
Programmer's Introduction
Inside Macintosh Libra1y to the Macµitosh Family

; fil e Edi t ~ca l m g

MainEuent
{ of MA IN program My Pre

lnitGlobals;
if Start Up then begin

SetupMenus; { Set up H
SetUpWindows; {Set up th
SetUpDefault; { Set up pr
Mai nEvent; { Run the p

end;
ShutDown;

END. {of MA IN program MyProg}

> $22-95 FPT
USA

The Inside Macintosh library
The Official Publications from
Apple Computer, Inc.
The Inside Macintosh Library is the complete set of
technical information on the Macintosh® familv of
computers, which includes the Macintosh 5121(,
Macintosh 512 Enhanced, Macintosh Plus, Macintosh
SE, and Macintosh II. These books provide
programmers, developers, and hardware designers
with comprehensive information on all aspects of
the Macintosh technology.

At the core of the Inside Macintosh Librarv is the
original Inside Madntosh, the definitive reference to
the Macintosh lbolbox and operating system. Inside
Macintosb volumes I-ill describe the original
Macintosh; volume N provides information about
the Macintosh Plus and volume V pertains co the
Macintosh SE and the Macintosh II.
Recent additions co the Inside Macintosh Library
include two introductory book5 and two
comprehensive hardware references:

Technical Introduction to the Macintosh Fami(l'
Programmer's Introduction to the Madntosh
Familv
Macintosh Fami(v Hardware Reference
Designing Cards and Drivers for Macintosb II
and Macintosb SE

The Inside Macintosh Library, written and produced
by Apple Compurer, Inc., provides definitive
references for those interested in getting the most
out of their Macintosh.

S APPLE COMPUTER, INC.

Copyright© 1988
by Apple Computer, Inc.,
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

All rights reserved. No part of
this publication may be re­
produced, stored in a retrival
system, or transmitted, in any
form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer,
Inc. Printed in the United States
of America.

Apple, the Apple logo, Apple­
Link, AppleTalk, ImageWriter,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

MacApp, HyperCard, and
HyperTalk, are trademarks of
Apple Computer, Inc.

MacDraw, MacPaint, and
MacWrite are registered
trademarks of CLARIS
Corporation.

UNIX is a registered trademark
of AT&T Information Systems.

MS-DOS and MicroSoft Word
are registered trademarks of
Microsoft Corporation.

Smalltalk-80 is a trademark of
Xerox Corporation.

CompuServe is a registered
trademark of CompuServe
Incorporated.

GEnie is a trademark of General
Electric Corporation.

MCI Mail is a trademark of MCI
Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated. Adobe
Illustrator is a trademark of
Adobe Systems Incorporated.

Simultaneously published in
the United States and Canada.

ISBN 0-201-19254-3

Second Printing, April 1988
BCDEFGHIJ-D0-898

WARRANTY INFORMATION

All IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES. OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGIN:AL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA­
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD "AS IS," AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT OR INACCURACY IN
THIS MANUAL, even if advised
of the possibility of such
damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer,
agent, or employee is authorized
to make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights,
and you may also have other
rights which vary from state to
state.

Contents

Figures and tables xi

Preface Welcome to Programmer's Introduction to the Macintosh
Family xiii

What this book contains xiv
About Macintosh technical documentation xvi
Some conventions xix

Chapter 1 An Overview of the Macintosh 1

Why program for the Macintosh family? 2
Powerful system and development tools 2
Pride in applications 3
A fast-growing installed base 3
The leading edge 3

A look at the Macintosh family 4
Types of programs 5
Key programming ideas 5

The user plays a central role 6
User interface design 6
Event-driven programming 7

Compatibility is easy; incompatibility is not 8
Templates ease programming 9

Chapter 2 The Software Anatomy of the Macintosh 11

An architectural overview 12
The pieces 15
Putting the pieces together 15

The Toolbox 17
What is the Toolbox? 17
What's in the Toolbox? 17
Why use Toolbox routines? 18

iii

iv Contents

Marshalling your resources 19
What is a resource? 19
Resources and your program 20

The Macintosh Operating System 20
The Finder 21

The Finder and the user 22
The Finder and your application 22

Thinking about "last" things first 23
Printing functions and the Printing Manager 23

Printer independence 23
Bit-mapped graphics everywhere 24

The Undo routine 24
User interface design 25
Localization 26

Chapter 3 An Eventful Experience 29

An overview of the main event loop 30
Setting up the loop 31
The outer loop: How it works 31
The second level: What kind of event? 32

Activate events 33
Mouse events 33
Key events 34
Disk-inserted events 34
Update events 34

The third level: Mouse event handling 35
Locating the mouse 35

A desk accessory window 35
The menu bar 36
An application window 36

More about events 39
The event queue 39
Event masking 39

A note about errors 40

Chapter 4 Memory Management 41

How memory is organized 42
Memory and the parking garage 43
The elements of Macintosh memory 44

Pointers 45
Handles 45
Blocks 45
The stack 46
Heaps 46

Basic memory management 46
Relocatable and nonrelocatable blocks 47

Moving blocks in memory 47
Fragmentation 49

Obtaining and releasing memory blocks 51
Memory reorganization 52
System use of memory 52
Your program and the segment loader 53

Why segment your code? 53
Three classes of programs 54

Deciding on the segments' contents 54
Trade-offs in segmentation decisions 55

The main segment 55
Loading segments 56
Unloading segments 56

Out-of-memory conditions 56
What causes memory to "disappear"? 56

Nonrelocatable blocks 57
Desk accessories 57
The system's use of memory 57

Two strategies for handling out-of-memory conditions 58
Preflighting 58
Reserved heap space 58

Chapter 5 Display and Graphics Routines 59

An obvious advantage 60
Everything is in graphics 61
A world of graphics in a library 61
A quick look at QuickDraw 62

The QuickDraw programming model 63
Bits and pixels, maps and images 64

Bit images 64
Pixel images 65
Bit maps 66
Pixel maps 66

Graphics ports 67
What's in a graphics port's record? 67

Device information 68
Port and window descriptions 69
Pen description 69
Text description 71
Color description 73
Pattern-printing control 74
Status monitoring 74

Color QuickDraw graphics ports 74

Contents v

vi Contents

Graphics ports and coordinate systems 75
Local coordinates 76
Rectangles 77

QuickDrawing 77
An outine of a QuickDraw program 78
Lines and the QuickDraw pen 78
Shapes 79
Rectangles: A reprise 80
Patterns 81
Fonts 82
Icons 83
Cursors 84
Regions 85
Pictures 86
Polygons 87

Color QuickDraw 87

Chapter 6 The User Interface Toolbox 89

The Window Manager 91
Regions of a window 92
The window record 93
Using the Window Manager 95

Initialization 95
Opening and closing windows 95
Updating windows 97
Of mice and windows 97

The Menu Manager 99
Menus as resources 100
Using the Menu Manager 101

Initialization 101
Setting up and removing menus 101
Responding to the user 103
Changing menu items 104
Accessing menus and items 104

Color in menus 105
The Dialog Manager 105

Types of dialogs and alerts 106
Using the Dialog Manager 107

Initialization 107
Opening and closing dialogs and alerts 107
Handling events in dialogs 107
Posting alerts 109
Text editing in dialogs 110

The Control Manager 110
Controls with more than one part 111

Using the Control Manager 112
Initialization 112
Creating and removing controls 112
Modifying controls 113
Responding to the user 114

TextEdit 115
Two important rectangles 116
Other edit record fields 117
The style record 118
Using TextEdit 118

Initialization 118
Opening and closing edit records 118
Tracking and managing the user's editing operations 118

Chapter 7 File Management 121

Documents and applications 122
An outline of file interaction 123
Types and creators 124

File types 124
Creators 124

Fil~ manipulation and the Standard File Package 125
SFGetFile in operation 125

The File Open dialog box 126
The reply record structure 127

SFPutFile in operation 128
Program file use and the File Manager 129

Return codes, from disk 1/0 operations 129
Accessing file data 130

Creating new files 131
Opening existing files 131
Reading data from open files 131
Writing information to disk files 132
Closing files 132

Managing volumes 133
An example of file handling 133

Chapter 8 Development Tools 135

The Macintosh Programmer's Workshop (MPW) 136
The MPW Shell 139
Other parts of MPW 139

The debugger 139
Sample application source files 139
ResEdit 140
MPW Pascal 140

Contents vii

MPW C 140
MPW Assmebler 141

MacApp and object-oriented programming 141
An introduction to object-oriented programming 142

What are objects? 143
Objects and inheritance 145

Object Pascal 146
Object Pascal and MacApp 147
An introduction to MacApp 148

Programming in MacApp 149
HyperCard as a development environment 149

A common delivery vehicle 149
HyperTalk 150

Other programming languages and environments 151
Debugging Macintosh applications 151

Chapter 9 Becoming a Macintosh Developer 153

Continuing your Macintosh education 154
Finding your way through Inside Macintosh 154

The important calls 155
Guide to the documentation 155
The road map in Inside Macintosh 155

Examining other people's programs 156
Att~nding Apple programming seminars 156

Registering as a Macintosh developer 157

Appendix A Compatibility Issues and Guidelines 160

viii Contents

Use system globals 161
Don't assume the screen is a fixed size 161
Don't assume the screen is in a fixed location 161
Don't assume screen width is in rowBytes 162
Don't make too many assumptions about files 162

Check errors returned by calls 162
Don't rely on things not changing 163

Watch copy-protection code closely 163
Don't use reserved bits 163
Don't write timing-sensitive code 163
Use ASCII to read keyboard input 164
Avoid direct printer output 164

Avoid using the system heap 164
Watch the use of Nil pointers 165

Appendix B Important Operating System and Toolbox Calls 166

Appendix C The Apple Programmer's and Developer's Association
CAPDA) 185

What APDA provides 185
How to join APDA 186

Glossary 187

Index 193

Contents ix

Figures and tables

Pref ace Welcome to Programmer's Introduction to the Macintosh
Family xiii

Figure P-1

Table P-1

A road map to Macintosh technical
documentation xvii
A summary of Macintosh technical
documentation xviii

Chapter l An Overview of the Macintosh 1

Figure 1-1
Table 1-1

The Grand Funnel 7
Comparing the main members of the Macintosh
family 4

Chapter 2 The Software Anatomy of the Macintosh 11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4

Two programming models 14
Macintosh system software architecture 16
The hierarchical order of Toolbox parts 18
The components of the Macintosh Operating
System 20

Chapter 3 An Eventful Experience 29

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Table 3-1

The outermost level of the main event loop 30
The event priority list 33
A partial skeleton of the main event loop 36
The parts of a Macintosh window 37
A main event loop with the window routines 38
Event masks and their numeric values 40

Chapter 4 Memory Management 41

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5

A simplified Macintosh memory map 42
Memory block relocation 48
The beginning of heap fragmentation 49
Allocating new space 50
A badly fragmented heap 51

xi

Chapter 5 Display and Graphics Routines 59

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Table 5-1

The basic structure of a QuickDraw routine 63
A bit image 65
A pixel image 66
The structure of a graphics port record 68
A graphics pen 70
Pen transfer modes 71
Type styles 72
The structure of a color graphics port record 74
QuickDraw's coordinate plane 76
A triangle with pen changes 79
QuickDraw shape manipulation routines 80
Regions 85
Color selections in monochrome graphics ports 73

Chapter 6 The User Interface Toolbox 89

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Table 6-1

Standard window types 92
Regions of a Macintosh document window 93
The structure of a window record 94
A classic Macintosh menu 100
A hierarchical menu on the Macintosh II 100
Alert icons 107
Partial contents of an edit record 116
Destination and view rectangles 117
Part codes for standard control types 111

Chapter 7 File Management 121

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Table 7-1

Application and document file icons 122
Basic file interaction 123
A File Open dialog box 126
A hierarchy list in a File Open dialog box 127
A typical SFPutFile dialog box 128
Some I!O result codes of type OSErr 130

Chapter 8 Development Tools 135

xii Figures and tables

Figure 8-1
Figure 8-2

Program development under MPW 138
Object-type hierarchy 146

Preface

Welcome to
Introduction
Family

Programmer's
to the Macintosh

Programmer's Introduction to the Macintosh Family is written for
the experienced professional programmer who plans to design
and develop applications for any members of the Apple®
Macintosh® family of computers or is evaluating such a decision.
Its purpose is to provide you with a conceptual framework for
understanding the technical operation of the Macintosh family.
Rather than being a programming manual, it is a programmer's
technical overview of the powerful and flexible features
encompassed by the Macintosh.

This book introduces the most important ideas, the most
frequently used User Interface Toolbox calls, and the main
programming features of the Macintosh. It performs a first-level
screening of the more than 900 built-in Toolbox and Operating
System routines and delineates those you should know well. It takes
the same approach to the dozens of managers and packages that
make up the Macintosh system software, focusing your attention
on those with which you should begin your Macintosh
programming experience.

Programmers whose background includes MS-DOS, AT&T UNIX®,
or Apple II program development will find this book especially
useful as it draws parallels between those experiences and
Macintosh programming.

xiii

xiv Preface

It is not necessary that you have any Macintosh programming
experience to use this book. It makes only two assumptions about
you as a reader:

o You are assumed to be an experienced programmer to whom
explanations of basic ideas like loops, procedures, calls,
parameters, and results are not required.

o You are assumed to have seen a Macintosh application in use.
It would be helpful if you had used a Macintosh, not necessarily
as a programmer but as a user familiar with the look and feel of
the machine.

If you find yourself bewildered by concepts foreign to your
experience, you should probably stop reading this manual and
begin your study of the Macintosh with Technical Introduction to
the Macintosh Family, also from Apple Computer.

What this book contains
This book has nine chapters and three appendixes. They are
described briefly in the following paragraphs.

Chapter 1, "An Overview of the Macintosh," introduces the
Macintosh family, addresses the question Why program for the
Macintosh? and presents the key programming ideas that make
the Macintosh a more powerful tool for programmers and use rs
than earlier microcomputers.

Chapter 2, "The Software Anatomy of the Macintosh," is an
overview of software architecture. It introduces resources, the User
Interface Toolbox, and the Macintosh Operating System. It also
offers some thoughts about program design and how it differs in
the Macintosh environment.

Chapter 3, "An Eventful Experience," presents the concept of the
main event loop, a central idea in Macintosh programming. It
describes the loop, what must be in it, and how its requirements
relate to your application programs.

Chapter 4, "Memory Management," is a conceptual and practi ca l
look at one of the most important and often troublesome aspects
of the Macintosh. Here, you 'll learn how and when objects stored
in memory are subject to being relocated, how you can know
precisely when they might be moved, and how to keep track of
them.

Chapter 5, "Display and Graphics Routines," covers QuickDraw
and Color QuickDraw routines.

Chapter 6, "The User Interface Toolbox," describes the four key
managers and one important set of tools with which every
Macintosh programmer must become familiar: the Window
Manager, the Menu Manager, the Dialog Manager, the Control
Manager, and TextEdit.

Chapter 7, "File Management," explains how files are organized,
how the user accesses them, and how your program creates,
opens, reads, writes, and closes disk files.

Chapter 8, "Development Tools," offers an overview of the
Macintosh Programmer's Workshop (MPW) and MacApp™, two
Apple Computer development environments for the Macintosh.

Chapter 9, "Becoming a Macintosh Developer," prepares you for
the next steps in your education as a Macintosh programmer. It
tells you about the organization of the "bible" of Macintosh
programming, Inside Macintosh. It also addresses issues like
registering as a developer and obtaining technical support.

Appendix A, "Compatibility Issues and Guidelines," discusses
important issues of compatibility across Macintosh family
members. Guidelines for ensuring compatibility with future
systems are also provided.

Appendix B, "Important Operating System and Toolbox Calls,"
presents the most frequently needed calls in an easy-to-find
format.

Appendix C, "The Apple Programmer's and Developer's
Association," tells you about APDA: why it exists, how it operates,
what its relation is to Apple Computer, and the services it
provides to developers.

What this book contains xv

xvi Preface

About Macintosh technical documentation

Apple Computer has produced several books that explain the
hardware and software of the Macintosh family of computers. There
are Inside Macintosh Volumes I through V, books about single
aspects of the Macintosh, introductory books, and Macintosh­
related books.

The original Macintosh documentation consisted solely of the
noble tome Inside Macintosh, a three-volume compendium
covering the whole of the Macintosh Toolbox and Operating
System for the original 64K Macintosh ROM, together with user
interface guidelines and hardware information. With the
introduction of the Macintosh Plus (128K ROM), Volume IV of
Inside Macintosh was released. A fifth volume has now been
added, covering the Macintosh SE and Macintosh II computers
(both containing 256K of ROM). Volumes IV and V are delta
guides; that is, they explain only what is different about the new
machines. Taken all together, the five volumes of Inside Macintosh
provide a comprehensive reference for the Macintosh family
computers .

With the growth of the Macintosh family, some of the material in
Inside Macintosh is starting to appear in single-subject books.
Each of those books provides complete information about its
subject, including information that may appear in one or more
volumes of Inside Macintosh .

For people who are new to the Macintosh world, Apple has created
two introductory books: Technical Introduction to the Macintosh
Family and this book, Programmer's Introduction to the
Macintosh Family. These books provide explanation and
guidelines for using the features described in Inside Macintosh.

In addition to the books about the Macintosh itself, there are books
on related subjects, including books about the user interface and
Apple's floating-point numerics, and the reference books for the
Macintosh Programmer's Workshop.

Figure P-1 illustrates the road map of the Macintosh technical
documentation. The paths in the road map show the relationships
among the books. Table P-1 gives a brief description of each book
in the set.

Designing
Cards and
Drivers for
Macintosh II
and
Macintosh SE

Macintosh
Programmer's
Workshop

Macintosh
Programmer's
Workshop
Assembler
Reference

c
Reference

Figure P-1

Technical
Introduction
to the
Macintosh
Family

Macintosh
Family
Hardware
Reference

Macintosh
Programmer's
Workshop
Pascal
Reference

MacApp
Programmer's
Reference

Macintosh
Programmer's
Workshop
Reference

Human
Interface
Guidelines:
The Apple
Desktop
Interface

Apple
Numerics
Manual

Programmer's
Introduction
to the
Macintosh
Family

Inside
Macintosh
Volumes 1-111

Inside
Macintosh
Volume IV

Inside
Macintosh
VolumeV

A road map to Macintosh technical documentation

About Macintosh technical documentation xvii

Table P•l
A summary of Macintosh technical documentation

Originai Inside Macintosh:

Inside Macintosh, Volumes I-III

Inside Macintosh, Volumes IV

Inside Macintosh, Volumes V

Introductory beokS:

Techntcal Introduction to the Macintosh
Family

Programmer's Introduction to the Macintosh
Famtly

Single-subject beoks:

.Macintosh Family Hardware Reference

Designing Cards and Drivers for the
Macintosh II and Macintosh SE

Related books:

Human Interface Guidelines: The Apple
Desktop Interface

Apple Numerics Manual

Macintosh Programmer's Workshop
2.0 Reference

xviii Preface

Complete reference to the Macintosh Toolbox and
Operating System for the original 64K ROM.

Delta guide to the Macintosh Plus (128K ROM).

Delta guide to the Macintosh SE and Macintosh II
(256K ROM versions).

Introduction to the Macintosh software and
hardware for all Macintosh computers: the original
Macintosh, Macintosh Plus, Macintosh SE, and
Macintosh II.

Introduction to programming the Macintosh
system for programmers who are new to it.

Reference to the Macintosh hardware for all
Macintosh computers, excluding the Macintosh XL.

Hardware and device driver reference to the
expansion capabilities of the Macintosh II and the
Macintosh SE.

Detailed guidelines for developers implementing
the Macintosh user interface.

Description of the Standard Apple Numerics
Environment (SANE), an IEEE-standard floating­
point environment supported by all Apple
computers.

Description of the Macintosh Programmer's
Workshop (MPW), Apple's software development
environment for all Macintosh computers.

Some conventions

This book discusses several generations of Macintosh computers,
describing their similarities and differences. The following
terminological conventions have been adopted to clarify the
discussion:

o Unless otherwise indicated, the discussion refers to all
Macintosh computers. The term Macintosh is used generically
to refer to the entire product line.

o Unless otherwise indicated, information relating to the
Macintosh Plus also holds true for the original 128K
Macintosh, the Macintosh 512K, and the 512K enhanced.
These are sometimes called collectively the classic Macintosh.

•:• Note: The Macintosh XL differs in many respects from the
other members of the Macintosh family and is not described
in this book. The Macintosh XL is based on the Lisa hardware,
with RAM-based software that emulates the operation of the
Macintosh 64K ROM.

Numerous special terms are introduced throughout this book .
Terms appearing in boldface are defined in the glossary at the
end of the book.

In the text, the names of Operating System and Toolbox calls
appear in Courier typeface.

Most of the computer program examples in this book are written
in a pseudo-code rather than in any conventional computer
programming language. In such listings, the names of Operating
System and Toolbox calls and predefined constants appear in
boldface so that you can determine which calls are part of the
Macintosh and which you are assumed to have supplied
elsewhere.

Some conventions xix

Chapter l

An Overview of the Macintosh

2

This chapter briefly introduces key ideas that recur throughout the
book. It also provides a framework for understanding the various
models of Macintosh for which you might want to develop
programs .

Why program for the Macintosh family?
The fact that you are reading this book means that you have
probably already decided to develop software for the Macintosh
family. At least, it indicates that you are considering doing so. For
the record, though, let's present some of the main reasons you, an
experienced programmer, might want to jump on board the
Macintosh bandwagon. There are dozens of reasons, but we 'll
focus on just four main ones: development power, pride in
applications, a growing installed base, and the value of working on
the leading edge.

Powerful system and development tools
Every major computer language has been implemented on the
Macintosh, along with quite a few not so major ones. In addition,
its natural windowing environment offers a powerful and easy-to­
use way of developing programs. You can watch execution in one
window while you examine code in another and track output in yet
another.

With the Macintosh Programmer's Workshop (MPW) and
MacApp (an object-oriented template program from which to
begin your development), Apple offers powerful development
tools on the Macintosh backed by Apple's highly regarded
technical support for developers . Both of these tools are
discussed in Chapter 8.

I3ut the power of the Macintosh doesn't stop when application
development is complete. The user also sees the Macintosh as a
powerful machine. With a high-speed microprocessor at its heart
and 1 megabyte of memory standard, with hard disks capable of
storing dozens of megabytes of data, and with powerful software,
the Macintosh is a serious business machine.

Chapter 1: An Overview of the Macintosh

"A key trade-off in Macintosh
programming is simplicity of
use versus power. You should
always strive for as much power
as possible while retaining all
of the simplicity you can.
Simplicity is more important. "
Dan Winkler,
Apple Computer

Pride in applications

There are thousands of programs that run on the Macintosh. They
range from spreadsheets to games, from powerful relational data
bases to telecommunications programs, from drafting and
drawing programs to desktop publishing tools. But good
Macintosh applications have at least two things in common:

o They are consistently easy to use because of their highly
standardized and usable interface.

o They look great.

When you show off your Macintosh software to fellow
programmers, potential investors, prospective buyers, and others,
you will be able to take pride in the way your programs look They
have a finished, polished, no-nonsense air about them, yet they
look easy and fun to use.

A fast-growing installed base

The Macintosh has the fastest-growing installed base of any
personal computer system on the market. In early 1987, it became
the leading seller among personal computer systems. There are
millions of Macintosh systems installed, and the rate of
installation continues to climb.

Installed base translates into potential buyers, which ih turn
translates into potential profits for the software entrepreneur or
publisher who recognizes the trend.

The leading edge
One operating system supports all models of the Macintosh, and
Apple is committed to ensuring that future machines remain
equally compatible at the operating-system level.

Macintosh systems already offer concurrency of operation under
MultiFinder, with foreground and background tasking that remain
distant possibilities for other microcomputer systems.

Why program for the Macintosh family? 3

Tablel-1

When you work with the Macintosh, you will not experience media
incompatibility headaches, either. All Macintoshes run with the
3.5-inch disk that has become the industry standard. A disk
created on a Macintosh Plus can be read on a Macintosh II with
no modifications or gymnastics.

There are no artificial limitations on memory and disk capacity
with the Macintosh family. The entire addressability range of the
powerful processors is available to the system.

Finally, the bus architecture of the Macintosh II is an advanced,
easy-to-use feature . The NuBus is the bus of the future.

The Macintosh has already embodied a powerful operating
system with a full-blown development environment. It is the
leading-edge microcomputer.

A look at the Macintosh family
Table 1-1 summarizes the key features of the Macintosh 512K,
Macintosh Plus, Macintosh SE, and Macintosh II computers.

Comparing the main members of the Macintosh family

Characteristic Macintosh 512K Macintosh Plus Macintosh SE Macintosh II

Processor 6SOOO 6SOOO 6SOOO 6S020

RAM (standard) 512K 1 MB 1 MB 1 MB

RA.t\1 (expanded) 512K 4 MB 4 MB S MB

Address bus 24-bit 24-bit 24-bit 24/ 32-bit

Clock speed 7.S MHz 7.S MHz 7.S MHz 15.7 MHz

ROM 12SK 12SK 256K 256K

3.5-inch disk Internal, SOOK Internal, SOOK 1 or 2 internal, 1 or 2 internal,
SOOK SOOK

Video 9-inch, mono 9-inch, mono 9-inch, mono Separate monitor/
video card

Keyboard and mouse Direct connect Direct connect ADI3 ADB

4 Chapter l: An Overview of the Macintosh

Types of programs
There are at least four basic types of programs you might consider
developing for the Macintosh . Three of them have direct parallels
in other microcomputer environments. These are end-user
applications, device drivers, and development tools. As you would
expect, device drivers and programming languages and tools are
among the most complex types of programs to develop for the
Macintosh (or for any other computer, for that matter). It is most
likely that your work will be on end-user applications such as
accounting programs, word processors, spreadsheets,
communications programs, and data bases.

The fourth type of application is the desk accessory. If you've used
a Macintosh, you have almost certainly used at least one desk
accessory. These are stand-alone programs, usually small but not
necessarily so, that the user can call upon any time, even in the
middle of running another application. The user simply points at
the Apple icon in the upper left corner of the screen, opens it, and
selects the desk accessory to use. It then becomes the current
application until the user closes it or activates another desk
accessory or application.

Many beginning Macintosh programmers are tempted to design a
desk accessory as their first project. Their generally small size and
focused purposes can be deceiving, though. Writing a desk
accessory is not easier than writing any other kind of end-user
application. In some ways, it is more difficult.

The key programming ideas
Most of this book is about how to program the Macintosh family. It
presents basic techniques, explains main programming features,
and outlines design approaches. This discussion takes place against
the backdrop of some central ideas in Macintosh programming.
These can be stated as aphorisms:

o The user is the boss.

o Compatibility is the path of least resistance.

o Nobody does it from scratch.

The key programming ideas 5

"In designing a Macintosh
program, it's important to
understand what the user
should be in charge of and
what can safely be bard-coded
out of the user's reach."
Frank Leahy,
Apple Computer

The user plays a central role
The Macintosh is designed to make the user the boss. Everything
that happens in the system happens because the user asks for it to,
directly or indirectly. This is the single most important concept in
Macintosh programming. And it has wide-ranging ramifications.

Two other central programming ideas emerge from this basic
philosophy: the user interface design and event-driven
programming.

User interface design

Apple believes so strongly that the user is central that it has
published a book called Human Interface Guidelines: Tbe Apple
Desktop Interface. If you don't yet have a copy, get one soon. It
may be a good idea not to start programming your first
application until reading and digesting it if you are writing your
program for other people to use.

Suggestions on how to use menus, when and how to change
windows, where to put dialog and alert boxes and what they
should say, are contained in the guidelines. Users expect the
programs they buy for their Macintosh systems to follow these
guidelines.

This idea-that the computer manufacturer should set forth the
principles by which programs interface with the user-is new and
some programmers have stumbled over it. But two facts are
undeniable:

o The vast majority of Macintosh applications follow the
guidelines closely (though probably none does completely).

o Programs that deviate seriously from the guidelines, without a
good reason the user can understand, don't sell as well and
cause more support headaches for their publishers than those
that follow the rules.

6 Chapter 1 : An OveNiew of the Macintosh

" The very best Macintosh
programs let the user do
everything his way. "
Steven Marcus,
SuperMac Technologies

In other microcomputers, a "well-behaved" program is one that
doesn't conflict with other programs' use of memory or the dis­
play screen. In Macintosh, it is one that a first-time user can pick
up and begin to understand without spending dozens of hours.

Event-driven programming

Of all the conceptual models of programming, the one that best
describes how a Macintosh program looks and works is that of the
Grand Funnel (see Figure 1-1).

External

Event

Event

User

Event
handler

Event
handler , ~--E Event

Figure 1-1
The Grand Funnel

The key programming ideas 7

"I wrote my original program for
the 128K Macintosh. When the
512K Macintosh came out, my
program ran on it just fine,
without even recompiling! "
Geoff Brown, author of
Deluxe Music Construction Set

At the top of the funnel is the user, running your program. The
user produces events by interacting with the system and with your
program. In addition, external activities such as network inter­
actions and disks being inserted also produce events. As these
events pass through the funnel, they are prioritized automatically
by the Event Manager. On the world of Macintosh system software,
"manager" refers to groups of routines that provide a particular
type of functionality.) Your program examines each event,
determines what type it is, and passes it to the appropriate event
handler. Some of these event handlers, in turn, produce their own
events, which go back into the top of the funnel. This ebb and flow
of control and interaction resembles a real-time programming
environment in which your program must field and deal with a
wide range of events, often happening with great rapidity.

The user is the primary-practically the sole-generator of events.
Your program spends much of its time in its main event loop,
waiting for a new event to manage.

This becomes much clearer in Chapter 3, where the main event
loop is explained.

Compatibility is easy; incompatibility is not
With most computer systems, compatibility is a constant worry for
the programmer as well as the user. If you put an item into memory
at an unused location today, will that location still be unused in two
years when the new model comes out? What if the keyboard on the
new system is radically different? Will the pro-gram have to change
to accommodate it? The issue plagues you.

With the Macintosh, being compatible is easy. Designing a
program so that it is not compatible takes extra effort. All of the
Macintosh Toolbox ROMs have been upward compatible.
Routines written to run on a 128K machine (the no-longer­
manufactured original Macintosh) run on the 512K Macintosh,
the Macintosh Plus, the Macintosh SE, and the Macintosh II
without any changes.

If your programs follow Apple's guidelines, they will run on future
versions of Macintosh family hardware. Only by doing something
totally nonstandard would you make your program unusable on any
new member of the family. Appendix A discusses the important
guidelines you should follow to ensure compatibility.

8 Chapter l: An Overview of the Macintosh

Templates ease programming
An interesting thing happened early in Macintosh programming
circles. Programmers began to realize that the main event loop
was a highly reusable piece of code if it was handled right. Pretty
quickly, most Macintosh programmers were using main event
loops written by other Macintosh programmers and modifying
them to suit their applications' needs.

Not only is that still true, but Apple has made it even easier than
before to do this kind of borrowing. Apple has published
MacApp, a generic application written in a powerful version of
Pascal. Macintosh developers are using this environment to
accelerate program development and to ensure further the
consistency of program user interfaces.

The key programming Ideas 9

Chapter 2

The Software Anatomy
of the Macintosh

11

This chapter discusses the software architecture of the Macintosh.
It begins with a presentation of the fundamental ways the
Macintosh differs from other microcomputers . It then points out
the main components of the system's architecture and how these
pieces fit together, and focuses on each component from the
programmer's perspective .

The chapter closes with a discussion of some programming tasks
that you would customarily perform at the end of your assignment
but should be considered earlier when developing a Macintosh
application.

An architectural overview
Modern application programmers try to make a microcomputer
system's components transparent to the user. To do so, program­
mers must manage displays, printers, memory, disk-based file
systems, and user input devices as unobtrusively to the user as
possible. This management requires a wide variety of tools and
languages.

But this desire to design "user-transparent" solutions conflicts
with the modern programming trend toward higher levels of
abstraction. Symbolic and object-oriented programming are
becoming more significant in programming. Your dilemma, then,
is that you must manage infinitesimal details of memory and disk
file access while attempting to maintain a broad overview of the
user's needs and desires.

The Macintosh is an evolutionary step in the direction of
providing you with the kinds of tools that make designing user­
traDsparent solutions as "programmer-friendly" as possible.

12 Chapter 2: The Software Anatomy of the Macintosh

" Users expect programs that
are snappy and that don't make
them watt. Tbts ts important.
People tbtnk that a program
that makes them watt tsn 't as
powerful as a fast one even
if the slower program bas
morefeatures."
Jeff Barbers,
Microsoft Corporation

At the same time, the Macintosh permits you to give the user
greater control over the system. In fact, it requires such trust by its
very design. By passing on to the user the responsibility for
certain tasks, the Macintosh permits the programmer to focus on
the more conceptual aspects of solving the user's problem.

Figure 2-1 illustrates some of the differences between the
Macintosh and other microcomputers from the perspective of the
programmer. The first part of the figure depicts the model most
programmers have learned. Using this approach, the programmer
must be concerned with skillfully blending all relevant elements of
the system into a finished application that isolates the user from
the system as much as possible. In the second part of the figure,
the Macintosh model shows that the programmer has a number
of powerful tools in the User Interface Toolbox and in resources
that combine to create user applications. In addition, the
programmer interacts with the Macintosh Operating System and
with something called the Finder™. The user, meanwhile, interacts
with the application program and also with the Finder. The
Toolbox and resources together make up the techniques for
handling all of the components enclosed in the dotted line in the
first model.

An architectural overview 13

Traditional model

Macintosh model

Figure 2-1
Two programming models

Programmer

Application
program

Programmer

Application
program

User

Toolbox

The Macintosh model makes programming easier while making
the resulting applications easier to use. This is all in keeping with
the basic principles discussed in Chapter 1.

14 Chapter 2: The Software Anatomy of the Macintosh

'' The Toolbox itself is a very
good model of how to pro­
gram the Macintosh. It's
made up of small, largely
stand-alone functions. ''
Gerhard Schutten,
Aj1ple Computer
author of MacDraw 2.0

The pieces
You will find yourself spending the bulk of your Macintosh
programming time working with the User Interface Toolbox.
Occasionally, you will use the Toolbox (as it is also known) to
create and manage resources. Viewed simplistically, a Macintosh
program consists of a collection of Toolbox calls, some of which
manipulate resources. These elements are then combined with
your application's specific data processing procedures. As with all
computer programs, this processing is largely transparent to the
user.

Compared with most programming you have done, you will find
yourself involved relatively infrequently with the Operating
System and with memory and disk file management. Even when
you do interact with those parts of the Macintosh system, you will
do so at a higher level than you are accumstomed to. Battling with
bits and bytes, complex memory segmentation and addressing
schemes, and device-dependent I/O becomes a thing of the past.

Putting the pieces together

Figure 2-2 shows the relationships among the main pieces of the
Macintosh system software architecture. There is a high degree of
interdependence among the components. QuickDraw plays a
central role, as you will see in Chapter 5. There is also a definite
hierarchy within some of the components.

An architectural oveNiew 15

Management
interaction

Menus K >I
Menu Manager

Dialog boxes
K >I

Dialog Manager

Windows
K >I

Window Manager

Icons, etc Resource Manager

Quick Draw

Figure 2-2
Macintosh system software architecture

This will make more sense by the time you finish reading this
chapter. For the moment, it is only important that you understand
that the components of the Macintosh software architecture are
primarily tools and managers assigned to manage specific aspects
of the user interface. They relate to one another in two ways:

o The manager uses QuickDraw, the basic Macintosh drawing
utilities, to display each interface element.

o An activity involving any of these elements is handled by calls
to the responsible manager.

The other portions of the Macintosh software architecture play
more traditional roles. The Memory Manager operates in a
different way from most memory control systems, but its
fundamental task is nonetheless to manage memory. Similarly, the
File Manager enables your program to deal with disk-based files .
These managers are explained in more detail in Chapters 4 and 7,
respectively.

16 Chapter 2: The Software Anatomy of the Macintosh

The Toolbox
One of the most significant aspects of the Macintosh's software
anatomy programmer is the User Interface Toolbox, or Toolbox for
short. This section contains a brief overview of the Toolbox
utilities; a more in-depth discussion of the significant calls and their
usage appears in Chapter 6.

What is the Toolbox?

Conceptually, you can think of the Toolbox as a library of
procedures and functions that your program can use without having
to spend a lot of time re-inventing the wheel. On conventional
microcomputers, it is fairly common to spend hundreds or even
thousands of dollars acquiring libraries of routines written in the
language with which you are working. C ::rnd Pascal libraries
abound. They range from very specific libraries which carry out
narrow sets of tasks such as graphic displays or complex
mathematics to broad-based libraries designed to provide a kind of
"cookbook" of functions.

With the Macintosh, you don't need to go out and find, evaluate,
purchase, load, and implement such libraries. Apple has supplied
a powerful library for you.

What's in the Toolbox?

Figure 2-3 shows the parts of the Toolbox and their approximate
hierarchical relation to one another. The components nearer the
top of the figure quite often call those below them in the
hierarchy. The relationship is not rigid, however, and it is possible
for lower level routines sometimes to call or use higher level ones.

The Toolbox 17

Control Manager

Dialog Manager

Menu Manager

Window Manager

Toolbox Utilities

Toolbox Event
Mana er

TextEdit

~-D_e_s_k _M_a_n_a_g_e_r_~I ~I __ sc_r_a_p_M_a_n_a_g_e_r _ __,

QuickDraw

Package Manager I ~I __ F_o_n_t M_a_na_g_e_r _ __,

I Resource Manager

Figure 2-3
The hierarchical order of Toolbox parts

The shaded routines in Figure 2-3 are discussed in greater detail in
Chapter 6. QuickDraw and Color QuickDraw routines are the
subject of Chapter 5. You will need the others less frequently.
When you do need information abou t them, refer to Inside
Macintosh.

For a discussion of the basic functions of each of the elements in
the Toolbox, see Technical Introduction to the Macintosh Family.

Why use Toolbox routines?
Toolbox routines such as those described here and in Chapters 5
and 6 enable you to provide the consistency of interface that is
such an important part of the Macintosh world. Furthermore,
using these calls guarantees that your programs will continue to
operate as expected on future versions of Macintosh. In other
words, you don't need to worry excessively about compatibili ty.

18 Chapter 2: The Software Anatomy of the Macintosh

"Resources are something like
folders. As long as you name
them, you can put anything
you want in there and get it
out easily later. "
John Meier,
Apple Computer

Beyond those basic reasons, there is at least one other good
reason to use the Toolbox routines rather than designing your
own to handle such things as menus, windows, and dialog boxes
even though it is perfectly possible to do so if you wish. Quite
simply, it is easier to use them than to circumvent them. Working
around the Toolbox routines to write your own code takes more
code and more energy and introduces more bugs. Because the
Toolbox routines are largely in ROM and are highly optimized,
you won't find yourself gaining any real execution speed. And the
potential incompatibility problems you create for yourself are just
not worth the effort.

Marshalling your resources
One of the most powerful and innovative ideas in the Macintosh
programmer's world is the resource. Simply stated, nearly
everything that is stdred in a Macintosh is or can be · a resource.
Resources provide Macintosh programmers with great flexibility,
make their programs adaptable to foreign-language
implementation, and generally make life easier.

What is a resource?
In his book How to Write Macintosh Software (Hayden, 1986),
Scott Knaster says: "If you ask a Macintosh programmer what a
resource is, you're likely to be told, 'Everything is a resource!"' As
he points out, "That's close."

Simply put, your program sees a resource as any bits and pieces it
needs to do its job. For the most part, resources are displayed to
the user. Menus, dialog boxes, and controls are all resources.
Their original purpose was to facilitate the transfer of Macintosh
programs between speakers of different languages. Because a
resource is not "hard coded" into your program, translating it
into another language can be undertaken by a nonprogrammer.

The list of options (words and phrases) that make up a menu
constitutes a single resource. So, too, does a set of numbers that
define the dimensions of a window. Scroll bars, icons, dialog
boxes and their contents, the cursors used by an application, and
dozens of other small pieces of data and program code are
resources. In fact, your program's code is even a resource.

Marshalling your resources 19

" Use resources for everything
possible. Hard-code as little
as possible. ''
Eagle Berns,
Apple Computer

Memory Manager

Segment Loader

OS Event Manager

File Manager

Device Manager

Disk Driver

L Sound Driver

ROM Serial Driver

Vertical Retrace Driver

System Error Handler

OS Utilities

Figure 2-4
The components of the
Macintosh Operating System

Resources and your program

Resources are stored in application program files on the disk (see
Chapter 7). The Macintosh uses an index called the resource
map, which is very much like a header record in a more conven­
tional disk file. This map contains information that permits the
Macintosh to view the stream of bits stored in a portion of the file as
individual resources with beginning and ending points in the
stream. The job of interpreting this map and picking out the
resources to which it points falls to the Resource Manager.

There are a number of means for creating resources. In some cases,
you can design a resource interactively in much the way you draw or
paint objects using MacPaint™. In others, you write text
descriptions of the resources and let the Resource Manager figure
out how to display them when your program runs. Much of the
decision is a function of the development system or environment
you are using. More information on creating resources can be
found in Chapter 6 in the discussions of each type of resource and
its use.

Using calls to the Resource Manager, your program brings in dialog
boxes, menus, icons, and other, similar objects. Your program
need not be concerned with whether a resource it needs is already in
memory or stored on disk because the Resource Manager handles
management for the program.

The Macintosh Operating System
Contrary to what you may have heard, the Macintosh really does
have an operating system. Inside Macintosh says it well: "As the
Toolbox is your program's interface to the user, the Operating
System is its interface to the Macintosh." Don't confuse the
Operating System in the Macintosh's ROMs with the System icon
on your desktop. The System file is more appropriately thought of
as the system resource file. It contains resources shared by all
applications. Figure 2-4 shows the components of the Operating
System. Unlike the User Interface Toolbox routines, there is no
particular hierarchical order to these components. The parts of
the Operating System highlighted in Figure 2-4 are discussed later
in this book.

20 Chapter 2: The Software Anatomy of the Macintosh

The Macintosh Operating System does not differ radically in
function from other operating systems with which you may be
familiar. Low-level, hardware-related events like mouse-button
presses and keystrokes are handled here, as are file and serial
device I/0, sound, network and other interface drivers, and a
number of other functions.

When programming the Macintosh, one of the most important
parts of the Operating System is the Memory Manager, discussed
in Chapter 4.

But the way you use the Macintosh Operating System differs
markedly from the way you are accustomed to making other
microcomputer operating-system calls. In other systems, most
operating-system interface takes place by means of direct-memory
addressing using either subroutine jumps or interrupts. This
direct-memory approach has a perceived advantage of speed but
is hobbled as a design strategy because the next generation of the
operating system may change some interrupt vectors or other
vital information. The result is a necessity to debug and revise
code each time the operating system changes.

On the Macintosh, you interact with the Operating System by
means of utility calls and other calls that closely resemble the
User Interface Toolbox routines. In fact, there are many
operational similarities between the Operating System and the
User Interface Toolbox.

The Finder
Most Macintosh system disks contain at least two items: a System
file (discussed in the preceding section) and a Finder. The Finder,
however, is not required to boot a disk on the Macintosh. On
most system disks, if the Finder is present it is the startup
application, meaning that it is the first application called when
the system is started up using that disk. The Finder is responsible
for presenting the familiar desktop that greets most Macintosh
users when they start their machines.

The Finder 21

The Finder and the user

The Finder is in many ways an application. It is only slightly
different from the ordinary Macintosh application in that its role
is file and desktop management. With the Finder, the user can set
up folders, move files around, rename them, copy them, or delete
them. These are functions you are a.ccustomed to thinking of as
being handled through an operating system. They are also
functions you frequently programmed into your applications in
the past because the user might well need to manage files as a part
of using your program.

On the Macintosh, the user is given control over and
responsibility for file management. The Finder is a tool for
handling the tasks. Most well-designed Macintosh applications do
not include the ability to delete, rename, copy, or otherwise
manipulate files while they are running.

The Finder is also the place from which the user chooses an
application and starts it. When the user finishes running your
application and chooses to quit, the system returns to the Finder
(assuming Finder is the startup application).

The Finder and your application

While your application is running, it typically has nothing to do
with the Finder. In fact, the Finder is almost certainly not in
memory when your program is running unless the user is running
your program under MultiFinder or a similar application.
'
During development, however, your program must be aware of the
Finder. Because the user interacts with your program first at the
Finder level, your program must make itself known to the Finder
as an application available to run. It must also identify documents
associated with it so that if the user double-dicks on a document
icon belonging to your program, the Finder understands that the
user wants to start your program and open that document.

22 Chapter 2: The Software Anatomy of the Macintosh·

Thinking about "last" things first
One crucial difference between programming the Macintosh and
programming more traditional microcomputers is the order in
which you should take into account various kinds of operations.
Specifically, there are several functions that would be usual
practice to leave to the last phase of development. These include
printing operations, the Undo routine, the user interface design,
and localization of the user interface.

On the Macintosh, if you leave these kinds of functions to the end
of the programming cycle, you may find what you would have
thought would be very easy tasks occupying a significant amount
of time and energy.

This section discusses these aspects of Macintosh programming
with an eye not toward teaching you how to carry them out in
great detail but rather toward helping you focus on the important
design issues they raise early in the software development cycle.

Printing functions and the Printing Manager

In the traditional microcomputer programming world, printing is
a simple task. It is also boring and somewhat limited. Macintosh
takes out the boring limitations. In the process, it requires you to
take a closer look at the printing process and to give more
thought to it at the beginning of program development.

Macintosh printing has two features that are normally not part of
microcomputer programs:

o printer independence

o bit-mapped graphics output for all types of documents

Printer independence

The Printing Manager makes it possible for your program to
largely ignore the type of printer being used. It stores the codes
that drive the printer in a separate printer resource file on the
user's disk. Included within that file is a printer driver used by the
Operating System to communicate between the Printing Manager
and the printer.

Thinking about "last" things first 23

'' Undo must be pervasive.
It must go through the entire
program. The user doesn't want
a situation where he can undo
some actions but not other,
similar actions. "
Jeff Harbers,
Microsoft Corporation

This printer independence is a boon to the programmer. No
longer will you have to design and write dozens-even
hundreds-of separate files to accommodate various printers in
your application. Users can buy collections of printer drivers that
permit them to use the printers they own in any application they
want. Your application need not change, regardless of which
printer the user selects.

But every silver lining has a cloud. The down side of this is that
you must not make rash assumptions about the capabilities of the
printer on the other end of the application. Or, if your
application must make such assumptions, you must notify the user,
preferably both in the documentation and in the program itself at
the start of a printing operation.

Bit-mapped graphics everywhere

Most printers used with the Macintosh are either dot matrix
printers or laser printers. Both of these use bit-mapped graphics
almost exclusively for output. Because of that, and because of the
way the Printing Manager looks at the world, a Macintosh uses
QuickDraw graphics routines (see Chapter 5) to prepare the
document for printing.

In essence, printing a page on a dot matrix or laser printer
involves many of the same processes as drawing that same page
on the display.

The Undo routine

Before the Macintosh, most microcomputer applications did not
include the ability for users to change their minds about
something after they'd done it. Even popular word processors
lacked this capability. Part of the reason is that keeping care fu l
track of what the user is doing is not an easy task. And without it,
undoing what has been done becomes impossible.

Unlike almost everything else you program on the Macintosh,
there is no built-in routine to call for undoing something. You
have to roll your own undo routine.

24 Chapter 2: The Software Anatomy of the Macintosh

But Macintosh users are accustomed to being able to undo
actions, particularly editing steps. In fact, there is a general
agreement among users that if an action alters the contents of a
document, it should be immediately undoable. Any other
operation-such as choosing a menu command, loading a file, or
closing a window-is generally not undoable.

Because Undo is a roll-your-own application routine and calls for
careful planning, you must decide at the beginning of your design
cycle what, if any, functions will be undoable. Then you must
program your application so that it keeps track of what the user is
doing, stores information in a buffer so that it can easily be
recalled to undo the effects of an operation, and generally
manages things cleanly with respect to the Undo operation.

User interface design
It is surprising how many programmers forget to focus on the user
interface design until all their routines are working and debugged.
Then, as part of the final program assembly, they try to "glue" it
together with interface design.

That approach on the Macintosh is a virtual guarantee of
frustration and possible failure.

The user interface is the most important aspect in the design of a
Macintosh program, and it is essential that you understand how
you expect users to interact with the program before you try to
write the code.

In traditional microcomputer programming, not only could the
user interface be left to last in the development cycle, but it was
probably better to do so. For example, if a series of nested
menus-a classic "user-friendly" interface, pre-Macintosh-was
designed first and then the program evolved, the menus often
needed changing. And menu changes virtually always required
programming changes. It was much better to let the program's
functional parts solidify and then write the user interface around
what was actually being implemented.

Thinking about "last" things first 25

''If you find you must extend
the user interjace, do it in a soft
and gentle way. For example, in
HyperCard, you can single-click
on an icon to start a process.
That grew out of an observation
that many people have trouble
double-clicking. But double­
clicking in HyperCard isn't
dangerous or disastrous, so
there's nothing to unlearn. "
Dan Winkler,
Apple Computer

On the Macintosh, the opposite is true. In the first place, because
the programs are driven by user events, the user interface is the
most important part of the program, not an afterthought to make
the program marketable. Second, changing the user interface is
fairly simple and straightforward, requiring minimal
programming changes. In fact, if the programmer uses
appropriate tools, the user interface is so easy to change that even
the user can modify it after the product is delivered and in use.

Localization
Between resources and the Toolbox, a Macintosh programmer
has all the necessary components to make programs easy to move
into other languages and cultures. The process of "localization" of
your programs will be easy to accomplish and will pay great
dividends if you follow a few simple rules. (For more information,
see Human Interface Guidelines, which contains an appendix on
the subject of localization.)

The general principle is to use Apple system resources where they
are available. For example, in date-time formatting, sort
sequences, and numeric punctuation, Apple's international
resources are set up so that they are correct in the country in
which the computer was sold. If you use those resources instead of
coding such items directly in your program, users in the United
States will see a numeric value as 23,789.04, and European users
will see it as 23.789,04.

Another sound principle is to avoid having your program rely on
strings being a specific length. After these strings (which you
should have stored as resources) are translated, they will almost
never be the same length.

Using low-memory global variables rather than hard coding to
determine such things as menu bar height will also make your
programs easier to write and maintain. In some countries, the size
of the menu bar and the system font and size are different from
what they are on U.S. machines. This is due to the need for higher
resolution in non-Roman characters (such as Japanese kanji) and
other international differences.

26 Chapter 2: The Software Anatomy of the Macintosh

Finally, use the International Utilities Package and its sorting,
currency, measurement, date, and time formatting routines. Where
seemingly conflicting routines exist both in the User Interface
Toolbox and in the International Utilities Package, use the latter.
They tend to be more accurate, particularly as standards change.

There is much more to be said about localization, but the purpose
of this discussion is simply to alert you to take the need for
translation into account. If you store strings as resources, don't
rely on them to be a predetermined length, and follow the other
principles outlined here, you will be well on the road to writing
Macintosh programs that can be used throughout the world.

Thinking about ·1ast• things first 27

Chapter 3

An Eventful Experience

29

" Tbe key idea is, just don 't think
about a Macintosh application
without thinking about events.
Period. ''
Eagle Berns,
Apple Computer

No concept is more crucial to programming the Macintosh than
the event loop. The Macintosh is an event-driven computer. It
spends a great deal of its time in an all but endless loop, waiting
for the user to do something that will trigger it into action. This
chapter focuses on the event loop and on the Toolbox Event
Manager, which manages the Macintosh's response to user­
generated events .

An overview of the main event loop
Viewed from its outermost level, the main event loop in the
Macintosh is a layered set of routines, as shown in Figure 3-1. It
requires th(~ execution of a series of initialization procedures
before the loop is begun. The loop itself consists of a
GetNextEvent call followed by a series of conditional clauses
that identify the type of event involved and process it
accordingly.

Initialization

Get event

Handle
as appropriate

Figure 3-1

Repeat
until user
quits

The outermost level of the main event loop

In Pascal, these conditional clauses are in the form of a series of
Case statements. In C, the case-switch combination is the most
often used mechanism for handling events.

30 Chapter 3: An Eventful Experience

" Remember to handle your
initialization routines properly.
You must often initialize routines
and managers you don't even
use directly. It's easy to do the
initialization and tough to
recover if you forget or do it
wrong."
Ed Tccot,
Ap1ilc Computer

Setting up the loop
Most Macintosh programs begin with two or three important
initialization calls before the main event loop is entered. Before
Ini tWindows can be called, you must have initialized the
QuickDraw routines with a call to Ini tGraf and the Font
Manager with the Toolbox call InitFonts. From the viewpoint
of the Event Manager, the most important initialization routine is
arguably Ini tWindows, which initializes the Window Manager.
The data structures in the Window Manager are used by the Event
Manager. If the Window Manager is not properly initialized, the
Event Manager cannot do its job.

Another useful initialization call is FlushEvents. This call clears
stray events left over from what took place before your
application began running. For example, if the user double-clicks
your application's icon and then presses one or more keys on the
keyboard or clicks the mouse, these events are stored in the event
queue (which is covered later in this chapter). Your program,
however, should ignore these actions. FlushEvents with the
proper arguments clears all events from the event queue and gives
your program a clean area with which to begin its execution. This
flushing of pending events is generally only done once, and only
at the time your program initializes its environment.

The outer loop: How it works
The details of the loop 's event handling are the subject of most of
the rest of this chapter.

This outer loop waits for an event to occur. When one does occur,
it handles the event in accordance with the type of event and the
instructions associated with it in your program. When the event
involves the user quitting the application, the loop ends, the
application terminates, and the user is (typically) returned to the
Finder. From there, the user can choose some other program to
run or a document to edit.

The outer loop: How it works 31

'' It is essential that you keep
your event loops as short as
possible. Don't start with a
main event loop and then build
a big chain behind it. That's the
totally wrong model. "
Gerard Schutten,
Apple Computer

When the GetNextEvent call is executed, the Event Manager
issues an automatic call to the Desk Manager to determine if the
event involved is a system event. If it is, the GetNextEvent
routine returns a Boolean False value. Your program simply
checks this Boolean value as part of the loop. If it finds it to be
False, the event can be discarded because the system has already
dealt with it.

The second level: What kind of event?
Within the portion of the outer loop labeled Handle, the next
level of the main event loop determines the type of event.

The sequence in which these events appear in your program is
not important. The Event Manager automatically returns the
highest priority event when the GetNextEvent call is made.

By the use of event masks, discussed later in this chapter, you can
block certain kinds of events from being acknowledged by your
program. If a mask is in use, the Event Manager returns the highest
priority event of those recognized by your program. This means
that you can determine what kinds of events are important for
your program to work with and how to deal with them. The Event
Manager takes care of everything else automatically. (Ir is seldom
if ever necessary to change the default event mask.)

Figure 3-2 lists the events in their order of priority.

32 Chapter 3: An Eventful Experience

2. Mouse. keyboard, disk events

, 3. Auto-key event

14. Update event

5. No event. continue to loop

Figure 3-2
The event priority list

Activate events

An activate event occurs whenever a window is activated or
deactivated. In any Macintosh application, only one window can
be active at a time. A number of actions can change this active
window. For example, the user might click the mouse in a window
that is partially hidden behind the currently active window. Or
your program might write text or draw graphics into a window that
has not been the active window to that point.

Mouse events
The mouse is one of the main sources of events to which your
main event loop has to respond. There are essentially two kinds of
mouse events: mouse-down and mouse-up. You don't often have
to deal with mouse-up events. To detect a double-click, your
program need only determine if the mouse has been pressed
twice within a preset time frame at the same place on the screen.

The second level: What kind of event? 33

"An event-driven environment
is one in which the user gets
to say to the programmer,
OK, I have your program now.
Don't call me, I'll call you. "
Geoff Brown, author of
Deluxe Music Construction Set

Key events

Aside from the mouse, most user-generated events originate at the
keyboard. Most key events, of course, simply require that the
character represented by the key be echoed to the screen in the
currently active window using the current font information. But
you must check to see if the Command key is also being pressed.
If so, the user may be trying to execute a menu command without
activating the menu bar. Such events are handled by the Menu
Manager.

Similarly, the Caps Lock, Shift, and Option keys-collectively
called modifier keys--can alter the intended effect of pressing a
key. Your program must check for such combinations as part of its
processing of key events in the main event loop.

If the user holds down a key or key combination for a few
moments, you may have to respond to an auto-key event.

Disk-inserted events

If the user inserts a disk into a drive or mounts a new volu me on a
hard disk, a disk-inserted event is placed on the event queue.
Typically, your program need not concern itself with this type of
event because GetNextEvent takes care of most such
occurrences. The Macintosh's built-in Standard File Package is
designed to respond to them. If the disk inserted by the user is
defective, unformatted (uninitialized in Macintosh parlance), or
causes some other error, your program may have to call on the
Disk Initialization Package's DIBadMount routine.

Update events

When it isn't responding to some other type of event, the Event
Manager looks for windows whose contents require updating. This
need can arise from user activities, program displays, or system­
generated overlays of dialog boxes or other objects. These
activities typically generate update events. Windows are checked
front to back so that the active window is checked first and
updated if necessary. Then the window behind the active window
is checked, and so forth.

34 Chapter 3: An Eventful Experience

" You have to remember that a
Macintosh program is basically
waiting for the user to do some­
thing and being prepared for
him to do something unusual. "
Steven Marcus,
SuperMac Technologies

The third level: Mouse event handling
One level farther into the main event loop, your program
approaches the basic handling of mouse-down events.

Locating the mouse

When the user presses the mouse button, the location of the
mouse pointer is significant. For example, completely different
processing of a mouse event is required if the pointer is in the
menu bar rather than in an application's active window.

The first step in handling a mouse-down event is to find the
location of the mouse pointer. This is accomplished with the
FindWindow call. A call to this command will enable a
Macintosh program to determine whether the mouse was pressed
while the pointer was in

o a desk accessory window

o the menu bar

o an application window

A desk accessory window

If the mouse is pressed while the pointer is in a window belonging
to a desk accessory, your application handles the event by calling
the Desk Manager routine SystemClick. The system then passes
control to the desk accessory that created and manages the
window involved. When the processing is complete, control is
returned to your application. This means that your program need
know nothing about the desk acc:essories available to the user. It
also means that your program will always be aware of the user's
activation and deactivation of desk accessories.

The third level: Mouse event handling 35

The menu bar

If the mouse is pressed while in the menu bar, your application
calls the Menu Manager's MenuSelect routine. This routine
highlights the menu name on the menu bar and, so long as the
user holds down the button, highlights menu choices as he or she
moves the pointer over them. When the user releases the mouse,
the Menu Manager tells your program what choice was made.
Your application must then process the choice. (See Chapter 6 for
a discussion of how the Menu Manager and your program relate
to each other.)

+ Pause for a moment: Figure 3-3 shows the blocks of
programming that have been identified to this point. You can
see that the program itself is not yet very large. You need to
be familiar with only a handful of commands to understand
the main event loop of a Macintosh program.

REPEAT
Get Next Event

Disk Inserted event?
(Ignore unless uninitialized)

Update event?
(Redraw windows as needed)

Mouse event?
Find Window

Desk accessory?
(Call System Click)

Menu bar?
(Call Menu Select)

Other events
(To be discussed)

UNTIL USER QUITS

Figure 3-3
A partlal skeleton of the main event loop

An application window

If the mouse is pressed in a window that is created and managed
by your program, your next task is to find out which part of the
window the user wants to manipulate. Figure 3-4 shows the parts of
a window. Depending on which one of them is selected by the
user, your program takes different steps to process the input.

36 Chapter 3: An Eventful Experience

s File Edit Search Format Font Style

Close box ----------i-iaJ~~~~~~~~~~~D~oc~u~m~e~n~t:i~~~~~~~~iiji~

Title bar (drag region) -------1-------------___,,

Content region ---------+-- ----

Zoom box ----------+-- ------------------_,

Size box -----------!~-------------------..

Figure 3-4
The parts of a Macintosh window

The first thing your program should do is call the Window
Manager routine SelectWindow. This routine brings the window
to the top of the desktop display if it is not already there. To
accomplish this, the routine takes the following steps, which are
transparent to your program:

1. Unhighlight the previously active window.

2. Bring the selected window in front of all the other windows.

3. Highlight the window that is now active.

4. Generate appropriate activate events as described above .

Outside the content area of the window: If the mouse is
pressed in the frontmost window but outside the work area of the
window, it can be in any of five places: the title bar, the size box,
the close box, a scroll bar, or the zoom box.

With these application window routines added, the main event
loop looks like Figure 3-5. Obviously, a great deal of this loop
involves managing routines that are not directly related to your
application. This overhead programming has been seen by some
as a hindrance to Macintosh program development. As {Tluch as
two-thirds of the application's code-depending, of course, on the
nature of the application and its complexity-can be taken up
with this overhead programming.

The third level: Mouse event handling 37

REPEAT
Get Next Event

Disk inserted event?

Update event?

Mouse event?
Find Window

Application window?

Go-away region?
(Call Track Go Away)

Drag region?
(Call Drag Window)

Grow region?
(Call Grow Window)

Zoom region?
(Call Zoom Window)

Content region?
(Handle as application desires)

Key down event?

Active event?

Update event?

UNTIL DONE

Figure 3-5
A main event loop with the window routines

At the same time, the overhead programming is not difficult. For
the most part, it is handled by the Macintosh.

By using a modular application program like MacApp (see
Chapter 8), you can avoid having to program the overhead
routines even to the extent described in this chapter. This is
possible because the Macintosh user interface is sufficiently
standardized to permit a predefined way of dealing with such
events.

38 Chapter 3: An Eventful Experience

" Tbe standards are higher
for an event-driven program.
If you try to do old-style pro­
grams, users w111 not respond
well to them. "
Dan Winkler,
Apple Computer

More about events
There is a great deal more power and complexity to the Event
Manager than you need to know to create useable Macintosh
programs. To give you a glimpse of this power, this section
discusses the event queue and event masks. The objective is not to
explore these aspects in depth but to convey some of the
potential for control of an event-driven program.

The event queue
As events occur in the system, they are placed on the event queue,
a 20-item list that is stored in priority order. Events stay in the
queue until they are processed by GetNextEvent calls (or
other routines) or until the queue gets full. When the queue is
filled with events, a new event will replace one in the queue, with
lowest priority and oldest events being eliminated first.

Two types of events are never placed in the event queue: activate
and update events are intercepted by the Event Manager and
processed automatically. Before checking the event queue in
response to a GetNextEvent call, the Event Manager checks to
see if any activate events are pending. If so, it processes these
events before accessing the event queue. The system automatically
looks for update events when no other kind of event is going on.

Event masking

A mask can be thought of as a kind of filter through which
information is passed to see if it fits a predetermined pattern. If it
does, it is allowed to pass. If it does not fit the pattern, it is
rejected or ignored.

Whenever you use the GetNextEvent call, you can optionally
supply an event mask that tells the Event Manager the type(s) of
events in which you are interested. Each type of event has a
numeric value associated with it, as shown in Table 3-1. (Table 3-1
does not show all the types of masks available in the Event
Manager, just the ones that are important enough that you should
be aware of them now.) Notice that there are four application­
definable masks at the high end of the numeric ranges defined in
Table 3-1.

More about events 39

"Error management ought to be
the first and last thing on your
mind at all times when program­
ming Macintosh applications.
The longer you wait to put in
error-checking, the longer it
takes to do."
Ed Tccot,
A111ilc Computer

Table 3-1
Event masks and their numeric values

Events to mask

Mouse-down

Mouse-up

Key pressed
Key held down (auto)

Update
Disk inserted

Activate
Application-defined

Numeric value

2

4
8
32
64
128
256
4096,8192, 16384,-32768

Generally speaking, however, you will probably want to leave the
event mask alone and permit the system to notify your program
of all kinds of events rather than focusing on any one type or
group of types.

Note, too, that the event mask doesn't prevent events from being
placed in the event queue. It only determines which kinds of
events the Event Manager will report to you from the queue when
a GetNextEvent is received. Thus, you can't use the event mask
to keep the event queue from reaching its 20-event maximum.

A note about errors
Because this chapter is the first to deal with specific Toolbox
routines, it is a good place to insert an important observation.
Virtually all Toolbox calls result in a return value of some sort. If
the routine you call can produce an error condition, the return
value may be zero (noErr in Macintosh documentation) or
nonzero. If it's nonzero, you must deal with it before proceeding.

It is almost impossible to exaggerate the importance of this
advice. If you fail to check for error conditions simply because
you don't see any way a particular call in your application could
produce an error, a crash can result. The amount of overhead
involved in checking the return value to be sure it is nonzero is
negligible compared with the loss of programming time you 'll
experience if an error occurs and you haven't checked for it.

40 Chapter 3: An Eventful Experience

Chapter 4

Memory Management

41

"You can't have a sophisticated
program on any system without
relocatabi!ity in the memory
manager."
Jeff Harbers,
Microsoft Corporation

Memory management on the Macintosh poses one of the most
interesting paradoxes of the system. It is at once one of the
simplest to use collections of ideas in the Macintosh software
architecture and one of the most often misunderstood. More
misleading mythology has built up around the Memory Manager
than any other manager or package in the system.

This chapter explains the Macintosh Memory Manager. It
discusses how the Memory Manager works, what you must do for
your programs to interact correctly with it, and when and how
objects stored in the Macintosh's memory can be relocated by
the Memory Manager.

Before reading this chapter, you might want to read the chapter
"Macintosh Memory" in Technical Introduction to the Macintosh
Family. It contains a thorough discussion of how memory on the
Macintosh is organized, which this chapter touches on only
lightly.

How memory is organized
Figure 4-1 is a generalized Macintosh memory map. It does not
show precise memory locations because those addresses vary
depending on the Macintosh model and configuration options.
More importantly, you and your application need not know any
absolute memory addresses.

Screen and 1/0

Stack

l
Unused buffer

I
Application heap

System heap

System globals

Figure 4-1
A simplified Macintosh memory map

42 Chapter 4: Memory Management

The stack starts near the top of high memory and grows down,
while the application heap grows from its assigned starting
location up toward high memory. A buffer is automatically
created between them. The application heap grows to a fixed
limit. However, you must monitor the stack to ensure that collision
with the application heap does not occur.

The system globals area contains values needed by all applica­
tions running in the environment. Typically, your program has
little direct interaction with this information. Any needed activity
is handled transparently by the development system you use.

Memory and the parking garage
The Memory Manager on the Macintosh resembles an attended
parking garage in some interesting ways. By contrast, the more
traditional methods of memory management used on other
microcomputers more closely resemble a self-parking garage.

In a self-parking garage, you drive your car to a level where you
can find a space. Then you inust make a careful note of where
your car is parked. Sometimes, the parking garage labels pillars
and places signs where you can see them so that you can identify
with something close to a memory address. Other times, you have
to look around and remember landmarks, location of the car
relative to the elevators, and other, less precise memory-joggers
to help you recall where your car is .

When you return to get your car, you must remember where it is
parked. You must also remember to keep track of the ticket.

In a valet parking garage, you simply drive your car to the point
where the attendant takes over. You leave your car and keys in the
control of the attendant, who gives you a numbered ticket that
corresponds to one he puts on your car for identification. The
attendant may park your car on the third level near the elevators
or on the fifth floor at the opposite end from the elevator. You
don't know and you need not concern yourself with the issue.
During the day, the attendant may need to move your car to
deliver other cars to their owners or to make room for new ones
coming into the lot. You still don't care.

Memory and the parking garage 43

" The Macintosh Memory
Manager is very much like
valet parking for your data ."
Bryan Stearns,
Apple Computer

All you really need to know is that when you come back to pick up
your car, the parking lot attendant finds it, starts it, and delivers it
to you in return for payment.

In a conventional microcomputer system, you must know where
your program is storing things it needs. You must be in control.
You are using a self-parking garage and if you forget your ticket or
lose track of where you put something in memory, you are going
to be in serious trouble.

On the Macintosh, though, you simply let the Memory Manager
play the role of parking lot attendant. You tell the Memory
Manager to store something for you, and it gives you the memory
equivalent of a numbered ticket. No matter where or how many
times the Memory Manager cum parking lot valet may relocate
your object to make room for others while your program is
running, you can always return the numbered ticket to the
Memory Manager and expect the data to be returned to you.

As the chapter develops, these analogies will become even
clearer. For now, the important idea to remember is that you
don't have to concern yourself much with what is happening with
the Memory Manager. You can concentrate on problem-solving
rather than on memory-tracking. The idea takes some getting used
to, but it results in far more efficient use of your time.

The elements of Macintosh memory
The Memory Manager consists of several elements, all grouped
together into one manager that keeps track of where things are in
memory and how they can be retrieved or updated as needed.
The five basic objects with which the Memory Manager must deal,
regardless of the program it is running, are

o pointers

o handles

o blocks

o the stack

o heaps

44 Chapter 4: Memory Management

In some ways, these terms are defined similarly to what you may
be accustomed to in conventional computers. More precise
definitions begin in the following paragraphs but are expanded as
the chapter develops the basic ideas of Macintosh memory
management.

Pointers
A pointer is probably not new to you, particularly if you have
programmed in C or Pascal. In the Macintosh, a pointer is nearly
identical to those kinds of pointers. A pointer is an address that
tells your program where to find a particular block in memory.
Usually, of course, a pointer is stored in a variable that you use to
reference the block of memory.

Pointers, then, point directly at the object and are associated with
nonrelocatable blocks. This is in direct contrast with handles.

Handles
Handles are pointers to pointers. A handle stores the address
where a pointer to a block of memory can be found. Like a
pointer, a handle is usually a variable your program uses. When
your program is using handles, however, it must use them to
locate pointers, which in turn must be used to reference the actual
blocks of memory. This is the essence of relocatable blocks.

Blocks
Information stored in the Macintosh's memory by your program
is viewed by the Memory Manager as composed of blocks. The
Memory Manager neither knows nor cares what is stored in those
blocks. Your program may use a block for each object it stores in
memory, or it may group objects into blocks of related
information. To the Memory Manager, all blocks are the same.
Discussions of the Memory Manager and its operations almost
always talk about locating blocks in memory rather than finding
objects there.

The elements of Macintosh memory 45

The stack

The stack on the Macintosh is similar in many ways to that on
other microcomputer systems. It starts near the top of high
memory and grows down. Stack management is h~ndled
automatically by the Memory Manager for all practical purposes.
A key difference between the Macintosh stack and other
microcomputer stacks is that data is not allocated on the stack on
the Macintosh. Data allocation takes place on the heap.

Heaps

There are always at least two heaps in the Macintosh's memory
when a program is running. The system heap is used by the
Macintosh Operating System and by Toolbox calls to allocate
data needed by the system. (See "System Use of Memory" later in
this chapter.) The application heap is the portion of memory set
aside for your application to allocate data. But, there are times
when the system will indirectly allocate memory in this heap on
behalf of your application.

This model differs from the traditional microcomputer memory
management approach in which only the user's application
manipulates the contents of the heap.

Basic memory management
Macintosh memory management is essentially quite simple. When
your program needs some memory, it decides whether to use a
relocatable or nonrelocatable block, calls the appropriate routine,
checks the return code to be sure the memory allocation was
successful, and then continues with its processing. When it needs
to access an object stored in a block of memory, it does so by
dereferencing the handle or pointer and retrieving the data.
When it no longer needs the memory, it disposes of it.

Aside from the question of relocatable and nonrelocatablc blocks,
Macintosh memory management differs little from traditional
computer memory management. But relocatable blocks arc such
an important concept in the Macintosh that they deserve further
attention.

46 Chapter 4: Memory Management

Relocatable and nonrelocatable blocks
The relocatabtlity of a block refers to the freedom with which the
Memory Manager can manipulate blocks of storage when it is asked
to allocate additional space. Relocatable objects can be moved
freely by the Memory Manager when it must do so. Nonrelocatable
blocks are sacrosanct; they will not move.

Your program manages relocatable blocks of memory using
handles and nonrelocatable blocks using pointers.

Your program must be concerned with the manipulation of these
two types of memory blocks because of memory fragmentation.
This fragmentation, in turn, comes about because the Memory
Manager frequently moves relocatable blocks in memory to
allocate new space as it is needed.

It is important to note, however, that these blocks are only moved at
specific, well-known times, and that you determine whether any
given block of memory is relocatable.

Moving blocks in memory

The Memory Manager relocates blocks of memory that your
program has allocated only when

o the blocks are relocatable

o a need for more memory arises

o a block of sufficient size is not immediately available without
moving one or more blocks of memory.

On the surface, it would appear that blocks of memory are relocated
only when your program requests additional memory and the
above circumstances are present. But that is not quite true. Many
Toolbox calls made directly or indirectly by your program also
require memory allocation. This need for additional memory that
is not explicitly and directly requested by your program makes
Macintosh memory management at once important and elegant.

When the Memory Manager does relocate a block of space, it places
the beginning address of the new block at the address to which that
block's handle points. Figure 4-2 depicts the process.

Basic memory management 47

Before move

Address Contents

Block l $2947C

Pointer $229CO $2947C +- $2947C

Handle SD94AE $229CO

After move

Block l $22AOO

Pointer $229CO $22AOO

Handle $D94AE $229CO Block l -----+- $22AOO

Figure 4-2
Memory block relocation

Before BLOCKl in Figure 4-2 is relocated by the Memory
Manager, it begins at address $2947C. The pointer to it is stored at
$229CO and contains the block's starting address of $2947C. The
handle contains the address of the pointer, $229CO. After the
block is relocated, notice that although the contents of the pointer
have changed to reflect the new starting address of BLOCKl, the
address of the pointer has not changed. The handle still points to
the pointer, which still points to the block, even though the
Memory Manager has relocated the block. This means, among
other things, that the handle can still obtain the data in the
memory block called BLOCKl.

To return to the parking lot analogy, the handle is similar to the
ticket the attendant gives you when you give him your car. The
ticket contains a number. By keeping track of where the car with
that numbered tag is parked, the attendant can retrieve your car
when you need it even if he's moved it and even if you can't
describe it very well. (Remember, the Memory Manager doesn't
know or care what is stored in the block.)

48 Chapter 4: Memory Management

Fragmentation

So long as the parking lot attendant has the keys to everyone's car
and control over where they are parked, he can keep the parking
lot as full as possible and usually manage to find place for yet
another car when space is needed. Lock the cars and put everyone
in charge of moving their own car and chaos will result. There
might be a space available for a sleek new sports car that just
pulled into the driveway, but if access to that space is blocked by
someone who's locked his car, the space is unusable.

This is precisely what happens when you design programs that
include nonrelocatable blocks. The Memory Manager cannot
move those objects, so when it needs to allocate new space for a
newly created block, it may be unable to do so. The result is
equivalent to having run out of memory, even though there may
be huge chunks of it lying around unused.

There are two ways a block of memory can become nonreloca­
table. You can define it as such when you create it or you can lock
a relocatable block temporarily (a practice that is discouraged) .

Unlike the stack, the application heap is not a LIFO (last in, first
out) area of memory. If you allocate space for four nonrelocatable
objects in the heap (see Figure 4-3) and then your program no
longer needs one of them and releases it, the vacated space is
simply marked as free by the Memory Manager.

Object3

Object 2

Object 1

1. Before release

Figure 4-3

Object3

Object 1

2. After release

D Free

L:J Nonrelocatable
free

The beginning of heap fragmentation

Basic memory management 49

When your program allocates more heap space for another
object (see Figure 4-4), the Memory Manager must find a location
that contains sufficient contiguous bytes to store the object. If the
object is even slightly too large to fit into the space recently
vacated by another object, the old vacancy remains and new
space must be allocated.

Object4

Object 3

Object 1

Figure 4-4
Allocating new space

D Free

D Nonrelocatable
free

It is not difficult to imagine what the heap looks like after a
program of any complexity allocates and removes a number of
nonrelocatable objects from the application heap. Figure 4-5,
while perhaps a bit exaggerated, depicts the problem you'd be
facing. It is essential that your program allow the Memory
Manager to manage the application heap. That is why it makes
sense to make objects relocatable unless there is a compelling
reason not to do so.

With relocatable blocks in the application heap, the Memory
Manager can move blocks around to gain contiguous free space
for a new object to be created and stored.

50 Chapter 4: Memory Management

Free

Object 8

Object6

Figure 4-5

D Free

~ Nonrelocatable
free

A badly fragmented heap

Obtaining and releasing memory blocks
There are two basic calls your programs will use to obtain
memory. A call to NewHandle returns a handle to a relocatable
block of memory. Similarly, a call to New Pt r returns a pointer
to a nonrelocatable block of memory. Each of these calls takes
one argument, the size of the block of memory to be allocated.

Of course, after either of these calls is carried out, your program
should check the return value. If the handle or pointer returned by
the call is Nil, then the attempt to allocate the memory has failed
and your program must react accordingly.

When your program is finished using a particular block it has
allocated, it calls the appropriate routine. DisposHandle releases
memory allocated to a relocatable object, and DisposPtr
deallocates memory assigned to a nonrelocatable block.

It is important that you only dispose of memory blocks that your
program allocates directly.

Basic memory management 51

"A Macintosh program is not,
as some people have said,
an amusement park ride with
moving stairs you can't predict.
It's more like an escalator whose
stairs take you where you want
to go, quickly and effortlessly.
just don't try to drive the
escalator. "
Gerhard Schutten,
Apple Computer

Memory reorganization
Clearly, the Macintosh Memory Manager works best when it has
maximum freedom. When nonrelocatable blocks are kept to a
minimum, the Memory Manager has a better chance of finding
memory blocks when they are needed, even if they are quite large.
You, as a programmer, do not need to concern yourself with the
details of how and when the Memory Manager relocates things or
where it puts them. As you have seen, the relocation is transparent
to your program.

Still, it is useful in understanding the Macintosh to have a grasp of
how it decides what to relocate.

When memory is needed, the Macintosh moves all relocatable
blocks as low in the application heap as it can. If this process does
not result in a space large enough for the new or enlarged object,
it purges blocks as permitted. These purgeable blocks may consist
of resources, which are discussed in greater detail in Chapter 2.
Following this step, the Memory Manager may move some more
relocatable objects. Once any purgeable resources are released,
the Memory Manager allocates the new space. If it still cannot
find a large enough contiguous space, it can move more
relocatable objects, because the purge of resources may have
freed up additional space .

After trying all of those options, if the Memory Manager still
cannot allocate the memory needed, it returns a Nil handle or
pointer to the application that made the call.

System use of memory
In the Macintosh programming world, your application shares
memory with the system. A wide variety of Toolbox routines can
allocate memory on the application heap; these are listed in
Inside Macintosh. The important point to remember about the
system's use of memory is that it makes it necessary for you to
monitor heap usage even when your application has not allocated
any new memory since you last used the heap.

52 Chapter 4: Memory Management

For example, if your program checks on how much memory is
available and gets a value indicating that 278, 589 bytes are
available in the application heap, that figure may or may not be
the same 10 minutes later. This is true even if between the time
you got that answer and the time you are about to rely on it, your
program has done nothing directly to request more memory. In
fact, even if your program has done nothing indirectly to request
new memory, it may not be correct. Why? Because Macintosh
users can call desk accessories, among other good reasons.

If your program is whizzing merrily along and the user decides to
load a new font, read in another file to look up something, or do
any one of a number of other things that affect memory, your
program is probably not going to be aware of the user's actions.
Yet they clearly have an impact on memory. A font, for example,
can occupy several thousand bytes of memory, and that memory
is taken from the application heap.

The lesson is simple. Check memory before you attempt to
allocate any. Then allocate it. Then check to be sure the memory
was allocated properly. Then pretend you don't know how much
memory is left (because you don't).

Your program and the segment loader
Your program code is a resource, and as a result, it is loaded into
memory when it is needed. (Chapter 6 discusses the Resource
Manager, which is in charge of such memory manipulation.)

Many Macintosh development systems limit code segments to
32K. This and the modular nature of efficient Macintosh
programming mean that almost all nontrivial Macintosh
programs are divided into segments.

Why segment your code?

There are at least two good reasons for segmenting your
Macintosh programs:

o The general 32K limit on the size of a single code segment
necessitates such a strategy. This is true particularly in view of
the user interface management you do in the main event loop.

o Segmenting code makes for good memory management and
more efficient program execution.

Your program and the segment loader 53

Three classes of programs
From a memory and segmentation perspective, programs can be
thought of as falling into three categories:

o Programs that are smaller than 32K. These are often stored as a
single segment. Segmentation is not an issue.

o Programs that are larger than 32K but smaller than the
application heap. In these cases, segmentation is useful
primarily because you must consider the possibility that the
user will need memory that is unrelated to your program (or
only peripherally related). So you will probably segment such
programs, loading the segments when needed and unloading
them when they are not in use. For example, you might have
segments that initialize variables and data structures. Another
segment might handle prjnting-related functions. After the
program has initialized and when printing is complete, you can
unload these segments (see "Unloading Segments" later in this
chapter).

o Programs that are larger than the application heap. These
programs must be segments or they simply will not run.
Unloading segments that are no longer needed moves from a
polite maneuver to a mandatory design technique.

Deciding on the segments' contents

The key thing to keep in mind when deciding which of your
programs' routines to group together into a segment is that the
Macintosh system loads into memory all of the routines in a seg­
ment whenever you use any one of the routines in that segment.
This leads logically to the fundamental rule of segmentation:

Ru I e Group related routines together Into segments.

If, for example, your code includes a set of routines that key off a
specific menu resource, and if those routines are subject to being
called by the user's interaction with the menu bar, put all of those
routines into one segment. If you don't, the user may spend a lot
of time waiting for disk access while the segments containing the
needed code are loaded before the program can continue.

54 Chapter 4: Memory Management

Fundamentally, the principles involved in making segmentation
decisions in your Macintosh applications are identical to those
involved in top-down, structured programming. Keep like things
together so they can work together.

Trade-offs in segmentation decisions

Some routines don't fall neatly into either the main event loop or
grouped collections of related procedures. In those cases, you
have to decide if you want to form many small, individual
segments or incorporate them into the main segment, which is
always in memory.

If you put too many small routines into individual segments, pro­
gram execution suffers. Disk accesses (among the slowest activities
in any program on any machine) may become excessive.

But putting too much code into memory at one time in the main
segment results in inefficient use of memory.

The best advice is probably to start by putting small, frequently
needed routines into the main segment along with the main event
loop, and everything else into as many segments as necessary and
logical for grouping related functions. Then as you polish and
debug your program, keep an eye on execution times, load times,
pauses in execution for disk 1/0, and the like, and adjust
accordingly. The process is necessarily dynamic.

The main segment

The main segment of your program-known technically as CODE
segment 1-is loaded into memory when your application starts
and is never purged or unlocked as long as the program is
executing. This segment is where the main event loop and
frequently needed small routines are generally stored. Do not take
this to imply, however, that you can't have any number of
segments that are never purged or unlocked while your program is
executing. The main segment is not unique in this respect, but it is
the only one that is automatically treated this way.

If you follow recommended programming practices and create
your Macintosh application as a main event loop that dispatches
tasks to other handler routines, this main segment model with
other segments loaded and unloaded as needed will make
eminent sense.

Your program and the segment loader 55

Loading segments

You need never be concerned with explicitly loading segments.
When a segment is needed, the segment loader handles the task
transparently.

Unloading segments
Because the Memory Manager has no way to tell when a segment
of code can be unloaded, it is incumbent on you to notify the
system of this. The simplest way is to call UnloadSeg for all of
your segments each time you go through the main event loop.
This action will not, of course, unload any segments you have
marked as nonpurgeable, including the main code segment. This
approach is often sufficient, but it is not essential that you do this
if there are reasons to avoid it.

UnloadSeg does not, as its name implies, actually unload the
segment. Instead, it unlocks it and makes it purgeable, permitting
the Memory Manager to purge it or relocate the space it occupies
if it needs to do so to gain some space in the application heap, as
discussed earlier.

Out-of-memory conditions
You can't be around Macintosh programming very long before
you encounter a discussion of the out-of-memory conditions that
sometimes arise during program development.

What causes memory to "disappear"?
There are three primary causes of out-of-memory conditions:

o overzealous use of nonrelocatable blocks

o desk accessories

o the system's use of memory

56 Chapter 4: Memory Management

"Parttcularly as your program
nears completton, you should
begin to watch closely for
out-of-memory conditions so
you can trap and remove them. "
Scott Knastcr
independent developer

Nonrelocatable blocks

It is important enough to be worth stressing once again that you
should only create nonrelocatable blocks when it's essential.

Fragmentation of the heap can cause memory to be unavailable
when it's needed even if the total amount of space available is
more than adequate.

Desk accessories

Any well-designed Macintosh application must be aware of desk
accessories.

Users expect desk accessories to be available whenever they are
doing anything on a Macintosh. Most desk accessories require the
use of some of the application heap. So your program can be
humming along nicely, managing its memory and keeping things
under control when all of a sudden things become unruly because
a user calls the calculator. Your program must take into account
that it is likely users will do such things and that the desk
accessories they invoke will require application heap space. There
is no way to anticipate how many desk accessories requiring how
much memory may be activated by the user. Desk accessories are
only opened through your program, however, so you can at least
manage the impact such actions have on memory.

The system's use of memory

Perhaps the most troublesome source of memory problems on
the Macintosh is the fact that Toolbox routines call other Toolbox
routines, which in turn can call still other Toolbox routines. The
Grand Funnel in Chapter 1 made this seemingly unpredictable
operation of the Macintosh clear. As a result, you need to be
particularly cognizant of what is happening "beneath" your
application. If your routines use Toolbox calls that can have a
direct impact on memory usage, the application must take this
into account.

The Dialog Manager, for example, calls the Window Manager. A
Dialog Manager call therefore has a potential impact on memory
at least as great as that of creating a new window, even though this
indirect impact is not necessarily obvious.

Out-of-memory conditions 57

Two strategies for handling out-of-memory
conditions
If available memory gets sufficiently low, your program cannot
allocate the space needed to post a message telling the user to
save documents, close windows, shut down, or otherwise gracefully
exit from the program. Yet, a program that simply crashes when
memory runs low or is exhausted will not win friends in the user
community.

Memory management is one of the issues a Macintosh applica­
tion programmer must take into account early in the design
process and keep in mind throughout the development. What is
often an afterthought or even a point of no concern in other
kinds of microcomputer programming becomes a major design
consideration in the Macintosh.

At least two possible strategies have been identified for anticipating
out-of-memory conditions and dealing with them in ways users will
find helpful. These strategies may be conveniently labeled as follows:

o preflighting memory allocation

o reserved heap space allocation

Preflighting

Preflighting is the process of having your application allocate the
space a Toolbox call is about to seek. If the allocation succeeds,
then the Toolbox also succeeds. At that point, have your program
free the memory and call the Toolbox routine. If an out-of­
memory condition is detected by your application, you can take
appropriate action.

Reserved heap space

Another approach is to allocate a block of arbitrary size that will
be available to deal with out-of-memory conditions. If a memory
error is encountered during your program's execution, you can
free some arbitrary portion of this specially reserved area and
notify the user that space is running low. This permits the user to
save documents, close windows, or take other steps that minimize
the impact of a memory shortage.

The process can be repeated once or twice, each time allocating a
smaller amount of memory and sending the user a more strongly
worded warning.

58 Chapter 4: Memory Management

Chapter 5

Display and Graphics Routines

59

This chapter looks at one of the most obvious and intriguing
features of the Macintosh family of computers: their visually
oriented display. Even a person who doesn't use computers can
immediately tell a Macintosh application by the extensive use of
graphics, fonts, and windows on the screen. Other microcomputer
environments are now beginning to emulate the Macintosh "look"
because of the ease of use it offers .

An obvious advantage
At heart, the Macintosh is a graphics machine. This difference by
itself would be enough to make it a radical departure from the last
generation's computers. The advantages of it are becoming
obvious to users.

But although the advantages are obvious, the intricacies and
operation of the graphics routines are anything but obvious.
There's a great deal of power and depth in the QuickDraw and
Color QuickDraw routines, and these libraries account for a larger
share of the Toolbox than any other single manager or package .

Fortunately, there is some commonality among calls that makes
learning what they do and how they do it much easier than might
appear to be the case at first glance.

Programmers coming from nongraphics microcomputer
environments often look at the Macintosh graphics capabilities
and wonder if they can create programs that run acceptably fast
with all the calculation and screen manipulation involved. The
beauty of QuickDraw is that it is not only relatively easy to use, but
also amazingly fast. If you've designed applications that required
you to plot and draw circles using traditional methods, you are
going to find QuickDraw's frameOval call a joy to use.

60 Chapter 5: Display and Graphics Routines

" We have been very impressed
with QuickDraw, and we use it
for everything we put on the
screen. It's a great piece of work
that the designers have reduced
to the minimum size and
complexity to do the job. Don't
try to work around it; use it. ''
Jeff Harbcrs,
Microsoft Corporation

Everything is in graphics
The most important idea to garner from this chapter is that in the
Macintosh, everything is done in graphics. If it's displayed on the
screen or sent to the printer, it involves graphics routines that are
part of the extensive QuickDraw and Color QuickDraw repertoire.
It is obvious that shapes like circles, ovals, rectangles, and lines
that show up in windows designed to display charts and pictures
are graphic in nature. But the rectangle that makes up the window
is also created using QuickDraw routines. So are the scroll bars,
the size box, the close box, the zoom box, and a great deal of
other window-related objects. For that matter, even the text
displayed is a graphic object.

Icons are graphic images, of course, but so are menus, so is text,
and so are radio buttons and check boxes, the heart of the dialog
boxes with which even the most casual Macintosh user is familiar.

Not only is everything on the Macintosh screen handled with
graphics, but so is anything that is sent to the printer. Printing is a
simple matter of sending a graphic image to someplace other
than the screen.

QuickDraw and Color QuickDraw routines are the foundation of
many other managers and routines, at least in terms of what the
user sees and interacts with as he or she uses Macintosh
applications.

A world of graphics in a library
The built-in QuickDraw routines in the Macintosh Toolbox are
very much like libraries of routines you might have purchased
separately for more conventional microcomputers.

Need to plot a circle as part of a complex graph? It's not
necessary to plot each individual point and draw it. Just call the
appropriate QuickDraw routine and pass the screen location and
size. The circle is calculated and plotted for you automatically, to
say nothing of quickly. The same is true of the other shapes
QuickDraw and Color QuickDraw handle: rectangles, round­
cornered rectangles, arcs, wedges, and polygons.

For complex graphic compositions, you can use the QuickDraw
picture routines. These permit you to store a script of connected
QuickDraw calls that can later be recalled and played back. The
result is virtually instant display of such graphic images.

An obvious advantage 61

A quick look at QuickDraw

All display and printing routines in the Macintosh use bit-mapped
graphics. This term refers to the process of mapping, or making
connections between, bits stored in memory and pixels displayed
on the screen. Each bit in memory representing a portion of a
graphic image is a 1 or a 0 in the classic Macintosh with a
monochrome display. On the Macintosh II, things are
understandably more complex because each screen location
contains more than simple "on-off' information, but the basic
QuickDraw routines change only minimally.

On all models of Macintosh, drawing takes place in a graphics
port, often referred to as a grafPort. A graphics port is a complete
drawing environment that contains the data QuickDraw and Color
QuickDraw need to create and manipulate bit or pixel images.
Many programs create and manage more than one graphics port,
each containing different information about the drawing
environment.

The most important shape in QuickDraw's world is the rectangle.
Not only are windows, scroll bars, and other controls rectangles,
but the screen is as well. In addition, even ovals (and their special
case, circles) are defined in terms of the rectangles they occupy.
In fact, even bit maps in Macintosh memory are defined in terms
of a boundary rectangle that gives dimension to the image.

QuickDraw routines allow you to create lines, shapes, patterns with
which to draw lines and fill shapes (including cursors), fonts, and
icons.

The discussion in this chapter assumes you have a fundamental
grasp of QuickDraw and Color QuickDraw. If you feel
uncomfortable with any of the ideas presented here or want more
background before proceeding, read Technical Introduction to
the Macintosh Family.

62 Chapter 5: Display and Graphics Routines

" When you get ready to program
a Mactntosh, study QutckDraw
first. You really have to learn tt.
Not only wtll you use tts routtnes
a lot but it's a great example of
how to program the Macintosh. "
Erle Zochcr,
Silicon Beach Software

The QuickDraw programming model
Before you can carry out any QuickDraw operations in an
application, you must initialize its routines using a call to
InitGraf. It is dangerous to call InitGraf more than once in
a session, so desk accessories should never call it. The call to
InitGraf is the same whether you are using QuickDraw or Color
QuickDraw calls in the program.

+ Note: In some high-level language implementations, a reference
to an include file or an external unit automatically initializes
QuickDraw. The issue is not so much the specific call but that
the initialization must take place once and only once.

With QuickDraw initialized, you are ready to draw something into
a graphics port. Good programming practice dictates that this
take place in four steps, as shown in Figure 5-1.

Initialize QuickDraw
Open a window for drawing

Drawing text?
Set font characteristics
Draw the text

Drawing a line?
Set pen characteristics
Line To (from point to point)

Drawing a shape?
Set pen characteristics
Frame appropriate shape
Fill If requested

Figure 5-1
The basic structure of a QulckDraw routine

This skeleton approach to QuickDraw programming ensures that
the proper port is current before your program begins drawing.
The GetPort routine permits your program to save the port
that was active before the drawing routine was called, and the
SetPort routine sets up the right current port in which your
program can draw. The drawing routines then take care of
presenting whatever information you wish in the current graphics
port. After the drawing, you restore the old graphics port with
another SetPort call to the old port.

The QulckDraw programming model 63

You may be tempted to shortcut this approach by not keeping
track of which port is current and which old port is being
deactivated by the QuickDraw calls. Even if your program uses
only one graphics port, however, this is not good Macintosh
programming practice. A desk accessory could create another
port and you could find your program's output inadvertently
modifying its contents. The overhead cost of being safe is
minimal.

•:• Note: The misuse of SetPort is one of the most common
sources of errors in Macintosh programs.

Bits and pixels, maps and images
Data that translates directly into screen images is stored in the
form of bit images and bit maps on the classic Macintosh and
pixel images and pixel maps on the Macintosh SE and Macintosh
II. The differences are somewhat subtle but important. This section
looks briefly at these structures and how they are used. More infor­
mation can be found in Volumes I and V of Inside Macintosh.

Bit images

A bit image is a collection of bits in memory laid out like a
rectangle. It can be arbitrarily large. A bit image can be thought of
as beginning a collection of contiguous memory locations
containing words. Bit 15 of the lowest numbered word is on the
left, and bit 0 of the highest numbered word is on the right. This
vector of bytes is then converted into a rectilinear structure like
that shown in Figure 5-2. The dark vertical lines represent word
boundaries. The number of bytes in each row of the image is
referred to as the bit image's row width. A bit image can be any
length that is an even multiple of the row width.

64 Chapter 5: Display and Graphics Routines

f Fl"1byte

F t byte L1rs

F t byte L1rs

l 2 3

4 5 6 7 8
~ ~ ~ ~ ~

,_/
Last byte

Figure 5-2
A bit image

Pixel images

t- First row

fext row
I I J

t-

/---

First row

Row width
(offset)
is 8 bytes

Last row

A pixel image is used exactly the same way on the newer
Macintosh systems as the bit image is on the ea rlier ones. The
only difference is that a pixel image has depth . A bit image can
be thought of as a one-bit-deep pixel image. A pixel image
typically is one to eight bits deep. The deeper the pixel image, the
more colors can be displayed at a time on the screen. The trade­
off is that more colors mean longer screen redrawing times.
Figure 5-3 shows a pixel image.

Bits and pixels, maps and images 65

Pixel depth = l
I

Bit map

Figure 5-3
A pixel image

Bit maps

f''~ld~Hp~th-+-+-=+l++-t-+-<-+-+-+++-+-t

"

Pixel map

The classic Macintosh keeps track of bit images and where they
should be displayed on the screen by means of a data structure
called a bit map. This structure contains a pointer to the bit
image, an integer defining the row width of the image, and the
coordinates of the boundary rectangle within which the bit image
is to be displayed. The boundary rectangle defines the
dimensions and the coordinate system for the bit map.
Coordinate systems are covered later in this chapter.

All drawing takes place in the bit map and is transferred to the
screen by built-in routines that are invisible to your program.

Pixel maps

As you would expect, the pixel map used in the color world of
·Macintosh is more complex than the bit map of monochrome
displays. A pixel map has the same 3 fields as a bit map but adds
12 new fields. These additional fields deal with color and with the
fact that on the newer Macintosh systems, displays other than the
built-in monochrome monitor of the earlier Macintosh may be
used. This condition makes it necessary to store resolution data.

66 Chapter 5: Display and Graphics Routines

As with bit maps, the newer Macintosh systems do all of their
drawing in the pixel map and then translate that into a screen
display by processes that are invisible to your program.

Graphics ports
Although we often speak and think of graphics ports as if they
were screen images, technically they are data structures stored in
your application heap. Each graphics port has a separate data
structure defining all of its characteristics. Switching from one
graphics port to another is as simple and fast as using GetPort
to remember the one you are leaving and SetPort to cause
subsequent output to be sent to the new port.

Although graphics ports are the structures upon which a program
builds the windows, it is important not to confuse graphics ports
with windows. Any single window may contain many graphics
ports. Similarly, a single graphics port may span multiple
windows, though programs are not generally designed this way.

What's in a graphics port's record?

Figure 5-4 shows the data structure of a record of type grafport.
Note that it can be divided into eight groups of related fields . At
the outset, however, you should understand that your application
will typically never directly modify any of the fields in this record.
Modification takes place by calls to appropriate QuickDraw
routines as described later in the chapter. QuickDraw owns this
data structure, and it is not good form for your program to write
directly to it.

Graphics ports 67

Device

portBits

portRect

visRgn

c/ipRgn

bk Pat

fil/Pat

pnLoc

pnSize

pnMode

pnPat

pnV/s

txFont

txFace

txMode

txSize

spExtra

fgColor

bkColor

colrBit

- Device information

Port and window
descriptions

Pen descriptions

Text descriptions

Color descriptions

_ Pattern-printing
patStretch control

picSave }
rgnSave Status monitoring

1--_,_p_o~ly_S_a_ve_-1

grafProcs - Special pointer
~~---~

Figure 5-4
The structure of a graphics port record

Device information

The first field is used by the Font Manager to tweak the display of
characters for the most pleasing output, depending on whether
the device is the Macintosh monochrome screen, a printer, or a
color video monitor. This field usually contains a 0, which is the
value that produces the best screen output. If your program's
output is to be routed to a device other than the screen, the field
should be programmed to contain that device's ID number.

68 Chapter 5: Display and Graphics Routines

Port and window descriptions

The next six fields in the grarPort data record provide information
about the port itself and the window associated with the port. The
first, portBits, is a pointer to the area in memory where the bit
image to be used by the graphics port is stored. The next, portRect,
usually defines the area where data will actually be displayed. All
drawing takes place inside this rectangle.

How much of a bit image's display is visible on the screen is
controlled by the values in the next two fields. The visRgn field
stores a handle to the visible region of the display. (Regions are
explained under "QuickDrawing.") This area is one your program
normally ignores. Its management is automatic. When windows
overlap, this field makes it possible for your program to write even
in a partially hidden window without the image overflowing onto the
front window. Your program does, however, manage the clipRgn
field. You can use this field to limit arbitrarily how much of the
image being generated the user sees. For example, you can draw a
circle within a graphics port where the clipRgn field is set so that the
user only sees a half-circle.

The final two fields in this part of the record are used by some
QuickDraw routines. The first, bkPat, is the background pattern that
is used when an area is erased. The second, fillPat, is a fill pattern
used by Macintosh to fill an area. (Patterns are discussed later under
"QuickDrawing. ")

Pen description

The next five fields define the pen used for drawing all lines,
whether the lines are drawn using line-drawing tools or are part of a
graphic image such as a shape or picture created in other ways.
Figure 5-5 shows the QuickDraw pen and its four main
characteristics.

Graphics ports 69

Figure 5-5
A graphics pen

Location~
Pattern~} Height

~Width

First among these fields is pnLoc, which is the coordinate position
of the upper left corner of the pen.

The pen's size is given in the form of two pixel counts. The first is
the pen's width and the second is its height. Normally, the pen is
1 pixel by 1 pixel, but you can set any value from 0 to 30,000 in
either or both values. The value is stored as if it were an addressed
point (x,y coordinate), but it is not used that way. That is just a
convenient data structure for the program to use .

A graphics pen can draw using any defined pattern. It need not be
a "black ink" line. The pnPat field contains a value that translates
into a display pattern. When a pen using any pattern is used to
draw over existing representations of bit image data, how it affects
those underlying images is determined by the setting of pnMode.
One of eight "transfer modes" can be specified by the contents of
this field. Depending on this setting, a pixel under a pixel in the
new pattern may be left alone, forced to black, forced to white, or
inverted from whatever it is at the time. Figure 5-6 depicts how
these modes work in combination with underlying objects.

70 Chapter 5: Display and Graphics Routines

Paint

• patCopy
srcCopy

• notPatCopy
notSrcCopy

Figure 5-6

• Pattern
or source

Overlay

II
patOr
srcOr

• notPatOr
notsrcOr

Pen transfer modes

+ • Destination

Invert Erase

• • patXor patBlc
srcXor srcBic

• • notPatXor notPatBlc
notsrcXor notsrcBlc

The last pen information field, pnVis, determines whether the
pen's actions are visible. If this field contains a negative value,
pen actions do not produce visible results.

Text description

The next five fields describe the text associated with the port.

The font is described as a number in the txFont field. Each font in
the Macintosh has a number associated with it. Conflicts between
font number should not arise, though they are not automatically
prevented by anything in the Macintosh. If two or more fonts
have the same font number, only the first one found in the fonts
loaded into memory will be accessible. If the txFont field contains
a 0, the system font will be used.

Graphics ports 71

Within each font, type may have various sizes and styles. Sizes are
expressed in points and are stored as an integer in the txSize field.
(A point is approximately 1/72 inch.) If the specified font does
not have available a font of the size stored in the txSize field, the
Font Manager uses scaling algorithms to create one.

Type styles include bold, italic, underlined, outline, shadowed,
condensed, extended, and combinations of these (see Figure 5-7).
The txStyle field can contain a set of one or more key words that
describe these combinations of text styles.

Plain characters
Bold characters
Italic characters
Underlined characters
Ouilined chauractern
Sh~dowed ch~crtern
Condensed characters
Extended characters
Bold Italic characters
IB3«Dilcdl (Q)unlc11fu:mce<dl cdID~Uffll~~
Figure 5-7
Type styles

Like the pnMode field discussed earlier, the txMode field
determines how text that appears over other items on the display
will appear. Of the eight types of modes available (see Figure 5-6),
only srcOr, srcXor, and srcBic should be used for text. Others
create unreadable and unpredictable results. CTn fact, if you want
your programs to be able to display color text clearly and with
predictable results, you should only use srcOr as txMode.)

The spExtra field is only used in producing fully justified text. It is
beyond the scope of what you need to worry about at this point.

72 Chapter 5: Display and Graphics Routines

Color description

The next three fields deal with color. Do not confuse these fields
with the far more powerful color capabilities included in color
graphics ports, which are discussed later in "Color QuickDraw
Graphics Ports." These fields are used to permit the classic
Macintosh application to produce images in color on output
devices that support color, including the lmageWriter® II printer.

The first two of these fields, fgColor and bkColor, define the
foreground and background colors to be used in printing. A
selection from eight colors is available for each of the two types
of color placement (see Table 5-1). The third field, ColrBit, helps
the graphics port figure-out which layer, or plane, of a graphic
image should be printed in the particular color combination.

<- Note: Because colors can be combined to make new colors,
they are layered onto the screen, but in a two-dimensional
display this is difficult to show. The data structure, however,
represents the layers so that a color printing device can
produce the best possible output.

Table 5·1
Color selections In monochrome graphics ports

Color Constant

Black 33

White 30

Red 205

Green 341

Blue 409

Cyan 273

Magenta 137

Yellow 69

Interestingly, if your program uses color printing fields in the
graphics port record and then the user prints to an output device
that does not handle color, nothing damaging happens. The
output is produced correctly.

Graphics ports 73

,.

device

portPix

portVersion

gratvars

ch Extra

phLocHFrac

portRect

visRgn

clipRgn

bkPixPat

rgbFgColor

rgbBkColor

pnLoc

pnSize

pnMode

pnPixPat

pnFil/Pat

pnVis

txFont

txFace

txMode

txSize

spExtra

fgColor

bkColor

colrBit

patStretch

pie Save

rgnSave

polySave

grafProcs

Figure 5-8
The structure of a color
graphics port record

Pattern-printing control

The next field, patStretch, is of no particular interest to your pro­
gram. It controls the way a pattern is altered when it is printed on a
hard-copy device rather than displayed on the Macintosh screen.

Status monitoring

The next three fields contain handles to information about
pictures (picSave), regions (rgnSave), and polygons (polySave) .
Your program should not concern itself with these fields except in
rare circumstances beyond the scope of this discussion.

Color QuickDraw graphics ports

If you want your program to be able to take advantage of the moie
powerful color facilities on the Macintosh SE and Macintosh II ,
you use routines that create color graphics ports, also known as
CGrafl>ort data structures. These structures are the same size as the
traditional monochrome graphics port records and have many
fields in common with those structures. There are, however, ten
new fields with which your program will have to deal.

The structure of a color graphics port is shown in Figure 5-8. New
fields discussed below are highlighted in the illustration.

The portPix field is a handle that points to the port's pixel map
(see "Pixel Maps" earlier in this chapter). The two high-order bits
of portVersion are always set to signal a Color QuickDraw port.
The rest of the value contains the version number of the Color
QuickDraw routines that are in use.

By means of the grafVars field, the color graphics port's data
structure was kept the same size. This field contains a handle to

the location in memory of some new fields used for new drawing
modes implemented in the Macintosh II.

The chExtra field determines the number of pixels by which any
character is widened on a line of text to achieve proportional­
spaced display and printing. The pnLocHFrac field holds a value
that represents the fractional precision of the pen position used
when drawing text.

On the newer Macintosh systems, it is possible for the background
to contain not only a color but a pattern as well. Th~ background
pattern to be used is identified in the bkPixPat field. Similarly, the
patterns to be used for the pen is held in pnPixPat and the fill
pattern in fillPixPat.

The remaining four new fields determine the bacl~ground and
foreground colors used in displaying and printing information.
rgbFgColor and rgbBkColor describe the foreground and
background colors, respectively, that have been requested by the
program or the user. fgColor and bkColor conta,in the foregroµnd
and background colors actually supplied to the program by the
Color Manager. Pepending on user requests and the capabilities
of the display hardware, these fields can differ from the coptents
of rgbFgColor and rgbBkColor.

Graptiics ports and coordinate systems
Coordinate addresses point to the intersection of mythical grid
lines in the coordinate plane, not to an individual bit or pixel.
Another way of saying this is that the lines are infinitely thin. Th~y
define the outer boundaries within which all the b.its or pixels that
define a particular shape lie. As a consequence, all ~lements
represented on the coordinate plane are "mathernatically pure"
and will produce intuitively correct results using integer
mathematics.

All information about location or movement is given to
QuickDraw in terms of coordinates on a plane. The coordinate
system is a two-dimensional grid, as illustrated in Figure 5-9. The
origin of this grid, position (O,O), is located at i~ center, with
numbers becoming negative as they move' up and left, and
positive as they move down and right.

Graphics ports 75

'

--I I I I _i_i_i_i _
_ i_i_i_i_
_i_i_i_i_
_i_i_i_i
_i_i_i_i
_i_i_i_i _
_ i_i_i_i _
_ i_i_i_i_
-·-·-·-·-

I I I I
32767

Figure 5-9
QulckDraw's coordinate plane

Local coordinates

'
\

'

Screen­
area

i

'
, -..(Point

'+±-'4 Pixel

Each graphics port has its own local coordinate system. Within
the port, all fields are expressed in terms of this system and all
calculations and actions use it.

When a new graphics port is created, its bit map is set to
encompass the entire screen. The upper left corner of the port is
set as its origin with coordinates (O,O). Your program may,
however, alter the coordinates of this corner of the port with the
SetOrigin procedure. The corner remains anchored at all
times as the reference point for all other coordinate system calls.

76 Chapter 5: Display and Graphics Routines

If your program must compare or perform calculations on two or
more graphics ports, it cannot do so using each port's individual
local coordinate system. QuickDraw furnishes routines to convert
local coordinates into the global coordinate system in which the
upper left corner of the port's bit image is set logically to (O,O).
Moving between global and local coordinate systems is
straightforward. Two procedures are available. The
LocalToGlobal procedure converts a port from the local
coordinate system to the global system. The other procedure,
GlobalToLocal, reverses the process.

The concepts involved in these coordinate systems and their
relationships to each other are important to a thorough under­
standing of QuickDraw. You should read the QuickDraw chapter in
Volume I of Inside Macintosh to gain a deeper appreciation for
these tools. It is not necessary that you have a thorough under­
standing of them to make use of the rest of this chapter.

Rectangles
Rectangles play a significant role in the world of QuickDraw.
Coordinate systems are rectangular, as are bit and pixel maps. All
shape drawing, even that of circles and ovals, takes place inside
rectangles.

A rectangle is defined by its upper left and lower right corners,
which are given coordinate addresses. QuickDraw provides
numerous built-in routines that permit you to manipulate and
perform calculations on rectangles.

Quick Drawing
The discussion in this section focuses on the classic Macintosh with
monochrome display, but the techniques are also largely
applicable to the newer color-capable Macintosh family mem­
bers. Differences between the two types of Macintosh program­
ming are explained in "Color QuickDraw" later in this chapter.

Quick Drawing 77

An outline of a QuickDraw program
Here is a skeleton of the program code that would normally be
used in a program to display text or graphics in a window.

InitGraf(pointer to the port)

InitWindows

FlushEvents(everyEvent,0)

InitCursor

NewWindow(window-creating information)

SetPort(pointer to the window)

(drawing routines)

This fragment is necessarily broad and oversimplified. Notice that
graphics must be initialized before they can be used, which is the
function of the first command in the list. Next, you perform an
Ini tWindows call to initialize the Window Manager. Most of the
time, your drawing will take place in a window, so you use the
Window Manager to open, track, and handle your graphics ports.

The drawing routines can include any or all of the routines
described in this section.

Lines and the QuickDraw pen
The QuickDraw graphics pen has a number of characteristics
associated with it. These include a size, a location, a pattern, a
transfer mode, and the possibility of being visible or invisible.
QuickDraw routines permit you to determine the current state of
the pen and alter its traits as needed. With the pen's status estab­
lished as desired, either of two line-drawing routines can be used.

To find out the current status and location of the pen, you can use
GetPen or GetPenState, depending on how much data you
need. GetPen tells your program where the pen is located.
(Remember, too, that because each graphics port has its own pen
associated with it, the pen won't move when you switch ports and
then switch back again.) GetPenState also allows your program
to find out the size, transfer mode, and drawing pattern in
addition to its location.

78 Chapter 5: Display and Graphics Routines

Figure 5-1 O
A triangle with pen changes

One good use of these two routines is the storage of current pen
information so that you can make a temporary change and
restore the original pen with little programming overhead.

The size of the pen can be altered with the PenSize call and its
transfer mode with the PenMode routine. PenPat permits the
same kind of control over the transfer pattern.

QuickDraw includes one all-purpose pen routine called
PenNormal. This resets the pen's parameters to their default
conditions. The size is one pixel by one pixel, the transfer mode
is patCopy, and the pattern is black. The location is not altered by
PenNormal, because there is no "normal" or default position.

To move the pen without performing any drawing during the relo­
cation, use Move and MoveTo. The first is a relative move and
the second moves to an absolute location in the graphics port.

Drawing lines requires the use of Line and LineTo, which are
directly equivalent to Move and MoveTo except that they
perform drawing as the pen moves.

Here is a procedure that draws a triangle in the current graphics
port, changing the pen's size and pattern at each turn. Figure 5-10
shows what the display results of running this routine would be.

SetPenState (starting position)

(assume starting position of 150,50)

LineTo(S0,130)

PenPat(dkGray)

LineTo(250,160)

PenPat(ltGray)

LineTo(lS0,50)

PenNormal (returning pen to its original state)

Shapes
There are four basic shapes that can be drawn with single
QuickDraw commands and five different things that can be done
to each of these shapes. The matrix in Figure 5-11 shows the
combinations of shapes and actions, with the intersections
providing the QuickDraw routine name.

QulckDrawlng 79

D [) C) D
Round-cornered

Rectangles rectangles Ovals Arcs

Frame FrameRect FrameRoundRect FrameOval FrameArc

Paint PalntRect PalntRoundRect PalntOval Paint Arc

Erase EraseRect EraseRoundRect EraseOval EraseArc

Invert lnvertRect lnvertRoundRect lnvertOval Invert Arc

Fill FlllRect FlllRoundRect FlllOval FlllArc

Figure 5-11
QulckDraw shape manipulation routines

Framing a shape is the same as creating it. Painting it requires the
use of either PaintRect (to use the port's pen patterns and
thicknesses) or FillRect (to override the current pen data).
Erasing a shape also erases any pattern with which it was filled.
InvertRect inverts the bits encompassed by the rectangle. If all
the bits are white, they turn black. If they are all black, they turn
white. Action is on an individual bit basis, which permits the
inversion of patterns, cursors, and other graphic items.

Rectangles: A reprise

What is not obvious from Figure 5-11 is that all the routines that
frame, paint, fill, invert, or erase an oval, round-cornered
rectangle, arc, or rectangle take as one argument the boundaries
of the rectangle surrounding the shape. In many cases, the
rectangle's boundaries are the only parameter needed by the
graphic call. If your program specifies that the procedure being
used should draw an oval inside a square, a circle results. But if
the rectangle is not square, an oval results.

80 Chapter 5: Display and Graphics Routines

Patterns

A pattern is an eight-by-eight-bit image that defines a repeating
design. Normally, patterns are stored as resources (see Chapter 2)
and read into the system as needed by your application. A
pattern's resource type is 'PAT' in the classical Macintosh world
and 'PPAT' for color pixel patterns. 'PAT' must include a blank in
the name to meet Macintosh's four-character requirement for
resource types.

It is also possible for your program to create patterns "on the fly"
using the StuffHex routine. This approach is not as efficient as
creating a resource file and compiling it, but it works well where a
pattern is of passing interest or use in the program. As its name
implies, StuffHex "stuffs" hexadecimal values into specific
areas of memory. The routine has one danger: no range-checking
is performed. That makes it possible for the inattentive
programmer to find his or her programs doing strange and
impolite things.

Patterns are used to fill areas and as pen-drawing designs. When a
pattern is used, it is automatically aligned so that it gives the
appearance of a continuous stream of pattern, much like fitting
wallpaper strips together so the seams are not visible.

The monochrome fill-ins light gray, gray, dark gray, and black are
patterns. So are the patterns the user can select in programs like
MacPaint and MacDraw.

Patterns are not actually managed by QuickDraw routines. Instead,
there is a group of graphics utilities contained in the Toolbox
Utilities that are separate from QuickDraw. If resources are used to
store patterns, the toolbox call GetPattern loads the pattern
whose resource ID is supplied. There is also a pattern list stored in
the system resource file that can be accessed by indexing into it
with calls to GetindPattern.

On the new, color-capable Macintosh II, an added pattern type
called pixel patterns is supported. Old-style monochrome bit
patterns are still supported. As a programmer, you can program
as if your application were going to be run only on the Macintosh
II. QuickDraw has been redesigned so that if a monochrome d~s­
play is being used, the patterns are converted appropriately. Pixel
patterns are capable of being displayed in color, and the colors
used need bear no relationship to the foreground and background
colors of the graphics port in which they are displayed.

QulckDrawlng 81

Fonts
Because all screen and printer output is handled via QuickDraw
graphics routines, it will come as no surprise to you that text
display is also a QuickDraw function. But text can be displayed in
any of several different font families, type styles, and sizes. When
QuickDraw text-creating routines are used, they in turn call
appropriate Font Manager routines, which provide information to
QuickDraw about the text to be displayed.

For a complete explanation of font families, type styles, and
typography-related subjects, see the Font Manager chapter in
Volume I of Instde Mactntosh for the classic Macintosh. There are
a few font differences for the color-capable Macintosh family
members; these are described in Volume V of Instde Mactntosh.
Techntcal Introductton to the Macintosh Famtly also summarizes
useful information about fonts.

As discussed earlier, each graphics port record has information
about the font, style, size, transfer mode, and justification spacing
for text drawn in that specific port. There are built-in QuickDraw
routines for manipulating this information. For the most part, these
routines are straightforward. TextFont takes as an argument an
integer value representing the font to be used, TextMode sets the
transfer mode, TextSize uses an integer argument to set the size
in points, and SpaceExtra guides QuickDraw in making fully
justified text look as readable as possible.

TextFace is the only one of these routines that requires
clarification. The list of type style information is cumulative, so
that if both bold and italic are specified as type style
characteristics, the type will display as bold italic characters. The
parameters to a TextFace call, then, modify the contents of the
graphics port's txFace field. If your program issues a call like

TextFace ([bold, italic])

the text will be displayed as bold and italic. You can turn an
existing character trait off by using a minus sign in front of the
characteristic. For example, if you have a port called thePort, its
txFace field can be made to remove bold but leave everything
else unchanged by a call of

TextFace([thePortA.txFace-[bold])

82 Chapter 5: Display and Graphics Routines

A plus sign can be used to add a trait to a set of characteristics
without knowing what those existing traits are.

QuickDraw also has a built-in procedure, GetFontinfo, your
program can use to determine what the current graphics port's
font settings are.

Once the characteristics of the text to be displayed are set by your
program, displaying text is a simple matter of calling one of the
three text-drawing routines: DrawChar, Drawstring, or
DrawText. Each has its place. DrawChar draws just one
character, advances the pen to the next position, and waits for the
next call. It is likely you will not often need this call because a call
to either of the other routines with a single character to be
printed has the same effect and is more generally usable.

Drawstring requires that you supply as an argument a text
string to be printed. DrawText expects you to store the
information to be printed in a buffer and to supply a pointer to
that buffer, a starting display position, and a length. Neither of
these routines, incidentally, supplies formatting such as carriage
returns or line feeds during the display of text. It is your pro­
gram's responsibility to keep track of where the pen is in relation
to the port's boundaries and to perform appropriate formatting.

Icons
Like fonts and patterns, icons are generally defined as resources.
They are called into Macintosh memory and used by your pro­
gram as needed, but they are displayed using QuickDraw routines.

An icon consists of a 32-by-32-pixel bit image stored as a block of
128 bytes in the application heap.

The management aq.d display of icons is not a QuickDraw routine.
Rather, these operations are performed by graphics utilities stored
in the Toolbox Utilities as described earlier. Those utilities are
Geticon, which retrieves an icon from the resource file, and
Ploticon, which draws µte icon by means of low-level calls to
QuickDraw that are transparent to your program.

Quick Drawing 83

Cursors
Like patterns and icons, cursors are handled at least partly by
Toolbox Utilities. But cursors are much more integrated into
QuickDraw than either patterns or icons. Cursors are also
somewhat more complex because they are active objects. Not
only can the user move them around on the display as with icons,
but the position of their hot spot when the mouse button is
pressed (or even when it is not, in some applications) can cause
the program to alter its course and activate procedures connected
with other objects.

The QuickDraw routine InitCursor is used to start cursor
activities in most applications. It sets the cursor shape to the
familiar northwest-pointing arrow and also sets the cursor level to
0. To change the cursor on the display, your application first
generally loads a cursor resource using the Toolbox Utilities
GetCursor call and then makes it the currently active cursor
with the QuickDraw SetCursor routine.

The cursor sometimes disappears in Macintosh applications. Most
of the time, this disappearance is temporary and takes place when
the user is typing into a window. To create this effect in your
programs, you use ObscureCursor. This routine hides the
cursor only until the next time the user moves it with the mouse
or other pointing device, at which time it reappears where it was
when it was obscured.

There are times, though, when you want the cursor hidden not just
until it is moved but until some specific action or event occurs. In
those situations, you use HideCursor and ShowCursor. Calls
to these routines must be balanced; for every call to
HideCursor there must be an offsetting call to ShowCursor.
Failure to observe this requirement is a frequent source of
programming problems on the Macintosh. HideCursor
decrements the cursor level by one and ShowCursor
increments it by one. Only when the cursor level is 0 is the cursor
visible. This permits you to nest routines that affect whether the
cursor is displayed or not and then walk the program back up
through the nested calls to a point where it is appropriate to show
the cursor again.

84 Chapter 5: Display and Graphics Routines

''Don't create a bunch of regions
and pictures. Use one and move
it. Tbe Key Caps desk accessory
is a good example. It uses only
one region and then moves it in
response to the user's actions. "
Ed Tecot,
Apple Computer

Regions

Unlike most graphics packages, which can manipulate only simple
geometric shapes, QuickDraw can gather an arbitrary set of points
into a structure called a region. It can then perform complex and
rapid manipulations and calculations on such structures. Regions
enable your programs to handle graphics at very high speed and
to perform difficult and complex graphic operations.

Your program defines a region by first calling NewRgn to
allocate space for it and then initializing it with OpenRgn. From
that point until you use CloseRgn to indicate you are done
creating this region, no drawing takes place on the screen itself
unless you force it to do so. To define a region, you create a line
and a shape that determine the outline of the region and its
boundaries. A region should consist of one or more closed loops
(see Figure 5-12).

'
-=

Figure 5-12
Regions

Within the memory constraint of 32K, you can create any kinds of
shapes within regions that you like. When the region has been de­
fined and saved, it can be called into memory from the disk and
become the object of numerous manipulation and calculation
calls. Regions can be copied, framed, painted, erased, inverted,
and filled just like the regular geometric shapes discussed earlier.
Two regions can be compared and their intersections and
noncoincidental points located.

•> Note: You should never use regions with any image that will be
printed. The LaserWriter's firmware does not support regions.

QulckDrawlng 85

Pictures
Another powerful idea for grouping graphic objects in QuickDraw
is the picture. You can think of a picture as a script that records
all the objects created within a graphics port and then plays them
back later under program control. When you call up a graphic
object saved as a picture, QuickDraw scales the drawing to a
destination rectangle you supply, called the picture frame. This is
a fast and flexible way of displaying graphic information
generated by one program in another program that need not
know anything about how the graphic was created.

Pictures are stored as 'PICT' resources, frequently stored in files
with a type 'PICT'.

The differences between pictures and regions are not obvious at
first glance:

o Regions have irregular boundaries, whereas pictures always fall
within rectangles.

o Regions confine themselves to lines and shapes, whereas any
kind of drawing can take place within the frame of a picture.

o Pictures are automatically resized when they are displayed in a
rectangle that is larger or smaller than the one in which they
were created, whereas regions do not change size simply by
being redisplayed.

To create a new picture, use the OpenPicture routine. This
routine both allocates the space for the new picture and causes
QuickDraw to start recording drawing commands. When you are
through drawing the picture, you can use ClosePicture to stop
recording graphics commands. When the picture is saved on disk,
you can simply use DrawPicture to display the picture after
loading it into memory with the Toolbox Utilities Routine
GetPicture.

86 Chapter 5: Display and Graphics Routines

Polygons

There is a whole class of shapes called polygons that can be
created and manipulated in QuickDraw much like the regularly
shaped rectangles, ovals, round-cornered rectangles, and arcs
discussed earlier. In some ways, polygons are a cross between
these shapes and pictures. They even take on the characteristics of
a region for some purposes.

Only line-drawing routines Line and LineTo affect a
polygon's shape. A polygon has an arbitrary shape and size
(though, like a picture, is limited to 32K), made up of a series of
points to be connected in sequence to recreate it.

Unlike a picture, but like the other shapes discussed, a polygon
can be framed, painted, erased, inverted, or filled.

Color QuickDraw
The original QuickDraw supported color in a limited way. The
version of QuickDraw for the Macintosh II provides a great deal
more power and flexibility. But the degree to which the new Color
QuickDraw routines produce a display that is pleasing and usable
is as closely related to the type of monitor and video card used as
it is to the routines themselves. This, of course, was never an issue
on the classic Macintosh systems with built-in monochrome
monitors.

The Color QuickDraw's graphics port data structure is more
complex than that of the classic Macintosh structure. This is also
true of bit image representation, which uses RGB space-a three­
dimensional model in which each of the three additive primary
colors (red, blue and green) can be assigned a value-rather than
pixel images one bit in size.

Drawing in color graphics ports works essentially the same way as
drawing in old-style monochrome or limited-color ports.
Set Port accepts either type of port as an argument and the
QuickDraw line and shape drawing routines work as expected.

Color QuickDraw 87

There are also several new resource types associated with color
graphics. These include the following, which are defined to
differentiate them from their corresponding classic resources:

D 'crsr' (color cursor)

D 'ppat' (pixel pattern)

D 'clut' (color look-up table)

D 'cicn' (color icon)

D 'scrn' (screen)

Color cursors have a special set of routines to handle them,
including GetCCursor for loading color cursors from resource
files and SetCCursor for establishing the currently active color
cursor. Other cursor calls work as with monochrome displays. Simi­
lar special routines exist to handle color icons and color pictures.

Text display under Color QuickDraw is somewhat different,
although all the routines in the earlier Macintosh are still
supported.

88 Chapter 5: Display and Graphics Routines

Chapter 6

The User Interface Toolbox

89

"ljyou can't.find a built-in
Toolbox routine to do what
you want, you are probably
doing something unnecessarily
strange."
Frank Leahy,
Apple Computer

This chapter introduces the five most important and often-used
parts of the User Interface Toolbox besides QuickDraw (which is
covered in Chapter 5). It describes the basic functions of each
part, outlines the fundamental programming approaches, and
explains the use of the most important routines and calls.

These routines and calls have been chosen for much the same
reason a craftsman in a skilled trade chooses tools. In any
toolbox, certain tools keep landing on the top of the pile because
of their frequent use. It is with these tools that the craftsman
becomes so skilled that using them properly is second nature. So
it is with Macintosh Toolbox routines.

Writing a complete Macintosh application can be accomplished
using QuickDraw, the Memory Manager (discussed in Chapter 4),
and the five tools covered in this chapter:

D the Window Manager

D the Menu Manager

D the Dialog Manager

D the Control Manager

D TextEdit

If the application involves file 1/0, then the Standard File Package
(discussed in Chapter 7) is also required. Other parts of the User
Interface Toolbox are often needed, but they are not requisite to
writing a Macintosh application that accomplishes a useful task
and complies with Apple's Human Interface Guidelines.

Similarly, within each of these tools, there are some calls that are
used so often that they must become part of your programming
vocabulary. Those calls are covered in this chapter. Each manager
has dozens of other calls not presented here, again primarily
because experience shows some calls are used far more often than
others.

Most Toolbox routines work by altering or using the contents of
data structures. In a sense, the entire Macintosh interface is built
around these data structures. This intimate relationship between
routines and data structures is a key to understanding how to
program the Macintosh family.

90 Chapter 6: The User Interface Toolbox

The Window Manager
The ability to display overlapping windows is one of the most
obvious and significant features of the Macintosh and its User
Interface Toolbox. The Window Manager is responsible for
creating, managing, and manipulating windows on the Macintosh
desktop. One of its most important functions is to keep track of
overlapping windows. Your program need not keep explicit track
of what portions of which windows are overlapped and which
need to be redrawn on the screen when the situation changes. The
Window Manager provides built-in routines to track and handle
such activities; your program merely needs to know when to call
on these routines.

It is easy for your programs to use windows. A window is just
another graphics port as far as your program is concerned. It ca n
draw into a window like any other graphics port with QuickDraw
routines. When your program creates a window, it simply specifies
a rectangle that then becomes the portion of the port known as
the portRect in which all drawing takes place.

There are six standard types of windows: document windows,
document windows without grow boxes, round-cornered windows,
alert or modal dialog boxes, plain boxes, and plain boxes with a
partially shadowed outline. These are shown in Figure 6-1. In
addition, your application program can create any kind of window
it needs.

The Window Manager 91

~D Title ~D Title D Title

Qi

documentProc noGrowDocProc rDocProc

dBoxProc plainDBox altDBoxProc

Figure 6-1
Standard window types

Like nearly every other object your program uses, windows may be
resources. However, they need not be resources; your program
can create and dispose of windows dynamically as well.

Regions of a window

Every window, whether a standard type or one your program
creates, has a minimum of two regions. The content region is Lhe
area of the window your application uses for drawing. The
structure region is the entire window (the content region plus the
window frame, which may in turn include other regions as
described below).

In addition, most windows contain one or more of the following
optional regions:

o the go-away region, which the user clicks in to close the window

o the drag region, which the user drags in to pull an outline of
the window across the screen (making the window active if it
isn't already)

92 Chapter 6: The User Interface Toolbox

o the grow region, which the user drags in to change the size of
the window while the upper left corner remains "anchored"

Figure 6-2 depicts these regions and their placement in a typical
Macintosh document window.

Standard window definitions contain information about which of
these regions are contained within a window.

s File Edit Search Format Font Style
Go-away reg ion --------1~-~iijiijiijiijijiijiijiijiijii~a~o~cu~m~e~n~t}iiijiijiijiijiijiijiijiijjii§j

Drag region ----- - ----+--- -__/

Grow region -----------+--------------~

Figure 6-2
Regions of a Macintosh document window

The window record

The Window Manager stores all the information it needs about a
particular window in a window record. The structure of the window
record is shown in Figure 6-3. The structure is identical regardless of
which member of the Macintosh family your program is running
on.· If your program is running on the Macintosh II, an auxiliary
window record is used to retain color information needed for the
window in addition to that stored in the standard window record.

The Window Manager 93

port

windowKirid

visible

hilited

goAwayF/ag

spareF/ag

strucRgn

contRgn

updateRgn

windowDefProc

dataHandle

titieHandle

title Width

control list

nextWindow

windowPic

refCon

Figure 6-3
The structure of a
window record

This section covers only those fields of the record that are
significant. A complete discussion can be found in Volume I of
Inside Macintosh.

The first field contains the window's graphics port.

The WindowKind field identifies the window's class. A class of 2
means the window is a dialog or alert box, and a class of 8
indicates an application-defined window type. Negative numbers
mean desk accessory windows. Classes 0, 1, and 3 through 7 are
reserved for future use by the system.

When the visible field is True, the window is currently visible. The
next twc fields contain Boolean values. The first, hilited, is
checked during window drawing to see if the window should be
highlighted. The other, goAwayFlag, is checked to see if a close
box should appear in the window when it is drawn.

The next three fields store handles to the structure region
(strucRgn), content region (contRgn), and update region
(updateRgn) of the window. QuickDraw uses these handles when
redrawing windows. The handles are given in global coordinates.

Each window can have a title in its title bar. The field titleHandle
is a handle to the title, if it has one.

Some windows contain controls such as scroll bars. If they do, the
next field, contro!List, contains a special handle of type
Contro!Handle that indicates where the list of these controls is
stored. This information is used by the Control Manager, as
described later in this chapter.

nextWindow is a pointer to the next window iri a stack of
overlapping windows-in other words, the window behind the
current window. Your application should not access this data
directly.

The last field of the window record, refCon, can be used by your
application to store any information it wants for any purpose for
which a long integer value will serve.

In color applications on the Macintosh 11, an auxiliary window
record is also involved, which includes a handle to the color table
for the window. The structure of this record is beyond the scope
of this discussion.

94 Chapter 6: The User Interface Toolbox

Using the Window Manager

You use the Window Manager to open and close windows under
program control, update windows when changes in visible
windows occur, and handle mouse-generated events including
selecting a window, resizing it, moving it, or closing it at the user's
direction.

Initialization

Before you initialize the Window Manage r, you must first initiali ze
QuickDraw with Ini tGraf, and the Font Manager with
InitFonts. You can then call the InitWindows routine.
InitWindows draws the desktop and an empty menu bar.

Opening and closing windows

You use either NewWindow or GetNewWindow to create
windows. Each of these routines returns a pointer that you can use
to refer to the window it creates. NewWindow creates windows
dynamically. In this routine, you supply all the pertinent
information in an argument. GetNewWindow loads a predefined
window resource from the appropriate resource file, then carries
out the same function as NewWindow.

Here is an example of a code segment that creates a new dialog
window and allocates the storage itself, and how this window
would be closed.

MyNewWindow = NewWindow (WinBu f Pt r , MyNewWinRect, " My New

Wi ndow", TRUE ,DOCKind , CurrWinPt r- 1 , TRUE , NIL);

Cl oseWindow(MyNewWindow);

The NewWindow routine requires that you supply eight
arguments . It returns a window pointer. The arguments you must
supply are, in order, as follows:

o an optional pointer to the storage location to be used in
creating the window (using Nil if you want the system to
allocate the memory from the heap zone)

o the boundary rectangles for the window, in global coordinates

The Window Manager 95

o an optional window title, as a string of up to 255 characters

o a Boolean flag that is True if you want the window to be visible
and False if you do not

o an integer representing the window definition ID

o a parameter indicating whether you want the window to be on
the bottom of the current stack (in which case the value is NIL)
or on top of the stack (in which case it should be set to a value
one lower than a pointer to the current top window as in the
above example)

o a Boolean flag that is True if you want a go-away region to be
included in the window when it is drawn and False if you do not

o a long integer value that is the refCon (see "The Window
Record" earlier in this chapter) and that your program can use
any way it wishes (normally it is Nil unless some specific
purpose exists for its use in your application)

The GetNewWindow routine only requires three arguments. The
first is the resource ID of a window template stored in a resource
file. The other two are the storage pointer and an address
indicating where in the stack to place the new window, which are
identical to those for NewWindow.

When a window is no longer needed, call CloseWindow or
DisposeWindow. If you specifically supply the storage location
for the new window, you should use CloseWindow. Otherwise, if
memory for the new window is allocated from the heap, call
DisposeWindow to close it.

This example uses a prestored window resource numbered 256 to
create the window and lets the system allocate the memory:

MyNewWindow2 := GetNewWindow(256,NIL,CurrWinPtr(-l));

DisposeWindow (MyNewWindow2)

In both of the above examples, the value CurrWinPtr(-1) as an
argument indicates that the window should become the top
window.

Note that in either case you can supply a Nil storage pointer and
the Window Manager allocates the needed storage from the heap.

96 Chapter 6: The User Interface Toolbox

Updating windows

When the Event Manager routine GetNextEvent in your main
event loop reports that an update event has occurred for- your
application's window, you need to set up your program to permit
the Window Manager to redraw the screen. In skeleton form, this
procedure requires that you do the following:

1. Save the current port with a call to GetPort.

2. Use SetPort to ensure that the window is currently active.

3. Call the Window Manager BeginUpdate routine.

4. Erase the content region of your window.

5. Draw the size box (if present) and scroll bars (if in use), either
in outline form if the window is inactive or in filled-in form if it
is active.

6. Redraw the content region of your window.

7. Call the Window Manager EndUpdate routine.

8. Reset the port to the originally active window with another call
to SetPort.

Here is an example that depicts this processing:

GetPort(SavePort)

SetPort(MyWindow)

BeginUpdate(MyWindow)

DrawGrowicon(MyWindow)

DrawControls(MyWindow)

RedrawContentRegion(MyWindow)

EndUpdate(MyWindow)

SetPort(SavePort)

Normally, your program redraws the entire content region of your
application window. It may, however, redraw only the visible por­
tion of the window. In either case, screen updating is automatically
confined to that portion of the window that needs updating.

Of mice and windows

A mouse-down event also affects windows. Depending on where
the mouse is pressed in relation to your window, you do one of
the following:

The Window Manager 97

"I wrote VCO tn two weeks,
thanks to the Toolbox. If I tried
the same thing on a more con­
ventional PC, I'd have spent at
least that long writing Plot/con!"
Harry Chesley,
independent developer

o Make your window the active window with Select Window.

o Resize it with GrowWindow and SizeWindow.

o Relocate it with DragWindow.

o Use TrackGoAway and, if appropriate, call CloseWindow
or DisposeWindow if the user wants the window closed.

o Call the Control Manager routine FindControl if the
window contains controls and the mouse-down event took
place in the content region.

These routines are straightforward and self-explanatory, with the
exception of the TrackGoAway call. The go-away region is unique
among the features of the window in that the user can click in it
intending to close the window and then change his mind. In that
event, you obviously don't want to close the window. T rackGoAway
simply determines whether the mouse is still in the go-away region
when the button is released. If it is, TrackGoAway returns a
Boolean True and your program should close or dis pose of the
window, depending on how storage was originally allocated for it.

The following example uses the classic main event loop approach
to determining what to do in response to a mouse-down event.
This assumes that a mouse-down event has been detected in your
application's window and processes the event accordingly.

If event is in content region

and if window is not currently active

SelectWindow(MyWindow)

else if window has controls

FindControl (Location,MyWindow,ScrollBar)

If event is in grow region

GrowAmount=GrowWindow(MyWindow,Loc,StartSize)

SizeWindow(MyWindow,Width,Height,TRUE)

If event is in drag region

DragWindow (MyWindow,StartingPt,BoundaryRect)

If event is in go-away region

Closeit=TrackGoAway (MyWindow,goAwayPoint)

If Closeit returns TRUE

CloseWindow(MyWindow)

{OR DisposeWindow(MyWindow)}

98 Chapter 6: The User Interface Toolbox

The Menu Manager
Menus allow users to examine commands available to them and
to select one without having to remember Command key
combinations or special keys. If you've ever used a Macintosh, you
are familiar with how menus work from the user's perspective.

The Menu Manager contains the routines and data structure that
make the implementation and management of menus possible .

If you have programmed in other microcomputer environments
that use a menu-driven approach to design, Macintosh menus
may seem strange to you, both in how they are built and in how
the user sees and uses them. In older-style programming, a menu­
driven approach meant that the user was steered into the
application by a series of increasingly focused menu choices.
Thus there was always a master menu that gave users a set of
options. Once they had selected one of them, all of the other
functions of the menu screen became inaccessible unless they
returned to one of them. Each new submenu narrowed the choices
until a single, definable command could be discerned by the
program. At that point, the program carried out the user's
command and then returned to some point in the hierarchy of
menus.

On the Macintosh, the user sees the menus not as successively
narrower sets of alternatives but as a smorgasbord of all the
choices available to him or her in the application. Macintosh
users are not steered into the program. Rather, they drive the
program and tell it what they want to do next.

This is all directly related, incidentally, to the idea of modeless
programming that, as you saw in Chapter 1, is a key idea in
Macintosh program design and implementation.

Beginning with System version 4.1, Macintosh menus take on a
hierarchical capability. Under this design, menus can have
submenus glued to their right sides. Figure 6-4 shows a classic
Macintosh menu pulled down, and Figure 6-5 shows the same
menu with a hierarchical add-on choice. This section applies to
both types of menu.

The Menu Manager 99

!Jn1lo :)(:2

Tab WT
Paragraph 3€P
Font 3€F
Clear
Select All 3€A

./Wraparo un d

Figure 6-4
A classic Macintosh menu

Figure 6-5
A hierarchical menu on the Macintosh II

Apple's Human Interface Guidelines strongly urge you to avoid
using hierarchical menus if possible. In no case should you nest
more than one hierarchical level in a menu item.

Menus as resources
Like other objects with which your Macintosh application works,
menus are best handled as resources. The process for designing,
storing, and retrieving resources is outlined in Chapter 2. It is
important to note that menu resources must always be
nonpurgeable.

The general appearance and behavior of a menu are determined by
a routine called its menu definition procedure, or menu defproc
for short. This procedure is stored in a resource file where it has a
type 'MDEF'. Any action that varies from menu to menu, such as
drawing it, is described in the menu definition procedure. When
the Menu Manager has a function to perform with a menu, it calls
the definition procedure and passes it a message that tells it which
menu-dependent action to perform.

100 Chapter 6: The User Interface Toolbox

You will probably want to stay with the standard menu types,
which are defined in definition procedures in the system resource
file. This type of menu displays items vertically, allows each item
to have an associated icon, check mark, or other symbol, permits
Command-key equivalents for each item, and allows for differing
the style or dimming the name of a selection that is not available
at some point in the program. Color and hierarchical menu
functions are also supported here. (It is possible to create other,
nonstandard menu types, but the process is not described in this
book.)

Using the Menu Manager
The general procedure for handling menus in a Macintosh
application is constant regardless of the model of Macintosh. A
color menu sometimes requires the use of calls that have slightly
different names but are functionally the same as their
monochrome counterparts. Hierarchical menus are handled
exactly like traditional menus except in the way they are
displayed. The Macintosh system knows from the setting of a
particular value whether or not it is dealing with submenus and
hierarchical structures.

You use the Menu Manager to set up and remove menus, respond
to the user's menu selections, change menu items, and access
menus and items.

Initialization

Before you initialize the Menu Manager, you must first initialize
QuickDraw with Ini tGraf, fonts with Ini tFonts, and windows
with Ini tWindows. Ini tWindows draws the desktop and an
empty menu bar. Then you initialize menus by using the Toolbox
routine Ini tMenus.

Setting up and removing menus

There are four ways your application can set up menus, depending
on whether the menus are stored in a resource file and, if so, how
they are stored there. All the routines for adding items to a menu
bar require that you call DrawMenuBar after you have
constructed it in memory. The calls described in this section do
not affect the physical appearance of the menu bar.

The Menu Manager 101

If you have created a complete menu list and placed it in a
resource file, GetNewMBar reads it into memory and
SetMenuBar places the menu items into the menu bar. Such a
menu list contains handles to one or more menus, along with
information about the position of each menu in the menu bar.
Here is an example of this process:

MenuHandle = GetNewMBar(13)

SetMenuBar (MenuHandle)

DrawMenuBar

Another, more common way of storing menus as resources is as
individual menus. If you use this approach, you call GetMenu to
read each menu into memory and then place them into the menu
bar using InsertMenu. In this case, of course, you use a loop to
read all the menus. (You must know the resource IDs of the menus
to be read. This information can be obtained using the Resource
Manager if necessary.) Here is an example of this approach:

Start loop (counter increments until all menus read)

MenuHandle = GetMenu (counter value)

InsertManu (MenuHandle,0)

(0 means insert at end of current menu list)

End loop

DrawMenuBar

It is possible to create menus dynamically using NewMenu,
AppendMenu to place items into each menu, and InsertMenu
to place the menus and their associated items into the menu bar.
This is generally not good programming practice on the
Macintosh, however.

Sometimes, notably with desk accessories and fonts, it is necessary
to handle menus in a way that permits your program to work
regardless of how many items of a particular type are available
and must be displayed. In that event, you can use AddResMenu,
which looks through all open resource files for resources of a
specific type and appends the names of all of them to a given
menu. In this case, you use NewMenu to create each menu and
InsertMenu to place each menu into the menu bar. For
example, if you want to display a menu of all font choices
available to the user without knowing which fonts are installed, you
would use a program modeled after this example:

102 Chapter 6: The User Interface Toolbox

"Don't think of the Macintosh
as telling you bow to do things-­
just as a machine that gives you
the tools that make it so easy to
do it their way that it's not worth
fighting! "
Geoff Brown, author of
Deluxe Music Construction Set

FontMenu = NewMenu (FontMenuHandle, 'Fonts')

AddResMenu (FontMenu, 'FONT')

DrawMenuBar

To release a menu created with NewMenu when it is no longer
needed, call DeleteMenu to eliminate it from the current menu
list and the menu bar. DisposeMenu releases the memory
allocated to it. If the menu was created and loaded from a
resource file, use the Resource Manager's ReleaseResource
call instead of either of these two calls.

Responding to the user

There are two ways users can ask your program to activate a
routine related to a menu choice. They can select the menu item
with the mouse or use a Command-key equivalent, assuming you
have provided one or the user has added one.

Apple's Human Interface Guidelines suggest that your program
limit its Command-key equivalents to the most commonly used
menu commands. They also discourage permitting the user to do
anything with the Command-key that is not directly accessible as
a menu option as well.

The only difference in the way the two types of selections are
handled is at the front end of the processing. If the user selects a
menu item with the mouse, it is handled through the
Menu Select routine. This takes care of highlighting the menu
name, displaying of the menu items, tracking the mouse, and
identifying the user's selection. It returns a long integer value to
your program, which your application can decode to determine
which menu and which menu item were selected.

•!• Note: Beginning with System version 4.1, you can even find
out which choice the user made if the item he or she
attempted to choose was dimmed at the time. This is made
possible by the MenuChoice routine, which your program
can call after MenuSelect returns a 0 value.

If the user selects a menu item by pressing a Command-key
combination, you should call the MenuKey routine, passing
along the character that was typed. This returns a long integer that
your program processes exactly as it would a mouse selection
handled by MenuSelect.

The Menu Manager 103

Typically, the part of an application responsible for handling user
menu selections consists of a series of case statements based on
the returned long integer value. This makes the processing of
individual commands independent of the method by which the
user invokes them.

Changing menu items

There are occasions when something that has changed in the
environment makes it necessary to alter a menu item. For
example, if the user has dosed all the windows on the desktop,
routines that edit or save text in those windows are no longer
meaningful. Or the user might define a buffer in which to capture
text being received over a telecommunications link and wish to
tum the capture process on and off depending on the kind of data
being transferred. In this case, your program might want to help
the user keep track of whether the buffer is on or off by altering a
menu item as if it were a toggle switch.

Using the Menu Manager commands Getitem and Setitem,
you can exercise control over individual menu items. Using
Disableitem and Enableitem, you can cause items to
become unavailable and accessible again.

•> Note: These two routines affect only the first 31 items in any
menu. Any item whose menu ID is greater than 31 is always
enabled.

You can also use InsertMenu to add a new menu to a menu
bar and DeleteMenu to remove a menu from a menu bar.

In every case, once you have made a modification to a menu bar,
you must still call DrawMenuBar for the user to see the effect of
the change on the next menu access.

Accessing menus and items

With this powerful array of routines available to manipulate and
respond to menus, the only remaining issue is how a program can
identify the menu and menu item to be affected.

Each menu across the menu bar has a unique ID associated with
it. If you are using resource-generated menus, you can use the
menu's resource ID for its menu ID, though you are not required
to do so. Some applications simply number the menus from left
to right, starting with 0 for the Apple menu. Regardless of the
scheme used, each menu should have a unique ID.

l 04 Chapter 6: The User Interface Toolbox

Within each menu, items are numbered sequentially beginning
with 1 for the top, or first item, and moving down the menu.
Dividing lines that are inactive as menu choices are nonetheless
given numbers.

MenuSelect and MenuKey both return long integers that your
program decodes to find out which menu and item were selected.
The high-order word contains the menu ID and the low-order
word the item number within that menu. If the user chooses the
me nu but then does not select an item, the high-order word is 0
and the low-order word is undefined.

If the return is 0, you can call MenuChoice to take further action.
For example, if the Empty Trash option in the Finder is selected
by the user when the trash is empty and the choice is dimmed,
you can detect that attempt. You can then alert the user that, "The
trash cannot be emptied because there's nothing in it."

Color in menus

Menus can appear in color on the Macintosh II. They can have
different colors in their titles and their items can also be color­
coded.

As with any other interface object, it is wise not to overdo color in
menus. Use color for a purpose, not just because it is there. Again,
consult Human Interface Guidelines for help in deciding where
and how to use color in menus.

The Dialog Manager
Your application may need to interact with the user in some way
other than text or graphics entry and menu selections. For exam­
ple, you may want to ask the user for some information about the
kind of ribbon in the printer or the baud rate to be used for a
telecommunications link. Or you may want to inform the user that
he or she is about to do something dangerous and offer a chance
to escape gracefully from the predicament. For such purposes, you
use Dialog Manager routines to create dialogs and alerts.

The Dialog Manager 105

"Modularity is more important
on the Macintosh than anywhere
else I know. "
Ed Tecot,
Apple Computer

The Macintosh II permits the use of color dialogs and alerts, and
programming for color is virtually the same as programming for
monochrome. The few differences that do exist are beyond the
scope of this book.

Types of dialogs and alerts

A modal dialog box requires the user to enter information or take
some other action before processing can continue. The user's
action can be as simple as pressing the Return key or clicking an
OK button. Or it can be as complex as using radio buttons, check
boxes, and text-editing rectangles to provide information about
how the program is to proceed with the next step. The point is
that a modal dialog box requires acknowledgement by the user
before processing can continue.

The dialog boxes typically encountered while printing a
document from a Macintosh are examples of modal dialog boxes.
The user must respond to the requests before the program can
continue. Modal dialog boxes do not have a close box.

Modeless dialog boxes can be thought of as providing the user
with some optional help. Usually these boxes are called into
action by something the user does or selects. Generally speaking,
they contain close boxes because users can close them whenever
they want to.

The windows called into play when a user asks a word processing
program to search for text are typically modeless dialog boxes. If
the user decides to cancel a search, program execution can
continue where it was when the search was requested. No
information is required by the program.

An alert is a special class of modal dialog predefined by the
system. There are three kinds of alerts, differing only in the form
of the icon they typically display in their upper left corner:

o A stop warns the user that a problem is about to arise.

o A caution alert warns of a less serious problem.

o A note alert provides useful or helpful data to the user in a way
that requires him or her to acknowledge it.

The icons for these alerts are shown in Figure 6-6.

106 Chapter 6: The User Interface Toolbox

[1TI [B [TI]
Stop Note Caution

Figure 6-6
Alert Icons

Using the Dialog Manager
You use the Dialog Manager to open and close dialogs and alerts,
handle the events that take place in dialogs, post alerts, and keep
track of text editing in some kinds of dialogs.

Initialization

Before you initialize the Dialog Manager, you must first initialize
QuickDraw with Ini tGraf, the Font Manager with Ini tFonts,
the Window Manager with InitWindows, the Menu Manager
with Ini tMenus, and TextEdit with TEini t. Then call
Ini tDialogs to set up the dialog.

Opening (Ind closing dialogs and alerts

Your program can either read dialogs and alerts from a resource
file or create them dynamically. To get them from a resource file,
use GetNewDialog. Creating them "on the fly" requires the
NewDialog routine and a number of parameters describing the
dialog or alert to the system.

If you allocate the storage for a new dialog explicitly, use
CloseDialog to release its memory when you nc;> longer need it.
But if you permit the system to assign the dialog's memory, use
DisposeDialog to release the storage.

Handling events in dialogs

The routine your program follows for reacting to events that take
place in dialogs depends on the type of dialog involved.

The Dialog Mana~er l 07

To display and handle events in a modal dialog box, your
programs call the routine ModalDialog. In itself, this routine is
like a mini- application. It continuously calls GetNextEvent
and examines events until it finds one it should pass to your
program. The call to ModalDialog may include a filter that
determines the types of events the routine should pass to the
application. Normally, the system's built-in filter is adequate, but
you may create your own if they're needed.

Each time an event that occurs in a modal dialog box is
determined to be an event the ModalDialog should handle, the
item in the dialog is returned so that the program can determine
how to proceed.

Here is an example of a program segment that responds to modal
dialog events:

Result Code = GetNewDialog (122,DialogPtr,CurWinPtr -1)

Check Result Code for error condition

If no error,

ModalDialog (NIL,ItemHit)

(handle event corresponding to ItemHit)

Handling modeless dialog boxes is a little trickier because you
cannot be certain that an event that takes place when a modeless
dialog box is displayed is even a dialog event. For this reason, you
should call the routine IsDialogEvent. This looks at the event
reported by GetNextEvent. If it is an activate or update event
for a dialog window, a mouse-down event in the content region of
an active dialog window, or any other type of event when the
dialog window is active, IsDialogEvent returns True;
otherwise, it returns False.

If the value returned by IsDialogEvent is False, you will
probably want to handle the event in your main event loop as
with all other kinds of events. If the return value is True, you will
probably want to call the routine DialogSelect, which
determines what action to take next. DialogSelect determines
this based on whether the dialog item involved in the user action
is enabled, whether the event creates an update or activate event
for a dialog window, and whether the mouse click was inside an
editable text rectangle.

l 08 Chapter 6: The User Interface Toolbox

Here is an example of a program segment that responds to
modeless dialog events:

Result Code= GetNewDialog(123,DialogPtr,CurWinPtr -1)

Check Result Code for error condition

If no error,

Start loop

GatNaxtEvent (NIL,theEvent)

Handleit = IsDialogEvent (theEvent)

If Handleit is True,

DialogSelect(theEvent,DialogPtr,ItemHit)

Handle event based on ItemHit

otherwise, process event normally

End loop

Posting alerts

An alert is a special kind of modal dialog box that differs from
others primarily in that it displays an icon that immediately
indicates to the user of the type of alert involved. There are four
calls that create alerts on the display:

o Alert, which places no icon in the upper left corner of the
box

o StopAlert, which displays the Stop icon in the upper left
corner of the box

o NoteAlert, which displays the Note icon in the upper left
corner

o CautionAlert, which displays the Caution icon in the upper
left corner

These last three calls are exactly alike except for their icons.

The Dialog Manager l 09

Text editing in dialogs

The Dialog Manager includes its own text editing commands that
you can use to supplement those in TextEdit.

Normally, a dialog containing one or more editable text fields
comes up with the insertion point at the left edge of the rectangle
that contains the first such item. In your application, however, you
may want to alter this . You may want the insertion point to appear
at the end of the rectangle rather than at the beginning if you
expect the user to add something to the end of the information
displayed. Or you may want to start with the rectangle 's text
selected (highlighted) if you expect the user to either accept your
suggested response or replace it entirely.

The standard editing commands are handled with calls to DlgCut,
DlgCopy, DlgPaste, and DlgDelete. The text that is cut,
copied, pasted, or deleted is chosen by the user. Your program uses
the SelIText call to highlight and identify the selected text.

In every other respect, editing text in a dialog box is identical to

editing text that appears anywhere under the control of TextEdit.

The Control Manager
Within dialogs and some other types of window, your program
often places controls, including scroll bars, check boxes, and
buttons. The Control Manager displays and manages these.

•!• Note: The Macintosh II supports color controls, but in every
aspect examined here, programming controls do not vary
from one system to another.

Every control "belongs" to a particular window. When displayed,
the control appears within that window's content region; w hen
manipulated with the mouse, it acts on the window. All
coordinates pertaining to the control are given in the window's
local coordinate system. It is essential that any window in your
program containing controls have an uppe r left corner at
coordinates (O,O) when controls are drawn. Because almost all
Control Manager routines can redraw a control, it is a good idea
to change the coordinate system of a window back to local before
calling any Control Manager routine. You do this using the
GlobalToLocal call discussed in Chapter 5.

110 Chapter 6: The User Interface Toolbox

Controls with more than one part

Most controls have only one part. A button is either on or off. A
check box is either checked or not. But some controls, most
notably scroll bars, have many parts, each of which has its own
action. User-defined gauge-type controls are also likely to have
more than one part.

Many Control Manager routines accept a part code as a
parameter or return one as a result. A part code is an intege r
between 1 and 253 that identifies a particular part of a control.
Each type of control has its own set of part codes, assigned by the
program when defining the type or set up in advance by the
system for the standard control types .

Important Do not use part codes 254 and 255. Code 254 is reserved for future
use, and 255 is used to mean the entire control ls Inactive.

Table 6-1 shows the part codes for the standard control types
defined by Macintosh. There is no part code for a radio button
because it is defined the same as a check box.

Table 6-1
Part codes for standard control types

Part Code Purpose

inl3utton 10 Sim pie button

inCheckl3ox 11 Check box or radio button•

inUpl3utton 20 Up arrow of a scroll bar

inDownButton 21 Down arrow of a scroll bar

inPageUp 22 "Page up" region of a
scroll bar

inPageDown 23 "Page down" region of a
scroll bar

in Thumb 129 Thumb of a scroll bar

• inChcckl3ox applies to both check boxes and radio buttons.

The Control Manager 111

Using the Control Manager

You use the Control Manager to create and remove individual
controls, modify controls "on the fly," and respond to the user's
manipulation of controls.

Initialization

Before using the Control Manager, you must first initialize
QuickDraw with Ini tGraf, the Font Manager with Ini tFonts,
and the Window Manager with InitWindows. In most cases, you
also want to initialize the Dialog Manager with InitDialogs,
though if your controls are not being used in dialogs or alerts,
that step may not be necessary.

There is no routine that initializes the Control Manager.

Creating and removing controls

A control can be read in as a resource or created dynamically by
your program. The routine that creates a new control is called
NewControl, and the routine that loads a control from a
resource file is called GetNewControl.

You can gain insight into how controls are structured and how
they work by examining the NewControl routine. This requires
nine arguments and returns to your program a handle to the
newly created control. The nine arguments, in the order in which
they appear, are

o a pointer to the window that "owns" the control

o a rectangle outlining the location of the control in the
window's local coordinate system

o the control's title, as a string of up to 255 characters

o a Boolean flag indicating whether or not the control is visible,
which results in the control being immediately drawn if True
and stored for later display if False

o an initial value setting for the control

o a minimum value setting for the control

o a maximum value setting for the control

o the control definition ID for this type of control

o a field called refCon used only by your application for
whatever purpose you desire

112 Chapter 6: The User Interface Toolbox

" 1be Macintosh user inteiface
ts transparent because tt's
supposed to be. Ltke anything
transparent tt takes a lot of work
to get it that way. "
Harry Chesley,
independent developer

The three value settings are meaningful only for controls that
retain a setting such as check boxes or radio buttons (which retain
an on-off condition) and scroll bars (which retain a position
setting relative to some begin and end points). For boxes and
buttons, set the minimum value to 0 (off) and the maximum to 1
(on). For scroll boxes and other gauge-type controls, set the
values at appropriate levels. For example, they might be used to
indicate the number of lines of text or the number of filenames to
be displayed.

GetNewControl requires only the resource ID of the control to
be read and the window with which to associate it. All other
information for the control is stored in the resource file.

Notice a difference between the Control Manager and the Menu
Manager: there is no need to redraw the window or controls to
cause them to be displayed after modifications. If you declare
them to be visible, they are displayed at once.

You can remove a single control from a window with the
DisposeControl routine. To dispose of all of a window's
controls at once, use KillControls.

Modifying controls

A control can be made visible or invisible, moved, or resized. It is
often necessary to do one or more of these in response to the
user's interaction with your program.

To make a control disappear from the window, you use the
HideControl routine. To make a specific control appear, you
use ShowControl. To relocate a control, the Control Manager
provides the MoveControl routine, and to resize it, the
SizeControl routine.

For example, if the user changes the size of a document window
that contains a scroll bar, your program needs to move and resize
the scroll bars appropriately. You call HideControl to make
the existing control invisible to the user, MoveControl and
SizeControl to change its location and size in accordance with
the new dimensions of the window, and ShowControl to
redisplay the scroll bars as changed. (You have to do this
processing twice if the window has both horizontal and vertical
scroll bars.)

The Control Manager 113

Here's another example. If you have a control in a dialog box set
up by your program that has no meaning in certain
circumstances, you might want to dim it. There is no explicit
procedure for dimming a control, but the process is
straightforward. Store two copies of the same control, one called
ActiveWhatsit and one called InactiveWhatsit, with the latter using
a dimmed characteristic. Then when you need the inactive
version, just use HideControl to remove the incorrect one
from the window, GetNewControl or NewControl to load
the new one, and ShowControl to display it.

Responding to the user

All control activity generated by the user requires the use of the
mouse. As a result, your program's main event loop focuses on
this processing through its management of the mouse-down event.
After receiving such an event, you use FindWindow to
determine the part of the window in which the button was pressed
and FindControl for that window if it was pressed in the
content region.

If a control has been activated, and if it is a standard control type,
call TrackControl to determine whether the user changes his
or her mind about making the selection. If TrackControl
returns True, meaning that the user did not relocate the mouse
outside the control before releasing the button, then your
application must react accordingly.

When TrackControl is used, it handles highlighting of the
control. It also manages dragging in a scroll bar and responses to
mouse clicks in other parts of the scroll bar. If, however, the
mouse action is in a button, check box, or radio button, your
program must process it. This includes ensuring that all
inconsistent r'adio buttons are turned off when an application­
defined button is selected.

If the control involved is one that retains a setting, you use
GetCtlValue to find out what that setting is. This generally
determines the processing to be undertaken.

114 Chapter 6: The User Interface Toolbox

" The best Macintosh applica­
tions are consistent. Learn a
concept in one place and
you're rewarded by seeing it
again and again in other
places in the program."
Mike Slade,
Microsoft Corporation

TextEdit
TextEdit is designed for dealing with small amounts of text rather
than with full-featured word processing.

Text rectangles that appear in dialogs are examples of places
where TextEdit routines are typically used. Unformatted text
processors, such as desk accessories doing text editing while
engaged in telecommunications or other activities, are another
example. A fully capable word processor such as MacWrite does
not use TextEdit routines because such programs typically need
more sophistication than is built into TextEdit.

Keep in mind that this is a discussion of editable text. If you want
to display a message that the user is not expected or permitted to
edit using TextEdit routines, you should use the Text Box

routine.

Each block of editable text has associated with it an edit record
and an optional style record. If the text is all set in a single font,
size, and face, there is no need for a style record. An edit record
has 31 fields, 11 of which are summarized in Figure 6-7. The other
fields are used internally or are of little interest to you at this
point.

T extEdit 115

destRect

vlewRect

Just

teLength

hText

txFont

txFace

txMode

txSlze

lnPort

n Lines

Figure 6-7
Partial conten1s of an edit record

Two important rectangles
Two rectangles in the edit record come into play when you use
TextEdit: the destination rectangle and the view rectangle. The
destination rectangle is the rectangle in which the text is drawn.
The view rectangle is the rectangle in which the text is actually
visible. In other words, the view of the text drawn in the
destination rectangle is clipped to the view rectangle. Figure 6-8
depicts this relationship.

116 Chapter 6: The User Interface Toolbox

1---- View rectangle
This line is fully visible

L':::========~1-- Destination rectangle

1----1------ View rectangle

Thia line is not fully vi 1----- Destination rectangle

Figure 6-8
Destination and view rectangles

Your program specifies both of these rectangles, defining them by
the local coordinates of the window's graphics port. It is a good
idea to inset the destination rectangle at least four pixels from the
left and right edges of the port's boundaries.

Edit operations may, of course, lengthen or shorten text. If the text
becomes too long to fit into the destination rectangle, it is simply
drawn beyond the end of the rectangle. Each line is subject to
word wrapping so that if it grows too long, it automatically wraps
to the left edge of the next line.

Other edit record fields

The Just field contains an integer determining whether the text is
left-justified (O), centered (1), or right-justified (-1). The teLength
field defines how long the text string is, and the LText field
contains a handle to the text being edited.

Four fields-txFont, txFace, txMode, and txSize---describe the text
in the event it is displayed in one font, face, and size. If a style
record is in effect, as indicated by a -1 in the txSize field, then the
txFont and txFace fields combine to become a pointer to the style
record.

The inPort field identifies the graphics port in which the text is
displayed. The nLines field contains an integer with the number of
lines of text in the block.

TextEdit 117

The style record
The style record uses pointers to style tables to define "runs" of
characters with a common style. A separate record is created for
each run. A run is defined as any consecutive number of
characters for which all style information remains the same.

Using TextEdit
You use TextEdit to open and close edit records, keep track of the
user's editing operations, and handle scrap tra_nsfers.

Initialization

Before you initialize TextEdit, you must first initialize QuickDraw
with InitGraf, the Font Manager with InitFonts, and the
Window Manager with Ini tWindows. Then call the TEini t
routine.

Opening and closing edit records

To allocate an edit record, call TENew and use the handle it
returns to deal with most other TextEdit routines you encounter.
When you are finished with an edit record and want to remove it,
call TEDispose.

Tracking and managing the user's editing operations

TextEdit must respond to many kinds of events triggered by the
user's activation of the keyboard or the mouse. Tracking and
managing each action taken by the user in an edit record requires
some planning in your programming.

When a mouse-down event occurs in the view rectangle of the
window and the window is active, you call TEClick. If the Shift
key is being held down at the same time, you pass this
information to the TEClick routine to indicate that extended
selection is in effect. The first thing TEClick does is unhighlight
any previously highlighted text. If the mouse moves, the routine
expands or shortens the selection range accordingly. A double­
click selects the word under the cursor and subsequent dragging
expands or shortens the selection a word at a time.

118 Chapter 6: The User Interface Toolbox

If no dragging occurs, then the mouse click repositions the I-beam
cursor to indicate the insertion point.

Depending on whether there is any text currently selected or
stored in the local TextEdit scrap, a key-down, auto-key, or mouse
event can trigger any of several TextEdit routines.

If no text is selected and a simple key-down event is detected, the
TEKey routine inserts characters and deletes those backspaced
over. If text is selected, TEKey replaces it with the newly typed
text, deleting the selected text with the first new keystroke passed
to it.

TEditHandle = TENew (destRect,viewRect)

Start loop

TEidle (TEditHandle)

(Key-down event detected in main event loop)

TEKey(KeyPressed,TEditHandle)

End loop

With text selected, if the user selects a cut command (generally
from a menu or with the Backspace key), the TECut routine
removes the selection range from the text and places it in the
system Scrapbook. If the user selects a cut operation with no text
selected, the local scrap is emptied. A copy operation is
performed similarly except that the text is not removed from the
text record. TECopy is the routine that handles this task.
TEDelete is a sort of flip side of TECopy: it removes the text
from the edit record but does not place it into the scrap.

With or without text selected, if the user selects a paste command,
the TEPaste routine inserts the contents of the local scrap into
the edit record. Text already in the record is replaced by the
pasted text, and the removed text is not placed in the local scrap.
If no text is selected when the paste operation is performed, the
pasted text is placed at the insertion point, which is then moved
to the end of the pasted text.

T extEdit 119

TEditHandle = TENew(destRect,viewRect)

Start loop

TEidle(TEditHandle)

(menu cut event detected in main event loop)

TECut (TEditHandle)

(menu paste event detected in main event

loop)

TEPaate(TEditHandle)

End loop

Another way of placing new text in an existing text edit record is
to use the TEinsert routine. This requires that you supply as an
argument the text to be inserted.

You can use TEScroll to scroll text up, down, left, or right,
using scroll bars in the text-editing window if they exist.

120 Chapter 6: The User Interface Toolbox

Chapter 7

File Management

121

" Use data forks for things you
might use an externalfilefor in
MS-DOS. Tbink of it as a fil ing
system within a filing system."
Eagle Berns,
Apple Computer

D
Application Document

Figure 7-1
Application and document
file icons

In many ways, programming with Macintosh disk files is nearly
identical to working with disk files on any other microcomputer.
The file structure is hierarchical. The process of opening, reading,
writing, and closing files will be familiar.

There are, however, three new ideas to understand. First,
Macintosh disks and volumes can be mounted (available) or
unmounted (unknown to the system). Second, files have two
streams of bits associated with them instead of the usual single­
stream design. These two streams are called the resource fork and
the data fork and are present (though possibly empty) in all
Macintosh files. Finally, the Macintosh includes a powerful and
easy-to-use interface from which the user can select a filename to
open or save information into. These operations are handled by
the Standard File Package covered later in this chapter.

Before discussing these new ideas, this chapter presents some of
the details of how files are stored and structured on the
Macintosh.

Documents and applications
Macintosh files can be thought of as falling into two categories:
documents and applications. It is often, but not always, possible to
differentiate the two by the nature of the icon used to represent a
file on the Macintosh desktop (see Figure 7-1). An application file
contains the program code created by the programmer throu gh a
development environment. A document file contains the
information on which the program operates . Most applications by
nature can have multiple documents with which they work.

This chapter discusses only document files. In fact, it is concerned
only with the data fork of a document file, though the term file
will be used to refer to the data fork. Application file structure,
storage, and access are controlled by the development system in
which you do your programming.

Unlike most traditional microcomputer files, a document file can
be selected by the user in such a way that it automatically executes
the program for which it is designed. The process by which you
set up a document file type to work with your applications is
called bundling.

122 Chapter 7: File Management

An outline of file interaction
Figure 7-2 depicts the typical file interaction that takes place
between your program and the user when the time comes to
access a file on the disk. For example, if your program is a data
base application and the user wants to open a data file with
names, addresses, and other important customer information, the
user chooses the Open option from the standard File menu . At
that point, your program calls the Standard File Package into play.

File reference
needed

Call standard file
package routine

Open file
selected by user

Program continues
processing

Figure 7-2
Basic file interaction

User wants to open or save
a file

User selects file from dialog

File information is passed to
your application

The Standard File Package puts up a dialog box in which the user
can select the drive, volume, folder, and document to be loaded
into the program. Your program can determine what types of files
the user will be permitted to select from in this dialog.

An outline of file interaction 123

When the user selects a file from the Standard File Package's
dialog, the File Manager automatically passes to your program the
infor-mation it needs to access this file. You do not need to keep
track of where on which disk the file is located: that job falls to the
user and the Standard File Package. With this information available,
your program simply accesses the file designated by the user.

The information returned by the Standard File Package to your
program is a file identifier composed of the filename plus the
volume reference number. This is a unique number identifying the
volume and, if needed, the directory to be used. It is in effect for
the entire time an application is running. This number is
automatically assigned by the system when the volume is
mounted. The combination of this unambiguous volume reference
number and the name of the file makes it possible to address files
with the same names that reside in different subdirectories of
different volumes, even if the volumes have identical names .

Types and creators
Each Macintosh data file has two other attributes that are
important: a type and a creator. Both of these are assigned by
your program when the user creates a file with your application.

File types

A file type is defined as a four-character string that describes, in
somewhat cryptic form, the kind of information the file contains.
For example, a file containing text without special formatting
(fonts, styles, and so on) is almost always a file of type 'TEXT'.
MacPaint files have the type 'PNTG' (created from the word
"PaiNTinG").

To ensure uniqueness of file type designators, Apple maintains a
registry of four-character descriptors. Register your four-character
type code with Apple before finalizing it.

By convention, application program files have a type of 'APPL'.

124 Chapter 7: File Management

Creators

In addition to the file type, each file has a creator associated with
it. This creator code determines which application should be
launched when this file is opened from the Finder.

Like the file type, the creator must be unique. Apple maintains a
registry of four-character creator codes, and you must register
yours before finalizing it.

File manipulation and the Standard File
Package
One aspect of Macintosh programming that quickly became
standardized was the implementation of a File menu from which
the user could choose files to be opened and saved. The Standard
File Package's SFGetFile and SFPutFile routines provide an
efficient and effective way for your program to open and save files.
These routines are called by your program when the user chooses
a file from the File menu with Open, Save, Save As, or New.

SFGetFile in operation

The SFGetFile routine displays a dialog box listing the names
of a specific group of files from which the user can select one to
be opened. It then repeatedly gets and handles events until the
user either chooses a filename or aborts the command by clicking
Cancel in the dialog box. It reports the results of this by filling
fields in a reply record.

This routine takes seven system-supplied parameters. The most
important are

o the coordinates of the upper left corner of the dialog box to be
displayed

o a pointer to a procedure that filters the types of files to be
shown to the user

o an integer that tells the system how many types of files are to
be shown to the user

File manipulation and the Standard File Package 125

o a list of file types to be shown to the user

o a pointer to a reply record in which the routine stores the
results of its interaction with the user so that your application
can monitor what took place and determine its next steps
accordingly

There are two ways your program can ensure that when the user is
shown a dialog box by the Standard File Package, only files
appropriate to your application are displayed. First, it can simply
pass an array of file types to the Standard File Package, which will
automatically handle the filtering process. If this is not sufficient,
it can supply a procedure that looks at each file in the directory
on a file-by-file basis to determine whether to show them to the
user or iiot. This approach might be useful, for example, if you
want only ~o show the user files created after a certain date or
containing certain kinds of information.

The File Open dialog box

Figure 7-3 shows a standard File Open dialog box generated by
the Standard File Package. It shows all of the folders and
individual documents that are not in folders. The user can open a
document by the usual means of double-clicking its name or by
selecting its name and clicking the Open button.

lt51 Prog. Intro. to the Mac Fam I
D App A
D App B
D App C
D Ch. I

o••i
D Ch. 3

Figure 7-3
A File Open dialog box

126 Chapter 7: File Management

=Hard Disk

Eject

Driue

Open

Cane: el

On hierarchical file systems, this dialog is designed to permit the
user to move around in the hierarchy of files by clicking in the
rectangle above the file list. This rectangle contains the name of
the current volume and folder whose contents are being shown.
When the user clicks there (see Figure 7-4), a pop-up menu
appears showing the complete hierarchy above this volume and
folder combination. The user can then move directly to any of
those levels by selecting it exactly as he selects items from any
other menu. The Standard File Package handles all of this
hierarchical movement for you.

mu·
l:ll•mwa6 Prog. Intro. to th~Mac Fam I =Hard Disk

L =Hard Disk J

Open

L--------------'O= Cancel

Figure 7-4
A hierarchy list In a Fiie Open dialog box

The reply record structure

A reply record used by the Standard File Package routines
contains six fields. The most important of these are

o a Boolean flag that is True if the user made or affirmed the
Save or Open selection, and False if Cancel was clicked, in
which case file operations should not be performed

o the reference number of the volume directory accessed

o the name of the file

Fiie manipulation and the Standard File Package 127

SFPutFile in operation
The SFPutFile routine displays a dialog box (see Figure 7-5)
requesting that the user specify a file to which data will be written.
It then repeatedly gets and handles events until the user either
confirms the command after typing a filename or aborts the
command by clicking Cancel in the dialog box. It reports the
results of this interaction to your application by filling fields in a
reply record exactly as SFGetFile does.

lesi Prog. Intro. to the Mac Fam I
DimlJI'

D App B
D App C
D Ch. 1
D Ch. 2
D Ch. 3
D Ch. 4

Figure 7-5
A typical SFPutFile dialog box

Select a Do cument:

b

iiilll en""""""=..,· ..,"..,a~rd Disk

~(~~
Open I! fj!~Cl

Cancel l nrit>e

A File Save dialog box is nearly identical to the File Open dialog
box, except that the names of individual documents are dimmed.
The user can open any folder and thereby cause the current file to
be saved in that folder.

SFPutFile also detects duplicate filenames and asks the user to
confirm the overwriting of an existing file by the new one. It can
also detect a locked disk, a condition that cannot be overridden
in software. In either case, it displays an appropriate dialog box.

128 Chapter 7: File Management

Program file use and the File Manager
The File Manager is part of the Macintosh Operating System. It
permits your programs to deal with information stored on the
disk without concerning itself with the fine points of the disk
driver or physical locations of information. Your program can
read and write blocks of data of any size in a single file operation.
The File Manager takes care of converting your high-level requests
into operations that carry out the disk functions .

The Macintosh uses a mark approach to file management. Each
byte in the file is uniquely addressable by its distance from the
start of the string of bytes that constitute the file . By convention,
the first byte is 0, the second byte is 1, and so forth .

Each open file has a mark, or position indicator, associated with it
by the File Manager. When a file is first opened or created, its
mark is set to byte 0. Each time a read or write operation occurs,
the mark is moved accordingly. Attempting to read past the
logical end-of-file (EOF) creates an error condition with which
your program must deal.

Return codes from disk 1/0 operations

All high-level File Manager routines return an integer that can be
translated into an operating-system error code, called an OSErr. It
is important to the successful operation of your program that you
check this error code after each I/O operation invoked by your
program.

A result code of 0 (referred to in Macintosh parlance as noErr)
means that the operation was successfully completed and your
program can continue processing. Other common result codes
return to your program as negative integers in the range of -33 to

-127, as shown in Table 7-1.

Program file use and the File Manager 129

Table 7-1
Some 1/0 result codes o f type OSErr

Error Number Name Meaning

0 NoErr Successful completion

-33 DirFulErr Directory full

-34 DskFulErr Disk full

-36 IO Err General disk I/0 error

- 38 FNOpnErr File not open

- 39 EOFErr Attempt to read past end of file

-40 PosErr Attempt to position before start
of file

- 41 MFulErr System heap full

-42 TMFOErr Attempt to open too many files

-43 FNFErr File not found

-44 WPrErr Disk is write-protected

-45 FLckdErr File locked

-46 VLckdErr Volume locked

-192 ResNotFound Resource not found

- 194 AddResFailed Attempt to add resource failed

-196 RmvResFailed Attempt to remove resource
failed

Accessing file data

Using File Manager routines, your program can create, open, read,
write, and close disk files. Each of these operations is carried out by
a fu nction that returns an I/O result that your program should
check. The general form for a disk I/0 operation is

Result Code = DiskOpe ration (P a rameters)

130 Chapter 7: File Management

Creating new files

The FSCreate routine creates a new file. It requires four para­
meters: the name of the file, the reference number identifying the
volume and directory to be used, the file creator, and the file type.
(These last two fields are used by the Finder in locating and
working with files.) Generally, the creator is a code used by your
application. If you have a program that performed statistical opera­
tions, for example, you might arbitrarily give files it creates the
creator label 'STAT'. (If you do create such file types, it is a good
idea to register them with Apple Developer Services. This ensures
that no two applications use the same file type designators.)

Here is a sample of an FSCreate call:

Result Code = :&'SCreate ("TestFile", VRefNum, 'STAT', 'TEXT')

Opening existing files

The FSOpen routine opens an existing file. The routine requires
three parameters: the filename, a volume reference number, and a
variable in which the function can return an integer value
representing the file's path reference number. This last parameter
is used by other routines to access the file once it is opened.

Here is a sample of an FSOpen call:

Result Code = li'SOpen ("TestFile", VRefNum, PathRef)

Reading data from open files

Data stored in existing files that have already been opened is
accessed with the FSRead routine. Your program calls FSRead
with the file reference number (the path reference number
returned by FSOpen), the number of bytes to be read, and a
pointer to the buffer in which the data is to be stored. Reading
begins wherever the current file position pointer is located, so if
your intent is to read from the beginning of the file, you may have
to call SetFPos before you begin reading.

If the number of bytes you ask to read takes you past the file's EOF
marker, FSRead leaves the marker at the end of the file and
returns an error (eofErr). In any case, the number of bytes actually
read is contained in the same field used to tell FSRead how
many bytes to read.

Program file use and the File Manager 131

Here is a sample of an FSRead call:

Result Code= rSRead(VRefNum,ByteCount,BufferPtr)

where ByteCount is a variable that has been set to the number of
bytes to be read and BufferPtr is pointing to a large enough buffer
in memory to store the data retrieved.

Reading and writing operations are affected by where the file
position marker is located and where the EOF is found. You can
find out where the current file position marker is by calling
GetFPos, and you can change it with SetFPos. Similarly, you
can find and change the EOF marker's position with GetEOF
and SetEOF.

Writing information to disk files

Data is stored on disk files with the FSWrite routine. It has the
same arguments as FSOpen. FSWrite operates on data
beginning at the buffer pointer location and continuing for the
number of bytes requested to be written. It attempts to write them
to the open file whose access path is specified in the call.

After the write is completed, the number of bytes actually written
is returned in the same variable used to store the number of bytes
requested to be written when the routine was called.

Here is a sample of an FSWri te call:

Result Code = FSWrite (VRefNum,ByteCount,BufferPtr)

Closing files

Your program closes an open file with a call to the routine
FSClose and the file's path reference number as its sole
argument You should know, however, that there is no guarantee
that any bytes have been written to the disk before it is closed
unless your program first calls FlushVol (see "An Example of
File Handling").

132 Chapter 7: Fiie Management

Managing volumes
FlushVol is one of the more important File Manager routines.
Data stored in a volume's buffer, along with descriptive informa­
tion about the volume (such as date created, date last modified,
and remaining storage capacity), is only written to the disk when
this routine is executed. It is important to any file-handling
routine, therefore, that you include FlushVol at strategic points
in your program. Most experienced Macintosh programmers use
FlushVol after any FSClose call.

An example of file handling
Here is a small example of a program fragment that would handle
opening a file, processing editing actions, and writing the record
back on the disk. It is, of course, necessarily brief and somewhat
incomplete (it does not, for example, spell out the editing proces­
sing in detail), but it provides a skeleton for you to develop your
own code for similar tasks.

File Open menu event detected in main event loop

SFGetFile (StdLoc ,"Get which file?",NIL,l,

theTypeList,NIL,Result Code)

Check Result Code for error condition

If no error,

Result Code= FSOpen(fileName,VRefNum,

FileRefNum)

Check Result Code for error condition

If no error, continue processing user editing

File Save or Save As menu event detected in

main event loop

SFPutFile (StdLoc , "Save file under what name? ",

• •, NIL, Result Code)

Check Result Code for error condition

If no error,

Result Code= FSClosa(FileRefNum)

Check Result Code for error condition

If no error,

FlushVol (NIL, VRefNum)

An example of file handling 133

Chapter 8

Development Tools

135

This chapter moves beyond the specific programming techniques,
calls, and commands needed to develop Macintosh applications
and focuses on the development tools available. It begins by
providing an overview of Apple's Macintosh Programmer's
Workshop (MPW). More and more development work is being
done within MPW both because of the environment it provides
and because of Apple's support of it.

This chapter then looks at MacApp, Object Pascal, HyperCard™,
and other programming languages and environments available
for the Macintosh. Finally, it discusses some debugging
techniques.

The Macintosh Programmer's Workshop
(MPW)
In late 1986, Apple introduced the Macintosh Programmer's
Workshop (MPW) through the Apple Programmer's and
Developer's Association (APDA) . (Appendix C contains
information about APDA).

MPW is a set of professional software development tools for the
Macintosh consisting of the following:

o an editing and programming environment called the MPW
Shell

o assemblers for the 68000 and 68020 processors

o a linker

o a resource editor

o a resource compiler/ decompiler

o a debugger

In addition, separate MPW modules can be obtained to

implement high-level languages within the MPW environment.
These include

o MPW Pascal, including a set of object-oriented programming
extensions

136 Chapter 8: Development Tools

o MPW C, along with a complete set of interfaces and libraries

o MacApp, a fully functional program template in the form of an
expandable "generic application" using object-oriented
programming techniques

MPW provides numerous advantages over previous development
systems for the Macintosh. These are among the more noticeable
of them:

o Integration: The various components of the MPW system all
run within the MPW Shell environment.

o Command scripting: In addition to menu commands, MPW
provides a full command language. You can combine any
series of MPW commands into a command file, or script, for
accurate results with little or no reprogramming.

o Regular expression processing: The editor in the MPW Shell
allows you to search and replace using regular expressions,
forming a language for describing complex text patterns.

o Extensibility: You can create your own integrated tools to run
within the Shell environment and can add your own menu
commands to the Shell.

Figure 8-1 shows the stages of program development under MPW.
Notice that MPW provides complete editing, compiling, and
linking tools for resources as well as code segments.

The Macintosh Programmer's Workshop (MPW) 137

Libraries
('OBJ ')

Figure 8-1

CODE

Edit program
(Shell editor)

Source
files

(TEXT)

Assemble or compile
(Asm, C, Pascal)

Object
files

('OBJ ')

Program development under MPW

138 Chapter 8: Development Tools

Other resources

Create resources
(ResEdit or Rez)

Resource
file

"In the most general sense,
the Macintosh gives people
opportunity. For the program­
mer, it takes away so much
of the effort of doing very
sophisticated programming
that the challenge is to do
superior applications that also
look and feel superior. For the
user, he doesn't want to get
bored with the program in
three months. He should be
able to find new features all the
time. He wants lots of function­
ality with little complexity but
depth when he wants it. It 's a
real challenge, but with the
Macintosh, the challenge
can be met. "
Steven Marcus,
SuperMac Technologies

The MPW Shell

The MPW Shell is an application that provides an integratc;!d,
window-based environment for program editing, file
manipulation, compiling, linking, and program execution. All the
other parts of MPW operate in the Shell environment. These tools
can perform input and output to files and to Shell windows.

The Shell combines a command language and a text editor. You
may enter commands in any window, or execute them through
menus and dialogs. The command language provides text editing
and program execution, including routines for passing parameters
to tools, command file scripting, and I/ 0 redirection.

The MPW Shell integrates the following components:

o an editor for creating and modifying text files

o a command interpreter for interpreting and executing
commands entered in a window or read in from a file

o a set of built-in commands for handling files without returning
to the Finder, processing variables, managing program control
flow, and other tasks

Other parts of MPW

In addition to the Shell and the tools, MPW includes a debugger, a
number of sample application files, and ResEdit. It also offers
optional Pascal, C, and Assembler implementations.

The debugger

The MacsBug 68000 debugger is provided with MPW. MacsBug
resides in RAM and allows you to examine memory, trace through
a program, or set up break conditions.

Sample application source files

Source files are provided for the sample application from
Volume I of Inside Macintosh as well as for several other sample
applications. Examples are furnished in MPW Assembler, Pascal,
and C and include instruction files and makefiles for building the
sample files into applications.

The Macintosh Programmer's Workshop (MPW) 139

ResEdit

ResEdit is an interactive, graphically based resource editor for
creating, editing, copying, and pasting resources. MPW Pascal
includes a set of extended Resource Manager routines that make it
possible to write your own add-on resource editors for ResEdit.

ResEdit is supplied in addition to two programs called Rez and
DeRez, which compile and decompile textual descriptions of
resources.

MPW Pascal

In the early days of Macintosh, developers were required to use
Apple's Lisa systems as development environments until
Macintosh-based tools became available. For many reasons, Lisa
Pascal became the standard development language for the
Macintosh.

MPW Pascal is based on version 3.1 of Lisa Pascal. Lisa Pascal, in
turn, was a very nearly standard Pascal, so that MPW Pascal
approaches compliance with the American National Standards
Institute's definition of Pascal known as ANS Pascal.

One difference between MPW Pascal and most other versions of
the language is that MPW Pascal is extended to include support
for object-oriented programming. (This subject is covered later in
this chapter.) These object-oriented extensions, collectively
referred to as Object Pascal, are extensions of Lisa's Clascal
environment.

MPW C

MPW C is a complete implementation of the C programming
language. It consists of the C Compiler, the Standard C Library,
the Macintosh Interface Libraries, the C SANE (Standard Apple
Numeric Environment) Library, and example programs.

This version of C is based on the de facto industry standard
known as the Portable C Compiler (PCC) and more specifically
the Berkeley 4.2 BSD VAX implementation of PCC.

MPW adds extensions to this standard C to allow calls to and
from Pascal programs and Macintosh interface libraries as well as
support for SANE.

140 Chapter 8: Development Tools

The Standard C Library is a collection of basic routines that let
you read and write files, examine and manipulate strings, perform
data conversion, acquire and release memory, and perform
mathematical operations. This library contains functions that
support MPW tools.

Interfaces between C and the Macintosh ROM and RAM routines
are supplied in the Macintosh Interface Libraries. Through this
library, your C programs can access the routines described in
Inside Macintosh and in this book.

The C SANE Library provides mathematical functions and
supports floating-point arithmetic.

MPW Assembler

MPW Assembler reads source text and creates a file of linkable
68000 object code. It includes a number of features to help you
build powerful assembly-language programs. Some of these
features that are important for this discussion are

o broad 68000-family support-including all instructions and
addressing modes for the 68000, 68010, 68020, and 68030
microprocessors, the 68851 Paged Memory Management Unit
(PMMU), and the 68881 floating-point coprocessor, in all
combinations

o powerful macro capabilities

o global and local variable use within macros to facilitate
communication between macros

o full control over generation of code and data modules, and a
choice of creating single object modules or a series of separate
ones

o ability to generate Pascal-formatted and C-formatted strings

MacApp and object-oriented
programming
MacApp was written at Apple to simplify the process of creating
Macintosh application programs. It is essentially a complete,
functional Macintosh application. You are free to take it apart, use
the pieces you need, add portions of code to handle application­
specific processing, and generally use it any way you like.

MacApp and object-oriented programming 141

"MacApp helps you organize
your mind properly to write
a Macintosh program. "
Geoff Brown, author of
Deluxe Music Construction Set

•:• Note: If you use MacApp to develop commercial products,
you need to sign a special license to distribute run-time
portions of MPW and MacApp code. This is an area where
Apple Developer Services can be helpful (see Chapter 9).

Before you can understand how MacApp works and how it
simplifies the programming process, you need to know something
about object-oriented programming. A complete discussion of the
subject is beyond the scope of this book. See Kurt Schmucker's
book, Object-Oriented Programming for the Macintosh (Hayden,
1986), for a more in-depth presentation on the subject.

An introduction to object-oriented programming

Object-oriented programming is essentially a style of
programming that uses some new constructs and concepts to
change the way programs are written.

Most programs are procedure-oriented. They are organized
around procedures and functions. In a procedure-oriented
program, you decide what tasks need to be performed, and then
you write procedures and functions to carry out the tasks. The data
on which the procedures and functions operate is stored in
variables of different kinds, including structured variables such as
arrays and records.

MacApp programs are object-oriented. An object-oriented
program is organized around objects. Objects are places for data
storage, much like Pascal records, but they also have methods,
which are routines that operate on the object's data. The essential
point is that you decide on your data structures first, and then
decide what routines you need to operate on the data structures.
You can do that in any language; in an object-oriented language,
however, you can group the data structures and the routines
together into objects.

If procedures and functions are verbs and pieces of data are
nouns, a procedure-oriented program is organized around verbs
and an object-oriented program is organized around nouns.
Imagine that you had a program that operated on dogs, mice, and
cats. Further, imagine that the program needed to implement
eating and running methods for the dogs, mice, and cats.

142 Chapter 8: Development Tools

To write this in a verb-oriented (procedure-oriented) way, you
could write

dog = RECORD
mouse = RECORD
cat = RECORD

PROCEDURE Eat(animal)

END

IF animal dog THEN eat this way
IF animal
IF animal

mouse THEN eat another way
cat THEN eat a third way

PROCEDURE Run(animal)

END

IF animal dog THEN run this way
IF animal mouse THEN run another way
IF animal cat THEN run a third way

To write this program in a noun-oriented (object-oriented) way,
you could write

dog = OBJECT
PROCEDURE Eat
PROCEDURE Run

END

mouse = OBJECT
PROCEDURE Eat
PROCEDURE Run

END

cat = OBJECT
PROCEDURE Eat
PROCEDURE Run

END

This small example is not intended to demonstrate any
advantages of object-oriented programming, but merely to
illustrate the organizational difference.

What are objects?

An object is like a "machine" that does its task independently.
Here are object-type declarations for some arbitrary object types
called TOval and TBox. (By convention, all object-type identifiers
in MacApp begin with a T.) Notice that although the syntax is a bit
different, the declarations are organized like programs.

MacApp and object-oriented programming 143

TOval=OBJECT
boundsRect: Rect; {bounding box}
pat: Pattern;
PROCEDURE TOval.IOval(left,top,right,bottom: integer);

{Initialize oval}
PROCEDURE TOval.Draw;

END;

TBox = OBJECT
boundsRect: Rect; {bounding box}
pat: Pattern;
PROCEDURE TBox.IBox(left,top,right,bottom: integer);

{Initialize box)
PROCEDURE TBox.Draw;

END;

The fields of these objects, boundsRect and pat, are declared like
the fields of records. In fact, you refer to the fields of an object in
the same way you refer to the fields of a record. For example, if
you declare a variable of type TOval:

anoval: TOval

you can refer to the fields of the object like this:

anOval.boundsRect
anOval.pat

As you can see from the declarations of TOval and TBox, when
you define an object type, you just define the interface to the
procedures and functions of the object. These "private"
procedures and functions are the methods of the object. You
define the implementation of the methods later. This is equivalent
to a FORWARD declaration in classical Pascal, in that you can
have forward references within the blocks of the routines. The
implementation of these routines would look much like they would
outside the object-oriented world. Here is an example:

PROCEDURE TBox.Draw;
BEGIN

FillRect(boundsRect,pattern);
END;

Just as you can refer to the global variables boundsRect and pat
anywhere in the program Box, you can refer to the fields
boundsRect and pat anywhere "within" an object of type TBox
without qualifying those fields.

144 Chapter 8: Development Tools

To invoke a method of an object, you refer to it in the same way
you refer to a field. When you are "outside" the object anOval (in
the main program or in a method of another object), you write

anOval.Draw

However, if you want to call TOval.Draw from within a method of
the same object type, you just use the identifier Draw. You might
write another method for TOval as follows:

PROCEDURE TOval.Flash;
BEGIN

END;

pat := white;
Draw;
pat := black;
Draw;

Each call to Draw always calls TOval.Draw. In a sense, every field
and method of an object type is within the scope of the object
type.

An object-type declaration is a template that defines the
characteristics and capabilities (fields and methods) of objects of
that type. Fields and methods are very much alike, except that
each object can have different values in its fields, but every object
of a given type has the same methods. To go back to the dogs,
mice, and cats example, each cat may differ from other cats in
weight or color, but every cat eats and runs in the same way. The
methods determine the characteristics of the species; the fields
determine the characteristics of the individual within the limits of
the species.

Objects and inheritance

Just as species can have ancestor species from which they inherit
characteristics, object types can have ancestor object types from
which they inherit characteristics. As with species, the descendant
type can change characteristics inherited from its ancestor.
Among animals, dogs and bears are descended from a common
ancestor. They both acquired the ability to walk on four legs; one
or both of them changed the way that ability is implemented.
Similarly, descendant object types inherit capabilities, and they
may reimplement some of them.

MacApp and object-oriented programming 145

Object Pascal
Object Pascal programs are structured around object types. Just as
any variable is defined by its type, an object is defined by its
object type. Unlike other kinds of types, the object type defines
both the type of data structure the object has and the methods the
object can perform.

Object types belong to an object hierarchy. This hierarchy makes
it possible for object types to share characteristics belonging to
object types above them in the object-type hierarchy. Figure 8-2
illustrates the basic Object Pascal hierarchy and introduces some
fundamental Object Pascal terms.

Immediate descendants of X -----..

Descendants of X - -------+---

Figure 8-2
Object-type hierarchy

146 Chapter 8: Development Tools

Every circle in Figure 8-2 is an object type. Within the hierarchy,
object types have relationships. Ancestors are object types that
are above another object type in the hierarchy-A and B are X's
ancestors. Descendants are object types that are below another
object type in the hierarchy-C, D, E, F, and G are descendents of
X. An immediate descendant is an object type that is one level
below another in the hierarchy-C, D, and E.are immediate
descendants of X. The process of declaring an immediate
descendant is called customizing the ancestor object type. An
immediate ancestor is an object type that is one level above an
object type in the hierarchy-B is X's immediate ancestor.

•:• Note: Other texts use a different set of terminology in
describing Object Pascal, derived from the terminology used
for Smalltalk. A class is equivalent to an object type. A
subclass is equivalent to an immediate descendant.
Subclasstng is equivalent to customizing. A superclass is
equivalent to an immediate ancestor. And a message is
equivalent to a method call.

One object type, TObject, is necessary for writing Object Pascal
programs. TObject defines the most general characteristics of all
Object Pascal objects. For example, TObject provides a general
method for copying an object and a method for discarding an
object. Additional object types in a program are defined by the
programmer.

Object Pascal and MacApp
Object Pascal was developed in conjunction with MacApp, the
expandable Macintosh application. MacApp is made up of
libraries of Object Pascal code with predefined object types that
provide certain standard functions for applications, essentially
implementing the Macintosh user interface. MacApp thus
provides standard Macintosh application behavior. When you
write a MacApp program, you add extensions to MacApp by
creating object types and methods to perform the work of your
application.

MacApp and object-oriented programming 147

One of the most important features of Object Pascal is that
method calls are used to tell an object to perform a method on
itself. This means that MacApp can tell one of the objects in your
code to invoke a method. Typically, MacApp calls a method in
response to a user action such as choosing a command from a
menu. In a case like that, your object type is a descendant of one
of the MacApp types, the MacApp object type defines methods
that you override, and your implementation of the called method
is invoked.

An introduction to MacApp

MacApp was written to take care of most of the standard behavior
of a Macintosh program. Because it is written in an object-oriented
fashion, you can write your application as an extension of MacApp,
essentially particularizing the generalized objects provided by
MacApp.

MacApp declares six major object types, with each basic object
type corresponding to a conceptual entity in object-oriented
programming style. The six entities are

o view

D frame

D window

D document

D application

D command

When you start a MacApp application, your main program creates
and initializes the application object, and then calls the run
method for that object. As a rule, the run method generates a
command to open an old document or to create a new one. The
document object then creates the view, frame, and window objects
accordingly.

The view object is unique to MacApp. You can think of it as being
the surface on which an interpretation of the document's data is
displayed.

The frame object is made up of the scroll bars and the content
region of the document's window. The window object includes the
title bar, the close box, the size box, and the zoom box.

148 Chapter 8: Development Tools

Command objects are created by other objects to handle specific
commands. Typically, one of the other five types of objects
generates a command object to change itself.

Programming in MacApp

Although MacApp is presently available only in MPW Pascal with its
object extensions, at this writing several third-party vendors and
Apple are working on implementations of MacApp in other
languages, including C and Smalltalk.

Programming a Macintosh application in MacApp is different from
programming a procedure-oriented approach only in the same
ways that object-oriented programming differs from traditional
programming. In the case of the MPW Pascal implementation of
MacApp, all the tools of the MPW environment and the MPW Shell
are available to you as you develop applications in MacApp.

HyperCard as a development environment
In the summer of 1987, Apple introduced HyperCard. This product
has significance for Macintosh developers for two reasons:

o It is available free or virtually free to all Macintosh owners, thus
providing a common development environment for Macintosh
applications.

o It includes a programming language called HyperTalk™ that,
while not a full-blown language with complete access to the
Toolbox, is nonetheless powerful and flexible.

A common delivery vehicle
When the Macintosh was introduced, one of the long-standing
microcomputer traditions it broke was that of supplying a built-in
programming language. Most microcomputers before the
Macintosh included a form of BASIC either in ROM or on disk as
part of the system.

HyperCard as a development environment 149

"HyperCard is certainly
designed to be a vehicle for
delivering applications.
A wide range of programs
can be done completely in'
HyperCard, thus easing the
process of developing Macintosh
applications considerably. "
Dan Winkler,
Apple Computer

There were some clear advantages to this approach. A computer
that did not include or seem to the casual user to need a
programming language was more inviting. In keeping with Apple's
theme for the Macintosh as the computer "for the rest of us," this
approach was effective.

It did, however, have one drawback. Developers could only design
Macintosh applications as stand-alone, executable files if they
wanted to be sure that any Macintosh owner who wished to could
run their products. There was no "common language" in which
every Macintosh could run other than its native machine tongue.

HyperCard is now bundled with every Macintosh sold. When it
was introduced, those persons who already owned Macintosh sys­
tems could buy HyperCard for a nominal sum. Thus, there is now
a language in which you can write an application without having
to compile it and produce an executable file. All Macintosh
owners can and should own HyperCard.

HyperTalk

HyperTalk is the language built into HyperCard. It enables even
inexperienced programmers to design applications, called scripts,
which can be executed when the user takes certain actions in the
HyperCard environment. When a button is pressed, a stack is
opened, a card is accessed, or information is placed into a field,
an associated script written in HyperTalk can be called into
action.

HyperTalk contains many object-oriented programming ideas,
though it is not itself an object-oriented programming language.
HyperTalk involves objects passing messages to other objects for
execution. It includes scripts, which closely resemble methods and
are tied directly to the objects that execute them.

There are five kinds of objects in HyperTalk:

o buttons

o fields

o cards

o backgrounds

o stacks

150 Chapter 8: Development Tools

"Initially, there was a sense of
fear and frustration about
Macintosh programming.
Things I used to own in MS-DOS
are written and owned by the
system. !felt a lack of control.
But this is an intellectual hurdle,
and once I overcame it it's all
been gravy. Building applica­
tions on the Macintosh is much
easier than on any other
machine I've used. "
Larry Dobyns,

independent developer

The basic unit of information is the card. Each card is associated
with a background, and a background may be (and usually is)
shared by more than one card.

The card overlays the background, and both are the size of the
classic Macintosh screen. Buttons and fields can belong either to
individual cards or to backgrounds. In the latter case, they appear
on and are accessible from every card with that background.

Although HyperTalk was designed to be easy enough for
nonprogrammers to use, professional developers find it presents
a particularly comfortable and uncluttered environment in which
to develop applications for which the language is sufficient.

Other programming languages and
environments
Apple Computer encourages program developers to use MPW,
MacApp, and HyperTalk to the extent that makes sense. Their use
should result in programs that comply with the Human Interface
Guidelines and are relatively easier to code and maintain.
However, Apple recognizes that many other companies have
devised development environments and programming languages
for the Macintosh.

A complete list of the current programming languages and tools
available for the Macintosh can be obtained on request from
Apple's Developer Services.

Debugging Macintosh applications
Like programming, debugging is an art. And like any art, success is
at least partly dependent on the right tools . In Macintosh
application programming, that means one of several programs
including MacsBug, TMON, or the Seawell Inspector. Each of
these debuggers has its advantages and limitations . Many
programmers have more than one available and use the one they
think is most likely to give them the answer to the problem they
are facing at the moment.

Debugging Macintosh appllcattons 151

When a Macintosh program exhibits bugs of the softer
variety-often called logic erro1S-there is no shortcut to
debugging them. You just have to do as you do with any other
system and language: step through the program and play
computer until you find the error.

But a "hard crash" on the Macintosh can be debugged with a
powerful debugger and some basic direction. A detailed
discussion of debugging is well beyond the scope of this book. But
there is an important principle to keep in mind.

Important Any crash that occurs on a Macintosh Is caused by the execution of
a single MC68xxx assembly-language Instruction. This alone may
help take some of the mystery out of debugging.

Beyond that, there is an additional set of hints. This is from Scott
Knaster, author of How to Write Macintosh Software (Hayden,
1986), a book that contains an extensive amount of information
about debugging Macintosh programs. He suggests that there are
four basic questions the programmer must ask during the
debugging cycle:

o Where did the program crash? In other words, what was the last
instruction in your program that was properly executed?

o What specifically caused the crash? Was a bad parameter
passed to a Toolbox routine? Did the system run out of
memory?

o What assembly-language instruction was the last one executed
before the crash? Using breakpoints and other debugging aids
in your debugging tool, you can hone in on the single
assembly-language instruction that caused the problem.

o What caused the offending instruction to be executed? Now that
you know which assembly-language instruction caused the
problem, you must identify the call (usually in ROM) that
caused the call to this instruction.

The best advice is: know your computer. With the information in
this book as a beginning, delve into Inside Macintosh. Really
understand how Toolbox calls are executed. Pay particular atten­
tion to memory-related issues, because a large percentage of bugs
are caused by memory allocation and management problems.

15:2 Chapter 8: Development Tools

Chapter 9

Becoming a Macintosh
Developer

153

This chapter provides you with some hints on becoming a
Macintosh developer. From a technical standpoint, you will wa nt
to acquaint yourself with Inside Macintosh and learn how to make
best use of it in your work. From a business perspective, you will
find it helpful to register with Apple as someone who is
developing Macintosh applications.

Continuing your Macintosh education
The Macintosh is a powerful system that has been designed to be
easy for end users to operate. It does not follow that it is also easy
to program. As you have seen in this book, programming the
Macintosh requires you to rethink some basic ideas about
computers and their operation.

As a result of this relative complexity, you will find yourself in a
continuing process of learning more about the Macintosh family
and how to program it. For the next steps in that technical
education, there are three recommended courses of action. In no
particular order they are

o reading Inside Macintosh judiciously

o examining other people's programs

o attending one o, .nore Apple training seminars.

Finding your way through Inside Macintosh

Because of the marked differences between the Macintosh and
other microcomputers, and because of the wide range of powe rful
Toolbox and Operating System calls, Macintosh documentati on
for the programmer tends to be extensive. It can seem
overwhelming at first to look at the nearly 2,000 pages of Inside
Macintosh. But, as you have seen in this book, you need not try to
memorize or even learn all of the commands and techniques
described.

Apple has provided three road maps to make it easier for you to
find your way through the manuals:

o Appendix B in this book, which lists the most important of the
Operating System and Toolbox calls introduced in this book
and explains what they do

l 5Ll Chapter 9: Becoming a Macintosh Developer

"Once you get it done, nothing
feels better than a Macintosh
program. The end result can
feel so nice. This is due in large
part to an attitude at Apple that
the user is the one who really
matters."
Dan Winkler,
Apple Computer

o "About Macintosh Technical Documentation" in the preface to
this and other books in the collection, which depicts how the
various pieces of documentation work together

o the "road map" chapter of Inside Macintosh, Volume I, which
explains the structure of individual chapters in the set and
provides some guidance on next steps to take

The important calls

The listing in Appendix B was arrived at by talking to dozens of
programmers with a collective experience of tens of thousands of
lines of Macintosh programming. Many of them are Apple
employees responsible for maintaining the pieces of the
Operating System and the Toolbox. Others are outside developers
who have produced complex and popular applications.

By performing this "triage" of calls for you, this appendix
provides you with a good first screening pass for your continued
education about Macintosh programming. If a call is listed in
Appendix B, it is one with which you should probably have at
least a nodding acquaintance. If it is not there, that doesn't mean
you'll never need it. It means simply that it is not among those
that experienced Macintosh programmers find frequently useful.

Guide to the documentation

The preface of this book furnishes a guide to Inside Macintosh. It
outlines the relationship among the various manuals that make up
the suite of Macintosh programming documentation. It also
furnishes, in Table P-1, a brief summary of each of the manuals'
contents and focus.

Using this information, you can probably focus your search for
more information about a particular aspect of Macintosh
programming quite quickly. You can also see at a glance where to
go for more information about a subject that may be only lightly
covered in one of the manuals in the collection.

The road map in Inside Macintosh

In the "road map" chapter of Inside Macintosh, Volume I, you will
find, among other things, an example program (written in a
Pascal dialect), a brief explanation of that program, and the
section "Where to Go From Here."

Continuing your Macintosh education 155

"It's feasible on the Macintosh
for one or two people working
on a bare concrete floor for nine
months to do something useful
an.d exciting. You wouldn't get
anything that even looked good
on a PC in twice that time. "
Larry Dobyns,
independent developer

By studying the example-a simple program that displays a single
window and permits you to edit text in it-and looking at the
structure of the code, you can gain a great deal of insight into how
Macintosh programming looks and feels.

Then by looking at "Where to Go From Here," you can determine
the next sections of Inside Macintosh to read for the information
you want.

Examining other people's programs

Traditionally, one of the best ways to learn to program in a new
language or environment is to find some example programs and
"take them apart." In MPW and MacApp (see Chapter 8), as well
as many other development environments, sample programs are
included. In addition, the MPW environment, MacApp, and many
third-party languages and development tools include examples .
Sometimes, these programs are well designed and can reveal
something about program strategy on the Macintosh. Even when
they are not programming gems in their design and structure,
they often demonstrate useful techniques.

Quite often, the programmers who develop and make these
programs available furnish the source code routinely. Ma ny are
willing to provide it on request.

If you are one of those programmers who learns best by taking
apart someone else's code, you should have no trouble finding
some to dismantle and analyze.

Attending Apple programming seminars

Another good source of technical education for Macintosh
developers is the array of seminars and training classes offered by
Apple Computer. Ranging from one-day technical overviews to
one-week intensive programming experiences, these seminars can
help speed you along the road to Macintosh mastery.

More information about these programs can be obtained through
Apple Developer Services.

156 Chapter 9: Becoming a Macintosh Developer

" On a more traditional system,
the best training for program­
ming is the text adventure
game, since you spend so much
time groping in the dark .
Tbe Macintosh Toolbox is the
light in that darkness. "
Geoff Brown, author of
Deluxe Music Construction Set

Registering as a Macintosh developer
Apple Developer Services can provide you with a great many
support functions including

o equipment at reduced prices (and sometimes in advance of the
equipment's marketing release)

o training classes

o access to the Apple Evangelists for help in designing,
positioning, and marketing the product

o on-going technical support during product development

o licensing agreements

To obtain information about becoming a certified developer, send
a letter to Developer Relations, Mail Stop 27-S, Apple Computer,
Inc., 20525 Mariani Ave., Cupertino, CA 95014.

Once you are certified, you will receive regular mailings from
Apple, including TechNotes, which provide updates about the
Macintosh family that may be helpful to you as you develop
applications.

•!• Note: If you plan to distribute any Apple software-including
such things as the System, Finder, or ImageWriter® and
LaserWriter® resources-with your programs, then you must
become a recognized Apple developer and sign appropriate
licensing agreements.

Registering as a Macintosh developer 157

Appendixes

159

161)

Appendix A

Compatibility Issues and
Guidelines

This appendix discusses design and programming considerations
involved in ensuring that programs you write wil l be compatible
across all existing Macintosh family product lines. More detailed
information on the subject can be found in occasional Macintosh
Technical Notes, specifically Notes 2, 7, and 117.

These comments are intended to be guidelines only. If you are
designing a program that has a valid reason to devi ate from these
recommendations, you must only be aware that doing so risks the
possibility that your program may not run correctly or at all on
future versions of the Macintosh.

Some of the suggestions in this appendix are simply good
Macintosh programming guidelines that happen also to have a
relationship to compatibility.

For the purpose of this discussion, these tips and guidelines ca n
be divided into five main pieces of advice:

o Use system globals, not hard-coded addresses, when possible.

o Check errors and don't ignore them when they arise.

o Don't rely on things not changing.

o Avoid using the system heap zone unnecessarily.

o Don't write to or read from Nil handles and pointers.

Use system globals
Wherever they are provided, it is safer to use system globals than
to make assumptions about where things are stored and how big
they are. This section provides some typical guidance on this
topic; the list could be much longer, but you'll get the idea.

Don't assume the screen is a fixed size

You may be tempted to set the boundsRect within which windows
can be dragged, or to make other screen-specific assumptions. If
you do, the program may not run well, or even at all, on
Macintosh systems with other screen sizes. For example, a
Macintosh II's screen size depends on the video card and display.
It cannot be known in advance. Similarly, the screen on the
Macintosh XL is wider than that of the standard Macintosh.

Rather than hard-coding the corners of the bounding rectangle
boundsRect, take advantage of the fact that QuickDraw must
"know" where the corners are and stores them in a global variable
called screenBits.bounds. Assuming QuickDraw has been properly
initialized, you can set the boundary rectangle to the size of the
screen with a call like this pseudo-code example:

boundsRect = scre en Bits.bounds

Regardless of the size screen being used by the system, this kind of
call will result in your program staying within the appropriate
boundaries.

Don't assume the screen is in a fixed location

The base address of the screen location in memory varies with
the model of Macintosh. Rather than hard-coding this address for
the machine on which you expect people to run the program, use
the QuickDraw global variable screenBits.baseAddr. You can do
this with a call like this pseudo-code example:

myScreenBase = s creenBit s.baseAddr

Use system globals 161

Don't assume screen width is in rowBytes
As you learned in Chapter 5, the width of the Macintosh screen
can be determined by the value stored in the variable rowBytes.
But relying on this as the best way to discover the actual width of
the displayable area may lead to problems. If the user owns one
of the large-screen displays, for example, he or she may be unable
to drag your application's window to some parts of the screen.

Again, two global QuickDraw variables will assist in the process of
ensuring that you are assigning these values. The variable
screenBits.rowBytes always contains the correct value for the
number of bytes wide the current display is, and the variable
screenBits.bounds.right always has the right screen size.

Don't make too many assumptions about files
Use the standard SFGetFile and SFPutFile routines to
access disk files rather than directly manipulating file and volume
control blocks. This will ensure that your program is compatible
with both MFS and HFS file systems without any additional effort
on your part.

Check errors returned by calls
Many Macintosh calls return error codes as part of their
operation. If your program checks these errors and, in the event
of a nonzero code, takes some appropriate action, it will be well
on its way to being compatible across model lines.

This suggestion can be restated simply: Always write code that is
defensive. As one Macintosh wag says, "Assume that everyone and
everything is out to kill you. Trust no one."

Any use of Operating System routines should always check the
OSErr they return. Ignoring them or failing to check them can
result in painful system crashes that are very dificult to find.

162 Appendix A: Compatibility Issues and Guidelines

Don't rely on things not changing
In a system as complex and revolutionary as the Macintosh, some
evolution over time is inevitable. Couple this truism with Apple's
clearly stated intent to continue to expand the Macintosh family
and you can see that assuming that anything not clearly fixed in
place will remain the same forever is not a good assumption .

Watch copy-protection code closely

The main reason programs fail as they move from one member
of the Macintosh family to another is related to copy-protection
schemes developers use. Without making any observations about
the marketing and ethical issues involved, it is safe to say that if
you use a copy-protection scheme that performs sophisticated,
tricky, and illegal operations, you greatly increase the risk of
incompatibility.

Many copy-protection schemes rely on direct modification of
hardware registers or reserved memory locations. Others use
techniques involving self-modifying code. Both of these
approaches are potentially dangerous in the Macintosh
environment.

Don't use reserved bits

Many of the bytes and words identified as parts of Macintosh data
structures have unassigned bits in them. There is a temptation,
when a programmer needs a flag "just for a few cycles," to steal
one of these bits. It is sound advice not to succumb to this
temptation. You should consider all unassigned bits as reserved
for Apple's future use.

Don't write timing-sensitive code

The clock rate for the Macintosh II is twice that of the other
members of the family. Future Macintosh models may run with yet
higher clock rates . As a result, it is a good idea to avoid writing
code that depends on the clock rate.

Don't rely on things not changing 163

If your code requires timing loops, use the Delay routine in the
Operating System or the Ticks routine as a means of
controlling timing loops.

Use ASCII to read keyboard input

Although it is possible to read the characters entered at the
Macintosh keyboard as key codes rather than standard ASCII
codes, it is best not to do so. These codes vary slightly from
model to model. In addition, some users may have third-party
keyboards that are completely different from those built by Apple
Computer.

If you always read keyboard input as ASCII codes, you will not
have compatibility problems in future Macintosh products.

Avoid direct printer output

The argument in favor of reading ASCII codes from the keyboard
should not be extended to writing ASCII codes to the printer. Use
the Printing Manager for printer output. This will ensure that you
are always compatible with AppleTalk-connected printers, locally
connected printers, and future versions of printer drivers .

Avoid using the system heap
System heap space tends to be limited. It is not a good idea,
therefore, to use the system heap at all. If you must, however, use it
only to allocate objects with a size of 32 bytes or less.

This is not only a compatibility issue but a general Macintosh
programming suggestion. The system heap should be seen as
being "owned" by the system. Your program should only use it
sparingly, if at all.

16,l Appendix A: Compatibility Issues and Guidelines

Watch the use of Nil pointers
It is often appropriate or even necessary to pass a Nil pointer or
handle to a ROM call. But it is essential that you never read any
information from or write any data to the location pointed to by
a Nil pointer or handle.

A Nil pointer or handle has a value of 0. Because a pointer is
nothing but a location in memory, a Nil pointer is pointing to
memory location 0. Motorola reserves for the processor the use
of address locations 0 through 3. Any attempt to read or write
there can have disastrous consequences.

Watch the use of Nil pointers 165

166

Appendix B

Important Operating System
and Toolbox Calls

This appendix consists of an alphabetical listing of the important
Operating System and User Interface Toolbox calls in the
Macintosh family. Virtually all of these calls are discussed in this
book. Each call is listed, followed in parentheses by the name of
the manager or other portion of the system to which it belongs.
Below each call's name and manager information is a brief
description of the use of the call.

Important Do not rely solely on the conten1s of this appendix to understand
and use any of these calls. As usual, Inside Macintosh is the final
authority on the subject of how they work. The explanations
provided here are basic and are designed only to enable you to
understand the purpose of each call.

If you master the calls in this appendix, you will be well on your
way to being able to write professional and usable Macintosh
software.

•:•Note: In this appendix, boldface is used in the descriptions to
indicate the names of other calls in this appendix, rather than
to highlight terms in the glossary.

Alert (Dialog Manager)

Posts an alert box with no icon. All alerts are modeless dialog
boxes to which the user must respond. See cautionAlert,
NoteAlert, and StopAlert.

BeginUpdate (Window Manager)

Sets up the visible region (visRgn) of the appropriate window for
redrawing, which your program must then handle. Call this when
an update event is detected in your main event loop. Must be
balanced by a call to EndUpdate.

CautlonAlert (Dialog Manager)

Posts an alert box with a Caution icon. See Alert.

CloseDialog (Dialog Manager)

Removes the appropriate dialog box from the screen and deletes
it from the window list, releasing memory in the process.

OosePicture (QuickDraw)

Tells QuickDraw to stop saving calls and picture comments as the
definition of the currently open picture. Must balance each
OpenPicture call.

CloseRgn (QuickDraw)

Stops the collection of lines and framed shapes, organizes them
into a region definition, and saves the resulting region. Must
balance each OpenRgn call.

OoseWindow (Window Manager)

Removes the indicated window from the screen and deletes it
from the window list, releasing memory in the process.

DeleteMenu (Menu Manager)

Deletes a menu with the furnished ID from the current menu list
in memory. Call DrawMenuBar to redraw the menu with the
deleted menu no longer present.

Important Operating System and Toolt;>ox Calls 167

DialogSelect (Dialog Manager)

Handles events in a modeless dialog box, returning a True if the
event involves activation of an enabled dialog item, False if it is
any other kind of event Compare ModalDialog.

DIBadMount (Disk Initialization Package)

Responds to a disk-inserted event that causes an error, either
rejecting the disk or posting a dialog and permitting the user to
re-initialize the disk.

Disableltem (Menu Manager)

Disables a specific item in a particular menu. Can also disable the
entire menu list for a given menu. Disabled items appear
dimmed. See Enableltem.

DisposeControl (Control Manager)

Removes the identified control from the screen, deletes it from
the window's control list, and releases memory in the process. See
KillControls.

DisposDialog (Dialog Manager)

Calls CloseDialog automatically and then releases the memory
occupied by the dialog's item list and dialog record.

DisposeMenu (Menu Manager)

Releases memory occupied by a menu allocated with NewMenu.
Don't use this if the menu was added with GetNewMBar, in which
case you should use ReleaseResource instead.

DisposeWindow (Window Manager)

Calls CloseWindow automatically and then releases the memory
occupied by the window record.

DisposHandle (Memory Manager)

Releases the memory occupied by a relocatable block. Compare
DisposPtr.

16!3 Appendix B: Important Operating System and Toolbox Calls

DisposPtr (Memory Manager)

Releases the memory occupied by a nonrelocatable block.
Compare DisposHandle.

DragWindow (Window Manager)

Pulls a dotted outline of the selected window around on the
screen, following the movements of the mouse, until the button is
released. When the button is released, calls MoveWindow to
redraw the window in its new location.

DrawChar (QuickDraw)

Places the character supplied as a parameter to the right of the
current pen location and advances the pen accordingly. See
DrawString and DrawText.

DrawControls (Control Manager)

Draws all of the controls currently visible in the window supplied
as a parameter.

DrawGrowlcon (Window Manager)

In response to an update or activate event involving a window
with a size box, draws the size box. Appearance and location of
the size box depend on how the window is defined. For standard
document windows, it is in the lower right corner of the frame.

DrawMenuBar (Menu Manager)

Redraws the menu bar in accordance with the current menu list,
incorporating any changes since the last time it was called.

DrawPicture (QuickDraw)

Takes the portion of the picture supplied as a parameter that is
located inside the picture frame and draws it in a destination
rectangle also supplied as a parameter. In the process, shrinks or
expands the picture to match the borders of the destination
rectangle.

Important Operating System and Toolbox Calls 169

DrawString (QuickDraw)

Calls DrawChar for each character in the string supplied as a
parameter. Compare DrawText.

Draw'fext (QuickDraw)

Calls DrawChar for each character stored at a location in
memory pointed to by a parameter to the call. You may specify
the starting and ending bytes to draw from the memory structure.

Enableltem (Menu Manager)

Re-enables a previously disabled item (see Disableltem) in a
menu. The choice is no longer dimmed.

EndUpdate (Window Manager)

Restores the window supplied as a parameter to its appropriate
current state. Must balance each BeginUpdate call.

FillRect (QuickDraw)

Fills the rectangle supplied as one parameter with the pattern
defined by the other. Applies equally to all other QuickDraw
shapes.

FindControl (Control Manager)

Tells the application which, if any, of a window's controls the
mouse button was pressed in. Call this when your main event loop
reports a mouse-down event in the content region of a window
that contains controls.

FindWindow (Window Manager)

Tells the application which, if any, part of the window the mouse
button was pressed in. Call this when your main event loop
reports a mouse-down event and the location could be a window.

FlushEvents (OS Event Manager)

Removes all or selected events from the event queue depending
on whether a mask is supplied and if so what its value is. A mask
value of 0 results in all pending events being purged.

170 Appendix B: Important Operating System and Toolbox Calls

FSClose (File Manager)

Removes the file's access path, writes the contents of the volume
buffer to the volume, and updates the file entry in the file
directory. See FSOpen.

FSCreate (File Manager)

Creates a new file with the specified name, file type, and creator,
on the specified volume. Sets date and time of creation and last
modification.

FSOpen (File Manager)

Creates an access path to the file whose name is furnished as a para­
meter, on the volume specified as another parameter. The returned
file reference number is used in subsequent access to the file.

FSRead (File Manager)

Given a byte count, a file reference number, and a memory buffer
location pointer, attempts to read the number of bytes indicated
from the named file and place the resulting data in the buffer.
Returns the number of bytes actually read to the calling program.

FSWrite (File Manager)

Given a byte count, a file reference number, and a memory buffer
location pointer, attempts to write the number of bytes indicated
to the named file from the buffer. Returns the number of bytes
actually written to the calling program.

GetCtlValue (Control Manager)

Returns the current setting of the indicated control. Used to
determine if a control is on or off or what its value is (in the case
of scroll bars, for example).

GetCCursor (Color QuickDraw)

The color equivalent of GetCursor.

GetCursor (Toolbox Utilities)

Returns a handle to the cursor with the resource ID supplied as a
parameter. Calls GetResource.

Important Operating System and Toolbox Calls 171

GetEOF (File Manager)

Returns the logical EOF of the open file whose reference number
is supplied as a parameter.

GetFontlnto (QuickDraw)

Returns basic information about the current graphics port's font.

Getlcon (Toolbox Utilities)

Returns a handle to an icon with the supplied resource ID. Makes
an automatic call to GetResource to load the icon.

Getltem (Menu Manager)

Returns the text of the given menu item.

GetMenu (Menu Manager)

Returns a menu handle for the menu having the given resource
ID. Once you have obtained a menu resource by this method, call
InsertMenu and DrawMenuBar to display it.

GetMenuBar (Menu Manager)

Creates a copy of the current menu list and returns a handle to
the copy. Permits modification of the menu, which can then be
redisplayed with changes using SetMenuBar and DrawMenuBar.

GetNewControl (Control Manager)

Creates a control from a control template stored in a resource
file, adds it to the beginning of the window's control list, and
returns a handle to the newly created control. See NewControl

GetNewDialog (Dialog Manager)

Creates a dialog in accordance with specifications contained in a
resource file and having the resource ID supplied as a parameter
to the call. See NewDialog.

GetNewMBat (Menu Manager)

Creates a new menu list from specifications contained in a
resource file. Returns a handle to the new menu list. To make this
the current menu list, call SetMenuBar.

l n Appendix B: Important Operating System and Toolbox Calls

GetNewWindow (Window Manager)

Creates a window in accordance with specifications contained in a
resource file and having the resource ID supplied as a parameter
to the call. See NewWindow.

GetNextEvent (Event Manager)

The "workhorse" of the Toolbox. Returns the next available event
of a specified type or types and removes it from the event queue.
Returns information about the event in an event record your
program can use to determine how to respond to it.

GetPattern (Toolbox Utilities)

Returns a handle to the pattern with the resource ID supplied as a
parameter.

GetPen (QuickDraw)

Returns the location of the pen.

GetPenState (QuickDraw)

Returns the location, size, pattern, and mode of the pen. Used
primarily to permit your program to save the current state of the
pen before it changes it temporarily. See SetPenState.

GetPicture (Toolbox Utilities)

Returns a handle to the pic~ure with the resource ID supplied as a
parameter.

GetPort (QuickDraw)

Returns a pointer to the current graphics port. See SetPort.

GetResource (Resource Manager)

Returns a handle to the resource having the type and ID supplied
as parameters. Reads it from a file if necessary, but if the resource
is already in memory, simply returns a handle to it with no disk
access taking place. Used by many of the other Toolbox calls to
find a resource.

Important Operating System and Toolbox Calls 173

GlobalToLocal (QuickDraw)

Converts the point supplied as a parameter from global
coordinates (upper left bit image as coordinate (0,0)) into local
coordinates of the current graphics port. Compare
IocalToGlobal.

GrowWindow (Window Manager)

Pulls a grow image of the window around, following the mouse
movements, until the button is released. Returns the size of the
current graphics port. When the user releases the mouse button,
call SizeWindow to change the window to its new size.

HideControl (Control Manager)

Makes the control whose handle is passed as a parameter
invisible. See ShowControL

HideCursor (QuickDraw)

Removes the cursor from the screen and decrements the cursor
level by 1. Only when the cursor level is 0 will the cursor be
visible. Must be balanced with a call to ShowCursor. See
ObscureCursor.

InitCursor (QuickDraw)

Sets the current cursor to the standard arrow shape and sets the
cursor level to 0, making the cursor visible.

InitDialogs (Dialog Manager)

Initializes the Dialog Manager. Call once before any Dialog
Manager calls are executed.

InitFonts (Font Manager)

Initializes the Font Manager. Call once before any Font Manager
calls are executed.

InitGraf (QuickDraw)

Initializes QuickDraw. Call once before any QuickDraw calls are
executed.

174 Appendix B: Important Operating System and Toolbox Calls

InltMenus (Menu Manager)

Initializes the Menu Manager. Call once before any Menu
Manager calls are executed.

InltWlndows (Window Manager)

Initializes the Window Manager. Call once before any Window
Manager calls are executed.

lnsertMenu (Menu Manager)

Searches through all open resource files for menu resources and
inserts these resource names in the menu where specified in a
parameter.

lnvertRect (QuickDraw)

Inverts the pixels in the specified rectangle, converting each white
pixel to black and each black pixel to white. Applies equally to the
other QuickDraw shapes.

IsDialogEvent (Dialog Manager)

Determines whether an event that takes place while a modeless
dialog box is available to the user should be handled as part of
that dialog box's processing. Returns a Boolean True if the event
is related to the dialog box, False if it is not.

KillControls (Control Manager)

Disposes of all controls associated with the window passed as a
parameter. See DisposeControl

line (QuickDraw)

Draws a line to a point relative to the current position of the pen,
using increments for horizontal and vertical position supplied as
parameters. Compare LlneTo.

UneTo (QuickDraw)

Draws a line from the current pen position to the point whose
coordinates are supplied as parameters. Compare Line.

Important Operating System and Toolbox Calls 175

LocalToGlobal (QuickDraw)

Converts the point supplied as a parameter from the current
graphics port's local coordinates into the screen's global
coordinate system. In global coordinates, the upper left corner of
the graphics port becomes location (O,O). Compare
GlobalToLocal.

MenuChoice (Menu Manager)

Available only in System version 4.1 and higher. If a menu
processing command (MenuKey or MenuSelect) returns a 0, call
this to find out what dimmed menu choice the user may have
tried to access.

MenuKey (Menu Manager)

Translates a Command-key combination into the corresponding
menu choice if one exists.

MenuSelect (Menu Manager)

Handles the mouse while it is located in the menu bar. Keeps
track of where the mouse is, highlighting menus and items as
appropriate. Returns a value your program can decode to
determine where the user released the mouse and therefore what
menu choice should be processed.

ModalDialog (Dialog Manager)

Repeatedly gets and handles events in the window of a modal
dialog box. Returns the dialog box item chosen by the user for
your program to process.

Move (QuickDraw)

Relocates the pen relative to its current position and according to
the horizontal and vertical increments supplied as parameters. No
drawing takes place as the pen moves. Compare Line and
MoveTo.

MoveControl (Control Manager)

Relocates the control specified as a parameter to ~ new location
in its window, with its upper left corner located at the coordinates
supplied as parameters.

176 Appendix B: Important Operating System and Toolbox Calls

MoveTo (QuickDraw)

Relocates the pen from its current position to the point whose
coordinates are supplied as parameters. No drawing takes place as
the pen moves. Compare LineTo and Move.

MoveWindow (Window Manager)

Moves the currently active window (or another window whose
pointer is supplied as an argument) to another part of the screen,
relocating its upper left corner and positioning the rest of the win­
dow in accordance with its size, which is unchanged by the move.

NewControl (Control Manager)

Creates a control and adds it to the specified window's control
list, returning a handle to the new control. Compare
GetNewC.ontroL

NewDialog (Dialog Manager)

Creates a new dialog box as specified by its parameters and
returns a pointer to the new dialog. Compare GetNewDialog.

NewHandle (Memory Manager)

Allocates a block of memory of the specified size and returns a
handle to its location. Call this to create relocatable blocks.
Compare NewPtr.

NewPtr (Memory Manager)

Allocates a block of memory of the specified size and returns a
pointer to its location. Call this to create nonrelocatable blocks.
Compare NewHandle.

NewRgn (QuickDraw)

Allocates space for a new, variable-sized region, initializes it to the
empty region defined by the rectangle (O,O)(O,O), and returns a
handle to the new region. Must be used before any region
operations (such as OpenRgn) can be performed.

Important Operating System and Toolbox Calls 177

NewWindow (Window Manager)

Creates a window as specified by its parameters, adds it to the
window list, and returns a pointer to it. Compare GetNewWindow.

NoteAlert (Dialog Manager)

Invokes an alert and posts a modal dialog box with the predefined
Note icon and an appropriate message. See Alert.

ObscureCursor (QuickDraw)

Hides the cursor until the next time the mouse is moved.
Normally called when the user begins to type. Compare
HideCursor.

OpenPicture (QuickDraw)

Returns a handle to a new picture framed by the rectangle
supplied as a parameter. Initiates the saving of all drawing
routines and picture comments, if any, as the picture definition.
See DrawPicture.

OpenRgn (QuickDraw)

Tells QuickDraw to allocate temporary space and begin saving
lines and framed shapes for later processing as a region
definition. Must be preceded by a call to NewRgn.

PaintRect (QuickDraw)

Paints the specified rectangle with the current graphics port's pen
pattern and mode. Compare FillRect. Equally applicable to all
QuickDraw shapes.

PenMode (QuickDraw)

Sets the transfer mode through which a pen pattern will be
transferred onto an existing bit map when lines or shapes are
drawn. Determines the appearance of drawing over existing
graphic objects, shapes, and lines. Initially set to patCopy and can
be reset to this value by a call to PenNormal.

l 7B Appendix B: Important Operating System and Toolbox Calls

PenNormal (QuickDraw)

Resets the initial state of the pen in the current graphics port so
that it is one pixel by one pixel (see PenSize), in the patCopy
transfer mode (see PenMode), and in black (see PenPat).

PenPat (QuickDraw)

Sets the pattern with which the pen will draw in the current
graphics port. Initially set to black and can be reset to black by a
call to PenNormal.

PenSize (QuickDraw)

Sets the size of the pen in the current graphics port to a width and
height in pixels as specified by parameters to the call. Initially set
to (1,1) and can be reset to that value by a call to PenNormal

Plotlcon (Toolbox Utilities)

Draws the icon whose handle is furnished as a parameter in the
rectangle furnished as the other parameter.

ReleaseResource (Resource Manager)

Releases the memory, if any, allocated to the resource whose
handle is supplied as a parameter. Use only after you are
completely through with a resource.

SelectWindow (Window Manager)

Makes the window whose pointer is passed as a parameter the
active window by unhighlighting the presently active window,
bringing the desired window to the top of the stack, highlighting it,
and generating appropriate activate events. Usually calied when a
mouse-down event is detected in the content region of an inactive
window.

SetCCursor (Color QuickDraw)

The color eqtJivalent of SetCursor.

SetCursor (QuickDraw)

Sets the current cursor to the cursor supplied as an argument.
Does not change the visibility of the cursor.

Important Operating System and Toolbox Calls 179

SetEOF (File Manager)

Sets the logical EOF of the open file whose reference number is
supplied as a parameter, to the position specified as the other
parameter. An attempt to set the logical EOF beyond the physical
EOF sets the logical EOF one byte past the next free allocation
block. Using a logical EOF of 0 releases all disk spaced occupied
by the file.

SetFPos (File Manager)

Sets the mark of the open file whose reference number is supplied
as a parameter, to the position specified.

Setltem (Menu Manager)

Changes the text of the given menu item to the text supplied as a
parameter. Useful in toggling menus.

SetMenuBar (Menu Manager)

Makes the menu list whose handle is supplied as a parameter the
current menu list Particularly useful when a previous call to
GetMenuBar has stored a menu your program has temporarily
replaced or removed. Call DrawMenuBar to display the new menu.

SetOrigin (QuickDraw)

Changes the local coordinate system of the current graphics port.
Upper left corner coordinates of the graphics port's rectangle are
set to the parameters supplied. All subsequent drawing takes place
with reference to this new origin value. Particularly useful after a
scrolling operation.

SetPenState (QuickDraw)

Sets the pen location, size, pattern, and mode in the current
graphics port to the values supplied as parameters. Compare
GetPenState.

SetPort (QuickDraw)

Makes the port supplied as a parameter the current graphics port.

180 Appendix B: Important Operating System and Toolbox Calls

SFGetFile (Standard File Package)

Displays a dialog box listing the names of a specific group of files
from which the user can select one to be opened. Repeatedly gets
and handles events until the user confirms the command after
choosing a filename or aborts by clicking Cancel. Returns the
user's action in a reply record.

SFPutFile (Standard File Package)

Displays a dialog box allowing the user to specify a file to which
data will be written during a Save or Save As command's
execution. Repeatedly gets and handles events until the user either
confirms the command after entering an appropriate filename or
aborts the command by clicking Cancel. Returns the user's action
in a reply record.

ShowControl (Control Manager)

Makes the specified control visible. If it's already visible, has no
effect. Used in conjunction with HideControL

ShowCursor (QuickDraw)

Increments the cursor level by 1. If the cursor level is already 0,
has no effect and the cursor remains visible. If, however, one or
more previous calls to HideCursor have decremented the cursor
level below 0, each call to ShowCursor increases the level by 1
until it reaches 0. Balancing of these two calls is required.

SizeControl (Control Manager)

Changes the size of the specified control's enclosing rectangle.
The upper left corner of the rectangle remains anchored, and the
lower right corner is adjusted as appropriate. Useful when a
window containing controls is resized by the user.

SizeWindow (Window Manager)

Enlarges or shrinks the specified window's graphics port's
rectangle to the width and height specified as paramerers.

Important Operating System and Toolbox Calls 181

SpaceExtra (QuickDraw)

Specifies the average number of pixels by which to widen each
space in a line of text in the current graphics port. Useful when
displaying fully justified text.

StopAlert (Dialog Manager)

Invokes an alert and posts a modal dialog box with the predefined
Stop icon and an appropriate message. See Alert.

SystemClick (Desk Manager)

Determines which part of a desk accessory's window the mouse
button was pressed in and responds accordingly. Call this when
your main event loop detects a mouse-down event and the
FindWindow routine reports that the event took place in a system
window.

TEClick (TextEdit)

Controls the placement and highlighting of the selection range in
a TextEdit field. Call this whenever a mouse-down event occurs in
the view rectangle of the edit record. Keeps control until the user
releases the mouse button.

TECopy (TextEdit)

Copies the text in the selection range into TextEdit's local scrap.
If the selection range is an insertion point, the scrap is emptied.
Otherwise, the selected text completely replaces the contents of
the local scrap.

TECut (TextEdit)

Removes the text in the selection range from the specified text
and places it into TextEdit's local scrap. Text is redrawn as
necessary. If the selection range is an insertion point, the scrap is
emptied. Otherwise, the selected text completely replaces the
contents of the local scrap.

TEDelete (TextEdit)

Same as TECut except that the removed text is not placed in the
local scrap, whose contents are unaffected.

182 Appendix B: Important Operating System and Toolbox Calls

TEDispose (TextEdit)

Releases the memory allocated for the edit record and text
specified by the parameter. Call this only when you are
completely finished using an edit record.

TEinit (TextEdit)

Initializes TextEdit and allocates a handle for its scrap. Call this
once before any TextEdit routines are executed.

TEinsert (fextEdit)

Inserts the text whose handle is provided as a parameter just
before the selection range or insertion point in the indicated text
field, redrawing text as needed. Current selection range and scrap
are unaffected.

TEKey (TextEdit)

Places the character passed as a parameter in the text field
supplied as the other parameter, replacing the selection range or
inserting at the insertion point. Redraws the text as necessary.

TENew (f extEdit)

Allocates a handle for text, creates and initializes an edit record,
and returns a handle to the new edit record. Use this once for
each new edit record you want to allocate.

TEPaste (TextEdit)

Replaces the current selection range in the specified text field with
the contents of the TextEdit local scrap, leaving the insertion
point just past the newly inserted text. Text is redrawn as
necessary. Contents of the scrap remain unchanged.

TextBox (TextEdit)

Creates an uneditable text field containing text whose pointer is
supplied as a parameter. Frequently used in designing dialogs.

Important Operating System and Toolbox Calls 183

TextFace (QuickDraw)

Sets the current graphics port's character style to one or more of
the predefined constants bold, italic, underline, outline, shadow,
condense, and extend.

TextFont (QuickDraw)

Sets the current graphics port's font to the font number supplied
as a parameter. Font number 0 is the system font and is the
default

TextMode (QuickDraw)

Sets the current graphics port's transfer mode for drawing text.
The mode determines the appearance of text drawn over existing
graphics objects and shapes. See PenMode.

TextSize (QuickDraw)

Sets the size of the current graphics port's font to the number of
points in the parameter. A parameter of 0 instructs QuickDraw to
use the system font size, 12 point.

TrackControl (Control Manager)

Follows the movements of the mouse and responds appropriately
until the button is released. Call this when the user presses the
mouse button in a visible, active control, to ensure that the user
does not change his or her mind about activating the control.
Also tracks the movement of scroll bars and their associated
moving parts.

Track.GoAway (Window Manager)

Keeps control until the user releases the mouse button,
highlighting the close box as long as the mouse is positioned
inside it, and unhighlighting it when the mouse moves outside it.
Use this to ensure that the user does not change his or her mind
about closing a window.

UnloadSeg (Segment Loader)

Marks a code segment as being relocatable and purgeable. Block
is not actually purged or moved unless the Memory Manager must
do so to allocate new memory.

184 Appendix B: Important Operating System and Toolbox Calls

Appendix C

The Apple Programmer's and
Developer's Association
(APDA)

In the summer of 1986, Apple Computer and the A.P.P.L.E. Co-Op
of Renton, Washington, jointly formed the Apple Programmer's
and Developer's Association (APDA). The purpose of this
organization is to provide a vehicle through which individuals
programming applications for the Macintosh family and for the
rest of Apple's product line can obtain technical information and
development tools .

During the first year of its existence, APDA saw its membership
swell to 15,000.

If you are going to develop applications for the Macintosh family,
you will almost certainly want to join APDA.

What APDA provides
Membership in APDA entitles you to receive a quarterly
newsletter, APDAlog, which provides information on the latest
releases of Apple and third-party software development tools,
utilities, books, and other programmer-related products.

185

18C. Appendix C: APDA

In addition, you will receive TechNotes from Apple Computer,
early releases of software and documentation (often before Apple
Computer releases the same materials to the general public), and
access to an automatic ordering process that guarantees you will
always have the latest version of the software with which you work
every day.

APDA members can contact the association through many on­
line services, including CompuServe, AppleLink®, GEnie, and MCI
Mail, for orders and technical product information.

How to join APDA
Membership in APDA is open to anyone who completes and
signs a membership application and pays the $20 annual
membership fee. Write to

Apple Programmer's and Developer's Association
290-SW 43rd Street
Renton, WA 98055
(206) 251-6548

The application includes provisions indicating that the member
understands the strictures against distributing certain Apple
software that may be obtained through APDA.

Apple encourages you to become involved in APDA as a means
of gaining technical information and early access to program­
ming products you will need to make you a successful Macintosh
developer.

Glossary

alert: A warning or report of an error in the form
of an alert box, a sound from the computer's
speaker, or both. See alert box.

alert box: A box that appears on the screen to
give a warning or to report an error message
during the use of an application. There are three
types of alert boxes on the Macintosh. In
increasing order of severity, they are Note,
Caution, and Stop.

ancestor: In object-oriented programming, a
class or object from which the class or object
under consideration is derived or from which it
inherits traits. See descendant.

application file: A file containing an application
program. Compare document file.

application heap: The part of the heap set aside
for an application's use.

application space: Same as application heap.

bit image: A collection of bits in memory that
have a rectilinear representation. The display on
the screen is a visible bit image.

bit map: A set of bits that represent the position
and state of a corresponding set of items. See
pixel

bit-mapped graphics: A method of graphic
representation in which each pixel on a display
corresponds to a bit in memory, allowing each
pixel to be individually controlled.

block: An arbitrary section of memory, generally
understood to be made up of contiguous
locations.

boundary rectangle: The coordinates of the
upper left and lower right corners of a rectangle
making up the outside edges, typically of a bit
map or a graphlcs port.

built-in command: A command included in the
User Interface Toolbox or elsewhere in system­
level software furnished by Apple with the
Macintosh.

bundling: The process whereby a specific type of
document file is operationally connected to an
application so that when the user opens the
document, the appropriate application is
automatically selected and run.

CGrafPort: The data type for a color graphics
port. Also shorthand for color graphlcs port.

close box: Same as go-away region.

color graphics port: A complete drawing
environment that contains all the necessary
information for Color QuickDraw to carry out
instructions. See graphics port.

command file: In the Macintosh Programmer's
Workshop environment, a file containing a script
of commands to be executed as a group when the
file is activated.

187

command interpreter: The part of the Macintosh
Programmer's Workshop that executes
commands passed to it by the programmer or
other parts of the MPW system.

content region: The part of a window into which
the user or the application is expected to place
text or graphics information.

control: Part of a window or dialog box that is
active and through which the user can control
certain aspects of a program's operation. These
include scroll bars, size boxes, zoom boxes, close
boxes, buttons, and check boxes.

Control Manager: The part of the Toolbox
responsible for managing the manipulation of
controls in windows and dialog boxes.

creator: A four-character identifier that facilitates
the: identification of the application that
generated a document file. Used to identify a
file's application as part of the process of
bul[}dling.

cw~sor level: At any time, the cursor being used in
an application has a level associated with it. This
level determines whether the cursor is visible or
invisible. Hiding the cursor decrements its level
by 1; instructing that it be shown increases the
level by 1. Only a cursor with a level of 0 is
visible.

customize: In object-oriented programming,
declaring or defining an immediate descendant
of a class or object. The process creates a new
instance of the class or object, which may in turn
be given special characteristics.

data fork: The part of a Macintosh file that
contains nonresource information. Compare
resource fork.

dereferencing: In Pascal, the process by which a
pointer is converted into an absolute memory
address. A single caret (A) is used to dereference
a pointer. Compare double dereferencing.

188 Glossary

descendant: In object-oriented programming, an
object or class derived from the object or class
under consideration. See ancestor.

destination rectangle: The boundary rectangle
within which text in a TextEdit record will be fit,
using wrapping if necessary.

dialog: Same as dialog box.

dialog box: A box that contains a message
requesting more information from the user. A
dialog box can be modal (requiring the user to
furnish a response before proceeding) or
modeless (permitting the user to access other
windows without disposing of it first).

Dialog Manager: The part of the Toolbox
responsible for displaying and managing dialog
boxes.

document file: A file containing information to
be used by an application file.

double dereferencing: In Pascal, the process by
which a handle is converted into an absolute
memory address. Two carets (AA) are used to
double dereference a handle.

drag region: The part of a window that causes the
window to be moved with the mouse pointer as
long as the mouse button is held down. Most of
the top portion of a window is the drag region.

editor: A program that helps you create and edit
information of a particular form; for example, a
text editor or a graphics editor.

edit record: A TextEdit data structure in which
information about a text field subject to being
edited is stored.

Event Manager: The part of the Toolbox that
sorts, filters, and passes interaction with events to
running applications and to other parts of the
Toolbox.

event queue: The place in memory where the
Event Manager stores events as they accumulate
so that the program can handle them when the
time is appropriate.

field: In programming, one discrete variable
within a record.

file type: A four-character code assigned to any
file by the program that creates it. A file type
generally has meaning only within the context of
the application.

Finder: An application that's generally always
available on the desktop. The user manages
documents and applications, and gets
information to and from disks via the Finder.

fork: A generic name for one of two portions of a
Macintosh file. All such files contain two bit
streams, or forks. One is the resource fork and the
other is the data fork. Either may be empty in
any given file.

fragmentation: The process whereby the
application heap becomes a series of disjointed
allocation blocks. This condition can make it
difficult or even impossible to allocate new
memory when it is needed, even though the total
amount of available space may be adequate to
do so.

global coordinate system: The coordinate system
associated with a bit image and independent of
any bit map or graphics port's defining
boundary rectangle. Used to transfer information
about the locations of objects between
applications or between parts of an application
with different local coordinate systems.

go-away region: The small box usually located in
the upper left corner of a window. By clicking this
region, the user can cause the window to
disappear from the desktop.

grafPort: The data type for a graphics port. Also
shorthand for graphics port.

graphics port: The complete environment within
which QuickDraw graphics routines are carried
out on the classic Macintosh.

grow region: The small control usually in the
lower right comer of a window. By dragging on
this region, the user can resize a window. Not all
windows have grow regions.

handle: An address that points to another
address, where a pointer to a particular block of
memory is located. Handles enable the program
to locate relocatable objects.

heap: The region of memory in which space is
allocated and deallocated explicitly, either by the
running program (in the case of the application
heap) or by the system (in the case of the system
heap). Compare stack.

heap zone: An independently managed and
allocated portion of a heap. It is possible to
divide the application heap into multiple
application heap zones.

hot spot: The particular pixel on a cursor that is
used to determine the location of the cursor on
the screen. All cursors must have only one such
zone.

library: A collection of routines, procedures,
functions, or other programming modules. The
User Interface Toolbox is a library.

local coordinate system: A coordinate system in
which the location of the origin (O,O) is
determined by the boundary rectangle of the
specific bit map. Compare global coordinate
system.

Macintosh Programmer's Workshop (MPW): A
Macintosh development environment marketed
by Apple through the Apple Programmer's and
Developer's Association.

makefile: A file in a development environment
like the Macintosh Programmer's Workshop that
contains compiler or assembler commands to
create an executable, linked file of object code
from source code files, libraries, and other
needed resources.

Glossary 189

mark: The current position marker maintained by
the File Manager to keep track of where it is in
the file during a read or write operation.

mask: A pattern used to screen out certain types
of events in the Event Manager. The pattern
consists of the sum of the numeric values
associated with the mask for each type of event
an application need not acknowledge or deal
with during its execution.

M4!mory Manager: The part of the Toolbox that
handles the allocation, deallocation, relocation,
and manipulation of blocks of memory space.

m1~u definition procedure: A procedure for
crc::ating nonstandard types of menus, generally
written in assembly language. Used only by
applications that require a menu of a type other
th~Ln that supplied in the Toolbox routines. Also
called a menu defproc.

m4!nu list: A list of handles to one or more
me:nus, along with information about the position
of each menu in the menu bar.

Mc:~nu Manager: The part of the Toolbox
responsible for the display, update, and response
to user events in the menu bar and the pull-down
menus of the Macintosh.

mc:~thod: In object-oriented programming,
roughly equivalent to a procedure in procedure­
orfented programming. A set of instructions to
be carried out when a particular object receives a
message with the same name as the method.

MF'W: Abbreviation for Macintosh Programmer's
W<J•rlmhop.

MF'W Shell: The general Macintosh
Programmer's Workshop development
environment, including the editor and tools but
exclusive of the languages used to develop an
application.

190 Glossary

nonrelocatable object: A block of memory that
has been declared in such a way that its position
is stored in a pointer. The Memory Manager will
not relocate any such object. Excessive use of
nonrelocatable objects is discouraged in the
Macintosh because of the problem of
fragmentation that frequently results.

object: In object-oriented programming, any
combination of data and the methods that
operate on that data.

object-oriented: A programming method in
which data and procedures (called methods in
object-oriented programming) are combined
rather than separated as in the more traditional
procedure-oriented programming model.

operating system: A program that organizes the
actions of the parts of the computer and its
peripheral devices. The Macintosh Operating
System is located primarily in ROM and handles
low-level tasks such as memory management,
serial port control, and disk input and output.

part code: In the Control Manager, a code that
identifies each specific part of a multipart
control.

pattern: An eight-by-eight-bit array of pixels that
defines a repeating design or tone. A pattern is
used in QuickDraw graphics with the graphics
pen and with instructions that fill a shape with a
pattern.

picture: In QuickDraw graphics, a collection of
calls to routines that draw a bit image. Pictures
provide a means for one program to draw a
shape or collection of shapes defined in another
program without knowledge of what the shape is
or how it was originally created.

pixel: Short for picture element. A point on the
graphics screen; the visual representation of a bit
on the screen (white if the bit is 0, black if it's 1).
Also a location in video memory that maps to a
point on the graphics screen when the viewing
window includes that location.

pixel image: The color equivalent of a bit image.

pixel map: The color equivalent of a bit map.

pixel pattern: The color equivalent of a pattern.

point: A single location on the Macintosh screen,
typically located in a graphics port, and defined
by its two address coordinates. Lines and shapes
are defined by the points at which they begin
and end.

pointer: An address that points directly to a
block of memory. Pointers are associated with
nonrelocatable objects. Compare handle.

polygon: In QuickDraw graphics, any sequence of
connected lines treated as a continuous shape.

procedure-oriented: An approach to
programming in which the data and the
procedures that operate on the data are viewed
and treated separately. Compare object-oriented.

purge: To remove from memory. Only blocks of
memory that have been marked as purgeable by
the program may be purged by the Memory
Manager.

region: In QuickDraw graphics, any collection of
bits in a bit image, no matter how discontinuous,
treated as a single graphic entity on which
various graphic and mathematical operations
may be performed.

reply record: A data record containing the results
of an operation or procedure.

ResEdit: A program supplied by Apple Computer
for the management and manipulation of
resources. With this program, resources can be
defined, edited, and moved between applications.

resource: A unit or collection of information
used by an application program. Resources are
generally stored in the resource fork of a file and
loaded into memory when needed by the
application. Most objects in the Macintosh
environment are resources.

resource fork: The part of a Macintosh file where
resources are stored. Compare data fork.

resource ID: A unique identification number
within a type. Each resource in an application
has associated with it a resource type and a
resource ID.

resource map: The first part of the resource fork
of a Macintosh file. The map contains
information that permits the application to
retrieve any individual resource as needed
without having to search through all of the
resources to find the desired one.

resource ruune: Each resource, when it is created,
is given a name by the application. The program
may then refer to the resource by this name or
by its resource ID and resource type.

resource type: A four-character code defining the
classification of a resource. Apple Computer
maintains a registry of these codes to ensure no
conflicts arise between applications.

Segment Loader: The part of the Operating
System that permits you to divide your
application into several parts and have only one
or some of them in memory at a time.

stack: The place in memory where temporary
values associated with a program's procedures
and functions are stored. Compare heap.

structure region: An entire window, including its
content region and its frame, with any associated
controls.

style record: On the Macintosh II, a data structure
optionally associated with an edit record. It
contains data from which TextEdit can obtain
information about the font, style, size, and color
of text in a TextEdit window.

system heap: The part of the heap set aside for
use by the system. Compare application heap.

TextEdit: A part of the Toolbox useful for
displaying, editing, and managing small amounts
of text, usually in dialog boxes.

Glossary 191

Toolbox: The shorthand way of referring to the
Us:er Interface Toolbox.

U;er Interface Toolbox: A collection of built-in
commands for managing the interaction between
an application and the system. Also called the
Toolbox, this part of the Macintosh ROM,
sometimes supplemented by disk-based routines,
is divided into several managers and packages.
See, for example, Dialog Manager or Control
Manager.

view rectangle: The boundary rectangle for a
TextEdit record in which the currently editable
record can be seen. It provides for no wrapping
of text. Compare destination rectangle.

volume: A collection of files logically grouped
together. A volume is usually an individual disk,
although a single disk may contain multiple
volumes.

volume reference number: A number
automatically assigned by the File Manager when
a volume is mounted and guaranteed to be
unique throughout the running of an application
program. Most file operations are performed by
calling the volume by this number rather than by
its name and directory path.

Window Manager: The part of the Toolbox
dedicated to managing the display of windows on
the Macintosh desktop.

zone: A separately managed portion of a heap.
See heap zone.

192 Glossary

A

accessing
files 130-132
menus/ menu items 104-105

activate events 33
Add Res Menu 102
Alert 109, 167
alerts 105-110

closing 107
color in 106
opening 107
posting 109
types of 106-107

altDBoxProc 92
a ncestors 147
ANS Pascal 140
AppendMenu 102
AQple Developer Services 157
Apple Numerics Manual xviii
Apple Programmer's and

Develo per's Association
(APDA) 185-186

application files 122
application heap 46
applications, startup 21. See also

programs/ programming
application window , mouse event

handling in 36-38
ASCII, keyboard input/ printer

output and 164
Assembler. See MPW Assembler or

specific version
auto-key events 34

Index

B
Beg i nUpdat e 97, 167
Berkeley 4.2 BSD VAX

implementation of PCC 140
bit images 64-65
bit mapped graphics 24, 62, 66
bits, reserved 163
blocks (of memory) 45, 47-52.

See also memory
fragmentation of 47, 49-51
moving 47-48
obtaining 51
releasing 51

boundary rectangle 62
boundsRect 161
bundling 122

c
C. See MPW C or specific version
Caps Lock key 34
caution alert 106, 107
CautionAlert 109, 167
C Compiler 140
certified developer status 157
CGrafFort 74-75
'cicn' 88
Clascal environment 140
class 147
clock rate 163-164
CloseDialog 107, 167
ClosePictur e 86, 167
CloseRgn 85, 167
CloseWindow 96, 98, 167

closing
alerts 107
dialogs 107
edit record 118
files 132
windows 95-96

'clut' 88
code. See applications;

programs/programming
CODE segment 155
color

in alerts 106
in controls 110
in dialogs 106
in menus 105

color description, in graphics port
record 73

Color QuickDraw 60-62, 87-88.
See also QuickDraw

cursors and 88
graphics ports and 74-75
text and 88

command files 137
Command key 34
Command-key

equivalents 103-104
compatibility 8 , 160-165
content region (of a window) 92
Control Manager 110-114

using 112-114
controls 110-114

color in 110
creating 112-113
modifying 113-114
part codes for 111
removing 112-113

193

coordinate systems, graphics ports
and 75-77

copy-protection code 163
creators 125
'crsr' 88
C SANE Library 140, 141
cursor level 84
cursors

Color QuickDraw and 88
QuickDraw and 84

customizing ancestors 147

D

data fork 122
dBoxProc 92
debuggers/ debugging 139,

151-152
Dela y 164
Delet eMen u 103, 104, 167
dereferencing 46
DeRez 140
descendants 147
Designing Cards and Drivers

for the Macintosh II and
Macintosh SE xviii

desk accessories 5
out-of-memory conditions

and 57
desk accessory window, mouse

event handling in 35
destination rectangle 116-117
Developer Services (Apple) 157
development tools 136-152
device information, in graphics port

record 68-69
Dialog Manager 105-110

using 107-110
dialogs 105-110

closing 107
color in 106
editing text in 110
handling events in 107-109
opening 107
types of 106-107

Dia logSelec t 108, 168
DIBadMount 34, 168
Dis a bleitem 104, 168
disk-inserted events 34

194 Index

display routines 60--88. See also
Color QuickDraw; QuickDraw

Disp o seC o n t r o l 168
Dispo seDia l o g 107, 168
Dis po seMenu 103, 168
Di s po seWindow 96, 98, 168
Di sposHandl e 51, 168
Di spo s Ptr 51, 169
DlgCopy 110
DlgCu t 110
DlgDel e te 110
Dl g Pa s te 110
document files 122
documentProc 92
drag region (of a window) 92
DragW ind ow 98, 169
Dr awChar 83 , 169
DrawCo ntrols 169
Dr awGro wicon 169
Dr a wMe nu Bar 101, 104 , 169
DrawPictu r e 86, 169
Dr aw s tr ing 83, 170
DrawText 83, 170

E
editing text in dialogs 110
edit record 115-117

closing/ opening 118
En ab l eit e m 104, 170
E n dUpdate 97, 170
error codes 40, 129-130, 162
event-driven programming 7-8
Event Manager 30-40
event masking 39-40
event queue 39
events/ event loop 30-40,

F

107-109. See also specific
event type

fields (of objects) 144
file management 122-134
File Manager 124 , 129-133
File menu 125
File Open dialog box 126-127
files

accessing 130-132
assumptio ns about 162

closing 132
command 137
creating 131
opening 131
reading from 131-132
source 139
types of 124
writing to 132

File Save dialog box 128
FillRect 80, 170
FindControl 98, 114, 170
Finder 21-22
FindWindow 35 , 114, 170
FlushEvents 31, 170
FlushVol 132, 133
fonts , QuickDraw and 82--83
fragme ntation 47, 49-51
FSClo s e 132, 133 , 171
FSCreate 131, 171
F SOpen 131 , 171
F S Rea d 131-132, 171
FSWri t e 132, 171

G

GetCCursor 88, 171
GetCtlValue 114, 171
GetCursor 84, 171

Get EOF 132, 172
GetFontinfo 83 , 172
GetFPos 132
Geticon 83, 172
GetindPattern 8 1
Get It em 104, 172
GetMenu 102, 172
GetMenuBar 17 2
GetNewControl 112, 113, 114,

172
GetNewDialog 107, 172
GetNewMBar 102, 172
GetNewWindow 95-96, 173
GetNextEvent 30, 32, 34, 39, 40,

97, 108, 173
GetPattern 81 , 173
Ge t Pen 78, 173
GetPenState 78, 173
GetPicture 86, 173
GetPort 63 , 67, 97, 173
GetResource 173
glo bal coordinate systems 77

globals, system 161-162
GlobalToLocal 77, 110, 174
go-away region (of a window) 92
grafport 62. See also graphics ports
Grand Funnel 7--8
graphics, bit-mapped 24, 62 , 66
graphics ports 62, 67-77

Color QuickDraw and 74-75
coordinate systems and 75-77

graphics routines 60-88. See also
Color QuickDraw; QuickDraw

grow region (of a window) 93
GrowWindow 98, 174

H

handles 45
heaps/ heap space 46

reserved 58
HideC ont rol 113, 114, 174
HideCurs or 84, 174
hierarchical menus. See

menus/menu items
hot spot 84
Human Interface Guidelines xviii
HyperCard 149-151
HyperTalk 150-151

I, J

icons, QuickDraw and 83
inheritance, objects and 145
Ini tCur sor 84, 174
InitDialogs 107, 112, 174
InitFonts 31, 95, 101, 107,

112, 118, 174
Ini tGraf 31, 63, 95, 101, 107,

112, 118, 174
InitMenus 101, 107, 175
I nitW i ndows 31, 78, 95, 101 ,

107, 112, 118, 175
Ins e rtMe n u 98, 102, 104, 175
Inside Macintosh xvi, xviii,

154-156
Inte rnational Utilities Package 27
InvertRect 80, 175
IsDialogEvent 108, 175

K

keyboard input, ASCII and 164
key events 34
KillContro ls 113, 175

L

Line 79, 87, 175
lines, QuickDraw and 78-79
LineTo 79, 87, 175
Lisa Clascal environment 140
Lisa Pascal 140
loading segments 56
local coordinate systems 76-77
localization 26-27
LocalToGloba l 77, 176
location (of screen) 161

M

MacApp 141-149
introduction to 148-149
Object Pascal and 147-148
programming in 149
sample programs and 156

Macintosh
overview of 2-9
software architecture of 12-27

Macintosh Family Hardware
Reference xviii

Macintosh Interface Libraries 140,
141

Macintosh Programmer's Workshop
2.0 Reference xviii.
See alsoMPW

MacsBug 139, 151
main event loop. See events/event

loop
main segment 55
makefiles 139
mark, defined 129
masks, defined 39--40
'MDEF' 100
memory 42-58. See also blocks

elements of 44-46
management of 46-52
organization of 42-43
out-of-memory conditions

and 56-58

parking garage analogy 43--44
reorganization of 52
segment loader and 53-56
system use of 52-53

Memory Manager 42-58
menu bar, mouse event handling

in 36
MenuChoice 103, 105, 176
menu definition procedure (menu

defproc) 100-101
MenuK e y 105, 176
menu list 102
Menu Manager 99-105

using 101-105
MenuSelect 36, 103, 105, 176
menus/ menu items 99-105

accessing/ changing 104-105
color in 105
removing 101-103
as resources 100-101
setting up 101-103

message 147
methods , defined 142
ModalDialog 108, 176
modal dialog boxes 106
modeless dialog boxes 106
modifier keys 34
modifying controls 113-114
mounted, defined 122
mouse, windows and 97-98
mouse event handling 33, 35-38
Move 79, 176
MoveControl 113, 176
MoveTo 79, 177
MoveWindow 177
moving blocks 47--48
MPW

described 136-141
sample programs and 156

MPW Assembler 141
MPW C 140-141
MPW Pascal 140
MPWShell 139

N

NewControl 112, 114, 177
NewDialog 107, 177
NewHandle 51, 177
NewMenu 102, 103

Index 195

NewPtr 51, 177
NewRgn 85, 177
NewWindow 95-96, 178
Nil pointers 165
noErr 40, 129
noGrowDocProc 92
nonrelocatable blocks 47-51

out-of-memory conditions
and 57

note alert 106, 107
NoteAlert 109, 178

0

object-oriented
programming 141-149

introduction to 142- 145
Object Pascal 140, 146-147

MacApp and 147-148
objects

defined 142, 143-145
fields of 144
inheritance and 145

ObscureCursor 84, 178
obtaining blocks 51
opening

alerts 107
dialogs 107
edit record 118
files 131
windows 95- 96

OpenPicture 86, 178
OpenRgn 85, 178
Operating System 20-21

calls 166-184
Option key 34
OSErr 129-130, 162
out-of-memory conditions 56-58

handling 58

p

PaintRect 80, 178
part codes (for controls) 111
Pascal. See MPW Pascal or specific

version
'PAT' 81
pattern-printing control, in graphics

port record 74
patterns, QuickDraw and 81

196 Index

pen description, in graphics port
record 69-71

PenMode 79, 178
PenNormal 79, 179
PenPat 79, 179
pens, QuickDraw and 78-79
Pen S i z e 79, 1 79
'PICT' 86
pictures, QuickDraw and 86
p ixel images 65-66
pixel maps 66-67
pixel patterns 81
plainDBox 92
Ploticon 83, 179
pointers 45
points, defined 72
polygons, QuickDraw and 87
Portable C Compiler (PCC) 140
port description, in graphics port

record 69
posting alerts 109
'PPAT' 81
'ppat' 88
preflighting 58
printer output, ASCII and 164
Printing Manager 23-24, 164
procedure-oriented

programming 142
programming seminars 156
programs/programming. See also

Q

applications
event-driven 7-8
key ideas 5- 9
object-oriented 141- 149
procedure-oriented 14 2
sample 139, 156
segment loader and 53- 56
"tak ing apart" 156
types of 5

QuickDraw 60-62, 77-87. See also
Color QuickDraw

cursors and 84
fonts and 82- 83
icons and 83
lines and 78-79
patterns and 81
pens and 78-79

R

pictures and 86
polygons and 87
programming model 63-64
regions and 85
shapes and 79-80

rDocProc 92
reading from files 131-132
rectangles 77, 80
regions

QuickDraw and 85
of a window 92- 93

ReleaseResource 103, 179
releas ing blocks 51
relocatable blocks 47-51
removing

controls 112-113
menus 101-103

reply record 125
structu re of 127

ResEdit 140
reserved bits 163
reserved heap space 58
resource compiler 140
resource decompiler 140
resource editor 140
resource fork 122
Resource Manager 20
resource map 20
resources 19-20

menus as 100-101
Rez 140
rowBytes 162

s
sample programs 139, 156
SANE. See C SANE Library
screen

location of 161
size of 161
width of 162

screenBits.baseAddr 161
screenBits.bounds 161
screen Bits. bounds.right 162
screenBits.rowBytes 162
scripts (HyperTalk) 150
'scrn' 88

Seawell Inspector 151
segment loader 53--56
Select Window 37, 98, 179
SelIText 110
SetCCursor 88, 179
SetCursor 84, 179
SetEOF 132, 180
SetFPos 131, 132, 180
Setltem 104, 180
SetMenuBar 102, 180
SetOrigin 76, 180
SetPenState 180
SetPort 63, 64, 67, 87, 97, 180
setting up menus 101-103
SFGetFile 125-127, 162, 181
SFPutFile 125, 128, 162, 181
shapes, QuickDraw and 79-80
Shell. See MPW Shell
Shift key 34
ShowControl 113, 114, 181
Showcursor 84, 181
size (of screen) 161
SizeControl 113, 181
SizeWindow 98, 181
Smalltalk 147
software architecture of the

Macintosh 12-27. See also
applications;
programs/programming

source files 139
SpaceExtra 82, 182
stacks 46
Standard Apple Numeric

Environment. See C SANE
Library

Standard C Library 140, 141
Standard File Package 123--124,

125-128
startup applications 21
status monitoring, in graphics port

record 74
stop alert 106, 107
StopAlert 109, 182
structure region (of a window) 92
StuffHex 81
style record 118
subclass/subclassing 147
submenus. See menus/menu items
superclass 147
system

out-of-memory conditions
and 57

use of memory by 52-53
SysternClick 35, 182
System file 20
system globals 161-162
system heap 46, 164

T

TBox 143-145
Technical Introduction to the

Macintosh Family xviii
TEClick 118, 182
TECopy 119, 182
TECut 119, 182
TEDelete 119, 182
TEDispose 118, 183
TEinit 107, 118, 183
TEinsert 120, 183
TEKey 119, 183
templates 9
TENew 118, 183
TEPaste 119, 183
TEScroll 120
text

Color QuickDraw and 88
in dialogs, editing 110

TextBox 115, 183
text description, in graphics port

record 71-72
TextEdit 115-120

using 118-120
TextFace 82, 184
TextFont 82, 184
TextMode 82, 184
TextSize 82, 184
Ticks 164
timing-sensitive code 163--164
TMON 151
TObject 147
Toolbox 17-19, 90-120

calls 166--184
TOval 143-145
TrackControl 114, 184
TrackGoAway 98, 184
types. See files

u
Undo routine 24-25
unloading segments 56
UnloadSeg 56, 184
unmounted, defined 122
update events 34
updating windows 97
user interface design 6--7, 25-26
User Interface Toolbox. See

Toolbox

v
view rectangle 116--117
volume reference number 124
volumes, managing 133

W, X, Y, Z

width (of screen) 162
window description, in graphics port

record 69
Window Manager 91-98

using 95-98
window record 93--94
windows 91-98

closing 95-96
mouse and 97-98
mouse event handling in 36--38
opening 95-96
regions of 92-93
types of 91-92
updating 97

writing to files 132

Index 197

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh® Plus and
Microsoft® Word. Proof and
final pages were created on the
Apple LaserWriter® Plus.
POSTSCRIPT®, the LaserWriter's
page-description language, was
developed by Adobe Systems
Incorporated.

Text type is ITC Garamond®
(a downloadable font distributed
by Adobe Systems). Display
type is ITC Avant Garde
Gothic®. Bullets are ITC Zapf
Dingbats®. Program listin_gs are
set in Apple Courier, a
monospaced font.

rW1 ~ P1I bJ LJ
.-...el ~""' · ~ . ~·-~~~

~
lhd
•

The Apple Technical Library
The Official Publications from
Apple ~omputer, Inc.
The Apple Tedmical Library offers programmers,
developers, and enthusiasts the most complete
technical information available on Apple® computers,
peripherals, and software. The Library consists of
tedmical manuals for the Apple II family of
computers, the Macintosh8 family of computers,
and their key peripherals and programming
environments.

Manuals for the Apple II family include teclmical
references to the Apple Ile, Apple Ile, and Apple
IlGs® computers, with detailed descriptions of the
hardware, firmware, ProDOS8 operating system,
and built-in programming tools that programmers
and developers can draw upon. In addition to a
technical introduction and programmer's guide to ,
the Apple IlGs, there are tutorials and references for
Applesoft BASIC and Instant Pascal programmers.

Manuals for the Macintosh family, known collectively
as the Inside Macintosh Library, provide complete
technical references to the Macintosh 5121<,
Macintosh 512K Enhanced, Macintosh Plus, Macintosh
SE, and Macintosh II computers. Individual volumes
provide technical introductions and programmer's
guides to the Macintosh, as well as detailed
information on hardware, firmware, system
software, and programming tools. The Inside
Macintosh Library offers the most detailed and
complete source of information available for the
Macintosh family of computers.
In addition, titles in the Apple Technical Library offer
references to the wide range of important printers,
communications standards, and programming
environments-such as the Standard Apple
Numerics Environment (SANE"')-to help
programmers and experienced users get the most
out of their computer systems.

Programmer's Introduction to the Macintosh Family
The Official Publication from Apple Computer, Inc.

Created by die people at Apple Computer, Inc., Programmer~· Introduction to the
Macintosh Fami61 provides a framework for understanding the principles of
programming any of die machines in die Apple® Macinrosh® family of personal
computers, including die new Macintosh IJ and Macintosh SE. lf you are an experienced
programmer considering writing applications for tlie ~.facimosh, this book will gee you
Started.

Programmer 's Introduction to tbe Macintosh Fami61 is designed to provide readers
who have some basic programming knowledge, but who are new co die Macintosh,
widi a diorough introduction to creating Macintosh applications. Ir illustrates Macintosh
programming concepts wid1 code examples and insights from experienced Macincosh
programmers and focuses on how event-driven programming differs from more
tradirional programming mediodologies.
Key copies covered include:
• Principles and philosophy of event-driven programming
• Memory management
• File l/O management
• Resources and dieir uses
• Macincosh developmenr cools and environments, including Macinrosh Programmer's

Workshop (MPW) and MacApp
• QuickDraw graphics, screen display, and Color QuickDraw

Programmer's Introduction to the Macintosh Fami~I' is an essential guide for all
experienced programmers who want to creare software for the Maci.mosh family of
computers.

Apple Computer, Inc.
20525 Mariani .'\l'enue
Cupertino, California 95014
(408) 996·1010
TIX 17l-57q

Addison-Wesley Publishing Company, Inc.

; ·!a

52295

9 780201 192544

ISBN 0-201-19254-3

