vies eoiror Macintosh scorr ciasven 1
Inside

e 7 Out

~ Programmer’s

Guido

=S

774 |

%‘
—)’\

o)

i A
‘,"Ah
=

§0

Explorjng the Macintosh’

Programmer’s Workshop

MARK ANDREWS

Programmer's Guide
to MPW®, Volume |

Programmer's Guide
to MPW*®, Volume |

Exploring the Macintosh®
Programmer's Workshop

Mark Andrews

A
vv
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Library of Congress Cataloging-in-Publication Data

Andrews, Mark.
Programmer's guide to MPW / Mark Andrews.
p- cm. — (Macintosh inside out)
Includes bibliographical references and index.
Contents: v. 1. Exploring the Macintosh programmer's workshop
ISBN 0-201-57011-4 (v. 1)
1. Macintosh (Computer)—Programming. 2. MPW (Computer
system). L. Title. II. Series.
QA76.8.M3A59 1990
005.265—dc20 90-48237
cIp

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital
letters.

Copyright © 1991 by Mark Andrews

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Sponsoring Editor: Carole McClendon
Technical Reviewer: Nick Pilch

Cover Design: Ronn Campisi

Text Design: Copenhaver Cumpston

Set in 10.5 point Palatino by ST Associates, Inc.

ISBN 0-201-57011-4

ABCDEFGHIJ-MW-91
First printing, December 1990

This book is dedicated to
Bhagawan Nityananda

Contents

Preface xix

Acknowledgments xxvii

PART ONE THE MPW SHELL 1

1. MPW and the Macintosh 3
The Macintosh Story 4
The Mouse, the Lisa, and the Macintosh 5
Lisa Bites the Dust 6
The MPW Story 8
Launching MPW 9
MPW3.0 9
MPW 3.2 10
What You Need to Run MPW 3.2 12
Installing MPW 3.2 12
The Macintosh User Interface 13
Principles of Macintosh Programming 16
An Easier Way to Manage Memory 16
Macintosh I/O 17
Managing Resources 17

Vii

viii » Contents

Quickdraw and Macintosh Graphics 17
Important Events 18
Other Features 18
The Macintosh Toolbox and Operating System 19
The User Interface Toolbox 20
The System 7 Toolbox 21
The Process Manager 21
The Edition Manager 22
The Help Manager 23
The Graphics Devices Manager 24
The Alias Manager 24
The Database Access Manager 24
The PPC Toolbox 24
The Power Manager 25
Other Toolbox Managers 25
The Macintosh Operating System 29
Unlocking the Toolbox 33
How the Trap Dispatcher Works 35
Calling the Toolbox from MPW 35
Calling Traps inC 36
Calling Traps in Pascal 41
Assembly Language Programming 45
Calling Traps in Assembly Language 46
Making Toolbox Calls in C++ 50
Making Toolbox Calls in MacApp 51
Conclusion 51

2. Commands and Scripts 53

The MPW Shell 54

The MPW Worksheet Window 54
The Status Panel 55
The Split-Window Feature 55
A Window That's Always Open 57
The Worksheet Window's Title Bar 57
The TileWindows and StackWindows Commands 57
The Browser Window 57
The Target Window 59

» Contents

ix

Searching for a String in the Target Window 60
The MPW Command Language 63
Four Varieties of MPW Commands 68
The Structure of a Command 69
Multiple-line Commands 71
Command and Parameter Syntax 75
How MPW Interprets Commands 78
Tips for Writing Command Lines 88
The Help Hotline 91
The Evaluate Command 92
Writing MPW Commands 94
Typing and Entering Commands 94
Clearing a Window 94
Options and Parameters in MPW Commands 97
Using Parameters with the Beep Command 98
Writing a Script 99
Redirecting Input and Output 99
Variables in MPW Commands 102
Kinds of MPW Variables 103
Startup Variables 103
Defining Variables with the Set Command 106
The Unset Command 108
Parameter Variables 108
Scopes of Variables 110
Extending the Scope of a Variable 110
The Export Command 111
The Unexport Command 111
The Execute Command 111
More About the Echo Command 113
The Quote Command 114
Aliases 118
The Unalias Command 118
Making an Alias Permanent 119
The Startup and UserStartup Scripts 119
Modifying the Startup Script 122
Modifying the MPW Directory Structure 123

X

> Contents

Changing the MPW Screen Display 126
Redefining the (WordSet) Variable 127
Making and Saving Your Modifications 127
How Startup Calls UserStartup 128

Modifying the UserStartup Script 128

Creating Aliases in the UserStartup Script 128
Defining Variables in the UserStartup Script 130
User-Defined Variables 131

Creating a Supplementary UserStartup Script 131
Running MPW Without a UserStartup Script 132

Files and Directories 133

How MPW Searches for Files 134

Spaces in File and Directory Names 135
Selecting Text with the § Character 136
Variables in Pathnames 137

Wildcards in File and Directory Commands 137
Locked and Read-Only Files 137

Examples of File and Directory Commands 138

The Directory Command 138
The SetDirectory Command 139
The Files Command 140

The NewFolder Command 143
The Volumes Command 143
The Duplicate Command 144
The Catenate Command 144
The Move Command 144

The Rename Command 145
The SetFile Command 146

The Print Command 148

Structured Constructs 150

The If Command 150

The For Command 150

The Loop Command 152
The Break Command 153
The Continue Command 154

A Modified Startup Script 154
Conclusion 160

» Contents Xi

3. Menus and Dialogs 161
The MPW Menu Structure 162
What's on the Menu 162
The File Menu 164
The Edit Menu 169
The Format Dialog 171
The Find Menu 173
The Find Dialog 174
The Mark Menu 179
The Window Menu 181
The Project Menu 184
The Directory Menu 185
Customizing MPW Menus 188
The AddMenu Command 189
Omitting AddMenu Parameters 189
Creating a Menu and a Menu Item 190
Adding Menus and Items from a UserStartup Script 191
Using AddMenu to Run a Script 192
Menu Items for Editing Documents 192
Using Metacharacters with the AddMenu Command 194
The DeleteMenu Command 195
MPW Dialogs 196
Using Standard Dialogs in MPW 196
Commando Dialogs 201
What You Can Do with Commando Dialogs 202
An Example: The UserVariable Commando 202
The Parts of a Commando Dialog 203
The Options Window 203
The Command Line Window 205
The Help Line Window 206
The OK Button 206
The Cancel Button 207
Some Unique Features of the UserVariables Commando 207
Improving the UserVariables Script 208
Executing UserVar from the Menu 209

Xii » Contents

Invoking a Commando Dialog 209
Calling a Commando with Option-Enter 210
Calling a Commando with Option-; 211
Calling a Commando with the Commando Command 212
The SetFile Commando 213
The Commando Commando 213
Executing Commando Dialogs from the Menu 214
Editing a Commando 214
Creating Your Own Commands 215
A Modified UserStartup Script 216

Conclusion 219

4. The MPW Special Character Set 221

The MPW Special Character Set 222

A Notorious Character 222

Blank Characters 224

The Comment Character # 227

The Line-Continuation Character 0 228

The Escape Character d 229

Selection Expressions 230

Delimiters 234

Regular Expression Operators 244

File Name Generation Operators 250

Arithmetic and Logical Operators 253

Special Characters Used in Makefiles 260
Using Special Characters in Scripts 261
The Special Characters at a Glance 264
Conclusion 275

» PART TWO: Writing an Application 277

5. Event-Driven Programming 279
MPW and the Event Manager 279
How Applications Detect Events 280
Calling the Toolbox Event Manager 281
How Applications Process Events 281

» Contents Xiii

The gHasWaitNextEvent Variable 283
Using a CASE Statement in a Main Event Loop 283
The SystemTask Call 283
WaitNextEvent and the System 7 Finder 284
The Event Queue 284
The Structure of an Event Queue Record 285
Syntax of GetNextEvent and WaitNextEvent 285
Calling WaitNextEvent and GetNextEvent 286
The Event Record 286
Activate and Update Events 287
Mouse Events 288
Keyboard Events 288
Event Management in a Nutshell 288
Kinds of Events 288
Activate Events 288
Mouse events 289
Keyboard Events 290
Disk Events 297
" Auto-key Events 297
Update Events 297
Null Events 298
Other kinds of Events 298
Event Priorities 299
Event Records 299
What an Event Record Contains 300
Decoding the Event Record 300
The Event Code 300
The Event Message 301
Modifier Flags 304
The Event Mask 306
The WaitNextEvent Call 308
Writing an Event Loop 309
Using the gHasWaitNextEvent Variable 311
Setting gHasWaitNextEvent 311
Using Gestalt 312
Gestalt Manager Calls 313

Xiv » Contents

Selector Codes 313
Response Parameters 316
Determining Whether the Gestalt Manager is Available 316
Calling the Gestalt Manager 317
On with the Program 317
The sleep Parameter 318
The mouseRgn Parameter 320
How the Event Manager Works 320
The EventAvail Call 320
Handling Keyboard Events 321
Handling Activate Events 321
Handling Update Events 321
Handling Disk-Inserted Events 322
Other Event Manager Calls 322
The OS Event Manager 323
System 7 and the Event Manager 323
New Events in System 7 324
Apple Events 325
High-Level Events and the Event Record 326
Defining Your Own Events 327
Conclusion 328

6. MPW and the Resource Manager 329
Why Use Resources? 330

How Macintosh Files are Constructed 331
The System Resource File 332
Creating and Compiling Resources 332
The Rez Language 333
Preprocessor Directives 334
Special Characters 335
The Escape Character 337
The Resource Description Language 339
The 'type’ Statement 339
The 'resource’ Statement 345
The ‘data’ Statement 347
The 'include’ Statement 347
The ‘read’ Statement 349
The ‘change’ Statement 349

» Contents

Xv

The "delete’ Statement 349
Labels 350
Variables and Functions 350
Arithmetical and Logical Expressions 353
The Rez Command 354
The DeRez Command 356
The ResEqual Command 357
The RezDet Command 358
The Structure of a Resource 360
Fields in Resource Templates 361
The 'SIZE’ Resource 364
Resource Specifications 366
How Resource IDs are Assigned 372
How the Resource Manager Works 375
The Resource Map and Resource Data 375
Tools for Creating Resources 378
ResEdit 378
The "KCHR' Resource 381
The MPW Editor 382
SARez and SADeRez 383
Calling the Resource Manager 383
Conclusion 385

MPW and the Memory Manager 387
Mapping the Macintosh 388

Low-Memory Globals 389
The System Heap 390
The Application Heap 390
The Stack 392
Pointers, Handles, and Heaps 397
Pointers and Handles 399
Blocks that are Always Nonrelocatable 403
Using the Memory Manager 409
How the Memory Manager Allocates Space 409
Master Pointer Blocks 410
Tips on Memory Management 410
QuickDraw Globals 411
The A5 World 412

XVi » Contents

Initializing QuickDraw 413
Segmenting an Application 413
Calling the Memory Manager 416
Purging Memory Blocks 416
Other Properties of Memory Blocks 417
MultiFinder and the Memory Manager 420
Running Multiple Applications 421
System 7 and the Memory Manager 422
Virtual Memory 422
Temporary Memory 424
Conclusion 426

8. Building an Application 427
Building a Program with MPW 427

Three Ways to Build a Program 428

What You'll Learn in this Chapter 430
Compiling an Application 430

The MPW C and Pascal Compilers 430

The MPW Assembler 430
The MPW C Compiler 431

The 'C’ Command 431

The "-p"and -e’ Options 432

Options Used with the C Command 432
The MPW Pascal Compiler 434

The 'Pascal’ Command 435

The -p’ and -e’ Options 436

Options Used with the Pascal Command 436
The MPW Assembler 438

The "Asm’ Command 439

The -0’ Option 439

Options Used with the Asm Command 440

Using Multiple Options with the "Asm’ Command 442
Linking an Application 442

The MPW Linker 442

The Linker and Resources 443

The 'Link’ Command 446

How the Linker Works 446

Options Used with the 'Link’ Command 447

» Contents

XVii

Using Multiple Options with the Link Command 450
Creating an Object-Code Library 451

The 'Lib’ Command 451

What to Put in a Library 452

Uses for the 'Lib’ Command 453

How ‘Lib" Works 454

Options Used with the Lib Command 454
Building a Program 455

Using the '‘Build’ Menu 456

The CreateMake Command 458

Options Used with the CreateMake Command 459
Writing a Makefile 460

The ‘Make’ Language 460

The f and ff Operators 461

The Single-f Dependency Rule 461

The Double-f Dependency Rule 463
Makfiles in a Nutshell 465
The 'Make' Command 466

Building a Program with the Make Command 466

Options Used with the Make Command 468
The 'Build' Menu 469
Creation: A Sample MPW Program 470
Conclusion 470

Appendix A: The MPW Command Set 471
Appendix B: Commands Arranged by Category 525
Appendix C: The Creation.p Program 531
Appendix D: Creation.r 553

Appendix E: Creation.make 557

Afterword by Scott Knaster 559
Bibliography 561

Index 563

Preface

Welcome to MPW

There are many reasons to know how to use the Macintosh Program-
mer's Workshop. But the most important reason I know is that MPW is
the most powerful programming platform that has ever been created for
the Macintosh. Apple created it, Apple maintains it, and Apple's own
programmers use it to develop system-level software for the Macintosh.
If you own a Macintosh and a current system disk, much of the system
software that makes your Macintosh run was written using MPW. And
Apple is creating more and more system software using MPW every day.

MPW was introduced in 1986, and its latest revision—Version 3.2—is
designed to support all the capabilities of System Software Version 7.0.
But MPW still works with every Macintosh with more than 64K of
ROM, as well as with every new machine that rolls off the assembly line.
And that's no accident. If you program with MPW and follow Apple's
human interface guidelines, Apple guarantees that you'll never be stuck
with an outdated piece of software—or an outdated development
system. For these reasons, and many more that you will learn about as
you read this book, MPW has become the standard programming
platform for the professional software developer.

Of course it is possible to write Macintosh programs with small stand-
alone development systems; in fact, many fine Macintosh applications
have been created using THINK C, Turbo Pascal, and other standalone
compilers. But the Macintosh Programmer's Workshop is much more

XiX

XX

» Preface

than a compiler or an assembler; it's a complete, integrated software
development system and a powerful scripting language, and has a
Macintosh-style interface equipped with windows, pull-down menus,
and click-and-close dialog boxes.

The MPW script language has more than 120 commands that you can
use to write, compile, link, and execute programs. If you need more
commands, you can write your own—and that's just one way that you
can customize the MPW environment.

You can add menus and menu items to the MPW menu structure.
You can design your own MPW tools and execute them from scripts or
custom-designed dialog boxes. You can write custom-tailored startup
scripts to create a programming environment that suits your own needs
and preferences. You can write other scripts that will compile and link
programs in exactly the way that you want them linked and compiled.
You can even use MPW to write computer languages, which will, of
course, run under MPW.

MPW has so much power, and so many special features, that it
would take a book to describe them all. And that's exactly why this
book was written. Welcome to MPW.

About This Book

Programmer’s Guide to MPW, Volume I is a tutorial and reference guide
for people who want to learn how to design and develop programs for
the Apple Macintosh using the Macintosh Programmer's Workshop.

This book presents information about MPW in a carefully graded
fashion, starting with the fundamental principles of each topic discussed
and progressing to more advanced examples, with plenty of sample
code and hands-on practice presented at each level of instruction.

It thus demystifies the Macintosh Programmer’s Workshop 3.0 Reference,
the giant two-volume technical manual that so many people read, but
so few understand. In this book, the age-old secrets buried in the pages
of the Macintosh Programmer’s Workshop 3.0 Reference are at last brought
forth into the light and explained in language that the MPW program-
mers of tomorrow will finally be able to understand.

Programmer’s Guide to MPW, Volume I is divided into two parts. Part I
covers the the MPW Editor, the MPW command language, the writing of
MPW commands and scripts, the MPW menu structure (including the
creation of customized menus), and MPW dialogs—including
Commando dialogs. Part II focuses on advanced programming tech-
niques, and on the relationships between MPW and the Macintosh

» Preface XXi

Event Manager, the Resource Manager, and Memory Manager. It
includes source code examples that show with crystal clarity how to
write an application, an MPW tool, and a desk accessory.

Chapter Outline
Part I, “The MPW Shell,” has four chapters:

Chapter 1 presents the history of MPW and describes how to install
and start MPW. It introduces the Macintosh Toolbox, the Macintosh
operating system, and the Macintosh Programmer's Workshop. It
also explains how to use the Macintosh Toolbox and the Macintosh
operating system in MPW programs.

Chapter 2 explores the most important features of the MPW
programming environment, and explains—with the help of many
hands-on programming examples—how to write and execute
commands and scripts in the MPW command language.

Chapter 3 examines the MPW menu structure; tells how to use and
customize the MPW menu bar; shows how to use dialogs and alert
dialogs in MPW scripts; and introduces Commando dialogs, which
can be used to execute commands by selecting dialog items rather
than by typing and entering command lines.

Chapter 4 examines the many features of the MPW special character
set, including its powerful search-and-replace and pattern-matching
capabilities, and introduces more MPW commands.

Part Two, ”Writing an Application,” also contains four chapters:

Chapters 5, 6, and 7 explain and illustrate how to write MPW
applications. They also tell how MPW interfaces with the Event
Manager, the Resource Manager, and the Memory Manager.

Chapter 8 brings it all together and shows you how to write, com-
pile, and link a commercial-quality application program.

Appendices. The book also contains five appendices. Appendix A
presents the entire MPW command set, including syntax and
options. Appendix B presents the commands arranged by category.
Appendices C, D, and E contain the code for the Creation Program,
the application created in Part 2.

XXii

» Preface

» Who Needs It

Specifically, people who might have a need for Programmer’s Guide to
MPW include

Macintosh programmers who have been using other development
tools (such as THINK C or THINK Pascal) and want to learn to use
MPW.

Programmers of non-Macintosh computers who want to learn to
write Macintosh programs using MPW.

Beginning programmers who want to learn a programming lan-
guage using the MPW environment (readers in this category will
have to supplement the material provided in this book with texts
that deal specifically with Pascal, C, assembly language, C++, or
MacApp; a number of such supplementary books are listed in the
"Recommended Reading" section of this Preface and the
Bibliography).

Programmers who have been using MPW, but who want to become
more familiar with the subtleties of the MPW development environ-
ment (MPW is such a complex system that most MPW users do not
fully understand all of its features and thus fall into this category).

» More About MPW

The Macintosh Programmer's Workshop is a set of professional software
development tools created for Macintosh programmers by Apple
Computer, Inc. MPW is by far the largest and most feature-packed soft-
ware development system for the Macintosh. Since it is an official Apple
product, it is guaranteed to be upgraded as necessary in order to remain
compatible with future models of the Macintosh. The current edition of
MPW, Version 3.2, contains

The Macintosh Programmer's Workshop shell, the heart of the MPW
programming environment. The MPW shell includes a full-featured
window-based text editor, a command-line interpreter similar to the
one used in UNIX, and a dialog interface that enables the user to
communicate with MPW via dialogs rather than using command
lines. The shell also includes a command language that supports
scripts, shell variables, control constructs, and text-editing
commands.

> Preface xXiii

¢ A linker that can combine object-code files into executable pro-
grams. The MPW linker can be accessed via menus or dialogs, or
with the MPW command language. It can generate standalone
applications, desk accessories, device drivers, and other varieties of
programs. It can even merge code segments written in more than
one language into a single application.

¢ Projector, a project organizer that can maintain a revision history of
any project being developed under MPW. This utility can provide
you with immediate access to the most recent version of any project
under development, while saving backup files that can be used to
re-create any earlier version. Projector is thus both an archiving tool
and a backup utility. It can be used either by a single programmer
or by a large, networked development team.

e MacsBug, Apple's assembly language debugger for the Macintosh.
¢ A set of tools that can measure the performance of programs.

In all, MPW provides more than 120 built-in tools and scripts for
program developers. All of its tools are supported with a compre-
hensive online help command.

Apple Products for the MPW User

In addition to the materials that come with the Macintosh Program-
mer's Workshop, many products designed to be used with MPW are
available separately, both from Apple and from other suppliers.
Additional MPW products from Apple include

¢ The Macintosh Programmer's Workshop Assembler, a tool for
writing 680X0 assembly language programs.

e Macintosh Programmer's Workshop Object Pascal, a package for
developing programs in Pascal.

¢ Macintosh Programmer's Workshop C, a C compiler that provides
everything you need to develop Macintosh programs in C.

* Macintosh Programmer's Workshop C++, a C++ translator for devel-
oping object-oriented C++ programs. MPW C++ is a precompiler
package designed to be used with MPW C.

* MacApp, a set of object-oriented libraries designed to speed up and
simplify the process of developing Macintosh software in either
Object Pascal or C++. To use MacApp, you must also have either
MPW Object Pascal or MPW C++.

XXiv

» Preface

The Symbolic Application Debugging Environment (SADE), a
source-level debugger for programmers using C, Pascal, C++, and
MacApp.

A resource editor called ResEdit, plus other tools for creating and
managing resources.

The MPW IIGs Cross-Development System, a kit for developers who
want to use the Macintosh and the MPW programming environment
as a cross-development platform for writing Apple IIGs software.
The MPW IIGs Cross-Development System contains modules that
can be used to develop Apple IIGs software in C, Pascal, or assembly

language.

» Other MPW-Based Products
MPW-based products from sources other than Apple include

The AdaVantage MacProfessional Developer Kit, a development
system for Ada programmers from Meridian Systems, Inc.

Aztec MPW C, from Manx Software Systems.

Language Systems FORTRAN, from Language Systems.
MacFortran/MPW, from Absoft Corporation.

TML Pascal I, from TML Systems.

The TML Source Code Library II, a large collection of advanced
programming examples written in TML Pascal, from TML Systems.

Oracle for Macintosh, a powerful relational database from Oracle
Corporation.

» Where to Buy MPW Products

The Macintosh Programmer’'s Workshop and all of the MPW-related
products just mentioned can be obtained from Apple software dealers

or

from APDA, the Apple Programmer's and Developer's Association.

APDA's address is

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mail Stop 33G
Cupertino, California 95014-6299

> Preface XXV

What You'll Need to Know to Use This Book

Programmer’s Guide to MPW, Volume I: Exploring the Macintosh Program-
mer's Workshop is a complete tutorial, so you won't have to be an MPW
wizard to understand it. If you do know MPW, so much the better; the
Macintosh Programmer's Workshop is such a feature-packed program-
ming platform that there is practically no one out there who knows as
much about MPW as there is to know.

To understand the programming examples presented in this book,
you'll have to have at least some knowledge of C , Pascal, or—preferably
—Dboth. If you're a beginning programmer and want to learn MPW and a
programming language at the same time, you have undertaken quite a
challenge. But with this book, a lot of persistence, and a good basic text
on the language you want to learn, it can be done.

If you are not an assembly language programmer, it would also be a
good idea to learn at least some 680X0 assembly language. All Macintosh
compilers produce machine-language code and the MacsBug debugger
presents you with a screenful of machine code when it detects an error.
However, you don't have to know assembly language to use the source-
level debuggers that are available for the Macintosh, such as the
Symbolic Application Debugging Environment (SADE).

Recommended Reading

Programmer’s Guide to MPW is designed to supplement—not to replace—
the technical reference manuals that are supplied with the MPW system
and its various compilers. You should study this book along with the
documentation that came with your Macintosh and your MPW system.

Another book you should definitely own is Inside Macintosh, the
definitive reference work for the Macintosh programmer. Inside
Macintosh, packed into six hefty volumes, contains detailed instructions
for making every call in the Macintosh Toolbox and operating system. It
also provides a wealth of useful information about the Macintosh, its
system software, and its hardware architecture.

Inside Macintosh is part of the Apple Technical Library, a body of work
by Apple and published by Addison-Wesley. Two other useful books in
the Technical Library series are Technical Introduction to the Macintosh
Family and Programmer’s Introduction to the Macintosh Family, which is
now available in its second edition. :

If you're interested in developing commercial software for the
Macintosh, you should also be familiar with still another volume in the
Technical Library, Human Interface Guidelines: The Apple Desktop Interface.

xxvi P Preface

If you need detailed technical information on specialized topics, the
Macintosh Technical Library offers such titles as Macintosh Family
Hardware Reference, the Apple Numerics Manual, and Designing Cards and
Drivers for the Macintosh II and Macintosh SE.

Many other books that can help you in your quest to learn MPW and
the Macintosh are listed in the Bibliography.

Acknowledgments

It takes more than one person to write a computer book; it takes an
army. And the troops who worked on this book are the finest I've seen
anywhere.

Thanks to Carole McClendon of Addison-Wesley, who asked me to
write the book and whose confidence never flagged, even during the
rough spots; Series Editor Scott Knaster, whose knowledge of the
Macintosh is awesome (he can tell you more about the Macintosh off the
top of his head than most people can find in the manuals); Project Editor
Joanne Clapp Fullagar, whose eagle eye and attention to detail kept the
pages pristine; Production Supervisor Diane Freed, who made sure that
everything stayed on track production-wise; and Associate Editor
Rachel Guichard, who provided valuable reference materials and kept
the copy flowing.

Special thanks to Copy Editor Margaret Hill and Technical Reviewer
Nick Pilch, who spent many long hours over hot copy to make sure that
no errors crept in.

Also: Jordan Mattson, Peter Norton, Peter Alley, and Linda Suits at
Apple, for technical support; Kirk Chase, who published an excerpt of
Chapter 4 in MacTutor magazine; and all of the support people at
Addison-Wesley and Apple, without whose help this book would have
never been possible.

XXVii

PART ONE

» The MPW Shell

In Part One, we will take a closeup look at each major part of the
Macintosh Programmer’s Workshop (MPW) programming environ-
ment, or MPW shell. These parts include

®e o o o o o

worksheet window

command language

scripts

menu structure

dialogs (including Commando dialogs)
editor

This part has four chapters:

» Chapter 1 examines the most important features of the Macintosh,

tells how the Macintosh User Interface differs from the user
interfaces used by other computers, and introduces the Macintosh
Toolbox, the Macintosh operating system, and the Macintosh
Programmer’s Workshop. It also explains how to use the Macintosh
Toolbox and the Macintosh operating system in MPW programs.

Chapter 2 explores the most important features of the MPW
programming environment, and it explains—with the help of many
hands-on programming examples—how to write and execute
commands and scripts in the MPW command language.

» Part One The MPW Shell

» Chapter 3 examines the MPW menu structure; tells how to use and
customize the MPW menu bar; shows how to use dialogs and alert
dialogs in MPW scripts; and introduces Commando dialogs, which
can be used to execute commands by selecting dialog items rather
than typing and entering command lines.

» Chapter 4 describes the many special characters used in the MPW
command language and provides many tables and examples
showing how they are used.

MPW and the Macintosh

This book is about a computer called the Macintosh and a software
development system called the Macintcsh Programmer's Workshop:
two products that are, quite literally, made for each other.

The Macintosh Programmer's Workshop was designed for the
Macintosh—and today's Macintosh was designed using MPW.

The Macintosh has come a long way since it was introduced to the
public in 1984. The first Macintosh—a real Model T, by today's standards
—had a tiny 9-inch black-and-white screen, only 128K of RAM, and a
single-sided, 400K floppy-disk drive. Today's top-of-the-line models have
giant color screens, can operate at speeds of up to 40MHz, and can
address up to 1 gigabyte of memory.

Macintosh engineers took one of their boldest steps forward to date
with the announcement of System Software Version 7.0, which supports
the interactive editing of data across applications running simul-
taneously on the same computer and even operating simultaneously
across a net. Among its many other new features, System 7 has a new
multitasking Finder that's integrated into the operating system; includes
outline fonts, which can be expanded to any size without jagged edges;
and allows the Macintosh user to access databases running on remote
systems.

Along with System 7, Apple introduced Version 3.2 of its official
Macintosh software development system, the Macintosh Programmer's
Workshop. MPW 3.2 includes new object-code libraries that support all
of the new features of System 7—and has a host of new features of its
own. It has a new editing window that can be split into as many as 20

4

» Chapter1 MPW and the Macintosh

scrollable panes; a new Browser that can find premarked sections in
any text document; and StreamEdit, a new non-interactive, script-
driven text editor that can reformat a document at the touch of a
button.

MPW 3.2 also has new and faster tools for linking programs and
creating object-code libraries, new features that support development
for the 68040 microprocessor, and even new and improved C and Pascal
compilers.

With the introduction of System 7 and MPW 3.2, Apple has again
placed the Macintosh at the leading edge of microcomputer design. And
this book can help you program today's Macintosh using today's
Macintosh software development system.

In this chapter, you'll see how the Macintosh and the Macintosh
Programmer's Workshop grew up together, and how they work
together now.

The Macintosh Story

Henry Ford didn't invent the automobile, and Apple didn't invent the
mouse, windowed displays, or pull-down menus. But the Ford Model T
marked the beginning of the age of the automobile, and the Apple
Macintosh may one day be remembered as the computer that redefined
the relationship between the machine and humanity.

Apple unveiled the Macintosh on January 24, 1984, at a gala celebra-
tion at the company's headquarters in Cupertino, California. At a
multimedia presentation that featured a talking Macintosh and ended
with a standing ovation, Apple co-founder Steven Jobs hailed the new
machine as "the computer for the rest of us" and predicted that it would
usher in a new era in the history of the computer industry.

It took a while for Jobs' prediction to come true, but we all know that
it finally did. Due to some serious design limitations and an almost
total lack of supporting software, the Macintosh got off to a shaky start
in the marketplace. However, computer users soon began falling in love
with windows, pull-down menus, and the mouse—and Apple, which
had begun its life in a garage in Cupertino, had spread its wings, and
was growing into a multi-billion-dollar corporation.

As revolutionary as it was—and as willing as Jobs was to take credit
for it—the Macintosh was not the first commercially available computer
to be built around an interface that featured movable windows, pull-
down menus, icons, and a mouse. That distinction belonged to the Lisa,
an Apple product that was introduced a full year ahead of the Macintosh,
but never took off in the marketplace and was discontinued in 1985.

» The Macintosh Story 5

By the Way » The Macintosh Grows Up. The first Macintosh was equipped with

only 64K of ROM and 128K of RAM, and had a single-sided 400K
floppy-disk drive and a keyboard with neither keypad nor arrow
keys. A little later Apple introduced the Macintosh 512K, which
had 512K of RAM but was otherwise just like the original model.

The first Mac that could be called a major upgrade was the
Macintosh Plus, which had 1 megabyte of RAM, 128K of ROM, and
a double-sided, 800K floppy-disk drive. Then came the Macintosh
512K Enhanced, which had 512K of RAM, 128K of ROM, and an
800K disk drive.

Since the introduction of the original Macintosh in 1984, the
Macintosh family has expanded to include such illustrious
members as the Macintosh IIfx, which features a 40MHz 68030
microprocessor, a 68882 floating-point coprocessor, and a built-in
32K static RAM (SRAM) cache that stores the processor's most
frequently used instructions to increase its processing speed.

Other standard features of the IIfx include 4 MB of RAM; a
dedicated SCSI DMA (Small Computer Systems Interface/Direct
Memory Access) channel, which reduces the workload of the main
processor; and dedicated I/O processors, which increase system
efficiency. The Macintosh IIfx has six NuBus expansion slots that
can accommodate multiple video, communications, networking,

and other expansion cards, and can be purchased with a built-in
80 MB or 160 MB disk drive.

» The Mouse, the Lisa, and the Macintosh

The mouse, the peripheral that made the Macintosh User Interface
possible, was developed in the 1960s at the Stanford Research Center in
Palo Alto. Over the next decade, at its Palo Alto Research Center (PARC),
Xerox developed a series of experimental workstations that coupled the
mouse with bit-mapped screens, windows, icons, and pull-down menus.

6

» Chapter 1 MPW and the Macintosh

In 1979, after being persuaded to invest $1 million in Apple stock,
Xerox invited Jobs and a team of Apple engineers to tour its PARC
research facility and take a look at the work going on there. What Jobs
and his party saw during the field trip was a computer far different
from anything they had ever encountered. Instead of a standard 80-
column, 24-line text screen, it had a high-resolution text-and-graphics
screen with windows and icons that could be manipulated with a
mouse. Instead of standard multilevel menus that users had to thread
their way through, it had a menu bar from which any item could be
selected, at any time, with a click and drag of the mouse.

Jobs and his team were so excited by the novelty of all of this that
their enthusiasm became contagious. Jobs hired several other engineers
away from Xerox and put them to work developing new Apple
designs.

The initial result of their efforts was the Apple Lisa, a $10,000
computer with an even more elegant interface than the one that Xerox
had demonstrated. The Lisa, introduced in 1983, had a bit-mapped
black-and-white screen that emulated a desktop, with pictorial icons
representing folders and the documents they contained. To open a
folder or launch an application, the user merely clicked on the
appropriate icon with the mouse. Files and folders appeared inside
movable, resizable windows, and all of the options available to the user
could be accessed at any time via pull-down menus.

Furthermore, when you typed or drew in an application window,
your work was displayed on the screen in true WYSIWYG ("what you
see is what you get") fashion; italic text appeared on the screen in italics,
bold type appeared as bold, and the shapes and sizes of text and
graphics were the same as they would be if they were printed out on
paper. So, when you printed out a document that you had prepared on
a Lisa, everything looked the same on paper as it had looked on the
screen.

Lisa Bites the Dust

The Lisa, as impressive as its innovations were, did not turn out to be a
smashing success. It was not compatible with any other computer on
the market—not even with earlier Apples—and its price was just too
high. Although it won critical acclaim, few customers were willing to
pay $10,000 for such a pretty new toy. In 1985, after the Macintosh had
been introduced and had been on the market for a little over a year, the
Lisa was finally discontinued.

Fortunately the Macintosh—a computer designed to offer many of
the Lisa's features, but at much less cost—was on the market and
getting up some real steam by the time the Lisa died. Since the original

» The Macintosh Story 7

Macintosh made its debut in 1984, Apple has introduced an average of
two new and improved models each year, and the evolution of the Mac
shows no signs of slowing down.

Table 1-1 traces the evolution of the Macintosh, listing the members
of the Macintosh family tree and some of their most important
specifications.

Table 1-1. Specifications of Macintosh computers

Model CPU Memory Input Devices Internal Storage

Original 8 MHz 68000 128K Macintosh 400K disk drive

Macintosh Keyboard
Macintosh Mouse

Macintosh 512K 8MHz 68000 512K Macintosh 400K disk drive
Keyboard
Macintosh Mouse

Macintosh Plus 8 MHz 68000 1 MB Mac Plus Mouse 800K disk drive
Mac Plus Keyboard
Apple Scanner

Macintosh 512K 8 MHz 68000 512K Macintosh 800K disk drive

Enhanced Keyboard
Macintosh Mouse

MacintoshSE 8 MHz 68000 1 MB Macintosh Mouse ~ Apple FDHD
Apple Keyboard SuperDrive;
Apple Extended Internal Hard
Keyboard Disk 20SC,405C
Apple Scanner

Macintosh 16 MHz 1MB ADB Mouse

SE/30 68030/68882 Apple Keyboard Apple FDHD
Apple Extended SuperDrive;
Keyboard Internal Hard
Apple Scanner Disk 40SC,805C

Macintosh 16 MHz 68000 1MB Apple Desktop Apple FDH

Portable Mouse
Apple Trackball* SuperDrive;
Apple Keyboard* Portable Inter-
Apple Scanner nal 405C Hard
Apple Extended Disk Port
Keyboard
Numeric Keypad

Macintosh IIcx 16 MHz 1MB ADB Mouse Apple FDHD

68030/ 4 MB Apple Keyboard SuperDrive;
68882 Apple Extended Internal Hard

Keyboard Disk 40SC,80SC

Apple Scanner

8

» Chapter 1 MPW and the Macintosh

Table 1-1. Specifications of Macintosh Computers (continued)

Model CPU Memory Input Devices Internal Storage
Macintosh IIx 16 MHz 1MB ADB Mouse Apple FDHD
68030/68882 4 MB Apple Keyboard SuperDrive;
Apple Extended Internal Hard
Keyboard Disk 40SC,
Apple Scanner 80SC, 160SC
Macintosh Ilci 25 MHz 1MB ADB Mouse Apple FDHD
68030/68882 4 MB Apple Keyboard SuperDrive;
Apple Extended Internal Hard
Keyboard Disk 40SC, 80SC
Apple Scanner
Macintosh IIfx 40 MHz 4 MB ADB Mouse Apple FDHD
68030/68882 Apple Keyboard SuperDrive;
Apple Extended Internal Hard
Keyboard Disk 80SC,
Apple Scanner 160SC
(*) Builtin
The MPW Story

When Apple introduced the original Macintosh in 1984, program
developers rushed out to buy it—and then found out that there wasn't
much they could do with it as far as program development was con-
cerned. The source code for the Macintosh had been written not on a
Macintosh, but on a Lisa—using a Pascal compiler and a 68000
assembler—and when you looked at the specifications of the original
Macintosh, it was easy to understand why. The original Macintosh had
only 128K of RAM and a single 400K floppy-disk drive, and those
limitations made serious program development on a Macintosh all but
impossible. Apple, recognizing the futility of trying to write Macintosh
programs on a Macintosh, offered software manufacturers a develop-
ment package that included a Lisa and a set of cross-development tools
that could be used to develop programs for the Mac.

As the Macintosh evolved into a more powerful computer, and its
memory and storage capabilities increased, Apple began to recognize
the need for a program development system that would run on a
Macintosh platform. The first product aimed at filling that need was the
Macintosh 68000 Development System, or MDS. MDS provided
programmers with a machine-language assembler and some support
tools, but it did not include a compiler for developing programs in

» The Macintosh Story 9

Pascal, C, or any other higher level language. BASIC and Pascal pack-
ages from third-party manufacturers soon began showing up in the
software marketplace, however, and Apple then decided that it was
about time to start working on a full-scale Macintosh program develop-
ment system.

The development of what was to become MPW started late in 1984,
when Apple engineers designed a set of Macintosh programming tools
for internal use. The name initially given to the package was the
Macintosh Programming System, or MPS—initials which, coincidentally
or otherwise, also stand for the last names of the three software
engineers who developed it: Meyers, Parrish, and Smith!

Launching MPW

The first version of MPW, Version 1.0, was released by APDA (the
Apple Programmer's and Developer's Association) in September 1986.
It was designed to work on any Macintosh with 1 MB of RAM and at
least 1.6 MB of disk space. It had a shell that had been ported from the
original Macintosh Development System and a C compiler that had
been ported from the Lisa. But it also included a new 68000 assembler
that had been developed from scratch. Other new features included the
utilities Make and Print; the MacsBug debugger; and a pair of resource
management tools called Rez and DeRez.

Version 2.0 of MPW, released in July 1987, included some new tools,
an improved shell, an expanded MacsBug debugger, compilers that
generated code for Motorola's new 68020 and 68030 chips, and new sets
of interface and library files to support the Macintosh II. It was shipped
on 800K floppy disks, and it required the use of the Mac Plus with 128K
ROM and a hard-disk drive.

MPW 3.0

The newest major revision of MPW, Version 3.0, was released in early
1989. Version 3.0 was faster and easier to use than was its predecessor,
and it was the first MPW version to exploit the features of MultiFinder.
It featured a new source-level debugger called the Symbolic Application
Debugging Environment, or SADE; a rewritten version of MacsBug (6.0);
a new C compiler; a new project management tool called Projector; some
added tools; and some updated libraries and interfaces. Also, an
Installer disk was included for installing MPW from a set of diskettes.

In MPW Version 3.1, a number of bugs were fixed and new capa-
bilities for some tools were added. Version 3.1 also included a CPlus

10 » Chapter1 MPW and the Macintosh

command for compiling programs written in C++ as well as new
interface files for C++ programs.

» MPW3.2

MPW 3.2, despite its unimpressive version number (they didn't call it
MPW 4.0), is an ambitious revision of the Macintosh Programmer's
Workshop. In fact, it is the first MPW revision since Version 3.0 that has
included more than minor bug fixes.

The most visible new feature introduced in MPW 3.2 is a split-screen
feature that can divide the MPW Editor window into as many as 20
scrollable panes. Black lines called split bars and slide boxes appear in
the Editor window's vertical and horizontal scroll bars, as shown in
Figure 1-1. By dragging these split bars and slide boxes, you can split
the Editor screen into as many as 20 scrollable, sizeable panes. Since
each pane has a pair of scroll bars, you can scroll each pane to display a
separate portion of the document in the window.

Another new feature of MPW is a Browser window, shown in Figure 1-2.
You can use the Browser window to change directories, inspect the
contents of directories, and move to premarked sections of a document.

File Edit Find Mark Window Project Directory Build

=———-=— Shiva:MPIW 3.2:Eqvamples:CExamples:TESample.c
MPY Shell |

void AlertUser(short error J;
void EventlLoop(wvoid >;
void DoEvent¢ EventRecord *event J;

void GetGlobalMouse(Point *mouse J;
void DoGrowHindow(WindowPtr window, E
void DoZoomHindow(WindowPtr window, s
void Resizelindow(NindowPtr window >;
void GetlLocalUpdateRgn(HWindowPtr wind
void DoUpdate(WindowPtr window J;
void DoDeactivate(WindowPtr window);
void DoActivate(WindowPtr window, Boo
void DoContentClick(WindowPtr window,
void DoKeyDown(EventRecord *event);
unsigned long GetSleep(void J;

void CommonAction(ControlHandle contr
pascal void VUActionProc(ControlHandle
pascal void HActionProc(ControlHandle
void Doldle(void J;

void Drawldindow(WindowPtr window 5;
void AdjustMenus(void J;

void DoMenuCommand(long menuResult);
void DoNew(void »>;

Figure 1-1. MPW 3.2 Editor

void AdjustCursor(Point mouse, RgnHang

TESample is an example application that
to initialize the commonly used toolbox
successful ly under MultiFinder, handle g
create, grow, and zoom windows. The fung
toolbox calls and TextEdit autoscroll a
also shows how to create and maintain sdg

5

It does not by any means demonstrate al

#pragma segment Main
void AlertUser<error>

short error;

{
short itemHit;
Str255 message;

SetCursor(&qd.arrow);
/¥ type Str255 is an array in MPU .
GetindString(message, KErrStrings,

> MPW3.2 11

[I=—————= Browser

(Brahma:SuperTest: |

globdat.c % | Frontlindow <
Glue.c DoContentClick |
menu.c SubtractScrol |Bars

menu. h Drawh i hdow

menu.r Initialize

ST.e of fScreen

ST.h AdjustTE

ST.r AdjustScrol IBars

SuperTest Lo AdjustHY

SuperTest.h
SuperTest.make
SuperTest.makeout
SuperTest.r _—
SuperTestGlue.a 4

UActionProc

LK

@ Open as Active |

(O Open as Target X Open after find
(Use the tab key to select text entry field)

Figure 1-2. MPW 3.2 Browser

Both the split-window Editor and the MPW 3.2 Browser are described

in more detail in Chapter 2.

Other new features added in MPW 3.2 include

A new Object Pascal compiler and a new C compiler, which are
available as separate products. The new C compiler supports the
MacApp debugger and can produce "32-bit-clean” code to support
the new, expanded memory capabilities of the Macintosh Memory
Manager. The new Object Pascal compiler has more built-in support
for MacApp and for external functions written in C.

A non-interactive, script-driven text editor called StreamEdit. The
StreamEdit tool, similar to the Sed tool used in UNIX, provides a
method for editing and formatting documents automatically using
stored scripts.

Compatibility with the 32-bit addressing capability offered in
System Software Version 7. With the release of Version 3.2, MPW is
now 32-bit clean and can produce code that is 32-bit clean. (For
more information about System 7's 32-bit addressing capabilities,
see Chapter 7.)

12

» Chapter1 MPW and the Macintosh

¢ Updated versions of various libraries. The Runtime.o and
CRuntime.o libraries have been merged into a single Runtime.o
library, and the libraries have been resegmented to move more
modules out of the "main" segment. The C libraries have been
updated to conform to the current proposal for ANSI C, and the
Pascal libaries have been enhanced to include standard C string
functions that work on Pascal strings. (More information about
libraries is presented in Chapter 8, "Building an Application.")

¢ New, speedier versions of the MPW tools Link and Lib, which link
compiled programs and create object-code libraries. The Link and
Lib tools are also covered in Chapter 8.

e Two new commands: ShowSelection, which scrolls a window to a
selection and then finds and selects it; and SaveOnClose, which
saves a window when the window is closed. (The syntax of these
commands is in Appendix A.)

¢ Enhancements in several other tools and a number of bug fixes.

What You Need to Run MPW 3.2

To run MPW 3.2, you must have at least a Macintosh Plus, a hard-disk
drive, and 2 MB of RAM. In addition, you must be running System
Version 6.0 or later, with either Finder Version 6.1 or later. If you want to
use the SADE source-level debugger, you must use the System 7 Finder
or MultiFinder, and you need at least 2.5 MB of RAM.

Those, of course, are the minimum requirements for running MPW,
Apple recommends a system configuration of at least a Macintosh II
equipped with 4 MB or more of memory and an 80 MB hard-disk drive.
If your programming requirements are not too heavy, however, you can
get by with a Macintosh SE, 4 MB of RAM, and a 20 MB hard-disk
drive.

Installing MPW 3.2

Installing MPW 3.2 is a snap; the MPW package now includes an
installer disk, and the installation procedure is fully documented in
Chapter 2 of the MPW 3.0 Reference. However, if you just cannot wait to
get your MPW system up and running, you can follow these steps:

1. Make copies of all the master disks that came in your MPW
packages, and put the original disks away for safekeeping. Use the
copies that you have made for the following operations.

» The Macintosh User Interface 13

Warning »

Insert your copy of the MPW Installation disk into your floppy-disk
drive. Then, using the Finder or MultiFinder, drag the Installation
Folder from your copy of the Installer disk on to the hard disk on
which you want to install MPW.

Open the Installation Folder that is now on your hard disk, and
double-click on the MPW Installer icon.

When the Installer program starts running, it prompts you to start
inserting the copies of your MPW master disks into your floppy-
disk drive. You can insert your MPW disks in any order, and you
won't break anything if you insert a disk more than once.

Once installation is complete, you can throw away the Installation
Folder (the one on your hard disk, not the one on your floppy), and

you can then launch your newly installed shell.

Use the MPW Installer. If you own an earlier version of MPW and
want to update to MPW 3.2, be sure to use the MPW Installer
script; don't try to install Version 3.2 by simply dragging the
folders on the MPW master floppies onto your hard disk to replace
your old ones. That is certain to cause you trouble because the
contents of the folders on the MPW master disks changed with the
release of MPW 3.0. Now, the files have been placed in folders that
more closely reflect their final destination when they are moved to
a hard disk. :

In earlier versions of MPW, for example, the Pascal compiler was
placed at the root level on the Pascal master disk. Now, Pascal is in
a Tools folder on that disk. So, if you try to install MPW simply by
dragging files and folders from a set of MPW master disks on to
your hard disk, you'll wind up with conflicts between the old files
and folders on your hard disk and the new files and folders that
you drag over. And if your MPW system doesn't work right then,
don't blame MPW.

» The Macintosh User Interface

From a user's point of view, some of the most important features that
distinguish the Macintosh from less advanced computers are as follows.

The mouse—The most important tool for manipulating the
Macintosh cursor is the mouse—a pointing device which with a

14

» Chapter1 MPW and the Macintosh

drag and a click can choose menu items; open, close, select, scroll, or
resize windows; draw pictures and shapes; select locations where
text will be typed or shapes will drawn; and cut, paste and copy text
and graphics on the screen.

Windows—All information displayed on the screen by a standard
Macintosh application appears in windows. A window in which the
user of an application can type text or draw shapes is called a
document window. Windows can be equipped with various kinds of
controls such as title bars, go-away boxes, zoom boxes, size boxes,
and scroll bars. Windows can also contain buttons and icons, which
a user can click on to perform various kinds of operations. The tasks
that can be performed by clicking on buttons or icons are deter-
mined by the application that is running.

More than one window can be displayed on the Macintosh screen,
and windows can overlap each other. If the System 7 Finder or
MultiFinder is running, windows from different applications can
appear on the screen at the same time.

Pull-down menus—When you run an application on the Macintosh,
you do not have to make your way through various levels of menus
to get from one part of the program to another. In a standard
Macintosh program, the titles of all menus that you may want to
access are displayed in a row at the top of the screen in a ribbon-
shaped menu bar. To select an item from a menu, you simply press
your mouse button in the title of the menu that you want. The title
of the selected menu is then highlighted, and a column of menu
items appears below it. You drag the mouse down to the menu item
you want, and release the mouse button to select the chosen menu
item.

Dialogs—When an application needs more information from the
user about a command, it can display a special kind of window
called a dialog. Dialog windows, like document windows, can be
equipped with various kinds of controls. When controls appear
inside a dialog, they are known as dialog items.

By clicking on button items that appear inside a dialog, or by
typing text into a special kind of item called a TextEdit item, the
user of an application can supply the application with whatever
information it needs. In addition, dialogs can contain button items,
icon items, and other kinds of items that can be defined by specific
applications.

» The Macintosh User Interface 15

There are three kinds of Macintosh dialogs: modal dialogs,
modeless dialogs, and alerts. Modal dialogs look just like windows,
but contain controls; modeless dialogs have no title bar and are
closed by clicking a button; and alert dialogs are modeless dialogs
that display important messages.

The Finder and MultiFinder—When you start up a Macintosh, the
first screen you see is generated by a startup utility called the Finder.
The Finder, contrary to what many people seem to believe, is not
part of the Macintosh operating system; it is simply an application
that is in the System file of a system disk and is launched when the
system starts up. The Finder is responsible for presenting the unique
desktop that you see when you start a Macintosh—a screenful of
tiny icons representing disks, documents, file folders, and disk
drives.

In System Software Version 5.0, Apple introduced MultiFinder,
an improved version of the Finder that allowed multiple applica-
tions to be opened simultaneously. With the introduction of System
7.0, the features of MultiFinder were integrated into the Macintosh
operating system to provide what Apple calls "a cooperative multi-
tasking environment."

The System 7 Finder includes all of the features of MultiFinder,
and several more. It supports color icons and miniature icons; has a
stationery feature that lets the user create documents used as tem-
plates; and contains special folders for storing desk accessories and
fonts, eliminating the need for the Font/DA Mover utility used in
previous systems.

Desk accessories—Desk accessories, or DAs, are mini-applications
that can be started, used, and closed while larger applications are
also running. If you have a desk accessory installed in your system,
you can always select and run it, without leaving any other pro-
gram that may be running. Menu items for all installed desk
accessories always appear under the Apple menu on the Macintosh
menu bar.

With the introduction of System Software Version 7, the user has
been given the option of treating any application as a desk acces-
sory. You can now install a desk accessory simply by dragging its
icon into the System Folder.

System 7 also allows you to install fonts by dragging their icons
into the System Folder. So the Font/DA Mover utility used in pre-
vious systems has become unnecessary.

16

» Chapter1 MPW and the Macintosh

Principles of Macintosh Programming

Since the Macintosh is a pretty unconventional computer, it should not
be any surprise to learn that programming a Macintosh requires the use
of some pretty unconventional programming techniques.

When you write a standard text-based program for a computer with a
standard text-based operating system, you do not have to worry about
such advanced user-interface features as mouse movements, windows,
pull-down menus, or icons. When you write a program for a Macintosh,
you do have to be concerned with handling all of these features—and
more.

On the other hand, there are some ways in which writing a program
for a Macintosh is actually easier than writing a program for a more
conventional computer. When you develop an application for a non-
Macintosh computer, for example, you usually have to have a fairly
good understanding of the memory map of the computer you are
working with; you have to decide exactly where in memory you are
going to put your code, data, and screen graphics; and then you have to
take all of the necessary steps to put each ingredient of your program in
just the right memory location. Then, as your program grows, you have
to reconfigure your computer's memory.

An Easier Way to Manage Memory

When you design an application for a Macintosh, you do not have to do
any of that. In a Macintosh program, you will rarely, if ever, have to
refer directly to the actual memory address of any block of code or data.
That's because the Macintosh has a built-in Memory Manager, which, as
its name implies, performs memory management functions. The
Macintosh also has a number of other managers that are designed to
handle other kinds of important procedures and operations.

Some of these managers—the Memory Manager among them—are
built into the Macintosh operating system. Other managers are provided
in the User Interface Toolbox, a collection of hundreds of useful routines
that are provided with every Macintosh and can be used in any
Macintosh program. Some portions of the Toolbox are built into ROM,
and others are stored on the Macintosh system disk.

When a user loads a program into a Macintosh, the Memory Manager
first decides exactly where each part of the program should be stored in
memory, and then it places every piece of code and data in the program
in its proper memory location. Then, as the program runs, the Memory
Manager automatically shifts blocks of memory around to make room
for new blocks as memory requirements change.

» Principles of Macintosh Programming 17

The Memory Manager takes care of all of this memory manipulation
by using not only pointers, but also pointers to pointers, which are
called handles. By using handles in your Macintosh programs, you can
let the Memory Manager worry about the physical memory locations of
all the data that you refer to in your code, and you will never again
have to refer to any block of code or data by its actual memory address.
Much more information about the Memory Manager appears in
Chapter 7.

Macintosh I/O

File management is another programming headache that you need not
worry about when you're writing a Macintosh program. That's because
the Macintosh is equipped with a Standard File Package, which takes
care of such jobs as finding directories and opening, closing, and saving
files.

When you write a Macintosh program that gives the user the option
of loading or saving a file, all you have to do is call the Standard File
Package. The Standard File Package then displays a dialog—or a series
of dialogs—that allow the user to locate any desired directory on any
disk and then to load or save the selected file. Therefore, you can avoid
a lot of I/O hassles by using the Standard File Package.

Managing Resources

Another important manager in the Toolbox is the Resource Manager
—which, as its name implies, handles the resources that a Macintosh
program uses. Resources are blocks of static data such as menus,
dialogs, window templates, and cursors. They are created, stored, and
manipulated separately from a program's code for flexibility and ease of
maintenance. The Resource Manager is covered in much more depth in
Chapter 6.

QuickDraw and Macintosh Graphics

When you type text or draw graphics on the Macintosh screen, all
drawing operations are handled by a very important part of the Toolbox
called QuickDraw. QuickDraw is the heart of the Macintosh graphics
system. Whether you want to draw into a window or just set up a
simple shape such as a rectangle to be called by other managers in the
Toolbox, your applications will usually make calls to QuickDraw.

18

» Chapter1 MPW and the Macintosh

Although not every version of the Macintosh has been equipped to
handle color, every version of QuickDraw has supported both black-
and-white graphics and a limited capability of producing images in up
to 16 colors. Beginning with the Macintosh II, an enhanced version of
QuickDraw, supporting up to 248 colors, has been available. This newer
version of QuickDraw is called, logically enough, Color QuickDraw. In
this book, QuickDraw is mentioned only as it relates to MPW
programming. More comprehensive information about QuickDraw and
Color QuickDraw can be found in Inside Macintosh, Volumes I and IV.

Important Events

Before we end this summary of Macintosh features and open up the
User Interface Toolbox, it is important to mention a programming tech-
nique called event-driven programming. Every program written in
accordance with the Macintosh User Interface Guidelines contains a
main event loop, a loop that constantly monitors such user actions as
mouse clicks and the use of keys on the Macintosh keyboard. When an
application user clicks the mouse or presses a key, that action is known
as an event, and it is up to the application to detect the event and
respond to it appropriately.

To help programs manage events, the Macintosh Toolbox has been
supplied with a manager called the Event Manager, and the Macintosh
operating system contains a set of calls referred to as the Operating
System Event Manager. Both the Event Manager and the OS Event
Manager are covered in greater detail in Chapter 5.

Other Features

The Macintosh also has many built-in features that can help you per-
form such tasks as tracking mouse movements and mouse clicks and
can assist you in such jobs as drawing and manipulating windows and
dialogs, and building and manipulating pull-down menus. Some of
these tools are built into the Macintosh Toolbox, and others are built
into the Macintosh operating system.

» The Macintosh Toolbox and Operating System 19

The Macintosh Toolbox and Operating System

In the preceding sections, we have mentioned three features that
distinguish the Macintosh from more conventional computers: the
Macintosh User Interface, the User Interface Toolbox, and the Macintosh
operating system. Now let's put these three features together and see
how they work together. We will start at the lowest level of processing:
the operating system level.

When an application is running on a Macintosh, the portion of code
that communicates most directly with the central processor is the
operating system; its job is to perform basic operating tasks such as
input and output, memory management, and interrupt handling.

One level above the operating system lies the User Interface Toolbox,
which was designed to help programmers implement the standard
Macintosh User Interface in their applications easily and efficiently.
When you call a Toolbox routine in an application, the Toolbox often
calls an operating system routine when it wants to perform a low-level
operation. When you write programs for the Macintosh, you will often
bypass the Toolbox and call the operating system directly in your
applications.

Applications, as well as other kinds of programs written for the
Macintosh, lie one level above the User Interface Toolbox. Well-behaved
programs—a term that Apple often uses to describe programs written
in accordance with its User Interface Guidelines—perform most of their
essential tasks by making calls to the Toolbox and the operating system.

At the very top of the processing hierarchy is the User Interface,
which, as its name indicates, is the interface between the Macintosh and
the user of a program. Windows, menus, dialogs, and controls—and
such specialized applications as the System 7 Finder and its predecessor,
MultiFinder—are all parts of the User Interface, as you have seen in
earlier sections of this chapter.

The four levels of Macintosh processing—the operating system, the
Toolbox, applications, and the User Interface—are illustrated in Figure 1-3.

20 » Chapter 1 MPW and the Macintosh

Macintosh
User
Intferface

The User

Application
Program

User Interface
Toolbox

..".-I..—.b' i
Application
Programmer 74 2E 5C _
57 20 53| Macintosh

50 53 20 i
e L R Operating System

6C 00 00

Figure 1-3. The four levels of program processing

» The User Interface Toolbox

The User Interface Toolbox is a collection of hundreds of routines and
functions that you can use in your programs without having to write all
of the code that they contain from scratch. The routines in the Toolbox
—Ilike the libraries of C and Pascal functions that programmers of
conventional computers often purchase and use—are prewritten,
pretested procedures and functions that can be incorporated into pro-
grams to perform specific tasks. But, unlike the "cookbooks" of routines
that programmers of less advanced computers so often use, the
procedures and functions in the Macintosh Toolbox are always available,
free of charge, and are specifically designed to work correctly with the
Macintosh User Interface, the Macintosh architecture, and the Macintosh
operating system. Furthermore, since they are written and maintained
by the people who designed your Macintosh, they are guaranteed to
work properly not only with the computer you are currently using, but
also with future models.

» The System 7 Toolbox 21

Most of the functions and procedures in the Toolbox are designed to
help you implement the Macintosh User Interface—the windows, pull-
down menus, dialogs, and standard control mechanisms mentioned
earlier in this chapter.

The System 7 Toolbox

Until System 7 was unveiled, the number of managers in the Macintosh
Toolbox had grown steadily but slowly. With the introduction of System
7, Apple pulled out all the stops and added eight new managers. These
new managers are illustrated in Figure 1-4 and described in this section.

The Process Manager

The Process Manager manages the scheduling of processes that affect
open applications and desk accessories. Under System Software Version
7, any application can be placed under the Apple menu and used as a
desk accessory, and the number of processes is limited only by available
memory.

With the help of the Process Manager, multiple applications running
under System 7 can share the 680X0 microprocessor and other resources.
The Process Manager provides applications with a means of sharing the
amount of memory available, and also sharing access to the CPU.

In addition to managing the scheduling of applications, the Process
Manager manages access to shared resources and loads applications
into memory. By querying the Process Manager, an application can get

Figure 1-4, System 7 Toolbox managers

Process Edition Help (D;é?fcgcs:
Manager Manager Manager Manager
Alias Ratapase PPC Power
Manager Manager Toolbox Manager

22 » Chapter 1 MPW and the Macintosh

information about itself or any other open application, such as the
number of free bytes in the application's heap.

The System 7 Finder, which carries out actions directed by the
Process Manager, is shown in Figure 1-5.

% File Edit View Label Special

Brahma
26.7M in disk

Dishnu
13 items 17.9M in disk

Picture 1 [ED
10 items 9.7M in dizk

Ananda Folder

MacPaint MacsBu

Chapter 7 Folder
ﬁ/&

ResEdit System 7.0

ol B

TETRIS FosterMaker

Creation

Figure 1-5. System 7 Finder

» The Edition Manager

The Edition Manager allows applications and documents to share data
dynamically and also allows users to share data dynamically across a
network.

With the Edition Manager, the Macintosh user can

e capture data from a document and integrate it into another document

¢ modify information in a document, simultaneously updating any
document that shares its data

* share information between applications on the same disk or across
a network of Macintosh computers

» The System 7 Toolbox 23

The Edition Manager's functions are similar to the standard cut,
copy, and paste features offered since the advent of the first Macintosh.
With the help of the Edition Manager, however, text and graphics that
are edited in one application can also change in any associated appli-
cations that may be running—either on the same computer or on a
network. Text, graphics, spreadsheet cells, database records—any data
that can be selected within an application—is accessible to other
applications supporting the Edition Manager.

The Help Manager

The Help Manager can display cartoon-like help balloons when the
user of an application moves the mouse into a user interface element
such as a menu, a window, an icon, or a control.

In an application that makes use of the Help Manager, the user can
enable help balloons by choosing "Show Balloons" from the Help menu.
The contents of the help balloons are provided by the application. The
user can turn off the help function by selecting "Hide Balloons" from
the Help menu.

Figure 1-6 shows a help balloon created by the Help Manager.

% File Edit Diew Label Special
About Help...

14 items 26.7M in disk 2.3M avai

E = : Turns Balloon
E Lishnu help off.
13 items 17.9M in disk

Ficture 1

E[[=——=— Shiva
12 items 2.7M in disk 9.3M available
Ananda Folder o

SuperTest

¢ [[®

FMacPaint MacsBu MPW 3.2 Pi

€ B @

ResEdit System 7.0 Ficture 1

hapter 7 Folder

Creation

L

TeachText TETRIS PosterMaker Picture 2

Figure 1-6. Help balloon

24

» Chapter1 MPW and the Macintosh

The Graphics Devices Manager

The Graphics Devices Manager manages offscreen graphics. With the
Graphics Devices Manager, you can create images offscreen and then
move them quickly into view with a single routine. This technique
prevents the jumpiness that you sometimes see when you draw object-
oriented graphics directly on the screen. Also, by drawing a picture in
an environment that you create and control, you can be sure that no
other application or desk accessory changes its characteristics.

The Graphics Devices Manager also contains routines and data
structures used by QuickDraw and the Palette and Color managers to
communicate with the graphics devices attached to a particular system.
Such devices may include printers as well as video screens. Most of
these routines are used only by the operating system; some may be
used by graphics-intensive applications.

The Alias Manager

The Alias Manager stores file and directory information in specially
designed records called alias records. Files and folders with alias records
can be referred to later by their aliases, rather than by their full
pathnames. The Alias Manager thus provides an easy method for
tracking files and folders across volumes. It also provides routines that
can automatically initiate the mounting of an unmounted AppleShare
volume, and can prompt a user to insert a disk when a needed disk
cannot be found.

The Database Access Manager

The Database Access Manager allows an application to communicate
with a database application running on a remote computer. With the
Database Access Manager, an application can use either high-level or
low-level routines to initiate communications with a remote database
server; send commands or data to the server, and, after the server
executes the commands, retrieve any requested data from the server.

The PPC Toolbox

The PPC (Program-to-Program Communications) Toolbox enables
applications to communicate with other applications. This low-level
manager is most suitable for code modules (or desk accessories or
applications) that are not event-driven.

» Other Toolbox Managers 25

With the PPC Toolbox, an application can

¢ verify the identities of remote users of the PPC Toolbox

* share information among other applications running on the same
computer or on a computer network

The Power Manager

The Power Manager, used only by the Macintosh Portable, is built into
the computer's firmware. The Power Manager can put the Macintosh
Portable into two low-power-consumption states: the idle state and the
sleep state.

The Macintosh Portable goes into its idle state when the system has
been inactive for 15 seconds. When the computer is in the idle state, its
normal 16MHz clock speed is slowed down to IMHz.

When the portable has been inactive for an additional period of
time—the duration is set by the user—the computer's power is shut off,
but no data is lost from RAM. When the user activates the computer, by
clicking the mouse button or pressing a key, the portable "wakes up"
and is ready for action.

Other Toolbox Managers

Figure 1-7 shows the managers that made up the Toolbox prior to the
introduction of Software System Version 7. Their dependencies on each
other are illustrated roughly by their position on the chart; managers
that are lower on the chart often call the upper ones. However, their
precise dependencies are too complex to be illustrated in a simple
diagram.

Managers included in the pre-System 7 Toolbox are listed in Table 1-2.
Three managers—the Toolbox Event Manager and the Resource
Manager from the Toolbox and the Memory Manager from the
operating system—are so important that they have their own chapters in
this book: Chapters 5, 6, and 7.

26

» Chapter1 MPW and the Macintosh

Standard File Packager

Dialog Manager

List Manager

Control Manager

Menu Manager

TextEdit

Window Manager

Toolbox Utilities

Toolbox Event Manager

Desk Manager Scrap

Manager

Palette Manager

Color Manager

Color QuickDraw

QuickDraw

Package

Manager

Font Manager

Script Manager

Resource Manager

Figure 1-7. The System 6 Toolbox

» Other Toolbox Managers 27

Table 1-2. The System 6 Toolbox

Manager

Description

Toolbox Event Manager

Window Manager

Menu Manager

Control Manager

Dialog Manager

Resource Manager

QuickDraw

Color QuickDraw

Often referred to simply as the Event Manager,
the Toolbox Event Manager reports events, such
as mouse clicks and key presses, to an applica-
tion. The application, in a main event loop,
determines what to do about each event
reported. In System 7, some new kinds of events
are recognized. For more details, see Chapter 5.

Takes care of all document windows displayed
on the Macintosh screen. Provides routines that
create, open, close, resize, and move windows
around on the screen.

Sets up and manages the menus and menu
items on the Macintosh menu bar.

Creates and manages controls, such as buttons,
check boxes and scroll bars, inside windows
and dialogs.

Creates and displays modal and modeless
dialog and alert windows, and monitors the
user's responses to dialog items.

Manages and keeps track of the resources used
by a program. Resources are blocks of static
data, such as menus, dialogs, window tem-
plates, and cursors, which are created, stored
and manipulated separately from a program's
code for flexibility and ease of maintenance. In
System 7, some new kinds of resources have
been added. The Resource Manager is the topic
of Chapter 6.

The heart of the Macintosh graphics system.
QuickDraw performs all drawing operations on
the screen, including both graphics and text.
QuickDraw can handle both black-and-white
images and images with up to 16 colors.

A greatly enhanced version of QuickDraw,
Color QuickDraw, was introduced with the
Macintosh II. Color QuickDraw is capable of
displaying up to 248 colors on a screen.

28 » Chapter 1 MPW and the Macintosh

Table 1-2. The System 6 Toolbox (confinued)

Manager

Description

Color Manager

Palette Manager

Font Manager

TextEdit

Scrap Manager

Script Manager

Provides color-selection support for Color
QuickDraw by giving applications a consistent
method for producing color displays on the
Macintosh II and other models of the Macintosh
that offer advanced color capabilities.

Responsible for monitoring and establishing the
color environment of the Macintosh II and other
models of the Macintosh with advanced color
capabilities. Includes procedures and functions
to manage shared resources, as well as pro-
viding an enormous selection of colors for
programs that demand more colors than Color
QuickDraw's default selections can provide.

Supports the drawing of text by QuickDraw.
Before QuickDraw draws text, it calls the Font
Manager, which does the background work
necessary to make a variety of character fonts
available in various sizes and styles. In System
7, the Font Manager supports outline fonts,
which eliminate jagged edges from displayed
and printed characters, regardless of their size.

Provides applications with a means of accessing
user input via the keyboard. TextEdit displays
text typed by the user, and automatically
provides applications with cutting, pasting, and
copying capabilities via a standard Macintosh
utility called the Clipboard. Since the introduc-
tion of Software System Version 6.0, TextEdit
has also been capable of handling text styling.

Supports the use of the Clipboard, a built-in
utility for cutting, copying, and pasting text or
graphics within a single program or between
programs.

Enables applications to function correctly with
non-Roman writing systems, or scripts, such as
Japanese, Chinese, or Arabic, as well as with
roman-based writing systems such as English.

» The Macintosh Operating System 29

Table 1-2. The System 6 Toolbox (continued)

Manager Description

Standard File Package Displays a standard User Interface dialog for
locating and specifying a document file and
handles file I/O by calling a lower-level
operating system package, the OS File Manager.

Package Manager Supports the use of several special pieces of
system software called packages. The List
Manager is one manager that is stored as a
package. Two packages are extensions to the
Toolbox Utilities manager. They are the Binary-
Decimal Conversion Package, which converts
integers into decimal strings and vice versa, and
the International Utilities Package, which can be
used to make applications independent of
country-specific information by providing such
details as the formats for numbers, currency,
dates, and times.

List Manager Supports the use of lists by applications. Lists
handled by the List manager can be stored as
one- or two-dimensional arrays, and can be
sorted, displayed, and scrolled.

Desk Manager Supports desk accessories, small programs that
can be run from within an application. The user
opens desk accessories by choosing an item
from the Apple menu. With the introduction of
System Software Version 7, it has become
possible to use any application as a desk
accessory.

Toolbox Utilities A collection of miscellaneous utilities, including
managers that handle fixed-point arithmetic,
string manipulations, and logical operations on
bits.

The Macintosh Operating System

The operating system, as mentioned previously, is at the lowest level of
the Macintosh user interface hierarchy; it performs basic tasks such as
input and output, memory management, and interrupt handling.

30

» Chapter1 MPW and the Macintosh

The User Interface Toolbox is a level above the operating system; it
was designed to help programmers implement the standard Macintosh
user interface in their applications. The Toolbox calls the operating
system to do low-level operations, and you can also call the operating
system directly.

The most important operating system managers are shown in Figure 1-8
and listed in Table 1-3.

Memory Manager

OS Event Manager

Segment Loader

File Manager

Device Manager

Device Drivers

Sound Manager

SCSI Manager

AppleTalk Manager

Slot Manager

ADB Manager

Vertical Retrace Mgr.

Time Manager

System Error Handler

Start Manager

Shutdown Manager

OS Packages

Figure 1-8. Operating system managers

» The Macintosh Operating System 31

Table 1-3. Operating system managers

Manager Description

Memory Manager Dynamically allocates and releases memory
used by applications and other parts of the
operating system. In Macintosh programs,
memory space is obtained by calls to the
Memory Manager. In System 7, new capabilities
have been added to the Memory Manager. They
include virtual memory, temporary memory,
and 32-bit addressing. More information about
the Memory Manager is presented in Chapter 7.

OS Event Manager The Operating System Event Manager, or OS
Event Manager, reports low-level, hardware-
related events, such as mouse clicks and key-
strokes. The OS Event Manager is normally
called by the Toolbox Event Manager. Both
Event Managers are covered in detail in
Chapter 5.

Segment Loader Loads pieces of an application's code into
memory to be executed. The Segment Loader
also serves as a bridge between the Finder and
an application, letting the application know
whether it has to open or print a document
when it starts up. For more information on the
Segment Loader, see Chapter 7.

File Manager Contains low-level I/O routines that handle
communications between an application and
files on block devices such as disk drives. The
Standard File Package calls the File Manager
when it needs to perform such tasks as locating,
loading, and saving files. Applications can also
call the File Manager.

Device Manager Handles communication between applications
and devices. A device is a piece of external
equipment, or part of the Macintosh itself, that
can transfer information into or out of the
computer. Devices include disk drives, serial
communications ports, sound and music
generators (on the Macintosh Plus), video
drivers (on the Macintosh II and later models),
and printers.

32

» Chapter1 MPW and the Macintosh

Table 1-3. Operating system managers (continued)

Manager

Description

Device Drivers

Sound Manager

SCSI Manager

AppleTalk Manager

Slot Manager

ADB Manager

Vertical Retrace Manager

Handle the task of making various kinds of
devices present the same kind of interface to an
application. Three drivers are built into ROM:
the Disk Driver, the Sound Driver, and the Serial
Driver. Several other drivers, including the
Printer Driver and the Video Driver, are in
RAM. Device drivers also handle the operations
of desk accessories.

Supports sound and music on the Macintosh II
and later Macintosh models. The Sound
Manager has been greatly improved in System 7.

Supports the Small Computer System Interface
(5CSI), an interface for hard-disk drives and
other high-speed peripheral devices.

Provides an interface to a set of AppleTalk
drivers that enable programs to send and
receive information over an AppleTalk network.

On the Macintosh II and later models, the Slot
Manager enables programs to communicate
with expansion cards in NuBus slots.

Supports the Apple Desktop Bus, a hardware
device used for connecting low-speed input
devices, including the mouse and keyboard, to
the Macintosh. The ADB Manager was not a
part of the operating system until the
introduction of the Macintosh II and the
Macintosh SE.

Handles the scheduling and execution of tasks
during the vertical retrace interval, the period of
time during which the Macintosh hardware
generates a vertical retrace interrupt. A vertical
retrace interrupt, sometimes referred to as the
system "heartbeat," takes place 60 times every
second. For compatibility purposes, the
heartbeat rate of a small-screen Macintosh is
emulated by the Macintosh II and other large-
screen models.

» Unlocking the Toolbox 33

Table 1-3. Operating system managers (continued)

Manager

Description

Time Manager

System Error Handler

Start Manager
Shutdown Manager

OS Packages

Provides a hardware-independent means of
timing program operations. Greatly enhanced in
System 7.

Assumes control if a system error occurs. If that
happens, the dreaded "bomb" dialog containing
an error message is displayed, and the System
Error Handler provides a mechanism for the
user either to restart the system or attempt to
resume execution of the application.

Orchestrates all activities related to system
testing and startup.

Provides the user with a mechanism for
restarting the Macintosh or shutting it off.

Three OS Packages perform low-level opera-
tions: the Disk Initialization Package, which the
Standard File Package calls to initialize and
name disks; the Floating-Point Arithmetic
Package, which contains a random-number
generator and also supports extended-precision
arithmetic according to Standard 754 of the
Institute of Electrical and Electronics Engineers
(IEEE); and the Transcendental Functions Pack-
age, which contains trigonometric, logarithmic,
exponential, and financial functions. The
Floating-Point Arithmetic Package and the
Transcendental Functions Package support the
Standard Apple Numerics Environment (SANE).

Unlocking the Toolbox

As wonderful as they are, the hundreds of routines in the Toolbox and
the operating system would not do anybody much good if there weren't
a quick and easy way to get to them from a program. Fortunately, Apple
has made it just about as easy to call a Toolbox or operating system
procedure as it is to call any other procedure in a program.

Toolbox and operating system calls are often lumped together and
referred to as trap calls, or simply traps. Their name stems from the fact

34

» Chapter1 MPW and the Macintosh

that the central processor in Macintosh intercepts calls Toolbox and
operating system procedures using a feature of the 680X0 processor
known as the 1010 emulator trap. The calls are then made by a set of
procedures known collectively as the trap dispatch system.

The trap dispatch system was devised so that programs written for
the Macintosh could make Toolbox and operating system calls without
having to jump to the routines' physical memory locations. By elimi-
nating the need to access Toolbox calls by their actual memory
addresses, Apple gave its engineers a way to change the physical
locations of Toolbox calls in new versions of the Macintosh ROM
without making old applications obsolete or affecting the way in which
new applications would have to be written.

To accomplish this goal, the designers of the Macintosh created a trap
dispatch table that contained the addresses of all Toolbox and operating
system routines. This table was stored in low memory. Then a system
was devised to use the encoded addresses in the trap dispatch table to
make Toolbox and operating system calls. That way, an application
could make a Toolbox call by using the trap dispatcher rather than by
jumping to the routine's actual address. That meant that the addresses of
Toolbox calls could be moved around in memory by Apple's develop-
ment engineers, as long as the information in the trap dispatch table was
kept up to date.

As the Macintosh has evolved and has become more and more
sophisticated, the wisdom of having taken this approach has been
proven over and over again. Since the unveiling of the original
Macintosh, addressable RAM has grown from 128K into the one-giga-
byte range. The sizes of both the Toolbox and the operating system
have increased by leaps and bounds, with new calls—and even whole
new managers—being steadily added in ever-growing numbers. To
hold the addresses of all these new calls, the trap dispatch table has
been expanded, and memory addresses of many new traps have been
added.

Furthermore, although most Toolbox routines are in ROM, some are
in RAM. Still others have been "patched,” that is, altered to eliminate
bugs or to be compatible with new models, and many of these patched
calls reside partly in ROM and partly in RAM! Today, as new Toolbox
and operating system calls are introduced, they usually make their first
appearance on a system disk and are not moved into ROM until Apple
is certain that they are bug-free and are coded as compactly and as
efficiently as possible.

» Unlocking the Toolbox 35

How the Trap Dispatcher Works

On the Macintosh, all ROM calls are written as single 680X0 instruc-
tions. Because of the way the 680X0 processor is designed, no valid
instructions begin with the hexadecimal digit A. Therefore the
designers of the Macintosh decided to use the instructions $A000
through $AFFF to emulate actual 680X0 instructions: that is, to use
them to provide access to Toolbox and operating system routines.

When the microprocessor sees an instruction that begins with the
hexadecimal digit A, it immediately recognizes the instruction as
invalid, or as an unimplemented instruction. So it creates a 68000
exception and jumps to a routine whose memory address is stored at a
certain location—specifically, address $28. This address, called an
exception vector, turns control over to the trap dispatcher.

The trap dispatcher, by looking at the portion of the word that follows
the hex number A, determines the address of the routine to be called by
getting it from the trap dispatch table. Once it has looked up the
address, it uses the machine-language instruction JSR (jump to
subroutine) to jump to the appropriate Toolbox call.

Calling the Toolbox from MPW

To make a Toolbox or operating system call from a program written
using MPW, you do not really have to be concerned about how the trap
dispatch system works. That's because the MPW C compiler, the MPW
Pascal compiler, and the assembler all come with sets of interface files
that can be accessed from programs to make Toolbox and operating
system calls. The interface files for the C compiler are in a folder called
ClIncludes. The interface files for the MPW assembler are in a file called
Alncludes. And those for the Pascal compiler are in a folder called
PInterfaces.

The source-code fragments in the following examples were put
together to give you a general idea how trap calls are handled in MPW
C, MPW Pascal, and MPW assembly language. In later chapters, we'll
use similar procedures to write, compile, and link complete programs.

36 » Chapter1 MPW and the Macintosh

By the Way »

Routines, Procedures, and Functions. In Pascal, there is a sharp
distinction between a function and a procedure. If a routine returns
a value, it's a function; if it doesn't, it's a procedure.

In C, no distinction is made between a function and a procedure.
Whether a routine returns a value or not, it's still a function.

Since this book makes references to both Pascal and C, the terms
routine, procedure, and function are used somewhat
interchangeably. But I have tried to make sure that the differences
in their meanings are made clear from their context.

Calling Traps in C

Inside the C compiler's CIncludes folder, there is a large set of header
files, one for each manager in the Toolbox and the operating system. As
you would expect, each header file ends with C's standard ".h"
extension. It's easy to figure out which header file covers which
manager because the name of each file corresponds (though not always
exactly) to the name of the manager that it handles. The header files in
the CIncludes folder are-listed in Table 1-4.

Table 1-4. MPW C header files

ADSPh DDEV.h
Aliases.h Desk.h
AppleEvents.h DeskBus.h
AppleTalk.h Devices.h
Assert.h Dialogs.h
Balloons.h DisAsmLookup.h
CommResources.h DiskInit.h
complex.h Disks.h
Connections.h Editions.h
ConnectionTools.h EPPC.h
Controls.h ErrMgr.h
CRMSerialDevices.h errno.h
CTBUgtilities.h Errors.h
CType.h Events.h
CursorCtLh FCntl.h
DatabaseAccess.h Files.h

» Unlocking the Toolbox

37

Table1-4. MPW C header files (continued)

FileTransfers.h
FileTransferTools.h
FixMath.h
Float.h
Folders.h
Fonts.h
fstream.h
generic.h
GestaltEqu.h
Graf3D.h
HyperXCmd.h
IOCtlLh
iomanip.h
iostream.h
Limits.h
Lists.h
Locale.h
Math.h
Memory.h
Menus.h
MIDLAh

new.h
Notification.h
OldStream.h
OSEvents.h
ostream.h
OSUtils.h
Packages.h
Palette.h
Palettes.h
Perf.h

Picker.h
pipestream.h
PLStringFuncs.h
Power.h
PPCToolbox.h
Printing.h
PrintTraps.h
Processes.h

QDOffscreen.h
Quickdraw.h
Resources.h
Retrace.h
ROMDefs.h
SANE.h
Scrap.h
Script.h
SCSLh
Segload.h
Serial.h
SetJmp.h
ShutDown.h
Signal.h
Slots.h
Sound.h
StandardFile.h
Start.h
StdArg.h
StdDef.h
StdIO.h
stdiostream.h
StdLib.h
stream.h
String.h
Strings.h
strstream.h
SysEqu.h
Terminals.h
TerminalTools.h
TextEdit.h
Time.h
Timer.h
ToolUtils.h
Traps.h
Types.h
Values.h
Video.h
Windows.h

38 » Chapter 1 MPW and the Macintosh

One of the header files in the CIncludes folder is called Windows.h. As
its name implies, the Windows.h file contains header definitions that
are used to make calls to the Window Manager.

To use the Windows.h file in a C program, you must include the
name of the file at the beginning of the program with a line like this:

#include <Windows.h>
Then you must follow this calling convention:
pascal void CloseWindow (WindowPtr theWindow)

In this example, the WindowPtr argument that is passed to the
CloseWindow function is a pointer to a data structure that is declared in
the Windows.h header file as WindowRecord. In the Windows.h header
file, a WindowRecord structure is declared in this way:

struct WindowRecord ({
GrafPort port;
short windowKind;
Boolean visible;
Boolean hilited;
Boolean goAwayFlag;
Boolean spareFlag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
short titleWidth;
ControlHandle controlList;
struct WindowRecord *nextWindow;
PicHandle windowPic;
long refCon;

}i

typedef struct WindowRecord WindowRecord;
typedef WindowRecord *WindowPeek;

The first field in a WindowRecord is a GrafPort, a data structure used
by QuickDraw to draw on the screen. The other fields in the
WindowRecord control various characteristics of windows.

» Unlocking the Toolbox 39

In the Windows.h header file, the CloseWindow function itself is
defined as being of type pascal because all calls in the Macintosh
Toolbox and operating system use what are known as Pascal-compatible
calling conventions; that is, they pass their parameters to the Toolbox
and the operating system as if they were written in Pascal rather than in
C. Specifically, the function-calling conventions that MPW C and Pascal
use differ in the order of parameters on the stack, the type of coercions
that are applied to the parameters, the method of storing the returned
result, and the number of microprocessor scratch registers used. Further
information about how Pascal and C calling conventions differ can be
found in the Macintosh Programmer’s Workshop C 3.0 Reference and in the
Macintosh Programmer’s Workshop Pascal 3.0 Reference.

Calls to the MPW Toolbox follow Pascal calling conventions because
the Toolbox was originally designed to work with Pascal compilers. But
that does not mean that you must use Pascal-style calling conventions
for functions that you write in MPW C; in functions that you write for
your own programs, you can use the calling conventions of standard C.

Furthermore, you'll probably never even notice that Toolbox and
operating system calls use Pascal-style calling conventions. The calls are
all defined in the MPW C compiler's header files, so you won't have to
worry about how they are defined when you write C programs. All you
have to do is call any function you need, in exactly the same way you
would call any other function. To make a CloseWindow call in a C
program, for example, all you have to do is type

CloseWindow (window) ;

and the MPW C compiler ensures that the call is passed to the Toolbox
correctly.

Starting Up Tools in C

When you have included all of the header files you need in an MPW C
program, you must make sure that the Toolbox and operating system
managers that make the calls are initialized. Some managers, such as the
Memory Manager and the Resource Manager, are initialized auto-
matically at boot time and do not have to be specifically initialized in
application programs. However, other managers do have to be initialized.

Since some Toolbox and operating system managers call other man-
agers to perform certain operations, the order in which you initialize the

40

» Chapter1 MPW and the Macintosh

various managers is significant. For example, before you can use the
ToolBox Event Manager, you must initialize the Window Manager if you
use window operations in your program. Before you initialize the the
Window Manager, you must initialize both QuickDraw and the Font
Manager. You must also initialize QuickDraw before you can initialize
many other parts of the Toolbox.

You could sit down and work out a dependency list that could tell
you at a glance the exact order in which all Macintosh managers must
be initialized. But that is not really necessary. Since some managers are
initialized automatically, and since most Macintosh programs call most
of the standard managers—QuickDraw, the Window Manager, the
Control Manager, the Dialog Manager, and so on—the easiest way to
initialize the managers you are most likely to need is to find a program
that contains a well-behaved initialization segment—and copy it!

There's nothing wrong with copying; in fact, it's encouraged. Inside
your MPW folder, there's a folder called Examples, and in that folder
there are sample programs written in C, Pascal, and assembly language,
as well as HyperCard externals and sample code to help you use
Projector. All of these examples were included in the MPW package for
you to use—by studying them or by copying parts of them into your
own programs. For example, the following piece of code is from a
program called TESample.c that is in the MPW Examples folder:

InitGraf ((Ptr) &gd.thePort);
InitFonts();

InitWindows () ;

InitMenus () ;

TEInit ()

InitDialogs(nil) ;

In this code fragment are startup calls for QuickDraw, the Font
Manager, the Window Manager, the Menu Manager, TextEdit, and the
Dialog Manager—and they are all started up in the right order.

Compiling and Linking a C Program

When you have written a program in MPW C, you must compile it
using the MPW C compiler, and then link it using a tool called the
MPW Linker.

The Linker is usually invoked with a special kind of MPW script
called a makefile. A makefile is an MPW text file, or script, that contains
instructions for building, or converting, a source-code program into an

» Unlocking the Toolbox 41

executable object-code program. A makefile describes the dependencies
between the components of the program, along with the shell com-
mands needed to build each component. By executing the commands
created by the makefile, you can build the program.

You can create a makefile by pulling down and selecting the Create
Build Commands item under the Build menu on the MPW menu bar, or
you can write your own makefile. Rules for writing makefiles are
explained in Chapter 8. Once you have created a makefile, you can run
it by executing the MPW command Make, which is also described in
Chapter 8.

One of the functions of a makefile is to link the object code generated
by an MPW compiler (or the MPW assembler) to a set of object-code
libraries that are needed to make Toolbox and operating system calls.
These libraries reside in an MPW folder called Libraries.

To link the object code of a compiled C program to the libraries that
are needed to make Toolbox and operating system calls, you must
include the appropriate linking commands in your makefile. For
example, the following block of code includes links to the C libraries
Runtime, StdLib, and Clnterface, as well as to the MPW libraries
Interface.o and ToolLibs.o.

Link {SymOptions} -w -c¢ 'MPS ' -t MPST MyProg.c.o
FStubs.c.o 0
-sn STDIO=Main 0
-sn INTENV=Main 0
-sn %A5Init=Main 0
"{Libraries}"Stubs.o 0
"{CLibraries}"Runtime.o 0
"{CLibraries}"StdCLib.o d
"{CLibraries}"CInterface.o 9
"{Libraries}"Interface.o @
"{Libraries}"ToolLibs.o 9
-0 MyProg

Calling Traps in Pascal

The MPW Pascal compiler uses a set of interface files stored in a folder
called PInterfaces, which is in the MPW Interfaces folder. The PInterfaces
folder, like the Clncludes folder, contains an interface file for each
Toolbox and operating system manager. However, to reduce the number
of interface files that programs must access and to reduce memory
requirements at compile time, a set of small files that provide indirect

42

» Chapter 1 MPW and the Macintosh

access to the most commonly used Toolbox interface files have been
grouped together in a single file called Toollntf. Similarly, a set of
interface files that access commonly used operating system calls have
been grouped together in an interface file called OSIntf.

Other interface files used in Pascal programs are Types, which
provides the definitions of basic Pascal data types; QuickDraw, which
provides an interface to QuickDraw; Traps, which contains the trap
numbers of Toolbox and operating system traps; and Packages, which
provides an interface to the Package Manager. Table 1-5 lists all the
interface files that MPW Pascal uses.

Table 1-5. MPW Pascal interface files

ADSP.p FileTransferTools.p
Aliases.p FixMath.p
AppleEvents.p Folders.p
AppleTalk.p Fonts.p
Balloons.p GestaltEqu.p
CommResources.p Graf3D.p
Connections.p HyperXCmd.p
ConnectionTools.p IntEnv.p
Controls.p Lists.p
CRMSerialDevices.p MacPrint.p
CTBUtilities.p Memory.p
CursorCtl.p MemTypes.p
DatabaseAccess.p Menus.p
DDEV.p MIDIL.p
Desk.p Notification.p
DeskBus.p Objlntf.p
Devices.p OSEvents.p
Dialogs.p OSIntf.p
DisAsmLookup.p OSUtils.p
DisklInit.p Packages.p
Disks.p PackIntf.p
Editions.p PaletteMgr.p
EPPC.p Palettes.p
ErrMgr.p PasLibIntf.p
Errors.p Perf.p
Events.p Picker.p
Files.p : PickerIntf.p

FileTransfers.p Power.p

» Unlocking the Toolbox 43

Table 1-5. MPW Pascal interface files (continued)

PPCToolBox.p Slots.p
Printing.p Sound.p
PrintTraps.p StandardFile.p
Processes.p Start.p
QDOffscreen.p Strings.p
Quickdraw.p SysEqu.p
Resources.p Terminals.p
Retrace.p TerminalTools.p
ROMDefs.p TextEdit.p
SANE.p Timer.p
Scrf;lp.p Toollntf.p
Script.p ToolUtils.p
SCSLp Traps.p
SCSlIntf.p Types.p
SegLoad.p Video.p
Serial.p Videolntf.p
ShutDown.p Windows.p
Signal.p

In MPW Pascal, as in other versions of Pascal, interface libraries are
accessed with a USES function. Because the MPW Pascal compiler uses
streamlined interface files such as Toollntf and OSIntf, the USES
statement in an MPW Pascal program is usually much shorter than the
series of #include statements that is required by a program written in
MPW C.

In a simple Pascal application—one that makes calls to the Window
Manager, the Menu Manager, the Dialog Manager, QuickDraw, and
other commonly used managers—the USES statement that accesses
interface files could be as simple as this:

USES
Types, QuickDraw, 0SIntf, ToolIntf, Packages, Traps;

Calling CloseWindow in Pascal

In Inside Macintosh, this is the Pascal definition for the Window
Manager call CloseWindow:

PROCEDURE CloseWindow (theWindow:WindowPtr) ;

44 » Chapter1 MPW and the Macintosh

Again, the WindowPtr argument in the call is a pointer to a
WindowRecord, which is defined this way in MPW Pascal:

WindowRecord = RECORD
port: GrafPort;
windowKind: INTEGER;
visible: BOOLEAN;
hilited: BOOLEAN;
goAwayFlag: BOOLEAN;
spareFlag: BOOLEAN;
strucRgn: RgnHandle;
contRgn: RgnHandle;
updateRgn: RgnHandle;
windowDefProc: Handle;
dataHandle: Handle;
titleHandle: StringHandle;
titleWidth: INTEGER;
ControlList: ControlHandle;
nextWindow: WindowPeek;
windowPic: PicHandle;
refCon: LongInt;

END;

This is how the CloseWindow call might look in a Pascal program:

CloseWindow (theWindow) ;

Starting up Tools in Pascall

In Pascal, as in C, most of the commonly used managers must be
started up before they can be used in a program. Here is how managers
are started in the MPW sample program TESample.p, which is written
in Pascal:

InitGraf (@thePort);
InitFonts;
InitWindows;
InitMenus;

TEInit;
InitDialogs (NIL) ;

> Assembly Language Programming 45

Compiling and Linking a Pascal Program

When you have finished writing a program in MPW Pascal, you must
compile it and link it, just as you would compile and link a program
written in MPW C. Again, you can create a makefile that can help you
build your program by pulling down and selecting the Create
BuildCommands item under the Build menu on the MPW menu bar, or
you can write your own makefile. Rules for writing makefiles are
covered in Chapter 8.

Assembly Language Programming

In the prehistoric era of the personal computer era—that is, until about
1985 or so—most serious software for personal computers was written
in assembly language. Today, times are changing; more and more
applications for personal computers are being written in higher level
languages such as C, Pascal, and C++.

If you want to write professional-quality software, however, it is still
very useful to have some understanding of assembly language. When
you compile and link a Pascal or C program, what you get is a program
written in object code, or machine language. Also, when you debug an
object-code program with a debugger such as MacsBug, the debugger
disassembles the code into assembly language.

So, if you do not know anything about assembly language, there is
no way that you can use MacsBug or any other object-code debugger.
However, you don't have to know assembly language to use the source-
level debugger SADE or other source-level debuggers that are available
for the Macintosh.

Another good reason for learning as much as you can about assembly
language is that there are some things you can do in assembly that you
simply cannot do in a higher level language such as Pascal or C. For
example, when you want to access a specific memory address or a
specific microprocessor register, sometimes you may have to use
assembly language to do it.

A knowledge of assembly language can also come in handy when
you want to improve the way in which a Toolbox routine handles an
operation. For example, the sample MPW program called TESample.c
has a code segment written in assembly language that is linked to the
main program by the MPW Linker after the main C program has been
compiled. This assembly language segment, called a "glue" segment
because of the way it is pasted into the program by the linker, is called
TESampleGlue.a.

46

» Chapter1 MPW and the Macintosh

When the TESample.c program is run, TESampleGlue.a is called by
the TextEdit routine TEClick when the mouse is clicked in a TextEdit
control. TESampleGlue.a responds by calling a routine that implements
automatic scrolling for a TextEdit field.

There are many other reasons why it is useful to have at least a basic
understanding of assembly language. The most important reason is that
you have to know something about assembly language in order to have
a good understanding of Toolbox operations, the operating system, and
other important components of a Macintosh computer system.

Calling Traps in Assembly Language

Inside the MPW Interfaces folder, there is a second folder called
Alncludes. This Alncludes folder contains an interface file called
Traps.a. The Traps.a file is a macro file that includes the A-line addresses
of all the commonly used traps in the Macintosh Toolbox and operating
system. For example, the address of the CloseWindow trap is listed as
$A92D. All A-trap addresses are listed in Inside Macintosh.

The Alncludes folder also includes a number of equates files that are
needed to assemble MPW assembly language programs. For example,
the QuickEqu.a file contains QuickDraw equates, the ToolEqu.a file
contains Toolbox equates, and the SysEqu.a file contains operating
system equates.

Some Macintosh library routines are in library object files rather than
in ROM. In Inside Macintosh, these routines are flagged with the notation
"Not in ROM." To call the routines that these libraries contain, you must
link your source code with the MPW file Interface.o. Then you must call
the routines you need using assembly language JSR instructions.

To call a trap in assembly language, you must include the Traps.a file
in your program with an INCLUDE statement. Other INCLUDE
statements must usually be added so that the MPW assembler can find
other equate files. In a typical assembly language program, these are
some of the INCLUDE statements that would probably be included:

INCLUDE 'Traps.a'
INCLUDE 'ToolEqu.a'
INCLUDE 'PackMacs.a'
INCLUDE 'QuickEqu.a'
INCLUDE 'SysEqu.a'

» Assembly Language Programming 47

When you have placed the necessary INCLUDE statements in an
assembly language program, you can call any Toolbox or operating
system trap using the appropriate trap macro in the opcode field of an
assembly language instruction.

The names of all trap macros begin with the underscore character (_),
followed by the name of the corresponding routine. For example, the
macro for the Window Manager routine CloseWindow is _CloseWindow.
So, to call CloseWindow, you would use an instruction with the macro
name _CloseWindow in the opcode field.

Stack-Based Routines and Register-Based Routines

The calling conventions for Toolbox and operating system calls fall into
two categories: stack-based routines and register-based routines. Stack-
based routines pass their parameters via the stack, while register-based
routines receive their parameters and return their results in 680X0
registers. As a rule, Toolbox routines are stack-based and operating
system routines are register-based, but this is not always the case. In the
entries listed for individual calls in Inside Macintosh, register-based
calling conventions are supplied for all routines that use them; if none is
shown, the routine is stack-based. This information is important because
you have to set up parameters in the way that a routine expects before
you can call it from any language.

Trap macros for Toolbox calls take no arguments, but those for
operating system calls may have as many as three optional arguments.
The first argument, if there is one, is used to load a register with a
parameter value for the routine being called. The other arguments
control the settings of the various flag bits in the trap word. The form of
these arguments varies with the meanings of the flag bits and is
described in Inside Macintosh, in the chapters on the relevant parts of the
operating system.

Sefting Up a Call's Parameters

To call a stack-based routine from assembly language, you must set up
the call's parameters in the same way that the MPW Pascal compiler
would if you were writing your program in Pascal. The numbers and
types of parameters and the type of result returned by a function
depend on the routine being called.

48 » Chapter1 MPW and the Macintosh

By the Way »

These are the steps you must use to make a trap call from assembly
language:

1. If you are calling a function, reserve space on the stack for the
result.

2. Push the routine's parameters onto the stack in the order in which
they are listed in the routine's Pascal definition in Inside Macintosh.

3. Call the trap by executing the appropriate trap macro.

Getting Technical. When you call a trap, a return address is
pushed onto the stack, along with an extra word of processor status
information. Before the routine begins, the trap dispatcher removes
this extra status word. The routine itself is responsible for removing
its own parameters from the stack before returning. If it is a
function, it will leave its result on top of the stack in the space
reserved for it; if it is a procedure, it will restore the stack to the
same state it was in before the call. '

Calling CloseWindow in Assembly Language

For example, the CloseWindow function, as you have seen, is defined
this way in Pascal:

PROCEDURE CloseWindow (theWindow:WindowPtr) ;

So here is how you would call CloseWindow from assembly language:

SUBQ.L #4,SPp ; make room for result
MOVE.L theWindow, - (SP) ; push window pointer
_CloseWindow ; make the trap call

Starting up Managers in Assembly Language

It should come as no surprise to learn that in assembly language, as
well as in C and Pascal, most managers must be started up before they
can be used in a program. Here is a fragment of Sample.a, an assembly
language program in the MPW Examples folder, in which some
managers are initialized:

» Assembly Language Programming 49

_InitGraf
_InitFonts
_InitWindows
_InitMenus
_TEInit

CLR.L - (SP)
_InitDialogs

What Happens When You Call a Trap

When you issue an A-trap call, a circuit in the 680X0 processor called
the 1010 trap emulator recognizes it as an unimplemented instruction
(an instr