
ro rammer's
ui eto

®

Explor~ng the Macintosh®
Programmer's Workshop

MARK ANDREWS

Programmer·s Guide
to MPW®, Volume I

Programmer's Guide
to MPW®, Volume I

Exploring the Macintosh®
Programmer's Workshop

Mark Andrews

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Library of Congress Cataloging-in-Publication Data

Andrews, Mark.
Programmer's guide to MPW I Mark Andrews.

p. cm. - (Macintosh inside out)
Includes bibliographical references and index.
Contents: v. 1. Exploring the Macintosh programmer's workshop
ISBN 0-201-57011-4 (v. 1)
1. Macintosh (Computer)-Programming. 2. MPW (Computer

system). I. Title. II. Series.
QA76.8.M3A59 1990
005.265-dc20 90-48237

CIP

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital
letters.

Copyright© 1991 by Mark Andrews

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Sponsoring Editor: Carole McClendon
Technical Reviewer: Nick Pilch
Cover Design: Ronn Campisi
Text Design: Copenhaver Cumpston
Set in 10.5 point Palatine by ST Associates, Inc.

ISBN 0-201-57011-4

ABCDEFGHIJ-MW-91
First printing, December 1990

This book is dedicated to
Bhagawan Nityananda

~ Contents

Preface xix

Acknowledgments xxvii

PART ONE THE MPW SHELL l

1. MPW and the Macintosh 3

The Macintosh Story 4
The Mouse, the Lisa, and the Macintosh 5
Lisa Bites the Dust 6

The MPW Story 8
Launching MPW 9
MPW3.0 9

MPW3.2 10
What You Need to Run MPW 3.2 12

Installing MPW 3.2 12
The Macintosh User Interface 13
Principles of Macintosh Programming 16

An Easier Way to Manage Memory 16
Macintosh I/O 17
Managing Resources 17

vii

viii ~ Contents

Quickdraw and Macintosh Graphics 17
Important Events 18
Other Features 18

The Macintosh Toolbox and Operating System 19
The User Interface Toolbox 20
The System 7 Toolbox 21

The Process Manager 21
The Edition Manager 22
The Help Manager 23
The Graphics Devices Manager 24
The Alias Manager 24
The Database Access Manager 24
The PPC Toolbox 24
The Power Manager 25

Other Toolbox Managers 25
The Macintosh Operating System 29
Unlocking the Toolbox 33

How the Trap Dispatcher Works 35
Calling the Toolbox from MPW 35
Calling Traps in C 36
Calling Traps in Pascal 41

Assembly Language Programming 45
Calling Traps in Assembly Language 46
Making Toolbox Calls in C++ 50
Making Toolbox Calls in MacApp 51

Conclusion 51

2. Commands and Scripts 53
The MPW Shell 54
The MPW Worksheet Window 54

The Status Panel 55
The Split- Window Feature 55
A Window That's Always Open 57
The Worksheet Window's Title Bar 57
The TileWindows and StackWindows Commands 57
The Browser Window 57
The Target Window 59

l)i- Contents ix

Searching for a String in the Target Window 60
The MPW Command Language 63

Four Varieties of MPW Commands 68
The Structure of a Command 69
Multiple-line Commands 71
Command and Parameter Syntax 75
How MPW Interprets Commands 78

Tips for Writing Command Lines 88
The Help Hotline 91
The Evaluate Command 92

Writing MPW Commands 94
Typing and Entering Commands 94
Clearing a Window 94
Options and Parameters in MPW Commands 97
Using Parameters with the Beep Command 98

Writing a Script 99
Redirecting Input and Output 99
Variables in MPW Commands 102

Kinds of MPW Variables 103
Startup Variables 103
Defining Variables with the Set Command 106
The Unset Command 108
Parameter Variables 108

Scopes of Variables 110
Extending the Scope of a Variable 110
The Export Command 111
The Unexport Command 111
The Execute Command 111

More About the Echo Command 113
The Quote Command 114
Aliases 118

The Unalias Command 118
Making an Alias Permanent 119

The Startup and UserStartup Scripts 119
Modifying the Startup Script 122

Modifying the MPW Directory Structure 123

x ~ Contents

Changing the MPW Screen Display 126
Redefining the (WordSet) Variable 127
Making and Saving Your Modifications 127
How Startup Calls UserStartup 128

Modifying the UserStartup Script 128
Creating Aliases in the UserStartup Script 128
Defining Variables in the UserStartup Script 130
User-Defined Variables 131
Creating a Supplementary UserStartup Script 131
Running MPW Without a UserStartup Script 132

Files and Directories 133
How MPW Searches for Files 134
Spaces in File and Directory Names 135
Selecting Text with the§ Character 136
Variables in Pathnames 137
Wildcards in File and Directory Commands 137
Locked and Read-Only Files 137

Examples of File and Directory Commands 138
The Directory Command 138
The SetDirectory Command 139
The Files Command 140
The NewFolder Command 143
The Volumes Command 143
The Duplicate Command 144
The Catenate Command 144
The Move Command 144
The Rename Command 145
The SetFile Command 146
The Print Command 148

Structured Constructs 150
The If Command 150
The For Command 150
The Loop Command 152
The Break Command 153
The Continue Command 154

A Modified Startup Script 154
Conclusion 160

3. Menus and Dialogs 161
The MPW Menu Structure 162

What's on the Menu 162
The File Menu 164
The Edit Menu 169
The Format Dialog 171
The Find Menu 173
The Find Dialog 174
The Mark Menu 179
The Window Menu 181
The Project Menu 184
The Directory Menu 185

Customizing MPW Menus 188
The AddMenu Command 189
Omitting AddMenu Parameters 189
Creating a Menu and a Menu Item 190

~ Contents xi

Adding Menus and Items from a UserStartup Script 191
Using AddMenu to Run a Script 192
Menu Items for Editing Documents 192
Using Metacharacters with the AddMenu Command 194
The DeleteMenu Command 195

MPW Dialogs 196
Using Standard Dialogs in MPW 196

Commando Dialogs 201
What You Can Do with Commando Dialogs 202
An Example: The UserVariable Commando 202
The Parts of a Commando Dialog 203
The Options Window 203
The Command Line Window 205
The Help Line Window 206
The OK Button 206
The Cancel Button 207
Some Unique Features of the UserVariables Commando 207
Improving the UserVariables Script 208
Executing UserVar from the Menu 209

xii ~ Contents

Invoking a Commando Dialog 209
Calling a Commando with Option-Enter 210
Calling a Commando with Option-; 211
Calling a Commando with the Commando Command 212
The SetFile Commando 213
The Commando Commando 213
Executing Commando Dialogs from the Menu 214
Editing a Commando 214
Creating Your Own Commands 215
A Modified UserStartup Script 216

Conclusion 219

4. The MPW Special Character Set 221
The MPW Special Character Set 222

A Notorious Character 222
Blank Characters 224
The Comment Character # 227
The Line-Continuation Character() 228
The Escape Character a 229
Selection Expressions 230
Delimiters 234
Regular Expression Operators 244
File Name Generation Operators 250
Arithmetic and Logical Operators 253
Special Characters Used in Makefiles 260

Using Special Characters in Scripts 261
The Special Characters at a Glance 264
Conclusion 275

~ PART TWO: Writing an Application 277

5. Event-Driven Programming 279
MPW and the Event Manager 279

How Applications Detect Events 280
Calling the Toolbox Event Manager 281

How Applications Process Events 281

~ Contents xiii

The gHas WaitN extEvent Variable 283
Using a CASE Statement in a Main Event Loop 283
The SystemTask Call 283
WaitNextEvent and the System 7 Finder 284
The Event Queue 284
The Structure of an Event Queue Record 285
Syntax of GetNextEvent and WaitNextEvent 285
Calling WaitNextEvent and GetNextEvent 286
The Event Record 286
Activate and Update Events 287
Mouse Events 288
Keyboard Events 288
Event Management in a Nutshell 288

Kinds of Events 288
Activate Events 288
Mouse events 289
Keyboard Events 290
Disk Events 297

·Auto-key Events 297
Update Events 297
Null Events 298
Other kinds of Events 298

Event Priorities 299
Event Records 299

What an Event Record Contains 300
Decoding the Event Record 300
The Event Code 300
The Event Message 301
Modifier Flags 304
The Event Mask 306

The WaitNextEvent Call 308
Writing an Event Loop 309

Using the gHasWaitNextEvent Variable 311
Setting gHasWaitNextEvent 311

Using Gestalt 312
Gestalt Manager Calls 313

xiv ..,, Contents

Selector Codes 313
Response Parameters 316
Determining Whether the Gestalt Manager is Available 316
Calling the Gestalt Manager 317
On with the Program 317
The sleep Parameter 318
The mouseRgn Parameter 320

How the Event Manager Works 320
The EventAvail Call 320
Handling Keyboard Events 321
Handling Activate Events 321
Handling Update Events 321
Handling Disk-Inserted Events 322
Other Event Manager Calls 322

The OS Event Manager 323
System 7 and the Event Manager 323

New Events in System 7 324
Apple Events 325
High-Level Events and the Event Record 326
Defining Your Own Events 327

Conclusion 328

6. MPW and the Resource Manager 329
Why Use Resources? 330
How Macintosh Files are Constructed 331

The System Resource File 332
Creating and Compiling Resources 332
The Rez Language 333

Preprocessor Directives 334
Special Characters 335
The Escape Character 337

The Resource Description Language 339
The 'type' Statement 339
The 'resource' Statement 345
The 'data' Statement 347
The 'include' Statement 347
The 'read' Statement 349
The 'change' Statement 349

The 'delete' Statement 349
Labels 350
Variables and Functions 350
Arithmetical and Logical Expressions 353

The Rez Command 354
The DeRez Command 356
The ResEqual Command 357
The RezDet Command 358
The Structure of a Resource 360

Fields in Resource Templates 361
The 'SIZE' Resource 364
Resource Specifications 366
How Resource IDs are Assigned 372

How the Resource Manager Works 375
The Resource Map and Resource Data 375

Tools for Creating Resources 378
ResEdit 378
The 'KCHR' Resource 381
The MPW Editor 382
SARez and SADeRez 383

Calling the Resource Manager 383
Conclusion 385

7. MPW and the Memory Manager 387
Mapping the Macintosh 388

Low-Memory Globals 389
The System Heap 390
The Application Heap 390
The Stack 392

Pointers, Handles, and Heaps 397
Pointers and Handles 399
Blocks that are Always Nonrelocatable 403

Using the Memory Manager 409

IJ)l- Contents xv

How the Memory Manager Allocates Space 409
Master Pointer Blocks 410
Tips on Memory Management 410
QuickDraw Globals 411
The AS World 412

xvi .., Contents

Initializing QuickDraw 413
Segmenting an Application 413

Calling the Memory Manager 416
Purging Memory Blocks 416
Other Properties of Memory Blocks 417

MultiFinder and the Memory Manager 420
Running Multiple Applications 421

System 7 and the Memory Manager 422
Virtual Memory 422
Temporary Memory 424

Conclusion 426

8. Building an Application 427
Building a Program with MPW 427

Three Ways to Build a Program 428
What You'll Learn in this Chapter 430

Compiling an Application 430
The MPW C and Pascal Compilers 430
The MPW Assembler 430

The MPW C Compiler 431
The 'C' Command 431
The '-p' and '-e' Options 432
Options Used with the C Command 432

The MPW Pascal Compiler 434
The 'Pascal' Command 435
The '-p' and '-e' Options 436
Options Used with the Pascal Command 436

The MPW Assembler 438
The 'Asm' Command 439
The '-o' Option 439
Options Used with the Asm Command 440
Using Multiple Options with the 'Asm' Command 442

Linking an Application 442
The MPW Linker 442
The Linker and Resources 443
The 'Link' Command 446
How the Linker Works 446
Options Used with the 'Link' Command 447

~ Contents xvii

Using Multiple Options with the Link Command 450
Creating an Object-Code Library 451

The 'Lib' Command 451
What to Put in a Library 452
Uses for the 'Lib' Command 453
How 'Lib' Works 454
Options Used with the Lib Command 454

Building a Program 455
Using the 'Build' Menu 456
The CreateMake Command 458
Options Used with the CreateMake Command 459

Writing a Makefile 460
The 'Make' Language 460
The f and ff Operators 461
The Single-/ Dependency Rule 461
The Double-/ Dependency Rule 463

Makfiles in a Nutshell 465
The 'Make' Command 466

Building a Program with the Make Command 466
Options Used with the Make Command 468

The 'Build' Menu 469
Creation: A Sample MPW Program 470
Conclusion 470

Appendix A: The MPW Command Set 471
Appendix B: Commands Arranged by Category 525
Appendix C: The Creation.p Program 531
Appendix D: Creation.r 553
Appendix E: Creation.make 557

Afterword by Scott Knaster 559

Bibliography 561

Index 563

Preface

~ Welcome to MPW
There are many reasons to know how to use the Macintosh Program
mer's Workshop. But the most important reason I know is that MPW is
the most powerful programming platform that has ever been created for
the Macintosh. Apple created it, Apple maintains it, and Apple's own
programmers use it to develop system-level software for the Macintosh.
If you own a Macintosh and a current system disk, much of the system
software that makes your Macintosh run was written using MPW. And
Apple is creating more and more system software using MPW every day.

MPW was introduced in 1986, and its latest revision-Version 3.2-is
designed to support all the capabilities of System Software Version 7.0.
But MPW still works with every Macintosh with more than 64K of
ROM, as well as with every new machine that rolls off the assembly line.
And that's no accident. If you program with MPW and follow Apple's
human interface guidelines, Apple guarantees that you'll never be stuck
with an outdated piece of software-or an outdated development
system. For these reasons, and many more that you will learn about as
you read this book, MPW has become the standard programming
platform for the professional software developer.

Of course it is possible to write Macintosh programs with small stand
alone development systems; in fact, many fine Macintosh applications
have been created using THINK C, Turbo Pascal, and other standalone
compilers. But the Macintosh Programmer's Workshop is much more

xix

xx ~ Preface

than a compiler or an assembler; it's a complete, integrated software
development system and a powerful scripting language, and has a
Macintosh-style interface equipped with windows, pull-down menus,
and dick-and-close dialog boxes.

The MPW script language has more than 120 commands that you can
use to write, compile, link, and execute programs. If you need more
commands, you can write your own-and that's just one way that you
can customize the MPW environment.

You can add menus and menu items to the MPW menu structure.
You can design your own MPW tools and execute them from scripts or
custom-designed dialog boxes. You can write custom-tailored startup
scripts to create a programming environment that suits your own needs
and preferences. You can write other scripts that will compile and link
programs in exactly the way that you want them linked and compiled.
You can even use MPW to write computer languages, which will, of
course, run under MPW.

MPW has so much power, and so many special features, that it
would take a book to describe them all. And that's exactly why this
book was written. Welcome to MPW .

..,. About This Book
Programmer's Guide to MPW, Volume I is a tutorial and reference guide
for people who want to learn how to design and develop programs for
the Apple Macintosh using the Macintosh Programmer's Workshop.

This book presents information about MPW in a carefully graded
fashion, starting with the fundamental principles of each topic discussed
and progressing to more advanced examples, with plenty of sample
code and hands-on practice presented at each level of instruction.

It thus demystifies the Macintosh Programmer's Workshop 3.0 Reference,
the giant two-volume technical manual that so many people read, but
so few understand. In this book, the age-old secrets buried in the pages
of the Macintosh Programmer's Workshop 3.0 Reference are at last brought
forth into the light and explained in language that the MPW program
mers of tomorrow will finally be able to understand.

Programmer's Guide to MPW, Volume I is divided into two parts. Part I
covers the the MPW Editor, the MPW command language, the writing of
MPW commands and scripts, the MPW menu structure (including the
creation of customized menus), and MPW dialogs-including
Commando dialogs. Part II focuses on advanced programming tech
niques, and on the relationships between MPW and the Macintosh

IJ). Preface xxi

Event Manager, the Resource Manager, and Memory Manager. It
includes source code examples that show with crystal clarity how to
write an application, an MPW tool, and a desk accessory .

.,.. Chapter Outline

Part I, "The MPW Shell," has four chapters:
• Chapter 1 presents the history of MPW and describes how to install

and start MPW. It introduces the Macintosh Toolbox, the Macintosh
operating system, and the Macintosh Programmer's Workshop. It
also explains how to use the Macintosh Toolbox and the Macintosh
operating system in MPW programs.

• Chapter 2 explores the most important features of the MPW
programming environment, and explains-with the help of many
hands-on programming examples-how to write and execute
commands and scripts in the MPW command language.

• Chapter 3 examines the MPW menu structure; tells how to use and
customize the MPW menu bar; shows how to use dialogs and alert
dialogs in MPW scripts; and introduces Commando dialogs, which
can be used to execute commands by selecting dialog items rather
than by typing and entering command lines.

• Chapter 4 examines the many features of the MPW special character
set, including its powerful search-and-replace and pattern-matching
capabilities, and introduces more MPW commands.

Part Two, "Writing an Application," also contains four chapters:
• Chapters 5, 6, and 7 explain and illustrate how to write MPW

applications. They also tell how MPW interfaces with the Event
Manager, the Resource Manager, and the Memory Manager.

• Chapter 8 brings it all together and shows you how to write, com
pile, and link a commercial-quality application program.

• Appendices. The book also contains five appendices. Appendix A
presents the entire MPW command set, including syntax and
options. Appendix B presents the commands arranged by category.
Appendices C, D, and E contain the code for the Creation Program,
the application created in Part 2.

xxii ~ Preface

~ Who Needs It

Specifically, people who might have a need for Programmer's Guide to
MPWinclude

• Macintosh programmers who have been using other development
tools (such as THINK C or THINK Pascal) and want to learn to use
MPW.

• Programmers of non-Macintosh computers who want to learn to
write Macintosh programs using MPW.

• Beginning programmers who want to learn a programming lan
guage using the MPW environment (readers in this category will
have to supplement the material provided in this book with texts
that deal specifically with Pascal, C, assembly language, C++, or
MacApp; a number of such supplementary books are listed in the
"Recommended Reading" section of this Preface and the
Bibliography).

• Programmers who have been using MPW, but who want to become
more familiar with the subtleties of the MPW development environ
ment (MPW is such a complex system that most MPW users do not
fully understand all of its features and thus fall into this category) .

..,,_ More About MPW

The Macintosh Programmer's Workshop is a set of professional software
development tools created for Macintosh programmers by Apple
Computer, Inc. MPW is by far the largest and most feature-packed soft
ware development system for the Macintosh. Since it is an official Apple
product, it is guaranteed to be upgraded as necessary in order to remain
compatible with future models of the Macintosh. The current edition of
MPW, Version 3.2, contains

• The Macintosh Programmer's Workshop shell, the heart of the MPW
programming environment. The MPW shell includes a full-featured
window-based text editor, a command-line interpreter similar to the
one used in UNIX, and a dialog interface that enables the user to
communicate with MPW via dialogs rather than using command
lines. The shell also includes a command language that supports
scripts, shell variables, control constructs, and text-editing
commands.

._ Preface xxiii

• A linker that cal) combine object-code files into executable pro
grams. The MPW linker can be accessed via menus or dialogs, or
with the MPW command language. It can generate standalone
applications, desk accessories, device drivers, and other varieties of
programs. It can even merge code segments written in more than
one language into a single application.

• Projector, a project organizer that can maintain a revision history of
any project being developed under MPW. This utility can provide
you with immediate access to the most recent version of any project
under development, while saving backup files that can be used to
re-create any earlier version. Projector is thus both an archiving tool
and a backup utility. It can be used either by a single programmer
or by a large, networked development team.

• MacsBug, Apple's assembly language debugger for the Macintosh.

• A set of tools that can measure the performance of programs.

In all, MPW provides more than 120 built-in tools and scripts for
program developers. All of its tools are supported with a compre
hensive online help command .

..,. Apple Products for the MPW User

In addition to the materials that come with the Macintosh Program
mer's Workshop, many products designed to be used with MPW are
available separately, both from Apple and from other suppliers.
Additional MPW products from Apple include

• The Macintosh Programmer's Workshop Assembler, a tool for
writing 680XO assembly language programs.

• Macintosh Programmer's Workshop Object Pascal, a package for
developing programs in Pascal.

• Macintosh Programmer's Workshop C, a C compiler that provides
everything you need to develop Macintosh programs in C.

• Macintosh Programmer's Workshop C++, a C++ translator for devel
oping object-oriented C++ programs. MPW C++ is a precompiler
package designed to be used with MPW C.

• MacApp, a set of object-oriented libraries designed to speed up and
simplify the process of developing Macintosh software in either
Object Pascal or C++. To use MacApp, you must also have either
MPW Object Pascal or MPW C++.

xxiv ~ Preface

• The Symbolic Application Debugging Environment (SADE), a
source-level debugger for programmers using C, Pascal, C++, and
MacApp.

• A resource editor called ResEdit, plus other tools for creating and
managing resources.

• The MPW IIGs Cross-Development System, a kit for developers who
want to use the Macintosh and the MPW programming environment
as a cross-development platform for writing Apple IIGs software.
The MPW IIGS Cross-Development System contains modules that
can be used to develop Apple IIGS software in C, Pascal, or assembly
language.

• Other MPW-Based Products

MPW-based products from sources other than Apple include

• The Ada Vantage MacProfessional Developer Kit, a development
system for Ada programmers from Meridian Systems, Inc.

• Aztec MPW C, from Manx Software Systems.
• Language Systems FORTRAN, from Language Systems.
• MacFortran/MPW, from Absoft Corporation.
• TML Pascal II, from TML Systems.
• The TML Source Code Library II, a large collection of advanced

programming examples written in TML Pascal, from TML Systems.
• Oracle for Macintosh, a powerful relational database from Oracle

Corporation.

• Where to Buy MPW Products

The Macintosh Programmer's Workshop and all of the MPW-related
products just mentioned can be obtained from Apple software dealers
or from APDA, the Apple Programmer's and Developer's Association.
APDA's address is

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mail Stop 33G
Cupertino, California 95014-6299

!>- Preface xxv

liJJ> What You'll Need to Know to Use This Book

Programmer's Guide to MPW, Volume I: Exploring the Macintosh Program
mer's Workshop is a complete tutorial, so you won't have to be an MPW
wizard to understand it. If you do know MPW, so much the better; the
Macintosh Programmer's Workshop is such a feature-packed program
ming platform that there is practically no one out there who knows as
much about MPW as there is to know.

To understand the programming examples presented in this book,
you'll have to have at least some knowledge of C , Pascal, or-preferably
-both. If you're a beginning programmer and want to learn MPW and a
programming language at the same time, you have undertaken quite a
challenge. But with this book, a lot of persistence, and a good basic text
on the language you want to learn, it can be done.

If you are not an assembly language programmer, it would also be a
good idea to learn at least some 680XO assembly language. All Macintosh
compilers produce machine-language code and the MacsBug debugger
presents you with a screenful of machine code when it detects an error.
However, you don't have to know assembly language to use the source
level debuggers that are available for the Macintosh, such as the
Symbolic Application Debugging Environment (SADE) .

.._ Recommended Reading
Programmer's Guide to MPW is designed to supplement-not to replace-
the technical reference manuals that are supplied with the MPW system
and its various compilers. You should study this book along with the
documentation that came with your Macintosh and your MPW system.

Another book you should definitely own is Inside Macintosh, the
definitive reference work for the Macintosh programmer. Inside
Macintosh, packed into six hefty volumes, contains detailed instructions
for making every call in the Macintosh Toolbox and operating system. It
also provides a wealth of useful information about the Macintosh, its
system software, and its hardware architecture.

Inside Macintosh is part of the Apple Technical Library, a body of work
by Apple and published by Addison-Wesley. Two other useful books in
the Technical Library series are Technical Introduction to the Macintosh
Family and Programmer's Introduction to the Macintosh Family, which is
now available in its second edition.

If you're interested in developing commercial software for the
Macintosh, you should also be familiar with still another volume in the
Technical Library, Human Interface Guidelines: The Apple Desktop Interface.

xxvi ~ Preface

If you need detailed technical information on specialized topics, the
Macintosh Technical Library offers such titles as Macintosh Family
Hardware Reference, the Apple Numerics Manual, and Designing Cards and
Drivers for the Macintosh II and Macintosh SE.

Many other books that can help you in your quest to learn MPW and
the Macintosh are listed in the Bibliography.

Acknowledgments

It takes more than one person to write a computer book; it takes an
army. And the troops who worked on this book are the finest I've seen
anywhere.

Thanks to Carole McClendon of Addison-Wesley, who asked me to
write the book and whose confidence never flagged, even during the
rough spots; Series Editor Scott Knaster, whose knowledge of the
Macintosh is awesome (he can tell you more about the Macintosh off the
top of his head than most people can find in the manuals); Project Editor
Joanne Clapp Fullagar, whose eagle eye and attention to detail kept the
pages pristine; Production Supervisor Diane Freed, who made sure that
everything stayed on track production-wise; and Associate Editor
Rachel Guichard, who provided valuable reference materials and kept
the copy flowing.

Special thanks to Copy Editor Margaret Hill and Technical Reviewer
Nick Pilch, who spent many long hours over hot copy to make sure that
no errors crept in.

Also: Jordan Mattson, Peter Norton, Peter Alley, and Linda Suits at
Apple, for technical support; Kirk Chase, who published an excerpt of
Chapter 4 in MacTutor magazine; and all of the support people at
Addison-Wesley and Apple, without whose help this book would have
never been possible.

xxvii

PART ONE

~ The MPW Shell

In Part One, we will take a closeup look at each major part of the
Macintosh Programmer's Workshop (MPW) programming environ
ment, or MPW shell. These parts include

• worksheet window
• command language
• scripts
• menu structure
• dialogs (including Commando dialogs)
• editor

This part has four chapters:

.,. Chapter 1 examines the most important features of the Macintosh,
tells how the Macintosh User Interface differs from the user
interfaces used by other computers, and introduces the Macintosh
Toolbox, the Macintosh operating system, and the Macintosh
Programmer's Workshop. It also explains how to use the Macintosh
Toolbox and the Macintosh operating system in MPW programs .

.,. Chapter 2 explores the most important features of the MPW
programming environment, and it explains-with the help of many
hands-on programming examples-how to write and execute
commands and scripts in the MPW command language.

2 1Ji" Part One The MPW Shell

~ Chapter 3 examines the MPW menu structure; tells how to use and
customize the MPW menu bar; shows how to use dialogs and alert
dialogs in MPW scripts; and introduces Commando dialogs, which
can be used to execute commands by selecting dialog items rather
than typing and entering command lines.

~ Chapter 4 describes the many special characters used in the MPW
command language and provides many tables and examples
showing how they are used.

1 MPW and the Macintosh

This book is about a computer called the Macintosh and a software
development system called the Macintosh Programmer's Workshop:
two products that are, quite literally, made for each other.

The Macintosh Programmer's Workshop was designed for the
Macintosh-and today's Macintosh was designed using MPW.

The Macintosh has come a long way since it was introduced to the
public in 1984. The first Macintosh-a real Model T, by today's standards
-had a tiny 9-inch black-and-white screen, only 128K of RAM, and a
single-sided, 400K floppy-disk drive. Today's top-of-the-line models have
giant color screens, can operate at speeds of up to 40MHz, and can
address up to 1 gigabyte of memory.

Macintosh engineers took one of their boldest steps forward to date
with the announcement of System Software Version 7.0, which supports
the interactive editing of data across applications running simul
taneously on the same computer and even operating simultaneously
across a net. Among its many other new features, System 7 has a new
multitasking Finder that's integrated into the operating system; includes
outline fonts, which can be expanded to any size without jagged edges;
and allows the Macintosh user to access databases running on remote
systems.

Along with System 7, Apple introduced Version 3.2 of its official
Macintosh software development system, the Macintosh Programmer's
Workshop. MPW 3.2 includes new object-code libraries that support all
of the new features of System 7-and has a host of new features of its
own. It has a new editing window that can be split into as many as 20

3

4 ~ Chapter 1 MPW and the Macintosh

scrollable panes; a new Browser that can find premarked sections in
any text document; and StreamEdit, a new non-interactive, script
driven text editor that can reformat a document at the touch of a
button.

MPW 3.2 also has new and faster tools for linking programs and
creating object-code libraries, new features that support development
for the 68040 microprocessor, and even new and improved C and Pascal
compilers.

With the introduction of System 7 and MPW 3.2, Apple has again
placed the Macintosh at the leading edge of microcomputer design. And
this book can help you program today's Macintosh using today's
Macintosh software development system.

In this chapter, you'll see how the Macintosh and the Macintosh
Programmer's Workshop grew up together, and how they work
together now .

.,,. The Macintosh Story
Henry Ford didn't invent the automobile, and Apple didn't invent the
mouse, windowed displays, or pull-down menus. But the Ford Model T
marked the beginning of the age of the automobile, and the Apple
Macintosh may one day be remembered as the computer that redefined
the relationship between the machine and humanity.

Apple unveiled the Macintosh on January 24, 1984, at a gala celebra
tion at the company's headquarters in Cupertino, California. At a
multimedia presentation that featured a talking Macintosh and ended
with a standing ovation, Apple co-founder Steven Jobs hailed the new
machine as "the computer for the rest of us" and predicted that it would
usher in a new era in the history of the computer industry.

It took a while for Jobs' prediction to come true, but we all know that
it finally did. Due to some serious design limitations and an almost
total lack of supporting software, the Macintosh got off to a shaky start
in the marketplace. However, computer users soon began falling in love
with windows, pull-down menus, and the mouse-and Apple, which
had begun its life in a garage in Cupertino, had spread its wings, and
was growing into a multi-billion-dollar corporation.

As revolutionary as it was-and as willing as Jobs was to take credit
for it-the Macintosh was not the first commercially available computer
to be built around an interface that featured movable windows, pull
down menus, icons, and a mouse. That distinction belonged to the Lisa,
an Apple product that was introduced a full year ahead of the Macintosh,
but never took off in the marketplace and was discontinued in 1985.

I By the Way 11> I

IJJ. The Macintosh Story 5

The Macintosh Grows Up. The first Macintosh was equipped with
only 64K of ROM and 128K of RAM, and had a single-sided 400K
floppy-disk drive and a keyboard with neither keypad nor arrow
keys. A little later Apple introduced the Macintosh 512K, which
had 512K of RAM but was otherwise just like the original model.

The first Mac that could be called a major upgrade was the
Macintosh Plus, which had 1 megabyte of RAM, 128K of ROM, and
a double-sided, SOOK floppy~disk drive. Then came the Macintosh
512K Enhanced, which had 512K of RAM, 128K of ROM, and an
BOOK disk drive.

Since the introduction of the original Macintosh in 1984, the
Macintosh family has expanded to include such illustrious
members as the Macintosh Ilfx, which features a 40MHz 68030
microprocessor, a 68882 floating-point coprocessor, and a built-in
32K static RAM (SRAM) cache that stores the processor's most
frequently used instructions to increase its processing speed.

Other standard features of the Ilfx include 4 MB of RAM; a
dedicated SCSI DMA (Small Computer Systems Interface/Direct
Memory Access) channel, which reduces the workload of the main
processor; and dedicated I/0 processors, which increase system
efficiency. The Macintosh Ilfx has six NuBus expansion slots that
can accommodate multiple video, communications, networking,
and. other expansion cards, and can be purchased with a built-in
80 MB or 160 MBdisk drive.

IJJ. The Mouse, the Lisa, and the Macintosh

The mouse, the peripheral that made the Macintosh User Interface
possible, was developed in the 1960s at the Stanford Research Center in
Palo Alto. Over the next decade, at its Palo Alto Research Center (PARC),
Xerox developed a series of experimental workstations that coupled the
mouse with bit-mapped screens, windows, icons, and pull-down menus.

6 IJJJ> Chapter 1 MPW and the Macintosh

In 1979, after being persuaded to invest $1 million in Apple stock,
Xerox invited Jobs and a team of Apple engineers to tour its PARC
research facility and take a look at the work going on there. What Jobs
and his party saw during the field trip was a computer far different
from anything they had ever encountered. Instead of a standard 80-
column, 24-line text screen, it had a high-resolution text-and-graphics
screen with windows and icons that could be manipulated with a
mouse. Instead of standard multilevel menus that users had to thread
their way through, it had a menu bar from which any item could be
selected, at any time, with a click and drag of the mouse.

Jobs and his team were so excited by the novelty of all of this that
their enthusiasm became contagious. Jobs hired several other engineers
away from Xerox and put them to work developing new Apple
designs.

The initial result of their efforts was the Apple Lisa, a $10,000
computer with an even more elegant interface than the one that Xerox
had demonstrated. The Lisa, introduced in 1983, had a bit-mapped
black-and-white screen that emulated a desktop, with pictorial icons
representing folders and the documents they contained. To open a
folder or launch an application, the user merely clicked on the
appropriate icon with the mouse. Files and folders appeared inside
movable, resizable windows, and all of the options available to the user
could be accessed at any time via pull-down menus.

Furthermore, when you typed or drew in an application window,
your work was displayed on the screen in true WYSIWYG ("what you
see is what you get") fashion; italic text appeared on the screen in italics,
bold type appeared as bold, and the shapes and sizes of text and
graphics were the same as they would be if they were printed out on
paper. So, when you printed out a document that you had prepared on
a Lisa, everything looked the same on paper as it had looked on the
screen.

IJl. Lisa Bites the Dust

The Lisa, as impressive as its innovations were, did not turn out to be a
smashing success. It was not compatible with any other computer on
the market-not even with earlier Apples-and its price was just too
high. Although it won critical acclaim, few customers were willing to
pay $10,000 for such a pretty new toy. In 1985, after the Macintosh had
been introduced and had been on the market for a little over a year, the
Lisa was finally discontinued.

Fortunately the Macintosh-a computer designed to offer many of
the Lisa's features, but at much less cost-was on the market and
getting up some real steam by the time the Lisa died. Since the original

IJll> The Macintosh Story 7

Macintosh made its debut in 1984, Apple has introduced an average of
two new and improved models each year, and the evolution of the Mac
shows no signs of slowing down.

Table 1-1 traces the evolution of the Macintosh, listing the members
of the Macintosh family tree and some of their most important
specifications.

Table 1-1. Specifications of Macintosh computers

Model CPU Memory Input Devices Internal Storage

Original BMHz6BOOO 12BK Macintosh 400K disk drive
Macintosh Keyboard

Macintosh Mouse

Macintosh 512K BMHz6BOOO 512K Macintosh 400K disk drive
Keyboard
Macintosh Mouse

Macintosh Plus BMHz6BOOO lMB Mac Plus Mouse BOOK disk drive
Mac Plus Keyboard
Apple Scanner

Macintosh 512K BMHz6BOOO 512K Macintosh BOOK disk drive
Enhanced Keyboard

Macintosh Mouse

Macintosh SE BMHz6BOOO lMB Macintosh Mouse AppleFDHD
Apple Keyboard Super Drive;
Apple Extended Internal Hard
Keyboard Disk 20SC,40SC
Apple Scanner

Macintosh 16MHz lMB ADBMouse
SE/30 6B030/6BBB2 Apple Keyboard AppleFDHD

Apple Extended Super Drive;
Keyboard Internal Hard
Apple Scanner Disk 40SC,BOSC

Macintosh 16MHz68000 lMB Apple Desktop AppleFDH
Portable Mouse

Apple Trackball* Super Drive;
Apple Keyboard* Portable Inter-
Apple Scanner nal 40SC Hard
Apple Extended Disk Port
Keyboard
Numeric Keypad

Macintosh Hex 16MHz lMB ADBMouse AppleFDHD
6B030/ 4MB Apple Keyboard SuperDrive;
6BBB2 Apple Extended Internal Hard

Keyboard Disk 40SC,BOSC
Apple Scanner

8 ~ Chapter l MPW and the Macintosh

Table 1-1. Specifications of Macintosh Computers (continued)

Model CPU Memory Input Devices Internal Storage

Macintosh IIx 16MHz lMB ADBMouse AppleFDHD
68030 I 68882 4MB Apple Keyboard Super Drive;

Apple Extended Internal Hard
Keyboard Disk40SC,
Apple Scanner 80SC, 160SC

Macintosh IIci 25MHz 1 MB ADBMouse AppleFDHD
68030/68882 4MB Apple Keyboard Super Drive;

Apple Extended Internal Hard
Keyboard Disk 40SC, 80SC
Apple Scanner

Macintosh Ilfx 40MHz 4MB ADBMouse AppleFDHD
68030/68882 Apple Keyboard SuperDrive;

Apple Extended Internal Hard
Keyboard Disk80SC,
Apple Scanner 160SC

(*) Built in

IJJI. The MPW Story
When Apple introduced the original Macintosh in 1984, program
developers rushed out to buy it-and then found out that there wasn't
much they could do with it as far as program development was con
cerned. The source code for the Macintosh had been written not on a
Macintosh, but on a Lisa-using a Pascal compiler and a 68000
assembler-and when you looked at the specifications of the original
Macintosh, it was easy to understand why. The original Macintosh had
only 128K of RAM and a single 400K floppy-disk drive, and those
limitations made serious program development on a Macintosh all but
impossible. Apple, recognizing the futility of trying to write Macintosh
programs on a Macintosh, offered software manufacturers a develop
ment package that included a Lisa and a set of cross-development tools
that could be used to develop programs for the Mac.

As the Macintosh evolved into a more powerful computer, and its
memory and storage capabilities increased, Apple began to recognize
the need for a program development system that would run on a
Macintosh platform. The first product aimed at filling that need was the
Macintosh 68000 Development System, or MDS. MDS provided
programmers with a machine-language assembler and some support
tools, but it did not include a compiler for developing programs in

..,_ The Macintosh Story 9

Pascal, C, or any other higher level language. BASIC and Pascal pack
ages from third-party manufacturers soon began showing up in the
software marketplace, however, and Apple then decided that it was
about time to start working on a full-scale Macintosh program develop
ment system.

The development of what was to become MPW started late in 1984,
when Apple engineers designed a set of Macintosh programming tools
for internal use. The name initially given to the package was the
Macintosh Programming System, or MPS-initials which, coincidentally
or otherwise, also stand for the last names of the three software
engineers who developed it: Meyers, Parrish, and Smith!

.... Launching MPW

The first version of MPW, Version 1.0, was released by APDA (the
Apple Programmer's and Developer's Association) in September 1986.
It was designed to work on any Macintosh with 1 MB of RAM and at
least 1.6 MB of disk space. It had a shell that had been ported from the
original Macintosh Development System and a C compiler that had
been ported from the Lisa. But it also included a new 68000 assembler
that had been developed from scratch. Other new features included the
utilities Make and Print; the MacsBug debugger; and a pair of resource
management tools called Rez and DeRez.

Version 2.0 of MPW, released in July 1987, included some new tools,
an improved shell, an expanded MacsBug debugger, compilers that
generated code for Motorola's new 68020 and 68030 chips, and new sets
of interface and library files to support the Macintosh IL It was shipped
on 800K floppy disks, and it required the use of the Mac Plus with 128K
ROM and a hard-disk drive .

.... MPW3.0

The newest major revision of MPW, Version 3.0, was released in early
1989. Version 3.0 was faster and easier to use than was its predecessor,
and it was the first MPW version to exploit the features of MultiFinder.
It featured a new source-level debugger called the Symbolic Application
Debugging Environment, or SADE; a rewritten version of MacsBug (6.0);
a new C compiler; a new project management tool called Projector; some
added tools; and some updated libraries and interfaces. Also, an
Installer disk was included for installing MPW from a set of diskettes.

In MPW Version 3.1, a number of bugs were fixed and new capa
bilities for some tools were added. Version 3.1 also included a CPlus

10 ~ Chapter 1 MPW and the Macintosh

command for compiling programs written in C++ as well as new
interface files for C ++ programs .

.,.. MPW 3.2
MPW 3.2, despite its unimpressive version number (they didn't call it
MPW 4.0), is an ambitious revision of the Macintosh Programmer's
Workshop. In fact, it is the first MPW revision since Version 3.0 that has
included more than minor bug fixes.

The most visible new feature introduced in MPW 3.2 is a split-screen
feature that can divide the MPW Editor window into as many as 20
scrollable panes. Black lines called split bars and slide boxes appear in
the Editor window's vertical and horizontal scroll bars, as shown in
Figure 1-1. By dragging these split bars and slide boxes, you can split
the Editor screen into as many as 20 scrollable, sizeable panes. Since
each pane has a pair of scroll bars, you can scroll each pane to display a
separate portion of the document in the window.

Another new feature of MPW is a Browser window, shown in Figure 1-2.
You can use the Browser window to change directories, inspect the
contents of directories, and move to premarked sections of a document.

s File Edit Find Mark Window Project Directory Build II
D Shiua:MPW 3.2:EHamples:CEHamples:TESample.c E!l

MP\>/ Shell l
void AlertUser< short error); ~TESample is an example application that~
void EventLoop< void); ~to initialize the commonly used toolbox~
void DoEvent< EventRecord *event) ; i!l!ii successfu I I y under Mu It i Finder, h@d I e ~
void AdjustCursor(Point mouse, RgnHan<\ililli create, grow, and zoom windows. The fun.tmf:
vo i d Ge tG I oba I Mouse< Po i n t *mouse) ; too I box ca I I s and Tex tEd i t au toscro I I atj j!jiji
void DoGrowWindow< WindowPtr window, ES also shows how to create and maintain s~iiiiii
void DoZoomWindow< WindowPtr window, s~!!l!ii !!!iii
void ResizeWindow(WindowPtr window); iii:Ji It does not by any means demonstrate al mi!i
void GetLoca I UpdateRgn< W i ndowPtr w i nd~!jijjj need for a I arge app I i cation. In part i c~ jjj!ii
void DoUpdate< WindowPtr window); i!ii!i cover exception handling, multiple wind~*
void DoDeact i vale(W i ndowPtr window) ; !i!!H sQQM i st i cated memory_ mancig_ement _Qr inti V

~~: ~ g~~~~ i~~!~ ~ i ~~ ~d~~~!:w~ i~d~~ ~d~~~ iiiiii 12R Ji!i!!iii!W!iii!i!i!i!W!iii!ii!iW!i!irni!iii!Wii!ii!iW!i!irn!ii!i!ii!ii!i!!!i~ ~
void DoKeyDown (Even tRecord *event) ; jjjjjj '*pragma segmen l Main ""
uns 1 gned I ong Gets 1 eep< vo 1 d) ; !i!i!i void A I ertuser<error) !1iiITT
vo id CommonAcl ion (Con tro I Hand I e con tr(ij!!l short error; i!i!i!
pasca I void VAc ti onProc (Con tro I Hand I e m!ii !ijjij
pascal void HAclionProc(ControlHandle j!ijji short i temHi t; i!ii!i

~~ ! ~ ~~7~~ r~~~~~ ~ w !~1~w~ ~r window) ; 111111 ::::::sor (&q:e::::: ;) ; I
void DoMenuCommand (I ong menuResu I t) ; !!iii! /* type S ~r255 i s an array in . MPW
void DoNew< void); ~ GetlndStr1ng<message, kErrStr1ngs, i2

IQ!![]!!jijjjjjjjjjjjjjjJ!i!jij!iijjj!jjjjjjjjjjjjjjjjjjjjjjjjjjj]jjjjjjjjjjjJHjjjjjjill_g<l~IQI]jjjjjjjjjjjjjjjjjjjjjjjj!jijjjjjjjjjjjjjjjjjjjjjjj!iijjjjjjjjjjjjjjjjjjjjjijjjjjjjjjjjjjjj~ 12J

Figure 1-1. MPW 3.2 Editor

IJll> MPW 3.2 11

Browser

(Brahma:SuperTest:]

globdcit.c
Glue.c
menu.c
menu.h
menu.r
ST.c
ST.h
ST.r
Sl!E_er Test Lqg_

Super Test. h
SuperTest.mcike
SuperTest.mcikeout
Super Test. r
Sui:>_erTestG I ue. ci

.
@ Open as Rctme
O Open as Target

Ql FrontWindow
DoCon ten tC I i ck
SubtrcictScrol IBcirs
DrciwWindow
I n i t i ci I i ze
of fScreen
AdjustTE
AdjustScrol IBcirs
AdjustHIJ
IJActionProc

lQJ

Open after find
<Use the tab key to select text entry field)

Figure 1-2. MPW 3.2 Browser

IQl

lQJ

Both the split-window Editor and the MPW 3.2 Browser are described
in more detail in Chapter 2.

Other new features added in MPW 3.2 include

• A new Object Pascal compiler and a new C compiler, which are
available as separate products. The new C compiler supports the
MacApp debugger and can produce "32-bit-clean" code to support
the new, expanded memory capabilities of the Macintosh Memory
Manager. The new Object Pascal compiler has more built-in support
for MacApp and for external functions written in C.

• A non-interactive, script-driven text editor called StreamEdit. The
StreamEdit tool, similar to the Sed tool used in UNIX, provides a
method for editing and formatting documents automatically using
stored scripts.

• Compatibility with the 32-bit addressing capability offered in
System Software Version 7. With the release of Version 3.2, MPW is
now 32-bit clean and can produce code that is 32-bit clean. (For
more information about System 7's 32-bit addressing capabilities,
see Chapter 7.)

12 Chapter 1 MPW and the Macintosh

• Updated versions of various libraries. The Runtime.o and
CRuntime.o libraries have been merged into a single Runtime.o
library, and the libraries have been resegmented to move more
modules out of the "main" segment. The C libraries have been
updated to conform to the current proposal for ANSI C, and the
Pascal libaries have been enhanced to include standard C string
functions that work on Pascal strings. (More information about
libraries is presented in Chapter 8, "Building an Application.")

• New, speedier versions of the MPW tools Link and Lib, which link
compiled programs and create object-code libraries. The Link and
Lib tools are also covered in Chapter 8.

• Two new commands: ShowSelection, which scrolls a window to a
selection and then finds and selects it; and SaveOnClose, which
saves a window when the window is closed. (The syntax of these
commands is in Appendix A.)

• Enhancements in several other tools and a number of bug fixes .

._. What You Need to Run MPW 3.2

To run MPW 3.2, you must have at least a Macintosh Plus, a hard-disk
drive, and 2 MB of RAM. In addition, you must be running System
Version 6.0 or later, with either Finder Version 6.1 or later. If you want to
use the SADE source-level debugger, you must use the System 7 Finder
or MultiFinder, and you need at least 2.5 MB of RAM.

Those, of course, are the minimum requirements for running MPW,
Apple recommends a system configuration of at least a Macintosh II
equipped with 4 MB or more of memory and an 80 MB hard-disk drive.
If your programming requirements are not too heavy, however, you can
get by with a Macintosh SE, 4 MB of RAM, and a 20 MB hard-disk
drive .

..., Installing MPW 3.2
Installing MPW 3.2 is a snap; the MPW package now includes an
installer disk, and the installation procedure is fully documented in
Chapter 2 of the MPW 3.0 Reference. However, if you just cannot wait to
get your MPW system up and running, you can follow these steps:

1. Make copies of all the master disks that came in your MPW
packages, and put the original disks away for safekeeping. Use the
copies that you have made for the following operations.

Warning 1>

~ The Macintosh User Interface 13

2. Insert your copy of the MPW Installation disk into your floppy-disk
drive. Then, using the Finder or MultiFinder, drag the Installation
Folder from your copy of the Installer disk on to the hard disk on
which you want to install MPW.

3. Open the Installation Folder that is now on your hard disk, and
double-click on the MPW Installer icon.

4. When the Installer program starts running, it prompts you to start
inserting the copies of your MPW master disks into your floppy
disk drive. You can insert your MPW disks in any order, and you
won't break anything if you insert a disk more than once.

5. Once installation is complete, you can throw away the Installation
Folder (the one on your hard disk, not the one on your floppy), and
you can then launch your newly installed shell.

Use the MPW Installer. If you own an earlier version of MPW and
want to update to MPW 3.2, be sure to use the MPW Installer
script; don't try to install Version 3.2 by simply dragging the
folders on the MPW master floppies onto your hard diskto replace
your old ones. That is cert;;i.in to cause you trouble because the
contents of the folders on the MPW master disks changed with the
release of MPW 3.0. Now, the files have been placed in folders that
more closely reflect their final.destination rvhentl\ey Clre.moved to
a hard disk.

In earlier versions of MPW,. for example,.the Pascal compiler was
placed at the root level on the Pascal master disk. Now, Pascal is in
a Tools folder on that disk. So, if you try to install MPW simply by
dragging files and folders from a set of MPW master disks on to
your hard disk, you'll wind up with conflicts between the old files
and folders on your hard disk and the new files and folders that
you drag over. And if your MPW system doesn't work right then,
don't blame MPW.

IJlli- The Macintosh User Interface
From a user's point of view, some of the most important features that
distinguish the Macintosh from less advanced computers are as follows.

• The mouse-The most important tool for manipulating the
Macintosh cursor is the mouse-a pointing device which with a

14 IJJJ> Chapter 1 MPW and the Macintosh

drag and a click can choose menu items; open, close, select, scroll, or
resize windows; draw pictures and shapes; select locations where
text will be typed or shapes will drawn; and cut, paste and copy text
and graphics on the screen.

• Windows-All information displayed on the screen by a standard
Macintosh application appears in windows. A window in which the
user of an application can type text or draw shapes is called a
document window. Windows can be equipped with various kinds of
controls such as title bars, go-away boxes, zoom boxes, size boxes,
and scroll bars. Windows can also contain buttons and icons, which
a user can click on to perform various kinds of operations. The tasks
that can be performed by clicking on buttons or icons are deter
mined by the application that is running.

More than one window can be displayed on the Macintosh screen,
and windows can overlap each other. If the System 7 Finder or
MultiFinder is running, windows from different applications can
appear on the screen at the same time.

• Pull-down menus-When you run an application on the Macintosh,
you do not have to make your way through various levels of menus
to get from one part of the program to another. In a standard
Macintosh program, the titles of all menus that you may want to
access are displayed in a row at the top of the screen in a ribbon
shaped menu bar. To select an item from a menu, you simply press
your mouse button in the title of the menu that you want. The title
of the selected menu is then highlighted, and a column of menu
items appears below it. You drag the mouse down to the menu item
you want, and release the mouse button to select the chosen menu
item.

• Dialogs-When an application needs more information from the
user about a command, it can display a special kind of window
called a dialog. Dialog windows, like document windows, can be
equipped with various kinds of controls. When controls appear
inside a dialog, they are known as dialog items.

By clicking on button items that appear inside a dialog, or by
typing text into a special kind of item called a TextEdit item, the
user of an application can supply the application with whatever
information it needs. In addition, dialogs can contain button items,
icon items, and other kinds of items that can be defined by specific
applications.

~ The Macintosh User Interface 15

There are three kinds of Macintosh dialogs: modal dialogs,
modeless dialogs, and alerts. Modal dialogs look just like windows,
but contain controls; modeless dialogs have no title bar and are
closed by clicking a button; and alert dialogs are modeless dialogs
that display important messages.

• The Finder and MultiFinder-When you start up a Macintosh, the
first screen you see is generated by a startup utility called the Finder.
The Finder, contrary to what many people seem to believe, is not
part of the Macintosh operating system; it is simply an application
that is in the System file of a system disk and is launched when the
system starts up. The Finder is responsible for presenting the unique
desktop that you see when you start a Macintosh-a screenful of
tiny icons representing disks, documents, file folders, and disk
drives.

In System Software Version 5.0, Apple introduced MultiFinder,
an improved version of the Finder that allowed multiple applica
tions to be opened simultaneously. With the introduction of System
7.0, the features of MultiFinder were integrated into the Macintosh
operating system to provide what Apple calls "a cooperative multi
tasking environment."

The System 7 Finder includes all of the features of MultiFinder,
and several more. It supports color icons and miniature icons; has a
stationery feature that lets the user create documents used as tem
plates; and contains special folders for storing desk accessories and
fonts, eliminating the need for the Font/DA Mover utility used in
previous systems.

• Desk accessories-Desk accessories, or DAs, are mini-applications
that can be started, used, and closed while larger applications are
also running. If you have a desk accessory installed in your system,
you can always select and run it, without leaving any other pro
gram that may be running. Menu items for all installed desk
accessories always appear under the Apple menu on the Macintosh
menu bar.

With the introduction of System Software Version 7, the user has
been given the option of treating any application as a desk acces
sory. You can now install a desk accessory simply by dragging its
icon into the System Folder.

System 7 also allows you to install fonts by dragging their icons
into the System Folder. So the Font/DA Mover utility used in pre
vious systems has become unnecessary.

16 ~ Chapter 1 MPW and the Macintosh

~ Principles of Macintosh Programming
Since the Macintosh is a pretty unconventional computer, it should not
be any surprise to learn that programming a Macintosh requires the use
of some pretty unconventional programming techniques.

When you write a standard text-based program for a computer with a
standard text-based operating system, you do not have to worry about
such advanced user-interface features as mouse movements, windows,
pull-down menus, or icons. When you write a program for a Macintosh,
you do have to be concerned with handling all of these features-and
more.

On the other hand, there are some ways in which writing a program
for a Macintosh is actually easier than writing a program for a more
conventional computer. When you develop an application for a non
Macintosh computer, for example, you usually have to have a fairly
good understanding of the memory map of the computer you are
working with; you have to decide exactly where in memory you are
going to put your code, data, and screen graphics; and then you have to
take all of the necessary steps to put each ingredient of your program in
just the right memory location. Then, as your program grows, you have
to reconfigure your computer's memory.

~ An Easier Way to Manage Memory

When you design an application for a Macintosh, you do not have to do
any of that. In a Macintosh program, you will rarely, if ever, have to
refer directly to the actual memory address of any block of code or data.
That's because the Macintosh has a built-in Memory Manager, which, as
its name implies, performs memory management functions. The
Macintosh also has a number of other managers that are designed to
handle other kinds of important procedures and operations.

Some of these managers-the Memory Manager among them-are
built into the Macintosh operating system. Other managers are provided
in the User Interface Toolbox, a collection of hundreds of useful routines
that are provided with every Macintosh and can be used in any
Macintosh program. Some portions of the Toolbox are built into ROM,
and others are stored on the Macintosh system disk.

When a user loads a program into a Macintosh, the Memory Manager
first decides exactly where each part of the program should be stored in
memory, and then it places every piece of code and data in the program
in its proper memory location. Then, as the program runs, the Memory
Manager automatically shifts blocks of memory around to make room
for new blocks as memory requirements change.

..,. Principles of Macintosh Programming 17

The Memory Manager takes care of all of this memory manipulation
by using not only pointers, but also pointers to pointers, which are
called handles. By using handles in your Macintosh programs, you can
let the Memory Manager worry about the physical memory locations of
all the data that you refer to in your code, and you will never again
have to refer to any block of code or data by its actual memory address.
Much more information about the Memory Manager appears in
Chapter 7.

Ill- Macintosh 1/0

File management is another programming headache that you need not
worry about when you're writing a Macintosh program. That's because
the Macintosh is equipped with a Standard File Package, which takes
care of such jobs as finding directories and opening, closing, and saving
files.

When you write a Macintosh program that gives the user the option
of loading or saving a file, all you have to do is call the Standard File
Package. The Standard File Package then displays a dialog-or a series
of dialogs-that allow the user to locate any desired directory on any
disk and then to load or save the selected file. Therefore, you can avoid
a lot of 1/0 hassles by using the Standard File Package.

Ill- Managing Resources

Another important manager in the Toolbox is the Resource Manager
-which, as its name implies, handles the resources that a Macintosh
program uses. Resources are blocks of static data such as menus,
dialogs, window templates, and cursors. They are created, stored, and
manipulated separately from a program's code for flexibility and ease of
maintenance. The Resource Manager is covered in much more depth in
Chapter 6.

Ill- QuickDraw and Macintosh Graphics

When you type text or draw graphics on the Macintosh screen, all
drawing operations are handled by a very important part of the Toolbox
called QuickDraw. QuickDraw is the heart of the Macintosh graphics
system. Whether you want to draw into a window or just set up a
simple shape such as a rectangle to be called by other managers in the
Toolbox, your applications will usually make calls to QuickDraw.

18 Ill> Chapter 1 MPW and the Macintosh

Although not every version of the Macintosh has been equipped to
handle color, every version of QuickDraw has supported both black
and-white graphics and a limited capability of producing images in up
to 16 colors. Beginning with the Macintosh II, an enhanced version of
QuickDraw, supporting up to 248 colors, has been available. This newer
version of QuickDraw is called, logically enough, Color QuickDraw. In
this book, QuickDraw is mentioned only as it relates to MPW
programming. More comprehensive information about QuickDraw and
Color QuickDraw can be found in Inside Macintosh, Volumes I and IV.

Ill> Important Events

Before we end this summary of Macintosh features and open up the
User Interface Toolbox, it is important to mention a programming tech
nique called event-driven programming. Every program written in
accordance with the Macintosh User Interface Guidelines contains a
main event loop, a loop that constantly monitors such user actions as
mouse clicks and the use of keys on the Macintosh keyboard. When an
application user clicks the mouse or presses a key, that action is known
as an event, and it is up to the application to detect the event and
respond to it appropriately.

To help programs manage events, the Macintosh Toolbox has been
supplied with a manager called the Event Manager, and the Macintosh
operating system contains a set of calls referred to as the Operating
System Event Manager. Both the Event Manager and the OS Event
Manager are covered in greater detail in Chapter 5.

Ill> Other Features

The Macintosh also has many built-in features that can help you per
form such tasks as tracking mouse movements and mouse clicks and
can assist you in such jobs as drawing and manipulating windows and
dialogs, and building and manipulating pull-down menus. Some of
these tools are built into the Macintosh Toolbox, and others are built
into the Macintosh operating system.

.- The Macintosh Toolbox and Operating System 19

~ The Macintosh Toolbox and Operating System
In the preceding sections, we have mentioned three features that
distinguish the Macintosh from more conventional computers: the
Macintosh User Interface, the User Interface Toolbox, and the Macintosh
operating system. Now let's put these three features together and see
how they work together. We will start at the lowest level of processing:
the operating system level.

When an application is running on a Macintosh, the portion of code
that communicates most directly with the central processor is the
operating system; its job is to perform basic operating tasks such as
input and output, memory management, and interrupt handling.

One level above the operating system lies the User Interface Toolbox,
which was designed to help programmers implement the standard
Macintosh User Interface in their applications easily and efficiently.
When you call a Toolbox routine in an application, the Toolbox often
calls an operating system routine when it wants to perform a low-level
operation. When you write programs for the Macintosh, you will often
bypass the Toolbox and call the operating system directly in your
applications.

Applications, as well as other kinds of programs written for the
Macintosh, lie one level above the User Interface Toolbox. Well-behaved
programs-a term that Apple often uses to describe programs written
in accordance with its User Interface Guidelines-perform most of their
essential tasks by making calls to the Toolbox and the operating system.

At the very top of the processing hierarchy is the User Interface,
which, as its name indicates, is the interface between the Macintosh and
the user of a program. Windows, menus, dialogs, and controls-and
such specialized applications as the System 7 Finder and its predecessor,
MultiFinder-are all parts of the User Interface, as you have seen in
earlier sections of this chapter.

The four levels of Macintosh processing-the operating system, the
Toolbox, applications, and the User Interface-are illustrated in Figure 1-3.

20 IJJ. Chapter l MPW and the Macintosh

n~
The User

Application
Programmer

..... l2L
~)

~1

</~>
~~

74 2E 5C
57 20 53
50 53 20
50 50 4C
5C 00 00

Macintosh
User
Interface

Application
Program

User Interface
Toolbox

Macintosh
Operating System

Figure 1-3. The four levels of program processing

.,.. The User Interface Toolbox
The User Interface Toolbox is a collection of hundreds of routines and
functions that you can use in your programs without having to write all
of the code that they contain from scratch. The routines in the Toolbox
-like the libraries of C and Pascal functions that programmers of
conventional computers often purchase and use-are p rewritten,
pretested procedures and functions that can be incorporated into pro
grams to perform specific tasks. But, unlike the "cookbooks" of routines
tha t programmers of less advanced computers so often use, the
procedures and functions in the Macintosh Toolbox are always available,
free of charge, and are specifically designed to work correctly with the
Macintosh User Interface, the Macintosh architecture, and the Macintosh
operating system. Furthermore, since they are written and maintained
by the people who designed your Macintosh, they are guaranteed to
work properly not only with the computer you are currently using, but
also with future models.

~ The System 7 Toolbox 21

Most of the functions and procedures in the Toolbox are designed to
help you implement the Macintosh User Interface-the windows, pull
down menus, dialogs, and standard control mechanisms mentioned
earlier in this chapter.

""' The System 7 Toolbox
Until System 7 was unveiled, the number of managers in the Macintosh
Toolbox had grown steadily but slowly. With the introduction of System
7, Apple pulled out all the stops and added eight new managers. These
new managers are illustrated in Figure 1-4 and described in this section .

.,.. The Process Manager

The Process Manager manages the scheduling of processes that affect
open applications and desk accessories. Under System Software Version
7, any application can be placed under the Apple menu and used as a
desk accessory, and the number of processes is limited only by available
memory.

With the help of the Process Manager, multiple applications running
under System 7 can share the 680XO microprocessor and other resources.
The Process Manager provides applications with a means of sharing the
amount of memory available, and also sharing access to the CPU.

In addition to managing the scheduling of applications, the Process
Manager manages access to shared resources and loads applications
into memory. By querying the Process Manager, an application can get

Process
Manager

Alias
Manager

Edition
Manager

Database
Access
Manager

Help
Manager

PPC
Toolbox

Figure 1-4. System 7 Toolbox managers

Graphic
Devices
Manager

Power
Manager

22 ~ Chapter 1 MPW and the Macintosh

information about itself or any other open application, such as the
number of free bytes in the application's heap.

The System 7 Finder, which carries out actions directed by the
Process Manager, is shown in Figure 1-5.

s File Edit Uiew

Brahma
14 items 36 .7M in disk

13 items 17 .9M in disk

CJ
Super Test

10 items

o ~
MacPaint MacsBug

CJ
MPV 3.2

~
Picture 0

Chapter 7 Folder

§J ~ D
. []]

Read Me ResEdit System 7 .0

~
PosterMaker

Figure 1-5. System 7 Finder

~ The Edition Manager

The Edition Manager allows applications and documents to share data
dynamically and also allows users to share data dynamically across a
network.

With the Edition Manager, the Macintosh user can

• capture data from a document and integrate it into another document
• modify information in a document, simultaneously updating any

document that shares its data

• share information between applications on the same disk or across
a network of Macintosh computers

~ The System 7 Toolbox 23

The Edition Manager's functions are similar to the standard cut,
copy, and paste features offered since the advent of the first Macintosh.
With the help of the Edition Manager, however, text and graphics that
are edited in one application can also change in any associated appli
cations that may be running- either on the same computer or on a
network. Text, graphics, spreadsheet cells, database records-any data
that can be selected within an application-is accessible to other
applications supporting the Edition Manager.

~ The Help Manager

The Help Manager can display cartoon-like help balloons when the
user of an application moves the mouse into a user interface element
such as a menu, a window, an icon, or a control.

In an application that makes use of the Help Manager, the user can
enable help balloons by choosing "Show Balloons" from the Help menu.
The contents of the help balloons are provided by the application. The
user can turn off the help function by selecting "Hide Balloons" from
the Help menu.

Figure 1-6 shows a help balloon created by the Help Manager .

• File Edit Uiew

Brahma
14 items 36. 7M in disk 2.3M availa

[(:) Uishnu
.6. 13 items I 7.9M in disk l .1M

Picture 1

Shiua

LJ
Super Test

12 items 9 .7M in disk LJ
Ananda Folder

~ LJ ~
MacPaint MacsBug MP\i 3.2 Pictur·e 0

§J ~ -. Li] ~
Read Me ResEdit System 7 .0 Picture 1

~ rolTnfu ~~
Teach Tex t TETRIS PosterMaker Pictut·e 2

Figure 1-6. Help balloon

24 ~ Chapter l MPW and the Macintosh

~ The Graphics Devices Manager

The Graphics Devices Manager manages offscreen graphics. With the
Graphics Devices Manager, you can create images offscreen and then
move them quickly into view with a single routine. This technique
prevents the jumpiness that you sometimes see when you draw object
oriented graphics directly on the screen. Also, by drawing a picture in
an environment that you create and control, you can be sure that no
other application or desk accessory changes its characteristics.

The Graphics Devices Manager also contains routines and data
structures used by QuickDraw and the Palette and Color managers to
communicate with the graphics devices attached to a particular system.
Such devices may include printers as well as video screens. Most of
these routines are used only by the operating system; some may be
used by graphics-intensive applications.

~ The Alias Manager

The Alias Manager stores file and directory information in specially
designed records called alias records. Files and folders with alias records
can be referred to later by their aliases, rather than by their full
pathnames. The Alias Manager thus provides an easy method for
tracking files and folders across volumes. It also provides routines that
can automatically initiate the mounting of an unmounted AppleShare
volume, and can prompt a user to insert a disk when a needed disk
cannot be found.

~ The Database Access Manager

The Database Access Manager allows an application to communicate
with a database application running on a remote computer. With the
Database Access Manager, an application can use either high-level or
low-level routines to initiate communications with a remote database
server; send commands or data to the server, and, after the server
executes the commands, retrieve any requested data from the server.

~ The PPC Toolbox

The PPC (Program-to-Program Communications) Toolbox enables
applications to communicate with other applications. This low-level
manager is most suitable for code modules (or desk accessories or
applications) that are not event-driven.

.,. Other Toolbox Managers 25

With the PPC Toolbox, an application can

• verify the identities of remote users of the PPC Toolbox
• share information among other applications running on the same

computer or on a computer network

..,. The Power Manager

The Power Manager, used only by the Macintosh Portable, is built into
the computer's firmware. The Power Manager can put the Macintosh
Portable into two low-power-consumption states: the idle state and the

· sleep state.
The Macintosh Portable goes into its idle state when the system has

been inactive for 15 seconds. When the computer is in the idle state, its
normal 16MHz clock speed is slowed down to lMHz.

When the portable has been inactive for an additional period of
time-the duration is set by the user-the computer's power is shut off,
but no data is lost from RAM. When the user activates the computer, by
clicking the mouse button or pressing a key, the portable "wakes up"
and is ready for action.

IJlli- Other Toolbox Managers
Figure 1-7 shows the managers that made up the Toolbox prior to the
introduction of Software System Version 7. Their dependencies on each
other are illustrated roughly by their position on the chart; managers
that are lower on the chart often call the upper ones. However, their
precise dependencies are too complex to be illustrated in a simple
diagram.

Managers included in the pre-System 7 Toolbox are listed in Table 1-2.
Three managers-the Toolbox Event Manager and the Resource
Manager from the Toolbox and the Memory Manager from the
operating system-are so important that they have their own chapters in
this book: Chapters 5, 6, and 7.

26 .,. Chapter l MPW and the Macintosh

Standard File Packager

L---D-ia_io_g_M_a_n_a_g_e_r _ __,I _, ___ L_i~_M_a_n_a_g_e_r _ __.

Control Manager Menu Manager TextEdit

Window Manager

Toolbox Utilities

Toolbox Event Manager

.._ __ D_es_k_M_a_n_a_g_e_r _ __.I l.._ __ s_c_ra_p_M_a_na_g_e_r _ __.

Palette Manager

Color Manager

Color QuickDraw

QulckDraw

Package Manager I l.._ __ Fo_n_t_M_a_n_a_g_e_r _ __.

Script Manager

Resource Manager

Figure 1-7. The System 6 Toolbox

.,,_ Other Toolbox Managers 27

Table 1-2. The System 6 Toolbox

Manager Description
~~~~~~~~~~~~~~~~~~~ 

Toolbox Event Manager Often referred to simply as the Event Manager, 
the Toolbox Event Manager reports events, such 
as mouse clicks and key presses, to an applica
tion. The application, in a main event loop, 
determines what to do about each event 
reported. In System 7, some new kinds of events 
are recognized. For more details, see Chapter 5. 

Window Manager Takes care of all document windows displayed 
on the Macintosh screen. Provides routines that 
create, open, close, resize, and move windows 
around on the screen. 

Menu Manager Sets up and manages the menus and menu 
items on the Macintosh menu bar. 

Control Manager Creates and manages controls, such as buttons, 
check boxes and scroll bars, inside windows 
and dialogs. 

Dialog Manager Creates and displays modal and modeless 
dialog and alert windows, and monitors the 
user's responses to dialog items. 

Resource Manager Manages and keeps track of the resources used 
by a program. Resources are blocks of static 
data, such as menus, dialogs, window tem
plates, and cursors, which are created, stored 
and manipulated separately from a program's 
code for flexibility and ease of maintenance. In 
System 7, some new kinds of resources have 
been added. The Resource Manager is the topic 
of Chapter 6. 

QuickDraw The heart of the Macintosh graphics system. 
QuickDraw performs all drawing operations on 
the screen, including both graphics and text. 
QuickDraw can handle both black-and-white 
images and images with up to 16 colors. 

Color QuickDraw A greatly enhanced version of QuickDraw, 
Color QuickDraw, was introduced with the 
Macintosh II. Color QuickDraw is capable of 
displaying up to z48 colors on a screen. 



28 ~ Chapter 1 MPW and the Macintosh 

Table 1-2. The System 6 Toolbox (continued) 

Manager 

Color Manager 

Palette Manager 

Font Manager 

TextEdit 

Sera p Manager 

Script Manager 

Description 

Provides color-selection support for Color 
QuickDraw by giving applications a consistent 
method for producing color displays on the 
Macintosh II and other models of the Macintosh 
that offer advanced color capabilities. 

Responsible for monitoring and establishing the 
color environment of the Macintosh II and other 
models of the Macintosh with advanced color 
capabilities. Includes procedures and functions 
to manage shared resources, as well as pro
viding an enormous selection of colors for 
programs that demand more colors than Color 
QuickDraw's default selections can provide. 

Supports the drawing of text by QuickDraw. 
Before QuickDraw draws text, it calls the Font 
Manager, which does the background work 
necessary to make a variety of character fonts 
available in various sizes and styles. In System 
7, the Font Manager supports outline fonts, 
which eliminate jagged edges from displayed 
and printed characters, regardless of their size. 

Provides applications with a means of accessing 
user input via the keyboard. TextEdit displays 
text typed by the user, and automatically 
provides applications with cutting, pasting, and 
copying capabilities via a standard Macintosh 
utility called the Clipboard. Since the introduc
tion of Software System Version 6.0, TextEdit 
has also been capable of handling text styling. 

Supports the use of the Clipboard, a built-in 
utility for cutting, copying, and pasting text or 
graphics within a single program or between 
programs. 

Enables applications to function correctly with 
non-Roman writing systems, or scripts, such as 
Japanese, Chinese, or Arabic, as well as with 
roman-based writing systems such as English. 



..,. The Macintosh Operating System 29 

Table 1-2. The System 6 Toolbox (continued) 

Manager 

Standard File Package 

Package Manager 

List Manager 

Desk Manager 

Toolbox Utilities 

Description 

Displays a standard User Interface dialog for 
locating and specifying a document file and 
handles file I/Oby calling a lower-level 
operating system package, the OS File Manager. 

Supports the use of several special pieces of 
system software called packages. The List 
Manager is one manager that is stored as a 
package. Two packages are extensions to the 
Toolbox Utilities manager. They are the Binary
Decimal Conversion Package, which converts 
integers into decimal strings and vice versa, and 
the International Utilities Package, which can be 
used to make applications independent of 
country-specific information by providing such 
details as the formats for numbers, currency, 
dates, and times. 

Supports the use of lists by applications. Lists 
handled by the List manager can be stored as 
one- or two-dimensional arrays, and can be 
sorted, displayed, and scrolled. 

Supports desk accessories, small programs that 
can be run from within an application. The user 
opens desk accessories by choosing an item 
from the Apple menu. With the introduction of 
System Software Version 7, it has become 
possible to use any application as a desk 
accessory. 

A collection of miscellaneous utilities, including 
managers that handle fixed-point arithmetic, 
string manipulations, and logical operations on 
bits. 

~ The Macintosh Operating System 
The operating system, as mentioned previously, is at the lowest level of 
the Macintosh user interface hierarchy; it performs basic tasks such as 
input and output, memory management, and interrupt handling. 



30 ~ Chapter 1 MPW and the Macintosh 

The User Interface Toolbox is a level above the operating system; it 
was designed to help programmers implement the standard Macintosh 
user interface in their applications. The Toolbox calls the operating 
system to do low-level operations, and you can also call the operating 
system directly. 

The most important operating system managers are shown in Figure 1-8 
and listed in Table 1-3. 

Memory Manager OS Event Manager 

Segment Loader File Manager 

Device Manager Device Drivers 

Sound Manager SCSI Manager 

AppleTalk Manager Slot Manager 

ADB Manager I Vertical Retrace Mgr. 

Time Manager I System Error Handler 

Start Manager Shutdown Manager 

OS Packages 

Figure 1-8. Operating system managers 



~ The Macintosh Operating System 31 

Table 1-3. Operating system managers 

Manager 

Memory Manager 

OS Event Manager 

Segment Loader 

File Manager 

Device Manager 

Description 

Dynamically allocates and releases memory 
used by applications and other parts of the 
operating system. In Macintosh programs, 
memory space is obtained by calls to the 
Memory Manager. In System 7, new capabilities 
have been added to the Memory Manager. They 
include virtual memory, temporary memory, 
and 32-bit addressing. More information about 
the Memory Manager is presented in Chapter 7. 

The Operating System Event Manager, or OS 
Event Manager, reports low-level, hardware
related events, such as mouse clicks and key
strokes. The OS Event Manager is normally 
called by the Toolbox Event Manager. Both 
Event Managers are covered in detail in 
Chapters. 

Loads pieces of an application's code into 
memory to be executed. The Segment Loader 
also serves as a bridge between the Finder and 
an application, letting the application know 
whether it has to open or print a document 
when it starts up. For more information on the 
Segment Loader, see Chapter 7. 

Contains low-level I/O routines that handle 
communications between an application and 
files on block devices such as disk drives. The 
Standard File Package calls the File Manager 
when it needs to perform such tasks as locating, 
loading, and saving files. Applications can also 
call the File Manager. 

Handles communication between applications 
and devices. A device is a piece of external 
equipment, or part of the Macintosh itself, that 
can transfer information into or out of the 
computer. Devices include disk drives, serial 
communications ports, sound and music 
generators (on the Macintosh Plus), video 
drivers (on the Macintosh II and later models), 
and printers. 



32 ~ Chapter l MPW and the Macintosh 

Table 1-3. Operating system managers (continued) 

Manager 

Device Drivers 

Sound Manager 

Description 

Handle the task of making various kinds of 
devices present the same kind of interface to an 
application. Three drivers are built into ROM: 
the Disk Driver, the Sound Driver, and the Serial 
Driver. Several other drivers, including the 
Printer Driver and the Video Driver, are in 
RAM. Device drivers also handle the operations 
of desk accessories. 

Supports sound and music on the Macintosh II 
and later Macintosh models. The Sound 
Manager has been greatly improved in System 7. 

SCSI Manager Supports the Small Computer System Interface 
(SCSI), an interface for hard-disk drives and 
other high-speed peripheral devices. 

AppleTalk Manager Provides an interface to a set of Apple Talk 
drivers that enable programs to send and 
receive information over an AppleTalk network. 

Slot Manager On the Macintosh II and later models, the Slot 
Manager enables programs to communicate 
with expansion cards in NuBus slots. 

ADB Manager Supports the Apple Desktop Bus, a hardware 
device used for connecting low-speed input 
devices, including the mouse and keyboard, to 
the Macintosh. The ADB Manager was not a 
part of the operating system until the 
introduction of the Macintosh II and the 
Macintosh SE. 

Vertical Retrace Manager Handles the scheduling and execution of tasks 
during the vertical retrace interval, the period of 
time during which the Macintosh hardware 
generates a vertical retrace interrupt. A vertical 
retrace interrupt, sometimes referred to as the 
system "heartbeat," takes place 60 times every 
second. For compatibility purposes, the 
heartbeat rate of a small-screen Macintosh is 
emulated by the Macintosh II and other large
screen models. 



~ Unlocking the Toolbox 33 

Table 1-3. Operating system managers (continued) 

Manager 

Time Manager 

System Error Handler 

Start Manager 

Shutdown Manager 

OS Packages 

Description 

Provides a hardware-independent means of 
timing program operations. Greatly enhanced in 
System7. 

Assumes control if a system error occurs. If that 
happens, the dreaded ''bomb" dialog containing 
an error message is displayed, and the System 
Error Handler provides a mechanism for the 
user either to restart the system or attempt to 
resume execution of the application. 

Orchestrates all activities related to system 
testing and startup. 
Provides the user with a mechanism for 
restarting the Macintosh or shutting it off. 
Three OS Packages perform low-level opera
tions: the Disk Initialization Package, which the 
Standard File Package calls to initialize and 
name disks; the Floating-Point Arithmetic 
Package, which contains a random-number 
generator and also supports extended-precision 
arithmetic according to Standard 754 of the 
Institute of Electrical and Electronics Engineers 
(IEEE); and the Transcendental Functions Pack
age, which contains trigonometric, logarithmic, 
exponential, and financial functions. The 
Floating-Point Arithmetic Package and the 
Transcendental Functions Package support the 
Standard Apple Numerics Environment (SANE) . 

.., Unlocking the Toolbox 
As wonderful as they are, the hundreds of routines in the Toolbox and 
the operating system would not do anybody much good if there weren't 
a quick and easy way to get to them from a program. Fortunately, Apple 
has made it just about as easy to call a Toolbox or operating system 
procedure as it is to call any other procedure in a program. 

Toolbox and operating system calls are often lumped together and 
referred to as trap calls, or simply traps. Their name stems from the fact 



34 ~ Chapter 1 MPW and the Macintosh 

that the central processor in Macintosh intercepts calls Toolbox and 
operating system procedures using a feature of the 680XO processor 
known as the 1010 emulator trap. The calls are then made by a set of 
procedures known collectively as the trap dispatch system. 

The trap dispatch system was devised so that programs written for 
the Macintosh could make Toolbox and operating system calls without 
having to jump to the routines' physical memory locations. By elimi
nating the need to access Toolbox calls by their actual memory 
addresses, Apple gave its engineers a way to change the physical 
locations of Toolbox calls in new versions of the Macintosh ROM 
without making old applications obsolete or affecting the way in which 
new applications would have to be written. 

To accomplish this goal, the designers of the Macintosh created a trap 
dispatch table that contained the addresses of all Toolbox and operating 
system routines. This table was stored in low memory. Then a system 
was devised to use the encoded addresses in the trap dispatch table to 
make Toolbox and operating system calls. That way, an application 
could make a Toolbox call by using the trap dispatcher rather than by 
jumping to the routine's actual address. That meant that the addresses of 
Toolbox calls could be moved around in memory by Apple's develop
ment engineers, as long as the information in the trap dispatch table was 
kept up to date. 

As the Macintosh has evolved and has become more and more 
sophisticated, the wisdom of having taken this approach has been 
proven over and over again. Since the unveiling of the original 
Macintosh, addressable RAM has grown from 128K into the one-giga
byte range. The sizes of both the Toolbox and the operating system 
have increased by leaps and bounds, with new calls-and even whole 
new managers-being steadily added in ever-growing numbers. To 
hold the addresses of all these new calls, the trap dispatch table has 
been expanded, and memory addresses of many new traps have been 
added. 

Furthermore, although most Toolbox routines are in ROM, some are 
in RAM. Still others have been "patched," that is, altered to eliminate 
bugs or to be compatible with new models, and many of these patched 
calls reside partly in ROM and partly in RAM! Today, as new Toolbox 
and operating system calls are introduced, they usually make their first 
appearance on a system disk and are not moved into ROM until Apple 
is certain that they are bug-free and are coded as compactly and as 
efficiently as possible. 



~ Unlocking the Toolbox 35 

~ How the Trap Dispatcher Works 

On the Macintosh, all ROM calls are written as single 680XO instruc
tions. Because of the way the 680XO processor is designed, no valid 
instructions begin with the hexadecimal digit A. Therefore the 
designers of the Macintosh decided to use the instructions $AOOO 
through $AFFF to emulate actual 680XO instructions: that is, to use 
them to provide access to Toolbox and operating system routines. 

When the microprocessor sees an instruction that begins with the 
hexadecimal digit A, it immediately recognizes the instruction as 
invalid, or as an unimplemented instruction. So it creates a 68000 
exception and jumps to a routine whose memory address is stored at a 
certain location-specifically, address $28. This address, called an 
exception vector, turns control over to the trap dispatcher. 

The trap dispatcher, by looking at the portion of the word that follows 
the hex number A, determines the address of the routine to be called by 
getting it from the trap dispatch table. Once it has looked up the 
address, it uses the machine-language instruction JSR (jump to 
subroutine) to jump to the appropriate Toolbox call. 

~ Calling the Toolbox from MPW 

To make a Toolbox or operating system call from a program written 
using MPW, you do not really have to be concerned about how the trap 
dispatch system works. That's because the MPW C compiler, the MPW 
Pascal compiler, and the assembler all come with sets of interface files 
that can be accessed from programs to make Toolbox and operating 
system calls. The interface files for the C compiler are in a folder called 
Clncludes. The interface files for the MPW assembler are in a file called 
Alncludes. And those for the Pascal compiler are in a folder called 
Plnterfaces. 

The source-code fragments in the following examples were put 
together to give you a general idea how trap calls are handled in MPW 
C, MPW Pascal, and MPW assembly language. In later chapters, we'll 
use similar procedures to write, compile, and link complete programs. 



36 "" Chapter 1 MPW and the Macintosh 

By the Way ~I Routines, Procedures, and Functions. In Pascal, there is a sharp 
distinction between a function and a procedure. If a routine returns 
a value, it's a function; if it doesn't, it's a procedure. 

In C, no distinction is made between a function and a procedure. 
Whether a routine returns a value or not, it's still a function. 

Since this book makes references to both Pascal and C, the terms 
routine, procedure, and function are used somewhat 
interchangeably. But I have tried to. make sure that the. differences 
in their meanings are made clear from their context. 

"" Calling Traps in C 

Inside the C compiler's Cincludes folder, there is a large set of header 
files, one for each manager in the Toolbox and the operating system. As 
you would expect, each header file ends with C's standard ".h" 
extension. It's easy to figure out which header file covers which 
manager because the name of each file corresponds (though not always 
exactly) to the name of the manager that it handles. The header files in 
the Clncludes folder are·listed in Table 1-4. 

Table 1-4. MPW C header files 

ADSP.h 
Aliases.h 
AppleEvents.h 
AppleTalk.h 
Assert.h 
Balloons.h 
CommResources.h 
complex.h 
Connections.h 
ConnectionTools.h 
Controls.h 
CRMSerialDevices.h 
CTBUtilities.h 
CType.h 
CursorCtl.h 
DatabaseAccess.h 

DDEV.h 
Desk.h 
DeskBus.h 
Devices.h 
Dialogs.h 
DisAsmLookup.h 
Disklnit.h 
Disks.h 
Editions.h 
EPPC.h 
ErrMgr.h 
errno.h 
Errors.h 
Events.h 
FCntl.h 
Files.h 



.., Unlocking the Toolbox 37 

Table 1-4. MPW C header files (continued) 

FileTransfers.h QDOffscreen.h 
FileTransferTools.h Quickdraw.h 
FixMath.h Resources.h 
Float.h Retrace.h 
Folders.h ROMDefs.h 
Fonts.h SANE.h 
fstream.h Scrap.h 
generic.h Script.h 
GestaltEqu.h SCSl.h 
Graf3D.h SegLoad.h 
HyperXCmd.h Serial.h 
IOCtl.h SetJmp.h 
iomanip.h ShutDown.h 
iostream.h Signal.h 
Limits.h Slots.h 
Lists.h Sound.h 
Locale.h StandardFile.h 
Math.h Start.h 
Memory.h StdArg.h 
Menus.h StdDef.h 
MIDl.h StdIO.h 
new.h stdiostream.h 
Notification.h StdLib.h 
OldStream.h stream.h 
OSEvents.h String.h 
ostream.h Strings.h 
OSUtils.h strstream.h 
Packages.h SysEqu.h 
Palette.h Terminals.h 
Palettes.h TerminalTools.h 
Perf.h TextEdit.h 
Picker.h Time.h 
pipestream.h Timer.h 
PLStringFuncs.h ToolUtils.h 
Power.h Traps.h 
PPCToolbox.h Types.h 
Printing.h Values.h 
PrintTraps.h Video.h 
Processes.h Windows.h 



38 .,. Chapter 1 MPW and the Macintosh 

One of the header files in the Clncludes folder is called Windows.h. As 
its name implies, the Windows.h file contains header definitions that 
are used to make calls to the Window Manager. 

To use the Windows.h file in a C program, you must include the 
name of the file at the beginning of the program with a line like this: 

#include <Windows.h> 

Then you must follow this calling convention: 

pascal void CloseWindow(WindowPtr theWindow) 

In this example, the WindowPtr argument that is passed to the 
CloseWindow function is a pointer to a data structure that is declared in 
the Windows.h header file as WindowRecord. In the Windows.h header 
file, a WindowRecord structure is declared in this way: 

struct WindowRecord { 

} ; 

GrafPort port; 
short windowKind; 
Boolean visible; 
Boolean hilited; 
Boolean goAwayFlag; 
Boolean spareFlag; 
RgnHandle strucRgn; 
RgnHandle contRgn; 
RgnHandle updateRgn; 
Handle windowDefProc; 
Handle dataHandle; 
StringHandle titleHandle; 
short titleWidth; 
ControlHandle controlList; 
struct WindowRecord *nextWindow; 
PicHandle windowPic; 
long refCon; 

typedef struct WindowRecord WindowRecord; 
typedef WindowRecord *WindowPeek; 

The first field in a WindowRecord is a GrafPort, a data structure used 
by QuickDraw to draw on the screen. The other fields in the 
WindowRecord control various characteristics of windows. 



.._ Unlocking the Toolbox 39 

In the Windows.h header file, the CloseWindow function itself is 
defined as being of type pascal because all calls in the Macintosh 
Toolbox and operating system use what are known as Pascal-compatible 
calling conventions; that is, they pass their parameters to the Toolbox 
and the operating system as if they were written in Pascal rather than in 
C. Specifically, the function-calling conventions that MPW C and Pascal 
use differ in the order of parameters on the stack, the type of coercions 
that are applied to the parameters, the method of storing the returned 
result, and the number of microprocessor scratch registers used. Further 
information about how Pascal and C calling conventions differ can be 
found in the Macintosh Programmer's Workshop C 3.0 Reference and in the 
Macintosh Programmer's Workshop Pascal 3.0 Reference. 

Calls to the MPW Toolbox follow Pascal calling conventions because 
the Toolbox was originally designed to work with Pascal compilers. But 
that does not mean that you must use Pascal-style calling conventions 
for functions that you write in MPW C; in functions that you write for 
your own programs, you can use the calling conventions of standard C. 

Furthermore, you'll probably never even notice that Toolbox and 
operating system calls use Pascal-style calling conventions. The calls are 
all defined in the MPW C compiler's header files, so you won't have to 
worry about how they are defined when you write C programs. All you 
have to do is call any function you need, in exactly the same way you 
would call any other function. To make a CloseWindow call in a C 
program, for example, all you have to do is type 

CloseWindow(window); 

and the MPW C compiler ensures that the call is passed to the Toolbox 
correctly. 

Starting Up Tools in C 

When you have included all of the header files you need in an MPW C 
program, you must make sure that the Toolbox and operating system 
managers that make the calls are initialized. Some managers, such as the 
Memory Manager and the Resource Manager, are initialized auto
matically at boot time and do not have to be specifically initialized in 
application programs. However, other managers do have to be initialized. 

Since some Toolbox and operating system managers call other man
agers to perform certain operations, the order in which you initialize the 



40 • Chapter 1 MPW and the Macintosh 

various managers is significant. For example, before you can use the 
ToolBox Event Manager, you must initialize the Window Manager if you 
use window operations in your program. Before you initialize the the 
Window Manager, you must initialize both QuickDraw and the Font 
Manager. You must also initialize QuickDraw before you can initialize 
many other parts of the Toolbox. 

You could sit down and work out a dependency list that could tell 
you at a glance the exact order in which all Macintosh managers must 
be initialized. But that is not really necessary. Since some managers are 
initialized automatically, and since most Macintosh programs call most 
of the standard managers-QuickDraw, the Window Manager, the 
Control Manager, the Dialog Manager, and so on-the easiest way to 
initialize the managers you are most likely to need is to find a program 
that contains a well-behaved initialization segment-and copy it! 

There's nothing wrong with copying; in fact, it's encouraged. Inside 
your MPW folder, there's a folder called Examples, and in that folder 
there are sample programs written in C, Pascal, and assembly language, 
as well as HyperCard externals and sample code to help you use 
Projector. All of these examples were included in the MPW package for 
you to use-by studying them or by copying parts of them into your 
own programs. For example, the following piece of code is from a 
program called TESample.c that is in the MPW Examples folder: 

InitGraf((Ptr) &qd.thePort); 
InitFonts (); 
InitWindows (); 
InitMenus(); 
TEinit (); 
InitDialogs(nil); 

In this code fragment are startup calls for QuickDraw, the Font 
Manager, the Window Manager, the Menu Manager, TextEdit, and the 
Dialog Manager-and they are all started up in the right order. 

Compiling and Linking a C Program 

When you have written a program in MPW C, you must compile it 
using the MPW C compiler, and then link it using a tool called the 
MPWLinker. 

The Linker is usually invoked with a special kind of MPW script 
called a makefile. A makefile is an MPW text file, or script, that contains 
instructions for building, or converting, a source-code program into an 



~ Unlocking the Toolbox 41 

executable object-code program. A makefile describes the dependencies 
between the components of the program, along with the shell com
mands needed to build each component. By executing the commands 
created by the makefile, you can build the program. 

You can create a makefile by pulling down and selecting the Create 
Build Commands item under the Build menu on the MPW menu bar, or 
you can write your own makefile. Rules for writing makefiles are 
explained in Chapter 8. Once you have created a makefile, you can run 
it by executing the MPW command Make, which is also described in 
Chapter 8. 

One of the functions of a makefile is to link the object code generated 
by an MPW compiler (or the MPW assembler) to a set of object-code 
libraries that are needed to make Toolbox and operating system calls. 
These libraries reside in an MPW folder called Libraries. 

To link the object code of a compiled C program to the libraries that 
are needed to make Toolbox and operating system calls, you must 
include the appropriate linking commands in your makefile. For 
example, the following block of code includes links to the C libraries 
Runtime, StdLib, and Clnterface, as well as to the MPW libraries 
Interface.a and ToolLibs.o. 

Link {SymOptions} -w -c 'MPS ' -t MPST MyProg.c.o 
FStubs.c.o o 

-sn STDIO=Main o 
-sn INTENV=Main d 
-sn %A5Init=Main o 
"{Libraries}"Stubs.o o 
"{CLibraries}"Runtime.o o 
"{CLibraries}"StdCLib.o o 
"{CLibraries}"Cinterface.o o 
"{Libraries}"Interface.o o 
"{Libraries}"ToolLibs.o o 
-o MyProg 

..,. Calling Traps in Pascal 

The MPW Pascal compiler uses a set of interface files stored in a folder 
called Plnterfaces, which is in the MPW Interfaces folder. The Plnterfaces 
folder, like the Clncludes folder, contains an interface file for each 
Toolbox and operating system manager. However, to reduce the number 
of interface files that programs must access and to reduce memory 
requirements at compile time, a set of small files that provide indirect 



42 ~ Chapter 1 MPW and the Macintosh 

access to the most commonly used Toolbox interface files have been 
grouped together in a single file called Toollntf. Similarly, a set of 
interface files that access commonly used operating system calls have 
been grouped together in an interface file called OSintf. 

Other interface files used in Pascal programs are Types, which 
provides the definitions of basic Pascal data types; QuickDraw, which 
provides an interface to QuickDraw; Traps, which contains the trap 
numbers of Toolbox and operating system traps; and Packages, which 
provides an interface to the Package Manager. Table 1-5 lists all the 
interface files that MPW Pascal uses. 

Table 1-5. MPW Pascal interface files 

ADSP.p 
Aliases.p 
AppleEvents. p 
AppleTalk.p 
Balloons.p 
CommResources.p 
Connections. p 
Connection Too ls. p 
Controls.p 
CRMSerialDevices. p 
CTBUtilities. p 
CursorCtl.p 
DatabaseAccess.p 
DDEV.p 
Desk.p 
DeskBus.p 
Devices.p 
Dialogs.p 
DisAsmLookup.p 
Disklnit.p 
Disks.p 
Editions.p 
EPPC.p 
ErrMgr.p 
Errors.p 
Events.p 
Files.p 
FileTransfers.p 

FileTransferTools. p 
FixMath.p 
Folders.p 
Fonts.p 
GestaltEqu.p 
Graf3D.p 
HyperXCmd.p 
IntEnv.p 
Lists.p 
MacPrint.p 
Memory.p 
MemTypes.p 
Menus.p 
MIDI.p 
Notification.p 
Objlntf.p 
OSEvents.p 
OSintf.p 
OSUtils.p 
Packages.p 
Packlntf.p 
PaletteMgr. p 
Palettes.p 
PasLiblntf.p 
Perf.p 
Picker.p 
Pickerlntf.p 
Power.p 



~ Unlocking the Toolbox 43 

Table 1-5. MPW Pascal interface files (continued) 

PPCToolBox.p 
Printing.p 
PrintTraps. p 
Processes. p 
QDOffscreen. p 
Quickdraw.p 
Resources.p 
Retrace.p 
ROMDefs.p 
SANE.p 
Scrap.p 
Script.p 
SCSl.p 
SCSIIntf.p 
SegLoad.p 
Serial.p 
ShutDown.p 
Signal.p 

Slots.p 
Sound.p 
StandardFile. p 
Start.p 
Strings.p 
SysEqu.p 
Terminals.p 
TerminalTools.p 
TextEdit.p 
Timer.p 
Toollntf.p 
ToolUtils.p 
Traps.p 
Types.p 
Video.p 
Videolntf. p 
Windows.p 

In MPW Pascal, as in other versions of Pascal, interface libraries are 
accessed with a USES function. Because the MPW Pascal compiler uses 
streamlined interface files such as Toollntf and OSintf, the USES 
statement in an MPW Pascal program is usually much shorter than the 
series of #include statements that is required by a program written in 
MPWC. 

In a simple Pascal application-one that makes calls to the Window 
Manager, the Menu Manager, the Dialog Manager, QuickDraw, and 
other commonly used managers-the USES statement that accesses 
interface files could be as simple as this: 

USES 
Types, QuickDraw, OSintf, Toolintf, Packages, Traps; 

Calling CloseWindow in Pascal 

In Inside Macintosh, this is the Pascal definition for the Window 
Manager call CloseWindow: 

PROCEDURE CloseWindow(theWindow:WindowPtr); 



44 IJJi> Chapter 1 MPW and the Macintosh 

Again, the WindowPtr argument in the call is a pointer to a 
WindowRecord, which is defined this way in MPW Pascal: 

WindowRecord = RECORD 
port: GrafPort; 
windowKind: INTEGER; 
visible: BOOLEAN; 
hilited: BOOLEAN; 
goAwayFlag: BOOLEAN; 
spareFlag: BOOLEAN; 
strucRgn: RgnHandle; 
contRgn: RgnHandle; 
updateRgn: RgnHandle; 
windowDefProc: Handle; 
dataHandle: Handle; 
titleHandle: StringHandle; 
titleWidth: INTEGER; 
ControlList: ControlHandle; 
nextWindow: WindowPeek; 
windowPic: PicHandle; 
refCon: Longint; 

END; 

This is how the Close Window call might look in a Pascal program: 

CloseWindow(theWindow); 

Starting up Tools In Pascal 

In Pascal, as in C, most of the commonly used managers must be 
started up before they can be used in a program. Here is how managers 
are started in the MPW sample program TESample.p, which is written 
in Pascal: 

InitGraf(@thePort); 
InitFonts; 
InitWindows; 
InitMenus; 
TEinit; 
InitDialogs(NIL); 



~ Assembly Language Programming 45 

Compiling and Linking a Pascal Program 

When you have finished writing a program in MPW Pascal, you must 
compile it and link it, just as you would compile and link a program 
written in MPW C. Again, you can create a makefile that can help you 
build your program by pulling down and selecting the Create 
BuildCommands item under the Build menu on the MPW menu bar, or 
you can write your own makefile. Rules for writing makefiles are 
covered in Chapter 8. 

~ Assembly Language Programming 
In the prehistoric era of the personal computer era-that is, until about 
1985 or so-most serious software for personal computers was written 
in assembly language. Today, times are changing; more and more 
applications for personal computers are being written in higher level 
languages such as C, Pascal, and C++. 

If you want to write professional-quality software, however, it is still 
very useful to have some understanding of assembly language. When 
you compile and link a Pascal or C program, what you get is a program 
written in object code, or machine language. Also, when you debug an 
object-code program with a debugger such as MacsBug, the debugger 
disassembles the code into assembly language. 

So, if you do not know anything about assembly language, there is 
no way that you can use MacsBug or any other object-code debugger. 
However, you don't have to know assembly language to use the source
level debugger SADE or other source-level debuggers that are available 
for the Macintosh. 

Another good reason for learning as much as you can about assembly 
language is that there are some things you can do in assembly that you 
simply cannot do in a higher level language such as Pascal or C. For 
example, when you want to access a specific memory address or a 
specific microprocessor register, sometimes you may have to use 
assembly language to do it. 

A knowledge of assembly language can also come in handy when 
you want to improve the way in which a Toolbox routine handles an 
operation. For example, the sample MPW program called TESample.c 
has a code segment written in assembly language that is linked to the 
main program by the MPW Linker after the main C program has been 
compiled. This assembly language segment, called a "glue" segment 
because of the way it is pasted into the program by the linker, is called 
TESampleGlue.a. 



46 ..,, Chapter 1 MPW and the Macintosh 

When the TESample.c program is run, TESampleGlue.a is called by 
the TextEdit routine TEClick when the mouse is clicked in a TextEdit 
control. TESampleGlue.a responds by calling a routine that implements 
automatic scrolling for a TextEdit field. 

There are many other reasons why it is useful to have at least a basic 
understanding of assembly language. The most important reason is that 
you have to know something about assembly language in order to have 
a good understanding of Toolbox operations, the operating system, and 
other important components of a Macintosh computer system . 

..,, Calling Traps in Assembly Language 

Inside the MPW Interfaces folder, there is a second folder called 
Aincludes. This Aincludes folder contains an interface file called 
Traps.a. The Traps.a file is a macro file that includes the A-line addresses 
of all the commonly used traps in the Macintosh Toolbox and operating 
system. For example, the address of the CloseWindow trap is listed as 
$A92D. All A-trap addresses are listed in Inside Macintosh. 

The Aincludes folder also includes a number of equates files that are 
needed to assemble MPW assembly language programs. For example, 
the QuickEqu.a file contains QuickDraw equates, the ToolEqu.a file 
contains Toolbox equates, and the SysEqu.a file contains operating 
system equates. 

Some Macintosh library routines are in library object files rather than 
in ROM. In Inside Macintosh, these routines are flagged with the notation 
"Not in ROM." To call the routines that these libraries contain, you must 
link your source code with the MPW file Interface.o. Then you must call 
the routines you need using assembly language JSR instructions. 

To call a trap in assembly language, you must include the Traps.a file 
in your program with an INCLUDE statement. Other INCLUDE 
statements must usually be added so that the MPW assembler can find 
other equate files. In a typical assembly language program, these are 
some of the INCLUDE statements that would probably be included: 

INCLUDE 'Traps.a' 
INCLUDE 'ToolEqu.a' 
INCLUDE 'PackMacs.a' 
INCLUDE 'QuickEqu.a' 
INCLUDE 'SysEqu.a' 



~ Assembly Language Programming 47 

When you have placed the necessary INCLUDE statements in an 
assembly language program, you can call any Toolbox or operating 
system trap using the appropriate trap macro in the opcode field of an 
assembly language instruction. 

The names of all trap macros begin with the underscore character ( _ ), 
followed by the name of the corresponding routine. For example, the 
macro for the Window Manager routine CloseWindow is_ CloseWindow. 
So, to call CloseWindow, you would use an instruction with the macro 
name _CloseWindow in the opcode field. 

Stack-Based Routines and Register-Based Routines 

The calling conventions for Toolbox and operating system calls fall into 
two categories: stack-based routines and register-based routines. Stack
based routines pass their parameters via the stack, while register-based 
routines receive their parameters and return their results in 680XO 
registers. As a rule, Toolbox routines are stack-based and operating 
system routines are register-based, but this is not always the case. In the 
entries listed for individual calls in Inside Macintosh, register-based 
calling conventions are supplied for all routines that use them; if none is 
shown, the routine is stack-based. This information is important because 
you have to set up parameters in the way that a routine expects before 
you can call it from any language. 

Trap macros for Toolbox calls take no arguments, but those for 
operating system calls may have as many as three optional arguments. 
The first argument, if there is one, is used to load a register with a 
parameter value for the routine being called. The other arguments 
control the settings of the various flag bits in the trap word. The form of 
these arguments varies with the meanings of the flag bits and is 
described in Inside Macintosh, in the chapters on the relevant parts of the 
operating system. 

Setting Up a Cali's Parameters 

To call a stack-based routine from assembly language, you must set up 
the call's parameters in the same way that the MPW Pascal compiler 
would if you were writing your program in Pascal. The numbers and 
types of parameters and the type of result returned by a function 
depend on the routine being called. 



48 IJJJ- Chapter 1 MPW and the Macintosh 

BytheWay ... 1 

These are the steps you must use to make a trap call from assembly 
language: 

1. If you are calling a function, reserve space on the stack for the 
result. 

2. Push the routine's parameters onto the stack in the order in which 
they are listed in the routine's Pascal definition in Inside Macintosh. 

3. Call the trap by executing the appropriate trap macro. 

Getting Technical. When you ca:ll a trap, a return address is 
pushed onto the stack, along With an extra word of processor status 
information. Before the routi,µe]j~L· the gap dispatcher removes 
this extra status wo~. The :rot.J.~ejtgel(fs ;responsible for removing 
its own parameters fromtl:i~:~t~c'l( ]jefore.:returning. If it is a 
function( it wm.iea:ve·ifs res,. . ·.~P,,.t9p.of.tJ\e stack in the space 
reserved. for lt; if itJs •• a.~fQ '· '•FJJ.Will restpre .the stack to the 
same state it W<ts h:l.be~gr~;~~;,. · ···· ·1'( ::. •. . . 

< ... ;;·:~g;;: .. '· <·. 

Calling CloseWindow in Assembly Language 

For example, the CloseWindow function, as you have seen, is defined 
this way in Pascal: 

PROCEDURE CloseWindow(theWindow:WindowPtr); 

So here is how you would call CloseWindow from assembly language: 

SUBQ.L 
MOVE.L 

#4, SP 
theWindow,-(SP) 

CloseWindow 

make room for result 
push window pointer 
make the trap call 

Starting up Managers in Assembly Language 

It should come as no surprise to learn that in assembly language, as 
well as in C and Pascal, most managers must be started up before they 
can be used in a program. Here is a fragment of Sample.a, an assembly 
language program in the MPW Examples folder, in which some 
managers are initialized: 



InitGraf 
InitFonts 
InitWindows 
InitMenus 
TEI nit 

CLR.L -(SP) 
InitDialogs 

.,.. Assembly Language Programming 49 

What Happens When You Call a Trap 

When you issue an A-trap call, a circuit in the 680XO processor called 
the 1010 trap emulator recognizes it as an unimplemented instruction 
(an instruction that begins with $A, or binary 1010) and generates a trap 
signal to the trap dispatcher. The trap dispatcher examines the bit 
pattern of the instruction to determine what operation it stands for, 
looks up the address of the corresponding routine in the trap dispatch 
table, and jumps to the routine. 

The offset in a trap dispatch table entry is expressed in words instead 
of bytes, taking advantage of the fact that instructions must always fall 
on word boundaries, or even-byte addresses. These are the steps that 
the trap dispatcher goes through to find the absolute address of the 
routine: 

1. It checks the high-order bit of the trap dispatch table entry to find 
out which base address to use. 

2. It then doubles the offset to convert it from words to bytes (by left 
shifting one bit). 

3. Finally, it adds the result to the designated base address. 

As previously noted, a trap word always contains $A, or binary 1010, 
in bits 12 through 15. Bit 11 determines how the remainder of the word 
will be interpreted; usually it is 0 for operating system calls and 1 for 
Toolbox calls, although there are some exceptions. 

Bits 0 through 9 of a trap word form the trap number-an index into 
the trap dispatch table-which identifies the routine being called. 



50 IJJ. Chapter 1 MPW and the Macintosh 

By the Way ~I A Bit of History. Bit 10 of a trap word, which some out-of-date 
books refer to as the "auto-pop bit," was originally reserved for use 
by language systems that could not generate inline trap calls, but .· 
instead did a JSR to the trap word, followed immediately by C\ ·· 
return to the calling routine. The return address for the JSR waf; · 
pushed onto the stack, followed by the return address; If the auto:. · 
pop bit was set, the trap dispatcher popped the trap's rehrrn 
address from the stack and returned directly to the calling.· 
program. The auto-pop bit is not used in modern development 
systems. · 

For operating system calls, only the low-order eight bits of the trap 
number (bits 0 through 7) are used. Thus, of the 512 entries in the trap 
dispatch table, only the first 256 can be used for operating system traps. 
Bits 8, 9, and 10 of an OS trap have specialized meanings that are 
covered in the assembly language chapter of Inside Macintosh. 

IJJ> Making Toolbox Calls in C++ 

Using the Toolbox in a C++ program is very much like using it in a 
program written in MPW C. First you must include the interface files 
for the managers you will be using, like this: 

#include <Types.h> 
#include <QuickDraw.h> 
#include <Fonts.h> 
#include <Events .h> 
#include <Controls.h> 
#include <Windows.h> 
#include <Menus.h> 
#include <TextEdit.h> 
#include <Dialogs.h> 
#include <Desk.h> 
#include <Scrap.h> 
#include <ToolUtils.h> 
#include <Memory.h> 
#include <SegLoad.h> 
#include <Files.h> 
#include <OSUtils.h> 
#include <Traps.h> 



~ Conclusion 51 

Next you must go through the standard C procedure for initializing 
Toolbox managers, which might look like this: 

InitGraf((Ptr) &qd.thePort); 
InitFonts (); 
InitWindows (); 
InitMenus(); 
TEinit (); 
InitDialogs((ResumeProcPtr) nil); 

Then you can make all the calls you want to the Toolbox managers you 
have initialized and to those that initialize themselves at startup time. 

11> Making Toolbox Calls in MacApp 

To use Toolbox and operating system managers in a MacApp program, 
you must include the necessary interface files in the program, just as you 
would in a program written in Pascal (or, if you are using MacApp with 
C++, a program written in C). Once you have included all the interface 
files you need, you can initialize the Toolbox managers that are used in 
your program by using the MacApp call InitToolbox, in this fashion: 

InitToolBox; 

That is all you have to do to get the Toolbox up and running in a 
MacApp program. 

~ Conclusion 
This chapter focused on the features of the Macintosh that are most 
important to the Macintosh programmer: the User Interface, the 
Toolbox, and the operating system. It also provided an introductory 
explanation of how tools are called in MPW C, MPW Pascal, and MPW 
assembly language. More details on the Toolbox and the operating 
system and on writing Macintosh applications using MPW are 
presented in Chapters 5 through 8. 



2 Commands and Scripts 

MPW is not just an assembler or a compiler; it is a complete software 
development system, with more than 120 built-in commands that you 
can use to write, compile, link, and execute programs. If 120 commands 
are not enough for you, you can easily increase that number by writing 
commands of your own. You can customize the MPW environment in 
other ways, too. You can add items to the MPW menu, and you can 
write your own scripts, tools, and dialogs to carry out customized 
operations. 

This chapter introduces some of the most important features of MPW 
and describes some of MPW's most important commands. It also 
tells-with the help of some hands-on programming examples-how to 
execute an MPW command, how to create a command of your own, 
and how to write an MPW script. 

Other subjects covered in this chapter include: 

• how to create aliases, or user-defined synonyms for command 
names 

• how to use variables in scripts 
• how to customize MPW operations by modifying the Startup and 

UserStartup scripts 
• how to use the MPW online Help utility 
• how to use file management commands 

53 



54 ..,,. Chapter 2 Commands and Scripts 

..,_ The MPW Shell 
MPW is built around a large application called the MPW shell. The 
shell includes both a text editor and a command interpreter. Various 
kinds of tools and external applications, including MPW's compilers 
and resource utilities, can be launched from within the shell. 

Once you have your MPW system installed, you can launch the 
MPW shell by simply opening the MPW folder on your hard disk and 
double-clicking on the MPW application icon. You can also start MPW 
by double-clicking on any MPW document or tool icon . 

..,_ The MPW Worksheet Window 
When MPW starts loading, a document called the MPW Worksheet 
window appears on your screen, as shown in Figure 2-1. MPW runs in a 
multi-window environment, so you can open other windows while the 
Worksheet window is open. In fact, you can display as many as 20 
windows, probably more than you'll ever need to edit text and write 
programs. 

s File Edit Find Mark Wind ow Project Directory Build 

Shiua:MPW 3.2:Worksheet 
MPIV Shell 

# Macintosh Programmer's Workshop 3 . 2 
# 

# Copyright Apple Computer, Inc . 1985- 1990 
# Al I rights reserved. 

Help Projector 
Projector 

Projector is a collection of bui It-in MPW commands and windows that 
help programmers (both individuals and teams ) control and account for 
changes to al I the files ( documentat ion, source, applications etc .) 
associated with a software proj ect . 

Here is a brief summary of the commands <the Checkln, CheckOut , and 
NewProject commands a lso have windows that can be opened using the 
«-w~ option to the respective command): 

Help Check In # check a fi le into a project 
Help Checkout # check a fi le out from a project 
He lp CheckOutDir #speci f y the directory where checked out fi les wi I I 
Help DeleteNames # de lete user-de f ined symbo l ic names 
Help DeleteRev isions # de lete previous revisions of fi les in a project 
He lp ModifyReadOnly #enab les a read- on ly Projector file to be edited 
Hel MountPro ' ect # mount ro·ects 

Figure 2-1. Worksheet window 

:::j:: 
:::::: 

mm 
:::::: 

::: 

g:~lj 
::n11 

::: 
::1 
~=: 

Hl1l\ 

p I 
11! 
ill 

i:i::: 
····:: 
::;::: 



~ The MPW Worksheet Window 55 

At first glance, the MPW Worksheet window looks much like any 
other document window. But a closer inspection reveals some subtle 
but important differences. 

~ The Status Panel 

One distinctive feature of the Worksheet window is a status panel in its 
upper left-hand corner, just below the title bar. (In earlier versions of 
MPW, the status panel was in the Worksheet window's lower left-hand 
corner, next to a slightly shortened horizontal scroll bar.) 

When MPW is running a script (a series of commands), the shell uses 
the Worksheet window's status panel to display each MPW command 
as it is being executed. By watching the display panel while a script is 
running, you can monitor the shell's performance as it carries out each 
command. When no command is being executed, the words "MPW 
Shell" appear in the status panel. 

~ The Split-Window Feature 

With the introduction of MPW 3.2, a split-window capability was added 
to the MPW Editor. With this feature, you can divide the Worksheet 
window (or any other MPW window) into scrollable panes, which you 
can use to view many different portions of a document simultaneously. 

Take a close look at the top of the Worksheet's vertical scroll bar, and 
you'll see a small rectangle. There is a similar rectangle to the left of the 
window's horizontal scroll bar. These rectangles are called split bars. 

If you press your mouse button inside the vertical split bar and drag 
the bar downward, the window splits into two horizontal panes, as 
shown in Figure 2-2. Both panes can now be scrolled independently, so 
you can use them to view two portions of the document in the window 
at the same time. 

Now place your mouse button inside the horizontal split bar and 
drag it to the right. Another pane then opens, as shown in Figure 2-3. 
All three panes are independently scrollable, so you can now view three 
sections of the document in the window simultaneously. 

You can open as many window panes as you like in this fashion, up 
to a maximum of 20. That's a lot of window panes, but if you have a 
big-screen Macintosh, you may one day need that many; who knows? 



56 Chapter 2 Commands and Scripts 

File Edit 

l Ml'WShell 

Find Mark Window Project Directory 

:MPW 3.2:Worksheet 

# Macintosh Programmer 's Workshop 3 .2 
# 

# Copyright Apple Computer, Inc . 1985-1990 
# Al I rights reserved. 

Help Projector 
Projector 

Build 

Projector is a collection of bui It-in MPW commands and windows that 
help programmers (both individuals and teams) control and account for 
changes to al I the files <documentation, source , applications etc.) 
associated with a software project . 

# Macintosh Programmer 's Workshop 3.2 Alpha 
# 

# Copyright Apple Computer, Inc . 1985-199Q 
# Al I rights reserved. 

Help Projector 
Projector 

Projector is a collection of bui It -i n MPW commands and windows t hat 
help programmers (both indi viduals and teams) control and account for 

Figure 2-2. Horizontal split window 

File Edit 

MPW Shell 

Find Mark Window Project Directory 

Shiua:MPW 3.2:Worksheet 

# Macintosh Programmer's Workshop 3.2 
# 

# Copyright Apple Computer, Inc . 1985-1990 
# Al I rights reserved. 

Help Projector 
Projector 

Build 

Projector is a collection of bui It-in MPW commands and windows that 
help programmers (bo t h indi vi duals and teams) control and account for 
changes to al I the files (documenta tion, source, applications etc.) 
associated with a software project . 

Help 

iii\\\ 

# As you use these commands , add your 
# frequently used commands. 

He I p summar i es are ava i I ab I e for ;;rn: 
A I i as I name I word . J l 
Catenate f i I e ... 
CI ose window ... 
Count file... # 

Cut /RegExp/ # 

Do te option 

Figure 2-3. Window split three ways 

To see the He Ip information , ent iili!i 
"He I p Commands" produces a comp I , .... 
descr ipti ons of Expressions , Pat 
Shortcuts, Variables and Pr oject 



... The MPW Worksheet Window 57 

llll- A Window That's Always Open 

If you look at the Worksheet window very closely, you may notice that 
it has no Close box. That's because the Worksheet window is always 
present while MPW is running. Pull down the items under the MPW 
File menu, and you will see that you cannot close the Worksheet win
dow by using any of them, either; the Close item is dimmed and 
disabled. In short, there is no way that you can get rid of the Worksheet 
window while MPW is running. You can place another window over it, 
but you cannot make it go away; it must always be there, because it is 
the command center for all MPW operations. 

llll- The Worksheet Window's Title Bar 

Another difference between the MPW Worksheet window and an 
ordinary document window is that the Worksheet window's full path
name is always displayed in its title bar. Since programmers often need 
to manipulate files and directories while using MPW, the full pathname 
of the Worksheet window can be a useful piece of information to have 
handy. 

llll- The TileWindows and StackWindows Commands 

When more than one window is open, there are two MPW commands
TileWindows and StackWindows-that can rearrange the windows on 
your screen. TileWindows reduces the sizes of all open windows and 
arranges them in a tiled pattern, so that you can see at least some of the 
contents of all of the windows on the screen. 

The StackWindows command displays the active (topmost) window 
almost fullsize, and places all other open windows behind it in a stacked 
arrangement, so that you can see all their title bars. 

Although the TileWindows and StackWindows commands can be 
issued from command lines, you can execute them more easily by 
selecting the Tile Windows and Stack Windows items from MPW's 
pull-down Window menu. The StackWindows and TileWindows com
mands are illustrated and described in more detail in Chapter 3, 
"Menus and Dialogs." 

llll- The Browser Window 

Another feature introduced in MPW 3.2 is the Browser window, shown 
in Figure 2-4. 



58 ~ Chapter 2 Commands and Scripts 

MPW.Errors 
MPW.Help 
MPW.Pipe 
Quit 
Resume 
Startup 
Suspend 
UserStart~ 

Browser 

( Shiua:MPW 3.2: ) 
IQ] Commando 
t=' Examp I es 

Alias 
Catenate 
Close 
Count 
Cut 
Date 
Delete 
Duplicate 
Echo 
Eject 
Equal 

I:;:;- Eva I ua te 
iy: Execute 

~~~~~~~~~~-

® Open as Rctiue
0 Open as Target Open after find

<Use the tab key to select text entry field)

Figure 2-4. Browser window

You can display the Browser window by typing and entering the
MPWcommand

Browser

It contains a list of files, a button to change directories, and a list of any
markers that have been placed in the selected file (markers are
described in Chapter 3). When you select a file shown in the Browser
window, MPW opens it. When you select a marker, the shell opens the
selected file, and finds and displays the marked selection.

The Browser window also includes a Text Edit field into which you
can type a string that you want to find; a check box that determines
whether the window that contains the string will be opened; and radio
buttons that can be selected to determine whether a window opened by
the Browser is to be the active window or the target window (active
and target windows are described later in this chapter).

~ The MPW Worksheet Window 59

Note ~ Clean Your Windows. The Worksheet window has one important
feature that is not visible: When you exit MPW, any text that is in
the Worksheet window is 9'aved automatically, and MPW never
9l~a:rs anything from tb_·e Worksheet window 7u:iJess. you
spedfically ask it to. That means, of course, that the amount of text
that MPW saves every tirneit closes the Worksheet window can
grow quite large; So it is ~•good idea to take a look at your
Worksheet from time to time and .erase old work that you no
longer need.

~ The Target Window

By the Way ~I

In all but one respect, MPW follows Apple's User Interface Guidelines
in the way that it handles windows. As the guidelines prescribe, MPW
always treats the front window as the active window, and displays and
highlights it in just the way that a well-behaved program should. And,
also in accordance with the guidelines, all other windows are displayed
and treated as inactive windows.

A Note About Window Man~ge~ent. The MPW package includes
both acommand-li11e in~erpreter and a full-screen, multi-window
te)(teditor.>Generally speaking, ~hen yqu .want.to issue an MPW
command by typing and entering a command line, you will do
that in the Worksheet wil)dow. But, when you want to compose or
edit a text document-for example, the source code of a
program-you will usually open a standard document window,
and that is the window in which you will cype your text and do
your editing.

You don't have to manage your windows that way, of course; you
could type documents in the Worksheet window and enter
commands in a document window. But, since the Worksheet
window is always open and since you can open and close
document windows at will, the best approach is usually to enter
commands in the Worksheetwindow and to compose and edit in a
document window.

60 ~ Chapter 2 Commands and Scripts

BytheWay .. 1

MPW makes one significant departure from the guidelines in the
way it treats windows; it makes an important distinction between the
second topmost window on the screen and any other inactive windows
that may lie beneath it. In MPW, the second topmost window is
displayed as an inactive window, but it is known as the target window
and is treated differently from any other inactive window on the screen.
The target window derives its name from the fact that it is the target of
many shell commands; when you enter an editing command in an
active window, the command is executed not in the active window, but
in the target window.

The target window approach is used primarily in text editing.
Suppose that you were working on a document in a document window
and wanted to find and replace some text. You would not want to type a
search-and-replace command into your document window because the
command would wind up in the document-and, in this case, would
actually edit itself. This is the kind of dilemma that the target window
approach was designed to resolve.

How to Drag an Inactive Window. When you click your mouse
anywhere in the structure region of a window, that window
becomes the active window, and you can then drag it around with
its title bar. Suppose you have a target window that you want to
drag to another part of the screen, but you don't want it .to become·
the active window. Just place your cursor in the target window's
title bar and hold down the Command key on your keyboard as
you press the button on your mouse. You can then drag your target
window anywhere you like without making it the active window.
This trick works not only on the MPW target window, but with
any inactive window in any program.

Searching for a String in the Target Window

Figures 2-5 and 2-6 show how the active window /target window
approach works in MPW editing. In each illustration, the top window is
the Worksheet window and the bottom window is a document window.
You can tell from the way the windows are drawn on the screen that the
Worksheet window is the active window and that the document
window is the target window. The two figures illustrate a search for the
string "charlie" in the target window.

~ The MPW Worksheet Window 61

s File Edit Find Mark Window Project Directory Build ill

find /char I ieA

MP\'/ Shell

begin
alpha
beta
char I ie
end

Brahma:MPUJ 3.2:Test

J2.l J:m ,,,,.,.,.,.,.,., ,,,,,,,,,,,,,,.,. :mmill[:::::r ,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,.,.,,,,,,,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,. :::u:mm:m!fil.2l 12J

Brahma:MPUJ 3.2:Test 2

Figure 2-5. A 'Find ' operation. part l

s File Edit Find Mark Window Project Directory Build ill

find /char I ie /
I

MP\o/ Shell

begin
alpha
beta
Phar l iEl
end

Brahma:MPUJ 3. 2 Test

Brahma:MPUJ 3.2:Test 2

Figure 2-6. A 'Find' operation, part 2

62 ~ Chapter 2 Commands and Scripts

Important ~ The Find Command. The Find command used in Figures 2-5 and'
2-6 is an important command that is often used in MPW editing.
Its function is to find and select, or highlight, a string or expression
in an open file, or window. Its syntax is

Find [-c count] selection [window]

The -c option is a number that equatel) to the number of
expressions to be selected. The selection parameter is the text to be
selected. The window parameter, which is optional, is the name of
the window in which the Find operation is to take place. If no
window parameter is specified, the Find operation takes place in
the target window.

When you want a Find expression to search forward from the
current cursor location to the end of a file, you must enclose the
selection parameter in slash-mark delimiters (/ .. ./). When you want
the operation to proceed backwards toward the beginning of the
file, you must place the selection parameter between backslashes
(\ ... \).

Note that when the selection parameter of the Find command is a
number, it stands for a line number, and the Find command selects
the stipulated line. For example, the command

Find 3

selects the third line in a file. (More information about Find is
presented later in this chapter and in Chapter 4.)

In Figure 2-5, the command Find I charlie/ has been typed on a line
in the Worksheet window. There are slash marks before and after the
word "charlie" because the MPW Find command, when going in a
forward direction, uses slash marks for string delimiters.

The target of the Find command is the word "charlie" in the target
window. Before the command is issued, the insertion point-the loca
tion of the text cursor-is placed at the beginning of the document in
the target window.

The result of this Find operation is shown in Figure 2-6. The com
mand Find /charlie/ has been typed, the Enter key has been pressed,

..,. The MPW Command Language 63

and the search has been carried out. In the target document, the string
"charlie" has been highlighted. The search has been successful.

This active window /target window approach to editing may seem
unwieldy at first, but once you start working with MPW you will
quickly get used to it. The system is actually quite intuitive, and you
will probably be using it without even thinking about it by the time you
finish the exercises in this chapter.

_., The MPW Command Language
The MPW package includes a powerful and versatile command
language. With the more than 120 commands built into MPW, you can

• write, compile, link, and execute programs
• edit source code and other kinds of text
• control windows and other features of the Macintosh User

Interface
• program the MPW shell
• manage files and directories

Table 2-1 lists the MPW command set. The same commands are listed
in Appendix A, along with more details, such as syntax, options,
parameters, and examples. MPW commands are listed according to
their functions in Appendix B.

Table 2-1. The MPW command set

Command

AddMenu
Adjust
Alert
Alias
Align
Asm
AsmCvtlIGS

AsmIIGS
AsmMatlIGS
Backup

Function

Add a menu item
Adjust lines
Display an alert box
Define or write command aliases
Align text to left margin
Assemble a program
Convert APW Assembler source files to AsmIIGS
format
Assemble an Apple IIGS program
Assembler source formatter
Folder file backup

64 .,. Chapter 2 Commands and Scripts

Table 2-1. The MPW command set (continued)

Command

Beep
Begin
Break
Browser
Build Commands
Buildlndex
BuildMenu
BuildMenuIIGS
BuildProgram
c
Canon
Catenate
CFront
Checkln
Checkout
CheckOutDir

Choose

CIIGS
Clear
Close
Commando
Compare
CompareFiles
CompareRevisions
Confirm
Continue
Copy
Count
CPlus
CreateMake
CreateMakeIIGS

Function

Generate tones
Group commands
Break from For-or Loop
Use the Browser tool to find files and selections
Show build commands
Create an index for a data file
Create the Build menu
Add CreateMakeIIGS to the Build menu
Build the specified program
Compile a C program
Canonical spelling tool
Concatenate files
C ++ to C translator
Check a file into a project
Check a file out from a project
Specify the directory where checked-out files are to
be placed
Choose or list network file server volumes and
printers
Compile MPW IIGS C program
Clear the selection
Close specified window(s)
Display a dialog interface for commands
Compare text files
Compare text files and interactively view differences
Compare two revisions of a file in a project
Display a confirmation dialog box
Continue with next iteration of For-or Loop
Copy selection to Clipboard
Count lines and characters
Script to compile C++ source
Create a simple makefile
Create makefiles that build IIGS programs

~ The MPW Command Language 65

Table 2-1. The MPW command set (continued)

Command

Cut
Date
Delete
DeleteMenu
DeleteNames
DeleteRevisions
DeRez
DeRezIIGS
Directory
Directory Menu
Dolt
DumpCode
Dump File
DumpObj
DumpObjIIGS
Duplicate
DuplicateIIGS
Echo
Eject
Entab
Equal
Erase
Evaluate
Execute
Exists
.Exit
Export
ExpressIIGS
File Div
Files
Find
Flush
For

Function

Copy selection to Clipboard and delete it
Write the date and time
Delete files and directories
Delete user-defined menus and menu items
Delete user-defined symbolic names
Delete previous revisions of files in a project
Resource decompiler
Resource decompiler for Apple IIGS
Set or write the default directory
Create the Directory menu
Highlight and execute a series of shell commands
Write formatted CODE resources
Display contents of any file
Write formatted object file
Dump OMF files
Duplicate files and directories
Copy files between Mac and GS/OS volumes
Echo parameters
Eject volume(s)
Convert runs of spaces to tabs
Compare files and directories
Initialize volume(s)
Evaluate an expression
Execute command file in the current scope
Confirm the existence of a file or directory
Exit from a command file
Make variables available to commands
Convert file(s) from OMF to ExpressLoad format
Divide a file into several smaller files
List files and directories
Find and select a text pattern
Flush tools that the Shell has cached
Repeat commands once per parameter

66 ~ Chapter 2 Commands and Scripts

Table 2-1. The MPW command set (continued)

Command

Format
Get
GetErrorText
GetFileName
GetListltem
Help.MPW
If
Lib
Line
Link
LinkIIGS
Loop
Make
MakeErrorFile
MakeBinIIGS
MakeLibIIGS
Mark
Markers
Matchlt
MergeBranch
Modify Read Only
Mount
MountProject
Move
Move Window
NameRevisions
New
Newer
New Folder
New Project
Open
OrphanFiles
Parameters

Function

Set or display formatting options for a window
Get information about a keyword from a data file
Display error message(s) based on message number
Display a Standard File dialog box
Display item(s) for selection in a dialog box
Write summary information
Conditional command execution
Combine object files into a library file
Find line in the target window
Link an application, tool, or resource
The MPW IIGS Linker
Repeat commands until Break
Build up-to-date version of a program
Create error message textfile
Convert Load files to Binary files
Create IIGS Library files
Assign a marker to a selection
List markers
Semi-intelligent language-sensitive bracket matcher
Merge a branch revision onto the trunk
Enable a read-only Projector file to be edited
Mount volume(s)
Mount project(s)
Move files and directories
Move window (to horizontal, vertical location)
Define a symbolic name
Open a new window
Compare modification dates of files
Create a new folder
Create a new project
Open file(s) in window(s)
Remove Projector information from a list of files
Write parameters

.,. The MPW Command Language 67

Table 2-1. The MPW command set (continued)

Command

Pascal
PascalIIGS
PasMat
PasRef
Paste
PerformReport
Position
Print
ProcNames
Project
Projectlnfo
Quit
Quote
Rename
Replace
Request
ResEqual
ResEqualIIGS
Revert
Rez
RezDet
RezIIGS
Rotate Windows
Save
SaveOnClose
Search
Set
SetDirectory
SetFile
SetPrivilege
Set Version
Shift
ShowSelection

Function

Compile Pascal program
The MPW IIGS Pascal Compiler
Pascal programs formatter
Pascal cross-referencer
Replace selection with Clipboard contents
Generate a performance report
Display current line position
Print text files
Display Pascal procedure and function names
Set or write the current project
Display information about a Project
QuitMPW
Echo parameters, quoting if needed
Rename files and directories
Replace the selection
Request text from a dialog box
Compare resources in two files
Compare resources in two Apple IIGS files
Revert window to previous saved state
Resource compiler
Detect inconsistencies in resources
Resource compiler for Apple IIGS
Send active (frontmost) window to back
Save specified windows
Save window when it closes
Search files for pattern
Define or write shell variables
Set the default directory
Set file attributes
Set access privileges for directories on file servers
Maintain version and revision number
Renumber command file positional parameters
Scroll window, setting selection to desired position

68 ..,. Chapter 2 Commands and Scripts

Table 2-1. The MPW command set (continued)

Command

Shutdown
Size Window
Sort
Stack Windows
StreamEdit
Target
Tile Windows
TransferCkid
Translate
Unalias
Undo,
Unexport
Unmark
Unmount
UnmountProject
Unset
User Variables
Volumes
Where ls
Which
Windows
Zoom Window

Function

Power down or restart the machine
Set a window's size
Sort or merge lines of text
Arrange windows with title bars showing
Non-interactive, script-driven editor
Make a window the target window
Arrange windows in a tiled fashion
Move Projector information from one file to another
Translate characters
Remove aliases
Undo the last edit
Remove variable definitions from the export list
Remove a marker from a window
Unmount volume(s)
Unmount project(s)
Remove shell variable definitions
Set all user variables (uses Commando)
List mounted volumes
Find the location of a file
Determine which file the shell is to execute
List windows
Enlarge or reduce a window's size

""' Four Varieties of MPW Commands

When you categorize commands by the way they are written, MPW has
four kinds of commands: built-in commands, scripts, tools, and
applications.

Built-in Commands

Built-in commands are commands that are part of the MPW shell. The
familiar editing commands Cut, Paste, and Copy are examples of built
in commands.

..,. The MPW Command Language 69

Scripts

Scripts are text files made up of commands. In MPW, you can combine
any sequence of commands into a text file and then execute the entire file
by simply typing and entering its name as a command. Since scripts are
made up of commands, they are sometimes referred to as command files.

A special script called the Startup script is executed every time MPW
is launched. It defines a list of default variables and alias definitions
(alternate names for commands) that are recognized by all other scripts.
It is therefore known as a command script. After MPW executes the
Startup script, it also runs another command script called the UserStartup
script. You can customize MPW by adding lines to the UserStartup
script or by editing lines that it already contains. By modifying the
UserStartup script, you can add customized variables and aliases to
MPW. In fact, you can even add your own menus and menu items to the
MPW menu bar. Ways in which you can edit the UserStartup script are
described later in this chapter and in Chapter 3.

MPWTools

MPW Tools such as C (for compiling C programs) and Link (for linking
files) are executable programs that are stored as files on a disk and are
completely integrated with the shell environment. An MPW tool can be
either an MPW script or an executable program.

Applications

Applications are standard application programs such as ResEdit,
MacPaint, programs you have written, or any software package that you
can buy. Applications may not know about MPW, but it knows about
them; when MPW is running, you can execute any application from the
shell environment by simply typing and entering its name as a
command.

~ The Structure of a Command

In MPW, a command is defined as a list of words separated by blanks
(either spaces or tabs) and ending with a command terminator.

The first word of a command is always the command name. The
name of the command can stand alone, or it can be followed by options,
parameters, or both. A command is always terminated by a command
terminator. The general form of an MPW command is

commandName [options] [parameters ...] commandTerminator

70 ..,. Chapter 2 Commands and Scripts

By the Way ""I

The Command Name

The name of a command is either the name of a built-in MPW command
or the file name of a program, script, or tool to execute. Command
names are not case sensitive. Alternative names, called aliases, can be
defined for the names of commands. When you have defined an alias for
a command, you can use it in commands and scripts in the same way
you would use the actual name of the command. Procedures for
defining aliases are presented later in this chapter.

A Command Decision. In most computer languages, a reserved
word used to carry out an operation is usually referred to as a
command, and a line that is executed to carry out an operation is
usually called a statement. In the MPW 3.0 Reference, the term
"statement" is not used, and no clear distinction is made between
commands and statements. A command word is sometimes called
a command and is sometimes called a command name. With
reluctance, but for the sake of consistency with the MPW 3 .0
Reference, I have decided to be just as vague about commands and
statements as the MPW 3.0 Reference is. Therefore, in this book, the
word "command" sometimes refers to a statement, and other times
it refers to a command. The intended meaning of the word should
always be clear from the context.

Options and Parameters

In an MPW command line, options are letters preceded by a negative
sign, for example, -t. As their name implies, they are optional. When an
option is included in a command line, it alters the operation that the
command performs.

A command can also be followed by one or more parameters. In most
commands, parameters contain information that is passed on to the
command being issued. But the shell interprets certain parameters
such as those used in I/ 0 redirection-before the command is executed,
and thus they are not passed on to the command itself. The shell also
expands any variables that a command may contain before it executes
the command. More information on 1/0 redirection and variables is
presented later in this chapter.

Note ~

.... The MPW Command Language 71

A Note About Optj,ons cmd Parameters. In the MPW 3.0 Reference,
,:cominand.;line o ,,,,,;l~~ers:preceded,.b~,a,,~egative sign (sµ~,
?:as,•t)-'Ct:ti~ ref~ :.:/ , .' .. iP~anteters. Real~~~eters-full woidsii ·
; ~t preceded by a.''.J'l~&ative s1gn_,.,.are called parameters, too.

In my opinion, options and parameters are. different. Options tell
the command interpreter how an operation should be carried out,
whereas what I call parameters are the targets, or objects, of
commands. Since:<;>p.tions differ from parameters in function as
well as form, this!l.opl<,plaqes options and.parameters in different

2· ~tegories. ~Althq. :;.s.~ not consi~.ten~~ith the style o,f th~
'~#:J?:.W3.0 Reference . · <:f:11oh:ause ygtj:f~'l\ycorifusion. · ,

I.' V<'

Command Terminators

Every MPW command is terminated by a command terminator. The
most commonly used command terminator is the Return character. A
Return character always ends a command unless it is preceded by a
line-continuation character a, as explained in the next section .

..,. Multiple-line Commands

You can continue a command on the next line by typing a (Option-D)
followed by a Return. When the shell interprets the command, it
discards both the a character and the Return before it executes the
command. To use the a character as a line-continuation character, you
must type a Return character immediately after the a, with no blanks or
comments separating them.

To see how the line-continuation character a is used, type

Echo This sentence appears o
all on one line.

Then execute the command by selecting (highlighting) both lines and
pressing the Enter key. The Echo command should then write

This sentence appears all on one line.

to your screen.

72 .., Chapter 2 Commands and Scripts

The d character also has another function: It is used as an escape
character to insert certain nonprinting characters into text. When d is
followed immediately by the letter n, it inserts a newline character, or a
Return, into a document. When it is followed by the letter t, it inserts a
Tab. When it is followed by the letter f, it inserts a form feed. For
example, the command

Echo dn

prints a newline character on the screen, just as if the user had typed a
Return.

You can also prevent MPW from interpreting a special character by
preceding the character with d. For example, if you try to execute the
command

Echo *

MPW responds with the following error message.

MPW Shell - File name pattern "*" is incorrect.

But if you issue the command

MPWprints

*

to your screen. If you enclose the d character in quotation marks, the
shell does not recognize it as a special character, but treats it like any
other typed character. Table 2-2 shows the ways in which d can be used.

A command can also be terminated by a semicolon(;), a pipe symbol
(I), or a conditional execution operator. Each of these special characters
can, in turn, be followed by a Return.

.,. The MPW Command Language 73

Table 2-2. a character uses

Characters
Typed Result

a Alone at the end of a line; line-continuation character
an Return character (ASCII CR)
at Tab character (ASCII HT)
af Form feed (ASCII FF)
a-Return Both a and return character ignored
achar Display char (if not n, t, f, or Return)

By using a semicolon as a command terminator, you can type more
than one command on a line. For example, the three command lines

Beep
Beep
Beep

and the command line

Beep ; Beep ; Beep

do the same thing; they execute three Beep commands, causing the
Macintosh speaker to beep three times.

The special-character combinations && and I I are logical operators
as well as command terminators. If you separate two commands with
the characters &&, the second command is executed only if the first
command succeeds. Conversely, if you separate two commands with
the characters I I , the second command is executed only if the first
command fails. For example, the line

Find /charlie/ && Echo Found!

searches for the string "charlie" in a file and echoes the exclamation
"Found!" if the string is found. The line

Find /zebra/ I I Echo Sorry!

echoes the message "Sorry!" if the Find command fails.

7 4 llJi> Chapter 2 Commands and Scripts

Important .,.

Important 11>

The Echo Command. Echo-short for "Echo parameters"-is the
command that is most often used to pass literal strings to MPW
commands. You can use Echo to monitor the operation of scripts
while they are running, and to check the results of variable
substitution, qommand substitution, and file name. generation,
which are covered later in this chapter. The syntax of the Echo
command is:

Echo [-n] [parameter ...] [>parameters ...]

Echo writes its parameters, separated by spaces and terminated by
a Return, to MPW's standard output,normally the active window.
If no parameters are specified, Echo writes only a Return.

When the -n option is used with the Echo command, it means,
"Don't write a Return following the parameters." That means that
the insertion point-the location of the text cursor-remains at the
end of the output line after the text to be echoed is written. The -n
option itself is not echoed.

When the I character is used between two commands, it passes, or
pipes, the output of the first command to the input of the second. For
example, the line

Files I Count -1

pipes a list of files to the Count command. Count then counts the
number of files on the list and echoes its results to standard output, in
this case the screen. The Files command is described in more detail later
in the chapter.

The Count Command. You can use the Count command to count
the number of lines or characters in a file. Its syntax is:

Count [-1] [-c] [file ...]

If you use the -1 option with the Count command, it counts the
number of lines in the specified file. If you use the -c option, it
counts the characters in the file. By using redirection operators,
described later in this chapter, you can direct the output of Count
to a specified window or file.

~ The MPW Command Language 75

Another good example of piping is a command that assembles and
links a source file and reports on whether the operation succeeded. In
the following example, the Asm command is used to assemble an
assembly language source file, and the Link command is used to link it.

Asm Sample.a && Link Sample.a.o -o d
Sample.Code I I (Echo Failed; Beep)

If the assembly succeeds, the command links the object file that is
generated by the Asm command. But if either the assembly or the link
operation fails, the command echoes the message "Failed," and beeps a
warning. The Asm and Link commands are described in Chapter 8.

In the first line of the preceding example, the a character (Option-D)
is used in its line-continuation role; it causes MPW to treat both lines of
the command as if they were on a single line. In the second line,
parentheses group the Echo Failed and Beep commands together so
that they are executed as a unit if the assembly fails.

MPW's command terminators are listed in Table 2-3.

Table 2-3. Command terminators

Terminator Example Description

Return cmdl(r) cmd2 Ends cmd 1 and moves to the next line.

cmdl ;cmd2 Executes cmdl and then executes cmd2,
allowing more than one command to
appear on a single line.

&& cmdl &&cmd2 Executes cmd2 only if cmdl succeeds
(that is, returns a status code of 0).

11 cmdl 11 cmd2 Executes cmd2 only if cmdl fails (that is,
returns a nonzero status code).

cmdl I cmd2 Pipes the output of cmdl to cmd2.

~ Command and Parameter Syntax

If a parameter contains more than one word, it is usually necessary to
enclose the parameter in quotation marks so that MPW recognizes it as
a single parameter. However, there are exceptions to this rule. For
example, you can pass a multi-word parameter to the Echo command
without enclosing it in quotes. Thus the commands

76 ~ Chapter 2 Commands and Scripts

Important ~

Echo This is a string

and

Echo "This is a string"

have identical results; they both write

This is a string

to standard output, normally the screen.
The reason that quotes are not needed around a parameter to the Echo

command is that the Echo command echoes back all the parameters
passed to it, separated by spaces. (You can also use the -n option with
Echo if you do not want a Return to be echoed, but that does not confuse
MPW either, since options in a command always begin with minus signs).

If a parameter consists of only one word, quotes may be used, but
they are not necessary unless the word contains a special character or a
variable that contains blanks or special characters. More details about
special characters and variables are presented later in this chapter.

Differences Between Single and Double Quotes

You can use either single or double quotation marks to delimit a
parameter, but MPW treats single quotes and double quotes differently.
When you use double quotes in a command, the shell does some work
on the command before it executes the command. Specifically, the shell
interprets the a character (Option-D), and expands variables and defines
aliases, before it carries out the command. When you enclose a com
mand in single quotes, everything inside the quotes is taken literally.
Examples of what these differences mean in MPW commands are
presented later in this chapter and in Chapter 3.

The Comment Character #. MPW's comment prefix is the #
symbol. When you place a comment on a command line, MPW
ignores all text from the# syml:>ol to the next command terminator.

You can place the comment character at the beginning of the line,
or anywhere thereafter ... A comment placed at the end of a
command looks like this:

Echo Print this # but don't print this.

lllll- The MPW Command Language 77

In an MPW script, you can "comment out" a line-that is, prevent:.
it from executin~ . c.Pl'.typi:ng the # symbp~ inJront of the line~ Ji"p~ !"

example, if you h~<;f.:~ $Crlpt that executed ·:~oBeep comman(is~
but you wanted to ¢Jiminate the second .beep temporarily, you
could comment outthe:second beep like this:

Beep
;.41: Beep

. Later, if you wantec;1
. you could remo~ ·
:~9mmand. ··

the second beeP,,lJaPk into your scriJ?i'. • ...•....
~ymbol andt~~~9t.ethe. second. Be~RJ:: ' '.·· " ;· '\,··:··,· ,,•]··.::' \,. . :. .'·'·,\. ~~¥: ~:~~:

<;~a command line ends ·;with the line-co~~liation character (),the.
a character has no effect on comments; they still end at the physicai

. end of t:Qe line. For example, if you execute the command lines

Echo How 41: a comment. .a
~re you this •w:.,r.+,;+~.H.•':!r, 41: anothe]:: ;cpmment

i.F·:··~;

··· .. ~~•.·fyfPW prints the

How are you this morning

on the screen.

Using Quotes Within Quotes

When you use quotation marks in a command, MPW expects them to
be used in pairs. Hence, if you try to execute a command that contains
only one quotation character, like this:

Echo "This is a string # This is incorrect

MPW returns this error message:

MPW Shell - "s must occur in pairs.

78 ..- Chapter 2 Commands and Scripts

But if you use quotes in pairs, like this,

Echo "This is a string"

there is no error.

If a multi-word parameter contains an apostrophe-which MPW
interprets as a single quotation mark-you can prevent the parameter
from causing an error by enclosing the parameter in double quotation
marks like this:

Echo "There's a great day coming"

Conversely, a parameter that includes double quotation marks can be
enclosed in single quotes, as long as it does not contain any variables,
aliases, or a characters:

Echo 'This program is called "Bananas.c."'

If you want to use both single and double quotation marks in a
parameter, you can use both kinds of quotes in a nested fashion. For
example, the command

Echo '"I '"won't"' do it," she said.'

echoes this message:

"I won't do it," she said.

To familiarize yourself with the way in which MPW interprets
quotation marks, you might find it helpful to experiment with some of
your own examples .

..,. How MPW Interprets Commands

MPW goes through seven steps when it interprets a command:

1. Alias substitution
2. Evaluation of structured constructs
3. Variable and command substitution

..- The MPW Command Language 79

4. Blank interpretation
5. File name generation
6. I/ 0 redirection
7. Evaluation and execution

Alias Substitution

Aliases are alternate names for MPW commands. MPW defines some
aliases when it starts up, and you can also define your own. When
MPW starts interpreting a command, the first thing it does is scan the
command for any words that are aliases. When an alias is found, it is
interpreted or translated back into the actual name of its corresponding
command.

Evaluation of Structured Constructs

MPW commands may be simple or structured. A simple command
consists of a single keyword, either standing alone or followed by any
combination of options, parameters, or both. Structured commands are
commands that let you control the order in which other commands are
executed.

Structured constructs are programming constructs that perform
conditional execution and looping operations. The commands Begin,
For, If, and Loop are used to begin structured constructs and are
therefore known as structured statement openers. Every structured
statement opener must stand alone on a line, and each must be followed
by an End command that stands at the beginning of a subsequent line.
Structured constructs used in MPW include the constructions
Begin ... End, If ... Else ... End, For ... End, and Loop ... End.

Since a structured construct is made up of more than one command,
structured constructs are used primarily in scripts.

Commands that can be used in structured constructs are listed in
Table 2-4. Examples of how structured constructs are used in MPW
scripts are presented at the end of this chapter.

80 .,. Chapter 2 Commands and Scripts

Table 2-4. Commands used in structured constructs

Command

Begin ... End

If ...

If... Else

If ... Else ... Else If ...

For ...

Loop
Break
Break If ...

Evaluate

Execute

Exit

Continue

Usage

Enclose a conditional structure.
Perform a conditional execution.

Perform a conditional execution with optional Else

Perform a conditional execution with optional
Else ... and Else If

Repeat commands once per parameter.
Repeat commands until Break.

Break from For or Loop.
Break with optional If

Evaluate an expression.

Execute a script in the current scope.
Exit from a script.

Continue with next iteration of For or Loop.

Variable Expansion and Command Substitution

In MPW, variables are defined with the Set command. Once a variable
has been defined, its name must be enclosed in curly braces({}) when it
is used in a command.

Some variables are defined by the MPW shell, and others-such as
variables that equate to pathnames-are predefined when MPW is
launched and are automatically redefined if the values that they equate
to are changed. You can also define your own variables, as explained
later in this chapter.

In MPW, variables are not typed; all variables equate to strings of
text. During the variable expansion stage of command interpretation,
the shell also expands any variables that are delimited by slash bars
(/ ... /),backslashes(\ ... \), or double quotation marks(" ... "). However, if
a variable is enclosed in single quotation marks (' .. .') like this:

I {MPW} I

it is not expanded.
The {MPW} variable, as explained later in this chapter, is a shell

variable that equates to the current pathname of the MPW folder. Since

..,. The MPW Command Language 81

variables delimited by double quotation marks are translated into their
actual values during the variable expansion process, the command

Echo 11 {MPW} 11

echoes the contents of the {MPW} variable, in this fashion:

HD:MPW:

Because variables enclosed in single quotation marks are not
expanded, the command

Echo '{MPW}'

echoes the string

{MPW}

which is a very different result!
During variable expansion, the shell also checks to see whether or

not the ellipsis character (Option-;, or ...) has been used in a command.
If an ellipsis character is found, the shell executes the Commando
command, which displays a Commando dialog. The output of the
Commando dialog then replaces the command being interpreted.
Commando dialogs and the Commando command are covered in
Chapter3.

Table 2-5 lists the kinds of variables used in MPW. More information
about variables is presented later in this chapter.

Table 2-5. Kinds of variables used in MPW

Kind of Variable

Shell

Predefined

Startup

Examples

{MPW}, {Boot}

{Boot}

{MPW}

Description

Includes predefined variables and
startup variables.

Used for pathnames; set by the shell
and maintained automatically.

Used for pathnames, and for display
and printing defaults; can be
redefined by modifying the Startup
script.

82 .,. Chapter 2 Commands and Scripts

Table 2-5. Kinds of variables used in MPW (continued)

Kind of Variable

User

User-defined

Parameter

Examples

{TileOptions}

{Fred}

IOI, l#J,
11 }, {2} ... {n},
{Parameters},
{"Parameters"}

Description

Initially defined by MPW, but can be
redefined in the Startup or
UserStartup script.

Defined by user; can be defined in a
command, in a user-created script, or
in the Startup or UserStartup script.

Variables that equate to
parameters in scripts.

Command substitution, which MPW performs along with variable
expansion, is the process of using one command to get the parameters
of another. In a command line or a script, you can instruct MPW to
perform command substitution by delimiting a sequence of one or
more commands with the backquote character ('). When one or more
commands are set off in this way, MPW carries out each command and
then passes the results back to a previous command on the same
line-in much the same way that a language such as C returns the
result of a function. For example, if you execute the command

Duplicate 'Files -t TEXT' "{Boot}InsideMPW"

the Files command finds all files of type TEXT in the current directory
and builds a list of file names. Files then passes the list to the Duplicate
command, which copies each file into a directory on the Boot disk
named InsideMPW.

In this example, "{Boot}" is a shell variable that is always defined as
the Boot disk. There's more about the Files command, and about {Boot}
and other shell variables, later in this chapter. Examples illustrating the
use of the command substitution delimiter (') are presented later in this
chapter and in Chapter 4.

IJl> The MPW Command Language 83

Blank Interpretation

As mentioned eariler in this chapter, blank spaces are used in MPW
commands to separate command names, options, and parameters.
Blank spaces can also appear in file names, but if they do, they must be
enclosed in quotation marks so that MPW does not mistake them for
the blanks that separate words in commands. The rules for using single
and double quotation marks in file names are the same as those for
using single and double quotes in strings and expressions.

As pointed out earlier, MPW defines a blank as an unquoted space or
a tab. During the blank-interpretation stage of command interpretation,
MPW divides the text of a command into individual words separated
by blanks.

Some special characters, called operators, are always considered
separate words, whether or not they are separated from other words by
blanks. That's a convenience for you; it means that when you use these
characters, you can be a little sloppy about spacing and MPW won't
care. Operators that do not have to be surrounded by spaces are:

I I && < > >> ;;:::

These are not the only operators used in the MPW command language,
but they are the only ones that never have to be surrounded by spaces in
MPW commands.

Within expressions that follow the structured statement opener If,
and in expressions that follow the Evaluate command, all operators that
are not enclosed in quotation marks are considered separate words.
There's more about redirection operators, structured constructs, and the
Evaluate command later in this chapter.

Operators that never have to be surrounded by spaces are listed in
Table 2-6.

Table 2-6. Operators used in MPW commands

Operator Type

Command terminator

Command terminator

I I Command terminator

Function

Separates multiple commands on
the same line.

Separates commands and pipes
output to input.

Separates commands, executing
second if first fails.

84 ~ Chapter 2 Commands and Scripts

Table 2-6. Operators used in MPW commands (continued)

Operator Type

&& Command terminator

Delimiter

Delimiter

< Redirection operator

> Redirection operator

>> Redirection operator

Redirection operator

Redirection operator

Redirection operator

Redirection operator

Commando operator

File Name Generation

Function

Separates commands, executing
second if first succeeds.

Groups characters or commands
together.

Groups characters or commands
together.

Takes command input from file
name parameter.

Sends command output to file
name parameter.

Appends command output to file
name parameter.

Sends diagnostic output to file
name parameter.

Appends diagnostic output to file
name parameter.

Sends both standard and
diagnostic output to file name
parameter.

Appends both standard and
diagnostic output to file name
parameter.

Displays a Commando dialog and
substitutes output of dialog for
output of command.

The MPW command language has eight special characters that can be
used to perform special functions in file names. They are:

? [l * + « »

These eight characters can also be used as operators in regular expres
sions. If they appear in expressions that are delimited by single or

..,. The MPW Command Language 85

double quotes, or by the slash delimiters I or \, MPW interprets them
as regular expression operators. If they are not quoted, MPW interprets
them as file name generation operators.

File name generation operators have the same meanings in MPW file
names that they have when they are used as regular expression
operators in quoted expressions. The characters ? and == are wildcard
characters; the characters [and] are brackets that enclose patterns; the
characters * and + stand for repetitions of a specified character; and the
characters « and » enclose numbers that specify the number of times an
operation is to be performed. MPW's file name generation operators
and their functions are listed in Table 2-7.

Table 2-7. File name generation operators

Symbol

?

[character List]

[-icharacterList]

*

?*

+

Description

Question mark

Option-X

Character list in braces

Character list in braces,
preceded by Option-L

Star

Question mark and star

Number in European
quotes (Option-\ and
Option-Shift-\)

Plus sign

Function

Matches any single character
(except a colon, which
cannot be used in a file
name).

Matches any string of zero or
more characters (except a
colon).

Matches any character in the
list.

Matches any character not in
the list.

Zero or more repetitions of
the preceding character or
character list.

Same as==.

Specifies the number of
repetitions of the preceding
character or character list.

One or more repetitions of
the preceding character or
character list.

86 ~ Chapter 2 Commands and Scripts

In addition to being used as file name generation operators, the char
acters listed in Table 2-7 can also be used as operators in regular
expressions. If these characters are delimited by single or double
quotes, or by the slash delimiters I or \, MPW interprets them as
regular expression operators. If they are not quoted, MPW interprets
them as file name generation operators.

If an unquoted word in a command contains a file name generation
operator, it is considered a file name pattern. When a file name pattern
is encountered in a command, MPW replaces the pattern with an
alphabetically sorted list of file names that the pattern matches. Then, if
the command you are using is one that lists file names-such as Files or
Volumes-the list that has been generated is written to standard output.

For example, the command

Files ==

lists all the files in the current directory. The command

Files ==.p

lists all the files in the current directory with names that end with the
extension ".p". The command

Files Source.?

lists every file in the current directory whose name begins with the
name "Source," followed by a single character, for example, Source.c,
Source.p, Source.a, and Source.r. And the command

Files Source==

lists each file in the current directory with a name that begins with the
word "Source," followed by any number of characters: for example,
Source, Source.c, Source.p, Source.a, Source.r, Sourcerer and SourceFile.

For more information about regular expression operators and file
name generation operators, see Chapter 4.

1/0 Redirection

By default, MPW provides all built-in commands, scripts, and tools
with three open files: standard input, standard output, and diagnostic
output. Standard input comes from the console (the window where the

..._ The MPW Command Language 87

command is executed); standard output and diagnostic output are
returned to the console immediately following the command. (How
you can override these default assignments with the symbols<,>,>>,
~' ~~' Land LL is explained later in this chapter.)

Evaluation and Execution

The last step in the interpretation of a command is evaluation and exe
cution. First, MPW evaluates the command to determine whether any
errors have been encountered. If there are no errors, the command is
executed. If an error is detected, an error message is returned.

If the command-line interpreter encounters an error while executing
a command, it returns a negative status code. If no error is encountered,
it returns a status code of 0. The status code returned by the command
line interpreter is returned in the shell variable {Status} (which is
described in more detail later in this chapter).

Table 2-8 lists all the negative status codes, or error codes, that the
command-line interpreter can return. MPW returns errors in a definable
diagnostic output, which is explained later in this chapter.

Table 2-8. Command-line error codes

Error Meaning

-1 Command not found, script is a directory, script is not
executable, or script has a bad date.

-2 File name expansion failed, or there was an error in the
expression syntax.

-3 Bad syntax: error in the control constructs, quotation characters
and braces were not balanced, or command was missing end or
")" characters.

-4 Missing file name following I/ 0 redirection, or the file could not
be opened.

-5 Invalid expression (used with commands such as If, Break If,
Continue If, or other such constructs).

-6 Tool could not be started.

-7 Runtime error during tool execution, most likely an out-of-
memory error.

-8 User aborted the tool from the debugger.

-9 User aborted the tool with Command-period.

88 ~ Chapter 2 Commands and Scripts

~ Tips for Writing Command Lines
Before you start executing commands using the MPW command lan
guage, consider the following tips and shortcuts for writing command
lines:

• You can type an MPW command line in the same way that you
would type ordinary text. To send the command to MPW's com
mand interpreter for execution, press the Enter key on your
numeric keypad-not the Return key on the main part of your
keyboard.

• The cursor does not have to be at the end of a command line when
you press Enter. You can place the cursor anywhere over the line
and press Enter.

• If you do not want to use the Enter key, you can press Command
Return instead, but you will probably find that more cumbersome.
Another alternative is to click your mouse inside the status panel in
the upper left-hand corner of the MPW window.

• You can also enter an MPW command by dragging the mouse to
select a range of text, and then pressing Enter. Using this method,
you can select as many command lines as you like, and MPW
executes them all.

• You can select a full line of text by triple-clicking the mouse any
where on the line. If you triple-click on a command line and then
press Enter, MPW executes the command.

• You can save a series of commands as a command file, or script.
Then you can execute your entire script by typing its name as an
MPW command. (You'll get an opportunity to write and execute
some scripts later in this chapter.)

• When you are working with a document in a window, you can use
the Command (Apple) key to move quickly through blocks of text.
To move to the left or right margin, press Command-Left Arrow or
Command-Right Arrow. Command-Shift-Up Arrow takes you to
the top of the document, and Command-Shift-Down Arrow takes
you to the bottom.

• The MPW command interpreter is not case-sensitive (although
there are some default case-sensitivity settings you can change), so
you can type the commands presented in this chapter in uppercase
letters, lowercase letters, or a combination of both. For now, as far
as MPW is concerned, they are all the same.

Note ~

~ Tips for Writing Command Lines 89

Sensitive Cases. In case you're curious about what is case sensitive
in MPW and what isn't, here is. the answer.

•
•

•

By default, MPW is not case-sensitive .

File names, aliases, variables, and commands are never case
sensitive.

You can change the case-sensitivity of everything else by set
ting thevariable {CaseSensitive}, as explainedlater in this
chapter.

Table 2-9 lists some shortcuts and other tips that you might find
handy when you use MPW.

Table 2-9. Shortcuts for using MPW

Moving Selection Points and Deleting Text
Shortcut Effect

~~~~~~~~~~~~~~~~-

Up Arrow Moves selection point one line above 
current selection. 

Down Arrow Moves selection point one line below 
current selection. 

Right Arrow Moves selection point one character to the 
right. 

Left Arrow Moves selection point one character to the 
left. 

Command-Shift-Up Arrow Moves selection point to top of file. 
Command-Shift-Down Arrow Moves selection point to bottom of file. 
Command-Down Arrow Moves selection point down one screen 

Command-Right Arrow 

Command-Up Arrow 
Command-Left Arrow 

Command-Backspace 

Shift-Left Arrow 

size. 
Moves selection point to right edge of 
current line. 
Moves selection point up one screen size. 
Moves selection point to left edge of 
current line. 
Deletes text from current selection to end 
of file. 
Extends selection to the left by one 
character. 



90 ...,. Chapter 2 Commands and Scripts 

Table 2-9. Shortcuts for using MPW (continued) 

Moving Selection Points and Deleting Text (continued) 
Shortcut Effect 

Shift-Right Arrow 

Shift-Up Arrow 
Shift-Down Arrow 
Option-Shift-Left Arrow 
Option-Shift-Right Arrow 

Extends selection to the right by one 
character. 
Extends selection upward one line. 
Extends selection downward one line. 
Extends selection to the left by one word. 
Extends selection to the right by one word. 

In Dialogs Without a TextEdit Item 
Action Meaning 

Type"Y" 
Type"N" 
Command-Period 
Escape key 

Searching 
Action 

Command-Shift-G 

Command-Shift-H 

Command-Shift-T 

Double click 
Triple click 

In the "Replace" Dialog 

Yes 
No 
Cancel 
Cancel 

Effect 

Reverses the direction of Find Same 
command 
Reverses the direction of Find Selection 
command 
Reverses the direction of Replace Same 
command 
Selects a word 
Selects a line 

Holding down Shift while selecting OK reverses the direction of Find and 
find-and-replace operations. 

Other Tips 
Double-clicking on any of the characters(,),[,],{,},',",/,\,' selects everything 
between the character and its mate. 

Holding down Option while selecting "Tile Windows" or "Stack 
Windows" includes the Worksheet in the tiling or stacking operation. 

Holding down Option while pressing Return disables auto-indent for 
that line. 

Holding down Option while pressing Enter invokes the Commando on 
a command line. (For information about the Commando command, see 
Chapter3.) 



Ill- Tips for Writing Command Lines 91 

Ill- The Help Hotline 

One tip deserves its own heading: How to use MPW's Help command. 
Help is an online help utility that you can summon simply by entering 
the Help command, either with or without parameters. If you type just 
the word 

Help 

without any parameters, MPW gives you a list of the parameters you can 
use with the Help command. One of those parameters is the word 
"Commands." If you use the Commands parameter by executing the 
command 

Help Commands 

MPW lists all the commands that it can help you with. Be prepared for 
a long list; it will include all of MPW's 120+ commands. 

You can obtain summaries of various kinds of help that are available 
by entering the commands listed in Table 2-10. 

Table 2-10. Commands for obtaining help summaries 

Command 

Help [commandName ] 

Help Commands 
Help Expressions 
Help Patterns 
Help Selections 
Help Characters 

Help Shortcuts 
Help Variables 

Help Projector 

Result 

Information about commandName 

A list of commands 
A summary of expressions 
A summary of patterns (regular expressions) 

A summary of selections 
A summary of MPW shell special 
characters 
A summary of MPW shell shortcuts 
A summary of the standard MPW shell 
variables 
A summary of Projector, a project 
management system 



92 ~ Chapter 2 Commands and Scripts 

~ The Evaluate Command 

Listing 2-1 illustrates the use of the Help command. It shows what 
MPW writes to the screen when you execute the command 

Help Evaluate 

Listing 2-1. Listing returned by the Help Evaluate command 

Evaluate # evaluate an expression 
Evaluate [-h I -o I -b] [word ... ] > value 
Evaluate Name [binary operator]= expression 

-h # display result in hexadecimal (leading Ox) 
-o # display result in octal (leading 0) 
-b # display result in binary (leading Ob) 

The Evaluate command is an important command that MPW uses 
both to evaluate expressions and to perform mathematical operations. 
As shown in Listing 2-1, its syntax is 

Evaluate [-h I -o I -b] [word ... ] 

where the parameter word equates to the expression being evaluated. 
When Evaluate is used in an MPW script, it is often delimited by the 

backquote character ('). As mentioned earlier in this chapter, the 
backquote is MPW's command substitution character. When a command 
enclosed in backquotes is called by another command, it passes its 
output back to the command that called it. The calling command then 
uses the output of the backquoted command as a parameter. 

For example, when you execute the command 

Evaluate 1 + 1 

Evaluate echoes its output 

2 

to standard output, normally the screen. 
The preceding example would be more useful if the parameters of 

the Evaluate command were variables rather than constants. Evaluate 
can perform operations on variables, as in this example: 



Set a 2 
Set b 5 
Evaluate {a} + {b} 

~ Tips for Writing Command Lines 93 

The output of this set of command lines is, of course, 7. 

Setting Variables with the Evaluate Command 

You can also use the output of the Evaluate command to set the value of 
a variable. You can then use the variable in other Evaluate commands. 
For example, the command 

Set x 'Evaluate {a} + {b}' 

sets the variable {x} to the sum of {a}+ {b}. 

Evaluating String Expressions 

Evaluate can be used to evaluate string expressions, as well as to 
perform mathematical operations. For example, if you execute these 
commands 

Set alpha a 
Set beta b 
Evaluate "{alpha}" =- /{beta}/ 

the Evaluate command echoes the output 

0 

which is MPW's value for "false," because the strings "alpha" and "beta" 
are not the same. 

Evaluate also works with variables when it is used to evaluate 
strings. For example, the output of this pair of commands 

Set w "alpha" 
Evaluate "{w}" =- /"alpha"/ 

is 1, or "true," because the evaluated strings match. 
Several features of this last example are worth pointing out. First, 

note that in the second line, the {w} variable is enclosed in quotation 
marks. This means that if the string equating to the variable contained 
blanks, the command would still work. 



94 • Chapter 2 Commands and Scripts 

Next, notice that the=- operator is used to compare the two strings. 
In MPW, the=- and !- operators are used to test whether two strings 
match or not, whereas the == and != operators are used for the same 
purposes in arithmetical comparison operations, and in case-sensitive 
string comparisons. 

Finally, note that slash bars-not quotation marks-are used to 
delimit the Evaluate command's second parameter. That is because 
slash bars are regular expression delimiters, and the Evaluate command 
must search forward-on its own command line-for a match. This is 
an unusual use for the delimiters I ... /, which are seen more often 
enclosing the parameters of the Find, Replace, and Search commands. 

More examples illustrating the use of the Evaluate command are 
presented later in this chapter. 

~ Writing MPW Commands 

• Typing and Entering Commands 

Now that you have seen how the command language works, you may 
be interested in executing some MPW commands. One way to start is to 
use a set of commands to clear the text from a window. In this exercise, 
you will execute four commands: Duplicate, Open, Clear, and Close. 

• Clearing a Window 

When you launch MPW for the first time, the first thing displayed on 
the screen is a Worksheet window-a file that contains several pages of 
information about MPW. The text was apparently placed there by 
someone who wanted to create a "README" document for first-time 
MPW users and wanted to make sure that they noticed it. That may 
have been a good idea; when you start using a program as complex as 
MPW, you, probably need all the help you can get. And the MPW 
startup window does contain some information that you might want to 
look at from time to time. But once you know your way around in 
MPW, chances are that you will want to start off with a clean Worksheet 
each time you launch MPW, not a window full of information about the 
MPWsystem. 

Fortunately, you can easily clear the README text from your startup 
screen without losing it forever. All you have to do is copy it into some 
other file where it is safe, and then erase it from your Worksheet 



~ Writing MPW Commands 95 

window using the Duplicate, Open, Clear, and Close commands. And, 
as it happens, that's an operation that you can perform right now, with 
the help of MPW's command-line interpreter. 

1. Using the horizontal scroll bar on the right-hand side of your Work
sheet window, scroll all the way down to the bottom of the startup 
text. Then, just below the last line of the text, type this line: 

Duplicate Worksheet Worksheet.Orig 

Next, press the Enter key on your numeric keypad (not the Return 
key on the main part of your keyboard). MPW then copies the 
startup text that is on your Worksheet into a new text file named 
Worksheet.Orig. 

2. To verify that MPW has indeed carried out the command you 
issued, type the command line 

Open Worksheet.Orig 

and then press Enter. 

MPW responds to this command by opening a document window 
titled Worksheet.Orig, which should contain the text that you have 
copied into your newly created Worksheet.Orig file. 

3. Now that you know that the startup text in your Worksheet win
dow has been copied into a new text file called Worksheet.Orig, you 
can clear the text from your Worksheet window screen. At the 
bottom of your Worksheet.Orig window, use the • (Option-8) and oo 

(Option-5) symbols to type the command 

Clear • :oo 

and press the Enter key. The startup text in your Worksheet win
dow then disappears. Bring your Worksheet window to the front to 
see if this exercise worked. If it did, you now have an empty 
Worksheet window, and the text that used to be in it is now safely 
stored away in the Worksheet.Orig file. 

Let's examine how the exercise worked. When the special • char
acter (Option-8) is used alone in an MPW command, it represents 



96 ~ Chapter 2 Commands and Scripts 

the beginning of a text file. The oo symbol (Option-5) represents the 
end of a text file, and the colon (:) used between the two characters 
represents everything in between. So the command 

Clear • :oo 

means "Clear everything (from the document in the target 
window)." 

Note that the • and oo characters-like many special characters in 
the MPW command language-mean different things when they 
are used in different contexts. For example, when the • character is 
used inside slash delimiters, it stands for the beginning of a line, 
rather than the beginning of a file. Similarly, when the oo character is 
used inside slash delimiters, it denotes the end of a line, rather than 
the end of a file. Thus the command 

Find /•charlie/ 

searches for a line that begins with the string "charlie," and then 
selects, or highlights, any such string it finds. The command 

Find /charlieoo/ 

finds and highlights the string "charlie" if the string appears at the 
end of a line. 

When the oo character follows an option that calls for a number of 
lines, it means "an unlimited number." Hence, the command 

Replace -c oo /charlie/ "zebra" 

replaces the string "charlie" with the string "zebra" every time it 
occurs in a file. 

4. When you have copied your Worksheet window to the Work
sheet.Orig window, you can remove the Worksheet.Orig window 
from your screen by either clicking in its close box or typing 

Close Worksheet.Orig 

in your Worksheet window. 



Important ~ 

Ill> Writing MPW Commands 97 

MPW responds to the Close command by displaying a dialog box 
that asks you if you want to save the text in the Worksheet.Orig 
window. The answer is yes, so click the "Yes" button. MPW then 
removes the Worksheet.Orig window from your screen. 

The Replace Command. The Replace commandras its name 
indicates, replaces strings or expression in a file with other strings 
or expressions. Its syntax is 

Replace [-c count] selection replacement [window.] 

where the count option is a number specifyinghow inany 
occurrences of the selection parameter are to be replaced. Thus to 
replace 100 occurrences of the string "charlie" with tlie string 
"zebra," the command would be · · 

Replace -c 100 /charlie/ "zebra" 

If no -c option is specified, only the first occurrence of t;lle wotd 
"charlie" is replaced. · ·· · ·· · 

.., Options and Parameters in MPW Commands 

In the MPW command language, commands can be issued with or 
without options and parameters. The shortest kind of MPW command 
consists of a single word. For example, the command 

Beep 

causes the loudspeaker on your Macintosh to emit a sound. The 
command 

Date 

prints the date and time on your screen, in this format: 

Friday, April 6, 1991 1:24:45 PM 



98 ~ Chapter 2 Commands and Scripts 

You can also place an option-a letter preceded by a negative sign
after the Date command. For example, if you type 

Date -d 

MPW displays the date, without the time, like this: 

Friday, April 6, 1991 

Other options that can be used with the Date command are listed in 
Appendix A. 

.,.. Using Parameters with the Beep Command 

You cannot use options with the Beep command, but you can use 
parameters. By using parameters, in fact, you can make Beep do much 
more than generate a simple sound. The syntax of the Beep command is: 

Beep [note [,duration [,level]]] ... 

Beep's note parameter is either a number indicating the count field 
for the square wave generator-a mechanism described in the chapter 
titled "Summary of the Sound Driver" in Inside Macintosh-or a string 
in this format: 

[ n l letter [ # I b l 

The n variable in this string is an optional number between -3 and 3 
that specifies a number of octaves below or above middle C. The letter 
option specifies the note (A-G) to be played and is followed by an 
optional sharp (#) or flat (b) sign. Any sharps (#) that are used must be 
enclosed in quotation marks. Otherwise, MPW interprets them as 
comment characters. 

The duration parameter, which is optional, is given in sixtieths of a 
second, with the default being 15. The level is a number from 0 through 
255, with a default of 128. 

For each parameter given, Beep produces the specified note for the 
specified duration and sound level. As you have seen, if no parameters 
are passed, a simple beep is produced. But, if you enter this two-line 
command 

Beep 2E,40 '2C,40' 2D,40 lG,80 
Beep lG,40 2D,40 2E,40 2C,80 

Beep plays a familiar melody. 



..,. Redirecting Input and Output 99 

~ Writing a Script 

Bytheway .. I 

To turn one or more command lines into a script, or a command file, all 
you have to do is save what you have written into a file, and then 
execute the file by typing its name as a command. As an example, let's 
take the two command lines in the preceding example and save them as 
a command file. 

First, type the two lines into your MPW Worksheet window, like this: 

Beep 2E,40 '2C,40' 2D,40 lG,80 
Beep lG,40 2D,40 2E,40 2C,80 

Now select both lines; that is, highlight them by clicking and dragging 
your mouse. Copy the lines you have selected onto the Clipboard by 
typing Command-C. Then open a new window by typing Command
N. When you're prompted for a window name, name your new 
window Chimes. 

When your new window appears, paste your commands into it by 
typing Command-V. When you see your command lines in the window, 
save it by typing Command-Sand close it by typing Command-W. 

Now type the Chimes command into your worksheet window. If you 
hear the chimes, congratulations! You have just written a script-and 
created a command! 

Sounding Off. With the Beep command, you can write scripts that 
play theme songs when MPW performs specified operations. For 
example, in the modified UserStartup script presented in Chapter 
3, MPW imitates Big Ben-and then prinµ; a time stamp on the 
screen-to signal tha.t MPW has finished loading and an editing 
session has begun. 

Redirecting Input and Output 
By default, most MPW commands read their input from standard 
input, write their output to standard output, and write any errors that 
they may encounter to diagnostic output. MPW's standard input is text 
typed in a window, and its standard and diagnostic output appear 
following commands that are typed on the screen. MPW's redirection 
operators are shown in Table 2-11. 



100 .,,. Chapter 2 Commands and Scripts 

Table 2-11. MPW Redirection Operators 

Operator 

<name 
>name 

>>name 
;;::name 

;;::;;::name 

!;name 

!;!;name 

Meaning 

Standard input is taken from name. 
Standard output replaces the contents of name. The name file 
is created if it doesn't exist. 
Standard output is added to the contents of name. 
Diagnostic output replaces the contents of name. The name 
file is created if it doesn't exist. 

Diagnostic output is appended to name. The name file is 
created if it doesn't exist. 

Standard output and diagnostic output replace the contents 
of name. The name file is created if it doesn't exist. 

Standard output and diagnostic output are appended to 
name. The name file is created if it doesn't exist. 

MPW defines its standard input and output assignments with a 
reserved pathname that is used internally. MPW's reserved pathnames 
are used to identify pseudo-devices, or devices that do not actually 
exist, instead of to identify actual volume names. The names of pseudo
devices have special meanings when they are used in files opened by 
the shell (such as files assigning 1/0 redirection) or in files opened by 
MPW tools. Names of pseudo-devices are most often used in shell 
command files. 

One pseudo-device, identified as Dev:, is used to identify standard 
input and output. The pseudopathnames in which Dev: is used are 
listed in Table 2-12. 

Table 2-12. The pseudo-device Dev: 

Pseudopathnames 

Dev:Console 
Dev:Stdln 
Dev:StdOut 
Dev:StdErr 
Dev:Null 

Meaning 

Window from which command was executed 
Current assignment for standard input 
Current assignment for standard output 
Current assignment for diagnostic input 
Empty input stream; first-in, never-output stream; the 
"bit bucket" 



.., Redirecting Input and Output 101 

You can see what MPW's diagnostic output looks like by entering a 
command that contains an error. For example, if you type 

Echo "How are you this morning? # This won't work 

the shell responds with the error message 

### MPW Shell - "s must occur in pairs. 

You can override MPW's I/O defaults-the keyboard and the 
screen-by using I/O redirection, that is, by using the <, >,::>(Option-<), 
and I (Option-W) characters. The symbol> causes a command to write 
to the parameter that follows it, and the symbol < causes a command to 
read input from the parameter that follows it. For example, if your MPW 
directory contained a file named Puppyl and another file named 
Puppy2, the command 

Catenate Puppyl Puppy2 > TwoPuppies 

would concatenate files Puppyl and Puppy2 into a combined file named 
TwoPuppies. (More information about the Catenate command is 
presented later in this chapter.) 

If you had a file called Errors in your MPW directory, and the file 
contained just one string, "This is an error," the command 

Alert < Errors 

would display an alert dialog containing the line, "This is an error"-the 
contents of the Errors file. More information about the Alert command 
is presented in Chapter 3. 

The ~ symbol causes diagnostic output to replace the contents of the 
file that comes after it, whereas the I symbol causes both standard 
output and diagnostic output to be written to the target file. When the 
I symbol is used alone to write to a file, the diagnostic information that 
it writes replaces the previous contents of the file. A pair of I symbols 
written together (L,L) causes diagnostic output to be appended to the 
end of the file. For example, the command 

Asm -a MyFile.a LL LogFile 

assembles MyFile and writes both the output of the assembly and its 
diagnostic output to the LogFile file. 



102 ..- Chapter 2 Commands and Scripts 

One use for redirection is to write the desired information to a file, 
while throwing unneeded output away; that is, to write standard out
put to a file but discard diagnostic output, or to write diagnostic output 
but discard standard output. For example, the command 

Echo "Good Morning" > Dev:Null 

writes the diagnostic output of the Echo command to standard diag
nostic output, but tosses its standard output into the bit bucket. 

llJi. Variables in MPW Commands 
The MPW shell has a number of predefined variables that can be used 
in commands. It also allows you to declare any number of additional 
variables by using MPW commands. In MPW, variables are used for 

• creating shorthand notations for long names 
• providing various kinds of status information 
• placing local variables in scripts 
• naming parameters used by scripts and tools 
• providing shorter names for certain defaults used by the MPW shell 

You can define variables with the MPW Set command, and you can 
remove variable definitions with the Unset command. Once you have 
defined a variable with Set, you can use it in any command by enclos
ing its name in curly brackets. For example, the command 

Set SuperHero Darryl 

defines a user variable called SuperHero that has the value Darryl. 
When you have defined a variable in this way, you can obtain its value 
by using the Echo command, which writes text to standard output, nor
mally the screen. For example, if you enter the command 

Echo {SuperHero} 

MPW writes the string 

Darryl 

to your screen. 



.... Variables in MPW Commands 103 

.,. Kinds of MPW Variables 

MPW has a number of shell variables, or variables that are defined 
every time the shell is launched. MPW uses shell variables to define the 
pathnames of important files and directories and to set up defaults such 
as the typeface and type size that are used to display text in windows. 

Some shell variables are called predefined variables. They equate to 
pathnames used by MPW, and they are defined and maintained by the 
shell. Examples of predefined variables are {Boot}, which always 
equates to the volume name of your boot disk, and {Target}, which is 
always the full pathname of the Worksheet window. 

Other shell variables are known as startup variables. They include 
{MPW}, which is defined as the volume or folder that contains MPW, 
and {Libraries}, which equates the name of the directory that contains 
libraries shared by MPW's compilers. Startup variables are defined in 
the MPW UserStartup script, and you can redefine them to suit your 
own needs and preferences. 

There are also several other kinds of MPW variables. The kinds of 
variables used in MPW were listed in Table 2-5 . 

.,. Startup Variables 

Startup variables are defined in a command script called the Startup 
script, which is executed every time MPW is launched. By default, the 
Startup script sets {MPW} to the directory that contains the MPW shell. 
If you move MPW out of its folder and onto your desktop, you must 
change the value of {MPW} in the MPW Startup file. Procedures for 
modifying the Startup file are described later in this chapter. You can 
obtain the current values of shell variables by using the Echo command. 
For example, if you execute the command 

Echo {MPW} 

and your MPW application is stored in a directory called MPW 3.2 on a 
hard disk named HD, MPW responds by writing the line 

HD:MPW 3.2: 

to your screen. 



104 .,,. Chapter 2 Commands and Scripts 

Similarly, if you enter the command 

Echo {Boot} 

and the name of your Boot volume is HD, MPW answers 

HD: 

Table 2-13 lists the most important variables used by MPW. 

Table 2-13. Variables used by MPW 

Variables Set in the Startup Script 

Variable 

{MPW} 

{Commands} 

{Echo} 

!Exit} 

{Test} 

{Autolndent} 

{CaseSensitive} 

{Font} 

{FontSize} 

{Tab} 

{SearchBackward} 

{Search Type I 

{Search Wrap} 

{WordSet} 

{Alncludesl 

{Clncludesl 

Value 

Full pathname of the Macintosh Programmer's 
Workshop 

List of directories to search for commands 

Control the echoing of commands to diagnostic 
output 

Control script termination based on {Status} 

Control execution of tools and applications 

Auto indent setting used for new windows 

Control case sensitivity for searching 

Font used for new windows 

Font size used for new windows 

Tab size used for new windows 

Control direction of searching 

Control type of searching 
(literal/ word/ expression) 

Control wrap-around search 

Set of characters that constitute a word 

Directories to search for assembly language 
include files 

Directories to search for C include files 



.., Variables in MPW Commands 105 

Table 2-13. Variables used by MPW (continued) 

Variables Set in the Startup Script (continued) 

Variable 

{CLibraries} 

{Libraries} 

{Plnterfaces} 

{PLibraries} 

{Rlncludes} 

{Commando} 

Predefined Variables 

Variable 

{Active} 

{Aliases} 

{Boot} 

{Command} 

{ ShellDirectory} 

(Status} 

{SystemFolder} 

(Target} 

{User} 

{Windows} 

(Worksheet} 

{Directory Pa th} 

Value 

Directory containing C library files 

Directory containing shared library files 

Directory containing Pascal interface files 

Directory containing Pascal library files 

Directory containing Rez include files 

Name of the Commando tool 

Value 

Full pathname of current active window 

List of all defined aliases 

Volume name of the boot disk 

Full pathname of the last command executed 

Full pathname of the directory that contains the 
MPWShell 

Result of the last command executed (0 means 
successful) 

Full pathname of the system folder 

Full pathname of the target window 

Current user name (initialized to the "Chooser" 
name) 

List of current windows 

Full pathname of the Worksheet window 

List of common directories to speed changing 
directories 



106 .,.. Chapter 2 Commands and Scripts 

Table 2-13. Variables used by MPW (continued) 

User Variables 

Variable 

{NewWindowRect) 

{StackOptions) 

{TileOptions) 

{ZoomWindowRect) 

{IgnoreCmdPeriod) 

Parameter Variables 

Variable 

{Ol 

{1), {2l, ... , {nl 

{#l 

{Parametersl 

{"Parameters"l 

Value 

Window rectangle used for new windows (top, 
left, bottom, right) 

Options used by the Stack Windows menu 
command 

Options used by the Tile Windows menu 
command 

Window rectangle used for a zoomed window 
(top, left, bottom, right) 

Control use of Command-. during critical sections; 
default value is 1 (Command-. ignored during 
critical sections of MPW operations) 

Value 

Name of the currently executing script 

First, second, and nth parameter to the script 

Number of parameters 

Equivalent to {1), {2), ... , {nl 

Equivalent to "{1)," "{2)," ... , "In)" 

..,_ Defining Variables with the Set Command 

This is the syntax of the Set command, which is used to define variables: 

Set variable value 

In a Set command, the variable named in the first parameter is set to 
the value specified in the second parameter. For example, the command 

Set MyName Patrick 

defines a variable called MyName, and sets its value to Patrick. 
Once you have executed this command, you can use the {MyName} 

variable in place of the word "Patrick" in any MPW command. 



~ Variables in MPW Commands 107 

When you want to substitute a variable for a value, however, you 
must remember to enclose the name of the variable in curly brackets. 
For example, if you have executed the command 

Set MyName Patrick 

and then you execute the command 

Echo {MyName} 

MPWwrites 

Patrick 

to the screen. 
But, if you enter the command 

Echo MyName 

MPW responds with 

MyName 

rather than 

Patrick 

because you have not enclosed the name of the variable in curly 
brackets. 

You can also use the Set command with just one parameter-the 
name of a variable that you want identified. MPW then writes the value 
of the variable you have specified to standard output. For example, if 
you execute the command 

Set MyName 

MPW displays the line 

Set MyName Patrick 



108 Ill> Chapter 2 Commands and Scripts 

Ill> The Unset Command 

You can delete variable definitions with the Unset command. Its syntax 
is: 

Unset [name ... ] 

where name is the variable to be deleted. 

Warning .,. Be Careful with the Unset Command. When you use Unset, you 
must be careful to specify the name of a variable as a parameter. If 
you use the Unset command -w:ithout any parameters, MPW 
deletes all of its variable definition~and, unless yol.l .are sure that 
this is what you want, it could be a: disaster. · · 

..,. Parameter Variables 

MPW has a special set of parameter variables, or variables that equate 
to parameters in scripts. MPW's parameter variables are listed in Table 
2-13, presented earlier in this chapter. 

One parameter variable, {O}, is always set to the name of the script 
currently being executed. Numbered variables that have digits other 
than zero between the curly brackets-listed in the table as {1}, {2}, ... , 
{n}-equate to the first, second, and nth parameter to the currently 
executing script. 

The {#} variable equates to the number of parameters in the script 
currently being run. 

The {"Parameters"} variable is equivalent to all of the numbered 
parameters, with each one enclosed in quotation marks, that is, "{1}" 
"{2}" ... "In)". It can be used to retrieve all of the parameters in a script 
when the exact number of parameters is not known, and when some of 
the parameters may contain spaces and thus should be enclosed in 
quotation marks. 

Using Parameter Variables 

To observe how parameter commands work, type this command in a 
new window and save it into a file named Hex: 

Echo "Evaluate -h {l} + {2}" >> "{Active}" 



..,_ Variables in MPW Commands 109 

Then type this line into your Worksheet window, and execute it: 

Hex Ox20 Ox20 

If MPW prints the result of this calculation on your screen, you have 
just written a program that creates a hexadecimal calculator! And it isn't 
a bad one, either. You can add two numbers easily, without having to 
abide by the contorted syntax of MPW's Evaluate command. You can 
enter numbers in hexadecimal notation (preceded by either the prefix 
Ox or the prefix $); in binary notation (using the prefix Ob); in octal 
notation (with the prefix O); or in decimal notation (with no prefix at 
all). Your hex calculator always prints its results in hex. Most important, 
you now know how to use parameter variables-and you have written 
a command that accepts variables and uses them. 

Improving Your Hexadecimal Calculator 

The Hex script could be improved in many ways. As it stands now, all 
it can do is add. But if you expand the script to read as shown in Listing 
2-2, you can use it to perform a number of different kinds of 
arithmetical and logical operations. 

Listing 2-2. A hexadecimal calculator 

If 'Evaluate "{2}" =- /Plus/' 
Echo 'Evaluate -h {1} + {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /Minus/' 
Echo 'Evaluate -h {1} - {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /Times/' 
Echo 'Evaluate -h {1} * {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /DivBy/' 
Echo 'Evaluate -h {1} + {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /ANDWITH/' 
Echo 'Evaluate -h {1} AND {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /OR/' 
Echo 'Evaluate -h {1} 11 {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /SHIFTL/' 
Echo 'Evaluate -h {1} << {3}' >> "{Active}" 

Else if 'Evaluate "{2}" =- /SHIFTR/' 
Echo 'Evaluate -h {1} >> {3}' >> "{Active}" 

End 



11 O ..., Chapter 2 Commands and Scripts 

For example, the command 

Hex Oxl OR Ox2 

now yields the output 

Ox3 

which is the result of performing a logical OR operation on the 
numbers Oxl and Ox2. 

You may notice that in the Hex script, the words "AndWith" and 
"DivBy" are used as variables standing for operators instead of the more 
conventional words "AND" and "DIV." That's because AND and DIV 
are reserved words that are used as real operators by MPW. 

You also may notice that the Hex script does not run very fast; MPW 
is not a superpowered command evaluator. But Hex does provide a 
simple illustration of how parameter variables and structured con
structs are used in the MPW command language. 

More information about MPW's string, arithmetical, and logical 
operators is presented in Chapter 4. 

~ Scopes of Variables 
MPW can recognize variables that were initialized or modified by the 
Set command only while they are in the current context. If you use the 
Set command interactively-that is, in a command line while typing at 
the keyboard-then the variable that you have set is recognized only by 
other commands you enter at the keyboard. Similarly, if you use Set to 
initialize a variable in a command file, or script, MPW recognizes the 
variable only in that script. 

When you initialize variables by typing them in on a command line, 
they also have a short lifespan; they are wiped out of memory as soon 
as you exit MPW. However, one set of variables is initialized every time 
you launch MPW, and you can customize it to suit your own needs and 
preferences. The procedures for finding and changing these variables 
are explained later in this chapter . 

.,.. Extending the Scope of a Variable 

You can extend the scope of a variable by using the Export and Execute 
commands. 



~ Scopes of Variables 111 

~ The Export Command 

The syntax of the Export command is 

Export name . .. 

where name is a variable or list of variables to be exported. 
When you use Export in a script, the parameter name is exported to 

all scripts enclosed by the script in which you execute the Export 
command. In other words, variables exported by the Export command 
are visible to nested scripts. 

The Export command does not work in reverse, so you cannot use 
it-or any other command-to extend the scope of a variable to an 
enclosing script. 

If you want to define a variable globally so that it is recognized by all 
scripts and by all commands typed interactively on command lines, 
you can define it in the MPW Startup script or your own UserStartup 
script, and then export it to nested scripts using the Export command. 
The Startup script and the UserStartup script enclose all other scripts, 
so your variable is then global; it is visible to all other scripts and to the 
MPW command interpreter, which processes command lines. 

For example, you could include these lines in your User?tartup 
script: 

Set Aincludes "{MPW}Interfaces:Aincludes:" 
Export Aincludes 

In this pair of commands, a variable called {Aincludesl is created and 
defined as the pathname {MPW}Interfaces:Aincludes, and it is made 
available to all scripts and programs running under MPW. 

~ The Unexport Command 

The Unexport command reverses the effects of Export; if you have used 
the Export command to export a variable or a list of variables, you can 
use the Unexport command to remove any desired variables from the 
exported list. Unexport has the same syntax as the Export command. 

~ The Execute Command 

The syntax for the Execute command is 

Execute script 

where script is the name of the script to be executed. 



112 lli> Chapter 2 Commands and Scripts 

In MPW, you can run a script simply either by inserting its name into 
another script or by entering its name as a command on a command 
line. However, if you merely type the name of a script to run it, the 
script's variable definitions, exports, and aliases are local in scope and 
no longer exist after the script has been executed. 

If you want the variables in a script to be recognized by nested scripts 
and by the MPW command interpreter, you should run the script in 
which the variables are defined using the Execute command, rather than 
by simply typing the script's name. If the script that you execute in this 
way exports its variables with the Export command, they then become 
visible to the script that contains the Execute command. 

When you run a script using the Execute command, the script is 
executed as if its contents appeared on your command line instead of 
the Execute command. That means that the file executes in the current 
scope, rather than in its own scope. Another way of expressing this idea 
is to say that the context in which MPW is operating changes to the 
context of the executed file. The variables and aliases defined and 
exported in the executed script thus become visible to the script that 
contains the Execute command. In addition, the executed script's vari
able definitions and aliases continue to exist after it finishes executing, 
rather than disappearing after it has been run. 

When you have made changes in a Startup or UserStartup script, you 
should always run it using Execute to test the changes you have made. 
If you run an altered Startup or UserStartup script by simply typing its 
name, any new variables or aliases that you have added to your com
mand script cease to exist after they have been executed. 

For this reason, the command that the Startup script uses to call the 
UserStartup script is 

Execute "{ShellDirectory}UserStartup" 

rather than simply 

"{ShellDirectory}UserStartup" # this isn't safe 

If the latter form were used, the Set, Export, and Alias commands 
defined in the UserStartup script would have no effect. 



IJ>- More About the Echo Command 113 

~ More About the Echo Command 
The Echo command has been used in many examples in this chapter, 
and it is such an important command that it could have been used in 
many more. In MPW, Echo is the command that is most often used to 
pass literal strings to commands. So let's now take a closer look at the 
Echo command. 

Echo takes one or more parameters that are separated by spaces and 
may optionally be enclosed in quotation marks. The command writes 
its parameters, followed by a Return, to MPW's standard output (the 
active window, if no I/0 redirection is used). If you do not use any 
parameters, Echo writes only a Return. 

The syntax of the Echo command is: 

Echo [-n] {parameter ... ] [>parameters ... ] 

When the -n option is used with the Echo command, it means, "Don't 
write a Return following the parameters." That means that the insertion 
point-the location of the text cursor-remains at the end of the output 
line after the text to be echoed is written. The -n option itself is not 
echoed. 

To see how Echo works with a one-word parameter, just enter the 
command 

Echo hello 

Echo then writes 

hello 

to your screen. 
If you want to pass a string to Echo, you can enclose it in quotes. For 

example, if you enter 

Echo "Hello, world" 



114 _., Chapter 2 Commands and Scripts 

Echo writes 

Hello, world 

on your screen. 

As you have seen, Echo can also be used with variables. For example, 
if you type the command 

Echo {Status} 

Echo writes the current value of the {Status} variable, that is, the status 
of the last command executed. 

Another way to use Echo is to issue a command like this: 

Echo "".a 

In response to this command, Echo writes the names of all files in the 
current directory that end with ".a". Issuing this kind of command 
might be a good precaution to take before executing a potentially 
dangerous command-such as one to delete files-with the argument 
"::::::.a". 

In this example, the"" character (Option-X) is a wildcard character-a 
character that can be substituted for other characters in a command. 
Specifically, the "" character stands for any string of zero or more char
acters. When it is used in a file name, as in this example, it is known as 
a file name generation operator. File name generation operators are 
described earlier in this chapter and were listed in Table 2-7. More 
information about wildcard characters is presented later in this chapter, 
and in Chapter 4. 

Echo can be used with redirection operators. For example, enter this 
command: 

Echo -n > EmptyFile 

If EmptyFile exists, the Echo command deletes its contents; if the file 
does not exist, it is created. 

~ The Quote Command 
The Quote command, like the Echo command, writes its parameters, 
separated by spaces and terminated by a Return, to standard output. 
When Quote is used, however, parameters containing characters that 



~ The Quote Command 115 

have special meaning to the shell's command interpreter are placed 
inside single quotation marks. If no parameters are specified, only a 
Return is written. 

Quote is identical to Echo, except for its treatment of parameters that 
contain special characters. Quote is especially useful when you want to 
use shell commands to write a script. 

These are the special characters that the Quote command places 
inside quotation marks: 

Space, Tab, Return and Null, plus: 
#;&I ()a 1 "/\{}'?==[J+*«»®<>;;:: 

The meanings of these characters are explained in Chapter 4. 
Consider the following example of how the Quote command is used. 

Suppose you had a file on a disk called My Program (note the space 
between the words). If you entered the command 

Echo ==.a 

MPW would print the names of all the files on the disk that ended in 
".a". For example, 

Sample.a Count.a My Program.a 

But if you entered 

Quote ==.a 

the result would be 

Sample.a Count.a 'My Program.a' 

# File name not in 
# quotes 

# File name in 
# quotes 

Note that since the output of the Quote command, unlike the output 
of Echo, is enclosed in quotation marks, it could be used as a parameter 
in another command. 



116 ..,, Chapter 2 Commands and Scripts 

By the Way ~I An Easy Way to Look Up Special Characters. Although there are 
plenty of tables around that can show you the keyboard 
equivalents of special characters, there is an easy way to find out 
how to type a special character without consulting a table. Just go 
to the Apple menu on your menu bar and select the desk accessory 
called "Key Caps." It shows you a Macintosh keyboard. Press the 
Option key, and the keys on the Key Caps keyboard change to the 
special characters that they print when the Option key is held 
down. Press Option-Shift, and all the Option-Shift characters are 
displayed. The Key Caps keyboard, in all three of its modes, is 
shown in Figures 2-7 through 2-9. 

You can also use the Key Caps desk accessory to change fonts and 
to perform the standard Macintosh cut, copy, and paste 
commands. When you change fonts with the Key Caps desk 
accessories, the keys on the DA change from their previous font to 
the font you have selected. So you can use Key Caps to see what 
special keyboard characters are available in any font you may want 
to select. 

Key Caps 

Use Option and Shift to change the keyboard. 

Figure 2-7. The Key Caps DA with no keys pressed. 

8 9 + 

5 6 

1 2 3 

··~····i;i;i;:::n;;~;;;:l!ii 



~ The Quote Command 117 

Key Caps 

8 9 llll D 
!:i !l------'-r-.......,.__._,____._~-........,_-___.-r--"-..--'-r----'-~'-r---' 

1 ill 1--~~--'--,--'-:,........L-'"-'--'-_._-----'-r--'-r--'-r----'-~.....--' 
Figure 2-8. The Key Caps DA with the Option key pressed. 

4 5 6 

1 2 3 

O D 

Figure 2-9. The Key Caps DA with the Option and Shift keys pressed. 



118 liJ> Chapter 2 Commands and Scripts 

~ Aliases 
You can rename any MPW command with the shell's Alias command. 
When you assign a command a new name with Alias, it still responds 
to its old name, but it also answers to the new name you have given it. 

Suppose, for example, that you were accustomed to using MS-DOS 
or VAX/VMS and wanted to use the Type command instead of the 
Echo command to write output to your screen. You could simply enter 
the command line 

Alias Type Echo 

and a new command name, Type, would be created. You could then 
enter the command line 

Type Hello there 

and MPW would write 

Hello there 

to your screen. 
The syntax for the Alias command is 

Alias [name [word ... ]] 

where name is an alias for the word, or list of words, that follows it. 
Once the Alias command has been issued, name is recognized by the 
shell as a synonym for word ... and is substituted in its place. 

If you use only the name parameter, the Alias command writes any 
alias definition that is associated with name to standard output, nor
mally the screen. If you do not use any parameters, Alias writes a list of 
all aliases and their values . 

..,. The Unalias Command 

Everything that can be done with Alias can be undone with MPW's 
Unalias command. 

When you want to delete an alias, all you have to do is enter the 
command 

Unalias name 

and the alias specified in the parameter name is deleted. 



... The Startup and UserStartup Scripts 119 

It can be a dangerous practice to use an Alias command without any 
parameters. If you enter the command 

Unalias 

without a parameter, the shell deletes all aliases currently in effect. 
Some additional uses of the Alias and Unalias commands are listed 

in Table 2-14. 

Table 2-14. The Alias and Unalias commands 

Command 

Alias name word ... 
Alias name 
Alias 
Unalias name 

Unalias 

Effect 

Name becomes an alias for the word or list of words. 
Displays any alias that may be associated with name. 
Displays all alias definitions. 
Removes any alias definition that may be associated 
with name. 
Removes all alias definitions. 

"'°' Making an Alias Permanent 

If you invoke the Alias command by typing it on a command line, the 
alias you have created is recognized only by other commands typed 
interactively and is wiped out of memory altogether as soon as you exit 
MPW. If that were the only way you could use Alias, it would not be of 
much value. 

Fortunately, there is a way to create aliases that are recognized by 
MPW in the same way that it recognizes its own native list of command 
names. You can create an alias, make an alias global, and make it avail
able for your use every time you launch MPW by initializing it in a 
special script called the UserStartup script. 

9JJI. The Startup and UserStartup Scripts 
When MPW is launched, it executes a special command script called 
the Startup script. The Startup script, like all MPW scripts, is a text file 
that is executed by the shell. The Startup script initializes a set of 
variables used by MPW, does some other housekeeping work, and then 
calls a second command script called the UserStartup script. 



120 ~ Chapter 2 Commands and Scripts 

The UserStartup script builds the Project, Directory, and Build menus. 
It can also be used to define customized aliases and variables, and 
customized menus and menu items. 

As mentioned earlier, MPW has a number of shell variables that it 
uses to perform important operations such as searching for pathnames 
and creating screen displays. 

Some shell variables, called predefined variables, contain pathnames 
that are often used by the shell. Predefined variables are automatically 
set to their proper values before the Startup script is executed. If their 
values change while MPW is running, their definitions are changed 
automatically. There is no way that you can change their values, and 
there is no reason that you would want to try. 

Some of MPW's predefined variables are {Boot}, which always con
tains the name of the boot disk; {SystemFolder}, which is always set to 
the directory that contains the System Folder and Finder; and 
{ShellDirectory}, which is always set to the directory that contains the 
MPW shell. The predefined variables used by MPW are listed in Table 
2-15. 

Table 2-15. Predefined variables 

Variable 

{Boot} 

{SystemFolder} 

{ShellDirectory} 

{Active} 

{Target} 

{Worksheet} 

{Status} 

{User} 

Definition 

The boot disk 

The directory that contains the System Folder and the 
Finder 

The directory that contains the MPW shell 

The active (topmost) window 

The target (second topmost) window 

The name of the Worksheet window 

The result of the last command executed (zero if no 
error, nonzero if an error was returned) 

Automatically defined to the name that appears in 
the Chooser 

Other shell variables, called startup variables, are defined in the 
Startup script. Some of the startup variables are {MPW}, which equates 
to the volume or folder that contains MPW; {Commands}, which con-



Ill> The Startup and UserStartup Scripts 121 

tains a list of directories to search for commands; and {Libraries}, which 
equates to a directory that contains libraries shared by MPW's 
compilers. 

Startup variables, unlike predefined variables, can be redefined by 
the MPW user. You can set any startup variable to any value you like by 
modifying the UserStartup script. MPW's startup variables are listed in 
Table 2-16. 

Table 2-16. Variables defined in the startup script 

Variable Definition 

{MPW} The volume or folder containing the Macintosh 
Programmer's Workshop. If you move the MPW Shell 
to the desktop, you should redefine this variable to be 
"{Boot}MPW:" Initial setting is MPW"{ShellDirectory}". 

{Commands} Directories to search for commands. Initial setting is 
":,{MPW}Tools:,{MPW}Scripts:". 

{Aincludesl Directories to search for assembly language include 
files. Initial setting is "IMPWllnterfaces:Aincludes:". 

{Libraries} Directory that contains shared libraries. Initial setting 
is "IMPW}Libraries:Libraries:". 

{Cincludesl Directories to search for C include files. Initial setting 
is "{MPW} Interfaces:Cincludes:". 

ICLibraries} Directory that contains C libraries. Initial setting is 
"IMPWl Libraries:CLibraries:". 

IPinterfaces} Directories to search for Pascal interface files. Initial 
setting is "{MPWllnterfaces:Pinterfaces:". 

{PLibraries} Directory that contains Pascal libraries. Initial setting 
is "{MPW}Libraries:PLibraries:". 

{Rincludesl Directory that contains Resource include files. Initial 
setting is "{MPWllnterfaces:Rlncludes:". 

{CaseSensitive} If nonzero, pattern matching is case sensitive. Initial 
setting is 0. 

{SearchBackwardl If nonzero, search goes backwards. Initial setting is 0. 



122 ~ Chapter 2 Commands and Scripts 

Table 2-16. Variables defined in the startup script (continued) 

Variable 

{Search Wrap} 

{Search Type} 

{Tab} 

{Font} 

{FontSize} 

{Autoindent} 

{WordSet} 

{PrintOptions I 

{Exit} 

{Echo} 

{Test} 

Definition 

If nonzero, search wraps. Initial setting is 0. 

Specifies the default searching type. (0 /literal, 
I/word, 2/regular expression). Initial setting is 0. 

Default tab setting for new windows. Initial setting 
is 4. 

Default font for new windows. Initial setting is 
"Monaco." 

Default font size for new windows. Initial setting is 9. 

If nonzero, auto indentation is the default for new 
windows. Initial setting is I. 

Character set that defines words for searches and 
double-clicks. Initial setting is 'a-zA-Z_0-9'. 

Options used by the Print Window and Print 
Selection menus. Initial setting is '-h'. 

If nonzero, command files terminate after the first 
error. Initial setting is I. 

If nonzero, commands are echoed before execution. 
Initial setting is 0. 

If nonzero, tools and applications are not executed. 
Initial setting is 0. 

~ Modifying the Startup Script 
One startup variable that you can redefine is {MPW}, which equates to 
the name of the directory that contains the MPW shell. For example, if 
you move the MPW shell from its default directory onto your desktop, 
you must change the value of {MPW} in the Startup file. 

You can also make other changes in MPW's directory structure-and 
if you do, you must modify other startup variables so that MPW can 
find the files and directories whose locations you have changed. 



Note ~ 

~ Modifying the Startup Script 123 

Should You Modify Your Startup Scripts? Engineers at Apple 
strongly discourage MPW users from modifying the MPW Startup 
and UserStartup scripts. As an alternative, Apple says that if you 
want to modify MPW's startup procedures, you should create an 
auxiliary UserStartup script (a script with a file name written in the 
format VserStartup•fileName, as explained later in this chapter). 

However, :rnany MPW wizards do e.diUheir Startup and UserStartup 
scripts instead of creating auxiliary scripts. The reason is simple: The 
more startup scripts you use, the longer it takes MPW to start up 
when it is launched. So some MPW experts combine their Startup 
and UserStartup scripts into a singlescript, as outlined later in this 
chapter, and don't use any UserStartup script at all. 

As you can see by looking at the listings at the end of this chapter 
and Chapter 3, I have modified both my Startup script and my 
UserStartup script, and my MPW system works fine. I also have 
some auxiliary UserStartup scripts,which I use to set up my MPW 
environment in very special ways from time to time. 

Should you modify your Startup and UserStartup scripts? That's 
up to you. But if you do, be sure to make copies of your original 
scripts-and store your copies where they will be very safe-before 
you start modifying anything. If you do that, I don't see how you 
can get yourself into toomuch·trouble. 

~ Modifying the MPW Directory Structure 

When you install MPW, the Installer sets up an MPW folder that has 
exactly the kind of directory structure that the Startup script expects. 
Consequently, when MPW carries out an operation such as compiling or 
linking a program, it can find the interface and library files that it needs 
by using pathname variables that are defined in the Startup script. 

Once MPW is installed, you can rearrange the files and folders inside 
the MPW folder in any way you like. But if you modify the MPW direc
tory structure in this way, you must redefine the startup variables that 
tell MPW where its directories are. Otherwise, MPW cannot find the files 
it needs, and it returns an error message when you try to compile a 
program. 

One possible reason for modifying the MPW directory structure 
might be to categorize the files and folders inside the MPW folder by 
language. If you were low on disk space (and who isn't?), you could 



124 ~ Chapter 2 Commands and Scripts 

increase the space available on your hard disk by using a language
based directory system. 

Suppose, for example, that your MPW system included an assembler, 
a C compiler, and a Pascal compiler. You could then set up one folder 
for each language in your system: A folder called AFolder for assembly 
language interfaces and libraries; a folder called CFolder for C 
interfaces and libraries; and a folder called PFolder for Pascal interfaces 
and libraries . You could also add a folder called RFolder to hold 
Include files used by the Resource Manager (for more information on 
the Resource Manager, see Chapter 6) . 

If you arranged your directory structure in this way, you could tem
porarily remove from your hard disk any language folders that you 
would not be needing for a while, and you could move them back to 
your hard disk at any time you needed them again. For example, if you 
were working on a project written in C and did not plan to do any work 
in assembly language or Pascal for a while, you could temporarily 
remove the AFolder and PFolder from your hard disk, which would free 
about 1-1 / 2 megabytes of disk space for other uses. Later, if you went 
back to a project written in Pascal or assembly language, you could 
restore its folder to your hard disk and perhaps remove your C folder. 

Figures 2-10 through 2-12 show how to rearrange the MPW directory 
structure into a language-based configuration. Figure 2-10 illustrates 
MPW's original directory structure, and Figure 2-11 shows a directory 
structure that has been reconfigured into a language-based arrange
ment. Figure 2-12 shows the contents of the new folders AFolder, 
CFolder, PFolder, and RFolder, in the language-based configuration. 

~D MPW 3.2 0~ 
17 items 39 ,088K in disk 277K available 

~ ~ CJ CJ CJ 00 00 
MP\'/ Shell Ex omples Interfaces Libt·ot·ies startup Quit 

00 CJ 00 D 00 00 
MP\'/ .Help ROM Maps Resume Sct·ipts \'/orkshee\ 

00 D CJ 
Suspend Sy sEtTS .EtT Tools 

Figure 2-10. Default directory structure 



~ Modifying the Startup Script 125 

§0 MPW 3.2 0§ 
21 items 39, 1 09K in disk 256K av ail•b le 

~ CJ CJ CJ CJ CJ CJ 
MP\'i Shell AFoldet· CF older PF older RF older ROM Mops Scripts 

CJ CJ CJ 00 00 00 00 
Tools Ex•mples Libr •t·ies St•rtup UserSt.rtup \·/ot·ksheet MP\'/ .Help 

00 00 00 00 D 
Ri;-sume Suspend Q1JH Startup .orig Sy sErrs .En· 

Figure 2-11 . Revised directory structure 

D CF older 0 D AF older 0 
3 items 39, 1 21 K in disk 244K • "t.•il•b le 3 items 39 , 1 211( in disk 244K • v •il•b le 

CJ CJ CJ 
Q 

CJ CJ CJ 
CExarnples Clncludes CL ibt· •t·ies AEx•mples A Includes AStt·uctMac::: 

K) 
91 12 l2J 

D PF older 0 D RF older 0 
3 items 39, 1 21 K in disk 244K •v•ihble 1 item 39, 1 21 K in disk 244K av •il•b le 

CJ CJ CJ CJ 
F'Ex•mples P lntet·faces Plibr•ries Rlncludes 

Figure 2-12. Contents of the new directories 



126 .,,. Chapter 2 Commands and Scripts 

Note ... 

Listing 2-4, at the end of this chapter, is a Startup script that has been 
modified to reflect the changes shown in Figures 2-10 through 2-12. The 
script has also been modified to display text in new windows in 
10-point Courier type instead of in 9-point Monaco. These two modifi
cations are explained in the next section . 

..,. Changing the MPW Screen Display 

You can edit the Startup script to change the way MPW prints docu
ments and displays documents on the screen. By redefining variables in 
the Startup script, you can change such defaults as the typeface that 
MPW uses to display text in new windows; the tab settings used in 
MPW windows; the way MPW formats printed output; and the direc
tory structure that MPW uses to find the files that it runs. 

For example, if you want MPW to display files that you create in 10-
point Courier type rather than in 9-point Monaco (the default), you can 
change the portion of the Startup script that reads 

# {Font} - Default Font for new windows. 
Set Font Monaco 
Export Font 

# {FontSize} - Default font size for new windows. 
Set FontSize 9 
Export FontSize 

to read 

# {Font} - Default Font for new windows. 
Set Font Courier 
Export Font 

# {FontSize} - Default font size for new windows. 
Set FontSize 10 
Export FontSize 

Which Font Should I Use? MPW wizards recommend that you 
use Monaco, Courier, or some other monospaced font as your 
default MPW font because the use of fancier but proportionally 
spaced fonts can make spacing in source code pretty hard to 
handle. 



... Modifying the Startup Script 127 

.,_ Redefining the {WordSet} Variable 

Another variable that you can modify in your Startup script is 
{WordSet}, which sets the rules for defining a word. In the MPW 
Startup script, the {WordSet} variable is defined this way: 

Set WordSet 'A-Za-z 0-9' 

According to this definition, a word is composed of any combination 
of the uppercase letters A through Z, the lowercase letters a through z, 
the numerals 0 through 9, and the underscore character (_). When 
{WordSet} is defined in this fashion, double-clicking on a word high
lights all the alphabetic and numeric characters that it may contain. 
Any underscore character in the word is also considered a part of the 
word. But, if the word contains any special character such as a period or 
a colon, MPW stops highlighting the word at that point and does not 
select the special character. 

If you want to use double-clicking to select pathnames, which may 
contain colons and periods, you can redefine the {WordSet} variable in 
your Startup script with a line like this: 

Set WordSet 'a-zA-Z 0-9.:' 

You can then select a complete pathname (as long as it contains no 
spaces) by double-clicking on it in a window . 

.,_ Making and Saving Your Modifications 

To modify the Startup script, first open it either by selecting Open from 
the File menu or by entering the command 

Open Startup 

You can then use standard Macintosh editing functions to change the 
values of any of the variables that the Startup script defines. Then you 
can save the script in its new form. 

Before you make any changes in your Startup file, be sure to copy 
your original Startup script into some other folder for safekeeping, 
especially if it has been modified. 



128 .... Chapter 2 Commands and Scripts 

.... How Startup Calls UserStartup 

Each time the Startup script defines a shell variable, it exports the 
variable's definition to other scripts by using the Export command, 
which was described earlier in this chapter. 

When all shell variables have been defined and exported, the Startup 
script executes the UserStartup script with this command: 

Execute ''{ShellDirectory}UserStartup" 

When the UserStartup script is executed, it builds three menus 
(Project, Directory, and Build) on the MPW menu bar. Then, if you wish, 
UserStartup defines any aliases, variables, menus, or menu items that 
you want to create for your own use. If you modify the UserStartup 
script by adding definitions of customized aliases, variables, menus, 
and menu items, they are initialized and ready to use every time you 
launchMPW. 

~ Modifying the UserStartup Script 
You can fine tune MPW to match your own needs and preferences by 
modifying the UserStartup script. The most common reasons for 
modifying the UserStartup script are to initialize user-defined aliases 
and user-defined variables, and to add custom menus and menu items 
to the MPW menu bar. 

The procedures for modifying the UserStartup script are the same as 
those used to modify the Startup script. Just open your UserStartup 
script, make your modifications, and save the script in its modified form. 

In the next sections, you will get an opportunity to create some 
aliases and define some variables by modifying the UserStartup script. 
In Chapter 3, you will see how you can modify the UserStartup script to 
create your own menus and menu items . 

..,. Creating Aliases in the UserStartup Script 

MPW has many commands that perform the same functions as com
mands that are used in other programming environments, but have 
different names. For example, the MPW Echo command works much 
like the command that has the name "Type" in UNIX and MS-DOS. 

If you have been using a non-Macintosh programming environment, 
and are accustomed to using the Type command rather than the Echo 
command, you can teach MPW what Type means by initializing an 



~ Modifying the UserStartup Script 129 

alias called Type, and defining it as Echo. Then, if you have trouble 
remembering the MPW Echo command, you can use Type instead. 

You can add the alias Type to your UserStartup script by opening the 
UserStartup script, scrolling down to the bottom of the script, and 
typing a line like this: 

Alias Type Echo 

You can create more aliases by typing in additional alias definitions, 
one to a line. When you have created all of the aliases you want, you 
can save your modified UserStartup script, execute it using the Execute 
command, and start using your new aliases in MPW commands. 

Listing 2-3 is a selection of other aliases that you can add to your 
UserStartup file. They are a potpourri of keyboard shortcuts and UNIX, 
MS-DOS, and Apple ProDos commands. The complete UserStartup file 
from which they were taken is presented at the end of Chapter 3. If you 
are accustomed to using a non-MPW programming environment, you 
can probably think of a lot of other aliases that you would like to 
define. 

Listing 2-3. Aliases in a modified UserStartup script 

Alias Type Echo # write text to standard 
# output 

Alias Dir Files # list files and directories 

Alias CD SetDirectory # change default (current) 
# directory 

Alias ChDir SetDirectory # change default (current) 
# directory 

Alias Create New # open new window (file) 

Alias Cpy Duplicate # copy a file 

Alias Dup Duplicate # copy a file 

Alias cp Duplicate # copy a file 

Alias MD NewFolder # create new directory 

Alias MkDir NewFolder # create new directory 

Alias Cls Clear •:= #clear screen (target 
# window) 



130 .... Chapter 2 Commands and Scripts 

Listing 2-3. Aliases in a modified UserStartup script (continued) 

Alias ar Lib 

Alias cat Catenate 

Alias cc 'C -mbg off' 

Alias cmp Equal 

Alias diff Compare -b 

# make library file 

# shorter than Catenate 

# compile C program, MacsBug 
# off 

# compare files & directories 

#compare, ignoring minor ... 

# ... differences in white 
# spaces 

Alias df Volumes -1 # list volumes in long format 

Alias expr Evaluate # evaluate an expression 

Alias grep Search # good old grep 

Alias 11 Files -x tckrbm # list files and 

Alias lr Files -m 5 -r 

Alias ls Files -m 5 

Alias man Help 

Alias mv Move 

Alias pr Print 

Alias rm Delete 

Alias source Execute 

Alias tar Backup 

Alias tr Translate 

Alias wc Count 

# directories ... 

# ... in a nice format 

#list files, directories ... 

# ... and subdirectories 

# list files in 5 columns 

# Help 

# Move files/directories 

# Easier to type 

# Two letters for six 

# Execute script in current 
# scope 

# Saves keystrokes 

# Saves more keystrokes 

# Count lines and characters 

..,.. Defining Variables in the UserStartup Script 

In the UserStartup script, you can define several user variables that are 
initialized by MPW at launch time but are not specifically initialized in 
the Startup script. Although you will not find these variables anywhere 
in the Startup script, you can still define them yourself. They are 



~ Modifying the UserStartup Script 131 

{NewWindowRect}, which sets the coordinates of new windows; 
{ZoomWindowRect}, which sets the zoom coordinates of new windows; 
{StackOptions}, which sets parameters for the StackWindows command; 
{TileOptions}, which sets parameters for the TileWindows command; 
and {lgnoreCmdPeriod), which determines whether or not Command
Period, the standard Macintosh "Halt" keystroke sequence, is recognized 
during critical operations (it's a good idea to stay away from that one). 

You can set the values of MPW's user variables and include those 
values in your UserStartup script by executing a shell script called 
UserVariables. To run the UserVariables script, you simply execute the 
command 

UserVariables 

When you execute the UserVariables script, it displays a Commando 
dialog called, logically enough, the UserVariables Commando. A Com
mando dialog is a special kind of MPW dialog that you can use to exe
cute commands by clicking on controls, instead of typing and entering 
commands. 

With the UserVariables Commando, you can set custom defaults for 
MPW's user variables and then include those defaults in your 
UserStartup script. Instructions for using the UserVariables Commando 
are presented in Chapter 3. 

~ User-Defined Variables 

You can also initialize your own user-defined variables in the 
UserStartup script. A user-defined variable is any variable that you want 
to make global so you can use it in other scripts. More information about 
user-defined variables is given later in this chapter. 

~ Creating a Supplementary UserStartup Script 

If the thought of modifying your UserStartup script makes you nervous, 
you can create a supplementary UserStartup script, which MPW runs 
after your default UserStartup script is executed. You can then use your 
supplementary script to define customized variables, aliases, and menu 
items, and you can leave your original UserStartup script unchanged. 

MPW has provided you with the option of adding a supplementary 
UserStartup script by including this set of commands in the Startup 
script: 



132 .,,. Chapter 2 Commands and Scripts 

For Startup i in . (Files "{ShellDirectory}" a 
UserStartup•z I I Set Status 0) ~ dev:null' 

Execute "{_Startup_i}" 
End 
Unset _Startup_i 

How this block of code works will be explained in Chapter 4. How
ever, you do not have to understand it to use it. To prepare a supplemen
tary UserStartup script, just open a new file in your Worksheet window 
and give it a name written in accordance with the following example; 
that is, with a bullet (Option-8) between the word UserStartup and the 
name you want to give your second UserStartup script: 

UserStartup•scriptName 

For example, you could call your file 

UserStartup•MyStartup 

or 

UserStartup•Mike 

Once you have opened a file with that kind of name, save it in the 
folder where your MPW application resides. The next time you launch 
MPW, your new file is executed after your original UserStartup script 
has run. So you can define variables, aliases, menus, and menu items in 
your supplementary UserStartup file without touching your original 
UserStartup script. 

.,. Running MPW Without a UserStartup Script 

If you create a supplementary UserStartup script, you will slightly 
increase the length of time that it takes to start up MPW. Conversely, 
MPW starts up faster when you have no UserStartup script at all. And 
MPW runs perfectly well without a UserStartup script. 

If you would like to speed up MPW's loading operation by doing 
without a UserStartup script, just copy everything that you now have in 
your UserStartup script onto the end of your Startup script, and you 
can throw your UserStartup script away. MPW then loads and starts up 
a little faster because it has only one Startup script to run. 



~ Files and Directories 133 

Important ... Safe Scripting. You should be very careful, if you decid~.'to 
combine your Startup and UserStartup scripts into a single ff(e~ H 
you introduce bugs into your Startup and UserStartup scripts 
when you combine them, you could wind up with problems that 
are hard to track down .. So, before you try to concatenate your 
Startup and UserStartl;lB.~.~pts, make sure,ycm know whaty0u 
are do~l!~.~; f\:rtd be S}l:t:e~ · .,:re. copies of 'IJ<i!~ scripts l:>ef(l~f,}'i(lti 
begin;e~p~qally if yotf ' modified them~ . · .. · . :.:; . 

lill> Files and Directories 
In dealing with file and directory names, MPW follows the standards of 
the hierarchical file system (HFS), the file management system 
currently used on the Macintosh. In this section, the hierarchical file 
system is dealt with only as it relates to MPW. For more comprehensive 
information about HFS, refer to the chapter on the File Manager in 
Inside Macintosh, Volume IV. 

When you work with MPW, you can manage files and directories 
without leaving the shell and returning to the Finder or MultiFinder. 
The easiest way to determine what directory you are in, or to change 
directories, is to use MPW's Directory menu, as explained in Chapter 3. 
But you can also perform the operations listed under that menu, and 
many more, by using command lines. For example, you can set your 
current directory or find out what the current directory is by using the 
Directory command. You can obtain lists of directories or of the files in 
directories by using the Files command. Other commands that are used 
to list and manage files and directories are shown in Table 2-17. 

Table 2-17. File management commands 

Command 

Backup 
Catenate 
Close 
Delete 
Directory 
Duplicate 
Exists 

Meaning 

Folder file backup 
Concatenate files 
Close specified windows 
Delete files and directories 
Set or write the default directory 
Duplicate files and directories 
Confirm the existence of a file or directory 



134 ~ Chapter 2 Commands and Scripts 

Table 2-17. File management commands (continued) 

Command 

Files 
GetFileName 
Mount 
Move 
New 
Newer 
New Folder 
Open 
Rename 
Revert 
Save 
Set Directory 
SetPrivilege 
Set Version 
Target 
Volumes 
Where ls 
Which 
Windows 

Meaning 

List files and directories 
Display a Standard File dialog box 
Mount volumes 
Move files and directories 
Open a new window 
Compare modification dates of files 
Create a new folder 
Open file(s) in window(s) 
Rename files and directories 
Revert window to previous saved state 
Save specified windows 
Set the default directory 
Set access privileges for directories on file servers 
Maintain version and revision number 
Make a window the target window 
List mounted volumes 
Find the location of a file 
Determine which file the shell executes 
List windows 

.,.. How MPW Searches for Files 

MPW makes no distinction between file names and the names of win
dows. When you pass MPW a file name as a parameter to a command, 
it first looks for an open window with the name you have specified. 
Then, if it does not find one, it looks on a disk for the requested file. 

When you pass a command name to MPW, it searches for the com
mand in the directories listed in a shell variable called {Commands}. 
This search path is initially set to 

:, {MPW}Tools:,{MPW}Scripts: 



.,_ Files and Directories 135 

Since these are the default settings of the {Commands} variable, the 
shell first assumes that when you type a command, you want to execute 
a tool. If the shell cannot find such a tool in its {Commands} path, it 
then assumes that you are looking for a script. Finally, if it cannot find a 
script, it assumes you want an application. 

If you find that this search path slows you down, or you would like 
to use a different one, you can change it to improve the shell's perfor
mance by altering the MPW Startup script as explained earlier in this 
chapter. 

When you use file- or directory-related commands in MPW, you 
should keep the following rules in mind: 

1. The name of a single directory or file cannot be more than 31 
characters long. 

2. You can use any character except a colon (:) in a file name; you 
cannot use a colon because colons are used to separate the elements 
of pathnames. 

3. Names of directories and files are not case sensitive, so you can mix 
uppercase and lowercase letters all you like . 

..,. Spaces in File and Directory Names 

One important fact to remember about MPW is that it is very sensitive 
to spaces in file and directory names. If you use spaces in file names 
without taking special precautions, the MPW shell interprets the words 
in the file name as individual words in the command language and 
processes them accordingly. So, when you are dealing with MPW, it is 
best to avoid using spaces in file and directory names. 

If you do use file names with spaces in them, you can avoid con
fusing MPW by enclosing your file names in quotation marks, like this: 

Open "HD:Inside MPW:Chapter l" 

In the preceding example, the pathname given is a full pathname; 
that is, it provides the complete pathname of the specified file, all the 
way back to its root directory. Since a full pathname starts with the 
name of a disk or volume, it never begins with a colon. 



136 ~ Chapter 2 Commands and Scripts 

A partial pathname is a pathname that begins its path at the current 
default directory. Any name that contains no colons or begins with a 
colon is considered a partial pathname. For example, the name 

:CExamples 

is a partial pathname. However, the name 

HD: 

is a full pathname, that is, the name of a volume only. You can tell that it 
is a full pathname because it does not begin with a colon. 

Double colons (::) in a pathname are used to specify the current 
directory's parent directory; triple colons specify the "grandparent" 
directory (two levels up), and so on. 

A partial pathname that contains no colons is called a leafname. 
Command names, for example, are recognized by MPW as leafnames. 

~ Selecting Text with the § Character 

MPW commands that take file names as parameters can also act on the 
current selection, or selected text, in a window. The § character 
(Option-6) can be used in a command to represent the currently selected 
text in a window. The § character can be used in two ways. You can use 
§ standing by itself to mean "the currently selected text in the target 
window." Or you can use it as a extension to a window name, like this 

name.§ 

to mean "the currently selected text in window name." 
For example, you could use § with the Count command, which 

counts lines or characters in a file, in this fashion: 

Count -1 InsideMPW.§ 

to count the lines in the text currently selected in the InsideMPW 
window. 



... Files and Directories 137 

liJll- Variables in Pathnames 

In MPW, you can specify pathnames using shell variables. For example, 
the {MPW} shell variable, defined in the MPW Startup file, expands to 
form the full pathname for the MPW folder when you use it in a 
command. Thus, the Directory command, described later in this 
chapter, could be entered as 

Directory "{MPW}"Examples 

To define and redefine variables, you can use the Set command, as 
described earlier in this chapter. To see the values of all currently 
defined variables, you can enter the Set command without any 
parameters. 

liJll- Wildcards in File and Directory Commands 

By using the wildcard characters? and"" (Option-X), you can specify a 
number of files at once in a command. The ? character matches any 
single character except a colon or a Return. (To match a question mark, 
use??.) 

The :::: character, mentioned previously in this chapter, matches any 
string of zero or more characters not including a colon or a Return. For 
example, the command 

Files ::=.text 

lists all file names in the current directory that end with the suffix 
".text". For more on wildcard characters, see Chapter 4. 

liJll- Locked and Read-Only Files 

If you open a file that is locked, or is on a locked disk, the status panel 
in the upper left-hand corner of the Worksheet window displays a lock 
icon. When you see this icon, no editing or command execution is 
allowed in the locked window. 

When you check out a read-only copy of a file from a project used by 
the MPW Projector tool, the file is always opened in read-only mode 
and a read-only icon is displayed in the status window. 

MPW's read-only and locked icons are shown in Figure 2-13. Pro
jector is described in the MPW 3.0 Reference. 



138 .,_ Chapter 2 Commands and Scripts 

,)t 
The read-only icon The locked icon 

Figure 2-13. Read-only and locked icons 

..,. Examples of File and Directory Commands 
In this section, we'll take a look at some of MPW's most often used file
and directory-related commands. 

~ The Directory Command 

The Directory command is used to set or list the current directory. Its 
syntax is: 

Directory [-q I directory] 

If you use the directory parameter, it becomes the default directory. 
The directory parameter can be a leafname; that is, a partial pathname 
that contains no colons. If this is the case, then MPW searches the 
{DirectoryPath} shell variable-a list of commonly used directives-for 
the directory parameter. If directory is a leafname and the {DirectoryPath} 
variable is undefined, MPW looks in the current directory for the 
directory you have specified. 

If you do not use any parameters, Directory writes the full pathname 
of the current directory to standard output; this usually means that the 
pathname is printed on the screen. 

If you don't use the -q option in a Directory command, pathnames 
that contain special characters are placed in quotation marks when 
Directory writes its list of directories to standard output. If you do use 
the -q option, pathnames are not quoted. 



~ Examples of File and Directory Commands 139 

Directory returns a status code of zero if its operation is successful. A 
status code of 2 means that the directory was not found, that the 
command was aborted, or that there was a parameter error. 

For example, 

Directory HD: 

sets the default (current) directory to the volume HD. 

This variation: 

Directory HD:InsideMPW:Chapter2: 

sets the default directory to the Chapter2 folder in the InsideMPW 
folder on the volume HD. Another example: 

Directory:InsideMPW:Chapter2: 

sets the default directory to the folder Chapter2 in the folder 
InsideMPW in the current default directory. 

Here is one last example: 

Set DirectoryPath ":, {MPW}, {MPW}Examples:" 
Directory CExamples 

In the first of these two command lines, the MPW variable 
{DirectoryPath}-a list of common directories which the shell maintains 
to speed changing directories-is set to ":, {MPW}, {MPW} Examples: ". 
The second command line then sets the current directory to the 
CExamples directory. When the second command is executed, the shell 
first searches the current directory for the CExamples folder. Then it 
searches the {MPW} directory, and finally searches the {MPW} Examples 
directory. If there is no CExamples directory in your current directory, 
the current directory is set to {MPW}CExamples. 

~ The SetDirectory Command 

You can also set the default directory with the SetDirectory command. 
Its syntax is 

SetDirectory directory 



140 ~ Chapter 2 Commands and Scripts 

When you use the SetDirectory command, you must specify a 
directory parameter. SetDirectory sets the default directory to the direc
tory you have specified. If directory is on the MPW Directory menu, the 
shell adds it to the Directory menu as the last menu item. 

One difference between the commands Directory (described pre
viously) and SetDirectory is that the Directory command does not affect 
the MPW Directory menu, while SetDirectory does. 

The SetDirectory command is usually invoked from the MPW menu 
rather than from a command line. So directory names that you pass to 
SetDirectory should not contain any of the following special characters, 
which have special meanings when they appear in menu items: 

- ; " ! < I ( 

If you did issue a SetDirectory command from a command line, like 
this 

SetDirectory {MPW}Examples: 

SetDirectory would set the default directory to the Examples folder in 
the {MPW} directory and would add {MPW} Examples: to the Directory 
menu if it were not already there. 

~ The Files Command 

You can list files and directories by using the Files command. The 
syntax of the Files command is 

Files [option . .. ] [name_ 

The Files command can take multiple parameters. Each parameter is 
the name of a disk or a directory. When you execute the Files command, 
it lists the contents of each parameter you specify. If the parameter is a 
directory name, Files lists all of the directory's subdirectories, in 
alphabetical order, and then lists all of the files in the directory, also in 
alphabetical order. If the parameter is the name of a volume, Files 
writes the names of the directories and files in the volume in alpha
betical order. You can use options to change the default behavior of the 
Files command. 

If you don't specify a directory as a parameter when you list a 
directory as a parameter, Files lists the subdirectories and files in the 
current directory. 



~ Examples of File and Directory Commands 141 

The options that can be passed to the Files command are as follows. 

Option 

-c creator 
-d 
-f 
-i 

-1 
-mcolumns 
-n 
-0 

-q 
-r 

-s 
-t type 
-xformat 

Meaning 

List only files with this creator 
List only directories 
List full pathnames 
Treat all arguments as files 
Long format (type, creator, size, dates, etc.) 
Multicolumn column format, where m = columns 
Do not print header in long or extended format 
Omit directory headers 
Do not quote file names with special characters 
Recursively list subdirectories 
Suppress the listing of directories 
List only files of this type 
Extended format with the fields specified by format 

The following characters can be used to specify the -x option's format 
parameter. 

Character 

a 

b 
r 

c 
d 
k 
m 
t 

0 

g 
p 

Meaning 

Flag attributes 
Logical size, in bytes, of the data fork 

Logical size, in bytes, of the resource fork 
Creator of File ("Fldr" for folders) 
Creation date 
Physical size in kilobytes of both forks 
Modification date 
Type 
Owner (only for folders on a file server) 
Group (only for folders on a file server) 
Privileges (only for folders on a file server) 



142 ~ Chapter 2 Commands and Scripts 

The Files command returns a status code of 0 if all names are pro
cessed successfully. It returns a status code of 1 if there was a syntax 
error and a status code of 2 if any other kind of error occurred. 

If you enter the command 

Files -d 

Files lists only the directories in the current directory, like this: 

:Chapterl: 
:Chapter2: 

However, if you enter the command 

Files -r -s -f 

the result is a recursive list of the contents of the current directory. Full 
pathnames are used, and the printing of directory names is suppressed, 
as follows 

'HD:Masterpiece:Backup of Chapter l' 
'HD:Masterpiece:Chapter l' 
'HD:Masterpiece:Chl.Illustrations:l-01, Mac IIfx.MP' 
'HD:Masterpiece:Chl.Illustrations:l-02, Overlapping.MP' 
'HD:Masterpiece:Chl.Tables:box 1-1, mac evolution' 
'HD:Masterpiece:Chl.Tables:c headers.txt' 

If you use the parameters -i, -x, k, and d with the Files command, 
you'll get a neat display listing the name, size, creation date, and 
creation time of any volume that you specify. For example, if the 
volume name of your hard disk is HD, and you issue the command 

Files -i -x kd HD: 

the Files command lists the size and creation date of the {Clncludes} 
directory: 

Name Size Creation-Date 

HD: 37622K 2/2/91 4:35 PM 



.., Examples of File and Directory Commands 143 

If you use the option -m, followed by the number of columns that 
you want printed, Files writes its list in multicolumn format. For 
example, the command 

Files -m 2 

prints a listing like this: 

:Chl.Illustrations: 
:Chl.Tables: 

'Backup of Chapter 1' 
'Chapter 1' 

..,. The NewFolder Command 

You can create new folders with the NewFolder command. Its format is 

NewFolder name ... 

In this case, NewFolder creates new directories with the names 
specified in the names parameter. Any parent directories included in the 
name specification must already exist. The NewFolder command can be 
used only on hierarchical file system (HFS) disks, the current Macintosh 
standard. 

For example, the command 

NewFolder Tigers 

creates a folder named Tigers as a subdirectory in the current directory. 

... The Volumes Command 

The Volumes command can provide you with information about all 
mounted disk volumes or about a single disk. You can use it to obtain 
the name of a volume, the names of all mounted volumes, or more 
detailed information about the volumes with which you are working. 

This is the syntax of the Volumes command: 

Volumes Displays information about 
all mounted volumes. 

Volumes [-11-q] [volume ... ] Displays information about 
the volume specified. 



144 .,.. Chapter 2 Commands and Scripts 

If you use the -1 option with the Volume command, it prints infor
mation in a "long" format, including not only each volume's name, but 
also its capacity, free space, number of files, and number of directories. 
If you do not use the -1 option, Volume prints only the names of 
volumes. 

When you use the -q option, Volume doesn't enclose names that 
contain spaces in quotation marks. If you don't use the -q option, names 
containing spaces are quoted . 

.,.. The Duplicate Command 

You can copy files or directories with the Duplicate command. Its 
syntax is 

Duplicate [-yl-nl-c) [-dl-rJ name ... targetName 

Duplicate copies file or directory name to file or directory targetName. 
For more information about its operation and its various options, see 
Appendix A. 

.,.. The Catenate Command 

With Catenate, you can merge multiple files into one file. Catenate also 
reads the data fork of a document and writes its contents to the output 
stream. One example of the use of Catenate was presented earlier in 
this chapter. More details are provided in Appendix A. 

.,.. The Move Command 

The Move command can be used to move files or directories from one 
directory to another. Its syntax is 

Move [-y I -n I -c) [-p) name ... target 

Move takes two parameters, both of which can be file or directory 
names. The Move command moves name to targetName. If targetName is 
a directory, then name is moved into that directory. If targetName is a file 
or does not exist, then name replaces targetName, and the old targetName 
is deleted. 

If a name is a directory, then its contents, including all of its sub
directories, are also moved. 



.., Examples of File and Directory Commands 145 

Before it deletes a file or a directory, Move displays a confirmation 
dialog. You can override the dialog by using the option -y, -n, or -c. 

The options that can be used with Move are as follows: 

Option Meaning 

-y 
-n 
-c 
-p 

Overwrite target files (avoids dialog). 
Do not overwrite target files (avoids dialog). 
Cancel if conflict occurs (avoids dialog). 
Write progress information to diagnostics. 

For example, 

Move -y Filel File2 

moves Filel to File2, overwriting File2 if it exists. The result of the 
command is the same as renaming Filel. Since the option -y is used, 
Move does not display a confirmation dialog. 

The command 

Move VirusDoc Capture {SystemFolder} 

moves the files VirusDoc and Capture from the current directory to the 
system folder. 

And the command 

Move ThatKid : : 

moves the file ThatKid from the current directory to the enclosing 
(parent) directory . 

.., The Rename Command 

You can rename files and directories with the Rename command. Its 
syntax is 

Rename [-y I -n I -c] oldName newName 

When you execute the Rename command, the file, folder, or disk 
name is renamed newName. If the rename would overwrite an existing 
file or folder, a dialog box requests confirmation. You can override the 
dialog with a -y, -n, or -c option. 



146 ~ Chapter 2 Commands and Scripts 

Rename cannot change the directory in which a file resides. To do 
that, you can use the Move command. 

Rename accepts the following options. 

Option 

-y 
-n 
-c 

Meaning 

Overwrite existing file (avoids dialog). 
Do not overwrite existing file (avoids dialog). 
Cancel if conflict occurs (avoids dialog). 

Consider the following examples. The command 

Rename Untitled: Backup: 

changes the name of the disk Untitled to Backup. The command 

Rename HD:Programs:Prog.c Prog.Backup.c 

changes the name of Prog.c in the HD:Programs directory to 
Prog.Backup.c in the same directory. The command 

Rename Filel File2 

changes the name of File 1 to File2. 

Rename -c Filel File2 

changes the name of Filel to that of File2; if a conflict occurs, the 
operation is canceled. 

~ The SetFile Command 

You can set the attributes of a file with the SetFile command. SetFile can 
be used to change a file's creator, file type, creation date, or modification 
date, or to specify whether a file is 

• a system file 
• bundled or unbundled 
• locked or unlocked 
• visible or invisible 
• an "Init" file (a file executed when the system is booted) 



..,. Examples of File and Directory Commands 147 

• displayed on the desktop 
• switch-launched (launched from another application), if possible 
• shared (capable of being run multiple times) 

The syntax of the SetFile command is 

SetFile [option ... ] file ... 

The options that can be passed to SetFile are as follows. 

Option 

-a attribute 
-c creator 
-d date 
-1 h,v 
-mdate 
-t type 

Meaning 

Attributes (lowercase= 0, uppercase= 1) 
File creator 
Creation date (mm/dd/yy [hh:mm[:ss] [AM I PM]]) 
Icon location (horizontal, vertical) 
Modification date (mm/ dd/yy [hh:mm[:ss] [AM I PM]]) 
File type 

A period (.)can be passed as a date parameter to represent the current 
date and time. 

Following the -a option, these letters can be used: 

Letter Meaning 

A Always switch launch (if possible) 
B Bundle 
D Desktop 
I Init file 
L Locked 
M Shared (can run multiple times) 
S System 
V Invisible 

For example, the command 

SetFile Balderdash -m ~2/15/86 2:25" 

sets the modification date of the Balderdash file. The command 



148 II>- Chapter 2 Commands and Scripts 

SetFile Shrdlu -m . 

sets the modification date of the Shrdlu file to the current date and time. 
In this example, the period is a parameter to the -m option, indicating 
the current date and time. The command 

SetFile -c "MPS " -t MPST ResEqual 

sets the creator and type for the MPW Pascal tool ResEqual. 

II>- The Print Command 

Print is the MPW command that prints source files, documents, and 
other kinds of text on a printer. If you select a block of text before execu
ting Print, only the selected text will be printed. 

The Print command writes its output to the currently selected 
printer. To use a printer, you must install the proper printer driver. You 
can then choose a printer using the Chooser desk accessory. 

The syntax of the Print command is 

Print [option ... ] file ... 

The options that can be used with Print are as follows. 

Option 

-b 
-b2 
-bmn[.n] 
-c[opies] n 

-ff string 
-f[ont] name 
-from n 
-h 
-hf[ont] name 
-hs[ize] n 

-Hines] n 
-lm n[.n] 
-ls n[.n] 

Meaning 

Print a border around the text. 
Alternate form of border. 
Bottom margin in inches (default 0). 
Print n copies. 
Treat "string" at beginning of line as a formfeed. 
Print using specified font. 
Begin printing with page n. 
Print headers (time, file, page). 
Print headers using specified font. 
Print headers using specified font size. 
Print n lines per page. 
Left margin in inches (default .2778). 

Line spacing (2 means double-space). 



Option 

-md 
-n 

-nw [-]n 
-p 
-page n 

-ps filename 
-r 

-rm n[.n] 

-s[ize] n 
-t[abs] n 

-title title 
-tm n[.n] 
-ton 
-q quality 

llll- Examples of File and Directory Commands 149 

Meaning 

Use modification date of file for time in header. 
Print line numbers to left of text. 
Width of line numbers; "-" indicates zero padding. 
Write progress information to diagnostics. 
Number pages beginning with n. 
Include Postscript file as background for each page. 
Print pages in reverse order. 
Right margin in inches (default 0). 

Print using specified font size. 
Consider tabs to be n spaces. 
Include title in page headers. 
Top margin in inches (default 0). 

Stop printing after page n. 
Print quality (HIGH, STANDARD, DRAFT). 

Status codes returned by the Print command are as follows. 

Code Meaning 
~~~~~~~~~~ 

0 Successful completion.
1 Parameter or option error.
2 Execution error.

The font normally used by Print is specified in a resource fork where
the MPW editor stores font information. To print in a font other than
this default font, you can use the -f option.

Consider the following examples of statements using the Print
command. The command

Print §

prints the current selection. The command

Print -h -size 8 -ls 0.85 Source.c Source.r

150 Chapter 2 Commands and Scripts

prints the files Source.c and Source.r with page headers, using 8-point
Monaco type and compressing line spacing. The command

Print -b -hf Courier -hs 12 -r Startup UserStartup

prints the Startup and UserStartup scripts in 12-point Courier type,
with borders and headers, and with the pages in reverse order.

~ Structured Constructs
This chapter concludes with an examination of the structured
constructs used in the MPW command language.

.... The If Command

The If command is used to create conditional loops. An If statement
always begins with the command If, and ends with the word "End." The
word "End" must always appear alone on a line. Any number of Else If
statements may appear between the If command and the word "End."

The syntax of an If statement is

If expression
command ...

[Else If expression
command ... l

[Else
command ...

End

(Note that Listing 2-2 showed how the If command is used in the
MPW shell language.)

..,. The For Command

In the MPW command language, the For command does not work by
iterating a numeric counter through a specified range of values.
Instead, it repeats a set of commands for each parameter in a list. It can
thus repeat an operation on a list of command parameters or on a list of
file names.

When you use the For command, you must follow it with the name
of a variable, the word "In," and a list of command parameters or

~ Structured Constructs 151

filenames. On succeeding lines, you can specify commands to be
carried out by your For loop. At the end of the loop, you must place a
line containing on the word "End."

You must end each line with a Return character or a semicolon (;)
command terminator.

The syntax of the For command is

For name In parameter ...
commands ...

End

Status codes returned by the For command are as follows.

0 no parameter specified
-3 error in parameter

When you use a For loop in a script, MPW executes the list of com
mands once for each word from the "In parameter . . . 11 list. The current
parameter is assigned to the variable name, and you can therefore refer to
it in the list of commands in the For loop by using the notation {name}.

You can terminate a For loop with a Break command, and you can
terminate the current iteration of the loop with a Continue command.

After the word End that terminates a For loop, you can use the
command terminators I, &&, and I I, described earlier in this chapter.
You can redirect the output of a For loop by using the redirection
operators<,>,>>,~'~~' I, and II following the word End. If you use
these optional command terminators and redirection operators, they
apply to the entire For loop.

One way to use a For loop is:

For n In 1 2 3
Echo n = {n}

End

The following example echoes the following list to standard output,
normally the screen:

n 1
n = 2

n 3

152 IJli> Chapter 2 Commands and Scripts

A more useful example is as follows.

For FileName In ~.p
Pascal "{FileName}"
Echo '"{FileName}" compiled.'

End

This example compiles every Pascal file in the current directory; that is,
every file with a name that ends with the suffix ".p". During the loop, it
echoes to standard output the name of each file that has been compiled.

The following For loop

For Filename In ~.c

End

Rename -y temp "{Filename}"
Print -h "{Filename}"
Echo "{Filename}"

prints all C source files in the current directory. During the loop, the
Print command prints each file with a heading, and the Echo command
echoes the name of each file printed .

.,.. The Loop Command

Loop is a command that is used to set up a structured loop. The loop
starts with the Loop command and ends with an End command. Any
commands between Loop and End repeat indefinitely, or until the loop
is terminated with a Break command. Within the loop, the Continue
command can be used to terminate the current iteration.

The syntax of the Loop command is

Loop

End

command ...
[Break]

When a Loop command terminates, it returns the status of the last
command executed in the shell variable {Status}.

.._ Structured Constructs 153

Following is a short script that uses Loop to execute a command
several times, once for each parameter passed to it as a parameter
variable.

Set parameter {1}
Loop

End

Shift
Break If {1} ==
{parameter} {1}

The Shift command is used to step through the parameters, and the
Break command ends the loop when all parameters passed to the script
have been exhausted .

.._ The Break Command

The Break command, as shown in the above examples, is used to exit
from a For or Loop command. Its syntax is

Break [If expression]

Status codes returned by the Break command are

Code Meaning

0 no errors detected
-3 Break was used outside a For ... End or Loop ... End construct,

or the parameters passed to Break were incorrect
-5 invalid expression

If there is no expression parameter, or if the Break command's
expression parameter is nonzero, Break terminates execution of the For
or Loop construct in which it is most closely nested.

154 ~ Chapter 2 Commands and Scripts

The following loop shows how Break is used with an expression
parameter.

Set Exit 0

End

For file in "'.C

Break If {Status} != 0
Rename -y temp "{FileName}"
Print -h "{FileName}"
Echo "{FileName}"

This loop, like the second example given for the Loop command,
prints all C source files in the current directory. However, in this case,
Break terminates the loop if a nonzero status value is returned.

~ The Continue Command

The Continue command can be used to terminate an iteration in a For
or Loop command and to continue with the next iteration.

This is the syntax of the Continue command:

Continue [If expression]

If there is no expression parameter, or if the expression parameter of a
Continue command is nonzero, Continue terminates the current itera
tion of the For or Loop construct in which it is most closely nested, and
continues with the next iteration. If no further iterations are possible,
the loop is terminated.

llll- A Modified Startup Script

Listing 2-4 is a Startup script that has been edited to use the modified
directory structure explained in this chapter. Also, some shell variables
have been changed to suit my preferences. If you would like to modify
your own Startup script, you can use Listing 2-4 as a guide.

Ill> A Modified Startup Script 155

Listing 2-4. Modified UserStartup script

Modified Startup Script
By Mark Andrews

(Original provided by MPW)

{Boot} - Boot disk (Predefined)

Export Boot

{SystemFolder} - Directory that contains
the System and Finder (Predefined)

Export SystemFolder

{ShellDirectory} - Directory that contains
the MPW Shell (Predefined)

Export ShellDirectory

{Active} - Active (topmost) window (Predefined)

Export Active

{Target} - Target (previously active)
window (Predefined)

Export Target

{Worksheet} - Name of the Worksheet window (Predefined)

Export Worksheet

{Status} - Result of last command executed (Predefined)

Export Status

{User} - Automatically defined to the
name the appears in the Chooser (Predefined)

Export User

156 ~ Chapter 2 Commands and Scripts

Listing 2-4. Modified UserStartup script (continued)

{MPW} - Volume or folder containing MPW

Set MPW "{ShellDirectory}"
Export MPW

{Commands} - Directories to search for commands

Set Commands ":,{MPW}Tools:, {MPW}Scripts:"
Export Commands

{Libraries} - Directory that contains shared libraries

Set Libraries "{MPW}Libraries:Libraries:"
Export Libraries

The following variables have been modified
{AFolder}, {CFolder}, {PFolder} and {RFolder} added

{Aincludes} - Directories to search for
assembly language include files

Set Aincludes "{MPW}AFolder:Aincludes:"
Export Aincludes

{Cincludes} - Directories to search for C include files

Set Cincludes "{MPW)CFolder:Cincludes:"
Export Cincludes

{CLibraries} - Directory that contains C libraries

Set CLibraries "{MPW}CFolder:CLibraries:"
Export CLibraries

{Pinterfaces} - Directories to search
for Pascal interface files

Set Pinterfaces "{MPW}PFolder:Pinterfaces:"
Export Pinterfaces

.,,. A Modified Startup Script 157

Listing 2-4. Modified UserStartup script (continued)

{PLibraries} - Directory that contains Pascal libraries

Set PLibraries "{MPW}PFolder:PLibraries:"
Export PLibraries

{Rincludes} - Directory that contains Rez include files

Set Rincludes "{MPW}RFolder:Rincludes:"
Export Rincludes

Modified variables end here

{CaseSensitive} - If nonzero,
pattern-matching is case sensitive

Set CaseSensitive 0
Export CaseSensitive

{SearchBackward} - If nonzero, search goes backwards

Set SearchBackward 0
Export SearchBackward

{SearchWrap} - If nonzero, search wraps

Set SearchWrap 0
Export SearchWrap

{SearchType} - Specifies the default searching type
(0/literal, 1/word, 2/regular expression)

Set SearchType 0
Export SearchType

{Tab}, {Font} and {FontSize} have been modified

{Tab} - Default tab setting for new windows

Set Tab 5
Export Tab

Default is 4

158 ~ Chapter 2 Commands and Scripts

Listing 2-4. Modified UserStartup script (continued)

{Font} - Default font for new windows

Set Font Courier # Default is Monaco
Export Font

{FontSize} - Default font size for new windows

Set FontSize 10 # Default is 9
Export Font Size

H# Modified variables end here

{Autoindent} - If nonzero, auto indentation
is the default for new windows

Set Autoindent 1
Export Autoindent

{WordSet} - Character set that defines
words for searches and double-clicks

Set WordSet 'a-zA-Z 0-9'
Export WordSet

{PrintOptions} - Options used by the
Print Window and Print Selection menus

Set PrintOptions '-h'

{Exit} - If nonzero, command files
terminate after the first error

Set Exit 1
Export Exit

{Echo} - If nonzero, echo commands before execution

Set Echo 0
Export Echo

..,. A Modified Startup Script 159

Listing 2-4. Modified UserStartup script (continued)

{Test} - If nonzero, don't execute tools and applications

Set Test 0
Export Test

{Windows} - A list of all open windows (predefined)

Export Windows

{Aliases} - A list of all open windows (predefined)

Export Aliases

{Commando} - Name of the Commando dialog (predefined)

Set Commando Commando
Export Commando

Alias definition

Alias File Target

Execute UserStartup script

Execute "{ShellDirectory}UserStartup"

Execute supplementary UserStartup scripts
(files with names like UserStartup•MyStartup)

For Startup_i in ' (Files a
"{ShellDirectory}"UserStartup•= a
I I Set Status 0) ~ dev:null'

Execute "{_Startup_i}"
End
Unset _Startup_i

160 ~ Chapter 2 Commands and Scripts

..,. Conclusion
This chapter described the most important features of the MPW
command language and explained how to write MPW commands and
MPW scripts. It also explained how MPW manages files and directories
and how to write commands and scripts that affect files and directories.

3 Menus and Dialogs

What do you get when you cross a line-oriented command language
such as UNIX with a window-based, mouse-driven Macintosh applica
tion program? That was the question that Apple's engineers faced when
they sat down to design MPW. What they wanted was a software
development system that would combine the best features of a UNIX
like command-line interpreter with the convenience of a well-behaved
window-based Macintosh-style application.

The way they finally solved the problem was to wrap both kinds of
programming environments into a single package. First, they designed
a command language, a command-line interpreter, and a text editor
that would enable the user to execute commands from scripts and
command lines. Then they added a Macintosh-style interface that also
made it possible to execute commands using windows, pull-down
menus, and click-and-close dialog boxes.

In Chapter 2, you learned how to write command lines and scripts,
and how to execute commands from scripts and command lines. In this
chapter, you will learn how to

• issue MPW commands by selecting items from pull-down menus
• run scripts and applications by selecting pull-down menu items
• add your own menus and items to the MPW menu bar
• modify your UserStartup script so that your customized menus and

menu items are initialized every time you start up MPW
• create dialog boxes that can be used in MPW scripts

161

162 ~ Chapter 3 Menus and Dialogs

• execute commands using a special kind of dialog box called a
Commando dialog

• change the appearance of a Commando dialog using MPW's built
in Commando editor

.._ The MPW Menu Structure
Every MPW command that can be issued from a command line can also
be executed by selecting its name from a pull-down menu. Of course
the MPW menu bar does not contain an item for every command; it is
not nearly big enough to hold them all. But if there is a command that
you use often, and you find that it does not appear anywhere on the
MPW menu tree, you can easily put it there by either adding its name
to an existing menu or placing it under a new menu that you have
added to the menu bar.

Furthermore, when you want to add a command to the MPW menu
structure, it does not have to be an existing MPW command. If you
have written a script or a tool that you would like to add to the MPW
menu structure, you can create a menu item for it, and then select it
from a pull-down menu, in the same way that you would select any
other menu item.

If you have created a customized menu structure and want it to
appear every time you launch MPW, you can instruct MPW to build
your menu every time it starts up by adding commands to build the
menu to your UserStartup script.

Procedures for customizing the MPW menu bar are explained later in
this chapter. First, though, let's take a look at the menu bar and its
menus and menu items, and see what they all do. Figure 3-1 shows the
MPW menu structure.

~ What's on the Menu

Not counting the Apple menu, the following eight menus appear on the
MPW 3.2 menu bar. The items listed under each menu will be covered
individually later in this chapter.

Menu Name

File
Edit

Function

Used to create, open, print, close, and save files.
Contains items that you can select to edit text. In addition
to the usual Macintosh editing commands, the MPW Edit
menu contains several special items.

~ The MPW Menu Structure 163

l File l Edit Find l Mark I Window l Project Directory Build J
l

Undo
Cut Show Directory
Copy Set Dlrectoa,_.
Paste HD:MPW 3.2:
Clear
Select All
Show Cltpboar<j

lMark... J
unmark ...

Format...
Altgn
Shift Left
Shift Right Check In ...

[Tile Windows
Ch~k Out ...
New Project...

~dOIAl..S_ Mount Project...
[HD:MPW 3.2:Worksheet Set Pro_lect...

New ... Compare Act Ive ..
Open ... Merge Active ...
Open Selection
Close
Save
Save as ... Find ...
Save a Copy ... Find Same CreateBul ldCommands ...
Revert to Sav~ Find Selection Bu11d ...
Page Setup ... Display_ Select IQ! Full Build ...
Print Window Replace ... Show Bufld Commands ...
Quit Replace Same Show Full Bu11d Commands.

Figure 3-1. The MPW menu structure

Menu Name

Find

Mark

Window

Project

Directory

Build

Function

Lists commands for finding and replacing text.

Provides a method for marking locations in a document so
that they can be found quickly during viewing and editing
operations.

Used to bring a window to the front; lists the names of all
currently open windows.

Used to control an MPW project management tool called
Projector.

Used to obtain the name of the current directory, or to
change the current (default) directory.

Used to build programs by converting raw source code
into object-code modules that can be sent to the MPW
Linker to be converted into executable programs.

164 ~ Chapter 3 Menus and Dialogs

• The File Menu

When you select the File menu, shown in Figure 3-2, it presents a list of
items that can carry out shell commands for creating, opening, printing,
closing and saving files.

New

You can issue the MPW command New by selecting the menu item
"New" under the File menu. You can select the New menu item by
either choosing it with the mouse or pressing its keyboard equivalent,
Command-N. You can also issue the New command from a command
line or a script, as explained in Chapter 2. When you select New, it
displays a dialog window like the one illustrated in Figure 3-3.

The New dialog window is a Standard File Manager dialog box that
you can use to select the directory location of a new document, type in
the new document's file name, and create the new document. The New
dialog contains buttons for changing disk drives, ejecting a disk,
creating the new document and closing the dialog, and canceling your
New command-that is, closing the dialog without creating a new
document.

When you have created a document using the menu selection New,
the New dialog disappears and an empty window in which you can
enter the new document's text appears on the screen.

New... 8€N
Open... 8€0
Open Selection 8€0

Close
Saue
Saue as •.•
Saue a Copy ...
Reuert to Saued

Page Setup ...
Print Window

Quit

Figure 3-2. File menu

8€Q

D Afolder
D Cfolder
U Dk!::: n ·<H q
D EHamples
f.".'J r>Uon
D Libraries

Open document

Figure 3-3. New dialog box

Open

.,. The MPW Menu Structure 165

~Brahma

Driue

New

Cancel

When you select the Open item under the File menu, it displays a
dialog window like the one shown in Figure 3-4. You can then use the
dialog to open any file. You can also open a file by executing the MPW
command Open.

To select the Open menu item, you can click on it with the mouse or
press its command-key equivalent, Command-0.

D Interfaces
D Libraries
D MPW.Errors
D MPW.Help
D MPW.Pipe
D Quit
D Resume
D ROM Maps

D Open read only

Figure 3-4. Open dialog box

~Shiua

Driue

Open

Cancel

166 ..., Chapter 3 Menus and Dialogs

The Open dialog box is a Standard File Manager dialog that you can
use to open any text file by finding its directory and clicking on its file
name. If you try to open a document that is already open, the window
in which its text appears is brought forward and becomes the active
window.

The Open dialog contains buttons for changing disk drives, ejecting a
disk, opening the selected document and closing the dialog, and
canceling your Open command-that is, closing the dialog without
opening a document. At the bottom of the Open dialog, there is also a
check box that you can mark to open a text file in read-only mode.
When a document is opened in read-only mode, it cannot be edited.

When you have opened a document using the Open dialog, the
dialog disappears and a window containing the text of the document
you have selected appears on the screen.

When you open a document for the first time, its selection point
that is, the cursor location-is placed at the beginning of the document.
When you close a document, however, MPW saves its selection point,
and that is where the selection point is placed the next time the
document is opened. The MPW Editor automatically scrolls the
document to make the selection point visible on the screen.

Open Selection

Before you choose the Open Selection menu item, the name of the file
you want to select must appear somewhere on the screen, for example,
in a list of documents returned by a file or directory command. You
must, therefore, select the name of the file you want to open by high
lighting it using the editing keys or the mouse. When you have selected
the name of a document, Open Selection opens the document for you,
bypassing the dialog box that you would have had to used if you had
opened the file using the Open menu command.

When you open a document using Open Selection, MPW sets the
file's selection point using the same rules that it follows when a docu
ment is opened using the Open command. The selection point is placed
at the beginning of the file unless the file has been opened previously
under MPW. If it has been previously opened, the selection point is
placed where it was the last time the document was saved.

Close

Close is a garden-variety menu item that closes the currently active
window. If the file you want to close contains text that has been altered,
Close displays a dialog window asking you if you want to close the
document without saving its changes.

..,. The MPW Menu Structure 167

The command-key equivalent of Close is Command-W. You can also
issue a Close command from a command line or a script, as explained
in Chapter 2.

Save

The Save menu item saves the contents of the currently active window.
When you are writing or editing a document, it is a good idea to save
its contents frequently, so you won't lose hours of work if you hit a few
keys incorrectly or become the victim of an equipment malfunction.

The keyboard shortcut for Save is Command-S. As explained in
Chapter 2, you can also issue the Save command from a command line
or a script.

Save As

The Save As menu item displays a dialog box that allows you to save
the contents of the currently active window as a new file in a directory
that is different from the current directory, or under another name.
When you have saved a file using Save As, the name of the new file
replaces the name of the original file in the current window's title bar,
and all subsequent editing changes affect the new file, not the old one.

Save a Copy

The Save a Copy command works much like Save As. It also displays a
dialog box that allows you to save the contents of the currently active
window as a new file in a different directory or under another name.
However, when you have saved the file, the name of the original file
remains in the active window's title bar, and all subsequent editing
changes still affect the original file rather than the new one.

Revert to Saved

The Revert to Saved menu item discards any changes that you have
made to the document in the active window since the last time you
saved it. It thus restores the last saved version of the file.

If you have not made any modifications in the currently active
window since the last time it was saved, the Revert to Save item is
dimmed and cannot be selected.

168 ..,. Chapter 3 Menus and Dialogs

Page Setup

The Page Setup menu item displays the Printing Manager's standard
Page Setup dialog, which allows you set up printing parameters to
match your printer and your preferences.

Print Window and Print Selection

If no text is selected in the active window, the item that follows Page
Setup on the file menu reads Print Window. However, if you select a
block of text in the active window using the editing keys or the mouse,
the name of the Print Window item changes to Print Selection.

When no text is selected, choosing the Print Window menu item
prints the full text of the document displayed in the active window. Of
course, your printer and the appropriate print drivers must be installed
correctly for Print Window to work correctly.

When you have selected a block of text and the name of the Print
Window item has changed to Print Selection, only the text that has been
selected is printed.

MPW does not have a very sophisticated set of print formating capa
bilities and does not display a dialog box asking for printing preferences
when you select Print Window. But you can set some printing parameters
by modifying the {PrintOptions} shell variable in your MPW startup
script. By resetting the options of the {PrintOptions) variable, you can
change

• the number of copies to be printed
• which pages to print
• print quality (on an ImageWriter printer)
• the font used for printing
• the type size used for printing
• page headings
• the title of a document
• margin settings
• whether pages are printed in consecutive or reverse order

The options that you can modify by changing the {PrintOptions)
variable are described in Chapter 2.

Once the {PrintOptions) variable has been changed, its new settings
remain in effect with every print job until they are changed again. One
way to use different printing options for different documents might be

~ The MPW Menu Structure 169

to modify your MPW menu structure by adding a Print Options menu.
An easier solution might be to print your MPW documents using a
word processor.

Quit

The Quit menu item exits MPW. If there are open files that have been
modified since the last time they were saved, Quit displays a dialog for
each modified file, asking you if you want to save the changes you have
made in it before you exit MPW.

The keyboard equivalent for the Quit menu is Command-Q. The
Quit command can also be issued from a command line or a script. For
descriptions and examples of the Quit command and other commands
that have menu equivalents, refer to Appendix A.

~ The Edit Menu

The Edit menu, shown in Figure 3-5, offers the standard Macintosh Cut,
Paste, Copy, and Clear menu items, along with several special items
that you won't find under the Edit menus provided by most applica
tions. The nonstandard items provided by MPW are Align, Shift Left,
and Shift Right.

Undo ~z

Cut ~H

Copy ~c

Paste ~u

Clear

Select All ~A

Show Clipboard

Format... ~Y

Align
Shift Left ~[
Shift Right ~]

Figure 3-5. Edit menu

170 ~ Chapter 3 Menus and Dialogs

Undo

The Undo menu item discards the effects of the most recent modification
to the text in the active window. It does not undo changes to resources
such as font or tab settings. The command-key equivalent for Undo is
Command-Z. The Undo command can also be issued from a command
line or a script.

Cut

The Cut menu item copies text that has been selected to the Clipboard
and then deletes it from the document being edited. The command-key
equivalent of the Cut item is Command-X. The Cut command can also
be issued from a command line or a script.

Copy

The Copy menu item copies text that has been selected to the Clipboard,
without deleting it from the document being edited. The command-key
equivalent of the Copy item is Command-C. The Copy command can
also be executed from a command line or a script.

Clear

The Clear menu item deletes any text that has been selected in the
currently active window without copying it to the clipboard. The
keyboard equivalent for Clear is the Clear key. Clear command can also
be issued as a command from a command line or a script.

Paste

The Paste menu item inserts any text that is currently on the Clipboard
into the currently active window, beginning at the selection point. The
keyboard equivalent for Paste is Option-V. Paste can also be issued as a
command from a command line or a script.

Select All

The Select All menu item selects all the text in the document displayed
in the active window. Its command-key equivalent is Command-A.

.... The MPW Menu Structure 171

Show Clipboard

If any text has been copied to the Clipboard, the Show Clipboard menu
item displays it.

Format

The Format menu item displays a dialog that you can use to change the
font and type size of the text displayed in the active window. MPW's
Format item, unlike the Type and Style items on the menus of most
word processors, alters the font and size of all the text in the document
being edited, not just text that has been selected .

..,_ The Format Dialog

The Format dialog box is shown in Figure 3-6. In addition to its font
and text-size controls, it has several other controls that can also be used
to change the appearance of the document in the active window.

The Show Invisibles Check Box

The Show Invisibles check box can be selected to display nonprinting
characters, that is, characters that are not ordinarily visible. These
characters are shown in Table 3-1.

Font

luy League
Kells
Mc:Cloud

Times

Figure 3-6. Format dialog box

Size

[SJ Auto Indent

D Sh om I nuisibles

Tabs: Li
[OK Il

Canc:el

172 .,.. Chapter 3 Menus and Dialogs

Table 3-1. Nonprinting characters

Non-Printing Character

Tab
Space
Return
All others

Character Displayed

11

0

When you want to delete nonprinting characters from a document,
you can make them visible by checking the Show Invisibles check box.
Its default setting is off.

The Tabs Check Box

The Tabs check box sets the number of spaces that are skipped when
the Tab key is pressed. The default setting is four spaces.

Alternatives to Using the Format Dialog

You can also alter the appearance of the text in MPW documents by
modifying the {Font}, {FontSize}, {Tab}, and {Autolndent} variables in
the MPW Startup script. Procedures for modifying the Startup script are
explained in Chapter 2.

Align

The Align menu item executes the MPW command Align, which
positions all lines in a selected block of text at the same distance from
the left margin as the first line in the selection.

Shift Left and Shift Right

The Shift Left and Shift Right menu items move the selected text to the
left or right. Shift Left removes a tab from the beginning of each line.
Shift Right adds a tab, or the equivalent number of spaces, to the begin
ning of each line. If you hold down the Shift key while selecting Shift
Left or Shift Right, the selection is shifted by one space rather than by
one tab stop.

The keyboard equivalent of Shift Left is Command-[. The keyboard
equivalent of Shift Right is Command-].

Ill> The MPW Menu Structure 173

~ The Find Menu

Find, shown in Figure 3-7, is the menu to use when you want to find, or
find and replace, strings of text in a document. With the items listed
under the Find menu, you can perform some pretty complex searching
and search-and-replace operations. But you can perform string
matching and pattern-matching operations that are even more powerful
by executing commands from command lines and scripts, as explained
in Chapter 4.

Find

The menu item Find-the first item under the menu with the same
name-can find any block of text in an MPW document. The command
key equivalent for Find is Command-F. The Find command can also be
issued from a command line or a script, as described in Chapter 4.

Normally, the Find command begins its search at the location of the
insertion point, or text cursor, and proceeds toward the end of the
document displayed in the active window. However, if you hold down
the Shift key as you select the Find menu item-or if you hold it down
as you click the OK button of any dialog that Find displays-the search
that you request is carried out in reverse. That is, it starts at the current
location of the cursor and moves backwards, toward the beginning of
the document being edited.

Find... 8€F
Find Same 8€6
Find Selection 8€H
Display Selection

Replace... 8€R
Replace Same 8€T

Figure 3-7. Find menu

174 IJJJ. Chapter 3 Menus and Dialogs

By the Way ~I The Search Command. In addition to the Find command, the
MPW command language includes a Search command that can
search through a list of files for any text pattern. More information
about Search and Find can be found in Chapter 4.

The Find Dialog

When you select Find, it displays a dialog box like the one in Figure 3-8.
The Find dialog contains a TextEdit box and ten button controls.

Above the TextEdit box is the prompt, "Find what string?" In the
TextEdit box, you can type the string that you want to find. You can
then use the button items to specify exactly how you want your search
carried out.

Find what string?

®Literal
0 Entire Word
O Selection EHpression

t Find I
Figure 3-8. Find dialog

Radio Buttons

D Case Sensitiue
D Search Backwards
D Wrap-Rround Search

Cancel

There are three radio buttons in the Find dialog box. They are arranged
in a group, so only one of them can be selected. The labels and func
tions of these buttons are as follows.

..,. The MPW Menu Structure 175

• Literal: Click on this button, and Find searches for the exact string
you have specified, anywhere it may appear, even if it is a part of
other words or expressions.

• Entire Word: If you select this button, Find looks for the specified
string only when it occurs in a document as a single word. The
rules used for defining a word depend on the setting of the
{WordSet} shell variable. In the MPW Startup script, the {WordSet}
variable is defined this way:

Set WordSet 'a-zA-Z 0-9'

According to this definition, a word composed of any
combination of the uppercase letters A through Z, the lowercase
letters a through z, the numerals 0 through 9, and the underscore
character (_). When {WordSet} is defined in this fashion, double
clicking on a word highlights all the alphabetic and numeric
characters that it may contain. If the word contains an underscore
character, that is also considered to be a part of the word. But if the
word contains any special character such as a period or a colon,
MPW stops highlighting the word at that point and does not select
the special character.

If you want to use double-clicking to select pathnames, you may
want to change this definition by redefining the {WordSet} shell
variable. The procedure for doing that is explained in Chapter 2.

• Selection Expression: When you highlight the Selection Expression
button, the "Find what string?" prompt changes to "Find what
selection expression?" You can then instruct MPW to search for a
text pattern using a regular expression-a string made up of text
characters and special characters that stand for text patterns in
search-and-replace operations. Special characters that have special
meanings in regular expressions are called regular expression
operators.

A detailed discussion of regular expression operators is presented in
Chapter 4. Table 3-2 lists a few regular expression operators that are
used often in find-and-replace operations.

176 .,_ Chapter 3 Menus and Dialogs

Table 3-2. Regular expression operators

Operator Description

I ... I Slashes

\ ... \ Backslashes

? Question mark

Option-X

[characterList] Square brackets

[-.characterList] Square brackets
enclosing a character
list preceded by the
symbol-. (Option-L)

Meaning

Delineators used to enclose a
regular expression, searching
forwards.

Delineators used to enclose a
regular expression, searching
backwards.

A wildcard character used to
represent a single character.

A wildcard that stands for any
string of zero or more
characters that does not include
a Return.

Used to enclose a list of
characters. MPW searches for
all characters specified in the
list.

MPW searches for all characters
not specified in the list.

Consider the following example of a regular expression that could be
used in a Find command. If you typed

/== Smith/

as a selection expression, MPW would search the document in the
active window for the full name of any person whose last name was
Smith.

You can also use any number as a selection expression. For example,
if you typed the number

15

in the selection-expression window, the MPW Editor would move to
the fifteenth line of the document in the target window and select that
line.

~ The MPW Menu Structure 177

Check Boxes

There are three check boxes in the Find dialog, and they can be selected
in any combination. Their labels and functions are as follows.

• Case Sensitive: Normally, searches in MPW are not case sensitive.
Checking this box specifies case-sensitive searching.

• Search Backwards: Normally, the Find command searches docu
ments in a forward direction, beginning at the location of the inser
tion point and proceeding to the end of the document. Checking
this box instructs MPW to conduct a backwards search, starting at
the insertion point and moving in reverse toward the beginning of
the document being edited.

• Wrap-Around Search: Unless the Search Backwards box has also
been selected, checking this item instructs MPW to conduct a wrap
around search; that is, to search forward to the end of a document,
and then to wrap around and search from the beginning of the
document to the location of the cursor. If the Search Backwards box
has also been checked, the direction of the wrap-around search is
reversed.

Plain Buttons

The Find dialog has two plain buttons: one labeled Find and one
labeled Cancel. If you click the Find button, MPW searches for the next
occurrence of the selected string. Clicking Cancel cancels the Find
operation.

The check boxes in the Find dialog set the shell variables
{CaseSensitive}, {SearchBackward}, and {SearchType}. You can also set
these variables by issuing commands from command lines or scripts.
The procedures for setting variables from command lines and scripts
are explained in Chapter 2.

Find Same

When you select the Find Same menu item, MPW repeats its last Find
operation. You can also issue a Find Same command by typing
Command-G.

Find Selection

The Find Selection menu item finds the next occurrence of the current
selection. Its command equivalent is Command-H.

178 .,,. Chapter 3 Menus and Dialogs

Display Selection

The Display Selection menu item scrolls into view the current selection
in the active window.

Replace

You can perform search-and-replace operations in an MPW file by
selecting the Replace menu item. You can also issue a Replace command
by typing Command-R. When you select Replace, MPW displays a
dialog window like the one in Figure 3-9.

The Replace dialog is similar to the Find dialog described earlier, but
there are a couple of differences:

• The dialog displayed by Replace has two TextEdit windows: one
labeled "Find what string?" and the other labeled "Replace with
what string?" In the first TextEdit window, you can type the string
that you want MPW to find. In the second, you can type a replace
ment string.

• The Replace dialog has four plain buttons. They are labeled Replace,
Replace All, Find, and Cancel. The Replace button finds the next
occurrence of the string in the edit box labeled "Find what string?"
and replaces it with the string in the edit box labeled "Replace with
what string?" The Replace All button replaces all occurrences of the
string in the first edit box with the string in the second edit box.

Find what string?

Replace with what string?

®Literal
0 Entire Word
O Selection EHpression

n Replace l (Replace Rll)

Figure 3-9. Replace dialog

D Case Sensitiue
D Search Backwards
D Wrap-around Search

Find) (Cancel

~ The MPW Menu Structure 179

Except for these differences, the Replace dialog carries out search-and
replace operations in exactly the same way that the Find dialog carries
out search operations.

Replace Same

Replace Same repeats the last Replace operation. Its keyboard equiva
lent is Command-T.

~ The Mark Menu

By using the Mark menu (Figure 3-10), you can place invisible markers
in any text document and move your cursor to any marked item at any
time at the click of a pull-down menu. And when you save a document,
MPW also saves its markers, so they will be back again for you to use in
your next editing session.

When there are no markers in the document displayed in the active
window, the Mark menu has just two items: Mark and Unmark. When
the document in the active window contains markers, the selections that
have been marked are listed as additional menu items. A horizontal line
separates them from the items Mark and Unmark, and they are arranged
in the order in which they appear in the document being edited.

When you launch MPW 3.2 for the first time, you may notice that a
number of MPW commands are listed as marked items. You can use
these predefined markers to jump to the sections of the MPW Worksheet
in which the marked commands are explained. Or, if you prefer, you can
unmark the commands.

Mark

It is easy to place a mark in a document using the Mark menu. Just
select any word or phrase that you want to mark, and pull down and
select the Mark menu item. MPW then displays a dialog containing a

Mark... ~M

Unmark ...

Figure 3-10. Mark menu

180 ~ Chapter 3 Menus and Dialogs

TextEdit window and the question, "Mark the selection with what
name?" The dialog displayed by the Mark menu item is shown in
Figure 3-11.

When the Mark dialog appears, its TextEdit window contains the
string you have selected. But you can change the text to read any way
you choose.

When you have decided what you want the name of your marker to
be, you can click the dialog's OK button, and your marker is saved
under the name you have chosen. You can also click the Cancel button
to cancel your marking operation.

Un mark

When you want to delete a marker from a document, you can select the
Unmark menu item. MPW then displays a dialog that lists all the
current markers. The Unmark dialog is shown in Figure 3-12.

Mark the selection with what name?

n OK Cancel

Figure 3- 11 . Mark dialog

Delete which markers?

Samskara ~

n Delete Il Cancel

Figure 3-12. Unmark dialog

.,,. The MPW Menu Structure 181

From the list of markers in the Unmark dialog, you can select one or
more markers that you want to delete by clicking, or clicking and
dragging, your mouse. You can then click the dialog's Delete button to
delete all markers you have selected. You could also click the Cancel
button to cancel your unmarking operation.

Jumping to a Marked Item

Once you have marked a location in a document, you can move the
insertion point (text cursor) there instantly by pulling down the Mark
menu and selecting the marker's name .

..,. The Window Menu

The Window menu, illustrated in Figure 3-13, has two functions. It lists
all the currently open windows, and it can be used to control the
arrangement of the windows on your screen.

When you first launch MPW, and the Worksheet window is the only
window displayed, the Window menu has three items. The first item is
labeled Tile Windows; the second is labeled Stack Windows. The third
item-separated from the first two by a horizontal line-contains the
full pathnames of all the open windows.

Each time you open a window, MPW adds its pathname to the
Window menu's window list. Each time you close a window, its
pathname is deleted. So the names of all the open windows are always
displayed under the Window menu.

In the Window menu's list of open windows, a code is used to
specify the status of certain windows. A check mark (°'1) precedes the
name of the currently active window. A bullet (•) precedes the name of
the target window, or second topmost window. If the name of a
window is underlined, it means that the window has been modified
since the last time it was saved.

Window

Tile Windows
Stack Windows

../ Brahma:MPW 3.2 :Worksheet

Figure 3-13. Window menu

182 ~ Chapter 3 Menus and Dialogs

When you choose a window name that is displayed under the
Window menu, MPW brings the selected window to the front and
makes it the active window.

For more information about how MPW manages windows, see
Chapters 1 and 2.

Tile Windows and Stack Windows

The Stack Windows menu item arranges the windows on the screen in a
stacked pattern, so that only the title bars of inactive windows are
visible. Figure 3-14 shows a stacked window pattern.

When you select the Tile Windows menu item, MPW arranges all the
open document windows in a tiled pattern on your screen. If necessary,
Tile Windows reduces the sizes of the windows that are open to fit the
pattern in which they are displayed. If there are two open windows, for
example, Tile Windows splits the screen in half horizontally, and
displays one window above the other.

If there are three open windows, Tile Windows divides the screen
into horizontal thirds, as shown in Figure 3-15. If there are four win
dows, Tile Windows arranges them in a checkerboard pattern, as
illustrated in Figure 3-16. When there are more than four windows, Tile
Windows creates a checkerboard pattern with a smaller square for each
window displayed.

s File Edit Find Mark Window Project Directory Build

Brnhma:MPW:Fiction

Brnhma:MPW:Well, neuer mind

Brnhma:MPW:Dick Tracy

Brnhma:MPW:Monkeyshines

Brahma:MPW:Worksheet

~D Brahma:MPW:Literature

Figure 3-14. Stacked windows

IJJ. The MPW Menu Structure 183

s File Edit Find Mark Window Project Directory Build II
Brahma:MPW:Worksheet

trap is available. If it is false, we know that we must cal I GetNextEvent. *
Boolean gHasWaitNextEvent; /*set up by Initialize*/

/* GlnBackground is maintained by our osEvent hand I ing routines. Any part of
the program can check it to find out if it is currently in the background. *

Brahma:MPW: Lindan
Every window also has a data area. Some windows have a grow box, a zoom
memory that includes all the data that used to in.crease or decrease the
viewed through the window. If the window is scrolled, it moves over the
to increase or decrease the size of the window, causing more or less of
QuickDraw and the Window t!anager must create dialog windows. Windows created by

MPW Sh•ll

Brahma:MPW:Literature

It w11s 11 311rk 11n3 stormy night: 'The r11in fcl.l in
torrents except 11t ocusiond. interl/111.s, when it w11s
checke3 by 11 l/iolent gust of win3 which S..Vept up the

Figure 3-15. Tiled windows (horizontal)

A • File Edit Find Mark Window Project Directory Build Run II
Brahma:MPW:Worksheet Brahma:MPW:Dick Tracy

Every window also has a data area: a Every window also has a data area: a
memory that includes all the data tha memory that includes all the data tha
viewed throught the window. If the wi viewed throught the window. If the wi
to increase or decrease the size of t to increase or decrease the size of t
QuickDraw and the Window t!anager must QuickDraw and the Window t!anager must
can th.en be issued to call the Window can th.en be issued to call the Window
it disposes of th.em with the help of it disposes of th.em with the help of
t!emory tfanager . After a window is dra t!emory tfanager. After a window is dra
screen, the Window tfanager 's main fim screen, the Window tfanager' s main fim

§0 Brahma:MPW:Dingbat 0§ Brahma:MPW:Literature
Every window also has a data area: a ~ It w11s 11 311rk 11n3 stormy night
memory that includes all the data tha

I
torrents except 11t occ11siond. in viewed throught the window. If the wi

to increase or decrease the size of t checke3 ~ " l/iolent gust ol wi~ QuiokDraw and the Window tfanager must
streets or it w11s in [on on t~ can th.en be issued to oall the Window

it disposes of th.em with the help of r11ttling Ill.orig the housetops, 11~
t!emory tfanager . After a window is dra

the sc11nty fl.11me of the l11mps t~ screen, the Window tfanager 's main furl

MPW Sh•ll _..15,2_[[2 l2:J

Figure 3-16. Tiled windows (checkerboard)

184 ..,. Chapter 3 Menus and Dialogs

By the Way ~I
' ,, ~ ~

· TU• Windows ~n#the Worksheet.Window. No:rfmally Tile
Windows does not.include the Worksheet window:in its tiled
display. If you want the Worksheet· window included, you must
p;ress the Option key while you select the Tile Windows menu
item, or change the value of the {Til¢0ptions} shellvariable, as
eml.aiJ'l~. lC:l.t~J:' i:n,.~.fh~pter. . ..

"~ ;;,;;~~:~~~!:;;.\';/? '/, ;/?j;~; ." ,. '/, ,,; ,:·
• <.' '·>,:o~ .. -... ".' - -~- '.' '•);;-:?;~,:~~;:;;..:;· 2· •,:

The Tile Windows and Stack Windows menu items create their dis
plays by issuing the TileWindows and StackWindows shell commands.
As mentioned in Chapter 2, you can also execute the TtleWindows and
StackWindows commands from a command line or a script.

If you issue a TileWindows command with an -h option, MPW tiles
your windows in a horizontal arrangement. If you use a -v option, your
windows are tiled vertically. For example, the command

TileWindows -h HD:InsideMPW:Chapterl
HD:InsideMPW:Chapter2

tiles the HD:InsideMPW:Chapterl and HD:InsideMPW:Chapter2
windows in a horizontal arrangement. But the command

TileWindows -v {Active} {Target}

arranges the top two windows vertically.
When the TileWindows and StackWindows commands are executed

by the Tile Windows and Stack Windows menu items, the windows are
tiled in accordance with the options and parameters defined in the
{TileOptions} and {StackOptions} shell variables. The {TileOptions} and
{StackOptions} variables are defined in the MPW Startup script. So you
can change their definitions by editing the Startup script.

There are two ways to modify variables that are defined in the Startup
script. You can type in new definitions directly from your keyboard, as
explained in Chapter 2, or you can use the UserVariables Commando
dialog, which is covered later in this chapter .

.,. The Project Menu

The Project menu, shown in Figure 3-17, provides an interface to
Projector, a project-management tool built into MPW. With Projector,
you can maintain a revision history of any software development project

Project

Check In .. .
Check Out .. .

New Project ...
Mount Project ...
Set Project ...

Compare Rc:tiue ...
Merge Rc:tiue ...

Figure 3-17. Project menu

~ The MPW Menu Structure 185

with a backup of each revision filed away for safekeeping. You can even
try out experimental versions of a program by using a branching
function that keeps experimental versions of programs or program
segments separated from your main development path.

Projector can be used by teams of programmers working on large
projects with the aid of a file server, as well as by one programmer
working on an individual project. In fact, Apple's own development
engineers use Projector to write and maintain Toolbox and system
software for the Macintosh.

~ The Directory Menu

With the Directory menu, you can find out what the current (default)
directory is, or change the current directory.

The Directory menu (Figure 3-18) has two items that are permanently
displayed, plus a list of pathnames that change dynamically when you
make a change to the default menu. The two permanent items are
separated from the dynamic items by a horizontal line.

186 ~ Chapter 3 Menus and Dialogs

Directory
Show Directory
Set Directory ...

Brahma:MPlll 3.2 :Rsm

Figure 3-18. Directory menu

Show Directory

When you select the Show Directory menu item, MPW displays an alert
dialog showing you the name of the current directory. The Show
Directory dialog is illustrated in Figure 3-19.

Set Directory

The Set Directory menu item displays a dialog that you can use to select a
new default directory. The Set Directory dialog is shown in Figure 3-20.

The Directory Menu's Pathname List

The rest of the items under the Directory menu are pathnames that have
recently been selected as default directories. If you change the default
directory while you are using MPW, the pathname of your new default
directory is added to the list of pathnames that appear under the
Directory menu. By selecting any pathname on the list, you can quickly
change your current directory to the directory that you have chosen.

The default directory is

Brahma:MPW:

OK

Figure 3-19. Show Directory dialog

Ill> The MPW Menu Structure 187

Selec:t Current Direc:tory: J

JoMPllll

D (:folder
O EHamples
D Libraries
D PFolder
O Release Notes
0 RFolder
0 ROM Maps
D Sc:ripts

Figure 3-20. Set Directory dialog

•

,,..---, Brahma

Drille

Open J

n mrec:tory I
Canc:el J

When you launch MPW, the pathnames listed under the Directory
menu are the pathnames of the folders inside the Examples folder.
Figure 3-21 shows the Directory menu after MPW is launched.

Directory

Shom Directory
Set Directory ...

HD:MPLU 3.2:EHamples:AEHamples:
HD:MPLU 3.2:EHamples:CEHamples:
HD:MPLU 3.2:EHamples:EHamples:
HD: Mp LU 3. 2: EH amp I es: Hype rH EH amp I es:
HD:MPLU 3.2:EHamples:PEHamples:
HD:MPLU 3.2:EHamples:Projector EHamples:
HD:MPLU 3.2:

Figure 3-21. Directory menu after MPW launch

188 ~ Chapter 3 Menus and Dialogs

.,... The Build Menu

With the items listed under the Build menu (Figure 3-22), you can build
MPW programs; that is, you can convert them from raw object code
generated by a compiler or an assembler into executable programs. For
more information on using the Build menu, see Chapter 8.

Create BuildCommands ...

Build ... OOB
Full Build ...
Show Build Commands ...
Show Full Build Commands ...

Figure 3-22. Build menu

..,, Customizing MPW Menus
You can customize the MPW menu structure by using two MPW
commands: AddMenu and DeleteMenu.

With AddMenu, you can create your own menus and menu items, or
you can add items to any menu already defined by MPW, except for the
Mark, Window, and Apple menus. You cannot add items to those menus
because doing so would be meaningless; the Window menu always
contains the names of active windows, and the Mark menu always
contains guides to selections that have been marked. The Directory
menu also works automatically, growing longer as you shift to new
default directories, but you can modify the Directory menu by adding
names of additional directories.

Once you have added a menu or a menu item to the MPW menu
structure, you can select it in the same way that you would select any

IJi> Customizing MPW Menus 189

other menu item-and it executes any command or script that you have
associated with it. When you want to delete a menu or a menu item
that you have defined, you can use the DeleteMenu command .

.., The AddMenu Command

The syntax of the AddMenu command is:

AddMenu [menuName [itemName [command ...]]]

where menuName is the name of a new or existing menu, itemName is
the name of a new menu item, and command is an MPW command that
you want to associate with the new menu item.

If the menu specified in the menuName parameter already exists,
MPW adds the item itemName to the items listed under the existing
menu. If menuName does not exist, MPW creates a menu with the
specified name and adds it to the menu bar. The item specified in
itemName is then added to the new menu. If both menuName and
itemName already exist, the command list associated with itemName is
changed to command .

.., Omitting AddMenu Parameters

By omitting parameters, you can use AddMenu to write information
about menus and menu items to the screen or to a printer. For example:

• If you do not use any parameters, AddMenu writes a list of user
defined items to standard or specified output.

• If you omit the itemName and command parameters, AddMenu
writes a list of all user-defined items to standard or specified output.

• If you use the itemName parameter but omit the command parameter,
AddMenu writes the command list associated with itemName to
standard or specified output.

It is important to remember that the text that you enter in the AddMenu
parameter is processed twice: once when you execute the AddMenu

190 IJJIJ!- Chapter 3 Menus and Dialogs

command itself, and again when you select the new menu item that
you have added. This means that you must use the proper rules for
quoting items so that they are processed at the right time. Rules for
using quotation marks in MPW commands were explained in more
detail in Chapter 2.

IJJIJ!- Creating a Menu and a Menu Item

To illustrate the use of AddMenu, let's add a menu called Apps to your
MPW menu bar so that you can launch certain applications-for
example, MacPaint or MacDraw-directly from MPW by selecting their
names from a pull-down menu. We'll start with MacPaint. (If you don't
have MacPaint on your hard disk, you can do the exercise with another
application.)

Before you can add MacPaint (or any other application) to your
MPW menu tree, you must determine where it is stored on your hard
disk. You could do that by looking for the application's file name on
your Finder screen, but there is an easier way: You can use the MPW
command Wherels.

The Wherels command can find any file on a disk, and writes the
file's pathname to standard output. To issue a Wherels command that
finds MacPaint, execute this command line from your Worksheet
window:

Whereis MacPaint

MPW then finds the application you are looking for and prints its full
pathname on your screen, like this:

HD:Graphics:MacPaint

Once you know the pathname of your MacPaint application, you are
ready to create a new menu and a new menu item. To create the new
menu, execute an AddMenu command in this format:

AddMenu Apps MacPaint "HD:Graphics:MacPaint"

You could accomplish the same result by substituting the {Boot} shell
variable for the volume name HD, like this:

AddMenu Apps MacPaint '''{Boot}"Graphics:MacPaint'

~ Customizing MPW Menus 191

This is a better syntax because it would still work if you changed the
name of your boot volume. But when you use variables with the
AddMenu command, you have to enclose them in quotation marks, as
shown in this example and explained later in this chapter.

As soon as you type an AddMenu command and press Enter, the
name of your new menu is added to the MPW menu bar. Pull down the
Apps menu, and you should see your MacPaint item. Click on it, and
MPW should launch MacPaint. You can use MacPaint for as long as you
like. And, when you exit MacPaint, you're back in MPW!

Once your Apps menu has been added to the menu bar, you can add
more items to it. For example, to add an item that would launch
MacDraw (assuming that MacDraw is also in your Graphics folder),
you could enter a command like this:

AddMenu Apps MacDraw 'HD:Graphics:MacDraw'

or

AddMenu Apps MacDraw "'{Boot}'Graphics:MacDraw"

Both MacPaint and MacDraw would then appear as items under your
new menu.

~ Adding Menus and Items from a UserStartup Script

You can execute the AddMenu command from a UserStartup script as
well as from a command line. For example, if you modified your
UserStartup script by adding the lines

AddMenu Apps MacPaint '"{Boot}"Graphics:MacPaint'
AddMenu Apps MacDraw '"{Boot}"Graphics:MacDraw'

your Apps menu would then be added to the menu bar every time you
started MPW.

A UserStartup script that contains several AddMenu commands is
presented at the end of this chapter.

192 .,. Chapter 3 Menus and Dialogs

.,. Using AddMenu to Run a Script

With the AddMenu command, you can create menu items that run
MPW scripts as well as applications. For example, to create a menu
item that would run the Chimes script (which we created in Chapter 2
when we wrote our first script) you could execute this command:

AddMenu Apps Chimes '"{MPW}"Chimes'

You could then run the Chimes script by selecting the Chimes
command.

It might be helpful at this point to take note of how the quotation
marks are arranged in the preceding example. They have been placed
very carefully. If you typed the example this way, it would not work if
{MPW} contained spaces.

AddMenu Apps Chimes "{MPW}Chimes" # This might not
work

.,. Menu Items for Editing Documents

Bytheway ... 1

You can use the AddMenu command to create menu items that can per
form many kinds of functions. In this section, menu items will be
created to move the insertion point to the top of a document, move the
insertion point to the bottom of a document, insert selected text into a
document, and add selected text to a document.

Pattern-matching Characters in Menu Commands. In the
AddMenu command that creates the Top menu item, the special
character • (Option-8) is used as a pattern-matching character to
represent the top of a document. Other special characters used for
similar purposes include oo (Option-5), used to represent the
bottom of a document;§ (Option-6), used to represent the current
selection); and~ (Option-}), used to represent the beginning or end
of a selection (if it appears before a selection, it represents the
beginning, and if it appears after a selection, it represents the end).
These and other pattern-matching characters are examined in more
detail in Chapter 4.

BytheWay ... 1

.,_ Customizing MPW Menus 193

Moving to the Top of a Document

If you add this line to UserStartup script

AddMenu Find Top 'Find • "{Active}"'

MPW adds to the Find menu a menu item labeled Top. Then, when Top
is selected, the MPW Editor's insertion point is placed at the top of the
active window. (This menu item, incidentally, has a keyboard equiva
lent: Command-Shift-Up Arrow.)

Doing It from the Keyboard. The Top menu item has a command
key equivalent. You can move the insertion point to the top of a
document by pressing the Up-Arrow key while holding the Shift
and Command keys down. To get to the bottom of a document,
you can use the keyboard equivalent for the Bottom menu item,
Shift-Command-Down Arrow.

Moving to the Bottom of a Document

If you find that a Top menu item is a useful addition to your Find menu,
you will probably also want to add a matching item called Bottom. This
Bottom command creates a Bottom menu item, which sends the
insertion point to the bottom of the document in the active window:

AddMenu Find Bottom 'Find oo "{Active}"'

Two other custom menu items that you might find useful are Insert
and Add. Insert copies selected text from the document in the active
window to the insertion point in the target window. Add copies a
selection from the active window and adds it to the bottom of the
insertion point in the target window.

This command adds the Insert item to the Edit menu:

AddMenu Edit Insert d
'Copy § "{Active}"; d
Paste § "{Target}"'

This command creates the Add menu item:

AddMenu Edit Add d
'Find §ti..; Catenate "{Active}.§">§'

194 ~ Chapter 3 Menus and Dialogs

~ Using Metacharacters with the AddMenu Command

In the parameters that you pass to the AddMenu command, you can use
a special set of characters called metacharacters to define the appearance
and operation of any menu item. For example, the metacharacter

disables the item that follows it, dimming the item's name and making
it unselectable. And the character

prints a horizontal line to separate menu items. So the command

AddMenu Edit 11 (- 11 11 11

or

AddMenu Edit '(-' ' '

prints a dotted horizontal line as the next item under the Edit menu.
Since no command is associated with this menu item, a space character
enclosed in quotation marks is typed at the end of the command to
indicate the presence of a null item.

The metacharacters that are used with the AddMenu command are
the same as those that are used with the Menu Manager trap call
AppendMenu. They are listed in Table 3-3.

Table 3-3. Metacharacters used with menu items

Metacharacter

Return
/\

Usage

Separates multiple items.

Separates multiple items.

Followed by an icon number (included in a resource
fork), adds the specified icon to the item.

Followed by a check mark or other character, marks the
item with the specified character.

.,_ Customizing MPW Menus 195

Table 3-3. Metacharacters used with menu items (continued)

Metacharacter

<

I

Usage

Followed by B, I, U, 0, or S, sets the character style of
the item, as follows:
<B bold
<I italic
<U underline
<0
<S

outline
shadow

Followed by a character, associates a keyboard
equivalent with the item.

Disables the item.

Prints a horizontal line to separate menu items.

~ The DeleteMenu Command

The DeleteMenu command deletes any menu or menu item that has
been added using AddMenu. Thus, the only preexisting menus that
you can delete or modify using DeleteMenu are the Build and Project
menus, which are defined in your UserStartup script.

Space on the MPW menu bar is in short supply, and it would be nice
if you could grab some more space for your own menus by using the
DeleteMenu command. However, if you deleted the Build menu, you
would not be able to use it to build programs. If you deleted the Project
menu, you would not be able to use Projector, MPW's project
management tool.

If you do not want to comment out your Project menu, there is
enough space at the end of the MPW menu bar for one menu name
provided you give it a short label. And, of course, you can always create
as many menu items as you like if you append them to existing menus.

The syntax of the DeleteMenu command is:

DeleteMenu [menuName [itemName]]

DeleteMenu deletes the item specified in the parameter itemName
from the menu specified in the menuName parameter. If no itemName is
specified, DeleteMenu deletes all items from the specified menu. If no
menuName is specified, DeleteMenu deletes all user-defined menus and
items.

196 .,.. Chapter 3 Menus and Dialogs

~ MPW Dialogs
MPW places two kinds of dialogs at your disposal: Standard dialogs
and Commando dialogs. Commando dialogs derive their name from
the fact that they are used to execute MPW commands. They are
examined in detail later in this chapter. But first, we will look at some
standard dialogs that you can create using MPW scripts and MPW
commands .

..,. Using Standard Dialogs in MPW

There are several commands that you can use to create standard dialogs
quickly and easily in MPW. They include:

• Alert
• Confirm
• Request

The Alert Command

The Alert command creates an alert dialog containing a message and an
"OK" button (but no alert icon). The syntax of the Alert command is

Alert [-s] [message ...]

You can place any alert string you like in the message parameter. If you
use the -s option, Alert runs silently, without emitting a beep. If you do
not use -s, a beep is sounded. Alert displays a dialog like the one shown
in Figure 3-23.

Consider this example of a command line containing an Alert
command:

C "{MyFile} "Prog. c I I Alert "Could not compile file"

If you executed this command, MPW would attempt to compile a
program called Prog.c in a directory identified by the {MyFile} variable.
If the compilation failed, MPW would display an alert dialog
containing the message, "Could not compile file."

... MPW Dialogs 197

Could not compile file.

((OK JI

Figure 3-23. Alert dialog

The Confirm Command

Confirm displays a dialog containing a message that a user can respond
to by clicking a Yes, No, or Cancel button. The syntax of the Confirm
command is

Confirm [-t] [message ...]

The Confirm command displays an dialog like the one illustrated in
Figure 3-24. The dialog contains the message specified in the message
parameter. If you use the -t option, Confirm displays a dialog with three
response buttons: Yes, No, and Cancel. If you do not use -t, Confirm
displays two response buttons: OK and Cancel.

Rre you sure you want to delete that file?

OK D Cancel

Figure 3-24. Confirm dialog

198 .,. Chapter 3 Menus and Dialogs

Important ~

When you use Confirm in a tool or a script, it returns its result in the
{Status}. shell variable. These are the values that Confirm can return:

Value Meaning

0 The user clicked the OK button.
1 Syntax error.
4 The Cancel button was clicked in a two-button dialog, or the No

button was clicked in a three-button dialog.
5 The Cancel button was clicked in a three-button dialog.

~<

,, ,}::~;~~~:·· ~.\ ~
The. ¢&tf;tm Command and the {Ext~};;~' .. ·· · ~,t~~e Confirm
ref:t,trt\s a nonzero status value when N<Jor'~:rice1'µ.' $.eiected, you
should set the. {Exit} shell variaQle to zero·~eftjt~;iss#llig a Confirm
command; This step is necessary becau~ethe,'shell aborts script
proce~singwhen a nonzero status valtie1S'retU.µi.ed and {Exit} is set
to nonzero. .

Listing 3-1 is a short script containing a Confirm command. The
script uses the Delete command to erase a file called MyFile, but asks
first for confirmation.

Listing 3-1. Confirm script

Set Exit 0
Confirm "Are you sure you want a
to delete that file?"
If "{Status}" == 0

Delete MyFile
End
Set Exit 1

The Request Command

The Request command displays a dialog containing a prompt and a
TextEdit item. In the TextEdit box, the user can type a response to the
dialog's prompt. The response is written to standard output by default,
but it can be used to set a variable. A Request dialog also contains an
OK button and a Cancel button.

A typical Request dialog is shown in Figure 3-25.

._ MPW Dialogs 199

Please type the password:

OK Cancel

Figure 3-25. Request dialog

The syntax of the Request command is:

Request [-q] [-d default] [message ...]

If the -q option is used, a Request dialog always returns a status of
either zero or one. Otherwise, Request returns these values in the
{Status} variable:

Value Meaning

0 The OK button was selected.
I Syntax error.
4 The Cancel button was selected.

If the -d option is used, it must be followed by a string. This string,
known as the default parameter, appears in the response box when the
dialog is displayed.

Listing 3-2, a script called Login, illustrates the use of Request
command. The script displays a dialog containing the prompt, "Please
type the password:". If the user responds with the correct password
the word "Karoshi"-MPW plays a melody, displays an alert that says,
"Welcome to the Editor!," opens a new window, and echoes the message,
"You are now online." (For the chimes to work, you must have the
Chimes script-created in Chapter 2-in your MPW folder.)

200 .,.. Chapter 3 Menus and Dialogs

Listing 3-2. Login script

Set Exit 0
Set N "'Request 'Please type the password:''"
If "{Status}" == 0

End

If "{N}" =- /Karoshi/
This happens if login succeeds
Chimes
Alert -s "Welcome to the Editor!"
New
Echo "You are now online.an" > "{Active)"

Else
This happens if login fails
Alert "Password invalid; access denied."

End

Set Exit 1

If the user fails to type the correct password, the script displays an alert
that says, "Password invalid; access denied" and does not put the user
online.

Although pattern-matching procedures won't be examined in detail
until Chapter 4, three of the features of the Login script in Listing 3-2
are worth examining now. For example, in the line

If {N} =- /Karoshi/

the contents of the {N} variable, set by the Request dialog, are compared
to the predefined string "Karoshi." Note that in this line, the=- operator
is used to mean "is equal to." In MPW, =- is the standard operator for
comparing strings, whereas == serves the same purpose when numeric
values and case-sensitive strings are being compared.

Also note that in the line the string "Karoshi" is delimited by slash
bars, rather than by quotation marks. In MPW pattern-matching
operations, slash bars are the standard delimiters.

A third construct in Listing 3-2 that is worth noting is .an, used in the
line that begins with the command word "Echo". As you may recall
from Chapter 2, a is used as an escape character before the letters n, t, or
f. When it appears before the letter n, it writes a newline character, or
return, to standard output. When used before the letter t, it writes a tab.
When used before the letter f, it writes a form feed. When o appears by
itself at the end of a line in a script, its behavior is completely different;

..,. Commando Dialogs 201

it then causes the line that it ends and the line that follows to be written
as a single line.

In the Login script, a causes a newline character to be written
following the message, "You are now online." The newline moves the
insertion point to the beginning of the next line so that the user can start
typing on a new line .

..,. Commando Dialogs
Commando dialogs are a very special feature of MPW. With a
Commando, you can execute any MPW command by clicking on items
in a dialog box, instead of typing and entering the command on a
command line. Figure 3-26 shows a typical Commando dialog.

MPW provides a unique Commando dialog for every one of its 120+
commands. You can invoke any Commando dialog by executing a
simple one- or two-word command. So, when you want to execute a
command but do not want to look up all its options and parameters,
you can call up the Commando dialog that is associated with the
command.

In a Commando dialog, every option and parameter of the command
associated with the dialog is translated into a dialog item-a button, a
check box, a text item, or a pop-up menu. To set the options and

.-UserUariables Options

(Control Uariables ...) (Window Stacking ...)

(Search Uariables ...) (Window Tiling ...)

(Print Options ...) (Window Uariables ...)

rcommand Line
~serVariables I
rHelp (Cancel)
Use this dialog to create set commands for user variables.

(! Useruariables J

Figure 3-26. Commando dialog

202 IJJ>- Chapter 3 Menus and Dialogs

parameters of the command you are executing, you can click on the
options and parameters that you want to define. As you select options
and parameters, the Commando dialog that you are using automatically
composes a syntactically perfect command line.

When you have finished writing your command by clicking on
dialog items, you can close your Commando by clicking on its OK
button. Your Commando then disappears, and, depending on your
preferences, either executes the command that it has composed or
prints it on a line in the active window.

If you have instructed a Commando to write a command to your
screen, you can execute the command in the same way that you execute
a command that you have typed in. Alternatively, you can copy the
command into a script for later execution.

""' What You Can Do with Commando Dialogs

While you are learning to use MPW, Commandos are excellent educa
tional tools. You can explore MPW commands easily and conveniently
by calling up Commando dialogs and experimenting with commands
and parameters by clicking on dialog controls.

Commandos can also save you a lot of work when you use MPW.
When you are thinking of using a command, but are not quite sure
about its syntax, its options, or its parameters, you can call up a
Commando dialog. Then you can compose the command line you need
by clicking the mouse in a few controls instead of looking everything up
and typing it in with syntactical perfection.

""' An Example: The UserVariable Commando

As mentioned in Chapter 2, you can set the values of MPW's user
variables by executing a shell script called UserVariables. The
UserVariables script invokes a Commando dialog called-what
else?-the UserVariables Commando.

The UserVariables Commando can be used to set the following shell
variables: {NewWindowRect}, which contains the coordinates of new
windows; {ZoomWindowRect}, which defines the zoom coordinates of
windows; {StackOptions}, which holds parameters for the StackWindows
command; {TileOptions}, which defines parameters for the TileWindows
command; and {IgnoreCmdPeriod}, which determines whether
Command-Period, the standard Macintosh "Halt" keystroke sequence, is
recognized during critical operations.

IJJ. Commando Dialogs 203

When you define these user variables by invoking the UserVariables
Commando, you do not have to type in your variable definitions from
your keyboard-and you do not have to thumb through the MPW 3.0
Reference to look up all the possible ways that each variable can be
changed. Instead, you can let the UserVariables Commando do most of
the work for you.

To execute the UserVariables script, and thus call up the UserVariables
dialog, simply type the command

UserVariables

MPW then executes the UserVariables script and displays the
UserVariables Commando dialog on your screen.

The dialog that was shown in Figure 3-26 is the UserVariables
Commando .

..,.. The Parts of a Commando Dialog

Like all Commando dialogs, the UserVariable Commando is divided
into five parts:

1. An Options window
2. A Command Line window
3. A Help window
4. A Cancel button
5. An OK button containing the name of the command that was used

to call the Commando dialog

The five parts of a Commando dialog are labeled in Figure 3-27 .

..,.. The Options Window

As you can see in Figure 3-26, the UserVariables Commando divides
MPW's user variables into six categories. In the dialog's Options
window, there are six buttons, one for each category.

To set the default value of a user variable, just place your cursor in
the Options window and click the button that matches the category of
the variable that you want to define. A second dialog then is displayed.
By selecting items from that dialog, you can choose the variable that
you want to define and set its options and parameters.

Suppose, for example, that you wanted to set the {TileOptions} shell
variable. {TileOptions}, as mentioned earlier in this chapter and in

204 .,,_ Chapter 3 Menus and Dialogs

rUserUariables Options----------------~

Options Window

rcommand Line
L Command Line Window

!Help I (Con<el

I Help Window . (OK Button D
~----------------~

Figure 3-27. Parts of a Commando

Chapter 2, determines how windows are arranged on the screen when
you tile them using the TileWindows command or the Tile Windows
menu option.

To set the {TileOptions} variable with the UserVariables Commando,
click on the button labeled Window Tiling in the Commando's Options
window. The Commando dialog then displays a second dialog, like the
one shown in Figure 3-28.

By clicking on the items in the Window Tiling dialog, you can enter
information using

• check boxes to include the Worksheet window, the active window,
or the target window in the tiling operation, in any combination

• radio buttons to display tiled windows in a regular (checkerboard)
arrangement, a horizontal arrangement, or a vertical configuration
(note the icons that the Commando provides to help you make your
decision)

• a text item into which you can type the coordinates of a rectangle
enclosing your tiled windows (this feature could be useful if you
have a large screen)

When you have finished setting the options in the Window Tiling
dialog, you can click its close box. It disappears, returning you to the
UserVariables Commando. You can then click on another one of the

llll- Commando Dialogs 205

A ~ i:l!e Edit find !'·far!< Window Prnj~~c1 Oirnc1 or~} Buil!1 Hun II
.-UserUariables Options

.-Window Tiling ...
D Include Worksheet

Windows
!""~·-~:·~:~~·~ !

Brahma:MPW:Worksheet fQ
I =I
i O Horizontal B i
i =1
i ... ~--~-~-~~.'..~.~-~---······· ~~m. ... 1

to
Rectangle D Include Rctiue D Include Target
[J

rcommand Line
~serv ariab les I
rHelp l [) Automatically moves and sizes a 11 of the open she 11 windows such that they

Cancel

are a 11 visible on the screen at once. (Continue J
Figure 3-28. TileWindows dialog

Commando's six Options buttons or close the Commando by clicking its
OK button-which, in this case, is labeled UserVariables. Alternatively,
you can click on the Commando's Cancel button, aborting any action by
the Commando dialog.

~ The Command Line Window

As you click on a Commando's controls to define various options and
parameters to set various variables, the Commando keeps track of what
you are doing by creating a command line and displaying it in the
Command Line window. Each time you add an option or a parameter
by selecting another dialog item, the Commando adds your new
selection to its command line.

The Commando also alters its command line when you "unselect" a
dialog item. If you change your mind while you are choosing options
and variables, and you undo a change that you have made, the
Commando rewrites its command line to undo your previous
command. Thus the command line composed by a Commando dialog
always reflects the options and parameters you have selected, no matter
how many times you change your mind.

206 ..,. Chapter 3 Menus and Dialogs

.,.. The Help Window

Commando dialogs have one feature that is extremely useful, but so
well hidden that if you did not stumble across it, you would probably
never find out about it on your own. That feature is a most unusual
Help utility that is built into every Commando dialog.

To use a Commando dialog's Help utility, all you have to do is click
your mouse over the label of a control. For example, in the TileWindows
dialog shown in Figure 3-28, if you press your mouse button over the
word "Horizontal"-the label of the "Horizontal" radio button-the text
in the Help window changes to read, "Tile windows horizontally."
Select the label of the "Vertical" button, and the text in the Help window
changes to read, "Tile windows vertically."

.,.. The OK Button

When you have finished writing a command using a Commando
dialog, you can close the Commando and execute it by clicking on its
OK button-which is always labeled with the name of the Commando's
corresponding command. The Commando dialog then disappears.

When you execute the UserVariables Commando, it writes the
command that it has composed to standard output, ordinarily the
screen. So, if you set a variable with the UserVariables Commando and
then press the Commando's OK button, you see a line similar to this
printed in your active window:

UserVariables ; Set TileOptions " -v "

Notice that there are two commands on this line:

• UserVariables, which is the command you issued to invoke the
UserVariables Commando

• Set TileOptions " -v ", which is the command composed by the
Commando dialog

Note 11> A Note About the UserVariables Commando. Most Commando
dialogs do not print their output in this fashion; in fact,
UserVariables is the only Commando that echoes your command,
along with its own output, in the active window. Why
UserVariables behaves in this unique fashion is explained at the end
of this section.

.,. Commando Dialogs 207

If you want to insert a command written by the UserVariables
Commando into your UserStartup script, you can copy the command
that it has composed-in this case, Set TileOptions " -v "-into your
UserStartup script using MPW's Edit menu or standard cut-and-paste
commands. But, be careful to copy only the useful part of the
Commando's output; that is, the portion of the line that comes after the
semicolon. If you do not want to take the trouble to copy a command
into your UserStartup script, there is no need to. There is a handy script
that can simplify this operation. That script, called UserVar, is described
and listed later in this chapter.

~ The Cancel Button

If you call up a Commando and then decide you want to close it
without taking any action, you can click in the Commando's Cancel
button. That aborts the Commando dialog.

~ Some Unique Features of the UserVariables Commando

Before we see how to invoke a Commando dialog, we should note that
although UserVariables is a command, it is not an official shell
command. Rather, it is a script that you can execute as a command by
typing and entering its name.

The UserVariables script has just one function: to invoke the
UserVariables Commando. The UserVariables command is included in
MPW because it provides a method for defining a whole set of variables
from one Commando dialog.

UserVariables is the only MPW script that was written for the sole
purpose of calling a Commando dialog. The UserVariables Commando
is the only MPW Commando that is used to define a set of variables.
Every other Commando in MPW executes a single command.

In addition to being the only Commando that is called by a script,
UserVariables is also the only Commando that can be invoked by
typing and entering just one word: the name of the script that calls it.
The procedures for invoking all of MPW's other Commando dialogs are
described in the next section.

As pointed out in the box "A Note About the UserVariables
Commando," the UserVariables dialog also writes its output to the
screen in an unusual fashion: It is the only Commando that echoes your
command, along with its own output, in the active window. All other
Commandos echo only their own output to the screen, making it
considerably easier for you to copy into scripts the commands they
have composed.

208 ~ Chapter 3 Menus and Dialogs

As mentioned at the beginning of this section, you can ordinarily
instruct a Commando dialog to execute the command that it writes,
instead of printing it on the screen. Again, however, the UserVariables
Commando is an exception. It is designed to write to standard output,
normally the active window, so that its output can be pasted into the
UserStartup script.

~ Improving the UserVariables Script

But there is a way to improve the operation of the UserVariables
script-with a script I wrote called UserVar. It is shown in Listing 3-3. It
is a bit too complex to be analyzed line by line at this point. However,
an explanation of how it works is presented at the end of Chapter 4.

Listing 3-3. UserVar script

UserVar Script

Writes the output of the UserVariables Commando
To your UserStartup Script

Just Execute the Command UserVariables
And run this script;
It will do the rest

Find~ "{Active}" # Go to end of window
Search backwards for output of UserVariables
Find \UserVariables ; \A "{Active}"
Find§:~ "{Active}" #Select it
Open UserStartup script
Open "{ShellDirectory}"UserStartup
Find~ "{ShellDirectory}"UserStartup # Go to end
Write a return to start a new line
Echo "an" >> "{ShellDirectory}"UserStartup
Add output of UserVariables to UserStartup
Catenate "{Target}".§ >> "{ShellDirectory}"UserStartup

To improve the UserVariables script with my UserVar script, all you
have to do is open your Worksheet window and execute the two
commands

UserVariables; UserVar

... Invoking a Commando Dialog 209

The first command, UserVariables, opens the UserVariable Commando
dialog. Then you can use the UserVariables Commando and its various
subdialogs to set as many variables as you wish.

When you close the Commando, my UserVar script takes over. It
opens your UserStartup script and appends to it all the variable
definitions that you have set using the UserVariables Commando.

IJl>- Executing UserVar from the Menu

If you like the way the UserVar script works, you can create an MPW
menu item that calls it for you so you will not have to execute it from a
command line. Then, when you want to add a new variable setting to
your UserStartup script, all you have to do is select a menu item and
define your variable using the UserVariables Commando. The rest of
the work is done by the UserVariables and UserVar commands.

You can create a UserVar menu item this way:

1. Copy the UserVar script in Listing 3-3 into the MPW folder Scripts.
2. Create a menu item to run the UserVariable and UserVar scripts by

inserting a line like this into your UserStartup script:

AddMenu Cmdo 'Set Variables' 'UserVariables ; UserVar'

This command is included, incidentally, in the modified UserStartup
script shown in Listing 3-4.

~ Invoking a Commando Dialog
Every Commando dialog except the UserVariables Commando can be
called in three ways:

1. By typing Option-Enter or Command-Option Return
2. By typing the name of a command followed by an ellipsis (Option-;)
3. By typing the word "Commando," followed by the name of a

command

The first two methods of calling a Commando achieve the same results:
They execute the command created by the Commando that they call.
The third method is different: Instead of executing the command
written by a Commando, it merely writes the command to standard
output, normally the screen.

21 O ~ Chapter 3 Menus and Dialogs

When you invoke a Commando using Option-Enter or an ellipsis,
you are implicitly executing the Commando command, which creates
Commando dialogs. When you execute a Commando by typing the
Commando command, you are explicitly executing the Commando
command.

~ Calling a Commando with Option-Enter

When you want to invoke a Commando dialog interactively, the easiest
method is to type the name of a command and then press Option-Enter,
using the Enter key on your numeric keypad. For example, you can call
the Commando for the SetFile command by typing

SetFile

and then pressing Option-Enter. SetFile displays a dialog like the one in
Figure 3-29 .

.-SetFile Options
·File Attributes ,

(Files to Set ...) +Locked !
Creation Date 11 I + lnuisible I
Modification Date I I +Bundle !

+system I
Folder Location I I . + lnited I

D
! +On Desktop !

Type Error i +shared i
Creatorc=J I I i +Switch launch i

: ... }.

setfile
rcommand Line

I
.-Help I) Set file attributes for one or more files.

Cancel

I ~·~ u:i!(~
,

Figure 3-29. SetFile Commando

IJJ. Invoking a Commando Dialog 211

~ Calling a Commando with Option-;

Important .,.

To call a Commando using the ellipsis (Option-;) character, you can use
this format:

Command ...

For example, to invoke the SetFile Commando, you can type:

SetFile ...

and press the Enter key on your numeric keypad, without holding the
Option key down. You can also use the ellipsis format in a script.

• c ,!

\al,l:;.E1Jii1s~~~
~;§dialpg,:> · ·
'fitis;n6t.:

, ·"· ~;y··· bu musttyp• . e·;
;····• •.. 1 ; .. .

~e~yo4 invoke ~ Co~tn,~d.g" With an ellipsis comnl~~rr·lhe
elljpsis may appear a:ti,WJ:\ete on your command line ~xcept
~quotation marks·.oz:,aft~theescape character o (Option,-D),

.· ; .allU,'it7is•considered a w<:>I'.d-l>~cik.character. · ·

Option-Enter and Option-; Recognize Aliases

When you call a Commando using either Option-Enter or an ellipsis, the
Commando is not invoked until the shell has carried out all alias and
variable substitutions. That means that when you invoke a Commando
using Option-Enter or an ellipsis, you can use an alias to enter the name
of the command that you want to execute. For example, if you have
assigned the Type alias to the Echo command you could invoke the Echo
Commando by entering the command

Type

followed by Option-Enter, or by executing the command

Type ...

(Type followed by an ellipsis character), without holding the Option
key down.

212 ~ Chapter 3 Menus and Dialogs

Option-Enter and Option-; Execute Commands

Also, as mentioned earlier, when you close a Commando that you have
called using an Option-Enter command or an ellipsis command, the
Commando executes the command line that it has written, rather than
echoing to your screen.

~ Calling a Commando with the Commando Command

To invoke a Commando by explicitly calling the Commando command,
use this format:

Commando commandName

where commandName is the name of the command you want to execute.
For example, to invoke the SetFile Commando, you can execute the
command

Commando SetFile

Commando Does Not Recognize Aliases

When you invoke Commando explicitly, you cannot use an alias on
your command line. If you try, Commando will not be able to find your
alias and thus will not display a Commando dialog.

Commando Does Not Execute Commands

Also, when you close a Commando that you have invoked by typing the
Commando command, the Commando will not execute the command
that it has written. Instead, it will only echo its output to your screen.

In some cases, that is exactly what you want a Commando to do. For
example, you may want to copy a Commando's output to a script, but
you may not want the output executed until the script is run. In a case
such as this, the format

Commando commandName

is the one to use.

.,. Invoking a Commando Dialog 213

.,. The SetFile Commando

Another Commando dialog that is worth taking a closer look at is the
SetFile Commando, shown in Figure 3-29. The SetFile Commando,
unlike the UserVariables Commando, is a traditional Commando dialog
that is designed to execute a single command. It sets the options and
parameters of the SetFile command and either echoes the command or
echoes it and then executes it, depending on whether you have
implicitly or explicitly executed the Commando command.

The SetFile command was described in Chapter 2. It is used to set the
attributes of files. The attributes that it defines are shown in Figure 3-29.

One noteworthy feature of the SetFile Commando is a set of three
state buttons that appears in its upper right-hand corner. Three-state
buttons are diamond-shaped. They behave like check boxes, except that
they have three settings instead of two. Three-state buttons, like check
boxes, are used to set Boolean values. If a three-state button is black, the
Boolean value with which it is associated is set to true. If the button is
white, its value is set to false. If it is gray, its value is left unchanged .

.,. The Commando Commando

The last Commando that is examined in this chapter is the Commando
Commando: the Commando dialog that is invoked by the Commando
command. It is shown in Figure 3-30, in its full Commando gear.

Tool or script to eHecute

Shell built-in to eHecute

[Command Line
Lommando

Help------------------. Cancel
Commando presents a graphical interface for tools, commands, and some ~;;~
scripts.

Figure 3-30. "Commando" Commando

214 ~ Chapter 3 Menus and Dialogs

The Commando Commando has two pop-up menus: one labeled
"Tool or script to execute" and the other labeled "Shell built-in to
execute."

If you select "Tool or script to execute," the Commando displays a
Standard File Manager dialog, which you can use to select a user-written
tool or script. If you pick a tool from the list that has a Commando
dialog associated with it, the Commando Commando then invokes the
appropriate Commando dialog.

If you select the pop-up menu labeled "Shell built-in to execute," you
are presented with a list of shell commands. When you pick a
command from the list, the Commando dialog that is associated with
that command is displayed.

The Commando Commando, like the UserVariables Commando, is a
bit unusual in its output; whether you invoke it explicitly or implicitly,
it does not execute the output of any of the Commandos that it calls. It
merely displays the Commando you specify and then writes the
Commando's output to the screen. Once a command has been
composed and written to the screen, of course, you can execute it by
selecting it and pressing Enter, in the same way you would execute any
command.

~ Executing Commando Dialogs from the Menu

To execute a Commando dialog from the MPW menu bar, you can
incorporate the command that calls the Commando into your
UserStartup script. Listing 3-4, a modified UserStartup script, includes
commands that call all three of the Commando dialogs examined in this
chapter: UserVariables, SetFile, and Commando.

~ Editing a Commando

MPW has a built-in Commando editor, which you can use to change the
appearance of any Commando dialog. With the Commando editor, you
can change the locations of the controls in any Commando, and you can
also change their sizes.

You can enable the Commando editor by issuing the Commando
command, in any of the three ways mentioned in the preceding
sections, while holding down the Option key. Or you can execute the
Commando command with the -modify option in either of these
formats:

~ Invoking a Commando Dialog 215

Commando commandName -modify

or

commandName ... -modify

When you have invoked a Commando dialog with the editor
activated, you can edit any control in the Commando by holding down
the Option key while you press the mouse button inside the control.
When you select a control in this way, a tiny gray rectangle appears in
the lower left-hand comer of the control you have chosen. When the
small rectangle appears, you can resize the control by holding down the
mouse button inside the rectangle and dragging the corner of the
control.

If you want to move the control, you can press the mouse button
anywhere inside the control and drag it around.

When you close a Commando that you have been editing, the
Commando editor displays a dialog asking you if you want to save the
Commando in its new form. If you click the OK button, the edited
Commando is saved.

~ Creating Your Own Commandos

Although you can edit any Commando using the Commando editor,
the real purpose of the editor is to allow you to create your own
Commandos.

Commando dialogs are stored in memory as resources. You can
create a Commando for any new tool or script by creating a resource
fork for it and then copying the code for any preexisting Commando
dialog into the command's resource file.

When you have copied a Commando into the resource fork of a tool
or a script, you can use the Commando editor-along with the Rez,
DeRez, and ResEdit commands-to add controls, edit strings, and
change the appearance of the dialog until you have it just the way you
want it. Then you can save the dialog, and you will have a customized
Commando for your script or tool.

Resource forks and the Rez, DeRez, and ResEdit commands are
covered in Chapter 6. Chapter 6 also provides more detailed procedures
for creating new Commandos.

216 .,. Chapter 3 Menus and Dialogs

~ A Modified UserStartup Script

Listing 3-4 is a UserStartup script that has been edited to include the
menu changes and other programming aids described in this chapter.
The Edit menu has been modified to include the items Top, Bottom,
Insert, and Add, and new menus have been added to execute
applications and Commando dialogs. At the end of the script, there is a
melody that lets you know when MPW has finished loading, and there
is a time and date stamp that records when your editing session began.

Listing 3-4. A Modified UserStartup script

Modified UserStartup Script
By Mark Andrews

(Original provided by MPW)

################ Customized Aliases #############################

Alias Type Echo
Alias ff Whereis
Alias Dir Files
Alias CD SetDirectory
Alias ChDir SetDirectory
Alias Create New
Alias Cpy Duplicate
Alias Dup Duplicate
Alias cp Duplicate
Alias MD NewFolder
Alias MkDir NewFolder
Alias Cls Clear ·:~
Alias ar Lib
Alias cat Catenate
Alias cc 'C -mbg off'
Alias cmp Equal
Alias diff Compare -b

Alias df Volumes -1
Alias expr Evaluate
Alias grep Search
Alias 11 Files -x tckrbm

write text to standard ouput
findfile
list files and directories
change default (current) directory
change default (current) directory
open new window (file)
copy a file
copy a file
copy a file
create new directory
create new directory
clear screen (target window)
make library file
shorter than Catenate
compile C program, MacsBug off
compare files & directories
#compare, ignoring minor ...
... differences in white spaces
list volumes in long format
evaluate an expression
good old grep
#list files and directories ...
... in a nice format

~ Invoking a Commando Dialog 217

Listing 3-4. A Modified UserStartup script (continued)

Alias lr Files -m 5 -r # list files, directories ...
... and subdirectories

Alias ls Files -m 5 # list files in 5 columns
Alias man Help # Help
Alias mv Move # Move files/directories
Alias pr Print # Easier to type
Alias rm Delete # Two letters for six
Alias source Execute # Execute script in current scope
Alias tar Backup # Saves keystrokes
Alias tr Translate # Saves more keystrokes
Alias wc Count # Count lines and characters

############# Set options for TileWindows: ###################

Always include Worksheet window
in window-tiling operations

(Try this and see if you like it; if not, remove line)

Set TileOptions " -i "

############# Custom additions to Find menu ##################

Broken line to separate custom items from default items ##
AddMenu Find'(-' ''

'Top' menu item ##Find §!:i.; Catenate " {Active } . §" > § #Add

AddMenu Find Top 'Find . "{Active}"'

'Bottom' menu item ##
AddMenu Find Bottom 'Find 00 "{Active}"'

################ Custom additions to Edit menu ###################
###################(Insert and Add) ####################

AddMenu Edit ' (-' ' '
AddMenu Edit Insert 'Copy § "{Active}"; Paste § "{Target}"'
AddMenu Edit Add a

'Find §!:i.; Catenate "{Active}.§">§' #Catenate

218 IJll> Chapter 3 Menus and Dialogs

Listing 3-4. A Modified UserStartup script (continued)

Project menu is commented out (can be restored by uncommenting)

AddMenu Project 'Check In ... ' 'Check In -w ;:::;::: "{Worksheet}"'
AddMenu Project 'Check Out ... ' 'Checkout -w ;:::;::: "{Worksheet}"'
AddMenu Project"(-" 1111

AddMenu Project 'New Project ... ' 'NewProject -w ;:::;::: "{WorkSheet}"'
AddMenu Project 'Mount Project ... ' 'MountProject... 2,2, "{Worksheet}"'
AddMenu Project I Set Project ... I a
I (project II' getList Item -r 10 a
'MountProject -pp -s -ro' -d "o'Project -qo'" iJ
-m "Select a new current project:" -q'") 2, dev:null'
AddMenu Project "(-" ""
AddMenu Project I Compare Active ... ' a
'CompareRevisions "{Active}" 2,2, "{Worksheet}'"
AddMenu Project 'Merge Active ... ' iJ
'MergeBranch "{Active}" 2,2, "{WorkSheet}"'

Create Directory menu

Default settings commented out
DirectoryMenu ' (Files -d -i iJ
"{MPW}"Examples:== II Set Status 0);::: Dev:Null' (J
'Directory'

New DirectoryMenu settings

DirectoryMenu ' (Files -d -i iJ
"{Boot}Inside MPW":== 11 Set Status 0) ;::: Dev:Null' iJ
'Directory'

########################### Custom Menus ##########################

Create Build Menu

BuildMenu

~ Invoking a Commando Dialog 219

Listing 3-4. A Modified UserStartup script (continued)

Create Apps menu (use your own apps and pathnames) ###########

AddMenu Apps Word '"{Boot}Word Processing:Word 4.0:Microsoft Word"'
AddMenu Apps MacPaint '"{Boot}Graphics:MacPaint 2.0:MacPaint"'
AddMenu Apps MacDraw '"{Boot}Graphics:MacDraw II:MacDraw II"'
AddMenu Apps Hypercard "{Boot}"HyperCard:HyperCard

#################### Create Commando Menu #########################

AddMenu Cmdo 'Set File Info' 'SetFile ... '
AddMenu Cmdo 'Set Variables' 'UserVariables
AddMenu Cmdo 'Commando' 'Commando ... '

UserVar'

##################### Miscellaneous Goodies #######################

Big Ben will tell you when MPW has loaded

Beep 2E,40 '2C,40' 2D,40 lG,80
Beep lG,40 2D,40 2E,40 2C,80

A date stamp begins your editing session

Echo 11 an 11 ; Echo "This editing session began"
Date ; Echo 11 an 11

~ Conclusion
This chapter explained how commands can be issued from the MPW
menu bar; told how to use and customize the MPW menu structure;
showed how you can use dialog boxes in MPW scripts; and provided a
closeup look at Commando dialogs, which can be used to execute
commands by selecting dialog items rather than typing and entering
command lines.

4 The MPW Special
Character Set

There are two ways to go about designing a computer language. You
can construct it like a spoken language, so that it will be easy to learn
and understand. Or you can design it using a more concise but less
English-like model, so it will be faster, more efficient and, all too often,
quite difficult to master.

When the creators of MPW sat down to develop a shell language,
they could have made it a lot more user friendly. For instance, they
could have used the word "TOP" instead of the • character to represent
the beginning of a file, the word "BOTTOM" instead of the oo symbol to
represent the bottom, and the word "SELECTION" instead of § to
represent the currently selected, or highlighted, text. That kind of
approach would have made learning the MPW shell language a much
less formidable task than it has turned out to be.

There would have been tradeoffs, of course. Once you have mastered
the MPW command language, it is much faster to type a command like
• :oo than it is to type something like FROM TOP TO BOTTOM SELECT
ALL, which would be a possible alternative in a more English-like
language. And a command interpreter can certainly parse three ASCII
characters much faster than it could handle a long sequence of words in
a more user-friendly language.

But that's really all quite academic. Like it or not, the MPW shell
language is what we have, and if you want to use MPW, there is no
alternative but to learn the MPW command language.

221

222 ~ Chapter 4 The MPW Special Character Set

~ The MPW Special Character Set

BytheWay ~1

Actually, the MPW language uses two sets of special characters. One set
is made up of the punctuation marks and other special symbols that are
printed on the Macintosh keyboard. The other set comes from the
Macintosh extended character set: the set of characters that you get
when you press a key on your keyboard while holding the Option key
down. Those extended characters can be a real headache when you are
trying to master MPW. Not only do you have to learn how they are used
in the command language, you also have to figure out-and then
memorize-where to find them, since they do not appear on the
keyboard.

To make matters even more difficult, many special characters have
more than one meaning in MPW; when they appear in one context, they
mean one thing, and when they are used in a different context, they
often mean another.

Iipproving MPW's Vocabulary. As you may recall from earlier
~pt~f~,,th~¥PW sh~ll lari,guag~,has :Qlore than 120,,commands~
But it also has about the same nUm.ber of special characters and
pairs of specjal characters that have specific mea~ings--cand
therefo~ are, ,~ssentiallyi words. $(j MPW has, in essencte, a 24@.., to
250-word vocabulary.

A Notorious Character

The most notorious character with two meanings is undoubtedly the a
symbol (Option-d). When the a character appears alone at the end of a
line, MPW runs that line and the next line together, creating a single
line. But when a precedes the letter n, it acts as an escape character and
generates a Return. Think about this for a moment, and you'll realize
that the a character has two meanings that are exact opposites. Some
times it deletes a Return, and sometimes it creates one!

Many other special characters have more than one meaning in MPW.
For example, an exclamation point means "not" in string and arithmetic
operations, but it stands for a line of text in certain editing operations.
The § character sometimes stands for the current selection (either a
block of highlighted text or the current position of the cursor), and it
sometimes stands for the name of a file.

IJli> The MPW Special Character Set 223

One way to sort out the ambiguities in the special characters used by
MPW would be to create a table listing every meaning of every special
character used in the MPW command language, and then to examine
that table and resolve each ambiguity that you find.

That is just what has been done in the long table that appears at the
end of this chapter and as a pullout poster. In addition to listing the
meanings and categories of all special characters used in the MPW
language, the table shows how to type each character, describes the
syntax in which each character is used, and provides an example
showing how each character can be used in a command.

The table is arranged by character, not by category, so you can use it
to look up the meaning of any special character, whether you know
your special-character categories or not. However, to help you under
stand how MPW's special characters are used, this chapter divides
them into the following fifteen categories.

• Blanks (spaces and tabs)

• Wildcard characters
• Command terminators

• The comment character (#)

• The line-continuation character (())

• The escape character (o)

• Selection expressions

• Delimiters

• Regular expression operators

• File name generation operators
• Arithmetical and logical operators

• Number prefixes($, Ox, Ob, and 0)

• Redirection operators
• Metacharacters used in menus
• Special characters used in makefiles

This chapter examines each of these categories separately. In addi
tion, it introduces several important MPW commands that are often
used in pattern-matching, editing, and printing operations.

224 ll>- Chapter 4 The MPW Special Character Set

Bytheway .. j D~j.,.vu. Some ofthe information in this cllapter is \Tel}' similar to
inf~~~.ation presen.tedinChapter 2.lf.'s·meantto be5that way.
Chapter 2 was organized tutoriallyi with information abcmt MPW's
special-character.set ~cattereci here ~md there. This chapter
arr<}l;tges :rvtPW's special ·c;h_aracteps into fifteen ··distinct categories1

sothat you can look under the heading listed for any ca~egory and
fin~/f!ll th~ special characters· itconta~n.s· In <l4di~ottr all of the
spe~alcharacters described in this:chapter are~ted a.lphabetically
in the long.table at the end of this chapter, and by category in. the
pullout. P• os.J.· ... ·e ... r~

'i< .·,

Thus, you can use this chapter as a one .. stop source for
COJ:D,t?rehert?ive information aboui I\/.[PyY's spegtal chapeycters. 'fhe
lack of sudli>a source has been a serious flaw in preVious books
aboutMPW.

... Blank Characters

In MPW, a command is defined as a series of words and regular expres
sions separated by blanks and ending with a command terminator.
There are only two blank characters in the MPW command language:
Space and Tab. You can use either character to separate words in an
MPW command.

If a block of text in a window is highlighted, or selected, the high
lighted text is called the current selection. If no text is highlighted, the
current location of the text cursor is referred to as the current selection.
The location of the cursor is also referred to as the insertion point, or the
point where any new selection will be inserted into the text.

Wildcard Characters

The ? and "" (Option-x) characters are wildcard characters in the MPW
command language. The ? character matches any single character in a
string, except for a return character, and the "" character matches any
number of characters in a string except for a return. Thus the command

Find /Bar?/

selects any four-character word that begins with the letters "Bar," such
as "Barb" or "Bark." The command

Find /Mar:::/

Ill> The MPW Special Character Set 225

selects any word that begins with the letters "Mar," no matter how long
it is. The words "Mar," "Mark," "Marlo," and "Marilyn" all qualify.

The two-character combination ?* means exactly the same thing as
the wildcard "" character; it matches zero or more occurrences of any
character pattern in a string. So the command in the preceding example
could also be written

Find /Mar?*/

and it would accomplish exactly the same thing.
Table 4-1 lists MPW's wildcard characters.

Table 4-1. Wildcard characters

Chr Type

? ?

?* ?*
(same as"')

Option-x

Important ""

Category Syntax Meaning Example Translation

Wild card ? Matches any single Find /Bar?/ Select any four-character
character in a string. word that begins with

"Bar."

Wild card chars?* Matches zero or Find /Mar?* I Select any word that
more occurrences of begins with "Mar."
any character
(same as"').

Wild card Matches any number Find /Maf"'/ Select any word that
of any characters in begins with "Mar."
a string.

< ·:· ,;:_:, :::,.·., i, .,

Watch Those Question Marks; Since the ? character has a special
function in the shell language, you must be careful with strings
that contain question marks. J~: a stril)g containing a questio11 J:I\ark
is used as a parameter in an MPW command, you must either
enclose the string in single or double quotation marks or precede

. the questio1:1 mark with the ~~~ape cl\aracter a, Singleand ~~:mJ:>le
· . quotes and the use of the es.cape chi.uacter a are covered lat~r in

this chapter.

226 ..,. Chapter 4 The MPW Special Character Set

Command Terminators

The most commonly used command terminator is the Return. Unless a
Return is preceded immediately by the line-continuation character a, it
always ends a command.

Another command terminator that you will often see is the semi
colon (;). By using a semicolon as a command terminator, you can type
more than one command on a line. For example, if you put this line in a
script

Beep ; Beep ; Beep

MPW treats it as though you had written it on three lines, like this:

Beep
Beep
Beep

and it sounds three beeps from the speaker built into your Macintosh.
The special-character combinations && and I I are logical operators

as well as command terminators. If you separate two commands with
the && characters, the second command is executed only if the first
command succeeds. Conversely, if you separate two commands with
the I I characters, the second command is executed only if the first
command fails. For example, the line

Find /alpha/ && Echo Found!

searches for the string "alpha" in a file and echoes the exclamation
"Found!" if the string is found. The line

Find /zebra/ I I Echo Sorry!

echoes the message "Sorry!" if the Find command fails.
By using the command terminator I between two commands, you

can pass, or pipe, the output of one command to the input of another.
For example, the line

Files I Count -1

pipes a list of files to the Count command. Count then counts the num
ber of files on the list and echoes the results to standard output, in this
case, the screen.

~ The MPW Special Character Set 227

Another good example of piping is a command that compiles and
links a source file, and then reports on whether the operation succeeds:

C Sample.c && Link Sample.c.o -o d
Sample.Code I I (Echo Failed; Beep)

In this example, the C command is used to assemble a source file
written in C, and the Link command is used to link it.

If the compilation succeeds, the command links the object file that is
generated by the C command. But, if either the assembly or the link
operation fails, the command echoes the message "Failed," and beeps a
warning. The C and Link commands are described in more detail in
Chapter 5.

Table 4-2 lists the command terminators used in the MPW command
language.

Table 4-2. Command terminators

Chr Type

&& &&

Ret Return

11 11

Syntax Meaning Example Translation

cl &&c2 Executes c2 command if Find I charlie/ Search for string "charlie" and
cl command succeeds. && Echo Found! echo "Found!" if search

succeeds.

c;c Treats commands on the Echo hello; Output: (First line:) Hello
same line as if they were Echo goodbye (Second line:) Goodbye
on different lines.

c (r) Ends command. Echo Hello(r) Output: Hello

cl I c2 Pipes output of cl Files I Count -1 Files pipes a list of files to
command to input of Count, which prints the
c2command. list on the screen.

cl 11 c2 Executes c2 command Find I zebra/ Search for string "zebra" and

~

if cl command fails. I I Echo Sorry! echo "Sorry!" if search fails.

The Comment Character#

The # character precedes comments in MPW. When you place a
comment on a command line, MPW ignores all text from the # character
to the next command terminator. You can place the comment character
at the beginning of the line, or anywhere thereafter. A comment placed
at the end of command looks like this:

Echo This is a command # but this is a comment

228 Ill> Chapter 4 The MPW Special Character Set

In an MPW script, you can "comment out" a line-that is, prevent it
from executing-by typing the# character in front of the line. For
example, if you had a script that executed two commands, but you
wanted to eliminate the second command temporarily, you could
comment out the second command like this:

Echo This command works
Echo This one is commented out

Later, if you wanted to put the second command back into your script,
you could remove the # character and restore the second command.

... The Line-Continuation Character a
When a command becomes too long for a line, you can end the line with
the line-continuation character, a (Option-d), and then continue your
command on to the next line. MPW then treats both lines as if they were
a single line. You can use as many a characters as you like within a
command.

To use the a character as a line-continuation character, you must type
a Return character immediately after the a, with no blanks or comments
separating them. When the shell interprets the command, it discards
both the a character and the Return before it executes the command.

This is how the a looks when it is used as a line-continuation character:

Echo This is one d
line, not two.

When this command is executed, Echo writes

This is one line, not two.

to standard output, normally the screen.
If a command line ends with the line-continuation character, the a

character has no effect on comments; they still end at the physical end
of the line. For example, if you execute the command lines

Echo This is not two
lines, but only one.

a comment a
another comment

~ The MPW Special Character Set 229

MPW writes the line

This is not two lines, but only one.

on the screen.

.... The Escape Character a
The a character is also used as an escape character to insert certain
nonprinting characters into text. When a is followed immediately by
the letter n, it inserts a newline character, or a Return, into a document.
When it is followed by the letter t, it inserts a Tab. When it is followed
by the letter f, it inserts a form feed. For example, the command

Echo an

prints a newline character on the screen, just as if a Return had been
typed by a person typing text.

You can also prevent MPW from interpreting a special character by
preceding that character with the a character. For example, if you try to
execute the command

Echo * #This doesn't work

MPW responds with this error message:

MPW Shell - File name pattern "*" is incorrect.

But, if you issue the command

Echo d*

MPWprints

*

to your screen.
If you enclose the a character itself in quotation marks, the shell does

not recognize it as a special character, but treats it like any other typed
character. Table 4-3 shows the uses of the escape character a.

230 ~ Chapter 4 The MPW Special Character Set

Table 4-3. The escape character a

Chr Type

a Option-d

a Option-d

a Option-d

a Option-d

~

Category Syntax Meaning Example Translation

Escape an Return Echo an Echo a return.

Escape at Tab Echo at Echo a tab.

Escape af Form feed Echo af Echo a form feed.

Escape as Defeats the meaning of Echo a-. Output:..,
special character (s)
that follows it.

Selection Expressions

Selection expressions are special characters that can be used to find
specific locations in files. Selection expressions used in MPW include •
(Option-8), which represents the beginning of a file; oo (Option-5),
which represents the end of a file; and § (Option-6), which represents
the current selection. Table 4-4 lists the selection expressions used in the
MPW command language.

Table 4-4. Selection expressions

Chr Type Category Syntax Meaning Example Translation

Selection !n Selects the line that is Find !3 Select the third line after
n lines after end of the current selection.
current selection.

Selection r!n Places insertion point Find /alpha/!3 Place insertion point
n characters after end three characters after end
of regular expression. of the string "alpha."

Option-! Selection in Selects the line that is Find j3 Select the third line
n lines before beginning above the current
of current selection. selection.

Option-! Selection qn Places insertion point Find /zebra/j3 Place insertion point
n characters before three characters before
beginning of regular beginning of the word
expression. "zebra."

00 Option-5 Selection End of file. Find oo Place insertion point
after last character in file.

§ Option-6 Selection § Current selection. Print§ Print the current
selection.

IJIJ> The MPW Special Character Set 231

Table 4-4. Selection expressions (continued)

Chr Type Category Syntax Meaning Example Translation

• Option-8 Selection • Beginning of file. Find• Place insertion point
before first character
in file.

Option-j Selection Lir Places insertion point
before first character
in regular expression.

Find 6/ charlie/ Place insertion point
before first character
in the word "charlie."

Option-j Selection r/l Places insertion point
after last character of
regular expression.

Find I charlie/ 6 Place insertion point
after last character of
the word "charlie."

Note ~

The Characters •, oo, and §

When the • character is used by itself, it stands for the beginning of a
file. Thus the command

Find •

places the text cursor before the first character in the file in the target
window. Similarly, the command

Find oo

places the text cursor after the last character in the file in the target
window.

Double Meanings Dept. The •, oo, and § characters are selection
expressions Qnly when.they are µsed alone .in con:)mands, Wiien
they are parts of expressions-that is, when they are enclosed in
delimiters-they are considered regular expression operators and
have different meanings .• For more information, see the discussion
ofr~gul<:lr expressiono,R°~r!itors, l<:l~er in this chapter.

When the § character is used alone in a command, it stands for the
current selection. So the command

Print §

prints the current selection.

232 ~ Chapter 4 The MPW Special Character Set

Important ~

The Selection Character A

Another selection expression, A (Option-j), can stand for either the
beginning or the end of a selection, depending on where it is placed in
relation to the selection. The combination Ar means, "Place the insertion
point before the first character in regular expression r," whereas the
combination rA means, "Place the insertion point after the last character
of regular expression r." So, if you place a document like the one in
Listing 4-1 in the target window, the commands

Find • ; Find A/bravo/

place the insertion point before the first character in the string "bravo."
Similarly the commands

Find • ; Find /charlie/A

place the insertion point after the last character in the string "charlie."
Note that the selection expressions§ and A can be used together. For

example, the command

Find A§

places the insertion point at the beginning of the current selection.

Listing 4-1. A sample document

START
alpha
bravo
char lie
delta
echo
STOP

Using Line Numbers.as Sele<=tion E~ressions. You <;ctn use a line
number as a selection expression in a Find eommand. To select a
line in a file, simply use the number of the line as the parameter of
a Find command. For instance, the command

Find 32

selects the thirty-second line ii\ a file.

.._ The MPW Special Character Set 233

The ! and i Characters

The selection expressions ! and i (generated by pressing Option-!) are
used with numbers to find specific characters in expressions or to find
selections that are on specific lines. For example, the command

Find !3

selects the third line of text following the current selection. And the
command

Find j3

selects the third line of text above the current selection. Thus, if you had
a document like the one in Listing 4-1 in your target window, the
commands

Find • ; Find !3

would select the line "charlie." The commands

Find oo ; Find j3

would do the same thing.
You can also use the ! and i characters to place the insertion point a

specified number of characters from the beginning or the end of an
expression. The selection expression r!n places the insertion point n
characters after the end of the regular expression r, and the selection
expression Yjn places the insertion point n characters before the start of
regular expression r. Thus, in Listing 4-1, the commands

Find • ; Find /alpha/!3

place the insertion point three characters after the string "alpha," or
after the "r" in "bravo" (because the Return at the end of "bravo" counts
as a character). The commands

Find • ; Find /delta/j3

place the insertion point three characters before the beginning of the
string "delta," or after the l in "charlie" (again, the Return at the end of
"delta" counts as a character).

234 ~ Chapter 4 The MPW Special Character Set

..,. Delimiters

Many kinds of delimiters are used in the MPW command language.
When you want to include a space or a special character in a string or
an expression, you must place the command between delimiters. The
delimiters used in the MPW shell language are as follows.

• curly brackets({ ... })
• single and double quotation marks
• slash bars (/ .. ./) and backslashes (\ ... \)
• square brackets([...])
• European quotes (« and »)
• parentheses

Delimiters used in the MPW command language are listed in Table 4-5.

Table 4-5. MPW Delimiters

Chr Press Category Usage Meaning Example Translation

Delimiter "s" Delimits a string in Echo "IMPWI" Echo the contents of the
which each character »"!Target}" shell variable IMPW}
is taken literally, to the target window.
except for a, o, and'.

Delimiter 's' Delimits a string in Echo '{MPW}' Echo the string "{MPWI"
which all characters » "{Targetl" to the target window.
are taken literally.

Delimiter (p) Delimits a group of Find I("*")+ I Select a group of one or
characters that form more asterisks.
a pattern.

Delimiter (p) Delimits a group of Find I("*")+ I Select a group of one or
characters that form more asterisks.
a pattern.

I I Delimiter /r/ Searches forward Find I delta/ Search forward and
and selects regular select the string "delta."
expression.

» Option- Delimiter «n» Delimits number Find /[Ot]«2»/ Select exactly two tabs.
Shift-\ standing for number

of occurrences.

» Option- Delimiter «Il,» Delimits number Find /[otl Select two or more tabs.
Shift-\ standing for at least «2,»/

n occurrences.

IJll> The MPW Special Character Set 235

Table 4-5. MPW Delimiters (continued)

Chr Press

» Option-
Shift-\

« Option-\

« Option-\

« Option-\

\ \

Category Usage Meaning Example Translation

Delimiter «nl,n2» Delimits number Find /[at] Select two to four tabs.
standing for n to n «2,4»/
occurrences.

Delimiter «n» Delimits number Find /[dt] Select exactly two tabs.
standing for number «2»/
of occurrences.

Delimiter «n,» Delimits number Find /[dt] Select two or more tabs.
standing for at least «2,»/
n occurrences.

Delimiter «nl,n2» Delimits number Find /[i)t] Select two to four tabs.
standing for n to n «2,4»/
occurrences.

Delimiter [...) ' Delimits a pattern. Find /[A-Fl/ Search for any character
in the set A-F.

Delimiter \r\ Search backwards Find \alpha\ Search backwards and
and select regular select the string "alpha."
expression.

Delimiter [...) Delimits a pattern. Find /[A-Fl/ Search for any character
in the set A-F.

Delimiter cl 'c2' Send output of c2 Echo 'Files Files command sends its
command to cl -tTEXT output to Echo
command for command, which prints
processing. the output on the screen.

Delimiter {v} Delimits variable v. Echo "{MPW}" Echo contents of shell
variable {MPW}.

Delimiter {v} Delimits variable v. Echo "IMPW}" Echo contents of shell
variable {MPW}.

Curly Brackets({ ...))

In the MPW command language, variables are delimited by curly
brackets. The only time you do not have to enclose a variable in curly
brackets is when you define it using the Set command. After a variable
is defined, it must always be delimited by curly brackets when it is used
in a script or a command.

236 ., Chapter 4 The MPW Special Character Set

Single and Double Quotes

If a parameter in an MPW command contains more than one word, you
must enclose the parameter in quotation marks so that MPW recognizes
it as a single parameter.

If a parameter consists of only one word, quotes may be used, but
they are not necessary unless the word contains a special character or a
variable that contains blanks or special characters.

Differences Between Single and Double Quotes

You can use either single or double quotation marks to delimit a
parameter, but MPW treats single quotes and double quotes differently.
If you use single quotes around an expression, the MPW command
interpreter treats every special character in the expression literally. But, if
you enclose an expression in double quotes, there are three kinds of
characters that are not treated literally: curly brackets ({ ... }), the back
quote character (')I and the a character. Instead, they are interpreted as
special characters.

Let's look at how single and double quotes work. During the variable
expansion stage of command interpretation, the shell replaces all the
undelimited variables that it finds in a command with their actual
values. (Variables, remember, are enclosed in curly brackets.) The shell
also expands any variables that are delimited by slash bars (/ .. ./),
backslashes(\ ... \), or double quotation marks(" ... "). However, if a
variable is enclosed in single quotation marks(' .. .'), like this:

'{MPW}'

it is not expanded because curly brackets are not interpreted as special
characters when they are enclosed in single quotes.

The {MPW} variable, as explained in Chapter 2, is a shell variable that
equates to the current pathname of the MPW folder. So, since variables
delimited by double quotation marks are translated into their actual
values during the variable expansion process, the command

Echo "{MPW}" >> "{Target}"

echoes the contents of the {MPW} variable to the target window, in this
fashion:

HD:MPW:

.,,, The MPW Special Character Set 237

But, because variables enclosed in single quotation marks are not
expanded, the command

Echo '{MPW}' >> "{Target}"

echoes the string

{MPW}

which is a completely different result.

Errors in Using Quotes

If you want to use an apostrophe in a string and do not want it to be
interpreted as a single quote, you can put double quotes around the
word containing the apostrophe. Or you can precede the apostrophe
with the escape character a.

When you use quotation marks in a command, MPW expects them
to be used in pairs. Hence, if you try to execute a command that
contains only one quotation character, like this,

Echo "One good quote deserves another # This is
incorrect

MPW returns this error message:

MPW Shell - "s must occur in pairs.

But, if you enclose your command in quotes, like this,

Echo "One good quote deserves another"

everything works out.

Nesting Quotation Marks

If a multiple-word parameter contains an apostrophe-which MPW
interprets as a single quotation mark-you can prevent the parameter
from generating an error by enclosing the parameter in double quota
tion marks, like this:

Echo "What's happening"

238 II> Chapter 4 The MPW Special Character Set

In response to this command, MPW echoes

What's happening

to the screen.
Conversely, a parameter that includes double quotation marks can be

enclosed in single quotes, as long as it does not contain any variables,
aliases, or a characters. For example, the command

Echo 'The name of this file is "Source.c."'

writes

The name of this file is "Source.c."

If you want to use both single and double quotation marks in a
parameter, you can use both kinds of quotes in a nested fashion. For
example, the command

Echo '"It '"won't"' work," he declared.'

echoes this message:

"It won't work," he declared.

You can also place an apostrophe (a single quote) inside a pair of
double quotation marks by preceding it with the escape character a
(Option-d), in this fashion:

Echo '"I dond't care."'

This command echoes the message

"I don't care."

Square Brackets ([...])

In the MPW command language, square brackets are used to delimit
patterns. For example, the command

Find /[A-Z]/

~ The MPW Special Character Set 239

finds and selects any character from A through Z. If the shell variable
{CaseSensitive} is set to 0, or false-which is its default-the command

Find /[A-Z]/

also selects any lowercase character from a through z. However, if you
have set {CaseSensitive} to 1, or true, you must execute a command
such as

Find /[A-Za-z]/

to include both uppercase and lowercase letters in your selection
criteria.

To select any uppercase or lowercase letter, or any digit from 0
through 9, when {CaseSensitive} is set to true, you can execute a
command such as

Find /[A-Za-z0-9]/

The order in which you arrange your selection criteria is not signifi
cant because square brackets are used to select patterns, not specific
sequences of characters. To select a specific string of characters, you can
simply enclose it in quotation marks-or, in more complex cases, place
it inside parentheses, as explained later in this chapter.

European Quotes(« and»)

The European quotation marks « and » (Option-\ and Option-Shift-\)
are used to enclose numbers specifying the number of times that an
operation is repeated. There are three ways to use European quotes in
MPW commands:

1. «n» repeats an operation n times
2. «n,» repeats an operation at least n times
3. «nl,n2» repeats an operation at least nl times, and at most n2 times

For example, the command

Find /[dt]«2»/

finds and selects exactly two Tabs, whereas the command

240 ..,, Chapter 4 The MPW Special Character Set

Find /[dt]«2,»/

selects any sequence of two or more Tabs. The command

Find /[dt]«2,4»/

finds and selects any sequence of two to four Tabs.

Parentheses

Parentheses are often used to separate a string or an expression from
other elements in a command, so that it is treated as a single unit and
does not get mixed up with other strings or expressions.

Strings and expressions enclosed in parentheses are often used with
the regular expression operators * and +, which are described later in
this chapter.

When * is used as a regular expression operator, it means "zero or
more." When+ is used as a regular expression operator, it means "one
or more." Thus the command

Find I("*")+/

selects a group of one or more asterisks. A more complex command

Find /[A-Za-z]+(, [dtdn]* [A-Za-z]+)*/

selects a word that is made up of one or more alphabetic characters and
is separated from other words by blanks and optional commas. Commas
and blanks are not selected.

The Backquote Delimiter

The backquote character (') is a special-purpose delimiter used in
command substitution. By placing a command between a pair of back
quote characters, you can pass its output to another command. For
example, when you execute the command

Echo 'Files -t TEXT'

the Files command compiles a list of files of the type TEXT and passes
the list to the Echo command, which then prints its output on the screen.

I>- The MPW Special Character Set 241

The backquote delimiter is often used in statements containing the
Evaluate command. For instance, the commands

Set a 64978
Set b 24935
Echo 'Evaluate {a) + {b)'

echo the result

89913

The I and \ Delimiters

The slash bar(/) and the backslash(\) are often used as delimiters with
the Find, Search, and Replace commands. When a string or expression
delimited by slash bars (/ ... /) follows a Find command, Find searches
in a forward direction. But, when Find is followed by a string or
expression enclosed in backslashes(\ ... \), the search goes backwards.
Hence, to start at the beginning of a file and search for the beginning of
the string "charlie," you can execute the commands

Find • ; Find ~/charlie/

But, if you want to start at the end of a file and search backwards for
end of the string "charlie," you can execute the commands

Find ~ ; Find \charlie\~

The Replace Command

The Replace command replaces the current selection with a specified
string, pattern, or expression. Its syntax is:

Replace [-c count] selection replacement [window]

Replace searches for the selection parameter in the specified window
and, if it is found, replaces it with the replacement parameter. If no win
dow is specified, the Replace operation takes place in the target window.
If a count parameter is specified, the operation is performed count times.

242 ..,. Chapter 4 The MPW Special Character Set

Note 11>

Status codes returned by the Replace command are:

Status
Code Meaning

0
1
2

At least one instance of the selection was found.
Syntax error.
Any other error.

When the Replace command appears in a command or a script, its
selection parameter must be delimited by slash bars or backslashes. If
the command's replacement parameter contains any blanks, it must be
delimited by double or single quotation marks.

For example, the command

Replace -c ~ /charlie/ "charlie brown"

replaces every occurrence of the string "charlie" with the string "charlie
brown." Since the command has no window parameter, the operation
takes place in the target window.

This command

Replace -c ~ /•[atJ+/ I I Test

strips away any blanks that may begin lines in the Test window and
replaces each series of blanks with the null string. This operation
removes all spaces and tabs from the beginnings of lines.

From Here to co. When the co (Option-5) character follows an
option that calls for a numerical value, it is a regular expression
operator that stands for an infinite number. Thus the command

Replace -c ~ /charlie/ "charlie brown"

means, "Replace all occurrences of the string 'charlie' with the
string 'charlie brown'." The use of co as a regular expression
operator is covered later in this chapter'.

IJJ>- The MPW Special Character Set 243

The Search Command

The Search command works much like the Find command; but it
searches files for patterns, rather than searching through text in open
windows. The syntax of the Search command is:

Search [-s I -i] [-r] [-q] [-f file] pattern [file ...]

The file parameter is a file name or a series of file names. The Search
command searches the input files for lines that contain a pattern and
writes those lines to standard output. If no file is given, standard input
is searched. The pattern parameter is a regular expression. It must be
enclosed in forward slashes (I) if there are blank characters in the
expression. If the pattern contains no blank characters, the slash
delimiters are optional.

When the Search command discovers a match, the name of the
matching file and the line number of the matching line are echoed at the
beginning of each line of output.

Options accepted by the Search command are:

Option

-b
-i

-s
-nf

-r

-q
-f file

Meaning

Break "File/Line" from matched pattern (MPW 3.2)
Case-insensitive search (overrides {CaseSensitive})
Case-sensitive search (overrides {CaseSensitive})
Write "pattern not found" to standard error
and set status = 2 (MPW 3.2)
Write non-matching line to standard output
Suppress file name and line number in output
Lines not written to output are put in this file

Status codes returned by the Search command are:

Status
Code

0
1
2

Meaning

No error
Syntax error
Pattern not found

244 ~ Chapter 4 The MPW Special Character Set

This simple Search command

Search /gumbo/ MyFile.c

searches the file MyFile.c for the pattern "gumbo." AU lines containing
this pattern are written to standard output.

This more complex example

Search -f NoMatchFile /charlie brown/ SourceFile

writes all lines in SourceFile that contain the pattern "charlie brown" to
standard output. All other lines are placed in a file named NoMatchFile.
This operation separates matches from nonmatches and places them in
separate files.

The following example

Search -q PROCEDURE =.p

uses the -q ("quiet") parameter to suppress the filenames and line
numbers in the command's output, producing a single output file
containing matching lines. This command uses the wildcard character =
to specify all files ending with the suffix ".p." Wildcard characters are
examined later in this chapter.

Consider this final example

Search /Alias/ "{MPW}"Startup "{MPW}"UserStartup

That lists the Alias commands in the StartUp and UserStartup files.

~ Regular Expression Operators

In the MPW command language, a regular expression is a combination
of text characters and special characters that equates to text. MPW is
equipped with a large set of regular expression operators that perform
various operations on regular expressions. Table 4-6 lists the regular
expression operators used in the MPW shell language.

... The MPW Special Character Set 245

Table 4-6. Regular expression operators

Chr Type Category Syntax Meaning Example Translation

!- !- Regular "sl" !- True if s1 is not Print 'Evaluate Output: 1
expression /s2/ equal to s2. "alpha" !- /beta/'
operator

* * Regular r* Matches zero or Find I('*')+ Select a group of one
expression more occurrences '/'[Clrilt]*/ or more asterisks
operator of regular followed by a slash

expression. bar and 0 or more
white spaces.

+ + Regular r+ Matches one or Find I('*')+ I Select a group of one
expression more occurrences or more asterisks.
operator of regular

expression.

Regular cl-c2 Stands for range Find /[A-Za-z] Select any word made
expression of characters +Cln/ up of upper- and
operator between cl and c2. lowercase letters that

appears at the end of
a line.

Regular "sl" = True if sl equals s2. Evaluate Output: 1
expression - /s2/ "beta" =- /beta/
operator

Colon Regular s:s All text between Find •:oo Select (highlight)
expression (two selections). all text in file.
operator

Option-5 Regular cmd-c oo (With command that Replace -c oo Replace string "123"
expression takes a -c option): /123/ 456 with string "456"
operator Repeats command every time it appears

to end of file. in target window.

Option-5 Regular roo Selects regular Find I arlieoo I Select the letters
expression expression at the "arlie" at the end
operator end of a line. of a line.

• Option-8 Regular •r Selects regular Find /•ch/ Select the letters
expression expression at the "ch" at the beginning
operator beginning of a line. of a line.

Option-; Regular c ... Executes Commando Tile Windows ... Invoke TileWindows
expression command, invokes Commando.
operator Commando dialog

for command c.

246 _., Chapter 4 The MPW Special Character Set

Table 4-6. Regular expression operators (continued)

Chr Type

Option-I

® Option-r

Category Syntax Meaning Example Translation

Regular [•list] Any character not in Replace -c oo Replace all characters
expression the list. /[•A-Za-zan" "] except A-Z, a-z,
operator I"*" Returns, and spaces

with asterisks.

Regular r®n Tags regular Replace I Reverse the order of
expression expression with ([a-zA-Z]+)®1 two words separated
operator a number []+([a-zA-Z]+) by one or more

(range: 1-9). ®2/ '®2®1' spaces.

The * and + Operators

When the* character is used in a regular expression, it means "zero or
more occurrences of." When the + character is used in a regular
expression, it means "one or more occurrences of." For example, the
command

Find/('*')+'/'/

selects a group of one or more asterisks followed by a slash, and the
command

Find I ('*')+'I' [orot J *I

selects a group of one or more asterisks followed by a slash bar and
zero or more blank characters.

The=- and I- Operators

In matching regular expressions, the =- operator is true if two strings or
expressions match, and the !- operator is true if two strings or
expressions do not match. (In logical operations involving numbers, the
== and != operators are used for equivalent purposes. Logical
operations using the == and != operators are covered later in this
chapter.)

When the=- operator is used in a regular expression, its syntax is

"sl" =- /s2/

~ The MPW Special Character Set 247

and the statement in which it is used is true if string sl is equal to string
s2. For example, the command

Evaluate "beta" =- /beta/

echoes 1, or true, because the operands of =- match.
A more useful example is the sequence

Set alpha a
Set beta b
Evaluate "{alpha}" =- /{beta}/

in which "alpha" and "beta" are variables rather than constants. In this
case, the command echoes the output

0

which is MPW's value for false, because the strings "alpha" and "beta"
are not the same.

To compare a variable with a constant, you could use this pair of
commands:

Set w "alpha"
Evaluate "{w}" =- /"alpha"/

The result of this operation is 1, or true, since the evaluated strings
match.

Several features of this last example are worth pointing out. First,
note that in the second line, the {w} variable in enclosed in quotation
marks. That means that if the string equating to the variable contained
blanks, the command would still work. Note also that slash bars-not
quotation marks-are used to delimit the Evaluate command's second
parameter. This is an unusual use for the I .. ./ delimiters, which are
seen more often enclosing the parameters of the Find, Replace, and
Search commands.

The oo Character

You may recall that the special character oo (Option-5) stands for the
beginning of a file when it is used as a selection expression. It can also
be used as a regular expression operator-and in regular expressions, it
has two different meanings, depending on its context. It seems that the

248 .,. Chapter 4 The MPW Special Character Set

infinity character can cause an infinity of confusion. It has no less than
three different meanings in the MPW command language!

When the co character is used with a command operation that calls
for a number-for example, in a command such as

Replace -c co /123/ 456

it stands for an unlimited, or infinite, number. Thus the Replace com
mand replaces every occurrence of the string "123" with the string "456."

When the co character follows a regular expression, its meaning is
quite different; then it stands for the end of a line. For example, the
command

Find /arlieoo/

selects the string "arlie" at the end of a line.

The • Operator

The • character (Option-8), which stands for the beginning of a file
when it is used as a selection expression, also has another meaning
when it is used as a regular expression operator. But its confusion
quotient is not as high as that of the character co.

The • character has only one meaning when it is used as a regular
expression operator; when it precedes a regular expression, it stands for
the beginning of a line.

For example, the command

Find /•char/

selects the string "char" at the beginning of a line.

The ..., Character

The..., character (Option-I) is an interesting regular expression operator.
It stands for any character that is not in a list. For example, the command

Replace-coo /[--.A.-Za-zon" "]/ "*"

replaces all characters except A-Z, a-z, returns, and spaces with
asterisks.

~ The MPW Special Character Set 249

The Tag Operator®

When you use one or more strings or expressions in an MPW command,
you can assign each one a reference number by following it with the tag
operator® (Option-R). Once you have assigned a tag number to a string
or expression, you can refer to it by its number later in a script. MPW
then recognizes the tagged string or expression by its number and can
perform any operations on it that you want performed.

To use the ® operator, you must place it after a string or expression
and follow it with a number. You can then use the tagged string or
expression in many different kinds of operations. For example, the
selection parameter in the command

Replace -c oo I (a$ [A-F0-9] +) ®1 / '(®1)'

tags the pattern o$[A-F0-9]+ (any hexadecimal number) with the tag
number ®l. Then the replacement parameter places parentheses around
each occurrence of the tagged pattern.

If you performed such a tagging operation on a document that
looked like this:

MemDoc
ViewList
HexBase
NumTab

$945B
$3B6D
$2E4C
$95BO

you would wind up with a document like this:

MemDoc ($945B)
ViewList ($3B6D)
HexBase ($2E4C)
NumTab ($95BO)

You can also use the ® operator to reverse the order of two columns
in a list. For example, if you had a list like this:

MemDoc ($945B)
ViewList ($3B6D)
HexBase ($2E4C)
NumTab ($95BO)

the commands

Find• ; Replace-coo /(:o::)@lot(:o::)@2/ ®2Clt®l

250 .,.. Chapter 4 The MPW Special Character Set

would convert it to a list like this:

($945B)

($3860)
($2E4C)

($95BO)

MemDoc
ViewList
HexBase
NumTab

The ® operator can be very useful when you want to convert a
document from one format to another. For example, suppose you had a
document that had been produced on a word processor, and you did
not have a newline character at the end of each line of text. If you tried
to place such a document in an MPW window, it would run off the
right-hand edge of the screen. You would not be able to read it because
MPW does not wrap words at the ends of lines.

You could use the ® operator to convert such a document into a
format that would work with MPW. For example, this command

Replace -c oo I (?«60, 70»)®1 [at] I "®1an 11

looks for the first space or tab that falls between the sixtieth and
seventieth character on a line. At that point, it converts the line into a
line that ends with a newline character.

The Ellipsis Operator(. ..)

The ellipsis character (Option-;) is a regular expression that displays a
Commando dialog and executes the dialog's output as a command.
Although the ellipsis character looks like three periods (. ..), it is
actually one character that must be generated by pressing Option-;. The
ellipsis character is described in detail in the Commando dialog section
of Chapter 3 .

..,. File Name Generation Operators

In the MPW shell language, there are eight special characters that can
be used to perform special functions. These characters are known as file
name generation operators. They are:

? [l * + « »

These eight characters can also be used as operators in regular
expressions. If they appear in expressions that are delimited by single
or double quotes, or by the I or \ slash delimiters, MPW interprets

~ The MPW Special Character Set 251

them as regular expression operators. If they are not quoted, MPW
interprets them as file name generation operators.

File name generation operators have the same meanings in MPW file
names that they have when they are used as regular expression
operators in quoted expressions. The ? and "" characters are wildcard
characters; the [and] characters are brackets that enclose patterns; the *
and + characters stand for repetitions of a specified character; and the «

and » characters enclose numbers that specify the number of times an
operation is to be performed.

The file name generation operators used in the MPW command
language are listed in Table 4-7.

Table 4-7. File name generation operators

Chr Type Category Syntax

* * File name n*
operator

+ + File name r+
operator

?* ?* Filename ?*
(same as=) operator

Option-1 File name [--.list]
operator

» Option- File name «n»

Shift-\ operator

((Option-\ File name «n»

operator

File name [...]
operator

Filename [...]
operator

Filename
operator

Meaning

Matches zero or more
occurrences of the
preceding character
or character list.

Matches one or more
occurrences of the
preceding character
or characters.

Matches any number
of any characters in
a file name.

Matches any
character not in
the list.

Delimits number
standing for number
of occurrences.

Delimits number
standing for number
of occurrences.

Delimits a pattern.

Delimits a pattern.

Matches any number
of any characters in
a file name.

Example Translation

X* Match zero or more
occurrences of the
character X.

X+ Match one or more
occurrences of the
character X.

?*.c

[X]«2»

[X]«2»

[A-Fl

[A-Fl

=.c

Any file name with
the extension ".c".

Match any character
that is not in the
set A-F.

Match two occurrences
of the character X.

Match two occurrences
of the character X.

Match any character
in the set A-F.

Match any character
in the set A-F.

Any file name with
the extension ".c".

252 ..- Chapter 4 The MPW Special Character Set

How File Name Generation Operators Are Used

If an unquoted word in a command contains a file name generation
operator, it is considered a file name pattern. When a file name pattern
is encountered in a command, MPW replaces the pattern with an
alphabetically sorted list of file names that the pattern matches. Then, if
the command you are using is one that lists file names-such as Files or
Volumes-the generated list is written to standard output. If no file
name matches the pattern you have specified, an error is returned.

For example, the command

Files "'

works just like the Files command with no parameter; it lists all the files
in the current directory. The command

Files "'.c

lists all the files in the current directory with names that end with the
extension ".c". The command

Files Source.?

lists every file in the current directory whose name begins with the
word "Source" and has a one-letter extension, for instance, the Source.c,
Source.p, Source.a, and Source.r files. The command

Files Source"'

lists every file in the current directory whose name begins with the
word "Source," for example, Source, Source.c, Source.p, Source.a,
Source.r, Sources, and SourceFile.

To search for file names that match a pattern, you can enclose the
pattern in square brackets. For example, the command

Files [A-Za-z]+.c

lists file names that are made up of uppercase and lowercase letters and
are followed by the extension ".c".

File name generation operators can be used with commands that
perform operations on files and directories as well as with commands
that generate lists. For instance, the command

Delete [A-Za-z0-9:]+.p

~ The MPW Special Character Set 253

deletes all files in the current directory with names that are made up of
letters, digits, and colons, and that end with the extension ".p". The
command

Catenate ~.c > MyCSources

merges all C source files in the current directory into one file called
MyCSources. The command

Duplicate ~.p PascalFolder

copies all Pascal files in the current directory into a directory called
PascalFolder.

~ Arithmetic and Logical Operators

The MPW command language has a broad range of operators that can
be used to perform arithmetic and logical operations. In MPW,
arithmetical and logical operations are always performed either by the
command Evaluate or inside conditional loops. Thus, you can use an
arithmetical or logical operator as part of an operation performed by the
Evaluate command as follows:

Evaluate 2+2

-or in a conditional loop, like this:

If 2+2 == 4
Beep

End

The arithmetical and logical operators used in the MPW shell
language are listed in Table 4-8.

Table 4-8. Arithmetic and logical operators

Chr Type Category Syntax Meaning Example Translation

Operator !n Not (same as NOT). Evaluate !O Output: 1

<> !=(same Operator nl <> n2 True if n 1 is not equal Evaluate 2<> 3 Output: 1
as !=, ;e) to n2.

!= !=(same as Operator nl != n2 True if nl is not equal Evaluate 2 != 3 Output: 1
<>, ;e) to n2.

254 ... Chapter4 The MPW Special Character Set

Table 4-8. Arithmetic and logical operators (continued)

Chr Type Category Syntax Meaning Example Translation

% % (same as Operator nl %n2 Returns mod n2. Evaluate 25% 4 Output: 1
MOD)

& & Operator nl &n2 Bitwise AND. Evaluate Ob0001 Output: 1
& Ob0011

&& && Operator nl &&n2 Logical AND. Evaluate 1 && 1 Output: 1

* * Operator nl *n2 Multiplies nl by n2. Evaluate 3 * 3 Output: 9

+ + Operator nl +n2 Adds nl to n2. Evaluate 1 + 1 Output: 2

Operator n2-n1 Subtracts nl from n2. Evaluate 33 - 32 Output: 1

< < Operator nl <n2 True if nl is less Evaluate 2 < 3 Output: 1
than n2.

<< << Operator nl << n2 Shifts n 1 left Evaluate Ob0001 Output: 2
arithmetically n2 times. << 1

<= <= Operator nl <= n2 True if nl is less than Evaluate 2 <= 3 Output: 1
or equal to n2.

<= <=(same Operator nl <= n2 True if nl is less than Evaluate 2 <= 3 Output: 1
as::;) or equal to n2.

Operator nl == n2 True if nl equals n2. Evaluate 2 == 3 Output: 0

>= >=(same Operator nl >= n2 True if nl is greater Evaluate 3 >= 2 Output: 1
as;:::) than or equal to n2.

>> >> Operator nl >> n2 Shifts nl right logically Evaluate Ob0010 Output: 2
n2 times. >> 1

DIV DIV Operator nl DIV n2 Divides nl by n2. Evaluate 25 Output: 5
(same as+) DIVS

MOD MOD Operator nl MOD n2 Returns mod n2. Evaluate 25 Output: 1
(Same as%) MOD4

NOT NOT Operator NOTn Not (same as!). Evaluate NOT 0 Output: 1

+ Option-/ Operator nl + n2 Divides nl by n2. Evaluate 25 + 5 Output: 5
(same as DIV)

.. The MPW Special Character Set 255

Table 4-8. Arithmetic and logical operators (continued)

Chr Type

:;::; Option-<
(same as<=)

* Option-=
(same as!=,
<>)

;:: Option->
(same as>=)

" "

11 11

Important ~

Category Syntax Meaning Example Translation

Operator nl :;::;n2 True if nl is less than Evaluate 2 :;::; 3 Output: 1
or equal to n2.

Operator nl :t:n2 True if nl is not Evaluate 2 :t: 3 Output: 1
equal to n2.

Operator nl ;?:n2 True if nl is greater Evaluate 3 ;:: 2 Output: 1
than or equal to n2.

Operator nl "n2 Bitwise XOR. Evaluate Output: 2
ObOOOl " Ob0011

Operator nl I n2 Bitwise AND. Evaluate Output: 3
ObOOOl I Ob0011

Operator nl I I n2 Logical OR. Evaluate 1 I I 0 Output: 1

Operator -n Negates number. Evaluate - 4 Output: -5

Double Meaning Department. Many of the characters in Table 4-8
are also used in regular expressions-and have completely different
meanings. For example, the I is a pipe character when used as a
regular expression operator, but it is a bitwise OR operator when
used as a logical operator. The + and * characters are used as
counters in regular expressions, but they are addition and
multiplication operators when used in arithmetic operations. The <
and > characters, which mean "less than" and "greater than" in
logical operations, are redirection operations when they are used
with commands.

To avoid getting confused by these double meanings, just
remember that when a special character occurs in an arithmetic or
logical operation that is part of an Evaluate command, it is always
an arithmetic or logical operator. If it occurs anywhere else, it is not.

256 .., Chapter 4 The MPW Special Character Set

Arithmetic Operators

The MPW command language uses these arithmetic operators:

Operator

+

*
+ (Option-/)
DIV
%
MOD

Meaning

Addition operator
Subtraction operator
Multiplication operator
Division operator
Division operator (alternate)
Modula
Modula (alternate)

In the MPW command language, arithmetic expressions always
follow the Evaluate command. For example, the command

Evaluate {a} + {b}

adds the variables {a} and {b}.
To make use of the output of the Evaluate command, the command

substitution operator (') is often used to convert Evaluate's output into
a parameter of another command. For example, the command

Echo 'Evaluate {a) + {b)'

echoes the result of the expression {a} + {bl (the use of the word Echo is
optional). And the command

Set x 'Evaluate {a} + {b)'

sets the variable {xi to the sum of {a}+ {bl.

Logical and Shift Operators

The logical, shift-left, and shift-right operators used in the MPW
command language are as follows.

~ The MPW Special Character Set 257

Operator Meaning

-- Equal to
!= Not equal to
<> Not equal to
'¢ Not equal to
&& AND
11 OR
< Less than
> Greater than
<= Less than or equal to
~ (Option-<) Less than or equal to
>= Greater than or equal to
2:: (Option->) Greater than or equal to

Logical negation
..., (Option-I) Logical negation
NOT Logical negation
<< Arithmetic shift left
>> Logical shift right

Logical operations, like arithmetic operations, must follow the
Evaluate command on a command line. For instance, the command

Set x 'Evaluate {a} == {b}'

sets the value of the variable x to 1, or true, if variable {a} is equal to
variable {b}, and to 0, or false, if variable {a} is not equal to variable {b}.

For more examples of logical operations in MPW, see Listing 2-2 and
the section on the Evaluate command in Chapter 2.

Number Prefixes

The Evaluate command works with decimal, hexadecimal, octal, and
binary numbers. You can designate the kind of number you are using in
an Evaluate operation by using a number prefix. The number prefixes
used in the shell language are listed in Table 4-9.

258 ... Chapter4 The MPW Special Character Set

Table 4-9. Number prefixes

Chr Type

$ $

0 0 (zero)

Ob Ob

Ox Ox

Category Syntax Meaning Example Translation

No. prefix $[0-9A-Fa-f]+ Precedes hexadecimal Evaluate Output: 40861
number (same as Ox). $9EFF + $9E

No. prefix 0(0-7]+ Precedes octal number. Evaluate Output: 68
054 + 030

No. prefix Ob[0-1]+ Precedes binary number. Evaluate Output: 2
Obll - ObOl

No. prefix $[0-9A-Fa-f] Precedes hexadecimal Evaluate Output: 40861
number (same as $). $9EFF + $9E

To designate the base of a number in an Evaluate operation, all you
have to do is precede the number with the appropriate number prefix.
For example, the commands

Evalute $4B5E + $7080

and

Evalute Ox4B5E + Ox7D80

both add the hexadecimal numbers 4B5E and 7080.

Redirection Operators

Redirection operators are characters that can be used to redirect the
output of a command to a specified file or set of files.

For example, the command

Echo "A new beginning" > "{Target}"

redirects the output of the Echo command to the target window
(ordinarily, the active window is the destination of text written by the
Echo command).

Note that in this example the string "A new beginning" replaces all
the text in the document in the target window. That is the function of
the redirection operator>.

To append text to a document, instead of replacing the text in the
document, you must use the redirection operator>>, like this:

Echo "End of file" >> "{Target}"

., The MPW Special Character Set 259

You can use redirection operators to redirect the diagnostic output of
MPW commands as well as to redirect text. Detailed information on
how redirection operators are used in MPW was presented in Chapter 2.
The redirection operators used in the MPW command language are
listed in Table 4-10.

Table 4-10. Redirection operators

Chr Type Category Syntax Meaning Example Translation

< < Redirection <f Standard input is Alert < Errors Display an alert
taken from file name f. dialog containing

the contents of the
file Errors.

> > Redirection >f Redirects standard Echo "{Status}" Write contents of
output, replacing >Errors shell variable
contents of file f. {Status} to file

Errors, replacing
its previous
contents.

>> >> Redirection >>f Redirects standard Echo "{Status}" Append contents
output, appending it >>Errors of shell variable
to contents of file f. {Status} to the end

of file Errors.

~ Option-> Redirection ~f Redirects diagnostics, (Files "'·P I I)~ List file.names
replacing contents Errors that end in ".p".
of file f. Send diagnostics

to file Errors,
replacing its
contents.

~~ Option-> Redirection ~~f Redirects diagnostics; (Files "'·P I I) List file names
append to contents ~~Errors that end in ".p".
of file f. Append

diagnostics to end
of file Errors.

I Option-W Redirection If Redirects both (Files "'·P I I) List file names
standard output and I Temp ending in ".p".
diagnostics to file f, Send output,
replacing its contents. diagnostics to file

Temp, replacing
its contents.

II Option-W Redirection I If Redirects both (Files "'·P I I) List file names
standard output and II Temp ending in ".p".
diagnostics to file f; Append output
append to file f. and diagnostics to

file Temp.

260 .,.. Chapter 4 The MPW Special Character Set

~ Special Characters Used in Menus

One set of special characters, called metacharacters, are used only with
the AddMenu command. The metacharacters used with the AddMenu
command are listed in Table 4-11. For a detailed explanation about how
these characters are used, see the section on the AddMenu command in
Chapter 3.

Table 4-11. Metacharacters used by the AddMenu command

Chr Type

I I

< <

/\ /\

Category Syntax Meaning Example Translation

Menus

Menus

Menus

Menus

Menus

Menus

~

!c Marks menu item with !'1 Mark menu item with
specified character. a check mark.

Disables menu item. (- Place a dimmed horizontal
line in menu list.

Prints a horizontal line (- Place a dimmed horizontal
separating menu items. line in menu list.

/c Associates a menu item /M Assign control-M to be
with keyboard equivalent c. menu item's keyboard

equivalent.

<[BIUOS] Sets character style of a <B Set character style of
menu item (bold, italics, menu item to bold.
underlined, outline, or
shadow).

"n Followed by an icon "2 Mark the menu item with
number, marks menu icon no. 2 (in a resource
item with specified icon. fork).

Special Characters Used in Makefiles

The special characters f (Option-f) and ff are used only in makefiles:
scripts used to build programs, or convert them from source code into
executable programs. Several other special characters are also used in
makefile scripts.

Makefiles have their own special language, and it is a little different
from the MPW command language. Makefiles and the makefile
language are described in detail in Chapter 5. Table 4-12 lists the special
characters that are used in the MPW makefile language.

~ Using Special Characters in Scripts 261

Table 4-12. Special characters used in makefiles

Chr

()

I

If

Type Category Syntax Meaning Example Translation

Make "s" Delimits a string in "{Libraries)" The runtime libraries.
which each character is Runtime.o
taken literally, except
ford, IL and'.

Make #s Interprets characters ### Interpret string
between # and ter- Dependency following# as a
minator as a comment. rules### comment.

Make 's' Delimits a string in '{Libraries)' The runtime libraries.
which all characters Runtime.o
are taken literally.

Option-D Make () If() stands alone at end (First line:) Output: Sample ff
of a line, MPW joins Sample ff Sample.p.o Sample.r.
line to next line, Sample.p.o d
ignoring return. (Second line:)

Sample.r

Option-F Make fl f fl File fl depends on Sample.p.o f File Sample.p.o depends
file f2. Sample.p on file Sample.p.

Option-F Make fl I I fl File fl depends on Sample// File Sample depends on
file f2, and f2 has its Sample.p.o file Sample.p.o, and
own build commands. Sample.p.o. has its own

set of build commands.

_.. Using Special Characters in Scripts
Now that you have been introduced to the special characters used in the
MPW command language, we can take a closer look at a code fragment
and two short scripts that were presented in earlier chapters, along with
promises that they would be decoded. If you have carefully studied
Chapters 2, 3, and 4, you may now be able to understand how they
work.

First, we will examine a fragment of code that was presented in
Chapter 2. It is the code in the MPW UserStartup script that executes
any supplementary UserStartup file with a name written in the format

UserStartup•filename

262 IJll> Chapter 4 The MPW Special Character Set

This is the code:

For Startup_i In . (Files II { ShellDirectory} II a
UserStartup•= I I Set Status 0) ~ dev:null'
Execute "{_Startup_i}"
End
Unset _Startup_i

This fragment of code uses a For .. .ln loop, a structured construct
described in Chapter 2. In the first line, it defines a variable named
_Startup_i and uses the command substitution operator (' ... ') to
determine the name of every file in the MPW directory that has a name
written in the format UserStartup•filename.

If no such file is found, the conditional command terminator I I sets
the shell variable {Status} (in which errors are returned) to 0-fooling
MPW into thinking there was no error. Then it uses the ~ operator to
discard any error messages by redirecting them to the pseudo-device
Dev:Null-the "bit bucket."

During the For loop, the {_Startup_i} variable is set to the name of
each UserStartup •::::: file that is found, and the file is executed. When all
such files have been executed, the {_Startup_i} variable is Unset, or
discarded.

The next example is a login script that was introduced in Chapter 2
as Listing 3-2. In this incarnation, we'll call it Listing 4-2.

Listing 4-2. Login script revisited

Set Exit 0
Set N "'Request 'Please type the password:''"
If "{Status}" == 0

End

If "{N}" =- /Karoshi/
This happens if login succeeds
Chimes
Alert -s "Welcome to the Editor!"
New
Echo "You are now online.an 11 > "{Active}"

Else
This happens if login fails
Alert "Password invalid; access denied."

End

Set Exit 1

• Using Special Characters in Scripts 263

This is an easy one. In the first line, it resets the shell variable {Exit)
to 0, so that any error generated by the script will not terminate the
script. (Normally, the {Exit) variable is set to 1, and any scripts that
result in errors come to an abrupt halt.)

In the second line, the script defines a variable named !NI. Then it
uses the Request command to display a request dialog displaying the
"Please type the password:" prompt. When the user types in a
password, the command substitution operator(' ... ') is used to set the
!NI variable to the password input by the user.

If the !NI variable is assigned the value "Karoshi"-the correct
password-the script executes another script, named Chimes, which
plays a melody. (Chimes, you may recall, is a Beep script created in
Chapter 2.) The script then displays an alert dialog that proclaims,
"Welcome to the Editor!" Finally, it opens a new window and displays
there the message, "You are now online."

If the user fails to type in the correct password, the script displays an
alert that says, "Password invalid; access denied."

Our final example was called Listing 3-3 back in Chapter 3. Here it is
revived as Listing 4-3. This listing was used to streamline the operation
of the UserVariables Commando when the commando was introduced
in Chapter 3.

In case you have forgotten, it lets you use the UserVariables
commando to redefine any shell variables that you want to change, and
then adds them automatically to your UserStartup script.

Without the script, the UserVariables commando merely writes the
new values you have set to the active window. Then, if you want to add
them to your UserStartup script, you have to open your UserStartup
script and paste them in using editing commands.

With the script, all you have to do is invoke the UserVariables
commando and select new values for any shell variables that you want
to redefine. When you close the commando, they are appended to your
UserStartup script automatically.

Listing 4-3. UserVar script

UserVar Script

Writes the output of the UserVariables Commando
To your UserStartup Script

Just Execute the Command UserVariables
And run this script;
It will do the rest

264 .,,. Chapter 4 The MPW Special Character Set

Find~ "{Active}" f Go to end of window
ff Search backwards for output of UserVariables
Find \UserVariables ; \A "{Active}"
Find§:~ "{Active}" fSelect it
ff Open UserStartup script
Open "{ShellVariable}"UserStartup
Find~ "{ShellVariable}"UserStartup f Go to end
ff Write a return to start a new line
Echo "an" >> "{ShellVariable}"UserStartup
ff Add output of UserVariables to UserStartup
Catenate "{Target}".§ >> "{ShellVariable}"UserStartup

This script looks a lot more complicated than it is. In the first line, it
places the insertion point at the end of the file in the active window.
Then it uses the Find command to search backwards for the end of the
string "UserVariables ; ", which the UserVariables command has written
into the active window.

In the next line, the script selects the string "UserVariables; ".Then it
opens the UserStartup script, goes to the end of the script, and writes a
newline character (an). Then it adds any new variable definitions that
the UserVaribles commando has written to the UserStartup script.

~ The Special Characters at a Glance

By the Way ~I

Table 4-13 is a listing of the special characters used in MPW, arranged in
character order.

Here, for the First Time Anywhere Table 4-13 is the first listing
of its kind that has appeared in any book about MPW. Nowhere in
the MPW 3.0 Reference-or in any other MPW book-can you find a
table, a listing, or a segment of text that lists and describes every
special character used in the MPW command language. In fact, the
MPW 3.0 Reference does not even tell how many kinds of special
characters there are in MPW-and neither does any other book
about MPW that I've ever seen. So, when I started writing this
. chapter, I took the liberty of drawing up my own list of categories.

According to my count, the special characters used in the MPW
shell language can be broken down into fifteen categories. But
these categories overlap each other in various ways. So if you sat
down with a blank piece of paper and made a list of MPW's special
characters, your list of categories might be different from mine.

... Using Special Characters in Scripts 265

Table 4-13. The MPW special character set

Chr Press Category Meaning Usage Example Translation

Menus Marks menu item with !c hi Mark menu item
specified character. with a check mark.

Operator Not (same as NOT). !n Evaluate !O Output: 1

Selection Selects the line that is n !n Find !3 Select the third line
lines after end of current after the current
selection. selection.

Selection Places insertion point n r!n Find Place insertion point
characters after regular /alpha/!3 three characters
expression. after the word

"alpha."

<> !=(same Operator True if nl is not equal nl <> Evaluate2 Output: 1
as!=,*) ton2. n2 <>3

!= !=(same Operator True if nl is not equal nl != Evaluate Output: 1
as<>,*) to n2. n2 2!=3

!- !- Regular True if sl is not equal 11sl" !- Evaluate Output: 1
expression to s2. /s2/ "alpha"!-
operator /beta/

Delimiter Delimits a string in which "s" Print "{MPWJ" Echo the contents of
each character is taken »"{Target)" the shell variable
literally, except for a I II' {MPWJ to the target
and'. window.

Make Delimits a string in which "su "{Libraries)" The runtime
each character is taken Runtime.o libraries.
literally, except for a, {),
and'.

Comment Interprets characters #s #Thiswon't Interpret string
between # and terminator work following # as a
as a comment. comment.

Make Interprets characters #s ### Interpret string
between # and terminator Dependency following # as a
as a comment. rules### comment.

$ $ No. prefix Precedes hexadecimal $[0-9A- Evaluate Output: 40861
number (same as Ox). Fa-f]+ $9EFF+ $9E

266 ~ Chapter4 The MPW Special Character Set

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

% % (same Operator Returns mod n2. nl % n2 Evaluate Output: 1
as MOD) 25 %4

& & Operator Bitwise AND nl &n2 Evaluate Output: 1
ObOOOl &
ObOOll

&& && Operator Logical AND nl Evaluate Output: 1
&&n2 1 &&1

&& && Terminator Executes c2 command cl && Find /charlie/ If string "charlie" is
if cl command succeeds. c2 && Echo found,MPW

Found! echoes, "Found!"

Delimiter Delimits a string in which 's' Echo '(MPW}' Echo the string
all characters are taken >>"(Target}" "(MPW}" to the
literally. target window.

Make Delimits a string in which 's' '(Libraries}' The runtime
all characters are taken Runtime.o libraries.
literally.

Delimiter Delimits a group of (p) Find I("*")+ I Select a group of
characters that form a one or more
pattern. asterisks.

Menus Disables menu item. (- Place a dimmed
horizontal line in
menu list.

Delimiter Delimits a group of (p) Find I("*")+ I Select a group of
characters that form a one or more
pattern. asterisks.

* * File Matches zero or more c* X* Match zero or
name occurrences of the more occurrences of
operator preceding character or the character X.

character list.

* * Operator Multiplies nl by n2. nl * n2 Evaluate Output: 9
3*3

... Using Special Characters in Scripts 267

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

* * Regular Selects zero or more r* Find Select a group of
expression occurrences of regular I('*')+'/' one or more
operator expression. [drdt]*/ asterisks followed

by a slash bar and 0
or more white
spaces.

+ + File name Matches one or more c+ X+ Match one or more
operator occurrences of the occurrences of the

preceding character or character X.
characters.

+ + Operator Adds nl to n2. nl +n2 Evaluate Output: 2
1+1

+ + Regular Selects one or more r+ Find Select a group of
expression occurrences of regular /('*')/ one or more
operator expression. asterisks.

+ + Regular Matches one or more r+ X+ Match one or more
expression occurrences of the occurrences of the
opeartor preceding character or character X.

characters.

Menus Prints a horizontal line (- Place a dimmed
separating menu items. horizontal line in

menu list.

Operator Subtracts nl from n2. n2-nl Evaluate Ouput: 1
33-32

Regular Stands for range of cl-c2 Find Select any word
expression characters between cl /[A-Za-z) made up of upper-
operator and c2. +dn/ and lower-case

letters that appears
at the end of a line.

I I Delimiter Searches forward and /r/ Find I delta/ Search forward and
selects regular expression. select the word

"delta."

I I Menus Associates a menu item /c /M Assign control-M to
with keyboard equivalent c. be menu item's

keyboard
equivalent.

268 ... Chapter4 The MPW Special Character Set

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

0 0 (zero) No. prefix Precedes octal number. 0[0-7]+ Evaluate Output: 68
054 + 030

Ob Ob No. prefix Precedes binary number. Ob[0-1]+ Evaluate Output: 2
Obll -ObOl

Ox Ox No. prefix Precedes hexadecimal $[0-9A- Evaluate Output: 40861
number (same as $). Fa-f] $9EFF+$9E

Terminator Treats commands on the c;c Echo Output: (First
same line as if they were hello; Echo line:) Hello
on different lines. goodbye (Second line:)

Goodbye

< < Menus Sets character style of a <[BIUOS] <B Set character style
menu item (bold, italics, of menu item to
underlined, outline, or bold.
shadow).

< < Operator True if nl is less than n2. nl <n2 Evaluate Output: 1
2<3

< < Re- Standard input is taken <f Alert< Display an alert
direction from file name f. Errors dialog containing

the contents of the
file Errors.

<< << Operator Shift nl left arithmetically nl << Evaluate Output: 2
n2 times. n2 ObOOOl « 1

<= <= Operator True if nl is less than or nl <= Evaluate Output: 1
equal to n2. n2 2<=3

<= <=(same Operator True if nl is less than or nl <= Evaluate Output: 1
ass;) equal to n2. n2 2<=3

Operator True if n1 equals n2. n1 = Evaluate Output: 0
=n2 2==3

~ Using Special Characters in Scripts 269

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

=- Regular True if sl equals s2. "sl" =- Evaluate Output: 1
expression /s2/ "beta"=-
operator /beta/

> > Re- Redirect standard output, >f Echo Write contents of
direction replacing contents of file f. "{Status}"> shell variable

Errors {Status} to file
Errors, replacing its
previous contents.

>= >=(same Operator True if nl is greater than nl >= Evaluate Output: 1
as~) or equal to n2. n2 3>=2

>> >> Operator Shift nl right logically n2 nl >> Evaluate Output:2
times. n2 Ob0010»1

>> >> Re- Redirect standard output, >>f Echo Append contents of
direction appending it to contents "{Status}"» shell variable

of file f. Errors {Status} to the end
of file Errors.

? ? Filename Matches any single ? Source.? Any file that is
operator character in a file name. named Source and

has a one-character
extension.

? ? Wild card Matches any single ? Find /Bar?/ Select any four-
character in a string. character word that

begins with "Bar."

?* ?* Wild card Matches any number of chars?* Find /Mar?* I Select any word that
occurrences of any begins with "Mar."
character (same as==).

?* ?*(same Filename Matches any number of ?* ?*.c Any file name with
as==) operator any characters in a file the extension ".c."

name.

Colon Regular All text between s:s Find •:oo Select (highlight)
expression (two selections). all text in file.
opeartor

DIV DIV Operator Divides nl by n2. nl Evaluate Output: 5
(same DIVn2 25DIV 5
as+)

270 ... Chapter4 The MPW Special Character Set

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

MOD MOD Operator Returns mod n2. nl Evaluate Output: 1
(Same MOD 25MOD4
as%) n2

NOT NOT Operator Not (same as!). NOTn Evaluate Output: 1
NOTO

Option-! Selection Places insertion point n jn Find j3 Place insertion point
lines before start of three lines before
current selection. start of current

selection.

~ Option-/Operator Divides nl by n2. nl + n2 Evaluate Output: 5
(same as 25+ 5
DIV)

Option-5 Regular (With command that takes cmd Replace Replace string "123"
expression a -c option): Repeats -c 00 -c 00 /123/ with string "456"
operator command to end of file. 456 every time it

appears in target
window.

Option-5 Regular Selects regular expression roo Find Select the letters
expression at the end of a line /arlieoo/ "arlie" at the end of
operator a line.

Option-5 Selection Selects end of file. Find oo Place insertion point
after last character

in file.

§ Option-6 Selection Current selection. § Copy§ Copy the current
selection (high-
lighted text) to the
Clipboard.

• Option-8 Regular Selects regular expression •r Find Select the letters
expression at the beginning of a line. /•ch/ "ch" at the
operator beginning of a line.

• Option-8 Selection Selects beginning of file. • Find• Place insertion point
before first
character in file line.

Option-; Regular Executes Commando c ... Tile Win- Invoke Tile
expression command, invokes dows ... Windows
operator Commando dialog for Commando.

command c.

~ Using Special Characters in Scripts 271

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

::;; Option-< Operator True if nl is less than or nl :!>n2 Evaluate Output: 1
(same equal to n2. 2:!>3
as<=)

* Option- Operator True if nl is not equal nl :F-n2 Evaluate Output 1
=(same ton2. 2:F-3
as!=,<>)

~ Option-> Re- Redirect diagnostics, ~ (Files List file names that
direction replacing contents of file f. =.p 11) ~ end in ".p". Send

Errors diagnostics to file
Errors, replacing its
contents.

>> Option-> Re- Redirect and append ~~ (Files List file names that
direction diagnostics to file f. =.p 11)~~ end in ".p". Append

Errors diagnostics to end
of file Errors.

~ Option-> Operator True if nl is greater than nl ~n2 Evaluate Output: 1
(same as or equal to n2. 3~2

>=)

a Option-d Escape Return. an Echo an Echo a return.

a Option-d Escape Tab. at Echo an Echo a tab.

a Option-d Escape Form feed. ()f Echo an Echo a form feed.

a Option-d Escape Defeats the meaning of ()..., Echo()..., Output:...,
the special character that
follows it.

a Option-d Line If a stands alone at end of lCll (First line:) Output: How are
continua- a line, MPW joins line to Echo"How you today? (All on
ti on next line, ignoring return. are a (Second one line)

line:) you
today?"

a Option-d Make If a stands alone at end la l (First line:) Output: Sample ff
of a line, MPW joins line to Sample ff Sample.p.o Sample.r
next line, ignoring return. Sample.p.o a

(Second line:)
Sample.r

f Option-f Make File fl depends on file f2. fl f fl Sample.p.o f File Sample.p.o
Sample.p depends on file

Sample.p.

272 ... Chapter4 The MPW Special Character Set

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

ff Option-f Make File fl depends on file f2, fl ff fl Sample ff File Sample
and f2 has its own build Sample.p.o depends on file
commands. Sample.p.o, and

Sample p.o. has its
own set of build
commands.

d Option-j Selection Places insertion point Find Place insertion point
before first character in Mcharlie/ before first character
regular expression. in the word

"charlie."

d Option-j Selection Places insertion point rd Find Place insertion point
after last character of /charlie/d after last character
regular expression. of the word

"charlie."

..., Option-I Filename Matches any character Hist] [... A-Fl Match any character
operator not in the list. that is not in the set

A-F.

..., Option-I Regular Any character not in Hist] Replace Replace all
expression the list. -coo /[... A- characters except
operator Za-zan" "]/ "*" A-Z, a-z, returns

and spaces with
asterisks.

® Option-r Regular Tags regular expression r®n Replace Reverse the order of
expression with a number (range: 1-9). I ([a-zA-Zl+) two words
operator ®1 []+([a-zA- separated by one or

Z]+)®2/ more spaces.
'®2®1'

» Option- Delimiter Delimits number standing «n» Find Select exactly two
Shift-\ for number of occurrences. /[atJ«2»/ tabs.

» Option- Delimiter Delimits number standing «Il,» Find Select two or more
Shift-\ for at least n occurrences. /[at]«2,»/ tabs.

» Option- Delimiter Delimits number standing «nl,n2» Find Select two to four
Shift-\ for n to n occurrences. /[at]«2,4» tabs.

» Option- Filename Delimits number standing «n» [X]«2» Match two
Shift-\ operator for number of occurrences. occurrences of the

character X.

~ Using Special Characters in Scripts 273

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

I Option-w Re- Redirects both standard If (Files List file names
direction output and diagnostics to "'·P 11) ending in ".p". Send

file f, replacing its contents. I Temp output, diagnostics
to file Temp,
replacing its
contents.

II Option-w Re- Redirects and appends IIf (Files List file names
direction both standard output and "'·P I I) ending in ".p".

diagnostics to file f. II Temp Append output and
diagnostics to file
Temp.

Option-x Wild card Matches any number of Find /Mar"'/ Select any word
any characters in a string. that begins with

"Mar."

« Option-\ Delimiter Delimits number standing «n» Find Select exactly
for number of occurrences. /(dtl«2»/ two tabs.

« Option-\ Delimiter Delimits number standing «n,» Find Select two or
for at least n occurrences. ![at1«2,,,; more tabs.

« Option-\ Delimiter Delimits number standing «nl,n2» Find Select two to four
for n to n occurrences. /[atl«2,4» I tabs.

« Option-\ Filename Delimits number standing «TI» [Xl«2» Match two
operator for number of occurrences. occurrences of the

character X.

RetumRet Terminator Ends command. c (r) Echo Hello(r) Output: Hello

Space Space White Separates words. WW Echo Hello Output: Hello
space

Tab Tab White Separates words. w w Echo Hello Output: Hello
space

Delimiter Delimits a pattern. [... 1 Find /[A-Fl/ Search for any
character in the set
A-F

File name Delimits a pattern. [... 1 [A-Fl Match any character
operator in the set A-F.

\ \ Delimiter Searches backwards and \r\ Find \alpha\ Search backward
selects regular expression. and select the word

"alpha."

274 ~ Chapter4 The MPW Special Character Set

Table 4-13. The MPW special character set (continued)

Chr Press Category Meaning Usage Example Translation

Delimiter Delimits a pattern. [... 1 Find /[A-Fl/ Search for any
character in the set
A-F.

File name Delimits a pattern. [... 1 [A-Fl Match any character
operator in the set A-F.

/\ /\ Menus Followed by an icon "n "2 Mark the menu
number, marks menu item item with icon no. 2
with specified icon. (in a resource fork).

/\ /\ Operator Bitwise XOR. nl "n2 Evaluate Output: 2
ObOOOl"
ObOOll

Delimiter Send output of c2 cl 'c2' Echo Files command
command to cl command 'Files -t sends its output to
for processing. TEXT' Echo command,

which prints the
output on the
screen.

Delimiter Delimits variable v. {v} Echo Echo contents of
"(MPW}" shell variable

(MPW}.

Operator Bitwise AND. nl I n2 Evaluate Output: 3
ObOOOl I
ObOOll

Terminator Pipes output of cl cl I c2 Files I Files pipes a list of
command to input of c2. Count-I files to Count,

which prints the list
on the screen.

11 11 Operator Logical OR. nl I I Evaluate Output: 1
n2 1 I I 0

11 11 Terminator Executes c2 command if cl I I Find I Search for string
cl command fails. c2 zebra/ I I "zebra" and echo

Echo Sorry! "Sorry!" if search
fails.

~ Conclusion 275

Table 4-13. The MPW special character set (continued)

Chr Press

...

Category Meaning Usage Example Translation

Delimiter Delimits variable v. {v} Echo Echo contents of
"{MPW}" shell variable

{MPW}.

Operator Negates number. -n Evaluate - 4 Output: -5

Filename Matches any number of ==.c Match any file name
operator any characters in a file with the extension

name. ".c."

Conclusion
This chapter concludes Part I of this book-the part that focuses on the
basic concepts of the MPW command language. Now the fun begins.

In Part II, you'll learn more about Big Three Macintosh managers
the Event Manager, the Resource Manager, and the Memory Manager
and you'll have an opportunity to write an application program, an
MPW tool, and a desk accessory. Then, in the final chapter, you'll learn
some important MPW programming secrets, and start doing some real
power programming.

PART TWO

~ Writing an Application

In Part 1, we examined the Macintosh and the Macintosh Programmer's
Workshop, and you learned how MPW and the Macintosh work
together. In Part 2, you will get a chance to put this knowledge to use
in a practical way: by writing, compiling, building, and executing a
Macintosh application written using MPW.

Part 2, like Part 1, contains four chapters.
Chapter 5, "Event-Driven Programming," focuses on the Toolbox

Event Manager, and shows how to write event-driven programs for the
Macintosh using the Macintosh Programmer's Workshop. Particular
emphasis is given to writing programs that are compatible with System
Software Version 7.0, which uses some event types that were not
supported in previous systems.

Chapter 6, "MPW and the Resource Manager," shows and tells how
resources are handled in programs written under MPW. It also
describes some resources that were added with System Software
Version 7.0, and tells how some other resources were changed with the
introduction of System 7.0.

Chapter 7, "MPW and the Memory Manager," takes a close look at
the memory architecture of the Macintosh, and explains how memory is
managed in programs written for System 7.0. Again, there have been
some important changes.

Finally, in Chapter 8, "Building an Application," you'll have an
opportunity to compile, build, and execute a Macintosh program using
MPW.

277

5 Event-Driven Programming

If you have read Part I and have tried out most of the examples pre
sented in Chapters 1 through 4, you now know more about MPW than
some professional programmers who use it every day. In Part II, you'll
have an opportunity to put your knowledge to use, and actually write
some programs using MPW.

This chapter shows you how to write an event-driven program-the
kind of program that makes use of windows, pull-down menus, and all
of the other special features of the Macintosh user interface. This
chapter will prove especially helpful if you want to write up-to-date
programs that take advantage of the special capabilities of System 7 and
the System 6 MultiFinder .

..,. MPW and the Event Manager

As pointed out in Chapter 1, programs written for the Macintosh are
very different from programs written for more conventional computers.
While old-fashioned computers force the user to navigate through
multiple layers of menus and to issue instructions by typing commands,
the Macintosh does away with all that nonsense and puts the user in the
driver's seat. In a program written for the Macintosh, the user can
control everything that a program does, at any time, by opening win
dows, pulling down menus, clicking on controls, and dragging icons,
pictures, and text.

Because Macintosh programs are designed to be so easy on the user,
they require a different kind of structure than other kinds of programs
do. In technical terms, conventional programs are sometimes referred to

279

280 .,_ Chapter 5 Event-Driven Programming

Note ~

as sequential programs, whereas Macintosh-style programs are called
event-driven programs.

The main feature of an event-driven program is a loop called the
main event loop. The primary task of the main event loop is to look
continually for any event-such as a mouse click, the pressing of a key,
or the insertion of disk. When an event is detected, the main event loop
temporarily passes control of the computer to some other part of the
program that is responsible for handling the kind of event that has
occurred. That part of the program handles the event and then returns
control of the computer back to the main event loop. This process
continues until the user quits the application .

.,_ How Applications Detect Events

The Macintosh has two managers that detect and handle events. One is
called the Toolbox Event Manager. The other is called the Operating
System Event Manager.

Ordinarily, programs find out about events by calling the Toolbox
Event Manager. But in some cases-for example, when an application
defines its own customized kinds of events-the program can also
make calls directly to the Operating System Event Manager.

A'Tale·ot.Two/Maruq~
Evei1'.tManagel' a · ... ·····';
~:~:Ki~i:t~i
Manag~i .inJ:his J?ool<i "

• ifi$ti<>l1S·riften.>1ean.fhe To6}bc>X · ··•
· ·. '" p~ta~ng Syst~m Eveilt
~}fS;oft~ieferted to simply as. ·

... µs~ a:.ref~ence to the Ey:ertf ·
~~ ~tloµ~ any <>ther book about
· · ~a:ger being sf)Oken of is al\.V'ay~ Ma~tosh progr · .. ··~ .. c'

the Toolbox Event ~~f.:
, 'A ;~.i·''··(~··~;~i·:' '· -~'.·~~

The Operating System Event Manager operates at a lower level than
does the Toolbox Event Manager; the OS Event Manager keeps track of
events waiting to be processed and reports them at the appropriate
times to the Toolbox Event Manager. Once the OS Event Manager has
reported an event to the Toolbox Event Manager, the Toolbox Event
Manager can report it to the application being executed.

.,. How Applications Process Events 281

""' Calling the Toolbox Event Manager

Until the introduction of MultiFinder, the call made most often to the
Toolbox Event Manager was GetNextEvent. However, programs that are
designed to take advantage of the background-processing capabilities of
MultiFinder and the multitasking capabilities of System 7 also use the
Toolbox Event Manager call WaitNextEvent.

By calling either GetNextEvent or WaitNextEvent, an application can
find out when an event has occurred, what kind of event it was, and
where the mouse cursor was on the screen when the event was detected.
The program can then process the event in any way the author of the
program desires.

The difference between the two calls is that WaitNextEvent is used by
systems running background tasks; that is, by systems that support, and
are currently running, either System 7 or the pre-System 7 MultiFinder.
GetNextEvent does not support background processing; it is a call that
was designed before MultiFinder became available.

When you want to write an application that is compatible with any
Macintosh system-whether it supports background processing or
not-you must provide the program with a means of determining what
kind of system is running. Then you must write a main event loop that
can call either GetNextEvent or WaitNextEvent, depending on what
kind of system is running. If you find that System 7 or MultiFinder is in
use, your program's main event loop can call WaitNextEvent. Otherwise,
it can call GetNextEvent. Procedures for writing a main event loop that
is compatible with any system are described later in this chapter.

Important .,. ;·!f#p~.·tC>,Us~theEyeiJ.t.~ager.Ifyou want to use the Event
: '.J~g¢I:Jo4etectwll1d(),W~~v:~nts, you must initialize the Window
··c~~mxagei,;·,in;·th;e.inftiaJ~tiqt\ l:!ection ·of .your program. However,
\. J?~fqfe you 9Ul initiali¢ t~e.Wmciow M4nager, you must initialize
:;Ji:Qt)l:QukkDraw a11dthe Eont··Manager. The procedures .for
<~~~filiziAg Toolbox managt?I"S were explained in Chapter 1.

~ How Applications Process Events
Applications ordinarily find out what they need to know about events
by calling either WaitNextEvent or GetNextEvent. When the user of an
application presses the mouse button, types a key on the keyboard or
keypad, or inserts a disk in a disk drive, the application generally

282 ~ Chapter 5 Event-Driven Programming

detects the event by calling WaitNextEvent or GetNextEvent, and then
it responds to the event in whatever way is appropriate.

Listing 5-1 is a block of pseudo-code that illustrates how a main
event loop might work in a Macintosh application. First, the pseudo
code calls WaitNextEvent, which appears in the third line of the listing.
Three lines later, the GetNextEvent call is made.

Listing 5-1. Pseudo-code for a main event loop

REPEAT
IF gHasWaitNextEvent

(Call WaitNextEvent)
ELSE

(Call SystemTask)
(Call GetNextEvent);

IF (an event is detected)
CASE mouse event

(Call FindWindow)
CASE menu event

(Call menu routine)
CASE desktop event

(Call SystemClick)
CASE window event

(Call window routine)
CASE control event

(Call control routine)
CASE key-down event

(Call keyboard routine)
CASE auto-key event

(Call keyboard or auto-key routine)
CASE activate event

(Activate or deactivate window)
CASE update event

(Update window)
CASE OS event (suspend/resume or mouse-moved event)

(Handle OS event)
CASE null event

(Handle null event)
END;

UNTIL quit

.,,. How Applications Process Events 283

.,,_. The gHasWaitNextEvent Variable

Note that before WaitNextEvent is called in Listing 5-1, the value of a
global variable called gHasWaitNextEvent is checked. If the System 7
Finder or MultiFinder is running, gHasWaitNextEvent is set to TRUE;
otherwise, it is set to FALSE.

Although the variable used for this purpose is called gHas Wait
NextEvent in Listing 5-1, it does not have any standard name; it is
declared and named by the application being executed. It is also the
application's responsibility to find out what kind of system is running
and to set the variable's value accordingly.

In the event loop shown in Listing 5-1, if gHasWaitNextEvent is set
to TRUE, then WaitNextEvent is called. If gHasWaitNextEvent is set to
FALSE, the main event loop calls GetNextEvent instead.

More detailed procedures for determining what kind of system is
running and for setting the gHasWaitNextEvent variable to its correct
value are described later in this chapter .

.,,_. Using a CASE Statement in a Main Event Loop

When an application detects an event by calling WaitNextEvent or
GetNextEvent, a CASE statement is generally used to determine what
kind of event was detected. Then the application being executed can
handle the event in an appropriate manner .

.,,_. The SystemTask Call

Another important feature of Listing 5-1 is the System Task call that pre
cedes the GetNextEvent call. Note that a call to SystemTask appears in
the IF statement that calls GetNextEvent, but not in the IF statement
that calls WaitNextEvent.

SystemTask is a Desk Manager trap that handles desk accessories.
GetNextEvent does not handle desk accessories by itself, so if you want
to write an application that is compatible with desk accessories, you
must call SystemTask before you call GetNextEvent. But desk-accessory
support is built into WaitNextEvent, so you should not call SystemTask
in a loop that makes a WaitNextEvent call.

Note that GetNextEvent and WaitNextEvent handle null events
differently. When GetNextEvent returns a null event, it merely means
that there are no events to be processed. But WaitNextEvent does not
report a null event until all background processing has been completed.

284 IJlli- Chapter 5 Event-Driven Programming

lill> WaitNextEvent and the System 7 Finder

Using WaitNextEvent in an application gives the operating system per
mission to process background events-that is, events generated by other
open applications on the desktop-when it is not being used to process
events belonging to the application in the foreground. When you write a
program that uses WaitNextEvent, you can tell WaitNextEvent how
much processor time you need to process events for your application
when it is running in the foreground, and how much time you are willing
to relinquish for the processing of background events. Procedures for
passing time parameters to WaitNextEvent are described later in this
chapter.

lill> The Event Queue

While an event is waiting to be processed, it is stored, or posted, in a data
structure known as the event queue. The event queue is a standard
operating system queue. It is provided by the operating system and
maintained by the Operating System Event Manager. Although you'll
probably never have to access it directly, its structure is shown in Listings
5-2 and 5-3. Operating system queues are described in more detail in the
Operating System Utilities chapter of Inside Macintosh, Volume II.

The event queue can hold a maximum of 20 events. Once an event is
posted in the queue, it stays there until it is processed by WaitNextEvent
or GetNextEvent, or until the queue is full. When the queue is filled to
capacity, the OS Event Manager makes room for new events by clearing
out older ones, starting with the oldest events and the events with the
lowest priorities.

Listing 5-2. The event queue (C listing)

typedef struct EvQEl
QElemPtr qLink
short qType
short evtQWhat
long evtQMessage
long evtQWhen
Point
short
EvQEl;

evtQWhere
evtQModifiers;

/* next queue entry */
/* queue type */
/* event code */
/* event message */
/* ticks since startup */
/* mouse location */
/* modifier flags */

Note ~

~ How Applications Process Events 285

Listing 5-3. The event queue (Pascal listing)

TYPE EvQEl RECORD
qLink: QElemPtr; {next queue entry}
qType: INTEGER; {queue type}
evtQWhat: INTEGER; {event code}
evtQMessage: LONGINT; {event message}
evtQWhen: LONGINT; {ticks since startup}
evtQWhere: Point; {mouse location}
evtQModifiers: INTEGER {modifier flags}
END;

~ The Structure of an Event Queue Record

The event queue's qLink field is a pointer to the next entry in the
queue. The qType field specifies the type of the queue. In the interface
file Events.p, the qType field for the event queue is defined as
ORD(evType).

The other five fields in the event queue are identical to the five fields
of an event record, a data structure that is defined in the interface files
Events.h and Events.p. As explained later in this chapter, applications
use event records to communicate with the Toolbox Event Manager.

, , ,, , , ~~~~ii~~e R~a~~fl~,'~;~l~~~!V:~~~h1¢tTh~~:,
, :eV:ent:.qtielie,can be found,0fuJhe'.gfobaI v.arfabl~ Evei\~
c~~re··ifl@J:lt globalvariabl¢$;~~~J2hapter 6. ,,L,~~·~ ., , , ,,

,~:>~ 0 : ~ -- ;i:~: , ~:~,?J:r~'.'_, :!,:;"

Syntax of GetNextEvent and WaitNextEvent

In C format, the syntax of the GetNextEvent call is:

'!'<;'.,Ci, <' 1>0,_' ,:,,:s>r,~,,'"< ',

pascal Boolean GetNextEvent(eventMask,theEvent)
short eventMask;
EventRecord *theEvent;

In Pascal format, the calling sequence is:

FUNCTION GetNextEvent (eventMask: INTEGER; VAR
theEvent: EventRecord) : BOOLEAN;

286 ~ Chapter 5 Event-Driven Programming

WaitNextEvent uses a syntax that is similar to that of GetNextEvent.
WaitNextEvent has the same parameters as GetNextEvent, plus two
others, as you'll see later in this chapter.

The eventMask and theEvent Parameters

The eventMask parameter in a GetNextEvent or WaitNextEvent call is a
short integer that tells the Event Manager what kinds of events to
report. It is provided so that a program will not have to monitor types
of events in which it is not interested.

The theEvent argument is a pointer to a data structure called an event
record. The structure of an event record is similar to the structure of the
records in the OS Event Manager's event queue; it is described later in
this chapter.

lliJJ. Calling WaitNextEvent and GetNextEvent

When an application invokes the Toolbox Event Manager using a
GetNextEvent or WaitNextEvent call, the Toolbox Event Manager asks
the OS Event Manager for the next event to be processed. In response to
this request, the OS Event Manager removes the next event to be
processed from the event queue and hands it over to the Toolbox Event
Manager. Then the Toolbox Event Manager reports the event to the
application. Finally, the application handles the event in whatever way
is appropriate.

lliJJ. The Event Record

The Toolbox Event Manager reports events to applications by copying
information from the OS Event Manager's event queue into another
record called an event record. The event record, unlike the event queue,
is a data structure provided by the application that calls the Toolbox
Event Manager.

When you write an application that calls the Event Manager, you must
place an event-record structure somewhere in your program: usually, in
the global-data section of the program or in the segment of the program
that contains your main event loop. The structure of an event record is
modeled after the structure of the records in the OS Event Manager's
event queue. In fact, the five fields of an event record are identical to the
third through seventh fields of a record in the event queue.

~

_... How Applications Process Events 287

Listing 5-4 shows the structure of an event record in C format. (To see
what an event record looks like in Pascal format, refer to Listing 5-5; the
fields in the record are described later in this chapter.)

Listing 5-4. Event record CC listing)

typedef struct EventRecord
... short what

long message
long when
Point where
short modifiers;
EventRecord;

Activate and Update Events

/*
/*
/*
/*
/*

event code */
event message */
ticks since startup */
mouse location */
modifier flags */

The Toolbox Event Manager does not spend all of its time answering
calls from application programs; it also responds to direct calls from
other Toolbox managers, such as the Window Manager.

For example, when a window becomes active or inactive, the Window
Manager updates the windows on the screen as necessary and then
informs the Event Manager that an activate event has occurred. The next
time your application calls GetNextEvent or WaitNextEvent, the Event
Manager informs your application that the activate event has been
processed.

Similarly, when the user moves the windows on the screen around in
such a way that the contents of a window must be redrawn, the Window
Manager generates an update event and informs the Event Manager that
an update event has occurred. The Toolbox Event Manager then reports
the update event to the application being executed by copying
information from the OS Event Manager's event queue into the
application's event record.

When an application calls GetNextEvent or WaitNextEvent, infor
mation on the next event to be processed is copied from the OS Event
Manager's event queue into the application's event record. Then the
application can redraw the contents of the window. (Procedures for
redrawing the contents of windows are explained in the Window
Manager chapter of Inside Macintosh.)

288 ..,. Chapter 5 Event-Driven Programming

... Mouse Events

The Toolbox Event Manager reports two main kinds of mouse events:
mouse-down events and mouse-up events. It can also recognize double
click operations. When a mouse event has occurred, the Toolbox Event
Manager reports it to your application in response to a WaitNextEvent
or GetNextEvent call, and you can then handle it in whatever way your
program handles mouse operations.

If the user of a program moves the mouse but does not click it, an
operating system event called a mouse-moved event is reported.
Procedures for detecting and handling mouse-moved events are
described later in this chapter.

... Keyboard Events

When the user presses a key on the keyboard, the Toolbox Event
Manager updates the event record to show that a keyboard event has
occurred and to show what key has been pressed. Your program can
then call the Text Edit routine TEKey to display the appropriate
character, or to take any other kind of action you want to take in your
program.

... Event Management in a Nutshell

To sum up, the two Macintosh Event Managers collect events from a
variety of sources, and then they report them to applications in response
to the WaitNextEvent and GetNextEvent calls, one event at a time .

..,,, Kinds of Events
When a user takes an action that activates or deactivates a window
such as clicking the mouse in an inactive window and thus making it
the active window-an activate event occurs. Activate events generally
occur in pairs; when one window is deactivated, another is usually
activated.

... Activate Events

Activate events are always reported ahead of all other events. They are
never placed in the event queue; in fact, the Event Manager always
checks to see if there are any pending activate events before it even looks

~ Kinds of Events 289

at the event queue. If there is an activate event, the Event Manager
reports it immediately, and all of the events waiting in the queue just
have to keep waiting.

Because of the way in which activate events are detected, there can
never be more than two activate events pending at the same time.
However, since they frequently occur in pairs, there often are two
activate events to report: one for a window becoming inactive and a
second for a window becoming active.

~ Mouse Events

When an application receives notification of a mouse-down event, it
ordinarily calls the Window Manager function FindWindow to find out
where the cursor was when the mouse button was pressed. Then the
application responds in whatever way is appropriate. For example,
depending on the cursor location when the mouse button was pressed,
an application might call

• the Menu Manager function MenuSelect
• the Desk Manager procedure SystemClick
• the Window Manager routines SelectWindow, DragWindow,

GrowWindow, or TrackGoAway
• the Control Manager routines FindControl, TrackControl, or

DragControl

If an application has a special way of treating a mouse click with a
modifier key held down, it can determine whether or not a modifier
key was down, and what key it was, by examining the modifiers field
of the event record. The modifiers field is described in more detail later
in this chapter.

In programs that use the Toolbox manager TextEdit to handle text
editing, a double click of the mouse in a Text Edit entry field auto
matically selects a word; however, to respond to a double click in any
other context, you must detect it yourself. You can do that by comparing
the time and location of a mouse-up event with the time and location of
the next mouse-down event. For more information about detecting
double clicks, see the Event Manager chapter of Inside Macintosh.

Except for detecting double clicks and performing other specialized
operations, most simple applications respond to mouse-down events
but ignore mouse-up events.

290 IJJJ> Chapter 5 Event-Driven Programming

Note .,. ~~ephtg, Track of the Mou~~rl:fntil the adven,t" Qf~t}le::·9· ·'
MultiFii:lder, mouse mov~ments Wer¢noia~epo~a,s:'~ ,
1il01J'Se· clicks were~ However, ¥OU can nOW,:'~t~Ct:
ments 'by·.setting the mousel{gn•:;p'ar~liJ;l..~ter:~.·'t,}\~i··~~~~~~ ..
ca·. 11 as· av.plainedlater·m· ~"'."'uan~ .. ~ .. : · ; > · >. ·. · ··;:.··;~ •"'"

I ~'"';Ac , " .. · . · _,·~~"~~ <ir;:~~\ ' ·> , ·''~' ,c·:·.« \ . . ,: ',<:' ~(.'
. ·" ".;' : J:·~':l.' <';·~·.:>; '

-"~·;·, '' '"'~ ,'

... Keyboard Events

With a few important exceptions, the keys on both the keyboard and
the numeric keypad generate key-down and key-up events when they
are pressed and released. The keys that do .not generate events are the
Shift, Caps Lock, Command, the Control key and the Option key. They
are called modifier keys.

When a key that is not a modifier key is pressed, the Macintosh
generates an internal character code, and the Event Manager places the
code in the event record, where it can be retrieved by the next
WaitNextEvent or GetNextEvent call. The character code set used by
the Macintosh is an extended version of the standard ASCII code set.
The Macintosh extended character set is listed in Table 5-1.

Table 5-1. The Macintosh extended character set

Hex Decimal Character Comments
--
00-02 0-2 Not used
03 3 ETX Enter
04-07 4-7 Not used
08 8 BS Backspace
09 9 HT Tab
OA-OC 10-I2 Not used
OD 13 CR Return
1B 27 ESC Escape
IC 28 FS Left arrow
ID 29 GS Right arrow
1E 30 RS Uparrow
IF 3I us Down arrow
20 32 Space Space
2I 33

.,,. Kinds of Events 291

Table 5-1. The Macintosh extended character set (continued)

Hex Decimal Character Comments

22 34
23 35 # #

24 36 $ $
25 37 % %

26 38 & &

27 39
28 40 (

29 41) 0
2A 42 * *
2B 43 + +

2C 44
20 45
2E 46
2F 47 I I
30 48 0 0
31 49 1 1
32 so 2 2
33 51 3 3
34 52 4 4
35 53 5 5
36 54 6 6
37 55 7 7
38 56 8 8
39 57 9 9
3A 58
3B 59
3C 60 < <
30 61 = =

3E 62 > >
3F 63 ? ?

40 64 @ @

41 65 A A
42 66 B B

292 ~ Chapter 5 Event-Driven Programming

Table 5-1. The Macintosh extended character set (continued)

Hex Decimal Character Comments

43 67 c c
44 68 D D
4S 69 E E
46 70 F F
47 71 G G

48 72 H H
49 73 I I
4A 74 J J
4B 7S K K
4C 76 L L
40 77 M M
4E 78 N N
4F 79 0 0
so 80 p p

S1 81 Q Q
S2 82 R R

S3 83 s s
S4 84 T T
SS 8S u u
S6 86 v v
S7 87 w w
S8 88 x x
S9 89 y y

SA 90 z z
SB 91 [[

SC 92 \ \
SD 93]]

SE 94 /\ /\

SF 9S
60 96

61 97 a a
62 98 b b
63 99 c c

~ Kinds of Events 293

Table 5-1. The Macintosh extended character set (continued)

Hex Decimal Character Comments

64 100 d d

65 101 e e

66 102 f f

67 103 g g
68 104 h h

69 105

6A 106 j j
6B 107 k k

6C 108 1
60 109 m m

6E 110 n n

6F 111 0 0

70 112 p p

71 113 q q
72 114 r r

73 115 s s

74 116 t t

75 117 u u

76 118 v v

77 119 w w
78 120 x x

79 121 y y

7A 122 z z

7B 123

7C 124

70 125

7E 126

7F 127 Not used

80 128 A International keyboards

81 129 A Option-Shift-A

82 130 c; Option-Shift-C

83 131 :E International keyboards

84 132 N International keyboards

294
""'

Chapters Event-Driven Programming

Table 5-1. The Macintosh extended character set (continued)

Hex Decimal Character Comments

85 133 b International keyboards
86 134 D International keyboards
87 135 a International keyboards
88 136 a International keyboards
89 137 a International keyboards
BA 138 a International keyboards
BB 139 a International keyboards
SC 140 a Option-a
SD 141 c; Option-c
SE 142 e International keyboards
SF 143 e International keyboards
90 144 e International keyboards
91 145 e International keyboards
92 146 i International keyboards
93 147 i International keyboards
94 148 i International keyboards
95 149 1 International keyboards
96 150 ii International keyboards
97 151 6 International keyboards
98 152 0 International keyboards
99 153 0 International keyboards
9A 154 0 International keyboards
9B 155 6 International keyboards
9C 156 u International keyboards
9D 157 u International keyboards
9E 158 u International keyboards
9F 159 ii International keyboards
AO 160 t Option-t
Al 161 a Option-Shift-8
A2 162 <t. Option-4
A3 163 <J[Option-7
A4 164 § Option-S
AS 165 • Option-8

.. Kinds of Events 295

Table 5-1. The Macintosh extended character set (continued)

Hex Decimal Character Comments

A7 167 g Option-s
AB 168 ® Option-r
A9 169 © Option-g
AA 170 TM Option-2
AB 171 Option-e

AC 172 Option-u

AD 173 t= Option-=
AE 174 IE Option-Shift-'

AF 17S 0 Option-Shift-0

BO 176 Option-S

Bl 177 ± Option-+

B2 178 ~ Option-<

B3 179 2'. Option->

B4 180 ¥ Option-Y

BS 181 µ Option-M

B6 182 d Option-D

B7 183 I Option-W

B8 184 IT Option-Shift-P

B9 18S 1t Option-Shift-P

BA 186 f Option-B

BB 187 1! Option-9

BC 188 Q Option-0 (zero)

BD 189 Q Option-Z

BE 190 ce Option-'

BF 191 0 Option-0

co 192 l Option-Shift-?

Cl 193 Option-I

C2 194 --, Option-L

C3 19S '1 Option-V

C4 196 f Option-F

cs 197 Option-X

C6 198 ~ Option-J
C7 199 « Option-\

296 IJJ> Chapter 5 Event-Driven Programming

Table 5-1. The Macintosh extended character set (continued)

Hex Decimal Character Comments

C8 200 » Option-Shift-\
C9 201 Option-;
CA 202 Nonbreaking Option-Space

space
CB 203 A International keyboards
cc 204 A International keyboards
CD 205 International keyboards
CE 206 <B Option-Shift-Q
CF 207 ce Option-Q
DO 208 Option-Hyphen
Dl 209 Option-Shift-Hyphen
D2 210 Option-{
D3 211 Option-Shift-{
D4 212 Option-}
D5 213 Option-Shift-}
D6 214 _,_ Option-/
D7 215 0 Option-Shift-V
D8 216 y International keyboards

Modifier Keys and Character Keys

Although modifier keys do not generate any key codes themselves, the
use of a modifier key is always reported by the Event Manager. If the
Shift, Caps Lock, or Option key is held down while a character key is
pressed, the code that the character key generates is changed. If the
Command key is held down while a character key is pressed, it does
not change the character code that is generated, but the fact that the
Command key was down is reported in the event record.

The Shift key is the only modifier key that has any effect on character
codes generated by the keys on the numeric keypad.

~ Kinds of Events 297

~ Disk Events

A disk-inserted event occurs when the user inserts a disk into a disk
drive or takes any other action that requires a volume to be mounted.
For example, activating a hard-disk drive that contains several volumes
may cause a disk-inserted event to be reported.

~ Auto-key Events

An auto-key event is generated when the user holds down a repeating
key for a predetermined length of time. However, an auto-key event is
posted only if all of these conditions are true:

• Auto-key events have not been disabled. (The disabling of events is
covered later in this chapter.)

• No higher priority event is pending.
• The user is currently holding down a character key.
• A predetermined period of time has elapsed since the last key

down or auto-key event occurred.

Two different time intervals are associated with auto-key events.
First, an auto-key event is generated after a key has been held down for
a predetermined period of time. Then another auto-key event is
generated each time a second specified period of time elapses.

The period of time that must pass before an initial auto-key event is
generated is called the auto-key threshold. The time that must elapse
before subsequent auto-key events are reported is called the auto-key
rate. The default values are 16 ticks (sixtieths of a second) for the auto
key threshold and four ticks for the auto-key rate. You can change these
values by adjusting the keyboard touch and the key-repeat rate using
the Control Panel desk accessory.

The current values of the auto-key threshold and the auto-key rate
are stored in the global variables KeyThresh and KeyRepThresh,
respectively. For more information about global variables, refer to
Chapter 7.

~ Update Events

When text or graphics in a window must be drawn or redrawn-for
example, when the user opens, closes, activates, or moves a window
an update event is generated.

298 Chapter 5 Event-Driven Programming

Although update events are not placed in the event queue, they are
not handled immediately. Instead, when higher priority events are not
being processed, the Event Manager checks to see if there are windows
whose contents need to be drawn or redrawn. If a window that must be
drawn or redrawn is found, an update event for that window is reported.

If two or more windows need to be updated, the first update event
reported is the one for the frontmost window. Update events for other
windows are subsequently reported, one at a time, with the window
that is frontmost always receiving the highest priority .

..,. Null Events

When the Event Manager has no events to report, and no background
task is pending, it reports a null event. In programs that were designed
before the advent of MultiFinder, programs sometimes performed
garbage collection and other kinds of time-consuming tasks each time a
null event was received. But that is not a good idea anymore. When you
run a program under System 7 or MultiFinder, null events are not
reported until pending background events have been processed-and
that means that there may not be enough time left to perform a time
consuming operation. So you should not wait until you receive a null
event to perform a task that takes a while; instead, you should perform
the task when the need for it arises .

..,. Other Kinds of Events

Three other events that can be reported by the Event Manager are
device driver events, network events, and application-defined events.

Device driver events can be generated by device drivers in certain
situations; for example, a driver might be set up to report an event
when a transmission of data is interrupted. More information about
driver events can be found in the chapters on specific device drivers in
Inside Macintosh.

The AppleTalk Manager can generate network events. For details on
network events, see the File Manager chapter of Inside Macintosh.

An application can define as many as four event types of its own and
can use them for any desired purpose. Application-defined events can
be placed in the event queue with the Operating System Event Manager
procedure PostEvent. However, application events should be used with
care. See the Inside Macintosh chapter on the Operating System Event
Manager for more details.

.,. Event Records 299

~ Event Priorities
Events are not necessarily reported in the order they occurred; some are
reported ahead of others because they have a higher priority. Some
events-specifically, activate and update events-are not even posted in
the event queue at all. Activate events are reported ahead of all other
events, and update events are reported whenever the Event Manager gets
around to them; that is, when it has no higher priority events to report.

Mouse and keyboard events, unlike activate and update events, are
always placed in the event queue by the OS Event Manager. The
Toolbox Event Manager then reports them to the application being
executed on a last-in, first-out basis, in accordance with their priorities.
This list shows the kinds of events the Event Manager recognizes,
arranged in order of their priorities:

1. activate events
2. mouse, keyboard, and disk events
3. auto-key events
4. update events
5. null events (no event to report)

Category 2 includes most of the event types that are monitored by
application programs. Within this category, events are retrieved from
the queue in the order in which they were posted. The Event Manager
reports an auto-key event if a key has been held down for a specified
length of time (determined by a Control Panel setting).

~ Event Records
As mentioned earlier, the Event Manager responds to the WaitNextEvent
and GetNextEvent calls by updating fields in a data structure called an
event record. Listing 5-5 shows the structure of an event record in Pascal
format. (The structure of an event record in C format was shown in
Listing 5-4.)

Listing 5-5. Event record (Pascal listing)

TYPE EventRecord = RECORD
what:
message:
when:
where:
modifiers:
END;

INTEGER;
LONGINT;
LONGINT;
Point;
INTEGER

{event code}
{event message}
{ticks since startup}
{mouse location}
(modifier flags}

300 ..,. Chapter 5 Event-Driven Programming

..,. What an Event Record Contains

When a WaitNextEvent or GetNextEvent call has been made and the
Event Manager has updated the fields in the event record, this is what
each field contains:

• The what field contains an event code that tells the type of event
detected.

• The when field tells the time the event was posted, measured in
ticks since system startup.

• The where field tells the location of the mouse cursor at the time the
event was posted, expressed in global coordinates.

• The modifiers field contains a set of modifier flags that reveal the
state of the mouse button and modifier keys at the time the event
was posted.

• The message field contains any additional information required for a
particular type of event, such as a message telling which key the
user pressed or a message telling which window is being activated .

..,. Decoding the Event Record

The time returned in the when field is measured in ticks since system
startup. The location of the mouse returned in the where field is given in
global coordinates, that is, in screen coordinates rather than in coor
dinates that correspond to a location in a window .

..,. The Event Code

The what field of an event record contains an event code identifying the
type of the event that has occurred. The event codes used by the event
manager are defined as constants in the MPW interface files Events.h,
Events.p, and Events.a. These constants, and their numeric definitions,
are shown in Listing 5-6.

...

Listing 5-6. Event codes

CONST nullEvent
mouseDown
mouse Up
keyDown
key Up
autoKey
updateEvt
diskEvt
activateEvt
networkEvt
driverEvt
applEvt
app2Evt
app3Evt
app4Evt

The Event Message

0;
1;
2;
3;
4;
5;
6;
7;
8;

10;
11;
12;
13;
14;
15;

.,,. Event Records 301

{null}
{mouse-down}
{mouse-up}
{key-down}
{key-up}
{auto-key}
{update}
{disk-inserted}
{activate}
{network}
{device driver}
{application-defined)
{application-defined)
{application-defined)
{application-defined}

The information returned in an event record's event message depends
on the event type, as shown in Table 5-2.

Table 5-2. The event message

Event Type

Keyboard event

Activate or update event

Disk-inserted event

Event Message

Character code, key code, and
ADB address field.

Pointer to a window.

Drive number in low-order word;
File Manager result code in high-
order word.

Mouse-down, mouse-up, or null event Not defined.

Network event Handle to parameter block.

Device driver event

Application-defined event

Varies; see chapter describing
driver in Inside Macintosh.

Defined by application.

302 ..,. Chapter 5 Event-Driven Programming

The Event Message for Keyboard Events

The structure of an event message generated by a key-down or key-up
event is shown in Figure 5-1.

The field in Figure 5-1 labeled "ASCII Character" contains the ASCII
character code generated by the key or key combination pressed or
released by the user.

The field labeled "Virtual key code" identifies the character key that
was pressed or released by the user; this value is always the same for
any given character key, regardless of any modifier keys that may have
been held down when it was pressed. One function of the virtual key
code field is to assign key codes to the Control key and the arrow keys.
The virtual key codes assigned to the Control key and arrow keys were
shown in Table 5-1.

When more than one keyboard is being used, the field labeled "ADB
address" shows the Apple Desktop Bus address of the keyboard that
generated the event message. More information about the Apple
Desktop Bus is available in the Apple Desktop Bus chapter of Inside
Macintosh, Volume V.

The high byte of the event message for keyboard events is not
defined .

.....-------------------- Reserved
.----------------~Reserved

32 31 24 23

....------------- ADB address
.....--------- Virtual key code r ASCII character

16 15 8 7 0

Figure 5-1 . Event message for keyboard events

~ Event Records 303

How Virtual Key Codes Are Generated

The virtual key codes returned by the Event Manager are derived from
raw key codes generated by the Macintosh hardware. These raw key
codes are translated into virtual key codes using the 'KMAP' resource in
the System Folder. By modifying the 'KMAP' resource, you can change
the virtual key code generated by any key on the keyboard. You can
also change the ASCII codes that correspond to specific key codes by
modifying the 'KCHR' resource in the System Folder.

Macintosh resources are examined in Chapter 6 of this book, and the
'KMAP' and 'KCHR' resources are described in the Resource Manager
chapter of Inside Macintosh. More information about key mapping can
be found in the Event Manager chapters in Volumes I and V of Inside
Macintosh. Table 5-3 shows the raw key codes generated by the Control
key and arrow keys on the Macintosh keyboard, and the virtual key
code derived from each key code. The key codes are written in hexa
decimal notation.

Table 5-3. Raw key codes and virtual key codes

Raw Virtual
Key Key Code Key Code

Control 36 3B
Left arrow 3B 7B
Right arrow 3C 7C
Down arrow 3D 7D

Uparrow 3E 7E

The Event Message for Activate Events

The event message generated by an activate event is a pointer to the
window being activated or deactivated. Additional information about
the event is returned in the modifiers field of the event record, as
described later in this chapter.

The Event Message for Update Events

The event message generated by activate and update events is a pointer
to the window affected. (If the event is an activate event, additional
important information about the event can be found in the modifiers
field of the event record.)

304 Ill> Chapter 5 Event-Driven Programming

The Event Message for Disk-Inserted Events

When a disk-inserted event is reported, the low-order word of the
event message contains the drive number of the disk drive into which
the disk was inserted: 1 for the Macintosh's built-in drive, and 2 for the
external drive, if any. Numbers greater than 2 denote additional disk
drives connected to the Macintosh. By the time an application receives a
disk-inserted event, the system will already have attempted to mount
the volume on the disk by calling the File Manager function MountVol;
the high-order word of the event message will contain the result code
returned by MountVol.

Event Messages for Other Events

When the Event Manager reports a mouse-down, mouse-up, or null
event, the event message is undefined and can be ignored. The event
message for a network event contains a handle to a parameter block, as
described in the AppleTalk Manager chapter of Inside Macintosh. For
device driver events, the contents of the event message depend on the
situation under which the event was generated; for details, see the
chapters on drivers in Inside Macintosh.

If you use application-defined events in a program, you can define
the contents of the event message .

.,. Modifier Flags

When the Event Manager reports an activate event, the modifiers field of
the event record tells whether the window specified in the event
message is being activated or deactivated. If Bit 0 of the modifiers field is
set, the specified window is being activated. If Bit 0 is clear, the window
is being deactivated.

When a mouse or keyboard event is reported, the modifiers field
describes the state of the modifier keys and the state of the mouse
button at the time the event was posted. The flags that the modifiers field
contains are shown in Figure 5-2.

The Events.h and Events.p interface files contain a set of predefined
constants that can be used for reading the flags in the modifiers field.
The definitions of these constants are shown in Table 5-4.

._ Event Records 305

...--------------- 1 =Control key down
...--------------- 1 =Option key down
.------------- 1 =Caps lock key down

..----------- 1 =Shift key down

j .---------- 1 =Command key down

J 1 = Mouse button up

J _r 1 = Window activated;
T 0 = Window deactivated

~, ~, ~,~,~,~,~,~,-,~, ----~,~,

15 14 13 12 11 10 9 8 7 6 1 0

Figure 5-2. Modifier flags

Table 5-4. Modifier flags

Name of Flag

activeFlag
btnState
cmdKey
shiftKey
alphaLock
optionKey
controlKey

Decimal
Value

1
128
256
512
1024
2048
4096

Hex
Value

1

80
100
200
400
800
1000

Meaning

Set if window is being activated.
Set if mouse button is up.
Set if Command key is down.
Set if Shift key is down.
Set if Caps Lock key is down.
Set if Option key is down.
Set if Control key is down.

As previously mentioned, the activeFlag bit in the modifiers field
provides information about activate events; it is set to 1 if the window
pointed to by the event message is being activated, but cleared to 0 if
the window is being deactivated.

The other bits indicate the state of the mouse button and modifier
keys. Note that the btnState bit is set if the mouse button is up, whereas
the bits that correspond to the four modifier keys are set if their
corresponding keys are down.

306 ~ Chapter 5 Event-Driven Programming

..,. The Event Mask

By setting the event mask parameter of a GetNextEvent or
WaitNextEvent call, you can instruct the Event Manager to report only
certain kinds of events and to ignore others. For example, instead of
merely requesting the next available event, you can specifically ask for
the next mouse event or the next keyboard event.

Although the event mask is always available for your use, under
normal circumstances it is usually best to let the Event Manager report
all events to an application. Then, if there are events you do not care
about, you can simply ignore them in your application. You should
filter events with the event mask only when you have a good reason.

To intercept all events, you can use the event mask everyEvent,
which is predefined as a constant in the Events.hand Events.p interface
files. The numeric value of the everyEvent constant is -1.

The Structure of the Event Mask

An event mask is a short integer containing one bit position for each
event type, as shown in Figure 5-3. Each bit in the event mask
corresponds to an event code that has the same number as the position
of the bit.

,

.----------------- Application-defined
.-------------- 1 =Device driver
....------------ 1 =Network
....----------- Not used
..---------- 1 =Activate
.---------- 1 =Disk inserted

....-------- 1 =Update
..------- 1 =Auto-key
..------ 1 =Key up

. . ~ ~ . rm
I I I I I I I I I I I I I

1 =Key down

1 =Mouse up
1 = Mouse down
Not used

15 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-3. Event mask

~ Event Records 307

For example, update events-which have an event of code 6-
correspond to bit 6 of the event mask. So, by setting bit 6 of the event
mask, you can instruct the Event Manager to report update events. Or,
by clearing bit 6, you can instruct the Event Manager to ignore them.

Note that null events cannot be disabled; a null event is always
reported when no other enabled events are pending, and when events
generated by background applications are not being processed.

Bit 0 of the event mask is not used.

Event Mask Constants

A set of predefined constants that you can use to set the event mask is
provided in the Events.hand Events.p interface files. These constants
are listed in Table 5-5.

You can create any mask you need by performing addition and
subtraction operations on the mask constants listed in Table 5-5. For
example, to instruct the Event Manager to report key-down and auto
key events, you could set the event mask to the value

keyDownMask + autoKeyMask

To receive reports of all events except mouse events, you could use this
format:

everyEvent - mDownMask - mUpMask

Table 5-5. Event mask constants

Constant Decimal Hex Meaning

every Event -1 FFFFFFFF Don't mask any events.
mDownMask 2 2 Mask mouse-down events.
mUpMask 4 4 Mask mouse-up events.
keyDownMask 8 8 Mask key-down events.
keyUpMask 16 10 Mask key-up events.
autoKeyMask 32 20 Mask auto-key events.
updateMask 64 40 Mask update events.
diskMask 128 80 Mask disk-inserted events.
activMask 256 100 Mask activate events.
networkMask 1024 400 Mask network events.
driver Mask 2048 800 Mask device driver events.
applMask 4096 1000 Mask application-defined events.
app2Mask 8192 2000 Mask application-defined events.
app3Mask 16384 40000 Mask application-defined events.
app4Mask -32768 FFFF8000 Mask application-defined events.

308 IJll> Chapter 5 Event-Driven Programming

Note ~ The System Event Mask. The Macintosh maintains a system event
mask that controls which event types the Operating System Event
Manager posts in the event queue. Only event types that match the
bits that are set in the system event mask are posted; all others are
ignored. When the system starts up, the system event mask is set
to post all events except key-up events; that is, it is initialized to

everyEvent - keyUpMask

Key-up events are not included in the system event mask because
they are meaningless in most applications. However, if you write an
application that uses them, you can set the system event mask to
everyEvent by making the Operating System Event Manager call
SetEventMask. The SetEventMask call is described in the Event
Manager chapter of Inside Macintosh .

.., The WaitNextEvent Call

The WaitNextEvent call, as explained earlier, is used in applications
that are designed to be compatible with System 7 and with the System 6
MultiFinder. It provides applications with a method for handling
background events efficiently. The syntax of the WaitNextEvent call, in
C notation, is:

pascal Boolean
WaitNextEvent(eventMask , theEvent , sleep , mouseRgn)

short eventMask ;
EventRecord *theEvent ;
unsigned long sleep ;
RgnHandle mouseRgn ;

In Pascal notation, the call sequence is:

FUNCTION WaitNextEvent (eventMask : INTEGER ; VAR
theEvent : EventRecord ; sleep : LONGINT ; mouseRgn :
RgnHandle) : BOOLEAN ;

~ Writing an Event Loop 309

• Writing an Event Loop
Listing 5-7 is a fragment of code that shows how the GetNextEvent and
WaitNextEvent calls can be used in an MPW Pascal program. The
fragment is taken from a sample program named Creation.p, which is
listed in Appendix C. The program is named Creation because it is a
template that you can use to create your own System 7- and
MultiFinder-aware applications.

Listing 5-7. Main event loop of the Creation.p program

{$S Main}

PROCEDURE EventLoop;

VAR
cursorRgn: RgnHandle;
gotEvent: BOOLEAN;
ignoreResult: BOOLEAN;
mouse: Point;
key: Char;

BEGIN
cursorRgn := NewRgn; {we'll pass an empty region

to WNE the first time thru}
REPEAT

IF gHasWaitNextEvent THEN
ignoreResult := WaitNextEvent(everyEvent,

myEvent, GetSleep, cursorRgn)
ELSE

myEvent);

BEGIN
SystemTask;
gotEvent := GetNextEvent(everyEvent,

END;
AdjustCursor;
CASE myEvent.what OF

mouseDown: DoMouse;
keyDown, autoKey:

BEGIN
key := CHR(BAND(myEvent.message,

charCodeMask));
IF BAND(myEvent.modifiers, cmdKey) <> 0

310 ~ Chapter 5 Event-Driven Programming

Listing 5-7. Main event loop of the Creation.p program
(continued)

THEN
BEGIN { Command key down }
IF myEvent.what = keyDown THEN

BEGIN
AdjustMenus;
DoMenu(MenuKey(key));
END; {IF}

END
ELSE

DoKey;
END; { keyDown}

activateEvt:
DoActivate(BAND(myEvent.modifiers, activeFlag) <> 0);

updateEvt: DoUpdate;
nullEvent: IF (textH <> NIL) THEN

IF (FrontWindow = myWindow) THEN
TEidle(textH);

kOSEvent:
CASE BAND(BROTL(myEvent.message, 8), $FF) OF

kMouseMovedMessage: TEidle(textH);
kSuspendResumeMessage:

END;

BEGIN
ginBackground := BAND(myEvent.message,

kResumeMask) = O;
DoActivate(NOT ginBackground);
END;

END;
UNTIL quit;
PrClose;

END; {EventLoop}

~ Writing an Event Loop 311

~ Using the gHasWaitNextEvent Variable

Before the Creation.p program calls WaitNextEvent or GetNextEvent, it
checks the setting of the gHasWaitNextEvent variable, as explained
earlier in this chapter. If gHas WaitNextEvent is TRUE, then the program
calls WaitNextEvent. If not, it calls GetNextEvent.

In the initialization section of the Creation.p program, gHasWait
NextEvent is assigned a Boolean value that tells the program's main loop
whether it should call WaitNextEvent or GetNextEvent in its main loop.

If the program is running on a system that has a WaitNextEvent
trap-and thus supports the use of WaitNextEvent-then gHasWait
NextEvent is given a value of TRUE, and the program's main loop calls
WaitNextEvent. If the environment in which the program is running
does not support the use of WaitNextEvent, then the gHasWait
NextEvent variable is assigned a value of FALSE, and GetNextEvent is
called instead of WaitNextEvent in the main loop of the program.

If the program decides to call GetNextEvent rather than
WaitNextEvent, a SystemTask call is made before GetNextEvent is
called, so that the application can handle desk accessories. A
System Task call is not necessary if WaitNextEvent is used, as explained
earlier in this chapter.

~ Setting gHasWaitNextEvent

The gHas WaitNextEvent variable is declared in the data section of the
Creation.p program. This is its declaration:

Boolean gHasWaitNextEvent

After the gHas WaitNextEvent variable has been declared, its value is
set in the initialization segment of the program.

gHasWaitNextEvent ·= TrapAvailable(_WaitNextEvent,
ToolTrap);

312 l)i> Chapter 5 Event-Driven Programming

~ Using Gestalt
To find out whether the Macintosh being used supports the use of back
ground processing, you should use the operating system call Gestalt.
The Gestalt call enables applications to determine important informa
tion about a large number of machine-dependent features. For example,
Gestalt can tell you:

• what model of the Macintosh is running the application
• the type of CPU is currently being used
• what version of the System file is currently running
• how much RAM is available
• how much virtual memory is available, if any
• the kind of keyboard that is attached to the computer
• whether a floating-point processing unit is being used, and if so,

which one
• whether a memory management unit (MMU) is available, and if so,

what kind
• the versions of various drivers and managers in the system
• the version of QuickDraw currently running
• whether the A/UX operating system is being used

Prior to the introduction of System Software Version 6.0.4, the
operating system calls Environs and SysEnvirons were used to determine
hardware and software characters of the Macintosh operating environ
ment. With the introduction of System 6.0.4, a new operating system
manager called the Gestalt Manager replaced both of those calls. That
was a significant step forward, because Gestalt is simpler to use and
provides more information than the Environs and SysEnvirons routines.

Also included in the Gestalt Manager are two other functions: one
that enables an application to add new features to Gestalt, and another
that allows an application to change the function used by Gestalt to
retrieve the features of various drivers and managers.

.,,,. Using Gestalt 313

Important .,,. SysEnvirons Still Works. For the sake of backwards compatibility,
the SysEnvirons call is included in System 7.0. In System 7.0,
SysEnvirons calls Gestalt, so applications that use SysEnvirons still
execute correctly under System 7.0.

Nevertheless, Apple recommends that developers no longer use
the Environs or SysEnvirons calls because they focus on ROM
versions, not on the specific software features available in various
operating environments. So many combinations of features are
now available on various models of the Macintosh that it is easier
and safer to find out about specific features than it is to think only
in terms of ROM versions. When an application uses Gestalt, it can
simply request the information it needs, and not be concerned with
what kind of ROM is being used.

In the Creation.p program, the SetEnvirons call is used rather
than Gestalt. As an exercise, you might try updating Creation.p so
that it uses Gestalt.

.,.. Gestalt Manager Calls

In System 7.0, the Gestalt Manager has three calls: Gestalt, NewGestalt,
and ReplaceGestalt. Gestalt is used to obtain information about software
or hardware components available on the Macintosh currently in use.
NewGestalt can be used to add new software modules, such as drivers
and patches, to the operating system. And ReplaceGestalt can be used to
replace Toolbox and operating system procedure and functions with
some other procedure or function.

Although Gestalt is a very important call, most applications do not
need to use either NewGestalt or ReplaceGestalt.

.,.. Selector Codes

When an application needs information about a specific software or
hardware feature, it can obtain the information by passing Gestalt a
selector code (sometimes referred to simply as a selector) as a parameter.
The selector code tells Gestalt what kind of information the application
needs.

314 .._ Chapter 5 Event-Driven Programming

There are two kinds of selector codes: predefined selector codes,
which are always recognized by Gestalt, and application-defined
selector codes, which applications may "register" with Gestalt by calling
the NewGestalt function.

Predefined selector codes are divided into two categories:

• environmental selectors: codes that return information that an
application can use to guide its actions

• informational selectors: codes that provide information only, and
should never be used to determine whether a feature exists.

Listing 5-8 shows the environmental selectors that you can use to
obtain information about the current operating environment. The
selectors are shown as they are defined in the Pascal interface file used
by the System 7.0 Event Manager.

Listing 5-8. Environmental selectors

CONST
gestaltVersion
gestaltAddressingModeAttr

gestaltAliasMgrAttr

gestaltAppleTalkVersion

gestaltAUXVersion

gestaltCTBVersion

gestaltDBAccessMgrAttr

gestaltEditionMgrAttr

gestaltAppleEventsAttr

gestaltFolderMgrAttr

gestaltFontMgrAttr

gestaltFPUType

'vers';
'addr';

'alis';

'atlk';

'a/ux';

'ctbv';

'dbac';

'edtn';

'evnt';

1 fold I i

'font';

'fpu ';

{Gestalt version}
{addressing mode
attributes}
{Alias Mgr
attributes}
{AppleTalk
version}
{A/UX version if
present}
{Comm Toolbox
version}
{Database Access
Mgr attrs}
{Edition Mgr
attributes}
{AppleEvents
attributes}
{Folder Mgr
attributes}
{Font Mgr
attributes}
{FPU type}

~ Using Gestalt 315

Listing 5-8. Environmental selectors (continued)

gestaltHardwareAttr

gestaltHelpMgrAttr

gestaltKeyboardType
gestaltLowMemorySize

gestaltLogicalRAMSize

gestaltMiscAttr

gestaltMMUType
gestaltNotificationMgrAttr

gestaltOSAttr
gestaltLogicalPageSize

gestaltPPCToolboxAttr

gestaltPowerMgrAttr

gestaltProcessorType
gestaltParityAttr

gestaltQuickdrawVersion

gestaltPhysicalRAMSize

gestaltResourceMgrAttr

gestaltScriptMgrVersion

gestaltScriptCount

gestaltSoundAttr

gestaltTextEditVersion

gestaltTimeMgrVersion

gestaltVMAttr

'hdwr';

'help';

'kbd ';
'lmem';

'lram';

'misc';

'mmu ';
'nmgr';

'os';
'pgsz';

'ppc ';

'powr';

'proc';
'prty';

'qd';

'ram ';

'rsrc';

'scri';

'scr#';

'snd ';

'te';

'tmgr';

'vm '.
'

{hardware
attributes}
{Help Mgr
attributes}
{keyboard type}
{low-memory area
size}
{logical RAM
size}
{miscellaneous
attributes}
{MMU type}
{Notification Mgr
attrs}
{O/S attributes}
{logical page
size}
{PPC Toolbox
attributes}
{Power Mgr
attributes}
{processor type}
{parity
attributes}
{QuickDraw
version}
{physical RAM
size}
{Resource Mgr
attributes}
{Script Mgr
version}
{# of active
script systems}
{sound
attributes}
{TextEdit
version}
{Time Mgr
version}
{virtual memory
attributes}

316 ~ Chapter 5 Event-Driven Programming

Listing 5-9 shows Gestalt's informational selectors: codes that are
provided for informational purposes only. Applications can display the
information returned when these selectors are used, but should never
use the information as an indication of what software features or hard
ware may be available. The selectors are shown as they are defined in
the Pascal interface file used by the System 7.0 Event Manager.

Listing 5-9. Informational selectors

CONST
gestaltMachineType
gestaltROMSize
gestaltROMVersion
gestaltSystemVersion

.,. Response Parameters

'mach'; {machine type}
'rom '; {ROM size}
'romv'; {ROM version}
'sysv'; {System file

version}

If Gestalt can determine the information that an application has
requested, the information is returned in a parameter known as a
response parameter. If Gestalt cannot obtain the requested information,
it returns an error code. Thus you should always check the result code
returned by Gestalt to make sure that the response parameter contains
meaningful information .

.,. Determining Whether the Gestalt Manager Is Available

The Gestalt Manager exists only in System Software Versions 6.0.4 and
later (and is provided in ROM on some models of the Macintosh, such
as the Macintosh Ilci and Portable), so you should make certain that it is
actually available before attempting to call it.

If you are using Version 3.2 or later of MPW, and you are not pro
gramming in assembly language, it is not necessary to make a specific
check for the presence of the Gestalt Manager; MPW 3.2 has glue
routines that allow you to call Gestalt even if it is not in ROM or in the
System file of the computer being used.

However, if you are using an older version of MPW, or if you are
programming in assembly language, this glue is not provided, so you
must check to make sure that Gestalt is available before you call it.

Listing 5-10 shows how you can determine whether the Gestalt
Manager is available.

~ Using Gestalt 317

Listing 5-10. Determining whether Gestalt is available

FUNCTION GestaltAvailable: Boolean;
CONST

Gestalt
BEGIN

$AlAD;

GestaltAvailable ·= TrapAvailable(_Gestalt);
END;

~ Calling the Gestalt Manager

Once you have determined whether the Gestalt Manager is available,
you can call Gestalt to determine the hardware and software character
istics of the current Macintosh operating environment.

Listing 5-11 shows how the Gestalt call is used in the Creation. p
program.

Listing 5-11. Calling the Gestalt Manager

IF hasGestalt THEN BEGIN
myErr := Gestalt(gestaltTimeMgrVersion, myFeature);
IF myErr <> noErr THEN

DoError(myErr);
END;

~ On with the Program

Once you know how the WaitNextEvent and GetNextEvent calls work,
the rest of the Create.p program's main event loop is quite straight
forward. As you can see by looking again at Listing 5-7, the program
calls WaitNextEvent or GetNextEvent (depending on what kind of
system is running), and then handles each event reported by the
Toolbox Event Manager.

Before the program starts processing events, however, it calls a
procedure named AdjustCursor. AdjustCursor, as you'll see when the
complete program is presented in Chapter 8, adjusts the mouse cursor
depending on where it is on the screen. If it is in the content region of a
window, it is displayed as a text-style I-bar cursor. If it moves outside a
window, it becomes a pointer.

After the AdjustCursor procedure is called, the program starts
processing events by calling routines that handle them. Since the pro
gram is a text-style application, it makes the call TEidle when it receives

318 ..,. Chapter 5 Event-Driven Programming

a null event. TEidle, as explained in the Text Edit chapter of Inside
Macintosh, causes the Text Edit insertion point to flash when the mouse
cursor is inside a TextEdit record. In the Creation.p program, the entire
content region of the active window is a TextEdit record, so the
insertion point flashes if it is inside the program's window.

If the Event Manager detects a Type 4 application event-that is, a
suspend or resume event, or a mouse-moved event-it reports the event
using the constant kOSEvent. The kOSEvent constant is defined as a
Type 4 application event in the header section of the Creation.p program,
as shown in Listing 5-12. If Creation.p receives notification that a
kOSEvent has occurred, it uses the algorithms shown in Listing 5-7 to
determine whether the event was a suspend event, a resume event, or a
mouse-moved event, and then responds appropriately.

Listing 5-12. Constants defined in Creation.p

kOSEvent
kSuspendResumeMessage
kResumeMask
kMouseMovedMessage

app4Evt;
1;
1;
$FA;

By using the other two constants defined in its header section,
Creation.p sets kMouseMovedMessage to TRUE if the reported event is
a mouse-moved event, and sets kSuspendResumeMessage to TRUE if
the event is a suspend event or a resume event. If the event is a mouse
moved event, Creation.p simply calls TEidle.

If the event is a suspend event or a resume event, the program checks
a global variable called glnBackground to see whether it is running in the
foreground or the background. Then it calls a procedure named
DoActivate, which activates the application's window if the program is
moving from the background into the foreground, but it deactivates the
window if the program is moving from the foreground into the
background.

The DoActivate procedure and the other event-processing routines
called in Listing 5-7 are described in Chapter 8.

.... The sleep Parameter

The eventMask and theEvent parameters in a WaitNextEvent call are the
same as the corresponding parameters in a GetNextEvent call. In the
sleep parameter, you can specify how much time you want to relinquish
in your main event loop for the processing of background events: that
is, for events processed by other applications on the desktop. When a
background event is not being processed, the Toolbox Event Manager
reports a null event to your application.

~ Using Gestalt 319

The value in the sleep parameter is specified in ticks, or sixtieths of a
second. If you specify a sleep parameter of 0, the Event Manager gives
your application as much processor time as possible, and background
events are still allocated a minimal amount of time to process events. A
sleep parameter of 60 allocates only one null event per second to your
application.

If you want to calculate a sleep period instead of using a constant
for example, if you want the value of sleep to be the length of time that it
takes the text cursor to flash once during a program that uses
TextEdit-you can write an algorithm to establish a sleep period and
call a routine that performs your algorithm to fill in the sleep parameter.

That is the technique that is used to set the WaitNextEvent sleep
parameter in the event loop shown in Listing 5-7. The WaitNextEvent
call in Listing 5-7 is written like this:

ignoreResult := WaitNextEvent
(everyEvent,myEvent,GetSleep,cursorRgn)

The sleep parameter in this example is a call to a function named
GetSleep. The GetSleep function, which appears later in the program, is
shown in Listing 5-13.

Listing 5-13. The GetSleep function

{$S Main}
FUNCTION GetSleep: LONGINT;
VAR

sleep: LONGINT;
window: WindowPtr;

BEGIN
sleep:= MAXLONGINT;{default value for sleep}

IF NOT ginBackground THEN BEGIN

END;

window := FrontWindow;
IF IsAppWindow(window) THEN BEGIN

WITH textH'"' DO

END;

IF selStart = selEnd THE
sleep := GetCaretTime;

GetSleep := sleep;
END; {GetSleep}

320 .._ Chapter 5 Event-Driven Programming

The GetSleep function decides what it should do by checking the
glnBackground variable to see if Creation.p is running in the back
ground, and then checking to see if the window that is currently the
front window belongs to Creation.p. If both of those conditions are true,
the program calls the Toolbox Event Manager routine GetCaretTime,
which tells how long it takes (in ticks, or sixtieths of a second) to flash
the text cursor's caret-the bar that marks the insertion point in editable
text. Creation.p uses the value returned by GetCaretTime to set the
WaitNextEvent call's sleep parameter .

..,_ The mouseRgn Parameter

The mouseRgn parameter of the WaitNextEvent call is a handle to a
region. Its data type, RgnHandle, is defined in the MPW interface files
QuickDraw.h and QuickDraw.p.

If you specify a mouseRgn parameter in a WaitNextEvent call, the
Event Manager reports a mouse-moved event each time the mouse
cursor strays outside the specified region. If you place a zero in the
mouseRgn parameter, mouse-moved events are not generated.

You can use the mouseRgn parameter of the WaitNextEvent call as a
convenient means of determining when the shape of the mouse cursor
should be changed. When the cursor moves outside the region you
have defined as mouseRgn, you can change the shape of the cursor and
then change the value of mouseRgn to reflect the cursor's new position.
If the cursor moves back into the region it previously left, the Event
Manager will report another mouse-moved event. You can then change
the cursor back to its original shape and reset mouseRgn back to its
original value.

~ How the Event Manager Works
Now that you have seen how an event loop works, we are ready to take
a closer look at how applications can process the various kinds of
events reported by the Event Manager .

..,_ The EventAvail Call

In some cases, a program may just want to look at a pending event
and leave it available for subsequent retrieval by GetNextEvent or
WaitNextEvent. In that case, the program can make the Event Manager
call EventAvail instead of calling GetNextEvent or WaitNextEvent.

~ How the Event Manager Works 321

EventAvail reports the event by updating the event record, but it does
not remove the event from the event queue. Thus an application can call
EventAvail and inspect the updated contents of the event record, but
leave the event unprocessed so that it can be retrieved again by a
GetNextEvent or WaitNextEvent call. Procedures for using the
EventAvail call are explained in the Event Manager chapter of Inside
Macintosh.

Each time a program calls GetNextEvent, the Toolbox Event Manager
retrieves the next event that should be processed from the OS Event
Manager, and then tests the call against the event mask provided by the
application being executed. If the event is one that the application is
interested in, GetNextEvent returns a Boolean value of TRUE. If the
application has no interest in the event, GetNextEvent returns a
Boolean value of FALSE.

~ Handling Keyboard Events

When an application receives notification of a key-down event from the
Toolbox Event Manager, the first thing it usually does is check the
modifiers field to see whether the key was pressed with the Command
key down. If it was, the user may have selected a menu item. To deter
mine whether this was the case, you should pass the character that the
user typed to the Toolbox call MenuKey, as explained in Chapter 8 of
this book and the Menu Manager chapter of Inside Macintosh, Volume I.
If MenuKey reports that the key-down event was not menu-related,
you can treat the event as a normal key-down event .

...,. Handling Activate Events

The Window Manager handles much of the housekeeping associated
with activate events, such as highlighting and unhighlighting windows.
But applications must take certain other actions, such as drawing or
hiding scroll bars, and highlighting or unhighlighting text displayed in
a window. For more information on what to do with a window when
you receive notification of an activate event, see the Window Manager
chapter of Inside Macintosh, Volume I.

...,. Handling Update Events

When an application that you have written receives an update event for
a window that it owns, you are responsible for updating the window.
The usual procedure for updating a window is to make the Window

322 Chapter 5 Event-Driven Programming

Manager call BeginUpdate, draw the window's contents, and then
make the Window Manager call EndUpdate.

The procedure for updating windows varies from program to
program; for example, updating a window in which only TextEdit text is
displayed is very different from updating a window containing graphics
drawn with QuickDraw calls. Detailed procedures for handling update
events can be found in the Window Manager and QuickDraw chapters
of Inside Macintosh.

.... Handling Disk-Inserted Events

The easiest way to handle disk-inserted events is to use the Standard
File Package, which can handle disk-inserted events for you during
standard-style opening and saving operations. If you want to respond
to disk-inserted events at other times-for example, to an insertion of a
disk when standard file operations are not taking place-you must
write code to handle such operations.

Before an application receives a disk-inserted event, the system
attempts to mount the disk by calling the File Manager function
MountVol. So the application should examine the result code returned
by the File Manager in the high-order word of the event message. If the
result code indicates that the attempt to mount the volume was unsuc
cessful, the application might take some appropriate action, such as
calling the Disk Initialization Package function DIBadMount. More
details on using the File Manager and Disk Initialization Package
functions are available in the chapters on those managers in Inside
Macintosh .

..,. Other Event Manager Calls

Other Toolbox Event Manager calls that you may make from time to
time are:

• GetMouse, which returns to current location of the mouse.
• Button, which returns TRUE if the mouse button is held down and

FALSE if it is not.
• StillDown, which returns TRUE if the mouse button is still down as

a result of a previous mouse-down event.
• WaitMouseUp, which works like StillDown but removes the pre

ceding mouse-up event before returning FALSE if the button is not
still down from the previous press of the button.

~ System 7 and the Event Manager 323

• TickCount, which returns the current number of ticks (in sixtieths of
a second) since the system started up.

• GetDblTime, which shows how much time must elapse (in ticks)
between a mouse-up event and a mouse-down event for the two
events to be considered a double click.

• GetCaretTime, which returns the time (in ticks) between blinks of
the caret, or the bar that marks the insertion point in editable text.

For more details on these calls, refer to the Event Manager chapter of
Inside Macintosh .

..- The OS Event Manager

The Operating System Event Manager detects low-level, hardware
related events: mouse, keyboard, disk-inserted, device driver, and net
work events. It stores information about these events in the event queue
so that they can then be reported by the Toolbox Event Manager.

The OS Event Manager also provides other managers, such as the
Window Manager, with low-level operating system routines that access
the queue. These calls are similar to the Toolbox Event Manager's
GetNextEvent and EventAvail calls. The OS Event Manager also reports
activate, update, and Type 4 application events, which are not kept in
the event queue.

In addition, the OS Event Manager has functions and procedures that
application programs can use to post their own events into the event
queue .

..- System 7 and the Event Manager
Until the advent of System Software Version 7, the Event Manager
recognized two main kinds of events:

• events that report actions by the user (such as pressing the mouse
button, typing on the keyboard, or inserting a disk)

• events that report occurrences arising from sources other than the
user (such as events generated by device drivers).

(There is also a third type of event, a null event, which the Event
Manager returns if there are no other events to report. Null events are
supported by all Macintosh systems, including System 7.)

324 ~ Chapter 5 Event-Driven Programming

1111> New Events in System 7

In System Software Version 7.0, the Event Manager recognizes three
main kind of events:

• low-level events, traditional user-initiated events, such as mouse
and keyboard events

• operating system events, which inform applications of changes in
their operating status

• high-level events, which allow applications to communicate with
one another by putting events in the event queue of the receiving
application

High-level events are reported to an application using a new event
type defined by a new constant: kHighLevelEvent. The kHighLevelEvent
constant is defined this way in the System 7 Event Manager interface file:

CONST kHighLevelEvent = 23;

In an application designed to be used with System 7, you can call
high-level events by simply adding the kHighLevelEvent constant to
your main event loop, in this fashion:

PROCEDURE DoEvent(event: EventRecord);
BEGIN

CASE event.what OF
nullEvent:

Do Idle;
mouseDown:

DoMouseDown(event);
mouseUp:

DoMouseUp(event);
keyDown, autoKey:

DoKeyDown(event);
activateEvt:

DoActivate(event);
updateEvt:

DoUpdate(event);
kOSEvent:

DoOSEvent(event);
kHighLevelEvent:

DoHighLevelEvent(event);
END;

END; {DoEvent}

By the Way ~I

~ System 7 and the Event Manager 325

The kOSEvent fype. Under System 7, operating system events are
of Jype kOSEvent and,;are assigned the event. code. previqusly
assigned to app4Evts (Type 4 application events). In the System 7
Event Manager's interface files, kOSEvent is a constant defined this
way:

CONST kOSEvent 15;

Once you have placed a kHighLevelEvent constant in your applica
tion's main event loop, you can write routines to handle high-level
events and place them elsewhere in your program.

In order to manage communication with other applications, your
application must define the set of high-level events it responds to and
let other applications know what kinds of events it accepts. Other
programs can then interact with your application .

..,. AppleEvents

System Software Version 7.0 introduces a special subcategory of high
level events, called AppleEvents. AppleEvents are events that are
common to almost all applications designed to be used with System 7.

You can use AppleEvents to communicate with applications running
on the same computer or on other computers.

Some AppleEvents are required in any application that supports any
AppleEvents; these are known as required AppleEvents. The required
AppleEvents in System 7 are

• Open Application, which opens applications
• Open Documents, which opens specified documents
• Print, which prints specified documents

• Quit, which terminates and exits an application

• Setup, which updates an application's menu items
• Get, which returns values of specified properties

Every AppleEvent belongs to one of three categories:

1. Standard AppleEvents: AppleEvents to which most or all appli
cations respond. These events are defined by Apple.

2. Registered AppleEvents: AppleEvents defined by an application
developer, a group of developers, or an interest group and regis-

326 ..,. Chapter 5 Event-Driven Programming

tered with Macintosh Developer Technical Support. Registered
AppleEvents can be defined for a single application, a suite of
applications from a single developer, or applications in the same
functional area, such as graphics or word processing. By registering
an AppleEvent, you can make the event and its definitions public.

3. Unregistered AppleEvents: AppleEvents that application devel
opers choose not to make public. Unregistered AppleEvents are
used for private communication between applications.

.... High-Level Events and the Event Record

As explained earlier in this chapter, the event record filled in by the
Toolbox call WaitNextEvent has this structure:

TYPE EventRecord =
RECORD

what: Integer;
message: Longint;
when: Longint;
where: Longint;
modifiers: Integer

END;

{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

When an application receives a high-level event, the what field of the
event record contains the event code defined by kHighLevelEvent, and
the when field contains the number of ticks since the system last started
up when the event is posted.

For high-level events, two fields of the event record have special
meanings. The message field and the where field of the event record
define the specific type of high-level event reported. And the message
field contains the message class of the high-level event. For example,
the message field for an AppleEvent contains the value 'aevt', and the
message field for an Edition Manager event contains the value 'sect'.

You can define special classes of events that are specific to your
application. If you have registered your application signature with
Apple, then you can use your signature to define the class of events that
belong to your application.

The structure and interpretation of AppleEvents are determined by a
standard protocol known as the AppleEvent protocol, which is defined by
Apple. To ensure compatibility with other Macintosh applications, you
should use the AppleEvent protocol for high-level events if possible.

Ill> System 7 and the Event Manager 327

All Macintosh system software that sends or receives high-level events
uses the AppleEvent protocol.

Under the AppleEvent protocol, AppleEvents are used in three ways:

1. To send a request to another application. A request is an AppleEvent
sent by one application that requests a service from another. For
example, an application can ask another application to open a
document by sending an Open Documents AppleEvent ('aevt' 'odoc')
with a parameter that specifies the document to be opened. One kind
of request, known as a query, requests information that is kept by an
application. An example of a query is the Get AppleEvent ('aevt'
'getp') which asks an application to return the value of a specific
property.

2. To send a response to an AppleEvent. For example, if one applica
tion sends a query to another, the receiving application returns the
requested information by sending back an AppleEvent.

3. To notify an application of an occurrence. For example, the Edition
Manager sends AppleEvents to notify subscribers that a publisher (a
section of a document containing shared information) has changed.

To use AppleEvents in an application, you must also inform the
operating system that your application is able to receive and process
AppleEvents. To accomplish this, you need to modify your applica
tion's 'SIZE' resource, as explained in Chapter 7.

For more information about the special kinds of events used in
System 7-friendly programs, see Volume VI of Inside Macintosh .

.,.. Defining Your Own Events

Programs that use application-defined events must make the OS Event
Manager call PostEvent to post the events into the event queue. You can
also use PostEvent to repost events that you have removed from the
event queue with GetNextEvent. For more information on defining and
posting your own events, see the OS Event Manager chapter in Inside
Macintosh, Volume II.

Another OS Event Manager call, FlushEvents, can be used to get rid
of events or types of events that you do not want, or no longer want, in
the event queue. You can also use FlushEvents is to get rid of any stray
events left over from before your application started up.

In fact, before you start your main event loop, it is usually a good idea
to call FlushEvents (with an eventMask parameter of everyEvent and a

328 Chapter 5 Event-Driven Programming

stopMask value of zero) to empty the event queue of any stray event!?
that may have been hanging around from before your application
started up-for example, keyboard events caused by keystrokes typed
to the Finder.

You will probably never have any need for the other Operating System
Event Manager routines: GetOSEvent, which gets an event from the
event queue, removing it from the queue in the process; OSEventAvail,
for looking at an event without dequeueing it; and SetEventMask, which
changes the setting of the system event mask.

All OS Event Manager calls are described in the Operating System
Event Manager chapter of Inside Macintosh.

.... Conclusion
This chapter explained how the Toolbox Event Manager and the
Operating System Event Manager are used in Macintosh Programs
written under MPW. Particular emphasis was given to writing event
driven programs that work properly under System 7 and the System 6
MultiFinder.

6 MPW and the Resource
Manager

There's one feature of the Macintosh that's completely invisible to casual
users, but is very important to programmers. That feature is the resource:
a block of data that can be stored in a file, shared by various applications,
and read into memory any time it is needed. Resources are mysterious
entities if you don't understand them-but once you do, they can be very
useful ingredients of a Macintosh program.

Almost any kind of data used in a program can be stored as a resource.
When you write an application, the object code of your program is stored
on disk and in memory as a resource. Menus, dialogs, pictures, and icons
are also stored as resources. Desktop icons are resources, and program
designers often create resources of their own.

To understand resources, it helps to know that every Macintosh file is
divided into two pieces called forks. Any data that the file contains-for
example, a document in a document file or a picture in a graphics file
can be stored in a what is known as a data fork. Everything else in the file
is stored in the resource fork. Although both forks are present in every
file, either fork can be empty. For example, a text file might have an
empty resource fork, and an application file might have an empty data
fork. Figure 6-1 shows how every Macintosh file is divided into a data
fork and a resource fork.

When you need access to information in a data fork, you can get it
from the File Manager. Resources are handled by a different Toolbox
manager known, logically enough, as the Resource Manager. The
Resource Manager keeps track of all the code and data stored in a file's
resource fork and provides routines that allow applications and other
parts of the Toolbox to access resources.

329

330 ~ Chapter 6 MPW and the Resource Manager

Macintosh File

Resource Fork

Resources

(Can contain
code)

Data Fork

Initially empty;
program may
store data here

Figure 6-1 . Structure of a Macintosh file

..,. Why Use Resources?
No law says an application must use resources. If you didn't want to
use resources in a program, you could hard-code structures such as
menus, dialogs, and icons into the program's data fork, and simply not
use the Resource Manager. But, if you did that, you'd be missing out on
a number of benefits that resources offer, for example,

• If you need to write programs that can be used by speakers of other
languages, you can simplify the task of internationalizing your
applications by storing strings, text, and structures such as menus
and dialogs as resources. Then the job of translating your applica
tion from one country's language to another can be performed by a
nonprogrammer. In fact, resources were originally designed as a
means of facilitating the conversion of Macintosh programs into
programs that could be used by speakers of foreign languages.

• When you store a structure as a resource, you do not have to keep it
in memory when you aren't using it. When an application needs to
use a resource, the Memory Manager automatically reads the
resource into memory. When the program is finished with the

Ill> How Macintosh Files are Constructed 331

resource, and the memory that it occupied is needed for another
purpose, the Memory Manager can purge the resource from
memory until it is needed again.

• When you use resources in an application, you can put the source
code that creates all the program's resources in the same place: in a
special source file called a resource file. So, when you want to edit
the source code for any resource, you always know where to find it;
it isn't mixed in with the rest of the source code in the program.

• A graphics-based resource editor called ResEdit is available as a
separate product. With ResEdit, you can create and edit resources
interactively using the mouse, ResEdit dialogs, and screen graphics.
When you have created a resource using ResEdit, you can convert it
into source code using an MPW tool called DeRez. Conversely, you
can create the source code for a resource file using MPW, and then
compile it into resource code data with another MPW tool called
Rez. With the help of these three tools-ResEdit, Rez, and DeRez
you can edit any resource either interactively (using ResEdit) or
textually (using the MPW Editor).

• You can edit a resource without having to recompile the program
that uses the resource. You can compile just the resource, and that
takes less time.

In this chapter, we'll take a closeup look at how resources are used in
Macintosh programs, particularly programs written under MPW.

... How Macintosh Files Are Constructed
Macintosh programmers often speak of resource files, but it's more
accurate to refer to the part of a file that contains resources as a resource
fork. Every Macintosh file has two forks-a resource fork and a data
fork-as was shown in Figure 6-1. As you would expect, a resource fork
is the part of a file in which resources are stored.

Although resources are usually thought of as belonging to applica
tions, the truth is that applications are not the only kinds of files that
can have resources. Any Macintosh file-even a document file-can
have resources stored in its resource fork. For example, a document file
could have a resource fork containing a special font, and a file created
by a graphics program could have a resource fork containing pictures
and images.

However, resources such as icons, dialogs, and fonts are not the only
ingredients of an application's resource fork. The resource fork of an

332 ~ Chapter 6 MPW and the Resource Manager

application file contains not only the resources used by the application,
but also the object code of the application itself. Furthermore, an applica
tion's object code may be divided into segments, and if it is, the
Macintosh system treats each segment as an individual resource. When
an application's object code has been divided into segments-that is,
separate resources-various parts of the program can be loaded and
purged dynamically, which conserves memory. More information on the
segmentation of programs is presented in Chapter 7.

Note ~ ~{:ODi.'' Resources in a Nui$hell. When yo1.1- ,cempile a:Jld link an
application, MPW assigns the application's object code a resource
type.<f'CODE' and stores the :whole prograin as a,,res~ce.in the
application's resource fork. Normally, you'll nevet need to know
much more,.than that .. about..'CQPE' resources. Under.ordinary,
Circumstances, you'll never have to access a 'CODE' resource
directly; 'C,ODE' resoµrce~·~l'e .:i:rianaged autoII).atically.by the
Memory Manager and the R~ource Manager.

~ The System Resource File

In addition to the resource fork that is built into every Macintosh file,
there is a system resource file that contains standard resources shared
by all applications. Resources stored in the system file include the pixel
images used to create the system's cursor, the bit maps of the system
fonts, and various kinds of drivers. The system resource fork also con
tains patches to Toolbox and operating system routines.

~ Creating and Compiling Resources
When you write the source code for a program using MPW, you must
place the application's resources in a resource description file, a special
kind of source-code file that is compiled separately from the rest of a
program. Resources are not compiled by the MPW assembler, or by the
MPW C or Pascal compiler. They are compiled by a special resource
compiler, called Rez, that is bundled with the MPW development
system.

To use the Rez compiler, you must provide it with a source code file
written in a unique language-a language that only the Rez compiler
understands. Once you have written a resource description file using

Note .,.

~ The Rez Language 333

the Rez language, you can invoke the MPW resource compiler by
issuing the MPW command Rez, which is examined in more detail later
in this chapter. The Rez compiler converts your resource file into object
code, and you can then link your resources to the rest of your program
by issuing the MPW command Link. More information on the Link
command is provided in Chapter 8 .

.,,, The Rez Language
The MPW resource description language, known less formally as the
Rez language, is an extensible language that looks a lot like C, but it
really isn't C. It has only seven keywords that are used as commands,
and they are completely different from any of the C commands. Further
more, the purpose of the Rez language is not to execute programs, but
merely to define and describe resources in a form that the Rez compiler
can understand.

Rez! You're. So Insensitive! :Although the Rez'languagelooks like a
cousin to C at first glarice, one noteworthy difference between the
two languages is that the Re~ language is case insensitive, except
within·delimited strings. C{!ls practically everybody knows, is
very, very case-sensitive. In·this respect, the Rez language ismore
like Pascal than like C.

A resource file written in the Rez language usually has a name that
ends with the extension .r. When you write a source file with the .r
extension, CreateMake and CreateBuildCommands recognize it as a
resource description file and can compile and link it properly when you
issue the Rez and Link commands.

For example, if you wrote a Pascal program called Creation.p
which is, incidentally, the name of the sample Pascal program listed in
Appendix C-you would ordinarily name the program's resource code
segment Creation.r, listed in Appendix D. If you wrote a C program
called Creation.c, you could still call its resource file Creation.r. In fact,
once a resource description file is compiled into a resource fork, it can be
linked with a program written in any language. This illustrates one of
the advantages of using resources in a Macintosh application: Once you
have written a resource file that can be compiled by the Rez compiler,
you can use it with an MPW program written in any language.

334 IJJI> Chapter 6 MPW and the Resource Manager

IJJI> Preprocessor Directives

As you can see by looking at the Creation.r file in Appendix D, a
resource definition file typically has two parts: a set of preprocessor
directives and a set of statements that are used to build resources. The
preprocessor directives in a resource description file begin with the
symbol #, just like preprocessor directives used in C. They also have the
same meanings in the Rez language that they have in C.

In a resource description file, you can use preprocessor directives to
include C-style header files (files with the file name extension .h), as
well as other resource description files (files with the file name
extension .r) in the compilation of the file you are writing. For example,
you could use these directives

#include "SysTypes.r"
#include "Types.r"
#include "Creation.h"
#include "rnenu.h"

to include the files SysTypes.r, Types.r, Creation.h and menu.h files in a
resource description file. In this example, the Creation.h and menu.h
files are application files. The SysTypes.r and Types.r files are interface
files provided in MPW. The SysTypes.r file contains definitions of
system variables, and the Types.r file contains definitions for most of
the predefined resource types that are used in applications.

There is also an MPW interface file named Pict.r, which contains type
definitions for PICT resource and for debugging PICTs, and an interface
file named Cmdo.r, which contains type definitions for Commando
resources.

The preprocessor directives recognized by the Rez compiler are listed
in Table 6-1.

Table 6-1. Preprocessor directives used in resource description files

Directive Example Meaning

#include #include fileName Include source file fileName in
com pila ti on.

#define #define symbol value Define constant symbol as value.
#undef #undef symbol Delete definition of constant

symbol.

#if #if expression Include text that follows in com-
pilation if expression is true.

IJJli- The Rez Language 335

Table 6-1. Preprocessor directives used in resource description files
(continued)

Directive Example

#else #else

#endif #endif

#ifdef #if def symbol

#ifndef #ifndef symbol

#elif #elif expression

... Special Characters

Meaning

Include text that follows in com
pilation if preceding #if clause is
not true.

Terminate #if, #if def, or #ifndef
construct.

Include text that follows in
compilation if constant symbol has
been defined.

Include text that follows in
compilation if constant symbol has
not been defined.
"Else if'; include text that follows
in compilation if preceding #if
clause is not true, and if expression
is true.

In the data portion of a resource definition file, curly brackets are used to
group blocks of data together, and the delimiters /* and *I are used to
enclose comments. Each resource description in a resource file also
includes a heading enclosed in parentheses. This heading always
includes a string specifying the type of resource being described and the
resource's ID number. Some headings also include a 16-bit number that
specifies certain attributes that the resource has. (Headings of resource
descriptions are described in more detail later in this chapter.)

For example, this code entry

resource ('STR ', 128) {/*Low-memory warning*/
"Warning: Memory is running low."

} ;

describes a string used as a resource. The parentheses delimit the
resource's type ('STR ') and ID number (128), and the curly brackets
delimit the string's contents. Resource types and ID numbers are
described later in this chapter. A comment, "Low-memory warning," is
enclosed in the delimiters /* and *I.

336 ~ Chapter 6 MPW and the Resource Manager

Rez also supports the C++ style of comment prefix, that is, I I.
Special characters used in the Rez language are listed in Table 6-2.

The most important special characters are described in more detail in
later sections of this chapter.

Table 6-2. Special characters used in the Rez language

Delimiters

Character

()

I I
()

/**/

Separators

Character

Operators

Character

()

*
I
%

+

<<

>>
<

Meaning

Delimits expressions.
Delimits blocks of data.
Delimits data in headings.
Delimits comments.
Delimits string types.
Delimits strings.

Meaning

Separates items in a statement.
Marks the end of a statement or the end of a resource
description.

Meaning

Delimits expressions.
Unary negation operator.
Unary logical NOT.
Unary bitwise NOT.
Unary multiplication operator.
Integer division operator.
Modula operator (integer division remainder).
Addition operator.
Subtraction operator.
Bitwise shift left.
Bitwise shift right.
Less than.

.,. The Rez Language 337

Table 6-2. Special characters used in the Rez language
(continued)

Operators (continued)

Character

>
<=
>=

!=
&
/\

&&
11

Miscellaneous

Character

$$
$

Ox

\

Meaning

Greater than.
Less than or equal to.
Greater than or equal to.
Equal to.
Not equal to.
Bitwise AND.
Bitwise exclusive OR.

Bitwise OR.

Logical AND.
Logical OR.

Meaning

Identifies a built-in Rez function. Example: $$Date.
Precedes hexadecimal numbers. Number that follows
$ symbol is enclosed in double quotes. Example:
$"1FD4".
Precedes hexadecimal numbers. Number is not
enclosed in quotes. Example: Ox1FD4.
Precedes preprocessor directives. Example: #include.
Escape character.
Specifies a range of resource ID numbers. Example:
(0:32) = (resource IDs) 0 through 32.

.... The Escape Character \

In the Rez language, the backslash character (\) is used as an escape
character. You can use it to include nonprinting characters-such as
return and tab characters-into a resource description. It can also be
used to specify some printing characters: a quotation mark, an apos
trophe, and the backslash character itself.

The backslash character is recognized as an escape character when it
is enclosed in double quotation marks and is followed by a number. It is

338 II>- Chapter 6 MPW and the Resource Manager

also recognized as an escape character when it precedes certain letters,
as was shown in Table 6-2.

When the backslash escape character precedes a number, the number
can be decimal, hexadecimal, octal, or binary. However, the number
must also be preceded by a special character or character sequence that
specifies its base, and it must also have a specific number of digits.

For example, when a character is expressed as an octal number, the
octal number must be exactly three digits long. The Rez compiler does
not do any error checking on numbers used in this fashion, to it is up to
you to make the number the proper length. For a guide, see Table 6-3.

Table 6-3. The escape character\

The Escape Character Used with Numbers

Sequence

"\OxF8"

"\$A9"

"\Od032"

"\060"

"\01000110"

Meaning

Hexadecimal number (2 digits)
Hexadecimal number (2 digits)

Decimal number (3 digits)

Octal number (3 digits)

Binary number (8 digits)

The Escape Character Used with Letters

Sequence Numeric equivalent Meaning

"\b" "\Ox08" Backspace
"\r" "\OxOD" Return
"\t" "\Ox09" Tab

"\f" "\OxOC" Form feed
"\n" "\OxOD" Newline
"\v" "\OxOB" Vertical tab
"\"" "\Ox22" Quotation mark
"\'" "\Ox27" Apostrophe
"\ \" "\OxSC" Backslash
"\?" "\Ox7F" Delete

.,. The Resource Description Language 339

~ The Resource Description Language
Each statement in a resource description file begins with a keyword that
is used as a command. The seven such keywords in the Rez language
are listed in Table 6-4.

Table 6-4. Keywords used in the Rez language

Keyword

type

resource

data

include

read

change

delete

Description

Type declaration: Declares a resource type description for use
in a subsequent resource statement.

Resource description: Specifies data for a resource type
declared in a previous type statement.

Specifies raw data to be used as a resource.

Includes compiled resources from another file's data fork in
the resource file being written.

Reads the data fork of a compiled file and includes it as a
resource.

Changes the type, ID, name, or attributes of an existing
resource.

Deletes an existing resource.

.,.. The type Statement

In the resource description language (sometimes called the Rez
language), the type statement is used to define the format of a resource
type. Its syntax is:

type resourceType (idRange)
typeSpecification
} ;

The resourceType parameter in a type statement is a four-letter string
enclosed in single quotation marks. The id parameter is a 16-bit integer.
The idRange parameter is optional; it causes the declaration to apply
only to a given resource ID or range of IDs. The typeSpecification
parameter is described later in this chapter.

Type definitions of many predefined resources are included in the
MPW interface files Types.r, SysTypes.r, MPWTypes.r, Pict.r, and

340 .,,. Chapter 6 MPW and the Resource Manager

Cmdo.r, as mentioned earlier in this chapter. But you can also use type
statements to define your own resource types. For example, you could
use this statement to define a rectangle as a resource:

type 'RECT'
rect;

} ;

After defining a rectangle resource in this fashion, you could
describe a rectangle resource in a resource description file by using the
type definition 'RECT' with the Rez statement resource, as explained in
the next section.

In the preceding example, note that the word "rect'' is used to define
the structure of the resource being defined. In MPW's resource
description language, "rect'' is one of a number of words that can be
used in the data sections of resource definitions to specify data types.
These words are called type specifications. Each of the type specifica
tions in Table 6-5 can be used in a resource definition in the same way
the specification "rect'' is used in the above example.

Any number of type specifications can appear in a resource descrip
tion, and they can appear in any order. Furthermore, you can use
symbolic names and constants to assign values to type specifications in
resource definitions, as explained later in this section. Type specifica
tions can thus be used to create descriptions of extremely complex
resources. Table 6-5 shows the formats in which type specifications are
written, along with their meanings.

Table 6-5. Rez type specifications

Specification

bitstring[n]

byte
integer

longint

boolean

char

Description

A bitstring of length n (maximum 32 bits).
A byte (8-bit) field. Same as bitstring[8].
An integer (16-bit) field. Same as bitstring[16].

A long integer (32-bit) field. Same as bitstring[32].

A single bit with two possible states: true (1) and false (0).
The type specification boolean defines a field one bit
long. This is equivalent to bitstring[1].
An 8-bit field used as a character. Same as string[1].

.., The Resource Description Language 341

Table 6-5. Rez type specifications (continued)

Specification

string[n]

pstring[n]

wstring[n]

cstring[n]

point

rect

fill fill Size [n I

Description

A plain string (with no preceding character count and no
termination character). The value of n is the length of the
string, in bytes. If you precede the word "string" with the
word "hex" (for example, hex string[32]), Rez displays the
string as a string of hexadecimal characters n characters
long.

A Pascal-style string (a string preceded by a byte specify
ing the length of the string). The length of the string, in
bytes, is the value of n plus 1. A Pascal string can be no
more than 255 characters long; if it is too long, Rez dis
plays an error and truncates the string.

A string that can be up to 65,535 characters long. The
length of the string, in bytes, is the value of n plus 2.

AC-style string (a string followed by a trailing null used
as a termination character). The length of the string is the
value of n minus one.

A pair of two 16-bit integers. The first integer describes
the point's vertical (y) coordinate. The second integer
describes the point's horizontal (x) parameter.

A series of four 16-bit integers. Each pair of integers is
interpreted as a point (see "point"). The first point
describes the coordinates of the upper left-hand corner of
a rectangle. The second point describes the coordinates of
the lower right-hand corner of the rectangle.

Fills a specified number of bits in the data stream with
zeros. The fillSize parameter must be one of the following
constants:

bit (one bit)
nibble (four bits)
byte (eight bits)
word (16 bits)
long (32 bits)

The length of the zero fill generated by the fill
specification is the value of n times the number of bits
specified by the fillSize parameter.

342 ~ Chapter 6 MPW and the Resource Manager

Table 6-5. Rez type specifications (continued)

Specification Description
~~-'------~~~~~~~--~~~~~~~~~~

align fill Size [n] Fills a specified number of bits in the data stream with
zeros, and then pads the end of the filled area with more
zeros until a specified boundary is reached. The align
specification can terminate on a 4-bit, 8-bit, 16-bit, or 32-
bit boundary. The fillSize parameter must be one of the
following constants:

switch

array

Arrays

nibble (four bits)
byte (eight bits)
word (16 bits)
long (32 bits)

The length of the zero fill generated by the align
specification is the value of n times the number of bits
specified by the fillSize parameter.

The align specification affects all data from the point
where it is specified until the next align statement.

Used in resource descriptions that contain case
statements; used much like the switch statement in C, or
the CASE statement in Pascal.

Declares a list of fields (delimited by curly brackets) that
are repeated for each element of an array. The array
specification is explained in more detail under the next
heading.

The Rez language includes a provision for placing arrays in resource
descriptions. This is the definition of an array:

array [arrayName I '['length']'] {arrayList);

The arrayList parameter is a list of type specifications. It can be
repeated zero or more times. Each element that makes up the array list is
separated from the next by a comma and a space. Either the arrayName
parameter or the length parameter may be specified in a resource
description. The arrayName parameter identifies the array list.

The declaration of an array may be preceded by the keyword wide,
as follows:

wide array [arrayName I '['length']'] {arrayList);

I>- The Resource Description Language 343

If the keyword wide is used, DeRez uses a more compact display for
mat, but this does not affect Rez. In complex resources, the use of the
keyword wide is preferred because it can considerably reduce the
amount of data required by DeRez.

An array contains a list of fields, delimited by curly brackets, that are
repeated for each element of the array. The general form of an array
description is:

array {
/* definitions of fields */

} ;

Once an array is described, it can be nested in any other resource
description, for example,

type 'RSRC' {
literal longint;
wide array {

integer;
} ;

} ;

/* resource type */

/* each resource ID */

This type of array is fine for simple data structures, but sometimes it is
useful to define the number of elements in an array so that the program
using the resource can determine how many elements they are, and so
that DeRez can compile the resource more easily.

To keep track of how many variables there are in an array, you can
use the Rez function $$Count0f, which returns the number of elements
in an array. In the following example, the $$Count0f function returns
the number of strings in the array StrArray:

type 'STR#' {/* a string list resource */
integer= $$Count0f (StrArray);
wide array StrArray {

pstring;
} ;

} ;

Structured Data Types

When you write a resource definition, you can use constants and
symbolic names to assign values to fields in the resource you have
defined. For example, suppose you have defined a resource type
'HORS', as follows:

344 .,.. Chapter 6 MPW and the Resource Manager

type 'HORS'{/* declaring a resource of type 'HORS' */
integer;

} ;

string;
byte off = 0, on 1;
integer = 36;

According to this definition, a 'HORS' resource has four fields:

• An integer that can hold any integer value.
• A C-style string.
• A byte that can be set to either 0 or 1 by using the symbolic name

"on" or "off."
• An integer that has a value of 36. Since this value is defined in the

'HORS' resource template, it doesn't have to appear in subsequent
resource descriptions that use the 'HORS' resource template.

Once you have defined a resource of type 'HORS', you can place a
'HORS' resource in a resource description file by simply filling in the
fields provided in the resource definition. You could do that by typing a
resource statement such as this:

resource 'HORS' (280) {
56;

} ;

"This is the racehorse resource.";
off;

The first line of this example says that a resource of type 'HORS' is
being described, and that its resource ID is 280. The three lines that
follow, enclosed in curly brackets, fill in the first three fields of the
'HORS' resource template. The first field is an integer, 56; the second is a
string; and the third is a bit that can be set or cleared using the symbolic
name "on" or "off." The last field in the 'HORS' resource type does not
appear in the preceding resource description because it is predefined in
the resource type definition; it is always 36.

Once you have defined a resource type, you can create as many
resources of that type as you like, placing any legal value that you like
in each field. For example, you could describe another resource of type
'HORS' this way:

.,_ The Resource Description Language 345

resource 'HORS' (281) {
232;
"This is a horse of a different color.";
on;

} ;

..,.. The resource Statement

Now that we have examined the trivial resource type 'HORS', let's
examine a more serious example. Let's assume that you have defined
the resource type 'RECT' as a rectangle. Once you have done that, you
can describe a rectangle resource using a statement such as:

resource 'RECT' (rTitleBox, pre load, purgeable)
{5,5,24,250}

} ;

Note that in the resource description, the coordinates of a rectangle are
used in place of the type specifier "rect'' in the resource definition.

That's still a very simple example of a resource description. Listing 6-1
is a more complex example-the resource type 'WIND', the official
window resource type defined in the Types.r interface file.

Listing 6-1. Definition of the 'WIND' resource

type 'WIND'
rect;
integer

/* window's bounds rectangle */
documentProc, dBoxProc, plainDBox,
/* predefined types */

} ;

byte

byte

altDBoxProc, noGrowDocProc,
zoomProc = 8, rDocProc = 16;
invisible, visible; /* window visible? */
fill byte;
noGoAway, goAway; /* close box? */
fill byte;

unsigned hex longint; /* refCon (see Inside
Macintosh) */

pstring Untitled = "Untitled" /* window
title */

346 ~ Chapter 6 MPW and the Resource Manager

In the next-to-last line of Listing 6-1, note the use of the words
"unsigned," "hex," and "longint." These words come from a list of
predefined constants that can be used as values in resource type
definitions. The complete list is shown in Table 6-6.

Table 6-6. Constants used in resource type definitions

Constant

bitstring[length]

byte
integer

longint

hex

decimal

octal

binary

literal

Meaning

Bitstring of length bits (maximum 32)
Byte (8-bit) field

Integer (16-bit) field

Long integer (32-bit) field

Hexadecimal value

Decimal value

Octal value

Binary value

Literal data

To place a 'WIND' resource in a resource description file, you could
write a window description like the one in Listing 6-2.

Listing 6-2. A window resource

resource 'WIND' (200,
{ /* heading */
{20,20,120,300},
documentProc,
visible,
goAway,
0,
"Sample Window"

} ;

"My Window," appheap, preload)

/* window's bounds rectangle */
/* document window */
/* visible window */
/* has close box */
/* refCon (see Inside Macintosh) */
/* window title */

Compare the resource type definition in Listing 6-1 with the resource
description in Listing 6-2, and you'll see that the description merely fills
in the fields defined in the definition, substituting commas for semi
colons at the ends of fields, and using symbolic names for field values
where appropriate.

.... The Resource Description Language 347

1111> The data Statement

When you use a data statement in a resource description file, Rez inter
prets the information that defines the resource as raw data. You can use
the data in any way you like in an application.

For example, this statement describes a block of data that has been
defined in an application or an interface file as data type 'DORF':

data 'DORF' (128, preload)
$"30F5 90F4 E59C DEF4 68A0"

} ;

You can place any kind of data you like in a data resource; for
example, you could describe a data resource as a bit map of a screen.
Most data resources are much longer than the one shown in the
preceding example.

1111> include Statement

The Rez statement include-which should be distinguished from the
preprocessor directive #include-can be used to merge previously
compiled resources from the resource fork of another file into the
resource definition file currently being written. When you use include
to combine another resource fork with the one you are creating, you can
use all of the resources in the other file, or you can bring in only
resources of a specified type. If you wish, you can also redefine the
types of the resources you are importing. The statement

include "fileB";

imports all the resources in the resource fork of fileB into the resource
description file that you are writing. But the statement

include "fileB" 'ICON';

imports only the 'ICON' resources in fileB's resource fork.
With the keyword include, you can use the words "not" and "as" to

specify what types of resources you want to import and how you want
their types redefined. For instance, the statement

include "fileB" not 'ICON';

348 .._ Chapter 6 MPW and the Resource Manager

brings into your file only those resources in fileB that are not icons. The
statement

include "fileB" 'typeA' as 'typeB';

imports resources in file B that are defined as type A, but defines their type
as type B.

If you wanted to import only one resource from another file, you could
write a statement like this:

include "fileB" 'ICON' (128);

which would import only the icon with an ID number of 128 from fileB.
MPW has a set of variables that you can use with the word "as" to

modify the information in include statements. These variables are:

Variable

$$Type
$$ID
$$Name
$$Attributes

Meaning

Type of resource from include file.
ID of resource from include file.
Name of resource from include file.
Attributes of resource from include file.

When a variable from the preceding list appears in an include
statement following the word "as," the information specified in the
resource fork being imported remains the same in the resource
description file being written. Statements that use these variables are
written in this format:

include "fileName" rsrcType (rsrcName I (ID[: ID)])

as rsrcType (ID [, rsrcName] [, attributes ...]);

In the first line of this description, the colon between the two ID
parameters specifies a range of resource ID numbers. Each resource of
the specified type with an ID that falls into the specified range is
imported. For example, the statement

include "fileB" 'DRVR' (0: 32)
as 'DRVR' ($$ID, $$Name, $$Attributes I preload);

imports all driver resources (type 'DRVR') with resource IDs ranging
from 0 through 32. The ID numbers and names of the imported

..,. The Resource Description Language 349

resources remain unchanged, but the bitwise OR operator I adds the
attribute "preload" to the attributes field of each imported resource.
(Resource attributes are described later in this chapter.)

..,. The read Statement

The read statement merely reads the data fork from a file and writes it
as a resource to the resource description file being created. For example,
the statement

read I STR I (218, "My String, II sysheap, preload) a
"OtherFile";

reads a string resource from the resource fork of the OtherFile file and
incorporates it into the resource description file being written. In this
case, the string resource being imported has an ID number of 218, is
named "My String," and has an attribute field with the sysheap and
preload attributes set. (There's more about resource attributes later in
this chapter.)

..,. The change Statement

You can use the change statement to change a resource's vital
information. A resource's vital information includes its resource type,
resource ID, name, attributes, or any combination of these.

The change statement is often used with the I operator (bitwise OR)
to make sure that an attribute is set. For instance, this MPW shell com
mand sets the protected bit to 1 on all code resources in the TestDA file:

echo "change 'CODE' to $$Type ($$ID,$$Attributes I 8);" a
I rez -a -o TestDA

..,. The delete Statement

You can delete a resource without launching ResEdit by using the
delete statement. This is an example of a shell command that deletes a
'HORS' resource from a file called DobbinFile:

delete "delete 'HORS';" I rez -a -o "DobbinFile"

350 ~ Chapter 6 MPW and the Resource Manager

~ Labels

In complex resource descriptions, such as the descriptions of
QuickDraw resources, labels are sometimes used to permit the access
ing of data at specified locations within a resource. When a label is used
in a resource description, it is followed by a colon. For example, in the
resource definition

type 'lucy' (192)
est ring

stringEnd:
integer endOfString;

} ;

the label stringEnd could be used to locate the end of the C string that
precedes it.

~ Variables and Functions

The Rez compiler has a set of variables and functions that contain or
return commonly used values. All Rez variables and functions are
written as strings preceded by two dollar signs, as follows:

$$Date

In the resource description language, variables and functions can be
used in structured constructs and arrays to stand for a field in a resource
currently being processed. They are used only in complex resource
descriptions.

In super-turbocharged applications, the include statement, described
earlier in this chapter, often makes use of variables and functions.
Listing 6-13, later in this chapter, shows how variables and functions can
be used in a resource description.

Table 6-7 is a list of variables and functions that have string values.
Table 6-8 lists variables and functions that have numeric values.

~ The Resource Description Language 351

Table 6-7. Variables and functions with string values

Variable or Function

$$Date

$$Format
C1ormatString", arguments)

$$Name

$$Resource ("fileName", 'type',
ID I "resourceName")

$$Shell ("stringExpr")

$$Time

$$Version

Value

Returns the current date.

Works like the #printf directive, but
returns a string rather than printing to
standard output.

The name of the resource currently being
created, included, deleted, or changed
(depending on whether a resource,
include, delete, or change statement is
being processed).

Given the ID number or name of a
resource, $$Resource returns the resource
type as a string.

Given a shell variable {stringExprl, $$Shell
returns the variable's current value. The
curly brackets that delimit the variable are
omitted; double quotation marks are
substituted.

Returns the current time.

Returns the version number of the Rez
compiler being used.

Table 6-8. Variables and functions with numeric values

Variable or Function

$$Attributes

$$BitField(label, starting
Position numberOfBits)

Value

Contains attributes of resource currently
being created, included, deleted, or
changed (depending on whether a
resource, include, delete, or change
statement is being processed).

Given a starting position and a label in a
resource description, $$BitField returns the
number of bits in the bitstring found.

352 ~ Chapter 6 MPW and the Resource Manager

Table 6-8. Variables and functions with numeric values (continued)

Variable or Function

$$Byte

$$Day

$$Hour

$$ID

$$Long

$$Minute

$$Month

$$PackedSize
(start, rowBytes, rowCount)

$$ResourceSize

$$Second

Value

Given a label in a resource description,
$$Byte returns the byte found at the label
specified.

Returns the current day as a number
ranging from 1through31.

Returns the current hour as a number
ranging from 0 through 23.

Returns the ID of the resource currently
being created, included, deleted, or
changed (depending on whether a
resource, include, delete, or change
statement is being processed).

Given a label, $$Long returns the
longword found at the label specified.

Returns the current minute as a number
ranging from 0 through 59.

Returns the current month as a number
ranging from 1 through 12.

Given an offset into the resource currently
being processed (start) and two integers
(rowBytes and rowCount), $$PackedSize
calls the Toolbox routine UnpackBits
RowCount times and returns the
unpacked data found at start.

Returns the size, in bytes, of the resource
currently being created, included, deleted,
or changed (depending on whether a
resource, include, delete, or change
statement is being processed).

Returns the current second as a number
ranging from 0 through 59.

I>- The Resource Description Language 353

Table 6-8. Variables and functions with numeric values (continued)

Variable or Function

$$Type

$$Weekday

$$Word (label)

$$Year

Value

Returns the size, in bytes, of the resource
currently being created, included, deleted,
or changed (depending on whether a
resource, include, delete, or change
statement is being processed).

Returns the current day of the week as a
number ranging from 1 (Sunday) through
7 (Saturday).

Given a label, returns the word at the label
specified.

Returns the current year.

~ Arithmetic and Logical Expressions

You can perform many kinds of arithmetical and logical operations in the
Rez language. All arithmetic is performed as 32-bit signed arithmetic.
The basic constants used in the Rez language are listed in Table 6-9. The
language's arithmetic and logical operators were listed in Table 6-2.

Table 6-9. Numeric constants in the Rez language

Numeric Type Form Meaning

Decimal nnn ... Signed decimal constant between
4,294,976,295 and 2,147,483,648.

Hexadecimal Oxhhh ... Signed hexadecimal constant between
Ox7FFFFFFF and Ox80000000.

Octal Oooo ... Signed octal constant between
017777777777 and 020000000000.

Binary Obbbb ... Signed constant between
OblOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOand
Obllllllllllllllllllllllllllllllll.

Literal 'aaaa' May contain one to four characters (printable
ASCII characters or escape characters.

354 ~ Chapter 6 MPW and the Resource Manager

The Rez compiler treats letters and numbers in the same way; both
letters and numbers are interpreted as numeric values. However, a letter
within single quotation marks is recognized as a literal, as shown in
Table 6-9, and a value within double quotation marks is recognized as a
character. For example, since the letter "A" has an ASCII value of 65, 'A'
(in single quotes) is interpreted by the compiler as the number 65, but
"A" (in double quotes) is interpreted as the character "A". However, both
'A' and "A" are represented in memory by the bitstring 01000001, the
binary equivalent of 65. Thus, 'A'= 65, 'B' = 66, and 'A'+l = 66.

For an illustration of how arithmetic and logical expressions are used
in resource descriptions, see Listing 6-13.

IJl> The Rez Command
When you have written a resource file, you can compile the file-that
is, convert it from source code into object code-using the MPW
command Rez. You can then use the MPW Linker to link your resource
file with the object code for the rest of your program. The syntax of the
Rez command is:

Rez [sourceFile ...] [option ...] [destFile ...]

where sourceFile is the name of a resource description file to be read by
Rez, and destFile is the name of the object file associated with the
resource fork. For example, the command

Rez Types.r Creation.r -o Creation

generates a resource fork for a file named Creation, based on infor
mation provided in the interface file Types.r and the resource definition
file Sample.r.

Options that can be used with the Rez command are listed here.

Option

-a[ppend]
-align word I longword

-c[reator] creator
-d[efine] name[=value]
-i[nclude] pathname
-m[odification]

Meaning

Merge resource into output resource file.
Align resource to word or longword
boundaries.
Set output file creator.
Equivalent to #define macro [value].
Path to search when looking for #include files.
Don't change the output file's modification date.

Option

-o file

-ov

-p
-rd

-ro

-s[earch] pathname

-t[ype] type

-u[ndef] name

IJJJ. The Rez Command 355

Meaning

Write output to file (default is a file named
rez.out).

OK to overwrite protected resources when
appending.

Write progress information to diagnostics.

Suppress warnings for redeclared types.

Set the mapReadOnly flag in output.

Path to search when looking for #include
resources.

Set output file type.

Equivalent to #undef name.

Status codes returned by the Rez command are as follows.

Error Meaning
~~~~~~~~-

0 No errors. 
1 Error in parameters. 
2 Syntax error in file. 
3 I/ 0 or program error. 

How the Rez Command Works 

Rez compiles the resource fork of a file in accordance with a resource 
description file written in a special language and stored as a text file 
with the extension .r. Resource description files recognized by Rez have 
the same format as resource files created with DeRez, MPW's resource 
decompiler, which is described in the next section. 

The information that Rez uses to build a resource file can come not 
only from the data in a resource description file, but also from other text 
files that are associated with the resource description file via #include 
and read directives. The #include directive can be used to associate a 
resource description file with definitions of constants and also with 
other resource description files. 

Standard resource type declarations that can be used with the Rez 
command are provided in several interface files in the MPW directory 
{Rlncludes}. Interface files that can be used with Rez include Types.r, 
SysTypes.r, MPWTypes.r, and Pict.r. Features of the Rez command 
include macro processing, full expression evaluation, and built-in 
functions and system variables. 



356 II> Chapter 6 MPW and the Resource Manager 

Although the Rez command can be used by itself, it is more com
monly used in makefiles: MPW scripts designed to compile and link 
programs automatically. Procedures for writing and using makefiles are 
described in Chapter 8. 

~ The DeRez Command 
The DeRez command is a mirror image of the Rez command. The input 
to the DeRez command is the resource fork of an object file. DeRez 
decompiles the resource fork and creates a text file, or resource 
description file, that can be read by Rez. Unless redirection is used, 
DeRez writes a resource description file to standard output, normally 
the screen. The syntax of the DeRez command is: 

DeRez [option ... ] rsrcFile [rsrcDescriptionFile ... ] 

For example, the command 

DeRez Creation Creation.r 

writes a resource description file to standard output, using the file 
Creation.r for resource descriptions. 

Options that can be used with the DeRez command are listed here. 

Option 

-c[ompatible] 

-e[scape] 

Meaning 

Generate output compatible with Rez Version 1.0. 
Don't escape chars < $20 or > $D8. 

-d[efine] name[=value] Equivalent to #define name [value]. 

-i[nclude] pathname 

-m[axstringsize] n 

-only typeExpr* 
-p[rogress] 
-rd 

-s[kip] type Ex pr 
-u[ndef] name 

Search this path when looking for #include files. 

Write strings n characters per line. 

Process only resources of this type. 
Write progress information to diagnostics. 
Suppress warnings for redeclared types. 
Skip resources of this type. 
Equivalent to #undef name. 

*A typeExpr may have one of these forms: 

type 
'type'(id)" 

'"type'(id:id)" 
'"type'(. .. "name ... ")" 



IJl. The ResEqual Command 357 

Status codes returned by the DeRez command are as follows. 

Error Meaning 
~~~~~~~~ 

0 No errors.
1 Error in parameters.
2 Syntax error in file.
3 I/ 0 or program error.

How the DeRez Command Works

As input, the DeRez command takes the name of an object file that has
a resource fork. From the resource fork, it creates a resource description
file. Unless redirection is used, the resource description is written to
standard output.

A resource description file is made up of type declarations written in
the format recognized by MPW's resource compiler, Rez. The type
declarations are defined in the MPW interface files Types.r and
SysTypes.r.

If you used the output of a DeRez command as input to Rez, with the
same resource description files, DeRez would theoretically produce a
resource fork identical to the one that was originally input to DeRez.
However, DeRez can become confused by the contents of complex
resource forks, particularly if they contained user-defined resources. If
DeRez cannot create a resource description that matches a given
resource, it writes a string of data that matches the resource that it was
unable to describe.

~ The ResEqual Command
ResEqual is an MPW command that compares the resources in two files
and writes their differences to standard output. Its syntax is

ResEqual [-p] Filel File2

In a ResEqual command, the File 1 and File2 parameters are the files
being compared. If you use the -p option, ResEqual writes progress
information to diagnostic output. For example, the command

ResEqual Creation Creation.rsrc

compares the resources in the Creation and Creation.rsrc files and
writes the results to standard output.

358 ~ Chapter 6 MPW and the Resource Manager

Bytheway .. J

Status codes returned by the ResEqual command are as follows.

Error Meaning
~~~~~~~~~ 

0 Resources match. 
1 Parameter or option error. 
2 Files don't match. 

ResEqual compares two files and confirms that: 

• Each file contains resources of the same type and identifier as the 
other. 

• The size of the resources with the same type and identifier are the 
same in both files. 

• The contents of the resource forks of the compared programs are 
the same. 

If a mismatch is found, ResEqual reports it and then continues the 
comparison until it finishes comparing the files. If more than ten 
differences are detected in the same resource, the rest of the resource is 
skipped and ResEqual moves on to the next resource. 

..,. The RezDet Command 

You can check to see if a resource file contains any errors by executing 
MPW's RezDet command. Its syntax is: 

RezDet [option ... ] file ... 



_., The RezDet Command 359 

For example, the command 

RezDet -q Creation I I Delete Creation 

deletes the Creation file if the resource fork is damaged. 
Options that can be used with RezDet are listed here. 

Option 

-b[ig] 
-d[ump] 
-l[ist] 
-q[uiet] 
-r[awdump] 
-s[how] 

Description 

Read resources one at a time, not all at once. 
Write information plus headers, lists, etc. 
Write list of resources with minimum information. 
Don't write any output, just set {Status}. 
Write -dump information plus contents. 
Write information about each resource. 

If you do not specify any option, RezDet investigates the resource 
fork of each file for damage or inconsistencies. The specified files are 
read and checked one by one. Output is generated according to the 
options specified. 

You should use no more than one of the following options: -quiet, -list, 
-show, -dump, and -rawdump. 

Status codes returned by the RezDet command are as follows. 

Error Meaning 
~~----'=---~~~~~~~~~~~~~~~-

0 No errors detected. 
1 Invalid options or no files specified. 
2 Resource format error detected. 
3 Fatal error-an 1/0 or program error was detected. 

Specifically, RezDet checks for these conditions: 

• Is the resource fork at least the minimum size? (There must be 
enough bytes to read a resource header.) 

• Is each record in the resource data list used once and only once? 
The last data item in a resource should end exactly where the data 
list ends. 

• Are there any duplicate types in the resource type list? 
• Does each item in the resource type list contain at least one reference? 



360 ~ Chapter 6 MPW and the Resource Manager 

• Does each sequence of referenced items start where the previous 
resource type item's reference list ended? Is each item in the reference 
list pointed to by one and only one resource type list item? 

• Does each name in the name list have one and only one reference? 
Does the last name point outside the name list? (It shouldn't.) 

• Are there are any duplicate names in the name list? (Duplicate 
names generate an advisory warning rather than an error, and they 
don't even signal a warning if the -s, -d, or -r option is selected.) 

• Do all names have a nonzero length? 
• Are Bits 7 (Unused), 1 (Changed), or 0 (Unused) set in the resource 

attributes field? (They shouldn't be.) 
• Does each item on the reference list point to a valid data item? Does 

each item either have a name list offset of -1 or point to a valid 
name list offset? 

• Is there any space (or overlap) between the header, the resource 
data list, and the resource map? There should not be any bytes 
between the EOF and the end of the resource map . 

.,.. The Structure of a Resource 
Many kinds of resources-such as strings, icons, and fonts-have 
formats that are defined as templates in the MPW interface file Types.r. 
For example, an icon is defined as a 32-by-32 bit image, a string is 
defined as a Pascal string, and a bitmapped font is stored as a large bit 
image containing a set of characters. 

The simplest resource type is 'STR ' (note the space before the second 
quotation mark), which is defined in Types.r as a Pascal-format string. 
In the Types.r interface file, an 'STR ' resource is defined as 

type 'STR ' { 
pstring; 

} ; 

/* String */ 

This is what the source code for a 'STR ' resource might look like in a 
typical resource file: 

resource ( 'STR ', 128) { 
"The racehorses are managed by the racehorse manager." 

} ; 



Ill> The Structure of a Resource 361 

A longer string could be written like this: 

resource ('STR ', 129) { 

} ; 

"It was a dark and stormy night: The rain fell in " 
"torrents except at occasional intervals, when it was " 
"checked by a violent gust of wind which swept up the " 
"streets (for it was in London that our scene lies), " 
"rattling along the housetops, and fiercely agitating " 
"the scanty flame of the lamps that struggled against " 
"the darkness." 

In the headings of the preceding examples, the numbers 128 and 129 
are resource IDs, not character counts; Rez calculates the length of a 
Pascal string automatically. Resource IDs are described later in this 
chapter . 

..,. Fields in Resource Templates 

As you saw earlier in this chapter, some resources have templates that are 
divided into fields, much like the data structures that are used in Pascal 
and C. In a menu resource, there are fields for the menu's title, the text of 
each item listed under the menu, information that specifies whether the 
menu and its items should be enabled or disabled, and any characters or 
special characters that may appear alongside each menu item. 

A Macintosh program typically includes a menu-bar resource, plus a 
resource for each menu on the menu bar. A menu-bar resource lists the 
names of the menus that appear on the menu bar, and each menu 
resource contains a list of menu items. 

In the Types.r interface file, an 'MBAR' resource is defined as shown 
in Listing 6-3, and a 'MENU' resource is defined as shown in Listing 6-4. 

The meanings of the fields in Listings 6-3 and 6-4 are described in 
more detail in Chapter 3, and in the Menu Manager chapter of Inside 
Macintosh. 

Listing 6-3. Definition of an 'MBAR' resource 

type 'MBAR' { 

} ; 

integer= $$CountOf(MenuArray); /*Number of menus*/ 
wide array MenuArray{ 

integer; /* Menu resource ID */ 
} ; 



362 .,,, Chapter 6 MPW and the Resource Manager 

Listing 6-4. Definition of a 'MENU' resource 

type 'MENU' { 
integer; /* Menu ID */ 

} ; 

fill word [2]; 
integer textMenuProc = 0; 
fill word; 
unsigned hex bitstring[31] 

allEnabled = Ox7FFFFFFF; 
boolean 
pstring 
wide array 

pstring; 

disabled, enabled; 
apple = "\0x14"; 

byte no Icon; 

/* Menu size placeholders 
/* Menu DefProc ID */ 

/* Enable flags */ 
/* Menu enable */ 
I* Menu Title */ 

/* Item title */ 
I* Icon number */ 

char noKey = "\0x00", 
hierarchicalMenu 

char noMark = "\0x00", 

I* Key equivalent or */ 
"\OxlB";/* hierarchical menu*/ 

check = "\0x12"; 
fill bit; 
unsigned bitstring[7] 

plain; 
} ; 

byte O; 

/* Marking char or id */ 
/* of hierarchical menu */ 

/* Style */ 

*/ 

Listing 6-5 shows what the source code for a menu bar might look 
like in a typical resource file. The source code for one of the menus on 
the menu bar is shown in Listing 6-6. 

Listing 6-5. A menu bar resource 

resource 'MBAR' (rMenuBar, preload) { 
{ mApple, mFile, mEdit, mWindows }; /* 4 menus */ 

} ; 



~ The Structure of a Resource 363 

Listing 6-6. A menu resource 

resource 'MENU' (mFile, preload) 
mFile, textMenuProc, 
OblllllllllllllllllllllllllllllOO, 
enabled, "File", 

) ; 

"New", 
noicon, "N", nomark, plain; 

"Open", 

"-" ' 

noicon, "O", nomark, plain; 

noicon, nokey, nomark, plain; 
"Close", 

noicon, "W", nomark, plain; 
"Save", 

noicon, "S", nomark, plain; 
"Save As ... ", 

noicon, nokey, nomark, plain; 
"Revert", 

noicon, nokey, nomark, plain; 

"-" ' 
noicon, nokey, nomark, plain; 

"Page Setup ... ", 
noicon, nokey, nomark, plain; 

"Print ... ", 
no icon, nokey, nomark, plain; 

"-" ' 
no icon, nokey, nomark, plain; 

"Quit II f 

noicon, "Q", nomark, plain 

The third line in Listing 6-6-the long binary number-shows which 
menu items are enabled and which are disabled in the menu being 
described. To decrypt the number, you read it from right to left-that is, 
from the last binary digit to the first. In Listing 6-6, since the last two 
digits in the number are zeros, the first two menu items-New and 
Open-are disabled when the program begins. Since all the other digits 
in the number are ones, all the other menu items are enabled when the 
program starts. Note that when you examine the items under a menu to 



364 .,. Chapter 6 MPW and the Resource Manager 

set this value, each dash that is used to display a horizontal line in the 
menu counts as a menu item. 

The other fields in a menu resource description are easy to figure out. 
The constants noicon, nokey, nomark, and plain mean that the item 
being described has no icon, no check mark, and no keyboard equiva
lent, and is displayed in a plain type style. Keyboard equivalents are 
enclosed in quotation marks, and a hyphen inside quotation marks 
displays a horizontal line that separates menu items . 

..,. The SIZE Resource 

One of the most important resources in a Macintosh program is one 
called the 'SIZE' resource. There is a 'SIZE' resource in the resource fork 
of every program that is designed to work with MultiFinder. The 'SIZE' 
resource tells MultiFinder the size of the memory partition to use when 
running your application. It also provides a host of important facts 
about it-whether it accepts suspend and resume events, whether it 
runs in the background, whether it is MultiFinder-aware, and so on. 

Listing 6-7 shows how the 'SIZE' resource is defined in the Types.r. 
interface file. A typical 'SIZE' resource is shown in Listing 6-8. 

Listing 6-7. Definition of the 'SIZE' resource 

type 'SIZE' { 
boolean dontSaveScreen, /* for SWITCHER */ 

saveScreen; /* compatibility */ 
boolean ignoreSuspendResumeEvents, /* suspend-resume */ 

acceptSuspendResumeEvents; 
boolean enableOptionSwitch, /* for SWITCHER */ 

disableOptionSwitch; /* compatibility */ 
boolean cannotBackground, 

canBackground; /* Can properly use back
ground null events */ 

boolean notMultiFinderAware, /* activate/deactivate */ 
multiFinderAware; /* on resume/suspend */ 

boolean backgroundAndForeground, /* Application does not */ 
onlyBackground; /* have a user interface*/ 

boolean dontGetFrontClicks, /* Get mouse down/up */ 
getFrontClicks; /* when suspended */ 

boolean ignoreChildDiedEvents, /* Apps use this. */ 
acceptChildDiedEvents; /* Debuggers use this. */ 

boolean not32BitCompatible, /* Works with 24bit addr*/ 



.,.. The Structure of a Resource 365 

is32BitCompatible; I* Works with 24 or 32 *I 
I* bit addresses *I 

#undef reserved 
boolean reserved; I* These seven bits are *I 
boolean reserved; I* reserved. Set them *I 
boolean reserved; I* to "reserved". When *I 
boolean reserved; I* we decide to define *I 
boolean reserved; I* a new flag, your *I 
boolean reserved; I* old resource will *I 
boolean reserved; I* still compile. *I 

I* Memory sizes are in bytes *I 
unsigned longint; I* pref erred mem size *I 
unsigned longint; I* minimum mem size *I 

II If we ever define one of the seven reserved bits above, the 
II "reserved" enumeration wouldn't appear on the newly defined bit. 
II By defining "reserved" below, old SIZE declarations 
II still compile. 

#define reserved 
} ; 

false 

Listing 6-8. Description of a 'SIZE' resource 

resource 'SIZE' (-1) I* We have here a MultiFinder
aware application *I 

} ; 

dontSaveScreen, 
acceptSuspendResumeEvents, 
enableOptionSwitch, 
canBackground, 
multiFinderAware, 
backgroundAndForeground, 
dontGetFrontClicks, 
ignoreChildDiedEvents, 
not32BitCompatible, 
reserved, reserved, reserved, reserved, reserved, 

reserved, reserved, 
96*1024, 
64*1024 



366 ""' Chapter 6 MPW and the Resource Manager 

""' Resource Specifications 

Although different kinds of resources have different formats, all 
resources have certain features in common. For example, every resource 
begins with a heading called a resource specification. The information 
that follows the resource specification-the data that defines the 
content of the resource-is called resource data. 

A resource specification always contains a four-character string 
called a resource type and a 16-bit number called a resource ID. A 
resource specification can also include a resource name, written as a 
string, and set of resource attributes, written as integers. 

In the menu resource shown in Listing 6-6, the resource type is 
'MENU', and the resource name is the mFile variable, which is defined 
elsewhere in the program. The menu resource shown in Listing 6-6 has 
a resource attribute defined as "preload." Resource attributes are 
explained in more detail under the following headings. 

Resource Types 

The first element in a resource specification is a resource type: a series 
of four ASCII characters from 0 to 255, enclosed in single quotation 
marks. The most commonly used resource types are written in all 
uppercase or all lowercase letters. 

The format of a resource -is specified by its resource type. For 
example, a menu resource has the resource type 'MENU', a string 
resource has the resource type 'STR ', and a dialog resource has the 
resource type 'DLOG.' 

In MPW Pascal, a resource type is defined as: 

TYPE ResType =PACKED ARRAY[l .. 4] OF CHAR; 

Table 6-10 is a list of predefined resources identified by resource 
type. 



~ The Structure of a Resource 367 

Table 6-10. Predefined Macintosh resources 

Type 

'ALRT' 

'ADBS' 

'BNDL' 

'CACH' 

'CDEF' 

'CNTL' 

'CODE' 

'CURS' 

'DITL' 
'DLOG' 

'DRVR' 

'DSAT' 

'FKEY' 

'FMTR' 
'FOND' 

'FONT' 

'FREF' 

'FRSV' 

'FWID' 

'ICN#' 

'ICON' 

'INIT' 

'INTL' 

'INT#' 

'KCAP' 

'KCHR' 

'KMAP' 
'KSWP' 

'LDEF' 

'MBAR' 

'MBDF' 

'MDEF' 

Description 

Alert template 

Apple Desktop Bus service routine 

Bundle 

RAM cache code 

Control definition function 

Control template 

Application code segment 

Cursor 

Item list in a dialog or alert 

Dialog template 

Desk accessory or other device driver 

System startup alert table 

Command-Shift-number routine 

3 1 /2-inch disk formatting code 

Font family record 

Font 

File reference 

IDs of fonts reserved for system use 

Font widths 

Icon list 

Icon 

Initialization resource 

International resource 

List of integers owned by Find File 

Physical layout of keyboard (used by Key Caps desk 
accessory) 

ASCII mapping (software) 

Keyboard mapping (hardware) 

Keyboard script table 

List definition procedure 

Menu bar 

Default menu definition procedure 

Menu definition procedure 



368 IJll> Chapter 6 MPW and the Resource Manager 

Table 6-10. Predefined Macintosh resources (continued) 

Type 

'MENU' 
'MMAP' 
'NBPC' 
'NFNT' 
'PACK' 
'PAT' 
'PAT#' 
'PDEF' 
'PICT' 
'PREC' 
'PRER' 
'PRES' 
'PTCH' 
'RDEV' 
'ROvr' 
'ROv#' 
'SERD' 
'SICN' 
'STR' 
'STR#' 
'WDEF' 
'WIND' 
'atpl' 
'bmap' 
'boot' 
'cctb' 
'cicn' 
'clst' 
'clut' 
'crsr' 
'ctab' 
'dctb' 
'fctb' 

Description 

Menu 
Mouse tracking code 
AppleTalk bundle 
128K ROM font 
Package 
Pattern (The space is required.) 
Pattern list 
Printing code 
Picture 
Print record 
Device type for Chooser 
Device type for Chooser 
ROM patch code 
Device type for Chooser 
Code for overriding ROM resources 
List of ROM resources to override 
RAM Serial Driver 
Script symbol 
String (The space is required.) 
String list 
Window definition function 
Window template 
Internal AppleTalk resource 
Bitmaps used by the Control Panel 
Copy of boot blocks 
Control color table 
Color Macintosh icon 
Cached icon lists used by Chooser and Control Panel 
Color look-up table 
Color cursor 
Used by the Control Panel 
Dialog color table 
Font color table 



..,. The Structure of a Resource 369 

Table 6-10. Predefined Macintosh resources (continued) 

Type 

'finf' 
'gama' 
'ictb' 
'insc' 
'itlO' 
'itll' 
'itl2' 
'itlb' 
'itlc' 
'lmem' 
'mcky' 
'mctb' 
'mitq' 
'mppc' 
'nrct' 
'pltt' 
'ppat' 
'snd' 
'snth' 
'wctb' 

Description 

Font information 
Color correction table 
Color table dialog item 
Installer script 
Date and time formats 
Names of days and months 
International Utilities Package sort hooks 
International Utilities Package script bundles 
International configuration for Script Manager 
Low memory globals 
Mouse tracking 
Menu color information table 
Internal memory requirements for MakeITable 
AppleTalk configuration code 
Rectangle positions 
Color palette 
Pixel pattern 
Sound (The space is required.) 
Synthesizer 
Window color table 

Defining Your Own Resource Types 

If you want to use a resource type that is not predefined by the 
Macintosh system, you can design a resource of your own. For instance, 
there is no predefined resource structure for a rectangle. But you could 
declare a resource type called 'RECT', define its structure as the structure 
of a rectangle, and then use rectangles as resources in the program. The 
definition of a rectangle resource is shown in Listing 6-9, and source code 
that creates a rectangle resource of type 'RECT' is shown in Listing 6-10. 



370 ..,. Chapter 6 MPW and the Resource Manager 

Listing 6-9. Defining a resource type 

type 'RECT' { 
rect; 

} ; 

Listing 6-10. Source code for a user-defined resource 

resource 'RECT' (rTitleBox, preload, purgeable) 
{5,5,24,250) 

} ; 

When you design your own resources, you can give them type 
names written in either uppercase or lowercase letters-in fact, you can 
use any ASCII characters from 0 to 255. But, remember that when it 
interprets resource types, Rez is case sensitive. Thus the resources 
'wxyz', 'WXyz', and 'WXYZ' are all different! 

Resource IDs 

The second element in a resource specification is a 16-bit number called 
a resource ID. In a resource file, every resource of the same type must 
have a unique resource ID. However, a resource of a given type may 
have the same resource ID as a resource of a different type. For 
example, a resource fork could include a menu resource with an ID of 
128 and a dialog resource with an ID of 128. But a resource file should 
not contain two dialog resources with an ID of 128. If it does, the result 
of trying to access either of them is unpredictable. 

In some cases, resources are associated with each other by their 
resource IDs. For example, the next-to-last field in a dialog resource is 
always the resource ID of a second resource: a list of dialog items 
owned by the dialog. Alert dialogs, which have the resource type 
'ALERT', are also associated with lists of dialog items. 

A list of dialog items stored as a resource has a resource type of 
'DITL'. When the next-to-last field of a dialog resource contains the 
resource ID of a specified 'DITL' resource, the items in the 'DITL' 
resource are placed inside the dialog with which they are associated 
each time the dialog is drawn. 

The alert resource shown in Listing 6-11 has an item list with a 
resource ID identified as the value of the rAboutAlert variable (the 
variable is defined elsewhere in the application). The alert is associated 
with an item list with the same ID number, as you can see by looking at 
the second line of Listing 6-11. 



~ The Structure of a Resource 371 

The list of items associated by the dialog is shown in Listing 6-12. 
The resource ID assigned to the list of items is, of course, rAboutAlert
the same ID assigned to the alert with which it is associated. 

Listing 6-11 . An alert resource 

resource 'ALRT' (rAboutAlert, purgeable) { 
{40+30, 20+30, 160+30+20, 296+30}, rAboutAlert, 

OK, visible, silent; 
OK, visible, silent; 
OK, visible, silent; 
OK, visible, silent 

} ; 

} ; 

Listing 6-12. A 'DITL' resource 

resource 'DITL' (rAboutAlert, purgeable) 
{ /* array DITLarray: 5 elements */ 

/* [1] */ 
{ 88+20, 184, 108+20, 264}, 
Button { 

} , 

enabled, 
"OK" 

/* [2] */ 
{8, 8, 24, 274}, 
StaticText { 

disabled, 
II 

} , 
/* [3] */ 
{32, 8, 48, 237+20}, 
StaticText { 

disabled, 

Creation" 

" An All-Purpose Macintosh Program" 
} , 
/* [4] */ 
{56, 8, 72, 237+20}, 
StaticText { 

disabled, 
II By Mark Andrews" 



372 .,,,. Chapter 6 MPW and the Resource Manager 

Listing 6-12. A 'DITL' resource (continued) 

) , 
/* [5] */ 
{80+20, 24, 112+20, 167), 
StaticText { 

disabled, 
"Copyright © 1991 Mark Andrews" 

} ; 

.,,,. How Resource IDs are Assigned 

By convention, resource ID numbers are divided into the following 
ranges. 

Range 

-32768 through -16385 

-16384 through -1 

0 through 127 

128 through 32767 

Description 

Reserved; do not use. 

Used for system resources owned by other 
system resources (explained later). 

Used for other system resources. 

Available for your use in whatever way you 
wish. 

Resources With Special IDs 

Some resources are subject to tighter restrictions than those in this list. 
For example, a device driver cannot have a resource ID greater than 31. 
Restrictions on numbers assigned to special kinds of resources can be 
found in the chapters dealing with those resources in Inside Macintosh. 

Resource Names 

Any resource may be given a resource name. The use of a resource 
name is usually optional since resources are usually referred by their 
resource IDs in application programs. But the resource specifications for 
some kinds of resources, for example, device drivers and desk acces
sories, always contain resource names. 

A resource name, like a resource ID, should not be assigned to two 
resources of the same type; if the same name is given to two resources 
of the same type, the result of trying to access either one of them is 
unpredictable. 



~ The Structure of a Resource 373 

Resource names, unlike resource types, are case insensitive. When a 
resource name is passed to the Resource Manager, the Resource 
Manager ignores the case but does not ignore diacritical marks. 

This is the source code for a typical 'TRAP' resource, a system 
resource that always contains a resource name: 

resource 'TRAP' ($8Al, "FrameRect") { "QuickDraw", $A8Al}; 

Resource Attributes 

If you want a resource to be treated in a certain way-for instance, to be 
treated as unpurgeable or to be loaded into memory as soon as your 
application is loaded-you can add one or more resource attributes to 
the resource's specification by changing the value of the resource 
description's attributes field. In the attributes field, each attribute of a 
resource is specified by a bit in the low-order byte of a word, as 
illustrated in Figure 6-2. 

The Resource Manager provides a set of constants that you can use 
as resource attributes in resource specifications. The construction of a 
resource description's attributes field is shown in Listing 6-13. 

Low-order byte (high-order byte is ignored) 

* * 
Bits 76543210 

Figure 6-2. Resource Attributes 

1 if read into system 
heap, 0 if application 
heap 

1 if purgeable, 
O If not 

1 If locked, O if not 

1 if protected, 0 if not 

1 if to be preloaded. 
O if not 

l if to be written to 
resource file, O if not 



374 ~ Chapter 6 MPW and the Resource Manager 

Important ~ 

Listing 6-13. The resource attributes field 

CONST resSysHeap 64; {set if read into system 
heap} 

resPurgeable 32; {set if purgeable} 
res Locked 16; {set if locked} 
resProtected 8; {set if protected} 
resPreload 4; {set if to be preloaded} 
resChanged 2; {set if to be written to 

resource file} 

Tips and Warnings about Resource Attributes. Here are sqme 
ha*4Y fact~Jo knQW abou~ wheqtyou a~ deci~g ho~ to s~~@l 
appliCation'& resource attributes: ' · · ~·;' · 

• i Xou shp.uld n()t change the,~~ettingof hit:~{). or l?t't. 7 ill'.(l;tll:e 
attributes field. ' · ·· · 

• Jou sh9uld not set the re§Chang.ed at,t.ribut(,! ciiref!0tly; ., 
'ite8Changed is set as a side ef,fect of the Too.box call Chang~:. .·.·: 
Resource; which you call to tell the Resource Manager thatyou 
have changed a resource. , l{ ........ . 

• You should also refrain from setting the resSysHeap attribtite. ·. 
11 a resource with this attribute set is too large for the sys~ 
l:leap, the bit is cleared, anti the resourceis. rectti, int<f.~lte 
application heap. · · · · 

• If the resProtected attribute of a resource is ,set, an a,pplicafiipll. 
i~annot use Resource. Manager routines 'to chang'e thei~1D 
number or name of the resource, modify its contents,. or 
!Efmove}t from the resource file. However, Mou ca!;l;,II\ak~:the 
Memory Manager call SetResAttrs, which sets th¢ resource 
attributes, to remove the protection or just change some of the 
other attributes. 

• 

• 

, .•. ,- . '•<, 

A locked resource is neither relocatable nor purgeable, so the 
resLocked attribute overrides the resPurgeable attribute; wl!:en 
resLocked is set, the resource isn't purgeable regardlesa;tof 
whether resPurgeable is set. 

The resPreload attribute tells the Resource Manager:to read a 
resource into memory immediately after openmg tlie resolU'.ce 
file. This procedure could be useful if, for example, you wanted 
to draw ten icons as soon as your application started:Jnstea~pf 
reading and drawing each one individually in turh, you <man 
have all of them read into your application at once, and you 
could then just draw all ten. · · . 



Note ~ 

.,. How the Resource Manager Works 375 

~ How the Resource Manager Works 
When the Macintosh system starts up, it initializes the Resource 
Manager and opens the system resource file. When an application starts 
up, its resource file is opened. 

When an application needs to use a resource, it informs the Resource 
Manager. The Resource Manager first looks for the resource in the 
application's resource file. If other resource files have been opened-for 
instance, by other applications-the Resource Manager looks next in 
each of those files, normally beginning with the one most recently 
opened. (If you wish, you can change this order, as explained in the 
Resource Manager chapter of Inside Macintosh.) 

If the Resource Manager cannot find the resource it is looking for in 
any application, it looks in the system resource file. Once it finds a 
requested resource, it reads the resource into memory and returns a 
handle to the calling program. 

This system makes it easy for applications to share resources. It also 
means that you can override a system resource with a resource of your 
own. For example, you could override the system's alert-dialog resource 
to display a customized alert dialog of your own design . 

..,,. The Resource Map and Resource Data 

The resource fork of a file is divided into two main parts: a resource 
map and resource data. A resource map contains information that the 
Resource Manager can use to find any resource in the file. The data that 
follows the resource map is the resource data for each actual resource 
that the resource fork contains. 

:,?:.;··::,':·· - -t};::p- ,_·_ : :;::;I:}:)?_:\.,:_:::?'.'::::::_~:::-:-:/:··:.:;:::·:::<:_; ___ :./,.'_\.' 

.,fc~ .. .< er doesn't know o~p<l~e ab~ut 
9f~~':t¢pources t}l,~t~~ manages' When you 

Ii\ t:h. · · · .urce Ma. · r, it m~r:~lyloads the 
le to if ~gro$r~••• 

. en use tli; • source i~:'. . .. 



376 ~ Chapter 6 MPW and the Resource Manager 

The Resource Map 

The resource map in a resource fork is designed much like a header 
record in an ordinary disk file. The resource map contains information 
that enables the Macintosh system to find each individual resource in 
the stream of bits stored in the resource fork. 

You'll probably never need to access a resource map directly; the job 
of interpreting resource maps and picking out the resources that they 
point to is the responsibility of the Resource Manager. But if you're 
curious about what the format of a resource map looks like, you can 
find it described and illustrated in the Resource Manager chapter of 
Inside Macintosh. 

How Resource Maps Work 

When a resource is stored on a disk, the resource map for the file in 
which it is stored contains an offset that points to the start of the 
resource's data, along with information that tells how long the resource 
is. If the resource has been read into memory, the resource map contains 
the resource's handle. 

When a file is opened, its resource map is read into memory. The 
resource map stays in memory until the file is closed. However, indi
vidual resources can be removed from memory-either temporarily or 
permanently-by the Resource Manager or by the Memory Manager. 

When an application requests a resource, the Resource Manager 
searches for it by looking through the application's resource map-not 
through the actual resources stored in the application's research fork. If 
the resource being requested has been placed in memory, the Resource 
Manager returns its handle to the calling program. If the resource has 
not been read into memory, the Resource Manager reads it into memory 
and then returns its handle. 

Purgeable and Unpurgeable Resources 

When you request a resource from the Resource Manager, you can 
instruct that it be read into memory as purgeable or unpurgeable data 
by giving it a resource attribute of "purgeable," as explained later in this 
chapter. 

If you make a resource purgeable, the Memory Manager can purge 
it-that is, remove it from memory temporarily-when the space that it 
occupies is needed for other purposes. If you make a resource unpurge
able, it cannot be removed from memory unless you order its removal. 



.,. How the Resource Manager Works 377 

If the Memory Manager removes a purgeable resource from memory 
and you then want to use it again, the Resource Manager reads it back 
into memory and returns its new handle. 

Since these processes all take place automatically, it is usually best to 
make your resources purgeable. That way, the Memory Manager can 
keep resources in memory only when they are needed and can perform 
its memory management tasks more efficiently. 

However, if you create a small resource that is constantly in use-for 
example, a bit image that is used a cursor-you may want to make it 
unpurgeable. That will prevent the Memory Manager from slowing 
your program down by repeatedly purging your cursor from memory 
and then reading it back into memory from disk again. 

With the notable exception of menus, all resources used by applica
tions are read into memory as purgeable resources unless they are 
specifically defined as unpurgeable. Menus are stored as unpurgeable 
resources because they are used so frequently in Macintosh programs. 
They should never be made purgeable. (The source code for a menu 
resource was shown in Listing 6-6.) 

Resource data is normally not read into memory until an application 
requests it. However, you can instruct the Resource Manager to place a 
resource in memory as soon as a resource file is opened by setting the 
"preload" attribute in its resource specification. In addition, the preload 
attribute of a menu resource is usually set, so that an application's 
menu will be read into memory as soon as the application is loaded. 

How Resources Are Stored in Memory 

When resource data is read into memory, it is stored in a relocatable 
block in the heap. That means that the Memory Manager can change 
the physical addresses of your resources at any time-even if you have 
made them unpurgeable. So when you work with resources, you must 
take care to lock, unlock, and dereference them properly in order to 
keep up with the operations of the Memory Manager. More information 
about working with the Memory Manager is presented in Chapter 7. 

Once a resource has been read into memory, you can change its data 
in any way you like. However, your changes will not become perma
nent unless you request that they be made permanent and then either 
close or update your resource file. 



378 ~ Chapter 6 MPW and the Resource Manager 

~ Tools for Creating Resources 
There are several ways to create and edit resources, and they all have 
their advantages and disadvantages. Tools that you can use to design 
and edit resources are described in the following sections. 

~ ResEdit 

An easy way to design and edit resources-particularly graphics-style 
resources, such as cursors and icons-is to use the ResEdit resource 
editor that is supplied with MPW and many other software develop
ment systems. 

ResEdit is an interactive, graphics-based editor that is now equipped 
with a host of useful features, including a tool palette like those in 
graphics programs such as MacPaint and MacDraw. ResEdit underwent 
a complete facelift with the introduction of Version 2.1, so if you haven't 
used it in a while, you might want to check it out in its latest version 
and see what's been added. 

A key feature of ResEdit is its extensibility. You can extend its capa
bilities in two ways: by creating editable templates for your own 
resource types and by writing your own resource picker, or editor, and 
adding it to the ResEdit system. 

One improvement in ResEdit is that it now complies more closely 
with Apple's user interface guidelines. When you open ResEdit, you 
can now select a resource file using a standard file-selection dialog like 
the one shown in Figure 6-3. When you select a resource file to edit, 
ResEdit displays a file window in which each type of type is illustrated 
with an icon, as shown in Figure 6-4. 

When you select a resource file to edit, ResEdit displays a menu bar 
like any other well-behaved Macintosh application. From the menu bar, 
you can choose from a wide variety of ResEdit operations. 

ResEdit comes with a complete set of instructions, so procedures for 
using the package will not be described in detail here. But a few of 
ResEdit's newest features are worth pointing out. 

The 'BNDL' Resource Demystified 

When you're learning to program the Macintosh, one of the most 
mysterious resources you're likely to encounter is the bundle (or 'BNDL') 
resource, which provides the Finder with a package of resources used by 
an application. When you write an application, you're supposed to 



..,. Tools for Creating Resources 379 

I~ ResEdit I 
D Desktop al 
L:J EHamples 
Cl Release Note 
<;l ResEdit 

Figure 6-3. ResEdit open dialog 

D 

ALFff 

c:icn 

iilH•)l.I 1 .. H1 
•• l!;F: (Hi):• 
•:H r:' C•l ,.:l 
r.Nt ~ 
~:T!i: 

CODE 

ResEdit 

• r J l -.. -
···~.I 

l't -··-
1--·· 

CUF.:S 

Figure 6-4. ResEdit icons 

.ilH(•l.I l,. Hl 
._15iJ::•:tH•;t 
CHF' Dl •. :l 
r.Nt ~ 

WEF 

CNTL 

D -D 
COLOfi$ 

dc:tb 

·· ...... · 

tLtl ~ 
!::::: 

~ 
l2:J 

Iii! ResEdit 

Eject 

Driue 

( Open D 
( Cancel J 



380 IJJJ. Chapter 6 MPW and the Resource Manager 

combine all of its documents and icons-and the application itself-into 
a 'BNDL' resource. And that has been a tricky thing to do, up to now. 

With the release of Version 2.1, ResEdit has made it easier to create a 
'BNDL' resource for an application. ResEdit now includes a 'BNDL' 
editor that you can use to create bundle resources by merely clicking 
controls in dialog boxes and editing icons. 

When you open the 'BNDL' editor, ResEdit displays a dialog in 
which you can type a unique "signature" identifying the application 
you're designing. This signature dialog is shown in Figure 6-5. 

Once you have identified your application with a signature, you're 
on your way. You can design icons for your application using one of 
ResEdit's icon editors (there are separate editors for black-and-white 
icons, color icons, and miniature icons), and you can use an Icon 
chooser window to pick the icons that you want to include in your 
application. One of ResEdit's icon editors, the 'ICN#' (icon list) editor, is 
shown in Figure 6-6. 

Finally, you can bring together all of the resources in your bundle 
and examine all of them together in an "extended view" window. 

Res Edit 

BNDLs from ResEdit 

~0 BNDL ID = 128 from ResEdit 

Signature: 11;\juMI 

Type Finder I cons 

Figure 6-5. Bundle window 



~ Tools for Creating Resources 381 

I CN# ID = 1 28 from Res Edit 

•••• ••••••• ••••••••• •• ••••••• • • •••••• •• • • •• • •• • • •• • • • • •• • • • • •• • •• • • • • • • •• •••• • • • • • •• • • ••••••••••••• 
••••••••• • • • • • • • • • • • • ••••••••• 
• • ••• 

• • • • • • 
•••••••••••••• 

Figure 6-6. ICN# editor 

•••• • •••••• ••••••••• •• • ••••••••••••• • ••••••••••••• • • ••••••••• •• •• • • 

One of the most welcome additions to ResEdit will certainly be the 
Transform menu, which lets you edit, or "transform," icons in a number 
of interesting ways. You can flip regions horizontal or vertically, rotate 
them, and even "nudge" them by a single pixel in any direction. You can 
also show or hide grid lines, or you can change the size of an icon for 
better editing. 

IJiJ>- The 'KCHR' Resource 

ResEdit has a very impressive tool for editing the 'KCHR' resource, 
which controls keyboard mapping. There is a window that shows a 
picture of a keyboard and all 256 characters in the currently selected 
font. You can display a character by clicking with the mouse in either 
the keyboard region or the virtual keycode. You can then assign a 
character to a key by dragging a character either onto a key on the 
keyboard or onto a character shown on the character chart. 

The 'KCHR' editor has lots of special features, all explained in the 
ResEdit documentation. ResEdit's 'KCHR' editor is shown in Figure 6-7. 



382 .._ Chapter 6 MPW and the Resource Manager 

§0 KCHR 11 US 11 ID = O from System 

D .. 2 B R 

D • 3 c s c s 
D $ 4 D T d 
a % 5 

D D & 6 
D D , 7 
D D ( 8 H 

D ) 9 
D D * J 
D D + K 
D < L 

D - = M 
DD N 

Figure 6-7. The 'KCHR' editor 

Decompiling ResEdit's Resources 

Although ResEdit is a resource designer's delight, it produces only 
resource data-no source code at all-for the resources it creates. That's 
not so bad for the casual programmer who just wants to knock out an 
occasional icon or dialog, but if you're into serious programming, you 
need resource definition files for the resources you design. Otherwise, 
there's no hard-copy record of what you've done and no way to 
automate the process, as you can with Rez . 

.._ The MPW Editor 

Fortunately, you can have your source code and use it too by combining 
the features of ResEdit with those of the MPW Editor. By using the 
MPW commands Rez and DeRez, as explained earlier in this chapter, 
you can design resources with ResEdit, and then decompile them into 



~ Calling the Resource Manager 383 

resource definition files with the DeRez command. Conversely, you can 
write resource definition files using the MPW Editor, compile them 
using Rez, and then edit them-or add new graphics resources-with 
ResEdit. And, at any time you like, you can recompile your resource 
definition files using the Rez command. 

~ SARez and SADeRez 

You can also create resources using SARez and SADeRez: a pair of 
standalone applications that make MPW's Rez and DeRez tools 
available to programmers who don't have or use MPW. SARez and 
SADeRez work just like the Rez compiler and DeRez decompiler that 
come with MPW, but they can be used outside the MPW environment. 

When you launch SARez, the standard Rez Commando dialog is 
displayed. You can then use the dialog to compile a resource descrip
tion file into a working resource fork. 

When DeRez is launched, it displays the standard DeRez Commando 
dialog. You can then use the dialog to decompile a resource fork into a 
resource description file written in Rez format. 

SARez and SADeRez are shipped with THINK Pascal 3.0, and are 
available from Apple as standalone applications. 

~ Calling the Resource Manager 
Once you have written and compiled a resource fork for an application, 
you can use the resources you have created by making calls to the 
Resource Manager. The Resource Manager is initialized automatically 
when you start up your Macintosh: The system resource file is opened 
and its resource map is read into memory. Then, when your application 
starts up, its resource file is opened. 

Other useful Resource Manager calls are listed in Table 6-10. 

Table 6-10. Resource Manager calls 

Call Function 

GetResource Returns a handle to a resource with a specified type 
and ID number, reading the resource into memory if 
desired. 

GetNamedResource Returns a handle to a resource with a specified type 
and name, reading the resource into memory if 
desired. 



384 .,,,. Chapter 6 MPW and the Resource Manager 

Table 6-10. Resource Manager calls (continued) 

Call 

RmveResource 

ChangedResource 

WriteResource 

CurResFile 

CreateResFile 

OpenResFile 

CloseResFile 

Res Error 

CountTypes 

GetlndType 

CountResources 

GetlndResource 

SetResLoad 

LoadResource 

SizeResource 

UseResFile 

HomeResFile 

GetReslnfo 

Function 

Removes the resource reference of a specifed 
resource in the current resource file. The resource 
data is not removed from the resource file until the 
file is updated. 

Makes changes that have been made to a specified 
resource permanent. 

Writes the resource data for a specified resource to 
the resource file. 

Returns the reference number of the current 
resource file. 

Creates a resource file. 

Opens the resource file having the given name and 
makes it the current resource file. 

Closes any resource file specified by reference 
number. 

Reports any errors that may occur during execution 
of Resource Manager calls. 

Returns the number of resource types in all open 
resource files. 

Returns the types of specified resources. 

Returns the total number of resources of a specified 
type in all open resource files. 

Returns handles to resources of a specified type. 

Sets a flag that determines whether resources will be 
loaded. 

Returns the handle of a resource and reads it into 
memory. 

Reports how much memory space a resource will 
require. 

Sets the current resource file to a specified file. 

Returns the reference number of a resource file 
containing a specified resource. 

Returns the ID number, type, and name of a 
specified resource. 



IJJi- Conclusion 385 

Table 6-10. Resource Manager calls (continued) 

Call 

GetResAttrs 

R 

AddResource 

UniqueID 

DetachResource 

Function 

Returns the resource attributes for a specified 
resource. 

Reads a specified resource into memory. 

Adds resources to a resource file. 

Returns an ID number greater than 0 that is not 
currently assigned to any resource of the given type 
in any open resource file. By using this number 
when you add a new resource to a resource file, you 
can ensure that you won't duplicate a resource ID. 

Replaces the handle to a specified resource with 
NIL. The given handle will no longer be recognized 
as a handle to a resource; if the Resource Manager is 
subsequently called to get the detached resource, a 
new handle will be allocated. 

The Creation.r file presented in Appendix D, is an example of a 
resource description file used in an actual application . 

..,.. Conclusion 
In this chapter, you've seen how resources are used in Macintosh 
applications, and how resources are managed by the Resource 
Manager. You've also learned how to write a resource fork using Rez, 
DeRez, and ResEdit; how to check a resource fork for errors using 
RezDet and ResEqual; and how to manage resources in an application 
by making calls to the Resource Manager. 



7 MPW and the 
Memory Manager 

When an application won't work and you can't figure out why, the most 
likely reason is that something is wrong with the way that the program 
is using memory. The Macintosh has an extraordinarily elegant system 
for managing memory. When you write a Macintosh program, the com
puter keeps track of all physical memory locations for you, so you'll 
never have to hang memory maps on the wall and try to figure out 
where in memory to put this piece of code or that block of data. But you 
do have to understand how the system works. If you don't, you'll never 
be able to write a Macintosh program. 

In a nutshell, the Macintosh manages memory with an operating 
system manager called the Memory Manager. When a well-behaved 
Macintosh application needs memory, it never just goes out and tries to 
find it; instead, it calls the Memory Manager. The Memory Manager 
finds and allocates the memory and then tells the application where it 
is. Conversely, when an application no longer needs a block of memory, 
it informs the Memory Manager. The Memory Manager then deallo
cates the memory, freeing it for other uses. Of course, to use this system, 
you have to know how to communicate with the Memory Manager. 

In this chapter, we'll take a close look at how memory is laid out in 
the Macintosh, how the Memory Manager manages memory, and how 
you can use the Memory Manager to handle memory in programs 
written using MPW. 

387 



388 ..,. Chapter 7 MPW and the Memory Manager 

~ Mapping the Macintosh 
Figure 7-1 is a simplified memory map that shows how memory is laid 
out in a Macintosh computer when one application is running. No 
memory addresses are shown because different amounts of memory are 
provided in different models of the Macintosh, and extra memory can be 
installed in most models. 

As you will see later in this chapter, the Macintosh memory map 
changes when more than one application is running under MultiFinder 
or under the System 7 Finder. 

Video and 
sound buffers 

Stack 

Application 
heap 

System heap 

System globals 

Figure 7-1. Simplified Macintosh memory map with one 
application running 

As Figure 7-1 illustrates, the memory of a Macintosh is divided into 
five main blocks. Starting from low memory and moving upward, the 
five main sections of memory are as follows. 



liJJ.- Mapping the Macintosh 389 

• System globals (beginning with memory address 0) 
• The system heap 
• The application heap (grows upward in memory) 
• The stack (grows downward in memory) 

• Buffers reserved for video, 1/0, and sound 

Although a Macintosh has five main memory blocks, an application 
can allocate and release memory dynamically in only two of those 
blocks. One of these areas is called the stack; the other is called the 
application heap, or simply the heap. 

When an application allocates memory in its stack, the stack grows 
downward in memory, toward the application heap. When memory is 
allocated in the application heap, the heap grows upward in memory, 
toward the stack. 

~ Low-Memory Globals 

The lowest area of memory, beginning at address 0, is used to hold 
system globals, sometimes referred to as low-memory globals. System 
globals, as their name implies, are global variables that are used by 
various parts of the Macintosh system. System globals can be used by 
applications as well as by the operating system. However, you should 
use system globals in your applications only when it is absolutely 
necessary; that is, when there is no Toolbox or operating system call 
that you can use to accomplish the same result. 

Although the addresses and functions of system globals are published 
in Inside Macintosh, Volume III (Appendix D), Apple has never made any 
explicit guarantees that the system globals currently in use will remain 
the same in future models. However, Apple has guaranteed that 
applications won't become obsolete if they use approved Toolbox and 
operating system calls. So you should use Toolbox and operating system 
calls to obtain values whenever possible, and you should stay away as 
much as possible from using system globals. 

There are hundreds of system globals, and they are used to hold all 
sorts of values. For example, system variable $014A (hexadecimal 14A) 
holds the address of the event queue, system variable $0824 holds the 
starting address of screen memory, and system variable $0A60 is used 
to store error codes returned by the Resource Manager. But you'll rarely, 
if ever, have to access any of these three variables. Generally speaking, 
you should use the Event Manager to manage events, call QuickDraw 
when you want to draw on the screen, and call ResErr to find out if the 
Resource Manager has returned an error. 



390 .... Chapter 7 MPW and the Memory Manager 

Note ~ 

..,. The System Heap 

The system heap is the main area of memory used by the operating 
system. All system code that is executed while the Macintosh is running 
resides in the system heap. The system heap also contains various data 
structures used by the system. 

Although system globals are stored in specific, documented addresses, 
the system heap is an area where code and larger data structures are 
stored dynamically. So the contents of the system heap change con
tinually while the Macintosh is running. For example, the system heap 
contains a data structure called a Volume Control Block, or VCB, for 
every disk volume that's currently mounted. When you insert a disk in a 
disk drive, the system allocates a new VCB in the system heap and fills it 
in with information about the disk you've just inserted . 

..,. The Application Heap 

The application heap is an area of memory reserved for use by applica
tions. When you launch an application, its code is stored in an appli
cation heap, along with all its resources such as menus, dialogs, and 
icons. In addition, objects that are created by a program-such as blocks 
of text and various kinds of data structures-are kept in the application 
heap. The memory used to hold these objects is allocated and deallo
cated through calls to the Memory Manager. 

:lie," YqN Can Use the System, a,~P·;J~q.,eny9µ ~esign a ry~ourg~, . 
you canspecify that you·want it:placed·inthesystem.hea~.ratb,er 
than in.;;in ~pplicatio1l by setti~g tt$res$y~:g:~ci:p attril:)p.te 
explained in Chapter 6: The resource is then stored in the"sy 
heap when .the applica~~on is laµnch.ed and i$~~vai~C\'ble.itq .~~y 
application. · ·· · · · · · 

When y6u write a program in a:~~erribly language, you can also 
place any data structure in the system heap rfther tha13 ill ~n 
application heap by setting a field in the trap.macros fl)at c2:\·U 
New Handle and NewPtr. In Pase~ or C, youcan. get a han't1-le o~.a 
pointer to information in the system· heap by making the ca'U 
NewHandleSys or the call NewPtrSys. 



.,.. Mapping the Macintosh 391 

The Application Heap and MultiFinder 

Until the advent of MultiFinder, the Macintosh had only one application 
heap, which was used by the application currently running. But when 
you run a program under MultiFinder or under the System 7 Finder, 
every application on the desktop has its own heap. When the Macintosh 
user switches back and forth between applications on the desktop, the 
Finder keeps track of each application's "world": its application heap, its 
stack, and some system globals. 

When you launch an application under MultiFinder or System 7, the 
system creates a new application heap and a new stack from available 
RAM. The size of the application is determined by two fields in its 
'SIZE' resource (which was introduced in Chapter 6). When you design 
an application, you can specify its minimum size and its preferred size 
by setting two fields in its 'SIZE' resource: a "preferred size" field and a 
"minimum size" field. When the application is loaded into memory, it is 
allocated the amount of memory specified in the "preferred size" field 
of its 'SIZE' resource, if that is possible. Otherwise, the application is 
given the largest amount of memory available that is greater than or 
equal to the amount specified in the "minimum size" field. If that 
amount of memory isn't available, an error is returned. 

When you exit an application being run in a MultiFinder environ
ment, the memory occupied by the program's application heap is 
deallocated and becomes available for use by other applications. 

MultiFinder and Low-Memory Globals 

One tricky problem that MultiFinder faces when it switches from one 
application to another is what to do about system globals. The values of 
some system globals-for example, the contents of MenuList ($0AIC), 
which contains a handle to the application's current menu bar-differ 
from application to application, and the values can't just disappear into 
a black hole when an application temporarily moves from the fore
ground of the desktop into the background. 

MultiFinder neatly solves this problem by making a separate copy of 
certain important low-memory globals for each active application. 
Then, when the user switches from application to application, the 
appropriate sets of globals are swapped into and out of memory, along 
with application heaps and stacks. Not all system globals are copied, 
however; MultiFinder is intelligent enough to know which globals are 
important enough to keep and which aren't. 



392 ..,. Chapter 7 MPW and the Memory Manager 

~ The Stack 

The stack is another area of memory in which an application can allocate 
and deallocate memory dynamically. When you declare a local variable 
in a program-for example, by using a VAR declaration inside a Pascal 
procedure or function, or by declaring a local variable inside a C 
function-the variable is placed on the stack. When the procedure or 
function ends, its local variables are pulled off the stack, and the stack 
space that they occupied is deallocated. 

When an application uses global variables, they are placed just above 
the stack when the application is loaded into memory. They aren't 
removed from the stack until the user quits the application. 

From the time an application is launched until the time it quits, the 
starting address of its global variables is kept in a 680XO register called 
the AS register, and also in a low-memory global called CurrentAS. 
Applications access their own global variables by checking the contents 
of either the AS register or the system global CurrentAS. 

Programs written in assembly language usually access their global 
variables via the 680XO AS register. Programs written in Pascal and C 
access their global variables the same way, but the programmer usually 
doesn't have to be aware of exactly how the job is done because the 
compiler that's used to write the program takes care of it. 

More information on how global variables are accessed via the AS 
register is presented later in this chapter. 

How the Stack Works 

Although the analogy isn't perfect, a computer stack is sometimes 
compared to a spring-loaded plate dispenser in a cafeteria, as shown in 
Figure 7-2. When you remove a plate from the top of the stack, the next 
plate in the stack becomes the top plate and moves up to replace the 
plate that has been removed. You can put plates on top of the stack at 
any time you like, but you can never get to the plates underneath the 
one that is currently on top until it is taken away. 

In other words, a stack of plates is a LIFO (last-in, first-out) device: 
The last item that was pushed onto the stack is always the first to be 
pulled off the stack, and you can never get to the second item in the 
stack until the first one is removed. 

Furthermore, the plates stored in a stack of plates are always 
contiguous; that is, there can never be an empty space between two of the 
plates. Unless a plate is on the top of the stack or on the bottom, there is 
always another plate above it and another plate below it. 



.., Mapping the Macintosh 393 

Property of Joe's Diner 

Figure 7-2. A stack 

A stack in a computer is also a LIFO device. In a computer stack, just 
as in a stack of plates, the area of memory occupied by the stack is always 
contiguous. Since space is available only at the top of the stack-never in 
the middle-the stack can never contain any unallocated "holes." But an 
application heap can contain gaps, as you shall see later in this chapter. 

The Stack Pointer 

As noted earlier, comparing the stack with a stack of cafeteria plates 
isn't exactly accurate. Although plates can be physically removed from 
a stack, memory addresses are never actually removed from a com
puter. They always stay where they are, of course; but a stack pointer 
can be used to keep track of where the top of the stack is, as illustrated 
in Figures 7-3 and 7-4. 

Figures 7-3 and 7-4 show a stack and a stack pointer. In Figure 7-3, 
the stack pointer is pointing to a memory location holding the value 
6A5B9C32, at the top of the stack. 



394 ~ Chapter 7 MPW and the Memory Manager 

6A589C32 -1---1 

1F4BC390 

6EDF8C87 

23BOE472 

04AF6492 

Top of stack 

Pointer 

Property of Apple Computer 

Figure 7-3 . A stack with a pointer 

6A5B9C32 

1 F4BC390 

6EDF8C87 -1---11 Topofstack 

Pointer 

23BOE472 

04AF6492 

Property of Apple Computer 

Figure 7-4. Moving the stack pointer 



• Mapping the Macintosh 395 

In Figure 7-4, the values 6A5B9C32 and 1F4BC390 have been 
"removed" from the stack. Physically they are still there, but the pointer 
now points to the memory address holding the value 6EDF8C87. This 
means that the memory address that holds the value 6EDF8C87 is now 
considered to be at the top of the stack. 

Thus, when a piece of information is "removed" from the stack, the 
pointer is changed to point to a location closer to the bottom of the stack; 
and when a piece of information is placed on the stack, the pointer is 
changed to point to the new top of the stack. So the pointer always 
points to the memory address that is considered the top of the stack. 

In the 680XO microprocessor, as in Figures 7-3 and 7-4, a register 
called the stack pointer is used to keep track of information stored on 
the stack. However, unlike the stack pointer shown in Figures 7-3 and 
7-4, the stack pointer in the 680XO always points to the next available 
stack location. Each time a piece of data is pushed onto the stack, the 
value of the stack pointer is incremented; and each time a piece of data 
is pulled off the stack, the value of the stack pointer is decremented. So 
the stack pointer always holds the address of the next available memory 
location in the block of Macintosh memory used as a stack. 

Another difference between a real computer stack and the stacks 
shown in Figures 7-3 and 7-4 is that a computer stack usually grows 
from higher memory address toward lower memory addresses. In other 
words, the bottom of a computer stack is at a higher memory address 
than the top of the stack. Therefore, Figure 7-5 is a more accurate 
illustration of how a stack really works in the Macintosh. 

In Figure 7-5, the stack shown in earlier figures has been turned upside 
down. Also, memory addresses have been added to the illustration to 
show you that the bottom of the stack is actually at a higher memory 
address than the top of the stack. Notice that the memory addresses 
shown in the illustration progress in increments of two; that's because 
each address on a stack must be large enough to hold a 16-bit word. 

Finally, in Figure 7-5, the stack pointer holds the address 27 A4FE: the 
next available memory address on the stack. That's the way a stack really 
works; the next value pushed onto the stack shown in Figure 7-5 will be 
placed in memory address 27 A4FE, and the stack pointer will be 
decremented to point to memory address 27 A4FCD. 

Suppose that the values 6A5B9C32 and 1F4BC390 are removed from 
the stack shown in Figure 7-5. What memory address does the stack 
pointer hold now? If your answer was 27 A502, you're right; the stack 
pointer always holds the address of the next available memory location 
on the stack. 



396 Ill> Chapter 7 MPW and the Memory Manager 

Property of Apple Computer 

27A508 04AF6492 

27A506 23BOE472 

Memory 27A504 6EDF8C87 

addresses 
27A502 1 F4BC390 

27A500 6A589C32 Stack 
pointer 

27A4FE ... 27A4FE 

Figure 7-5. How a stack really works 

Avoiding Stack Corruption 

When you write a program in assembly language, every routine that 
you write must leave the stack in exactly the same state in which it was 
found. In other words, when a routine ends, the stack pointer must 
always have the same value that it had when the routine began. The 
reason that this is so important in assembly language is that, in pro
grams written in assembly language, all routines share the use of the 
stack. If another routine has pushed a value onto the stack before your 
routine begins, and your routine goes looking for the value in the same 
place after your routine ends, the value had better be there; if it isn't, a 
system crash is almost inevitable. 



.._ Pointers, Handles, and Heaps 397 

IJll- Pointers, Handles, and Heaps 
A stack is designed to hold relatively small amounts of information for 
relatively short periods of time-usually, local variables. When you 
want to store longer blocks of information or you want to keep the 
information around for a longer time, the place to keep the information 
is in the application heap. 

When an application needs to allocate or deallocate memory in its 
heap, it calls the Memory Manager. The Memory Manager then does all 
the necessary housekeeping to keep track of memory as it is allocated 
and released. Since an application can request almost any amount of 
memory from the Memory Manager and can request it at almost any 
time, a heap doesn't grow and shrink in an orderly way like a stack. In 
fact, after a program has been running for a while, its heap tends to 
become fragmented into a patchwork of allocated and free blocks, as 
shown in Figure 7-6. 

r ' ' •\lf•X/71 
Used memory r:.",:~i:i(;TI'.~::._ 

Unused memory I I 
Figure 7-6. A fragmented heap 



398 ~ Chapter 7 MPW and the Memory Manager 

By the Way ~ / A Contiguous Observation. According to Apple expert Scott 
Knaster, the editor of the Macintosh Inside Out series, the stack is a 
LIFO structure and the heap is an LIOF structure. LIOF, he saysf · 
stands for "Last in, OK, fine." 

When a heap has become fragmented, and a program asks the 
Memory Manager to allocate a new block of a certain size, the Memory 
Manager may not be able to satisfy the request even if enough free space 
is available. That's because the memory space that is available in the heap 
may be broken up into blocks smaller than the requested size. When this 
kind of situation occurs, the Memory Manager tries to create enough 
space to satisfy the application's request by compacting the heap, that is, 
by moving blocks of allocated memory together in order to coalesce the 
available space into a single larger block, as shown in Figure 7-7. 

CI·~·· 
~ 

L' . -3:2_. •·. i2 ...=;_ 
:;:s:: -,,-

:3.: 
··;•:. ·~ 

...:'. 
I < 

-Ji .. <. ~ 
; . 
"""" 

Used memory 

Unused memory 

Figure 7-7. A compacted heap 



IJJJ> Pointers, Handles, and Heaps 399 

..,. Pointers and Handles 

When you request a block of memory from the Memory Manager, you 
can specify that it be made relocatable or nonrelocatable. Relocatable 
blocks are blocks of memory that the Memory Manager can move during 
heap compaction. Nonrelocatable blocks are blocks of memory that the 
Memory Manager will never move. 

Nonrelocatable Memory Blocks 

If you ask for a nonrelocatable block of memory, the Memory Manager 
allocates the block and returns a pointer to it. You can then access the 
memory by simply using the pointer that the Memory Manager has 
assigned. 

Once a block of nonrelocatable memory has been allocated, it stays in 
its initial location until you remove it from memory; as long as it 
remains in memory, the Memory Manager will never move it in an effort 
to defragment the heap. 

Although it's easy to access a nonrelocatable memory block-you can 
merely refer to it by its pointer-you should try to avoid using nonre
locatable blocks in Macintosh programs. If you put a lot of nonrelocatable 
blocks in an application, memory can become hopelessly fragmented. 

You can request a block of nonrelocatable memory by using the 
Memory Manager call NewPtr. In Pascal, the syntax of the NewPtr call is 

FUNCTION NewPtr (logicalSize: Size) : Ptr; 

where Size is a data structure defined in the Memory Manager's 
interface file as a long integer. In C, the calling sequence of the NewPtr 
call is 

Ptr NewPtr(Size logicalSize); 

In a program written in Pascal, you could use the NewPtr call like 
this: 

myPtr := NewPtr(anySize); 

In a C program, you could do it this way: 

myPtr = NewPtr(anySize); 



400 ~ Chapter 7 MPW and the Memory Manager 

When you're finished with a block of nonrelocatable memory, you 
can free it for other uses and dispose of its pointer by making the 
Memory Manager call DisposPtr (yes, that's the way it's spelled). In 
Pascal, the syntax of the DisposPtr call is 

PROCEDURE DisposPtr (p: Ptr); 

In C, this is the format: 

void DisposPtr(Ptr p); 

Pointers, Handles, and Relocatable Blocks 

If you ask the Memory Manager for a relocatable block of memory, the 
Memory Manager allocates the block, assigns a pointer to it, and places 
that pointer in a table of master pointers stored in a nonrelocatable 
memory block in the heap. 

The Memory Manager then returns a handle: the address of the 
master pointer that has been assigned to the memory block that you 
requested. From that point on, you can access the block of memory that 
you have requested by using its handle. 

If you've never worked with handles, you might find the terms 
"pointer," "master pointer," and "handle" a little confusing. Remember 
that the value of a handle is the address of a master pointer; the value of a 
master pointer is the address of a relocatable block of memory. 

Figure 7-8 illustrates the way this all works. The illustrations show a 
block of memory that the Memory Manager has moved. In the second 
illustration, the contents of the master pointer have been changed to 
point to the block's new location, but the location of the master pointer 
remains the same. Thus the handle, which points to the master pointer, 
can still be used to access the moved memory block. 

Why You Should Use Relocatable Blocks 

The use of relocatable memory blocks is highly recommended in 
Macintosh programs, since the Memory Manager can move relocatable 
blocks around at will whenever it needs to compact the stack and free 
larger sections of memory. 

When the Memory Manager moves a relocatable block to a different 
memory location, it removes the block's old pointer from the table of 
master pointers kept in the heap, and replaces it with the block's new 
pointer. But the block's handle-now the pointer to its new master 



Memory 
block 

Heap 

Master 
pointer 

s 

I))> Pointers, Handles, and Heaps 40 l 

Memory 
block 

Heap 

Master 
pointer 

s 
Figure 7-8. How master pointers and handles work 

pointer-remains the same. So, no matter how many times a Memory 
Manager moves a relocatable block, you can always access it by using 
its handle. 

The Structure of a Master Pointer 

Figure 7-9 shows how a master pointer is configured in a Macintosh 
system that uses 24-bit addressing. Prior to the introduction of Software 
System Version 7.0 and the Macintosh Ilci, master pointers were always 
configured as illustrated in Figure 7-9. With the introduction of System 7, 
however, some models of the Macintosh now support 32-bit addressing 
and the structure of a master pointer is different. 

In a 24-bit addressing system as well as a 32-bit addressing system, a 
master pointer is a long word; that is, a word that is 32 bits long. When 
24-bit addressing is used, the low-order three bytes of the word contain 



402 .._ Chapter 7 MPW and the Memory Manager 

Bits 7 6 5 4 o Address of block's contents 

I I I I I • 
t t Resource bit 

~Purgebit 
------- Lock bit 

Figure 7-9. Structure of a master pointer 

the address of the block's contents, and the high-order byte contains 
flag bits that specify the block's current status. 

When 32-bit addressing is used, a master pointer contains a 32-bit 
address and therefore has no bits left over to be used as flags. Con
sequently, in a hardware and software configuration in which 32-bit 
addressing is used, the operating system stores information about 
master pointer flags in data structures set aside for that purpose rather 
than storing it within the 32-bit word used for the pointer itself. 

Note that applications do not have to be aware of the structure of a 
master pointer if they follow Apple's developer guidelines and use 
routines provided by the Memory Manager for setting and clearing 
master pointer flags. For instance, to set or clear a master pointer's Lock 
flag, applications should use the HLock and HUnlock routines instead 
of directly accessing the flags in the master pointer. 

If an application sets and clears master pointer flags directly rather 
than using Memory Manager calls that achieve the same results, the 
application will not execute correctly in environments that support 32-
bit addressing. More information about 32-bit addressing is provided 
later in this chapter. 

Master Pointer Flags 

When 24-bit addressing is used, this is the structure of the high-order 
byte of a master pointer: 

• Bit 7 is called the lock bit. It is set to 1 if the block is locked, and 
cleared to 0 if the block is unlocked. 

• Bit 6 is the purge bit. It is set to 1 if the block is purgeable, and 
cleared to 0 if it's unpurgeable. 



~ Pointers, Handles, and Heaps 403 

• Bit 5 is used by the Resource Manager to identify blocks containing 
resource information; in this bit, such blocks are marked by a 1; 
blocks without a resource are marked by 0. 

Note that the flag bits in the high-order byte have numerical signifi
cance in any operation performed on a master pointer. For example, the 
lock bit is also the sign bit. 

~ Blocks That Are Always Nonrelocatable 

Now that you know why you should avoid the use of nonrelocatable 
blocks, you're ready to hear the bad news. Some kinds of memory 
blocks are always nonrelocatable. They are listed here. 

• Master pointer blocks: Master pointer blocks are blocks of memory 
that hold the master pointers to blocks of memory that are 
relocatable. If a master pointer block could be moved around in 
memory, the handles that are used to access master pointers 
wouldn't have anything permanent to point to, and the Macintosh 
wouldn't work at all. You can, however, prevent an application's 
master pointer blocks from fragmenting memory by placing all the 
master pointer blocks that you'll be using at the bottom of the heap 
as soon as your application is launched. Procedures for doing this 
are outlined later in this chapter. 

• GrafPorts: A GrafPort, as explained in the "QuickDraw" chapters in 
Inside Macintosh, is a data structure that QuickDraw uses for drawing 
operations. When you want to access a GrafPort in a program, you 
must use a pointer rather than a handle. To prevent GrafPorts from 
fragmenting an application's heap, you should initialize QuickDraw 
and set up any GrafPorts you'll be using as soon as possible after you 
launch your program, as explained later in this chapter. 

• Window records: A window record is a nonrelocatable object because 
it contains a GrafPort. To keep window records from fragmenting 
your application's heap, you should decide how many windows 
your program will need and set them up as early as possible in your 
program. Also, it helps to assign all your window records from the 
main segment of your program. Procedures for segmenting 
programs are also described later in this chapter. 

• Dialog records: A dialog record contains a window record, so dialog 
records are also nonrelocatable. Dialog records aren't as likely to 
cause long-term heap-fragmentation problems as other kinds of 



404 ..,, Chapter 7 MPW and the Memory Manager 

Important ., 

windows are, because a dialog window is typically opened, used, 
and disposed of rather quickly. Nevertheless it's still a good idea to 
assign dialog records early in an application, and only from the 
application's main memory segment. 

What's the Hurry? Why should nonrelocatable blocks be allocated 
as soon as a program is launched? They should be allocated that 
soon because the Memory Manager is smart enough to look for 
memory at the bottom of the heap when it is available. The sooner 
you ask the Memory Manager for a block of nonrelocatable 
memory, the more likely the M~mory Manager will be to place the 
block as low on the heap as possible. Since the block stays where it 
is for the duration of your application, it won't cause the heap to 
become fragmented during compacting operations. 

The NewHandle Call 

To request a block of relocatable memory, you can use the Memory 
Manager call NewHandle. In Pascal, the syntax is: 

FUNCT I ON NewHandle (logicalS i ze : Size ) : Handle ; 

where Size is a data structure defined in the Memory Manager's 
interface file as a long integer. In C, the calling sequence of the 
NewHandle call is: 

Handle NewHandle (Size logicalSize) ; 

In a Pascal program, you could write a NewHandle call this way: 

myHandle := NewHandle (someSize) ; 

In a program written in C, you could write it like this: 

myHandle = NewHandle(someSize ); 

When you're finished with a block of relocatable memory, you can 
free it and discard its handle by making the Memory Manager call 
DisposHandle. In Pascal, the syntax of the DisposHandle call is 

PROCEDURE DisposHandle (h : Handle ); 



~ Pointers, Handles, and Heaps 405 

In C, this is the format: 

void DisposHandle(Handle H); 

Dangling Pointers, and How to Avoid Them 

Although you should use relocatable memory blocks whenever you 
can, there's one problem that the use of relocatable blocks can cause
and it's a common cause of bugs in Macintosh programs. 

The problem can be illustrated with this scenario: 
Suppose you have created a relocatable block by calling NewHandle, 

and you want to refer to it using a pointer. You might want to do this, for 
example, if you're repeatedly accessing the structure inside a loop: Access 
with a pointer would save a dereference each time through the loop, thus 
speeding it up. So, you dereference the handle to get a pointer, then tuck 
the pointer away for safekeeping-say, in a local variable. 

Next, your program makes a call to some other manager. This call 
requires an allocation of some memory, but the Memory Manager can't 
find enough memory. So it compacts the heap. While this is going on, 
the structure that you plan to access using your pointer is moved some
where else in memory. 

Now you try to access your information by using the pointer that 
you have stored in a local variable. 

Guess what; it isn't there. It's somewhere else now. So your program 
crashes. You have fallen victim to something commonly known as a 
dangling pointer: a pointer that points nowhere in particular, because 
the information that it used to point to has been moved to another 
location in memory. 

The NewHandle call returns a handle, rather than a pointer. So, 
when you want to access a block of memory that you have allocated 
using NewHandle, you must dereference the block's handle. When you 
dereference the handle, you have a pointer. 

This is the format for dereferencing a handle in Pascal: 

myPtr := myHandleA; 

In C, the equivalent is: 

myPtr = *myHandle; 



406 ~ Chapter 7 MPW and the Memory Manager 

Another Way to Create a Dangling Pointer 

Here's another way that you can wind up with an invalid, dangling 
pointer: 

1. You allocate a block of memory, and get a handle to it, by using the 
NewHandle call. 

2. By using dereferencing, you obtain a pointer that you can use to 
access your relocatable block. Then you store your pointer in a 
variable. 

3. Before you get a chance to use your pointer, a call is made that 
causes the Memory Manager to compact memory. 

4. Then you use the pointer that you have obtained by derefer
encing-but the block of memory that the pointer pointed to after 
Step 2 has now been moved! 

5. Result: A dangling pointer, and a potential crash in your program. 

It's very important to remember this scenario, because it's a common 
cause of crashes in Macintosh programs. Heap compaction can only 
occur as the result of a few operating system calls, all of them in the 
Memory Manager: NewHandle and NewPtr are the most commonly 
used ones. But there's a complication: other Toolbox and operating sys
tem calls may, during their execution, call upon one of the compaction
causing routines, and this isn't always easy to predict. For example, the 
seemingly-innocent HideWindow call can cause compaction, because it 
may allocate memory for QuickDraw regions. 

Apple publishes a list that indicates which Toolbox and operating 
system calls may cause compaction, but this list changes with every new 
system software release, so it's difficult to have up-to-date information. 
The safest course of action is to assume that any Toolbox or operating 
system call may cause compaction. 

Another dangerous practice is to obtain a pointer by dereferencing a 
handle, and then to call a routine in your own program before you use the 
pointer you have obtained. The routine that you call may look safe 
enough, but it may be in another program segment. If it is in another 
segment, and if the segment has to be loaded into memory by the 
Segment Loader, that can cause memory compaction. 

Finally, danger may be lurking in your compiler. Some Pascal or C 
library routines, such as print£, can make unannounced Toolbox or 
operating system calls that result in memory relocation. 



.,,. Pointers, Handles, and Heaps 407 

The Hlock and HUnlock Calls 

There are two Memory Manager calls that can help you make sure that 
no dangling pointers creep into an application. One is HLock, which 
locks the block of memory associated with a handle, so that the block 
can't be moved. The other call is HUnlock, which frees a locked block of 
memory. You must be careful with these calls, though, because they can 
cause heap fragmentation. 

You can call HLock just before (or immediately after) you dereference 
a handle. The block of memory associated with the handle then becomes 
temporarily unrelocatable. Once you have locked a relocatable block 
using HLock, the Memory Manager refuses to move it until it is unlocked 
with the HUnlock call. So you can prevent the creation of a dangling 
pointer by taking these steps: 

1. Allocate a block of memory using NewHandle. 
2. Obtain a pointer to the block by using dereferencing. 
3. Lock the handle using HLock. 
4. Use your pointer in any way you like; it's safe now. 
5. When you have finished using your pointer, unlock the block 

which it accesses by using HUnlock. 
6. If you need to access the same block of memory later on in a 

program, follow the above Steps 1 through 5 again. 

Using the Hlock and HUnlock Calls 

The HLock call is very easy to use; in Pascal, its syntax is: 

PROCEDURE HLock (h: Handle); 

In C, the format is: 

void HLock(Handle h); 

The syntax of the HUnlock call is the same. In Pascal: 

PROCEDURE HUnlock (h: Handle); 

And inC: 

void HUnlock(Handle h); 



408 ..,. Chapter 7 MPW and the Memory Manager 

Once you know how to use HLock and HUnlock, you have no excuse 
for writing a program that contains a dangling pointer; just lock every 
handle you dereference just before, or just after, you dereference it. But 
when you're finished with a handle that you have dereferenced and 
locked, be sure to restore it to its original state by unlocking it. 

Most important, make sure that your program doesn't cause any 
memory to be allocated while a handle is locked. If you do that, or if 
you forget to unlock a handle that has been locked, you can fragment 
your computer's memory. 

Double-Dereferencing 

Although the calls HLock and HUnlock are a sure-fire defense against 
dangling pointers, it's not absolutely necessary to use them every time 
you dereference a handle-as long as you're very, very careful. 

When you write a program in C or Pascal, there's another technique 
for avoiding dangling pointers that's called double-dereferencing. 
Double-dereferencing is even safer than using HLock and HUnlock, and 
it's easier-because your compiler does it for you. 

Using Double-Dereferencing 

In Pascal, you can double-dereference a handle in much the same way 
that you get the contents of a pointer: by using the special character ", 
but typing it twice. Suppose, for example, that you had a data structure 
stored in a relocatable block of memory, and that the handle to the 
structure was named myStructure. 

In a Pascal program, you could obtain the value of any field in the 
data structure in one step, by writing a line like this: 

valueOfField := myStructureAA.fieldl; 

In C, it's the same story: use the pointer-access symbol *, but use it 
twice. In a C program, you could double-dereference a handle in a 
single step using this construction: 

valueOfField = ( **myStructure) . fieldl; 

The process is easy: Just use the handle in the same way that you 
would use a pointer, but use two pointer-access symbols instead of one. 
When you double-dereference a handle in this fashion, there is no need 
to call HLock or HUnlock, since the whole process can be written in a 
single line of code. 



_.. Using the Memory Manager 409 

Macintosh lore is full of stories about how dangling pointers can 
cause programs to self destruct. But if you use pointers and handles 
carefully, you need never fall victim of such a catastrophe. 

_... Using the Memory Manager 
You don't have to initialize the Memory Manager in order to use it. The 
Memory Manager is automatically initialized at startup time, and a 
system heap zone is automatically allocated. 

A Macintosh heap is made up of three kinds of heap blocks: 
relocatable blocks, nonrelocatable blocks, and free blocks. Free blocks are 
blocks that might once have been allocated, but no longer are. 

Every heap begins with a heap zone header, which provides impor
tant information about the heap to which it's attached. Fields in the 
heap zone header specify such things as the number of free bytes in the 
zone, the block of memory that's next in line to be purged, and the 
number of master pointers that have been allocated to the block with 
the MoreMasters call (described later in this chapter). The first byte of 
data in the heap is the last byte of the heap zone header. 

Each block in a heap starts with a block header, which contains vital 
information about the block, including a field that tells which of the 
three varieties of heap blocks it is. The contents of the block-the area 
where the block's actual data is stored-follows the block header. 

The only time you're likely to access a heap zone header or a block 
header directly is when you use MacsBug to debug a program. If you're 
interested in finding out more about such esoteric topics as heap zone 
headers and block headers, see the "Memory Manager" chapters of 
Inside Macintosh. 

... How the Memory Manager Allocates Space 

Each time an application is launched, an application heap and stack are 
initialized. By default, an application's stack is allocated 8K of memory, 
and its heap is allocated 6K. In addition, an area of memory called a grow
able heap space is set aside in case more stack or heap space is needed. 

This area designated as growable heap space is situated between the 
stack and the heap. It lies in the area that contains the dotted line in 
Figure 7-1. It can be used by either the stack or the heap, whichever asks 
for it first. However, it is called growable heap space because it is usually 
claimed by the heap; most applications need much more memory space 
for their heaps than for their stacks. 



410 .... Chapter 7 MPW and the Memory Manager 

How Heap and Stack Space Are Allocated 

The initial allocation of an application's memory is determined by the 
values of several system globals. 

The size initially allotted to the stack comes from a global variable 
named DefltStack, at memory address $0322 (hexadecimal 322). A 
pointer to the start of the heap is kept in a global variable called 
ApplZone, at address $02AA. A global variable named HeapEnd, at 
address $0114, holds the address of the end of the heap. Yet another 
global variable-ApplLimit, at address $0130-contains a pointer to the 
end of the growable heap space region . 

.,.. Master Pointer Blocks 

When an application starts up, it is also allocated a master pointer 
block, in which all of its master pointers will be stored. Initially, this 
block is only large enough to store 64 master pointers-usually not 
nearly enough for a medium- to large-sized application. If you think 
your application might need more pointers than that-and it's better to 
err on the side of too many than too few-you can get more master 
pointer blocks by making the Memory Manager call MoreMasters. 

The syntax of the MoreMasters call is simple; it takes no parameters. 
Just execute the statement 

MoreMasters; 

(using a "for" loop, if you like) for each additional block of 64 master 
pointers that you think you'll need. 

How many additional master pointer blocks will you need? It's a 
good idea to allocate at least three and to use more (perhaps consid
erably more) if you're writing a large program. A master pointer block 
requires only 264 bytes of memory-4 bytes for each master pointer, 
plus 8 bytes for a header-so the use of MoreMasters isn't very costly . 

.,.. Tips on Memory Management 

When your application starts up, it should allocate the memory it 
requires in the most space-efficient manner possible, arranging things in 
such a way that most of the nonrelocatable blocks it will need are stored 
together at the bottom of its heap. One call that you should make as 
soon as possible is the Memory Manager procedure MaxApplZone, 
which expands the application heap zone to its limit. You can then call 



.., Using the Memory Manager 411 

MoreMasters several times to allocate as many blocks of master pointers 
as you think your application will need. 

That done, you should initialize QuickDraw and (if your application 
uses windows) the Window Manager. Finally, you should allocate space 
for any GrafPorts, window records, and dialog records that your pro
gram will be using. If you do that quickly enough, the memory manager 
places all your GrafPorts, window records, and dialog records at the 
bottom of the heap, and those three kinds of structures-which are 
always stored as nonrelocatable objects-won't cause any heap-frag
mentation problems later on . 

.., QuickDraw Globals 

When QuickDraw is initialized by an application written in MPW, a 
portion of the application's stack is reserved for a set of global variables 
that are used in QuickDraw operations. These variables are known, 
logically enough, as QuickDraw globals. When an MPW application 
initializes QuickDraw, the QuickDraw globals are all placed on the 
application's stack, just below the application's own global variables. 
That means that QuickDraw globals are placed on the stack after the 
application's own global variables have been allocated. 

There are more than 200 QuickDraw globals, but only nine of them 
are directly accessible from application programs. Those nine globals are 
listed in Table 7-1. As the table shows, the first variable in QuickDraw's 
list of global variables is a pointer called thePort. This pointer, a variable 
defined as thePort in QuickDraw's interface files, points to a GrafPort. 
Other public and private QuickDraw globals are used to set up thePort's 
drawing environment: patterns, font data, and so on. 

Table 7-1. QuickDraw globals 

Variable Type Offset from thePort 

qd.thePort GrafPtr 0 

qd.white Pattern -8 

qd.black Pattern -16 

qd.gray Pattern -24 

qd.ltGray Pattern -32 

qd.dkGray Pattern -40 

qd.arrow Cursor -108 

qd.screenBits Bitmap -122 

qd.randSeed Long -126 



412 .,,. Chapter 7 MPW and the Memory Manager 

BytheWay ... 1 

One important QuickDraw global is the one identified as screenBits 
in Table 7-1. The screenBits variable is a data structure that defines the 
bitmap in which QuickDraw does its drawing. Normally, screenBits 
defines QuickDraw's drawing area as the screen. 

In programs written under MPW, you can access QuickDraw's globals 
by using the qd constant. This constant is also defined in QuickDraw's 
interface files, and it can be treated as a data structure. For example, 
you can access the QuickDraw global screenBits by using the 
qd.screenBits.bounds constant. 

More information about QuickDraw, and how QuickDraw's global 
variables work, can be found in the "QuickDraw," "Color QuickDraw," 
and "Assembly Language" chapters of Inside Macintosh. 

·t~Diit .. ·Glof?at~ 
'~ag~!wh~se•· .. gt9b 
~~'~gth,~ J"O()l~()~ 
·· hi~;fiit~~w ri:tem~~·. 

,, , ',o - - - --~ 

~aw·J$;:~p.e·.9nlj~l·'' 
'abl . < ... · . . .• ced od'~e appli_~f 

e:~~F~fh!~!~~~~~~i~:~~iw~~ ... · 

Since QuickDraw globals are allocated after an application's variables 
are allocated, the starting address of QuickDraw's list of globals may 
vary. Since the globals are placed in memory by being pushed onto a 
stack, the GrafPort pointer called thePort is the QuickDraw global with 
the highest memory address. 

... The A5 World 

To keep track of where an application's QuickDraw globals start, the 
operating system places their starting address in a 680XO register called 
the AS register. Since the first QuickDraw global immediately follows 
the last application global on the stack, you can use the AS register to 
access an application's own global variables as well as to access its 
QuickDraw variables. By applying a negative offset to the contents of 
the AS register, you can access any QuickDraw global. By applying 
additional negative offsets, you can access the application's own global 
variables since they are placed on the stack before the application's 
QuickDraw globals are allocated. 

The Macintosh operating system also uses the contents of the AS 
register to access a jump table: a table that allows routines in one 
segment of a program to call routines in another segment (the segmen
tation of programs is explained later in this chapter). The jump table 



..,. Using the Memory Manager 413 

used by an application always starts 32 bytes above the address con
tained in the AS register. Thus jump table addresses can be calculated 
as positive offsets to the contents of AS. 

Since the AS register can be used to calculate so many different 
addresses, the addresses that can be accessed from the contents of the 
AS register are often referred to as an application's AS world. An appli
cation's AS world includes its global variables, its QuickDraw globals, 
and its jump table addresses. Negative offsets to the contents of AS 
refer to QuickDraw globals and application globals, whereas positive 
offsets refer to the contents of the jump table. Register A7, the stack 
pointer, holds the address of the top of the stack. 

..,.. Initializing QuickDraw 

To initialize QuickDraw, you must make the QuickDraw call InitGraf. 
In Pascal, InitGraf has this syntax: 

PROCEDURE InitGraf (globalPtr: QDPtr); 

where globalPtr is thePort, a pointer to the first variable in QuickDraw's 
table of global variables. In C, the format is: 

pascal void InitGraf(Ptr globalPtr); 

In a Pascal program, this is always the format for calling InitGraf: 

InitGraf(@thePort); 

In C, you call InitGraf this way: 

InitGraf((Ptr) &qd.thePort); 

where globalPtr is thePort. 
For an example of how InitGraf is used in an application, see the 

Creation program in Appendix C. 

..,.. Segmenting an Application 

As you may recall from Chapter 6, every well-behaved application has 
a main event loop. In its main event loop, an application recognizes 
events such as keydown operations and mouse clicks, and it responds 
accordingly. 



414 ~ Chapter 7 MPW and the Memory Manager 

Since the main event loop is the most important part of a Macintosh 
application, it's essential that the program's main event loop remain in 
memory for as long as the application is running. However, most pro
grams have certain parts-for example, sections that are used only for 
initialization purposes-that are used only once, or are used so rarely 
that they don't have to remain in memory all the time. 

To make the best use of memory when you write an application, you 
can divide your program into segments: a main segment, which includes 
the main event loop and other portions of code that should remain in 
memory all the time, and other segments that are used just once or are 
used just now and then. 

When you have divided a program into segments, you can launch 
your program in the usual way. You then use an operating system 
manager called the Segment Loader to unload segments of the program 
when they are no longer required. To free the memory occupied by a 
segment that's no longer needed (or that won't be needed for a while), 
all you have to do is call the Segment Loader routine UnloadSeg. There 
is also a LoadSeg call, and it's often used by the Macintosh system for 
segment management operations, but it's rarely called by applications. 

The reason that programs don't often call LoadSeg is that they don't 
have to. When you free a block of memory using UnloadSeg, the seg
ment you have designated doesn't go away forever; it's merely marked 
as purgeable. Therefore, if your application calls a routine in a segment 
that has been unloaded, the unloaded segment may still be in memory. 
If it isn't, the Segment Loader writes it back into memory automatically. 
So you never have to call LoadSeg explicitly, even to restore a segment 
that has been unloaded. 

Furthermore, you can't break anything by calling UnloadSeg on a 
segment that has already been unloaded. The Segment Loader figures 
out that the segment has already been unloaded. Since UnloadSeg 
doesn't do anything when it's called on a segment that has already been 
unloaded, some applications go so far as to call UnloadSeg on rarely 
used segments with every iteration of the main event loop. That way, if a 
rarely needed segment has been loaded into memory, it will be unloaded 
the very next time the main event loop executes. 

When you write a program using MPW Pascal, you can set up as 
many segments as you like. To figure out what routines belong in what 
segments, all you have to do is place routines that perform similar 
operations in the same segment. For example, procedures that perform 
disk operations could be collected together and unloaded (if necessary) 
with each execution of the main event loop. 



_. Using the Memory Manager 415 

In Pascal, this is the syntax of the UnloadSeg call: 

PROCEDURE UnloadSeg (routineAddr: Ptr); 

In C, this is the format: 

pascal void UnloadSeg(Ptr RoutineAddr); 

One excellent way to use UnloadSeg is to place all your program's 
initialization routines in the same segment and then unload that 
segment as soon as your program is initialized. For an example of a 
program that is set up this way, refer to the Creation.p program in 
AppendixC. 

Once you have decided how you want to segment an application, 
you can easily place any procedure in the program in any segment you 
desire. In a program written in MPW Pascal, all you have to do is 
precede the name of a segment with the character combination "$S", 
and place it inside curly brackets in a line above a procedure's source 
code. For example, 

{$S Main} 
PROCEDURE AboutDialog; 

When you write a program in MPW C, you can assign a function to a 
segment in a similar manner. Just type the words "#pragma segment," 
followed by the name of a segment, on a line that precedes the 
function's source code. For example, 

#pragma segment Main 
AboutDialog () 

As you develop your program, you may find that you want to change 
the way it's segmented; you may find that you have assigned some 
procedures to segments where they don't really belong, and you may 
need to move them to segments where they fit better. That's no problem. 
If you want to move a routine from one segment to another, just change 
the segment designation that precedes the routine and recompile your 
application. 



416 IJJ> Chapter 7 MPW and the Memory Manager 

Warning .,.. Never, ever assign a routine to a segment, call a routine in another 
segment, and unload the calling routine in the routine that's called. 
If you do, the called routine won't have a valid memory location to 
return to! 

One way to avoid making that kind of error is to call UnloadS.eg 
only from your main program segment-which, if you've followed 
all the suggestions made so far, will never be unloaded from · 
memory. In fact, it might be a good idea to make this an ironcla.d 
rufo:I will never call UnloadSeg from any segment except "main.,,. 

Note .,.. The 32~ Segment Boundary. In programs that were written f0r.the 
earliest Macintosh computers-in which memory was severely 
lirnited-'.,-,applications had to be broken up into segments that were 
no more than 32K long. It's no longer essential to limit segment 
lengths to 32K, but Macintosh development systems still worl<:best 
with segments that are no longer than 32K, so the convention in writ.:.. 
ing Macintosh programs is still to set a 32K limit on segment length . 

..,,, Calling the Memory Manager 
The four most often used Memory Manager calls are NewHandle, 
DisposHandle, NewPtr, and DisposPtr. 

NewPtr, as noted earlier in this chapter, allocates a block in the heap 
of a requested size and returns a pointer to the block. You can then 
make as many copies of the pointer as you need and use them in any 
way your program requires. When you're finished with the block, you 
can free the space it occupies with the DisposPtr call. 

NewHandle allocates a block in the heap of any size you have 
requested, and returns a handle to the block. You can then make as 
many copies of the handle as you need and use them in any way your 
program requires. When you're finished with the block, you can free the 
space it occupies with the DisposHandle call. 

IJi. Purging Memory Blocks 

If the Memory Manager can't allocate a block of a requested size even 
after it compacts the heap, it can try to free some space by purging 
blocks from the heap. When a block is purged, it is removed from the 



~ Calling the Memory Manager 417 

heap, and the space it occupies is freed. The block's master pointer is set 
to nil, but the space occupied by the master pointer itself remains 
allocated. From then on, any handle associated with the block points to 
a nil master pointer and is said to be an empty handle. 

If a program needs access to a relocatable block that has been purged, 
it can examine the status of the block's handle. If the handle contains a 
nil, that means that the handle has become empty, and the application 
can reuse it by making the ReallocHandle call. This call creates a new 
block using the same handle and updates its original master pointer, so 
that its handle is no longer nil and refers correctly to its new location. 

When you obtain a memory allocation and a handle by using the 
NewHandle call, the block of memory associated with the handle is 
automatically designated nonpurgeable. You can change the status of a 
handle from unpurgeable to purgeable by making the HPurge call. 
Conversely, you can make a purgeable handle unpurgeable by making 
the HNoPurge call. Before you use HNoPurge, however, you should 
make sure that the block hasn't already been purged. 

In practice, you'll rarely have to worry about any of this because the 
HPurge and HNoPurge calls are rarely used in well-behaved applica
tions. There's usually a better way to use the Macintosh system's ability 
to purge blocks of relocatable memory. The method is this: When you 
want to make a block of memory purgeable, just make it a purgeable 
resource. That way, the Resource Manager will automatically purge and 
restore the block as necessary, and you'll never have to keep track of 
HPurge and HNoPurge calls. 

With the exception of such structures as menus and cursors, which 
generally should stay in memory for as long as they are needed, most 
kinds of resources are designated as purgeable. Then they can be 
removed from memory and restored from memory, as required, by the 
Resource Manager. All you have to do to make a resource purgeable is 
to set the resPurgeable flag in its attributes field when you create it. 
This procedure was explained in Chapter 6. 

~ Other Properties of Memory Blocks 

Once a handle has been allocated, and its status has been set to relo
catable or nonrelocatable, that status can never be changed. However, a 
relocatable block can also be designated locked or unlocked, and 
purgeable or unpurgeable. Furthermore, an application can set and 
change these attributes, as necessary. 

As we saw earlier, when you lock a block of memory, it can't be 
moved, even if the heap is compacted. You can later unlock the block, 



418 ..,. Chapter 7 MPW and the Memory Manager 

once more allowing the Memory Manager to move it during com
paction. You can use the HLock and HUnlock calls to lock and unlock a 
block of memory. 

A block can't be purged from memory unless it's relocatable, 
unlocked, and purgeable. A newly allocated relocatable block is initially 
both unlocked and unpurgeable. 

Other Memory Manager calls 

A number of other Memory Manager calls-some of which may come 
in handy from time to time-are listed in Table 7-2. 

Table 7-2. Memory Manager calls 

Call 

GetHandleSize 

GetPtrSize 

SetHandleSize 

SetPtrSize 

Recover Handle 

CompactMem 

PurgeMem 

Empty Handle 

ReallocHandle 

FreeMem 

MaxMem 

Function 

Returns the size of a memory block associated with a 
handle. 

Returns the size of a memory block accessed with a 
pointer. 

Changes the size of a memory block associated with a 
handle. 

Changes the size of a memory block accessed with a 
pointer. 
Returns a handle that points to a specified master pointer. 

Compacts the current heap zone. 

Purges blocks from the current heap zone. 

Purges a relocatable block from its heap zone and sets 
its master pointer to NIL, making it an empty handle. 

Allocates a new relocatable block with a specified 
handle and a specified logical size, and updates the 
handle by setting its master pointer to point to the new 
block. 

Returns the amount of free space in a heap zone. 
Returns the size of the largest single free block and the 
maximum amount by which the zone can grow. 
MaxMem compacts the entire zone and purges all 
purgeable blocks. 



~ Calling the Memory Manager 419 

Table 7-2. Memory Manager calls (continued) 

Call 

SetGrowZone 

InitZone 

GetZone 

SetZone 

SystemZone 

ApplicZone 

HandleZone 

PtrZone 

InitApplZone 

SetApplBase 

InitZone 

GetApplLimit 

SetApplLimit 

Function 

Sets the current heap zone's grow zone function as 
designated by the growZone parameter. A NIL 
parameter value removes any grow zone function the 
zone may previously have had. 

Creates a new heap zone, initializes its header and 
trailer, and makes it the current zone. 

Returns a pointer to the curent heap zone. 

Sets the current heap zone to a specified zone. 

Returns a pointer to the system heap zone. 

Returns a pointer to the original application heap zone. 

Returns a pointer to the heap zone containing the 
relocatable block with a specified handle. 

Returns a pointer to the heap zone containing the 
relocatable block with a specified pointer. 

Initializes an application's heap zone and makes it the 
current zone. The contents of any previous application 
zone are lost, all previously existing blocks in that zone 
are discarded, and the zone's grow zone function is set 
to NIL. InitApplZone is called by the Segment Loader 
when an application starts up; normally, you shouldn't 
need to call it. 

Changes the starting address of the application heap 
zone to a specified address, and then calls 
InitApplZone. SetApplBase is normally called only by 
the system itself; it's another procedure that you 
shouldn't need to call. 

Creates a new heap zone, initializes its header and 
trailer, and makes it the current zone. 

Returns the current application heap limit. 
GetApplLimit can be used in conjunction with 
SetApplLimit, described below, to determine and then 
change the application heap limit. 

Sets the application heap limit, beyond which the 
application heap can't be expanded. The actual 
expansion is not under the application program's 
control, but is done automatically by the Memory 
Manager when necessary to satisfy allocation requests. 
Only the original application zone can be expanded. 



420 ~ Chapter 7 MPW and the Memory Manager 

Table 7-2. Memory Manager calls (continued) 

Call 

MaxApplZone 

MoreMasters 

Function 

Expands the application heap zone to the application 
heap limit without purging any blocks currently in the 
zone. If the zone already extends to the limit, it is not 
changed. 

Allocates another block of master pointers in the current 
heap zone. This procedure is usually called very early in 
an application. 

In addition to their normal results, many Memory Manager routines 
yield a result code that you can examine by calling the MemError 
function. Error codes returned by Memory Manager calls are provided 
in the descriptions of the calls in the "Memory Manager" chapters of 
Inside Macintosh. 

~ MultiFinder and the Memory Manager 
Prior to the advent of MultiFinder, the Macintosh could execute only 
one application at a time. As a result, the memory architecture of the 
Macintosh was relatively simple, as shown in the memory map pre
sented at the beginning of this chapter. 

In the pre-MultiFinder era, RAM was divided into two main zones: 
a system zone and an application zone. The system zone, situated in 
the lowest area of memory, contained system global variables and a 
system heap. 

The application heap, as you saw earlier in this chapter, is an area of 
memory that holds an application's code, along with all its resources 
such as menus, dialogs, and icons. In addition, objects that are created 
by a program-for example, blocks of text and various kinds of data 
structures-are kept in the application heap. The stack holds the 
application's local variables and a set of QuickDraw globals that are 
used when the application is running. 

When you install System Software Version 7, or use MultiFinder 
while running System Software Versions 5 or 6, you can have multiple 
applications open at once. There is still a system zone, and it is still 
organized the same way it was prior to the introduction of MultiFinder. 
But each application has its own application zone, including an 
application heap and a stack, as shown in Figure 7-10. In Figure 7-10, 
three applications are open, sharing available memory. 



~ Multifinder and the Memory Manager 421 

High memory 

Application l 

Application 2 

Application 3 

System 

Low memory 

Figure 7-10. Multi-application memory map 

..,. Running Multiple Applications 

When multiple applications are open under System 7, or under the pre
System 7 version of MultiFinder, each open application allocates and 
frees space within its own application zone by making calls to the 
Memory Manager. Even when multiple applications are open, however, 
only one application can have control of the 680XO processor at any given 
time. When a user selects an application as the foreground application, it 
becomes the active application and has control of the CPU. 



422 ..,. Chapter 7 MPW and the Memory Manager 

Space within an application's zone is allocated by the Memory 
Manager. The Memory Manager can be invoked directly-for example, 
by making a call such as NewHandle or NewPtr-or indirectly, by mak
ing a call to another manager. For instance, the Window Manager 
routine NewWindow makes calls to Memory Manager routines. 

~ System 7 and the Memory Manager 
With the introduction of System 7, three important new features have 
been added to the Memory Manager. 

• Virtual memory 
• New calls for using temporary memory 
• 32-bit addressing 

Each of these new capabilities is examined in the following subsections . 

..,. Virtual Memory 

Virtual memory is a feature that allows any Macintosh equipped with a 
hardware device called a memory management unit (MMU) to extend 
the amount of available memory beyond the limits of its physical RAM. 
Virtual memory extends the logical address space of the Macintosh by 
using part of the secondary storage available to the computer-such as a 
hard disk-to hold portions of programs and data that are not currently 
in use. 

When an application needs portions of memory that have been placed 
in virtual memory by being written to disk, the operating system brings 
the needed portions back into physical memory by swapping them with 
other unused portions of memory. 

Without virtual memory, if an application needs a greater amount of 
memory than is currently free for application use in the user's system, 
the user must free up some memory to run the application. With virtual 
memory, the operating system can store the contents of memory that is 
being used by other applications elsewhere to make room for the active 
application. This process of shuttling portions of memory between 
physical RAM and a secondary storage device is called paging. 

Except for additional overhead caused by disk 1/0, and the extra 
amount of storage required on secondary storage devices such as hard
disk drives, the operation of virtual memory is almost transparent to 
most Macintosh applications. Consequently, most applications do not 



~ System 7 and the Memory Manager 423 

have to know whether virtual memory is installed. However, the use of 
virtual memory can affect applications that have critical timing require
ments, execute code at interrupt time, or perform debugging operations. 

The use of virtual memory can result in a loss of processing speed, 
since it takes time to access paged-out segments of memory and pull 
them back into physical memory. This performance degradation ranges 
from unnoticeable to severe, depending on the ratio of virtual memory 
to physical RAM and the behavior of the actual applications running. 

To the user, the use of virtual memory has two main benefits: More 
applications can be run at the same time, and applications can work 
with larger amounts of data than they are able to when logical address 
space is limited to available RAM. With virtual memory, instead of 
equipping a machine with amounts of RAM large enough to handle all 
possible needs, a user can install only enough RAM to meet average 
needs. Then, when more memory is occasionally needed for large tasks, 
virtual memory can provide the extra amount of memory required. 

When virtual memory is present, the perceived amount of RAM can 
be extended to as much as 14 megabytes on existing systems and as 
much as 1 gigabyte on systems with 32-bit clean ROMs, such as the 
Macintosh Ilci and the Macintosh Ilfx. 

Requirements for Using Virtual Memory 

To use virtual memory, you must have two things: the right software 
and the right hardware. The software required to use virtual memory is 
System Software Version 7.0 or later. The hardware that is needed is a 
Macintosh equipped with a memory management unit, or MMU. 

The Macintosh Ilx, Macintosh Hex, Macintosh Ilci, Macintosh IIfx, 
and Macintosh SE/30 are ready to run virtual memory as soon as 
System Software Version 7 is installed. A Macintosh II can take advan
tage of virtual memory if it has a 68851 PMMU coprocessor on its main 
logic board in place of the standard address management unit (AMU). 
The 68851 PMMU, incidentally, is the same coprocessor that is needed 
torunA/UX. 

Computers equipped with a Motorola 68000 processor, that is, the 
Macintosh Plus, the Macintosh SE, and the Macintosh Portable, cannot 
take advantage of the virtual memory capabilities of System 7. How
ever, they can run System 7-and take advantage of many of its other 
capabilities-provided they have at least 2 MB of RAM. Furthermore, 
owners of Macintosh SEs have the option of upgrading their machines 
to Macintosh SE/30s. 



424 ~ Chapter 7 MPW and the Memory Manager 

How Virtual Memory Is Allocated 

The Macintosh user can control and configure virtual memory by using 
System 7's memory control panel. This panel provides controls that 
allow the user to turn virtual memory on or off, set the size of virtual 
memory, and set the disk volume on which the backing store resides. 
On the disk volume that is selected, the user can also choose the file 
that the Operating System uses to store the contents of nonresident 
portions of memory. 

The memory control panel also provides several other memory
related user controls. For example, the user can set up a disk cache and 
can select 24-bit or 32-bit Memory Manager addressing if the Macintosh 
being used is a model that permits it. 

System 7 includes a number of new Memory Manager calls that are 
used in connection with virtual memory. These calls are listed and 
described in Inside Macintosh, Volume VI. 

~ Temporary Memory 

When you write an application designed to be run under System 
Software Version 6 or 7, you can use a feature called temporary memory 
to allocate extra memory to the application for limited periods of time. 
With the introduction of System 7, seven new routines for managing 
temporary memory allocation were added to the Memory Manager. By 
using these routines, an application can request additional memory for 
occasional short-term needs. 

When you write a program that takes advantage of System 7's 
temporary memory feature, any available memory-that is, any memory 
that is not currently allocated to another application's RAM partition-is 
available for use by your application upon demand. When your applica
tion no longer needs the temporary memory it has been using, it can 
release the memory, making it available for use by other applications or 
by the operating system. 

When you have System 7 installed, the Macintosh operating system 
also makes use of temporary memory management routines. For 
example, the Finder uses System 7's temporary memory feature to 
secure buffer space to be used during file copy operations. 

To determine how temporary memory is allocated to an application, 
the operating system uses the application's 'SIZE' resource. As 
explained in Chapter 6, every MultiFinder-aware application has a 
'SIZE' resource. Among other things, an application's 'SIZE' resource 
specifies how much memory it requires, and what kinds of hardware 
and system software it is designed to run under. 



~ System 7 and the Memory Manager 425 

When you launch an application, the amount of memory allocated to 
it is set to the preferred size specified in its 'SIZE' resource if that much 
contiguous memory is available. Otherwise, it is set to some smaller 
size. However, the amount of memory allocated to an application is 
never smaller than the minimum size specified in the application's 
'SIZE' resource. 

Prior to the introduction of System 7, it was customary for an 
application to use the 'SIZE' resource to request the largest amount of 
memory that it might ever need for its application heap. This large 
amount of memory was specified as the preferred partition size in the 
application's 'SIZE' resource. 

With the advent of System 7, it is no longer necessary to specify such 
a large preferred memory allocation. When you create an application 
designed to be run under System 7, you should specify a smaller (but 
reasonable) preferred partition size. When you need more memory than 
that for temporary use, you can use the temporary memory allocation 
capabilities provided by the operating system under System 7. 

Because the amount of temporary memory you request might not 
always be available, however, you should not rely on always getting 
the memory you need every time you issue a temporary memory 
request. So you should still make sure that your application will work 
even if there is no temporary memory available when you request it. 

One example of application designed in this way is the System 7 
Finder. If the System 7 Finder needs to copy a file but it can't allocate a 
large temporary copy buffer, it performs the copy using a small 
reserved copy buffer situated within its own heap zone. Thus, although 
the copy might take longer than it would using temporary memory, it is 
still performed. 

Temporary Memory in System 6 and System 7 

The seven new temporary memory routines introduced in System 7 are 
as follows. 

• TempFreeMem 

• TempMaxMem 

• TempDisposHandle 

• TempHLock 

• TempHUnlock 

• TempNewHandle 

• TempTopMem 



426 ~ Chapter 7 MPW and the Memory Manager 

System Software Version 6 had seven similar routines: MFFreeMem, 
MFMaxMem, MFTempDisposHandle, MFTempHLock, MFTempHUn 
lock, MFTempNewHandle, and MFTopMem. For compatibility, you can 
continue to use these names when you write programs using System 7. 

Under System Software Version 7, the following Memory Manager 
routines work even if the handle or pointer was allocated by a 
temporary memory routine. 

• DisposHandle 

• Empty Handle 

• GetHandleSize 

• HandleZone 

• HClrRBit 

• HGetState 

• HLock 

• HNoPurge 

• HPurge 

• HSetRBit 

• HSetState 

• HUnlock 

• ReallocHandle 

• Recover Handle 

• SetHandleSize 

Note that the pre-System 7 calls TempDisposHandle, TempHLock, 
and TempHUnlock are obsolete under System 7, although they still 
work (for the sake of compatibility). 

For more details on using the temporary memory calls introduced 
with System 7, see Inside Macintosh, Volume VI. 

..,. Conclusion 
This chapter explained how the Memory Manager is used in programs 
written using MPW, and presented some new features offered by the 
Memory Manager in System Software Version 7. 

If you have carefully studied this chapter and the two chapters that 
preceded it, you now know how to use the "Big Three" Macintosh 
managers: the Event Manager, the Resource Manager, and the Memory 
Manager. 



8 Building an Application 

Here, at last, is the chapter in which you'll finally get a chance to write, 
build, and execute an application program. In Part One, you learned 
how to write scripts and source code using the MPW editor. Then, in 
Chapters 5, 6, and 7, you learned how to use the "Big Three" Macintosh 
managers: the Event Manager, the Resource Manager, and the Memory 
Manager. In this chapter, you'll have an opportunity to put all this 
knowledge together in a very practical way: by compiling, linking, and 
executing an application program . 

..._ Building a Program with MPW 
In MPW, the process of compiling and linking a program is known as 
building the program. To build an application in the MPW environ
ment, you must take these steps: 

1. Create the resource code for the program using the MPW editor. 
2. Write a resource fork for the program using the MPW editor and 

Rez, or ResEdit. If you write your resource fork using ResEdit, you 
can decompile it into source code using MPW's DeRez command. 

3. Compile or assemble your program. If your program is written in 
MPW Pascal, MPW C, or MPW assembly language, you can 
compile it using the Pascal command, the C command, or the Asm 
command. Other commands may be used to compile programs 
written in other MPW-compatible languages. 

427 



428 .,,. Chapter 8 Building an Application 

Note _.. 

4. If you have written your program's resource fork using the MPW 
editor, you must compile it using the MPW command DeRez. 

5. You can then link your program using the Link command. Link 
resolves cross-references between the segments in a program and 
links object files-including object-code segments, library files, and 
resource forks-into an executable program. One powerful feature 
of the MPW linker is that it can link programs with segments that 
are written in various MPW languages. 

Procedures for compiling and decompiling resources were described 
in Chapter 6. The other steps in the preceding list are covered in this 
chapter. 

Is It "Assemble" or "Compile''? Programmers who work with 
MPW often speak of "compiling" assembly language programs, 
rather than "assembling" them; That isn't precisely correct-'---Or is it? 

As every assembly language programmer knows, assemblers 
assemble programs and compilers compile the:p:i. However" the 
MPW assembler is a little different horn most other a~emblers; it 
produces object-code segments that are constructed' e:factly like the 
object segments created by MPW's Pascal anP. C call\pilers: So;~nce 
you've created an object-code segment using the:MP'1\7 assembler, 
the MPW linker. will happily .. lil\k .. ';Vith. i1.c.9r ·Pascal segment, 
withou~knowing or caring that it.w1;1s.produc~d by an assembler .. 
rather thilll i1 compiler. 

Since th;e. MPW assembler wor~s sci mt.arril<e a compiler/the 
distj.nction between assembling a progra,m ·.with .an assembler. and·· 
compiling it with a compiler has become somewhat blurred· 4'.t th(ii 
MPW world. So, if you get a little sloppy and. start talking,apout 
"compiling" a program that's written in MPW assewbly language, 
MPW wizards will probably ·never notice. They make the. same 
mistake (if it is one) all the time. · 

.,.. Three Ways to Build a Program 

Although it's possible to build a program by typing command lines that 
compile and link it, there is an easier way. In fact, there are two other 
ways. 



.,. Building a Program with MPW 429 

One way is to simplify the build process by using the MPW com
mands CreateMake and Make. There are three steps in using the 
CreateMake and Make commands: 

• The CreateMake command creates a makefile, a script that contains 
rules for building a program. 

• You expand these rules into a set of commands that build a program 
by executing the Make command. 

• You build the program by executing the build commands generated 
by the Make command. 

An even easier way to build a program is to select the items "Create 
Build Commands" and "Build" from the MPW Build menu. 

The three methods that you can use to build a program-the 
command-line method, the write-your-own-makefile method, and the 
quick and easy menu method-are illustrated in Figure 8-1. 

1. Compile the program. 
Commands: Pascal, C, 
Asm 

2. Compile resources. 
Command: Raz 

3. link the program. 
Command: link 

1. Write a makefile. 
Command: CreateMake 

2. Execute the makefile. 
Command: Make 

3. Select and execute 
build commands. 

Execute the program 
from the Finder 
or from MPW. 

Figure 8-1. Three ways to build a program 

1. Select "Create Build 
Commands." 

2. Edit your makefile 
(if necessary). 

3. Select "Build" or 
"Full Build." 



430 ...,. Chapter 8 Building an Application 

If you decide to build a program using the write-your-own-makefile 
method, you must write and execute a CreateMake command and a 
Make command. When you build a program using the MPW Build 
menu, MPW takes care of executing the necessary Make and CreateMake 
commands . 

...,. What You'll Learn in this Chapter 

In this chapter, you will learn how to 

• compile (or assemble) an application using the Pascal, C, and Asm 
commands 

• link an application using the Link command 
• create an object-code library using the Lib command 

• simplify the build process by using the CreateMake and Make 
commands 

• automate the build process by using the MPW Build menu 

..,_ Compiling an Application 
The first step in building a program written in MPW Pascal or MPW C 
is to compile it; that is, to convert it from source code to object code. To 
compile a program written under MPW, you must use an MPW-com
patible compiler. The most popular MPW-compatible compilers are the 
MPW Pascal compiler and the MPW C compiler . 

...,. The MPW C and Pascal Compilers 

The MPW Pasacal compiler and the MPW C compiler are manufactured 
by Apple and are designed to be used with MPW. They are not provided 
with the basic MPW system, but must be purchased separately. 
However, packages that include the MPW system and the compiler of 
your choice-or that include both compilers-are available as specially 
priced "bundles" from APDA, the Apple Programmer's and Developer's 
Association. (APDA's address is provided in the Preface.) 

...,. The MPW Assembler 

Apple also manufactures an assembler that can be used to assemble 
assembly language programs written under MPW. The MPW assembler 
is also offered by APDA as a separate product; but it, too, can be pur-



.,., The MPW C Compiler 431 

chased bundled with the MPW system. In fact, the MPW system, the 
MPW assembler, and both MPW compilers are available all packaged 
together in one giant bundle . 

..- The MPW C Compiler 
The MPW C compiler package includes 

• the MPW C compiler 

• the standard C library 
• C interfaces to Toolbox and operating system functions 
• sample programs written in MPW C 

AC++ translator, which can be used with the C compiler package, is 
available from APDA. 

To use the MPW C compiler, you must install it on your hard disk 
using the procedures described in the compiler's documentation and 
outlined in Chapter 2. You can then write a C program using the MPW 
editor and compile it using the MPW command C. 

You can execute the C command from a command line or a 
Commando dialog; however, a much more common (and convenient) 
way to use it is to include it in a makefile, as explained in this chapter . 

.,., The C Command 

When you write a source file in C, MPW expects it to have a name with 
the suffix ".c". Hence, if you wanted to write a C program called 
Creation, MPW would expect you to give the program's source file the 
name Creation.c. 

You can compile a program written in C by using the C command. 
The syntax of the C command is: 

C [option ... J [file.cl 

When you execute the C command, the MPW C compiler compiles 
the source file specified in the file parameter, and creates an object file 
named file.c.o. Thus, the MPW command 

C Creation.c 



432 ., Chapter 8 Building an Application 

compiles the C language source file Creation.c into an object file named 
Creation.c.o. 

If you don't specify a file parameter when you execute the C com
mand, MPW reads standard input-usually the screen-and compiles 
an object file named c.o. 

(As the MPW C compiler processes a program, it also creates a 
temporary, or intermediate, file named file.c.i. This file is used inter
nally by the compiler; you don't have to be concerned with its contents 
when you build a program.) 

When the compiler encounters an error, it writes an error message to 
diagnostic output, usually the screen . 

., The -p and -e Options 

If you use the -p option, as in the command 

C -p Creation.c 

the compiler writes progress information (including file names, function 
names, and sizes) and summary information (including the number of 
errors and warnings, code size, global data size, and compilation time) 
to diagnostic output. This option generates and displays very useful 
information and is often used with the C command. 

If you use the -e option or the -e2 option, preprocessor output is 
written to standard output, but no object file is created . 

..,. Options Used with the C Command 

These options can be used with the C command. 

Option 

-b 

-b2 

-b3 

Function 

Puts string constants into code and generates 
program counter-relative references. 
Sarne as -b, but also allows the code generator to 
reduce code size by overlaying string constants 
whenever possible. 

Allows the code generator to keep string con
stants in the code segment and overlays them 
when possible, but always generates program 
counter-relative references for function addresses. 



Option 

-c 

-d name 
-d name=string 
-e 

-e2 

-elems881 

-i directory[, directory] ... 

-m 

-mbgch8 

-mbgn 

-mbg off 

-mbg on I full 

-mc68020 

-mc68881 

-n 

-o objname 

-p 

-r 

-s n 

~ The MPW C Compiler 433 

Function 

Syntax check only; doesn't create object file. 

Equivalent to "#define name 1 ". 

Equivalent to "#define name string". 
Writes preprocessor results to output. 

Same as -e, but strips comments. 

Generates MC68881 code for transcendentals. 

Searches for includes in specified directory or 
directories. 

Generates 32-bit references for data (produces 
less efficient code). 

Includes MPW 2.0-compatible MacsBug symbols 
in code. 

Includes MacsBug symbols truncated to length n 
(n can be any number from 0 through 255). 

Doesn't include MacsBug symbols in the code. 

Includes full (untruncated) MacsBug symbols in 
code. 

Generates code that takes advantage of the 68020 
processor. 

Generates code that takes advantage of the 68881 
coprocessor for arithmetic operations. 

Changes errors associated with pointer assign
ment incompatibilty into warnings. 

Generates code in file or directory objname. 
Writes progress information (including file names, 
function names, and sizes) and summary 
information (the number of errors and warnings, 
code size, global data size, and compilation time) 
to diagnostic output. This option generates and 
displays useful information and is often used 
with the C command. 

Outputs a warning when attempting to call a 
function that has no definition. 

Names the main code segment n (default name is 
main). 



434 .,.. Chapter 8 Building an Application 

Option 

-sym off 

-sym on I full 

-t 

-u name 
-w 

-w2 

-y directory 

Function 

Does not generate SADE object file information. 

Generates full SADE object file information; this 
option can be modified with [,nolines], [,notypes], 
and [,novars]. 

Writes compilation time to diagnostic output. 

Equivalent to "#undef name". 
Suppresses warnings. 

Outputs additional warnings (about constructs 
that the compiler has reason to suspect). 

Puts the compiler's intermediate ("o.i") files into 
the specified directory. 

Status codes returned by the C command are as follows. 

Status Code 

0 
1 

Meaning 

Successful completion. 
Errors occurred. 

~ The MPW Pascal Compiler 
The MPW Object Pascal system includes 

• a compiler that produces object code for programs written in 
Pascal and Object Pascal 

• PasMat, a utility for converting Pascal source code into a standard 
format suitable for generating printouts or compilation listings 

• Pas Ref, a tool for cross-referencing identifiers and printing lists of 
cross-references 

• ProcNames, a tool for listing the names of procedures and functions 
used in Pascal programs 

• a Pascal runtime library 

• Pascal interfaces for Toolbox and operating system routines and 
functions 

• sample programs written in Pascal 



~ The MPW Pascal Compiler 435 

The MPW Pascal compiler is compatible with MacApp, Apple's 
powerful class library for writing object-oriented application programs. 

Before you can use the MPW Pascal compiler, you must install it on 
your hard disk using the procedures described in the compiler's docu
mentation. You can then write a Pascal program using the MPW Editor 
and compile it using the MPW command Pascal. 

The Pascal command can be executed from a command line or a 
Commando dialog; however, it is usually issued from a makefile, as 
explained later in this chapter. 

~ The Pascal Command · 

The syntax of the Pascal command is: 

Pascal [option ... ] [file.] 

Source files written in MPW Pascal have the suffix ".p". Thus, if you 
wanted to write a Pascal program called Creation, MPW would expect 
you to give the program's source file the name Creation.p. 

When you execute the Pascal command, the MPW Pascal compiler 
compiles the source file (either a program or a unit) specified in the file 
parameter and creates an object file named file.p.o. Thus the MPW 
command 

Pascal Creation.p 

compiles the Pascal source file Creation.p into an object file named 
Creation.p.o. 

If you don't specify a file parameter when you execute the Pascal 
command, MPW reads standard input-usually the screen-and 
compiles an object file named p.o. 

(As the MPW Pascal compiler processes a program, it also creates a 
temporary, or intermediate, file named file.p.i. This file is used inter
nally by the compiler; you don't have to be concerned with its contents 
when you build a program.) 

When the compiler encounters an error, it writes an error message to 
diagnostic output, usually the screen. 



436 ..- Chapter 8 Building an Application 

.._ The -p and -e Options 

If you use the -p option, as in the command 

Pascal -p Creation.p 

the Pascal compiler writes progress information and summary infor
mation (as noted in the following options listing) to diagnostic output. 

..- Options Used with the Pascal Command 

These options can be used with the Pascal command. 

Option Function 
~~~~~~~~~~~~~~~~~~ 

-b Generates AS-relative references whenever the
address of a procedure or function is taken. (By
default, program counter-relative references are
generated for routines in the same segment.)

-c Syntax check only; doesn't create object file.

-clean Erases all symbol table references.

-d name Equivalent to "#define name 1 ".

-d name= TRUE I FALSE Sets the compile time variable name to TRUE or
FALSE.

-e errLogFile Writes all errors to the error log file errLogFile. A
copy of the error report is still sent to diagnostic
output.

-forward Allows only forward and external object decla
rations.

-h Suppresses error messages regarding the use of
unsafe handles.

-i directory[, directory]... Searches for include or USES files in the speci
fied directories. Multiple -i options may be
specified. At most, 15 directories are searched.
(For the order in which directories are searched,
see the Pascal command in the MPW 3.0
Reference, Volume II.)

-m Allows globals larger than 32K.

Option

-mbgch8

-mbg full

-mbgn

-mbg off

-mc68020

-mc68881

-n

-no load

-o objname

-only name

-ov

-p

-r

-rebuild

-roger

-sl

-sym off

-sym [on I full]

~ The MPW Pascal Compiler 437

Function

Includes MPW 2.0-compatible MacsBug sym
bols in code.

Includes full (untruncated) MacsBug symbols in
code.

Includes MacsBug symbols truncated to length
n (n can be any number from 0 through 255).

Doesn't include MacsBug symbols in the code.

Generates code that takes advantage of the
68020 processor.

Generates code that takes advantage of the
68881 coprocessor for arithmetic operations.

Generates separate global data modules for
better allocation.

Doesn't use or create any symbol table resources.

Generates code in file or directory objname.

Generates code only for named modules.

Tums on overflow checking.

Writes progress information (including module
names, code sizes in bytes, number of errors,
and compilation time) and summary informa
tion (including compiler header information,
that is, copyright notice and version number) to
diagnostic output

Suppresses range checking.

Rebuilds all symbol table references.

Reallocates unused scratch registers for local
data.

Omits static links for nested procs that do not
need them.

Does not generate SADE object file information.

Generates full SADE object file information; this
option can be modified with [,nolines], [,notypes],
and [,novars].

438 ~ Chapter 8 Building an Application

Option

-t

-u

-w

-y directory

Function

Writes compilation time to diagnostic output.
(The -p option also reports compilation time.)

Initializes local and global data to the value
$7267 (hexadecimal 7267) for use in debugging.

Turns off the compiler's "peephole optimizer."

Puts the compiler's intermediate files into the
specified directory.

Status codes returned by the Pascal command are:

Status Code

0
1
2

Meaning

Successful completion.
Error in parameters.
Error halted compilation.

~ The MPW Assembler
The MPW assembler package includes

• an assembler that can translate programs written for the MC68000,
MC68020, and MC68030 processors into object code

• support for the MC68881 and MC68882 math coprocessors, as well
as the MC68885 memory management unit

• macro facilities, code and data modules, support for entry points,
local labels, and (optional) optimized instruction selection

• assembly language interface to Toolbox and operating system
routines

• sample programs written in MPW assembly language

To install the MPW assembler on your hard disk, use the procedures
described in the assembler's documentation and outlined in Chapter 2.
When you have installed the assembler, you can write an assembly
language program using the MPW editor and then assemble it using
the MPW command Asm.

.,.. The MPW Assembler 439

To assemble a program written using the MPW assembler, you must
use the Asm command. You can issue the Asm command from a com
mand line or a Commando dialog; however, the command is usually
executed from a makefile, as explained later in this chapter .

.,.._ The Asm Command

Source files written in MPW assembly language have names that end
with the suffix ".a". So, if you wanted to write an assembly language
program called Creation, MPW would expect you to give the program's
source file the name Creation.a.

The syntax of the Asm command is:

Asm [option ... J [file.a]

When the Asm command is executed, the MPW assembler assembles
the source file specified in the file parameter and creates an object file
named file.a.a. Thus the command

Asm Creation.a

assembles the assembly language source file Creation.a into an object
file named Creation.a.a.

If you don't specify a file parameter when you execute the Asm
command, MPW reads standard input-usually the screen-and
assembles an object file named a.o.

When the assembler encounters an error, it writes an error message
to diagnostic output, usually the screen .

.,.._ The -o Option

If you use the -o option in this format:

Asm -o [differentName] sourceName.a

the assembler gives the object file that it creates the name differentName,
instead of the name sourceName.

440 ... Chapter 8 Building an Application

lill- Options Used with the Asm Command

Option

-addrsize n

-blksize blocks

-case obj[ect]

-case off

-case on

-c[heck]

-d[efine] name

-d[efine] name=v

-d[efine] &name

-d[efine] &name=value

-e[rrlog] fileName

-f

-font fontName[, typeSize]

-h

-i directory[, directory] ...

-1

-lo pathName

Function

Sets the size of the address display to n digits
(4 through 8 digits allowed). The default is 5.

Sets the assembler's text file 1/0 buffers size to
blocks times 512 bytes. The default is 16 (8192
bytes) if the assembler can find enough memory
space; otherwise, the default is 6 (3072 bytes).

Preserves the case of module, EXPORT, IMPORT,
and ENTRY names only in the generated object
file. In all other respects, behavior is the same as
in the default -case off setting.

Ignores the case of letters (default setting).

Same as the CASE ON directive; causes the
assembler to distinguish between uppercase
and lowercase letters in nonmacro names. The
default is -case off.

Syntax check only; doesn't create object file.

Defines the macro name having the value 1
(same as the name EQU 1 directive).

Defines the macro name as having the value v
(same as the name EQU v directive).

Same as the &name SET[AC] 1 directive.

Same as the directive &name SET[AC] value.

Writes errors and warnings to fileName (same as
the ERRLOG 'fileName' directive).

Suppresses page ejects in listing (same as the
PRINT NOPAGE directive).

Prints listing in fontName and type Size.

Suppresses page headers in listing (same as the
PRINT NOHDR directive).

Searches for include and load files in specified
directory or directories. A maximum of 15 direc
tories can be searched.

Writes full listing to output.

Writes listing of output to specified file or
directory.

Option

-o objName

-p

-pagesize [ll[, w]

-print mode

-s

-sym off

-sym on I full

-t

-w

-wb

..- The MPW Assembler 441

Function

Generates code in file or directory objName.

Writes assembly progress information (module
names, includes, loads, and dumps) and sum
mary information (number of errors, warnings,
and compilation time) to the diagnostic output
file. Same as the PRINT STAT directive.

Sets page length and width, in dots, for printed
listing. The default length is 75; the default
width is 126. The defaults assume that listing is
printed in 7-point Monaco type.

Same as the PRINT mode directive. For lists and
descriptions of options, see the MPW 3.0
Reference and the MPW 3.0 Assembler Reference.

Generates a shortened form of the printed
listing.

Does not write object file records containing
information for the SADE debugger.

Writes object file records containing information
for the SADE debugger. You can modify this
option with [,nolines], [,notypes], and [,novars].

Writes assembly time and the number of lines
generated to diagnostic output.

Suppresses warning messages (same as the
PRINT NOWARN directive).

Suppresses warning messages related to branch
instructions.

Status codes returned by the ASM command are as follows.

Status Code

0
1
2

Meaning

No errors detected in any of the files assembled.
Parameter or option errors.
Errors detected.

442 ~ Chapter 8 Building an Application

~ Using Multiple Options with the Asm Command

You can use multiple options with the Asm command. For example, the
command

Asm -w -1 Creation.a Menu.a -d Debug

assembles the source files Creation.a and Menu.a, suppresses warnings,
defines the name Debug as having the value 1, and generates two listing
files: Creation.a.1st and Menu.a.1st. Two object files are produced:
Sample.a.o and Memory.a.o.

IJll> Linking an Application
When you have compiled an MPW C, Pascal, or assembly language
program-or a program containing segments written in two or more
MPW-compatible languages-the next step in building the program is
to link it using the MPW linker.

~ The MPW Linker

The MPW linker is a tool that is included in the basic MPW package.
You can invoke the linker by executing the MPW command Link. The
Link command can be issued from a command line, a Commando
dialog, or a makefile. In most circumstances, the Link command is
produced by a makefile. More information about makefiles is presented
later in this chapter.

The MPW linker does its work by combining various kinds of raw
object-code modules and segments into various kinds of linked code.

A module is a unit that contains code or static data. It is the smallest
unit that can be manipulated by the linker. Raw object-code modules
can include object-code libraries and compiled or assembled object
code files. A segment is a named collection of modules.

The raw object code that the linker accepts as input can include
object-code libraries and compiled or assembled source-code modules
and segments. Raw object code produced by a compiler or an assembler
contains object code that has been compiled or assembled into relocat
able machine language, and symbolic references to identifiers whose
locations were not known at compile time.

Libraries that can be linked with compiled or assembled segments
and modules are listed in Table 8-1. It is a good practice to link newly
written programs with all the libraries that they may need. If it turns

....

.,_ Linking an Application 443

out that the libraries are not needed, the linker omits them from linked
code and can produce listings of the libraries that are not needed, as
explained later in this chapter.

Table 8-1. Libraries that can be used by the MPW linker

Library

{Libraries I Interface.o

{Libraries}Runtime.o

{PLibraries}PasLib.o

{PLibraries}SANELib.o

{ CLibraries }CSANELib.o

{CLibraries}Math.o

{CLibraries}StdCLib.o

{Libraries }ObjLib.o

{Libraries I ToolLib.o

{Libraries} DRVRRuntime.

Type of Library Comments
~~~~~~~~~-

Toolbox interface Contains interfaces for 

Non-C library 

Pascal library 

Pascal library 

C library 

C library 

C library 

Specialized 
library 

Specialized 
library 

For driver 
resources 

the Toolbox and the 
operating system. 

Provides runtime 
support; use if no part 
of your program is 
written in C. Do not use if 
you are using {CLibraries} 

Use with programs 
written in Pascal. 

SANE numerics 
library. 
SANE numerics 
library. 

Math functions. 

Standard C library. 

Object-oriented 
programming library 
(Pascal and assembler). 

Routines for MPW tools. 

Driver runtime library. 

The Linker and Resources 

The linker produces linked code in the form of resources. For example, 
the linker can generate an application program (resource type 'CODE'), 
an MPW tool (resource type 'CODE'), file type MPST, a driver resource 
(resource type 'DRVR'), or a standalone code resource such as a window 
definition procedure ('WDEF') or a control definition procedure 
('CDEF'). The kind of resource that the linker produces depends on the 
options used with the Link command. 



444 "" Chapter 8 Building an Application 

Note .- About Standalone Code Resources. A standalone code resource is 
a resource that is built separately from an application, and thus can 
be used with any application. Some examples of standalone code 
resources are: 

Resource 

WDEF 

CDEF 

LDEF 

MDEF 

INIT 

XFCN 

XCMD 

Description 

Window definition procedure (for custom windows) 

Control definition procedure (for custom controls) 

List definition procedure (for the List Manager) 

Menu definition procedure (for custom menus) 

Init resource (a resource that is loaded and run at boot 
time by the system startup code) 

An external function written for HyperCard 

An external command written for HyperCard 

You must follow certain rules and guidelines when you write 
standalone code resources. For more information, see Inside 
Macintosh, the HyperCard references in the Apple Technical 
Library, and the MPW 3.0 Reference. 

When the linker creates an executable file; it assigns the file a type 
and a creator. File types and creators are listed in Table 8-2. 

Table 8-2 . File types and creators 

Kind of program Type 

Application 'APPL' 

MPW tool 'MPST' 

Device driver Varies 

Desk accessory 'DFIL' 

Script 'TEXT' 

Standalone resources Varies 

Creator 

Developer-defined 
'MPS' 

Developer-defined 

DMOV 

Developer-defined 

Developer-defined 



Important ~ 

Note ~ 

~ Linking an Application 445 

Desk Accessories Are Dead; Long Live Desk Accessories. This 
book provides no instructions for writing and building desk acces
sories because, under System Software Version 7, desk accessories 
as we knew them have begun a slow but inevitable slide into 
oblivion. Under System 7, 9ld-fashio:ned desk accessories still work, 
but you can also make any 'application work like a desk accessory. 
All you have to do is move the program's icon into the "Apple 
Menu Items" folder that resides in. the System Folder. Thus it is no 
longer necessary to 'go through the·hassle of writing one of those 
second-class applications {with limited size and with no global 
variables) that you. O~G:e had. tP. create;if you wanted. to write a desk · 
accessory. ·.·•·ii·.. c; 

More information about the kinds of resources generated by the 
linker is presented later in this chapter. 

When you use the MPW linker to link an application program, it 
links the program's object-code segments with any needed library 
routines and places them in 'CODE' segments in the program's resource 
fork. All existing 'CODE' segments are replaced, without disturbing any 
other resources in the program's resource file. The linker also resolves 
symbolic references and controls final program segmentation. 

New Link and Lib Tools in MPW 3.2. A new linker and a new Lib 
tool were introduced with the unveiling of MPW 3.2. The new Link 
and Lib tools run faster tha.n .the old ones did, and they also have 
some new features~ including: 

• Better performance wheh the -s)'m on option is used (options 
are listed later in this chapter). In some cases, especially when 
large links are. ptocess~d; the il.ew tools yield much better 
performance. There is riot as much difference in performance 
with smaller links, especially with links of less than SOOK. 

• Better compression of data initialization information used with 
C ++ variables. 

• A number of minor bug fixes. 



446 IJl> Chapter 8 Building an Application 

..,. The Link Command 

You can link a program by executing the Link command. The syntax of 
the Link command is: 

Link [option ... ] objectFile ... 

where objectFile is the name of the output (linked) file. The input object 
files must have type 'OBJ '. The output file is named Link.Out, by 
default, but you can specify a different file name by using the -o option. 

When the linker links an application, it places the code segments that 
it generates in 'CODE' resources. All old 'CODE' resources are deleted 
before new 'CODE' resources are written . 

..,. How the Linker Works 

During the course of a link, the linker performs these functions: 

• Sorts code and data modules into segments, arranged by segment 
name. Within a segment, modules are placed in the order in which 
they occur in the input files. You can change the order of segments 
at link time by using the -sg and -sn options, as explained in the list 
of options presented later in this chapter. 

• Automatically omits unused, or "dead," code and data modules 
from the output file. You can instruct the linker to list omitted 
modules by using the Link command's -uf option, and you can 
delete dead modules from libraries by using the -df option. 

• Creates a jump table that the Segment Loader uses to relocate 
segmented code and data at runtime. 

• Constructs jump table entries only when needed; that is, only when 
a symbol is referenced across segments. This ensures that the jump 
table created by the linker is no larger than is necessary. 

• Edits instructions when necessary to use the most efficient address
ing mode. 

• When the -x option is specified, generates a listing of cross
referenced names at link time. 

• When the -map option is specified, generates a location map for 
debugging or for performance analysis. 



IJli- Linking an Application 447 

• Provides support for relocation of data references at runtime. Data 
references are relocated with the help of a module called the data 
initialization interpreter. This module, named _DATAINIT, is 
included in the Runtime.o and CRuntime.o libraries. 

~ Options Used with the Link Command 

These options can be used with the Link command. 

Option 

-ac n 

-ad n 

-c creator 
-d 

-da 

-f 

-1 

-la 

-lf 

Function 

Aligns code modules to n byte boundaries. The n 
argument must be a power of 2. The default is 2. 

Aligns data modules to n byte boundaries. The n 
argument must be a power of 2. The default is 2. 

Sets creator of file to creator. Default creator is'????'. 

Suppresses warnings about duplicate symbol defini
tions (for data and code). 

Converts segment names to desk accessory names at 
output time. Desk accessory names begin with a lead
ing null character ($00). Use this option when you 
want to create a desk accessory (resource type 'DRVR'). 

Treats duplicate data definitions as FORTRAN 
"common" regions; that is, multiple data modules 
with the same name. The size of the largest module is 
used. There may be no more than one initialization of 
the data. 
Writes a location-ordered map to standard output. 
MPW's performance-measurement tools and other 
scripts may rely on this option. Usually, the option is 
used with output redirection in effect. For example, 
the command 

Link TheObjFile -1 > TheMapFile 
writes a location-ordered map to the TheMapFile file. 

Lists anonymous symbols in the location map. The 
default is not to list anonymous symbols. 
Writes a location map to standard output and includes 
the symbol definition location in the input file, that is, 
the file number and byte offset of the module or entry
poin t record. The default is to omit the symbol 
definition locations. 



448 ., Chapter 8 Building an Application 

Option 

-m mainEntry 

-ma n=alias 

-map 

-mf 

-msg keyword 
[,keyword] 

-o outputFile 

-opt [keyword ... ] 

Function 

Uses mainEntry as main entry point. 

Gives the module or entry point n the alternate name 
alias. The option lets you resolve undefined external 
symbols at link time, when the problem is caused by 
differences in spelling or capitalization. Note that you 
cannot use an alias specification to override an exist
ing module or entry point because the original name 
is retained. 

Writes a location map to standard output, but prints a 
·more readable map so that the AS world has the 
correct offsets. This option also provides sizes of all 
modules. 

During the linking process (not when the linked 
program executes), uses MultiFinder's temporary 
memory allocation routines if they are available. If 
MultiFinder is not available, this option has no effect. 
If Link is in danger of running out of space in the 
MPW shell's heap, and if the extra memory is avail
able, Link spills over into MultiFinder's temporary 
allocation region. This can cause a system crash if Link 
aborts abnormally, so use this option with caution. 

Enables or suppresses certain warning messages. This 
option can be used with three parameters. The 
parameter [no]dup enables or suppresses warnings 
about duplicate symbols; the parameter [no]multiple 
enables or suppresses multiple undefined symbol 
reports; and the parameter [no]warn enables or 
suppresses warning messages. 

Writes output to the file outputFile. If no outputFile is 
specified, Link's output file is named Link.Out. 

Optimizes Object Pascal optimizations. This option is 
followed by one or more keywords. The default 
setting is option off. Other keywords are [on], which 
enables Object Pascal optimizations; [NoBypass], 
which enables optimizations but does not optimize 
monomorphic method calls to program counter
relative JMP instructions; [,Names], which embeds 
SelectorProc names; and [,MBgNames], which 
embeds MacsBug-visible SelectorProc names. 



Option 

-p 

-ra [seg]=attr 
[,attr ... ] 

-rn 

-rt type=JD 

-sg newSeg= 
old[,old] ... 

-sn oldSeg=newSeg 

-srt 

_., Linking an Application 449 

Function 

Writes progress and summary information to 
diagnostic output. 

Sets resource attributes of the segment or segments 
being linked. If seg is specified, the single segment 
named seg is given the attribute value attr. (To set the 
attributes of all segments, you must specify this 
option before using any other options that name 
segments, such as -sn and -sg.) The segment contain
ing the main entry point (the 'CODE' resource, which 
has an ID of 1) must be set individually to override 
default resource attributes. The attr parameter of this 
option can be expressed as a decimal or a hexadecimal 
number, or as a constant. Constants that can be used 
are resSysHeap (or simply sysHeap) resPurgeable (or 
Purgeable), res Locked (or locked), resProtected (or 
protected), resPreload (or preload), and resChanged 
(or changed). Although resChanged is a legal 
attribute, it has no effect. Resource attributes-along 
with the numeric values that can be used in place of 
their names-are described in Chapter 6. 

Suppresses the name of resources (by default, each 
resource in a file has the name of the segment in 
which it is situated). Desk accessories must always be 
named. 

Sets the output resource type to type and the resource 
ID to JD. The default setting for the type parameter of 
this option is 'CODE' (an application program); 
resource IDs are numbered from 0. 

Merges all code in the old segment or segments 
specified into a new segment named newSeg. If you 
do not specify any old segments, Link maps all seg
ments to newSeg. 
Changes segment name oldSeg to newSeg. 

Sorts AS-relative data into 32-bit and 16-bit words. All 
16-bit referenced data is placed as close as possible to 
the address pointed to by the AS register (For more 
information about the AS register, see Chapter 7.) 



450 ~ Chapter 8 Building an Application 

Option 

-ss size 

-sym [off I on I full] 
[, keyword ... ] 

-t type 

-uf unrefFile 

-w 

-x crossRefFile 

Function 

Changes the maximum segment size to size. The 
default size is 32,760 bytes (32K minus a few over
head bytes). The size parameter can be set to any 
value greater than 32,760. It is not recommended that 
you use this option under normal circumstances since 
code segments larger than 32K will not load correctly 
on Macintosh models with 64K ROM, and they may 
not compile and link as efficiently as segments 
smaller than 32K. 

Enables or disables the writing of symbolic data to 
support the SADE debugger. The default is -sym off. 
Keywords that can be used with the keyword option 
are [,NoLabels], which omits label information; 
[,NoLines], which omits source line information; 
[,NoTypes] which omits type information; and 
[,No Vars], which omits variable information. 

Sets the type of the output file to type. The default 
type is 'APPL' (application program). 

Lists unreferenced modules in the unrefFile file. This 
option can be used to identify unused, or dead, 
source code. 

Suppresses warning messages. 

Writes cross-references to the crossRefFile file. 

Status codes returned by the Link command are as follows. 

Status Code 

0 
1 
2 

Meaning 

No error detected. 
Syntax error. 
Fatal error. 

~ Using Multiple Options with the Link Command 

The Link command has so many useful options that Link statements 
can be quite complex. This is a relatively simple Link statement: 

Link Creation.p.o a 
"{PLibraries}"Pinterface.o a 
"{PLibraries}"PasLib.o a 



IJiJl> Creating an Object-Code Library 451 

"{Libraries}"Runtime.o a 
-o Creation a 
-la > Creation.map 

This example links the main application file Creation.p.o with the 
Plnterface.o, PasLib.o, and Runtime.a libraries, placing the output in an 
application file named Creation and writing a linker map to the 
Creation.map file. Creation is an application that can be launched from 
the Finder or executed from MPW. 

This is a more sophisticated example: 

Link -rt MROM=8 -c 'MPS I -t ZROM -ss 140000 a 
-1 > TheROMListing -o TheROMimage {LinkList} 

This command links the files defined in the Shell variable {LinkList} 
into a ROM image file, placing the output in the TheROMimage file. 
The segment size is set to 140,000 bytes, and the ROM is created as a 
resource 'MROM' with ID=8. The file is typed as being created by MPW 
(creator 'MPS'), with file type ZROM. Link's location-ordered listing is 
placed in the TheROMListing file . 

.., Creating an Object-Code Library 
When you are writing a large application, and the length of time that it 
takes to compile and link the program starts to annoy you, it's time to 
start thinking about creating object-code libraries: chunks of code that 
have been precompiled and therefore don't have to be compiled from 
scratch every time you build your program. 

When you write a program using MPW, you can convert any portion 
of it into a precompiled library by using the MPW Lib tool, which is a 
part of the basic MPW development system. 

~ The Lib Command 

You can invoke MPW's Lib tool by using the Lib (rhymes with "vibe") 
command. Once you have created a library by using the Lib command, 
you can include your library in a makefile. Then, by using the com
mands CreateMake and Make (either directly or from the MPW Build 
menu), you can link any routine in the main body of the program with 
any routine in your library, without having to recompile the library 
every time you build the program. 



452 IJJ> Chapter 8 Building an Application 

The syntax of the Lib command is: 

Lib [option ... ] objectFile ... 

The Lib command combines the files specified in the objectFile 
parameter into a single object file. Input files must have the file type 
'OBJ '. Lib reorganizes the input files, placing the combined libary file in 
the data fork of the output library file. By default, the output library file 
is assigned type 'OBJ' and the creator 'MPS'. 

This is an example of a Lib command: 

Lib {CLibraries) -o {CLibraries)CLibrary.o 

This command combines all the library object files in the {CLibraries} 
directory into a single library named CLibrary.o. For applications that 
require most or all of the C library files, using the new CLibrary file can 
sometimes reduce link time. 

The format for including a library file in a makefile is: 

Libs = "{Libraries)"Interface.o 

.,.. What To Put in a Library 

Once you have started using object-code libraries, it isn't difficult to 
figure out when the time has come to convert a portion of a program 
into a library. When you have compiled and debugged a block of code 
and haven't made any changes in it for a while, chances are that it has 
become a good candidate for conversion into a library. You can turn it 
into a library with the Lib command, include the library in your pro
gram's makefile, and then build your program at any time you like 
without having to wait for your library to be recompiled. That can save 
you a lot of time every time you build your program. 

If you decide that you want to change a piece of code that you have 
tucked away in a library, you can simply edit the library's source code 
and then recompile the library by using the Lib command again. 



Note .,. 

.,,. Creating an Object-Code Library 453 

There are two more good reasons for using object-code libraries in 
MPW programs: 

• Once you have written a library of routines that perform a certain 
function-for example, a block of code that sets up a window 
environment-you can use your library in any program you write 
by simply including the library in the program's makefile. You can 
thus build up a collection of libraries that can be used in various 
programs. 

• You can combine object code from different files and languages into 
a single object file. For example, you can include blocks of code that 
were originally written in Pascal or assembly language in a pro
gram written in C. In fact, the creators of MPW used the Lib tool for 
just this purpose when they constructed the various libraries that 
come with the MPW system . 

..,. Uses for the Lib Command 

You can use the Lib tool to 

• Convert a portion of a program into a library to reduce linking 
time and simplify program development. 

• Combine object code from different languages into a single library. 
• Combine several libraries into a single library. 
• Delete unneeded modules from a program (with the -dm option). 
• Change the segmentation of a program (with the -sg and -sn 

options). 
• Change the scope of a symbol from external to local (with the -dn 

option). 

The last three options can be useful when you want to construct a 
specialized library for linking a particular program. 



454 .,. Chapter 8 Building an Application 

... How Lib Works 

The Lib command, like the Link command, concatenates its output files. 
It also offers optional renaming, resegmentation, and deletion 
operations, as well as the option of overriding an external name. 

Lib does not combine modules into larger modules, nor does it 
resolve cross-module references. This limitation guarantees that the 
output of a link that uses the output of Lib is the same as that of a link 
that uses the "raw" object-code files produced by the MPW compilers 
and the MPW assembler. 

The Lib tool automatically handles file-relative scoping conventions, 
such as nested procedures in Pascal, static functions in C, and ENTRY 
names in assembly languages. It never confuses references to an 
external symbol with references to a local symbol of the same name, 
even if the two symbols are in two files combined with Lib. 

... Options Used with the Lib Command 

These options can be used with the Lib command. 

Option 

-d 

-df deleteFile 

-dm name[,name] .. . 

-dn name[,name] .. . 

-mf 

-o name 

-p 
-sg newSeg=old[,old] ... 

-sn oldSeg=newSeg 
-sym [Off] [keyword] 

-sym [On I Full] 
-ver n 

-w 

Function 

Suppresses duplicate definition warnings. 

Deletes modules listed in the deleteFile file. 

Deletes external modules and entry points. 

Deletes external names, making them local. 

Uses MultiFinder temporary memory if necessary. 
Writes object file name (default Lib.Out.o). 

Writes progress information to diagnostics. 
Merges old segments into new segment. 

Changes segment name oldSeg to newSeg. 
Omits symbolic information. Keywords that can be 
used with the keyword option are [,NoLabels], 
which omits label information; [,NoLines], which 
omits source line information; [,NoTypes], which 
omits type information, and [,NoVars], which 
omits variable information. 

Keeps symbolic information (default). 
Sets OMF file version number to n. 

Suppresses warning messages. 



IJJi. Building a Program 455 

Status codes returned by the Lib command are as follows. 

Status Code Meaning 

0 
1 
2 

No error detected. 
Syntax error. 
Fatal error. 

.,._ Building a Program 
Once you know how to build a program, you can simplify the process 
of compiling and linking the program by creating a makefile, and then 
executing the makefile using the Make command. 

There are two ways to create a makefile: by writing it yourself, or by 
executing the MPW command CreateMake. You can issue the 
CreateMake command from a command line, a Commando dialog, or 
the MPW Build menu. 

CreateMake can create a simple makefile script for any program 
written under MPW. The makefile generated by CreateMake contains a 
set of rules needed to compile and link the program. Once a makefile 
has been created, you can generate a set of commands to build the 
program by executing Make using the program's makefile script. 

Figure 8-2 is a makefile that is used to build a sample program 
named Creation, which is listed in Pascal source code, in Appendix C. 

s File Edit Find Mark Window Project Directory Build fll 
I~[ Brahma:Creation:Creation.make 

MPW Shell ] 

# File : Creation . make 
# Target : Creation 
# Sources : Cr eation . p Cr eation . r 
# Created : Wednes day , June 5 , 1991 8: 38 :51 At! 

OBJECTS = Creati on. p. o 

t:reation ff Creation . make Crea tion. r 
Rez Crea tion.r - a ppend -o Creation 

Creation ff Creation . make {OBJECTS } 
Link -w -t APPL -c ' ????' -~ym o n - mf a 

{OBJECTS } a 
" {Libraries }" Runtime . o a 
" {Libraries }" Inte r face . o a 
" { PLibraries }" S&:llELib . o a 
" { Plibraries} "Pas Lib . o a 
-o Creation 

Creat i on. p . o f Creation . make Cr ea tion . p 

IQJ :r :~~~~~~'''~:~:,,:~ · c rea tion . P ::::'+:m:m:m:mm:::::::::n::::::::::+u:+:m:::rn:m:m:rnnn:m:::::::::: :::::::::u:mn:::::m:].2 ~ 
Figure 8-2. A makefile 



456 ..,. Chapter 8 Building an Application 

It's easier to create a makefile using the CreateMake command than it 
is to write a makefile from scratch. However, a script created with 
CreateMake contains only the commands that are needed to compile 
and link the program: the commands Pascal, C, Asm, Rez, and Link, 
listed in whatever combination is needed to build the file properly. 
Collectively, these five commands are called build commands. 

When you write a makefile script, instead of letting CreateMake 
write it for you, you don't have to settle for just five build commands; 
you can put as many commands in your makefile script as you like. For 
example, you can include commands to redirect the output of error 
messages, commands to copy files to other directories, and commands 
to print out maps and other kinds of listings that can be generated 
during the build process. 

A disadvantage in using CreateMake is that it gives you little control 
over the many options that can be used with MPW's build commands. 
When you write your own makefile, you can select the options that you 
want to use with commands such as Pascal, C, Asm, Rez, and Link. 

Fortunately, there is a way to take advantage of the work-saving 
features offered by CreateMake without having to live with its limita
tions. You can create a makefile using CreateMake and then customize 
it by adding your own options and commands. Of course, to do that, 
you must know how a makefile works. But that will be no problem by 
the time you finish this chapter. The architecture and operations of 
makefiles are described later under the heading "Writing a Makefile." 

IJJI> Using the Build Menu 

Once you have compiled a program, the easiest way to create a makefile 
that generates commands for building the program is to select the item 
"Create Build Commands" under the MPW Build menu. The Build menu 
is illustrated in Figure 8-3. 

Create Build Commands ... 

Build ... 8€B 
Full Build ... 
Show Build Commands ... 
Show Full Build Commands ... 

Figure 8-3. The MPW Build menu 



~ Building a Program 457 

When you select the menu item "Create Build Commands," MPW 
displays a Commando dialog like the one shown in Figure 8-4. By 
simply clicking on controls in the CreateMake Commando, you can 
create a makefile that can help you build your program . 

.-CreateMak:e Options-----------------~ 

Source Files ... Program Name [I ] 
""--------------' 

r·· Program Type············· 
! ® Rpplication 

' OTool 
Cre~tor !. .................... ! ® Default 

lmH~: l I ~min En trq Point [ ··································! g :~::~!~ 
· fk~ourcH r~me [ i O elems881 

0 Desk Rccessory 
O Code Resource 
0 SIOW Rpp. 

: .................................................................... : : ........................................................ ; 

rcommand Line 
createmake 

D Symbolic debugger information 

fc~e~!~ a simple makefile for building an application, too 1, or desk J ~[ ;;;;;;;;;;;;;;;;;;;;( a;;;;n;;;;c;;;;e;;;;I ;;;;;;;;;;~ 
tccessory . The makefile is for use by the Build menu. n [ n~ a h~ Mak!! D 
~------------------~ 3.2 

Figure 8-4. CreateMake Commando 

You can also invoke the CreateMake Commando by executing the 
command 

Commando CreateMake 

or the command 

CreateMake ... 

(making sure, of course, that you generate the ellipsis in the second 
example by typing Option-Semicolon, not by typing three periods). 

If you want to execute CreateMake by typing a command line rather 
than using a Commando dialog, you can execute the command from a 
command line. 



458 ~ Chapter 8 Building an Application 

Note ~ 

.,.. The CreateMake Command 

The syntax of the CreateMake command is: 

CreateMake [ -Application [ -c creator J I -Tool I -DA 
I -CR -m mainEntryPoint -rt resourceType [ -t type J 

[ -c creator ) J [-sym on) [ -mc68020 I -mc68881 I 
-elems881 ) ProgramFile ... 

The CreateMake command creates a makefile script, a special kind of 
MPW script that can be used to build a program. The parameter 
ProgramFile is the name of the program to be built by the script. The 
makefile script that is created is named ProgramFile.make. 

The Buil~COlllll!~ds ~~ Bl{il~;P,~()~~~:(;J. 
create a makefile µsing tWo other: coriiiijalid 
BuildProgram. · · · · 

~/J ' . 

Bu.HdComman<fa ·work$:•mucntitke c:i~~ate:M:it~;if · · · ne:r~:tis; ·a.n~:f ·' ·· 
displays .the con:unallds need~d to b~d···~ p~~~f' ..... tt:·~~µ •c~,..· 
~1~~::t~:·~~dx~~f:ri1:'ff&:~\~.~i<~~l~ . .. . . 
it goes 011e step farther and ac~lly s li'fuO!<iln 
BtiildCqinfuands·an.d ··13widPi~~raro'.·~~···~ 
than CreateMake~ for more infotmatiori:al'.ioutf 
3,q·~eference. · · · · .· .. · ·· ~;:;••'. ~·· 'i••;•,• · ·· 

.. : ::'."" •;.: :·f',1,j~;:r: ;i~1j·\~·.;: 

When you create a makefile using the CreateMake command, you 
must pass the command a list of files to be included in the makefile. 
This list can include both source and library files. 

Source files included in a CreateMake command must have the suffix 
.a (for assembly language files), .c (for C language files), .p (for Pascal 
files), .cp (for C++ files), or .r (for resource description files). You can 
include library files by using the suffix .o. 

It is not necessary to type the names of the MPW libraries listed in 
Table 8-1. CreateMake finds any MPW libraries that are needed to 
create the makefile and includes them automatically in makefile script. 

When you create a makefile using CreateMake, you can use choose 
the kind of program that you want the makefile to build. If you want a 
makefile that builds an application, you do not have to use the 



.... Building a Program. 459 

-Application option because a script to build an application is the 
default. Other options are -Tool (to create an MPW tool makefile); -DA 
(a desk accessory makefile); -CR (for a makefile that builds a standalone 
code resource); and -rt (for a makefile that builds an ordinary resource). 

CreateMake does not place references to #include files or USES files 
in the makefiles that it creates. Libraries other than those listed in Table 
8-1 are not included in makefiles generated by CreateMake unless they 
are specified as parameters. 

This is an example of a CreateMake command: 

CreateMake -tool Create Create.c Create.r 

This command creates the makefile shown in Figure 8-2 and listed at 
the end of this chapter. 

llll>- Options Used with the CreateMake Command 

These options can be used with the CreateMake command: 

Option 

-Application 
-c creator 

-CR 
-DA 
-elems881 

-Tool 
-m mainEntryPoint 

-mc68020 
-mc68881 

-rt resourceType 

-SIOW 
-t type 
-symon 

Function 

Creates an Application (default). 
Assigns a creator name (optional; for makefiles 
that create applications or stand-alone resources). 
Creates a code resource. 
Creates a desk accessory. 
Generates 68881 instructions for transcendental 
functions. 
Creates an MPW tool. 
Main entry point (required for code-resource 
makefiles). 
Generates 68020 instructions. 
Generates 68881 instructions for elementary 
operations. 
Resource type (required for code-resource 
makefiles). 
Creates a Simple Input/Output Window. 
File type (required for code-resource makefiles). 
Includes SADE debugging information in the 
object file. 



460 ~ Chapter 8 Building an Application 

Status codes returned by the CreateMake command are as follows. 

Status Code 

0 
I 

Meaning 

No errors encountered. 
Parameter or option error. 

.,,. Writing a Makefile 

If you like to type, you can write your own makefiles instead of using 
the CreateMake command. To do that, you'll need to be familiar with 
the information covered in this section. Alternatively, you can use the 
material in this section to customize makefiles that have been created 
using the CreateMake command. 

Once you have created a makefile that contains the rules for building 
a program, you can use the CreateMake command to expand the rules 
in your makefile into a set of commands to build the program. 

~ The Make Language 

The most important thing to understand about makefiles is that a 
makefile script is written in a combination of two languages: the MPW 
command language and a special Make language. 

In a makefile script, you can use any MPW command. But a typical 
makefile also contains a series of special commands called dependency 
rules. 

One difference between a makefile and an ordinary script is that you 
can define a variable in a makefile by using the = operator. For 
example, you could create a variable in a makefile script by including 
the following line in the script. 

Libs "{Libraries}"Interface.o o 
"{Libraries}"Runtime.o o 
"{Libraries}"PasLib.o 

Notice that the line-continuation character a (Control-D) can be used 
in a makefile script, in the same way it is used in any other kind of 
script written in the MPW command language. 

This command declares a variable called {Libs} and defines its value 
as the string "{Libraries}"Interface.o "{Libraries}"Runtime.o 
"{Libraries}"PasLib.o. Later in the makefile, the {Libs} variable can be 
used in place of the string that is its value. 



.... Writing a Makefile 461 

.... The f and ff Operators 

Another unique characteristic of a makefile script is that it can contain 
two operators made up of special characters. One of those operators is 
the f character (Option-F). The other operator is two Option-Fs: ff. The 
f and ff operators are found only in makefiles, never in any other kind 
of MPW script. 

In a makefile, a command containing the f operator or the ff operator 
is known as a dependency rule. A dependency rule always includes two 
lines: a line containing the f operator or the ff operator, and a second 
line containing a build command. 

The first line of a dependency rule-the line containing for //-is 
called a dependency line. The second line of a dependency rule is a 
build command line. The first line of a dependency line-that is, its 
dependency rule-is always typed flush left. The second line of the 
dependency line-that is, its build command line-is always indented, 
using a tab or (less commonly) one or more spaces . 

.,.. The Single-f Dependency Rule 

This is the format of a dependency line containing the f operator: 

targetFile f prerequisiteFile . .. 

In a dependency line, the f operator means "depends on," or "is a 
function of." Thus, the targetFile in the preceding example "depends 
on," or "is a function of," the prerequisite files. That means that the 
target file is rebuilt only under one of two conditions: if it does not 
exist, or if the prerequisite file is newer than the target file. 

A dependency line can include more than one prerequisite file. If 
there are two or more prerequisite files, they are compiled in the order 
in which they appear in the dependency line. 

Dependency rules are used in makefiles to prevent MPW from 
building files when compilation is not required. If a target file does not 
exist, it is built. If a prerequisite file associated with a target file has 
changed since the last time the target file was built, the target file is 
rebuilt. 

If a target file exists, and if the prerequisite file associated with the 
target file has not changed since the last time the target file was 
compiled, then the target file is not compiled, because that would be a 
waste of time. 



462 ..,. Chapter 8 Building an Application 

This example shows how the operator f can be used in a makefile, 
along with an associated build command: 

Creation.p.o f Creation.p 
Pascal -syrn on Creation.p 

In the dependency line that appears on the first line of this example, 
Creation .p.o is the target file and Creation.p is the prerequisite file. 
Thus, if the file Creation.p.o does not exist, it is compiled. Creation.p.o 
is also compiled if the file Creation.pis newer than Creation.p.o. 

The indented line that follows the dependency line contains the 
actual build command associated with the files specified in the 
dependency rule. Since Creation.p is a Pascal file (we know that 
because its name ends with the suffix ".p"), it is compiled using the 
build command 

Pascal -syrn on Creation.p 

Thus, the second line of the two-line example is the line that 
compiles Creation.p.o if compilation is required. In this case, the file 
Creation.p is compiled using the option -sym on, which means that 
symbols which are needed by the SADE debugger are included in the 
compiled file. 

To compile a C source file named Creation.c, you could use the 
dependency rule 

Creation.c.o f Creation.c 
Pascal -syrn on Creation.c 

Similarly, you could assemble an assembly language source file named 
Creation.a by using the dependency rule 

Creation.a.a f Creation.a 
Asrn -syrn on Creation.a 

In this case, the Creation.p.o file depends on both Creation.p and 
Menu.p. Thus, the Creation.p.o file is compiled if it does not exist, or if 
either Creation.p or Menu.pis newer than Creation.p.o. 

Since a program must be linked after it is compiled, a typical 
makefile includes Link commands as well as compilation commands. 
Thus a makefile that builds the Creation file could include both of these 
dependency rules: 



~ Writing a Makefile 463 

Libs "{Libraries}"Interface.o a 
"{Libraries}"Runtime.o a 
"{Libraries}"PasLib.o 

Creation.p.o f Creation.p 
Pascal f -sym on Creation.p 

Creation f Creation.p.o 
Link -o Creation Creation.p.o {Libs} 

This example begins with a variable definition that was presented 
earlier in this chapter. In this definition, a variable called Libs is 
declared, and its value is defined as the string "{Libraries}"Interface.o 
"{Libraries}"Runtime.o "{Libraries}"PasLib.o. 

The second command in the example is a dependency rule which we 
have already examined; it compiles the file Creation.p.o if it does not 
exist, or if the file Creation.pis newer than Creation.p.o. 

The second dependency rule is a new one; it links the Creation.p.o 
file (which is compiled by the first dependency rule) with the {Libs} 
variable. Because the -o option is used and is followed by file name 
Creation, Link writes its output to a file named Creation. That is the 
name of the application that the makefile builds. 

~ The Double-j Dependency Rule 

In some cases, a target file specified in a dependency line may depend 
on more than one prerequisite file, and the target file's prerequisite files 
may use different build commands. Suppose, for example, that the 
target file Creation.p.o depended on both the Pascal file Creation.p and 
the resource description file Creation.r. 

As explained earlier in this chapter and in Chapter 6, Pascal source 
files are compiled using the Pascal command, and resource description 
files are compiled using the Rez command. In a case such this-namely, 
when a target file has multiple dependency paths, and each 
dependency path uses a different build command-the ff dependency 
operator is used, instead of the f dependency operator. 

To put this another way, you must use the ff operator in a 
dependency line instead of the f when: 

• a target file has more than one prerequisite file, and 
• some prerequisite files use different build commands. 

The syntax of a dependency line containing the ff operator is the 
same as the syntax of a dependency line containing the f operator: 

targetFile ff prerequisiteFile ... 



464 ..,_ Chapter 8 Building an Application 

The ff operator, like the f operator, means "depends on." Thus the 
target file specified in the preceding example "depends on" the specified 
prerequisite file. That means that the target file is compiled only under 
one of two conditions: if it does not exist or if the prerequisiteFile is newer 
than the target file. 

Listing 8-1 is a complete makefile that contains a variable definition 
and both single-/ and double-/ dependency rules. It was created with 
the MPW Build menu for the Creation.p program in Appendix C. Notice 
that comments in a makefile are preceded by the # symbol, just as in any 
other kind of script written using the MPW command language. 

Listing 8-1. A sample makefile 

Libs "{Libraries}"Interface.o d 
"{Libraries}"Runtirne.o d 
"{Libraries}"PasLib.o 

Creation ff Creation.r 
Rez Creation.r -a -o Creation 

Creation ff Creation.p.o 
Creation.r 

Link -o Creation d 
Creation.p.o {Libs} 

Creation.p.o f Creation.p 
Creation.p 

Pascal f -syrn on Creation.p 
Creation f Creation.p.o 

# Creation depends on Creation.r 
#Creation.r's Rez command 
# Creation depends on Creation.p.o 
# ... and Creation.r 
# Creation's Link command 

# Creation.p.o depends on 

# ... Creation.p's Pascal command 

In Listing 8-1, the ff operator is used because the application file 
Creation depends on both Creation.r and Creation.p.o, and because 
Creation.rand Creation.p.o use different build commands. 

Notice that the Creation.r file appears in both double-/ dependency 
rules shown in Listing 8-1, and that the Creation.p.o file also appears in 
two dependency rules: the first double-/ rule, and in the last rule in the 
listing-the rule in which Creation.p.o is compiled. 

This is how the makefile shown in Listing 8-1 works: 

1. In accordance with the last dependency rule in the listing, the 
Creation.p.o file is compiled using the Creation.p file if the 
Creation.p.o file does not exist or if the Creation.p file is newer than 
the Creation.p.o.file. 



Iii- Makefiles in a Nutshell 465 

2. In accordance with the first double-/ rule in the listing, the Creation 
file is compiled using the Creation.r file if the Creation file does not 
exist, or if the Creation.r file is newer than the Creation file. 

3. In accordance with the second double-/ rule in the listing, the 
Creation file is linked using both the Creation.p.o and Creation.r 
files if the Creation.r file is newer than the Creation file. (When this 
rule is invoked, there will be no situation in which the Creation file 
does not exist because if it does not exist, it will be compiled by the 
first double-/ dependency rule.) 

4. If the second double-/ rule causes the Creation file to be linked, the 
files used in the link are the Creation.p.o file and the libraries that 
equate to the {Libs} variable. If the link occurs, the application file 
that is output is named Creation. 

If you take the time to analyze this process, you will see that the 
makefile shown in Listing 8-1 performs only the compilations and links 
that are necessary to build an up-to-date version of the Creation 
application file . 

.,. Makefiles in a Nutshell 
To sum up, this is how makefiles work: 

• A makefile is a text file that describes dependency information for 
one or more target files. A target file is a file to be built or rebuilt; it 
depends on one or more prerequisite files that must exist or be 
brought up to date before the target file can be built or rebuilt. For 
example, an application typically depends on its source file or files, 
its resource file or files, and several library files. If any of a target 
file's prerequisite files are newer than the target file, the makefile 
rebuilds the target file. 

• A target file's prerequisite files may themselves be target files with 
their own prerequisite files. This process cascades; prerequisite files 
that are also target files can have their prerequisite files, and so on. 

• A makefile can contain dependency rules, variable definitions, and 
comments. 



466 ~ Chapter 8 Building an Application 

Note ~ Tips for Writing Makefiles. These are some additioi;:tel::facts .. *~~::r 
may prove useful when you write or customize makefiles: · . · 

• A makefile's physical input lines can be no more th;:tl1455Jin~.L 
longi However, logical input lirj.es (lines made up oflj;tol'eJI'.).ailt; 
one physical line continued with the character. d) .may be.'.()~: f 
any length. . , 

• Makefiles use the sam~ quoting conventions a~ doq,ther k,irl~~ 
of scripts written in the MPW,. command lang:uag~ .. Sing'l~:'': 
quotation marks can be used to delimit a string th~t,is to b~·· 
interpreted litera1ly, and double quotation m~ks ca,nbe>µsei:l · .... 
qiiqte striJigsjn whic~ :V~fii:l;bl(~eferem:e~ •.. · •·· 
tn.a·a·crurra&erCOptlon"J;)>''is.r~WiZed· as''.<iD.. 

• Yoh can use shell variables hi tifukefiles, and 
your own variables usiil.g the :;::,bpetator. · 

,_, ' . , - -, ,-,; . -. , ----,~ ' -
~-::'_~:,::>. :' 

~ The Make Command 
When you have created a makefile for a specified target file, you can 
process the makefile--thus creating a list of commands that are needed 
to build the target program-by issuing the MPW command Make. 

~ Building a Program with the Make Command 

The Make command, when supplied with the appropriate information, 
outputs the commands needed to build a program. You can then build 
the program in one of three ways: 

1. You can use the mouse to select the commands generated by the 
Make command, and then press the Enter key to execute them. 

2. You can copy the commands generated by the Make command into 
an MPW script. 

3. If you have created your makefile by selecting "Create Build 
Commands" from the MPW Build menu, you can build and execute 
the program by selecting either the "Build" or "Full Build" item from 
the MPW menu, as explained later in this chapter. 



~ The Make Command 467 

Once you have built a program in this fashion, you can execute it from 
the Finder, or MPW. 

The syntax of the Make command is: 

Make [option ... ] [target ... ] 

Make does its work by reading a makefile: a text file that describes 
the dependencies of the various components of a program, and that 
lists the shell commands needed to rebuild the target. You can specify 
the makefile that you want Make to read by using the -f option. If you 
wish, you can specify more than one makefile to be processed by the 
Make command. . 

If you execute the Make command without specifying a target file, 
the target on the left side of the first dependency rule in the makefile is 
built. 

This is an example of a Make command: 

Make -p -f Create.make Creation 

This command builds the target file Creation. Because the -p option 
is used, Make writes progress information to standard output, usually 
the screen. The -f Create.make option instructs the Make command to 
generate its build commands by reading a makefile called Create.make. 
Dependency rules used to create the target file Create are read from the 
Create.make makefile. 

After Make processes a makefile, it generates the commands that are 
needed to build or rebuild the target file. By default, these commands 
are written to standard output. However, you can execute the build 
commands that Make generates after they are generated. 

The Make command processes a makefile (or makefiles) in two 
phases: 

1. Make reads the specified makefile (or makefiles) and creates a 
dependency graph for the target file. 

2. Make generates build commands for the target file. If the target 
depends on prerequisite files that are out of date, Make generates 
command lines for updating the target file. Build commands are 
issued first for lower level dependencies that need to be rebuilt and 
then for higher level dependencies. 



468 ~ Chapter 8 Building an Application 

~ Options Used with the Make Command 

These options can be used with the Make command: 

Option 

-d n[=v] 

-e 

-f m 

-p 
-r[target] 

-s 

-t 

-u 

-v 

-w 

Function 

Defines a variable n with the value v (overrides variable 
definitions included in the makefile). 

Rebuilds everything that is a part of the specified or 
default target, regardless of whether the target is out of 
date (overrides normal dependency rules). 

Reads dependencies from makefile m (default is any file 
named Makefile in the current directory). 

Writes progress information to diagnostic output. 

If no target is specified, this option causes Make to find all 
the roots (top-level targets) of the dependency graph 
created by Make. If a target is specified, Make finds the root 
(or roots) for which the target is a prerequisite. You can 
instruct Make to write out this information by using the -s 
option. The -r option overrides normal processing of the 
Make command; it is used in debugging and for analyzing 
complex makefiles. 

Shows structure of dependencies. This option writes a 
dependency graph for the specified targets to standard 
output. The -s option overrides normal processing of the 
Make command; it is used in debugging and for analyzing 
complex makefiles. 

"Touches" dates of targets and prerequisites; that is, brings 
files up to date by adjusting their modification dates, 
without generating build commands. 

Writes to diagnostic output a list of "unreachable" targets
that is, targets that are not prerequisites (or prerequisites of 
prerequisites) of the specified target. 

Writes verbose (detailed) error and progress information to 
diagnostic output. 

Suppresses warning messages. 

Status codes returned by the Make command are as follows. 

Status Code 

0 
1 
2 

Meaning 

Successful completion. 
Parameter or option error. 
Execution error. 



IJl> The Build Menu 469 

IJll> The Build Menu 
The Make command does not actually build a program; it merely dis
plays the commands needed to build the program. You can then build 
the program in one of three ways: 

1. You can use the mouse to select the commands generated by the 
Make command, and then press the enter key to execute them. 

2. You can copy the commands generated by the Make command into 
an MPW script, and then execute the script. 

3. If you have created your makefile by selecting "Create Build 
Commands" from the MPW Build menu, you can build and execute 
the program by selecting either the "Build" or "Full Build" item from 
the MPW menu. 

The easiest and most convenient way to build a program written 
under MPW is to use the MPW Build menu. The Build menu has four 
items: 

• The first menu item, "Create Build Commands," displays the 
Commando dialog for the MPW command CreateMake. You can 
then execute the CreateMake Commando to create a makefile 
containing the commands needed to build a program. When you 
create a makefile in this way, MPW names the makefile pro
gram.make (where program is the name of the target program). 
MPW then reads that makefile each time the Make command is 
executed. (If there is no file named program.make, MPW looks in the 
current directory for a file named MakeFile and reads that.) 

• When you have created a makefile for a program using the menu 
item "Create Build Commands," you can build the program by 
selecting the second item on the Build menu, also named "Build." 
When you select the Build menu item, MPW displays a dialog 
asking you the name of the file to be built. MPW then builds the 
specified program using the dependency rules specified in the 
program's makefile. 

• The third menu item, "Full Build," works just like the Build menu 
item. But "Full Build" does a complete build of the specified pro
gram, rebuilding all its components, regardless of the makefile's 
dependency rules. 

• The fourth menu item, "Show Build Commands," displays a dialog 
that asks you to specify a program. It then displays the commands 
currently needed to build the program. 



470 IJ>. Chapter 8 Building an Application 

• The fifth and last menu item, "Show Full Build Commands," works 
just like "Show Build Commands." But "Show Full Build Commands" 
displays all the commands that are needed to build the program if its 
makefile's dependency rules are ignored. 

Once you have built a program using the MPW menu, you can execute 
it from the Finder, or MPW . 

..,,,, Creation: A Sample MPW Program 
Appendix C is a source-code listing of a sample Pascal program called 
Creation. Appendix D is the program's resource description file. 

A makefile that generates the build commands for the program is 
listed in Appendix E. 

The program is named Creation because you can use it as a template 
to create your own programs in MPW Pascal. It creates a window in 
which you can type text in any font and any style. 

Creation is a simpler program than the TESample program that is 
packaged with the MPW Pascal and MPW C compilers. Although 
Creation takes advantage of the advanced text-styling capabilities now 
offered by TextEdit, it does not create a multi-window environment, 
and it does not create scroll bars-two features that make the TESample 
program quite complicated and therefore not very easy to understand. 

Because Creation lacks these features (as important as they are), it is 
much easier to understand than the TESample program is. It could thus 
be considered a kind of prerequisite for studying the much more complex 
TESample program. If you type, compile, build, and execute Creation
and study it to find out how it works-you'll be well prepared to move 
on to Apple's more complex TESample program . 

..,,,, Conclusion 
The book you have just finished is a complete guide to the Macintosh 
Programmer's Workshop. Since MPW programs are not written in a 
vacuum, it also includes chapters on Macintosh architecture and on the 
three Macintosh managers that give programmers the most trouble: the 
Event Manager, the Resource Manager, and the Memory Manager. 

I hope that you have derived as much benefit from reading this book 
as I got from writing it-and I wish you much success in programming 
with MPW, the professional Macintosh programming environment. 



Add Menu 

Adjust 

Alert 

Appendix A 

The MPW Command Set 

Add a menu item 

AddMenu [menuName [itemName [command ... ]]] 

• Add an item to the MPW menu bar. 

Adjust lines 

Adjust [-c count] [-1 spaces] selection [window] 

• Shift all lines in a selection to the right by one or count tabs or 
spaces. 

-c count Adjust count times. 
-1 spaces Shift lines by spaces spaces. 

Display alert box 

Alert [-s] [message . .. J < file 

• Display an alert dialog. 

-s Silent: Don't beep when dialog is displayed. 

471 



472 .., Appendix A 

Alias 

Align 

Asm 

Define or write command aliases 

Alias [name [word ... ] ] > aliasList 

• Define name as an alias for MPW command word. If only name is 
specified, any alias definition associated with name is written to 
standard output. If both name and word are omitted, a list of all 
aliases and their values is written to standard or specified 
output. 

Align text to left margin 

Align [-c count] selection [window] 

• Place all lines in selection the same distance from left margin as 
the first line. 

-c count Repeat the Align count times. 

Invoke MC68xxx Macro Assembler 

Asm [option ... ] [file ... ] < file > listing~ progress 

• Assemble file. 

-addrsize size 
-blksize blocks 
-case on 
-case obj[ect] 
-case off 
-c[heck] 
-d[efine] name 
-d[efine] name=value 
-d[efine] &name 
-d[efine] 

&name=value 
-e[rrlog] file 
-f 
-font name[,size] 
-h 
-i directory, ... 

Set size of address display. 
Use blocks* 512-byte 1/0 buffers. 
Distinguish between upper- and lowercase. 
Preserve case in object file. 
Ignore case (default). 
Syntax check only; don't create object file. 
Same as name EQU 1. 
Same as name EQU value. 
Same as &name SET[AC] 1. 

Same as &name SET[AC] value. 
Write errors and warnings to file. 
Suppress page ejects in listing. 
Set listing font and size. 
Suppress page headers in listing. 
Search for includes in directory, .... 



Asm 

Backup 

(continued) 

-1 
-lo objname 
-o objname 
-pagesize l[,w] 

-print mode 
-p 
-s 
-sym off 
-sym on I full 

-t 
-w 

-wb 

Folder file backup 

IJJ> Appendix A 473 

Write full listing to output. 
Write listing to file or directory objname. 
Generate code in file or directory objname. 
Set listing page length and width. 
Same as PRINT mode. 
Write progress information to diagnostics. 
Write short listing to output. 
Include SADE information in the object file. 
Don't include SADE information in the 
object file. 
Write time and total lines to diagnostics. 
Suppress warnings. 
Suppress warnings on branch instructions. 

Backup [option ... ] -from folder -to folder [file ... ] > 
commands ~ progress 

• Generate a shell script that can make backups of files. 

-a 
-alt 
-c 
-check checkopt 

[,checkopt] ... 

-co filename 

Copy all files in "from" and not in "to." 
Alternate prompts for disk drives. 
Create "to" folders if they don't exist. 
Produce reports based on checkopt. 
checkopt parameters: 
from: Files in "from," not in "to." 
to: Files in" to," not in "from." 
allfroms: Files in "from" and not in "to," even 
if none. 
alltos: Files in "to," not in "from," even if 
none. 
folders: Folders in "from," not in "to." 
newer: Objects in "to" newer than those in 
"from." 
Redirect "-check" reports to filename. 



47 4 ~ Appendix A 

Backup 

Beep 

(continued) 

-compare [only][,'opts'] Write Compare commands for out-of-date 
files. 

-d 

-do [only][,'command'] 

-e 
-from folder I drive 
-1 
-lastcmd 'command' 

-level n 

-m 

Write Delete commands for files in "to" not 
in "from." 
Write the command string specified by 
command ... 
Eject disk when done. 
Specify source folder or drive (1 or 2). 
Write directory listing of "from" files. 
Write the command string as the last 
command. 
Restrict -a and -d options to files beyond 
level n. 
Multi-disk: More than one "from" or "to" 
disk. 

-n Show folder nesting by indenting 
commands. 

-p Write progress information to diagnostics. 
-r Recursively process nested folders. 
-revert Revert "to" files to their "from" state. 
-since date[,time] I fname Process only files since specified time. 
-sync Synchronize both source and destination 

-t type 
-to folder I drive 
-y 

Generate tones 

folders. 
Process only files of specified type. 
Specify destination folder or drive (1or2). 
Suppress duplicate -y option. 

Beep [note [,duration [,level]]] ... 

• Generate a tone from the built-in Macintosh speaker. 

duration is specified in sixtieths of a second 
(default is 15). 
Sound level is a number from 0 through 255 
(default is 128). 



~ Appendix A 475 

Begin Group commands 

Begin 

command ... 

End 

• Execute commands as a group. 

Break Break from For or Loop 

Break [If expression] 

• Exit from a loop if expression is true. 

Browser Display MPW Browser tool CMPW 3.2) 

Browser 

• Display MPW Editor's Browser window. 

BuildCommands Show build commands 

Build Index 

BuildMenu 

BuildComrnands program [option. .. ] > commands 

• Write to standard output the commands needed to build a 
program. 

option... Options for Make command. 

Create a BTree index file 

Buildindex datafile 

• Create a BTree index file named datafile.index for use by the Get 
tool. 

Create the Build menu 

BuildMenu 

• Create the MPW Build menu. 



476 ~ Appendix A 

Build Program 

c 

Build the specified program 

BuildProgram program [option. .. ] > log 

• Build program. 

option ... Options for the Make command. 

Invoke C compiler 

C [option. .. ] [file] < file > preprocessor ~ progress 

• Compile file. 

-b 

-b2 
-b3 

-c 
-d name 
-d name=string 
-e 
-e2 
-elems881 
-i directory 
-m 

-mbg ch8 
-mbg off 
-mbg on I full 
-mbg <n> 

-mc68020 
-mc68881 

-n 

-o objname 
-p 

Use string constants; generate PC-relative 
references. 
Use -b option and overlay string constants. 
Overlay string constants, but not PC-relative 
references. 
Syntax check only; don't create object file. 
Same as #define name 1. 
Same as #define name string. 
Write preprocessor results to output. 
Implies -e option and strips comments. 
Generate MC68881 code for transcendentals. 
Search for includes in directory. 
Generate 32-bit references for data (less 
efficient code). 
Use V2.0-compatible MacsBug symbols. 
Don't place MacsBug symbols in code. 
Use full MacsBug symbols. 
Include MacsBug symbols truncated to length 
<n>. 
Generate MC68020 code. 
Generate MC68881 code for arithmetic 
operations. 
Turn pointer incompatibility errors into 
warnings. 
Generate code in file or directory objname. 
Write progress information to diagnostic. 



c 

Canon 

Catenate 

CFront 

(continued) 

-r 

-s segment 
-sym off 
-sym on I full 

-t 
-u name 
-w 
-w2 
-y directory 

IJli.- Appendix A 477 

Warn on calling a function that has no 
definition. 
Generate code in segment. 
Include SADE information in the object file. 
Don't include SADE information in the object 
file. 
Write compilation time to diagnostic. 
Same as #undef name. 
Suppress warnings. 
Emit even more warnings. 
Create temporary files in directory. 

Canonical spelling tool 

Canon [option ... ] dictionary [file ... ] < file > new 

• Copy specified files to standard outputs, replacing identifiers 
with spellings in dictionary file. 

-s Use case-sensitive matching. 
-a Assembler identifiers (include$,%,@). 
-c n Consider only the first n characters. 

Concatenate files 

Catenate [ filel ... ] < file2> concatenation 

• Concatenate filel and file2. 

C++ to C translator 

• (MPW C++ precompiler is available as a separate product.) 



478 ~ Appendix A 

Check In 

Check Out 

Check a file into a project 

Check!n -w I -close I ([option. .. ] files ... ) > progress 

• Check files into a project (used with Projector). 

-a Check in all files in current directory. 
-b Check in files ... as branches. 
-c 
-cf file 

-close 
-cs comment 

-delete 
-m 

-n 
-new 
-p 

-project project 
-t task 
-touch 
-u user 

-w 

-y 

Cancel if conflict occurs (avoids dialog). 
Put description of changes in file's 'ckid' 
resource. 
Close the Check In window. 
Include description of changes in file's 'ckid' 
resource. 
Delete the file after checking it in. 
Check out the files for modification after 
checking in. 
Answer no to all dialogs (avoids dialogs). 
Add a new file to the project. 
Write progress information to standard 
output. 
Make project the current project. 
Put task in file's 'ckid' resource. 
Touch the mod date of file after checking it in. 
Name of current user (overrides {User} shell 
variable). 
Open the Check In window. 
Answer yes to all dialogs (avoids dialogs). 

Check a file out from a project 

Checkout -w I -close I ([options ... ] files ... ) > progress 

• Check files out of a project (used with Projector). 

-a 
-b 
-c 
-cancel 

Check out all the files in the current project. 
Check out specified files on a new branch. 
Cancel if conflict occurs (avoids dialog). 
Cancel the checkout of the files. 



Check Out 

CheckOutDir 

(continued) 

-cf file 

-close 
-cs comment 

-d dir 

-m 

-n 
-newer 
-no Touch 

-open 
-p 

-project project 
-r 

-t task 
-u user 
-update 

-w 

-y 

.,, Appendix A 479 

Put description of changes in file's 'ckid' 
resource. 
Close the Check Out window. 
Include description of changes in file's 'ckid' 
resource. 
Directory where the checked-out files should 
go. 
Check out a modifiable copy of the file. 
Answer no to all dialogs (avoids dialogs). 
Check out latest copy of all files in the project. 
Don't touch the mod date of the checked out 
files. 
Open the files after checking out. 
Write progress information to standard 
output. 
Name of project that contains the files. 
Recursively check out files. 
A short description of task accomplished. 
Name of current user. 
Check out latest copy of all files you already 
have. 
Open the Check Out window. 
Answer yes to all dialogs (avoids dialogs). 

Specify the directory where checked out files will be placed 

CheckOutDir [-project project I -m] [-r] [-x I 
directory] 

• Place checked-out Projector files in directory. 

-project project 

-m 

-r 

-x 

Name of project to associate with the 
checkout directory. 
List the checkout directories of all root 
projects. 
Recursively set or display the checkout 
directories. 
Reset the checkout directories to":". 



480 ._. Appendix A 

Choose 

Clear 

Close 

Choose or list network file server volumes and printers 

Choose [option ... ] [[zone] :server[ :volume] ... ] 

• Interactively mount or list specified Appleshare volumes or 
printers. 

-c 

-cp 
-dr driverFileName 
-guest 
-list 
-p 
-pr 
-pw password 
-u username 
-v 

-vp volumePassword 
-type type 

Clear the selection 

Output in the form of further Choose 
commands. 
Print driver name and type of current printer. 
Name of printer driver file in system folder. 
Log in to the file server as a guest. 
List entities (don't choose them). 
Print version information. 
Choose printers (instead of file servers). 
Specify server log-in password. 
Specify user name for server log-in. 
Verbose (print names of volumes really 
mounted). 
Specify volume password (to mount it). 
Specify type of entity to list or choose (or::::). 

Clear [-c count] selection [window] 

• Clear selection from window. 

-c count Repeat the clearing operation count times: 

Close specified windows 

Close [-y I -n I -c] [ -a I window ... ] 

• Close window. 

-y Save modified windows before closing 
(avoids dialog). 

-n Don't save any modified windows (avoids 
dialog). 

-c Cancel if there is a modified window (avoids 
dialog). 

-a Close all the windows. 



Commando 

Compare 

CompareFiles 

~ Appendix A 481 

Display a dialog interface for commands 

Commando [command] [-modify] 

• Display Commando dialog for command. 

-modify Enable Commando's built-in editor. 

Compare text files 

Compare [option ... ] filel [file2] < file2 > 
differences ~ progress 

• Compare file1 and file2. 

-b 
-c cl-c2[,cl -c2] 
-ddepth 
-e context 
-g groupingFactor 

-h width 
-1 

-m 

-n 
-p 
-s 

-t 
-v 
-x 

Treat several blanks or tabs as a single blank. 
Compare only specified columns. 
Maximum stack depth. 
Display specified number of context lines. 
Specifies minimum number of lines that must 
match. 
Write differences in horizontal format. 
Do case-insensitive match (ignore case 
differences). 
Suppress displays of mismatched lines. 
Don't write to output if files match. 
Write progress information to diagnostics. 
Use static (fixed) grouping factor (see -g 
option). 
Ignore trailing blanks. 
Suppress line numbers in vertical displays. 
Don't expand tabs. 

Compare text files and interactively view differences 

CompareFiles [-9 I -13 I -b x y I -Portrait 
-TwoPage] oldFile newFile 

• Compare oldFile and newFile. 



482 .,. Appendix A 

CompareFiles (continued) 

-9 
-13 
-bxy 

-Portrait 

-TwoPage 

Assume a screen size of 512 x 342. 
Assume a screen size of 640 x 480. 
Tile windows into the rectangle specified 
byxy. 
Screen size for Apple Macintosh Portrait 
Display. 
Screen size for Apple Two-Page Monochrome 
Monitor. 

CompareRevisions Compare two revisions of a file in a project 

Confirm 

Continue 

Copy 

CompareRevisions file ... 

• Compare the revisions of file (used with Projector). 

Display a confirmation dialog box 

Confirm [-t] [message ... ] < file 

• Display a confirmation dialog containing the message message. 

-t Put three buttons (Yes, No, Cancel) in dialog. 

Continue with next iteration of For or Loop 

Continue [If expression] 

• Continue with next iteration of loop if expression is true. 

Copy selection to Clipboard 

Copy [-c count] selection [window] 

• Copy selection to window. 

-c count Copy the nth selection, where n = count. 



Count 

CPlus 

CreateMake 

~ Appendix A 483 

Count lines and characters 

Count [-1] [-cl [file ... ] < file > counts 

• Count lines or characters in file. 

-1 Write only line counts. 
-c Write only character counts. 

Script to compile C++ source 

• (MPW C++ precompiler is available as a separate product.) 

Create a simple makefile 

CreateMake [-Application [-c creator] I -Tool I -DA I 
-CR 

-m mainEntryPoint -rt resourceType [-t type] ] [-sym 
on] 

[-mc68020 I -mc68881 I -elems881] program file .... 

• Create a makefile for program using files specified in the file ... 
parameter. 

-Application 
-c creator 
-Tool 
-DA 
-CR 
-m mainEntryPoint 
-rt resourceType 
-t type 
-symon 
-mc68020 
-mc68881 

-elems881 

Create an application (default). 
Program's creator (optional). 
Create an MPW tool. 
Create a desk accessory. 
Create a code resource. 
Main entry point (required for code resource). 
Resource type (required for code resource). 
File type (optional for code resource). 
Include SADE information in the object file. 
Generate 68020 instructions. 
Generate 68881 instructions for elementary 
operations. 
Generate 68881 instructions for 
transcendental functions. 



484 ~ Appendix A 

Cut 

Date 

Delete 

DeleteMenu 

Copy selection to Clipboard and delete it 

Cut [-c count] selection [window] 

• Cut selection from window. 

-c count Cut the next count selections. 

Write the date and time 

Date ([-a I -s] [-d I -t) [-c seconds]) I [-n) > date 

• Write current date or date and time to standard or specified 
output. 

-a 

-s 
-d 
-t 
-c seconds 
-n 

Write abbreviated date (format: Wed., 
Jul 24, 1991). 
Write short date (e.g., 7 /24/91). 
Write date only. 
Write time only. 
Write date corresponding to seconds. 
Write seconds since January 1, 1904. 

Delete files and directories 

Delete [-y I -n I -c) [-i) [-p] name ... ;;::: progress 

• Delete file or directory name. 

-y Delete directory contents (avoids dialog). 
-n Don't delete directory contents (avoids 

dialog). 
-c Cancel if a directory is to be deleted (avoids 

dialog). 
-i Ignore errors (no diagnostics). 
-p Write progress information to diagnostics. 

Delete user-defined menus and menu items 

DeleteMenu [menuName [itemName]] 

• Delete specified menu or menu item. 



DeleteNames 

DeleteRevisions 

DeRez 

.,,. Appendix A 485 

Delete user-defined symbolic names (used with Projector) 

DeleteNames [-u user] [-project project] [-public] 
[-r] [names ... I -a] 

• Delete symbolic names used to represent a set of revisions under 
Projector. 

-u user 
-project project 
-public 
-r 
-a 

Name of current user. 
Name of project that contains the files. 
Delete public names. 
Delete names recursively. 
Delete all names. 

Delete previous revisions of files in a project 

DeleteRevisions [-u user] [-project project] [-file] 
[-y] revision. .. 

• Delete previous revisions in Projector project project. 

-u user 
-project project 
-file 
-y 

Resource decompiler 

Name of current user. 
Name of project that contains the files. 
Delete the file and all its revisions. 
Delete the file/revision (avoids dialog). 

DeRez [option ... ] resourceFile [file ... ] > description ~ 
progress 

• Decompile resourceFile. 

-c[ornpatible] 
-d[efine] name[ =value] 
-e[scape] 
-i[nclude] pathname 

-rn[axstringsize] count 
-only typeExpr 
-p[rogress] 

Generate output compatible with Rez 1.0. 
Sarne as #define name [value]. 
Don't escape chars < $20 or > $D8. 
Search pathname when looking for #include 
files. 
Write strings count characters per line. 
Process only resources of type typeExpr. 
Write progress information to diagnostics. 



486 ~ Appendix A 

DeRez 

Directory 

DirectoryMenu 

Dolt 

(continued) 

-rd 
-s[kip] typeExpr 
-u[ndef] name 

Suppress warnings for redeclared types. 
Skip resources of type typeExpr. 
Same as #undef name. 
Note: A typeExpr may have one of these 
forms: 

type 
"'type' (id)" 
"'type' (id:id)" 
"'type' (a"namea")" 

Set or write the default directory 

Directory [-q I directory] > directory 

• Set the directory to directory; if directory is not specified, write 
the name of the current directory to standard or specified 
output. 

-q Don't quote directories with special characters. 

Create the Directory menu 

DirectoryMenu [directory. .. ] 

• Create the MPW Directory menu; list directories specified in 
directory parameter. 

Highlight and execute a series of shell commands 

Dort (CommandFile [-echo] [-dump]) I [-selection] 

• Execute the commands in CommandFile. 

-echo 
-dump 
-selection 

Echo commands before execution. 
Dump unexecuted commands after error. 
Execute command in the current selection. 



DumpCode 

DumpFile 

.., Appendix A 487 

Write formatted resources 

DumpCode [option ... ] resourceFile > dump ~ progress 

• Disassemble object code stored in resources, and write 
formatted assembly code to standard or specified output. 

-d 
-di 
-h 
-jt 
-n 

-p 
-r bytel [,byteN] 

-rt type[ =id] 
-s name 

Don't dump object code. 
Suppress display of data initialization code. 
Don't write headers (offsets, hex, etc.). 
Don't dump jump table. 
Dump only resource names. 
Write progress information to diagnostics. 
Dump code from address bytel [through 
byteN]. 
Dump only resources with this type [and id]. 
Dump only resource with this name. 

Display contents of any file 

DumpFile [option ... ] fileName > dump ~ progress 

• Display the contents of fileName. 

-a 
-bf 
-gnn 

-h 
-o 
-p 

-r bytel [,byteN] 

-rf 

-wnn 

Suppress display of ASCII character values. 
Display both forks of the file. 
Group nn bytes together without intervening 
spaces. 
Suppress display of hexadecimal characters. 
Suppress display of file offsets. 
Write progress information to diagnostic 
output. 
Display only the byte range from bytel to 
byteN. 
Display the resource fork of the file (default is 
data fork). 
Display width of nn bytes on each line of 
output. 



488 ~ Appendix A 

DumpObj 

Duplicate 

Write formatted object file 

DumpObj [option ... ] objectFile > dump ~ progress 

• Disassemble object code stored in the data fork of objectFile. 

-d Don't dump object code. 
-h Don't write headers (offsets, hex, etc.). 
-i 
-jn 
-1 
-m name 
-mods 

-mh 
-n 
-p 
-r bytel [,byteN] 
-sym [Off] 
[On I Full] 

Use ids, rather than names, in dump. 
Just use names, rather than ids, in dump. 
Dump file locations of object records. 
Dump only module name. 
Dump a module summary with entry point 
information. 
Omit module summary header. 
Dump only the dictionary of names. 
Write progress information to diagnostics. 
Dump code from bytel in file [through byteN]. 
Disable symbolic output. 
Enable symbolic output (default); can be 
followed by: 
[,No Labels] 
[,No Lines] 
[,No Types] 
[,No Vars] 

Omit label information. 
Omit source line information. 
Omit type information. 
Omit variable information. 

Duplicate files or directories 

Duplicate [-y I -n I -c] [-p] [-d I -r] name ... target 
~ progress 

• Duplicate (copy) file or directory name to file or directory target. 

-y Overwrite target files (avoids dialog). 
-n Don't overwrite target files (avoids dialog). 
-c Cancel if conflict occurs (avoids dialog). 
-p Write progress information to diagnostics. 
-d Duplicate data fork only. 
-r Duplicate resource fork only. 



Echo 

Eject 

Entab 

IJlli- Appendix A 489 

Echo parameters 

Echo [-n] [parameter ... ] > parameters 

• Echo parameter to standard or selected output. 

-n Don't write return following the parameters. 

Eject volumes 

Eject [-m] volume ... 

• Eject volume. 

-m Leave the volume mounted. 

Convert runs of spaces to tabs 

Entab [option. .. ] [file ... ] < file > tabbed :2: progress 

• Convert runs of spaces in file to tabs. 

-a min Value 

-d tabValue 
-1 quote ... 

-n 

-p 
-q quote .. . 
-r quote .. . 

-t tab Value 

Minimum run of blanks that can be replaced 
with a tab. 
Input tab setting. 
List of left quotes that prevent EnTab (default 
'"). 

EnTab everything, including spaces inside 
quotes. 
Write progress information to diagnostics. 
Quotes that prevent EnTab (default"'). 
List of right quotes that prevent EnTab 
(default '"). 
Output tab setting. 



490 .,. Appendix A 

Equal 

Erase 

Evaluate 

Execute 

Compare files and directories 

Equal [-d I -r] [-i] [-p] [-q] name ... target > 
differences ~ progress 

• Compare file or directory name with file or directory target. 

-d Compare data forks only. 
-r Compare resource forks only. 
-i Ignore files in target not in directory name. 
-p Write progress information to diagnostics. 
-q Quiet: Don't write output, just set {Status}. 

Initialize volumes 

Erase [-y] [-s] volume ... 

• Initialize volume. 

-y Yes; erase the disk (avoids dialog). 
-s Single-sided 400K disk (default is double-

sided BOOK disk). 

Evaluate an expression 

Evaluate [-h I -o I -b] [word ... ] > value 

• Evaluate list of words word ... and write result to standard or 
selected output. 

or 
Evaluate name [binary operator] = expression. 

• Evaluate expression and assign the result to the variable name. 

-h Display result in hexadecimal (leading Ox). 
-o Display result in octal (leading 0). 
-b Display result in binary (leading Ob). 

Execute command file in the current scope 

Execute commandFile 

• Execute commandFile in the current scope. 



Exists 

Exit 

Export 

File Div 

Ill> Appendix A 491 

Confirm the existence of a file or directory 

Exists [-d I -f I -w] [-q] name... > file 

• Confirm the existence of file or directory name. 

-d Check if name is a directory. 
-f Check if name is a file. 
-w Check if name is a file and writeable. 
-q Don't quote file names with special 

characters. 

Exit from a command file 

Exit [status] [If expression] 

• Terminate execution of script in which the Exit command 
appears if expression is true. Status of script is returned in status 
argument, if status argument is used. 

Make variables available to commands 

Export [-r I -s I name ... ] > exports 

• Make variable name available to scripts and tools. 

-r Generate Unexport commands for all 
exported variables. 

-s Print the names only. 

Divide a file into several smaller files 

FileDiv [option ... ] file [prefix] ;;:: progress 

• Divide file into smaller files. 

-f 
-n splitPoint 
-p 

Split file at formfeed character. 
Split file after splitPoint lines. 
Write progress information to diagnostics. 



492 ~ Appendix A 

Files List files and directories 

Files [option. .. ] [name ... ] > fileList 

• List contents of directory or volume name. 

-c creator 
-d 
-f 
-i 
-1 

-mn 

-n 

-o 

-q 

-r 

-s 
-t type 
-xformat 

List only files with this creator. 
List only directories. 
List full path names. 
Treat all arguments as files. 
Write files in long format (type, creator, size, 
dates, etc.). 
Multi-column format, where n = columns. 
Don't print header in long or extended 
format. 
Omit directory headers. 
Don't quote file names that contain special 
characters. 
Recursively list subdirectories. 
Suppress the listing of directories. 
List only files of this type. 
Use extended format; fields specified by 
format. 
These characters can be used to specify the 
format: ' 

a Flag attributes. 
b Logical size, in bytes, of the data fork. 
c Creator of File ("Fldr" for folders). 
d Creation date. 
g Group (only for folders on a file server). 
k Physical size in kilobytes of both forks. 
m Modification date. 
o Owner (only for folders on a file server). 
p Privileges (only for folders on a file 

server). 
r Logical size, in bytes, of the resource 

fork. 
t Type. 



Find 

Flush 

For 

Format 

..,. Appendix A 493 

Find and select a text pattern 

Find [-c count] selection [window] 

• Find selection. 

-c count Find the nth selection, where n =count. 

Flush tools that the shell has cached 

Flush 

• Flush the tools that the shell has cached. 

Repeat commands once per parameter 

For name In word ... 

command .... 

End 

• Execute command once for each word in the word ... list. 

Set or display formatting options for a window 

Format [[-f fontName] [-s fontSize] [-t tabSize] 
[-a at tr]] I [-x fmt] [window ... ] 

• Set the format of window. Default is the target window. 

-f fontName 
-s fontSize 
-t tabSize 
-a attr 

Set font to fontName. 
Set the font size to fontSize. 
Set the tab size to tabSize. 
Set auto indent to attr, and show invisibles 
flags. 
The attr parameter is a string made up of 
these characters: 

A Auto indentation on. 
a Auto indentation off. 
I Show invisibles on. 

Show invisibles off. 



494 ..,, Appendix A 

Format (continued) 

Get 

GetErrorText 

-xfmt Specifies output format (/mt). 
The fmt parameter is a string made up of 
these characters: 

f Fontname. 
s Font size. 
t Tab size. 
a Attributes. 

Get a record from a file with a BTree index. 

Get [option. .. ] datafile ... 

• Get a record from file datafile. 

-col n 

-d default 

-h 
-k keyword 
-1 
-nf 
-q 
-s 

-search 

-t 

Use n-column format (n = 1 through 6). 
Use default keyword if no keyword is 
specified. 
Write header. 
Use keyword in the datafile's index file. 
List all keys beginning with keyword. 
No filtering; include field tags. 
(Quiet) No output when keyword not found. 
Use the selection in the active window as 
keyword. 
Text search datafile for occurrences of 
keyword. 
Write out template of the requested 
function/procedure. 

Display error messages based on message number 

GetErrorText [-f filename] [-s filename] [-n) [-p) 

errNr[, insert, ... ) ... 

• Display error message that corresponds to error number (errNr). 
or 
GetErrorText -i idNr, ... 

• Display error message that corresponds to the System Error 
Handler ID number idNr. 



GetErrorText 

GetFileName 

Getlistltem 

(continued) 

-£filename 
-s filename 

-n 

-p 
-i idNr 

~ Appendix A 495 

Display a tool's error message file name. 
Display error message file name for a system 
error. 
Suppress error numbers in displayed 
messages. 
Write SysErr's version info to diagnostics. 
Report meaning of System Error Handler ID 
number. 

Display a Standard File dialog box 

GetFileName [-q] [-s] [-c I [[-t type] ... I -p I -d] 
[-m message] [-b buttonTitle] [pathname]] 

• Display a Standard File dialog window 

-q 
-s 
-c 

-t type 
-p 
-d 

-m message 
-b buttonTitle 

Suppress quoting of file names. 
Return 0 status even if cancel is clicked. 
Write current standard file path to standard 
output. 
Specify file type for SFGetFile dialog. 
Display an SFPutFile dialog. 
Display an SFGetFile dialog for selecting a 
directory. 
Specify a prompt message. 
Specify the default button's title. 

Display items for selection in a dialog box 

GetListitem [option ... ] [[item ... ] I < file] 

• Display a list dialog containing the specified items and read user 
input. 

-c[ancel] 

-d[efault] item 

Return a status of 0 even when cancel is 
clicked. 
Specified item is placed in list and is default 
selection. 



496 ~ Appendix A 

Getlistltem 

Help 

If 

Lib 

(continued) 

-m[essage] message 

-q[uote] 
-r[ows] n 
-s[ingle] 
-w[idth] width 

Specified message is displayed in dialog above 
the list. 
Don't quote items in the output. 
Display a list with n rows. 
Allow user to make only one selection. 
Make the list width pixels wide. 

Write summary information 

Help [-f helpfile] [command ... ] > helpinformation 

• Display MPW Help information. 

-f helpfile Use alternate help file (default is MPW.Help). 

Conditional command execution 

If expression 

command ... 

[Else If expression 

command ... l ... 

[Else 

command ... 

End 

• Process If ... Else ... End loop. 

Combine object files into a library file 

Lib [option. .. ] objectFile... :::::: progress 

• Combine the object files specified in the objectFile parameter into 
a library file. 

-d 
-df deleteFile 
-dm name[,name] .. . 
-dn name[,name] .. . 

Suppress duplicate definition warnings. 
Delete modules listed in file deleteFile. 
Delete external modules and entry points. 
Delete external names, making them local. 



Lib 

Line 

Link 

(continued) 

-mf 

-o name 
-p 
-sg newSeg=old[,old] ... 
-sn oldSeg=newSeg 
[Off] 

-sym [On I Full] 
[,No Labels] 
[,NoLines] 
[,No Types] 
[,No Vars] 
-vern 
-w 

Ill> Appendix A 497 

Use MultiFinder temporary memory if 
necessary. 
Write object file name (default Lib.Out.o). 
Write progress information to diagnostics. 
Merge old segments into new segment. 
Change segment name oldSeg to newSeg. 
Omit symbolic information; can be followed 
by: . 

Keep symbolic information (default). 
Discard label information. 
Discard source line information. 
Discard type information. 
Discard variable information. 
Set OMF file version number to n. 
Suppress warnings. 

Find line in the target window 

Line n 

• Find line number n in the target window. 

Link an application, tool, or resource 

Link [option ... ] objectFile ... > map ~ progress 

• Link objectFile. 

-ac n 
-ad n 
-c creator 

-d 
-da 

-f 
-1 
-la 

Align code modules to n byte boundaries. 
Align data modules to n byte boundaries. 
Set resource file creator to creator (default is 
'????'). 

Suppress duplicate definition warnings. 
Desk accessory : Add NULL to segment 
names. 
Allow FORTRAN-style common data. 
Write a location map to output. 
List anonymous symbols in location map. 



498 ~ Appendix A 

Link (continued) 

-lf 

-m mainEntry 
-ma name=alias 
-map 
-mf 

-msg keyword[, ... ] 

-o outputFile 

-opt [Off] 

-p 
-ra [seg]=attr[,attr .. . ] 

-rn 
-rt type=id 
-sg newSeg= 

oldSeg[,oldSeg] ... 

Include file and location of definitions in 
location map. 
Use mainEntry as main entry point. 
create an alias (alias) for module name. 
Write a full location map. 
Use MultiFinder temporary memory if 
necessary. 
Enable or suppress certain warning and error 
messages: 

[no]dup Suppress duplicate-symbol 
warnings. 

[no]multiple Suppress multiple label error 
messages. 

[no]warn Suppress warning messages. 
Place linker output in outputFile (default file is 
Link.Out). 
Disable Object Pascal optimizations (default). 
Also: 

[On] 
[NoBypass] 

[,Info] 

Enable optimizations. 
Enable optimizations, but 
always dispatch. 
Always go through jump 
table. 

[,Names] Include MacsBug symbols. 
Write progress information to diagnostics. 
Set resource attributes of segment seg. 
The attr parameter can be expressed as: 
$xx (or) nnn (a hexadecimal or decimal 
number) 
or as a named attribute: 

resSysHeap 
resPurgeable 
res Locked 
resProtected 
resPreload 
resChanged (essentially ignored in this 
usage) 

Don't include resource names in resourceFile. 
Set resource type and lowest ID. 
Merge old segments into new segment. 



Link 

Loop 

Make 

(continued) 

-sn oldSeg=newSeg 
-srt 

-ss size 
-sym [Off] 

-t type 
-uf unRefFile 

-w 
-x crossRefFile 

..,, Appendix A 499 

Change segment name oldSeg to newSeg. 
Sort global data by "near" and "far" 
references. 
Maximum segment size (default is 32760). 
Disable symbolic output (default). Other 
parameters: 

[On I Full] Enable symbolic output, can 
be followed by: 

[,NoLabels] Omit label information. 
[,NoLines] Omit source line information. 
[,NoTypes] Omit type information. 
[,No Vars] Omit variable information. 

Set resource file type (default 'APPL'). 
Write list of unreferenced modules to 
unRefFile. 
Suppress warnings. 
Write cross-reference to crossRefFile. 

Repeat commands until Break 

Loop 

command ... 

End 

• Repeat command forever or until a Break command is 
encountered. 

Build up-to-date version of a program 

Make [option ... ] target ... > commands ~ progress 

• Build up-to-date version of file target. 

-d name[ =value] 

-e 
-f makefile 

Define variable name as value (overrides 
makefile). 
Rebuild everything, regardless of dates. 
Read dependencies from makefile (default file 
Makefile). 



500 IJ)- Appendix A 

Make (continued) 

MakeErrorfile 

Mark 

Markers 

-p 
-r 
-s 

-t 
-u 

-v 
-w 

Write progress information to diagnostics. 
Write roots of dependency graph to output. 
Write structure of target dependencies to 
output. 
Touch dates of targets and prerequisites. 
Identify targets in makefile not reached in 
build. 
Write verbose explanations to diagnostics. 
Suppress warnings. 

Create error message text file 

MakeErrorFile [option ... ] [file ... ] < file > listing ~ 
progress 

• Create a special error message file to retrieve error messages 
associated with error numbers. 

-1 
-oobjName 
-p 

Write listing to standard output. 
Write to file or directory objName. 
Write progress information to diagnostics. 

Assign a marker to a selection 

Mark [-y I -n] selection name [window] 

• Assign the marker name to selection in specified window (default 
is target window). 

-y Replace existing marker (avoids dialog). 
-n Don't replace existing marker (avoids dialog). 

List markers 

Markers [-q] [window] 

• List markers in window (default is target window). 

-q Don't quote the marker names. 



Match It 

MergeBranch 

.,,. Appendix A 501 

Semi-intelligent language-sensitive bracket matcher 

Matchit [-a[sm] I -p[ascal] I -c) [-h) [-1] [-n) [-v) 

[window] 

• Find all left delimiters in a C, Pascal, or assembly language 
program, and then match them with their corresponding right 
delimiters. 

-a[sm] 
-p[ascal] 
-c 
-h 
-1 
-n 
-v 

Target language is Assembler. 
Target language is Pascal. 
Target language is C. 
Highlight all characters enclosed by match. 
Highlight entire lines containing match. 
Generate error message if no match. 
Display Matchlt's version number. 

Merge a branch revision onto the trunk 

MergeBranch file ... 

• Merge the branch revision of the HFS file file onto the trunk. 

ModifyReadOnly Enable a read-only Projector file to be edited 

Mount 

MountProject 

ModifyReadOnly f 

• Make the read-only file fa write-enabled file. 

Mount volumes 

Mount drive ... 

• Mount drive. 

Mount projects 

Mountproject ( [-s] [-pp] [-q] [-r]) I [p) 

• Mount Project p. 

-s Print names only, not commands. 
-pp List mounted projects using project paths. 
-q Don't quote names with special characters. 
-r List projects recursively. 



502 .,. Appendix A 

Move Move files and directories 

Move Window 

NameRevisions 

Move [-y I -n I -c] [ -p] name... target ~ progress 

• Move file or directory name to target. 

-y Overwrite target files (avoids dialog). 
-n Don't overwrite target files (avoids dialog). 
-c Cancel if conflict occurs (avoids dialog). 
-p Write progress information to diagnostics. 

Move window to x, y location 

MoveWindow [h v] [-i] [w] 

• Move window w's upper left-hand corner to x, y screen 
coordinates h, v. Default window is target window. 

-i Ignore positioning errors. 

Define a symbolic name 

NameRevisions [-u user] [-project project] [-public 
-bl [-r] [[-only] I name 

[[-expand] [-s] I [-replace] [-dynamic] [name ... I 
-a] l l. 

• Create a symbolic name to represent a set of revisions (used with 
Projector). 

-u user 
-project project 
-public 
-b 
-r 

-only 

-expand 

Name of current user. 
Name of project that contains the revisions. 
Create a public name. 
Print both public and private names. 
Recursively execute the NameRevisions 
command. 
Only print the names, not the associated 
revisions. 
Evaluate names to revision level before 
printing. 



NameRevisions 

New 

Newer 

Newfolder 

(continued) 

-s 
-replace 

-dynamic 

-a 

Open a new window 

New [name ... ] 

~ Appendix A 503 

Print a single name per line. 
Completely overwrite the previous definition 
of name. 
Evaluate names to revision level when using 
not defining. 
Include all the files in the project. 

• Open a new window, optionally named name. 

Compare modification dates of files 

Newer [-c] ·[-e] [-q] file ... target > newer 

• Compare modification dates of files file and target. 

-c 
-e 

-q 

Create a new folder 

NewFolder n ... 

Compare creation dates of file and target. 
Report file names with same modification 
date as target. 
Don't quote file names with special 
characters. 

• Create a new folder named n. 



504 Ill> Appendix A 

NewProject 

Open 

Orphan Files 

Parameters 

Create a new project 

NewProject -w I -close I ( [-u user) [-cs comment I 
-cf file] proj) 

• Create a new project named proj. 

-w 

-close 
-u user 
-cs comment 
-cf file 

Open the New Project window. 
Close the New Project window. 
Name of current user. 
A short description of the project. 
A comment (see -cs option) is contained in 
file. 

Open file(s) in window(s) 

Open [-n I -r) [-t) [name ... ] 

• Open file name and display its contents as a window. 

-n Open new file (default name Untitled). 
-r Open file for read-only use. 
-t Open file as the target window. 

Remove Projector information from a list of files 

OrphanFiles file ... 

• Remove Projector information from file. 

Write parameters 

Parameters [parameter ... ] > parameters 

• Write the parameters of the Parameters command to standard or 
specified output. This command is used primarily to check lists 
of parameters for debugging purposes. 



Pascal 

~ Appendix A 505 

Invoke Pascal compiler 

Pascal [option ... ] [file ... ] < file:?: progress 

• Compile Pascal program. 

-b 

-c 
-clean 
-d name=(TRUE I FALSE) 
-e file 
-forward 

-h 

-i directory, ... 
-k directory 

-m 

-mbgch8 
-mbg full 

-mbg off 
-mbg number 

-mc68020 
-mc68881 

-n 
-no load 

-o objName 
-ov 
-p 
-r 
-rebuild 
-sym off 

Generate AS references for procedure 
addresses. 
Syntax check only; don't create object file. 
Erase all symbol table resources. 
Set compile time variable name. 
Write errors to file. 
Allow only explicit forward and external 
object declarations. 
Suppress error messages regarding unsafe 
handles. 
Search for includes in directory, ... 
Create symbol table resource files in 
directory. 
Allow greater than 32K globals by using 
32-bit references. 
Include v2.0 compatible MacsBug symbols. 
Include full (untruncated) symbols for 
Macs Bug. 
Don't include symbols for MacsBug. 
Include MacsBug symbols truncated to 
length number. 
Generate MC68020 code. 
Generate MC68881 code for floating-point 
operations. 
Generate separate global data modules. 
Don't use or create any symbol table 
resources. 
Generate code in file or directory objName. 
Generate code to test for overflow. 
Write progress information to diagnostics. 
Don't generate range checking code. 
Rebuild all symbol table resources. 
Include SADE object file information. 



506 ..,. Appendix A 

Pascal (continued) 

Pas Mat 

-sym on I full 

-t 
-u 

-w 

-y directory 

Generate symbolic debugger object 
records. 
Write compilation time to diagnostics. 
Initialize all data to $7267 for debugging 
use. 
Turn off peephole optimizer. 
Create temporary files in directory. 

Pascal programs formatter 

PasMat [option ... ] [input [output]] < input > output ~ 

progress 

• Reformat Pascal source code into a standard format, suitable for 
printed listings or compilation. Options to this command are 
explained in the MPW 3.0 Pascal Reference and later MPW Pascal 
documentation. 

-a 
-b 
-body 

-c 
-d 
-e 
-en tab 
-f 
-g 

-h 

-i directory, ... 
-in 
-k 

-1 

-list file 

Set a- to disable CASE label bunching. 
Set b+ to enable IF bunching. 
Set body+ to disable indenting procedure 
bodies. 
Set c+ to suppress Return before BEGIN. 
Set d + to use { ... } comment delimiters. 
Set e+ to capitalize identifiers. 
Replace multiple blanks with tabs. 
Set f- to disable formatting. 
Set g+ to group assignment and call 
statements. 
Seth- to disable FOR, WHILE, WITH 
bunching. 
Search for includes in directory, .... 
Set in+ to process includes. 
Set k+ to indent statements between BEGIN 
and END. 
Set l+ to literally copy reserved words, 
identifiers. 
Write listings to file. 



Pas Mat 

Pas Ref 

(continued) 

-n 
-o width 
-p 
-pattern =old=new= 
-q 

-r 
-rec 
-s file 

-t tab 
-u 
-v 
-w 

-x 

-y 
-z 

-@ 

-a 

~ Appendix A 507 

Set n+ to group format parameters. 
Set output line width (default 80). 
Write progress information to diagnostics. 
Modify include names, changing old to new. 
Set q+ to specify no special ELSE IF 
formatting. 
Set r+ to make reserved words uppercase. 
Set rec+ to indent field lists under defined ID. 
Rename identifiers based on names listed in 
file. 
Set output tab setting (default 2). 
Rename identifiers to match first occurrence. 
Set v+ to put THEN on separate line. 
Set w+ to make identifiers uppercase. 
Set x+ to suppress space around operators. 
Set y+ to suppress space around :=. 

Set z+ to suppress space after commas. 
Set:+ to align colons in VAR declarations. 
Set @+ to force multiple CASE tags on 
separate lines. 
Set#+ for "smart" grouping of assignments 
and calls. 
Set_+ to delete from identifiers. 

Pascal cross-referencer 

PasRef [option ... ] [file ... ] < file > crossReference ~ 

progress 

• Create cross-reference listing of a Pascal source file. 

-a 

-c 
-d 
-i directory, ... 
-1 

Process includes and units each time 
encountered. 
Process includes and units only once. 
Process each file separately. 
Search for includes in directory, .... 
Write identifiers in lowercase. 



508 IJJ. Appendix A 

Pas Ref 

Paste 

Perform Report 

(continued) 

-n 
-ni I -noi[ncludes] 
-nl I -nol[istings] 
-nolex 
-nt I -not[otal] 
-nu I -nou[ses] 
-o 

-p 
-s 
-t 
-u 
-w width 
-x width 

Don't process USES or includes. 
Don't process include files. 
Don't list the input. 
Don't write lexical information. 
Don't write total line count. 
Don't process USES declarations. 
Source written using Object Pascal. 
Write progress information to diagnostics. 
Don't write include and USES file names. 
Cross-reference by total line number. 
Write identifiers in uppercase. 
Set output line width (default 110). 
Set maximum identifier width. 

Replace selection with Clipboard contents 

Paste [-c count] selection [window] 

• Paste selection into window (default is target window). 

-c count Execute the Paste command count times. 

Generate a performance report 

PerformReport [option ... ] > reportFile 2:: progress 

• Read a link map text file and a performance data text file, and 
generate a report that reports performance data for procedure 
names. 

-a List all procedures in segment order (Defaults 
produce only partial list, sorted by %). 

-1 linkDataFile Read link map file (concatenated with 
ROM.list). 

-m measurementsFile Read performance measurements file (default 
is file Perform.Out). 

-n nn Show the top nn procedures (default is 50). 
-p Write progress information to diagnostics. 



Position 

Print 

~ Appendix A 509 

Display current line position 

Position [-1 I -c] [window ... ] 

• Display current position of insertion point in target or specified 
window. 

-1 List only the line number. 
-c List only the character offsets. 

Print text file 

Print [option. .. ] file... < file ;:::: progress 

• Print file. 

-b Print a border around the text. 
-b2 Alternate form of border. 
-bm n[.n] 
-c[opies] n 
-ff string 
-f[ont] name 
-from n 
-h 
-hf[ont] name 
-hs[ize] n 
-l[ines] n 

-lm n[.n] 
-ls n[.n] 
-md 

-n 
-nw [-]n 

-p 
-page n 

-ps filename 

-q quality 

Bottom margin in inches (default is 0). 
Print n copies. 
Treat string at beginning of line as a formfeed. 
Print using specified font. 
Begin printing with page n. 
Print headers (time, file, page). 
Print headers using specified font. 
Print headers using specified font size. 
Print n lines per page. 
Left margin in inches (default .2778). 
Line spacing (2 means double-space). 
Use modification date of file for time in 
header. 
Print line numbers to left of text. 
Width of line-number field; - causes padding 
with Os. 
Write progress information to diagnostics. 
Number pages beginning with n. 
Include PostScript file as background for each 
page. 
Print quality (options: HIGH, STANDARD, 
DRAFT). 



510 ~ Appendix A 

Print 

ProcNames 

Project 

(continued) 

-r 

-rm n[.n] 

-s[ize] n 
-t[abs] n 

-title title 
-tm n[.n] 

-ton 

Print pages in reverse order. 
Right margin in inches (default is 0). 
Print using specified font size. 
Consider tabs to be n spaces. 
Include title in page headers. 
Top margin in inches (default is 0). 
Stop printing after page n. 

Display Pascal procedure and function names 

ProcNames [option ... ] [file ... ] < file ;;;:: progress 

• Display procedure and function names in a Pascal source file. 

-c Process includes and units only once. 
-d Reset total line count to 1 on each new file. 
-e 

-f 
-i directory, ... 
-n 
-o 
-p 
-u 

Suppress page eject between each procedure 
listing. 
PasMat format compatibility mode. 
Search for includes or USES in directory, .... 
Suppress line number and level information. 
Source file is an Object Pascal program. 
Write progress information to diagnostics. 
Process USES declarations. 

Set or write the current project 

Project [-q I projectName] > project 

• Set the current project to projectName. If projectName is omitted, 
list the current project. 

-q Don't quote project name if it includes special 
characters. 



Projectlnfo 

-.. Appendix A 511 

Display information about a project 

Projectinfo [-project project] [-comments] [-latest] 
[-fl [-r] [-s] [-only I -m] 

[-af author I -a author] [-df dates I -d dates] 
[-cf pattern I -c pattern] 

[-t pattern] [-n name] [-newer I -update] [file ... ]. 

• List information about each revision in the current project's 
revision tree(s). 

-a author 
-af author 
-c pattern 

-cf pattern 

-comments 

-d dates 

-df dates 
-f 
-log 
-m 

-newer 

-only 
-project proj 
-r 
-latest 

List only revisions created by author. 
List only files created by author. 
List only revisions whose comment contains 
pattern. 
List only files whose comment contains 
pattern. 
List comments along with the rest of the 
information. 
List only revisions whose create date is within 
dates. 

Format of dates is mm/dd/yy [[hh:mm[:ss]] 
[AMIPM]]. 

The dates parameter may take these forms: 
dates On date specified by dates. 
< dates Before but not including dates. 
~ dates Before and including dates. 
> dates After and not including dates. 
~dates After and including dates. 
date-date Between and including dates. 

List only files whose mod date is within dates. 
List file information. 
Print project log. 
List only files/revisions that are checked out. 
List information on newest files in the current 
project. 
List only project information. 
Name of project to get information on. 
Recursively list subprojects. 
List only information on the latest revision on 
the main trunk. 



512 ., Appendix A 

Projectlnfo 

Quit 

Quote 

(continued) 

-s 
-t pattern 

-n name 

name 

-update 

~uit MPW 

Short listing, names and revision names only. 
List only revisions whose task contains 
pattern. 
(Pattern is either a literal string or /regular 
expression/). 
List only revisions that have name. 
The name parameter may take these forms:. 
In name. 
< name Before name. 
~name Before and including name. 
> name After name. 
::?: name After and including name. 
List information on new files in current 
project directory. 

Quit [-y I -n I -c] 

• Quit and exit MPW. 

-y Save all modified windows (avoids dialog). 
-n Do not save any modified windows (avoids 

dialog). 
-c Cancel if a window needs to be saved (avoids 

dialog). 

Echo parameters, quoting if needed 

Quote [-n] [parameter ... ] > parameters 

• Write parameter, enclosing parameters that contain special 
characters in quotes. 

-n Don't write return following the parameters. 



Rename 

Replace 

Request 

ResEqual 

Revert 

., Appendix A 513 

Rename files and directories 

Rename [-y I -n I -c] oldName newName 

• Rename file or directory oldName. 

-y Overwrite existing file (avoids dialog). 
-n Don't overwrite existing file (avoids dialog). 
-c Cancel if conflict occurs (avoids dialog). 

Replace the selection 

Replace [-c count] selection replacement [window] 

• Replace selection text with replacement text in target or selected 
window. 

-c count Execute the Replace command count times. 

Request text from a dialog box 

Request [-q] [-d default] [message ... ] < file 

• Display a Request dialog window, and accept user input. 

-q 
-d default 

Don't set status if user selects cancel. 
Set default response. 

Compare the resources in two files 

ResEqual [-pl filel file2 

• Compare filel 's resources with those of file2. 

-p Write progress information to diagnostics. 

Revert window to previously saved state 

Revert [ -y] [window ... ] 

• Revert target or specified window to previously saved state. 

-y Revert to old version (without dialog). 



514 .,. Appendix A 

Rez 

RezDet 

Resource compiler 

Rez [option ... ] [ fileName ... ] < file ~ progress 

• Compile resource definition file fileName. 

-a[ppend] 
-align word I longword 

Merge resource into output resource file. 
Align resource to word or longword 
boundaries. 

-c[reator] creator 
-d[efine] name[=value] 
-i[nclude] pathname 

-m[odification] 

-o file 
-ov 

-p 
-rd 
-ro 
-s[earch] pathname 

-t[ype] type 
-u[ndef] name 

Set output file creator. 
Same as #define value. 
Path to search when looking for #include 
files. 
Don't change the output file's modification 
date. 
Write output to file (default is Rez.Out). 
OK to overwrite protected resources when 
appending. 
Write progress information to diagnostics. 
Suppress warnings for redeclared types. 
Set the mapReadOnly flag in output. 
Path to search when looking for INCLUDE 
resources. 
Set output file type. 
Same as #undef name. 

Detect inconsistencies in resources 

RezDet [option ... ] fileName ... > dump 

• Find and report inconsistencies or errors in resource definition 
file fileName. 

-b[ig] 
-d[ump] 

-Hist] 

-q[uiet] 
-r[awdump] 
-s[how] 

Read resources one at a time, not all at once. 
Write -show information, plus headers, lists, 
etc. 
Write list of resources with minimum 
information. 
Don't write any output, just set {Status}. 
Write -dump information plus contents. 
Write information about each resource. 



Rotate Windows 

Save 

SaveOnClose 

Search 

~ Appendix A 515 

Send active (frontmost) window to back 

RotateWindows [-r] 

• Rotate windows, sending active (frontmost) window to back. 
MPW 3.2 adds the capability of reverse rotation, bringing back 
window to front (-r option). 

-r Reverse rotation; bring back window to front 
(MPW3.2) 

Save specified windows 

Save [-a I window ... ] 

• Save target window or specified window. 

Set window-saving preference (MPW 3.2) 

SaveOnClose [-a I -d I -n] [window] 

• Save, do not save, or ask whether to save when closing the 
target window or the specified window. 

-a Always save window when closing. 
-d Default (Display "Yes/No/Cancel" dialog). 
-n Never save window when closing. 

Search files for pattern 

Search [-s I -i] [-r] [-q] [-f file] pattern [file ... ] 
< file > found 

• Search for pattern in target window or specified file. 

-b Break "File/Line" from matched pattern 
(MPW3.2). 

-f file 
-i 

-nf 

Lines not written to output are put in this file. 
Case-insensitive search (overrides 
{CaseSensitive}). 
Write "pattern not found" to standard error 
and set status = 2 (MPW 3.2). 



516 ~ Appendix A 

Search 

Set 

SetDirectory 

Set File 

(continued) 

-q 

-r 

-s 

Suppress file name and line number in 
output. 
Write nonmatching line to standard output. 
Case-sensitive search (overrides 
{CaseSensitive)). 

Define or write shell variables 

Set [name [value]] > variableList 

• Assign the string value to the variable name. If value is omitted, 
write the variable name and its value to standard or specified 

· output. If both name and value are omitted, write a list of all 
variables and their values to standard or specified output. 

Set the default directory 

SetDirectory dir 

• Set default directory to dir. 

Set attributes 

SetFile [option ... ] objectName ... 

• Set attributes of file or directory objectName. 

-a attributes 

-c creator 

Set attributes (lowercase= 0, uppercase= 1).* 
These attributes may be used: 
L Locked. 
V Invisible.* 
B Bundle. 
S System. 
I Inited.* 
D Desktop.* 
M Shared (can run multiple times). 
A Always switch launch (if possible). 

File creator. 



Set File 

SetPrivilege 

(continued) 

-d date 

-1 h,v 
-mdate 

Ill> Appendix A 517 

Creation date (mm/dd/yy [hh:mm[:ss] 
[AM I PM]]).* 
(Period [.] represents the current date and 
time). 
ICON location (horizontal, vertical).* 
Modification date (mm/ dd/yy [hh:mm[:ss] 
[AM I PM]]).* 

-t type File type. 
* Allowed with folders. 

Set access privileges for directories on file servers 

SetPrivilege [option ... ] directory... > information 

• Set access privileges for directory. 

-d privileges 
-f privileges 
-ggroup 
-i 
-m privileges 
-o owner 
-r 

Set privileges for seeing directories. 
Set privileges for seeing files. 
Make the directories belong to group. 
Return information on directories. 
Set privileges for making changes. 
Make owner the owner of directories. 
Operate (set or list) recursively. 

The following privilege characters may be used with the -d, -f, or -m 
options (uppercase enables the privilege, lowercase disables it): 

0 
G 
E 

Owner. 
Group. 
Everyone. 



518 ""' Appendix A 

SetVersion Maintain version and revision number 

SetVersion [option ... ] file > output ~ progress 

• Set the version of file. For full explanations of options, see the 
MPW 3.0 Reference. 

-b 
-country name 
-csource file 

-d 

-fmtn/.m/ 

-i resID 
-p 

-prefix pfx 
-[p]source file 

-r 
-rezsource file 

-sb bugfix 

-sr revision 

-stage stage 
-suffix suffix 
-sv version 

-sx nonrel 

-sync 1 I 2 
-t type 
-v 

-verid identifier 

Increment the bug fix component by 1. 
Country code name. 
Update the #define version string in C source 
file. 
Display (updated) version numbers to 
standard output. 
Format version numbers according to 
specification. 
Use specified resource ID instead of 0. 
Write SetVersion's version information to 
diagnostic file. 
Prefix version with specified pfx. 
Update the Version string constant in source 
file file. 
Increment the revision component by 1. 
Update the resource definition in Rez source 
file file. 
Set the bug fix component to the specified 
value. 
Set the revision component to the specified 
value. 
Set release stage for a 'vers' resource. 
Append suffix to version. 
Set the version component to the specified 
value. 
Set the nonrelease component to the specified 
value. 
Synchronize 'vers',l with 'vers',2 or vice versa. 
Use specified resource type. 
Increment the version component by 1. 
Use Cf Pascal source version id instead of 
"version". 

-version frntstring Alternate way of specifying version 
component actions. 

-verstring longstring Set the long version string of a Finder 'vers' 
resource. 

-x Increment the nonrelease component by 1. 



Shift 

ShowSelection 

Shutdown 

Size Window 

.,_ Appendix A 519 

Renumber command file positional parameters 

Shift [number] 

• Increment command script positional parameters by number. For 
example, if number is 1, change parameters {1}, (2), etc., to (1+1}, 
(2+1}, etc. 

Show selection relative to window position (MPW 3.2) 

ShowSelection [-t I -b I -c I -n num I -1 num] 
[window] 

• Show selection at specified location in target window or 
specified window. 

-t Pin selection to top of window. 
-b Pin selection to bottom of window. 
-c 
-nnum 

-I num 

Pin selection to center of window. 
Move selection to num lines from top of 
window. 
Move line number num to top of window. 

Power down or restart computer 

Shutdown [-y I -n I -c] [-r] 

• Shut down the computer. If -r option is used, restart. 

-y Save all modified windows (avoids dialog). 
-n Do not save any modified windows (avoids 

dialog). 
-c Cancel if a window needs to be saved (avoids 

dialog). 
-r Restart the machine. 

Set a window's size 

SizeWindow[h v] [window] 

• Resize target window or specified window to h horizontal pixels 
by v vertical pixels. 



520 ~ Appendix A 

Sort Sort or merge lines of text 

Sort [option ... ] [files ... ] 

• Sort or merge lines of text in the target window or in specified 
files, in accordance with options. 

-b 
-check 
-d 
-f field[,field] 

-1 
-merge 
-o file 

-p 
-quote 
-r 

-stdin 
-t 

-u 
-unique 
-x 

Skip leading blanks of each field. 
Check if input is sorted (exit code 5 if not). 
Sort fields as decimal numbers. 
Specify fields to sort on. The field parameters 
take these forms: 
[F][.C][-K][bdlqrtux] or [F][.C][ +N][bdlqrtux] 
F Field number: 

0 = whole line [default]. 
1 = first word. 
2 = second word ... 

C Starting column number (from 1); 
default= 1. 

K Ending column number (> = C); 
default = infinite. 

N Maximum number of characters in the 
field; default = infinite. 

Only one of-Kor +N can be specified. 
Convert to lowercase before comparison. 
Merge presorted input files. 
Specify output file (command allows sorting 
in place). 
Print version and progress information. 
Handle fields with quotes. 
Reverse order of comparison. 
Placeholder for standard input (acts like a file). 
Sort fields as text (default). 
Convert to uppercase before comparison. 
Write only unique output lines. 
Sort fields as hexadecimal numbers. 



Stack Windows 

Target 

Tile Windows 

TransferCkid 

~ Appendix A 521 

Arrange windows diagonally with title bars showing 

StackWindows [-h num] [-v num] [-r t,l,b,r] [-i I 
windows ... ] 

• Stack screen windows in a diagonal, top-to-bottom pattern, with 
only the title bars of inactive windows showing. 

-hnum 
-vnum 
-r t,l,b,r 

-i 

Horizontal offset between windows. 
Vertical offset between windows. 
Rectangle (top, left, bottom, right) in which to 
stack windows. 
Include the worksheet. 

Make a window the target window 

Target name 

• Make window name the target window. 

Arrange windows in a tiled fashion 

TileWindows [-h I -v] [-r t,l,b,r] [-i I windows ... ] 

• Tile windows. 

-h 
-v 
-r t,l,b,r 

-i 

Tile windows horizontally. 
Tile windows vertically. 
Rectangle (top, left, bottom, right) in which to 
tile windows. 
Include the worksheet window in the tiling 
operation. 

Move Projector information from one file to another 

TransferCkid sourceFile destinationFile 

• Move Projector information from sourceFile to destinationFile. 



522 IJJJ> Appendix A 

Translate 

Unalias 

Undo 

Un export 

Un mark 

Translate characters 

Translate [-p] [-s] src [dst] < file > output ~ 
progress 

• Copy standard or selected input to standard or selected output, 
with characters specified in the parameter string src mapped 
into the parameter string dst; all other characters are copied as 
is. For more detailed information on this command, see the 
MPW 3.0 Reference Manual. 

-p Write progress information to diagnostics. 
-s Set font, font size, and tab setting of output. 

Remove aliases 

Unalias [name ... ] 

• Remove any alias definition associated with alias name. Caution: 
If name is not specified, all aliases are removed. 

Undo the last edit 

Undo [window] 

• Undo the last edit in target window or specified window: 

Remove variable definitions from the export list 

Unexport [-r I -s I name ... ] > unexports 

• Remove the specified variables from the list of exported 
variables. 

-r Generate Export commands for all 
unexported variables. 

-s Print the names only. 

Remove a marker from a window 

Unmark markerName ... windowName 

• Remove the markerName marker from the windowName window. 



Unmount 

UnmountProject 

Unset 

UserVariables 

Volumes 

~ Appendix A 523 

Unmount volumes 

Unmount volume ... 

• Unmount volume. 

Unmount projects 

UnmountProject -a I projectName ... 

• Unmount Project projectName. 

-a Unmount all mounted projects. 

Remove shell variable definitions 

Unset [name ... ] 

• Remove any variable definitions associated with name. Caution: 
If no name is specified, all variable definitions are removed. 

Use Commando to set user variables 

UserVariables 

• Display UserVariables Commando; Commando is used to set 
user variables. 

List mounted volumes 

Volumes [-1 J [-q] [ volumeName ... ] > volumeList 

• List volume name and any other information requested for 
volume volumeName. If volumeName is not specified, all mounted 
volumes are listed. 

-1 Long format (name, drive, size, free, files, 
directories). 

-q Don't quote volume names with special 
characters. 



524 IJJI- Appendix A 

Where ls 

Which 

Windows 

Zoom Window 

Find the location of a file 

Whereis [-cl [-d] [-v] [-s directory] ... pattern 

• Find and report location of any file that contains pattern as part 
of its file name. 

-c 
-d 
-v 

-s objectName 

Completely match file pattern. 
Include directories. 
Verbose output: Put summary line at end of 
listing. 
Start search with directory or volume 
objectName. 

Determine which file the shell will execute 

Which [-a] [-p] [name] > file ~ progress 

• Determine what command the shell will execute when 
command or alias name is entered. 

-a Report all commands named name. 
-p Write progress information to diagnostics. 

List windows 

Windows [-q) 

• List windows. 

-q Don't quote window names with special 
characters. 

-o Write out the "Open ... " commands (MPW 
3.2). 

Enlarge or reduce a window's size 

ZoomWindow [-b I -s) [windowName] 

• Zoom window windowName. 

-b Zoom to full screen (full size). 
-s Zoom back to regular size (reduced size). 



~ Appendix B 

Commands Arranged by 
Category 

Editing Commands 

Adjust 
Clear 
Copy 
Count 
Cut 

Adjust lines 
Clear the selection 
Copy selection to Clipboard 
Count lines and characters 
Copy selection to Clipboard and delete it 
Convert runs of spaces to tabs 
Find and select a text pattern 

En tab 
Find 
Format 
Line 
Mark 
Markers 
Matchlt 

Set or display formatting options for a window 
Find line in the target window 

Paste 
Position 
Replace 
Revert 
Search 
Sort 
Translate 
Undo 
Unmark 

Assign a marker to a selection 
List markers 
Semi-intelligent language-sensitive bracket 
matcher 
Replace selection with Clipboard contents 
Display current line position 
Replace the selection 
Revert window to previously saved state 
Search files for pattern 
Sort or merge lines of text 
Translate characters 
Undo the last edit 
Remove a marker from a window 

525 



526 ~ Appendix B 

File and Directory Commands 

Backup 
Catenate 
Compare 
CompareFiles 

CompareRevisions 
Delete 
Directory 
Duplicate 
DuplicateIIGS 
Equal 
Exists 
ExpressIIGs 

File Div 
Files 
Move 
Newer 
New Folder 
Open 
Rename 
Save 
Set Directory 
SetFile 
SetPrivilege 

Set Version 
Where Is 

Folder file backup 
Concatenate files 
Compare text files 
Compare text files and interactively view 
differences 
Compare two revisions of a file in a project 
Delete files and directories 
Set or write the default directory 
Duplicate files and directories 
Copy files between Mac and GS I OS volumes 
Compare files and directories 
Confirm the existence of a file or directory 
Convert file(s) from OMF to ExpressLoad 
format 
Divide a file into several smaller files 
List files and directories 
Move files and directories 
Compare modification dates of files 
Create a new folder 
Open file(s) in window(s) 
Rename files and directories 
Save specified windows 
Set the default directory 
Set file/folder attributes 
Set access privileges for directories on file 
servers 
Maintain version and revision number 
Find the location of a file . 



~ Appendix B 527 

Macintosh/ Apple llGS Programming Commands 

Asm 
Asmlles 
AsmCvtlles 

AsmMatlles 
Build Commands 
Buildlndex 
BuildProgram 
c 
Clles 
Canon 
CFront 
CPlus 
CreateMake 
CreateMakelles 
DeleteNames 
DumpCode 
Dump File 
DumpObj 
DumpObjlles 
GetErrorText 

Lib 
Link 
Linklles 
Make 
MakeBinlles 
MakeErrorFile 
Make Lib lies 
Pascal 
PascalIIes 
PasMat 
PasRef 
PerformReport 
ProcNames 

Assemble a program 
Assemble an Apple Iles program 
Convert APW Assembler source files to Asmlles 
format 
Assembler source formatter 
Show build commands 
Create an index for a data file 
Build the specified program 
Compile a C program 
Compile MPW Iles C program 
Canonical spelling tool 
C++ to C translator 
Script to compile C++ source 
Create a simple makefile 
Create Make files that build Iles programs 
Delete user-defined symbolic names 
Write formatted resources 
Display contents of any file 
Write formatted object file 
Dump OMF files 
Display error messages based on message 
number 
Combine object files into a library file 
Link an application, tool, or resource 
The MPW Iles Linker 
Build up-to-date version of a program 
Convert load files to binary files 
Create error message text file 
Create Iles Library files 
Compile Pascal program 
The MPW Iles Pascal Compiler 
Pascal programs formatter 
Pascal cross-referencer 
Generate a performance report 
Display Pascal procedure and function names 



528 _., Appendix B 

Menu Commands 

AddMenu 
BuildMenu 
BuildMenullcs 
DeleteMenu 
Directory Menu 

Add a menu item 
Create the Build menu 
Add CreateMakellcs to the Build menu 
Delete user-defined menus and menu items 
Create the Directory menu 

Printing and Disk-Drive Commands 

Choose 

Eject 
Erase 
Mount 
Print 
Unmount 
Volumes 

Choose or list network file server volumes and 
printers 
Eject volumes 
Initialize volumes 
Mount volumes 
Print text file 
Unmount volumes 
List mounted volumes 

Projector Commands 

Checkln 
CheckOut 
CheckOutDir 

DeleteRevisions 
Merge Branch 
Modify Read Only 
MountProject 
NameRevisions 
New Project 
OrphanFiles 
Project 
Project Info 
TransferCkid 

U nmountProject 

Check a file into a project 
Check a file out from a project 
Specify directory where checked-out files will be 
placed 
Delete previous revisions of files in a project 
Merge a branch revision onto the trunk 
Enable a read-only Projector file to be edited 
Mount projects 
Define a symbolic name 
Create a new project 
Remove Projector information from a list of files 
Set or write the current project 
Display information about a project 
Move Projector information from one file to 
another 
Unmount projects 



IJJ> Appendix B 529 

Resource Commands 

DeRez 
DeRezIIGs 
Res Equal 
ResEqualIIGs 
Rez 
RezIIGS 
RezDet 

Resource decompiler 
Resource decompiler for Apple IIGs 
Compare the resources in two files 
Compare resources in two Apple IIGs files 
Resource compiler 
Resource compiler for Apple IIGs 
Detect inconsistencies in resources 

Shell Programming Commands 

Alias 
Beep 
Begin 
Break 
Browser 
Continue 
Date 
Dolt 

Echo 
Evaluate 
Execute 
Exit 
Export 
Flush 
For 
Get 

Help 
If 
Loop 
Parameters 
Quit 
Quote 

Define or write command aliases 
Generate tones 
Group commands 
Break from For or Loop 
Display MPW Browser tool (MPW 3.2) 
Continue with next iteration of For or Loop 
Write the date and time 
Highlight and execute a series of shell 
commands 
Echo parameters 
Evaluate an expression 
Execute command file in the current scope 
Exit from a command file 
Make variables available to commands 
Flush tools that the shell has cached 
Repeat commands once per parameter 
Get information about a keyword from a data 
file 
Write summary information 
Conditional command execution 
Repeat commands until Break 
Write parameters 
QuitMPW 
Echo parameters, quoting if needed 



530 ~ Appendix B 

Shell Programming Commands (continued) 

Set 
Shift 
Shutdown 
Unalias 
Unexport 
Unset 
User Variables 
Which 

Define or write shell variables 
Renumber command file positional parameters 
Power down or restart computer 
Remove aliases 
Remove variable definitions from the export list 
Remove shell variable definitions 
Use Commando to set user variables 
Determine which file the shell will execute 

Window and Dialog Commands 

Alert 
Align 
Close 
Commando 
Confirm 
GetFileName 
GetListltem 
Move Window 
New 
Request 
Rotate Windows 
SaveOnClose 
ShowSelection 

Size Window 
Stack Windows 
Target 
Tile Windows 
Windows 
Zoom Window 

Display an alert box 
Align text to left margin 
Close specified windows 
Display a dialog interface for commands 
Display a confirmation dialog box 
Display a Standard File dialog box 
Display items for selection in a dialog box 
Move window (to horizontal, vertical location) 
Open a new window 
Request text from a dialog box 
Send active (frontmost) window to back 
Set window-saving preference (MPW 3.2) 
Show selection at specified place in window 
(MPW 3.2) 
Set a window's size 
Arrange windows with title bars showing 
Make a window the target window 
Arrange windows in a tiled fashion 
List windows 
Enlarge or reduce a window's size 



_., Appendix C 

The Creation.p Program 

PROGRAM Creation; 

USES MemTypes, QuickDraw, OSintf, Toolintf, 
Packintf, Traps, PrintTraps; 

{Functions and procedures} 

FUNCTION IsAppWindow(window: WindowPtr): BOOLEAN; 
FORWARD; 

FUNCTION GetSleep: LONGINT; 
FORWARD; 

PROCEDURE AboutDialog; 
FORWARD; 

PROCEDURE AdjustMenus; 
FORWARD; 

PROCEDURE DoActivate(becomingActive: BOOLEAN); 
FORWARD; 

PROCEDURE DoKey; 
FORWARD; 

531 



532 ..,_ Appendix C 

PROCEDURE DoMenu(result: LONGINT); 
FORWARD; 

PROCEDURE DoUpdate; 
FORWARD; 

PROCEDURE Initialize; 
FORWARD; 

PROCEDURE PrintDoc; 
FORWARD; 

PROCEDURE SetupMenus; 
FORWARD; 

PROCEDURE UpdateActive; 
FORWARD; 

PROCEDURE UpdateRects; 
FORWARD; 

PROCEDURE FatalError(error: INTEGER); 
FORWARD; 

PROCEDURE AlertUser(error: INTEGER); 
FORWARD; 

FUNCTION TrapAvailable(tNumber: INTEGER; tType: 
TrapType) : BOOLEAN; 
FORWARD; 

PROCEDURE EventLoop; 
FORWARD; 

PROCEDURE AdjustCursor; 
FORWARD; 

PROCEDURE DoCloseWindow; 
FORWARD; 

PROCEDURE DoOpenWindow; 
FORWARD; 



~ Appendix C 533 

CONST 
kSysEnvironsVersion = 1; {Tells SysEnvirons 

what kind of SysEnvRec we understand} 
kOSEvent = app4Evt; {event used by MultiFinder} 
kSuspendResumeMessage = 1; {high byte of 

suspend/resume event message} 
kResumeMask = 1; 
kMouseMovedMessage = $FA; 
kMinHeap = 29 * 1024; 
kMinSpace = 20 * 1024; {Minimum memory needed 

for app to run} 
kErrStrings = 128; {Resource ID for STR# 

resource} 

eWrongMachine 1; {Indicies into STR# resources} 
eSmallSize = 2; 
eNoMemory = 3; 
eNoSpacePaste = 8; 

{*** Resources ***} 

rMenuBar = 128; {application's menu bar} 
rUserAlert = 129; {user error alert} 

{*** Menu constants ***} 

mApple 
iAbout 

128; {Apple menu} 
1; 

mFile = 129; {File menu} 
iNew = 1; 
iOpen = 2; 
iClose = 4; 
iPageSetup = 9; 
iPrint = 10; 
iQuit 12; 

mEdit 130; {Edit menu} 
iUndo 1; 
iCut = 3; 
iCopy = 4; 
iPaste 5; 
iClear = 6; 



534 IJ>. Appendix C 

VAR 

iSelectAll = 8; 

mFont 131; {Font menu (program fills in)} 

mSize 132; {Size menu (program fills in)} 

mStyle = 133; {Style menu} 
iPlain = 1; 
iBold = 2; 
iitalic = 3; 
iUnderline = 4; 
iOut line = 5; 
iShadow = 6; 

gStyle: TextStyle; 
gMenu: MenuHandle; 
gMac: SysEnvRec; {set up by Initialize} 
gHasWaitNextEvent: BOOLEAN; {set up by 

Initialize} 
ginBackground: BOOLEAN; {maintained by 

Initialize and DoEvent} 

quit: BOOLEAN; 
shiftDown: BOOLEAN; 
theChar: Char; 
templ: LONGINT; 

mousePt: Point; 
dragRect: Rect; 
textRect: Rect; 
myEvent: EventRecord; 
myWindow: WindowPtr; 
theWindow: WindowPtr; 

iBeamHdl: CursHandle; 

textH: TEHandle; 
printH: THPrint; 
fontArray: ARRAY [1 .. 64] OF INTEGER; 
sizeArray: ARRAY [1 .. 32] OF INTEGER; 



~ Appendix C 535 

********** EXECUTABLE CODE STARTS HERE ********** } 

{$S Main} 

PROCEDURE AboutDialog; 

VAR 
aRect: Rect; 
oldPort: GrafPtr; 
aWindow: WindowPtr; 

BEGIN 
GetPort(oldPort); 
WITH aRect DO 

BEGIN 
left := (screenbits.bounds.right -

screenbits.bounds.left) DIV 2 - 100; 
right := left + 200; 
top := (screenbits.bounds.bottom -

screenbits.bounds.top) DIV 2 - 50; 
bottom := top + 110; 
END; 

aWindow := NewWindow(NIL, aRect, '', TRUE, 
dBoxProc, Pointer( - 1), TRUE, 0); 

SetPort(aWindow); 
TextFont(systemFont); 
MoveTo(lO, 40); 
Drawstring(' Welcome to Creation!'); 
MoveTo(24, 70); 
DrawString('By [Put your name here]'); 
REPEAT 

SystemTask 
UNTIL Button; 
DisposeWindow(aWindow); 
SetPort(oldPort); 
FlushEvents(mUpMask + mDownMask, 0); 

END; {AboutDialog} 

{$S Main} 

PROCEDURE AdjustMenus; 

VAR 
flag: BOOLEAN; 
i: INTEGER; 



536 _.. Appendix C 

THEN 

lineHeight: INTEGER; 
fontAscent: INTEGER; 
n: LONGINT; 
curStyle: TextStyle; 
name: Str255; 
item: Styleitem; 
mode: INTEGER; { current style } 

BEGIN 

{clear check marks from the text menus} 
gMenu := GetMHandle(mFont); 
FOR i := 1 TO CountMitems(gMenu) DO 

Checkitem(gMenu, i, FALSE); 
gMenu := GetMHandle(mSize); 
FOR i := 1 TO CountMitems(gMenu) DO 

Checkitem(gMenu, i, FALSE); 
gMenu := GetMHandle(mStyle); 

FOR i := 1 TO CountMitems(gMenu) DO 
Checkitem(gMenu, i, FALSE); 

gMenu := GetMHandle(mFont); 
FOR i := 1 TO CountMitems(gMenu) DO 

BEGIN 
gMenu := GetMHandle(mFont); 
IF fontArray[i] = gStyle.tsFont THEN 

Checkitem(gMenu, i, TRUE); 
END; 

gMenu := GetMHandle(mSize); 
FOR i := 1 TO CountMitems(gMenu) DO 

BEGIN 
gMenu := GetMHandle(mSize); 
IF sizeArray[i] = gStyle.tsSize THEN 

Checkitem(gMenu, i, TRUE); 
END; 

gMenu := GetMHandle(mStyle); 
mode := doFace; 

IF TEContinuousStyle(mode, gStyle, textH) 

BEGIN 



IJJi> Appendix C 537 

Checkitem(gMenu, iPlain, gStyle.tsface 
[ l ) ; 

Checkitem(gMenu, iBold, bold IN 
gStyle.tsface); 

Checkitem(gMenu, iitalic, italic IN 
gStyle.tsface); 

Checkitem(gMenu, iUnderline, underline IN 
gStyle.tsface); 

Checkitem(gMenu, iOutline, outline IN 
gStyle.tsface); 

Checkitem(gMenu, iShadow, shadow IN 
gStyle.tsface); 

END 
ELSE 

BEGIN 
Checkitem(gMenu, iPlain, FALSE); 
Checkitem(gMenu, iBold, FALSE); 
Checkitem(gMenu, iitalic, FALSE); 
Checkitem(gMenu, iUnderline, FALSE); 
Checkitem(gMenu, iOutline, FALSE); 
Checkitem(gMenu, iShadow, FALSE); 
END; { IF } 

END; {AdjustMenus} 

{$S Main} 

PROCEDURE DoActivate(becomingActive: BOOLEAN); 

BEGIN 
IF WindowPtr(myEvent.message) 

THEN 
BEGIN 
IF becomingActive THEN 

BEGIN 
TEActivate(textH); 

myWindow 

gMenu := GetMHandle(mEdit); 

ELSE 

Disableitem(gMenu, 1); 
END 

BEGIN 
TEDeactivate(textH); 



538 ~ Appendix C 

END; 

gMenu := GetMHandle(mEdit); 
Enableitem(gMenu, 1); 
END; 

END; {DoActivate} 

{$S Main} 

PROCEDURE DoKey; 

BEGIN 
IF myWindow = FrontWindow THEN 

theChar := CHR(BAND(myEvent.message, 
charCodeMask)); 

TEKey(theChar, textH); 

END; { DoKey} 

{$S Main} 

PROCEDURE DoMenu(result: LONGINT); 

CONST 

VAR 

do Toggle 32; {requires system 6.0} 

bool: BOOLEAN; 
theitem: INTEGER; 
theMenu: INTEGER; 
temp: INTEGER; 
name: Str255; 
ht, ascnt: INTEGER; 
hack: INTEGER; 

BEGIN 
theitem := LoWord(result); 
theMenu := HiWord(result); 
InitCursor; 
CASE theMenu OF 

mApple: {Apple menu} 
IF (theitem = 1) THEN 

AboutDialog 
ELSE 



.,. Appendix C 539 

BEGIN 
gMenu := GetMHandle(mApple); 
Getitem(gMenu, theitem, name); 
temp := OpenDeskAcc(name); 
SetPort(myWindow); 
END; 

mFile: {File menu} 
CASE theitem OF 

END; 

iOpen: DoOpenWindow; 
iClose: DoCloseWindow; 
iPageSetup: bool := 

PrStlDialog(printH); 
iPrint: IF PrJobDialog(printH) 

THEN PrintDoc; 
iQuit: quit := TRUE; 

mEdit: {Edit menu} 
BEGIN 
IF NOT SystemEdit(theitem - 1) THEN 

CASE theitem OF 

END; 
END; 

iCut: 

iCopy: 

BEGIN {Cut} 
templ := ZeroScrap; 
TECut(textH); 
END; 

BEGIN {Copy} 
templ := ZeroScrap; 
TECopy(textH); 
END; 

iPaste: TEStylPaste(textH); 
{Paste} 

iClear: TEDelete(textH); 
{Clear} 

iSelectAll: TESetSelect(O, 
32767, textH); 

mFont: {Font menu} 
BEGIN 
gMenu := GetMHandle(mFont); 
Getitem(gMenu, theitem, name); 
GetFNum(name, temp); 



540 ~ Appendix C 

gStyle.tsFont := temp; 
TESetStyle(doFont, gStyle, TRUE, 

textH) ; 
END; 

mSize: {Size menu} 
BEGIN 
gMenu := GetMHandle(mSize); 
Getitem(gMenu, theitem, name); 
StringToNum(name, templ); 
gStyle.tsSize := templ; 
TESetStyle(doSize, gStyle, TRUE, 

textH); 
END; 

mStyle: {Style menu} 
BEGIN 
HiliteMenu (6); 
IF theitem = 1 THEN 

BEGIN 
gStyle.tsface := []; 
TESetStyle(doFace, gStyle, TRUE, 

textH) ; 
END 

ELSE 

END; 

BEGIN 
gStyle.tsface := []; 
BitSet(@gStyle.tsface, 9 -

theitem); 
TESetStyle(doFace + doToggle, 

gStyle, TRUE, textH); 
END; 

END; 
HiliteMenu(O); 

END; {DoMenu} 

{$S Main} 

PROCEDURE DoCloseWindow; 

BEGIN 
HideWindow(myWindow); 
gMenu := GetMHandle(mFile); 
Disableitem(gMenu, iClose); 



~ Appendix C 541 

Enableitem(gMenu, iOpen); 
END; {DoCloseWindow} 

{$S Main} 

PROCEDURE DoOpenWindow; 

BEGIN 
ShowWindow(myWindow); 
gMenu := GetMHandle(mFile); 
Disableitem(gMenu, iOpen); 
Enableitem(gMenu, iClose); 

END; {DoOpenWindow} 

{$S Main} 

PROCEDURE DoMouse; 

VAR 
thePart: INTEGER; 

BEGIN 
thePart := FindWindow(myEvent.where, 

theWindow) ; 
CASE thePart OF 

inMenuBar: 
BEGIN 
AdjustMenus; 
DoMenu(MenuSelect(myEvent.where)); 
END; 

inSysWindow: SystemClick(myEvent, theWindow); 
inContent: 

BEGIN 
IF theWindow <> FrontWindow THEN 

SelectWindow(theWindow) 
ELSE IF theWindow = myWindow THEN 

BEGIN 
GlobalToLocal(myEvent.where); 
shiftDown := BAND(myEvent.modifiers, 

shiftKey) <> 0; 
TEClick(myEvent.where, shiftDown, 

textH) ; 
END; 



542 l)i- Appendix C 

END; 
inDrag: DragWindow(theWindow, myEvent.where, 

dragRect); 
inGrow: 

BEGIN 
templ := GrowWindow(theWindow, 

myEvent.where, screenbits.bounds); 
InvalRect(theWindowA.portRect); 
SizeWindow(theWindow, LoWord(templ), 

HiWord(templ), FALSE); 
UpdateActive; 
END; 

inGoAway: IF TrackGoAway(theWindow, 
myEvent.where) THEN DoCloseWindow; 

inZoomin, inZoomOut: 
IF TrackBox(theWindow, myEvent.where, 

thePart) THEN 

END; 

BEGIN 
ZoomWindow(theWindow, thePart, FALSE); 
UpdateActive; 
END; 

END; {DoMouse} 

{$S Main} 

PROCEDURE AdjustCursor; {give time to DAs, set 
cursor, flash cursor} 

BEGIN 
IF (myWindow = FrontWindow) THEN 

BEGIN 
GetMouse(mousePt); 
IF PtinRect(mousePt, textRect) THEN 

SetCursor(iBeamHdlAA) 
ELSE 

SetCursor(arrow); 
TE Idle (textH) ; 
END; 

END; {AdjustCursor} 

{$S Main} 



..,, Appendix C 543 

PROCEDURE DoUpdate; 

BEGIN 
theWindow := WindowPtr(myEvent.message); 
IF theWindow = myWindow THEN 

BEGIN 
SetPort(theWindow); 
BeginUpdate(theWindow); 
EraseRect(theWindowA.portRect); 
TEUpdate(theWindowA.portRect, textH); 

{draw the text} 
DrawGrowicon(theWindow); 
EndUpdate(theWindow); 
END; 

END; {DoUpdate} 

{ $S Initialize} 

FUNCTION TrapAvailable(tNumber: INTEGER; tType: 
TrapType) : BOOLEAN; 

BEGIN 
IF (tType = ToolTrap) & (gMac.machineType > 

envMachUnknown) & 
(gMac.machineType < envMacII) THEN 

BEGIN {512KE, Plus, or SE} 
tNumber := BAND(tNumber, $03FF); 
IF tNumber > $01FF THEN {which means the tool 
traps} 
tNumber := _Unimplemented; {only go to $01FF} 
END; 

TrapAvailable := NGetTrapAddress(tNumber, tType) 
<> GetTrapAddress(_Unimplemented); 

END; {TrapAvailable} 

PROCEDURE Initialize; 

VAR 
count, ignoreError: INTEGER; 
menuBar: Handle; 
total, contig: LONGINT; 
ignoreResult: BOOLEAN; 
event: EventRecord; 



544 ~ Appendix C 

BEGIN 

ginBackground := FALSE; 

FlushEvents(everyEvent, 0); 
InitGraf(@thePort); 
InitFonts; 
InitWindows; 
InitMenus; 
TEinit; 
InitDialogs(NIL); 
InitCursor; 
PrOpen; 
printH := THPrint(newHandle(SizeOf(TPrint))); 
IF printH =NIL THEN DebugStr('Not enough 

memory for print record.'); 
PrintDefault(printH); 

FOR count := 1 TO 3 DO {allow alert default 
button to be outlined} 
ignoreResult .- EventAvail(everyEvent, 

event) ; 

ignoreError := SysEnvirons 
(kSysEnvironsVersion, gMac); 

{If the machine doesn't have at least 128K 
ROMs, exit.} 

IF gMac.machineType < 0 THEN FatalError 
(eWrongMachine); 

gHasWaitNextEvent := TrapAvailable 
(_WaitNextEvent, ToolTrap); 

IF ORD(GetApplLimit) - ORD(ApplicZone) < 
kMinHeap THEN 
FatalError(eSmallSize); 

{* ZeroScrap; *} {*** You can uncomment 
this--TEMPORARILY--for debugging***} 



~ Appendix C 545 

PurgeSpace(total, contig); 
IF total < kMinSpace THEN 

IF UnloadScrap <> noErr THEN 
FatalError(eNoMemory) 

ELSE 
BEGIN 
PurgeSpace(total, contig); 
IF total < kMinSpace THEN FatalError 
(eNoMemory); 

END; 

{*****Now we set up our application's 
environment ******} 

SetupMenus; 
SetRect(dragRect, - 32767, - 32767, 32767, 

32767); 
{WITH screenBits.bounds DO SetRect 

(textRect,4,24,right-4,bottom-4);} 
WITH screenbits.bounds DO SetRect(textRect, 2, 

24, right - 2, bottom - 2); 
{InsetRect(textRect,5,20);} 
InsetRect(textRect, 5, 15); 
myWindow := NewWindow(NIL, textRect, 

'Creation', TRUE, zoomDocProc, 
Pointer( - 1), TRUE, 0); 

SetPort(myWindow); 

UpdateRects; 
TextFont(times); 
TextSize(18); 
textH := TEStylNew(textRect, textRect); 
TEAutoView(TRUE, textH); 
iBeamHdl := GetCursor(iBeamCursor); 

quit := FALSE; 
END; {Initialize} 

{$S Main} 

PROCEDURE PrintDoc; {print 1 page of text with its 
styles} 



546 ~ Appendix C 

VAR 
aRect: Rect; 
printTE: TEHandle; 
printPort: TPPrPort; 
status: TPrStatus; 

BEGIN 
aRect := printHAA.rPaper; 
InsetRect(aRect, 72, 72); 

printPort := PrOpenDoc(printH, NIL, NIL); 
printTE := TEStylNew(aRect, aRect); 
IF printTE =NIL THEN DebugStr('Not enough 

memory to print TERec. i); 

printTEAA.inPort := GrafPtr(printPort); 

{copy and paste our text and styles for print 
mgr} 

TESetSelect(O, 32767, textH); 
TECopy(textH); 
TESetSelect(O, 0, textH); 
TESetSelect(O, 0, printTE); 
TEStylPaste(printTE); 

PrOpenPage(printPort, NIL); 
TEUpdate(aRect, printTE); {draw text on the 

printer} 
PrClosePage(printPort); 
PrCloseDoc(printPort); 
TEDispose(printTE); 
IF printHAA.prJob.bJDocLoop = bSpoolLoop THEN 

PrPicFile(printH, NIL, NIL, NIL, status); 
END; {PrintDoc} 

{$S Main} 

PROCEDURE SetupMenus; 

VAR 
i, n: INTEGER; 
1: LONGINT; 
s: Str255; 



IJl> Appendix C 547 

menuBar: Handle; 

BEGIN 
menuBar := GetNewMBar(rMenuBar); {read menus 

into menu bar} 
IF menuBar = NIL THEN 

FatalError(eNoMemory); 
SetMenuBar(menuBar); {install menus} 
DisposHandle(menuBar); 
AddResMenu(GetMHandle(mApple), 'DRVR'); {add 

DA names to Apple menu} 
DrawMenuBar; 

gMenu := GetMHandle(mFont); 
AddResMenu(gMenu, 'FONT'); 
FOR i := 1 TO CountMitems(gMenu) DO 

BEGIN 
gMenu := GetMHandle(mFont); 
Getitem(gMenu, i, s); 
GetFNum(s, n); 
fontArray(i] := n; 
END; 

gMenu := GetMHandle(mSize); 
FOR i := 1 TO CountMitems(gMenu) DO 

BEGIN 
gMenu := GetMHandle(mSize); 
Getitem(gMenu, i, s); 
StringToNum(s, l); 
sizeArray(i] := l; 
END; 

gMenu := GetMHandle(mFont); 
FOR i := 1 TO CountMitems(gMenu) DO 

BEGIN 
gMenu := GetMHandle(mFont); 
Getitem(gMenu, i, s); 
GetFNum(s, n); 
fontArray(i] := n; 
END; 

gMenu := GetMHandle(mSize); 
FOR i := 1 TO CountMitems(gMenu) DO 

BEGIN 
gMenu := GetMHandle(mSize); 



548 ..,. Appendix C 

Getitem(gMenu, i, s); 
StringToNum(s, 1); 
sizeArray[i] .- l; 
END; 

END; {SetupMenus} 

{$S Main} 

PROCEDURE UpdateActive; 

BEGIN 
InvalRect(myWindow".portRect); 
UpdateRects; 
WITH textH"" DO 

BEGIN 
destRect := textRect; 
viewRect := textRect; 
END; 

TECalText(textH); 
END; {UpdateActive} 

{$S Main} 

PROCEDURE UpdateRects; 

BEGIN 
textRect := thePort".portRect; 
WITH textRect DO 

BEGIN 
left := left + 4; 
right := right - 20; 
bottom := bottom - 20; 
END; 

END; {UpdateRects} 

($S Main} 

PROCEDURE FatalError(error: INTEGER); 

BEGIN 
AlertUser(error); 
ExitToShell; 

END; {FatalError} 



.,_ Appendix C 549 

{$S Main} 

PROCEDURE AlertUser(error: INTEGER); 
{ Display an alert dialog when an error occurs } 

VAR 
itemHit: INTEGER; 
message: Str255; 

BEGIN 
SetCursor(arrow); 
GetindString(message, kErrStrings, error); 
ParamText (message, ' ' ' 1 • •); 

itemHit := Alert(rUserAlert, NIL); 
END; {Alert User} 

{$S Main} 

PROCEDURE EventLoop; 

VAR 
cursorRgn: RgnHandle; 
gotEvent: BOOLEAN; 
ignoreResult: BOOLEAN; 
mouse: Point; 
key: Char; 

BEGIN 
cursorRgn := NewRgn; {we'll pass an empty 

region to WNE the first time 
thru} 

REPEAT 
IF gHasWaitNextEvent THEN 

ELSE 

ignoreResult := WaitNextEvent 
(everyEvent, myEvent, 
GetSleep,cursorRgn) 

BEGIN 
SystemTask; 
gotEvent .- GetNextEvent(everyEvent, 

myEvent); 
END; 



550 Iii> Appendix C 

AdjustCursor; 
CASE myEvent.what OF 

mouseDown: DoMouse; 
keyDown, autoKey: 

BEGIN 
key := CHR(BAND 

(myEvent.message, 
charCodeMask)); 

IF BAND(myEvent.modifiers, cmdKey) 
<> 0 THEN 

ELSE 

BEGIN { Command key down } 
IF myEvent.what = keyDown 

THEN 

END 

BEGIN 
AdjustMenus; 
DoMenu(MenuKey(key)); 
END; {IF} 

DoKey; 
END; { keyDown} 

activateEvt: DoActivate 
(BAND(myEvent.modifiers, activeFlag) 
<> 0); 
updateEvt: DoUpdate; 
nullEvent: IF (textH <> NIL THEN 

IF (FrontWindow = myWindow) THEN 
TEidle (textH) ; 

kOSEvent: 
CASE BAND(BROTL(myEvent.message, 
8) I $FF) OF 

kMouseMovedMessage: 

END; 

TEidle(textH); 
kSuspendResumeMessage: 

BEGIN 
ginBackground := BAND 
(myEvent.message, 
kResumeMask) = 0; 
DoActivate(NOT 
ginBackground) ; 
END; 



~ Appendix C 551 

END; 
UNTIL quit; 
PrClose; 

END; {EventLoop} 

{$S Main} 

FUNCTION GetSleep: LONGINT; 

VAR 
sleep: LONGINT; 
window: WindowPtr; 

BEGIN 
sleep := MAXLONGINT; {default value for sleep} 
IF NOT ginBackground THEN 

END; 

BEGIN {if we are in front ... } 
window := FrontWindow; {and the front 

window is ours ... } 
IF IsAppWindow(window) THEN 

BEGIN 
WITH textH"" DO 

END; 

IF selStart selEnd THEN {and 
the selection is an insertion 
point ... } 

sleep := GetCaretTime; {we 
need to blink the insertion 
point} 

GetSleep := sleep; 
END; {GetSleep} 

{$S Main} 

FUNCTION IsAppWindow(window: WindowPtr): BOOLEAN; 

BEGIN 
IF window = NIL THEN 

IsAppWindow := FALSE 
ELSE {application windows have windowKinds 



552 _., Appendix C 

:= 

userKind (8)} 
WITH WindowPeek(window)A DO IsAppWindow 

(windowKind = userKind); 
END; {IsAppWindow} 

{********** THIS IS THE MAIN SEGMENT **********} 

PROCEDURE _Datainit; 
EXTERNAL; 

{This routine is automatically linked in by the MPW 
Linker. This external reference to it is done so that 
we can unload its segment, %A5Init.} 

{$S Main} 

BEGIN 
UnloadSeg(@_Datainit); {note that Datainit 
must not be in Main!} 

MaxApplZone; {expand the heap so code segments 
load at the top} 

Initialize; {initialize the program} 
UnloadSeg(@Initialize); {note that Initialize 
must not be in Main!} 

gStyle.tsFont times; 
gStyle.tsface .- []; 
gStyle.tsSize .- 12; 
TESetStyle(doAll, gStyle, FALSE, textH); 
AdjustMenus; 

EventLoop; {call the main event loop} 
END. 



~ Appendix D 

Creation.r 
Resource Description File for 
Creation.p 

#include "Types.r"; 
#include "SysTypes.r" 
#include "Creation.h" 

resource 'MBAR' (rMenuBar, preload) { 
{ mApple, mFile, mEdit, mFont, mSize, mStyle }; 

} ; 

resource 'MENU' (mApple, pre load) { 

} ; 

mApple, textMenuProc, 
OblllllllllllllllllllllllllllllDl, /* disable 

dashed line, */enabled, apple,/* enable About 
and DAs*/ 

"About Creation", 
noicon, nokey, nomark, plain; 

"-" 
noicon, nokey, nomark, plain 

553 



554 IJJJl. Appendix D 

resource 'MENU' (mFile, pre load) 
mFile, textMenuProc, 
Obllllllllllllllllllll01100001000, 
enabled, "File", 
{ 

} ; 

"New", 
noicon, "N", nomark, plain; 

"Open", 
noicon, "O", nomark, plain; 

"-" 
noicon, nokey, nomark, plain; 

"Close", 
noicon, "W", nomark, plain; 

"Save", 
noicon, "S", nomark, plain; 

"Save As ... ", 
noicon, nokey, nomark, plain; 

"Revert", 
noicon, nokey, nomark, plain; 

"-" ' 
noicon, nokey, nomark, plain; 

"Page Setup ... ", 
noicon, nokey, nomark, plain; 

"Print ... ", 
no icon, nokey, nomark, plain; 

"-" ' 
no icon, nokey, nomark, plain; 

"Quit II f 

no icon, "Q" I nomark, plain 

resource 'MENU' (mEdit, pre load) 
mEdit, textMenuProc, 
Obllllllllllllllllllllllll0111101, 
enabled, "Edit", 

{ 

"Undo", 
noicon, "Z", nomark, plain; 

"-" 
noicon, nokey, nomark, plain; 

"Cut", 
noicon, "X", nomark, plain; 



} i 

IJii' Appendix D 555 

"Copy", 
no icon, "C"' nornark, plain; 

"Paste", 
no icon, "V"' nornark, plain; 

"Clear", 
no icon, "B" I nornark, plain; 

"-" 
noicon, nokey, nornark, plain; 

"Select All", 
noicon, "A", nornark, plain 

resource 'MENU' (rnFont, preload) 
rnFont, textMenuProc, 
Oblllllllllllllllllllllllllllllll, 
enabled, "Font", 
{} 

} i 

resource 'MENU' (rnSize, preload) 
rnSize, textMenuProc, 
Oblllllllllllllllllllllllllllllll, 
enabled, "Size", 

{ 
n 6 n I 

noicon, nokey, nomark, plain; 
"9"' 

noicon, nokey, nornark, plain; 
II 10" f 

noicon, nokey, nornark, plain; 
"12 II f 

noicon, nokey, nornark, plain; 
"14"' 

noicon, nokey, nornark, plain; 
"18"' 

noicon, nokey, nornark, plain; 
"24"' 

noicon, nokey, nornark, plain; 
II 3 6 II f 

noicon, nokey, nornark, plain; 
II 4 8 II f 



556 ~ Appendix D 

} ; 

noicon, nokey, nomark, plain; 
II 60" f 

noicon, nokey, nomark, plain; 

"72"' 
noicon, nokey, nomark, plain 

resource 'MENU' (mStyle, preload) 
mStyle, textMenuProc, 
Oblllllllllllllllllllllllllllllll, 
enabled, "Style", 

"Plain", 
no icon, nokey, nomark, plain; 

"Bold", 
no icon, nokey, nomark, plain; 

"Italic", 
no icon, nokey, nomark, plain; 

"Underline", 
noicon, nokey, nomark, plain; 

"Outline", 
no icon, nokey, nomark, plain; 

"Shadow", 
no icon, nokey, nomark, plain 

} ; 

resource 'SIZE' (-1) 
application */ 

/* MultiFinder-aware 

} ; 

dontSaveScreen, 
acceptSuspendResumeEvents, 
enableOptionSwitch, 
canBackground, 
multiFinderAware, 
backgroundAndForeground, 
dontGetFrontClicks, 
ignoreChildDiedEvents, 
not32BitCompatible, 
reserved, reserved, reserved, reserved, reserved, 

reserved, reserved, 
96*1024, 
64*1024 



~ Appendix E 

Creation.make 
Makefile for Creation.p 

# 
# 
# 
# 

File: 
Target: 
Sources: 
Created: 

Creation.make 
Creation 
Creation.p Creation.r 
Wednesday, June 6, 1990 8:38:51 AM 

OBJECTS Creation.p.o 

Creation ff Creation.make Creation.r 
Rez Creation.r -append -o Creation 

Creation ff Creation.make {OBJECTS} 
Link -w -t APPL -c '????' -sym on -mf d 

{OBJECTS} () 
"{Libraries}"Runtime.o d 
"{Libraries}"Interface.o d 
"{PLibraries}"SANELib.o d 
"{PLibraries}"PasLib.o d 
-o Creation 

Creation.p.o f Creation.make Creation.p 
Pascal -sym on Creation.p 

557 



~ Afterword 

Once upon a time, Apple had to apologize for the lack of development 
tools available for the Macintosh. It may be hard for you young whipper
snappers to believe, but when Apple shipped the Macintosh back in 
1948 ... er, 1984, the only way to develop full-potency Macintosh soft
ware was to use assembly language, or buy a Lisa computer for many 
thousands of dollars and wire it to the Macintosh. Ah, the bad old days. 

Now, Apple may have to apologize for certain features of its develop
ment systems (or not), but there is certainly no shortage of ways to 
create software for Macintosh computers. To be sure, Apple hardly has a 
monopoly on great Macintosh development systems. Many top 
commercial developers use third-party development tools with great 
success, and even some folks inside Apple are known to dip into the 
outside toolbox now and then. 

(That's all fine, by the way, because Apple's business is not to make 
heaps of money selling development systems. It's to be sure that there 
are lots of great development systems to keep everyone happy.) 

Meanwhile, back home on the ranch, Apple's Macintosh Programmer's 
Workshop is a fascinating piece of software. It's so broad, so deep, and so 
powerful that thousands of programmers use it productively every day, 
and yet may not know what the heck they're doing a lot of the time. 
That's OK, because MPW lets you be a user at many different levels. You 
might be a programmer on a team, using scripts and commands written 
by someone else to help you do your job. Or, you might be that beloved 
guru who makes the cool scripts that everybody else desires. Both are 
reasonable and real jobs. 

559 



560 ~ Afterword 

In this book, Mark Andrews has introduced you to that wonderful 
world of MPW. He's shown you around the basic parts of MPW that 
you'll need to know in order to get going with real work. You've seen 
some friendly parts and some less-friendly (but incredibly flexible and 
powerful) parts along the way, and now you should be ready to start 
creating your own Macintosh monuments to great programming. 

Sometime, while you're enjoying the power and flexibility that MPW 
provides, remember us lonesome pioneers from way back when and the 
hardships that we suffered. Why, when I was your age, I had to walk 14 
miles in my bare feet in the snow just to link a desk accessory ... 

Scott Knaster 
Macintosh Inside Out Series Editor 



~ Bibliography 

Allen, Daniel K. On Macintosh Programming: Advanced Techniques. 
Reading, MA: Addison-Wesley, 1990. 

Guide to the Macintosh Family Hardware, Second Edition. 
Reading, MA: Addison-Wesley, 1990. 

Human Interface Guidelines: The Apple Desktop Interface. 
Reading, MA: Addison-Wesley, 1987. 

Hansen, Augie. C Programming, a Complete Guide to Mastering the C 
Language. Reading, MA: Addison-Wesley, 1990. 

Inside Macintosh, Volumes I-VI. Reading, MA: Addison-Wesley, 1985-1991. 

Inside Macintosh X-Ref. Reading, MA: Addison-Wesley, 1988. 

Introduction to MacApp 2.0 and Object-Oriented Programming. Cupertino, CA: 
Apple Computer, Inc., 1990. 

Kerninghan, Brian W., and Ritchie, Dennis M. The C Programming Language, 
Second Edition. Englewood Cliffs, NJ: Prentice-Hall, 1988, 1978. 

Knaster, Scott. How to Write Macintosh Software. Indianapolis: Hayden 
Books, 1986. 

MacApp 2.0 General Reference. Cupertino, CA: Apple Computer, Inc., 1989. 

561 



562 ~ Bibliography 

MacApp 2.0 Tutorial. Cupertino, CA: Apple Computer, Inc., 1989. 

Macintosh Programmer's Workshop 3.0 Reference. Cupertino, CA: Apple 
Computer, Inc., 1985-1988. 

Macintosh Programmer's Workshop 3.0 Assembler Reference. Cupertino, CA: 
Apple Computer, Inc., 1985-1988. 

Macintosh Programmer's Workshop C 2.0 Reference. Cupertino, CA: Apple 
Computer, Inc., 1987. 

Macintosh Programmer's Workshop Object Pascal, Version 3.1. Cupertino, CA: 
Apple Computer, Inc., 1989. 

MPW C++. Cupertino, CA: Apple Computer, Inc., 1989. 

Pritchard, Paul. An Introduction to Programming Using Macintosh Pascal. 
Reading, MA: Addison-Wesley, 1988. 

Niguidula, David, and Van Dam, Andries. Pascal on the Macintosh: A 
Graphical Approach. Reading, MA: Addison-Wesley, 1987. 

Programmer's Introduction to the Macintosh Family. Reading, MA: Addison
Wesley, 1988. 

Savitch, Walter. Pascal: An Introduction to the Art and Science of Programming, 
Second Edition. Reading, MA: Addison-Wesley, 1987. 

Schildt, Herbert. C: The Complete Reference. Berkeley: Osborne McGraw-Hill, 
1987. 

Tondo, Clovis L., and Gimpel, Scott E. The C Answer Book. Englewood 
Cliffs, NJ: Prentice-Hall, 1985. 

West, Joel. Programming with the Macintosh Programmer's Workshop. New 
York: Bantam Books, 1987. 

Weston, Dan. Elements of C++ Macintosh Programming. Reading, MA: 
Addison-Wesley, 1990. 

Williams, Steve. Programming the 68030. Reading, MA: Addison-Wesley, 
1989. 

Williams, Steve. Programming the 68000. Berkeley: Sybex, 1985. 

Williams, Steve. Programming the Macintosh in Assembly Language. Berkeley: 
Sybex, 1986. 

Wilson, David A.; Rosenstein, Larry S.; and Shafer, Dan. Programming with 
MacApp. Reading, MA: Addison-Wesley, 1990. 



Index 

A 
ADB Manager, 30, 32 
AddMenu command, 63, 189, 192, 

194-95,260,471 
AdjustCursor, 317 
AS register, 392, 412-13 
Alncludes, 35, 46, 111 
Alert command, 63, 196-97, 471 
Alias(es), 24, 53, 112, 118-19, 211 

creation of, 128-30 
substitution, 78, 79 

Alias command, 63, 112, 118-19, 472 
Alias Manager, 21, 24 
Align command, 172, 472 
Allen, Daniel K., 358 
Apple Desktop Bus, 32, 302 
Apple Programmer's and Developer's 

Association (APDA), 9 
AppleShare, 24 
AppleTalk Manager, 30, 32, 298 
Apple Technical Library, 444 
Application(s), 19, 20, 31, 51, 69, 378 

building of, 277, 427-70 
and the detection of events, 280 
heaps,388,389,390-91 
and initialization, 39-40 
and the Memory Manager, 387, 

421-22 
multiple, running of, 421-22 
Pascal, 43 
and the processing of events, 281-88 

segmentation of, 413-16. See also 
Applications, building of 

Applications, building of, 63, 75, 
438-39,442,456,472-73 

and the C command, 427, 431-34, 456 
and compiling, 427, 428, 430-38 
and the DeRez command, 427, 428 
and Lib tools, 445, 451-55 
and the Link command, 428, 442, 

446-51,456,497-99 
and linking, 427, 442-51 
and MPW assembler, 430-31, 438-42 
and the MPW C compiler, 431-34 
and the MPW linker, 442-46 
and MPW Pascal compiler, 430, 

434-38 
and the Pascal command, 427, 435, 

456 
and ResEdit, 427 
and resource codes, 427 
and resource forks, 427, 428 
and the Rez command, 427, 456 
three methods for, 428-30 
and using the Build menu, 456-57, 

469-70. See also Application(s) 
Arguments, 44, 47 
ASCII characters, 221, 302, 354, 366 
Asm command, 427, 438-39, 442, 456, 

472-73 
Assembly language, 40, 45-51, 412 

calling CloseWindow in, 48 

563 



564 ~ Index 

Assembly language (continued) 
calling traps in, 46-47, 49-50 
and "glue" segments, 45-46 
and register routines, 47 

B 

and setting up a call's parameters, 
47-48 

and stack-based routines, 47, 396 
starting up managers in, 48-49 

Balloons, 23 
Beep command, 73, 75, 98, 99, 226, 474 
Binary-Decimal Conversion Package, 29 
Bit, auto-pop, 50 
Break command, 64, 153 
Brovvsers,4, 10-11,57-58 
Build command, 458, 469-70, 475 
Build menu, 41, 45 
BuildProgram command, 458 

c 
C (high-level language), 9, 11, 36-41, 44 

and access to global variables, 392 
and the Clncludes folder, 36-38, 41 
compiler, 4, 9, 11, 35, 332, 476-77 
eventrecordsin,287,299 
NevvPtr call in, 399 
and object code, 45 
programs, compiling and linking of, 

40-41 
and the Rez language, 333, 334, 358, 

361 
starting up managers in, 48 
starting up tools in, 39-40 
string functions in, 12 
and the system heap, 390 
traps in, 36-39 

C command, 427, 431-34, 456 
C++ (high-level language), 45, 336, 431 

making Toolbox calls in, 50-51 
Cancel button, 203-4, 207 
Case sensitive, 177 
CASE statements, 283 
Catenate command, 64, 144, 477 
Change statements, 349 
Check boxes, 171-72, 177 
Clear command, 94-97, 170, 480 
Clipboard, 28, 99, 171 
Close command, 94-97, 166-67, 480 
CloseWindovv, 39, 43-44, 47, 48 
Code(s), 11, 31, 35, 40, 132, 316 

event, 300-301 

modules, and the PPC Toolbox, 24 
object, 41, 45, 333, 354, 438 
object-, libraries, 3, 4, 12, 451-55 
and the operating system, 19 
pseudo-, for a main event loop, 282 
raw key, 303 
resources, standalone, 444 
source,8,40-41,331,332,354,359, 

370 
status, 153, 242, 243, 358, 434, 438, 

441,450,455,460,468 
system, and the system heap, 390 
virtual key, 302, 303 

Color Manager, 24, 26, 28 
Color QuickDravv, 18 
Command(s), 1, 2, 53-160 

AddMenu, 63, 189, 192, 194-95, 260, 
471 

Alert, 63, 196-97, 471 
Alias, 63, 112, 118-19, 472 
Align, 172, 472 
Apple ProDos, 129 
Asm,427,438-39,442,456,472-73 
Beep,73,75,98,99,226,474 
and blank interpretation, 83 
Break,64, 153 
Build, 458, 469-70, 475 
built-in, and applications, 69, 68 
C,427,431-34,456 
Catenate, 64, 144, 477 
Clear, 94-97, 170, 480 
Close,94-97, 166-67,480 
Commando, 64, 81, 90, 481 
Confirm, 64, 197-98, 482 
Continue, 64, 154, 482 
Copy, 170, 482 
Count, 64, 74, 483 
CPlus, 9-10, 64, 483 
Create Build, 41, 45 
CreateMake,455-56,483 
Cut, 170, 484 
decisions, 70 
DeleteMenu, 65, 195, 484 
DeRez,9,215,331,343,355,356-

57,358,382-83,427,428,485 
Directory, 65, 138-39, 486, 488 
Display Selection, 178 
Duplicate, 65, 94-97, 144 
Echo,65,72,74,75,76, 113-14, 115, 

128-29, 211, 489 
Execute,65, 110, 111-12,490 
Export, 65, 110, 111, 112, 491 



Evaluate, 65, 92-94, 257-58 
and file name generation, 84-85 
Files, 65, 82, 133, 140-43, 491-92 
Find,61-63,65,73, 173-74,492 
Find Same, 177 
Find Selection, 177 
For, 65, 150-52, 493 
Format, 171,493-94 
If, 66, 150, 496 
Help, 66, 91 
Lib, 12,451-55,496-97 
Link,87,428,442,446-51,456,497-99 
Loop,66,152-53,499 
l\.1ake,66,429-30,466-68,499-500 
l\.1ove,66, 144-45 
naming of, 70 
New, 164-65, 503 
NewFolder, 66, 143, 503 
()pen,94-97, 165-66,504 
()pen Selection, 166 
operators used in, 83-86, 114 
and options and parameters, 70-71, 

97-98 
Page Setup, 168 
Pascal,427,435,456,505-6 
Paste, 170, 508 
Print, 9, 67, 148-50, 509-10 
Print Selection, 168-69 
Print Window, 168-69 
Quit, 169, 325, 512 
Quote,67, 114-18,512 
Rename,67, 145-46,513 
Replace,67,97, 178-79,241-42,513 
Replace Same, 179 
Request, 67, 198-99, 200, 513 
ResEdit, 215, 427 
ResEqual, 67, 357-58, 513 
Revert to Saved, 167 
Rez,215,331,354-56,358,382-83, 

427,456,514 
RezDet, 67, 358-60, 514 
Save, 167,515 
Save a Copy, 157 
Save As, 167 
Search,243-44,515-16 
Select All, 170 
Set, 67, 106-7, 110, 112 
Set Directory, 186, 516 
SetDirectory Command, 67, 139-40, 

517 
SetFile, 67, 146-48, 210, 515-16, 517 
Shift, 172, 519 

~ Index 565 

Show Clipboard, 171 
Show Directory, 186 
StackWindows, 57, 68, 131, 521 
structure of, 69 
and structured constructs, 78, 79-80, 

150-54 
substitution, 78, 80, 82 
syntax, 75-78 
terminators, 71 
TileWindows, 68, 131, 521 
Type, 129 
Unalias, 68, 118-19, 522 
Undo, 170, 522 
Unexport, 68, 111, 522 
Unset, 68, 108 
Volumes, 68, 143-44, 523 
writing of, 88-99 
Zoom Window, 68, 131, 524 

Command line window, 203-4, 205 
Commando(s): 

command,64,81,90,212,481 
Createl\.1ake, 457 
resources, 334 
UserVariable, 202-3, 206-8, 263. See 

also Commando dialogs 
Commando dialog(s), 81, 131, 196, 

198-201 
calling of, with the Commando 

command, 212 
calling of, with ()ption-;, 211, 212 
calling of, with ()ption-Enter, 210, 212 
"Commando," 212, 213-14 
creation of, 215 
DeRez, 383 
editing of, 214-15 
and the ellipsis operator, 250 
execution of, from the menu, 214 
Rez, 383 
SetFile, 210, 211, 213 
UserVariables, 131 

Comment character, 76 
Compilers, 4-5 

C,4,9, 11,35,332,476-77 
Pascal, 4, 8, 13, 35, 39, 47 
and resources, 332 
Rez,332-33,334-35,350,354,357, 

383 
Confirm command, 64, 197-98, 482 
Constants: 

eventmask,307-8 
used in the Rez language, 346, 

353-54,373 



566 ~ Index 

Constructs, structured, 78, 79-80, 
150-54,350 

Continue command, 64, 154, 482 
Control Manager, 40, 26, 27 
Copy command, 170, 482 
Count command, 64, 74, 483 
CPlus command, 9-10, 64, 483 
Create Build command, 41, 45 
CreateMake command, 429-30, 455-56, 

458-60,483 
Cursors, 17 
Cut command, 170, 484 

D 
DAs (desk accessories), 15, 24, 445 

Chooser, 148 
and forks, 329, 330, 331, 349 

Data bases, 3, 21, 23, 24 
Database Access Manager, 21, 24 
Data statements, 347 
Data types, 42 
Debugging, 11, 12 

and assembly language, 45 
and the MacsBug debugger, 9, 45, 409 

Deleting text, 90 
DeleteMenu command, 65, 195, 484 
Delete statements, 349 
Delimiters, 231, 223, 234-44, 336 
Dependency rules, 461-42, 463-65 
DeRez command, 9, 215, 331, 343, 

355-58,382-83,427,428,485 
Desk Manager, 26, 29 

Key Caps, 116-17 
Device Drivers, 30, 32, 298, 372 
Device Manager, 30, 31 
Dialog(s), 1, 2, 15, 17, 18, 90, 161-219 

and the Alert command, 196-97 
and the Align menu item, 172 
"bomb," 33 
and the Confirm command, 197-98 
definition of, 14 
Find, 174-79 
Format, 171-73 
Manage~26,27,40,43 
modal, 15 
records, 403-4 
"replace," 90 
and the Request command, 198-99, 

200 
as resources, 17 
Set Directory, 187 
Show Directory, 186 

and the Show Invisibles check box, 
171-72 

Standard, 196-201 
and the Tabs check box, 172. See also 

Commando dialog(s) 
Directories, 10, 120, 133-50, 160 

names of, 135-36 
Set, 187 
Show, 186 
structure of, modification of, 122, 

123-26 
and wildcards, 137 

Directory command, 65, 138-39, 486, 488 
Disk Initialization Package, 33 
Display Selection command, 178 
DoActivate procedure, 318 
Double-clicking, 90 
Double-dereferencing, 408-9 
Double meanings, 255 
Drivers, 30, 32, 298, 372 
Duplicate command, 65, 94-97, 144 

E 
Echo command, 65, 72, 74-76, 113-15, 

128-29, 211, 489 
Editing, 3-4, 10, 11, 223 

of commando dialogs, 214-15 
and icon editors, 380-81 
and menus, 169-71, 192-93 
and the MPW editor, 331, 382-83 
and the ResEdit command, 215, 331, 

349,358,378,427 
and resource editors,331, 378 
and the TextEdit Manager, 40 

Edition Manager, 21, 22-23 
Ellipsis, 211 
Entire Word, 175 
Environmental selectors, 314-15 
Environs, 312 
Errors,33,87, 101,237,358,359 

and 1/0 redirection, 101 
in using quotation marks, 237 

Evaluate command, 65, 92-94, 257-58 
Event-driven programming, 18, 24, 277, 

279-328 
and auto-key events, 297, 299 
and activate events, 288-89, 299, 303, 

321 
and CASE statements, 283 
and character keys, 296 
and disk events, 297, 299 
and disk-inserted events, 304, 322 



and the event mask, 306-8 
and event priorities, 299 
and the event queue, 284-85, 286 
and Gestalt, 312-20 
and GetNextEvent, 281-87, 290, 

299-300,306,309,311,317-220,327 
and the gHasWaitNextEvent 

variable, 283, 311-12 
and high-level events, 324, 326-27 
and keyboard events, 288, 290-96, 

299,302,321 
and the main event loops, 280, 282, 

283,286,309-10 
and the Macintosh extended 

character set, 290-96 
and modified keys, 296 
and modifier flags, 300, 304-6 
and the modifiers field, 303, 304-6 
and mouse events, 288, 289-90, 299 
and null events, 298, 299, 307, 318, 323 
and raw key codes, 303 
and the System Event Mask, 308 
and the System 6 Multifinder, 279 
and System 7, 279, 284, 323-28 
and the SystemTask Call, 283-83 
and update events, 297-98, 299, 303, 

321-22 
and virtual key codes, 303 
and WaitNextEvent, 281-87, 290, 

299-300,306,309,311,317-220,326 
and the writing of event loops, 

309-10. See also Event Manager 
EventManage~279-80,320-28 

and the EventAvail call, 320-21 
Operating System, 18, 280, 284, 

286-87,298,299,308,323,327-28 
Toolbox,280-81,286--88,299,317-18, 

320,322-23 
Eventrecords,286-87,299-308 

contents of, 300 
decoding of, 300 
and the event code, 300-301 
and the event message, 301-2 
and high-level events, 326-27 

Examples, 40, 48 
Execute command, 65, 110, 111-12, 490 
Export command, 65, 110, 111, 112, 491 

F 
Field resource attributes, 374 
Files, 133-50, 160 

~ Index 567 

and the Catenate command, 144 
closing of, 133 
construction of, and resource files, 

331-32 
copying of, 144 
and the Directory command, 138-39 
and the Duplicate command, 144 
file names, 135-36 
and the hierarchical file system 

(HFS), 133 
interface, 42--43 
locked files, 137-38, 146 
and the Move command, 144--45 
and the NewFolder command, 143 
and the Print command, 148-50 
and read-only files, 137-38 
and the Rename command, 145--46 
searching for, 134-35 
and the SetDirectory Command, 

139--40 
and the SetFile command, 146 
and the Standard File Package, 17 
and the Volumes command, 143--44 
and wildcards, 137. See also File 

Manager 
File Manager, 30, 31, 133, 298, 304, 322 
Files command, 65, 82, 133, 140--43, 

491-92 
Find command, 61-63, 65, 73, 173-74, 

492 
Finders, 3, 5, 15. See also System 7 

Finder 
Find Same command, 177 
Find Selection command, 177 
Find Version 6.1, 12 
Floating-Point Arithmetic Package, 33 
Font/DA Mover utility, 15 
Font Manager, 26, 28, 40, 281 
Fonts, 3, 126, 149, 360. See also 

Resource(s) 
For command, 65, 150-52, 493 
Ford, Henry, 4 
Forks,329,330-31,347,354,359,364, 

376--77 
Format command, 171, 493-94 
Functions, 47 

"C," 20, 39 
with numeric values, 351-52 
Pascal, 20, 36 
in Rez language, 350-53 
with string values, 351 



568 ._ Index 

Functions (continued) 

G 

and the Transcendental Functions 
Package,33 

and the User Interface Toolbox, 20 
USES,43 

Gestalt, 313-20 
and the Gestalt Manager, 313, 316-17 
and the mouseRgn parameter, 320 
and response parameters, 216 
and selector codes, 313-16 
and the sleep parameter, 318-20 

GetNextEvent, 281-87, 290, 299-300, 
306,309,311,317-320,327 

GetSleep function, 319-20 
GHasWaitNextEvent, 283, 311-12 
GrafPorts, 38, 403, 411 
Graphics Devices Manager, 21, 24 

H 
Heaps,388,389,390-91,397-409 
Help command, 66, 91 
Help Hotline, 91 
Help Manager, 21, 23 
Help window, 203-4, 206 
Hexadecimal calculator, 109-10 
Holding down Option, 90 
HyperCard externals, 40 

I 
Icon(s), 5, 6, 14, 360 

color, 15 
editors, 380-81 
locked, 137-38 
miniature, 15 
read-only, 137-38. See also 

Resource(s) 
If command, 66, 150, 496 
INCLUDE statements, 46-47, 347-48, 

350,355 
Informational selectors, 316 
Initialization, 48-49, 51 

and aliases, 119, 128 
and applications, 39-40 
of QuickDraw, 40, 281, 403, 411, 413 
and the Set command, 110 
of variables, 110 

Input, and output, 19, 29, 389, 422 
and I/O redirection, 70, 86-87, 

99-102, 113 

and 1/0 routines, 31 
Inside Macintosh, 43, 46, 47, 50, 98, 287 

Apple Desktop Bus chapter of, 302 
Assembly Language chapters of, 412 
event-driven programming in, 284, 

287,289,298 
Event Manager chapter of, 308, 321, 

323,327 
File Manager chapter of, 133 
Memory Manager calls in, 424, 426 
Menu Manager chapter of, 361 
Pascal definitions in, of routines, 48 
QuickDraw chapters of, 322, 403 
resourcesin,303,372,375,376,444 
system globals in, 389 

Installer disks, 9, 12, 13 
Institute of Electrical and Electronic 

Engineers (IEEE), 33 
International Utilities Package, 29 
Interrupt handling, 19, 29 

J 
Jobs, Steven, 4, 5, 6 

K 
Keyboard,222,364 

Key Caps, 116-17 
and menu commands, 193 

Knaster, Scott, 398 
KOSEvent constant, 318 

L 
Lib command, 12, 451-55, 496-97 
Libraries, 103 

"C," 12, 20, 41, 406, 431 
interface, 43 
and linking applications, 442-43 
object-code, 3, 4, 12, 451-55 
Pascal, 12, 20, 406 
routines and, 46, 406 

LIFO device, 392-93, 398 
Line-continuation character, 71-72, 73 
Line numbers, 232 
Link, 12,40,41,333 
Link command, 428, 442, 446-51, 456, 

497-99. See also Linking 
Linking 

and building applications, 427, 
442-51,497-99 

of C programs, 40-41 
and libraries, 442-43 



and the MPW linker, 40-45, 354, 
443-44. See also Link command 

Lisa, 4, 5-7, 8, 9 
List Manager, 26, 29 
Literal, 175 
Loop command, 66, 152-53, 499 

M 
MacApp, 11, 51 
MacDraw, 378 
Macintosh models: 

Macintosh 512K, 7 
Macintosh 40 MHz, 8 
Macintosh 1/0, 17 
Macintosh Plus, 7, 12, 31, 423 
Macintosh Portable, 7, 25, 423 
Macintosh SE, 7, 12, 32, 423 
Macintosh SE/30, 7, 423 
Macintosh 16 MHz, 8 
Macintosh 25 MHz, 8 
Macintosh II, 27, 28, 31, 32 
Macintosh Ilfx, 423 
Macintosh IIci, 7, 12, 18, 401, 423 
Macintosh Hex, 7, 12, 18, 423 
Macintosh IIx, 7, 12, 18 
original, 3, 4-8 

Macintosh operating system, 1, 16, 18, 
19-20,46,51 

calling conventions for, 47 
and operating system managers, 

29-33,41 
and traps, 33-35 

Macintosh Programmer's Workshop 
(MPW), 1-275 

application icons, 54 
assembler, 35, 41, 332 
command interpreter, 112, 221 
development of, 3-4, 8-10 
editor, 331, 382-83 
installation of, 12-13 
Interfaces folder, 41, 46 
Linker, 40, 45, 354 
online Help utility, 53 
Screen Display, alteration of, 126 
Version 2.0, 9 
Version 3.0, 9, 10, 12, 13 
Version 3.1, 9-10 
Version 3.2, 3, 4, 10-13, 445 
Version 6.0, 12. See also MPW special 

character set; MPW Worksheet 
window 

~ Index 569 

Macintosh Programmer's Workshop C 3.0 
Reference, 39, 70, 71, 137, 203, 264, 
444 

Macintosh Programmer's Workshop Pascal 
3.0 Reference, 39 

Macintosh 68000 Development System 
(MDS), 8-9 

Macintosh Toolbox, 1, 16, 17, 19-20, 
33-46 

calling conventions for, 47, 50-51 
MenuKey call in, 321. See also System 

6 Toolbox; System 7 Toolbox; 
Toolbox Event Manager 

Macintosh User Interface, 1, 5, 19-21 
Guidelines, 18 
and the User Interface Toolbox, 20, 

21 
MacPaint, 378 
MacsBug debugger, 9, 45, 409 
Make,9,41 
Make command, 66, 429-30, 466--68, 

499-500 
Makefiles,41-42,45,356,460-68 

and the double-/ dependency rule, 
463-65 

and the f and ff operators, 461 
and the Make command, 429-30, 

466-68 
and the single-f dependency rule, 

461-62 
Manager(s), 48-49 

ADB,30,32 
Alias, 21, 24 
AppleTalk Manager, 30, 32, 298 
Color, 24, 26, 28 
Control, 40, 26, 27 
Database Access, 21, 24 
Desk,26,29, 116-17 
Device, 30, 31, 32 
Dialog, 26, 27, 40, 43 
Edition, 21, 22-23 
File,30,31, 133,298,304,322 
Font,26,28,40,281 
Gestalt, 313, 316-17 
Graphics Devices, 21, 24 
Help, 21, 23 
List, 26, 29 
Memory, 30, 31 
Menu,26,27,40,43,321,361 
operating system, 30-33, 41 
OS File, 29 



570 IJli> Index 

Manager(s) (continued) 
OS Packages, 30, 33 
Package,26,29,42 
Palette, 26, 28 
Power, 21, 25 
Process, 21 
Resource, 26, 27 
Scrap, 26, 28 
Script, 26, 28 
SCSI, 30, 32 
Segment Loader, 30, 31, 446 
Shutdown, 30, 33 
SounC:., 30, 32 
Start, 30, 33 
System Error Handler, 30, 33 
TextEdit, 40 
Time, 30, 33 
Vertical Retrace, 30, 32 
Window, 26, 27, 40, 43-44, 47. See also 

Event Manager; Memory 
Manager; Operating System 
Event Manager; Resource 
Manager; Toolbox Event Manager 

MaxApplZone, 410 
Memory, 19, 41, 332, 395, 410-11 

blocks,399-400,403-9,417-18 
and the Macintosh Operating 

System, 29 
maps,388-96,420-21 
partitions, size of, and MultiFinder, 

364 
and the Process Manager, 21 
storage of resources in, 377 
temporary, 424-26 
and the trap dispatch system, 34 
virtual, 31, 422-24. See also Memory 

Manager 
Memory Manager, 11, 16-17, 25, 30, 277, 

387-426 
and the AS register, 392, 412-13 
and the allocation of space, 409-10 
and the application heap, 388, 389, 

390-91 
automatic initialization of, 39 
calling of, 416-20 
and double-dereferencing, 408-9 
and handles, 397-409 
andheaps,388,389,390-91,397-409 
and the Hlock and HUnlock calls, 

407-8,418 
and low-memory globals, 389, 391, 

392 

and memory blocks, 399-400, 403-9, 
417-18 

and memory maps, 388-96, 420-21 
and the Multifinder, 388, 420-22 
and the NewHandle call, 404-5 
and nonrelocatable memory blocks, 

399-400,403-9 
and pointers, 393-95, 397-409 
and relocatable blocks, 400-401 
resources, 330-31, 374, 376 
and segmenting an application, 413 
and the stack, 388, 389, 392-96 
and the system heap, 388, 390 
and System 7, 388, 401, 391, 420-26 
use of, 409-16 

Menu Manager, 26, 27, 40, 43, 321, 361 
Menus,6, 14,53, 161-210 

and the AddMenu command, 189, 
192, 194-95,260 

and AddMenu parameters, 189-90 
Build, 120, 128, 188, 195 
creation of, 190-91 
customization of, 188-96 
and the DeleteMenu command, 195 
desk accessories appearing under, 15 
Directory, 120, 128, 185-88 
and editing documents, 192-93 
and the Edit menu, 169-71 
and the File menu, 164-69 
and the Find menu, 172-74, 193 
and items from a UserStartup script, 

191 
and the Mark menu, 179-81 
and metacharacters, use of, 194-95 
and the MPW menu structure, 162-88 
and moving to the bottom of a 

document, 193 
and pattern-matching characters, 192 
Project, 120, 128, 184-85, 195 
pull-down, 4, 5, 14, 18 
as resources, 17 
and the Window menu, 181-84. See 

also Menu Manager 
Microprocessors, 4, 39, 45 

68000,423,438 
680X0,21,34,35,49,392,395,412,421 

MoreMasters, 410-11 
Motorola, 9 
Mouse,4,5-6, 13-14, 18,27 

events,288,289-90,299 
and the Power Manager, 25 

Move command, 66, 144-45 



MPW special character set, 221-75 
arranged in character order, 264-75 
arithmetical and logical operators, 

223,253-59 
the backquote character, 240-41 
blanks (spaces and tabs), 223, 224 
command terminators, 223, 226-27 
the comment character, 223, 227-28 
and curly brackets, 235, 236, 335 
delimiters, 231, 223, 234-44, 336 
the escape character, 223, 225, 229-30 
and European quotation marks, 

239-40 
file name generation operators, 

84-86, 114,250-53 
the line-continuation character 

(Option-d), 222, 223, 228-29 
logical and shift operators, 256-57 
metacharacters used in menus, 223, 

260 
number prefixes, 223, 257-58 
Option-; (the ellipsis operator), 250 
Option-1, 248-49 
Option-5, 242, 247-48 
Option-8, 248-49 
Option-£, 260-61 
Option-j (selection expression), 232 
Option-R (the tag operator), 249-50 
and parethenses, 240 
question mark character, 225 
redirection operators, 223, 258-59 
regular expression operators, 223, 

244-50 
selection expressions, 223, 230-233 
and single and double quotes, 236 
special characters used in makefiles, 

223,260-61 
special characters used in menus, 260 
and square brackets, 238-39 
use of, in scripts, 261-64 
wildcard characters, 223, 224-25 

MPW Worksheet window, 54-63 
and the Browser window, 57-58 
the split-window feature, 55-56 
the status panel, 55 
the Target Window, 59-63 
the TileWindows and StackWindows 

commands, 57 
title bar of, 57 

MS-DOS, 128, 129 
Multifinders, 9 

and the application heap, 391 

..,. Index 571 

and low-memory globals, 391 
and memory, 364, 388, 420-22 
and resources, 364 
System 5, 15 
System 6, 279. See also System 7 

Multifinder 

N 
Names: 

of directories, 135-36 
file, 135-36 
parameter, 111, 119 
resource,360,372-73 

New command, 164-65, 503 
NewFolder command, 66, 143, 503 
NewHandle call, 404-5 
NuBus expansion slots, 5, 32 

0 
OK button, 203-4, 206 
On Macintosh Programming: Advanced 

Techniques, 358 
Open command, 94-97, 165-66, 504 
Opening of files, 325. See also Open 

command 
Open Selection command, 166 
Operating System Event Manager, 18, 

280,284,286-87,298-99,308,323, 
327-28 

Operators,83-86 
expression, 176, 231, 240 
f and ff, 461 
file name generation, 84-86, 114, 

250-53 
regular expression, 223, 244-50 
in the Rez language, 336, 337 

Options, 354-55, 356 
accepted by the Search command, 

243 
-o,439 
-p and -e, 432, 436 
used with the Asm command, 

440-42 
used with the C command, 432-34 
used with the CreateMake 

command, 459-60 
used with the Lib command, 454-55 
used with the Link command, 

447-51 
used with the Make command, 468 
used with the Pascal command, 

436-38 



572 ..,. Index 

Options (continued) 
used with RezDet, 359 
window, 203-4 
-x,446 

OS Event Manager. See Operating 
System Event Manager 

OS File Manager, 29 
OS Packages, 30, 33 

p 
Package Manager, 26, 29, 42 
Page Setup command, 168 
Palette Manager, 24, 26, 28 
Parameters, 47-48, 82, 151 

AddMenu, 189-90 
arrayList, 342 
arrayName, 342 
count, 241 
default, 199 
directory, 138, 140 
Echo,65,74 
eventMask,286,318 
expression, 153-54 
file, 243 
idRange, 339 
length, 342 
menuName, 195 
mouseRgn, 290, 320 
pattern, 243 
and quotation marks, 236 
replacement, 241, 242 
resourceType, 339 
response, 316 
selection, 241, 249 
syntax of, 75-78 
theEvent, 286, 318 
typeSpecification, 339 
window, 242 

Pascal (high-level language), 9, 12, 39, 
40, 51, 361 

calling Close Window in, 43-44 
calling traps in, 41-43 
declaring a local variable in, 392 
event-driven programming in, 285, 

287,299,314 
functions and procedures in, 

distinction between, 36 
interface files, 42-43 
NewPtr call in, 399 
and object code, 45 
programs, compiling and linking of, 

45 

and the ResEqual command, 358 
resource types in, definition of, 366 
and the Rez language, 358, 361, 366 
starting up tools in, 44-45 
and the system heap, 390. See also 

Pascal command; Pascal compiler 
Pascalcommand,427,435,456,505-6 
Pascal compiler, 4, 8, 13, 35, 39, 47 
Paste command, 170, 508 
Pathnames, 81, 100 

and the Directory Command, 138 
list of, in the Directory menu, 186 

Pattern-matching, 223 
Plncludes, 35, 308 
Plnterfaces, 41 
Plain buttons, 177 
Pointers, 17,44,393-95,397-409 

dangling, 405, 406 
master, 401-3, 410 
stack,388,392-96 

Power-consumption states, 25 
Power Manager, 21, 25 
Printing, 6, 223 

and AppleEvents, 325 
and the Print command, 9, 67, 

148-50,509-10 
and the Print Selection command, 

168-69 
and the Print Window command, 

168-69 
Projector, 9, 40 

Q 
Question mark character, 225 
QuickDraw, 17-18, 24, 38, 42, 46, 322 

globals, 411-13 
initialization of, 40, 281, 403, 411, 413 
and Pascal applications, 43 
resources, 350 

Quit command, 169, 325, 512 
Quotation marks, 76-78, 85, 94, 135, 225, 

239-40 
errors in using, 237 
nesting, 237-38 
and parameters, 236 
in the Rez language, 364 
single and double, difference 

between, 236-37 
Quote command, 67, 114-18, 512 

R 
Radio buttons, 174-75 



Read statements, 349 
Rename command, 67, 145-46, 513 
Replace command, 67, 97, 178-79, 

241-42,513 
Replace Same command, 179 
Requestcommand,67, 198-99,200,513 
ResEdit command, 215, 427 
ResEqual command, 67, 357-58, 513 
Resource(s), 17 

alert, 370, 371 
attributes, 373-74 
'BNDL,' 378-81 
'CODE,' 332, 445, 446 
Commando, 334 
compiling of, 332-33 
creation of, 332-33, 378-83 
'DITL,' 371-72 
editors, 331, 378 
forks,329,330-31,347,354,359,364, 

376-77 
IDs,348,349,361,366,370-72 
'KCHR,' 381-82 
locked, 374 
menu, 361-63 
menu-bar, 361-62 
and the MPW editor, 331, 382-83 
and the MPW linker, 443-44 
names, 372-73 
predefined, 366-69 
purgeable and unpurgeable, 376-77 
reasons for using, 330-31 
and ResEdit, 331, 349, 358, 378 
and SARez and SADeRez, 383 
'SIZE,' 364-65, 424-25 
specifications, 366, 370-72 
statements, 345-46 
storage of, in memory, 377 
structure of, 360-74 
'STR,' 360-61 
and the system resource file, 332, 375 
and the system resource fork, 332 
templates, fields in, 361-64 
types,366,369-70 
user-defined, 357, 370 
window, 346. See also Resource 

Manager 
Resource Manager, 17, 25-27, 277, 303, 

329-85 
calls, 383-85 
and resource data, 375-77 
and the resource map, 375-77 

Return character, 71, 72, 73 

~ Index 573 

Revert to Saved command, 167 
Rez command, 215, 331, 354-56, 358, 

382-83,427,456,514 
Rez compiler, 332-33, 334-35, 350, 354, 

357,383 
RezDet command, 67, 358-60, 514 
Rezlanguage,9,333-54 

arithmetic and logical expression in, 
354-55 

arraysin,342-43,350 
change statements in, 349 
data statements in, 347 
delete statements in, 349 
the DeRez command in, 331, 343, 

355,356-58,382-83 
the escape character in, 337-38 
labels in, 350 
include statements in, 347-48, 350, 355 
keywords in, 339 
numeric constants in, 353-54 
and preprocessor directives, 334-35 
read statements in, 349 
the ResEqual command in, 357-58 
the resource statement in, 345-46 
the Rez command in, 331, 354-56, 

358,382-83 
the RezDet command, 358-60 
special characters in, 335-36 
structured data types in, 343-45 
the type statement in, 339-45 
variables and functions in, 350-53 

Routines, 20, 36, 46-48 
library, 46, 406 

s 

Pascal definitions of, 48 
stack-based and register, 47 
Text Edit, 288 

SADE source-level debugger, 12 
Save command, 167, 515 
Save a Copy command, 157 
Save As command, 167 
SaveOnClose, 12 
Scrap Manager, 26, 28 
Scripts, 1, 53-160 

and AddMenu, use of, 192 
Chimes, 192, 199 
and safe scripting, 133 
and the Script Manager, 26, 28 
variables in, use of, 53 
writing of, 99. See also Startup 

scripts; UserStartup scripts 



574 ..,. Index 

SCSI Manager, 30, 32 
Searching, 90 

and the Search command, 243-44, 
515-16 

Select All command, 170 
Selection Expression, 175 
Semicolon, 72, 73 
Separators, 336 
Setcommand,67, 106-7, 110, 112 
SetDirectory command, 67, 139-40, 186, 

517 
SetFile command, 67, 146-48, 210, 516-17 
Shift command, 172, 519 
Show Clipboard command, 171 
Show Directory command, 186 
Show Invisibles check box, 171-72 
Shutdown Manager, 30, 33 
Small Computer System Interface 

(SCSI), 32 
Sound Manager, 30, 32 
StackWindows command, 57, 68, 131, 521 
Standard Apple Numerics Environment 

(SANE), 33 
Standard File Package, 17, 31, 33 
Stanford Research Center, Palo Alto 

Research Center 
(PARC), 5-6 

Start Manager, 30, 33 
Startup scripts, 33, 51, 53, 81-82, 119-28 

modified, example of, 154-59 
and the Print command, 150 
and variables, 103-6, 111, 112, 128 

Statements 
CASE,283 
change,349 
data, 347 
delete, 349 
INCLUDE, 46-47, 347-48, 350, 355 
read, 349 
resource, 345-46 
type, 339-45 

StreamEdit, 4, 11 
String(s), 93-94, 199, 242, 360 

enclosed in parentheses, and 
expression operators, 240 

tagged, 249 
values, Rez variables and functions 

written as, 350-51. See also 
Resource(s) 

Structured constructs, 78, 79-80, 150-54, 
262 

Substitution aliases, 78, 79 
Symbolic Application Debugging 

Environment (SADE), 9 
SysEnvirons, 312-13 
System Error Handler, 30, 33 
System 5 (System Software 

Version 5.0), 15, 420 
System 6 (System Software 

Version 6.0), 28, 420, 424, 425-26 
and event-driven programming, 

308,312,316 
System 6 Toolbox, 26-29 

Color Manager, 26, 28 
Color QuickDraw, 26, 27 
Control Manager, 26, 27 
Desk Manager, 26, 29 
Dialog Manager, 26, 27 
Font Manager, 26, 28 
List Manager, 26, 29 
Menu Manager, 26, 27 
Package Manager, 26, 29 
Palette Manager, 26, 28 
QuickDraw, 26, 27 
Resource Manager, 26, 27 
Scrap Manager, 26, 28 
Script Manager, 26, 28 
Standard File Package, 26, 29 
TextEdit, 26, 28 
Toolbox Event Manager, 26, 27 
Toolbox Utilities, 26, 29 
Window Manager, 26, 27, 40 

System 7 (System Software 
Version 7.0), 3, 4 

addressing capability in, 11 
AppleEvents in, 325-27 
and desk accessories, 29, 445 
and event-driven programming, 

277,323-28 
and Gestalt, 313, 314 
and the kOESevent type, 325 
the Memory Manager in, 31, 277 
the Sound Manager in, 32 
the Time Manager in, 33. See also 

System 7 Finder; System 7 
Multifinder; System 7 Toolbox 

System 7 Finder, 12, 13, 14, 15, 19 
and event-programing, 280, 281, 283, 

284,298,308,309 
and the Memory Manager, 388, 391 

System 7 Toolbox, 21-25 
the Alias Manager, 21, 24 



T 

the Database Access Manager, 21, 24 
the Edition Manager, 21, 22-23 
the Graphics Devices Manager, 21, 24 
the Help Manager, 21, 23 
the Power Manager, 21, 25 
the PPC Toolbox, 21, 24-25 
the Process Manager, 21-22 

Tabs check box, 172 
TEClick,46 
TEidle call, 317, 318 
TESample program, 470 
Testing, system, 33 
TextEdit, 14, 40, 90 

and assembly language, 46 
, and Browser windows, 58 

and event-driven programming, 289 
TileWindows command, 68, 131, 521 
Time Manager, 30, 33 
Toolbox. See Macintosh Toolbox; 

System 6 Toolbox; System 7 
Toolbox; Toolbox Event Manager; 
User Interface Toolbox 

Toolbox Event Manager, 25, 31, 40, 277, 
280-81,286-88,299,317-18,320, 
322-23 

Transcendental Functions Package, 33 
Trap(s), 33-34 

in "C," 36-39 
calling,41-43,46-47,49-50 
dispatch systems, 33-35, 49 
macros, 47, 390 
in Pascal, 41-43 

Type command, 129 
Type statements, 339-45 

u 
Unalias command, 68, 118-19, 522 
Undo command, 170, 522 
Unexport command, 68, 111, 522 
Ul'JIX, 11, 128, 129, 161 
Unset command, 68, 108 
User Interface, 1, 19, 20, 51 

and commands, 63 
Guidelines, 19, 59 
and the Standard File Package, 29 

User Interface Toolbox, 16, 17, 18, 19-21 
UserStartup scripts, 53, 82, 119-22, 

128-33 
creating aliases in, 128-30 

..,. Index 575 

modified, example of, 216-19 
and the Print command, 150 
running MPW without, 132-33 
supplementary, creation of, 131-32 
use of special characters in, 261-64 
variables in, 103, 111, 112, 130-31 

UserVariable Commando, 202-3, 206-8, 
263 

UserVariable scripts, 208-9 
UserVar script, 209, 263-64 
USES function, 43 

v 
VAR declarations, 392 
Variables, 78, 80-82, 102-12, 297 

exit, 198 
gHasWaitNextEvent, 283, 311-12 
global, 111, 285, 297 
KeyRepThresh, 297 
local, 392 
mFile,366 
with numeric values, 351-52 
parameter, 106, 108-9 
predefined, 105, 120, 121 
rAboutAlert, 370-71 
redefinition of, 126, 127 
inRezlanguage,350-53,355 
scope of, 110-12 
with the Set command, definition of, 

106-7 
shell, 103, 120 
startup, 103-5, 121-22 
with string values, 351 
in UserStartup scripts, 103, 111, 112, 

130-31 
Vertical Retrace Manager, 30, 32 

Volume Control Block (VCB), 390 
Volumes command, 68, 143-44, 523 

w 
WaitNextEvent, 281-87, 290, 299-300, 

306,309,311,317-220,326 
Wildcards, 137 
Window(s), 4, 5, 14 

active, 58, 59 
command line, 203-4, 205 
document, 14 
events, 281 
inactive, 60 
movable, records, 403 
Stack, 182-84 



576 ~ Index 

Window(s) (continued) 
target, 58, 59-63 
templates, 17 
Tile, 182-84. See also MPW 

Worksheet window; Window 
Manager 

Window Manager, 26, 27, 40, 43-44, 47 
event-driven programming and, 

281,287,289,321,322 
WindowPtr arguments, 44 
Window Record, 38, 44 
Wrap-Around Search, 177 

x 
Xerox, 5, 6 

z 
Zoom Window command, 68, 131, 524 



Other Books Available in the Macintosh Inside Out series 
... Programming with MacApp® 

David A. Wilson, Larry S. Rosenstein, Dan Shafer 
Here is the information you need to understand and use the power of MacApp, Apple Computer, Inc.'s official 
development environment for the Macintosh. The book discusses object-oriented concepts, using MPW with 
MacApp, the MacApp class library, and creating the Macintosh user interface. All examples are in Apple's Object 
Pascal language. 
576 pages, paperback 
$24.95, book alone, order number 09784 
$34.95, book/ disk, order number 55062 

... C++ Programming with MacApp® 
David A. Wilson, Larry S. Rosenstein, Dan Shafer 
In this book you will find information on using MacApp with C++, the up-and-coming language for Macintosh 
development. The book covers object-oriented techniques, MPW, and the MacApp class libraries. All program 
examples are in C++. 
600 pages, paperback 
$24.95, book alone, order number 57020 
$34.95, book/ disk, order number 57021 

... Elements of C++ Macintosh® Programming 
Dan Weston 
Macintosh programmers will learn just what they need to take the step from C to C++ programming, the future of 
Macintosh development. The book covers the basics and then teaches how to design practical programs with C++. 
464 pages, paperback 
$22.95, ordet number 55025 

... ResEditrn Complete 
Peter Alley and Carolyn Strange 
This book/ disk package contains the actual ResEdit software along with a complete guide to using it. The book 
shows you how to customize your desktop and then moves on to cover more advanced topics such as creating 
standard resources, designing templates, and writing your own resource editor. 
560 pages, paperback 
$29.95 book/ disk, order number 55075 

... The Complete Book of HyperTalk® 2 
Dan Shafer 
This hands-on guide covers HyperTalk 2, with its greatly expanded features and capabilities. It offers practical 
information on commands, operators, and functions as well as detailed explanations of XCMDs, dialog boxes, 
menus, communications, and stack design. You'll also find plenty of tips and dozens of ready-to-use scripts. 
480 pages, paperback 
$24.95, order number 57082 

Order Number Quantity Price 

TOTAL ORDER 

Shippini; and state sales tax will be added 
automattcally. 

Credit card orders only please. 

Total 

Offer good in USA only. Prices and availability 
subject to change without notice. 

Name ________________ ------- --

Address ________________________________ _ 

City/State/Zip__________________ _ ____ _ 

Signature (required) __ _ 

Visa MasterCard 

Account# _____________ _ 

Addison-Wesley Publishing Company 
Order Department 
Route 128 
Reading, MA 01867 
To order by phone, call (800) 477-2226 

Am Ex 

Exp. Date ______ _ 





Programmer's Guide to MPW," 
Volume I 

MARK A N DREWS 

Learn the secrets to unlocking the 
power of MPW® version 3.2, the 
newest release of the Macintosh® 
Programmer 's Workshop . MPW is 
Apple® Computer, Inc. 's official 
integrated software development system 
fo r the Macintosh, and this definitive 
guide wi ll provide you with everything 
you need to create and design effective 
and efficient Macintosh applications 
using MPW and System 7.0 . 

Programm er's Guide to M PW, 
Volume I first covers the fundamentals 
of MPW, including the MPW Editor, 
the command language and menu 
structure, dialogs, and scripting. The 
book then builds on these skills to 
discuss more advanced programming 
techniques dealing with the Macintosh 
Event Manager, Resource Manager, 
and Memory Manager. In the final 
section of the book, you will bui ld a 
fu lly functional application which can 
be used as a template to create your 
ovvn programs. 

You will also learn how to: 

• Customize menus 
• Make calls to the Macintosh 

Toolbox and operating system from 
Pascal, C, and assembly language 

• Create new MPW commands and 
scripts for specialized tasks 

Cover design by Ronn Campisi 

Addison-Wesley Publishing Compan)\ Inc. 

• Create object code libraries you can 
call from your programs 

• Compile and link application 
programs and much more. 

Appendices contain the complete MPW 
command set and all source code listings 
in the book. The book also features an 
easy- reference tear-out chart presenting 
the fu ll set of special characters. This 
thorough coverage of MPW tools and 
techniques makes Programmer's 
Gu ide to MPW, Volume I an essential 
gu ide for all Macintosh programmers. 

Mark Andrews is the author 
of more than a dozen computer 
books including Pro9rammin9 
the Apple JIGS® in Assemb!J 
La119ua9e and C. H e also 
worked as an independent 
consultant and Quality 
Engineer for Apple 
Computer, Inc., during the 
development of MPW 3.2 and System 
7 .0. He is currently a senior technical 
writer at Oracle Corporation. 

9 780201 570113 

ISBN 0-201-57011-4 
57011 


