
tokens 

Displays all tokens 

8.1.3.5 Transmission Control Protocol/Internet Protocol (TCP/IP) 

TCP/IP is a set of communication protocols that specify standards and conven
tions for routing and interconnecting computer networks. The de facto stan
dard for local area networks, TCP/IP has proliferated to wide area network 
environments like the Internet. From a conceptual perspective, TCP and IP 
are two separate protocol layers. Figure 8.6 shows the protocol stack for 
TCP/IP. Applications use both the TCP and the IP layers to communicate with 
the network interface (which is the physical layer). 

TCP/IP is a network technology independent of and capable of running on 
virtually all standard hardware platforms. It supports universal interconnec
tion so that one computer may communicate with any other computer on the 
same network or another network. TCP/IP can handle a diverse variety of net
work-related tasks. Some of the routine uses of TCP/IP are for electronic mail, 
computer-to-computer file transfer, remote login, executing commands on a 
remote machine, printing files on remote systems, and managing a network. 
Frequently used TCP/IP commands follow: 

Command 

finger 

ftp 

host 

ping 

Description 

Displays user information on specified host 

Utility is used to transfer files between hosts 

Resolves a host name 

Determines status of a network or host 

Application 

TCP 

IP 

Link 

Physical Figure 8.6 . TCP/IP protocol stack. 
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rep 

rexec 
rlogin 

rsh 
rwho 

telnet (tn) 

tftp 

who is 

Copies one or more files between local and remote host, between 
two remote hosts, or between files at a single remote host 
Allows a command to be executed on a remote machine 
Used to log in to a similar remote host 
Used to execute commands on a foreign host 
Displays user information on local area network hosts 
Provides capability for a user to have a remote session on a similar 
or dissimilar remote host 
Provides a minimal file transfer capability to transfer files to and 
from hosts; provides a stripped set of commands in ftp 
Identifies the owner of a user ID or nickname 

Multiple sets of commands for remote file transfer, remote command execu
tion, and remote login are found under most UNIX systems because each set of 
the utilities has descended from the System V and Berkeley domains. TCP/IP 
is mentioned here for reference only. To gain an understanding of the protocol 
suite, refer to product reference manuals. 

8.1.3.6 Network Computing System (NCS) 

NCS is a set of tools for distributing computer processing tasks across 
resources either in a network or several interconnected networks. NCS is an 
implementation of the network computing architecture, which distributes soft
ware applications across networks encompassing a variety of computers and 
programming environments. Programs based on Network Computing Archi
tecture take advantage of computing resources throughout a network by allo
cating different parts of each program to be executed on host computers best 
suited for that task. NCS consists of three major components: 

• Remote Procedure Call (RPC) run-time library 

• Location broker 

•Network Interface Definition Language (NIDL) compiler 

The RPC run-time library and the location broker provide run-time support 
for network computing. Together, these two components make up what is 
called the network computing kernel (NCK). The NCK contains all the software 
required to run a distributed application. The third component, the NIDL com
piler, is a tool for developing applications. 

The RPC run-time library provides library routines for local programs to 
execute procedures on remote hosts. These routines transfer requests and 
responses between clients (the programs calling the procedures) and servers 
(the programs executing the procedures). When a user writes a distributed 
application, he or she usually need not use RPC routines directly. Instead, an 
interface definition in NIDL can be created, and the NIDL compiler can be 
used to generate the required RPC routines. 

The NIDL compiler takes an interface definition written in NIDL as an 
input. An interface definition specifies the interface between the user and the 
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provider of a service. Once the interface is established, the compiler defines the 
way in which a client application sees a remote service as well as the way in 
which a remote server sees requests for its service. From this definition, the 
NIDL compiler generates client and server stub source code and header files. 
The client stub program performs the conversion between requests (and 
responses) that are meaningful to the client and packets that are transmitted 
(and received) on the network. The server stub program provides similar sup
port for the server. The stub programs produced by an NIDL compiler contain 
nearly all of the remoteness for a distributed application. They perform data 
conversions, assembly and disassembly of packets, and provide interaction 
with the RPC run-time library. It is much easier to write an interface definition 
in NIDL than it would be to write the stub code that the NIDL compiler gener
ates from a definition. 

The location broker provides information about the network or Internet 
resources to clients. It maintains a database that contains the identification 
and locations of objects on a network. Through a client agent, the location bro
ker maintains information about the local brokers that manage information 
about resources on the local host, the global brokers that manage information 
about resources on all hosts, and the administrative tools. 

Network communications between systems in an NCS environment are han
dled through the RPC run-time library. It is possible that one program can 
access different hosts that listen on two different ports or have two different 
addresses. 

The remote procedure calls extend the procedure call mechanism from a sin
gle system to a distributed computing environment. The calls distribute the 
execution of a program among multiple computers in a way that is transparent 
to the application-level code. Figure 8. 7 shows the flow of ordinary local proce
dure calls between the calling client and the called procedures. 

Frequently used NCS commands follow: 

Command 

lb_adm.in 

libd 

nidl 

nrglbd 

Client 

Description 

Monitors and administers location broker registrations 

Manages the information in the local location broker database 

Compiles program definitions written in NIDL 

Manages the global location broker database 

~ 

Call I 

l Return 
I 
I 
I 
I 
I 

Interface 

Procedures 

Figure 8.7 NCS single-process procedure call flow. 
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8.1.3.7 X.25 communications 

X.25 is a communications protocol conforming to international standards that 
is particularly useful for communicating with diverse computer systems and 
for applications that access public databases. Both public networks and private 
networks can be based on X.25 protocol. Public networks are provided on a 
national basis by the National Post, Telegraph and Telecommunications 
authority. Private networks are operated by individual corporations. 

X.25 is designed for a form of communication known as packet switching. 
Figure 8.8 presents a simplified view of how packet switching works. Data is 
sent in basic entities called frames. There are three main levels in X.25. The 
first level is the physical or electrical level. The second level is the frame level, 
also known as the data link or link level. The third level is called the packet 
level. Packets are sent to the network within the information frames of second 
level. 

In a packet-switching network, the data to be sent is combined in a packet 
with addressing and control information. This results in an independent unit 
that can be sent through any suitable path in the network. Packets from many 
different users can share the same network routes and lines. X.25 uses the 
network user address to route both incoming and outgoing calls to the correct 
system. 

In communication terminology, the computer or workstation that sends and 
receives data is known as data terminal equipment (DTE). The network equip
ment that is physically connected to the DTE is the data circuit-terminating 
equipment (DCE). When a user makes a call to another user over the X.25 net
work, one of the predefined number of logical channels is assigned to the call 
at each end. Each DTE includes a logical channel number in each packet sent. 
The number identifies the logical channel that connects the DTE with its DCE. 
The two logical channel numbers at two ends may be different, but each DTE 
needs to know only the number it assigned to the channel. When the two logical 
channels are assigned to a call, a virtual circuit is established from one DTE to 
the other by DCEs on the network. Each logical channel is either for outgoing 
calls only, incoming calls only, or two-way calls that are permanently connected. 
However, the virtual circuit is established only for two-way communication. 

The virtual circuit may be either switched or permanent. A switched virtual 
circuit (SVC) is a virtual circuit that exists only for the duration of the call, act-
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Figure 8.8 X.25 connection. 
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ing like a connection over a standard telephone network. A permanent virtual 
circuit (PVC) is like a leased line that can be established between two 
addresses, to save time in establishing calls. A PVC ties up a logical channel 
permanently. 

Using X.25 on the PowerPC requires an X.25 adapter to connect to the X.25 
network. Software requirements include the X.25 interface protocol code, real
time control microcode, applications programming interface, an X.25 device 
driver, and qualified logical link control (QLLC). X25 commands which enable 
users to use the X.25 network without doing any application programming 
include: 

Commands 

xcomms 

xtalk 

:xroute 

:xmanage 

:xmonitor 

Description 

Starts one of the other commands. 

Communicates with other systems and manages address lists for 
outgoing calls 

Manages a routing list for incoming calls 

Displays status information for an X.25 port. Connects and discon
nects an X.25 port. Gets statistics for an X.25 port. 

Monitors the activity on an X.25 port. 

8.1.3.8 Simple Network Management Protocol (SNMP) 

The SNMP is used by network managers to troubleshoot, locate, and correct 
problems in a network. SNMP is also used by network hosts to exchange infor
mation used in management of networks. 

In 1992, a security enhancement to SNMP was adopted, and an upgrade, 
known as SNMP version 2 (SNMP v2), was adopted in 1993. SNMP v2 runs on 
open systems interconnection-based networks as well as TCP/IP-based net
works. 

Network management for SNMP is based on a client-server model. The 
client agent is run on the local workstation that needs to be managed and used 
to contact one or more SNMP server agents that execute on remote machines, 
usually gateways. The server agent is a process that maintains certain 
databases for the host. Hosts involved in network management run a monitor 
process called xgmon, that generates requests for MIB (management informa
tion base) information and processes responses. 

The MIB is a separate standard (from SNMP) that defines the set of vari
ables and the semantics of each variable that SNMP servers maintain. The 
MIB database contains information pertinent to network management, which 
may be used to record the traffic statistics, error counts, and status of each con
nected network. 

SNMP uses a formal specification language called Abstract Syntax Notation 
One (ASN.1) to define and specify the format ofMIB variable names and mes
sages. ASN.1 defines a hierarchical name space, so the name of each variable 
reflects its position in the hierarchy. The ASN.1 hierarchy carefully distributes 
authority to assign names to multiple organizations. The scheme allows many 
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organizations to assign names concurrently while ensuring that the resulting 
names are unique and absolute. 

Network management can be passive or active. Passive management 
involves the collection of statistical data so that network activity on each host 
can be profiled. Active network management, on the other hand, involves the 
use of a subset of the MIB variables that are designated read-write. The 
request sent to an SNMP server agent is accepted by the server, which per
forms the specified operations and returns a response to the requester. The 
SNMP server agent first parses the message sent by the client and translates 
it to internal form. SNMP then maps the MIB variable specification to the local 
data item that stores the needed information and then performs the fetch or 
store operations as requested. An information flow path illustrated in Fig. 8.9 
shows how SNMP works in general. 

For fetch operations, SNMP replaces the data area in the message with the 
new value that it has fetched. If more than one variable value was requested, 
SNMP fetches the value of each variable and replaces the value with the 
fetched value in the message. After all the specified operations are completed, 
the server translates the reply from its internal form to the external form and 
returns it to the client that requested the values. 

8.1.3.9 Distributed Computing Environment (DCE) 

DCE is a standardized approach to distributed computing that enables system 
administrators to create, use, support, and maintain distributed applications 
on a diverse network. DCE allows applications to exploit the potential resources 
in the network environment and thus improve the performance. Basic features 
of DCE include: 

• Remote procedure call and presentation services 

• Security services 

• Management services 

Receive incoming Parse and Map MIB variables - SNMP request 1----j translate to 1----j to local equivalent I--, 
internal form 

- Send response 
1---1 

Translate reply 
~ 

Perform requested 
i--to client to external form fetch I store 

Figure 8.9 Information flow in SNMP. 
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RPC enables software developers to partition tasks in an application into 
separate procedure models that can be executed on different systems. It 
makes use of what are called threads to allow multiple sequential flows of exe
cution within a single process. This feature provides better service availabil
ity by simultaneous handling multiple clients. The security services ensure 
against unauthorized access. Management services provide utilities to man
age DCE. 

DCE offers a whole suite of services, as seen in Fig. 8.10. The directory ser
vice assigns a unique name or attribute to a physical device, making it acces
sible from any location in the network. Within this paradigm, there are four 
components: 

1. DCE cell directory service (CDS) stores names and attributes within a DCE 
cell, a group of systems administered as one entity. 

2. DCE global directory agent (GDA) is a naming gateway connecting adminis
trative domains through the X.500 worldwide directory service and domain 
name service (DNS). 

3. DCE global directory service (GDS) is used to locate objects in a global envi
ronment. 

Manage
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Threads 
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Figure 8.10 Distributed computing environment. 
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4. X/Open directory service (XDS) defines an application programming inter
face (API) that can be used to create, delete, modify, or search for directory 
service calls. 

Several other services are also available, such as time services, which provide 
a consistent view of time. The distributed file system offers a consistent and 
unified view of all files in the distributed system. Diskless support service 
extends DCE to low-cost, diskless nodes. 

A basic architectural difference between DCE and message 1/0 should be 
noted. DCE provides direct dialogue between the client and server application 
programs through RPCs, unlike message 1/0 where all interactions between 
the client and server applications are dependent on the communication service 
provider. 

DCE for AIX is a layer between the AIX operating system and network and 
the distributed application (see Fig. 8.11). Built on a threads-based model, 
DCE provides support for remote procedure calls, the client functionality for 
cell directory service and security, time, and the basic distributed file system 
services. 

DCE is used as a strategic base to build distributed applications, including 
on-line transaction processing (OLTP) for the AIX environment. Additionally, 
selected DCE interfaces and protocols are available on certain system applica
tion architecture (SAA) platforms. 

8.1.3.10 Open Systems Interconnect (OSI) 

In early 1977, ISO Technical Committee 97 on Information Processing formed 
a subcommittee on OSI to develop an architecture to serve as the reference for 
development of multivendor interconnectivity standards. However, the final 
ISO standard, ISO 7 498, was not published until 1984. OSI is not concerned 
with the internal operations of individual systems; rather it is interested in 
promoting commonality and consistency among all standards related to sys
tems interconnection. 

The framework for standardization provided by OSI is based on the seven
layer OSI reference model (refer to Fig. 8.12). The OSI layers consists of the 
physical (transmission of an unstructured bit stream over a physical link); the 
data link (provides for the reliable transfer of data across the physical link); 

Distributed applications 

DCE 

AIX and network services 
Figure 8.11 DCE in relation 
toAIX. 
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Figure 8.12 OSI protocol stack. 

the network (provides a network connection path); transport (provides reliable, 
transparent transfer of data between end points); session (establishes, man
ages, and disconnects communicators); presentation (provides standardized 
application interface); and application (information processing applications 
including file-transfer protocol and network management). 

OSI's primary contribution has been the identifying of functions that are 
necessary for effective network communication. And in conjunction with this 
contribution, the OSI conformance testing standards and the internationalized 
standardized profiles (ISPs) have enabled OSI to guarantee OSI-branded prod
ucts as interoperable and compatible. 

8.2 CONNECTIVITY 

8.2.1 Connectivity with peer UNIX machines 

Connectivity with peer nodes can be provided using the Basic Network Utili
ties programs (BNU) that are standard with the AIX regular distribution. 
BNU comprises a suite of utilities that are used to communicate with peer 
nodes. BNU is a version of UUCP and is often better known as UUCP in the 
traditional UNIX communities. The acronym UUCP stands for UNIX-to-UNIX 
Copy Program. It should be noted that, although the availability of the BNU or 
UUCP facility predates most networking suites, it is still one of the most 
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widely used means of exchanging files across the Internet. Built in 1976 by 
Mike Lesk at AT&T Bell Labs, the research project became a de facto net
working standard when it was shipped as part of the standard software distri
bution of UNIX Version 7 in 1977. An update was released in 1981. Although 
less sophisticated in terms of functionality, UUCP provides basic connectivity 
with peer machines over regular serial lines and does not require any addi
tional network interface hardware. 

UUCP performs the following primary functions: 

• Electronic mail 

• Transfer of files to and from remote systems 

• Execution of commands on remote systems 

UUCP is a store-and-forward network. That is, requests for mail forwarding, 
file transfers, or remote execution of commands are not executed immediately 
but are spooled for execution when communication is established between the 
two systems. Depending of how the configurations files have been set up, com
munication may be established immediately or may wait till a later time. 
Figure 8.13 presents a conceptual view of how UUCP works for forwarding 
electronic mail. 

Although the suite of programs is referred to as UUCP, the actual UUCP 
program only participates in copying files. For mail handling, remote com
mand execution, and other tasks, there are separate stand-alone program files 
(described later). Perhaps it would have been more appropriate to refer to the 
UUCP as UU because the name more clearly indicates that UUCP is a collec
tion of many programs, all which have a name prefixed with the letters "uu." 
Referring to this suite of network utilities as BNU eliminates the misleading 
reference. 

UUCP works in multiple steps. When mail is sent, a file transfer command 
is invoked, or a remote command execution request is issued, two things hap
pen. First, a work file containing logistic information such as the name of the 
source file, name of the destination file, and command request type (for exam
ple, send file, receive file, or execute file) is created in a spooling directory on 
the PowerPC. The second phase involves starting a command called uusched 
to scan the contents of the work file, and subsequently invoking other pro
grams like uucico if needed, to call another system, connect to it, and transfer 
the data in or out. 

Requirements for BNU/UUCP installation are minimal. The simplest hard
ware requirement involves connecting a null-modem serial cable between the 
ports of two machines. A modem will be required at both ends if the connection 
is being made between two remote machines. There is no additional software 
requirement as such, but the software must be configured to define the 
machine name(s) to call or connect to, must place the phone call (if connecting 
to a remote machine over a modem), and optionally must specify when to call 
the remote machine to forward files and receive incoming files. 
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mail neighbor! remote 1! remote 2! john 

Home 

uucico Queued request 
,____ _ __ J 

rm ail 

Neighbor uux 

uucico Queued request 
___ .J 

rm ail 

Remote 1 uux 

uucico Queued request 
___ .J 

Remote2 rm ail >> /usr/spool/mail/john 

Figure 8.13 UUCP forwarding electronic mails. 

Once UUCP/BNU is installed and configured, the following commands can 
be run by any AIX user to log in to remote systems, transfer files, run processes 
on remote systems, and report the status of jobs and transfers. 

Command 

uucp 

uuencode 

uudecode 

uuname 

uupick 

uupoll 

uuq 

uusend 

Description 

Copies file(s) to another AOOUNIX system running BNU or another 
version of UUCP. 

Encodes a binary file. 

Decodes a binary file encoded by the uuencode command. 

Provides information about peer systems accessible to the local 
system. 

Completes the transfer of files sent by the uuto command. 

Forces a call to a remote system so queued jobs can be transferred. 

Displays the BNU job queue. 

Sends a file to a remote host that is running BNU or another version 
of UUCP. 
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uusnap 

uustat 

uuto 

ct 

cu 

Displays a snapshot summary of the status ofBNU. 

Reports the status of and provides limited control over BNU opera
tions. 

Copies files to a peer system running BNU or another version of 
UUCP uux. Runs a command on a remote AIX or UNIX system run
ning BNU or another version of UUCP. 

Dials a remote system and initiates a login process. 

Connects directly or indirectly to another system. 

8.2.2 Connectivity with host machines 

Connectivity with the mainframe world of machines requires the use of a soft
ware interface so that the user can access applications on the host. The hard
ware interface requirements are referred in Chap. 3 of this book. The term 
emulator has been used in this section to refer to a software application that 
allows the native system to mimic a terminal session on the host machine. The 
objective of using an emulator is to provide a transparent interface for a user 
on the PowerPC to work with applications resident on the host (Fig. 8.14). 

There are two primary types of emulators available on the PowerPC to work 
with host sessions including: 

• 3270 host connection program 

• 3278/79 emulation 

8.2.2.1 3270 host connection program (HCON) 

The host connection program (HCON) is a 3270 connectivity application for the 
AIX environment. HCON emulates a subset of 327X functions and features, 
and allows end users at AIX terminals to connect to an IBM System/370 host 
and appear to the host as an attached IBM 3270 display terminal or printer. 
HCON facilitates file transfers between the workstation and the IBM System/ 
370 host, allows printer emulation, and provides High-Level Language Appli
cation Programming Interface (HLLAPI) support for user-provided work
station applications to communicate with 3270 sessions. HCON connectivity 
can be: 

lEmulation 

PowerPC
based computer 

Network 

Figure 8.14 Connectivity with host. 

Host computer 
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• System network architecture (SNA) connection in a Type 2.1 low-entry net
working (LEN) node attachment 

• 5088/6098 graphics control unit attachment 

•Distributed function terminal (DFT) SNA attachment to an IBM 3274/3174 
or IBM 9370 workstation subsystem controller 

• Transmission Control Protocol/Internet Protocol (TCP/IP) Telnet 3270 con
nection 

HCON establishes multiple sessions with System/370 mainframes. Each 
session emulates either a 3278/79 display or a 3286/87 printer. A session emu
lating a display is a display session. A session emulating a printer is a printer 
session. HCON provides file transfer capabilities within display sessions. It 
also includes the HLLAPI to write programs that communicate with main
frame host programs. 

Each HCON user can have up to 26 sessions, allowing one or more simulta
neous invocations of sessions to communicate with one or more hosts using dif
ferent session characteristics and communication protocols. The parameters 
defining the session characteristics are established by a session profile. 

To communicate with a mainframe host, HCON uses one or more of the 
following: 

• 3270 connection adapter in distributed function terminal (DFT) mode 

• Host interface adapter (HIA) 

•Group of adapters supported by System Network Architecture (SNA) Ser
vices/6000 

• Group of adapters supported by Transmission Control Protocol/Internet Pro
tocol (TCP/IP) 

If the local system has more than one of these devices installed, users can 
implement different devices for different HCON sessions: 

DFT sessions 

HIA sessions 

SNA stand-alone 
sessions 

TCP/IP sessions 

Use the 3270 connection adapter. The 3270 connection 
adapter emulates a display (by establishing an SNA DFT or 
non-SNA DFT display session) or a printer (by establishing a 
non-SNA DFT printer session). The SNA Services/6000 is not 
required. 

Use the host interface adapter (HIA). The HIA emulates a 
display by establishing an HIA display session. 

Use SNA Node Type 2.1 over SNA Services/6000. NO 
TAGHCON-supported adapters supported by SNA Ser
vices/6000 establish an SNA stand-alone printer sessio:µ or 
SNA stand-alone display session. 

Use TCP/IP with the appropriate adapters. HCON-supported 
adapters supported by TCP/IP emulate a 3270 display by 
establishing a TCP/IP display session. 
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The system can have any combination of supported adapters: 

Each 3270 connection adapter supports up to five sessions. 

HIA supports up to 16 sessions. 

Each SNA Node T2.1 attachment supports up to 253 logical units (LUs) per 
connection. 

For TCP/IP, the maximum number of sessions per connection depends upon 
the user's system resources. 

8.2.2.2 327Bn9 emulation (EM78) 

The 3278/79 emulation (EM78) program allows your machine to imitate a 
3278/79 device attached to a System 3270 computer. Emulators provide the 
functions of the device being emulated as if you were actually using that 
device. The emulator must be installed on your system. 

The em78 command invokes a 3278/79 emulation (EM78) session. At the 
beginning of an emulation session, the emulator acts as if you had just turned 
on a 3278/79 terminal. After you log in to the System 3270 host, you can run 
commands and programs from your workstation. 

The emrcv and em.send commands upload and download files to and from 
a host, changing the format of the data in the files as you transfer them. Either 
an MVSfl'SO host session or a VM/CMS host session can be specified during 
file transfer. For example, you can translate files from ASCII to EBCDIC or 
add or remove carriage-return characters. 

You can customize the keyboard mapping, color, and field attributes for the 
EM78 emulator. To customize the emulator, you must edit a file following the 
EM78 customization file format and then install the changes with the emkey 
command. 

8.2.3 Connectivity and access to PC-DOS 

Using AIX Access for DOS Users (AADU), a product that provides transparent 
access to the AIX file system for PC-DOS users through the use of virtual 
drives, system administrators and programmers can use the PowerPC's disk 
space to store PC-DOS files. AADU allows PC-DOS users to share the AIX file 
system of the host machine without requiring knowledge of the AIX operating 
system. Access to printers on the PowerPC machine is also provided to PC
DOS users via network interface drivers. The minimum machine hardware 
requirements for AADU are 512 KB of physical memory and 1 MB of disk space 
on a PS/2, AT, or XT class machine that is equipped with an Ethernet, token
ring, or asynchronous serial connection. Performance is affected by the amount 
of memory and disk storage available on the PC-DOS. Software requirements 
call for DOS Version 3.3 or later and Microsoft Windows 3.1 or later. Figure 
8.15 shows the connectivity layout of a PC-DOS and a PowerPC. 

Standard AIX file permission modes are used by AADU to protect all the PC
DOS files stored on the AIX system disk. Users can selectively protect files and 
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Figure 8.15 Connection with DOS-based PCs. 

directories from other users. User management is responsible for evaluation, 
selection, and implementation of security features, administrative procedures, 
and communication facilities. Although files are accessible to users via the vir
tual drives, recognize that the AIX operating system will not be able to create 
file names which include PC-DOS graphic characters or use PC-DOS com
mands such as ASSIGN, FDISK, FORMAT, PRINT, SYS, BACKUP, RESTORE, 
JOIN, TREE, and SHARE on the virtual disk. 

8.3 SUMMARY 

Connectivity among systems must be maintained and fostered for smooth inte
gration and operation of the wide variety of computers available to business 
and research communities. Standards must be complied with for the portabil
ity of application software systems and system networking. In an effort to 
emphasize the importance of open systems, this chapter has briefly reviewed 
the standards and standards groups shaping the details of open systems 
including ISO, ANSI, OSI, POSIX, DCE, TCP/IP, NFS, and AFS, among oth
ers. The ability of the PowerPC and the AIX operating system to interact with 
a variety of machines and other operating systems has also been discussed. 
The crucial elements of an open system-interoperability, portability, and inte
gration-have been reviewed to demonstrate the ability of the PowerPC and 
its operating environment to interact with today's computing environment. 



Chapter 

9 

Design of AIX: 
A PowerOpen Implementation 

This chapter introduces a system perspective for the AIX based operating sys
tem. It introduces the kernel in light of its characteristic components, infras
tructure, and communication mechanisms. Although some basic terms and 
concepts are reviewed, familiarity with "stock" UNIX is assumed. 

9.1 COMPONENTS OF THE KERNEL 

There have been references made about the fact that the AIX system supports 
the illusion that the processes have "life" and files have "places." These two 
entities, processes and files, are the central concepts in the AIX system model. 
A file (defined as a collection of bytes logically grouped together) and a process 
(defined as an instance of a program in its state of execution) together form an 
operational entity, in which the file is the piece of data and the process is the 
rule that acts upon the file. If the idea is extended further, it becomes evident 
that working with files involves devices and management of devices, while 
working with processes involves the management of processes. A logical block 
diagram of an AIX kernel displayed in Fig. 9.1 shows the two main subsystems 
for process and device management side-by-side. This well-known layout is 
similar to a traditional UNIX system. The vertical separation between the 
device management subsystem and the process management subsystem 
reflects their functional roles. The two horizontal separations emphasize the 
positioning of the functional components of AIX between the application level 
and the hardware level. 

231 
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Figure 9.1 Logical block diagram of an AIX kernel. 

The roles of each component are significant in their own ways as each 
affects the overall working of the operating system. User programs make use 
of libraries (using subroutine calls) to communicate with the kernel via sys
tem calls. Libraries are repositories for common routines that programs use 
to perform a task. They are linked with the programs at compile, load, or run 
time and become a part of the program. System calls are similar to ordinary 
functions in high-level languages like C. For the purpose of this discussion, 
they can be thought of as primitives that allow a program to enter the oper-
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ating system. When a program enters the operating system, it accesses the 
file subsystem and/or the process subsystem. The I I 0 subsystem handles 
data flow and the file 1/0 aspect of program execution. It uses a buffered as 
well as a nonbuffered mode to interface with the 1/0 device drivers and coor
dinate file 110. The process subsystem, on the other hand, handles the orches
tration of processes. This orchestration is a top-level abstraction of all the 
tasks, including interprocess communication and process scheduling man
agement. 

9.2 Functions of the kernel 

In generic operating system terminology, a kernel denotes a nucleus of soft
ware that plays the role of system orchestrator and provides facilities neces
sary for implementing system services. These services can be functions to 
access file systems, support for network protocols, or similar facilities. 

From a structural perspective, the kernel is a single binary image that 
supervises all process management, scheduling, and 1/0, using system calls to 
interface to the application world. The majority of the kernel source code is 
written in C, with a small amount in assembly language. 

The kernel's responsibilities can be split up into the following functional 
domains: (1) task management and (2) 1/0 management. 

9.3 KERNEL SERVICES 

In order to understand how the numerous kernel services work, it is necessary 
to comprehend how the system calls operate. 

9.3.1 System calls 

Execution of a user process is divided into two levels: user and kernel. When
ever a user process requires an operating system service, it executes a system 
call. This system call performs a momentary mode switch from the user mode 
to the kernel mode in order to respond to the process's request (refer to Fig. 
9.2). A mode switch is obligatory in order to make use of the privileged ser
vices that the kernel has access to, such as manipulation of the process status 
register. Although the kernel distinguishes one process from another by refer
encing its internal data structures, the underlying hardware has no clue 
about processes. The hardware merely views the system in terms of kernel 
mode and user mode. As illustrated in Fig. 9.3, a kernel is able to differentiate 
between processes Pi. P 2, P3 , and P4 along the horizontal axis and the hard
ware distinguishes the mode of execution on the vertical axis. It should be 
understood that execution of a user process in two modes does not mean that 

· there are two processes at any instant; it merely means that the kernel runs 
on behalf of the user process to handle allocation of resources, etc. For execut
ing any simple program or command, mode switching happens more oftep. 
than one would expect. Consider catenating a file called /tmp/foo and redi-
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Figure 9.3 Processes and modes of execution. 

recting its contents to the terminal device I dev/ ttyOl. The sequence of mode 
switches (system calls) that takes place is highlighted in boldfaced fonts 
within the algorithm that describes the example from the system perspective 
of AfX. 

Commandissued: cat /tmp/foo > /dev/ttyOl 
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Participant's action 

read the command line 

parse the command line arguments 

fork a child process 
and wait for it to finish 

close stdout and open! dev /ttyOl 

exit if open fails 
else dup!dev /ttyOl 

exec/bin/cat 
open/tmp/foo 

read/tmp/foo 

write stdout (ldev /ttyOl) 

exit and signal the parent (the shell) 

write out a prompt for next command 

This scenario of redirecting the contents of a file to a terminal device mani
fests several sets of underlying system calls. The process-related calls are 
fork(), exec(), wait(), exit(), and signal(). File-related system calls used are 
open(), dup(), and close(). The 1/0-related system calls are read() and write(). 
All of the system calls shown in this example are standard on traditional UNIX 
systems as well as AIX, and, hence, are not discussed in any further depth. 
When invoked from user programs, these system calls perform a mode switch, 
make use of the kernel services, and continue executing the user application. 

Each mode switch from user mode to kernel mode can be categorized on the 
basis of the action that initiates it. There are two primary kinds of hardware 
and software actions that gain an entry into the kernel: (1) hardware inter
rupts and traps and (2) software interrupts and traps. System calls are 
referred to as being a special case of software interrupts. The CPU is allowed 
to be interrupted asynchronously. The occurrence of an interrupt normally 
causes the kernel to save its current context, service the interrupt, and then 
resume processing its current context. 

Although system calls are invoked just like subroutines, there are some fun
damental differences between them. It is necessary to reiterate that they run 
in the kernel mode when invoked. By doing so, they use certain kernel pro
cesses to perform miscellaneous asynchronous tasks. In addition to these basic 
traits, system calls on AIX are unique in the sense that they are pageable (with 
some restrictions). They are also preemptable by higher-priority processes to 
facilitate real-time processing support. Also, new system calls may be added 
dynamically. Recognize that adding a new system call essentially means 
extending the kernel by adding to its base set of kernel services. 

9.3.2 Kernel facilities 

AIX furnishes a set of routines that provide the run-time kernel environment 
to programs executing in kernel mode. This basic set of routines is referred to 
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as kernel facilities or services. The programs that run in kernel mode are 
not conspicuously visible to the user, but they can be displayed using the 
pstat or ps commands, if required. Kernel services offered by AIX span a 
very wide range offunctional areas. These services are primarily used by ker
nel extensions. The main categories of kernel services are shown in Fig. 9.4, 
and each is discussed in terms of its features, functions, and commonly used 
routines. 

Process and exception management (P&EM) kernel services are provided by 
the base AIX kernel and are responsible for new kernel process creation, seri
alization of processes, and signal handling. In addition, certain traditional 
UNIX kernel services are also incorporated in here, in order to support ported 
code from other variants of UNIX and previous versions of AIX. Commonly 
used P&EM kernel services are: 

creatp 

initp 

e_post 

e_wait 

wakeup 

lockl 

unlockl 

setjmpx 

Creates a new kernel process 

Initializes a kernel process after its creation 

Notifies a process of the occurrence of event(s) 

Forces a process to wait for the occurrence of an event 

Activates processes sleeping on the specified channel 

Imposes a lock to serialize access to a resource 

Releases a conventional process lock 

Allows saving of the current execution state or context 

Logical file system (LFS) services allow processes running in kernel mode to 
open and manipulate files in the same way that user-mode processes do. Since 
system calls can have data access limitations, a set of file system calls is pro
vided with a kernel-only interface. Commonly used LFS kernel services are: 

fp_open 

fp_opendev 

fp_close 

fp_read 

fp_write 

fp_access 

fpJstat 

fp_ioctl 

Opens a regular file 

Opens a device special file 

Closes a file 

Performs a read operation on an open file 

Performs a write operation on an open file 

Checks for access permission to an open file 

Acquires the attributes of an open file 

Issues a control command to an open file 

Virtual file system (VFS) kernel services provide a standard interface and act 
as the basic building blocks for writing a virtual file system. They can be used 
to create and/or free vnodes across various file system types without having to 
worry about physical file system dependencies. VFS services that can be used 
across the various file system types to enable the logical file system to operate 
independently of the file system type are: 
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gfsadd 

gfsdel 

vn_get 

vnJree 

vfsrele 

lookupvp 

Adds a file system type to the gfs table 

Deletes a file system type from the gfs table 

Adds a vnode to the existing list ofvnodes for the designated file system 

Frees a previously allocated vnode 

Points to a virtual file system structure 

Retrieves the vnode that corresponds to the named path 

Memory kernel services offer the ability to dynamically allocate and free 
memory, pin and unpin processes, manipulate virtual memory objects, and move 
data between user and kernel memory. Data can also be moved between the ker
nel and an address space other than the current process address space, using a 
cross-memory service feature. Commonly used memory kernel services are: 

xmalloc 

xmfree 

init_heap 

pin 

unpin 

Allocates memory (similar to malloc in the user mode) 

Frees allocated memory 

Initializes a new heap 

Pins the address range in the system address space 

Unpins the address range 

Message queue kernel services render the equivalent of normal message 
queuing functions for programs executing in user mode to the kernel exten
sions. The most frequent use for these message queue kernel services is as IPC 
channels to allied kernel processes or user-mode processes. Available message 
queue kernel services are: 

kmsgctl 

kmsgget 

kmsgsnd 

kmsgrcv 

Queries the status of the message queue, sets selected status fields, or 
removes the queue, when needed 

Opens or creates a message queue by traversing the message queue 
array to locate a possible match, and allocating a new queue structure 
if no match is found 

Sends a message using a previously defined message queue 
Receives a message from a message queue 

Reliability-availability-serviceability services are collectively referred to as 
the RAS kernel services. They address the reliability, availability, and service
ability aspects of the software and hardware. Occurrences of errors and fail
ures are recorded so that they may be examined at a later time. In the event of 
a fatal error, a kernel service called panic is invoked, which triggers a system 
dump and captures the data areas that are cataloged in the master dump 
table. Some of the RAS kernel services are: 

panic 

errs ave 

Crashes the system. (Note: It is invoked in the event of a catastrophic 
failure to perform a system dump.) 
Writes an entry in the system error log when a hardware or software 
failure is detected. 

Timing kernel services furnish an array of utilities that address various 
timing-related aspects of the global system. In order to structure their roles, 
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the services are further grouped into four functional categories referred to as 
(1) time-of-day (TOD) kernel services, (2) timer compatibility kernel services, 
(3) watchdog timer kernel services, and (4) high-resolution timer (HRT) kernel 
services. Each type of service contributes to the time-and timer-related issues 
of the kernel. The TOD service maintains the systemwide time-of-day timer 
values and can be used to access or set the time on the system. The timer com
patibility service provides backward compatibility with earlier versions of AIX 
by handling application timeouts and the callout table entries. The watchdog 
timer service furnishes a low-overhead, moderate-resolution timer, which can 
be used to timestamp events without causing any serious overhead. The HRT 
services provide fine-grain timing functions that can be used to conduct criti
cal measurements with as fine as 10 ms granularity. Following are the com
monly used kernel services: 

curtime 

ksettimer 

tstart 

tstop 

delay 

talloc 

tfree 

Readsthecurrenttim.e 

Sets the systemwide TOD timer 

Submits a tim.er request 

Cancels a pending timer request 

Suspends the calling process for the specified number of timer ticks 

Allocates a timer request block (structure is called trb) 

Deallocates a timer request block 

Security kernel services determine the privilege state of a process and, as a 
result, facilitate controlling the auditing system and access rights. There is 
only one security kernel service in the current implementation of AIX. 

suser Determines the privilege state of a process by checking to see if the pro
cess has any effective privilege 

Network kernel services are a cluster of four types of network-related func
tions. The first is the address family domain and network interface device 
driver (AFD/NIDD) services, and this facilitates addition or removal of proto
cols and network interface drivers from network switching tables. The second 
set of functions is the routing and interface address kernel services, which sup
port the network route addition and deletion functionalities for remote hosts 
and gateways. The third set of functions is referred to as the loopback kernel 
services; it allows debugging in a simulated environment for development of 
new network protocols without introducing network variables. The fourth 
function is the protocol kernel service, which enables a raw protocol handler to 
pass packets up through sockets so a protocol can be implemented in the user 
space. Finally, there is a set of functions called the communications device han
dler interface (CDHI) kernel service that provides a standardized interface 
between network interface drivers and AIX communications device drivers. 

Commonly used Network kernel services are: 

if_attach 

if_detach 

Adds a network interface to the network interface list 

Removes a network interface from the network interface list 
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rtalloc 

rtfree 

rtrequest 

rtredirect 

net_attach 

net_detach 

Allocates a route consisting of a destination address and a reference 
to a routing entry 
Frees the routing table entry by freeing the mbuf structure that is 
associated with the route 

Carries out a request to alter the contents of the routing table 

Forces a routing table entry to be redirected through a given gateway 

Opens a communications 1/0 device handler 

Closes a communications 1/0 device handler 

1/0 kernel services are better described as six separate categories: (1) block 
1/0 services which enable asynchronous 1/0 transfers to take place in fixed-size 
blocks; (2) buffer cache services which manage user access to device drivers 
through block special files for file system compatibility services and mounts; 
(3) character 110 services that manage the read and write operations to char
acter devices like keyboards, terminals, etc.; (4) DMA management services 
that coordinate the DMA operations between adapters and memory; (5) inter
rupt management services that enable and disable interrupt levels in the sys
tem; and, finally, (6) memory buffer services which provide facilities to acquire, 
release, and manipulate memory buffers. 

Commonly used 1/0 kernel services are: 

bread 

bwrite 

getblk 

purblk 

getc 

putc 

waitcfree 

m_get 

m_pullup 

mJree 
d_init 

d_clear 

d_mask 

d_move 

Reads the specified block's data into a buffer. 

Writes the specified buffer's data. 

Assigns a buffer to the specified block. 

Purges the specified block from the buffer cache. 

Retrieves a character from a character list. 

Places a character at the end of a character list. 

Checks the availability of a free character buffer. 

Allocates a memory buffer from the memory buffer pool. 

Shuffles an mbuf chain so that a given number of bytes is in contigu
ous memory in the data area of the head mbuf structure. 

Frees an mbuf structure. 
Initializes a DMA channel. 

Frees a DMA channel. 

Disables a DMA channel. 

Provides a means of accessing the data while a DMA transfer is being 
performed on it. Since this service accesses the data through the 
same system hardware as that used to perform the DMA transfer, it 
can guarantee the data to be consistent. 

device and ring queue kernel services are methods of queuing requests from 
one kernel process to another. They are based on a client-server model. These 
services primarily serve as compatibility structures for software ports from 
previous versions of the AIX. operating system. Commonly used services are: 



creatq 

dstryq 

attchq 

detchq 

enque 

deque 

waitq 

queryi 

rqc 

rqd 

rqputw 

rqgetw 
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Creates a device queue 

Deletes the specified device queue 

Creates a path to a device queue 

Removes a path to a device queue 

Places a queue element into a specified device queue 

Removes an element from the device queue 

Waits for a queue element to be placed on a device queue 

Provides information about device queues 

Creates a ring queue in the kernel heap 

Deletes a ring queue from the kernel queue 

Puts a queue element on the specified ring queue 

Returns the next element from the specified ring queue 

Device driver management I kernel extension services include general pur
pose kernel loading and binding services and device driver binding services. 
Commonly used services are: 

devswadd 

devswdel 

iostadd 

pio_assist 

uexadd 

uexdel 

Adds a device entry to the device switch table 

Removes a device driver entry from the device switch table 

Registers an 1/0 statistics structure used for updating 1/0 statistics 
reported by the iostat facility (covered in Chap. 8) 

Provides a programmed I/O exception handling mechanism for rou
tines performing programmed 1/0 

Adds a systemwide exception handler for catching user-mode process 
exceptions 

Deletes a previously added systemwide exception handler 

A kernel service, in general, can either be called in both the process and the 
interrupt environments or exclusively in the process environment. Table 9.1 
provides the names of the available kernel services under AIX, along with the 
environment from which they can be called. 

9.4 DISTINGUISHING FEATURES OF THE AIX KERNEL 

The AIX kernel distinguishes itself from traditional UNIX systems by virtue of 
its unique characteristics. Although its infrastructure is based upon a System 
V Version 2 kernel, a myriad of characteristic features sets it apart from tradi
tional UNIX systems. 

The kernel structure in AIX has been extended to support preemption and 
real-time processing capabilities. The second distinguishing feature of the AIX 
operating system is that its kernel is pageable. The next noteworthy feature is 
its virtual memory management scheme, which provides support for an 
exceedingly large address space. Additionally, support for a dynamic load facil
ity in AIX is adopted to allow parts of programs and kernel extensions to be 
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TABLE9.1 Kernel Services 

Process Interrupt Process Interrupt 
Command environment environment Command environment environment 

ackque ,,- devswadd ,,-
add_arp_iftype ,,- ,,- devswdel ,,-
add_domain_af ,,- ,,- devswqry ,,-
add_input_type ,,- ,,- dmp_add ,,-
add_netisr ,,- ,,- dmp_del ,,-
add_netopt ,,- ,,- dmp_prinit ,,-
as_att ,,- dstryd ,,-
as_det ,,- DTOMmacro ,,- ,,-
attchq ,,- epost ,,- ,,-
audit_svcbcopy ,,- e_sleep ,,-
audit_svcfinis ,,- e_sleepl ,,-
audit_svcstart ,,- e_wait ,,-
bawrite ,,- e_wakeup ,,- ,,-
bdwrite ,,- enque ,,-
bflush ,,- errsave ,,- ,,-
bin val ,,- find_arp_iftype ,,- ,,-
blkflush ,,- find_input_af ,,- ,,-
bread ,,- find_input_type ,,- ,,-
breada ,,- fp_access ,,-
brelse ,,- fp_close ,,-
bwrite ,,- fp_fstat ,,-
canclq ,,- fp_getdevno ,,-
cfgnadd ,,- fp_getf ,,-
cfgndel ,,- fp_hold ,,-
clrbuf ,,- ,,- fp_ioctl ,,-
clrjmpx ,,- ,,- fp_lseek ,,-
cop yin ,,- fp_open ,,-
copyinstr ,,- fp_opendev ,,-
copyout ,,- fp_poll ,,-
creatd ,,- fp_read ,,-
creatp ,,- fp_readv ,,-
creatq ,,- fp_rwuio ,,-
curtime ,,- ,,- fp_select ,,-
d_align ,,- ,,- fp_write ,,-
d_cflush ,,- ,,- fp_writev ,,-
d_clear ,,- ,,- fubyte ,,-
d_complete ,,- ,,- fubyte ,,-
d_init ,,- ,,- fuword ,,-
d_mask ,,- ,,- getadsp ,,-
d_master ,,- ,,- getblk ,,-
d_move ,,- ,,- getc ,,- ,,-
d_roundup ,,- ,,- getcb ,,- ,,-
d_slave ,,- ,,- getcbp ,,- ,,-
d_unmask ,,- ,,- getcf ,,- ,,-
del_arp_iftype ,,- ,,- getcx ,,- ,,-
del_domain_af ,,- ,,- geteblk ,,-
del_input_type ,,- ,,- geterror ,,- ,,-
del_netisr ,,- ,,- getexcept ,,- ,,-
del_netopt ,,- ,,- getpid ,,- ,,-
delay ,,- getppidx ,,-
deque ,,- getuerror ,,-
detchq ,,- gfsadd ,,-
devdump ,,- ,,- gfsdel ,,-
devstrat ,,- ,,- i_clear ,,-
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TABLE9.1 Kernel Services (Continued) 

Process Interrupt Process Interrupt 
Command environment environment Command environment environment 

i_disable ,,, ,,, m_getclustm ,,, ,,, 
i_enable ,,, ,,, m_gethdr ,,, ,,, 
Unit ,,, M_HASCL macro ,,, ,,, 
i_mask ,,, ,,, m_pullup ,,, ,,, 
i_reset ,,, ,,, m_reg ,,, 
i_sched ,,, ,,, MTOCLmacro ,,, ,,, 
i_unmask ,,, ,,, MTODmacro ,,, ,,, 
if_attach ,,, ,,, M_XMEMD macro ,,, ,,, 
if_ detach ,,, ,,, net_attach ,,, 
if_down ,,, ,,, net_ detach ,,, 
if_nostat ,,, ,,, net_ error ,,, 
ifa_ifwithaddr ,,, ,,, net_sleep ,,, 
ifa_ifdstwithaddr ,,, ,,, net_start ,,, 
ifa_ifwithnet ,,, ,,, net_start_done ,,, ,,, 
ifunit ,,, ,,, net_ wakeup ,,, ,,, 
init_heap ,,, net_xmit ,,, ,,, 
initp ,,, net_xmit_trace ,,, ,,, 
io_att ,,, ,,, NLuprintf ,,, 
io_det ,,, ,,, panic ,,, ,,, 
iodone ,,, ,,, peekq ,,, ,,, 
iostadd ,,, pfctlinput ,,, ,,, 
iostdel ,,, pffindproto ,,, ,,, 
iowait ,,, pidsig ,,, ,,, 
kgethostname ,,, ,,, pgsignal ,,, ,,, 
kgettickd ,,, ,,, pin ,,, 
kmod_entrypt ,,, pin cf ,,, 
kmod_load ,,, pin code ,,, 
kmod_unload ,,, pinu ,,, 
kmsgctl ,,, pio_assist ,,, 
kmsgget ,,, prochadd ,,, 
kmsgsnd ,,, prochdel ,,, 
ksettickd ,,, purblk ,,, 
ksettimer ,,, putc ,,, ,,, 
lockl ,,, putcb ,,, ,,, 
loifp ,,, ,,, putcbp ,,, ,,, 
longjmpx ,,, ,,, putcf ,,, ,,, 
lookupvp ,,, putcfl ,,, ,,, 
looutput ,,, ,,, putcx ,,, ,,, 
m_adj ,,, ,,, qryds ,,, 
m_cat ,,, ,,, queryd ,,, 
m_clattach ,,, ,,, queryi ,,, ,,, 
m_clget macro ,,, ,,, queryp ,,, 
m_clgetm ,,, ,,, raw_input ,,, ,,, 
m_clgetx ,,, ,,, raw_usrreq ,,, ,,, 
m_collapse ,,, ,,, readq ,,, 
m_copy macro ,,, ,,, rqc ,,, 
m_copydata ,,, ,,, trqd ,,, 
m_copym ,,, ,,, rqgetw ,,, 
m_dereg ,,, rqputw ,,, 
m_free ,,, ,,, rtalloc ,,, ,,, 
m_freem ,,, ,,, rtfree ,,, ,,, 
m_get ,,, ,,, rtinit ,,_ ,,, 
m_getclr ,,, ,,, rte direct ,,, ,,, 
m_getclust macro ,,, ,,, rtrequest ,,, ,,, 
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TABLE 9.1 Kernel Services (Continued) 

Process Interrupt Process Interrupt 
Command environment environment Command environment environment 

schednetisr 
selnotify 
setjmpx 
setpinit 
setuerror 
sig_chk 
sleep 
subyte 
suser 
suword 
talloc 
tfree 
timeout 
timeoutcf 
trcgenk 
trcgenkt 
tstart 
tstop 
uexadd 
uexblock 
uexclear 
uexdel 
uiomove 
unlockl 
unpin 
unpincode 
unpinu 
uprintf 
untimeout 
uphysio 
ureadc 
uwritec 
vec_clear 
vec_init 

"' "' vfsrele "' 
"' "' vm_att "' "' 
"' "' vm_cflush "' "' "' vm_det "' "' "' vm_handle "' "' vm_makep "' "' vm_mount "' 
"' vm_move "' "' vm_protectp "' 
"' vm_qmodify "' "' vm_release "' 
"' "' vm_releasep "' 
"' "' vm_unmount "' 
"' vm_write "' "' "' vm_writep "' "' "' vms_create "' "' "' vms_delete "' "' "' vms_iowait "' "' vn_free "' "' "' vn__get v 

"' "' w_clear v v 

"' w_init "' "' "' w_start "' v 

"' w_stop "' v 

"' "' waitcfree "' v waitq "' 
"' "' wakeup "' 
"' xmalloc "' "' v xmattach "' v xmdetach "' "' v xmemdma "' "' v xmemin "' "' v xmemout "' "' v xmfree "' 

dynamically loaded without intervention. Also, a true system management 
architecture is implemented to provide definition and management of the com
plex relationships of the objects in the system. In addition to the kernel struc
ture modifications and support for threads, some of the key components, such 
as the file system, have been enhanced to provide greater reliability. The stor
age subsystem generalizes the storage space concept by implementing logical 
volumes, and optimizes the storage capacity by implementing fragments. The 
1/0 subsystem of AIX supports functions like mapped files, prepaging, data 
pacing, and asynchronous I I 0. Observe that, while a lot of the AIX kernel 
essentially adheres to the same concepts as traditional UNIX systems, much of 
it has been augmented to provide a superior environment above and beyond 
what UNIX had demonstrated before. 
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9.5 EXTENDING THE KERNEL 

I 

I 
t 

The kernel can be expanded by adding kernel extensions. This is a unique char
acteristic of AIX in which kernel extensions can be added to an operational 
environment without preempting any ongoing activity. Attributes such as new 
device drivers, system calls, kernel services, and private kernel routines can be 
added to the existing kernel to extend its functions. The direct benefit of being 
able to customize the kernel allows implementation of new timer services, cus
tomized interrupt handlers, pinned shared memory segments, and other use
ful facilities. Figure 9.5 demonstrates the different types of kernel extensions 
that can be implemented. 

Applications and commands 

l l J l 
t t • • 

File system 
interface 

System 
calls 

System call interface 

Virtual Device Extended 
file system drivers system 

calls 

Private routines I 
Extended kernel services 

Basic services 

Figure 9.5 Types of kernel extensions. 
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Extending the kernel essentially means the same thing as altering the ker
nel. As useful as this feature is when correctly implemented, it can be equally 
as disadvantageous if exercised without caution. Any process executing in the 
user mode can extend (or alter) the kernel, provided it has root privilege. The 
operation is done by invoking a privileged subroutine called sysconfig. The 
other way of altering the kernel configuration is by changing the tunable 
parameters. Values of the tunable parameters, when modified, update the 
information in the ODM (object data manager) database. 

The set of base kernel services available under AIX. can be used by the ker
nel extensions. A kernel extension knows about these services by importing the 
symbols that are to be added to the kernel name space during the binding 
phase. The symbols are specified through a file called kernex. exp. This file also 
works as an export file for kernel extensions that are to be added to the kernel 
name space. 

There are two ways to load a new kernel extension into the kernel name space: 

1. The sysconfig routine can be used to load the kernel extension. Symbols 
defined in the kernel extension's exports file during the linking time are 
added to the kernel name space. 

2. The loader can load additional object files into the kernel to resolve symbols 
referenced by the new kernel extension. In this case, there are no symbols 
added to the kernel name space since the exported symbols are only used to 
resolve references needed during the load of a new kernel extension. 

The kernel name space can only be expanded by explicitly loading a kernel 
object file. The symbols added to the kernel name space are made available to 
any subsequently loaded kernel object file in the form of imported symbols. 

A set of privileged system calls that can be used for writing one's own kernel 
extensions is provided here. The list in Table 9.2 shows which system calls are 
available to the kernel extensions and which ones are restricted to kernel pro
cesses. 

9.6 PROGRAMS, PROCESSES, AND PROCESS GROUPS 

A program is an executable piece of code, and process is the name given to the 
program in its state of execution. When a program executes, it essentially sub
mits a pattern of bytes to the CPU. This byte stream is interpreted as instruc
tions (called text), data, and stack. The bytes that are instructions traverse 
through the maze of the CPU subcomplex, tracing a pipelined flow through the 
branch processing unit, the fixed-point unit, and/or the floating-point unit. The 
bytes that are data are made available when needed (either through the cache, 
TLB, or memory) by the instructions. The bytes that are stack-related facili
tate a collated sequence of subroutine calls during the program's execution. 

Like traditional UNIX systems, AIX. is able to handle the execution of sev
eral programs simultaneously by scheduling them in a time-shared manner. 
Just as several programs may be executed as multiple processes, multiple pro-
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TABLE 9.2 System Calls 

Kernel Kernel Kernel Kernel 
System calls extensions processes System calls extensions processes 

disclaim ,,, sethostid ,,, ,,, 
getdomainname ,,, sethostname ,,, 
getgidx ,,, ,,, setpgid ,,, ,,, 
getgroups ,,, setpgrp ,,, ,,, 
gethostid ,,, ,,, setpri ,,, ,,, 
gethostname ,,, setpriority ,,, ,,, 
getpeername ,,, setreuid ,,, ,,, 
getpgrp ,,, ,,, setrlimit ,,, 
getppid ,,, ,,, setsid ,,, ,,, 
getpri ,,, ,,, settimer ,,, 
getpriority ,,, ,,, setuid ,,, ,,, 
getrlimit ,,, setuidx ,,, ,,, 
getrusage ,,, shmat ,,, 
getsockname ,,, shmctl ,,, 
getsockopt ,,, shmdt ,,, 
gettimer ,,, shmget ,,, 
getuidx ,,, sigaction ,,, 
res abs ,,, sigprocmask ,,, 
resinc ,,, sigstack ,,, 
restimer ,,, sigsuspend ,,, 
semctl ,,, sysconfig ,,, 
semget ,,, times ,,, 
semop ,,, ulimit ,,, ,,, 
setdomainname ,,, um ask ,,, ,,, 
seteuid 
setgid 
setgidx 
setgroups 

,,, ,,, uname ,,, ,,, ,,, unamex ,,, ,,, ,,, usrinfo ,,, ,,, utimes ,,, 

cesses can also execute a copy of a single program. Since the sequence of 
instructions in an individual process is self-contained, one process does not 
cross over or violate another process's private space. When and if processes do 
need to communicate with each other, they do so via system calls. 

An executable program is created by compiling a high-level language or 
assembly language source code. The process entity is created using system 
calls. The fork system call is the primary vehicle for creating user processes 
under UNIX and AIX systems. Every time a fork system call creates a new pro
cess, it invokes an internal routine called newproc to allocate and initialize a 
new proc structure. Subsequently, another internal routine, procdup, is 
invoked to create a new child process that is a duplicate of the caller (parent) 
process. Recognize that a parent may have more than one child. However, the 
converse is not true; a child cannot have more than one parent. The operating 
system tracks each process by a unique tag called the process identification 
number or pid, which is assigned to a newly created process as soon as it is cre
ated. As in the case of human reproduction, where a child inherits its parents' 
traits, the genealogy of inheritance in the case of process creation follows the 
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same principle. A child process duplicates all of its parent's characteristics, 
except for the process identification number (pid). 

An executable program is loaded into memory for execution using the exec 
system call. Once loaded, the program becomes a process and begins executing. 
During its execution, the process changes states constantly, depending on 
whether it is active or waiting with regard to the other processes on the sys
tem. It is often easier to think about processes being in a state of dynamic equi
librium. Every time a process changes its state, it follows a well-defined set of 
rules, as illustrated by the state transition digraph in Fig. 9.6. The nodes in the 
directed graph represent the permissible states that the process can assume. 
The edges in the graph represent the events in a process's state change. How 
does one determine what state transitions are permitted? A state transition 
between two states is legal as long as there is an edge from the first state to the 
second state. 

A process is terminated using the exit system call. Usually the parent is noti
fied upon the termination of a process. If a process needs to suspend execution 
until one of its child processes has terminated, it may do so using the wait sys
tem call. Sometimes a variation of wait is used, called wait3, which allows the 
parent process to acquire information about the cause of child process termi
nation and resource utilization during its life span. 

These mechanisms for process creation, suspension, and termination form 
the basics of how processes operate under AIX. Figure 9.7 illustrates the effect 
that fork, exec, wait, and exit have on the fate of a process. In fact, to execute 
any program on AIX, one has to make use of the exec system call (in one of its 
six variations). In a simple example of a user executing the ls command, the 
command language interpreter (i.e., the shell) first forks off a child process, 
which subsequently execs to overlay its image with that of the new program, ls. 
ls completes execution and exits thereafter; consequently, the parent process 
(the shell), whose execution was halted until now, comes out of the wait state. 

Processes under AIX are organized into process groups. It is a term applied 
to a group of processes that are related. Typically, a set of processes under a 
process group have the same parent and, very often, they are associated with 
the same terminal. Process groups provide a means of communicating with a 
collection of related processes. The system never changes the process group of 
a process that has one. However, a new process group can be assigned to any 
process when there is a need to deliberately dissociate a process from its 
default process group. This is done with the help of a system call called setpgrp. 
Disassociating a process from its process group is a common practice in the 
writing of daemons or programs that need to remain detached from termi
nal(s). 

9.7 AIX NOTIFIERS 

AIX provides a number of ways to inform itself and the rest of the system about 
the occurrence of miscellaneous events. There are three primarily vehicles for 
notification: signals, interrupts, and traps. 
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interrupt interrupt 

fork 

Figure 9.6 Digraph showing state transitions. 
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wait () -------------------------

exec ( ) 

Figure 9.7 Process management system calls. 

Signals are notification events used to notify a process or group of processes. 
Each signal has an associated action that defines how a signal is to be handled 
when it is delivered to a process. Since signals are asynchronous, a process 
never knows when or if it is going to receive a signal. So, upon receiving a sig
nal, a process succumbs to the signal's default action (unless an explicit signal 
handler has been coded into the application). Signals can be sent by the kernel 
to a process (or processes), or by one process to another process (or to itself). 

Every sign~l is associated with a type of event or condition and has a unique 
number representing it. For purposes of making a signal more readable, every 
signal has been assigned a name tag which is defined in a header file on the 
system called s i g n al . h. The primary method of posting a signal for process( es) 
and process groups is through the usage of the system calls, kill and killpg. The 
method used to handle a signal on the recipient's side is specific to the signal's 
action. But, in general, signals are either ignored, blocked, or caught (with the 
exception of two signals, SIG KILL and SIGSTOP). A list of defined signals is 
presented as follows:* 

SIGHUP 1 hangup, generated when terminal disconnects 

SIG INT 2 interrupt, generated from terminal special character 

SIGQUIT 3 quit, generated from terminal special character 

SIG ILL 4 illegal instruction 

SIG TRAP 5 trace trap 

SIGABRT 6 abort process 

SIG EMT 7 EMT instruction 

SIGFPE 8 floating-point exception 

SIG KILL 9 kill (cannot be caught or ignored) 

SIG BUS 10 bus error (specification exception) 

SIGSEGV 11 segmentation violation 

* The undefined values between 1 and 63 are reserved for future use. 
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SIGSYS 12 bad argument to system call 

SIG PIPE 13 write on a pipe with no one to read it 

SIGALRM 14 alarm clock timeout 

SIG TERM 15 software termination signal 

SIGURG 16 urgent contention on I/O channel 

SIGSTOP 17 stop (cannot be caught or ignored) 

SIGTSTP 18 interactive stop 

SIGCONT 19 continue (cannot be caught or ignored) 

SIGCHLD 20 sent to the parent process on child stop or exit 

SIGTTIN 21 background read attempted from control terminal 

SIGTTOU 22 background write attempted to control terminal 

SIG IO 23 I/O possible, or completed 

SIGXCPU 24 CPU time limit exceeded 

SIGXFSZ 25 file size limit exceeded 

SIG MSG 27 input data is in the HFT ring buffer 

SIG WINCH 28 window size changed 

SIGPWR 29 power-fail restart 

SIGUSRl 30 user defined signal 1 

SIGUSR2 31 user defined signal 2 

SIG PROF 32 profiling time alarm 

SIG DANGER 33 system crash imminent; free up some page space 

SIGVTALRM 34 virtual time alarm 

SIG MIGRATE 35 migrate process 

SIG PRE 36 programming exception 

SIGVIRT 37 AIX virtual time alarm 

SIGALRMl 38 m:n condition variables 

SIGWAITING 39 m:n scheduling 

SIG KAP 60 keep alive poll from native keyboard (same as SIGGRANT) 

SIG RETRACT 61 HFT monitor mode should be relinquished 

SIGSOUND 62 HFT sound control has completed 

SIGSAK 63 secure attention key 

Interrupts are asynchronous events that are generated by the kernel or a 
device. The name is so given to them as they indeed "interrupt" the execution 
of the current process. When a process is preempted, the control is transferred 
to a special set of routines in the kernel called interrupt handlers. Interrupt 
handler routines service the interrupt and, after completion, transfer control 
back to the current process to continue execution. 

Traps are synchronous events that are normally caused by the system hard
ware. As in the case of interrupts, a process may not decide how to react to the 
trap. Control is passed on to trap handlers in the kernel and the trap handler 
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code takes control. In the case of a trap, a process may or may not resume exe
cution, depending on the nature of the trap. There is a another type of notifier, 
exceptions, which are also synchronous events like the traps. They directly 
relate to the currently executing instruction. A common example is a divide-by
zero error. The only notable difference between exceptions and traps is in the 
resulting handler code modules. 

9.8 INTERNAL REPRESENTATION OF FILES 

AIX features a variety of files. The word file is so generic that one cannot be 
sure if a file is a piece of data on disk or the disk itself. Since the early days of 
UNIX, one of its hallmarks has been to treat files, disks, terminals, etc. the 
same way. The same is still true today. As much as this abstraction facilitates 
the portability of a UNIX system and application software, it can also confuse 
users. This section describes the different file types and explains how the ker
nel handles access to files. 

9.8.1 File types 

A regular file in AIX is not different from that in traditional UNIX systems. 
It is just a sequence of bytes with one or more names. A file can be created 
using either the open or creat system calls, and can be written to or read from 
using the basic read or write system calls. Directories that organize files hier
archically are no different than regular files, except they have a structure 
imposed on them by the system. They are commonly referred to as directory 
files. 

AIX also supports two other file types: pipes and device special files. Pipes 
are like regular files and data is stored in them in the same manner as in the 
case of regular files. But they differ from regular files in that their data is 
ephemeral. The contents, being transient in nature, can only be read in a first
in first-out (FIFO) manner. Also, once the data is read from the pipe, the data 
disappears and cannot be read again. Pipes are useful in a variety of applica
tions where a transient data stream makes more sense than a regular file, or 
in a situation where arbitrary processes need to be communicated with, even 
though one does not know the process( es) at the other end of the pipe (refer 
Fig. 9.8). 

Hardware devices on AIX and other UNIX systems have file names and can 
be accessed by the same system calls that are used for regular files. The jargon 
used to refer to these devices is device special files. All device special files spec
ify devices and, therefore, their file inodes do not reference any data. Instead, 
the inode indicates the device type and its logical unit number. Direct reference 
to these device special files is primarily made by the kernel. Users and appli
cations never have to worry about these dependencies. Even the kernel does 
not care much about the device-specific dependencies-most dependencies are 
segregated in the device drivers. The kernel completely insulates the device 
dependencies from application programs. 
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Figure 9.8 Process communicating through a pipe. 

9.8.2 lnode and in-core inodes 

The internal representation of a file on a UNIX system is specified in an index 
block (sometimes called an index node) which contains the description of the 
disk layout of the file data and allied information such as permissions and 
ownerships. The term index node has been abbreviated to inode over the years, 
and today most of the UNIX community knows it by this shortened name. This 
inode is the most precious structure as far as files are concerned. It holds infor
mation describing access permissions, ownership of the file, timestamps mark
ing last modification and access times for the file, and an array of indices that 
point to the data blocks for the file. In essence, it contains all the pertinent 
information about the file, except for the file name. Initially, inodes exist in a 
static form on disk. Thereafter, they are read into an in-core inode table and 
remain resident in memory (see Fig. 9.9). Whenever a new file is created, an 
unused inode is assigned to it. 

9.8.3 File links 

In general, there is a one-to-one mapping (i.e., a single link) between a file and 
its referenced inode. But the file may have multiple names in the file system 
referencing it. This is the same as saying that multiple directories in the same 
file system may reference a file by multiple names. This is done by having the 
directory entry create a hard link of a file name to the inode that describes its 
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Figure 9.9 Two different representations of the same inode. 

contents. In the case of a file having multiple names, all of the hard links map 
back into the same inode as shown in Fig. 9.10. Note that the reference count 
in the figure, as a result of this hard link, is 2. 

The other kind oflink is a soft link or a symbolic link, which uses a new inode 
for the file or directory being linked. It is treated like a regular file by the sys
tem, rather than as part of the file system structure. Therefore, this kind of 
link can point at files across file systems. A soft link is implemented as a file 
that contains a path name. The way it works is that the contents of the link are 
prepended to the rest of the path name, and this name is interpreted to yield 
the resulting path name. 

The advantage of a soft link over a hard link is that a soft link can refer to a 
directory file or to a regular file on a different file system, whereas a hard link 
can only refer to regular files within the same file system. In contrast, the 
advantage of a hard link over a soft link is performance; resolving soft links are 
significantly slower because of housekeeping checks that have to be performed 
to ensure there are no loops in the file system resulting from the erroneous use 
of soft links. 

9.8.4 Files to file system r~lationshlp 

As far as accessing data is concerned, each inode contains eight pointers 
which point directly to data blocks. Each data block is 4 KB in size. For larger 
files, the inode contains a pointer which points to a block of indirect pointers; 
this block contains 1024 pointers which, in turn, point to data blocks. For even 
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Direct 
blocks 

larger files, the inode contains a pointer which points to a block of pointers 
(1024), each of which points to a further block of pointers (512), each of which 
points to a data block. Figure 9.11 represents the structural layout of how 
data block addresses are stored and accessed in the inode, depending on the 
size of the file. In principle, this single, double, and triple indirect access 
method can be extended to handle quadruple and quintuple indirect blocks, 
but the current structure has sufficed in practice and no immediate extension 
is deemed necessary, keeping in mind the current requirements of file sizes 
demanded by the computer industry. The size of data blocks is usually consis
tent within a file system, but may vary between two dissimilar file systems. 
For example, the size of each data block on the native AIX file system is 4 KB, 
whereas each data block of the CD-ROM file system is 512 bytes. Besides data 
blocks, a file system also contains what is called a superblock to describe the 
state of the file system. It contains information about the size of the file sys
tem, the number of inodes, the list of free inodes, and other housekeeping 
data. 

In ode 
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Figure 9.11 Three schemes for storing data block addresses, depending on the 
size of the file. 
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From the perspective of the kernel, there are three primary data structures 
associated with every opened file on the system: 

• the file table 

• the in-core inode table 

• the user file descriptor table 

The first two tables are global structures, while the third one is local to a user 
process. The user file descriptor table is organized using the file descriptors 
associated with opened files of that process as indices to each cell. By default, 
three file descriptors are assigned for every process in order to support the 
standard input (stdin), standard output (stdout), and standard error (stderr) 
streams. Whenever a file is opened by a process for reading or writing, a new 
entry is entered into this table. Each entry of this user file descriptor table 
indexes into the file table, which maintains the byte offset in the file where the 
subsequent read/write will start. This file table, in turn, points to the in-core 
inode table. Each entry of the in-core inode table is a generic inode and is right
fully referred to as agnode. It is this gnode that locates the whereabouts of the 
data in the file. The three-step linkage of the tables for a traditional UNIX sys
tem is shown in Fig. 9.12. In the case of AIX, the file table to the in-core inode 
table mapping is further abstracted by indexing into a virtual file system 
structure called vnode, seen in Fig. 9.13. This abstraction of virtual inodes or 
vnodes allows the system to deal with remotely mounted non-AIX and non
UNIX file systems. 

9.9 BUFFER CACHE 

The design of the UNIX file systems implies a lot of disk 1/0. If the UNIX 
kernel were really to perform every implied disk transfer, the CPU would 
be idling constantly, waiting for 1/0. To address this issue, the kernel allo
cates a pool of buffers, called the buffer cache.* Its intent is twofold. The first 
is to minimize frequency of disk access by buffering read/write requests, and 
the second is to act as a cache of recently used disk blocks. A buffer cache is 
composed of two parts: (1) a data buffer that contains the disk 1/0 data and 
(2) a buffer header that points to the data array buffer. The buffer header also 
contains a (logical) device number field and a block number field that 
uniquely identifies the buffer, along with a status field summarizing the cur
rent status of the buffer, as seen in Fig. 9.14. Individual buffer headers are 
linked together in a buffer pool and remain connected through a doubly 
linked list. 

The overall significance of the buffer cache has diminished in AIX, since AIX 
uses mapped files in its augmented file system. This concept of mapped files 

* The buffer cache is a software data structure and should not be confused with the hardware 
caches. 
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Figure 9.12 Three-step linkage and relationship of in-core inode table, file 
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Figure 9.14 Structure of a buffer cache. 

not only greatly minimizes disk access (when reading from or writing to a file), 
but also provides a better performance over the traditional buffer cache. The 
buffer cache continues to have responsibilities for the page device table lists 
and handling of the superblock during a file system mount operation. The 
buffer header part of the buffer cache is used to handle 1/0 requests to block 
devices. 

9.10 SUMMARY 

The seemingly mysterious properties of AIX can be understood in light of its 
infrastructure. Its architectural layout and the functional characteristics point 
to the fact that a lot of the AIX kernel is essentially the same as traditional 
UNIX systems, while much of its 1/0 subsystem components-like the virtual 
memory manager and the file system-have been enhanced to provide a supe
rior environment above and beyond what UNIX vendors had attempted before. 

Processes employ system calls to access the resources on the system. Since 
the kernel owns all the resoµrces on the system, it becomes necessary for the 
user processes to go through a mode switch before being able to use the kernel's 
services. System calls on AIX are preemptable by higher-priority processes to 
facilitate real-time processing support. Also, the kernel can be dynamically 
extended beyond its base set of services. Extensions to the kernel are possible 
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in any of the subsystems including device drivers, system calls, kernel ser
vices, and even private kernel routines. While some kernel services can be 
called in either by the process or the interrupt environment, others are 
restricted to the process environment. The set of base kernel services available 
under AIX are used by kernel extensions. 

In addition to user processes on the system, there are privileged processes 
that run in the kernel address space, /unix. These processes running in the 
kernel mode have access to additional system calls for carrying out privileged 
tasks. Even in the kernel address space, there is a distinction made between 
two types of system calls. There is a set of system calls that can be used by ker
nel extensions and another set that is available to kernel processes only. User 
mode processes in kernel mode can only use system calls that have their 
parameters passed by value, and the kernel routines executing under user 
mode processes can not directly use a system call having reference parameters. 
The latter restriction is imposed because when system calls with reference 
parameters access a caller's data, they are accessing storage across a protected 
domain. 
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AIX Process Subsystem Internals 

This chapter describes the process management subsystem for AIX. As such, 
the low-level process management tasks for AIX are not too different from tra
ditional UNIX systems, but it is the availability of certain enhancements in the 
operating system that makes process control worth revisiting in AIX. The basic 
task management concepts are evolved and extended to provide an insight into 
process-level abstractions. 

A section on thread-level abstraction is also included to explain the new 
paradigm introduced in the newer release of the AIX operating system to har
ness multiprocessor architectures. While the concept of threads (or pthreads as 
termed in the case of POSIX threads) introduces a layer of abstraction in terms 
of the dispatchable unit of work in the system, its implementation remains 
transparent when applied to a uniprocessor environment or previous imple
mentations of AIX. 

10.1 THE DIFFERENCE BETWEEN A PROGRAM 
AND A PROCESS 

A source code is compiled to produce an executable file. This newly created file 
or program sits on a disk until ready to be used. The executable program on 
disk consists of three areas: 

1. A text area which is the code 

2. An initialized area consisting of the data 

3. A noninitialized area known as the bss* or heap 

* This name comes from an assembly language pseudo-operator on the IBM 7090 machine, 
which was an acronym for "block started by symbol." 
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Different parts of the source code map to different areas of the executable file on 
disk. Refer to the example of C source code in Fig. 10.l to understand the spe
cific mappings. It is important to realize how static variables map differently 
than automatic variables, and how the stack is used differently than the heap. 

10.2 PROCESS STRUCTURE 

When an executable file is loaded into memory and undergoes transition to a 
process, the text area is mapped to one of the 16 segments of virtual memory 
accessible per process, known as the text segment. This segment is read-only 
and can be shared by other processes running the same code. The data and bss 

I * sample.c */ 
char let = 'x'; 
float rec [ 50 l ; 
static int w; 

main() 
{ 

int i; 
int j = 1; 
char *p, *malloc ( ) ; 

i = j*2; 
i = funct(j); 
printf ("%d\n", i); 
p = malloc(256); 

funct(val) 
int val; 
{ 

int a; 

a = val * val; 
return (val); 

}-
--

--
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Figure 10.1 Mapping of source code to its corresponding object code and process image. 
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areas are mapped to another virtual memory segment referred to as the data 
segment. This segment is both readable and writable, and private to that pro
cess. This data segment can be further broken down into two areas: a user area 
(meant for use when a process is executing in user mode) and a kernel area 
(meant for use when the process has undergone a mode change and is execut
ing in kernel mode). The kernel area, located at the end of the segment, con
tains machine-state information for that process, its file descriptor table, and 
environmental information such as the user-ID, current working directory, etc. 
The user area is at the start of the data segment; here space is allocated for ini
tialized data used for variable declarations, noninitialized data used for func
tion declarations, and dynamically allocated memory. Note that the stacks for 
the user area and the kernel area are separate. 

The data segment is referred to as working storage. Unlike the text segment, 
it contains data which is created dynamically as the process runs. Note that 
this data has no persistent storage on the file system; therefore, if memory is 
overcommitted, its contents will be written out to the preallocated area on the 
paging space. 

10.3 PROCESS-AFFILIATED KERNEL STRUCTURES 

A process, when executing, has no knowledge of other processes on the system. 
It is the scheduler that manages how and when each process gets the CPU to 
execute its instructions. 

Affiliated with each process is a set of data structures. The pertinent ones are 
proc and user (also referred to as u_area or user area). Each process is managed 
by the kernel through the global structure called proc. The user structure, 
which points to the proc structure, contains local data pertinent to that process. 

Information contained in the proc structure includes: 

• State of the process 

• User identifier 

• Process identifier 

• Process identifier of the parent process 

• Process priority 

• Nice value of the process 

• Process statistics 

• Process link pointers pointing to child and sibling processes 

•Number of threads in the process, etc. 

The user structure, which points to the proc structure, includes information 
about 

• signal management 

• resource usage per process 
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• user-mode address space mapping 

• controlling terminal (if any) 

• user's file descriptor table 

• pointer to the current directory of process 

• cumulative number of ticks, etc. 

Note that there is a proc structure for every process, including kernel pro
cesses, running in the system. Each structure is represented by a slot in the 
process table. There is also a user structure for every running process and it is 
stored in the process's private data segment. The difference in their contents is 
that the proc structure contains information that is needed in memory when a 
process is swapped out, while the user structure contains information that 
need not be in memory when the process is swapped out. Regardless, the pro
cesses that are in use remain pinned in order to avoid page faults in critical 
sections. 

10.4 PROCESS STATES 

A typical process moves through multiple states during its life cycle. Unlike 
the human life cycle, a process can revisit a state during its life. There are six 
possible states that are stored in the process table entry for every process, and 
these describe a process's state at any given time. The states are described 
below and their transition states are depicted in Fig. 10.2. 

State Description 

SN ONE process slot available 

SSLEEP awaiting an event 

SRUN runnable 

SIDL being created 

SZOMB being terminated 

SSTOP stopped 

The SN ONE state is a part of the initialization of the fork system call that 
checks for an available process slot in the process table. The SIDL state indi
cates a process being created by allocation of space in memory to commence 
execution in the later part of the fork system call. The SRUN state can repre
sent a new or a preempted process that is ready to run and is waiting for the 
CPU. If the process is not a new one, it can be a sleeping process returning to 
be scheduled again, or a waiting process resuming execution after having 
waited on a signal or event, or simply an exiting process from the run state 
reverting for its next time quantum (recall that exactly one process can run at 
any given time). The sleep state SSLEEP is encountered for processes that are 
waiting for an I/O to complete or a resource to become available. The stop state 
SSTOP represents processes which are waiting for a signal to transition them 
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into the SRUN state. Note that a signal issued by the kernel can result in a 
sleeping process to transition into a stopped state, or a stopped process (that 
was previously in a sleep state) to transition to a sleep state. Last but not least, 
there is a terminating state called the zombie state, SZOMB, which indicates 
that a process is in a state of exiting, but is still occupying its process table slot. 
Although this SZOMB state ought to be short-lived, some processes hang 
around longer than desired, usually because of a parent process's failure to 
check on the death of its child. Zombie processes can be identified by display
ing the process table entries and finding the processes that appear as 
<defunct> in the displayed output. 
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10.5 PRIORITY HANDLING 

The dispatcher and the scheduler are the two main components of the kernel 
that drive a process. The dispatcher is a function which facilitates having the 
most-favored priority process run at any given time. The dispatcher is 
invoked at the occurrence of an interrupt or when the currently running pro
cess relinquishes control of the CPU in order to perform 1/0 or to time-slice 
with other processes. Note that the dispatcher does not recompute process pri
orities, but instead chooses the best-suited process to run, based on its exist
ing priority. 

The AIX scheduler consists of two parts. One of them is the real-time clock 
interrupt handler that executes every system timer tick (which is 10 ms). The 
second part recomputes the process priority every hundred clock ticks (which 
is 1 s). A nonfixed priority process is charged for every timer tick of CPU it uses 
by incrementing a field calledp_cpu in the process table entry for that process. 
Then every hundredth timer tick (which is 1 s), the priority of all processes is 
recalculated. Subsequently, the dispatcher is called to ensure that a process 
which may now have a more-favored priority gets dispatched. Note that the 
recomputation task is performed by halving the CPU value (p_cpu) for all pro
cesses, be they in a runnable, sleep, or stopped state, and then converting the 
value into a new priority for each process. This explanation is better under
stood from the algorithm below. 

priority= nice value+ PUSER + ( p_c;:u) 

The value of PUSER is a constant, with a default value of 40. It is not a tun
able parameter. 

The scheduler is often referred to as the swapper. The duality of terms can 
lead to confusion. As stated before, the swapper is the process that handles 
context switching, i.e., it swaps processes in and out of the CPU and does so 
based on a priority scheme. A context switch does not, however, involve a swap
ping out of the process from main memory to disk. AIX implements two policies 
for managing memory: 

•swapping 

• demand paging 

When the system is running normally-that is, it is not thrashing-the pol
icy used is demand paging. This mechanism will, when memory is overcom
mitted, free up memory by "stealing" pages of memory belonging to a process. 
(Note that this may or may not involve 1/0). When the system thrashes, the 
policy implemented is swapping. Here the most memory-intensive processes 
are suspended for a period of time until the system has recovered. When a pro
cess is suspended, all memory belonging to that process is freed up. So, the pro
cess is said to be swapped out of memory. In summary, the process named 
swapper, performs dispatching, scheduling, and swapping. It only performs 
swapping when the system is deemed to be thrashing. 
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What has been described until now pertains to normal processes only. For 
real-time processes, the priority has to remain unaffected-in other words, the 
value ofp_cpu should not be subjected to recomputation. It becomes necessary 
that the real-time processes be run at a higher priority than the swapper. In 
general, the swapper process runs with an execution priority of 16. To avoid 
preemption by the swapper, the time-constrained real-time processes run at a 
fixed priority more favored than 16. 

In the hierarchy ladder there are three categories of priorities: (1) interrupt 
handler priority, (2) real-time priority, and (3) user process priority. An inter
rupt handler enjoys the most-favored priority on the system in order for it to be 
able to preempt a running process to respond on time to an external event. The 
real-time processes have the next level of precedence in the priority hierarchy 
(Fig. 10.3). Any process that has been assigned a fixed value between 0 and 40 
behaves as a real-time process. Such processes run until they voluntarily relin
quish the CPU by entering a sleep state, or an interrupt causes it to get 
bumped by causing the dispatcher to run a process with a more-favored prior
ity. Recollect that this trait of the dispatcher was mentioned earlier in this 
chapter, where a timer interrupt occurring every 10 ms was inevitable. Thus, 
it can be stated that the dispatcher's running of the most-favored process at 
least as frequently as 10 ms is tied to the inherent design of AIX. The user pro
cess priority is a volatile entity and is constantly redefined throughout its life 
span. At its birth, a process inherits its parent's priority and, over a period of 
time, its value changes based upon its CPU consumption. A process priority 

High 

Interrupt 
handler 
priority 

Real-time 
priority 

User process 
priority 

Low Figure 10.3 Priority hierarchy. 
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has a large degree of variance and can assume up to 86 possible values. There 
are several catalysts that govern a user process priority, the prime one being 
the CPU usage. 

Permissible priority values for real-time processes= 0 to 40 
Permissible priority values for user processes = 41 to 127 

10.6 CONTEXT SWITCHING 

Context switching is not specific to AIX or UNIX; instead, it is a generic phe
nomenon found in operating systems schedulers, in which, at the end of each 
time, quantum, an interrupt is generated from the timer. Processing the timer 
to switch the CPU to another process requires saving all the registers for the 
current process and loading the registers for the new process. This task is 
known as a context switch. Context switch time is pure overhead. The time 
required to perform a context switch depends on the cause of the context switch. 
The cost of a context switch owing to an external interrupt is different from that 
of one caused from expiration of a process's time-slice, which, in turn, is differ
ent from a context switch occurring due to voluntary sleep of a process. These 
varying costs of context switches directly affect the performance of the system. 

AIX supports a set of unique features that enables it to achieve an exceed
ingly fast context switch time. Traditional UNIX systems do not allow a context 
switch while executing in the kernel mode. But AIX has a fully preemptable 
kernel which does permit such a context switch to happen. Not only is a context 
switch possible under AIX, but the mechanism is speeded up dramatically 
because of the presence of a unique data structure for the dispatcher. 

There are 128 process-scheduling run queues under AIX that correspond 
directly to the 128 priorities supported by the dispatcher. Each run queue is a 
circularly linked list of runnable processes having the same priority. An array 
of pointers, called the run queue pointer array (RQ-PA), serves as the repository 
for head pointers to each of the circular doubly linked lists. The system main
tains another array, called the bit array, with 1-bit flags to indicate which of the 
run queues are nonempty. This complex data structure is laid out in Fig. 10.4. 
As long as there is one process in the run queue of that priority level, the bit flag 
in the bit array remains enabled. So, when choosing which process should be 
run next, the dispatcher only has to look at the bit array to determine the most
favored priority run queue that is occupied. The algorithm is as follows: 

compute the most favored priority level 
index into the array of run queues 
access the head pointer pointing to the run queue 
select the process at the head of the run queue 
dispatch the process 

Following the expiration of the scheduler's time quantum, if the process is still 
runnable, it is placed at the end of the run queue, and the new head of the 
linked list is dispatched. In this way, the dispatcher is able to implement a 
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Figure 10.4 Data structure layout for the AIX process dispatcher. Indices 0 to 
40 of the RQPA point to real-time processes and indices 41to127 point to user 
processes. 

round robin scheme within processes of equal priority. The main gain of this 
implementation in AIX over traditional UNIX is an exceedingly fast context 
switch, since the dispatcher does not have to traverse through long queues, 
even ifthere were several runnable processes outstanding. 

10.7 PROCESS SCHEDULING 

The process scheduling mechanism in AIX is no different from that in traditional 
UNIX systems. The scheduler belongs to a general class of operating schedulers 
known as round robin with multilevel feedback. UNIX process management uni
fies the temporal diversification in the activities by merging all the computations 
as processes, thereby making a process the only schedulable entity. Processes are 
given a time quantum when the scheduler selects one for the CPU from its mul
tilevel priority queue. The highest run-queue level at which incoming user pro
cesses can enter the process-scheduling subsystem is 40 (recall that all processes 
inherit a PUSER value of 40 plus a nice value varying between 0 or 39, which can 
be changed via the nice or renice system calls). New processes start life with a 
CPU value (p_cpu) of 0 as shown in Fig. 10.5. In all of the 128 circularly linked 
process scheduling run queues that correspond to the 128 permissible priorities 
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LevelO 

Level 1 

Level2 

supported by the dispatcher, the time quantum for time-slicing increases the 
lower the level. In other words, CPU-bound processes tend to stay at lower levels 
and 1/0-bound processes hover around higher levels. A process is time-sliced 
every quantum, and the CPU time used in this interim is charged to that process. 

When a context switch occurs to make another process runnable, the over
head encountered in the operation may or may not be charged to the right pro
cess. Although the enhanced context switch mechanism in AIX lessens the 
context switch overhead time, it does not eliminate it. 

The process time measurement activity is tied to the clock handler and is 
carried out by sampling the usage of the CPU at the clock tick instants. The 
system keeps time with a hardware clock that interrupts the CPU at a fixed, 
hardware-dependent rate. The frequency of this interrupt is 100 times a sec
ond. This means that the best granularity of time that the AIX kernel can pro-

New 

Figure 10.5 Process scheduling. 
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Figure 10.6 Process time measurement.dis the clock-tick interval 
(10 ms); tis the time quantum (CPU burst); 't and t' are the positive 
and negative errors created in measuring the interval. 

vide is 10 ms. If a process is to wake up after one clock tick and then go away 
before the next tick, no CPU utilization would be attributed to its p_cpu field. 
Due to the coarse clock granularity and the snapshot-oriented mechanism of 
process timing in UNIX and AIX, errors occur easily, as depicted in the time
line in Fig. 10.6. The occurrence of an interrupt (such as the clock interrupt) 
affects the CPU utilization of the running process. But there is no feature to 
account for the time spent by the CPU in handling interrupts caused by other 
processes. The small magnitude of errors, when added up and compared 
against cumulative system statistics, results in a rather significant quantity
not small enough to be ignored, especially on loaded systems. Those familiar 
with the mainframe world may recall the problems oflow resolution and large 
variability in time measurements. 

Timing is done at three nested levels (diagrammed in Fig. 10.7)-i.e., the 
scheduler, the dispatcher, and the clock cycle level. While the scheduler recom
putes the priority of all processes every second, and the dispatcher increments 
the utilization of the current process by one for every hundredth of a second, 
the system has several thousand opportunities in the interim to raise inter
rupt(s). In order to address finer time measurements, a hardware-based timer 
facility is available, which enables programs to measure time intervals with 
high resolution. 

10.8 THE THREAD PARADIGM 

Thread is a new paradigm planned for AIX version 4 and later releases. A 
thread is defined as an object that performs computations in the context of a 
process. The concept of thread* has descended from the Mach operating sys
tem which is based upon a set of programming abstractions to exploit multi
processor environments. 

Using the Mach design principles, traditional AIX processes have been divided 
into two separate components, emphasizing the notions of tasks and threads. 

*Threads are often described as "lightweight processes." Note: This is not to be confused with 
Sun's lightweight processes (LWP). 
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Figure 10.7 A conceptual layout for timing done at three nested levels
the scheduler, dispatcher, and the clock. 

Both entities are intricately tied together. A task contains a passive collection of 
resources for a group of cooperating entities. Refer to Fig. 10.8 for an example. A 
thread is the active execution environment that is perceived as a basic schedu
lable entity. A task may have many threads, all running simultaneously. 

Much of the power of the Mach programming model, which is supported by 
newer releases of AIX, comes from the fact that all threads in a task share the 
task's resources. For instance, the threads share the same virtual memory 
address space. However, each thread in a task has its own private execution 
state. Compared to a UNIX process, which encapsulates a processing state 
along with all of the resources required for execution, a thread has only one 
physical attribute (i.e., the processing state specified by the thread's program 
counter, stack pointer, and the hardware registers). From a performance 
standpoint, creation of a UNIX process is far more expensive than creation of 
a thread. 

10.8.1 Thread-affiliated kernel structures 

Just as there are global and local structures calledproc and user affiliated with 
each process (discussed earlier in this chapter), there is a set of new data struc
tures that relate to threads. Each thread is managed through a structure 
called thread. Associated with it is an allied structure called uthread, which is 
local in scope and contains data that is private to the thread. Figure 10.9 
depicts the important relationship between processes and threads. Informa
tion contained in the thread structure includes: 
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Figure 10.8 UNIX process versus Mach task and threads. 

• State of the thread 

• Pointer to the proc structure 

• Pointer to the next thread 

• Thread's priority 

• Thread identifier 

• Processor usage for the thread 

• Processor ID to which the thread is bound 

The uthread structure, which points to the thread structure, includes infor
mation about 

•User mode-stack pointer 

•User-mode machine state register value 

• Pointer to the thread's kernel stack 

• File system transaction identifier 

• Timer structures 

10.8.2 Thread states 

Like processes, a thread may be represented with states. In the newer releases 
of ADC, threads happen to be the schedulable entity. This entity has an execution 
state that specifies whether or not the thread is executing or can be scheduled for 
execution. At any given time, a thread is in one of the following execution states: 
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proc thread 

user uthread 

Figure 10.9 Process-to-thread relationship. 

State 

TSNONE 

TSIDL 

TSRUN and TWCPU 

TSRUN and TNOWAIT 

Description 

thread does not exist 

thread is being created 

thread can be scheduled to execute 

thread is executing 



TSSWAP 

TSSLEEP 

TSSTOP 

TSZOMB 
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thread is swapped and cannot be executed until it is 
swapped in by the scheduler or until a signal is posted 
to the thread or process 

waiting for resource(s) to become available and cannot 
be executed until those are provided 

thread is suspended and cannot be scheduled to execute 

thread is being terminated 

The TSNONE state indicates that a process slot is available in the process 
table, and the TSIDL state marks that a thread is in the process of being cre
ated. A thread that is runnable is represented by the TSRUN state. If a thread 
has been swapped out, it is indicated by the TSSWAP state. The TSSLEEP 
state is encountered for threads that are waiting on an I/O to complete or a 
resource to become available, while the TSSTOP state represents threads 
which have been stopped and are waiting on a signal to transition them into the 
TSRUN state. Last, there is a TSZOMB state, which indicates that a thread has 
exited. Figure 10.10 illustrates the possible state transitions of a thread. 

10.8.3 plds and tlds 

Processes are the fundamental schedulable entities from the operating sys
tem's perspective in traditional UNIX and in AIX (up to Version 3). At birth, 
each process is assigned a unique process identifier number called its pid. 

With the introduction of the thread paradigm and its consequent abstraction 
as being the schedulable entity, it becomes imperative that there be a thread 
identifier, tid, in addition to the pid. It is essential that one be able to distin
guish between a tid and apid. Apid on AIX is a 32-bit number derived from a 
combination of proc table slot* index and a generation count index that aids in 
avoiding rapid reallocation of pids. By setting the least significant bit to 0, only 
even number pids are generated (except for the init process). The opposite is 
true for tid; all tids are odd number entities. tids are derived from a combina
tion of thread table slott index and a generation count index that aids in avoid
ing rapid reallocation of pids. In this way, one is able to tell the difference 
between a pid and a tid. 

10.8.4 Context switching 

With the implementations of threads, context switching happens at a thread 
level instead of at a process level. The context switching task consists of saving 
the user, kernel, and the hardware state of the currently executing thread, and 
restoring the corresponding state of a different thread. When a thread exe
cutes, its computational state is maintained in the hardware registers. When 

* Slots in the proc table are recycled. They are made available to newborn processes on a first
come first-serve basis. 

t Slots in the thread table are recycled. When a tid is to be allocated, its value is predicated on 
the first available thread table entry. 
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Terminating 

Figure 10.10 Possible state transitions of a thread. 

the thread is not executing, its state information is held in a special area called 
its mst area (mst means machine state). The mst is a data structure that spec
ifies the value of the thread's stack pointer and the contents of its hardware 
registers. An abbreviated listing of the mst area is shown in Fig. 10.11. 

Context switching may take place because of different situations. For exam
ple, the current thread may generate an interrupt due to a page fault and, in 
turn, block the thread's execution to allow another thread to execute. The cur
rent thread can issue a system call to access a resource that is not available. 
Furthermore, the current thread can be preempted by a hardware interrupt 
and, when the interrupt has been processed, a different thread is resumed. 

10.8.5 Scheduling 

With the support of threads, the scheduling becomes thread-based instead of 
process-based. The scheduler now traverses the thread table instead of the 
proc table. 
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MSTSAVE AREA AT ADDRESS Ox00004100 

curid:Ox41424344 m/q:OxOOOOOOOO iar:OxOOOOOOOO cr:Ox41424344 

MSTSAVE AREA AT ADDRESS Ox00264db0 

Exception Struct 
oxoooooooo OxOOOOOOOO OxOOOOOOOO Oxoooooooo OxOOOOOOOO 

MSTSAVE AREA AT ADDRESS Ox2fee0000 

curid:OxOOOOle24 
msr:Ox400090b0 
backtrack:OxOO 
ctr:Ox41424344 

m/q:OxOOOOOObc 
lr:Ox01864370 
tid:OxOOOOOOOO 

iar:Ox41424344 cr:Ox84242822 
xer:OxOOOOOOOO kjmpbuf :OxOOOOOOOO 
fpeu:OxOl excp_type:OxOOOOOOOO 

*prevmst:OxOOOOOOOO •stackfix:OxOOOOOOOO intpri:OxOb 
o_iar:OxOOOOOOOO o_toc:OxOOOOOOOO o_argl:OxOOOOOOOO excbranch:OxOOOOOOOO 
o_vaddr:Ox41424344 

Exception Struct 
Ox41424344 Ox400090b0 Ox007fffff Ox41424344 Ox00000106 

Segment Regs 
O:OxOOOOOOOO 
4:0x007fffff 
8:0x007fffff 

12:0x007fffff 

1: Ox007fffff 
5:0x007fffff 
9:0x007fffff 

13:0x4000140a 

General Purpose Regs 

2:0x00003359 
6:0x007fffff 

10: Ox007fffff 
14:0x00000804 

3:0x007fffff 
7:0x007fffff 

11 :Ox007ff ff f 
15:0x40001d4e 

O:Ox41424344 l:Ox2fedff88 2:0xOOOOOOOO 3:0x41424344 
4:0xOOOOOOOl 5:0x01864468 6:0x0002f0b0 7:0xfOOaaac8 

28:0xe300le00 29:0xe6001220 30:0x0024d914 3l:Ox00039f0d 

Floating Point Regs 
Fpscr: OxOOOOOOOO 

O:OxOOOOOOOO OxOOOOOOOO l:OxOOOOOOOO OxOOOOOOOO 2:0xOOOOOOOO OxOOOOOOOO 
3:0x00000000 OxOOOOOOOO 4:0x00000000 OxOOOOOOOO S:OxOOOOOOOO OxOOOOOOOO 

30:0x00000000 OxOOOOOOOO 3l:OxOOOOOOOO OxOOOOOOOO 

Figure 10.11 State information held in mst area (mst means machine state). 

10.9 PROCESS MONITORING 

It makes understanding AIX even more meaningful if one is to monitor the dis
patchable units of work at run-time. 

Most information on processes can be obtained with the use of crash, which 
is a useful dump analyzer and operating system monitoring tool. Hard-to-find 
information includes process-subsystem-related details regarding sibling and 
child processes, state of signals, dispatcher- and scheduler-related information 
for the process, and memory subsystem details such as address space. 

Aproc structure is displayed in Fig. 10.12 from an AIX Version 3 system to 
show the kind of detailed information that is available about a process. The 
slot number (SLT) occupied by the process in the process table is displayed, 
along with its status (ST), process ID (PID), parent process ID (PPID), user ID 
(UID), effective user ID (EUID), and numerous affiliated fields pointing to 
vital information. The links are chain pointers. There is a child pointer that 
points to a child, a sibling pointer that links sibling processes together, and a 
uidl pointer that links processes for a given user ID. The dispatch fields are 
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used by the dispatcher: the prior pointer links to a chain of processes with the 
same priority, the next pointer points to the succeeding process on the run list, 
and pevent and wevent are the pending and awaiting events, respectively. The 
suspend field shows the signal nesting level and the process-waiting-for field 
shows what the process is waiting for (in this example, events). The scheduler 
uses the scheduler fields in which the pri field marks the dispatch priority, nice 
gives the nice value, lpri gives the lock priority, and wpri gives the wait prior
ity. In the miscellaneous field, the adspace represents the handle of the process 
private segment. The signal information field gives details about the pending, 
masked, caught, and ignored signals in double-word formats, where each bit 
represents a signal number. The statistics field displays information about the 
auditing flags and gives the size of the process image in terms of pages. 

Recall that newer releases of the AIX operating system (i.e., beyond version 
3) support threads. Aproc structure listing in Fig. 10.13 shows the additional 
fields and points out the differences. Since the advent of threads has caused 
much of the vital information to be moved from the process table to the threads 
structure, a thread table entry listing is provided for gathering detailed infor
mation at a thread level. In addition to the process's slot number, status, pro
cess ID, etc., a new thread count (TCNT) field is present in the proc structure. 
An additional link, ganchor, points to the process group anchor. The dispatch 
and the scheduler fields' significance is reduced as processes are no longer the 
unit of dispatchable entity. A new set of thread fields is used to reference the 
process's threads: threadcount gives the number of threads for a process, active 
and suspend show the number of active and suspended threads, a threadlist 
pointer points to the list of threads for this process, and a synch pointer points 
to the threads waiting for this process to be suspended. In the miscellaneous 

> proc - 1 

SLT ST PID PPID PGRP UID EUID PRI CPU EVENT NAME 
1 s 1 O 0 0 0 60 0 init 

FLAGS: swapped_in no_swap wake/sig locks 

Links: *child:Oxe3003600 *siblings:OxOOOOOOOO *uidl:Oxe3000100 
*wchanl(real) :OxOOOOOOOO *lcklst:OxOOOOOOOO 
selchn:OxOOOOOOOO 

Dispatch Fields: *prior:Oxe3000100 *next:Oxe3000100 
pevent:Ox00000020 wevent:Ox00000004 
polevel:OxOOOOOOad *lockwait:OxOOOOOOOO 
*eventlst:OxOOOOOOOO *wchan(hashed) :OxOOOOOOOO suspend:OxOOOl 
process waiting for: event(s) 

Scheduler Fields: pri: 60 nice: 20 lpri:l27 wpri:l27 flags:Ox O 
repage:OxOOOOOOOO scount:OxOOOOOOOO *snext:OxOOOOOOOO *sback:OxOOOOOOOO 

Misc: adspace:Ox00001004 *ttyl:OxOOOOOOOO 
*p_ipc:OxOOOOOOOO *p_dblist:OxOOOOOOOO *p_dbnext:OxOOOOOOOO 

Signal Information: cursig:OxOO sigstate:OxOO 
pending:hi OxOOOOOOOO,lo OxOOOOOOOO sigmask:hi OxOOOOOOOO,lo OxOOOOOOOO 
sigcatch:hi OxOOOOOOOl,lo Oxl8783eff sigignore:hi Ox7ffffffe,lo Oxe786c000 

Statistics: size:Ox0000008a(pages) audit:OxOOOOOOOO 

Figure 10.12 proc structure of AIX version 3. 
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> proc - 24 

SLT ST PID PPID PGRP UID EUID TCNT NAME 
24 a 18e0 lOcc 18e0 0 0 1 

FLAGS: swapped_in no_swap 

Links: *child:OxOOOOOOOO *siblings:OxOOOOOOOO *uidl:Oxe3000000 
*ganchor:Oxe3001800 

Dispatch Fields: pevent:OxOOOOOOOO wevent:OxOOOOOOOO 
*p_synch:Oxffffffff 

Thread Fields: *threadlist:Oxe6000a00 threadcount: 1 
active: 1 suspended: 0 local: 0 localsleep: 0 
*synch:Oxffffffff 

Scheduler Fields: nice: 20 repage:OxOOOOOOOO scount:OxOOOOOOOO 
Misc: adspace:OxOOOOOlOO *ttyl:OxOOOOOOOO 

*p_ipc:OxOOOOOOOO *p_dblist:OxOOOOOOOO *p_dbnext:OxOOOOOOOO 
*lock:OxOOOOOOOO kstackseg:Ox007fffff *pgrpl:Ox08x 

Signal Information: 
pending:hi OxOOOOOOOO,lo OxOOOOOOOO 
sigcatch:hi OxOOOOOOOO,lo Ox00086001 sigignore:hi Ox80000000,lo Ox18408006 

Statistics: size:Ox00000026(pages) audit:OxOOOOOOOO 

Figure 10.13 proc structure of AIX beyond version 3. 

field, a set of new pointers, lock and pgrpl, point to the process lock and the pro
cess group list, while a kstakseg field points to the segment for additional ker
nel stacks. The signal information and the statistics fields remain unchanged. 

Thread, which is a part of the process that gets scheduled to execute, can be 
thought about as a subprocess. The thread structure provides information that 
resembles the proc structure in AIX Version 3. Refer to Fig. 10.14 for an under
standing of the thread structure. In addition to the thread's slot number, sta
tus, process ID, etc., several new fields are present that need mentioning. 
There is a thread ID (TID) field which has the same relation to its slot number 
as does the process ID. For example, the thread in slot 20 of the thread table 
will have a thread ID of Ox14nn (where Ox14 is 20 in a decimal system and nn 
is a sequence number). There is another new field indicating the type of 
scheduling policy (POLICY) in use by the operating system. Because the sched
uler is a pluggable entity in terms of the kernel, any type of nonpreemptive 
scheduling algorithms such as FCFS (first-come first-serve) and SJF (shortest
job-first), or preemptive scheduling algorithms such as RR (round robin) or 
SRTF (shortest-remaining-time-first) can be noted by examining this POLICY 
field, if a custom scheduler is in use in a fault-tolerant or real-time environ
ment. The next field of interest is PROCNAME which gives the name of the 
process for this relevant thread. The relevant link pointers consist of procp, 
pointing to the associated process block; uthreadp, pointing to the work area; 
and userp referring to the owing process's u_block structure. The prevthread 
and nextthread refer to the previous and subsequent threads. The dispatch 
fields, used by the dispatcher, are similar to the proc structure of AIX Version 
3: the prior pointer links to a chain of threads with the same priority, and the 
next pointer points to the succeeding thread on the run or wait list. The SUS
PEND field shows the signal nesting level and the THREAD-WAITING-FOR 
field shows what the thread is waiting for. The use of the scheduler fields 
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> thread - 16 

SLT ST TIO PIO CPUIO POLICY PRI CPU EVENT PROCNAME 
16 s lOel 18e0 0 other 3c 0 

FLAGS: wakeonsig sel 

Links: *procp:Oxe3001800 *uthreadp:Ox2fee0000 *userp:Ox2fee02e0 
*prevthread:Oxe6000a00 *nextthread:Oxe6000a00 
*wchanl(real) :OxOOOOOOOO *wchan2(VMM) :OxOOOOOOOO 

Dispatch Fields: *prior:Oxe6000a00 *next:Oxe6000a00 
polevel:Ox000001c4 ticks:OxOOOl *synch:Oxffffffff result:Ox08x 
*eventlst:OxOOOOOOOO *wchan(hashed):OxOOOOOOOO suspend:OxOOOl 
thread waiting for: event(s) 

Scheduler Fields: cpuid:OxOOOO scpuid:OxOOOO pri: 60 policy:other 
lpri:127 wpri:127 tirne:Oxff 

Misc: t_lockcount:OxOOOOOOOO t_lock:OxOOOOOOOO 
t_dispct:Ox00000044 t_fpuct:OxOOOOOOOO 

Signal Information: cursig:OxOO 
pending:hi OxOOOOOOOO,lo OxOOOOOOOO sigrnask:hi OxOOOOOOOO,lo OxOOOOOOOO 

Figure 10.14 thread structure of AIX beyond version 3. 

remains unchanged from that of the proc structure in AIX Version 3 where the 
pri, lpri, and wpri give the dispatch, lock, and wakeup priorities, respectively. 
Two new fields, cpuid and scpuid, specify the ID of the current and the previ
ous processor to which the thread is/was bound to. The miscellaneous fields 
provide assorted information about the thread, including the number of dis
patches, locks, and floating-point-unavailable interrupts. The signal informa
tion fields give details about the pending and masked signals in double-word 
formats, with each bit representing a signal number. 

The proc and the thread structures described here are intended to serve the 
needs of beginner to advanced-level users. Using the crash tool, one can dis
play any kernel data structure or memory locations in the system for debug
ging or learning purposes. 

10.10 INTERRUPT AND EXCEPTION HANDLING 

The hardware uses the same mechanism to report both interrupts and excep
tions. When either event occurs, the machine saves its current state and takes 
an unconditional branch to a special location, where the handler code is located. 
Depending on the cause for the preemption, the handler code determines 
whether the event is an exception or an interrupt, and, consequently, performs 
different processings accordingly. 

Interrupts are triggered asynchronously and seldom have anything to do 
with the currently executing instruction. Exceptions are synchronous events 
and are directly related to the currently executing instruction. Timer ticks 
are interrupts and the divide-by-zero operation is an example of an excep
tion. Page faults are also treated like interrupts, with the difference being 
that the interrupted program is made nondispatchable until the page fault is 
resolved. 

Interrupts are asynchronous events that are generated by the operating sys
tem or a device. The occurrence of an interrupt indeed interrupts the execution 
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of the current process.* The process* is preempted and the control is transferred 
to what are called interrupt handlers. The appropriate interrupt handler routine 
services the interrupt and, after its completion, it transfers control back to the 
current process* to continue execution. Since an interrupt itself can be inter
rupted by a higher-priority interrupt, AIX saves an abbreviated context for the 
interrupt and links a representation of each one together using a region called 
current machine state area or csa. The system tracks these regions by the user's 
user structure and a pointer to the csa area. Although there are numerous types 
of interrupts with different interrupt priorities on the system, there are essen
tially two types of interrupt levels (see Fig. 10.15) associated with them. The 
first is called a system interrupt; these are generated by base hardware compo
nents, such as the real-time clock. The second kind of interrupt is referred to as 
a device interrupt, and these are caused as a result of the system's interaction 
with assorted devices. Interrupt priorities associated with the individual inter
rupts are essentially hierarchies by which pending interrupts are serviced. A 
device's interrupt is selected based on its maximum interrupt latency require
ments and the corresponding device driver's interrupt execution time. As far as 
interrupt processing within the system is concerned, this operation is provided 
by the branch processing unit hardware and its three registers, namely, the MSR 
(machine status register), the SRRO (save and restore register), and the SRRl. 

The exception handling mechanism enables the executing instruction to 
specify the type of action to take. Exceptions are handled differently depending 
on whether they occur while executing in user mode or kernel mode. The 
default consequence of an exception in user mode causes a signal to be sent to 
the process* indicating the type of exception. If an exception handler is 
defined, cleanup action is taken to free up the process's storage and affiliated 
resources. Exception handling in the kernel mode extends the capability of the 
traditional UNIX mechanism by allowing these exception handlers to be 
stacked on a per-process or per-interrupt handler basis. 

* Thread in the case of AIX beyond version 3. 

System 
interrupts 

Interrupt 
levels 

Figure 10.15 Interrupt levels. 

Device 
interrupts 
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10.11 INTERPROCESS COMMUNICATION 

The choice of interprocess communication (IPC) is generally governed by the 
quantity of data to be communicated between processes, and the frequency of 
exchange between processes. No matter which IPC mechanism is used, each 
has a minimum overhead cost associated with it and an upper limit on the 
bandwidth that it can handle gracefully. In the context ofIPCs, overhead refers 
to the time required to transfer the smallest message, and bandwidth refers to 
the maximum permissible rate at which transfer can occur. 

There are several IPC mechanisms available under AIX. The list includes: 

Pipes 

Message queues 

Shared memory 

Semaphores 

Sockets 

Streams 

10.11.1 Pipes 

Process A 

Pipes are the most basic of the IPC mechanisms. They are like regular files, 
and data is stored in them in the same manner. Where they differ from regular 
files is that their data is ephemeral. Their contents are transient in nature and 
can only be read in a first-in first-out manner. Once the data is read from pipes, 
the data disappears and cannot be read again. 

Pipes are used in applications where a simple transient data stream makes 
more sense than a regular file, or in situations where arbitrary processes need 
to communicate, even though the processes at the other end of the pipe are 
unknown (refer to Fig. 10.16). When multiple processes write to a pipe, the 
write operations remain atomic and data from one write operation never gets 
interleaved with data from other processes. However, it should be noted that 

Process X 

Process Y 

Figure 10.16 Pipes. 
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the pipes do not preserve message boundaries. So, if one process is to write two 
32-byte messages into the pipe, the reader process at the other end of the pipe 
has no way of interpreting whether the contents represent two 32-byte mes
sages or four 16-byte messages. Here the application needs to do its own house
keeping for maintaining message boundaries. 

There are two kinds of pipes, unnamed pipes and named pipes. When using 
unnamed pipes there is no way for processes without a common ancestor to 
communicate. So a process has to create a pipe and then fork off a child pro
cess, in order to be able to have both processes (i.e., the parent and the child) 
share the same set of file descriptors to read and write from the pipe. Named 
pipes (also called FIFOs) overcome this shortcoming. Since they are identified 
by a file name, the file descriptor information can be passed to another process 
which may be unrelated. 

• unnamed pipes 

• named pipes 

Unnamed pipes are opened using the pipe system call and named pipes are cre
ated using the mknod system call. 

10.11.2 Message queues 

Message queues provide a more flexible means of communications than pipes 
or sockets. Unlike pipes or sockets, message queues do not require a process to 
be waiting on a message. 

All messages have an associated message queue identifier, using which, pro
cesses can read or write messages to arbitrary queues. This identifier is like a 
file descriptor in the case of an open system call, and is used to reference the 
queue header. In comparison to pipes, there is no requirement that a process be 
waiting for a message on a particular queue before another process can write a 
message to that queue. This means that a process is able to write a message to 
a queue and exit, and have the message read by another process at some later 
time. Unlike pipes, messages provide a specific header format so that applica
tions do not have to worry about interpreting message boundaries. Every mes
sage on a queue has three attributes: a message type, length of the data portion 
of the message, and the data itself. With a variable-length data field available, 
it is easier to structure and manage the data using message queues. 

A message queue is a linked list of messages which has been grouped and 
named as a set. Figure 10.17 exhibits messages on a queue, showing queue 
headers, a linked list of message headers, and pointers from the message head
ers to a data area. 

The most frequent operations performed with this IPC facility are (1) creat
ing or accessing a message queue, (2) removing or controlling the parameters 
associated with a message descriptor, and (3) transmitting (sending or receiv
ing) a message. There are four system calls to handle these operations. The 
msgget system call opens or creates a message queue by traversing the mes-
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Queue 
headers Message headers Data area 

Figure 10.17 Messages on a queue showing queue headers, a linked list of 
message headers, and pointers from the message area to a data area. 

sage queue array to locate a possible match, and allocating a new queue struc
ture if no match is found. The msgctl system call is used to query the status of 
the message queue, set selected status fields, or to remove the queue, when 
needed. The remaining two system calls, msgsnd and msgrcv, are similar; one 
sends and the other receives a message. 

10.11.3 Shared memory 

Shared memory provides IPC capability to processes. It is unique in that it is 
the only IPC method that does not require the data to be communicated 
between processes to be copied. For large chunks of data this is ideal, as it 
eliminates severe performance problems that can arise from large data move
ments inside the system. Although AIX protects one process from accessing the 
memory space of another process, a common memory space can be made avail
able among multiple processes using a set of special system calls. Even though 
a shared memory capability allows data sharing under AIX, it remains the 
responsibility of the processes sharing the memory to devise a synchronization 
scheme to serialize access to it. On its own, this IPC facility does not provide 
locks or access control among the processes. Although reading from shared 
memory may be safe, writing to it can result in severe contention problems 
leading to deadlocks if proper care is not taken. A conceptual diagram of how 
shared memory works is given in Fig. 10.18. 
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Process 
B 

Figure 10.18 Data movement between two cooperating processes using shared 
memory. 

The system calls for manipulating shared memory are similar to the system 
calls for messages queues. The shmget system call creates a new region of 
shared memory or returns an existing one; the shmat system call logically 
attaches a region to the virtual address space of a process; the shmdt system 
call detaches a region from the virtual address space of a process; and the 
shmctl manipulates various parameters associated with the shared memory. 
Note that the low-level instructions to read/write to shared memory are no dif
ferent from how processes read from and write to standard memory. 

Access to a shared memory region is gained by invoking the shmget system 
call that searches the shared memory table for a matching key and subse
quently returns a numeric id. A per-process segment table entry provides 
access to the descriptor associated with the id. The id references entries in the 
kernel's segment information table, which, in turn, describes a segment of 
memory. Under the current implementation of AIX, a process may attach to a 
maximum of ten shared memory segments at any given time. Chapter 11 elab
orates on the memory segments and explains how a memory of a process is 
divided into sixteen segments of which eight (segments 3 to 10) are always 
available for shared memory and two more (segments 11 and 12) can be made 
available, if needed. 

10.11.4 Semaphores 

Semaphores are a synchronization primitive. Although semaphores are not 
exactly IPC mechanisms, they can be regarded as IPC catalysts, since they 
provide a means to synchronize access to shared resources (most commonly, 
shared memory segments). Semaphores can be used by a variable number of 
unrelated processes. The semaphore facilities found in AIX have their earliest 
root going back to Dijkstra's Dekker algorithm, published in 1968, which 
described an implementation of two atomic operations which incremented and 
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decremented an integer counter, depending on the value. Being atomic in their 
operation, only one of them could succeed at any given time. The semaphores 
in AIX and UNIX are a generalization of Dijkstra's atomic operations, in which 
they are used as flags to prevent cooperating processes from using the same 
resource at the same time. 

The most common use of semaphores is in synchronizing access to shared 
memory segments. A semaphore's value can be 1 when memory is available 
and its value can toggle to 0 when the memory becomes unavailable. A process 
accessing this shared memory is required to check the availability of the 
resource (i.e., when the value is 1) prior to accessing it. Assuming the resource 
is available, the first thing the process does is to decrement the value (to 
ensure that it can retain exclusive access to the resource). After the process has 
finished modifying the shared memory, the last thing it does is to increment 
the value (to allow another process to access the resource). When a 
semaphore's value toggles between 0 and 1, as seen in the preceding example, 
the type of semaphore is ref erred to as a binary semaphore. On the other hand, 
when a semaphore takes up general values (0 or positive) to deal with situa
tions with more than two participants, it is called a counting semaphore. 

The semaphore-related system calls are similar to the system calls for mes
sage queues and shared memory. Allocation of and access to semaphores is based 
on possession of a key, so that processes without a common ancestry can coordi
nate use of the same sets of semaphores. The semget system call creates and 
gains access to a semaphore set associated with the key; the system returns an 
integer that serves as the semaphore identifier (called semid) for the semaphore 
set created. Each semid points to a set of semaphores and a data structure that 
contain information about the semaphores. There is a semop system call which 
performs an atomic set of operations on the semaphores associated with the 
semid. It reads the list of semaphore operations (supplied to semop as a param
eter), verifies that the semaphore numbers are legal, and ensures that there is 
permission to perform the operations. In case of a violation, the semop request 
fails. The third semaphore-related system call is semctl, and it controls miscel
laneous operations on the set, such as initialization or removal of a set. The basic 
data structures for semaphores are illustrated in Fig. 10.19. 

Of the IPC mechanisms discussed so far, the message queues, shared mem
ory, and semaphores are exceedingly similar in their implementation. Each of 
them features an equivalent set of system calls, as shown in Fig. 10.20. 

10.11.5 Sockets 

Sockets are communication channels that enable unrelated processes to 
exchange data locally or over networks. They are invoked using the socket sys
tem call. Although they can be used for IPC on the local machine, their primary 
use has been for remote communications across hosts. 

Sockets move associated data in accordance with a referenced protocol. They 
make use of underlying drivers to transport information from a process on one 
system to a participating process on the other, as seen in Fig. 10.21. 
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Figure 10.19 Semaphore data structures. 

The kernel structure for a socket consists of a layered implementation. It has 
three layers: a socket layer which provides the interface with the system calls, a 
protocol layer containing the protocol modules for communication, and a device 
layer holding the drivers that control the network devices. Using sockets, pro
cesses can communicate in a client-server mode: a server process listens to a 
socket from one end of a bidirectional communications path, and client processes 
communicate with the server via another socket on the other end of a communi
cations path (which may be on a different machine). The internal connections 
and routing of data from client to the server is maintained by the kernel itself. 

10.11.6 Streams 

Streams is an adaptable suite of tools and facilities for development of AIX and 
traditional UNIX system communication services. It supports implementation 
of services ranging from networking protocol suites to device drivers. Streams 
allow one to define standard interfaces for 1/0 within the kernel and between 
the kernel and the rest of the AIX system. The key benefit is that the associa
tion mechanism is simple and open-ended. A plethora of applications ranging 
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Operations Message queue Semaphore Shared memory 

system calls to create or open msgget semget shmget 

system call for control operations msgctl semctl shmctl 

system calls for IPC operations msgsnd semop sh mat 
msgrcv shmdt 

Figure 10.20 System calls used for message queue, semaphore, and shared memory. 

Data 

from networking protocol suites to device driver specifications are supported 
by this versatile set. 

To describe how streams work, they can be thought of as a full-duplex pro
cessing and data transferring path between a driver in kernel space and a pro
cess in user space. It provides a conduit by linking three components together: 
a stream head, a driver, and one or more modules in between. Figure 10.22 
shows the layout of the components. The system calls made by the user-level 
process on a stream are processed by the stream head. The stream head, in 
turn, communicates with the module(s). Modules modify the data representa
tion and pass the information downstream to the driver, which, in turn, com
municates with the external interface. 

Streams uses queues as a basic data structure that includes status informa
tion and pointers for message-processing routines and stream administration. 
Queues are allocated in pairs, one with a lower address for read-side 
(upstream) and the other for write-side (downstream). Each driver, module, 
and the stream head are assigned a pair of queues, as a module is added to the 
stream. Data is passed between the driver, stream head, and modules in sets 
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Figure 10.21 Socket. 
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Figure 10.22 Structure of a simple stream. 

of data structures, called messages. A streams message consists of one or more 
message blocks, each forming a triplet consisting of a header, a data block, and 
a data buffer. Within a stream, messages are distinguished by a type indicator. 
Some message types sent upstream may induce specific action by the stream 
head, such as sending a signal to the user process, while others carry informa
tion only within the stream. 

The basic operation of a streams driver is similar to that of a traditional 1/0 
driver. It consists of multiple associated nodes accessed by using an open system 
call. Typically, each file system node corresponds to a separate minor device for 
that driver. If one minor device is opened multiple times, subsequent open calls 
return a file descriptor referencing the stream. Processes sharing the same 
minor device share the same stream to the device driver. A user process sends 
data to the device using a write system call, and receives data from the device 
using a read system call once the device is open. These calls are compatible with 
the traditional character of the 1/0 mechanism. A close system call closes the 
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driver and dismantles the associated streams once the last open reference to the 
stream is completed. The rate of message transfer between modules, drivers, 
stream head, and the processes is controlled by a mechanism called fiow con
trol. It is a local and voluntary process to each stream that limits the number of 
characters that can be queued for processing. This, in turn, limits buffer and 
related processing at any queue. If the stream exercises flow control on the user, 
the write call blocks until flow control is relinquished, and does not return until 
count bytes are sent to the device. Then exit is called to finish the user process, 
close open files, and dismantle the stream, if appropriate. 

The benefit of streams is that it provides a flexible, reusable, and portable 
set of tools for development. It standardizes service interfaces that are gov
erned by a set of protocols. It creates data communication service modules and 
provides the capability to manipulate modules from user level. This allows 
interchange of modules with common service interfaces and changes the ser
vice interface to a streams user process. Thus, user-level programs, network 
architectures, and higher-level protocols can be independent of underlying pro
tocols and physical communication media. Further, higher-level services can 
be created by selecting and connecting lower-level services and protocols. The 
same protocol module can be used with different drivers on different machines 
by implementing compatible service interfaces. From a user's perspective, 
modules can be dynamically selected and interconnected without the hassle of 
kernel programming, assembly, or linking. 

10.12 SUMMARY 

An understanding of the concept of a program or process is only complete when 
one is able to understand not only the structure of a process but also the allied 
data structures in the user's and the kernel's world. The process life cycle 
under AIX is no different than traditional UNIX systems, but it is the presence 
of advanced context switching mechanisms, priority queue handling, and a 
preemptable kernel that makes the AIX process different in terms of process 
subsystem internals. 

The basics of UNIX process management concepts have been kept concise 
here, as that material can be found in any of the numerous textbooks on the 
UNIX operating system. Concepts that highlight the unique capabilities of the 
operating system in areas such as support for real-time computing, threads 
(also called pthreads), and support for multiprocessor platforms have been 
emphasized in this discussion. 
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AIX File, Memory, 
and 1/0 Subsystem Internals 

This chapter provides a tour of the 1/0 subsystem of AIX. Internal data struc
tures related to file, 1/0, and memory are explained in light of their functions, 
features, and benefits. The discussion begins with a design overview of the file 
system and is followed by a detailed description of the logical file system, phys
ical file system, mapped files, and journaled file system. The virtmµ memory 
subsystem is discussed next, with regard to its page replacement, memory load 
control, and code pinning policies. Finally, a description of the 110 management 
and its key features is presented from a systems point of view. 

11.1 AIX FILE SYSTEM 

The AIX file system can be described through a logical view of the file layout, 
as well as through a physical view of the file organization. The logical perspec
tive is referred to as the logical file system, and the physical view of the file lay
out is called AIX's physical file system. The logical file system includes the 
traditional inverted tree structure as seen on all UNIX systems. Directories, 
links, etc. are all considered a part of the logical file system. Three different file 
system types are supported by AIX: 

• Journaled file system 

• Network file system 

• CD-ROM file system 
291 
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The journaled file system specifies the native AIX file system. The network 
file system specifies the file system type that permits files residing on remote 
machines to be accessed as though they resided on a local machine. The CD
ROM file system allows the contents of a CD-ROM to be accessed through the 
normal file system interface (such as open, read, and close). 

11.1.1 Physical file system 

The physical file system maintains the system's perspective of the devices. To 
interface the logical file system with the physical file system, an intermediate 
layer of abstraction is introduced, which is the virtual file system. Because of 
this abstraction, AIX is able to support foreign file and file system types. Fig
ure 11.1 illustrates the interfacing role of the virtual file system. The virtual 
file system permits user processes to access files using a universal system call 
interface, regardless of the location or the type of the file. Figure 11.2 demon
strates how the presence of a virtual file system changes the "standard UNIX" 
access to a file. 

Virtual 
file system 

OLJ 
Figure 11.1 Virtual file system. 

Logical 
file system 

Physical 
file systems or 
remote 
file systems 
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Figure 11.2 Virtual file system permitting 
generalization for file access. 

Access to a file begins with one of the user file descriptors pointing to the file 
table, and the file table, in turn, pointing to the vnodes. The vnode references 
an affiliated gnode in the in-core inode table and also points to a structure 
called vfs that describes the mount (for example I home or I usr) that supports 
the file in question. This vfs structure has a reference pointing to a data struc
ture called gfs, which describes the type of the file system, and another refer
ence pointing back to the directory vnode upon which it is mounted. The gfs 
structure states whether the file system in question is a journaled file system, 
a network file system, or a CD-ROM file system. Depending on which file sys
tem type is being pointed to, the gfs structure indexes into two structures: a 
structure called vfsops that determines the set of operations apropos to this file 
system (such as mount, unmount, sync, etc.), and a structure named vnodeops 
that describes a set of functions (such as link, mkdir, mknod) that can be per
formed on vnodes from this file system. Figure 11.3 represents the tour 
through the tables and structures that completes the picture. 

11.1.2 Memory mapped files 

When one opens a normal file under AIX to read from, write to, or append to, 
the file is automatically mapped to memory to provide what are called mapped 
files. That is, normal file access under AIX bypasses the buffer cache subsys
tem that traditional UNIX systems use. By having files mapped to the system 
memory, the cost for a read-from or write-to a file is diminished to merely the 
cost for a memory write. This greatly enhances 1/0 performance. Although, 
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Figure 11.3 VFS data structures. 
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upon being opened, files get mapped implicitly by default, explicit mapping can 
also be requested using a set of special purpose system calls. 

There are two system calls, mmap and shmat, that provide the capability for 
multiple processes to map the same region of an object such that they share 
addressability to that object. As far as choosing one over the other, the shmat 
call is used when there are a few files to be mapped simultaneously to their 
entirety and memory regions need to be shared among unrelated processes. 
The mmap call, on the other hand, is used when many files are to be mapped 
simultaneously, portability of the application is vital across other UNIX plat
forms, and there is a need to map a portion of the file. 

If mapped explicitly, the file is accessed by address rather than by read 
and/or write system calls. There could be a performance tradeoff here; while 
explicitly mapped files save on the overhead cost of the read I write system 
calls, they lose the benefit of the system write-behind feature. 

11.2 JOURNALED FILE SYSTEM 

Traditional UNIX systems could not guarantee recovery from a crash without 
loss of files. The method of recovery depended excessively on utilities and the 
savvy of the system administrator. AIX does away with the UNIX-like way of 
storing and recovering information by implementing a persistent storage man
agement scheme. The mechanisms implemented by AIX in this area are radi
cally different from those in traditional UNIX systems. AIX implements a level 
of abstraction on top of the physical media called logical volume. This logical 
volume not only enhances the reliability of the files in the file systems but also 
eradicates the limitations of static file system size. 

11.2.1 Logical volume manager 

The logical volume manager (referred to as LVM from here on) is a paradigm 
that addresses the concept of virtual disks (called logical volumes) to address 
the evolving need of the storage subsystem. The LVM provides a layer of 
abstraction between the logical partition perceived by the users and the actual 
physical partition viewed by the operating system (refer to Fig. 11.4). LVM con
sists of two major subsystems: 

• LVM subroutines 

• Logical volume device driver (LVDD) 

The LVM subroutines can be accessed through the logical volume data struc
tures and the logical volume device driver configuration routines, as seen in 
Fig. 11.5. The logical volume device driver interface is at a higher level than 
that of a physical device and allows an abstraction of device-specific dependen
cies (refer to Fig. 11.6 for viewing the interface layout). 

The principal benefit of implementing the LVM paradigm is that it allows 
the extension of files, file systems, and raw partitions to multiple physical 
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Figure 11.4 Abstraction oflogical and physical partitions using the LVM. 
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Figure 11.6 Logical volume device driver interface. 

media, without modification to the existing system or application software. 
Since the logical volume is an abstraction, it can be made larger than the 
underlying physical volumes. Logical volumes can also be mirrored on multiple 
physical volumes to improve performance for data access and provide a greater 
reliability for sensitive data sets. The LVM supports transparent software bad
sector remapping, which means that it has the ability to detect and relocate 
bad sectors autonomously. The size of a logical volume can be increased 
dynamically on a running system without impacting logged-on users. The only 
thing a user notices is that, before increasing the logical volume size, the file 
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system is fuller than it is after the resizing operation. The access to logical vol
mnes is transparent with no alteration to the interface through which users 
and system administrators communicate with the AIX file system. 

Before delving into the details of the LVM, there are some terms that need 
explaining. 

• Physical volume. Physical volume (PV) refers to a physical disk. 

• Logical volume. The term logical volume (LV) refers to a logically grouped 
area. This area appears as if it were a device to the applications, and as a 
disk to the users. A logical volume, in actuality, is simply a mapping to areas 
of physical volume(s). Since a logical volume can map to multiple physical 
volumes, its size can be larger than any one physical volume. The most com
mon use of a logical volmne is for a file system. 

• Volume group. As the name suggests, a volume group (VG) is a collection of 
physical volumes. A volmne group may contain different disk types. 

• Physical partition. For the LVM, a physical partition (PP) is the smallest 
unit of disk space allocation. 

• Logical partition. A single logical partition (LP) points to one or more phys
ical partitions 

Figure 11. 7 maps the newly introduced terms to an illustration to further 
explain the positioning each of these components. As shown, the physical vol
ume is the primary system storage device. The information pertinent to the 
physical volume and the volume group to which it belongs are organized within 
selected data areas within the physical volume. The areas are referred to as 
the physical volume reserved area and the volume group reserved area. LVM 
uses the information stored in these reserved areas to orchestrate its tasks. 
Note that the size of these areas needed to describe a physical volume may 
vary from system to system, since its description depends upon the nmnber of 
physical volumes and logical volumes constituting the storage space. Following 
the contents of these two essential reserved areas, a small fraction of the space 
is used to store the bad sector relocation pool. The remainder of the space on 
the physical volmne stores the user data. Figure 11.8 shows the organization of 
the data area, bad-sector relocation pool, volume group reserved area, and 
physical volmne reserved area on a physical volume. 

The LVM acts as a device driver. It receives requests like open, read, write, 
ioctl, and close, and performs the necessary tasks to complete the operations. 
For example, a read call to a logical volume is converted to the appropriate 
operation on physical volmnes, and is subsequently passed to the physical 
device driver. The LVM synchronizes the 1/0 and, in turn, responds to the ini
tial logical request for that read operation. 

In general, applications use the logical volume device nodes as a "normal 
device" and access it using standard read, write, and ioctl system calls. The 
flow of block as well as character (raw) 1/0 are handled by the LVDD's strategy 
routine. The driver strategy entry point then translates the logical address to a 
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Figure 11.7 Mapping of physical and logical volumes. 

physical address (handling bad-sector relocation and mirroring) and calls the 
appropriate physical disk device drivers. Once the 1/0 has completed, the phys
ical device driver calls a routine named biodone, which, in turn, invokes the LV 
110 completion handling routine. Once this has been completed, biodone is 
called upon again to notify the requester that the 1/0 is now completed. 

Like any regular device driver, the LVM driver is split into two parts, the top 
half and the bottom half. The top half contains the open, close, read, write, and 
ioctl entry points. The bottom half contains the strategy entry point-block 
read and write code. 

The code in the top half of the LVM device driver runs in the context of a user 
process address space. When commands like ioctl are used to manipulate a vol-



300 Software 

} 
Physical volume 
reserved area 

} 
Volume group 
reserved area 

Logical volume 
manager user 
data area 

} Common bad sector 
relocation pool 

Figure 11.8 Physical volume organization. 

ume group and its associated logical and physical volumes, the ioctl call passes 
through an entry point called lv_ioctl (an abstraction for the logical volume 
layer) A complete set of I/O entry point routines like this one is provided. The 
entry points are: 

lv_open 

lv_close 

lv_read 

lv_write 

lv_ioctl 

Called by the file system when a device is opened or a logical volume is 
mounted 

Called by the file system when a logical volume is unmounted or 
when the last close has occurred on the open file corresponding to 
the device 

Called by the read system call to translate character 1/0 to block 1/0 
requests 

Called by the write system call to translate character 1/0 to block 1/0 
requests 

Serves as an entry point for the ioctl call and also implements most of 
the driver programming interface 

The bottom half of the LVM device driver features several layers, including 
the device strategy entry point. This strategy routine is a code that is called to 
process all logical block requests. This part of the LVM, the bottom half, vali
dates I/O requests, translates logical addresses to physical addresses, handles 
mirroring and bad-sector relocation, and actually starts the I/O. Unlike the top 
half of the LVM device driver, this part runs in the interrupt context and is not 
permitted to block. 
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The different layers of the bottom half of the LVM device driver are: 

• Strategy. Performs logical request validation, initialization, termination, 
and serialization oflogical requests (when block ranges overlap). 

• Mirror consistency manager. Ensures integrity of the mirrored data (i.e., if 
mirroring is enabled on the system). 

• Scheduler. Schedules physical requests for logical operations. 

• Status area manager. Tracks availability of physical volumes and the state 
of physical extents. 

11.2.2 Disk mirroring 

Mirroring refers to the replication of data stored in a logical block. The LVM 
controls mirroring through the use of ioctl system call, as seen in Fig. 11.9. AIX 
can be singly mirrored, i.e., configured to maintain two copies of a data. Ifthere 

Logical view 
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Physical volumes 

Figure 11.9 Disk mirroring (singly mirrored). 

Logical partitions 

Physical partitions 



302 Software 

are three copies, then data is said to be doubly mirrored. As implied from its 
definition, mirroring, if enabled, requires double the disk space (at a mini
mum) for the mirrored data. This feature remains disabled by default. If 
required, mirroring may be enabled using the smit tool. Data may be mirrored 
for high availability or for higher performance. 

Mirroring for high availability is done to deal with situations when or if data 
becomes unavailable owing to media defects, a catastrophic drive failure, con
troller malfunction, etc. By mirroring data, the LVM is able to transparently 
recover from the loss of one copy of the data. When access to one copy of data is 
denied, the LVM redirects 1/0 intended for the missing data to the secondary 
or tertiary copy. Although this is a very useful feature for handling critical 
data, careful planning is a prerequisite when setting up the volume group for 
mirroring. Consider an example, where a configuration of two physical vol
umes is being used with a file system that has been singly mirrored for a total 
of two separate copies of the file system. If the two copies of the file system are 
housed on separate disks, then one disk's failure would still mean retaining 
access to an alternate copy of the data. But had only one disk maintained both 
physical volumes, a disk failure would have resulted in a complete loss of data, 
thereby defeating the purpose of mirroring for high availability. 

Mirroring for higher performance is carried out if there are data blocks that 
are subjected to intensive 1/0, primarily owing to excessively frequent read 
operations. Having multiple copies of a data block which can be accessed in 
parallel by concurrent read requests renders quicker data access than one 
without disk mirroring. If implemented, the mirrored copies should be dis
tributed across multiple physical disks for optimal performance. On systems 
equipped with sufficient hard drives and disk space to spread the mirrored 
blocks, performance for read access is achieved by the system by scheduling to 
access the copy of the mirrored block that costs the least to retrieve. For write 
operations, copies of a mirrored block get scheduled to be written whenever 
feasible, meaning that the block is not considered written until the last copy of 
its associated mirrored block has been updated. Usually the total time 
required to write the copies of a mirrored block approximates the time it takes 
to write the slowest copy of a mirrored block. Note that lack of careful configu
ration planning to ensure proper distribution of mirror copies across disjoint 
physical disks can result in performance degradation instead of performance 
enhancement. In conclusion, mirroring is not always the best way to achieve 
high performance. Its gain is significant when data is mirrored for the pur
poses of frequent read access, rather than for frequent write access. 

11.2.3 Bad block relocation 

This is another configurable feature that can be enabled or disabled based on 
the need. There are two kinds of errors that may be encountered by the LVM: 
(1) soft errors and (2) hard errors. Based on the type of error encountered, the 
LVM takes the appropriate actions. 

When the LVM detects a soft (correctable) read error, it attempts to rewrite 
the data, with write verification to the physical drive, potentially correcting 
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the error. Either of two things can happen. If there is no support for write ver
ification on the disk drive and the LVM rewrite fails, the soft error gets treated 
as a hard error. On the other hand, ifthe disk drive supports write verification, 
the read succeeds; this is followed by the LVM performing a write operation to 
the relocated area and relocating the sector. 

When the LVM detects a hard (uncorrectable) error, it relocates the sector. 
The operation is performed using a pool of data sectors that is maintained for 
this purpose. All subsequent I/O is then directed to the new sector. If the data 
is mirrored, then LVM redirects the failed read to another copy of the data and 
subsequently relocates and rewrites the relocated bad sector. When no mirror
ing of the data is available, the LVM returns an error. Later, when the sector is 
updated, it gets relocated and is again capable of storing data. 

11.3 MEMORY SUBSYSTEM 

The memory subsystem internals of AIX is one of the areas that differs funda
mentally from traditional UNIX operating systems. The memory management 
scheme of the operating system was rearchitected to make the best use of the 
processor's architectural features. In regard to the storage space, there are 
three fundamental objects that form the infrastructure of the memory subsys
tem: (1) real memory, (2) virtual memory, and (3) disk space. The real memory 
frames and the virtual memory pages are divided up into basic units, each of 
which is 4 KB in size. The disk space is also partitioned into basic units called 
blocks, each of which is 4 KB. 

real memory~ frames (each 4 KB in size) 

virtual memory ~ pages (each 4 KB in size) 

page space ~ blocks (each 4 KB in size) 

From the system's perspective, virtual memory encompasses both real mem
ory and disk (the file system and the paging space). A virtual memory address 
may point to a page on disk or to a page in real memory, depending on whether 
the reference is being made to an active or an inactive portion of the program. 
A road map of the general page mapping concept is illustrated in Fig. 11.10, 
where a virtual page number from the virtual address space indexes into a 
table called the external page table (XPT) to resolve whether to go to the pag
ing area or to go to the real memory. If the address is meant for the paging 
space, then it directly points to the location on the paging space. But if the 
address were to point to the real memory, it must derive its real page number 
prior to accessing the real memory. This real page number is generated from a 
structure called the page frame table (PFT). 

11.3.1 Memory addressability 

As far as addressability goes, the AIX kernel, in conjunction with the processor, 
provides a per-process address space of 4 GB (232) and a total system address 
space of 4 PB (252). Note that the upper limit on real memory supported by the 
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Figure 11.10 Road map of the general page mapping mechanism. 

32-bit implementation of the POWER and PowerPC architectures is 4 GB, 
whereas the upper limit on real memory supported by the 64-bit implementa
tion of the Power PC architecture is 16 EB. Think about the total systemwide 
virtual address space consisting of 252 bytes that is divided into approximately 
224 segments for a 32-bit implementation. In the future, when AIX offers a 
64-bit implementation, the total systemwide virtual address space will consist 
of 280 bytes that is divided into 252 segments. To understand the hardware 
architectural dependencies on memory addressability, refer to Sec. 3.3.3.4 and 
Fig. 3.8. 

11.3.2 Segmented memory 

Associated with each process is an array that holds the addresses of 16 seg
ments, which happen to be the range of virtual memory addressable by that 
process. For a running process, its array containing the addresses of the 16 seg
ments addressable by the process itself are held in the 16 segment registers. 
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Figure 11.11 Segmented memory. 

Access to segments is regulated by the mode (i.e., kernel mode versus user 
mode) in which the process is serving at that instant. For kernel processes, this 
is not a problem, as they always run in kernel mode. But processes executing 
in user mode have access to a limited number of segments; they have 
read/write access to segment 2 and any shared data segments that the process 
may have attached, and read access to segments 1 and 13. The remaining seg
ments cannot be accessed by user-mode processes directly.* This description of 
the process address space is better understood with the help of a diagram; the 
layout of the segments is illustrated in Fig. 11.11. 

From the kernel's perspective, text and data in segments 0 and 11 through 
15 serve all processes, while the other segments are process-specific. Segment 
0 houses the text and data for the base kernel along with kernel extensions (if 
any). Segments 1and2 are private for each process and remain protected from 
being accessed by other processes. Segments 3 through 10 are shared data seg
ments and can be used to hold explicitly mapped files, or as shared memory for 
processes that have requested access via a shared memory system call (refer to 
Sec. 11.1.2). Segments 11 and 12 are used to manage the kernel structures 
used by the virtual memory manager (VMM). Segment 13 is the shared text 
segment and holds text loaded from shared objects, such as libc.a. Segment 14 
serves as the kernel data segment, which holds kernel structures, data, and, 
most important of all, the proc table. Last, segment 15 is reserved for I/O 

* In order to access an area other than what is referenced by segments 1, 2, 13, and shared data 
segments (if attached), a user process has to either be in kernel mode or access an address in the 
virtual memory address space indirectly by opening a pseudodevice called kmem, located in the 
I dev directory. 
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addresses. Figure 11.12 is a graphical depiction of where each of the sixteen 
segments points to. 

Segments which point to additional data structures require some more 
explanation. Segment 0, which contains the kernel text and data, includes the 
heap and its allied control structures. Segment 1 contains the user process 
text-i.e., the code. Segment 2 is the process private segment and it includes 
the initialized data, uninitialized data (bss), user heap, user stack, system call 

Base 
kernel text, 

data and 
heap 

U= text (ood<) 16 S<gm<ot regi•t</ 
I~ Kernel ;:::::::::::: 

User data 

User heap 

+ 
Userstack1 

Kernel mode 
stack 

u_block 

1 User text 

J Process private 

3 s 
4 H 

5 A 

6 R 

7 E D 

8 D A 
1---------1 

9 T 
1--------1 

11 Reserved 
1---------1 

Memory 
shared by 
processes 

Shared 
text 

101---------iA v_J:: 

12 Reserved ....__ ____ _, 
1---------1 ~-----

13 Shared text 

14 Kernel data 

15 110 address Kernel 
structures 

and 
data 

Figure 11.12 Segmented memory of the AIX kernel. 
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error code variable errno, *kernel mode stack (used by auto variables in kernel 
extensions), user block, and kernel mode heap. Segment 11 is allocated for use 
by the VMM to refer to kernel structures such as the page frame table, hash 
anchor table, page device table, and segment control block. The page frame 
table (PFT) is a structure that is allocated at boot time with one entry for each 
frame of physical memory. This PFT is referenced whenever the cache and the 
TLBt has failed to provide a real address. The PFT is actually two parallel non
pageable tables with a hash anchor table to hold the hashed list of pages and 
to refer back to a segment information table. This segment information table 
contains entries (each of which is called a segment control block) to describe 
each segment in the system. The different kinds of segments recognized by the 
VMM are discussed later in this section. 

Continuing with the description of subsequent segments, segment 12 is allo
cated for use by the VMM to reference the page table area containing the exter
nal page table and area page map. The external page table (XPT) is a collection 
of structures that is used to construct an external page table for every working 
segment by having each of its entries describe the location of that page, pri
marily pointing out whether the page in question is in real memory or on the 
paging space. References made by the remaining segments are straightfor
ward and has been discussed in the previous paragraph. 

11.3.3 Virtual memory management 

As described earlier, virtual memory segments are partitioned into fixed-size 
units called pages. Each page's size is 4 KB. A page can be in real memory or 
on disk until needed. Similarly, real memory is divided into fixed-sized units 
called page frames. The role of the virtual memory manager (VMM) is to man
age the allocation of real memory page frames and to resolve process refer
ences to virtual memory pages that are not currently in real memory. Figure 
11.13 shows how a 4-bit index into the segment registers is used and a page off
set into the virtual segment table is derived from an effective address, to access 
an element. 

There are several subcomponents within the VMM. They are: 

• Segment manager 

• Virtual page manager 

• Page frame manager 

• Page fault handler 

• Persistent storage manager 

* It is a global variable that holds an error code to indicate why a system call failed. 

t TLB is an acronym for translation lookaside buffer, a hardware structure which is responsible 
for translating virtual page numbers to real page numbers. 
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The segment manager provides functions to create, modify, copy, and destroy 
virtual memory segments. The virtual page manager manages the mapping of 
virtual memory pages to disk slots on external storage. The page frame man
ager orchestrates the allocation and deallocation of physical memory page 
frames to virtual pages, and the lists of free page frames, mapped page frames, 
and page frames in use, for I/O operations. The page fault handler is responsi
ble for handling the page faults which occur when a referenced virtual address 
is not mapped within the PFT. The persistent storage manager providesa
tabase memory, transaction processing, locking, and logging services for the 
physical file system. 

The VMM distinguishes between types of segments based upon the function 
performed by them and the way they are backed to external storage when 
paging occurs. There are three kinds of segments that are recognized by the 
VMM: 
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Figure 11.14 Different segment types supported by AIX. 

• Working storage segments. These include dynamically allocated structures 
and variables, and copy-on-write mapped pages* that do not have a perma
nent backing storage. 

• Persistent storage segments. AIX accesses all files as mapped files. This 
means that program and/or file access begins with a few initial pages getting 
copied into virtual storage segments. Subsequent pages are "page-faulted in" 
on demand. 

• Client segments. This type of segment includes pages that are brought in 
via NFS or any other type of remote file system. 

Figure 11.14 shows the different segment types supported by AIX. 

11.3.4 Page replacement 

The VMM maintains a list of free page frames that it uses to accommodate 
pages that must be brought into memory. Unless a virtual memory page is 
pinned, it may become paged out when extra memory frames are needed. In a 
memory-constrained environment, the VMM occasionally replenishes the free 
list (number of empty page frames in memory) by removing some of the current 
data from real memory, effectively "stealing" the real memory frames. The vir-

* Mapped files may be read-only, read-write, or copy-on-write. The phrase "copy-on-write" refers 
to the fact that any changes made to the data are stored in the paging area and not written back 
to the original file. Only an {sync system call will cause the pages to be written back to disk. 
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tual memory pages, whose page frames are to be stolen, are selected using an 
algorithm called the page replacement algorithm. 

The page replacement algorithm is governed by two key artifacts. The first 
one is the use of repaging statistics. A repage fault differs from a new page 
fault in the sense that the page in question, which is known to have been ref
erenced recently, is referenced again and is not found in memory because the 
page has been replaced since it was last accessed. A perfect page replacement 
scheme would eliminate repage faults entirely (excluding memory-size con
straints) by always stealing frames from pages that are not going to be refer
enced again. This is not feasible to implement, as it requires knowledge of 
future page references. However, it is possible to reduce the effect of the repag
ing phenomenon by using statistics of its past behavior. The second criterion 
used is the distinction between computational memory and file memory among 
the memory-resident pages. A computational memory differs from file memory 
in the sense that the former consists of the pages belonging to working storage 
segments or program text segments and the latter consists of the remaining 
pages. 

The technique used to select pages to be replaced is based on one of the 
generic page replacement algorithms known as the clock hand algorithm. It 
makes use of a referenced bit for each page to determine what pages have been 
used, or referenced recently. When the page replacement routine is invoked, it 
cycles through the page frame table, examining each page's referenced bit. If a 
page is found unreferenced and is replaceable, it is placed on the free list. If a 
selected page is found modified since it was last written to the disk (file system 
space or the page space), the page is written out prior to being placed on the 
free list. If a page was referenced, it is not selected for page out; instead, its ref
erence bit is reset. Additional intelligence, added to the page replacement pol
icy under ADC, ensures that the computational pages get fair treatment. What 
this means is that, if a huge data file was to be read into memory sequentially, 
it ought not to page out text pages which are likely to be reused soon. The 
VMM attempts to keep the size of the free list around a fixed range. If page 
faults or system demands cause the free list size to fall below the low thresh
old, the page replacement algorithm frees up enough pages to make the free 
list larger than the high threshold, thus maintaining a consistent size for the 
free list. 

11.3.5 Memory load control 

When a process references virtual memory pages that are on disk, the refer
enced page must be paged in. This creates 1/0 traffic and delay. If the main 
memory is fully occupied and there aren't any free pages left, thrashing may 
happen. Thrashing is the result of incessant I/O to the paging disk, wherein 
processes encounter page faults almost as soon as they are dispatched. To erad
icate this phenomenon, a load control algorithm is implemented that detects 
when the system is beginning to thrash, and consequently suspends active pro-
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cesses (by putting them to sleep and freeing up all the memory they are using) 
until the system has recovered from thrashing. 

This load control feature is settable as well as tunable. This means that one 
can disable the memory load control feature of the operating system if no sus
pension of active processes owing to detection of thrashing is desired, or if com
patibility with earlier versions of AIX, which lacked this load control feature, 
is needed. As far as tuning goes, the memory load control feature can be fine
tuned to best meet the requirements of an individual system and its workload. 

The memory load control mechanism works by attempting to determine if 
there is a scarcity of memory frames for the set of active processes on the sys
tem. This inference is made by the scheduler once every second. Based on an 
analysis of the previous second's snapshot, the scheduler determines if pro
cesses are to be suspended or activated. lfit is to suspend processes, the nom
inated processes are marked up and are consequently suspended at the 
earliest opportunity that the system gets to have the processes in user mode. 

11.3.6 Code pinning 

When code and data associated with a device driver is pinned in real memory
that is, it is exempt from being paged out to disk-response time for that device 
improves dramatically, as there is no time lost to page faults. If not used prop
erly, pinning can result in serious performance problems on the system 
throughput. 

11.4 1/0 SUBSYSTEM 

1/0 management under AIX has two characteristic traits, namely an asyn
chronous 1/0 facility and a page-hiding property. Other functionalities are no 
different than on traditional UNIX systems. 

11.4.1 Asynchronous 1/0 

The term synchronous I I 0 alludes to the notion that 1/0 occurs while one waits 
for it to complete. In contrast, asynchronous 1/0 does not cause applications to 
wait. This, in general, improves performance, since the 1/0 operations and the 
applications can both progress at the same time. Transaction-processing appli
cations like databases are able to take generous advantage of this feature for 
performing overlapped compute tasks and 1/0. 

This facility is an implementation of the POSIX Asynchronous Input and 
Output Interface 1003.4 document. The functions provided by the asyn
chronous 1/0 facilities are (1) nonblocking 1/0, (2) cancellation of 1/0 requests, 
and (3) notification of 1/0 event completions. The nonblocking 1/0 facility 
allows the applications to proceed with their execution without being blocked; 
it does so, by queuing the requests and allowing the application to continue 
execution. Cancellation of 1/0 requests works only if the request is still in the 
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queue and its 110 operations have not yet started. Notification of 1/0 event 
completions are handled by either having the application poll for the status of 
that 1/0 operation periodically, or by sending an asynchronous notification sta
tus to the application. 

Multiple asynchronous 1/0 requests may be issued on the same device by one 
or more applications. But remember that, since the operations are performed 
asynchronously, the order in which the 1/0 calls are handled may not be the 
order in which they were issued. 

11.4.2 1/0 pacing 

Interactive processes on the system occasionally suffer from long response 
times when used in environments with heavy 1/0 on a moderately loaded sys
tem. Although this is quite normal in multiuser time-sliced environments, the 
interactive applications in particular are noticed by the user community. The 
reason for this symptom should be evident: it has to do with pending 1/0 
requests being the bottleneck. I I 0 pacing is a feature of the memory manager 
that can put an upper limit on the number of 1/0 requests that can be out
standing against a file at any given time. When this limit is exceeded, the pro
cess with pending 1/0 requests is suspended (by putting it to sleep) long 
enough so that the outstanding requests can be processed and a lower thresh
old level is reached. In traditional UNIX systems, including previous releases 
of AIX, users occasionally encountered a multiple-second delay when another 
application was performing a large number of writes to disk. As most writes 
are asynchronous, long queues can build up, which cause several seconds 
worth of delay. The disk 1/0 pacing feature eliminates this problem. However, 
there may be instances with real-time computing requirements where this fea
ture can hurt processes performing intensive 1/0. Keeping in mind the diverse 
requirements for response time, this feature has been made a selectable option 
rather than hard-coded. 

By default, pacing remains disabled. One may enable pacing in AIX using 
smit and specifying the number of pages for upper and lower limits to suitable 
values, if large 1/0-intensive jobs on the system inhibit interactive response 
time. 

11.5 DEVICE SUBSYSTEM 

The device 1/0 subsystem allows a process to communicate with devices such 
as disks, tapes, terminals, printers, and networks. Its low-level modules, which 
actually control these devices, are referred to as device drivers. In its simplest 
form, a device driver moves data between hardware devices and user applica
tions, where the user applications supply and consume information. In gen
eral, there is a one-to-one correspondence between device drivers and device 
types: systems may contain one disk driver to control all disk drives, one ter
minal driver to control all terminals, etc. But note that installations that have 
devices from more than one manufacturer-for example, two brands of 4-mm 
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tape drives-may treat the devices as two different device types and have two 
separate drivers, because such devices may require different command 
sequences to operate properly. The system also supports software devices that 
have no associated physical device. For instance, the kernel treats the physical 
memory as a device to allow a process access to physical memory outside its 
address space, even though memory is not a physical device. 

11.5.1 Device drivers overview 

Device drivers run in a privileged state as kernel extensions. This implicitly 
indicates that device drivers have access to a number of functions or services 
that are not available to normal application programs. 

11.5.2 Major and minor numbers 

Devices are identified in the kernel through major and minor numbers. Usu
ally a major number identifies a particular device driver. A minor number 
identifies various device instances known to the device driver. Note that a 
device driver may be assigned multiple major numbers. Also, minor numbers 
can be used to identify different modes of operation for a device as well as dif
ferent device instances. 

11.5.3 Character and block device drivers 

There are two types of devices: block devices and character devices. Devices 
such as disk that appear like random-access storage are denoted as block 
devices, whereas devices like terminals and network interfaces are referred to 
as character (or raw) devices. Note that those which act as block devices may 
have a separate character device interface, too. 

11.5.4 Device switch table 

The kernel-to-driver interface is described by a structure called the device 
switch table. Each device type has entries in that table that direct the kernel to 
the appropriate driver interfaces for the system calls. 

11.5.5 Device head and device handler 

A device driver consists of a device head and a device handler. A device head is 
the portion of a driver that provides interfaces to application programs 
through the standard open, close, read, write, and related system calls. The 
device head accepts 1/0 requests from application programs and communicates 
them to a device handler. The interface between application programs and a 
device head is rigidly defined by the kernel. Its prime functions are converting 
requests from the form of a file 1/0 function call to a form that is recognizable 
by the device handler, performing 1/0 blocking and data buffering, handling 
error recovery, and managing the 1/0 request queues. 
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Device handler is the portion of a device driver that communicates with the 
actual device and/or adapter. It takes requests from a device head and imple
ments the requests on actual hardware. It should be noted that the interface 
between a device head and a device handler is not defined, though the operat
ing system provides a large number of primitives to assist in constructing an 
interface. The details are always device-driver-specific, and are mostly left up 
to the preference of the device driver author. 

Device driver routines providing support for physical devices typically run in 
two different types of environments. The top half of the driver always runs in 
the environment of the calling process. This is normally pageable. The bottom 
part of the device driver runs in the process or interrupt environment. This 
performs the actual 1/0 and needs to be pinned so that page faults are not 
taken in the interrupt execution environment. 

11.6 OBJECT DATA MANAGER 

ODM (object data manager) is an object-oriented database. It is sort oflike an 
unsung hero, as it maintains all the metadata on a running system in the back
ground at all times, but no one directly sees its contribution. 

The ODM fully supports the concepts of object classes and objects. An object 
class is a group of objects with the same definition. An object, a member of a 
defined object class, is an entity that needs storage and management of data. 
In fact, an object class is conceptually similar to an array of structures, with 
each object being a structure that is an element of the array. A given object 
class is also associated with a set of descriptor(s). These descriptors take up 
values when the object is added to an object class. 

Although ODM's configuration information in its entirety is complex, it can 
be viewed as a set of predefined and customized information. The predefined 
information pertains to all the possible devices (and their default configura
tions) that AIX supports, while the customized information includes the 
actually installed devices along with their current configurations. In other 
words, the predefined object class defines what can be there, while the cus
tomized object class describes what is actually there. Unlike traditional 
UNIX, AIX categorizes devices hierarchically, allowing for structured device 
management. Not only are similar devices clustered under the same func
tional class, but their dependencies with allied devices are also mapped out. 
The benefit of this is in the degree of control that devices have with one 
another. This scheme guarantees that a higher-level device such as a SCSI 
adapter always retains a cohesive bond with all its lower-level members such 
as disk drives and tape drives, and does not get reconfigured or unconfigured 
by accident. In order to store these device-to-device mappings, the location of 
devices is also stored by ODM. As a result, the location code becomes handy 
for identifying the paths and dependencies of each device. A typical location 
code looks as follows: 

DD-SS-CC-PP 
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Figure 11.15 Device-state transition diagram. 

In it, PP gives the port number,* CC points out the connector location, SS rep
resents the slot in which the adapter is installed, and DD indicates the drawer 
number. 

While using smit (system management interface tool) to install and/or con
figure devices, one may find that devices are either "available" or "defined" in 
the ODM database of the system. There is a subtle difference between the two 
states which is often confusing. Overall, a device may be either usable or unus
able on the system, based on its state. This state is a function of the object 
classes of the ODM. As seen in the device state transition diagram in Fig. 
11.15, a state can be defined, configured, reconfigured (changed), undefined, or 
unconfigured. When undefined, a device implicates that the entry is in the pre
defined object class of the ODM, but it is not resident in the customized object 

*This convention has a slight exception for SCSI devices. The two digits of the PP field identify 
the SCSI id number and logical unit number (LUN). 
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class. An unconfigured state means that a device's definition has been moved 
from the available to the defined state in the customized devices object class. A 
device becomes defined upon detection, and this happens when the ODM's 
device-specific define method is invoked to load a device driver into the run
ning kernel. This is a very powerful statement, since it describes the automatic 
device definition property of the ODM along with the dynamic binding feature 
of the AIX kernel. This ability of the base kernel to dynamically load kernel 
extensions sets AIX apart from the other variants of UNIX. 

11.7 SUMMARY 

The three key concepts used in the evolution of the augmented 1/0 storage 
facility of AIX are derivatives of some of the well-known early computer sys
tems. The large virtual memory of this machine and the integration of file sub
system with logical volumes and virtual memory were evolved from computer 
systems like the IBM System/38 and the earlier operating system, MULTICS, 
which is regarded as the ancestor of the present-day UNIX. The innovation of 
database memory was derived from the IBM 801, an experimental machine 
developed at the Thomas J. Watson Research Center. All of these traits were 
combined and first implemented in an integrated manner on the IBM RT. 
Later, the concepts were improved upon and incorporated in the POWER and 
PowerPC architectures. This made it possible to deliver AIX as the only imple
mentation of the UNIX operating system with unique 1/0 and storage features 
that stand out above and beyond the traditional UNIX based systems. 
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12 

What You Need to Build a PowerPC 

This chapter provides a description of the devices, interfaces, and data formats 
required to design and build a PowerPC based industry standard computer 
system. The hardware standard, when coupled with the hardware abstraction 
software of operating systems, enables one to build PowerPC systems which 
run compliant operating systems and shrink-wrapped applications for those 
operating environments. 

Today's diverse base of computer systems limits the system designer's ability 
to add new features without jeopardizing compatibility and interoperability. To 
sustain and continue to grow, one has to be able to construct computer archi
tectures that are modular in nature and provided scalable scope of growth, 
expansion, and upgrade. 

Any computer system has a set of key subsystems like the memory, connec
tivity, storage, expansion, and human interface, which are independent of the 
processor type and can be characterized on their own accord. There is always a 
variety of options available as to how to implement these subsystems. For 
example, the requirements for the system expansion bus subsystem can be met 
using a VME, EISA, ISA, NUBUS, or MCA bus. However, what kind of bus is 
to be used is left up to the vendor or integrator. 

The guidelines provided here are intended to make the reader's choices eas
ier regarding the selections of each of the subsystems. Note that this informa
tion can also be found in the PowerPC Reference Platform Specification Guide. 
This chapter includes excerpts that provide an overview of what it would take 
to build a PowerPC based computer system. 
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Dataflow through the computer emphasizes a hierarchical pyramid of 
resources (depicted in Fig. 12.1). The highest level resource is the processor. It 
is followed by the cache subsystem, and, subsequently, the memory subsystem. 
Beyond that, there is the connectivity subsystem, followed by the storage and 
expansion subsystems. As stated before, there can be a choice for implement
ing each of the levels in the hierarchical pyramid. To understand the position
ing of the various types of buses that link the different subsystems in the 
computer with one another, refer to Fig. 12.2. 

12.1 MEMORY SUBSYSTEMS 

The memory subsystems are broken down into the subcomponents discussed 
in the following subsections. 

Cache 

Memory 

Connectivity 

Storage 

Figure 12.1 Hierarchical pyramid of resources. 
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Figure 12.2 Positioning of various buses in a typical system. Hierarchical layout of the processor 
bus, memory bus, PCI bus, SCSI bus, and the system expansion buses (e.g., ISA or PCMCIA). 

12.1.1 System memory 

PowerPC Reference Platform (PReP) system configurations require a mini
mum of 8 MB of system memory with at least 8 MB of expansion capability. It 
is recommended that a minimum of at least 16 MB of memory be supplied on a 
system which is to support any of the operating systems. In addition, at least 
24 MB of system memory expansion capability is advised beyond the minimum 
of 8 MB that is implemented. Expansions to system memory are added directly 
to the same bus on which the base system memory exists. System memory and 
expansions to system memory may be located elsewhere as long as coherency 
is maintained. The systems processor must be able to read and write system 
memory. The state of this memory must be valid as long as power is applied to 
the memory subsystem. The system memory must also support cache line 
burst operations from the target processor. 
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12.1.2 System ROM 

System ROM contains the firmware required by the system. Typically, system 
ROM is implemented using ROM, EPROM, or flash ROM. It is strongly rec
ommended that system ROM be writable by the system processor. This mem
ory must be readable by the system processors, but it may not be accessible to 
the system 1/0 processors. The size of this memory is dictated by the size 
required to implement the systems firmware. Normally, system ROM is not 
cached. If system ROM is cached, then system ROM must support burst trans
fers to the target processor. 

12.1.3 Nonvolatile memory 

Non volatile memory is required to maintain the system in the absence of sys
tem power. This memory must be readable and writable by the system proces
sor. A minimum of 4 KB of nonvolatile memory is required for the PReP system 
configuration. 

12.1.4 1/0 memory 

1/0 memory can exist on the system expansion bus and is part of the 1/0 sub
systems. It is typically not cached. If an implementor chooses to cache 1/0 
memory, then software must manage the coherence. 1/0 memory may also be 
located on the primary processor bus. If it is located on the primary processor 
bus, the 1/0 memory will participate in the hardware managed coherency pro
tocol. 1/0 memory is configured separately from the system memory in the 
memory map. Candidates for 1/0 memory include graphics buffers, communi
cations buffers, and 1/0 processor memory. 

12.1.5 Memory mapped system 1/0 

Part of the memory subsystem is the addressing and communications with 
diverse 1/0 devices. Within the PowerPC architecture, 1/0 is performed by 
loads and stores to or from areas of the memory space, which are mapped to the 
1/0 addresses. To communicate with 1/0 on a secondary bus, PReP systems are 
required to generate 1/0 addresses. Addresses in the memory space must be 
converted by the bus bridges to the addresses of the 1/0 on the bus. These 1/0 
addresses must be compatible with existing adaptors and be configurable at 
boot time. 

12.1.6 Secondary cache 

A secondary (also referred to as L2) cache may be included as an optional part 
of the system. 

12.2 STORAGE SUBSYSTEMS 

The following components are included in the storage subsystems. 
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12.2.1 Interface 

The storage subsystem should use a fast SCSI-2 interface to support hardfiles 
and CD-ROMs. This interface will also support scanners, tapes, optical stor
age, and RAID based storage systems. 

12.2.2 Hardfile 

PReP system configurations should have either a hardfile or hardfile capabil
ity (which is storage provided remotely via a network). In either case, the 
minimum size for this storage is 80 MB. Systems requiring hardfile capability 
can achieve this by direct connection through SCSI or IDE, networking, or 
an expansion adapter. It is strongly recommended that PReP systems capable 
of containing a hardfile have one with a capacity greater than 200 MBs. This 
size will be sufficient to support any of the operating systems in their basic 
configurations. 

12.2.3 Diskette 

Diskette drives must support 3.5-in, 1.44-MB MFM format diskettes achieved 
through direct connection to a floppy drive. Optional features of the floppy 
drive include autoeject, which allows the software to control ejection of the 
media and media presence detection. 

12.2.4 CD-ROM 

The CD-ROM device should support, at a minimum, the ISO 9660 standard 
which is achieved through direct connection, such as SCSI or IDE. It may also 
be achieved through networking or expansion adaptor connection. 

12.3 HUMAN INTERFACE SUBSYSTEMS 

The human interface subsystem consists of an alphanumeric input device, 
pointing device, audio capability, and graphics options as discussed in the fol
lowing subsections. 

12.3.1 Alphanumeric input device 

PReP system configurations require an alphanumeric input device, typically a 
keyboard. Even though no particular keyboard interface is specified, it is essen
tial that the input device be capable of generating at least 101 scan codes that 
can be interpreted by the machine-specific layer of the device driver. Typically, 
most system environments require a direct attached keyboard; those that do not 
include servers or multiuser systems with terminals attached. 

12.3.2 Pointer device 

Some of the system configurations such as workstations, which have directly 
attached keyboards, typically require a pointing device, like a mouse, tablet, or 
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touch screen. The pointing device is required to provide two-dimensional posi
tioning as well as the capability of generating at least mouse up and down 
events. Some operating systems may require additional scan codes. The point
ing device should be able to report the positioning information with at least the 
pixel resolution of the largest display supported by that system. 

12.3.3 Audio 

PReP compliant configurations require audio capability. Audio must be capa
ble of analog audio in and out. The audio capability should provide 16-bit 
stereo samples at sample rates of 44.lKHz and 22.05 KHz. 

12.3.4 Graphics 

Configurations in an operating environment that requires directly attached 
graphics subsystems must support at least a 640 x 480, direct-mapped, 8-bit
per-pixel display device. The software interface to the graphics subsystem is 
accomplished through an implementation-bus-interface-specific device driver. 
Most systems require directly attached graphics systems. An example of a sys
tem that does not require a directly attached graphics device is a server (data 
server or a computer screen). 

For the colors and resolution capabilities, the graphics subsystem should 
support color depth of 16 or 24 bits and higher resolutions of at least 1024 x 768 
pixels. Note that these graphics resolution specification requirements apply to 
the graphics adapter and frame buffer, and not to the graphics mode or display 
requirements. It is also recommended that the graphics subsystem support 
Big-Endian operations to allow the Endianness of the graphics frame buffer 
and registers to be set independently of the Endian mode of the processor. 

12.4 REAL-TIME CLOCK 

PReP compliant configurations require a real-time clock (RTC). The RTC must 
operate in the absence of external power via a battery power source. It is 
required that the RTC provide the necessary information to determine year, 
month, day, hour, minutes, and seconds. The recommended day accuracy of the 
RTC should be at least +/- .001 percent, which is about one second per day. 

12.5 CONNECTIVITY SUBSYSTEMS 

The following components are included in the connectivity subsystems. 

12.5.1 Serial 

All configurations require at least one serial port. Compliant systems should 
implement this serial port using EIA-232C signal compatibility. This serial port 
must support asynchronous protocol with Baud rates up to at least 19.2 K. Con
sole functionality via an ASCII terminal may be provided by this serial port. 
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12.5.2 Parallel 

A minimum of one parallel port is required on the compliant systems. The par
allel port should use the Centronics 8-bit bidirectional protocol. However, it is 
recommended that the Extended Capability Port (ECP) protocol be used if pos
sible instead of the Centronics protocol. 

12.5.3 Network 

LocalTalk (EIA-422) is a direct network connection recommended for low-end 
connections. LocalTalk is compatible with the SCC 8530 controller and is 
defined by interface standards and protocols. A LAN connectivity option is rec
ommended for high-performance environments, preferably Ethernet or Token 
Ring. Additional options for network connections include ATM, ISDN, FDDI, 
and Isochronous Ethernet. 

12.6 EXPANSION BUS OPTIONS 

No particular expansion bus is mandatory. It is recommended that systems 
implementing an expansion bus should probably use PCI, PCMCIA, and/or an 
ISA bus. These buses are supported by the current operating system ports to 
PReP systems. Other buses which could be used with modifications to the 
abstraction software of each hosted operating system include VME, EISA, 
NUBUS, VL, and MCA. 

12.7 INTERFACE STANDARDS 

This sections lists and describes standards applicable to the PowerPC Refer
ence Platform subsystems. Implementation recommendations for these stan
dards are also provided. 

12.7.1 SCSI 

Small computer system interface (SCSI) is an ANSI standard specification for 
a peripheral bus. PowerPC based systems that implement SCSI must comply 
with the ANSI standard X3.131-1990 (Revision lOc) for SCSI-2 (Fast SCSI). 
This standard specifies the electrical interface as well as the internal system 
connector. It is recommended that SCSI implementations use nondifferential 
signaling with active termination. Use of this standard provides a convenient 
method for accessing CD-ROM, tape, hardfile, scanner, optical, and floptical 
drives. 

12.7.2 IDE 

IDE is an optional interface for hardfiles. IDE implementations should comply 
with the X3.221 AT Attachment: Proposed American National Standards. A 
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local-bus, enhanced-IDE standard has been developed for PowerPC systems 
using IDE. 

12. 7 .3 Ethernet 

If Ethernet is implemented, it must adhere to the Ethernet and IEEE 802.3 
standards. This specification covers both the electrical interface and the con
nectors. Refer to Fig. 12.2 to understand the positioning of the Ethernet net
work adapter. 

12.7.4 Token ring 

If Token Ring is implemented, it must adhere to IEEE 802.5 standards. This 
specification covers both the electrical interface and the connector. Refer to 
Fig. 12.2 to understand the positioning of the token-ring adapter. 

12.7.5 Serial 

The EIA-232C standard for computer serial port connectors should be used. It 
is recommended that compliant systems implement EIA-232C using a 9-pin 
D-shell male connector and pin assignments as defined in Fig. 12.3. 

12.7.6 LocalTalk 

LocalTalk is the standard Macintosh serial port. It is recommended that com
pliant systems implement EIA-422 using the 9-pin connector and the pin-out, 
as shown in Fig. 12.4. 

12.7.7 Parallel port 

This port is specified by IEEE P1284, Standard Signaling Method for a Bi
directional Parallel Peripheral Interface for Personal Computers. P1284 is the 
formalized and enhanced version of the popular Centronics interface. 

12.7.8 PCI bus 

The PCI (peripheral component interconnect) bus is a system board-resident 
bus that can be populated with adapters requiring fast accesses to each other 
and/or system memory. Refer to Fig. 12.2 to understand the positioning of a PCI 
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Figure 12.3 9-pin D-shell serial connector. Figure 12.4 9-pin LocalTalk connector. 
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with respect to other buses in a system. One of the characteristic features of this 
bus is that all its read/write transfers are burst transfers and the variable-size 
length of the bursts are negotiated between the initiator and target devices. 

The PCI bus, if implemented, must adhere to its standards developed by 
Intel Corporation, and now managed by a consortium known as the PCI Spe
cial Interest Group. 

12.7.9 PCMCIA bus 

The PCMCIA standard defines the physical requirements, electrical specifica
tions, and software architecture for the 68-pin cards and their sockets. Release 
1.0 cards and sockets of the PCMCIA supported only memory operations and 
had no I/O capabilities. Release 2.0 and later releases of the specification allow 
the full range of I/O capabilities. The PReP compliant systems should support 
the sockets that are Release 2.0 and beyond compatible. 

The PCMCIA software architecture has two key elements: Socket Services 
and Card Services. Socket Services is a hardware-dependent interface that 
masks the socket's actual hardware implementation from higher-level soft
ware components that utilize it. Card Services is a software layer that sits 
above the Socket Services, coordinating access among the cards, the sockets, 
and system resources, such as interrupts and memory map. Card Services 
accesses cards via Socket Services. The card drivers interact with the car via 
Card Services. Card Services is generally operating-system-dependent. 

For maximum compatibility and interoperability, PowerPC system platform 
vendors should provide Socket Services and the operating system vendors 
should provide the Card Services extension. For PowerPC Reference Platform 
compliant systems, both Socket Services and Card Services should be provided 
in the system abstraction layer. 

12.7.10 ISA bus 

The ISA (Industry Standard Architecture) bus is the most widely used system 
bus in the PC industry. Originally, the ISA bus was referred to as the PC-AT 
bus, and there were no official definition or standards for it. Later on, its spec
ifications were defined by the IEEE standards group. The ISA bus, if imple
mented, allows a transfer rate of up to 8.3 MB/s. Transfers over the ISA bus are 
synchronized around 8 MHz, and they usually take a minimum of two cycles of 
the bus clock to perform a data transfer. As the data path of an ISA bus is 16 
bits wide, up to 2 bytes may be transferred during each transaction. 

The IEEE definition of ISA is used to implement ISA buses for the PReP 
systems. 

12.7.11 Input device interface 

This is the interface for the alphanumeric and pointing devices; for example, 
the ADB standard as used in Apple computers or the PC/AT, PS/2 interface as 
used in an Intel 8042AH chip. 
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12.8 SYSTEM CONFIGURATIONS 

Configurations of Power PC Reference Platform systems include: 

Portable System 

Medialess System 

Desktop System 

Technical Workstation 
System 

Server System 

12.9 SUMMARY 

A PowerPC compliant machine that is capable of bat
tery operation. 

A PowerPC compliant medialess system that relies 
on network connections for storage. Boot is from the 
network; software, data, and paging space are 
attained from the network. 

A PowerPC compliant desktop system that is an 
entry level system for commercial or technical 
applications. 

A PowerPC compliant technical workstation con
figuration that specifies a technical user's desktop or 
deskside machine. 

A PowerPC compliant server configuration specifies a 
machine that serves multiple users and does not 
required a locally attached keyboard and display. 

The information included in this chapter provides an introduction to the 
aspects to be considered when building a PowerPC system. The memory sub
system, storage subsystem, and computer-human interface subsystem that 
form the infrastructure of any nascent system are addressed. The discussion of 
the connectivity subsystem and expansion buses form the next level of building 
a system, where one decides on the choices of expandability (networking and 
interfacing with exiting bases). The information on storage subsystem 
addresses the industry-standard interfaces. Together, the discussion on differ
ent subsystems provides a thorough and comprehensive overview of what it 
would take for you to build your own PowerPC. 
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PowerPC Models 

The PowerPC microprocessor has been used to build a wide array of computer 
systems by a diverse number of companies. Apple and IBM are among the first 
companies to have built complete computer systems using the PowerPC 601 
processor as the core of the computer system. Existing models of complete com
puter systems, such as the RISC System/6000 200 series and the Macintosh 
series are described here. 

A.1 CHIP VERSUS SYSTEM 

Recognize that Power PC is an architecture and the 601 processor is one of its 
many implementations that can be manufactured to run at varying clock 
speeds to deliver optimal performance with multifarious 110 subsystems 
(buses). Therefore, it makes sense to keep the discussion of PowerPC-based 
computer systems separate from discussions of the PowerPC chip's concepts, 
facilities, and architecture, which has been the main premise of this book. 

A.2 IBM IMPLEMENTATIONS 

The 7011 RISC System/6000 POWERstation/POWERserver 200 series is a set 
oflow-priced, entry-level desktop workstations or servers with multiuser, com
mercial applicability. They are binary-compatible with the other RISC System/ 
6000 POWERstation/POWERserver family of systems and the AIX/6000 oper
ating system, with support for paging over LAN s and remote boot. In the 200 
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series, some models are based on the POWER RSC processor (the predecessor 
to the PowerPC), while others are based on the PowerPC 601 processor. 

The 220 and 230 feature the POWER RSC processor with 16-MB to 64-MB 
memory, optional internal fixed disk up to 2 GB, two Micro Channel slots, one 
Gtl graphics card slot, one integrated SCSI controller, one Ethernet controller, 
one diskette drive bay, and standard device ports/connectors. The 230 series 
offers an additional 128-KB level-2 cache. (Note that the level-2 cache is also 
referred to as a secondary cache.) 

The 250 series offers a range of models featuring the Power PC 601 processor, 
along with some additional features, including 16-MB to 256-MB memory 
and provision for a GXT graphics card and integrated SCSI-2 controller (over 
SCSI-1 controller). Each model can be enhanced to include more features in 
place of the standard ones. With an optional diskette drive and fixed disk, 
these systems can operate stand-alone or can be attached to a LAN for diskless 
or dataless configurations. In terms of connecting the computer to different 
Ethernet media, one can use any of the thick (10Base5), thin (10Base2), or 
twisted pair (lOBaseT) interfaces. 

Highlights of the POWERstation/POWERserver 200 series include: 

• The introduction of the PowerPC 601 microprocessor and the first imple
mentation of the PowerPC architecture in the System/6000 product line 

• High-performance graphics adapters which connect directly to the PowerPC 
601 local processor bus and provide accelerated 2-D performance 

• Binary compatibility with the current family of RISC System/6000 systems 
and the latest version of AIX 

• Industry-standard memory and SCSI-2 and Ethernet controllers for addi
tional growth capability 

• The ability to function as LAN-dependent, LAN-attached, or stand-alone 
workstations 

A.2.1 RISC System/6000 POWERstation N40 

The RISC System/6000 N40 is the industry's first PowerPC-based notebook 
workstation. It combines the power of the PowerPC 601 microprocessor and 
the AIX operating system in a lightweight color notebook computer. Running 
at 50 MHz, the N40 achieves an exceedingly high level of performance, making 
it more powerful than not only any notebook computer but also many desktop 
workstations. 

The 6.9-lb N40 features a 9.4-in TFT (thin-film transistor) active matrix 
color screen that offers wide-angle viewing in 256 colors. The N40's video mem
ory supports up to a 1280 x 1024 image, which can be viewed via a pan-and
zoom feature on the TFT display or via an externally connected monitor. Also 
featured is a pointing device, which is located in the center of the keyboard and 
eliminates the need for a separate mouse. The N40 operates from an external 
battery pack that has a battery life of up to four hours. 
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Highlights of the N40 include: 

• 50-MHz PowerPC 601 processor 

• Main memory support from 16 MB to 64 MB 

• SCSI-2 diskette drive support 

•Removable disk drive with a 340-MB capacity 

• Ethernet network support 

• Support for PCMCIA adapters providing token-ring network support 

• An external display port supporting 1280 x 1024 resolution and up to 256 
colors 

• Ports for an external mouse, keyboard, and Appletalk printers, and a built-
in speaker and microphone 

The N40 also features Tadpole's Nomadic Computing Environment, providing 
users with a rapid save-and-resume, power management, portability tools, and 
other UNIX mobile computing innovations. 

A.2.2 RISC System/6000 POWERstatlon/POWERserver 25S 

The RISC System/6000 POWERserver 25S is an entry server model with 16 
MB of memory, 1 GB of internal fixed disk, and an 8-port EIA-232 adapter with 
fan-out cable. This entry-level configuration can function without a fixed disk 
in a LAN environment or, with a fixed disk and diskette drive added, in a 
stand-alone environment. Customers can upgrade memory and add features to 
enhance the system, making the system ideal for attaching multiple async ter
minals such as in retail, data entry, small office, banking, and insurance envi
ronments. 

Highlights of the 25S include: 

• 66-MHz PowerPC 601 processor 

• 16-MB memory 

• One integrated SCSl-2 controller 

• One integrated Ethernet controller 

• Standard device ports/connectors: 

Keyboard/speaker port 
Mouse port 
Tablet port 
Two serial ports 
Parallel port 
SCSI-2 port 
Ethernet port 

• Two Micro Channel card slots (form factor 3) for expansion 
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• One PowerPC 601 local processor bus slot for an optional graphics adapter 

• 1-GB SCSI-2 disk drive 

• 2-GB SCSI-2 disk drive select option 

• 8-port async adapter with the multiport interface cable 

• Async select options for 16- and 128-port configurations 

A.2.3 RISC System/6000 POWERstation/POWERserver 25W 

The RISC System/6000 POWERstation 25W is a midrange graphics worksta
tion in the 250 series that offers the same base function as the 250, as well as 
the POWER GXTlOO graphics adapter, 16 MB of memory, 540 MB of internal 
fixed disk, keyboard, and mouse. 

Highlights of the 25W include: 

• 66-MHz PowerPC 601 processor 

• POWERGXTlOO graphics adapter 

• Keyboard and mouse 

• Graphics select options-POWER GXT150 graphics adapter, POWERGt4e 
or GTO accelerator 

• 540-MB SCSI-2 disk drive 

•Disk drive select options-1 GB, 2 GB 

• Eight slots for SIMM memory cards 

• 16-MB memory 

• One integrated SCSI-2 controller 

• One integrated Ethernet controller 

• Standard device ports/connectors: 

Keyboard/speaker port 
Mouse port 
Tablet port 
Two serial ports 
Parallel port 
SCSI-2 port 
Ethernet port 

• Two Micro Channel card slots (form factor 3) for expansion 

• One PowerPC 601 local processor bus slot for an optional graphics adapter 

A.2.4 RISC System/6000 POWERstation/POWERserver 250 

The RISC System/6000 POWERstation/POWERserver 250 has a 66-MHz 
PowerPC 601 processor which offers the highest performance of the 200 series 
family. It has extensive expansion capability from 16 MB up to 256 MB of 
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memory, optional internal fixed disk up to 2 GB, up to a maximum of seven 
SCSI devices on the SCSI bus, an optional 2.88-MB diskette drive, an optional 
graphics adapter, and two 32-bit Micro Channel card slots. 

Highlights of the 250 include: 

• 66-MHz PowerPC 601 processor 

• 16-MB memory 

• Eight slots for SIMM memory cards 

• One integrated SCSI-2 controller 

• One integrated Ethernet controller 

• Standard device ports/connectors: 

Keyboard/speaker port 
Mouse port 
Tablet port 
Two serial ports 
Parallel port 
SCSI-2 port 
Ethernet port 

• Two Micro Channel card slots (form factor 3) for expansion 

• One PowerPC 601 local processor bus slot for an optional graphics adapter 

A.2.5 RISC System/6000 POWERstation/POWERserver 25T 

The IBM RISC System/6000 POWERstation 25T is a high-performance 
graphics workstation that offers the same base function as the POWERstation/ 
POWERserver 250, as well as the POWER GXT150 graphics adapter with 
appropriate cable, 16 MB of memory, 540 MB of internal fixed disk, keyboard, 
mouse, and 17-in display. 

Highlights of the 25T include: 

• 66-MHz PowerPC 601 processor 

• 16-MB memory 

• Eight slots for SIMM memory cards 

• One integrated SCSI-2 controller 

• One integrated Ethernet controller 

• Standard device ports/connectors: 

Keyboard/speaker port 
Mouse port 
Tablet port 
Two serial ports 
Parallel printer port 
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SCSI-2 port 
Ethernet port 

• Two Micro Channel card slots (form factor 3) for expansion 

• One PowerPC 601 local processor bus slot for an optional graphics adapter 

• POWER GXT150 graphics adapter and cable that attaches to the display 

• POWERdisplay 17 (17-in display) 

• Graphics select options-POWER Gt4e or GTO accelerator 

• 540-MB SCSI-2 disk drive 

•Display select option POWERdisplay 19 

•Disk drive select options-I GB, 2 GB 

A.3 APPLE IMPLEMENTATIONS 

Power PC based systems offered by Apple consist of the following: 

A.3.1 Power Macintosh 6100/60 

The Apple Power Macintosh 6100/60 is an entry-level workstation that offers 
the performance of a 601 processor in Apple's System 7 environment. 

Highlights of the 6100/60 include: 

• 60-MHz PowerPC 601 processor 

• 8 MB of memory, expandable to 72 MB 

• 2 SIMM slots 

• 17-in Nu-Bus expansion slot 

• On-board Ethernet controller 

• Integrated SCSI controller 

• Disk drive select options-160 to 250 MB 

• Standard video support 

A.3.2 Power Macintosh 7100/66 

The Apple Power Macintosh 7100/66 is a midrange workstation that offers the 
performance of a 601 processor under Apple's System 7 environment. 

Highlights of the 7100/66 include: 

• 66-MHz PowerPC 601 processor 

• 8 MB of memory, expandable to 136 MB 

• 4 SIMM slots 

• 3 full-size Nu-Bus expansion slots 

• On-board Ethernet controller 
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• Disk drive select options-250 to 500 MB 

•Standard video support with 1 MB ofVRAM 

A.3.3 Power Macintosh 8100/80 
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The Apple Power Macintosh 8100/80 is a high-end workstation that offers the 
performance of a 601 processor under Apple's System 7 environment. 

Highlights of the 8100/80 include: 

• 80-MHz PowerPC 601 processor 

• 256-KB secondary cache 

• 8 MB of memory, expandable to 256 MB 

• 8 SIMM slots 

• 3 full-size Nu-Bus expansion slots 

• On-board Ethernet controller 

• Integrated SCSI controller 

• Disk drive select options-250 MB to 1 GB 

• Standard video support with 2 MB of VRAM 
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Acronyms Used in This Book 

The following acronyms have been referred to in this book: 

Acronym 

AA 
AADU 
AIX 

ABI 

ACL 

AES 

AES/OS 

AFS 

AIC 

AIX 
ALU 

ANSI 
API 

ASCII 

ASIC 

ATM 

BAT 
BE 

Definition 

Absolute Address 

AIX Access for DOS Users 

Advanced Interactive Executive 

Application Binary Interface 

Access Control List 

Application Environment Specifications 

Application Environment Specifications 

Andrew File System 

AIXwindows Interface Composer 

Advanced Interactive Executive 

Arithmetic Logic Unit 
American National Standards Institute 

Application Programming Interface 

American National Standard Code for Information Interchange 

Application Specific Integrated Circuit 

Asynchronous Transfer Mode 

Block Address Translation 

Big-Endian 
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Acronym 

BI CMOS 

BCD 

BIST 

BNU 

BPU 

BSC 

BSI 

CAE 

CAR 

CC ITT 

CDE 

CDS 

CICS 

CISC 

CMOS 

COP 

COSE 

CPI 

CPU 

CR 

CRC 

CSMA 

CSMA/CD 

CTR 

CUA 

DCE 

DCEAES 

DDE 

DEC 

DES 

DFT 

DIN 

DMA 

DRAM 

DSSC 

Definition 

Bipolar Complementary Metal-oxide Semiconductor 

Binary Coded Decimal 

Built-in Self-test 

Basic Network Utilities 

Branch Processing Unit 

Bisync 
Binary Synchronous Communications 

British Standards Institute 

Common Applications Environment 

Cache Address Register 

Comite Consultatif Internationale de Telegraphique et Telephonique 

Common Desktop Environment 

DCE Cell Directory Service 

Customer Information Control System 

Complex Instruction Set Computer 

Complementary Metal-oxide Semiconductor 

Common On-chip Processor 

Common Open Software Environment 

Cycles Per Instruction 

Central Process Unit 

Condition Register 

Cyclic Redundancy Check 

Carrier Sense Multiple Access 

Carrier Sense Multiple Access with Collision Detection 

Count Register 

Common User Access 

Distributed Computing Environment 
Data Circuit-terminating Equipment 

Distributed Computing Environment Application Environment 
Specifications 

Dynamic Data Exchange 

Digital Equipment Corporation 

Data Encryption Standard 

Distributed Function Terminal 

Deutches Institut fiir Normung 

Direct Memory Access 

Dynamic Random Access Memory 

Distributed Services Steering Committee 
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EB 

EBCDIC 

ECC 

EIA 

EM78 

EPROM 

EEPROM 

EISA 

EPOST 

FAL 
FDDI 

FIFO 

FIPS 

FPR 

FPU 

FXU 

GDA 

GDS 

GL 

GPR 

GUI 

HAL 

HANFS 
HAS 

HCON 

HIA 

HLLAPI 

HP 

I/O 

IBM 

ICCCM 

IDE 

IEC 

IEEE 

IEEE-CS 

IPI 

Data Terminal Equipment 

Exabyte 
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Extended Binary Coded Decimal Interchange Code 

Error Checking and Correcting 

External Interface Adapter 
Electronic Interface Adapter 
Electronics Industries Association 

3278179 Emulation 

Erasable Programmable Read Only Memory 

Electrically Erasable Programmable Read-Only Memory 

Extension to Industry Standard Architecture 

Extended Power-on Self-test 

Firmware Abstraction Layer 

Fiber Distributed Data Interface 

First-In First-Out 

Federal Information Processing Standard 

Floating-point Register 

Floating-point Unit 

Fixed-point Unit 

DCE Global Directory Agent 

DCE Global Directory Service 

Graphics Library 

General Purpose Register 

Graphical User Interface 

Hardware Abstraction Layer 

High Availability for Network File System 

Hardware Abstraction Software 

Host Connection Program 

Host Interface Adapter 

High-Level Language Application Programming Interface 

Hewlett-Packard 

Input/Output 

International Business Machines 

Inter-Client Communication Conventions Manual. 

Integrated Device Electronics 

International Electrotechnical Commission 

Institute of Electrical and Electronics Engineers 

IEEE Computer Society 

Initial Program Load 
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Acronym Definition 

ISA Industry Standard Architecture 
Instrument Society of America 
Initial Storage Area 
Invalid Storage Address 

ISDN Integrated-Services Digital Network 

ISE Instruction Set Emulator 

ISO International Organization for Standards 

ISP Internationalized Standardized Profiles 

ISV Independent Software Vendor 

KB Kilobyte 

Ll First-level Cache 

L2 Second-level Cache 

LAN Local Area Network 

LE Little-Endian 

LED Light-emitting Diode 

LEN Low Entry Networking 

LRU Least Recently Used 

LU Logical Units 

LVM Logical Volume Manager 

MB Megabyte 

MBCS Multibyte Character Set 

MCA Micro Channel Architecture 
Machine Check Analysis 
Machine Configuration Analysis 
Machine Check Adapter 

MESI Modified-exclusive-shared-invalid Protocol 

MFM Modified Frequency Modulation (Recording) 

MHz Megahertz 

MIB Management Information Base 

MIPS Millions of Instructions per Second 

MMIO Memory Mapped Input/Output 

MMU Memory Management Unit 

MP Multiprocessing 
Massively Parallel 

MS-DOS Microsoft Disk Operating System 

NCK Network Computing Kernel 

NCS Network Computing System 

NFS Network File System 

NIC Numerically Intensive Computing 
Network Information Center 



NIDL 

NIS 

NIST 

NLS 
NVRAM 

ODM 

OEM 

OLE 

OLTP 

ONC 

OS 

OSF 

OSI 

PAD 

PAL 

PASC 

PB 
PCD 

PCI 

PCM CIA 

PMC 

POE 

POSIX 

POST 

POWER 

PSC 

PVC 
QIC 
QLLC 

RAID 
REX 

RFT 

RISC 

ROM 
RPC 

RSC 

RT 
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Network Interface Definition Language 
Network Information Service 

National Institute for Standards and Technology 
National Language Support 

Non-Volatile Random Access Memory 

Object Data Manager 

Original Equipment Manufacturer 

Object-linking and Embedding Operations 

On-line Transaction Processing 

Open Network Computing 

Operating System 

Open Software Foundation 

Open Systems Interconnect 

Packet Assembler/Disassembler 

Portability Assist Layer 

Portable Applications Standards Committee 

Petabyte 

POSIX Conformance Document 

Program Controlled Interrupt 
Peripheral Component Interconnect 

Personal Computer Memory Card Interface Association 

Project Management Committee 

PowerOpen Environment 

Portable Operating System Interface 

Power-on Self-test 

Performance Optimized With Enhanced RISC 

Profiles Steering Committee 

Permanent Virtual Circuit 
Quarter Inch Cartridge 
Qualified Logical Link Control 
Redundant Array of Independent Disks 

Remote Execution Service 
Request for Technology 

Reduced Instruction Set Computer 
Read Only Memory 
Remote Procedure Call 
Remote Service Console 
Remote Support Center 
RISC Technology/Model of the PC (PC/RT) 
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Acronym 

RTC 

SAA 

SANE 

SCCS 

SCCT 

SCSI 

SCWUI 

SDN 

SDO 

SDT 

SEC 

SGFS 

SICC 

SIG 

SMP 

SNA 

SNMP 

SPRG 

SRAM 

SVC 

TAG 

TCB 

TCF 

TCOS 

TCP/IP 
TEA 

TFA 
TLB 

TP 

TPWG 

UART 

UDP 

ULSI 

UMCU 
UUCP 

Definition 

Real Time Clock 
Real Time Controller 

System Application Arc~tecture 

Standard Apple Numerics Environment 

Source Code Control System 

Steering Committee on Conformance Testing 

Small Computer System Interface 

Steering Committee on Windowing User Interfaces 

Software Defined Network 
System Defined Network 
Software Designed Network (AT&T) 

Standards Development Organization 

Static Debugger Program Traps 

Sponsor Executive Committee 

Special Group on Functional Standards 

Systems Interface Coordination Committee 

Special Interest Group 

System Modification Program 
Symmetric Multiprocessor 

System Network Architecture 

Simple Network Management Protocol 

Special Purpose Register Group 

Static Random Access Memory 

Switched Virtual Circuit 
Supervisory Call 

Technical Advisory Group 

Trusted Computing Base 

Transparent Computing Facility 

Technical Committee on Operating Systems 

Transmission Control Protocol/Internet Protocol 
Transaction Error Acknowledgment 

Transparent File Access 

Translation Lookaside Buffer 

Trusted Programs 

Transaction Processing Working Group 

Universal Asynchronous Receiverfl'ransmitter 
User Datagram Protocol 

Ultra Large-scale Integration 
Universal Micro Control Unit 
UNIX-to-UNIX Copy Program 



VESA 

VL 

VLSI 

VMD 
VME 
VMM 
VPD 

VUE 

WAN 

wow 
x 
XDR 

XDS 

XNFS 
XPG 

X11R5 
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Video Electronics Standards Association 

Volume License 

Very Large Scale Integration 

Vector Memory Display 

VERSA Module Eurocard 

Virtual Memory Manager 

Vital Product Data 

Visual User Environment 

Wide Area Network 

Windows-16 on Windows-32 

X Window System 

External Data Representation 

X/Open Directory Service 

Network File System for X Windows System 

X/Open Portability Guide 

X Windows Release 5 
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c 

PowerPC and POWER Instruction Sets 

PowerPC Instruction Set 

Add 
Add carrying 
Add extended 
Add immediate 

Instruction 

Add immediate carrying 
Add immediate carrying and record 
Add immediate shifted 
Add to minus one extended 
Add to zero extended 
AND 
AND with complement 
AND immediate 
AND immediate shifted 
Branch 
Branch conditional 
Branch conditional to count register 
Branch conditional to link register 
Compare 
Compare immediate 
Compare logical 
Compare logical immediate 
Count leading zeros doubleword 
Count leading zeros word 
Condition register AND 
Condition register AND with complement 
Condition register equivalent 
Condition register NAND 

Mnemonic 

add[o][-] 
addc[o][-] 
adde[o)[-) 
addi 
addic 
addic. 
ad dis 
addme[o][-] 
addze[o][-] 
and[-] 
andc[-) 
an di. 
andis. 
b[l][a] 
bc[l][a] 
bcctr[l] 
bclr[l] 
cmp 
cm pi 
cm pl 
cmpli 
cntlzd[-] 
cntlzw[-] 
crand 
crandc 
creqv 
crnand 
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PowerPC Instruction Set (Continued) 

Instruction 

Condition register NOR 
Condition register OR 
Condition register OR with complement 
Condition register XOR 
Data cache block flush 
Data cache block invalidate 
Data cache block store 
Data cache block touch 
Data cache block touch for store 
Data cache block set to zero 
Divide doubleword 
Divide doubleword unsigned 
Divide word 
Divide word unsigned 
External control in word indexed 
External control out word indexed 
Enforce in-order execution of 1/0 
Equivalent 
Extend sign byte 
Extend sign halfword 
Extend sign word 
Floating absolute value 
Floating add 
Floating add single 
Floating convert from integer doubleword 
Floating compare ordered 
Floating compare unordered 
Floating convert to integer doubleword 
Floating convert to integer doubleword with round 

toward Zero 
Floating convert to integer word 
Floating convert to integer word with round toward 

zero 
Floating divide 
Floating divide single 
Floating multiply-add 
Floating multiply-add single 
Floating move register 
Floating multiply-subtract 
Floating multiply-subtract single 
Floating multiply 
Floating multiply single 
Floating negative absolute value 
Floating negate 
Floating negative multiply-add 
Floating negative multiply-add single 
Floating negative multiply-subtract 
Floating negative multiply-subtract single 
Floating reciprocal estimate single 
Floating round to single-precision 
Floating reciprocal square root estimate 
Floating select 
Floating square root 
Floating square root single 
Floating subtract 

Mnemonic 

crnor 
cror 
crorc 
crxor 
dcbf 
dcbi 
deb st 
debt 
dcbtst 
dcbz 
divd[o][-] 
divdu[o][-] 
divw[o][-] 
divwu[o][-] 
eciwx 
ecowx 
eieio 
eqv[-] 
extsb[-] 
extsh[-] 
extsw[-] 
fabs[-] 
fadd[-] 
fadds[-] 
fetid[-] 
fem po 
fcmpu 
fetid[-] 
fctidz[-] 

fctiw[-] 
fctiwz[-] 

fdiv[-] 
fdivs[-] 
fmadd[-] 
fmadds[-] 
fmr[-] 
fmsub[-] 
fmsubs[-] 
fmul[-] 
fmuls[-] 
fnabs[-] 
fneg[-] 
fnmadd[-] 
fnmadds[-] 
fnmsub[-] 
fnmsubs[-] 
fres[-] 
frsp[-] 
frsqrte[-] 
fsel[-] 
fsqrt[-] 
fsqrts[-] 
fsub[-] 



PowerPC Instruction Set (Continued) 

Instruction 

Floating subtract single 
Instruction cache block invalidate 
Instruction synchronize 
Load byte and zero 
Load byte and zero with update 
Load byte and zero with update indexed 
Load byte and zero indexed 
Load doubleword 
Load doubleword and reserve indexed 
Load doubleword with update 
Load doubleword with update indexed 
Load doubleword indexed 
Load floating-point double 
Load floating-point double with update 
Load floating-point double with update indexed 
Load floating-point double indexed 
Load floating-point single 
Load floating-point single with update 
Load floating-point single with update indexed 
Load floating-point single indexed 
Load halfword algebraic 
Load halfword algebraic with update 
Load halfword algebraic with update indexed 
Load halfword algebraic indexed 
Load halfword byte-reverse indexed 
Load halfword and zero 
Load halfword and zero with update 
Load halfword and zero with update indexed 
Load halfword and zero indexed 
Load multiple word 
Load string word immediate 
Load string word indexed 
Load word algebraic 
Load word and reserve indexed 
Load word algebraic with update indexed 
Load word algebraic indexed 
Load word byte-reverse indexed 
Load word and zero 
Load word and zero with update 
Load word and zero with update indexed 
Load word and zero indexed 
Move condition register field 
Move to condition register from FPSCR 
Move to condition register from XER 
Move from condition register 
Move from FPSCR 
Move from machine state register 
Move from special purpose register 
Move from segment register 
Move from segment register indirect 
Move from time base 
Move to condition register fields 
Move to FPSCR bit 0 
Move to FPSCR bit 1 
Move to FPSCR fields 
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Mnemonic 

fsubs[-] 
icbi 
isync 
lbz 
lbzu 
lbzux 
lbzx 
ld 
ldarx 
ldu 
ldux 
ldx 
lfd 
lfdu 
lfdux 
lfdx 
Ifs 
lfsu 
lfsux 
lfsx 
Iha 
lhau 
lhaux 
lhax 
lhbrx 
lhz 
lhzu 
lhzux 
lhzx 
lmw 
lswi 
lswx 

· lwa 
lwarx 
lwaux 
lwax 
lwbrx 
lwz 
lwzu 
lwzux 
lwzx 
mcrf 
mcrfs 
mcrxr 
mfcr 
mffs[-] 
mfmsr 
mfspr 
mfsr 
mfsrin 
mftb 
mtcrf 
mtfsbO[-] 
mtfsbl[-] 
mtfsfH 
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PowerPC Instruction Set (Continued) 

Instruction 

Move to FPSCR field immediate 
Move to machine state register 
Move to special purpose register 
Move to segment register 
Move to segment register indirect 
Multiply high doubleword 
Multiply high doubleword unsigned 
Multiply high word 
Multiply high word unsigned 
Multiply low doubleword 
Multiply low immediate 
Multiply low word 
NAND 
Negate 
NOR 
OR 
OR with complement 
OR immediate 
OR immediate shifted 
Return from interrupt 
Rotate left doubleword then clear left 
Rotate left doubleword then clear right 
Rotate left doubleword immediate then clear 
Rotate left doubleword immediate then clear left 
Rotate left doubleword immediate then clear right 
Rotate left doubleword immediate then mask insert 
Rotate left word immediate then mask insert 
Rotate left word immediate then AND with mask 
Rotate left word then AND with mask 
System call 
SLB invalidate all 
SLB invalidate entry 
Shift left doubleword 
Shift left word 
Shift right algebraic doubleword 
Shift right algebraic doubleword immediate 
Shift right algebraic word 
Shift right algebraic word immediate 
Shift right doubleword 
Shift right word 
Store byte 
Store byte with update 
Store byte with update indexed 
Store byte indexed 
Store doubleword 
Store doubleword conditional indexed 
Store doubleword with update 
Store doubleword indexed with update 
Store doubleword indexed 
Store floating-point double 
Store floating-point double with update 
Store floating-point double with update indexed 
Store floating-point double indexed 
Store floating-point as integer word indexed 
Store floating-point single 

Mnemonic 

mtfsfi[-] 
mtmsr 
mtspr 
mtsr 
mtsrin 
mulhd[-] 
mulhdu[-] 
mulhw[-] 
mulhwu[-] 
mulld[o][-] 
mulli 
mullw[o][-] 
nand[-] 
neg[o][-] 
nor[-] 
or[-] 
ore[-] 
ori 
oris 
rfi 
rldcl[-] 
rider[-] 
rldic[-] 
rldicl[-] 
rldicr[-] 
rldimi[-] 
rlwimi[-] 
rlwinm[-] 
rlwnm[-] 
SC 

slbia 
slbie 
sld[-] 
slw[-] 
srad[-] 
sradi[-] 
sraw[-] 
srawi[-] 
srd[-] 
srw[-] 
stb 
stbu 
stbux 
stbx 
std 
std ex. 
stdu 
stdux 
stdx 
stfd 
stfdu 
stfdux 
stfdx 
stfiwx 
stfs 



PowerPC Instruction Set (Continued) 

Instruction 

Store floating-point single with update 
Store floating-point single with update indexed 
Store floating-point single indexed 
Store halfword 
Store halfword byte-reverse indexed 
Store halfword with update 
Store halfword with update indexed 
Store halfword indexed 
Store multiple word 
Store string word immediate 
Store string word indexed 
Store word 
Store word byte-reverse indexed 
Store word conditional indexed 
Store word with update 
Store word with update indexed 
Store word indexed 
Subtract from 
Subtract from carrying 
Subtract from extended 
Subtract from immediate carrying 
Subtract from minus one extended 
Subtract from zero extended 
Synchronize 
Trap doubleword 
Trap doubleword immediate 
TLB invalidate all 
TLB invalidate entry 
TLB synchronize 
Trap word 
Trap word immediate 
XOR 
XOR immediate 
XOR immediate shifted 
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Mnemonic 

stfsu 
stfsux 
stfsx 
sth 
sthbrx 
sthu 
sthux 
sthx 
stmw 
stswi 
stswx 
stw 
stwbrx 
stwcx. 
stwu 
stwux 
stwx 
subflo][-] 
subfc[o][-] 
subfe[ o ][-] 
subfic 
subfme[o][-] 
subfze[o][-] 
sync 
td 
tdi 
tlbia 
tlbie 
tlbsync 
tw 
twi 
xor[-] 
xori 
xoris 
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POWER Instruction Set 

Add 
Absolute 
Add extended 
Add immediate 

Command 

Add immediate and record 
Add to minus one extended 
AND 
AND with complement 
AND immediate lower 
AND immediate upper 
Add to zero extended 
Branch 
Branch conditional 
Branch conditional to count register 
Branch conditional register 
Compute address lower 
Compute address upper 
Compute address 
Cache line compute size 
Cache line flush 
Cache line invalidate 
Compare 
Compare immediate 
Compare logical 
Compare logical immediate 
Count leading zeroes 
Condition register AND 
Condition register AND with complement 
Condition register equivalent 
Condition register NAND 
Condition register NOR 
Condition register OR 
Condition register OR with complement 
Condition register XOR 
Data cache line store 
Data cache line set to zero 
Data cache synchronize 
Divide 
Divide short 
Difference or zero 
Difference or zero immediate 
Equivalent 
Extend sign 
Floating add 
Floating absolute value 
Floating compare ordered 
Floating compare unordered 
Floating divide 
Floating multiply 
Floating multiply add 
Floating move register 
Floating multiply subtract 
Negative absolute value 
Floating negate 

Mnemonic 

a 
abs 
ae 
ai 
ai. 
ame 
and 
andc 
andil. 
andiu. 
aze 
b 
be 
bee 
her 
cal 
cau 
cax 
cl cs 
elf 
cli 
cmp 
cm pi 
cm pl 
cmpli 
cntlz 
crand 
er an de 
creqv 
cm and 
cm or 
cror 
crorc 
crxor 
deist 
dclz 
des 
div 
divs 
doz 
dozi 
eqv 
exts 
fa 
fabs 
fem po 
fcmpu 
fd 
fm 
fma 
fmr 
fms 
fnabs 
fneg 



POWER Instruction Set (Continued) 

Command 

Floating negative multiply add 
Floating negative multiply subtract 
Floating round to single precision 
Floating subtract 
Instruction cache synchronize 
Load 
Load byte reverse indexed 
Load byte and zero 
Load byte and zero with update 
Load byte and zero with update indexed 
Load byte and zero indexed 
Load floating-point double 
Load floating-point double with update 
Load floating-point double with update indexed 
Load floating-point double indexed 
Load floating-point single 
Load floating-point single with update 
Load floating-point single with update indexed 
Load floating-point single indexed 
Load half algebraic 
Load half algebraic with update 
Load half algebraic with update indexed 
Load half algebraic indexed 
Load half byte reverse indexed 
Load half and zero 
Load half and zero with update 
Load half and zero with update indexed 
Load half and zero indexed 
Load multiple 
Load string and compare bytes indexed 
Load string immediate 
Load string indexed 
Load with update 
Load with update indexed 
Load indexed 
Mask generate 
Mask insert from register 
Move condition register field 
Move to condition register from FPSCR 
Move to condition register from XER 
Move from condition register from XER 
Move from FPSCR 
Move from machine state register 
Move from special purpose register 
Move from segment register 
Move from segment register indirect 
Move to condition register fields 
Move to FPSCR bit 0 
Move to FPSCR bit 1 
Move to FPSCR fields 
Move to FPSCR field immediate 
Move to machine state register 
Move to special purpose register 
Move to segment register 
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Mnemonic 

fnma 
fnms 
frsp 
fs 
ics 
1 
lbrx 
lbz 
lbzu 
lbzux 
lbzx 
lfd 
lfdu 
lfdux 
lfdx 
lfs 
lfsu 
lfsux 
lfsx 
lha 
lhau 
lhaux 
lhax 
lhbrxO 
lhz 
lhzu 
lhzux 
lhzx 
Im 
lscbx 
lsi 
Isx 
lu 
lux 
lx 
maskq 
maskir 
mcrf 
mcrfs 
mcrxr 
mfcr 
mffs 
mfmsr 
mfspr 
mfsr 
mfsri 
mtcrf 
mtfsbO 
mtfsbl 
mtfsf 
mtfsfi 
mtmsr 
mtspr 
mtsr 
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POWER Instruction Set (Continued) 

Command 

Move t.o segment register indirect 
Multiply 
Multiply immediate 
Multiply short 
Negative absolute 
NAND 
Negate 
NOR 
OR 
OR with complement 
OR immediate lower 
OR immediate upper 
Real address compute 
Return from interrupt 
Return from SVC 
Rotate left immediate then mask insert 
Rotate left immediate then AND with mask 
Rotate left then mask insert 
Rotate left then AND with mask 
Rotate right and insert bit 
Subtract from 
Subtract from extended 
Subtract from immediate 
Subtract from minus one extended 
Subtract from zero extended 
Shift left 
Shift left extended 
Shift left extended with MQ 
Shift left immediate with MQ 
Shift left long immediate with MQ 
Shift left long with MQ 
Shift left with MQ 
Shift right 
Shift right algebraic 
Shift right algebraic immediate 
Shift right algebraic immediate with MQ 
Shift right algebraic with MQ 
Shift right extended 
Shift right extended algebraic 
Shift right extended with MQ 
Shift right immediate with MQ 
Shift right long immediate with MQ 
Shift right long with MQ . 
Shift right with MQ 
St.ore 
St.ore byte 
St.ore byte reverse indexed 
Store byte with update 
St.ore byte with update indexed 
St.ore byte indexed 
St.ore floating-point double 
St.ore floating-point double with update 
St.ore floating-point double with update indexed 
St.ore floating-point double indexed 
St.ore floating-point single 

Mnemonic 

mtsri 
mul 
mull 
mule 
nabs 
nand 
neg 
nor 
or 
ore 
oril 
oriu 
rac 
iii 
rfsvc 
rlimi 
rlinmlux 
rlini 
rinmq 
rrib 
sf 
sfe 
sfi 
sfme 
sfze 
sl 
sle 
sleq 
sliq 
slliq 
sllq 
slq 
er 
era 
srai 
sraiq 
sraq 
ere 
srea 
sreq 
sriq 
srliq 
srlq 
srq 
st 
stb 
stbrx 
stbu 
stbux 
stbx 
stfd 
stfdu 
stfdux 
stfdx 
stfs 



POWER Instruction Set (Continued) 

Command 

Store floating-point single with update 
Store floating-point single with update indexed 
Store floating-point single indexed 
Store half 
Store half byte reverse indexed 
Store half with update 
Store half with update indexed 
Store half indexed 
Store multiple 
Store string immediate 
Store string indexed 
Store with update 
Store with update indexed 
Store indexed 
Supervisor call 
Trap 
Trap immediate 
TLB invalidate entry 
XOR 
XOR immediate lower 
XOR immediate upper 

Mnemonic 

stfsu 
stfsux 
stfsx 
sth 
sthbrx 
sthu 
sthux 
sthx 
stm 
stsi 
stsx 
stu 
stux 
stx 
SVC 

t 
ti 
tlbi 
xor 
xoril 
xoriu 
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