\iRIeTION i Programmer’s Introduction
Inside Macintosh Library 1O the Macintosh FElITlllY

w Hile Edit Scaling

ROBOT E[[[==——= MainEvent
BEGIN { of MAIN program MyPrc

InitGlobals;

if StartUp then begin
SetUpMenus; { Set up tr
SetUpWindows; { Set up th
SetUpDefault; { Set up pr
MainEvent; { Run the p

end;

ShutDown;

| END. {of MAIN program MyProg}

> &22.95 FPT
USA

The Inside Macintosh Library

The Official Publications from
Apple Computer, Inc.

The Inside Macintosh Library is the complete set of
technical information on the Macintosh® family of
computers, which includes the Macintosh 512K,
Macintosh 512 Enhanced, Macintosh Plus, Macintosh
SE, and Macintosh I1. These books provide
programmers, developers, and hardware designers
with comprehensive information on all aspects of
the Macintosh technology.

At the core of the Inside Macintosh Library is the
original Inside Macintosh, the definitive reference to
the Macintosh Toolbox and operating system. Inside
Macintosh volumes I-11 describe the original
Macintosh; volume IV provides information about
the Macintosh Plus and volume V pertains to the
Macintosh SE and the Macintosh II.

Recent additions to the Inside Macintosh Library
include two introductory books and two
comprehensive hardware references:
Technical Introduction to the Macintosh Family
Programmer’s Introduction to the Macintosh
Family
Macintosh Family Hardware Reference
Designing Cards and Drivers for Macintosh 11
and Macintosh SE

The Inside Macintosh Library, written and produced
bv Apple Computer, Inc., provides definitive
references for those interested in getting the most
out of their Macintosh.

AN O OXZ EEN XNN OER (TR U S0 ARUD AVE ART SRR ANRRS

Al Gueekd

& APPLE COMPUTER, INC.

Copyright © 1988

by Apple Computer, Inc.,
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

All rights reserved. No part of
this publication may be re-
produced, stored in a retrival
system, or transmitted, in any
form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer,
Inc. Printed in the United States
of America.

Apple, the Apple logo, Apple-
Link, AppleTalk, ImageWriter,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

MacApp, HyperCard, and
HyperTalk, are trademarks of
Apple Computer, Inc.

MacDraw, MacPaint, and
MacWrite are registered
trademarks of CLARIS
Corporation.

UNIX is a registered trademark
of AT&T Information Systems.

MS-DOS and MicroSoft Word
are registered trademarks of
MicroSoft Corporation.

Smalltalk-80 is a trademark of
Xerox Corporation.

CompusServe is a registered
trademark of CompuServe
Incorporated.

GEnie is a trademark of General
Electric Corporation.

MCI Mail is a trademark of MCI
Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated. Adobe
Ilustrator is a trademark of
Adobe Systems Incorporated.

Simultaneously published in
the United States and Canada.

ISBN 0-201-19254-3

Second Printing, April 1988
BCDEFGHIJ-DO-898

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS 1S,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT OR INACCURACY IN
THIS MANUAL, even if advised
of the possibility of such
damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer,
agent, or employee is authorized
to make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights,
and you may also have other
rights which vary from state to
state.

Preface

Chapter 1

Chapter 2

Contents

Figures and tables xi

Welcome to Programmer’s Infroduction to the Macintosh
Family xiii

What this book contains xiv

About Macintosh technical documentation xvi

Some conventions xix

An Overview of the Macintosh 1

Why program for the Macintosh family? 2
Powerful system and development tools 2
Pride in applications 3
A fast-growing installed base 3
The leading edge 3

A look at the Macintosh family 4

Types of programs 5

Key programming ideas 5
The user plays a central role 6

User interface design 6

Event-driven programming 7
Compatibility is easy; incompatibility is not 8
Templates ease programming 9

The Software Anatomy of the Macintosh 11

An architectural overview 12
The pieces 15
Putting the pieces together 15
The Toolbox 17
What is the Toolbox? 17
What's in the Toolbox? 17
Why use Toolbox routines? 18

Marshalling your resources 19
What is a resource? 19
Resources and your program 20
The Macintosh Operating System 20
The Finder 21
The Finder and the user 22
The Finder and your application 22
Thinking about “last” things first 23
Printing functions and the Printing Manager 23
Printer independence 23
Bit-mapped graphics everywhere 24
The Undo routine 24
User interface design 25
Localization 26

Chapter 3 An Eventful Experience 29

An overview of the main event loop 30
Setting up the loop 31
The outer loop: How it works 31
The second level: What kind of event? 32
Activate events 33
Mouse events 33
Key events 34
Disk-inserted events 34
Update events 34
The third level: Mouse event handling 35
Locating the mouse 35
A desk accessory window 35
The menu bar 36
An application window 36
More about events 39
The event queue 39
Event masking 39
A note about errors 40

Chapter4 Memory Management 41

How memory is organized 42
Memory and the parking garage 43
The elements of Macintosh memory 44
Pointers 45
Handles 45
Blocks 45
The stack 46
Heaps 46

iv Contents

Basic memory management 46
Relocatable and nonrelocatable blocks 47
Moving blocks in memory 47
Fragmentation 49
Obtaining and releasing memory blocks 51
Memory reorganization 52
System use of memory 52
Your program and the segment loader 53
Why segment your code? 53
Three classes of programs 54
Deciding on the segments’ contents 54
Trade-offs in segmentation decisions 55
The main segment 55
Loading segments 56
Unloading segments 56
Out-of-memory conditions 56
What causes memory to “disappear”? 56
Nonrelocatable blocks 57
Desk accessories 57
The system’s use of memory 57
Two strategies for handling out-of-memory conditions 58
Preflighting 58
Reserved heap space 58

Chapter 5 Display and Graphics Routines 59

An obvious advantage 60
Everything is in graphics 61
A world of graphics in a library 61
A quick look at QuickDraw 62
The QuickDraw programming model 63
Bits and pixels, maps and images 64
Bit images 64
Pixel images 65
Bit maps 66
Pixel maps 66
Graphics ports 67
What's in a graphics port’s record? 67
Device information 68
Port and window descriptions 69
Pen description 69
Text description 71
Color description 73
Pattern-printing control 74
Status monitoring 74
Color QuickDraw graphics ports 74

Contents

Vi

Contents

Chapter 6

Graphics ports and coordinate systems 75
Local coordinates 76
Rectangles 77
QuickDrawing 77
An outine of a QuickDraw program 78
Lines and the QuickDraw pen 78
Shapes 79
Rectangles: A reprise 80
Patterns 81
Fonts 82
Icons 83
Cursors 84
Regions 85
Pictures 86
Polygons 87
Color QuickDraw 87

The User Interface Toolbox 89

The Window Manager 91
Regions of a window 92
The window record 93
Using the Window Manager 95
Initialization 95
Opening and closing windows 95
Updating windows 97
Of mice and windows 97
The Menu Manager 99
Menus as resources 100
Using the Menu Manager 101
Initialization 101
Setting up and removing menus 101
Responding to the user 103
Changing menu items 104
Accessing menus and items 104
Color in menus 105
The Dialog Manager 105
Types of dialogs and alerts 106
Using the Dialog Manager 107
Initialization 107
Opening and closing dialogs and alerts 107
Handling events in dialogs 107
Posting alerts 109
Text editing in dialogs 110
The Control Manager 110
Controls with more than one part 111

Using the Control Manager 112
Initialization 112
Creating and removing controls 112
Modifying controls 113
Responding to the user 114

TextEdit 115

Two important rectangles 116

Other edit record fields 117

The style record 118

Using TextEdit 118
Initialization 118
Opening and closing edit records 118
Tracking and managing the user’s editing operations 118

Chapter 7 File Management 121

Documents and applications 122
An outline of file interaction 123
Types and creators 124
File types 124
Creators 124
File manipulation and the Standard File Package 125
SFGetFile in operation 125
The File Open dialog box 126
The reply record structure 127
SFPutFile in operation 128
Program file use and the File Manager 129
Return codes from disk I/O operations 129
Accessing file data 130
Creating new files 131
Opening existing files 131
Reading data from open files 131
Writing information to disk files 132
Closing files 132
Managing volumes 133
An example of file handling 133

Chapter8 Development Tools 135

The Macintosh Programmer's Workshop (MPW) 136
The MPW Shell 139
Other parts of MPW 139
The debugger 139
Sample application source files 139
ResEdit 140
MPW Pascal 140

Contents Vii

viii

Chapter 9

Appendix A

Contents

MPW C 140
MPW Assmebler 141
MacApp and object-oriented programming 141
An introduction to object-oriented programming 142
What are objects? 143
Objects and inheritance 145
Object Pascal 146
Object Pascal and MacApp 147
An introduction to MacApp 148
Programming in MacApp 149
HyperCard as a development environment 149
A common delivery vehicle 149
HyperTalk 150
Other programming languages and environments 151
Debugging Macintosh applications 151

Becoming a Macintosh Developer 153

Continuing your Macintosh education 154
Finding your way through Inside Macintosh 154
The important calls 155
Guide to the documentation 155
The road map in Inside Macintosh 155
Examining other people’s programs 156
Attending Apple programming seminars 156
Registering as a Macintosh developer 157

Compatibility Issues and Guidelines 160

Use system globals 161
Don't assume the screen is a fixed size 161
Don't assume the screen is in a fixed location 161
Don't assume screen width is in rowBytes 162
Don’t make too many assumptions about files 162
Check errors returned by calls 162
Don't rely on things not changing 163
Watch copy-protection code closely 163
Don't use reserved bits 163
Don't write timing-sensitive code 163
Use ASCII to read keyboard input 164
Avoid direct printer output 164
Avoid using the system heap 164
Watch the use of Nil pointers 165

Appendix B Important Operating System and Toolbox Calls 166

Appendix C The Apple Programmer's and Developer’'s Association
(APDA) 185

What APDA provides 185
How to join APDA 186

Glossary 187
Index 193

Contents iX

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures and tables

Welcome to Programmer’s Infroduction fo the Macintosh
Family xiii

Figure P-1 A road map to Macintosh technical
documentation xvii
Table P-1 A summary of Macintosh technical

documentation xviii

An Overview of the Macintosh 1

Figure 1-1 The Grand Funnel 7
Table 1-1 Comparing the main members of the Macintosh
family 4

The Software Anatomy of the Macintosh 11

Figure 2-1 Two programming models 14

Figure 2-2 Macintosh system software architecture 16

Figure 2-3 The hierarchical order of Toolbox parts 18

Figure 2-4 The components of the Macintosh Operating
System 20

An Eventful Experience 29

Figure 3-1 The outermost level of the main event loop 30
Figure 3-2 The event priority list 33

Figure 3-3 A partial skeleton of the main event loop 36
Figure 3-4 The parts of a Macintosh window 37

Figure 3-5 A main event loop with the window routines 38
Table 3-1 Event masks and their numeric values 40

Memory Management 41

Figure 4-1 A simplified Macintosh memory map 42
Figure 4-2 Memory block relocation 48

Figure 4-3 The beginning of heap fragmentation 49
Figure 4-4 Allocating new space 50

Figure 4-5 A badly fragmented heap 51

%

Chapter5 Display and Graphics Routines 59

Figure 5-1 The basic structure of a QuickDraw routine 63
Figure 5-2 A bit image 65
Figure 5-3 A pixel image 66

Figure 5-4 The structure of a graphics port record 68
Figure 5-5 A graphics pen 70
Figure 5-6 Pen transfer modes 71

Figure 5-7 Type styles 72

Figure 5-8 The structure of a color graphics port record 74
Figure 5-9 QuickDraw’s coordinate plane 76

Figure 5-10 A triangle with pen changes 79

Figure 5-11 QuickDraw shape manipulation routines 80

Figure 5-12 Regions 85

Table 5-1 Color selections in monochrome graphics ports 73

Chapter 6 The User Interface Toolbox 89
Figure 6-1 Standard window types 92

Figure 6-2 Regions of a Macintosh document window 93
Figure 6-3 The structure of a window record 94

Figure 6-4 A classic Macintosh menu 100

Figure 6-5 A hierarchical menu on the Macintosh I 100
Figure 6-6 Alert icons 107

Figure 6-7 Partial contents of an edit record 116

Figure 6-8 Destination and view rectangles 117

Table 6-1 Part codes for standard control types 111

Chapter7 File Management 121

Figure 7-1 Application and document file icons 122
Figure 7-2 Basic file interaction 123

Figure 7-3 A File Open dialog box 126

Figure 7-4 A hierarchy list in a File Open dialog box 127
Figure 7-5 A typical SFPutFile dialog box 128

Table 7-1 Some I/O result codes of type OSErr 130

Chaopter8 Development Tools 135

Figure 8-1 Program development under MPW 138
Figure 8-2 Object-type hierarchy 146

xii Figures and tables

Preface

Welcome to Programmer’s
Introduction to the Macintosh
Family

Programmer’s Introduction to the Macintosh Family is written for
the experienced professional programmer who plans to design
and develop applications for any members of the Apple®
Macintosh® family of computers or is evaluating such a decision.
Its purpose is to provide you with a conceptual framework for
understanding the technical operation of the Macintosh family.
Rather than being a programming manual, it is a programmer’s
technical overview of the powerful and flexible features
encompassed by the Macintosh.

This book introduces the most important ideas, the most
frequently used User Interface Toolbox calls, and the main
programming features of the Macintosh. It performs a first-level
screening of the more than 900 built-in Toolbox and Operating
System routines and delineates those you should know well. It takes
the same approach to the dozens of managers and packages that
make up the Macintosh system software, focusing your attention
on those with which you should begin your Macintosh
programming experience.

Programmers whose background includes MS-DOS, AT&T UNIX®,
or Apple II program development will find this book especially
useful as it draws parallels between those experiences and
Macintosh programming.

Xiil

Xiv

Preface

It is not necessary that you have any Macintosh programming
experience to use this book. It makes only two assumptions about
you as a reader:

O You are assumed to be an experienced programmer to whom
explanations of basic ideas like loops, procedures, calls,
parameters, and results are not required.

O You are assumed to have seen a Macintosh application in use.
It would be helpful if you had used a Macintosh, not necessarily
as a programmer but as a user familiar with the look and feel of
the machine.

If you find yourself bewildered by concepts foreign to your
experience, you should probably stop reading this manual and
begin your study of the Macintosh with Technical Introduction to
the Macintosh Family, also from Apple Computer.

What this book contains

This book has nine chapters and three appendixes. They are
described briefly in the following paragraphs.

Chapter 1, “An Overview of the Macintosh,” introduces the
Macintosh family, addresses the question Why program for the
Macintosh? and presents the key programming ideas that make
the Macintosh a more powerful tool for programmers and users
than earlier microcomputers.

Chapter 2, “The Software Anatomy of the Macintosh,” is an
overview of software architecture. It introduces resources, the User
Interface Toolbox, and the Macintosh Operating System. It also
offers some thoughts about program design and how it differs in
the Macintosh environment.

Chapter 3, “An Eventful Experience,” presents the concept of the
main event loop, a central idea in Macintosh programming. It
describes the loop, what must be in it, and how its requirements
relate to your application programs.

Chapter 4, “Memory Management,” is a conceptual and practical
look at one of the most important and often troublesome aspects
of the Macintosh. Here, you’ll learn how and when objects stored
in memory are subject to being relocated, how you can know
precisely when they might be moved, and how to keep track of
them.

Chapter 5, “Display and Graphics Routines,” covers QuickDraw
and Color QuickDraw routines.

Chapter 6, “The User Interface Toolbox,” describes the four key
managers and one important set of tools with which every
Macintosh programmer must become familiar: the Window
Manager, the Menu Manager, the Dialog Manager, the Control
Manager, and TextEdit.

Chapter 7, “File Management,” explains how files are organized,
how the user accesses them, and how your program creates,
opens, reads, writes, and closes disk files.

Chapter 8, “Development Tools,” offers an overview of the
Macintosh Programmer’s Workshop (MPW) and MacApp™, two
Apple Computer development environments for the Macintosh.

Chapter 9, “Becoming a Macintosh Developer,” prepares you for
the next steps in your education as a Macintosh programmer. It
tells you about the organization of the “bible” of Macintosh
programming, Inside Macintosh. It also addresses issues like
registering as a developer and obtaining technical support.

Appendix A, “Compatibility Issues and Guidelines,” discusses
important issues of compatibility across Macintosh family
members. Guidelines for ensuring compatibility with future
systems are also provided.

Appendix B, “Important Operating System and Toolbox Calls,”
presents the most frequently needed calls in an easy-to-find
format.

Appendix C, “The Apple Programmer’s and Developer’s
Association,” tells you about APDA: why it exists, how it operates,
what its relation is to Apple Computer, and the services it
provides to developers.

What this book contains XV

xVvi

Preface

About Macintosh technical documentation

Apple Computer has produced several books that explain the
hardware and software of the Macintosh family of computers. There
are Inside Macintosh Volumes I through V, books about single
aspects of the Macintosh, introductory books, and Macintosh-
related books.

The original Macintosh documentation consisted solely of the
noble tome Inside Macintosh, a three-volume compendium
covering the whole of the Macintosh Toolbox and Operating
System for the original 64K Macintosh ROM, together with user
interface guidelines and hardware information. With the
introduction of the Macintosh Plus (128K ROM), Volume IV of
Inside Macintosh was released. A fifth volume has now been
added, covering the Macintosh SE and Macintosh II computers
(both containing 256K of ROM). Volumes IV and V are delta
guides; that is, they explain only what is different about the new
machines. Taken all together, the five volumes of Inside Macintosh
provide a comprehensive reference for the Macintosh family
computers.

With the growth of the Macintosh family, some of the material in
Inside Macintosh is starting to appear in single-subject books.
Each of those books provides complete information about its
subject, including information that may appear in one or more
volumes of Inside Macintosh.

For people who are new to the Macintosh world, Apple has created
two introductory books: Technical Introduction to the Macintosh
Family and this book, Programmer’s Introduction to the
Macintosh Family. These books provide explanation and
guidelines for using the features described in Inside Macintosh.

In addition to the books about the Macintosh itself, there are books
on related subjects, including books about the user interface and
Apple’s floating-point numerics, and the reference books for the
Macintosh Programmer’s Workshop.

Figure P-1 illustrates the road map of the Macintosh technical
documentation. The paths in the road map show the relationships
among the books. Table P-1 gives a brief description of each book
in the set.

Designing
Cards and
Drivers for
Macintosh Il
and
Macintosh SE

Technical
Introduction
to the
Macintosh
Family

Human
Interface
Guidelines:
The Apple
Desktop
Interface

Macintosh
Family

Hardware
Reference

to the
Macintosh

Macintosh

Programmer’s)

Workshop Inside

Reference Macintosh
Volumes |-l

Programmer’s]
Introduction

Inside
Macintosh
Volume IV

Macintosh
Programmer’s
Workshop
C

Macintosh
Programmer’s
Workshop

Assembler
Reference

Reference

Figure P-1

Macintosh
Programmer’s
Workshop
Pascal
Reference

Macintosh
Volume V

Apple
Numerics
Manual

MacApp
Programmer’s
Reference

A road map to Macintosh technical documentation

About Macintosh technical documentation

xvil

Table P-1

A summary of Macintosh technical documentation

Original Inside Macintosh:
Inside Macintosh, Volumes I-III

Inside Macintosh, Volumes IV

Inside Macintosh, Volumes V

Infroductory books:

Technical Introduction to the Macintosh
Fainily

Programmer’s Introduction to the Macintosh
Family

Single-subject books:

Macintosh Family Hardware Reference

Designing Cards and Drivers for the
Macintosh II and Macintosh SE

Related books:

Human Interface Guidelines: The Apple
Desktop Interface

Apple Numerics Manual

Macintosh Programmer’s Workshop
2.0 Reference

XViii Preface

Complete reference to the Macintosh Toolbox and
Operating System for the original 64K ROM.

Delta guide to the Macintosh Plus (128K ROM).

Delta guide to the Macintosh SE and Macintosh II
(256K ROM versions).

Introduction to the Macintosh software and
hardware for all Macintosh computers: the original
Macintosh, Macintosh Plus, Macintosh SE, and
Macintosh II.

Introduction to programming the Macintosh
system for programmers who are new to it.

Reference to the Macintosh hardware for all
Macintosh computers, excluding the Macintosh XL.

Hardware and device driver reference to the
expansion capabilities of the Macintosh II and the
Macintosh SE.

Detailed guidelines for developers implementing
the Macintosh user interface.

Description of the Standard Apple Numerics
Environment (SANE), an IEEE-standard floating-
point environment supported by all Apple
computers.

Description of the Macintosh Programmer’s
Workshop (MPW), Apple’s software development
environment for all Macintosh computers.

Some conventions

This book discusses several generations of Macintosh computers,
describing their similarities and differences. The following
terminological conventions have been adopted to clarify the
discussion:

O Unless otherwise indicated, the discussion refers to all
Macintosh computers. The term Macintosh is used generically
to refer to the entire product line.

O Unless otherwise indicated, information relating to the
Macintosh Plus also holds true for the original 128K
Macintosh, the Macintosh 512K, and the 512K enhanced.
These are sometimes called collectively the classic Macintosh.

oo

» Note: The Macintosh XL differs in many respects from the
other members of the Macintosh family and is not described
in this book. The Macintosh XL is based on the Lisa hardware,
with RAM-based software that emulates the operation of the
Macintosh 64K ROM.

Numerous special terms are introduced throughout this book.
Terms appearing in boldface are defined in the glossary at the
end of the book.

In the text, the names of Operating System and Toolbox calls
appear in Courier typeface.

Most of the computer program examples in this book are written
in a pseudo-code rather than in any conventional computer
programming language. In such listings, the names of Operating
System and Toolbox calls and predefined constants appear in
boldface so that you can determine which calls are part of the
Macintosh and which you are assumed to have supplied
elsewhere.

Some conventions XiX

Chapter 1

An Overview of the Macintosh

This chapter briefly introduces key ideas that recur throughout the
book. It also provides a framework for understanding the various
models of Macintosh for which you might want to develop
programs.

Why program for the Macintosh family?

The fact that you are reading this book means that you have
probably already decided to develop software for the Macintosh
family. At least, it indicates that you are considering doing so. For
the record, though, let’s present some of the main reasons you, an
experienced programmer, might want to jump on board the
Macintosh bandwagon. There are dozens of reasons, but we'll
focus on just four main ones: development power, pride in
applications, a growing installed base, and the value of working on
the leading edge.

Powerful system and development tools

Every major computer language has been implemented on the
Macintosh, along with quite a few not so major ones. In addition,
its natural windowing environment offers a powerful and easy-to-
use way of developing programs. You can watch execution in one
window while you examine code in another and track output in yet
another.

With the Macintosh Programmer's Workshop (MPW) and
MacApp (an object-oriented template program from which to
begin your development), Apple offers powerful development
tools on the Macintosh backed by Apple’s highly regarded
technical support for developers. Both of these tools are
discussed in Chapter 8.

But the power of the Macintosh doesn’t stop when application
development is complete. The user also sees the Macintosh as a
powerful machine. With a high-speed microprocessor at its heart
and 1 megabyte of memory standard, with hard disks capable of
storing dozens of megabytes of data, and with powerful software,
the Macintosh is a serious business machine.

Chapter 1: An Overview of the Macintosh

“a key trade-off in Macintosh
programming is simplicity of
use versus power. You should
always strive for as much power
as possible while retaining all
of the simplicity you can.
Simplicity is more importan
Dan Winkler,

Apple Computer

. ”»

Pride in applications

There are thousands of programs that run on the Macintosh. They
range from spreadsheets to games, from powerful relational data
bases to telecommunications programs, from drafting and
drawing programs to desktop publishing tools. But good
Macintosh applications have at least two things in common:

O They are consistently easy to use because of their highly
standardized and usable interface.

O They look great.

When you show off your Macintosh software to fellow
programmers, potential investors, prospective buyers, and others,
you will be able to take pride in the way your programs look: They
have a finished, polished, no-nonsense air about them, yet they
look easy and fun to use.

A fast-growing installed base

The Macintosh has the fastest-growing installed base of any
personal computer system on the market. In early 1987, it became
the leading seller among personal computer systems. There are
millions of Macintosh systems installed, and the rate of
installation continues to climb.

Installed base translates into potential buyers, which in turn
translates into potential profits for the software entrepreneur or
publisher who recognizes the trend.

The leading edge

One operating system supports all models of the Macintosh, and
Apple is committed to ensuring that future machines remain
equally compatible at the operating-system level.

Macintosh systems already offer concurrency of operation under
MultiFinder, with foreground and background tasking that remain
distant possibilities for other microcomputer systems.

Why program for the Macintosh family? 3

Table1-1

When you work with the Macintosh, you will not experience media
incompatibility headaches, either. All Macintoshes run with the
3.5-inch disk that has become the industry standard. A disk
created on a Macintosh Plus can be read on a Macintosh II with
no modifications or gymnastics.

There are no artificial limitations on memory and disk capacity
with the Macintosh family. The entire addressability range of the
powerful processors is available to the system.

Finally, the bus architecture of the Macintosh II is an advanced,
easy-to-use feature. The NuBus is the bus of the future.

The Macintosh has already embodied a powerful operating
system with a full-blown development environment. It is the
leading-edge microcomputer.

A look at the Macintosh family

Table 1-1 summarizes the key features of the Macintosh 512K,
Macintosh Plus, Macintosh SE, and Macintosh II computers.

Comparing the main members of the Macintosh family

Characteristic Macintosh 512K Macintosh Plus Macintosh SE Macintosh |l

Processor 68000 68000 68000 68020

RAM (standard) 512K 1 MB 1 MB 1 MB

RAM (expanded) 512K 4 MB 4 MB 8 MB

Address bus 24-bit 24-bit 24-bit 24/32-bit

Clock speed 7.8 MHz 7.8 MHz 7.8 MHz 15.7 MHz

ROM 128K 128K 256K 256K

3.5-inch disk Internal, 800K Internal, 800K 1 or 2 internal, 1 or 2 internal,
800K 800K

Video 9-inch, mono 9-inch, mono 9-inch, mono

Keyboard and mouse

Direct connect

Direct connect

4 Chapter 1: An Overview of the Macintosh

ADB

Separate monitor/

video card

ADDB

Types of programs

There are at least four basic types of programs you might consider
developing for the Macintosh. Three of them have direct parallels
in other microcomputer environments. These are end-user
applications, device drivers, and development tools. As you would
expect, device drivers and programming languages and tools are
among the most complex types of programs to develop for the
Macintosh (or for any other computer, for that matter). It is most
likely that your work will be on end-user applications such as
accounting programs, word processors, spreadsheets,
communications programs, and data bases.

The fourth type of application is the desk accessory. If you've used
a Macintosh, you have almost certainly used at least one desk
accessory. These are stand-alone programs, usually small but not
necessarily so, that the user can call upon any time, even in the
middle of running another application. The user simply points at
the Apple icon in the upper left corner of the screen, opens it, and
selects the desk accessory to use. It then becomes the current
application until the user closes it or activates another desk
accessory or application.

Many beginning Macintosh programmers are tempted to design a
desk accessory as their first project. Their generally small size and
focused purposes can be deceiving, though. Writing a desk
accessory is not easier than writing any other kind of end-user
application. In some ways, it is more difficult.

The key programming ideas

Most of this book is about how to program the Macintosh family. It
presents basic techniques, explains main programming features,
and outlines design approaches. This discussion takes place against
the backdrop of some central ideas in Macintosh programming.
These can be stated as aphorisms:

O The user is the boss.
O Compatibility is the path of least resistance.

O Nobody does it from scratch.

The key programming ideas

“m designing a Macintosh

program, it's important to The user plays a central role

understand what the user The Macintosh is designed to make the user the boss. Everything
should be in charge of and that happens in the system happens because the user asks for it to,
what can safely be hard-coded directly or indirectly. This is the single most important concept in
out of the user’s reach. ” Macintosh programming. And it has wide-ranging ramifications.
Frank Leahy,

Two other central programming ideas emerge from this basic
philosophy: the user interface design and event-driven
programming.

Apple Computer

User interface design

Apple believes so strongly that the user is central that it has
published a book called Human Interface Guidelines: The Apple
Desktop Interface. If you don'’t yet have a copy, get one soon. It
may be a good idea not to start programming your first
application until reading and digesting it if you are writing your
program for other people to use.

Suggestions on how to use menus, when and how to change
windows, where to put dialog and alert boxes and what they
should say, are contained in the guidelines. Users expect the
programs they buy for their Macintosh systems to follow these
guidelines.

This idea—that the computer manufacturer should set forth the
principles by which programs interface with the user—is new and
some programmers have stumbled over it. But two facts are
undeniable:

D The vast majority of Macintosh applications follow the
guidelines closely (though probably none does completely).

O Programs that deviate seriously from the guidelines, without a
good reason the user can understand, don’t sell as well and
cause more support headaches for their publishers than those
that follow the rules.

6 Chapter 1: An Overview of the Macintosh

“1he very best Macintosh In other microcomputers, a “well-behaved” program is one that

brograms let the user do doesn’t conflict with other programs’ use of memory or the dis-
everything his way. ”’ play screen. In Macintosh, it is one that a first-time user can pick
Steven Marcus, up and begin to understand without spending dozens of hours.

SuperMac Technologies

Event-driven programming

Of all the conceptual models of programming, the one that best
describes how a Macintosh program looks and works is that of the
Grand Funnel (see Figure 1-1).

7

Event
ﬁ‘
handler

Figure 1-1
The Grand Funnel

The key programming ideas U

“rwrote my original program for
the 128K Macintosh. When the
512K Macintosh came out, my
program ran on it just fine,
without even recompiling! »’

Geoff Brown, author of
Dcluxe Music Construction Set

At the top of the funnel is the user, running your program. The
user produces events by interacting with the system and with your
program. In addition, external activities such as network inter-
actions and disks being inserted also produce events. As these
events pass through the funnel, they are prioritized automatically
by the Event Manager. (In the world of Macintosh system software,
“manager” refers to groups of routines that provide a particular
type of functionality.) Your program examines each event,
determines what type it is, and passes it to the appropriate event
handler. Some of these event handlers, in turn, produce their own
events, which go back into the top of the funnel. This ebb and flow
of control and interaction resembles a real-time programming
environment in which your program must field and deal with a
wide range of events, often happening with great rapidity.

The user is the primary—practically the sole—generator of events.
Your program spends much of its time in its main event loop,
waiting for a2 new event to manage.

This becomes much clearer in Chapter 3, where the main event
loop is explained.

Compatibility is easy; incompatibility is not

With most computer systems, compatibility is a constant worry for
the programmer as well as the user. If you put an item into memory
at an unused location today, will that location still be unused in two
years when the new model comes out? What if the keyboard on the
new system is radically different? Will the pro-gram have to change
to accommodate it? The issue plagues you.

With the Macintosh, being compatible is easy. Designing a
program so that it is 7ot compatible takes extra effort. All of the
Macintosh Toolbox ROMs have been upward compatible.
Routines written to run on a 128K machine (the no-longer-
manufactured original Macintosh) run on the 512K Macintosh,
the Macintosh Plus, the Macintosh SE, and the Macintosh II
without any changes.

If your programs follow Apple’s guidelines, they will run on future
versions of Macintosh family hardware. Only by doing something
totally nonstandard would you make your program unusable on any
new member of the family. Appendix A discusses the important
guidelines you should follow to ensure compatibility.

8 Chapter 1: An Overview of the Macintosh

Templates ease programming

An interesting thing happened early in Macintosh programming
circles. Programmers began to realize that the main event loop
was a highly reusable piece of code if it was handled right. Pretty
quickly, most Macintosh programmers were using main event
loops written by other Macintosh programmers and modifying
them to suit their applications’ needs.

Not only is that still true, but Apple has made it even easier than
before to do this kind of borrowing. Apple has published
MacApp, a generic application written in a powerful version of
Pascal. Macintosh developers are using this environment to
accelerate program development and to ensure further the
consistency of program user interfaces.

The key programming ideas

Chapter 2

The Software Anatomy
of the Macintosh

11

This chapter discusses the software architecture of the Macintosh.
It begins with a presentation of the fundamental ways the
Macintosh differs from other microcomputers. It then points out
the main components of the system’s architecture and how these
pieces fit together, and focuses on each component from the
programmer’s perspective.

The chapter closes with a discussion of some programming tasks
that you would customarily perform at the end of your assignment
but should be considered earlier when developing a Macintosh
application.

An architectural overview

Modern application programmers try to make a microcomputer
system’s components transparent to the user. To do so, program-
mers must manage displays, printers, memory, disk-based file
systems, and user input devices as unobtrusively to the user as
possible. This management requires a wide variety of tools and
languages.

But this desire to design “user-transparent” solutions conflicts
with the modern programming trend toward higher levels of
abstraction. Symbolic and object-oriented programming are
becoming more significant in programming. Your dilemma, then,
is that you must manage infinitesimal details of memory and disk
file access while attempting to maintain a broad overview of the
user’s needs and desires.

The Macintosh is an evolutionary step in the direction of
providing you with the kinds of tools that make designing user-
transparent solutions as “programmer-friendly” as possible.

12 Chapter 2: The Software Anatomy of the Macintosh

“ Users expect programs that
are snappy and that don’t make
them wait. This is important.
People think that a program
that makes them wait isn't as
powerful as a fast one even

if the slower program has

more features. ??

Jeff Harbers,
Microsoft Corporation

At the same time, the Macintosh permits you to give the user
greater control over the system. In fact, it requires such trust by its
very design. By passing on to the user the responsibility for
certain tasks, the Macintosh permits the programmer to focus on
the more conceptual aspects of solving the user’s problem.

Figure 2-1 illustrates some of the differences between the
Macintosh and other microcomputers from the perspective of the
programmer. The first part of the figure depicts the model most
programmers have learned. Using this approach, the programmer
must be concerned with skillfully blending all relevant elements of
the system into a finished application that isolates the user from
the system as much as possible. In the second part of the figure,
the Macintosh model shows that the programmer has a number
of powerful tools in the User Interface Toolbox and in resources
that combine to create user applications. In addition, the
programmer interacts with the Macintosh Operating System and
with something called the Finder™. The user, meanwhile, interacts
with the application program and also with the Finder. The
Toolbox and resources together make up the techniques for
handling all of the components enclosed in the dotted line in the
first model.

An architectural overview 13

Traditional model

Programmer
e 2 AR e = T T ——— :
; User Memory 1/O File
os | Inferface Mgmt. Control Mgmt.
Application
program
)) O RO O =
- |
I\l‘\llnll|I‘\l‘|IlHJJIlHI|lJJIIJ =
L1 i o o
User
Macintosh model
Programmer \
l
oS Resources Toolbox Finder
Application
program
) S]]
) T 6) | |)
N) | |))) | | | imllodtall ol
YT T]])
L]] | -jjJ
User

Figure 2-1
Two programming models

The Macintosh model makes programming easier while making
the resulting applications easier to use. This is all in keeping with
the basic principles discussed in Chapter 1.

14 Chapter 2: The Software Anatomy of the Macintosh

“The Toolbox itself is a very
good model of how 1o pro-
gram the Macintosh. It’s
made up of small, largely
stand-alone functions.”’
Gerbard Schutten,

Apple Computer
autbor of MacDraw 2.0

The pieces

You will find yourself spending the bulk of your Macintosh
programming time working with the User Interface Toolbox.
Occasionally, you will use the Toolbox (as it is also known) to
create and manage resources. Viewed simplistically, a Macintosh
program consists of a collection of Toolbox calls, some of which
manipulate resources. These elements are then combined with
your application’s specific data processing procedures. As with all
computer programs, this processing is largely transparent to the
user.

Compared with most programming you have done, you will find
yourself involved relatively infrequently with the Operating
System and with memory and disk file management. Even when
you do interact with those parts of the Macintosh system, you will
do so at a higher level than you are accumstomed to. Battling with
bits and bytes, complex memory segmentation and addressing
schemes, and device-dependent I/O becomes a thing of the past.

Putting the pieces together

Figure 2-2 shows the relationships among the main pieces of the
Macintosh system software architecture. There is a high degree of
interdependence among the components. QuickDraw plays a
central role, as you will see in Chapter 5. There is also a definite
hierarchy within some of the components.

An architectural overview 15

16

Management
interaction

Menus Menu Manager

Dialog boxes Dialog Manager

Windows Window Manager

lcons, etc. . ..

m QuickDraw

Resource Manager

UL

Figure 2-2
Macintosh system software architecture

This will make more sense by the time you finish reading this
chapter. For the moment, it is only important that you understand
that the components of the Macintosh software architecture are
primarily tools and managers assigned to manage specific aspects
of the user interface. They relate to one another in two ways:

O The manager uses QuickDraw, the basic Macintosh drawing
utilities, to display each interface element.

O An activity involving any of these elements is handled by calls
to the responsible manager.

The other portions of the Macintosh software architecture play
more traditional roles. The Memory Manager operates in a
different way from most memory control systems, but its
fundamental task is nonetheless to manage memory. Similarly, the
File Manager enables your program to deal with disk-based files.
These managers are explained in more detail in Chapters 4 and 7,
respectively.

Chapter 2: The Software Anatomy of the Macintosh

The Toolbox

One of the most significant aspects of the Macintosh’s software
anatomy programmer is the User Interface Toolbox, or Toolbox for
short. This section contains a brief overview of the Toolbox

utilities; a more in-depth discussion of the significant calls and their
usage appears in Chapter 6.

What is the Toolbox?

Conceptually, you can think of the Toolbox as a library of
procedures and functions that your program can use without having
to spend a lot of time re-inventing the wheel. On conventional
microcomputers, it is fairly common to spend hundreds or even
thousands of dollars acquiring libraries of routines written in the
language with which you are working. C and Pascal libraries

abound. They range from very specific libraries which carry out
narrow sets of tasks such as graphic displays or complex
mathematics to broad-based libraries designed to provide a kind of
“cookbook” of functions.

With the Macintosh, you don’t need to go out and find, evaluate,
purchase, load, and implement such libraries. Apple has supplied
a powerful library for you.

What’s in the Toolbox?

Figure 2-3 shows the parts of the Toolbox and their approximate
hierarchical relation to one another. The components nearer the
top of the figure quite often call those below them in the
hierarchy. The relationship is not rigid, however, and it is possible
for lower level routines sometimes to call or use higher level ones.

The Toolbox 17

Dialog Manager

Control Manager Menu Manager Textedit

Window Manager

Toolbox Ufilities

Toolbox Event
Manager

Desk Manager Scrap Manager

QuickDraw

Package Manager Font Manager

Resource Manager

Figure 2-3
The hierarchical order of Toolbox parts

The shaded routines in Figure 2-3 are discussed in greater detail in
Chapter 6. QuickDraw and Color QuickDraw routines are the
subject of Chapter 5. You will need the others less frequently.
When you do need information about them, refer to Inside
Macintosh.

For a discussion of the basic functions of each of the elements in
the Toolbox, see Technical Introduction to the Macintosh Family.

Why use Toolbox routines?

Toolbox routines such as those described here and in Chapters 5
and 6 enable you to provide the consistency of interface that is
such an important part of the Macintosh world. Furthermore,
using these calls guarantees that your programs will continue to
operate as expected on future versions of Macintosh. In other
words, you don't need to worry excessively about compatibility.

18 Chapter 2: The Software Anatomy of the Macintosh

“ Resources are something like
Jfolders. As long as you name
them, you can put anything
you want in there and get it
out easily later.”?

John Meier,
Apple Computer

Beyond those basic reasons, there is at least one other good
reason to use the Toolbox routines rather than designing your
own to handle such things as menus, windows, and dialog boxes
even though it is perfectly possible to do so if you wish. Quite
simply, it is easier to use them than to circumvent them. Working
around the Toolbox routines to write your own code takes more
code and more energy and introduces more bugs. Because the
Toolbox routines are largely in ROM and are highly optimized,
you won't find yourself gaining any real execution speed. And the
potential incompatibility problems you create for yourself are just
not worth the effort.

Marshalling your resources

One of the most powerful and innovative ideas in the Macintosh
programmer’s world is the resource. Simply stated, nearly
everything that is stored in a Macintosh is or can be a resource.
Resources provide Macintosh programmers with great flexibility,
make their programs adaptable to foreign-language
implementation, and generally make life easier.

What is a resource?

In his book How to Write Macintosh Software (Hayden, 1986),
Scott Knaster says: “If you ask a Macintosh programmer what a
resource is, you're likely to be told, ‘Everything is a resource!” As
he points out, “That’s close.”

Simply put, your program sees a resource as any bits and pieces it
needs to do its job. For the most part, resources are displayed to
the user. Menus, dialog boxes, and controls are all resources.
Their original purpose was to facilitate the transfer of Macintosh
programs between speakers of different languages. Because a
resource is not “hard coded” into your program, translating it
into another language can be undertaken by a nonprogrammer.

The list of options (words and phrases) that make up a menu
constitutes a single resource. So, too, does a set of numbers that
define the dimensions of a window. Scroll bars, icons, dialog
boxes and their contents, the cursors used by an application, and
dozens of other small pieces of data and program code are
resources. In fact, your program’s code is even a resource.

Marshalling your resources 19

¢ Use resources Jor everything
Dpossible. Hard-code as little
as possible.”’

Eagle Berns,

Apple Computer

Memory Manager

Segment Loader

OS Event Manager

File Manager

Device Manager

Disk Driver

Resources and your program

Resources are stored in application program files on the disk (see
Chapter 7). The Macintosh uses an index called the resource
map, which is very much like a header record in a more conven-
tional disk file. This map contains information that permits the
Macintosh to view the stream of bits stored in a portion of the file as
individual resources with beginning and ending points in the
stream. The job of interpreting this map and picking out the
resources to which it points falls to the Resource Manager.

There are a number of means for creating resources. In some cases,
you can design a resource interactively in much the way you draw or
paint objects using MacPaint™. In others, you write text
descriptions of the resources and let the Resource Manager figure
out how to display them when your program runs. Much of the
decision is a function of the development system or environment
you are using. More information on creating resources can be
found in Chapter 6 in the discussions of each type of resource and
its use.

Using calls to the Resource Manager, your program brings in dialog
boxes, menus, icons, and other, similar objects. Your program
need not be concerned with whether a resource it needs is already in
memory or stored on disk because the Resource Manager handles
management for the program.

Sound Driver

ROM Serial Driver

Vertical Retrace Driver

System Error Handler

OS Utilities

Figure 2-4
The components of the
Macintosh Operating System

The Macintosh Operating System

Contrary to what you may have heard, the Macintosh really does
have an operating system. Inside Macintosh says it well: “As the
Toolbox is your program’s interface to the user, the Operating
System is its interface to the Macintosh.” Don’t confuse the
Operating System in the Macintosh’s ROMs with the System icon
on your desktop. The System file is more appropriately thought of
as the system resource file. It contains resources shared by all
applications. Figure 2-4 shows the components of the Operating
System. Unlike the User Interface Toolbox routines, there is no
particular hierarchical order to these components. The parts of
the Operating System highlighted in Figure 2-4 are discussed later
in this book.

20 Chapter 2: The Software Anatomy of the Macintosh

The Macintosh Operating System does not differ radically in

function from other operating systems with which you may be
familiar. Low-level, hardware-related events like mouse-button
presses and keystrokes are handled here, as are file and serial
device 1/O, sound, network and other interface drivers, and a

number of other functions.

When programming the Macintosh, one of the most important
parts of the Operating System is the Memory Manager, discussed
in Chapter 4.

But the way you use the Macintosh Operating System differs
markedly from the way you are accustomed to making other
microcomputer operating-system calls. In other systems, most
operating-system interface takes place by means of direct-memory
addressing using either subroutine jumps or interrupts. This
direct-memory approach has a perceived advantage of speed but
is hobbled as a design strategy because the next generation of the
operating system may change some interrupt vectors or other
vital information. The result is a necessity to debug and revise
code each time the operating system changes.

On the Macintosh, you interact with the Operating System by
means of utility calls and other calls that closely resemble the
User Interface Toolbox routines. In fact, there are many
operational similarities between the Operating System and the
User Interface Toolbox.

The Finder

Most Macintosh system disks contain at least two items: a System
file (discussed in the preceding section) and a Finder. The Finder,
however, is not required to boot a disk on the Macintosh. On
most system disks, if the Finder is present it is the startup
application, meaning that it is the first application called when
the system is started up using that disk. The Finder is responsible
for presenting the familiar desktop that greets most Macintosh
users when they start their machines.

The Finder 21

The Finder and the user

The Finder is in many ways an application. It is only slightly
different from the ordinary Macintosh application in that its role
is file and desktop management. With the Finder, the user can set
up folders, move files around, rename them, copy them, or delete
them. These are functions you are accustomed to thinking of as
being handled through an operating system. They are also
functions you frequently programmed into your applications in
the past because the user might well need to manage files as a part
of using your program.

On the Macintosh, the user is given control over and
responsibility for file management. The Finder is a tool for
handling the tasks. Most well-designed Macintosh applications do
not include the ability to delete, rename, copy, or otherwise
manipulate files while they are running.

The Finder is also the place from which the user chooses an
application and starts it. When the user finishes running your
application and chooses to quit, the system returns to the Finder
(assuming Finder is the startup application).

The Finder and your application

While your application is running, it typically has nothing to do
with the Finder. In fact, the Finder is almost certainly not in
memory when your program is running unless the user is running
your program under MultiFinder or a similar application.

During development, however, your program must be aware of the
Finder. Because the user interacts with your program first at the
Finder level, your program must make itself known to the Finder
as an application available to run. It must also identify documents
associated with it so that if the user double-clicks on a document
icon belonging to your program, the Finder understands that the
user wants to start your program and open that document.

22 Chapter 2: The Software Anatomy of the Macintosh*

Thinking about “last” things first

One crucial difference between programming the Macintosh and
programming more traditional microcomputers is the order in
which you should take into account various kinds of operations.
Specifically, there are several functions that would be usual
practice to leave to the last phase of development. These include
printing operations, the Undo routine, the user interface design,
and localization of the user interface.

On the Macintosh, if you leave these kinds of functions to the end
of the programming cycle, you may find what you would have
thought would be very easy tasks occupying a significant amount
of time and energy.

This section discusses these aspects of Macintosh programming
with an eye not toward teaching you how to carry them out in
great detail but rather toward helping you focus on the important
design issues they raise early in the software development cycle.

Printing functions and the Printing Manager

In the traditional microcomputer programming world, printing is
a simple task. It is also boring and somewhat limited. Macintosh
takes out the boring limitations. In the process, it requires you to
take a closer look at the printing process and to give more
thought to it at the beginning of program development.

Macintosh printing has two features that are normally not part of
microcomputer programs:

O printer independence

O bit-mapped graphics output for all types of documents

Printer independence

The Printing Manager makes it possible for your program to
largely ignore the type of printer being used. It stores the codes
that drive the printer in a separate printer resource file on the
user’s disk. Included within that file is a printer driver used by the
Operating System to communicate between the Printing Manager
and the printer.

Thinking about “last” things first 23

“ Undo must be pervasive.

It must go through the entire
program. The user doesn’t want
a situation where he can undo
some actions but not other,
similar actions.”’

Jeff Harbers,
Microsoft Corporation

This printer independence is a boon to the programmer. No
longer will you have to design and write dozens—even
hundreds—of separate files to accommodate various printers in
your application. Users can buy collections of printer drivers that
permit them to use the printers they own in any application they
want. Your application need not change, regardless of which
printer the user selects.

But every silver lining has a cloud. The down side of this is that
you must not make rash assumptions about the capabilities of the
printer on the other end of the application. Or, if your
application must make such assumptions, you must notify the user,
preferably both in the documentation and in the program itself at
the start of a printing operation.

Bit-mapped graphics everywhere

Most printers used with the Macintosh are either dot matrix
printers or laser printers. Both of these use bit-mapped graphics
almost exclusively for output. Because of that, and because of the
way the Printing Manager looks at the world, a Macintosh uses
QuickDraw graphics routines (see Chapter 5) to prepare the
document for printing.

In essence, printing a page on a dot matrix or laser printer
involves many of the same processes as drawing that same page
on the display.

The Undo routine

Before the Macintosh, most microcomputer applications did not
include the ability for users to change their minds about
something after they’d done it. Even popular word processors
lacked this capability. Part of the reason is that keeping careful
track of what the user is doing is not an easy task. And without it,
undoing what has been done becomes impossible.

Unlike almost everything else you program on the Macintosh,
there is no built-in routine to call for undoing something. You
have to roll your own undo routine.

24 Chapter 2: The Software Anatomy of the Macintosh

But Macintosh users are accustomed to being able to undo
actions, particularly editing steps. In fact, there is a general
agreement among users that if an action alters the contents of a
document, it should be immediately undoable. Any other
operation—such as choosing a menu command, loading a file, or
closing a window—is generally not undoable.

Because Undo is a roll-your-own application routine and calls for
careful planning, you must decide at the beginning of your design
cycle what, if any, functions will be undoable. Then you must
program your application so that it keeps track of what the user is
doing, stores information in a buffer so that it can easily be
recalled to undo the effects of an operation, and generally
manages things cleanly with respect to the Undo operation.

User interface design

It is surprising how many programmers forget to focus on the user
interface design until all their routines are working and debugged.
Then, as part of the final program assembly, they try to “glue” it
together with interface design.

That approach on the Macintosh is a virtual guarantee of
frustration and possible failure.

The user interface is the most important aspect in the design of a
Macintosh program, and it is essential that you understand how
you expect users to interact with the program before you try to
write the code.

In traditional microcomputer programming, not only could the
user interface be left to last in the development cycle, but it was
probably better to do so. For example, if a series of nested
menus—a classic “user-friendly” interface, pre-Macintosh—was
designed first and then the program evolved, the menus often
needed changing. And menu changes virtually always required
programming changes. It was much better to let the program’s
functional parts solidify and then write the user interface around
what was actually being implemented.

Thinking about “last” things first 25

“If you find you must extend
the user interface, do it in a soft
and gentle way. For example, in
HyperCard, you can single-click
on an icon to start a process.
That grew out of an observation
that many people have trouble
double-clicking. But double-
clicking in HyperCard isn’t
dangerous or disastrous, so
there’s nothing to unlearn.”’

Dan Winkler,
Apple Computer

On the Macintosh, the opposite is true. In the first place, because
the programs are driven by user events, the user interface is the
most important part of the program, not an afterthought to make
the program marketable. Second, changing the user interface is
fairly simple and straightforward, requiring minimal
programming changes. In fact, if the programmer uses
appropriate tools, the user interface is so easy to change that even
the user can modify it after the product is delivered and in use.

Localization

Between resources and the Toolbox, a Macintosh programmer
has all the necessary components to make programs easy to move
into other languages and cultures. The process of “localization” of
your programs will be easy to accomplish and will pay great
dividends if you follow a few simple rules. (For more information,
see Human Interface Guidelines, which contains an appendix on
the subject of localization.)

The general principle is to use Apple system resources where they
are available. For example, in date-time formatting, sort
sequences, and numeric punctuation, Apple’s international
resources are set up so that they are correct in the country in
which the computer was sold. If you use those resources instead of
coding such items directly in your program, users in the United
States will see a numeric value as 23,789.04, and European users
will see it as 23.789,04.

Another sound principle is to avoid having your program rely on
strings being a specific length. After these strings (which you
should have stored as resources) are translated, they will almost
never be the same length.

Using low-memory global variables rather than hard coding to
determine such things as menu bar height will also make your
programs easier to write and maintain. In some countries, the size
of the menu bar and the system font and size are different from
what they are on U.S. machines. This is due to the need for higher
resolution in non-Roman characters (such as Japanese kanji) and
other international differences.

26 Chapter 2: The Software Anatomy of the Macintosh

Finally, use the International Utilities Package and its sorting,
currency, measurement, date, and time formatting routines. Where
seemingly conflicting routines exist both in the User Interface
Toolbox and in the International Utilities Package, use the latter.
They tend to be more accurate, particularly as standards change.

There is much more to be said about localization, but the purpose
of this discussion is simply to alert you to take the need for
translation into account. If you store strings as resources, don’t
rely on them to be a predetermined length, and follow the other
principles outlined here, you will be well on the road to writing
Macintosh programs that can be used throughout the world.

Thinking about “last” things first 27

Chapter 3

An Eventful Experience

29

“The key idea is, just don’t think
about a Macintosh application
without thinking about events.
Period.”’

Eagle Berns,
Apple Computer

No concept is more crucial to programming the Macintosh than
the event loop. The Macintosh is an event-driven computer. It
spends a great deal of its time in an all but endless loop, waiting
for the user to do something that will trigger it into action. This
chapter focuses on the event loop and on the Toolbox Event
Manager, which manages the Macintosh’s response to user-
generated events.

An overview of the main event loop

Viewed irom its outermost level, the main event loop in the
Macintosh is a layered set of routines, as shown in Figure 3-1. It
requires th2 execution of a series of initialization procedures
before the loop is begun. The loop itself consists of a
GetNextEvent call followed by a series of conditional clauses
that identify the type of event involved and process it
accordingly.

Initialization

s

Get event

Repeat
— until user
quits
Handle
as appropriate

Figure 3-1
The outermost level of the main event loop

In Pascal, these conditional clauses are in the form of a series of
Case statements. In C, the case-switch combination is the most
often used mechanism for handling events.

30 Chapter 3: An Eventful Experience

 Remember 1o handle your
initialization routines properly.
You must often inilialize routines
and managers you don’t even
use directly. It’s easy to do the
initialization and tough to
recover if you forget or do it
wrong.”?

Ed Tecot,

Apple Computer

Sefting up the loop

Most Macintosh programs begin with two or three important
initialization calls before the main event loop is entered. Before
InitWindows can be called, you must have initialized the
QuickDraw routines with a callto InitGraf and the Font
Manager with the Toolbox call InitFonts. From the viewpoint
of the Event Manager, the most important initialization routine is
arguably InitWindows, which initializes the Window Manager.
The data structures in the Window Manager are used by the Event
Manager. If the Window Manager is not properly initialized, the
Event Manager cannot do its job.

Another useful initialization call is FlushEvents. This call clears
stray events left over from what took place before your

application began running. For example, if the user double-clicks
your application’s icon and then presses one or more keys on the
keyboard or clicks the mouse, these events are stored in the event
queue (which is covered later in this chapter). Your program,
however, should ignore these actions. FlushEvents with the
proper arguments clears all events from the event queue and gives
your program a clean area with which to begin its execution. This
flushing of pending events is generally only done once, and only
at the time your program initializes its environment.

The outer loop: How it works

The details of the loop’s event handling are the subject of most of
the rest of this chapter.

This outer loop waits for an event to occur. When one does occur,
it handles the event in accordance with the type of event and the
instructions associated with it in your program. When the event
involves the user quitting the application, the loop ends, the
application terminates, and the user is (typically) returned to the
Finder. From there, the user can choose some other program to
run or a document to edit.

The outer loop: How it works 31

It is essential that you keep
your event loops as short as
possible. Don’t start with a
main event loop and then build
a big chain bebind it. That’s the
totally wrong model. 7’

Gerard Schutten,
Apple Computer

When the GetNextEvent call is executed, the Event Manager
issues an automatic call to the Desk Manager to determine if the
event involved is a system event. If it is, the GetNextEvent
routine returns a Boolean False value. Your program simply
checks this Boolean value as part of the loop. If it finds it to be
False, the event can be discarded because the system has already
dealt with it.

The second level: What kind of event?

Within the portion of the outer loop labeled Handle, the next
level of the main event loop determines the type of event.

The sequence in which these events appear in your program is
not important. The Event Manager automatically returns the
highest priority event when the GetNextEvent call is made.

By the use of event masks, discussed later in this chapter, you can
block certain kinds of events from being acknowledged by your
program. If a mask is in use, the Event Manager returns the highest
priority event of those recognized by your program. This means
that you can determine what kinds of events are important for
your program to work with and how to deal with them. The Event
Manager takes care of everything else automatically. (It is seldom
if ever necessary to change the default event mask.)

Figure 3-2 lists the events in their order of priority.

32 Chapter 3: An Eventful Experience

. Activate event

. Mouse, keyboard, disk events

. Auto-key event

4. Update event

I 5. No event, continue to loop

Figure 3-2
The event priority list

Activate events

An activate event occurs whenever a window is activated or
deactivated. In any Macintosh application, only one window can
be active at a time. A number of actions can change this active
window. For example, the user might click the mouse in a window
that is partially hidden behind the currently active window. Or
your program might write text or draw graphics into a window that
has not been the active window to that point.

Mouse events

The mouse is one of the main sources of events to which your
main event loop has to respond. There are essentially two kinds of
mouse events: mouse-down and mouse-up. You don't often have
to deal with mouse-up events. To detect a double-click, your
program need only determine if the mouse has been pressed
twice within a preset time frame at the same place on the screen.

The second level: What kind of event? 33

 An event-driven environment
is one in which the user gets

10 say to the programmer,

OK, I have your program now.
Down’t call me, I'll call you.??

Geoff Brown, author of
Decluxe Music Construction Sct

Key events

Aside from the mouse, most user-generated events originate at the
keyboard. Most key events, of course, simply require that the
character represented by the key be echoed to the screen in the
currently active window using the current font information. But
you must check to see if the Command key is also being pressed.
If so, the user may be trying to execute a menu command without
activating the menu bar. Such events are handled by the Menu
Manager.

Similarly, the Caps Lock, Shift, and Option keys—collectively
called modifier keys—can alter the intended effect of pressing a
key. Your program must check for such combinations as part of its
processing of key events in the main event loop.

If the user holds down a key or key combination for a few
moments, you may have to respond to an auto-key event.

Disk-inserted events

If the user inserts a disk into a drive or mounts a new volume on a
hard disk, a disk-inserted event is placed on the event queue.
Typically, your program need not concern itself with this type of
event because GetNextEvent takes care of most such
occurrences. The Macintosh’s built-in Standard File Package is
designed to respond to them. If the disk inserted by the user is
defective, unformatted (uninitialized in Macintosh parlance), or
causes some other error, your program may have to call on the
Disk Initialization Package’s DIBadMount routine.

Update events

When it isn't responding to some other type of event, the Event
Manager looks for windows whose contents require updating. This
need can arise from user activities, program displays, or system-
generated overlays of dialog boxes or other objects. These
activities typically generate update events. Windows are checked
front to back so that the active window is checked first and
updated if necessary. Then the window behind the active window
is checked, and so forth,

34 Chapter 3: An Eventful Experience

“You bave to remember that a
Macintosh program is basically
waiting for the user to do some-
thing and being prepared for
him to do something unusual. »’
Steven Marcus,

SuperMac Technologies

The third level: Mouse event handling

One level farther into the main event loop, your programi
approaches the basic handling of mouse-down events.

Locating the mouse

When the user presses the mouse button, the location of the
mouse pointer is significant. For example, completely different
processing of a mouse event is required if the pointer is in the
menu bar rather than in an application’s active window.

The first step in handling a mouse-down event is to find the
location of the mouse pointer. This is accomplished with the
FindWindow call. A call to this command will enable a
Macintosh program to determine whether the mouse was pressed
while the pointer was in

O a desk accessory window
O the menu bar

O an application window

A desk accessory window

If the mouse is pressed while the pointer is in a window belonging
to a desk accessory, your application handles the event by calling
the Desk Manager routine SystemClick. The system then passes
control to the desk accessory that created and manages the
window involved. When the processing is complete, control is
returned to your application. This means that your program need
know nothing about the desk accessories available to the user. It
also means that your program will always be aware of the user’s
activation and deactivation of desk accessories.

The third level: Mouse event handling 35

36

The menu bar

If the mouse is pressed while in the menu bar, your application
calls the Menu Manager’s MenuSelect routine. This routine
highlights the menu name on the menu bar and, so long as the
user holds down the button, highlights menu choices as he or she
moves the pointer over them. When the user releases the mouse,
the Menu Manager tells your program what choice was made.
Your application must then process the choice. (See Chapter 6 for
a discussion of how the Menu Manager and your program relate
to each other.)

< Pause for a moment: Figure 3-3 shows the blocks of
programming that have been identified to this point. You can
see that the program itself is not yet very large. You need to
be familiar with only a handful of commands to understand
the main event loop of a Macintosh program.

REPEAT
Get Next Event

Disk inserted event?
(Ignore unless uninitialized)

Update event?
(Redraw windows as needed)

Mouse event?
Find Window

Desk accessory?
(Call System Click)

Menu bar?
(Call Menu Select)

Other events
(To be discussed)

UNTIL USER QUITS

Figure 3-3
A partial skeleton of the main event loop

An application window

If the mouse is pressed in a window that is created and managed
by your program, your next task is to find out which part of the
window the user wants to manipulate. Figure 3-4 shows the parts of
a window. Depending on which one of them is selected by the
user, your program takes different steps to process the input.

Chapter 3: An Eventful Experience

Close box

f & File Edit Search Format Font Style
S[I==——————— Document

JITIITH /

Title bar (drag region)

5|

Content region

Zoom box

Size box

Figure 3-4
The parts of a Macintosh window

The first thing your program should do is call the Window
Manager routine SelectWindow. This routine brings the window
to the top of the desktop display if it is not already there. To
accomplish this, the routine takes the following steps, which are
transparent to your program:

1. Unhighlight the previously active window.
2. Bring the selected window in front of all the other windows.
3. Highlight the window that is now active.

4. Generate appropriate activate events as described above.

Outside the content area of the window: If the mouse is
pressed in the frontmost window but outside the work area of the
window, it can be in any of five places: the title bar, the size box,
the close box, a scroll bar, or the zoom box.

With these application window routines added, the main event
loop looks like Figure 3-5. Obviously, a great deal of this loop
involves managing routines that are not directly related to your
application. This overhead programming has been seen by some
as a hindrance to Macintosh program development. As much as
two-thirds of the application’s code—depending, of course, on the
nature of the application and its complexity—can be taken up
with this overhead programming.

The third level: Mouse event handling 37

REPEAT
Get Next Event

Disk inserted event?
Update event?

Mouse event?
Find Window

Application window?

Go-away region?
(Call Track Go Away)

Drag region?
(Call Drag Window)

Grow region?
(Call Grow Window)

Zoom region?
(Call Zoom Window)

Content region?
(Handle as application desires)

Key down event?

Active event?

Update event?
UNTIL DONE

Figure 3-5
A main event loop with the window routines

At the same time, the overhead programming is not difficult. For
the most part, it is handled by the Macintosh.

By using a modular application program like MacApp (see

Chapter 8), you can avoid having to program the overhead
routines even to the extent described in this chapter. This is
possible because the Macintosh user interface is sufficiently

standardized to permit a predefined way of dealing with such
events.

38 Chapter 3: An Eventful Experience

“The standards are bigher
Jor an event-driven program.
If you try to do old-style pro-
grams, users will not respond
well to them. ”’

Dan Winkler,
Apple Computer

More about events

There is a great deal more power and complexity to the Event
Manager than you need to know to create useable Macintosh
programs. To give you a glimpse of this power, this section
discusses the event queue and event masks. The objective is not to
explore these aspects in depth but to convey some of the
potential for control of an event-driven program.

The event queue

As events occur in the system, they are placed on the event queue,
a 20-item list that is stored in priority order. Events stay in the
queue until they are processed by GetNextEvent calls (or
other routines) or until the queue gets full. When the queue is
filled with events, a new event will replace one in the queue, with
lowest priority and oldest events being eliminated first.

Two types of events are never placed in the event queue: activate
and update events are intercepted by the Event Manager and
processed automatically. Before checking the event queue in
response to 2 GetNextEvent call, the Event Manager checks to
see if any activate events are pending. If so, it processes these
events before accessing the event queue. The system automatically
looks for update events when no other kind of event is going on.

Event masking

A mask can be thought of as a kind of filter through which
information is passed to see if it fits a predetermined pattern. If it
does, it is allowed to pass. If it does not fit the pattern, it is
rejected or ignored.

Whenever you use the GetNextEvent call, you can optionally
supply an event mask that tells the Event Manager the type(s) of
events in which you are interested. Each type of event has a
numeric value associated with it, as shown in Table 3-1. (Table 3-1
does not show all the types of masks available in the Event
Manager, just the ones that are important enough that you should
be aware of them now.) Notice that there are four application-
definable masks at the high end of the numeric ranges defined in
Table 3-1.

More about events 39

“ Error management ought to be
the first and last thing on your
mind at all times when program-
ming Macintosh applications.
The longer you wait to put in
error-checking, the longer il
takes to do.”’

Ed Tecot,

Apple Computer

Table 3-1

Event masks and their numeric values

Events to mask Numeric value
Mouse-down 2

Mouse-up 4

Key pressed 8

Key held down (auto) 32

Update 64

Disk inserted 128

Activate 256
Application-defined 4096, 8192, 16384, —32768

Generally speaking, however, you will probably want to leave the
event mask alone and permit the system to notify your program
of all kinds of events rather than focusing on any one type or

group of types.

Note, too, that the event mask doesn’t prevent events from being
placed in the event queue. It only determines which kinds of
events the Event Manager will report to you from the queue when
a GetNextEvent is received. Thus, you can’t use the event mask
to keep the event queue from reaching its 20-event maximum.

A note about errors

Because this chapter is the first to deal with specific Toolbox
routines, it is a good place to insert an important observation.
Virtually all Toolbox calls result in a return value of some sort. If
the routine you call can produce an error condition, the return
value may be zero (noErr in Macintosh documentation) or
nonzero. If it’s nonzero, you must deal with it before proceeding.

It is almost impossible to exaggerate the importance of this
advice. If you fail to check for error conditions simply because
you don’t see any way a particular call in your application could
produce an error, a crash can result. The amount of overhead
involved in checking the return value to be sure it is nonzero is
negligible compared with the loss of programming time you'll
experience if an error occurs and you haven't checked for it.

40 Chapter 3: An Eventful Experience

Chapter 4

Memory Management

41

“ You can’t bave a sophisticated
program on any system without
relocatability in the memory
manager. ”’

Jeff Harbers,

MicroSoft Corporation

Memory management on the Macintosh poses one of the most
interesting paradoxes of the system. It is at once one of the
simplest to use collections of ideas in the Macintosh software
architecture and one of the most often misunderstood. More
misleading mythology has built up around the Memory Manager
than any other manager or package in the system.

This chapter explains the Macintosh Memory Manager. It
discusses how the Memory Manager works, what you must do for
your programs to interact correctly with it, and when and how
objects stored in the Macintosh’s memory can be relocated by
the Memory Manager.

Before reading this chapter, you might want to read the chapter
“Macintosh Memory” in Technical Introduction to the Macintosh
Family. It contains a thorough discussion of how memory on the
Macintosh is organized, which this chapter touches on only
lightly.

How memory is organized

Figure 4-1 is a generalized Macintosh memory map. It does not
show precise memory locations because those addresses vary
depending on the Macintosh model and configuration options.
More importantly, you and your application need not know any
absolute memory addresses.

Screen and I/O

Stack

Unused buffer

T

Application heap

System heap

System globals

Figure 4-1
A simplified Macintosh memory map

42 Chapter 4: Memory Management

The stack starts near the top of high memory and grows down,
while the application heap grows from its assigned starting
location up toward high memory. A buffer is automatically
created between them. The application heap grows to a fixed
limit. However, you must monitor the stack to ensure that collision
with the application heap does not occur.

The system globals area contains values needed by all applica-
tions running in the environment. Typically, your program has
little direct interaction with this information. Any needed activity
is handled transparently by the development system you use.

Memory and the parking garage

The Memory Manager on the Macintosh resembles an attended
parking garage in some interesting ways. By contrast, the more
traditional methods of memory management used on other
microcomputers more closely resemble a self-parking garage.

In a self-parking garage, you drive your car to a level where you
can find a space. Then you must make a careful note of where
your car is parked. Sometimes, the parking garage labels pillars
and places signs where you can see them so that you can identify
with something close to a2 memory address. Other times, you have
to look around and remember landmarks, location of the car
relative to the elevators, and other, less precise memory-joggers
to help you recall where your car is. '

When you return to get your car, you must remember where it is
parked. You must also remember to keep track of the ticket.

In a valet parking garage, you simply drive your car to the point
where the attendant takes over. You leave your car and keys in the
control of the attendant, who gives you a numbered ticket that
corresponds to one he puts on your car for identification. The
attendant may park your car on the third level near the elevators
or on the fifth floor at the opposite end from the elevator. You
don’t know and you need not concern yourself with the issue.
During the day, the attendant may need to move your car to
deliver other cars to their owners or to make room for new ones
coming into the lot. You still don’t care.

Memory and the parking garage 43

“ The Macintosh Memory
Manager is very much like
valet parking for your data.”’

Bryan Stearns,
Apple Computer

All you really need to know is that when you come back to pick up
your car, the parking lot attendant finds it, starts it, and delivers it
to you in return for payment.

In a conventional microcomputer system, you must know where
your program is storing things it needs. You must be in control.
You are using a self-parking garage and if you forget your ticket or
lose track of where you put something in memory, you are going
to be in serious trouble.

On the Macintosh, though, you simply let the Memory Manager
play the role of parking lot attendant. You tell the Memory
Manager to store something for you, and it gives you the memory
equivalent of a numbered ticket. No matter where or how many
times the Memory Manager cum parking lot valet may relocate
your object to make room for others while your program is
running, you can always return the numbered ticket to the
Memory Manager and expect the data to be returned to you.

As the chapter develops, these analogies will become even
clearer. For now, the important idea to remember is that you
don’t have to concern yourself much with what is happening with
the Memory Manager. You can concentrate on problem-solving
rather than on memory-tracking. The idea takes some getting used
to, but it results in far more efficient use of your time.

The elements of Macintosh memory

The Memory Manager consists of several elements, all grouped
together into one manager that keeps track of where things are in
memory and how they can be retrieved or updated as needed.
The five basic objects with which the Memory Manager must deal,
regardless of the program it is running, are

O pointers
O handles
O blocks
O the stack
O

heaps

44 Chapter 4: Memory Management

In some ways, these terms are defined similarly to what you may
be accustomed to in conventional computers. More precise
definitions begin in the following paragraphs but are expanded as
the chapter develops the basic ideas of Macintosh memory
management.

Pointers

A pointer is probably not new to you, particularly if you have
programmed in C or Pascal. In the Macintosh, a pointer is nearly
identical to those kinds of pointers. A pointer is an address that
tells your program where to find a particular block in memory.
Usually, of course, a pointer is stored in a variable that you use to
reference the block of memory.

Pointers, then, point directly at the object and are associated with
nonrelocatable blocks. This is in direct contrast with handles.

Handles

Handles are pointers to pointers. A handle stores the address
where a pointer to a block of memory can be found. Like a
pointer, a handle is usually a variable your program uses. When
your program is using handles, however, it must use them to
locate pointers, which in turn must be used to reference the actual
blocks of memory. This is the essence of relocatable blocks.

Blocks

Information stored in the Macintosh’s memory by your program
is viewed by the Memory Manager as composed of blocks. The
Memory Manager neither knows nor cares what is stored in those
blocks. Your program may use a block for each object it stores in
memory, or it may group objects into blocks of related
information. To the Memory Manager, all blocks are the same.
Discussions of the Memory Manager and its operations almost
always talk about locating blocks in memory rather than finding
objects there.

The elements of Macintosh memory 45

46

The stack

The stack on the Macintosh is similar in many ways to that on
other microcomputer systems. It starts near the top of high
memory and grows down. Stack management is handled
automatically by the Memory Manager for all practical purposes.
A key difference between the Macintosh stack and other
microcomputer stacks is that data is not allocated on the stack on
the Macintosh. Data allocation takes place on the heap.

Heaps

There are always at least two heaps in the Macintosh’s memory
when a program is running. The system heap is used by the
Macintosh Operating System and by Toolbox calls to allocate
data needed by the system. (See “System Use of Memory” later in
this chapter.) The application heap is the portion of memory set
aside for your application to allocate data. But, there are times
when the system will indirectly allocate memory in this heap on
behalf of your application.

This model differs from the traditional microcomputer memory
management approach in which only the user’s application
manipulates the contents of the heap.

Basic memory management

Macintosh memory management is essentially quite simple. When
your program needs some memory, it decides whether to use a
relocatable or nonrelocatable block, calls the appropriate routine,
checks the return code to be sure the memory allocation was
successful, and then continues with its processing. When it needs
to access an object stored in a block of memory, it does so by
dereferencing the handle or pointer and retrieving the data.
When it no longer needs the memory, it disposes of it.

Aside from the question of relocatable and nonrelocatable blocks,
Macintosh memory management differs little from traditional
computer memory management. But relocatable blocks are such
an important concept in the Macintosh that they deserve further
attention.

Chapter 4: Memory Management

Relocatable and nonrelocatable blocks

The relocatability of a block refers to the freedom with which the
Memory Manager can manipulate blocks of storage when it is asked
to allocate additional space. Relocatable objects can be moved
freely by the Memory Manager when it must do so. Nonrelocatable
blocks are sacrosanct; they will not move.

Your program manages relocatable blocks of memory using
handles and nonrelocatable blocks using pointers.

Your program must be concerned with the manipulation of these
two types of memory blocks because of memory fragmentation.
This fragmentation, in turn, comes about because the Memory
Manager frequently moves relocatable blocks in memory to
allocate new space as it is needed.

It is important to note, however, that these blocks are only moved at
specific, well-known times, and that you determine whether any
given block of memory is relocatable.

Moving blocks in memory

The Memory Manager relocates blocks of memory that your
program has allocated only when

O the blocks are relocatable
O a need for more memory arises

O a block of sufficient size is not immediately available without
moving one or more blocks of memory.

On the surface, it would appear that blocks of memory are relocated
only when your program requests additional memory and the
above circumstances are present. But that is not quite true. Many
Toolbox calls made directly or indirectly by your program also
require memory allocation. This need for additional memory that
is not explicitly and directly requested by your program makes
Macintosh memory management at once important and elegant.

When the Memory Manager does relocate a block of space, it places
the beginning address of the new block at the address to which that
block’s handle points. Figure 4-2 depicts the process.

Basic memory management 47

Before move

Address Contents
Block 1 $2947C
Pointer $229C0 $2947C Block 1
Handle SDYAAE $229C0
| 1]
]] 1
1 1)
Aftermove | ' :
Block 1 $22A00
Pointer $229C0 $22A00
Handle SD9AAE $229C0
< $22A00
Figure 4-2

Memory block relocation

Before BLOCK]1 in Figure 4-2 is relocated by the Memory
Manager, it begins at address $2947C. The pointer to it is stored at
$229C0 and contains the block’s starting address of $2947C. The
handle contains the address of the pointer, $229C0. After the
block is relocated, notice that although the contents of the pointer
have changed to reflect the new starting address of BLOCK1, the
address of the pointer has not changed. The handle still points to
the pointer, which still points to the block, even though the
Memory Manager has relocated the block. This means, among
other things, that the handle can still obtain the data in the
memory block called BLOCK1.

To return to the parking lot analogy, the handle is similar to the
ticket the attendant gives you when you give him your car. The
ticket contains a number. By keeping track of where the car with
that numbered tag is parked, the attendant can retrieve your car
when you need it even if he’s moved it and even if you can't
describe it very well. (Remember, the Memory Manager doesn't
know or care what is stored in the block.)

48 Chapter 4: Memory Management

Fragmentation

So long as the parking lot attendant has the keys to everyone’s car
and control over where they are parked, he can keep the parking
lot as full as possible and usually manage to find place for yet
another car when space is needed. Lock the cars and put everyone
in charge of moving their own car and chaos will result. There
might be a space available for a sleek new sports car that just
pulled into the driveway, but if access to that space is blocked by
someone who's locked his car, the space is unusable.

This is precisely what happens when you design programs that
include nonrelocatable blocks. The Memory Manager cannot
move those objects, so when it needs to allocate new space for a
newly created block, it may be unable to do so. The result is
equivalent to having run out of memory, even though there may
be huge chunks of it lying around unused.

There are two ways a block of memory can become nonreloca-
table. You can define it as such when you create it or you can lock
a relocatable block temporarily (a practice that is discouraged).

Unlike the stack, the application heap is not a LIFO (last in, first
out) area of memory. If you allocate space for four nonrelocatable
objects in the heap (see Figure 4-3) and then your program no
longer needs one of them and releases it, the vacated space is
simply marked as free by the Memory Manager.

- ' - — [Free
Object 3 Object 3
Object 2 Nonrelocatable
Object 1 Object 1 free
1. Before release 2. Afterrelease
Figure 4-3

The beginning of heap fragmentation

Basic memory management 49

When your program allocates more heap space for another
object (see Figure 4-4), the Memory Manager must find a location
that contains sufficient contiguous bytes to store the object. If the
object is even slightly too large to fit into the space recently
vacated by another object, the old vacancy remains and new
space must be allocated.

Object 4

Object 3

D Free

Nonrelocatable
free

Object 1

Figure 4-4
Allocating new space

It is not difficult to imagine what the heap looks like after a
program of any complexity allocates and removes a number of
nonrelocatable objects from the application heap. Figure 4-5,
while perhaps a bit exaggerated, depicts the problem you'd be
facing. It is essential that your program allow the Memory
Manager to manage the application heap. That is why it makes
sense to make objects relocatable unless there is a compelling
reason not to do so.

With relocatable blocks in the application heap, the Memory
Manager can move blocks around to gain contiguous free space
for a new object to be created and stored.

50 Chapter 4: Memory Management

Free

Object 8

Object 7

Object 6

D Free

Nonrelocatable
free

Object 5

Figure 4-5
A badly fragmented heap

Obtaining and releasing memory blocks

There are two basic calls your programs will use to obtain
memory. A call to NewHandle returns a handle to a relocatable
block of memory. Similarly, a call to NewPtr returns a pointer
to a nonrelocatable block of memory. Each of these calls takes
one argument, the size of the block of memory to be allocated.

Of course, after either of these calls is carried out, your program
should check the return value. If the handle or pointer returned by
the call is Nil, then the attempt to allocate the memory has failed
and your program must react accordingly.

When your program is finished using a particular block it has
allocated, it calls the appropriate routine. DisposHandle releases
memory allocated to a relocatable object, and DisposPtr
deallocates memory assigned to a nonrelocatable block.

It is important that you only dispose of memory blocks that your
program allocates directly.

Basic memory management 51

“ A Maciniosh program is not,
as some people have said,

an amusement park ride with
moving stairs you can’t predict.
1t’s more like an escalator whose
Stairs take you where you want
1o go, quickly and effortlessly.
Just don’t try to drive the
escalator. 7’

Gerhard Schutten,

Apple Computer

Memory reorganization

Clearly, the Macintosh Memory Manager works best when it has
maximum freedom. When nonrelocatable blocks are kept to a
minimum, the Memory Manager has a better chance of finding
memory blocks when they are needed, even if they are quite large.
You, as a programmer, do not need to concern yourself with the
details of how and when the Memory Manager relocates things or
where it puts them. As you have seen, the relocation is transparent
to your program.

Still, it is useful in understanding the Macintosh to have a grasp of
how it decides what to relocate.

When memory is needed, the Macintosh moves all relocatable
blocks as low in the application heap as it can. If this process does
not result in a space large enough for the new or enlarged object,
it purges blocks as permitted. These purgeable blocks may consist
of resources, which are discussed in greater detail in Chapter 2.
Following this step, the Memory Manager may move some more
relocatable objects. Once any purgeable resources are released,
the Memory Manager allocates the new space. If it still cannot
find a large enough contiguous space, it can move more
relocatable objects, because the purge of resources may have
freed up additional space.

After trying all of those options, if the Memory Manager still
cannot allocate the memory needed, it returns a Nil handle or
pointer to the application that made the call.

System use of memory

In the Macintosh programming world, your application shares
memory with the system. A wide variety of Toolbox routines can
allocate memory on the application heap; these are listed in
Inside Macintosh. The important point to remember about the
system’s use of memory is that it makes it necessary for you to
monitor heap usage even when your application has not allocated
any new memory since you last used the heap.

52 Chapter 4: Memory Management

For example, if your program checks on how much memory is
available and gets a value indicating that 278,589 bytes are
available in the application heap, that figure may or may not be
the same 10 minutes later. This is true even if between the time
you got that answer and the time you are about to rely on it, your
program has done nothing directly to request more memory. In
fact, even if your program has done nothing indirectly to request
new memory, it may not be correct. Why? Because Macintosh
users can call desk accessories, among other good reasons.

If your program is whizzing merrily along and the user decides to
load a new font, read in another file to look up something, or do
any one of a number of other things that affect memory, your
program is probably not going to be aware of the user's actions.
Yet they clearly have an impact on memory. A font, for example,
can occupy several thousand bytes of memory, and that memory
is taken from the application heap.

The lesson is simple. Check memory before you attempt to
allocate any. Then allocate it. Then check to be sure the memory
was allocated properly. Then pretend you don’t know how much
memory is left (because you don’t).

Your program and the segment loader

Your program code is a resource, and as a result, it is loaded into
memory when it is needed. (Chapter 6 discusses the Resource
Manager, which is in charge of such memory manipulation.)

Many Macintosh development systems limit code segments to
32K. This and the modular nature of efficient Macintosh
programming mean that almost all nontrivial Macintosh
programs are divided into segments.

Why segment your code?
There are at least two good reasons for segmenting your
Macintosh programs:

O The general 32K limit on the size of a single code segment
necessitates such a strategy. This is true particularly in view of
the user interface management you do in the main event loop.

O Segmenting code makes for good memory management and
more efficient program execution.

Your program and the segment loader 53

54

Rule

Three classes of programs

From a memory and segmentation perspective, programs can be
thought of as falling into three categories:

O Programs that are smaller than 32K. These are often stored as a
single segment. Segmentation is not an issue.

O Programs that are larger than 32K but smaller than the
application heap. In these cases, segmentation is useful
primarily because you must consider the possibility that the
user will need memory that is unrelated to your program (or
only peripherally related). So you will probably segment such
programs, loading the segments when needed and unloading
them when they are not in use. For example, you might have
segments that initialize variables and data structures. Another
segment might handle printing-related functions. After the
program has initialized and when printing is complete, you can
unload these segments (see “Unloading Segments” later in this
chapter).

DO Programs that are larger than the application heap. These
programs must be segments or they simply will not run.
Unloading segments that are no longer needed moves from a
polite maneuver to a mandatory design technique.

Deciding on the segments’ contents

The key thing to keep in mind when deciding which of your
programs’ routines to group together into a segment is that the
Macintosh system loads into memory all of the routines in a seg-
ment whenever you use any one of the routines in that segment.
This leads logically to the fundamental rule of segmentation:

Group related routines together into segments.

If, for example, your code includes a set of routines that key off a
specific menu resource, and if those routines are subject to being
called by the user’s interaction with the menu bar, put all of those
routines into one segment. If you don’t, the user may spend a lot
of time waiting for disk access while the segments containing the
needed code are loaded before the program can continue.

Chapter 4: Memory Management

Fundamentally, the principles involved in making segmentation
decisions in your Macintosh applications are identical to those
involved in top-down, structured programming. Keep like things
together so they can work together.

Trade-offs in segmentation decisions

Some routines don't fall neatly into either the main event loop or
grouped collections of related procedures. In those cases, you
have to decide if you want to form many small, individual
segments or incorporate them into the main segment, which is
always in memory.

If you put too many small routines into individual segments, pro-
gram execution suffers. Disk accesses (among the slowest activities
in any program on any machine) may become excessive.

But putting too much code into memory at one time in the main
segment results in inefficient use of memory.

The best advice is probably to start by putting small, frequently
needed routines into the main segment along with the main event
loop, and everything else into as many segments as necessary and
logical for grouping related functions. Then as you polish and
debug your program, keep an eye on execution times, load times,
pauses in execution for disk 1/0, and the like, and adjust
accordingly. The process is necessarily dynamic.

The main segment

The main segment of your program—known technically as CODE
segment 1—is loaded into memory when your application starts
and is never purged or unlocked as long as the program is
executing. This segment is where the main event loop and
frequently needed small routines are generally stored. Do not take
this to imply, however, that you can’t have any number of
segments that are never purged or unlocked while your program is
executing. The main segment is not unique in this respect, but it is
the only one that is automatically treated this way.

If you follow recommended programming practices and create
your Macintosh application as a main event loop that dispatches
tasks to other handler routines, this main segment model with
other segments loaded and unloaded as needed will make
eminent sense.

Your program and the segment loader 55

56

Loading segments

You need never be concerned with explicitly loading segments.
When a segment is needed, the segment loader handles the task
transparently.

Unloading segments

Because the Memory Manager has no way to tell when a segment
of code can be unloaded, it is incumbent on you to notify the
system of this. The simplest way is to call UnloadSeg for all of
your segments each time you go through the main event loop.
This action will not, of course, unload any segments you have
marked as nonpurgeable, including the main code segment. This
approach is often sufficient, but it is not essential that you do this
if there are reasons to avoid it.

UnloadSeg does not, as its name implies, actually unload the
segment. Instead, it unlocks it and makes it purgeable, permitting
the Memory Manager to purge it or relocate the space it occupies
if it needs to do so to gain some space in the application heap, as
discussed earlier.

Out-of-memory conditions

You can’t be around Macintosh programming very long before
you encounter a discussion of the out-of-memory conditions that
sometimes arise during program development.

What causes memory to “disappear”?

There are three primary causes of out-of-memory conditions:
O overzealous use of nonrelocatable blocks
O desk accessories

O the system’s use of memory

Chapter 4: Memory Management

“Particularly as your program
nears completion, you should
begin to watch closely for
out-of-memory conditions so

you can trap and remove them.”’

Scott Knaster
independent developer

Nonrelocatable blocks

It is important enough to be worth stressing once again that you
should only create nonrelocatable blocks when it's essential.

Fragmentation of the heap can cause memory to be unavailable
when it’s needed even if the total amount of space available is
more than adequate.

Desk accessories

Any well-designed Macintosh application must be aware of desk
accessories.

Users expect desk accessories to be available whenever they are
doing anything on a Macintosh. Most desk accessories require the
use of some of the application heap. So your program can be
humming along nicely, managing its memory and keeping things
under control when all of a sudden things become unruly because
a user calls the calculator. Your program must take into account
that it is likely users will do such things and that the desk
accessories they invoke will require application heap space. There
is no way to anticipate how many desk accessories requiring how
much memory may be activated by the user. Desk accessories are
only opened through your program, however, so you can at least
manage the impact such actions have on memory.

The system’s use of memory

Perhaps the most troublesome source of memory problems on
the Macintosh is the fact that Toolbox routines call other Toolbox
routines, which in turn can call still other Toolbox routines. The
Grand Funnel in Chapter 1 made this seemingly unpredictable
operation of the Macintosh clear. As a result, you need to be
particularly cognizant of what is happening “beneath” your
application. If your routines use Toolbox calls that can have a
direct impact on memory usage, the application must take this
into account.

The Dialog Manager, for example, calls the Window Manager. A
Dialog Manager call therefore has a potential impact on memory
at least as great as that of creating a new window, even though this
indirect impact is not necessarily obvious.

Out-of-memory conditions 57

58

Two strategies for handling out-of-memory
conditions

If available memory gets sufficiently low, your program cannot
allocate the space needed to post a message telling the user to
save documents, close windows, shut down, or otherwise gracefully
exit from the program. Yet, a program that simply crashes when
memory runs low or is exhausted will not win friends in the user
community.

Memory management is one of the issues a Macintosh applica-
tion programmer must take into account early in the design
process and keep in mind throughout the development. What is
often an afterthought or even a point of no concern in other
kinds of microcomputer programming becomes a major design
consideration in the Macintosh.

At least two possible strategies have been identified for anticipating
out-of-memory conditions and dealing with them in ways users will
find helpful. These strategies may be conveniently labeled as follows:

O preflighting memory allocation
O reserved heap space allocation

Preflighting

Preflighting is the process of having your application allocate the
space a Toolbox call is about to seek. If the allocation succeeds,
then the Toolbox also succeeds. At that point, have your program
free the memory and call the Toolbox routine. If an out-of-
memory condition is detected by your application, you can take
appropriate action.

Reserved heap space

Another approach is to allocate a block of arbitrary size that will
be available to deal with out-of-memory conditions. If a memory
error is encountered during your program’s execution, you can
free some arbitrary portion of this specially reserved area and
notify the user that space is running low. This permits the user to
save documents, close windows, or take other steps that minimize
the impact of 2 memory shortage.

The process can be repeated once or twice, each time allocating a
smaller amount of memory and sending the user a more strongly
worded warning.

Chapter 4: Memory Management

Chapter 5

Display and Graphics Routines

59

60

This chapter looks at one of the most obvious and intriguing
features of the Macintosh family of computers: their visually
oriented display. Even a person who doesn’t use computers can
immediately tell a Macintosh application by the extensive use of
graphics, fonts, and windows on the screen. Other microcomputer
environments are now beginning to emulate the Macintosh “look”
because of the ease of use it offers.

An obvious advantage

At heart, the Macintosh is a graphics machine. This difference by
itself would be enough to make it a radical departure from the last
generation’s computers. The advantages of it are becoming
obvious to users.

But although the advantages are obvious, the intricacies and
operation of the graphics routines are anything but obvious.
There’s a great deal of power and depth in the QuickDraw and
Color QuickDraw routines, and these libraries account for a larger
share of the Toolbox than any other single manager or package.

Fortunately, there is some commonality among calls that makes
learning what they do and how they do it much easier than might
appear to be the case at first glance.

Programmers coming from nongraphics microcomputer
environments often look at the Macintosh graphics capabilities
and wonder if they can create programs that run acceptably fast
with all the calculation and screen manipulation involved. The
beauty of QuickDraw is that it is not only relatively easy to use, but
also amazingly fast. If you've designed applications that required
you to plot and draw circles using traditional methods, you are
going to find QuickDraw’s frameOval call a joy to use.

Chapter 5: Display and Graphics Routines

“ We have been very impressed
with QuickDraw, and we use it
Jor everything we put on the
screem. It’s a great piece of work
that the designers have reduced
to the minimum Size and
complexity to do the job. Don’t
try to work around it; use it. ”’

Jeff Harbers,
MicroSoft Corporation

Everything is in graphics

The most important idea to garner from this chapter is that in the
Macintosh, everything is done in graphics. If it's displayed on the
screen or sent to the printer, it involves graphics routines that are
part of the extensive QuickDraw and Color QuickDraw repertoire.
It is obvious that shapes like circles, ovals, rectangles, and lines
that show up in windows designed to display charts and pictures
are graphic in nature. But the rectangle that makes up the window
is also created using QuickDraw routines. So are the scroll bars,
the size box, the close box, the zoom box, and a great deal of
other window-related objects. For that matter, even the text
displayed is a graphic object.

Icons are graphic images, of course, but so are menus, so is text,
and so are radio buttons and check boxes, the heart of the dialog
boxes with which even the most casual Macintosh user is familiar.

Not only is everything on the Macintosh screen handled with
graphics, but so is anything that is sent to the printer. Printing is a
simple matter of sending a graphic image to someplace other
than the screen.

QuickDraw and Color QuickDraw routines are the foundation of
many other managers and routines, at least in terms of what the
user sees and interacts with as he or she uses Macintosh
applications.

A world of graphics in a library

The built-in QuickDraw routines in the Macintosh Toolbox are
very much like libraries of routines you might have purchased
separately for more conventional microcomputers.

Need to plot a circle as part of a complex graph? It’s not
necessary to plot each individual point and draw it. Just call the
appropriate QuickDraw routine and pass the screen location and
size. The circle is calculated and plotted for you automatically, to
say nothing of quickly. The same is true of the other shapes
QuickDraw and Color QuickDraw handle: rectangles, round-
cornered rectangles, arcs, wedges, and polygons.

For complex graphic compositions, you can use the QuickDraw

picture routines. These permit you to store a script of connected
QuickDraw calls that can later be recalled and played back. The

result is virtually instant display of such graphic images.

An obvious advantage 61

62

A quick look at QuickDraw

All display and printing routines in the Macintosh use bit-mapped
graphics. This term refers to the process of mapping, or making
connections between, bits stored in memory and pixels displayed
on the screen. Each bit in memory representing a portion of a
graphic image is a 1 or a 0 in the classic Macintosh with a
monochrome display. On the Macintosh II, things are
understandably more complex because each screen location
contains more than simple “on-off” information, but the basic
QuickDraw routines change only minimally.

On all models of Macintosh, drawing takes place in a graphics
port, often referred to as a grafPort. A graphics port is a complete
drawing environment that contains the data QuickDraw and Color
QuickDraw need to create and manipulate bit or pixel images.
Many programs create and manage more than one graphics port,
each containing different information about the drawing
environment.

The most important shape in QuickDraw’s world is the rectangle.
Not only are windows, scroll bars, and other controls rectangles,
but the screen is as well. In addition, even ovals (and their special
case, circles) are defined in terms of the rectangles they occupy.
In fact, even bit maps in Macintosh memory are defined in terms
of a boundary rectangle that gives dimension to the image.

QuickDraw routines allow you to create lines, shapes, patterns with
which to draw lines and fill shapes (including cursors), fonts, and
icons.

The discussion in this chapter assumes you have a fundamental
grasp of QuickDraw and Color QuickDraw. If you feel
uncomfortable with any of the ideas presented here or want more
background before proceeding, read Technical Introduction to
the Maciniosh Family.

Chapter 5: Display and Graphics Routines

“When you get ready to program
a Macintosh, study QuickDraw
first. You really bave to learn it.
Not only will you use its routines
a lot, but it's a great example of
how to program the Macintosh. »

Eric Zocher,
Silicon Beach Software

The QuickDraw programming model

Before you can carry out any QuickDraw operations in an
application, you must initialize its routines using a call to
InitGraf. It is dangerous to call InitGraf more than once in
a session, so desk accessories should never call it. The call to
InitGraf is the same whether you are using QuickDraw or Color
QuickDraw calls in the program.

% Note: In some high-level language implementations, a reference
to an include file or an external unit automatically initializes
QuickDraw. The issue is not so much the specific call but that
the initialization must take place once and only once.

With QuickDraw initialized, you are ready to draw something into
a graphics port. Good programming practice dictates that this
take place in four steps, as shown in Figure 5-1.

Initialize QuickDraw
Open a window for drawing

Drawing text?
Set font characteristics
Draw the text

Drawing a line?
Set pen characteristics
Line To (from point to point)

Drawing a shape?
Set pen characteristics
Frame appropriate shape
Fill if requested

Figure 5-1
The basic structure of a QuickDraw routine

This skeleton approach to QuickDraw programming ensures that
the proper port is current before your program begins drawing.
The GetPort routine permits your program to save the port
that was active before the drawing routine was called, and the
SetPort routine sets up the right current port in which your
program can draw. The drawing routines then take care of
presenting whatever information you wish in the current graphics
port. After the drawing, you restore the old graphics port with
another SetPort call to the old port.

The QuickDraw programming model 63

64

You may be tempted to shortcut this approach by not keeping
track of which port is current and which old port is being
deactivated by the QuickDraw calls. Even if your program uses
only one graphics port, however, this is not good Macintosh
programming practice. A desk accessory could create another
port and you could find your program’s output inadvertently
modifying its contents. The overhead cost of being safe is
minimal.

% Note: The misuse of SetPort is one of the most common
sources of errors in Macintosh programs.

Bits and pixels, maps and images

Data that translates directly into screen images is stored in the
form of bit images and bit maps on the classic Macintosh and
pixel images and pixel maps on the Macintosh SE and Macintosh
II. The differences are somewhat subtle but important. This section
looks briefly at these structures and how they are used. More infor-
mation can be found in Volumes I and V of Inside Macintosh.

Bit images

A bit image is a collection of bits in memory laid out like a
rectangle. It can be arbitrarily large. A bit image can be thought of
as beginning a collection of contiguous memory locations
containing words. Bit 15 of the lowest numbered word is on the
left, and bit 0 of the highest numbered word is on the right. This
vector of bytes is then converted into a rectilinear structure like
that shown in Figure 5-2. The dark vertical lines represent word
boundaries. The number of bytes in each row of the image is
referred to as the bit image’s row width. A bit image can be any
length that is an even multiple of the row width.

Chapter 5: Display and Graphics Routines

/— First byte (16-bit word) Last byte

/L
B 1 1T T 1 T T T T T T T////l I [T 1 T 7

/— First byte

B — Fi
e First row
D —_ — Next row
T 1T 1T T T 1T 17
0 —
Last byte
First byte
— First row
INex’r OW | ot row Last byte
[=—— L - !
OT T 1T 1T 1T 1T B9
/—Firs'rby’re
— First row

D@@ Row width
(a)X(5)X(6X7X8) 8 ytes

— Last row

Last byTe—/

Figure 5-2
A bitimage

Pixel images

A pixel image is used exactly the same way on the newer
Macintosh systems as the bit image is on the earlier ones. The
only difference is that a pixel image has depth. A bit image can
be thought of as a one-bit-deep pixel image. A pixel image
typically is one to eight bits deep. The deeper the pixel image, the
more colors can be displayed at a time on the screen. The trade-
off is that more colors mean longer screen redrawing times.
Figure 5-3 shows a pixel image.

Bits and pixels, maps and images 65

Pixel depth =1
—

Pixel depth = 1
af
[l l:_
E: | o) T) O 0
- | 6 B85) 5 A D T I
| i B 7 I 2 il T 5 |
Bit map Pixel map
Figure 5-3

A pixel image

Bit maps

The classic Macintosh keeps track of bit images and where they
should be displayed on the screen by means of a data structure
called a bit map. This structure contains a pointer to the bit
image, an integer defining the row width of the image, and the
coordinates of the boundary rectangle within which the bit image
is to be displayed. The boundary rectangle defines the
dimensions and the coordinate system for the bit map.
Coordinate systems are covered later in this chapter.

All drawing takes place in the bit map and is transferred to the
screen by built-in routines that are invisible to your program.

Pixel maps

As you would expect, the pixel map used in the color world of
Macintosh is more complex than the bit map of monochrome
displays. A pixel map has the same 3 fields as a bit map but adds
12 new fields. These additional fields deal with color and with the
fact that on the newer Macintosh systems, displays other than the
built-in monochrome monitor of the earlier Macintosh may be
used. This condition makes it necessary to store resolution data.

66 Chapter 5: Display and Graphics Routines

As with bit maps, the newer Macintosh systems do all of their
drawing in the pixel map and then translate that into a screen
display by processes that are invisible to your program.

Graphics ports

Although we often speak and think of graphics ports as if they
were screen images, technically they are data structures stored in
your application heap. Each graphics port has a separate data
structure defining all of its characteristics. Switching from one
graphics port to another is as simple and fast as using GetPort
to remember the one you are leaving and SetPort to cause
subsequent output to be sent to the new port.

Although graphics ports are the structures upon which a program
builds the windows, it is important not to confuse graphics ports
with windows. Any single window may contain many graphics
ports. Similarly, a single graphics port may span multiple
windows, though programs are not generally designed this way.

What's in a graphics port’s record?

Figure 5-4 shows the data structure of a record of type grafPort.
Note that it can be divided into eight groups of related fields. At
the outset, however, you should understand that your application
will typically never directly modify any of the fields in this record.
Modification takes place by calls to appropriate QuickDraw
routines as described later in the chapter. QuickDraw owns this
data structure, and it is not good form for your program to write
directly to it.

Graphics ports 67

68

Device — Device information
portBits

| portRect |
visRgn _| | Port and window
clipRgn descriptions

bkPat
fillPat
pnlLoc

pnSize
pnMode — Pen descriptions

pnPat

T T
|

pnVis
IxFont
IxFace
; Mode — Text descriptions

IxSize |
spExtra _J
fgColor
bkColor — Color descriptions

colrBit
___ Pattern-printing
paiStretch control

picSave
rgnSave — Status monitoring

polySave |_J

grafProcs _|—— Special pointer

Figure 5-4
The structure of a graphics port record

Device information

The first field is used by the Font Manager to tweak the display of
characters for the most pleasing output, depending on whether
the device is the Macintosh monochrome screen, a printer, or a
color video monitor. This field usually contains a 0, which is the
value that produces the best screen output. If your program’s
output is to be routed to a device other than the screen, the field
should be programmed to contain that device’s ID number.

Chapter &: Display and Graphics Routines

Port and window descriptions

The next six fields in the grafPort data record provide information
about the port itself and the window associated with the port. The
first, portBits, is a pointer to the area in memory where the bit
image to be used by the graphics port is stored. The next, portRect,
usually defines the area where data will actually be displayed. All
drawing takes place inside this rectangle.

How much of a bit image’s display is visible on the screen is
controlled by the values in the next two fields. The visRgn field
stores a handle to the visible region of the display. (Regions are
explained under “QuickDrawing.”) This area is one your program
normally ignores. Its management is automatic. When windows
overlap, this field makes it possible for your program to write even
in a partially hidden window without the image overflowing onto the
front window. Your program does, however, manage the clipRgn
field. You can use this field to limit arbitrarily how much of the
image being generated the user sees. For example, you can draw a
circle within a graphics port where the clipRgn field is set so that the
user only sees a half-circle.

The final two fields in this part of the record are used by some
QuickDraw routines. The first, bkPat, is the background pattern that
is used when an area is erased. The second, fillPat, is a fill pattern
used by Macintosh to fill an area. (Patterns are discussed later under
“QuickDrawing.”)

Pen description

The next five fields define the pen used for drawing all lines,
whether the lines are drawn using line-drawing tools or are part of a
graphic image such as a shape or picture created in other ways.
Figure 5-5 shows the QuickDraw pen and its four main
characteristics.

Graphics ports 69

70

Location ’)
Pattern :@u } Height

s - 4
TR Width
~Tel[elfo,.
~Ted|ed |
e odfelle]
T

Figure 5-5
A graphics pen

First among these fields is pnLoc, which is the coordinate position
of the upper left corner of the pen.

The pen’s size is given in the form of two pixel counts. The first is
the pen’s width and the second is its height. Normally, the pen is
1 pixel by 1 pixel, but you can set any value from 0 to 30,000 in
either or both values. The value is stored as if it were an addressed
point (x,y coordinate), but it is not used that way. That is just a
convenient data structure for the program to use.

A graphics pen can draw using any defined pattern. It need not be
a “black ink” line. The pnPat field contains a value that translates
into a display pattern. When a pen using any pattern is used to
draw over existing representations of bit image data, how it affects
those underlying images is determined by the setting of pnMode.
One of eight “transfer modes” can be specified by the contents of
this field. Depending on this setting, a pixel under a pixel in the
new pattern may be left alone, forced to black, forced to white, or
inverted from whatever it is at the time. Figure 5-6 depicts how
these modes work in combination with underlying objects.

Chapter 5: Display and Graphics Routines

= -

Pattern Destination
or source
Paint Overlay Invert Erase
patCopy patOr patXor patBic
srcCopy srcOr srcXor srcBic
H ﬁ :H I
I
notPatCopy notPatOr notPatXor notPatBic
notSrcCopy notSrcOr notSrcXor notSrcBic
Figure 5-6

Pen transfer modes

The last pen information field, pnVis, determines whether the
pen’s actions are visible. If this field contains a negative value,
pen actions do not produce visible results.

Text description
The next five fields describe the text associated with the port.

The font is described as a number in the txFont field. Each font in
the Macintosh has a number associated with it. Conflicts between
font number should not arise, though they are not automatically
prevented by anything in the Macintosh. If two or more fonts
have the same font number, only the first one found in the fonts
loaded into memory will be accessible. If the txFont field contains
a 0, the system font will be used.

Graphics ports 71

72

Within each font, type may have various sizes and styles. Sizes are
expressed in points and are stored as an integer in the txSize field.
(A point is approximately 1/72 inch.) If the specified font does
not have available a font of the size stored in the txSize field, the
Font Manager uses scaling algorithms to create one.

Type styles include bold, italic, underlined, outline, shadowed,
condensed, extended, and combinations of these (see Figure 5-7).
The txStyle field can contain a set of one or more key words that
describe these combinations of text styles.

Plain characters

Bold characters

Italic characters
Underlined characters
Outlined characters
Shadowed characters
Condensed characters
Extended characters
Bold Italic characters
Bold Cutlined characters

Figure 5-7
Type styles

Like the pnMode field discussed earlier, the txMode field
determines how text that appears over other items on the display
will appear. Of the eight types of modes available (see Figure 5-6),
only srcOr, srcXor, and srcBic should be used for text. Others
create unreadable and unpredictable results. (In fact, if you want
your programs to be able to display color text clearly and with
predictable results, you should only use srcOr as txMode.)

The spExtra field is only used in producing fully justified text. It is
beyond the scope of what you need to worry about at this point.

Chapter 5: Display and Graphics Routines

Color description

The next three fields deal with color. Do not confuse these fields
with the far more powerful color capabilities included in color
graphics ports, which are discussed later in “Color QuickDraw
Graphics Ports.” These fields are used to permit the classic
Macintosh application to produce images in color on output
devices that support color, including the ImageWriter® II printer.

The first two of these fields, fgColor and bkColor, define the
foreground and background colors to be used in printing. A
selection from eight colors is available for each of the two types
of color placement (see Table 5-1). The third field, ColrBit, helps
the graphics port figure-out which layer, or plane, of a graphic
image should be printed in the particular color combination.

% Note: Because colors can be combined to make new colors,
they are layered onto the screen, but in a two-dimensional
display this is difficult to show. The data structure, however,
represents the layers so that a color printing device can
produce the best possible output.

Table 5-1

Color selections in monochrome graphics ports
Color Constant
Black 33
White 30

Red 205
Green 341
Blue 409
Cyan 273
Magenta 137
Yellow 69

Interestingly, if your program uses color printing fields in the
graphics port record and then the user prints to an output device
that does not handle color, nothing damaging happens. The
output is produced correctly.

Graphics ports 73

device

portPix

portVersion

grafVars

chExtra

phlLocHFrac

portRect

VisRgn

clipRgn

bkPixPat

rgbFgColor

rgbBkColor

pnLoc

pnSize

pnMode

pnPixPat

pnFillPat

pnVis

txFont

txFace

xMode

txSize

SpExtra

fgColor

bkColor

colrBit

patStretch

picSave

rgnSave

polySave

grafProcs

Figure 5-8
The structure of a color
graphics port record

Pattern-printing control

The next field, patStretch, is of no particular interest to your pro-
gram. It controls the way a pattern is altered when it is printed on a
hard-copy device rather than displayed on the Macintosh screen.

Status monitoring

The next three fields contain handles to information about
pictures (picSave), regions (rgnSave), and polygons (polySave).
Your program should not concern itself with these fields except in
rare circumstances beyond the scope of this discussion.

Color QuickDraw graphics ports

If you want your program to be able to take advantage of the more
powerful color facilities on the Macintosh SE and Macintosh II,
you use routines that create color graphics ports, also known as
CGrafPort data structures. These structures are the same size as the
traditional monochrome graphics port records and have many
fields in common with those structures. There are, however, ten
new fields with which your program will have to deal.

The structure of a color graphics port is shown in Figure 5-8. New
fields discussed below are highlighted in the illustration.

The portPix field is a handle that points to the port’s pixel map
(see “Pixel Maps” earlier in this chapter). The two high-order bits
of portVersion are always set to signal a Color QuickDraw port.
The rest of the value contains the version number of the Color
QuickDraw routines that are in use.

By means of the grafVars field, the color graphics port's data
structure was kept the same size. This field contains a handle to
the location in memory of some new fields used for new drawing
modes implemented in the Macintosh IL

The chExtra field determines the number of pixels by which any
character is widened on a line of text to achieve proportional-
spaced display and printing. The pnLocHFrac field holds a value
that represents the fractional precision of the pen position used
when drawing text.

On the newer Macintosh systems, it is possible for the background
to contain not only a color but a pattern as well. The background
pattern to be used is identified in the bkPixPat field. Similarly, the
patterns to be used for the pen is held in pnPixPat and the fill
pattern in fillPixPat. ‘

The remaining four new fields determine the background and
foreground colors used in displaying and printing information.
rgbFgColor and rgbBkColor describe the foreground and
background colors, respectively, that have been requested by the
program or the user. fgColor and bkColor contain the foreground
and background colors actually supplied to the program by the
Color Manager. Depending on user requests and the capabilities
of the display hardware, these fields can differ from the contents
of rgbFgColor and rgbBkColor.

Graphics ports and coordinate systems

Coordinate addresses point to the intersection of mythical grid
lines in the coordinate plane, not to an individual bit or pixel.
Another way of saying this is that the lines are infinitely thin. They
define the outer boundaries within which all the bits or pixels that
define a particular shape lie. As a consequence, all elements
represented on the coordinate plane are “mathematically pure”
and will produce intuitively correct results using integer
mathematics.

All information about location or movement is given to
QuickDraw in terms of coordinates on a plane. The coordinate
system is a two-dimensional grid, as illustrated in Figure 5-9. The
origin of this grid, position (0,0), is located at its center, with
numbers becoming negative as they move up and left, and
positive as they move down and right.

Graphics ports 75

N O N LS O Y O
N N O O
N O O
N O O O
_32767% : : :OOI Il ‘=32767
_i_iziiz
111 Screen —»
N area
CITiTiTiC l
CiCiTiTiC
CiDiCiTiC
ZiTiTiTC
S T M SO~ Point
R DA
32767 \\ A
\ —+—— Pixel
\
Figure 5-9

QuickDraw'’s coordinate plane

Local coordinates

Each graphics port has its own local coordinate system. Within
the port, all fields are expressed in terms of this system and all
calculations and actions use it. ‘

When a new graphics port is created, its bit map is set to
encompass the entire screen. The upper left corner of the port is
set as its origin with coordinates (0,0). Your program may,
however, alter the coordinates of this corner of the port with the
SetOrigin procedure. The corner remains anchored at all
times as the reference point for all other coordinate system calls.

76 Chapter 5: Display and Graphics Routines

If your program must compare or perform calculations on two or
more graphics ports, it cannot do so using each port’s individual
local coordinate system. QuickDraw furnishes routines to convert
local coordinates into the global coordinate system in which the
upper left corner of the port’s bit image is set logically to (0,0).
Moving between global and local coordinate systems is
straightforward. Two procedures are available. The
LocalToGlobal procedure converts a port from the local
coordinate system to the global system. The other procedure,
GlobalToLocal, reverses the process.

The concepts involved in these coordinate systems and their
relationships to each other are important to a thorough under-
standing of QuickDraw. You should read the QuickDraw chapter in
Volume I of Inside Macintosh to gain a deeper appreciation for
these tools. It is not necessary that you have a thorough under-
standing of them to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>