
GARY LITTLE
TIM SWIHART

Programming for System 7

Programming for System 7

Gary Little
Tim Swihart

£.
TT
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital
letters or all capital letters.

The authors and publishers have taken care in preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of
the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Little, Gary B., 1954-
Programming for System 7 I Gary Little, Tim Swihart.

p. cm. -- (Macintosh inside out)
Includes bibliographical references and index.
ISBN 0-201-56770-9
1. Macintosh (Computer)--Programming. 2. Operating systems

(Computers) 3. System 7. I. Swihart, Tim. II. Title.
III. Series.
QA76.8.M3L5831991
005.265--dc20 91-18050

CIP

Copyright © 1991 by Gary Little

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

Cover design by Ronn Campisi
Set in 10-pt Palatino by Scot Graphics
Sponsoring Editor: Carole McClendon
Project Editors: Debbie McKenna and Joanne Clapp Fullagar
Technical Reviewer: Jim Luther

1 2 3 4 5 6 7 8 9-MW-9594939291
First printing, September 1991

For my two favorite Little people: my wife Pamela, and daughter Adrienne (GL)

To my wife Avery, for putting up with my very late nights and preoccupation
with System 7 while I worked on this book (TS)

_.. Contents

Foreword by Scott Knaster xiii
Preface xv

1. Preparing for System 7 1
System 7 or Bust! 5
Hello! Hello! System 7, Are You There? 6
A Skeleton in the Closet 10
Summary 41

2. Dealing with Files 43
Identifying Files 44
File 1/0 Operations 44
Searching Volumes 51
Special Folders 57
Alias Records and Alias Files 60

Preserving Aliases for Updated Files 62
Alias Files 62

The Standard File Package
Customized Open File and Save File Dialog Boxes 70
Writing Dialog-Hook Procedures 75
An Example of Using CustomGetFile 78
An Example of Using CustomPutFile 83

Summary 86

vii

viii ..,. Contents

3. Cooperative Multitasking 87
Running Multiple Applications 88
Switching Between Applications 90
Operating in the Background 92

WaitNextEvent 93
Notification Manager 98

Launching an Application 103
Temporary Memory 106
Process Information 108
Summary 113

4. Apple Events 115
Preparing for High-Level Events 116
The High-Level Event Mechanism 119

Addressing a High-Level Event 120
Receiving a High-Level Event 126

Apple Event Interprocess Messaging Protocol 127
Apple Event Data Structures 128

Receiving Apple Events 131
Writing an Apple Event Handler 132
Extracting Parameters from an AppleEvent Record 133
Handling Lists of Descriptor Records 136
Determining the Size of Parameters and Attributes 137
Checking for Completeness 138
User Interaction Decisions 139
Writing an Idle Procedure 141
Error Handling 142
Handling Required Apple Events 143

Sending Apple Events 145
Adding Parameters to an AppleEvent Record 147
Descriptor Lists 148
Sending the Apple Event 149
Checking for Errors 152
Example: Sending an Apple Event to ToolServer 153

Summary 159

5. Edition Manager 161
Edition Manager Overview 162
Edition Manager Menu Items 163

Drawing Borders 166

Sections 167
Creating New Sections 169
Section Management 170
Loading and Saving Sections 171
Registering and Unregistering Sections 176
Associating Sections 177

Publishing 178
Publisher Previews 181
Creating Editions 181
Opening Editions 182
Publishing Sections 183
Closing Editions 184

Subscribing 189
Publisher and Subscriber Options 193

Publisher Options 193
Subscriber Options 196

Apple Events Used by the Edition Manager 199
Cancel Section 201
Read Section 201
Scroll Section 203
Write Section 203

Summary 210

6. Communications Toolbox 211
Communications Toolbox Managers 212
Connection Tools 214

The ConnRecord Structure 214
Determining a Connection Tool's Name 217
Creating a ConnRecord 218
Opening a Connection 219
Writing to the Connection 220
Reading from the Connection 223
Closing and Disposing of the Connection 224

Terminal Emulation Tools 225
The TermRecord Structure 225
The TermDataBlock Structure 230
Determining a Terminal Emulation Tool's Name 230
Caring for the Environment 231
Required Procedures for Terminal Emulation Tools 232

IJll- Contents ix

x ._ Contents

Optional Procedures for Terminal Emulation Tools 236
Creating a TermRecord 237
Writing Data to the Terminal 239
Reading Data from the Terminal 240
Disposing of the Terminal Emulation 241

Event Handling 242
Activate Events 243
Update Events 244
Keyboard Events 244
Mouse-Down Events 244
Suspend/Resume Events 245

Configuring the Communications Toolbox Tools 245
Configuring Terminal Emulation Tools 246
Configuring Connection Tools 250

Putting the Pieces Together 254
Summary 257

7. Font Manager 259
TrueType Scaling 259
Living with Bit-Mapped and TrueType Fonts 260
TrueType's Impact on Applications 261

Incremental Font Size Adjustments 264
Custom Font Size Selection 266

Implementing Custom Size Control 268
User Interface Tip 273

Special Characters 275
Summary 276

8. Balloon Help 277
What Help Balloons Look Like 278
Balloon Help Resources 280
Balloon Help for Menus and Menu Items 282
Dynamic Menu Items 285
Adding Items to the Help Menu 287
Balloon Help for Dialogs and Alerts 290

Using 'hdlg' Resources 291
Using 'hrct' Resources 295
Testing Help Balloons 296

Balloon Help for Standard Windows 297
Using 'hwin' Resources with Dialogs and Alerts 299
Windows with Dynamic Objects 300
Summary 305

9. Fit and Finish 307
Icons, Signatures, and Bundles 308

Icon Families 308
Signature Resources 313
'BNDL' Resources 314

Version Information 316
Finder Help Balloons for Applications 318
Leaving a Calling Card with Documents 320
File Comments 323

Reading Comments 324
Saving Comments 326

Summary 328

Appendix A A Rez Primer 329

Appendix B The 'SIZE' Resource 335

~ Contents xi

Appendix C Support for Macintosh Programmers 341

Appendix D Bibliography for Macintosh Programmers 345

Index 349

Foreword by Scott Knaster

On May 13, 1991, Apple introduced Macintosh System 7, the culmination
of the greatest software effort in Apple's history. There was so much stuff
in System 7 that it took Apple three Worldwide Developers' Conferences
to get it out the door. So far, it looks like all the hard work was worth it
(this is especially easy for me to say, since I didn't have to do any of the
work).

I'm running System 7, and you probably are, too. In fact, I started
running a pre-release version of System 7 several months before it shipped,
and I was the proverbial first one on my block to have it. Although I had
to be very considerate of my System 6 neighbors when I printed (there
was no way to avoid laser printer wars at that time, so every time I
printed, the next unlucky System 6 user had to reset the printer), I really
didn't want to think about going back to System 6.

System 7 provided Apple with a chance to give its users a bunch of
great new stuff, and there's something in there for everyone. I love the
way I'm in control of the Apple menu, and I can now really file things the
way I want to, thanks to aliases. File Sharing is wonderful, especially at
home, where I share a LocalTalk network with my wife (no more eye
injuries from misplaced floppies tossed my way). There are a bunch of
neat new things in the Finder, including a real live Find command!

I know that there have been third-party utilities available for years that
do many of these things. I've used some of them, and I've even known
some of the fine programmers who created them. When Apple builds
these features into the official System and Finder, though, it's good for

xiii

xiv .-. Foreword

everyone, because all users get better goodies, while the hip developers
can dream up even better new treasures.

I also know that Apple has published 70 or 80 or 1600 pages of programmer
documentation on System 7, the well-known Inside Macintosh, Volume 6.
This book is not that book. While Volume 6 is absolutely indispensible for
doing real Macintosh programming, this book provides a friendly, spirited
guide through many of the new features in System 7. From their
well-placed cubicles hard by the mean streets of Cupertino, Gary and Tim
give you incredibly valuable information, such as telling you fun new
stuff about files, showing how to take advantage of balloon help, and
pointing out why Apple events will change your life.

I hope you enjoy this guide to the secrets of System 7, and that your
aliases always remain unbroken.

Scott I<naster
Macintosh Inside Out Series Editor

Preface

System 7 adds many new features to Macintosh system software, thereby
justifying Apple's internal code name for the project-Big Bang. Many of
these new features appear as improvements to the Finder that make it
much easier for users to handle files, folders, and volumes. Digging into
the underlying system, however, you will find several new software
managers and many improvements to older managers; programmers can
exploit these new managers to create more interesting and powerful
applications than were possible with earlier versions of system software.

This book presents many of the important new System 7 features.
Some of the more interesting topics we will cover are

• using Gestalt to check for system features
• using new routines in the File Manager
• using new routines in the Standard File Package
• cooperative multitasking and the Process Manager
• using Apple events to communicate between applications
•using the Communications Toolbox to quickly add advanced com

munications capabilities to your applications
• adding balloon help to your applications
• making applications and documents support new System Finder

features

xv

xvi Ill- Preface

The book explains why new toolbox routines are important, when
you're most likely to use them, and exactly how to call them. In many
cases, sample code shows how to use the routines in the context of a real
application.

Keep in mind, however, that this analysis is certainly not exhaustive
we do not cover every new toolbox routine and every new feature of
System 7. For that, refer to Apple's definitive reference, Inside Macintosh,
Volume VI. Instead, this book focuses on those routines you are apt to use
most often.

This book is not for novice programmers. We expect that you already
have some programming experience on the Macintosh and are reasonably
familiar with how to construct simple applications. We will extend your
core knowledge so that you become comfortable with implementing new
System 7 functionality. If you need to develop your basic Macintosh
programming skills, we recommend Macintosh C Programming Primer:
Volume I by Dave Mark and Cartwright Reed.

The sample code in this book is in the THINK C language. THINK C is
a very popular C development environment sold by Symantec Corpora
tion. It is a particularly powerful environment to use when you're experi
menting with new system features because it compiles and links very
quickly and has an integrated symbolic debugger. If you're using Apple's
MPW C, fear not-it should be easy to convert the THINK C code to the
MPW C dialect.

We hope that by the time you finish reading this book you'll have a
much better appreciation of System 7 and how to exploit it. You should
then be well prepared to dive into your next project and create an
application that captures the System 7 spirit.

In closing, we would both like to thank C.K. Haun and Jim Luther for
taking the time to review early drafts of this manuscript. We especially
appreciated C.K.'s insights into the operation of the Edition Manager.

Gary Little
Tim Swihart
August 1991

1 Preparing for System 7

System 7 introduces important new functionality to all members of the
Macintosh family of computers having at least 2 Mb of RAM. This extra
functionality results from the addition of new toolbox routines and man
agers, enhancements to existing toolbox routines, a powerful new Finder,
and changes in the way files are organized and managed. In this book
you will learn how to harness the power of System 7 to create applica
tions that are much more versatile than anything you could write under
System 6.x.

The System 7 advantage becomes obvious as soon as you boot up for
the first time and start discovering the new features of the Finder. The
presence of some of these features will influence the way you develop new
applications for the Macintosh. Here are some examples:

~ Balloon Help-You can turn on balloon help by selecting the Show
Balloons item in the Help menu on the right side of the menu bar. Once
on, small balloons-like the ones you see in comic books-appear when
you move the mouse over areas where menu names and items, window
parts, icons, and other interesting objects appear. These balloons contain
helpful information about the object below the mouse pointer. As you'll
see in Chapter 8, you can use the Balloon Manager to add help balloons to
objects unique to your own applications.

2 ~ Chapter 1 Preparing for System 7

fl,
Direcror<tlids Aliases-You can create an alias file by clicking on a file (or
folder) name, then selecting the Make Alias item in the File menu. The
Finder creates an alias file using the same name as the original file with
an 'alias' suffix, and the name is italicized. The alias file contains only the
information the system needs to locate the original file, not the contents
of the original file itself. When you open an alias file from the Finder, the
Finder resolves the alias by locating the original file (the system can do
this even if the file has been renamed, moved, or is located on a network
file server), then opens the original file instead. By using alias files, you
no longer have to remember the locations of your favorite documents or
applications-simply create alias files for them, then put the aliases in a
convenient location such as on the Finder desktop or in the Apple Menu
folder in the System folder (so that they will appear in the Apple menu).
Most applications you write won't have to resolve aliases because they
will use the Standard File routines for opening files, which automatically
resolve aliases. If your application does need to resolve an alias (perhaps
because it saved an alias record in the resource fork of a document), it
can do so using Alias Manager and File Manager routines that you will
learn about in Chapter 2.

\ Color Icons -The Finder displays standard black-and-white icons,
4-bit color icons, or 8-bit color icons-both regular size (32x32) and small
(16x16)-depending on the bit-depth of your video monitor. Like any
good application developer, you should design your suite of icons first
(with the ResEdit icon editor, for example) before writing a single line of
code! (In reality, the T-shirts usually come first.)

D Stationery Pads-If you click on the name of a document, then
choose the Get Info item from the File menu, a window appears containing
information about the document. In the lower right corner is a Stationery
Pad check box. If you check this box, the document becomes a stationery
pad and its icon changes to look like a pad of paper with a curled-up
corner. A stationery pad resembles a regular document file but, by con
vention, an untitled copy of the pad must be made when the file is
opened; that way, there is little danger of overwriting the pad or destroy
ing the blank template it contains when the document is saved back to
disk. If your application doesn't understand the concept of stationery
pads, the user will see annoying warning dialogs when trying to open

..,. Program Linking 3

stationery pads. If your application knows how to handle stationery pads
properly, its isStationeryAware flag in the 'SIZE' resource will be set
and the aforementioned dialogs won't appear. (See Appendix B for a
detailed description of the 'SIZE' resource of an application.)

~ Program Linking-If you click on the name of an application, then
select the Sharing ... item in the File menu, you will see a window with a
check box called Allow remote program linking. If your application does not
support high-level events, events that can be sent from program to program
locally or across a network, this box will be dimmed and will not toggle.
All System 7-compatible applications you write will be high-level event
aware, and you'll learn how to satisfy the requirements in Chapter 4
when you learn about Apple events. (An Apple event is a high-level
event that adheres to a well-defined data-exchange protocol.) If your
application does know how to handle high-level events, its
isHighLevelEventAware flag in the 'SIZE' resource will be set.

Of course, you can add to applications more System 7 features than the
Finder indicates. As usual, Inside Macintosh, Volume VI is the definitive
source for in-depth information on all System 7 topics.

Several other new system features of interest to programmers are the
following:

• Edition Manager-lets applications share data dynamically, based
on a publisher I subscriber data-sharing model. In brief, one applica
tion-the publisher (originator of data such as text or graphics)
can save information in an edition file. Another application-the
subscriber (recipient)-can copy the information from that file into
its own document. When the publisher changes the edition, the
changes are reflected in the subscriber's document, either automati
cally or upon request. This "live pasting" is invaluable in situations
where you want documents to reflect the current state of a standard
set of data maintained elsewhere, such as a corporate organizational
chart or a pie chart showing sales by region. The Edition Manager is
discussed in detail in Chapter 5.

• File Manager-supports a new data structure for uniquely identifying
files-FSSpec, the file system specification record. New routines are
available that use an FSSpec instead of a working directory reference
number or directory ID. One powerful new routine (PBCatSearch)

provides a searching function you can use to quickly scan a volume for
a particular file or for a group of files with specified characteristics.
The new File Manager routines are examined in Chapter 2.

4 ~ Chapter 1 Preparing for System 7

• Standard File Package-procedures in this package bring up stan
dard Open File and Save File dialog boxes. Four routines are now
available that work with the new FSSpec record. In addition, it is
now easier to create your own custom Open and Save dialog boxes,
as you will see in Chapter 2.

• Resource Manager-lets you open or create a file without having to
specify a full pathname or setting up a working directory, making it
the default directory, and providing a partial pathname. Instead,
you can specify the file using the new FSSpec record. New routines
for reading or writing a portion of a resource are particularly handy
for dealing with very large resources. You will become familiar with
some of the new Resource Manager routines in Chapter 2.

• Process Manager-is responsible for launching applications and
managing information about applications that are running. You will
use it if you want to launch another application directly from your
application or if you want to determine quickly if there's an active
application in memory to which you can send an Apple event. You
will see how to use the Process Manager in Chapter 3.

• Communications Toolbox-you can easily add standard communi
cations capabilities to your applications with the Communications
Toolbox. It provides a standard programming interface for terminal
emulation, connection, and file transfer tools you can acquire to use
with System 7. You will see how to use the Communications Toolbox
in Chapter 6.

• TrueType fonts-System 7 understands new types of fonts, TrueType
fonts, as well as the more familiar bit-mapped fonts. TrueType fonts
can be rendered very well at any arbitrary size because they are
defined by mathematical equations-thus, you don't see the jaggies
that appear when you try to scale bit-mapped fonts to unusual sizes.
In Chapter 7, you will learn about TrueType fonts and the minor
impact they have on application development.

• Color QuickDraw-is the color equivalent of the classic black-and
white QuickDraw imaging system. It supports multiple gray-scale
and color monitors, both indexed (where each pixel is associated
with an index into a color table) and direct (each pixel is associated
with an explicit color value). The System 7 version of Color
QuickDraw incorporates the 32-bit QuickDraw routines introduced
with System 6.0.5 and are described in Inside Macintosh, Volume VI.

• Data Access Manager-provides a group of routines that make it
possible to communicate effectively with remote (or local) databases
without understanding the intricacies of the query language the

~ System 7 or Bust! 5

database understands. This is made possible by using standard
query documents created by someone who is a database guru. The
Data Access Manager is not covered in this book-instead, refer to
Inside Macintosh, Volume VI.

• Virtual Memory-the ability of the Macintosh to operate as if it has
more RAM than it actually does. This illusion is carried out by a
relatively complex scheme involving the swapping of data between
real RAM and a special storage area on a hard disk. Most applica
tions you will write won't need to know if virtual memory is being
used. If you need to understand the intricacies of Virtual Memory,
refer to Inside Macintosh, Volume VI.

Virtual memory is only available on Macintoshes using a MC68030
microprocessor, or an MC68020 with an MC68851 PMMU.

IJll> System 7 or Busti
Although this book, of course, focuses on system software features unique
to System 7, it also covers recent enhancements to System 6.x that have
migrated to System 7. The sample code is designed to run under System
7. As a result, you will not see code cluttered with conditional statements
that would permit it to run without traumatic incident under earlier
versions of system software. (The only exception will be a one-time check
that System 7 is actually present.) Less powerful, but System 6.x- and
System 7-compatible, toolbox routines are not used where more appealing
System 7-specific routines are available for the same general operation.

By adopting a similar strategy, you will find that your code will be
much easier to develop, giving you more time to concentrate on adding
functionality made possible by the new features provided in System 7.
You will also avoid having to design an application that uses System 7-
specific features but which is still useful for System 6.x users.

Of course, you could avoid System 7 altogether and simply develop
System 6.x applications so you can maximize your potential customer
base. After all, the Macintosh Plus, and all models introduced after it, run
System 6.x right out of the box, but System 7 requires users with 1 Mb
systems to upgrade to at least 2 Mb of RAM. This is true, of course, but
many customers add more memory to their 1 Mb systems shortly after
purchase. Also keep in mind that the street price of memory has plum
meted below $50 per megabyte, so it's unlikely customers would snub
your software because it requires System 7.

6 ~ Chapter 1 Preparing for System 7

~ Hello! Hello! System 7, Are You There?
Since you'll be writing System 7-specific applications, you obviously need
some code to determine whether System 7 (or higher) is the active operat
ing system. This code will make it possible to exit gracefully from the
program if a user tries to launch it under an earlier system. Having a
bomb alert appear when you call a routine that's available only under
System 7 is not considered graceful!

For System 6.x applications, you would use either the SysEnvirons
routine or, for System 6.0.4 or higher, the Gestalt routine to determine
the version of system software. You have access to both these routines
under System 7, but Gestalt is more powerful and convenient, so it is
clearly the preferred routine for determining not only the system software
version number, but all sorts of other information about your software
and hardware operating environment. In fact, System 7-specific applica
tions should never have to use sysEnvirons or its predecessor, Environs.

Here's the function prototype for Gestalt:

pascal OSErr Gestalt(OSType selector, long *response);

To use Gestalt, pass it a selector that specifies the kind of informa
tion you want returned in the response variable. System 7 supports a
variety of selectors that are briefly summarized in Listing 1-1. Refer to
Inside Macintosh, Volume VI for a detailed description of the information
that each selector returns.

Listing 1-1. Selectors for Gestalt

/* environmental selectors: */

#define gestaltVersion 'vers' /* Gestalt version number */
#define gestaltAddressingModeAttr 'addr' /* Addressing mode attr */
#define gestaltAliasMgrAttr 'alis' /* Alias Manager attr */
#define gestaltAppleTalkVersion 'atlk' /* AppleTalk version number */
#define gestaltAUXVersion 'a/ux' I* A/UX version number */
#define gestaltConnMgrAttr 'conn' /* Connection Manager attr */
#define gestaltCRMAttr 'crm , /* Communications Rsrc Mgr attr */
#define gestaltCTBVersion 'ctbv' /* Communications Toolbox version */
#define gestaltDBAccessMgrAttr 'dbac• /* Data Access Manager attr */
#define gestaltDITLExtAttr 'ditl' /* Dialog Manager attr */
#define gestaltEasyAccessAttr 'easy' /* Easy Access attr */
#define gestaltEditionMgrAttr 'edtn' /* Edition Manager attr */
#define gestaltAppleEventsAttr 'evnt' /* Apple Events Manager attr */
#define gestaltFindFolderAttr 'fold' /* FindFolder attr */
#define gestaltFontMgrAttr 'font' /* Font Manager attr */
#define gestaltFPUType 'fpu , /* floating point unit type code */
#define gestaltFSAttr 'fs , /* File Manager attr */
#define gestaltFXfrMgrAttr 'fxfr' /* File Transfer Manager attr */

~ Hello! Hello! System 7, Are You There? 7

Listing 1-1. Selectors for Gestalt (continued)

lldef ine
lldef ine
lldef ine
lldef ine
#define
lldef ine
lldef ine
lldef ine
lldef ine
lldef ine
lldef ine
#define
lldef ine
lldef ine
lldef ine
idef ine
idef ine
idef ine
lldef ine
#define
idefine
lldef ine
idef ine
idef ine
idef ine
II define
lldef ine
lldef ine
idefine
#define
lldef ine
idef ine
idef ine

gestaltHardwareAttr
gestaltHelpMgrAttr
gestaltKeyboardType
gestaltLowMemorySize
gestaltLogicalRAMSize
gestaltMiscAttr
gestaltMMUType
gestaltStdNBPAttr
gestaltNotificationMgrAttr
gestaltOSAttr
gestaltOSTable
gestaltLogicalPageSize
gestaltPopupAttr
gestaltPowerMgrAttr
gestaltPPCToolboxAttr
gestaltProcessorType
gestaltParityAttr
gestaltQuickdrawversion
gestaltQuickdrawFeatures
gestaltPhysicalRAMSize
gestaltResourceMgrAttr
gestaltScriptCount
gestaltScriptMgrVersion
gestaltSerialAttr
gestaltNuBusconnectors
gestaltSoundAttr
gestaltStandardFileAttr
gestaltTextEditVersion
gestaltToolboxTable
gestaltTermMgrAttr
gestaltTimeMgrVersion
gestaltVMAttr
gestaltExtToolboxTable

/* Informational selectors: •/

#define gestaltMachineType
#define gestaltMachineicon
#define gestaltROMSize
#define gestaltROMVersion
#define gestaltSystemversion

'hdwr• /* System hardware attr */
'help' /* Help Manager attr */
'kbd • /* Keyboard type code /*
'lmem• /* Size of low-memory global area */
'lram• /* size of logical RAM space */
'misc• /* Miscellaneous system attr */
•mmu • /* Memory management unit type */
'nlup• /* Standard NBP attr */
•nmgr• /* Notification Manager attr */
•os • /* Operating system attr */
•ostt• /* Addr of os trap table */
•pgsz• /* Size of logical page *
'pop!' /* Popup menu attr */
•powr• /* Power Manager attr */
'ppc • /* PPC Toolbox attr */
•proc• /* Microprocessor type code */
•prty• /* Parity attr •/
'qd • /* QuickDraw version */
'qdrw' /* QuickDraw features •/
•ram ' /* Physical RAM size •/
•rsrc• /* Resource Manager attr •/
•scri' /* Number of scripts available */
•scri• /* Script Manager version */
'ser ' /* Serial attr */
'sltc• /* NuBus connector bitmap */
•snd • /* Sound Manager attr */
•stdf' /* Standard File attr */
•te • /* TextEdit version number */
'tbtt• /* Addr of toolbox trap table */
•term• /* Terminal Manager attr •/
•tmgr• /* Time Manager version */
•vm • /* Virtual Memory attr •/
•xttt• /* Addr of extended trap table */

•mach' /* Macintosh system type code */
'mien• /* ID of ICON/sicn for system •/
•rom • /* size of ROM */
•romv• /* ROM version */
•sysv• /* system software version */

The Gestalt.h interface file that comes with THINK C or MPW C
includes the definitions in Listing 1-1. It also includes symbolic constants
for the Gestalt responses to some of the selectors. Note that most of
these constants do not represent *response values; rather they refer to bit

8 ~ Chapter 1 Preparing for System 7

numbers in the long word that response points to. (The symbolic con
stants associated with all the selectors that have an Attr suffix are like this.)
To determine if the feature associated with the bit is available, check to
see whether the expression

(*response) & (l<<bitnumberconstant

is true.
For example, suppose you've called Gestalt with the

gestaltHardwareAttr selector to determine if the Macintosh has an
Apple Sound Chip installed. The sound chip is installed if the expression
(*response) & (l<<gestal tHasASC) is true. The constant
gestaltHasASC (from Gestalt.h) specifies the bit number for the attribute
in which you're interested.

The selector we need for determining the system software version
number is gestaltSystemversion. The version is returned in the low
order word of the response variable as four BCD digits with implicit
decimal points between the digits. The low-order word is Ox0700 for
System 7, for example. (Gestalt uses the same format for the version
word it returns in response to other selectors whose symbolic names have
a version suffix.) Here's how to make the call for the version number:

OSErr myError;
long sysVersion;
myError =Gestalt(gestaltSystemVersion, &sysVersion);

But you're a little bit ahead of yourself. Before you actually try to use
Gestalt in a program, you had better make sure the routine is available.
To do this, check to see if the toolbox trap for _GestaltDispatch is present.
The Apple-approved way for doing this is illustrated in Listing 1-2: By
calling the TrapAvailable function (which uses the GetTrapType function)
with the trap number you're seeking.

Listing 1-2. Source code for System? Available and related
functions

Boolean System7Available(void)
{

long sysversion;

if ITrapAvailable(_GestaltDispatch)) return(false);

if !Gestalt(gestaltSystemVersion, &sysVersion)) {

if (sysVersion >= Ox0700) return(true);

~ Hello! Hello! System 7, Are You There? 9

Listing 1-2. Source code for System7Available and related
functions (continued)

}

return(false);
}

Boolean TrapAvailable(short theTrap)
{

TrapType tType;

tType = GetTrapType(theTrap);

if (tType == ToolTrap) {

theTrap = (theTrap & Ox07FF);

if (theTrap >= NumToolboxTraps()) theTrap =_Unimplemented;
}

return (NGetTrapAddress(theTrap, tType) I=
NGetTrapAddress(_unimplemented, ToolTrap));

}

TrapType GetTrapType(short theTrap)
{

if ((theTrap & Ox0800) > 0) {

return (ToolTrap);

} else

return (OSTrap);
}

}

short NumToolboxTraps(void)
{

}

if (NGetTrapAddress(_InitGraf, ToolTrap) ==
NGetTrapAddress(OxAA6E, ToolTrap)) {

return (Ox0200);

} else

return (Ox0400);
}

1 O IJJJi> Chapter 1 Preparing for System 7

Note~

Listing 1-2 also includes the System7Available routine that you'll
call to check that System 7 is present. It returns a Boolean true if System 7
is present.

For now, it's safe to check simply for system software version 7.0 before
using the software features described in this book and Inside Macintosh, Vol
ume VI. System 7 always includes all these features. As Apple releases
versions of system software beyond 7.0, however, it will become more
difficult to remember the specific features introduced with each new release.
It's also conceivable that capability could be added without the system
software version changing. The best strategy, therefore, is to check for
specific features you need using the selectors in Listing 1-1 .

...,, A Skeleton in the Closet
When the Macintosh first appeared in 1984 it quickly gained a reputation as
being very difficult to program. And it really was-not only were few develop
ment tools available, but programmers also had to learn new programming
concepts such as event loops, resources, and the desktop interface.

Now several excellent development environments and tools are avail
able, notably Apple's Macintosh Programmer's Workshop (MPW) and
Symantec' s THINK environments for C and Pascal. But it's still hard to
grind out that first "Hello World!" application without a little help.

The THINK C source code in Listing 1-3 is for the Skeleton application,
an application you can use as the core of your own full-blown System 7
application. It implements many of the functions you would expect in
any application, including a menu bar with standard Apple, File, and
Edit menus, an event loop, and an event-handling mechanism. When you
select the New item from the File menu, Skeleton brings up an Untitled
window you can draw in using QuickDraw routines. Skeleton always
displays a Message window you can use to facilitate debugging using the
procedures described at the end of this section. Listings 1-4 and 1-5
contain source code for Skeleton resources (in Apple's Rez format) and
the header file, respectively.

Note~

~ A Skeleton in the Closet 11

Skeleton also provides a Special menu with a Test item that, when
selected, is handled by the oostuff procedure. You can easily experiment
with toolbox features by writing a complete DoStuff procedure,
recompiling, and choosing Test from the Special menu.

Since Skeleton will be using System 7-specific toolbox routines, it calls
the System7Available routine described in the previous section when it
first starts up. If you run Skeleton under an older version of system
software, you get a friendly stop dialog and the program quits.

Skeleton should look reasonably familiar to anyone who's ever written
a Macintosh application. Note the following features (or missing features)
made possible because the application is designed for System 7 and not
earlier versions:

• No explicit check exists for the presence of the Wai tNextEvent trap.
This trap is always available under System 7 and, in fact, you must
use it (instead of GetNextEvent) to allow other open applications to
run in the background. With some older system software releases,
waitNextEvent may be unavailable if MultiFinder is not active;
hence the need for a check if you're writing a pre-System 7 applica
tion that is to run under Finder. System 7's Finder is roughly
equivalent to MultiFinder in that it permits multiple applications to
cooperatively multitask. More on this in Chapter 3.

• DoEvent, the Skeleton routine that handles incoming events
returned by Wai tNextEvent, includes a check for high-level events
(kHighLevelEvent) and deals with them by calling
AEProcessAppleEvent. The Apple event handlers to which
AEProcessAppleEvent dispatches control are installed using
AEinstallEventBandler (see Skeleton's DoAEinstallation rou
tine). Handlers for the four required Apple events-open applica
tion, open document, print document, and quit-are included and
will be described in more detail in Chapter 4.

• A file whose stationery pad attribute bit is set is assigned to an
untitled window, per the guidelines for handling this new class of
file. Stationery files are examined in more detail in Chapter 2.

12 .,,_ Chapter 1 Preparing for System 7

• countAppPiles and GetAppPiles are not used to process the list of
files that the Finder passes to the application for opening or print
ing. In Chapter 4, you'll see that under System 7 the Finder passes
similar information using high-level Apple events, if the application
is high-level event aware (set the isHighLevelEventAware flag in the
application's 'SIZE' resource to indicate that it is). The code needed
to handle these events will be explained in that chapter.

• The window type (application or system) is not checked before
closing a window with CloseWindow or DisposeWindow. The only
windows an application running under System 7 knows about are
its own. System windows (used by desk accessories) do not appear
in the same plane as the active application, as they do in the pre
System 7 Finder, so you do not need to check for them and close
them with CloseDeskAcc.

• Two new Standard File package routines, StandardPutPile and
StandardGetPile, are used instead of SPPutPile and SPGetPile
to present standard Save File and Open File dialog boxes. As you
will see in Chapter 2, these routines are more convenient to use
because they work with the file system specification (FSSpec) records
introduced by the System 7 File Manager.

Skeleton also includes several useful routines that will assist you in
testing and debugging your applications:

void ShowError(Str255 errorMessage, long errorNumber);

This routine displays errorMessage (a Pascal string) and errorNumber
in the Message window.

void PrintOSType(OSType theType);

This routine converts theType to a text string and displays it in the Mes
sage window.

void PrintString(Str255 s);

This routine displays s (a Pascal string) in the Message window.

void PrintBex(long theNumber);

This routine converts theNumber to a string of hexadecimal digits and
displays the string in the Message window.

void CRLP(void);

This routine moves the active drawing position for the front window to
the left margin of the next line. The left margin is given by the LEFT_ MARGIN
constant.

"" A Skeleton In the Closet 13

void pStringCopy(Str255 srcString, Str255 destString);

This routine copies the srcstring Pascal string to the space reserved for
the destString Pascal string.

void ConcatString(Str255 sl, Str255 s2);

This routine concatenates two Pascal strings and assigns the result to the
s 1 string. The concatenation does not take place if the resultant string
would be greater than 255 characters long.

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application

/*
Skeleton.c

This is the skeleton of a 7.0-dependent application.
Written in THINK c.

Copyright © 1991 Gary Little
*/

#include "Skeleton.h"

/* Constants */

#define kDITop
#define kDILeft
#define LEFT_MARGIN

OxOOSO
Ox0070
10

/* Function prototypes: */

void main(void);
void Initialize(void);
void EventLoop(void);

/* top coord for disk init dialog */
/* left coord for disk init dialog */
/* left margin for window drawing */

void Doidle(EventRecord *event);
void DoEvent(EventRecord *event);
void DoMenuCommand(long menuResult);
void Cleanup(void);
void DoActivate(WindowPtr window, Boolean becomingActive);
Boolean DoCloseWindow(WindowPtr wp);
void DoUpdate(WindowPtr wp);
void AdjustMenus(void);

OSErr CreateUntitledWindow(void);
OSErr CreateFileWindow(FSSpecPtr opFSSpec, Boolean isStationery);
OSErr NewDocWindow(long winPrivateSize);

14 .,.. Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

void GetOpenName(StandardFileReply *toReply);
void GetsaveName(StandardFileReply *toReply, Str255 defaultName,

Boolean *isStationery);

Boolean System7Available(void);
Boolean TrapAvailable(short theTrap);
TrapType GetTrapType(short theTrap);
short NumToolboxTraps(void);

void ShowError(Str255 errorMessage, long errorNumber
void PrintHex(long theNumber) ;
void PrintString(Str255 s) ;
void PrintOSType(OS Type the Type) ;
void CRLF(void);
void pStringCopy(Str255 srcString, Str255 destString
void ConcatString(Str255 sl, Str255 s2) ;

void DoAEinstallation(void);

) ;

) ;

pascal OSErr HandleOAPP(AppleEvent *theAppleEvent, AppleEvent *reply,
long myRefCon) ;

pascal OSErr HandleODOC(AppleEvent *theAppleEvent, AppleEvent *reply,
long myRefCon) ;

pascal OSErr HandlePDOC(AppleEvent *theAppleEvent, AppleEvent *reply,
long myRefCon) ;

pascal OSErr HandleQUIT(AppleEvent *theAppleEvent, AppleEvent *reply,
long myRefCon) ;

OSErr RequiredCheck(AppleEvent *theAppleEvent);

/* You'll have to add code for these: */

void Drawwindowcontents(WindowPtr wp);
void DoContentClick(WindowPtr wp, Point where);
void DoTest(WindowPtr wp);

/* Special types */

/* The 'winPrivate' struct describes the data that is
attached to each document window via the window's refCon */

typedef struct {
short datal; /* etc. */
/* define other data elements here that you

want associated with a window */
} winPrivate, *winPrivatePtr, **winPrivateHndl;

/* Global variables: */

~ A Skeleton in the Closet 15

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

Boolean
Boolean
WindowPtr
RgnHandle

gQuitting;
ginBackground;
gMessageWindow;
gCursorRgn;

/* Procedures and functions: */

void main(void)
{

}

Initialize();

EventLoop();

ZeroScrap();
TEToScrap();

void Initialize(void)
{

short i;
Handle menuBar;

MaxApplZone();
for (i=l; i<=4; i++) MoreMasters();

FlushEvents (everyEvent, 0);

InitGraf(&thePort);
InitFonts();
InitWindows();
InitMenus();
TEinit();
InitDialogs(OL);
InitCursor();

ginBackground = false;
gQuitting = false;
gCursorRgn = NewRgn(); /* (forces cursor-move event right away) */

TEFromScrap();

menuBar = GetNewMBar(rMenuBar); /*Create the menu bar*/
if (menuBar) {

16 .,. Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

SetMenuBar(menuBar);
DisposHandle(menuBar);
AddResMenu(GetMHandle(mApple), 'DRVR'); /*add Apple Menu items*/
DrawMenuBar();

} else {

gQuitting true;
return;

if (!System7Available()) {

Alert(rNotSystem7, OL);
gQuitting = true;
return;

InitEdition Pack();
DoAEinstallation();

/* initialize Edition Manager */
/* install AppleEvent handlers */

/* this window is for debugging purposes only: */
gMessageWindow = GetNeWWindow(rDebugWindow, (Ptr)OL, (WindowPtr)-1);

void EventLoop()
{

Boolean
EventRecord
long

gotEvent;
event;

sleepTime;

while lgQuitting) {

sleepTime = GetDblTime(); /* if front window has TE record*/
/* if (ginBackground) sleepTime = -lL; */ /* set approp. bkgnd value */

gotEvent = WaitNextEvent(everyEvent, &event, sleepTime, gCursorRgn);

if (gotEvent) {

DoEvent(&event);

} else {

Doidle(&event);

IJJJi- A Skeleton in the Closet 17

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

} ;
}

}

void Doidle(EventRecord *event
{

/* do idle stuff */

void DoEvent(EventRecord *event)

{

short myError;
short windowPart;
WindowPtr window;
char key;
Point mountPoint;

switch event->what) {
case mouseDown:

windowPart = FindWindow(event->where, &window);
switch (windowPart) {

case inMenuBar:
AdjustMenus();
DoMenuCommand(
break;

case inContent:

/* prepare menu items first */
MenuSelect(event->where));

if (window I= FrontWindow()) {
Selectwindow(window);

} else {
DoContentClick(window, event->where);

}

break;
case inDrag:

DragWindow(window, event->where, &screenBits.bounds);
break;

case inGrow:
break;

case inGoAway:
if (TrackGoAway(window, event->where)) {

DoCloseWindow(window);
}

break;
case inZoomin:
case inzoomout:

if (TrackBox(window, event->where, windowPart)) {
SetPort(window);
EraseRect(&window->portRect);

18 ~ Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

ZoomWindow(window, windowPart, true);
InvalRect(&window->portRect);

}

break;
case keyDown:
case autoKey:

}

break;

key = event->message & charCodeMask;
if (event->modifiers & cmdKey) { /* is command key down? */

if (event->what == keyDown) {
AdjustMenus(); /*prepare menu items first*/
DoMenuCommand(MenuKey(key));

break;
}

case activateEvt:
DoActivate((WindowPtr) event->message,

(event->modifiers & activeFlag) != O);
break;

case updateEvt:
DoUpdate((WindowPtr) event->message);
break;

case diskEvt:
if ((event->message >> 16) I= noErr) {

mountPoint.h = kDILeft;
mountPoint.v = kDITop;
myError = DIBadMount(mountPoint, event->message);

}

break;
case osEvt:

switch ((event->message >> 24) & OxOff) {
case suspendResumeMessage:

if ((event->message & resumeFlag

ginBackground = true;
ZeroScrap();
TEToScrap();

0) { /* suspend */

DoActivate(FrontWindow(), false); /*deactivate*/

} else { /* resuming */

ginBackground = false;

if (event->message & convertClipboardFlag

.._ A Skeleton in the Closet 19

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

}

break;

TEFromScrap () ;

DoActivate(FrontWindow(), true); /*activate*/

case mouseMovedMessage:

}

break;

DisposeRgn(gcursorRgn); /*get rid of old region*/
gCursorRgn = NewRgn();
SetRectRgn(gCursorRgn, -32768, -32768, 32766, 32766);
break;

/* brand new for System 7.0: */
case kHighLevelEvent:

}

}

AEProcessAppleEvent(event);
break;

void DoMenuConunand(long menuResult
{

short
short
short
Str255
StandardFileReply
WindowPtr
Str255
Boolean

menuID;
menuitem;
itemHit;
daName;
reply;
wp;
defaultName;
isStationery;

menuID = menuResult >> 16;
menuitem = menuResult & OxOOOOffff;

switch (menuID) {
case mApple:

) {

/* ID of selected menu */
/* item number in selected menu */.

switch (menuitem
case iAbout:

itemHit
/* display the About box */

Alert(rAboutBox, OL);
break;

default: /* handle DA selection */

}

break;

Getitem(GetMHandle(mApple), menuitem, daName);
OpenDeskAcc(daName);
break;

20 "" Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

case mFile:
switch (menuitem) {

case iNew:

}

CreateUntitledWindow();
break;

case iOpen:
GetOpenName(&reply);

if (reply.sfGood) {

}

break;
case iClose:

isstationery = ((reply.sfFlags & Ox0800) != o);
CreateFileWindow((FSSpecPtr)&reply.sfFile,

isStationery) ;

DoCloseWindow(FrontWindow());
break;

case iSave:

/* save the file to disk with current name */

break;
case iSaveAs:

wp = FrontWindow() ;
GetWTitle(wp, defaultName)i

GetSaveName(&reply, defaultName, &isStationery);
if (reply.sfGood) {

}

break;
case iQuit:

/* save the file to disk with new name */

SetWTitle(wp, reply.sfFile.name);

Cleanup();
gQuitting true;
break;

break;
case mEdit:

break;
case mSpecial:

switeh (menuitem) {

IJlli> A Skeleton in the Closet 21

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

case iTest:

}

break;

DoTest(FrontWindow());
break;

}

HiliteMenu(O);
} /*DoMenuconunand*/

/* Close the specified window and dispose of
the private data handle in the refCon.
Returns true if the operation was not
cancelled.

*/
Boolean DoClosewindow(WindowPtr wp
{

winPrivateHndl myPrivate;

if (wp) {

setPort (wp) ;
myPrivate = (winPrivateHndl)GetWRefCon(wp);

/* put code here to ask user to verify the close if the window is "dirty" */ /* return(
false) if user cancels */

}

}

if (myPrivate) {

}

I* warning: dispose of any handles in the private data first! */
DisposHandle((Handle)myPrivate);

DisposeWindow(wp);

return(true);

void Cleanup(void)
{

WindowPtr
Boolean

wp;
closed;

closed = true;
do {

wp = FrontWindow();
if (wp)

22 ~ Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

closed= DoCloseWindow(wp);
} while (closed && wp);

if (closed)
gQuitting true; /* exit if no cancellation */

void DoActivate(WindowPtr wp, Boolean becomingActive)
{

if (becomingActive) {

/* do activation stuff */

} else {

/* do deactivation stuff */

void DoUpdate(WindowPtr wp

Setport(wp);
BeginUpdate(wp);
if (IEmptyRgn(wp->visRgn

DrawWindowContents(wp);
EndUpdate (wp) ;

void DrawWindowContents(WindowPtr wp)

/* insert your code here for redrawing window */

/* Enable and disable menu items
as required by the context.

*/
void AdjustMenus(void
{

WindowPtr
MenuHandle

wp;
fileMenu, editMenu, specialMenu;

wp = FrontWindow();

fileMenu GetMHandle(mFile);
editMenu GetMHandle(mEdit);

~ A Skeleton In the Closet 23

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

}

specialMenu = GetMHandle(mSpecial) ;

Disable Item(editMenu, iUndo) ;
Disable Item(editMenu, iCut) ;
Disableitem(editMenu, iCopy) ;
Disableitem(editMenu, iClear) ;
Disable Item(editMenu, iPaste) ;

Enable Item(fileMenu, iOpen) ;
Enable Item(fileMenu, iNew) ;

if

}

}

(twp) {

Disable Item(fileMenu, iClose) ;
Disableitem(fileMenu, is ave) ;
Disableitem(fileMenu, iSaveAs) ;
Disable Item(specialMenu, iTest) ;

else {

if (wp == qMessaqeWindow) {
Disableitem(fileMenu, iClose);
Disableitem(fileMenu, iSave);
Disableitem(fileMenu, iSaveAs);
Disableitem(specialMenu, iTest);

} else {

}

Enableitem(fileMenu, iClose);
Enableitem(fileMenu, iSave);
Enableitem(fileMenu, iSaveAs);
Enableitem(specialMenu, iTest);

void DoTest(WindowPtr wp
{

}

SetPort(wp);
EraseRect(&wp->portRect);
MoveTo(10, 20);
DrawStrinq((StrinqPtr)"\pinsert your test code here.");

/* Handle clicks inside a window */
void DoContentClick(WindowPtr wp, Point where)

24 ~ Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

{

/* insert your code here to handle clicks in a window */
}

I* Install AppleEvent handlers */
void DoAEinstallation(void)
{

AEinstallEventHandler(kCoreEventClass,
kAEOpenDocuments,
(EventHandlerProcPtr)HandleODOC,
o,
false);

AEinstallEventHandler(kCoreEventClass,
kAEQuitApplication,
(EventHandlerProcPtr)HandleQUIT,
o,
false);

AEinstallEventHandler(kCoreEventClass,
kAEPrintDocuments,
(EventHandlerProcPtr)HandlePDOC,
0,
false);

AEinstallEventHandler(kCoreEventClass,
kAEOpenApplication,
(EventHandlerProcPtr)HandleOAPP,
0,
false);

OSErr CreateUntitledWindow(void)
{

OSErr myErr;
WindowPtr wp;

myErr = NewDocWindow(sizeof(winPrivate));
if (myErr) return(myErr);

wp FrontWindow();
SetWTitle(wp, (StringPtr)"\pUntitled");
return(noErr) ;

.,. A Skeleton in the Closet 25

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

OSErr CreateFileWindow(FSSpecPtr opFSSpec, Boolean isstationery)
{

}

OS Err
WindowPtr

fileError;
wp;

/* Insert code here to open and read in file's data. */

fileError = NewDocWindow(sizeof(winPrivate);
if fileError) return(fileError);

wp FrontWindow();

/* Insert code here to attach data to window, perhaps
by storing a handle to it in the winPrivate structure. */

if (isStationery) { /* it's a stationery file */

SetWTitle(wp, (StringPtr)"\pUntitled");

} else { /* it's a regular file */

SetWTitle(wp, opFSSpec->name);
}

return(noErr);

/* Create the new window and attach (via the RefCon)
a handle to your private data for the window.

*/
OSErr NewDocWindow(long winPrivateSize
{

}

WindowPtr
Handle

wp;
myPrivate;

wp GetNewWindow(rMainWindow, (Ptr)OL, (WindowPtr)-1);
if (lwp) return (memFullErr);

SetPort(wp);

myPrivate = NewHandleClear(winPrivateSize);
if (!myPrivate) return (memFullErr);

SetWRefCon(wp, (long)myPrivate);

return(noErr);

26 llJJ. Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

void GetOpenName(StandardFileReply *toReply
{

StandardGetFile(OL, -1, OL, toReply);
}

void GetsaveName(StandardFileReply *toReply, Str255 defaultName, Boolean *isStationery)
{

*isstationery = false;
StandardPutFile((StringPtr)"\pSave file as:", defaultName, toReply);

}

/* A P P L E E V E N T B A N D L E R S

for required Apple events
*/
pascal OSErr BandleODOC(AppleEvent *theAppleEvent, AppleEvent *reply, long myRefCon)
{

OSErr
AEDescList
FSSpec
long
AEKeyword
DescType
Size
long
Bandle
Finf o
Boolean

myErr;
docList;
myFSS;
itemsinList;
theKeyword;
typeCode;
actualSize;
i;
winDataHndl;
theFinfo;
isStationery;

myErr = AEGetParamDesc(theAppleEvent, keyDirectObject, typeAEList,
&docList);

if (myErr) return(myErr);

myErr = RequiredCheck(theAppleEvent);
if (myErr) return(myErr);

myErr = AECountitems(&docList, &itemsinList);
if (myErr) return(myErr);

for (i = l; i <= itemsinList; i++) {

myErr = AEGetNthPtr(&docList, i, typeFSS, &theKeyword, &typeCode,
(Ptr)&myFSS, sizeof(FSSpec), &actualsize);

..,. A Skeleton in the Closet 27

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

}

}

if (myErr return(myErr);

FSpGetFinfo(&myFSS, &theFinfo); /*check for stationery*/
isStationery = ((theF~nfo.fdFlags & OxOBOO) I= O);
CreateFileWindow(&myFSS, isStationery);

return(noErr);

pascal OSErr HandleQUIT(AppleEvent *theAppleEvent, AppleEvent *reply,
long myRefCon

}

OSErr myErr;

myErr = RequiredCheck(theAppleEvent);
if (myErr) return(myErr);

gQuitting = true;
return(noErr);

pascal OSErr HandleOAPP(AppleEvent *theAppleEvent,
AppleEvent *reply, long myRefCon)

}

OS Err myErr;

myErr RequiredCheck(theAppleEvent);
if (myErr) return(myErr);

myErr = CreateUntitledWindow();
return(myErr);

pascal OSErr HandlePDOC(AppleEvent *theAppleEvent, AppleEvent *reply, long myRefCon)
{

return(errAEEventNotHandled);
}

OSErr RequiredCheck(AppleEvent *theAppleEvent)
{

OSErr myErr;
DescType typeCode;
Size actualSize;

myErr AEGetAttributePtr(theAppleEvent, keyMissedKeywordAttr,
typeWildCard, &typeCode, OL, O, &actualSize);

28 ~ Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

if (myErr errAEDescNotFound) return(noErr);
if (myErr noErr) return(errAEEventNotHandled);
return (myErr) ;

/* C H E C K I N G F 0 R 7 • 0

*/

Call System7Available to determine whether
the system software version is 7 or higher.

Boolean System7Available(void)
{

long sysVersion;

if ITrapAvailable(_GestaltDispatch)) return(false);

if !Gestalt(gestaltSystemVersion, &sysversion)) {

if (sysVersion >= Ox0700) return(true);

return(false);
}

Boolean TrapAvailable(short theTrap)

}

TrapType tType;

tType = GetTrapType(theTrap);

if (tType == ToolTrap) {

theTrap = (theTrap & Ox07FF);

if theTrap >= NumToolboxTraps()) theTrap =_Unimplemented;
}

return NGetTrapAddress(theTrap, tType) !=
NGetTrapAddress(_Unimplemented, ToolTrap));

TrapType GetTrapType(short theTrap)
{

if (theTrap & oxoeoo > 0) {

return (ToolTrap);

} else {

~ A Skeleton In the Closet 29

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

return (OSTrap);
}

}

short NumToolboxTraps(void)
{

}

/*

*/

if (NGetTrapAddress(_InitGraf, ToolTrap) ==
NGetTrapAddress(OxAA6E, ToolTrap)) {

}

return (Ox0200);

else {

return (Ox0400);

U T I L I T Y F U N C T I 0 N S

ShowError
PrintOSType
PrintString
PrintHex
CRLF
pStringCopy
ConcatString

/* ShowError: display error message and error number in Message window */
void ShowError(Str255 errorMessage, long errorNwnber)
{

WindowPtr
Str255

wp;
nwnberString;

NumToString(errorNumber, numberString);

GetPort (&wp) ;

SetPort(gMessageWindow);
EraseRect(&gMessageWindow->portRect);
MoveTo(10, 20);

Drawstring(errorMessage);
Drawstring(nwnberstring);

SetPort(wp);

30 ~ Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

}

/* PrintOSType: display an OSType string in the Message window */
void PrintOSType(OSType theType)
{

}

Str255 typeString;
WindowPtr wp;
short i;

typeString[O) = 4;

for (i = O; i <= 3 ; i++) {

}

typeString[4-i] = (char)(theType & OxOOOOOOFF);
theType = theType >> 8;

GetPort (&wp) ;

SetPort(gMessageWindow);
EraseRect(&gMessageWindow->portRect);
MoveTo(10, 20);

Drawstring(typeString);

SetPort(wp);

/* PrintString: display string in Message window */
void PrintString(Str255 s)
{

WindowPtr wp;

if (!s) return;

GetPort (&wp) ;

SetPort(gMessageWindow);
EraseRect(&gMessageWindow->portRect);
MoveTO(10, 20);

Drawstring(s);

SetPort(wp);

/* PrintHex: convert number to a hex string and display in Message window */
void PrintHex(long theNumber)

.,_ A Skeleton in the Closet 31

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

}

char theString[lO];
long digit;
short i;
WindowPtr wp;

GetPort (&wp) ;

SetPort(gMessageWindow);
EraseRect(&gMessageWindow->portRect);
MoveTo(10, 20);

theString[O] 9;
theString[l] '$';

for (i = O; i <= 7 i++) {

}

digit = theNumber & OxOOOOOOOF;
if (digit < 10) {

digit+= (long)('O');
else {
digit+= (long)('A' - 10);

theString[9-i] = (char)digit;
theNumber = theNumber >> 4;

Drawstring((StringPtr)theString);

SetPort(wp);

/* CRLF: advance drawing position in front window to left side of next line */
void CRLF(void)
{

}

Point currentPosition;
Fontinfo theFontinfo;
register short lineHeight;

GetPen(¤tPosition);

GetFontinfo(&theFontinfo);
lineHeight = theFontinfo.ascent + theFontinfo.descent + theFontinfo.leading;

MoveTo(LEFT_MARGIN, currentPosition.v + lineHeight);

/* pStringCopy: copy one Pascal string to another */

32 .,.. Chapter 1 Preparing for System 7

Listing 1-3. Skeleton.c. The THINK C source code for the Skeleton application
(continued)

void pStringCopy(Str255 srcString, Str255 destString)
{

register short index;

index= srcString[O) + 1;

while (index-) {

*destString++ = *srcString++;
}

}

/* ConcatString: concatenate two Pascal strings */
void ConcatString(Str255 sl, Str255 s2)
{

}

Byte indexl, index2;

if s2[0) == O) return;
if ((short)sl[O] + (short)s2[0) > 255) return;

for (indexl = sl[O]+l, index2 = 1; index2 <= s2[0]; indexl++, index2++) {

sl[indexl] = s2[index2];

sl[O] += s2[0];

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton

/*----------------------------------

Skeleton.r

Rez Source

Copyright © 1991 Gary Little
All rights reserved.

-----------------------------------*/
#define SystemsevenOrLater 1

#include "Types.r"

.,.. A Skeleton in the Closet 33

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton (continued)

#include usysTypes.r"

#include "Skeleton.h"

/* MBAR defines our menu bar */
resource 'MBAR' (rMenuBar, uMenu bar", preload) {

{ mApple, mFile, mEdit, mSpecial }
};

resource 'MENU' (mApple, "Apple menu", preload) {
mApple, textMenuProc,

};

Allltems & -Menuitem2,
enabled, apple,
{

}

"About u AppName u n -· ,
noicon, nokey, nomark, plain;

"-",
noicon, nokey, nomark, plain;

resource 'MENU' (mFile, "File menu", preload) {
mFile, textMenuProc,
Menuitemll,
enabled, "File",
{

1'New",
noicon, "N", nomark, plain;

"Open ... ",
noicon, "O", nomark, plain;

"-",
noicon, nokey, nomark, plain;

"Close",
noicon, "W", nomark, plain;

"Save",
noicon, "S", nomark, plain;

"Save As ... ",
noicon, nokey, nomark, plain;

u -",
noicon, nokey, nomark, plain;

"Page Setup_. " ,
noicon, nokey, nomark, plain;

"Print_. " ,
noicon, nokey, nomark, plain;

"-",
noicon, nokey, nomark, plain;

34 ~ Chapter 1 Preparing for System 7

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton (continued)

uQuit",
noicon, uQ", nomark, plain;

} ;

resource 'MENU' (mEdit, "Edit menu", preload) {
mEdit, textMenuProc,

} ;

Noitems,
enabled, "Edit",

{

"Undo",
noicon, uz", nomark, plain;

"-"I
noicon, nokey, nomark, plain;

"Cut",
noicon, "X", nomark, plain;

"Copy",
noicon, "C", nomark, plain;

"Paste",
noicon, "V", nomark, plain;

"Clear",
noicon, nokey, nomark, plain;

resource 'MENU' (mSpecial, "Special menu", preload) {
mSpecial, textMenuProc,

} ;

Noitems,
enabled, "Special",
{

"Test",
noicon, nokey, nomark, plain;

/* About box */
resource 'ALRT' (rAboutBox, uAbout box", purgeable) {

{O, 0, 120, 270},
rAboutBox,
silentStages,
alertPositionMainScreen

} ;

resource 'DITL' (rAboutBox, "About box items", purgeable) {

{88, 180, 108, 260},

..,. A Skeleton in the Closet 35

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton (continued)

};

Button {
enabled,
"OK"

} ;

{8, B, 24, 214},
StaticText {

disabled,
AppName u " AppVers

} ;

{32, 8, 48, 237},
StaticText {

disabled,
CopyrightNotice

} ;

/* "Wrong System" alert box */
resource 'ALRT' {rNotSystem7, "Not System 7", purgeable) {

{40, 20, 140, 260},
rNotSystem7,
beepStages,
noAutoCenter

};

resource 'DITL' (rNotSystem7, "Not System 7 items", purgeable) {
{

{70, 150, 90, 230},
Button {

enabled,
"OK"

};

{10, 55, 50, 230},
StaticText {

disabled,
AppName " runs under System 7.0 only."

} ;

{8, 8, 40, 40},
Icon {

disabled,
StopiconID

36 ~ Chapter 1 Preparing for System 7

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton (continued)

} ;

} ;

/* Main document window */
resource 'WIND' (rMainWindow, "Untitled", preload, purgeable) {

{O, 0, 230, 460},

};

zoomDocProc, visible, GoAway, OxO, "",
centerMainScreen

/* Debugging window */
resource 'WIND' (rDebugWindow, "Message window", preload, purgeable)
{

};

{400, 85, 430, 560},
noGrowDocProc, visible, noGoAway, OxO, "Message",
noAutoCenter

resource 'BNDL' (rBundle, "Finder bundle") {
ApplCreator,

} ;

rSignature,
{

'FREF',
{

},

0, rRefAPPL,
1, rRefTEXT,

'ICNi',
{

}

O, riconAPPL,
1, riconTEXT,

resource 'FREF' (rRefAPPL, "Application") {
'APPL', O,

};

resource 'FREF' (rRefTEXT, "TEXT Document") {
'TEXT', 1,

};

type ApplCreator as 'STR ';

~ A Skeleton in the Closet 37

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton (continued)

resource ApplCreator (rSignature, "Signature") {
AppName " " AppVers ", " CopyrightNotice

};

resource 'vers' (1, purgeable) {

Oxl,
OxOO,
final,
OxO,
verus,
AppVers,
AppVers ,, , " CopyrightNotice

};

resource 'vers' (2, purgeable) {

Oxl,
OxOO,
final,
OxO,
verUS,
AppVers,
AppName " " AppVers

} ;

resource 'ICN#' (riconAPPL, "Application") {

{

/* image */
$"0001 0000 0002 BOOO 0004 4000 OOOB A000"
$"0014 5000 002A ABOO 004B 2400 OOBA A200"
$"0105 4100 0202 BOBO 0401 0040 OB07 C020"
$"101B 3010 202E EBOB 40DB 3604 BOAE EA02"
$"40CB 2601 200F E002 1009 2004 OB09 200B"
$"0409 2010 0209 2020 0119 3B40 OOAl 04BO"
$"007F FDOO 0020 0200 0010 0400 OOOB OBOO"
$"0004 1000 0002 2000 0001 4000 0000 BOOO",
/* mask */
$"0001 0000 0003 BOOO 0007 cooo OOOF EOOO"
$"001F FOOO 003F FBOO 007F FCOO OOFF FEOO"
$"01FF FFOO 03FF FFBO 07FF FFCO OFFF FFEO"
$"1FFF FFFO 3FFF FFFB 7FFF FFFC FFFF FFFE"
$"7FFF FFFF 3FFF FFFE lFFF FFFC OFFF FFFB"
$"07FF FFFO 03FF FFEO OlFF FFCO OOFF FFBO"
$"007F FFOO 003F FEOO OOlF FCOO OOOF FBOO"
$"0007 FOOO 0003 EOOO 0001 cooo 0000 BOOO"

}

};

38 .,.. Chapter 1 Preparing for System 7

Listing 1-4. Skeleton.r. The Rez source code for the resources used
by Skeleton (continued)

resource ' ICN# ' (riconTEXT, "TEXT Document")
{

/* image */
$"0000 0000 0000 0000 OFFF FFOO 0800
$"0803 8140 0804 4120 080A AlFO 0808
$"080A AOlO 0805 4010 0802 8010 0801
$"0807 COlO 0818 3010 082E E810 ·0000
$"08AE EAlO 00c0 2610 0.80F EOlO 0809
$"0809 2010 0809 2010 0809 2010 0819
$"0821 0410 083F FClO 0800 0010 0800
$"0FFF FFFO 0000 0000 0000 0000 0000
/* mask */
$"0000 0000 0000 0000 OFFF FFOO OFFF
$"0FFF FFCO OFFF FFEO OFFF FFFO OFFF
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF
$"0FFF FFFO OFFF FFFO OFFF FFFO OFFF
$"0FFF FFFO 0000 0000 0000 0000 0000

} ;

/* See Appendix B for a complete description
of all the items in the 'SIZE' resource

*/

{

0180"
2010"
0010"
3610"
2010"
3810"
0010"
0000",

FF80"
FFFO"
FFFO"
FFFO"
FFFO"
FFFO"
FFFO"
0000"

resource 'SIZE' (-1, "Application attributes")
reserved,

} ;

acceptSuspendResumeEvents,
reserved,
canBackground,
doesActivateOnFGSwitch,

backgroundAndForeground,
dontGetFrontClicks,
acceptAppDiedEvents,
is32BitCompatible,
isHighLevelEventAware,
localAndRemoteHLEvents,
isStationeryAware,
useTextEditServices,
reserved,
reserved,
reserved,
kPrefSize * 1024,
kMinSize * 1024

IJJi. A Skeleton In the Closet 39

Listing 1-5. Skeleton.h. The interface file used by Skeleton.c

/*---
' I
I

i

Skeleton. h - Rez and c Include Source

Copyright © 1991 Gary Little
All rights reserved.

---*/
#define AppName "Skeleton"
idef ine AppVers "1.0"
#define CopyrightNotice 11© 1991 Gary Little"
#define ApplCreator 'SKel' /* Application signature */

/* Resource IDs: */

#define StopiconID 0 /* Stop sign icon */

#define rBundle 128 /* Application bundle *I
#define rSignature 0 /* Signature resource */
idef ine rRefAPPL 128 /* APPL file reference */
#define rRef TEXT 129 /* TEXT file reference */
#define rRefsEXT 130 /* sEXT file reference */
#define riconAPPL 128 /* Application ICN# */
#define riconTEXT 129 /* Document ICNi */
#define riconsEXT 130 I* Stationery ICN# */

#define rAboutBox 128 /* About box */
idef ine rNotSystem7 129 /* Alert box */

#define rMainWindow 128 /* main application window */
#define rDebugWindow 129 /* Message window (for debugging) */

idef ine rHelpString 128 /* Finder help string */

/* Menu and Menu Item IDs: */
I* (Note: we use Menu resource IDs that are the same as Menu IDs) */

#define rMenuBar 128 /* application's menu bar */

#define mApple 128 /* Apple menu */
#define iAbout 1

#define mFile 129 /* File menu */
#define iNew 1
#define iOpen 2
#define iClose 4

40 • Chapter 1 Preparing for System 7

Listing 1-5. Skeleton.h. The interface file used by Skeleton.c
(continued)

II define iSave
lldef ine iSaveAs
#define iQuit

#define mEdit
#define iUndo
#define iCut
#define iCopy
#define iPaste
#define iClear

lldef ine mSpecial
lldef ine iTest

/* Miscellaneous:

#define kMinSize
#define kPref Size

*/

5
6
11

130 /* Edit menu */
1
3
4
5
6

131 /* Special menu */
1

23 /* minimum partition size (in K) */
35 /* preferred partition size (in K) */

/* Use these to set the enable/disable flags of a menu: */

idef ine Allitems Oblllllllllllllllllllllllllllllll /* 31 flags */
#define Noitems ObOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
#define Menuiteml ObOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOl
#define Menuitem2 ObOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlO
#define Menuitem3 ObOOOOOOOOOOOOOOOOOOOOOOOOOOOOlOO
#define Menuitem4 ObOOOOOOOOOOOOOOOOOOOOOOOOOOOlOOO
#define MenuitemS ObOOOOOOOOOOOOOOOOOOOOOOOOOOlOOOO
#define Menuitem6 ObOOOOOOOOOOOOOOOOOOOOOOOOOlOOOOO
#define Menuitem7 ObOOOOOOOOOOOOOOOOOOOOOOOOlOOOOOO
#define MenuitemB ObOOOOOOOOOOOOOOOOOOOOOOOlOOOOOOO
#define Menuitem9 ObOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOO
#define MenuitemlO ObOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOO
#define Menuitemll ObOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOO
#define Menuiteml2 ObOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO
#define Menuiteml3 ObOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOO
#define Menuiteml4 ObOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOO

lill" Summary 41

..,. Summary
In this chapter, we summarized the major new features of System 7 that
provide interesting new opportunities for application developers. We
also covered the Gestalt routine that applications should use to deter
mine which features are present in the system at runtime. Finally, we
presented the 7.0-specific Skeleton application, which you can use as the
foundation for your own applications.

In the next chapter we begin our detailed exploration of System 7 by
examining new features of the File Manager, Resource Manager, and the
Standard File Package. We also cover the new Alias Manager.

Dealing with Files

The File Manager in System 7 introduces many new features that make it
much more convenient to perform standard-and not so standard-file
I/0 operations. The File Manager also provides applications with easy
access to special folders the system maintains, including the Temporary
Folder and the Preferences Folder for storage of temporary work files and
configuration files.

The Resource Manager also offers new routines. For the first time, you can
open and create a resource fork without having to specify a full pathname or
to set up a working directory and specify a partial pathname.

The Alias Manager is a completely new System 7 manager that applications
can use to create and resolve alias records. An alias record is the electronic
fingerprint of a target file that may reside on a local hard disk, a removable
floppy disk, or an AppleShare volume. Identifying a file with an alias record
enables the system to find the file even if it has been moved or renamed.

Here are some of the interesting topics in this chapter:

• the file system specification record (FSSpec)

• high-level file 1/0 routines that use FSSpec records
• Resource Manager routines that use FSSpec records
• Standard File Package Save and Open routines that use FSSpec

records
• alias records for files and resolving alias records
• special folders on the boot volume

43

44 .._ Chapter 2 Dealing with Files

~ Identifying Files
System 7 introduces yet another data structure for identifying a particular file
on disk: the file system specification record (FSSpec). In case you've lost count, the
other techniques involve the use of drive numbers, volume reference numbers,
directory IDs, working directory reference numbers, full pathnames, partial
pathnames, and various combinations thereof. By the time you finish reading
this chapter, you will understand that using a file system specification record
is now the preferred technique, primarily because the FSSpec is more con
venient to deal with and is supported throughout the toolbox.

Here is the structure of an FSSpec record:

typedef struct FSSpec {
short vRefNum;
long parID;
unsigned char name[64];

} FSSpec, *FSSpecPtr, **FSSpecHandle;

As is apparent, an FSSpec is made up of three components: a volume
reference number (vRefNum) which identifies the disk volume, a directory ID
(parro) which identifies the parent folder, and the name of the file itself
(name[64]).

Later in this chapter you will see that the File Manager, Resource Manager,
and Standard File Package provide new FSSpec-aware routines that perform
most of the file-related operations you're likely to need. The only time you
might need to use another technique to specify a file is if you call the low-level
file 1/0 routines that use parameter blocks (described in Inside Macintosh,
Volume IV). Most of these routines, however, simply need the three compo
nents inside an FSSpec, so you can pass the components separately and you'll
be in fine shape.

~ File 1/0 Operations
A number of new File Manager and Resource Manager routines work with
FSSpec records instead of the file names and volume reference numbers that
the older high-level File Manager routines (described in Inside Macintosh,
Volume IV) use.

Here are descriptions of each of the new FSSpec-aware routines:

Note 11>

..,. File 1/0 Operations 45

FSpCatMove(FSSpecPtr source, FSSpecPtr dest);

This routine moves the file or folder given by source to the folder (on
the same volume) given by dest. The file or folder is also renamed if the
name field of the destination FSSpec is different than the name field of the
source FSSpec.

FSpCreate(FSSpecPtr spec, OSType creator, OSType fileType,
ScriptCode scriptTag);

This routine creates a file with the given spec and sets its creator and file
type to the specified values. The script Tag code tells the Finder which script
system to use when displaying the file name (the permitted values are
enumerated in the ScriptMgr.h header file). Pass the value returned by
StandardPutFile or customPutFile (both described at the end of this
chapter) in the sf Ser ipt field of the standardF ileReply record. If you aren't
using these Standard File Package routines to get a file name, pass the value
smSystemScript (the system script) instead.

FSpCreateResFile (FSSpecPtr spec, OSType creator, OSType fileType,
ScriptCode scriptTag);

This routine adds a resource fork to the file given by spec. If the file does not
already exist, one with the specified creator, fileType, and scriptTag is
created first.

FSpDelete(FSSpecPtr spec);

This routine deletes the file given by spec. Only unlocked files on unlocked
volumes may be deleted.

FSpDirCreate(FSSpecPtr spec, ScriptCode scriptTag,
long *createdDirID);

This routine creates the folder given by spec. The scriptTag code has the
same meaning as described above for FSpCreate. The directory ID of the cre
ated folder is returned in the createdDirID variable.

46 lllJJ- Chapter 2 Dealing with Files

FSpGetFinfo(FSSpecPtr spec, Finfo *fndrinfo);

This routine returns the Finder information (Finfo) record for the file given
by spec. See Listing 2-1 for a detailed description of the structure of this record.
This is the routine you will use, for example, to determine the file type and
creator of a file and to determine whether a document file is a stationery pad
or an alias.

Listing 2-1 . The structure of the Flnfo (Finder information) record

typedef struct {
OSType fdType;
OSType fdCreator;
short fdFlags;

I* file type */
/* creator type */
/* Finder flags */

Point fdLocation; /* location in folder */
short fdFldr; /* folder containing file */

} Finfo ;

This is the format of the fdFlags word:

Bit Number

isAlias (15)

isinvisible (14)

hasBundle (13)

nameLocked (12)

isStationery (11)

hascustomicon (10)

reserved (9)

hasBeeninited (8)

hasNoINITs (7)

isShared (6)

reserved (5)

Meaning

The file is an alias file.

The file is invisible. (Neither the Finder nor the
Standard File routine displays its name.)

The file has a ' BNDL ' resource tying icons to file
types. (See Chapter 9.)

The file cannot be renamed from the Finder. In
addition, you cannot change its icon by pasting
a new one into the file's Get Info window in the
Finder.

The file is a stationery pad.

The file has a custom icon family in its resource
fork. (See Chapter 9.)

Unused and reserved-set to 0.

The Finder has already processed the file's
'BNDL' information.

The file contains no ' INIT' resources.

The file may be used by more than one user at
once.

Unused and reserved-set to 0.

Bit Number

reserved (4)

color (1-3)

reserved (0)

IJi> File 1/0 Operations 47

Meaning

Unused and reserved-set to 0.

The label code for the file, as set by the items in
the Finder's Label menu.

Unused and reserved-set to 0.

FSpOpenDF(FSSpecPtr spec, char permission, short *refnum);

This routine opens the data fork of the file given by spec with the read/
write permission given by permission. (Read/write permission values are
enumerated in FileMgr.h.) The file reference number, needed by high-level
routines that act on open files, is returned in the refnum variable.

FSpOpenResFile(FSSpecPtr spec, char permission);

This routine opens the resource fork of the file given by spec with the read/
write permission given by permission. (Read/write permission values are
enumerated in FileMgr.h.) Once you've opened the resource fork in this way,
you may access individual resources with Resource Manager routines.

FSpOpenRF(FSSpecPtr spec, char permission, short *refnum);

This routine opens the resource fork of the file given by spec with the read/
write permission given by permission. (Read/write permission values are
enumerated in FileMgr.h.) The file reference number, needed by high-level
routinesthatactonopenfiles,isreturnedintherefnumvariable.Don'tusethis
routine to open a resource fork so that it can be accessed by Resource Manager
routines; for that, use FSpOpenResFile instead. FSpOpenRF is for the benefit of
utilities-such as file copiers-that need to access directly the data in the
resource fork.

FSpRename(FSSpecPtr spec, StringPtr newName);

This routine changes the name of the file given by spec. The new name is
given by the newName string.

FSpRstFLock(FSSpecPtr spec);

This routine unlocks the file given by spec. This makes it possible to delete
the file with the FSpDelete routine.

48 IJJJ> Chapter 2 Dealing with Files

FSpSetFinfo(FSSpecPtr spec, Finfo *fndrinfo);

This routine sets the Finder information (Finfo) record for the file given by
spec. See Listing 2-1 for a detailed description of the structure of this record.
The preferred technique for changing Finder information, such as the value of
the isStationery bit, is to use FSpGetFinfo to get the file's current Finfo
record, insert the new values for the attributes you want to change, then write
the same record back to disk with FSpSetFinfo.

FSpSetFLock(FSSpecPtr spec);

This routine locks the file given by spec. A locked file cannot be deleted with
the FSpDelete routine unless it is first unlocked with the FSpRstFLock
routine.

The high-level routines that accept file reference numbers have not changed,
and you will still use them to deal with open files. This group includes FSRead,
FSWri te, GetFPos, SetFPos, GetBOF, SetBOF, Allocate, and FSClose-all of
which are described in Inside Macintosh, Volume IV.

The openDoc routine in Listing 2-2 shows how to use the new File Manager
routines to open a file and load the contents ofits data fork into memory. Notice
that you use the new FSpOpenDF routine (instead of FSOpen) to open the file
with the read/write permission granted by the file's attributes (fsCurPerm).
Apart from that, OpenDoc is remarkably similar to what you'd write to open
files in a System 6.x application.

Listing 2-2. OpenDoc, a routine for opening a file and loading the
contents of its data fork into memory

/* Openooc loads the entire contents of the data fork of the
file specified by opFSSpec into memory. The handle to
the loaded data is returned at *toDataHndl.

*I
OSErr OpenDoc(FSSpecPtr opFSSpec, Handle *toDataHndl)
{

OSErr fileErrori
short fileRefi
long dataCounti
Handle fileDataH1

fileError = FSpOpenDF(opFSSpec, fsCurPerm, &fileRef)I
if (fileError) return(fileError)I

fileError = GetEOF(fileRef, &datacount)1
if (fileError) return(fileError)I

IJJJ> File 1/0 Operations 49

Listing 2-2. OpenDoc, a routine for opening a file and loading the
contents of its data fork into memory (continued)

}

fileDataH = NewHandle(dataCount);
if (lfileDataH) { FSClose(fileRef); return(memFullErr); }

HLock(fileDataH);
fileError = FSRead(fileRef, &dataCount, *fileDataH);
HUnlock(fileDataH);

/* We'll close now; in a real app, you would leave the file open
until you close its window (this prevents others from editing
a document on a network volume until you're through with it). */

FSClose(fileRef);
if (fileError) return(fileError);

*toDataHndl = fileDataH;
return(noErr);

The saveooc routine in Listing 2-3 is for saving a file to disk. The parameters
you pass to it indicate the name of the file (svFSSpec), a handle to the location
of the file's data (fileDataH), the file type and creator type (fileType and
creator), whether the file is to be saved as a stationery pad (isStationery),
and the script system identification number (scriptTag).

Listing 2-3. SaveDoc, a routine for saving a file to disk

/* SaveDoc saves the contents of the f ileDataH handle to the
file specified by svFSSpec. The file type and creator are
given by the fileType and creator parameters. If isStationery
is true, the document is saved as a stationery pad file.
scriptTag is the script system identification number.

*/
OSErr SaveDoc(FSSpecPtr svFSSpec, Handle fileDataH,

ResType fileType, ResType creator,
Boolean isStationery, ScriptCode scriptTag

{

OS Err
long
short
Finfo

fileError;
datacount;
fileRef;
theFinfo;

/* unlock and delete existing file: */

fileError = FSpRstFLock(svFSSpec);
if (!((fileError == fnfErr) I I (fileError

return(fileError);
noErr)))

50 ~ Chapter 2 Dealing with Files

Listing 2-3. SaveDoc, a routine for saving a file to disk (continued)

}

if (fileError == noErr) {

fileError = FSpDelete(svFSSpec);
if (fileError) return(fileError);

}

fileError = FSpCreate(svFSSpec, creator, fileType, scriptTag);
if fileError) return(fileError);

if isstationery) {

}

FSpGetFinfo(svFSSpec, &theFinfo);
theFinfo.fdFlags = theFinfo.fdFlags I Ox0800; /*set stationery bit*/
FSpSetFinfo(svFSSpec, &theFinfo);

fileError = FSpOpenDF(svFSSpec, fsCurPerm, &fileRef);
if (fileError) return(fileError);

dataCount = GetHandleSize(fileDataH);

HLock(fileDataH);
fileError = FSWrite(fileRef, &dataCount, *fileDataH);
HUnlock(fileDataH);

FSClose(fileRef);
if (fileError) return(fileError);

return(noErr);

SaveDoc illustrates the standard techniques to use when saving a file to
disk. The routine begins by deleting any file that may already exist with the
same name. It does this by first calling FSpRstFLock to unlock the file. If the file
already exists, FSpRstFLockreturns noErr and thefileis deleted withFSpDelete;
if the file doesn't exist, FSpRstFLock returns fnfErr (file not found) and no
deletion is necessary. saveDoc then calls FSpCreate to create the file.

Next, saveooc checks to see whether the file is to be saved as a stationery
pad. If it is, it sets the is Stationery bit in the file's Finder information record
(see Listing 2-1). To do this, saveDoc calls FSpGetFinfo for the current Finder
information, sets the isStationery bit of the fdFlags field, then writes the
Finder information back to disk with FSpSetFinfo.

Finally, Saveooc opens the newly created file with FSpOpenDF, writes the
data to disk with FSWrite, then closes the file with FSClose.

.,.. Searching Volumes 51

You can add these two routines to the Skeleton application to extend its
capabilities. First, place a call to OpenDoc at the beginning of the
CreateFileWindow function. Place calls to SaveDoc in the handlers for the
iSave and iSaveAs menu items (part of the DoMenuColllllland routine) .

..,. Searching Volumes
There is one completely new File Manager routine that you may find useful
from time to time-PBCatSearch. This rather powerful routine quickly scans
a volume for files that satisfy criteria that you specify. For example, with
PBCatSearch you could search a volume for all files that haven't been backed
up since November 30, 1986 (hopefully you don't have too many of these), all
files whose names begin with ''Test" (most programmers have lots of these),
or all files with a file type of 'APPL ' .

Here is the function prototype for PBCatSearch:

pascal OSErr PBCatSearch(CSParamPtr paramblock,
Boolean async) ;

Notice that PBCatSearch, as its PB prefix suggests, uses a parameter block
(of type CSParam) to accept data from and return data to your application. File
Manager routines like this are called low-level routines. As described in Inside
Macintosh, Volume IV, you can call such routines either asynchronously
(where the routine returns immediately, before the operation completes) or
synchronously (where the routine waits until the operation is complete before
returning a result). To make an asynchronous call, you must put the address
of a completion procedure in the iocompletion field of the parameter block
before calling the File Manager routine with the async parameter set to true.

Listing 2-4 shows the structure of the CSParam parameter block that
PBCatsearch uses. It also shows the structure of the CinfoPBRec to which the
ioSearchinfol and ioSearchinfo2 fields of CSParam point. Notice that
CinfoPBRec is a union record which contains either a Dirinfo record or a
HFileinfo record, depending on whether you're dealing with a folder or with
a regular file.

Listing 2-4. The CSParam and ClnfoPBRec structures used by
PBCatSearch

typedef struct {
struct QElem *qLink;
short qType;
short
Ptr
ProcPtr

ioTrap;
ioCmdAddr;
ioCompletion;

/* beginning of STANDARD_PBHEADER */
/* queue type */
/* routine trap */
/* routine address */
/* needed for async calls */

52 .,.. Chapter 2 Dealing with Files

Listing 2-4. The CSParam and ClnfoPBRec structures used by
PBCatSearch (continued)

OsErr ioResult; /* result code */
StringPtr ioNamePtr; /* pathname */
short ioVRefNum; /* end of STANDARD PBHEADER */
FSSpecPtr ioMatchPtr; /* pointer match list space */
long ioReqMatchCount;/* maximum match count*/
long ioActMatchCount;/.* actual match count*/
long ioSearchBits; /* enabling flags for search */
CinfoPBPtr ioSearchinfol; /* values and lower bounds */
CinfoPBPtr ioSearchinfo2; /* enabling flags and upper bounds */
long ioSearchTime; /*maximum search time (milliseconds)*/
CatPositionRec ioCatPosition; /* current catalog position */
Ptr ioOptBuffer; /* pointer to optional read buffer */
long ioOptBufSize; /* size of optional read buffer */

CSParam, *CSParamPtr;

typedef union
HFileinfo hFileinfo;
Dirinfo dirinfo;

CinfoPBRec, *CinfoPBPtr;

typedef struct {
STANDARD PBHEADER
short ioFRefNum;
SignedByte ioFVersNum;
SignedByte fillerl;
short ioFDirindex;
SignedByte ioFlAttrib;
SignedByte ioACUser;
Finfo ioFlFndrinfo;
long ioDirID;
short ioFlStBlk;
long ioFlLgLen;
long ioFlPyLen;
short ioFlRStBlk;
long ioFlRLgLen;
long ioFlRPyLen;
long ioFlCrDat;
long ioFlMdDat;
long ioFlBkDat;
FXInfo ioFlXFndrinfo;
long ioFlParID;
long ioFlClpSiz;

} HFileinfo;

typedef struct {
STANDARD PBHEADER

/* file attributes */

/* Finder information */

/* logical size of data fork */
/* physical size of data fork */

/* logical size of resource fork */
/* physical size of resource fork */
/* creation date of file */
/* modification date of file */
/* backup date of file */
/* extended Finder information */
/* parent directory ID for the file */

.,_ Searching Volumes 53

Listing 2-4. The CSParam and ClnfoPBRec structures used by
PBCatSearch (continued)

short
SignedByte
SignedByte
short
SignedByte
SignedByte
Dinfo
long
short
short
long
long
long
DXInf o
long

} Dirinfo;

ioFRefNwn;
ioFVersNum;
filler!;
ioFDirindex;
ioFlAttrib;
ioACUser;
ioDrUsrWds;
ioDrDirID;
ioDrNmFls;
filler3[9];
ioDrCrDat;
ioDrMdDat;
ioDrBkDat;
ioDrFndrinfo;
ioDrParID;

/* folder attributes */

/* Finder information */

/* number of files in folder */

/* creation date of folder */
/* modification date of folder */
/* backup date of folder */
/* extended Finder information */
/* parent directory ID for the folder */

Before calling PBCatsearch, you must fill in CSParam properly. Begin by
putting the reference number of the volume you want to search at ioVRefNwn
(this will be -1 for the boot volume, for example). Then store at ioMatchPtr a
pointer to the data space you've reserved for the array of FSSpec records that
PBCatsearch returns, and store the number of FSSpec records in the array at
ioReqMatchCount.

Next, tell PBCatSearch to start the search from the first file on the volume
by setting ioCatposi tion. initialize to zero. If you don't want to provide
PBCatSearch with an extra read buffer, also zero the ioOptBuffer and
ioOptBufSize fields; otherwise pass a pointer to the buffer and the size of the
buffer. (Using a read buffer will speed up file search operations.)

Next, store a timeout value, in milliseconds, in the ioSearchTime field. If
PBCatsearch doesn't find the requested number of files within this time
period, it stops searching and returns control to the application. The applica
tion can then check to see if the user wants to cancel the operation, and continue
the search, if appropriate, by calling PBCatSearch again. Breaking a complete
search into pieces like this is advisable when searching very large volumes
because the search will take a long time to complete.

The fields ioSearchinfol and ioSearchinfo2 together define the search
criteria. PBCatSearch examines the values in these two fields to determine
whether a particular file is a "hit" or a "miss." Here are the values you place
in thecinfoPBRec structures pointed to by ioSearchinfol and ioSearchinfo2:

54 ~ Chapter 2 Dealing with Files

Key Point~

Field *ioSearchln[ol value *ioSearchlnfo2 value

ioNamePtr filename must be zero

ioFlAttrib file attributes file attributes mask
(bit 0: file is locked)
(bit 4: file is a folder)

ioFlFndrinfo Finder information Finder information mask
ioFlLgLen smallest logical size (data) largest logical size (data)
ioFlPyLen smallest physical size (data) largest physical size (data)
ioFlRLgLen smallest logical size (rsrc) largest logical size (rsrc)
ioFlRPyLen smallest physical size (rsrc) largest physical size (rsrc)
ioFlCrDat earliest creation date latest creation date
ioFlMDat earliest modification date latest modification date
ioFlBakDat earliest backup date latest backup date
ioFlXFndrinfo extended Finder information extended Finder

information mask

For the ioFlAttrib, ioFlFndrinfo, and ioFlXFndrinfo fields, the corre
sponding field of *iosearchinfo2 holds masks that indicate which bits are
relevant to the search. For example, if you' re searching for files only, you clear
bit 4 of ioFlAttrib in *iosearchinfol ("no folder files") and then set bit 4 of
ioFlAttrib in *ioSearchinfo2 ("the file/folder bit is relevant").

If a particular field of *ioSearchinfol is not relevant to the search, don't
bother filling in a value. You specify a mask in the ioSearchBi ts field to in
dicate which of the *ioSearchinfol fields are relevant to the search. To de
termine the value to pass in ioSearchBits, sum the weights of the masks
(shown in Listing 2-5) for the fields relevant to the search operation. For
example, if you' re looking for an exact name match and the date of creation is
relevant, set ioSearchBi ts to fsSBFullName+fsSBFlCrDat. By including the
value of the fsSBNegate mask, you can tell PBCatSearch to invert the search
operation-in other words, to return files that do not satisfy the search criteria
rather than those that do.

.,. Searching Volumes 55

Listing 2-5. The values of the masks used with the ioSearchBits field
ofCSParam

enum {

/*

/*

} ;

fsSBPartialName = 1,
fsSBFullName 2,
fsSBFlAttrib 4,
fsSBNegate 16384,

/* want names that include the specified name */
/* full name match */
/* ioFlAttrib field is relevant */
/* invert the search */

the following are for regular files only: */
fsSBFlFndrinfo 8, /* ioFlFndrinfo field is relevant */
fsSBFlLgLen 32, /* ioFlLgLen field is relevant */
fsSBFlPyLen 64, /* ioFlPyLen field is relevant */
fsSBFlRLgLen 128, /* ioFlRLgLen field is relevant */
fsSBFlRPyLen 256, /* ioFlRPyLen field is relevant */
fsSBFlCrDat 512, /* ioFlCrDat field is relevant */
fsSBFlMdDat 1024, /* ioFlMdDat field is relevant */
fsSBFlBkDat 2048, /* ioFlBkDat field is relevant */
fsSBFlXFndrinfo = 4096, /* ioFlXFndrinfo field is relevant */
fsSBFlParID 8192, /* ioFlParID field is relevant */

the following are for folders only: */
fsSBDrUsrWds 8, /* ioDrUsrWds field is relevant */
fsSBDrNmFls 16, /* ioDrNmFls field is relevant */
fsSBDrCrDat 512, /* ioDrCrDat field is relevant */
fsSBDrMdDat 1024, /* ioDrMdDat field is relevant */
fsSBDrBkDat 2048, /* ioDrBkDat field is relevant */
fsSBDrFndrinfo 4096, /* ioDrFndrinfo field is relevant */
fsSBDrParID 8192 /* ioDrParID field is relevant */

PBCatsearch returns control to you as soon as one of the following
conditions becomes true:

• the time specified by ioSearchTime expires

• the maximum number of files (ioReqMatchCount) is found

• the entire volume has been searched (PBCatSearch returns eofErr)

When PBCatSearch returns, check the value of ioActMatchCount to
determine the actual number of files, if any, that were found.

If the search ends because of a time-out or because the maximum number
of files was found, PBCatSearch saves the current search position in the
ioCatPosition field of CSParam. You can continue the search from this
position by calling PBCatsearch once again and specifying that value of
ioCatPosi tion.

The routine in Listing 2-6, GetAPPLNames, shows how you can use
PBCatSearch to obtain a list of application programs on the boot volume. For
such a search, the only criteria are that the file is not a folder and that the file
type is 'APPL'. Since the file/folder bit is part of the ioFlAttrib field of
CinfoPBRec and the file type is part of the ioFlFndrinfo field, GetAPPLNames

56 ~ Chapter 2 Dealing with Files

sets ioSearchBits to fsSBFlAttrib+fsSBFlFndrinfo to indicate that these
two fields are the only ones that PBCatsearch should examine when testing
fora match.

Listing 2-6. GetAPPLNames, a routine for returning a list of
applications on the boot volume

/* GetAPPLNames returns the FSSpecs of up to *groupSize application
files (creator: 'APPL') on the volume given by theVRefNum. The
FSSpecs are stored in the foundSpecs array. The actual number
of FSSpecs found is returned in *groupSize.

*/
OSErr GetAPPLNames(long theVRefNum, FSSpec foundSpecs(], long *groupSize)
{

OS Err
CSParam
HFileinfo
long

fileError;
SearchPB;
searchl, search2;
foundCount = O;

SearchPB.ioReqMatchCount = *groupSize;

SearchPB.ioCompletion = OL;
SearchPB.ioNamePtr = OL;
SearchPB.ioVRefNum = theVRefNum;
SearchPB.ioMatchPtr = foundSpecs;
SearchPB.ioSearchBits = fsSBFlAttrib+fsSBFlFndrinfo;
SearchPB.ioSearchinfol = (CinfoPBPtr)&searchl;
searchPB.ioSearchinfo2 = (CinfoPBPtr)&search2;
SearchPB.ioSearchTime = SOOOL; /* 5 seconds */
SearchPB.ioCatPosition.initialize = OL;
SearchPB.ioOptBuffer = OL;
SearchPB.ioOptBufSize = OL;

searchl.ioNamePtr = OL;
searchl.ioFlAttrib = OxOO;
searchl.ioFlFndrinfo.fdType 'APPL';

search2.ioNamePtr = OL;
search2.ioF1Attrib = OxlO;
search2.ioF1Fndrinfo.fdType = -lL;
search2.ioF1Fndrinfo.fdFlags = O;
search2.ioF1Fndrinfo.fdCreator = OL;
search2.ioF1Fndrinfo.fdLocation.v O;
search2.ioF1Fndrinfo.fdLocation.h = O;
search2.ioF1Fndrinfo.fdFldr = OL;

do {

/* name not important */
/* files only - no folders */
/* 'APPL' only */

/* (not used) */
/* file/folder bit is hot */
/* type is hot */
/* not relevant */
/* not relevant */
/* not relevant */
/* not relevant */
/* not relevant */

fileError = PBCatsearch(&SearchPB, false);
if (l(fileError == 0 I I fileError == eofErr)

return(fileError);

foundCount += SearchPB.ioActMatchCount;
SearchPB.ioReqMatchCount -= SearchPB.ioActMatchCount;

.,_ Special Folders 57

Listing 2-6. GetAPPLNames, a routine for returning a list of
applications on the boot volume (continued)

/* put code here to see if user cancels operation */

} while ((fileError I= eofErr) & (SearchPB.ioReqMatchcount I= 0));

*groupSize = foundCount;
return(fileError);

GetAPPLNames then clears the file/folder bit in searchl. ioFlAttrib to
indicate that folder files are not acceptable and sets the
searchl. ioFlFndrinfo. fdTypefieldto 'APPL'. TotellPBCatSearchthatonly
the file/folder bit of searchl. ioFlAttrib is relevant, the corresponding bit
in the search2. ioFlAttrib field is set to 1. Finally, the
search2. ioFlFndrinfo. fdType field is set to -1 (all bits set) to indicate that
the file type field is relevant. (All the other fields of ioFlFndrinfo are zeroed
because they are not relevant.)

Notice thatGetAPPLNames keeps calling PBCatSearch until it returns eofErr
("the entire volume has been searched") or until the file name array fills up.
(PBCatSearch might return before searching the entire volume if a time-out
occurs or if it finds ioReqMatchCount matches.) GetAPPLNames returns in the
groupsize variable the actual number of files it finds.

~ Special Folders
A System 7 boot volume contains several special folders used to organize
groups of related system files, or files with certain special attributes. With a few
exceptions noted below, most applications will never need to access these
folders directly-they are for system or Finder use only.

Table 2-1 is a complete list of the special folders that System 7 maintains.

Table 2-1. Special folders maintained by System 7

Names on U.S. System Disk

(~' I System Folder

lo I Extensions

Lill.] Startup Items

I~ I Control Panels

folderType identifier

kSystemFolderType

kExtensionFolderType

kStartupF'olderType

kControlPanelFolderType

58 ..,, Chapter 2 Dealing with Files

Table 2-1. Special folders maintained by System 7 (continued)

Names on U.S. System Disk ,_fo_ld_er_T~YP..,__e_id_e_n_ti.._fi_er ______ _

~ Apple Menu Items kAppleMenuFolderType

~ PrintMonitor Documents kPrintMonitorDocsFolderType

liiflJ Trash kTrashFolderType

CJ (shared, network trash folder) kWhereToEmptyTrashFolderType

CJ Desktop Folder kDesktopFolderType

~ Preferences kPreferencesFolderType

CJ Temporary Folder kTemporaryFolderType

Here are descriptions of what each of these folders generally contain:

System Folder-Located at the root of the volume, this folder is where the
system software keeps the files it needs to operate, including the System file
itself. Some of these files are stored in special folders inside the System
Folder.

Extensions Folder-This folder, inside the System Folder, contains ' INIT'

type files which have code resources the system loads and executes at boot
time. It also contains files that extend the general functionality of the system,
such as printer drivers and networking control software.

Startup Items-This folder, inside the System Folder, contains application
files that the system automatically starts up when it boots.

Control Panels -This folder, inside the System Folder, contains control
panel applications that the user can run to change system settings or the
system configuration.

Apple Menu Items-This folder, inside the System Folder, contains files
that appear in the standard Apple menu. Any type of file can appear in the
Apple menu, not just desk accessories.

PrintMonitor Documents-Located inside the System Folder, this folder
contains spooled document files that the Print Manager has not yet printed.

Trash-This invisible folder, in the root of the volume, is represented by a
trash can icon on the desktop. It contains files that the user moves to the

.._ Special Folders 59

Trash from the Finder; the files are deleted when the user chooses Empty
Trash from the Finder's Special menu.

Shared Trash -Inside the Trash Folder are invisible trash folders for each
user who has logged on to the system to access a shared folder. The Shared
Trash folders have unique names assigned by the system at run time.

Desktop Folder-This invisible folder is in the root of every volume, not
just the boot volume. The files here show up as icons on the Finder desktop.

Preferences-This folder is inside the System Folder. This is where appli
cations should store configuration files.

Temporary Folder-This invisible folder is in the root of every volume, not
just the boot volume. This is where an application should store scratch files
that it will delete before it quits. On boot, the system checks this folder and
moves any files it finds to a folder called "Rescued Items for <volume
name>" inside the Trash Folder. Files might be in the Temporary Folder at
boot time if an application crashed before deleting its temporary files
moving them to the Trash Folder makes it easier for the user to remove them
and ensures that the disk won't become cluttered with unwanted tempo
rary files.

System -The System file, located inside the System Folder, is not really a
folder, but it behaves like one when you access it from the Finder. When you
double-click the System file, it opens up to reveal the names of all the sound
and font resources it contains. To install new fonts and sounds, you simply
drag them to the System file or the System Folder.

To locate a particular folder (that is, to find its volume reference number and
directory ID), use the FindFolder routine:

pascal OSErr FindFolder(short vRefNum,
OSType folderType,
Boolean createFolder,
short* foundVRefNum,
long* foundDirID);

The parameters you supply to F indFolder are vRefNum (the volume reference
number; use the kOnSystemDisk constant for the boot volume), f olderType (the
identifier for the special folder you want; see Table 2-1), and createFolder (true
if you want the folder to be created if it doesn't already exist).

FindFolder returns the volume reference number and directory ID of the
appropriate folder. You can storethisinformationinanFSSpec record, along with
a file name, to create the FSSpec for a file to be read from, or saved in, the folder.
In the next section on alias records and alias files, for example, you'll see how to
save a file in the Desktop Folder so that it shows up on the Finder desktop.

60 ~ Chapter 2 Dealing with Files

Key Point~

IJlJJ> Alias Records and Alias Files

Key Point~

As you now know, using an FSSpec record to identify a file has many advan
tages, but you cannot use it to locate the same file the next time your application
runs. That's because the FSSpec is "hard-wired" to a particular volume ref
erence number, directory ID, and name. It becomes invalid if the file is moved
or renamed, or the file is on an AppleShare volume or a floppy disk.

System 7 introduces the alias record to overcome this limitation. An alias
record contains enough information to allow the system, in most cases, to find
the file it describes, even if the file has been renamed, moved to another folder,
or located on an AppleShare volume or an unmounted disk. The Alias
Manager has routines for creating an alias record from an FSSpec record and
for creating an FSSpec record from an alias record (the latter conversion
process is called resolving an alias).

To create an alias record for a file, use HewAlias:

pascal OSErr HewAlias(FSSpec *fromFile,
FSSpec *target,
AliasHandle *alias);

Note""

.,.. Alias Records and Alias Files 61

The first parameter, fromF ile, is generally not used and is set to zero. You
can, however, set it to point to the FSSpec for a file that is always stored at the
same relative folder position from the target file. If you do specify a fromF ile,
the Alias Manager uses a different technique to resolve the alias, a technique
which could, in certain situations, be more effective than the usual technique.
See Inside Macintosh, Volume VI for details.

The second parameter, target, is a pointer to the FSSpec of the file whose
alias you're creating. The third parameter, alias, is the pointer to a space for
the alias record that NewAlias creates.

An alias record should generally be stored as an ' alis ' resource in the
resource fork of the document that needs access to the file described by the
alias. A preferences file for a communications program, for example, might
contain 'alis' resources describing the locations of the folders into which it
transfers files from the online services it supports.

Since the File Manager and Resource Manager routines don't accept an alias
record as a parameter, you have to convert it to an FSSpec first. Do this by
calling the ResolveAlias routine:

pascal OSErr ResolveAlias(FSSpec *fromFile,
AliasHandle alias,
FSSpec *target,
Boolean *wasChanged);

As with MakeAlias, fromF ile refers to the FSSpec for a file from which a
relative resolution is to take place; set it to zero if you don't want relative
resolution. The second parameter, alias, is a handle to the alias record to be
resolved. (Use the handle returned by GetResource if you retrieved the alias
from a resource.) On return, Re sol veAlias returns the FSSpec of the target file
at target and sets the waschanged variable to true if the alias record was
modified to more efficiently describe the current position of the target file. If
the alias record is modified, be sure to update any copies of the alias you may
have saved in a file on disk.

, :: >. > ::;··; ~-,

. ;:~~~a;napplicatio~l,c~Us,ll~~,~~~~ii~~. the uset,il'lafl!'~···;;1···f;fr;.· ·
· p~~~ed to insert .a.p~rqet.tlj;ft ~iS~<?rto .. log on tf?•.i:l l?~~~t· ; ;(; ..

·. s~tY;~1\ depending on 'rhereJ~~ ~:li~.s Manager thill:\<S Wl\~ ~l~J<·
fQpt\1~,~ar,getfile. '•i•

1

ii .. :~l:.·:.l····.l;;I I
111

.. ·; ·~. ~ ·~ ;~,-'~h:::'.\>i·.''_·,

You can also use the MatchAlias routine to resolve aliases, but only if you
require greater control over the method of resolution. This low-level routine
is described in Inside Macintosh, Volume VI.

62 ~ Chapter 2 Dealing with Files

~ Preserving Aliases for Updated Files

Many applications, particularly those that load an entire document into
memory at once, save an edited copy of a document back to disk in a temporary
file; when the copy has been safely saved, the original is deleted and the copy
is renamed to the name of the original document. This strategy prevents data
loss if the system crashes during the save operation.

At first blush, the possible existence of aliases that refer to the document
being edited makes this strategy less than appealing-even though the edited
document is effectively saved back to disk under the same name as the original
document, it is really a different file and aliases to the original document file
would not refer to the edited document file.

The File Manager includes a new routine, FSpExchangeFiles, you can use
to avoid this problem. FSpExchangeF iles swaps the contents of two files (on
the same volume), effectively transferring the data in the edited file to the .
original, thus preserving existing aliases. It also swaps the modification dates
for the two files, as you would expect.

Here is the function prototype for FSpExchangeFiles:

pascal OSErr FSpExchangeFiles(canst FSSpec *source,
canst FSSpec *dest);

The source parameter is a pointer to the FSSpec for the temporary file
containing the edited data. The dest parameter is a pointer to the FSSpec for
the original file.

The proper time to call FSpExchangeFiles is right after saving the edited
copy of the document to a temporary file. After calling it, you would delete the
copy of the document, leaving only the original document which now contains
the edited data.

~ Alias Files

You should be careful not to confuse an alias record, created by HewAlias, with
an alias file, which you create from the Finder with the Make Alias command
in the File menu. On the desktop, an alias file looks just like its target file, except
that its name has an" alias" suffix and is italicized (you can rename an alias file
just as you would a normal file, however).

IJJ> Alias Records and Alias Files 63

Here are the vital statistics for an alias file that are of interest to programmers:

• isAlias bit of the fdFlags field of the file's Finfo record is set

• data fork of the file is empty

• resource fork contains an 'alis' resource (ID 0) describing the tar
get file

• if the target file of the alias is an application, file type is ' adrp'

The MakeAlias routine in Listing 2-7 shows how to create a Finder-style
alias file from inside an application. The routine calls NewAlias to create the
alias record for the target file, then creates an alias file in the boot volume's
Desktop Folder so that it appears on the Finder's desktop. You use F indFolder
to determine the vRefNwnand dirID of this folder, as described in the previous
section. You also use the new Resource Manager routine, FSpCreateResFile,
to create the alias file (with an initialized resource fork). Another new call,
FSpOpenResFile, opens the resource fork so that the 'alis' resource can be
added with AddResource.

Listing 2-7. MakeAlias, a routine for creating a Finder-style alias file

/* MakeAlias creates a standard Finder alias file for the target
file given by theSpec and puts it in the Desktop Folder.

*/
OSErr MakeAlias(FSSpecPtr theFSSpec)
{

Str255
FSSpec
OSErr
Finfo
short
AliasHandle

aliasName = "\p";
aliasSpec;
fileError;
theFinfo, targetFinfo;
fileRef;
alias;

fileError = NewAlias(OL, theFSSpec, &alias);
if (fileError) return(fileError);

/* create alias */

/* Get type and creator of the target */
FSpGetFinfo(theFSSpec, &targetFinfo);
if (targetFinfo.fdType == 'APPL') targetFinfo.fdType = 'adrp';

if theFSSpec->name[O] > 25) theFSSpec->name[O] = 25;

/* Fill in the FSSpec for the alias file */
concatString(aliasName, theFSSpec->name);
ConcatString(aliasName, (StringPtr)"\p alias");
pStringCopy(aliasName, aliasSpec.name);

/* chop stem
to 25 chars */

64 .,,,_ Chapter 2 Dealing with Files

Listing 2-7. MakeAlias, a routine for creating a Finder-style alias file
(continued)

fileError FindFolder(kOnSysternDisk, kDesktopFolderType,
kCreateFolder, &aliasSpec.vRefNum,
&aliasSpec.parID);

/* unlock and delete existing file: */

fileError = FSpRstFLock(&aliasSpec);
if (I((fileError == fnfErr) I I (fileError

return(fileError);

if (fileError == noErr) {

fileError = FSpDelete(&aliasSpec);
if (fileError) return(fileError);

noErr)))

FSpCreateResFile(&aliasSpec, targetFinfo.fdCreator,
targetFinfo.fdType, smSystemscript);

fileError = ResError();
if (fileError) return(fileError);

fileError = FSpGetFinfo(&aliasSpec, &theFinfo);
theFinfo.fdFlags = theFinfo.fdFlags I OxBOOO; /* set isAlias bit */
FSpSetFinfo(&aliasSpec, &theFinfo);

fileRef = FSpOpenResFile(&aliasSpec, fsCurPerm);
if (f ileRef == -1) {

fileError = ResError();
return(fileError);

AddResource((Handle)alias, rAliasType, O, aliasName);
fileError = ResError();

CloseResFile(fileRef);
return(fileError);

~ The Standard File Package 65

In those rare cases where you might have to deal with an alias file directly,
you can easily find its target file using the ResolveAliasFile routine:

pascal OSErr ResolveAliasFile(FSSpec *theSpec,
Boolean resolveAliasChains,
Boolean *targetisFolder,
Boolean *wasAliased);

In this routine, theSpec is the pointer to the FSSpec for the alias file you
want to resolve. Set resolveAliasChains to true if you want
Re sol veAliasF ile to resolve all aliases in the chain back to the original target
file. (If re sol veAliaschains is false and the Spec is the alias of another alias
file, the FSSpec of that alias file is returned.)

On return, the FSSpec for the target file is in the theSpec variable, the
targetisFolder variable is true if the target file is a folder (or volume), and
the wasAliased variable is true if theSpec did, indeed, refer to the FSSpec for
an alias file. (If it didn't, the FSSpec that theSpec points to does not change and
ResolveAliasFile really doesn't do anything.)

~ The Standard File Package
The Standard File Package contains the routines for presenting the standard
Open File and Save File dialog boxes shown in Figures 2-1and2-2. The Open
File dialog lets the user browse through folders and volumes to locate a file; to
select a file, the user clicks on its name and then clicks the Open button (or
simply double-clicks on the name). The Save File dialog permits similar
browsing and also provides an editable text field where the user can enter a
name for the file to be saved. The user clicks the Save button to perform
the operation.

66 Ill> Chapter 2 Dealing with Files

lei!THINK c..-1
D Mac. #inrludes m
CJ Mac #includes.c
D Mac Libraries
CJ MacHeaders
~THINK C
~ TH INK c Debugger

c=i System 7

([jt~G1)

(Desktop)

(Cancel)

Open

Figure 2-1. The standard Open File dialog box used by StandardGetFile

lei!THINK c..- t c=i System 7

D Mac #includes .Q () E:jt~c1
r.~ M~~c #'~n< ~wb~s-<
D Mac Libraries (Desktop)
[) Mi~c~hwd<~n

() ~ "HHNK [New LJ
~ "f H ~ NK [Ot~bw.rn•~r -0 ..

Saue file as: (Cancel)
I Untitled I ' Saue ,

Figure 2-2. The standard Save File dialog box used by StandardPutFile

These two standard dialog boxes resemble the ones System 6.x applications
use. Under System 7, however, you call two new routines to display them,
StandardGetFile and StandardPutFile. The main reason for using these

Important""

.,.. The Standard File Package 67

new routines is that they both return results in a StandardFileReply record
and one of the fields of this record is an FSSpec record which the new File
Manager routines need to open or create a file.

StandardGetFile

Here is the function prototype for StandardGetFile:

pascal void StandardGetFile(StringPtr prompt,
ProcPtr fileFilter,
short numTypes,
SFTypeList *typeList,
StandardFileReply *reply);

68 IJlii- Chapter 2 Dealing with Files

"Gary Stationery" is a
Stationery pad. If you
make changes, they will
be saued into the
Stationery pad itself.

(Cancel n (OK)

Figure 2-3. The warning dialog that appears if an application's
isStationeryAware flag is not set and the user tries to select a stationery
pad file from an Open File dialog

Now let's take a closer look at each of the parameters to standardGetFile.

standardFileReply-This record, shown in Listing2-8, contains the results
of the Open File operation. The two most important fields to note are
sf Good, which is true if the user clicked the OK button, and sf File, which
is the FSSpec of the file the user selected. Other relevant fields are sfType,
the file's type code; sfScript, the file's script system identification code;
and sfFlags, the file's Finder flags. If sfGood is false, the user clicked the
Cancel button and the application must abort the open operation.

Listing 2-8. The StandardFileReply record used by Standard File
routines

typedef struct {

Boolean sf Good; /* true = OK i false = Cancel */
Boolean sfReplacing; /* true = replacing existing file */
OS Type sfType; /* file type */
FSSpec sfFile; /* FSSpec for the selection */
ScriptCode sfScript; /* script system code */
short sfFlags; /* Finder flags */
Boolean sfisFolder; /* selection is a folder */
Boolean sfisVolume; /* selection is a volume */
long sfReservedl;
short sfReserved2;

} StandardFileReply;

Note~

II>- The Standard File Package 69

StandardGetFile checks the information given by the remaining three
parameters to determine whether or not to display a particular file name in the
scrollable list. This screening process is called file filtering.

typeList-This is a pointer to a list of file type codes (such as 'TEXT', 'APPL',
and so on). Only files whose file types are in the list, and folder files, are
passed to fileFilter for further filtering.

num.Types-This is the number of items in the list pointed to by typeList.
If you specify a value of-1, however, the typeList parameteris ignored and
all files are passed to fileFilter.

fileFilter-This is an optional file filter procedure that you provide. It
receives crnfoPBRec information about each file whose type code is in the
list pointed to by typeList (or all files if numTypes is -1) and returns a
Boolean that tells StandardGetFile whether or not to display the file name
in the scrollable list. If no special file filtering is needed, set f ileF il ter to OL.
The function prototype for a file filter follows:

pascal· Boolean fileFilter(CinfoPBPtr PB);

The structure of the CinfoPBRec to which PB points is shown in Listing
2-4. The filter procedure can examine the values in this record to determine
whether the file meets the desired criteria; if it does, the procedure returns false
and standardGetFile displays the file name. If it returns true, the file name
is not displayed.

$fandardPutFile

The function prototype for StandardPutFile follows:

pascal void StandardPutFile(StringPtr prompt,
StringPtr defaultName,
StandardFileReply *reply);

Here is the meaning of each parameter:

prompt-This is the prompting string that appears just above the editable
text box where the user types in a file name.

70 ~ Chapter 2 Dealing with Files

defaultHame-This is the file name that initially appears in the editable
text box.

standardFileReply-This record, shown in Listing 2-8, contains the
results of the Save File operation. The two most important fields to note are
sfGood, which is true if the user clicked the OK button, and sfFile, which
is the FSSpec of the file the user entered. The other relevant field is
sfReplacing which is true if a file already exists with the same FSSpec.

Take a look atthe Skeleton program in Chapter 1 for examples of how to use
StandardGetF ile and StandardPutF ile.

~ Customized Open File and Save File Dialog Boxes

The Standard File Package also includes two new routines for presenting
customized Open File and Save File dialog boxes to the user: customGetFile
and customPutF ile. These routines let you add more controls-such as radio
buttons or check boxes-to the standard set used in Open File and Save File
dialogs, making it possible to receive additional input from the user.

Don't you abuse the privilege of being able to use customized dialog boxes.
Try to d.efine custom boxes that look similar to the standard ones. Don't get
fancy by repositioning the standard button items, for example-you will only
confuse the user.

The function prototype for CustomGetFile follows:

pascal void CustomGetFile(FileFilterYDProcPtr fileFilter,
short numTypes,
SFTypeList typeList,
StandardFileReply *reply,
short dlgID,
Point where,
DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,
void *yourDataPtr);

Here is the meaning of each parameter:

StandardF ileReply-This is the standard reply record described earlier in
connection with the StandardGetFile routine.

dlgID-CustomGetFile displays the dialog box defined by the 'DLOG'
resource whose ID is dlgID. The resource definitions for the standard

~ The Standard File Package 71

StandardGetF ile dialog box and its nine 'DITL' items (both of which have
a resource ID of-6042) are shown in Listing 2-9. The customized dialog box
you define must include the same 'DITL' items, in the same order, although
you can change the item names and bounding rectangles if you need to. Add
the definitions of any new controls that you want to appear in the dialog box
to the end of the list of required 'DITL' items.

Listing 2-9. The Rez source for the 'DLOG' and 'DITL' resources for
a StandardGetFile dialog box

I* StandardGetFile dialog box */
resource 'DLOG' (-6042, "Get dialog", purgeable) {

} ;

{O, o, 166, 344}, dBoxProc, invisible, noGoAway, o,
-6042, "", noAutoCenter

/* StandardGetFile dialog item list */
resource 'DITL' (-6042, "Standard Get items") {

{

} ;

{135, 252, 155, 332}, Button { enabled, "Open" },
{104, 252, 124, 332}, Button { enabled, "Cancel" },
{O, O, o, O}, Helpitem { disabled, HMScanhdlg { -6042 } },
{8, 235, 24, 337}, Useritem { enabled }, /* volume icon and name */
{32, 252, 52, 332}, Button { enabled, "Eject" },
{60, 252, 80, 332}, Button { enabled, "Desktop" },
{29, 12, 159, 230}, Useritem { enabled }, /* name list */
{7, 12, 26, 230}, Useritem {enabled}, /* folder pop-up*/
{91, 251, 92, 333}, Picture { disabled, 11 }, /* dividing line */
}

Here are the Rez definitions for the most common types of controls:

{top, left, btm, right}, Button { enabled, "Push Me" }

{top, left, btm, right}, CheckBox { enabled, "Check" }

{top, left, btm, right}, RadioButton { enabled, "Radio" }

{top, left, btm, right}, StaticText { disabled, "uneditable text" }

{top, left, btm, right} I EditText { enabled, "editable text" }

{top, left, btm, right}, Icon { disabled, myICONid }
{top, left, btm, right} I Picture { disabled, myPICTid }
{top, left, btm, right} I Control { enabled, myCNTLid }

Each of these control definitions begins with the bounding rectangle for the
control and Rez' s symbolic control type code. Following this are the two
parameters each control type needs-the first indicates whether the control is
enabled or disabled; the second is either the control name (for Button,
CheckBox, RadioButton, StaticText, or EditText controls) or the ID of a
resource that defines the control (for Icon, Picture, and Control controls).

72 Ill>- Chapter 2 Dealing with Files

Depending on how you're customizing the dialog box, you may need to
change its bounding rectangle in the 'DLOG' resource so that it encompasses
the new items you've added. Finally, you must assign a resource ID to the
'DLOG' and 'DITL' resources that falls in the allowable range for application
use (128 to 32767).

where-This point defines where CustomGetF ile draws the dialog box on
the screen-it is the coordinate of the top-left corner of the dialog box. If you
specify a point of (-1,-1), customGetFile centers the dialog box on the
screen.

yourDataPtr-This is a pointer to a private data area that the application
maintains. customGetFile passes this pointer to the fileFilter and
dlogHook procedures described in this chapter.

typeList, numTypes, and fileFilter-CustomGetFile filters files much
like StandardGetFile, using the values of these three parameters for
guidance. CustomGetFile's file filter procedure, however, takes one addi
tional parameter, yourDataPtr, a pointer to the application's private data
structure. Here is the function prototype for the file filter procedure you
provide:

pascal Boolean fileFilter(CinfoPBPtr PB,
void *yourDataPtr);

The private data structure that youroataPtr points to can contain fields
that tell fileFilter what set of filtering tests to perform. This makes it
possible, for example, to use one fileFilter procedure for different
customGetF ile calls that require different filtering criteria. More importantly,
you can use a dlgHook procedure (see the following section) to change the
values stored in the private data area so that they reflect the state of a control
that changes the file filtering criteria. This makes it possible for the user to
change, on the fly, the types of files that are shown in the list. You will find an
example of how to do this at the end of this section.

Another difference is that customGetFile gives fileFilter the ability to
determine whether folder files should appear in the file list. (StandardGetF ile
does not provide this option and folder files are always shown.) In most cases
you will want folders to appear, so return false if the file/ folder bit (bit 4) of the

..., The Standard File Package 73

ioFlAttrib field is set. This attribute field is part of the hF ileinfo record inside
crnfoPBRec. The appropriate line of code to use to make folder names appear
is as follows:

if ((*PB).hFileinfo.ioFlAttrib & OxlO) return(false);

where PB is the pointer to CinfoPBRec.

filterProc-This is a modal-dialog filter function for filtering and pre
processing events received from the Event Manager before they're passed
on tocustomGetFile's default fil terProc. ltisnodifferentfromstandard
modal-dialog filters described in the Dialog Manager chapter of Inside
Macintosh, Volume I. Modal-dialog filters enable keyboard shortcuts for
common operations by converting keystroke events into simulated mouse
actions. The default filterProc used by CustomGetFile provides stan
dard shortcuts (pressing Escape simulates clicking the cancel button, for
example) and should be sufficient for most purposes. Refer to Inside
Macintosh, Volume I if you need to write a custom filter procedure
perhaps to add keyboard shortcuts for controls you add to a standard dialog
box, for example. If you're not using a f il terProc, set this parameter to OL.

acti vateProcandacti veList-Youwillneed topassanacti vateProc if your
customized dialog box contains an extra control that can accept keystroke
input and is not an editable text control-a list control, for example.
StandardGetFile calls activateProc to highlight the control when the
user tabs to it or clicks in it. (It also calls activateProc to unhighlight the
control.) This provides the user with a visual cue as to what control will
accept keyboard input. See Inside Macintosh, Volume VI for instructions on
how to write activation procedures. The acti veList parameter points to a
table containing a count word followed by the IDs of all the controls you've
added that can accept keystrokes (editable text fields excepted). If you're
not using an activateProc, set the parameter to OL.

dlgBook-This is the dialog-hook procedure that you provide, if necessary,
to handle user interaction with any controls you've added to the standard
dialog box template. Dialog-hook procedures are discussed in detail, after
CustomPutFile and its parameters. If you're not using a dlgHook, set this
parameter to OL.

74 ..,. Chapter 2 Dealing with Files

Here is the function prototype for CustomPutFile:

pascal void CustomPutFile(ConstStr255Param prompt,
ConstStr255Param defaultName,
StandardFileReply *reply,
short dlgID,
Point where,
DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,

void *yourDataPtr);

Let's now look at those parameters which have not already been described
in connection with CustomGetF ile, or which have slightly different meanings.

dlgID--CustomPutFiledisplaysthedialogboxdefinedbythe 'DLOG' resource
whoseIDisdlgID. TheresourcedefinitionsforthestandardstandardPutFile
dialog box and its 'DITL' with twelve items (both of which have a resource ID
of -6043) are shown in Listing 2-10. You can customize this dialog box using the
same general techniques described for customGetFile.

Listing 2-10. The Rez source for the 'DLOG' and 'DITL' resources for
a StandardPutFile dialog box

/* StandardPutFile dialog box */
resource 'DLOG' (-6043, "Put dialog", purgeable) {

} ;

{O, o, 188, 344}, dBoxProc, invisible, noGoAway, O,
-6043, "", noAutoCenter

/* StandardPutFile dialog item list */
resource 'DITL' (-6043, "Standard Put items") {

} ;

{161, 252, 181, 332}, Button { enabled, "Save" },
{130, 252, 150, 332}, Button { enabled, "Cancel" },
{O, O, O, O}, Helpitem { disabled, HMScanhdlg { -6043 } },
{8, 235, 24, 337}, Useritem { enabled }, /* volume icon and name */
{32, 252, 52, 332}, Button { enabled, "Eject" },
{60, 252, 80, 332}, Button { enabled, "Desktop" },
{29, 12, 127, 230}, Useritem { enabled}, /*name list*/
{7, 12, 26, 230}, Useritem { enabled}, /*folder pop-up*/
{119, 250, 120, 334}, Picture { disabled, 11 }, /*dividing line*/
{157, 15, 173, 227}, EditText {enabled,""}, /*file name*/
{136, 15, 152, 227}, StaticText { disabled, "Save as: " },
{88, 252, 108, 332}, Useritem {disabled}, /*New Folder button*/
}

IJJli. The Standard File Package 75

prompt-This is the prompting string (' DITL' item #11). If you provide a
prompt, it overrides the string specified in the resource.

defaul tHame-This is the name string that initially appears in the standard
editable text control (' DITL' item #10). If you provide a name string, it
overrides the string specified in the resource.

IJJli. Writing Dialog-Hook Procedures

A dialog-hook procedure processes item hits in a CustomGetFile or
customPutFile dialog box. As noted, you need to supply a dialog-hook
procedure when you add new controls to a standard Open File or Save File
dialog box because the internal dialog-hook procedures handle activity only
in the standard set of controls; they do not know how to handle additional
controls that you define.

Here is the function prototype for a dialog-hook procedure:

pascal short myDialogHook(short theitem,
DialogPtr theDialog,

void •yourDataPtr)1

The first parameter, theitem, is the number of the dialog item that has been
hit. The second parameter, theDialoq, is a pointer to the dialog record
involved. Finally, yourDataPtr, is the pointer to the private data area that you
passed to customGetFile or customPutFile. The dialog-hook procedure can
share data with the application or the file-filter procedure via the private data
area.

The item numbers passed to the dialog-hook procedure are either real
'DITL' item numbers or pseudo-item numbers that actually refer to requests
for special actions. Listing 2-11 lists the numbers of the standard items as well
as the pseudo-items.

Listing 2-11. Item numbers and pseudo-item numbers for
standardGetFile and StandardPutFile dialog-hook procedures

/* item numbers for standard dialog items */
enum {sfitemOpenButton = l}; /* Save or Open button */
enum {sfitemcancelButton = 2}1 /* cancel button */
enum {sfitemBalloonHelp = 3}1 /* Balloon help area */
enum {sfitemVolumeUser = 4}1 /* Volume icon and name */
enum {sfitemEjectButton = 5}1 /* Disk eject button */
enum {sfitemDesktopButton = 6}1 /* Desktop button */
enum {sfitemFileListUser = 7}1 /* Name in list clicked */
enum {sfitemPopUpMenuUser = 8}1 /* Folder pop-up menu */
enum {sfitemDividerLinePict = 9}1 /* (not generated) */

76 .., Chapter 2 Dealing with Files

Note II>

Important II>

Listing 2-11 . Item numbers and pseudo-item numbers for
StandardGetFile and StandardPutFile dialog-hook procedures
(continued)

enum {sfitemFileNameTextEdit = 10}1
enum {sfitemPromptStaticText = 11}1
enum {sfitemNewFolderuser = 12}1·

/* File name field clicked */
/* (not generated) */
/* New Folder button */

/* pseudo-item numbers for use by dlgHook routines */
enum {sfHookFirstCall = (-1)}1
enum {sfHookCharOffset = Oxl000}1
enum {sfHookNullEvent = 100}1
enum {sfHookRebuildList = 101}1
enum {sfHookFolderPopUp = 102}1
enum {sfHookOpenFolder = 103}1
enum {sfHookOpenAlias = 104}1
enum {sfHookGoToDesktop = 105}1
enum {sfHookGoToAliasTarget = 106}1
enum {sfHookGoToParent = 107}1
enum {sfHookGoToNextDrive = 108}1
enum {sfHookGoToPrevDrive = 109}1
enum {sfHookChangeSelection = 110}1
enum {sfHookSetActiveOffset = 200}1
enum {sfHookLastCall = (-2)}1

/* dialog has just opened */
/* offset for ASCII codes for lists */
/* periodic null event */
/* redisplay list of files */
/* Folder pop-up menu */
/* Open button when folder selected */
/* selected item is an alias */
/* user pressed Command-D */
/* Option pressed when alias opened */
/* user pressed Command-Up Arrow */
/* user pressed Command-Right Arrow */
/* user pressed Command-Left Arrow */
/* reply record describes a new file */
/* offset for control to activate */
/* dialog is about to close */

The dialog-hook procedure should check the value of the Item passed to it
and process it as necessary. For example, it would check for the item number
of an added control, such as a check box, and handle it by toggling the value
of the control.

If the dialog-hook procedure does not handle theitem, it should return
the Item as the result so that the internal dialog-hook procedure will handle it

Wamlng.,..

~ The Standard File Package 77

in the standard way. If you do handle the Item, return 0 or an item number the
internal hook does not understand (such as the item number for a control
you've added).

In practice, you'll probably need to use only a few of the pseudo-item
numbers listed in Listing 2-11. Here are the more interesting events to which
you might react:

• sfBookFirstCall-Your hook receives this event when the dialog
box is first created. It can react to the event by initializing fields in
the private data area and allocating any needed data structures.

• sfBookLastcall-Your hook receives this event when the dialog
box is about to disappear. It should react by updating values in the
private data area, if necessary, and disposing of any data structures
created since the dialog box was first displayed.

• sfBookHullEvent-Your hook receives this event frequently to give
it a chance to perform periodic actions such as updating a timer or
continuing an animation sequence.

• sfBookRebuildList-Your hook will never receive this event, but
it can return it to force the internal hook to redisplay the files in the
current folder. Your hook will need to do this in situations where
the user changes the value of a control that indicates the types of
files to be displayed.

78 .,.. Chapter 2 Dealing with Files

.,.. An Example of Using CustomGetFile

Listing 2-12 shows the 'DLOG' and 'DITL' resources which define the cus
tomized Open File dialog box shown in Figure 2-4. This dialog box is the same
as the one that st.andardPut.File uses except that it includes a pop-up menu
control for selecting the type of file that is to be shown in the scrolling list. Th~
pop-up menu contains three items: All files, Text, and Mac Write II.

Listing 2-12. The Rez source for the 'DLOG' and 'Dill' resources
(and related resources) for the CustomGetFile dialog box in
Figure 2-4

idefine
idef ine

rCustomGet 1000
rPopupMenu 2000

/* StandardGetFile dialog box */
resource 'DLOG' (rCustomGet, ucustomGet dialogu, purgeable)

{O, O, 181, 344}, dBoxProc, invisible, noGoAway, O,
rCustomGet, un, noAutoCenter

/* StandardGetFile dialog item list */
resource 'DITL' (rCustomGet, •custom Get itemsn) {

{

{135, 252, 155, 332}, Button { enabled, •open• },
{104, 252, 124, 332}, Button { enabled, •canceln },
{O, O, O, 0}, Helpitem { disabled, HMScanhdlg { -6042 } },
{8, 235, 24, 337}, Useritem { enabled }, /* volume icon and name */
{32, 252, 52, 332}, Button { enabled, uEject• },
{60, 252, 80, 332}, Button { enabled, uDesktop• },
{29, 12, 159, 230}, Useritem { enabled }, /* name list */
{7, 12, 26, 230}, useritem {enabled}, /*folder pop-up*/
{91, 251, 92, 333}, Picture { disabled, 11 }, /* dividing line */

/* our additional control definitions begin here: */
{162, 12, 182, 212}, Control { enabled, 128 }; /* our pop-up control */
}

resource 'CNTL' (128, "Popup controln) {

};

{O, O, 20, 200}, /* boundsRect */
popupTitleNoStyle+popupTitleLeftJust, /* style/justification */
visible,
50,
rPopupMenu,
1008,
o,
ushown

/* width of pop-up title area */
/* MENU resource ID */
/* 1008 = pop-up procedure ID */
/* ResType (only for popupUseAddResMenu variation) */
/* title */

resource 'MENU' (rPopupMenu, "File type popupn, preload) {
rPopupMenu, textMenuProc,
allEnabled,
enabled, "File Typen,

llJJ> The Standard File Package 79

Listing 2-12. The Rez source for the 'DLOG' and 'Dill' resources
(and related resources) for the CustomGetFile dialog box in
Figure 2-4 (continued)

};

"All files",
noicon, nokey, nomark, plain;

"Textu,
noicon, nokey, nomark, plain;

"MacWrite II",
noicon, nokey, nomark, plain;

la Source,.. I
I) ChatEuents.c
I) ChatEuents.h
I) ChatMan.c
I) ChatMan.h
I) ChatMan.make
I) ChatMan.makeout
I) ChatMan.r
I) ChatManCommon.h

Show TeHt ,.. I

CJ System 7

(E:j•~c1)

(Desktop)

(Cancel)

Figure 2-4. The customized CustomGetFile dialog box defined by the
resources in Listing 2-12

The pop-up menu control was originally part of the Macintosh Communi
cations Toolbox forSystem6.x and has now become a standard system control.
As shown in Listing 2-12, you define a pop-up menu control as a 'CNTL'
resource. The 'CNTL' fields have the following initial values:

boundsRect-The boundary rectangle for the pop-up menu.

value-Specifies the styling and justification of the title of the pop-up
menu. Here are the relevant mask values:

idef ine
#define

popupTitleLeftJust OxOOOO
popupTitleCenterJust OxOOOl

80 Ill> Chapter 2 Dealing with Files

#define popupTitleRightJust OxOOFF

#define popupTitleBold OxOlOO
#define popupTitleitalic Ox0200
#define popupTitleUnderline Ox0400
#define popupTitleOutline OxOBOO
#define popupTitleShadow OxlOOO
#define popupTitleCondense Ox2000
#define popupTitleExtend Ox4000
#define popupTitleNoStyle OxBOOO

Calculate the appropriate value to pass by adding one of the three justifica
tion masks to any combination of style masks (or to popupT i tleNoStyle if
no special styling is desired).

visible-Boolean indicating whether the control is visible (true) or invis
ible (false). You can also specify the constants visible and invisible
defined in the Rez template for 'CNTL' .

max-Width of the pop-up menu title.

min-Resource ID of the 'MENU' resource containing the items to appear in
the pop-up menu.

procID-Procedure ID of the pop-up menu control (1008) plus an optional
variation code. Three variation codes are available:

• popupFixedWidth (1) The pop-up menu is not resized to fit long
menu items. Instead, a long name is truncated and an ellipsis(...) is
appended.

• popupuseAddResMenu (4) The items in the pop-up menu are formed
by calling AddResMenu with the resource type stored in refCon. For
example, to create a pop-up menu of font names, you would use this
variation code and store 'FONT' in ref Con.

• popupuseWFont (8) The font and font size of the window that owns
the control, not the standard system font, is used to draw the pop-up
menu.

refCon-If the control variation code is popupUseAddResMenu, this field
contains a resource type, and the names of all resources of this type become
pop-up menu items.

title-Name of the pop-up menu.

Note~

_.. The standard File Package 81

In Listing 2-12, the 'CNTL' resource for the pop-up menu is tied to a stan
dard 'MENU' resource containing the three file type choices of interest.

Listing 2-13 shows the GetOpenName routine for returning the name of the
file selected by the user. Notice that it passes to customGetFile a pointer to a
private data structure called GetHookRec which contains the typeCode field.
This is where the dialog-hook procedure stores the current setting of the pop
up menu so that the file filter procedure can tell what filtering criteria to apply.

Listing 2-13. The file filter and dialog-hook procedures for the
CustomGetFile dialog box in Figure 2-4

/* private data structure */
typedef struct {

short typeCode;
} GetHookRec;

void GetOpenName(StandardFileReply *toReply
{

Point stdPosition = { -1, -1 };
GetHookRec myoata;

CustomGetFile((FileFilterYDProcPtr)OpenCFilter, -1, OL, toReply,
rcustomGet, stdPosition, (DlgHookYDProcPtr)MyGetHook,
(ModalFilterYDProcPtr)OL, OL, (ActivateYDProcPtr)OL,
&myoata);

/* Dialog-hook procedure for CustomGetFile */
pascal short MyGetHook(short theitem, DialogPtr theDialog,

GetHookRec *myDataPtr)

short itemType;
Handle itemHandle;
Rect itemRect;
short theValue;

switch (theitem)

case sfHookFirstCall: /* initialization */

82 ~ Chapter 2 Dealing with Files

Listing 2-13. The file filter and dialog-hook procedures for the
CustomGetFile dialog box in Figure 2-4 (continued)

if (((WindowPeek)theDialog)->refCon == sfMainDialogRefCon) {
GetDitem(theDialog, 10, &itemType, &itemHandle, &itemRect);
SetCtlValue((ControlHandle)itemHandle, 1); /* set pop-up val */

myDataPtr->typeCode = l;

break;

case 10: /* Pop-up menu */
GetDitem(theDialog, theitem, &itemType, &itemHandle, &itemRect);
theValue = GetCtlValue((ControlHandle)itemHandle);
if (theValue I= myDataPtr->typeCode) { /* if value has changed */

myDataPtr->typeCode = theValue;
theitem = sfHookRebuilclList;

break;

return(theitem);

/* force rebuild of list */

/* File filter for CustomGetFile */
pascal Boolean OpenCFilter(CinfoPBPtr PB, GetHookRec *myDataPtr)
{

}

OS Type theFileType;

if ((*PB).hFileinfo.ioFlAttrib & OxlO) return(false); /*folders OK*/

theFileType = (*PB).hFileinfo.ioFlFndrinfo.fdType;

switch (myDataPtr->typeCode) {
PrintHex(myDataPtr->typeCode);

case 1: /* HAll files• */
return(false);
break;

case 2 : I* •Text only" *I
if (theFileType == 'TEXT') return(false);
break;

case 3: /* "Macwrite II" */
if ((theFileType == 'MW2D')) return(false);
break;

return(true);

Let's take a close look at the dialog-hook procedure and see how it ties in to
the file filter procedure. The hook reacts to just two item numbers passed to it:
sfHookFirstCall and the pop-up menu item number (10). It receives
sfHookFirstcall when the dialog box first appears and responds by calling

Note"'

Keypoint.,..

.,,. The Standard File Package 83

setCtl Value to initialize the value of the pop-up control to 1 (All files, the first
menu item). It also initializes the value of typeCode in the private data area
where the file filter will be looking for the value.

When the hook receives a hit in the pop-up menu item, it first gets the
current value of the pop-up control. If the value is different from the previous
setting (stored at typeCode), the user wants to see a different set of files. The
hook reacts by storing the new value at typeCode and returns
sfHookRebuildList. Returning this pseudo-item number causes
customGetFile to rebuild the file list. Since the file filter is aware of the new
setting of the pop-up (it reads the value stored at typeCode), the new filtering
criteria kick in, and only files of the selected type will appear.

.,,. An Example of Using CustomPutFile

Listing 2-14 shows the 'DLOG' and 'DITL' resources that define the custom
ized Save File dialog box shown in Figure 2-5. It differs from the
standardPutFile dialog box by including a check box called Save as stationery.
By calling customPutFile with the resource ID of this dialog box and an
appropriate dialog-hook procedure, an application can determine not only the
name of the file to be saved, but also whether the stationery pad bit of the file
is to be set.

Listing 2-14. The Rez source for the 'DLOG' and 'DITL' resources for
the CustomPutFile dialog box in Figure 2-5

idef ine rcustomPut 1001

/* StandardPutFile dialog box */
resource 'DLOG' (rCustomPut, •customPut dialog•, purgeable) {

84 IJJ> Chapter 2 Dealing with Files

Listing 2-14. The Rez source for the 'DLOG' and 'DITL' resources for
the CustomPutFile dialog box in Figure 2-5 (continued)

};

{O, O, 207, 344}, dBoxProc, invisible, noGoAway, O,
rCustomPut, un, noAutoCenter

/* StandardPutFile dialog item list */
resource 'DITL' (rCustomPut, ncustom Put itemsn)

{161, 252, 181, 332}, Button { enabled, usaven },
{130, 252, 150, 332}, Button { enabled, ucanceln },
{O, O, O, O}, Belpitem { disabled, BMScanhdlg { -6043 } },
{8, 235, 24, 337}, Useritem { enabled }, /* volume icon and name */
{32, 252, 52, 332}, Button { enabled, uEjectn },
{60, 252, 80, 332}, Button { enabled, uoesktop" },
{29, 12, 127, 230}, Useritem { enabled }, /* name list */
{7, 12, 26, 230}, Useritem { enabled }, /* folder pop-up */
{119, 250, 120, 334}, Picture { disabled, 11 }, /* dividing line */
{157, 15, 173, 227}, EditText { enabled, un }, /* file name */
{136, 15, 152, 227}, StaticText { disabled, usave as: u },

{88, 252, 108, 332}, useritem { disabled }, /* New Folder button */
/* our additional control definitions begin here: */

} ;

{186, 12, 204, 154}, CheckBox { enabled, usave as stationery pad" };
}

la Source~ I G:::J System 7

[) [olourUW.h
[.) Oh~IOiJU W.c
[.) Oic~loc.~U W.h

(E:j•~c1

(Desktop

)
)

[.) 1: U(~ I OA
[) Hi Mcrn (New LJ)
[) U~rnrl 1 (HnPnJ(,c

Saue file as: (Cancel)

I.__ M_y_F_ile ______ ___.I n Saue I
181 Saue as stationery

Figure 2-5. The customized CustomPutFile dialog box defined by the
resources in Listing 2-14

~ The Standard File Package 85

The GetSaveName routine in Listing 2-15 shows how to present this custom
dialog box and return the StandardF ileReply record and the is Stationery

·Boolean back to the caller. Notice that it passes the address of a private data
structure, PutHookRec, to CustomPutFile. This structure contains the
stationeryFlag field where the dialog-hook procedure stores the setting of
the Save as stationery check box.

Listing 2-15 also shows the dialog-hook procedure needed to handle clicks
of the added check box control. It reacts to only two item numbers
sfHookF irstCall and 13 (the number of the added check box item).

For sfHookFirstCall, the hook initializes the value of the check box
control to false (off) using SetCtlValue. It also initializes stationeryFlag to
the same value. In response to a click of the check box (item 13), the hook
toggles the check box's value and stores the new value at stationeryFlag.

That's all there is to it. When the user dismisses the dialog box, the
application simply checks the value at myDataPtr->stationeryFlag to
determine the final state of the check box.

Listing 2-15. The dialog-hook procedure for the CustomPutFile
dialog box in Figure 2-5

/* private data structure */
typedef struct {

Boolean stationeryFlag;
} PutHookRec;

void GetSaveName(StandardFileReply *toReply, Str255 defaultName, Boolean
*isStationery)
{

Point stdPosition = { -1, -1 };
PutHookRec rnyData;

custornPutFile((StringPtr)"\pSave file as:", defaultName,
toReply, rcustornPut, stdPosition,
(DlgHookYDProcPtr)MyPutHook,
(ModalFilterYDProcPtr)OL,
OL, (ActivateYDProcPtr)OL, &rnyData);

*isstationery = rnyData.stationeryFlag;

/* Dialog-hook procedure for CustornPutFile */
pascal short MyPutHook(short theitern, DialogPtr theDialog,

PutHookRec *rnyDataPtr)

short iternType;
Handle iternHandle;
Rect iternRect;

86 ..,. Chapter 2 Dealing with Files

Listing 2-15. The dialog-hook procedure for the CustomPutFile
dialog box in Figure 2-5 (continued)

short theValue;

switch (theitem)

case sfRookFirstCall:
if (((WindowPeek)theDialog)->refCon == sfMainDialogRefCon) {

myDataPtr->stationeryFlag = false;
GetDitem(theDialog, 13, &itemType, &itemRandle, &itemRect);
SetCtlValue((ControlRandle)itemRandle, false); /*check off*/

break;

case 13: /* •save as stationery" check box •/
GetDitem(theDialog, 13, &itemType, &itemRandle, &itemRect);
theValue = GetCtlValue((ControlRandle)itemRandle);
SetCtlValue((ControlRandle)itemRandle, ltheValue);
myDataPtr->stationeryFlag = ltheValue;

break;

return(theitem);

..,, Summary
In this chapter, we described the file system specification record (FSSpec) that
System 7 uses to identify files and how several File Manager routines have
been modified to use it. We also covered the special folders available in System
7, how to deal with aliases, and how to use the new Standard File Package to
create custom Open File and Save File dialogs.

In the next chapter we will explore the issue of cooperative multitasking and
show how to make your application a good citizen in a world where more than
one application may be running at once.

3 ~

Important II>

Cooperative Multitasking

When the Macintosh was first unveiled in 1984, the operating system could run
only one application at a time. To run another application, the user had to quit
the current application to return to the Finder, then launch the other applica
tion. This was deemed to be acceptable on a computer limited to 128K of RAM.

A few years later, when more powerful Macintoshes with more memory
were available, Apple boosted the power of the system by releasing a new
version of Finder, called MultiFinder. MultiFinder manages multiple running
applications and allows users to switch quickly between applications by
clicking in a window or selecting the application from the Apple menu. It also
allows applications to run in the background while a primary application runs
in the foreground and interacts directly with the user if all running applications
follow the rules in this chapter. Since the operating system does not totally
control the multitasking, and requires support from the ru~ing applications,
this feature is usually referred to as cooperative multitasking.

87

88 .,.. Chapter 3 Cooperative Multitasking

I By The Way.,..

In this chapter you will learn how to design an application that supports the
cooperative multitasking features of System 7. Most of this information also
applies to pre-System 7 applications; we're presenting it here to emphasize its
importance under System 7 and because it has not been covered extensively in
other Macintosh programming books.

This chapter also covers the Process Manager-a new System 7 manager
thatyoucan usetoobtaininformationaboutapplicationsrunninginmemory
and some memory management routines for dealing with free areas of
memory that standard Memory Manager routines don't recognize.

IJJJJ.. Running Multiple Applications
WhentheFinderlaunchesanapplication,itfirstallocatesablockofmemorycalled
a partition, inside of which the application loads and executes. The general
structure of a Finder partition, shown in Figure 3-1, resembles the memory map
for an application launched from the pre-System 7 Finder. The difference is that
the partition does not necessarily use up all of the system's available RAM.

The important data areas inside a Finder partition are as follows:

• Application heap-This is where the application loads its resources
and where standard Memory Manager routines allocate memory blocks.
The heap grows upward, as necessary, towards the top of the stack.

• Stack-This is the 680x0 processor's stack space. The stack grows
downward towards the top of the application heap as you pushmore
data on the stack. The location of the top of the stack is given by the
address in the 680x0 A7 register when the application is executing.

• AS World-When an application is executing, the 680x0 AS register
contains the address of the base of a table of application parameters.
Just below this table are the application's global variables, including
the QuickDraw globals. Just above the table is the jump table con
taining entries for every inter-segment call the application makes. At
the assembly-language level, applications access global variables
and jump table entries by specifying offsets from the address in AS.

Process #2

Process., 1

System area

..,, Running Multiple Applications WJ

Application Glob a ls

Stack

Application Heap

Jump Table

Memory allocated
with temporary
memory routines

Memory allocated with
standard Memory
Manager routines

1--A..:.P.._P l_i_ca_t_io_n_P_a_r---am-'---"-et __ e_.-s ____ I<--- A
5 QuickDr-aw Globals A5 World

Application Glob a ls

l Stack

Application Heap

System Heap

System Global Yar-iables

Exception Yector-s

Memory allocated with
standard Memory
Manager routines

Figure 3- l . A Macintosh memory map

The Finder determines the size of the space to allocate for an application's
partition by examining the application's 'SIZE' (ID-1) resource. The last two
fields in this resource contain the preferred and minimum partition sizes, in
bytes. (See the 'SIZE• resource for the Skeleton application in Listing 1-3 of
Chapter 1 and also Appendix B.) The Finder tries to allocate a partition of the
preferred size, but no larger, when it launches the application. If there's not

90 ~ Chapter 3 Cooperative Multitasking

enough memory available to do so, the Finder allocates the largest partition
possible. The Finder will not launch the application if itis unable to allocate the
minimum partition.

Choosing appropriate values for the preferred and minimum partition sizes
is an art. For the preferred size, choose a number large enough to give your
application elbowroom in most foreseeable situations. Don't just pick a large
number, say 8 megabytes, because that would prevent the Finder from
launching other applications on systems with limited RAM. To obtain a larger
partition-for a monolithic spreadsheet, for example-the user can change the
preferred size by editing the Current size field in the window the Finder dis
plays when the user selects the Get Info command (in the File menu) after
clicking on the application icon.

Choosing a minimum partition size involves more work. The best approach
is to torture test your application in successively smaller partitions until you
find a size below which your application just won't cut it. To set smaller
partitions, just change the application's preferred partition size and relaunch
the application.

The number of running applications System 7 can manage is limited only by
available memory. The memory map in Figure 3-1 shows the general organi
zation of memory in a situation where two applications, called processes, have
been launched. The processes are independent of each other although they can
send high-level events or Apple events to each other (see Chapter 4). When a
process is executing, only its AS World and its stack are active, and only the free
memory inside its partition (or the system heap) can be allocated with
NewHandle and NewPtr.

RAM that the system software is not using and that is not inside the partition
of any process is called temporary memory. This is the source of memory for the
partition the system allocates when the Finder launches an application; when
an application quits, its memory partition returns to the pool of temporary
memory. You will learn about the routines for dealing with temporary
memory later in this chapter .

..,. Switching Between Applications
The foreground application is the one currently interacting with the user-its
windows are in the frontmost plane of the screen, its menu bar appears at the
top of the screen, and all user input is directed to it. All other applications in
memory are background applications-their windows also appear on the screen,
but they are unhighlighted and appear beneath the plane of the foreground
application.

~ Switching Between Applications 91

The user can bring a background application to the foreground in two ways:

• by picking the name of the desired application from the Application
menu on the far side of the menu bar

• by clicking in an exposed window of the desired application

A background application automatically comes to the foreground if the
current foreground application quits.

Switching in a new foreground application is called a major switch. When it
occurs, the system sends a suspend event to the current foreground application
and a resume event to the background application that is being brought to the
foreground.

Your application must check for suspend and resume events and react
accordingly. To do this, first include code to check for the osEvt event in the
main event loop. (Suspend and resume events are actually subevents of
osEvt.) Your event handler for osEvt can examine the high-order word of the
message field of the event record to see if it is suspendResumeMessage. If itis,
the resumeFlag bit of the message field will be 0 for a suspend event and 1 for
a resume event. Here is the outline of a suspend/resume event handler, lifted
from the Skeleton application in Chapter 1:

case osEvt:
switch ((event->message >> 24) & OxOff)

case suspendResumeMessage:

}

break;

if ((event->message & resumeFlag) == O) { /* suspend */

/* copy scrap to clipboard, deactivate controls */
ginBackground = true;

} else { /* resume */

/* copy clipboard to scrap, activate controls */
ginBackGround = false;

}

break;

Here is how an application should react to suspend and resume events:

• Suspend events-Deactivate the controls in the frontmost window and
copy any private scrap (such as the TextEdit scrap) to the clipboard. Set
to true a global variable (called ginBackground in Skeleton) indicating
whether the application is currently running in the background.

92 ~ Chapter 3 Cooperative Multitasking

Note~

Important~

• Resume events-Copy the clipboard to the private scrap you're using,
if any, and activate the controls in your application's frontmost window.
Set to false a global variable indicating whether the application is
currently running in the background.

By reacting to suspend and resume events in this way, an application switch
will look just right to the user: The front window of the selected application will
highlight and the suspended application' sfrontwindowwill beunhighlighted.
The system automatically puts the menu bar of the selected application at the
top of the screen and moves the windows of the suspended application to a
lower plane.

..._ Operating in the Background
In the previous section you saw how to add code that allows the user to send
the application to the background or bring it to the foreground. This section
focuses on how to permit applications to continue processing quietly in the
background. The operating system grants background applications processor
time by performing a minor switch-the same as a major switch except that it
does not bring the application to the foreground. A minor switch involves
switching in the background's application execution environment, including
its AS World and stack. Unlike major switches, the user has no control over
minor switches; they are handled transparently by the operating system.

IJlli> Operating in the Background 93

..- WaitNextEvent

Background processing doesn't happen automatically as it does under an
operating system such as UNIX which supports traditional preemptive
multitasking. Rather, it requires a bit of cooperation from the Finder and all
other loaded applications, whether they're running in the foreground or
background. These applications must explicitly relinquish processor time to
the system so that the system can offer it to other applications that are waiting
for a chance to continue executing. They do this by calling the Wai tNextEvent
routine in their event loops:

pascal Boolean WaitNextEvent(short mask,
EventRecord *event,
unsigned long sleep,
RgnHandle mouseRgn);

Wai tNextEvent is the successor to GetNextEvent, the centerpiece of event
loops for applications designed to run under the old Finder. waitNextEvent
returns true if an event is pending in the event queue. In this situation, the
routine removes the event from the queue and places information about it in
the event record given by event. As shown in Listing 3-1, the event record
contains information about the event type and other related data (see Inside
Macintosh for details). waitNextEvent returns false if there is no pending
event. In that case, the event record describes a null event-the what field is
nullEvent.

Listing 3-1 . The structure of the event record used by
WaitNextEvent

typedef struct EventRecord {
short what; /* the message type */
long message; /* event-dependent data */
long when; I* time when event occurred (ticks) *I
Point where; /* position of mouse when event occurred */
short modifiers; /*state of keyboard modifiers*/

} EventRecord;

The mask parameter is a bit vector indicating which types of events
waitNextEvent should look for in the event queue (see Figure 3-2).
Wai tNextEvent ignores all types of events not permitted by mask, but does not
remove them from the queue. In most cases you will specify a mask value of
everyEvent, indicating that all events are of interest.

94 ..,., Chapter 3 Cooperative Multitasking

The parameter that is the key to cooperative multitasking is sleep-the
maximum amount of time, in ticks (sixtieths ofa second), your application will
wait for waitHextEvent to return a result if no non-null event is pending.
Wai tHextEvent returns true as soon as it receives a non-null event or false if
a non-null event does not arrive before the sleep interval expires.

While waitNextEvent waits for an event to arrive or the sleep interval to
elapse, the operating system examines the states of other pending
Wai tHextEvent calls made by other running applications. If the system finds
that the sleep interval for another application has elapsed, it performs a minor
switch to that application and causes its waitHextEvent call to return. If the
other application is in the background, the operating system can resume
execution of a portion of a background task, then call Wai tHextEvent again to
give another application a chance to gain control of the processor.

The value you pass in the sleep parameter depends on how frequently your
application needs to regain control of the processor. If the application is in the
foreground and needs to keep a TextEdit cursor blinking, for example, the
appropriate value would be the number returned by GetCareHime (usually
15 ticks). On the other hand, if the foreground application doesn't need to
perform periodic tasks, it could specify the largest possible unsigned long
value (-1). If the application is currently in the background performing a
specific task, such as recalculating a spreadsheet or downloading a file, you
should specify a sleep value appropriate to the circumstances. Pick a value
that doesn't make the operation excessively long or prevent the proper
execution of the operation.

The easiest way for your application to determine whether it's running in
the background or foreground is to check the value of a Boolean variable that
its event handler for suspend/resume events sets and clears, as described in
the previous section.

To provide a framework that makes it possible to perform a task effectively
in the background or foreground, structure your application so that all lengthy
tasks are performed inaseriesofbrief installments, with a call towai tHextEvent
after each installment. This serves two purposes: First, the user can put the
application into the background (by performing a major switch) and bring it
back to the foreground at will while the task continues executing; second, the
application can receive the processing time to complete its task even when it
is in the background. To prevent the foreground application from performing
sluggishly, the length of each installment should be limited to no more than 15
ticks-the recommended minimum sleep value for an application running in
the foreground.

The DoLongTask routine in Listing 3-2 illustrates how to implement these
general techniques. The routine calls DoPortion to perform a part of a com
plete task and passes it an index (taskindex) that DoPortion uses to deter-

., Operating in the Background 95

as Mask

highlevel Event Mask

activMask

Notes:

mDoYnMask

'----- mUpMask

'------ keyDoYnMask

'------- keyUpMask

'-------- autoKeyMask

'--------- updateMask

'---------- diskMask

• WaitNextEvent returns only event types enabled by the mask. Use
the mask constant everyEvent to enable all events.

• Vou cannot mask out null events.

Legend:

mDownMask - mouse button pressed
mUpMask - mouse button released
keyDownMask - key pressed
keyUpMask - key released
autoKeyMask - key press auto-repeated
updateMask - w indo w update event
di skMask - disk-inserted event
acti vMask - activate/deact i vale event
highlevelEventMask - high-level event (including Apple event)
osMask - operating system event (suspend, resume, mouse-moved)

Figure 3-2. The event mask used by WaitNextEvent

mine where to begin processing its task. In the example, this index is a counter;
in other applications it might be an address or any other data DoPortion needs
to determine where to start processing. DoPortion returns after 15 ticks and
DoLongTask immediately calls waitNextEvent to give other applications
processing time. This cycle repeats until DoPortion returns true to indicate
that it has completed the entire task. (If DoPortion returns false, it also indi
cates in taskindex where it stopped processing.)

96 IJ)I- Chapter 3 Cooperative Multitasking

Listing 3-2. DolongTask: how to perform a long task in the
background or foreground

/* DoLongTask performs a lengthy task in a way that permits the
user to switch the application between foreground and
background without interfering with the completion of the task.

*/

DoLongTask returns false if the task was cancelled because
the user pressed Command-Period; otherwise it returns true.

Boolean DoLongTask(void
{

}

EventRecord event;
char
short
Boolean

do {

key;
taskindex = O;

taskComplete;

taskComplete = DoPortion(&taskindex);

if (WaitNextEvent(everyEvent, &event, 15L, OL)) {

switch (event.what) {

}

case keyDown: /* check for Command-period to cancel */
key = event.message & charCodeMask;
if ((key=='•') && (event.modifiers & cmdKey)

return(false);
break;

case osEvt:
case updateEvt:

DoEvent(&event); /*use main event loop handler*/

break;

while (!taskComplete);
return(true);

/* DoPortion processes a task from the position
given by *taskindex. If the task does not
complete within 15 ticks (a minimum sleep

*/

value that other applications generally use),
it stores, at *taskindex, the position at which
it left off, and returns false. It returns true
if it completes the entire task.

Note Ill>

_.. Operating in the Background '11

Listing 3-2. DolongTask: how to perform a long task in the
background or foreground (continued)

Boolean DoPortion(short *taskindex
{

}

long startTick = TickCount();
WindowPtr wp;

do {

wp = Frontwindow();
SetPort(wp);
InvertRect(&wp->portRect); /*invert window content*/

*taskindex++;
if (*taskindex == 1000) return(true);

} while ((TickCount() - startTick) < 15);

return(false);

If your application is capable of performing useful tasks in the background,
it must set the canBackground flag in its 'SIZE' resource to be granted pro
cessing time (see Appendix B). If the application doesn't do any background
processing, it should clear this flag (specify the cannotBackground constant in
the definition of the 'SIZE' resource). This will improve system performance
because the system will not grant the background application processing time
it doesn't need.

98 ~ Chapter 3 Cooperative Multitasking

The other parameter you pass to Wai tHextEvent is mouseRgn. This region
describes the area where the mouse cursor is located. When the user moves the
mouse outside this region, WaitHextEvent immediately returns an osEvt
with mouseMovedMessage in the high-order byte of the message field of the
event record. These events enable the application to change the shape of the
cursor as the user moves the mouse to different areas of the screen. If your
application doesn't need to change the cursor, it can specify a mouseRgn value
of OL.

The proper response to an osEvt event caused by movement of the mouse
is as follows:

• Dispose of the current mouseRgn using DisposeRgn.

• Create a new region describing the area in which the mouse is currently
located; do this using by calling HewRgn to create a new empty region,
then calling routines like setRectRgn and RectRgn to add areas to the
region. (See Inside Macintosh, Volume I, pp. 181-187 for descriptions of
routines that work with regions.)

• Pass the handle of the new region in the next call to Wai tHextEvent.

When calling Wai tHextEvent for the first time in an application, pass it a
handle to an empty region returned by HewRgn. As soon as the mouse moves, the
tnouse-moved handler will receive control so it can setup the appropriate cursor.

~ Notification Manager

An application running in the background must be prepared to concede that,
in general, the user's attention will be focused on the foreground application.
In fact, the user may forget about the background application entirely, espe
cially if its windows are obscured by the foreground application. Therefore, if
the background application needs to ensure that the user receives prompt
notice of an important event, such as the completion of a specific task, it must
do more than display a dialog box.

An application running in the background should use the services of the
Notification Manager to get the user's attention.The Notification Manager
provides four different cues that a background application can invoke:

• flashing a small icon (a 'SICN' resource that the application provides) on
the right side of the menu bar atop the icon for the Application menu

• displaying a diamond mark to the left of the application's name in the
Application menu

..,. Operating in the Background 99

• playing a ' snd ' sound resource

• displaying an alert box in the foreground

Any one or any combination of these four notification cues may be used.

To post a notification request, use NMinstall:

pascal OSErr NMinstall(NMRecPtr nmReqPtr);

The Notification Manager places the request in an internal queue which the
operating system processes at its earliest opportunity. The nmReqPtr param
eter is a pointer to a notification request record (NMRec), the structure of which
is shown in Listing 3-3.

Listing 3-3. The structure of the NMRec used by the Notification
Manager

typedef struct NMRec {
QElemPtr qLink;
short
short
long
short
short
Handle

qType;
nmFlags;
nmPrivate;
nmReserved;
nmMark;
nmicon;

Handle nmSound;
StringPtr nmStr;
NMProcPtr nmResp;
long nmRefCon;

} NMRec, *NMRecPtr;

/* internal use only */
/* always set to nmType (8) */
I* internal use only */
/* internal use only */
/* internal use only */
/* 1 = put diamond mark next to name */
/* handle to 'SICN' resource */
/* handle to 'snd ' resource */
I* pointer to alert string */
/* pointer to response procedure */
/* constant for application use */

Before calling NMinstall to post the notification request, set up the fields of
NMRec to indicate the types of notification cues you want, as follows:

• If you want a diamond mark to appear next to the application's name in
the Application menu, store 1 at nmMark; otherwise store o.

• If you want a small icon (defined by a 'SICN' resource) to flash on the
right side of the menu bar, store a handle to it at runicon; otherwise store
OL. The handle must be nonpurgeable.

• If you want a sound (defined by a 'snd ' resource) to play, store a handle
to it at runsound; otherwise store OL. Specify a value of - lL if you want to
use the system beep sound. The handle must be nonpurgeable.

• If you want an alert dialog to appear in the foreground, store a pointer to

100 Ill> Chapter 3 Cooperative Multitasking

Important..,.

the string to appear in the box at nmStr. If you don't want an alert box to
appear, store OL at nmStr.

Three other fields must also be initialized:

• Store nmType at qType. This constant identifies NMRec as a notification
request queue element.

• Store the address of a response procedure at nmResp or OL if there is no
response procedure. As soon as the notification process is complete, the
Notification Manager calls the response procedure. Its duty is to remove
the notification request (using the NMRemove routine described later); call
ReleaseResource to free the nmicon and nmSound handles, if necessary;
then dispose of the NMRec itself (if space for it was allocated with HewPtr

or HewBandle).

Here is the function prototype of a response procedure:

pascal void myResponse(NMRecPtr nmReqPtr);

If you store a value of -lL at nmResp, an internal response procedure is
used that removes the notification request as soon as it completes.

• Store any useful data your response procedure may need at nmRefCon. If
you store the address in AS at nmRefCon, for example, the procedure can
gain access to the application's global variables, by using the value at
nmRefCon to switch in the application's AS World; which is not active
when the response procedure gets control. Use the SetCurrentAS rou
tine to return the current address in AS. The response procedure can use
the setAS routine to determine the current AS address and restore the
application's AS address.

Important.,..

~ Operating in the Background 101

Here are the function prototypes:

long SetCurrentA5(void);

long SetA5(long newA5);

setAS stores the address given by newA5 in AS; the value it returns is the
current AS value.

Your choice of notification cue really depends on how critical it is for the
user to react to the notification. The flashing icon, diamond, and sound cues are
relatively unobtrusive and are appropriate in most situations. It is quite
common to combine the icon and diamond cues, since one draws the user's eye
to the Application menu and the other indicates which application needs
attention. Sound cues are quite useful, but it's best to combine them with icon
and diamond cues in case the user isn't near the computer when the sound
plays.

An alert dialog should be used only if a crisis situation arises that requires
immediate resolution. Apple's Apple Link communications software, for
example, uses an alert dialog cue when it is about to hang up the telephone
because of lack of online activity for an extended period.

Once you've posted a notification request with NMinstall, the request
remains active until you remove it with NMRemove:

pascal OSErr NMRemove(NMRecPtr nmReqPtr);

NMRemove is called automatically if you store -1 in the nmResp field of NMRec
when you call NMinstall. If you store the address of your own response
procedure, you would typically call NMRemove in the procedure.

If you don't use a response procedure-perhaps because you're using a
diamond or flashing icon cue that needs to remain in effect until the user brings
the application to the foreground-matters become a bit more complicated. In
this situation, you need to execute the code that would normally appear in the
response procedure from inside the event handler for the resume event. The
handler would do this only if a Boolean global variable, indicating whether a
notification request is pending, was true. The application would set this
variable to true just before calling NMinstall and set it to false after calling
HMRemove in the event handler for suspend.

102 IJJJl. Chapter 3 Cooperative Multitasking

Note~

The DoNotify routine in Listing 3-4 shows how to make a notification
request involving three cues: a system beep, a flashing icon, and a diamond
mark. It assumes you have a 'SICN' resource (ID 128) defining a small icon in
the resource fork of the application-you can create one easily with ResEdit.
To make the audible cue more interesting, pass a handle to your favorite ' snd'
resource in nmsound, instead of -1. You can easily create such a resource and
addittoyourapplication'sresourceforkwithproductslikeFarallon'sSoundEdit
software; on Apple systems that come with microphones, you can use the
Sound control panel to add a 'snd ' resource to the System file. Use ResEdit
to move it from there to your application file.

Listing 3-4. How to make a notification request

Boolean ginBackground;
Boolean gNotifying;
nmRec gNotifyRec;

/* DoNotify shows how to install a notification request
using NMinstall.

•/
void DoNotify(void)
{

OSErr nmError;

if (lginBackground) return; /* don't do it if not in bkgnd •/

gNotifyRec.qType = nmType;
gNotifyRec.nmMark = 1; /* mark nsme with dismond •/
gNotifyRec.nmicon = GetResource('SICN', 128); /*flash this icon*/
BNoPurge(gNotifyRec.nmicon); /*handle must be nonpurgeable */
gNotifyRec.nmSound = (Randle)-lL; /*or GetResource(•snd •, resID); •/
gNotifyRec.nmStr = OL; /* no alert box */
gNotifyRec.nmResp = (NMProcPtr)OL; /* or -1 for auto-remove */
gNotifyRec.nmRefCon = OL;

nmError = NMinstall(&gNotifyRec);
gNotifying = true;

return;

Important.-

IJl> Launching an Application 103

DoNotify does not use a response procedure because it wants the visual
cues to remain visible until the user brings the application to the foreground.
Instead, it sets to true a global Boolean variable, gNotifying, just before calling
HMinstall. The event handler for the resume event should inspect this
Boolean and, if it is true, remove the notification request with HMRemove and
dispose of data structures. Here is the code you would use to do this:

if (gNotifying) {

NMRemove(&gNotifyRec);
if (gNotifyRec.runicon) ReleaseResource(gNotifyRec.nmicon);
/* uncomment the following line if you specified a •snd ' alert: */
/* if (gNotifyRec.nmSound) ReleaseResource(gNotifyRec.nmSound); */
gNotifying = false;

The last thing this code fragment does is set gNotifying to false to indicate
that the notification request has been removed. You should also initialize
gNotifying to false when the application first starts to run.

~ Launching an Application
Many applications include a Transfer ... item in the File menu for launching
another application that the user picks from a standard Open File dialog box.
This is often more convenient than switching to the Finder and trying to locate
the application from the desktop.

You can use a new System 7 routine, LaunchApplication, to launch one
application from inside another application:

pascal OSErr LauncbApplication(LaunchPBPtr LaunchParams);

LaunchApplication is a more powerful version of the Launch routine you
would use in a System 6.x environment. Listing 3-5 shows the source code for a
DoTransferroutineyoucould use to respond totheselectionofa Transfer ... item.

104 ~ Chapter 3 Cooperative Muttitasking

Listing 3-5. Using LaunchApplication to launch ()ne application
from another application

/* DoTransfer transfers control to another application.

*/

It also sends the uopen application" core AppleEvent
to the application.

void DoTransfer(void
{

StandardFileReply
SFTypeList
LaunchParamBlockRec
AppParameters
OS Err

reply;
theTypeList = { 'APPL' }l
myLaunchStuff;
myHLEvent;
launchErr;

StandardGetFile(OL, 1, theTypeList, &reply)l

if (reply.sfGood) {

myLaunchStuff.launchBlockID = extendedBlock;
myLaunchStuff.launchEPBLength = extendedBlockLeni
myLaunchStuff.launchFileFlags = O;
myLaunchStuff.launchControlFlags = launchContinue+launchNoFileFlags+

launchUseMinimum;
myLaunchStuff.launchAppSpec = &reply.sfFile;
myLaunchStuff.launchAppParameters = &myBLEvent;

myBLEvent.theMsgEvent.what = kHighLevelEvent;
myHLEvent.theMsgEvent.message = kCoreEventClass;
myBLEvent.theMsgEvent.where.v = (short)(kAEOpenApplication >> 16);
myHLEvent.theMsgEvent.where.h = (short)(kAEOpenApplication & OxOOOOFFFF);
myBLEvent.theMsgEvent.when = TickCount()l
myHLEvent.eventRefCon = O;
myHLEvent.messageLength = O;

launchErr = LaunchApplication(&myLaunchStuff)l

The only parameter you pass to LauncbApplication is a pointer to a
LaunchParamBlockRec record, the structure of which is shown in Listing 3-6.

llJl. Launching an Application 105

Listing 3-6. The structure of the LaunchParamBlockRec used by the
LaunchApplication routine

struct LaunchParamBlockRec {

};

unsigned long reservedl; /* reserved */
unsigned short reserved2; /* reserved */
unsigned short launchBlockID; /* set to launchBlockID */
unsigned long launchEPBLength; /* set to extendedBlockLen */
unsigned short launchFileFlags;
LaunchFlags launchControlFlags;
FSSpecPtr launchAppSpec;
ProcessSerialNwnber
unsigned long
unsigned long
unsigned long
AppParametersPtr

launchProcessSN;
launchPreferredSize;
launchMinimumSize;
launchAvailableSize;
launchAppParameters;

Here is the meaning of each of the non-reserved fields of
LaunchParamBlockRec:

launchBlockID--Set this to the constant extendedBlock.

launchPBLength-Set this to the constant extendedBlockLen.

launchFileFlags. LaunchApplication returns here the Finder flags for
the launched application if the launchNoFileFlaqs flag in the
launchControlFlaqs field is set.

launchControlFlags-The value you store in this field controls exactly
how the application is launched. Determine the appropriate value by
summing the flag values associated with the desired attributes. Here are the
available flag values and how they affect a launch:

• launchContinue - Set this flag if you want the calling application to
remain in memory after the other application launches. If it's not set,
the calling application terminates.

• launchNoFileFlags-Set this flag if you want LauncbApplication
to return the launched application's Finder flags in the
launchFileFlaqs field.

• LaunchUseMinimum - Set this flag if you want LauncbApplication
to launch the application in the largest available partition size that is
less than the preferred size but larger than the minimum size. If you
clear this flag, the file is launched only if a partition of the preferred
size is available.

106 IJJi. Chapter 3 Cooperative Multitasking

• launchDontSWitch - Set this flag if you don't want the launched
application brought to the foreground after it is launched.

• launchAllow24Bit -If the operating system is in 32-bit mode,
LaunchApplication normally displays a warning dialog if you try to
launch an application whose is3 2Bi tcompatible flag is not set in its
'SIZE' resource. Theusercaneithercancel the launch or proceed. The
reason for the warning is that many pre-System 7 applications are 32-
bit clean, but were written before Apple defined the use of the
is32BitCompatible flag. Set the launchAllow24Bit flag to prevent
the launching of applications that don't have the 32-bit clean flag set.

• launchinhibitDaemon -Set this flag if you want to prevent
LaunchApplication from launching a background-only application.
Such an application has the onlyBackground flag set in its 'SIZE'
resource.

launchAppSpec-Putin this field thefile system specification record (FSSpec)
for the application file to be launched. If the user selected the file from a
standard Open File dialog, as in the DoLaunch routine, set launchAppSpec
to &replysfFile where reply is the StandardFileReply record.

launchProcessSN- LaunchApplication returns here the process serial
number for the launched application. This number uniquely identifies a
process running in memory.

launchPreferredSize--LaunchApplication returns here the preferred
partition size (as specified in the application's 'SIZE' resource) for the
launched application.

launchMinimumSize--LaunchApplication returns in this field the mini
mum partition size (as specified in the application's 'SIZE' resource) for
the launched application.

launchAppParameters-Put a pointer to an AppParameters record in this
field if you want to pass a high-level event to the launched application when
it starts up; otherwise set this field to OL. High-level events are covered in
the next chapter. The DoTransfer routine in Listing 3-5 shows how to
specify the "open application" event that the Finder sends when it launches
an application.

~ Temporary Memory
Temporary memory is a pool of unused memory that is not inside any Finder
partition or the system heap. As a consequence, an application cannot use the
traditional memory allocation routines, NewBandle and NewPtr, to allocate

IJll> Temporary Memory 107

temporary memory. Those routines work only with free memory in the
application heap or in the system heap.

It is possible, however, to allocate temporary memory using the
TemplfewBandle routine:

pascal Handle TemplfewBandle(Size logicalSize,
OSErr *resultCode);

Like lfewBandle, TempHewBandle returns a handle to a block of memory of
the size given by logicalSize. If the block could not be allocated, the returned
handle is OL and the resul tCode variable contains the error code (memFullErr).

Under System 7 only, the handle returned by TemplfewBandle can be dealt
withasif itwereretumed byRewRalldle. You can use standard Memory Manager
routines to perform operations on the handle, including using DisposBandle
to dispose of the handle, for example.

The only other special temporary memory routine you'll probably need to
use is TempMaxMem:

pascal Size TempMaxMem(Size *grow);

TempMaxMem returns the size of the largest available temporary memory
block. The value it returns in the grow variable has no meaning; the grow
parameter is there only to preserve the symmetry with the MaxMem routine.

You should design your application to be clever enough to recognize when
useful amounts of temporary memory are available and then to use the space
to make memory-intensive operations more efficient. However, your applica
tion must still be able to complete its tasks even if no temporary memory is
available. Applications should never rely on the availability of temporary
memory, because, unlike heap space whose size can be guaranteed, there is no
way to guarantee the size of the temporary memory space. Indeed, if the user
has several applications running in memory, a negligible amount of temporary
memory may be available.

108 _.,, Chapter 3 Cooperative Multitasking

Important.,..

..._ Process Information
The Process Manager, new to System 7, provides information about the status
of all processes in memory. Applications can use the Process Manager to
gather interesting statistics about other processes; a debugger, for example,
could use it to locate processes in memory. As you will see in Chapter 4, you'll
probably use the Process Manager most frequently to determine whether an
application in memory can accept Apple events from your application.

The system assigns a unique process serial number to each process running in
memory. You provide this number when calling routines that require a target
process. The structure of a ProcessSerialNumber record is shown in
Listing 3-7.

Listing 3-7. The structure of the ProcessSerialNumber record

struct ProcessSerialNumber {
unsigned longhighLongOfPSN;
unsigned longlowLongOfPSN;

};

The Process Manager provides two routines for determining the process
serial numbers of the current process (the one whose AS World is active; not
necessarily the foreground process) and the foreground process. Here are the
function prototypes:

pascal OSErr GetCurrentProcess(ProcessSerialNumber *PSN);

pascal OSErr GetFrontProcess(ProcessSerialNumber *PSN);

Both routines return the process serial number in the PSN variable.

~ Process Information 109

To determine the process serial numbers of all active processes, make
repeated calls to the GetRextProcess routine until it returns a procNotFound
error:

pascal OSErr GetRextProcess(ProcessSerialNumber *PSN);

When you call GetRextProcess, pass it a serial number of a process in the
PSN variable (or pass kNoProcess in the LowLongOfPSN field and OL in the
HighLongOf PSN field when calling GetRextProcess to get the first process).
On return, GetRextProcess stores in the PSN variable the process serial
number of the next process in its internal list of processes. If it does not find any
more processes, it returns a procNotFound error.

Armed with a process serial number, you can learn all about the process by
calling GetProcessinformation:

pascal OSErr GetProcessinformation(ProcessSerialNumberptr *PSN,

ProcessinfoRecPtr info);

This routine returns information in a ProcessinfoRec (see Listing 3-8)
pointed to by info.

Listing 3-8. The structure of the ProcesslnfoRec used by the
GetProcesslnformation routine

struct ProcessinfoRec {
unsigned long
StringPtr
ProcessSerialNumber
unsigned long
unsigned long
unsigned long

} ;

Ptr
unsigned long
unsigned long
ProcessserialNumber
unsigned long
unsigned long
FSSpecPtr

processinfoLength;
processName;
processNumber;
processType;
processSignature;
processMode;
processLocation;
processSize;
processFreeMem;
processLauncher;
processLaunchDate;
processActiveTime;
processAppSpec;

11 O .,.. Chapter 3 Cooperative Multitasking

Here is the meaning of each field of the ProcessinfoRec record:

processinfoLength- This field indicates the size of the record. Set this
fieldtosizeof(ProcessinfoRec) beforecallingGetProcessinformatio':1.

processName-Put a pointer to a 32-byte buffer in this field.
GetProcessinformation returns in the buffer the name of the application.
If you don't want the name returned, set this field to OL.

processNumber-Set this field to the process serial number of the applica
tion in which you are interested.

process'fyp~tProcessinformation returns here the file type for the
application-' APPL' for a regular application, 'appe' for a background
only application, or 'dfil' for a desk accessory.

processSignatur~tProcessinformation returns here the creator
type for the application.

processMode---GetProcessinformation returns here a bit vector that
reflects the status of the mode bits in the application's 'SIZE' resource. The
mask values for the relevant bits are as follows:

en um {modeDeskAccessory Ox00020000};
en um {modeMultiLaunch Ox00010000};
en um {modeNeedSuspendResume Ox00004000};
en um {modeCanBackground OxOOOOlOOO};
en um {modeDoesActivateOnFGSwitch OxOOOOOBOO};
en um {modeOnlyBackground Ox00000400};
en um {modeGetFrontClicks Ox00000200};
en um {modeGetAppDiedMsg OxOOOOOlOO};
en um {mode32BitCompatible OxOOOOOOBO};
en um {modeHighLevelEventAware Ox00000040};
en um {modeLocalAndRemoteHLEvents Ox00000020};
en um {modeStationeryAware OxOOOOOOlO};
en um {modeUseTextEditServices OxOOOOOOOB};

Note that the first mask, modeDeskAccessory, does not correspond to a
mode bit in the 'SIZE' resource. If its bit is set, the application is a desk
accessory, not a standard application.

processLocation---GetProcessinformation returns here the address of
the base of the application's Finder partition.

processSiz~tProcessinformation retumsherethenumberofbytes

IJll- Process Information 111

in the application's Finder partition.
processFreeMem--GetProcessinformation returns here the number of
free bytes in the application's heap.
processLauncber--GetProcessinformation returns here the process se
rial number of the application that launched this process. If that application
is no longer running, this number will be kNoProcess.

processLauncbDate--GetProcessinformation returns here the number
of ticks since system start-up when the application was launched.
processActive~ime-GetProcessinformation returns here the total
number of ticks during which the process has had control of the processor,
either in the foreground or background.

processAppSpec-Put a pointer to a buffer for a FSSpec in this field;
GetProcessinformation returns in the buffer the FSSpec of the applica
tion. If you don't want the FSSpec returned, set this field to OL.

The ShowProcesses routine in Listing 3-9 shows how to useGetHextProcess
to obtain the process serial numbers of all the applications in memory. For each
serialnumber,theroutinecallsGetProcessinformationtodeterminethename,
creator, and file type of the process, then displays the results in a line in the
front window. Notice that ShowProcesses uses Skeleton's CRLF routine after
drawing each line to advance the active drawing position to the left side of the
next line.

Listing 3-9. Using Process Manager routines

/* Display the names, creators, and types of all
processes running in memory.

*/
void ShowProcesses(void
{

ProcessSerialNumber
ProcessinfoRec
Str32
FSSpec
Str255

PSN:
InfoRec:
theName:
theSpec:
typeString:

InfoRec.processinfoLength = sizeof(ProcessinfoRec):
InfoRec.processName = theName:
InfoRec.processAppSpec = &theSpec:

PSN.highLongOfPSN = O:
PSN.lowLongOfPSN = kNoProcess:

112 ~ Chapter 3 Cooperative Multitasking

while (GetNextProcess(&PSN) I= procNotFound) {

Listing 3-9. Using Process Manager routines (continued)

}

}

GetProcessinformation(&PSN, &InfoRec);
Drawstring(InfoRec.processName);

Drawstring((StringPtr)"\p (Signature: ");
TypeToString(InfoRec.processSignature, typeString);
Drawstring(typeString);
Drawstring((StringPtr)"\p File type: ");
TypeToString(InfoRec.processType, typeString);
Drawstring(typeString);

DraWChar(')') ;

CRLF(); /* defined in Skeleton source */

/* Convert an OSType to a character string.
*/
void TypeToString(OSType theType, Str255 typeString
{

}

long t;ypeNum;
short i;

typeString[OJ = 4;

for (i =.O; i <= 3 ; i++) {

}

typeString[4-i] = (char)(theType & OxOOOOOOFF);
theType = theType >> 8;

llll> Summary 113

..., Summary
In this chapter, we showed how to design an application that behaves properly
in the System 7 multitasking environment. We also provided all the information
you need to allow your application to operate in the background and to
communicate with the user through the services of the Notification Manager.

Finally, we covered the Memory Manager's temporary memory routines
and explored the routines the Process Manager provides so that you can get
information about all the applications running on the system.

In the next chapter, we will examine one of the most important new System
7 managers-the Apple Event Manager. We will show you how two applica
tions running on one system, or running on systems connected via a network,
can send commands and data to each other.

4· ~ Apple Events

System 7 introduces the high-level event to the Macintosh. A high-level event
can be sent from one application to another. To make things more interesting,
the receiving application can be running on the same Macintosh as the sender
or on any Macintosh connected to the same network.

Using high-level events, applications can exchange data or send commands
to one another. An accounting application might send a command to a
spreadsheet telling it to prepare a complex chart for a given set of data, for
example.

Of course, high-level events are useful only when the receiving application
understands how to interpret and react to the commands or data sent along
with them. In other words, the receiver must understand the protocol the
sending application is using. To avoid a proliferation of proprietary protocols
and to promote communication between the applications of different vendors,
Apple has defined a standard high-level event protocol-the Apple Event
Interprocess Messaging Protocol: High-level events sent by this protocol are
called Apple events.

System 7 includes an Apple Event Manager you can use to handle the
creation, sending, and receiving of Apple events. Your System 7 applications
will always use this manager because, as you will see, there are several Apple
events the Finder can send to an application when it starts up that the
application must respond to.

115

116 ~ Chapter 4 Apple Events

This chapter will cover much of what you will need to know to deal with
Apple events properly. Some of the topics are as follows:

• handling high-level events

• the structure of an Apple event

• installing handlers for incoming Apple events

• processing incoming Apple events

• creating and sending an Apple event

• supporting the required Apple events

..., Preparing for High-Level Events
Application developers and users must attend to several basic chores to ensure
that both an application and the Macintosh it is running on are configured to
handle high-level events.

The developer of the application must, of course, include code to handle
high-level events properly. This will be covered in much detail in the rest of this
chapter. The developer must also set two flags in the application's 'SIZE'

resource (see Appendix B):

• The isHighLevelEventAware flag tells the system that the application
knows how to handle high-level events, including the required Apple
events examined later in this chapter.

• The localAndRemoteHLEvents flag tells the system to send to the
application high-level events it receives from other systems across the
network. (You could set this flag to onlyLocalHLEvents if it doesn't
make sense for your application to respond to remote events.)

The user must also carry out some responsibilities for an application to
receive high-level events sent over the network. First, the user must enable the
Macintosh system as a whole to receive remote high-level events. To do this,
run the Sharing Setup control panel to see the window shown in Figure 4-1. If
the program linking feature is currently off, click the Start button in the bottom
pane of the window.

~ Preparing for High-Level Events 117

D Sharing Setup

Q Network Identity

Owner Name: ~IG-ar_y_L-itt-le----------~

Owner Password: I•••••••
:=::=====---~~~~~~~

Macintosh Name: lstrokkur
~------------~

D File Sharing
,. ... status

1
[Start) [File sharing is off. Click Start to allow other users !

L~~--~.C.~.:.~.5. .. 5.~.~r..:.~ .. ~~-1~_:.r..5.: -1

~ Program Linking
, status ,

Start ! Program linking is off. Click Start to allow other :
! users to link to your shared programs. ["' '··'

Click this button to enable the
receipt of high-level events from
other applications across the
network.

Figure 4- l . The Sharing Setup control panel lets you turn on Program
Linking so that your system will process high-level events sent by other
applications across the network

The next responsibility of the user is to configure the Macintosh to allow
individual remote users to gain access. To do this, run the Users & Groups
control panel and create new documents for each user you want to allow on
your system (there should already be a document for <Guest>). When you
double-click a Users & Groups document (its icon looks like a human head),
you will see one of the types of windows shown in Figure 4-2. Check the
Program Linking box to allow the remote user to send high-level events to your
Macintosh.

118 ~ Chapter 4 Apple Events

<6ues1>

LJ File Sharing
,;la::::,

~ Program Linking

0 Allow guests to link to programs
1' on this Macintosh

iiL Tim S.

~' File Sharing

~ Allow user to connect
~ Allow us:•r to ch.>n9<> p.><:<wcrd

Groups:

~ Program Linking

0 Allow user to link to Jrogr arns
on this Macintosh

Check this box to allow --
net work users to send
high-level events to the
applications on the local
Macintosh.

Figure 4-2. You must explicitly grant remote users access to your Macin
tosh before they can send high-level events to your applications. Do this
using the Users & Groups control panel to create users and specify their
privileges. This figure shows the windows you see when you double-click
on the Guest icon and the icon for a user named Tim.S.

The final responsibility of the user is to go to the Finder, select the application's
icon, then choose the Sharing ... item in the File menu to bring up the window
shown in Figure 4-3. To enable the application to receive remote high-level
events, check the Allow remote progr.am linking box. You won't be able to check
this box unless Program Linking has been turned on using the Sharing Setup
control panel.

~ The High-Level Event Mechanism 119

Note""' I''

=o Skeleton

~ Skeleton

Kind : application pro gr am
Where : Adrienne : 7777777 :

Chapter 1 Code :

Program Linking

D Allow remote program linking
~~

Check this box to allow high-level
events received from an application
across the net work to be passed
to the application.

Figure 4-3. The window brought up by the Sharing ... item in the Finder's
File menu when an application Icon is selected. By checking the Allow
remote program linking check box, the application will receive high
level events sent by applications running on systems across the network .

.,_ The High-Level Event Mechanism
High-level events are sent from one application to another using the Event
Manager's PostBighLevelEvent routine.This routine sends the contents of
any arbitrary data buffer you specify to a target application (sometimes called
a server application). The Event Manager uses the services of a low-level
manager, the Program-to-Program Communications (PPC) Toolbox, to effect
the transfer; the PPC Toolbox, in tum, transports data across the network using
the Apple Data Stream Protocol (ADSP) implemented by the AppleTalk
Manager.

120 .,_ Chapter 4 Apple Events

The PostBighLevelEvent routine is not discussed in detail because you
should avoid using it directly. Instead, use Apple Event Manager routines to
construct a packet of data and send it to another application. This encourages
you to use the standard Apple Event Interprocess Messaging Protocol rather
than dreaming up your own unique protocol.

.,. Addressing a High-Level Event

A sender can specify the recipient of a high-level event using one of the
following four data types:

• the application's signature

• the application's process serial number

• the target ID
• the session ID

If the target application is running on another computer on the network,
you must specify either a target ID or a session ID-you can't specify a
signature or a process serial number. The structure of a target ID record, which
incorporates a session ID, is shown in Listing 4-1. Also shown are related data
structures, PPCPortRec, LocationNameRec, and PortinfoRec.

Listing 4-1. The structures of the TargetlD, PPCPortRec,
LocationNameRec, and PortlnfoRec records

struct TargetID {
long sessionID; /* session reference number */
PPCPortRec name; /* port name */
LocationNameRec location; /* port location */
PPCPortRec recvrName; /* reserved */

};

struct PPCPortRec {
ScriptCode nameScript;
Str32 name;

};

PPCPortKinds portKindSelector;

union {
Str32 portTypeStr;
struct {

} u;

OSType creator;
OSType type;
} port;

/* script of name */
/* program name */
/* variant: ppcByString or

ppcByCreatorAndType */

/* ppcByString - used by AE Manager */

/* ppcByCreatorAndType */

NotelJJJ>

.,.. The High-Level Event Mechanism 121

Listing 4-1. The structures of the TargetlD, PPCPortRec,
LocationNameRec, and PortlnfoRec records (continued)

struct LocationNameRec {
PPCLocationKind locationKindSelector1 /* variant: ppcNoLocation

ppcNBPLocation or
ppcNBPTypeLocation */

/* ppcNoLocation means the target application is local (not remote) •/
union {

EntityName nbpEntity1 /* ppcNBPLocation: NBP name entity */
Str32 nbpType1 /* ppcNBPTypeLocation: NBP type string */
} u;

struct PortinfoRec { /* returned by PPCBrowser •/
unsigned char fillerl;
Boolean authRequired1
PPCPortRec name1

};

In Chapter 3 you saw how to use the Process Manager's GetllextProcess
and GetProcessinformation routines to determine the process serial
numbers and signatures of all applications running on a system. You can use
these routines to identify the target of a high-level event when you know the
target is already running on the same computer. If the application isn't already
running, you can first launch it by searching for it in the Finder's desktop
database (see Chapter 9), then calling LaunchApplication (see Chapter 3).

The ApplicationisRunning and LaunchMyApplication routines in
Listing 4-2 assist you in locating a target application running on the same
computer. You can callApplicationisRunning to determine if an application
with a given signature is already running-if it is, a Boolean true is returned
and you can use the signature or process serial number to identify the target.
If the application is not already running, you can launch it by calling
LaunchMyApplication. This routine uses the PBD'.rGetAPPL routine to search
the desktop database of the boot volume for an application with a given
signature. (You will learn more about the desktop database in Chapter 9; for
more information on the PBD'.rGetAPPL routine, refer to Inside Macintosh,
Volume VI.) When the application is found, LaunchMyApplication launches

122 lill- Chapter 4 Apple Events

it using the LauncbApplicaUon routine that you learned about in Chapter 3.
Once the application is running, you can identify it by signature or by process
serial number.

Listing 4-2. Routines for checking that an application Is running
and for automatically finding and launching an application that is
not running

Boolean ApplicationisRunning(OSType theSignature)
{

}

ProcessSerialNwnber
ProcessinfoRec
OSErr

thePSN;
theProcessinfo;
theError;

theProcessinfo.processinfoLenqth = sizeof(ProcessinfoRec);
theProcessinfo.processName = OL;
theProcessinfo.processAppSpec = OL;

thePSN.highLongOfPSN = OL;
thePSN.lowLongOfPSN = kNoProcess;

while (GetNextProcess(&thePSN) I= procNotFound) {

}

GetProcessinformation(&thePSN, &theProcessinfo);
if (theProcessinfo.processSignature == theSignature

return (true) ;

return(false);

OSErr LaunchMyApplication(OSType theSignature
{

DTPBRec
LaunchParamBlockRec
FSSpec
OSErr

theDatabase;
theLPB;
theFSSpec;
myError;

theDatabase.ioCompletion = OL;
theDatabase.ioNamePtr = OL;
theDatabase.ioVRefNum = -1; /* search boot volume only */

if ((myError = PBDTGetPath(&theDatabase)) I= noErr)
return(myError):

~ The High-Level Event Mechanism 123

Listing 4-2. Routines for checking that an application Is running
and for automatically finding and launching an application that Is
not running (continued)

}

theDatabase.ioindex = O; /* most recent creation date */
theDatabase.ioFileCreator = theSignature;
theDatabase.ioNamePtr = (StringPtr)theFSSpec.name;

if ((myError = PBDTGetAPPL(&theDatabase, false)) I= noErr)
return(myError);

theFSSpec.vRefNum = theDatabase.ioVRefNum;
theFSSpec.parID = theDatabase.ioAPPLParID;

theLPB.launchBlockID = extendedBlock;
theLPB.launchEPBLength = extendedBlockLen;
theLPB.launchFileFlags = O;
theLPB.launchControlFlags = launchContinue + launchNoFileFlags +

launchUseMinimum + launchDontSwitch;
theLPB.launchAppSpec = &theFSSpec;
theLPB.launchAppParameters = OL;

return(LaunchApplication(&theLPB));

A more general technique for identifying a target-whether the target is
local or running on another system-is to use the PPCBrowser routine.
PPCBrowser puts up ·a dialog box similar to the one shown in Figure 4-4
allowing the user to select the desired target application. It returns a completed
LocationNameRec and a PortinfoRec. You can construct a TargetID record
by transferring the LocationNameRec to the location field of the TargetID
and transferring the PortinfoRec. name field of the PortinfoRec to the name
field of the TargetID.

124 .,_ Chapter 4 Apple Events

Choose a program to link to:
Macintoshes Programs

John Perry's fx File Sharing Extension
Jordan's Mac 11 fx Finder

CC3-1 st/South
CC3-2nd/North
CC3-2nd/South
CC3-4th/North
CC3-5th/North

~II
(Cancel) n OK D

Figure 4-4. The dialog box PPCBrowser displays when you' re connected
to an internet. If you' re not on an internet, the box titled Apple Talk Zones
does not appear

The function prototype for PPCBrowser is as follows:

pascal OSErr PPCBrowser(ConstStr255Param prompt,
ConstStr255Param applListLabel,
Boolean defaultSpecified,
LocationNameRec *theLocation,
PortinfoRec *thePortinfo,
PPCFilterProcPtr portFilter,
ConstStr32Param theLocNBPType)~

Here are the meanings of the parameters to PPCBrowser:

prompt-Defines the title of the dialog box. If you pass OL, the title will be
Choose a program to link to:.
applListLabel-Defines the heading that appears above the list of
applications in the dialog box. If you pass OL, the heading will be Programs.
defaultSpecified- If set to true, you're passing information about a
default application in the records that theLocation and thePortinfo
point to. If this application exists, its entry is highlighted when the dialog

.,.. The High-Level Event Mechanism 125

box first appears. (Presumably the default information you pass was
returned by a previous call to PPCBrowser .) Set this parameter to false if you
aren't providing information about a default application.

tbeLocation-On return, the LocationNameRec to which this parameter
points contains information describing the selected application.

tbePortinfo-On return, the PortinfoRec to which this parameter points
contains information describing the selected application.

portFil ter-Pass the address of a port filter procedure here, or OL if you
aren't using a port filter procedure. As you will see, a port filter procedure
restricts the types of applications PPCBrowser displays in its list of
programs.

tbeLocNBHype-Pass a name-binding protocol (NBP) type string
identifying the entities that PPCBrowser is to display in the Macintoshes list
in the dialog box. If you specify OL (the usual case), PPCBrowser uses
"PPCToolbox." This is the entity name the PPC Toolbox registers when the
Macintosh starts up with Program Linking turned on or when you turn
Program Linking on with the Sharing Setup control panel.

PPCBrowser returns an error code of userCanceledErr if the user clicks the
Cancel button in the dialog box.

If you don't pass the address of a port filter procedure to PPCBrowser, the
browser dialog shows all possible target programs for a high-level event. In
some cases, however, you may wish to restrict the list of programs that are
shown-you may want to display only programs with a particular signature
or programs running on the same system, for example. To provide specialized
filtering, write a portfilterprocedurethatuses the following function prototype:

pascal Boolean myPPCFilter(LocationNamePtr locationName,
PortinfoPtr thePortinfo);

PPCBrowser calls this procedure each time it needs to decide whether to
display the name of an application. If the procedure returns false, the name is
not displayed; if it returns true, it is displayed.

The port filter procedure receives pointers to a program' sLocationNameRec
and PortinfoRec records. It inspects the data in these records to decide
whether the program should be filtered. Listing 4-3 shows a filter you can use
to force PPCBrowser to display only the names of programs that have a specific
signature.

126 ~ Chapter 4 Apple Events

Listing 4-3. A typical port filter procedure for PPCBrowser

/* Port filter procedure for PPCBrowser */
/* Note: ApplCreator is a global defining an application signature */
pascal Boolean MyPPCFilter(LocationNamePtr locationName,

Portinf oPtr thePortinf o)

StringPtr s;
OSType theCreator;

/* inc1ude following line to filter out remote entities */
/*if (l(locationName->locationKindSelector == ppcNoLocation)) return(false);
*/

if ((thePortinfo->name).portKindSelector == ppcByCreatorAndType) {

theCreator = (thePortinfo->name).u.port.creator;

} else { /* must be ppcByString */
/* Apple Event Manager uses ppcByString. The string is 8 characters

long: a 4-byte creator followed by •ep• and a 2-byte ID number */

s = (thePortinfo->name).u.portTypeStr;

if (*s++ I= 8) return(false); /* unknown string */

BlockMove (s &thecreator, 4);

if (theCreator I= ApplCreator) return(false);
return (true) ;

~ Receiving a High-Level Event

An application checks for high-level events in much the same way it checks for
any other type of event-by calling WaitHextEvent. When WaitHextEvent
retrieves a high-level event, the event record contains an event code of
kHighLevelEvent in its what field. The message and where fields contain the
event class and event ID for the event. These fields uniquely identify the high
level event and were provided by the sending application when it calls
PostBigbLevelEvent to send the event.

Note 11>

IJll- Apple Event Interprocess Messaging Protocol 127

~ Apple Event Interprocess Messaging Protocol
The preferred technique for sending high-level events between applications
involves using the Apple Event Interprocess Messaging Protocol (AEIMP).
High-level events sent using this protocol are called Apple events and are
handled by routines in the Apple Event Manager.

The Apple Event Interprocess Messaging Protocol requires that the data
you send via a high-level event be structured in a particular way. Much of this
structure comes free as a result of using Apple Event Manager routines. Using
a standard protocol like AEIMP makes it much easier for applications to work
with one another, even if they were created by different programming teams.

Apple events are basically commands that direct the receiving application
to perform particular tasks or return status information. Each event is uniquely
defined by an event class and an event ID, both of which are usually represented
by four-character mnemonic literal strings (instead of the equivalent 32-bit
integers). Table4-1 shows the four Apple events the Finder uses to communicate
with a running application.

Table 4-1. The four required Apple events that the Finder sends to
running applications

Event Class Event ID Parameter Meaning_

'aevt' 'oapp' none Open the application
'aevt' 'odoc' list of aliases Open the documents
'aevt' 'pdoc' list of aliases Print the documents
'aevt' 'quit' none Quit the application

128 ~ Chapter 4 Apple Events

The four general categories of Apple events are as follows:

• Required-These are the four events that the Finder can send to a
running application (see Table 4-1). They will be sent to any application
that has the isHighLevelEventAware flag in its 'SIZE' resource set (see
Appendix B).

• Core-These events define general operations that almost any Macintosh
application should support. They are documented in the Apple Event
Registry, published by Apple's Developer Technical Support group.

• Functional-area-These events define operations that are unique to a
particular class of application (such as word processors, spreadsheets,
and so on). They are also documented in the Apple Event Registry.

• Custom-These events are application-specific and may be published or
unpublished, depending on the mood of the developer of the application.
It is expected that many custom Apple events will eventually become de
facto standards and migrate into the functional-area category.

If you wish to define an Apple event for a particular operation, check the
Apple Event Registry to see if one has already been defined. If one has been
defined, use it! Don't reinvent the wheel. If no published Apple event is
available, you may go ahead and define your own. To do so, first assign a
unique event class (your application's signature is a good choice), then assign
an event ID that distinguishes it from other events with the same event class.

A complete Apple event definition also includes a description of any
parameters that will be included with the event. The parameter for the Finder's
'aevt' 'odoc' (Open Document) event, for example, is a list of the aliases of
file names to be opened. As you will see, each parameter is associated with a
unique keyword.

~ Apple Event Data Structures

You must become familiar with a few key Apple event data structures before
you can confidently use Apple Event Manager routines. They are the following:

• AEDesc-descriptor record

• AEKeyDesc-keyword-specified descriptor record

• AppleEvent-Apple event record

The precise definitions for these records, and some related records, are
shown in Listing 4-4.,

Note~

IJJ> Apple Event Interprocess Messaging Protocol 129

Listing 4-4. The structures of the AEDesc, AEKeyDesc, AEDesclist,
AERecord, and AppleEvent records

struct AEDesc {
DescType descriptorTypei
Handle dataHandlei

struct AEKeyDesc {
AEKeyword descKeyi
AEDesc descContenti

} 1

/* data type specification */
/* handle to the data */

/* keyword for the descriptor */
/* the descriptor */

typedef AEDesc AEDescListi /* an AEDesc with a descKey of 'list• */
typedef AEDescList AERecord; /* a list of keyword-specified descriptors */
typedef AERecord AppleEventi /* an AERecord that defines an Apple event */

The descriptor record (AEDesc) is the basic building block. It is composed of
a handle to a block of data and a descriptor type that indicates the contents of
the data. Listing 4-5 contains a list of standard descriptor types. Notice that the
list includes standard numeric types that you would find in any programming
language, as well as complex structures such as file system specification
records and lists.

Listing 4-5. Descriptor types for Apple event descriptor records

idef ine typeBoolean
#define typeChar
#define typeSMint
idef ine typeinteger
#define typeSMFloat
#define typeFloat
#define typeLonginteger
#define typeShortinteger
#define typeLongFloat

'bool'
'TEXT'
'shor'
'long•
'sing•
'doub'
'long•
'shor'
'doub'

/* Boolean value •/
/* block of characters •/
/* 16-bit integer */
/* 32-bit integer */
/* SANE single precision number */
/* SANE double precision number */
/* 32-bit integer •/
/* 16-bit integer */
/* SANE double precision number */

130 ~ Chapter 4 Apple Events

Listing 4-5. Descriptor types for Apple event descriptor records
(continued)

#define typeShortFloat
#define typeExtended
#define typeComp
#define typeMagnitude
#define typeAEList
#define typeAERecord

#define typeTrue
#define typeFalse
#define typeAlias
#define typeEnumerated
#define typeType
#define typeAppParameters
#define typeProperty
#define typeFSS
#define typeKeyword
#define typeSectionH
#define typeWildCard
#define typeNull

#define typeApplSignature
#define typeSessionID
#define typeTargetID

'sing'
'exte'
'comp'
'magn'
'list'
'reco'

'true'
'fals'
'alis'
'enum'
'type•
'appa•
'prop'
'fss
'keyw'
'sect'

'****'
'null'

'sign'
'ssid'
'targ'

/* SANE single precision number */
/* SANE extended number */
/* SANE computational number */
/* unsigned 32-bit integer */
/* list of descriptor records */
/* list of keyword-specified

descriptor records */
/* Boolean true value */
/* Boolean false value */
/* alias record */
/* enumerated data */
/* descriptor type */
/* launch parameters */
/* Apple event property */
/* file system specification */
/* Apple event keyword */
/* Edition Manager section handle */
/* wildcard: matches any type */
/* null or non-existent data */

/* application signature */
/* session ID */
/* target ID */

#define typeProcessserialNumber•psn ' /*process serial number*/

The next step up from the descriptor record is the keyword-specified descriptor
record or AEKeyDesc. An AEKeyDesc is similar to an AEDesc except that it also
includes a keyword that serves as an identifying tag for the record. The Apple
Event Manager reads the tag to determine to what attribute or parameter the
AEDesc within the AEKeyDesc belongs. An attribute relates to a characteristic
of an Apple event that is used primarily by the Apple Event Manager itself
the event class, event ID, and target address are all attributes, for example. A
parameter relates to the data that the target application will retrieve and deal
with explicitly. Parameters include numeric data and file names and are part
of the definition for the Apple event that appears in the Apple Event Registry.

Listing 4-6 shows the keywords for standard Apple event parameters and
attributes. Notice in particular the keyDirectObject keyword that identifies
an Apple event's direct parameter. This is the primary (and many times only)
parameter that most Apple events use.

IJlii> Receiving Apple Events 131

Listing 4-6. Keywords for standard Apple event parameters and
attributes

/* Keywords for Apple event parameters:

#define keyErrorNumber
#define keyErrorString
#define kAEAnswer
#define keyDirectObject

'errn' /* error number */
•errs' /* error string •/
•ansr' /* event ID for reply */

' /* direct parameter */

/* Keywords for Apple event attributes: */

#define keyTransactionIDAttr 'tran' /* transaction ID */
#define keyReturnIDAttr 'rtid' /* return ID */
#define keyEventClassAttr 'evcl' /* event class */
idef ine keyEventIDAttr 'evid' /* event ID */
#define keyAddressAttr 'addr' /* target address */
#define keyOptionalKeywordAttr 'optk' /* list of optional parms
#define keyTimeoutAttr 'timo• /* timeout value */
idef ine keyinteractLevelAttr 'inte' /* user interaction level
#define keyEventSourceAttr •esrc' /* source address */

*/

*/

#define keyMissedKeywordAttr 'miss' /* first required parameter
not yet retrieved */

The final important record is the AppleEvent record. This is the record
you'll be building, sending, and receiving using Apple Event Manager routines.
An AppleEvent record is an AEDesc with a descriptor type of
typeAppleEvent. The data to which the AEDesc handle refers is a list of the
keyword-specified descriptor records that completely describe the necessary
attributes and parameters for the Apple event.

~ Receiving Apple Events
Adding code to your application to handle incoming Apple events is quite
straightforward. The first step is to prepare a list of the Apple events your
application will support. This list should include the required Apple events
sent by the Finder, other events in the Apple Event Registry that are appropriate
to the application, and any custom events you've defined that are unique to the
application.

Next, use the AEinstallEventBandler routine to install an event handler
(that you provide) for each Apple event the application supports. This routine
stores the address of the handler in an internal lookup table. When the Apple
event corresponding to this handler arrives, and the application calls

132 ~ Chapter 4 Apple Events

ABProcessAppleEvent, the Apple Event Manager automatically calls this
routine to handle the event. Here is the function prototype for
ABinstallBventBandler:

pascal OSErr ABinstallBventBandler(AEEventClass theAEBventClass,
AEEventID theAEBventID,
EventHandlerProcPtr handler,
long handlerRefcon,
Boolean isSysHandler);

The parameters passed to ABinstallEventBandler are theAEEventClass
(the event class), theAEEventID (the event ID), handler (the address of the
Apple event handler you provide), handlerRefcon (an application-defined
reference constant), and isSysHandler (a Boolean indicating whether the
handler is to be added to the system dispatch table or the application's dispatch
table).

How to write an event handler will be discussed in the next section.
As noted earlier, you use WaitNextEvent to retrieve high-level events

(including Apple events) from the event queue, just like any other event type.
When it retrieves a high-level event, the what field of the event record is
kHiqhLevelEvent and the proper response to the event is to call the
ABProcessAppleEvent routine. ABProcessAppleEvent checks for an event
handler corresponding to the event class and event ID in the event record and
dispatches control to it if it exists.

~ Writing an Apple Event Handler

Here is the function prototype for an Apple event handler that you install with
ABinstallEventBandler:

pascal OSErr myEventHandler(AppleEvent *theAppleEvent,
AppleEvent *reply,
lonq myRefcon);

The Apple Event Manager passes three parameters to the Apple event
handler:

theAppleEvent-This is a pointer to the AppleEvent record describing the
event.
reply-This is a pointer to the AppleEvent record that the Apple Event
Manager sends back to the caller, if the caller requested a reply, when the
handlerexits.Ifanerroroccursduringprocessing,youcanaddadescriptive

_.. Receiving Apple Events 133

error string in this record (see "Error Handling" later in this chapter). You
canalsoreturnanyotherusefuldatatothecallerviathereplyAppleevent
the results of the operation, for example. The event class and event ID of a
reply Apple event are kCoreEventClass and kAEAnswer, respectively.

myRefcon-This is the reference constant that the application passed to
AEinstallEventHandler when it first installed the event handler. The
application can use this constant for any convenient purpose.

If the Apple event handler did not encounter an error while processing the
Apple event, it should return noErr; otherwise, it should return a meaningful
error code documented in the description of the event in the Apple Event
Registry. The Apple Event Manager automatically inserts the error code in the
keyErrorNumber parameter of the reply Apple event so that the application
that sent the Apple event can retrieve it to learn what went wrong.

_.. Extracting Parameters from an AppleEvent Record

Two routines are available for extracting parameters from the AppleEvent
record passed to an Apple event handler: AEGetParamDesc and
AEGetParamPtr. AEGetParamDesc returns a copy of the AEDesc record for the
parameter whereas AEGetParamPtr returns the descriptor type and the data
to which the AEDesc refers in buffers that you provide. Both routines return
errAEDescNotFound if the requested parameter does not exist.

You will most often use AEGetParamDesc in situations where you're
extracting an AEDesc that refers to a list of descriptor records (descriptor type:
typeAEList). This is because the Apple Event Manager's list-processing
routines (described later) require an AEDesc (coerced to an AEDescList) as an
input. Otherwise, you will probably use AEGetParamPtr to retrieve the
parameter's data directly.

Here is the function prototype for AEGetParamDesc:

pascal OSErr AEGetParamDesc(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
DescType desiredType,
AEDesc *result);

The meanings of each of the parameters are as follows:

theAppleEvent-A pointer to the AppleEvent record that was passed to
the Apple event handler.
theAEKeyword-The keyword of the parameter you're interested in learning
about. The names of the keywords for the parameters of Apple events are

134 "" Chapter 4 Apple Events

documented in the Apple Event Registry. Of course, if the event is a custom
event that you have defined, you will already be familiar with the keywords
its parameters use.
desiredType-lndicates the descriptor type to which the data referred to
in the descriptor record is to be coerced. (You could specify, for example,
typeFSS to coerce an alias type to a file system specification type, saving you
the trouble of doing this explicitly.) Specify a value of typeWildCard if you
don't want to coerce the type. Table 4-2 describes many of the built-in type
coercions that the Apple Event Manager can perform. For information on
how to write and install your own coercion handlers, see Inside Macintosh,
Volume VI.

result-A pointer to a space where the AEDesc record is returned. Your
application must reserve a space of sizeof (AEDesc) bytes before calling
AEGetParamDesc. This descriptor must be disposed of withAEDisposeDesc
when you're through with it.

Table 4-2. Type coercions supported by the Apple Event Manager
(partial list)

Native
Descriptor Type

typeChar

type Integer
typeLonginteger
typeSMint
typeSMFloat
typeShortinteger
typeLongFloat
typeShortFloat
typeExtended

Coerced
Descriptor Type

type Integer
typeLonginteger
typeSMint
typeSMFloat
typeShortinteger
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

typeChar

Notes

Any string describing a
number can be coerced
to a numeric type.

Any numeric type can
be coerced to a text
string representation.

~ Receiving Apple Events 135

Table 4-2. Type coercions supported by the Apple Event Manager
(partial list) (continued)

Native
Descrietor Type

typeComp
typeMagnitude

type Integer
typetonginteger
typeSMint
typeSMFloat
typeShortinteger
typeLongFloat
typeShortFloat
typeExtended
typecomp
typeMagnitude

typeAlias

Coerced
Descrietor Type

type Integer
typeLonginteger
typeSMint
typeSMFloat
typeShortinteger
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

typeFSS

Notes

Any numeric type can
be coerced to any other
numeric type.

An alias record can be
coerced to a file system
specification record.

Here is the function prototype for AEGetParamPtr:

pascal OSErr AEGetParamPtr(canst AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
DescType desiredType,
DescType *typeCode,
Ptr dataPtr,
Size maximumSize,
Size *actualSize);

The first three parameters have the same meanings as the corresponding
parameters of AEGetParamDesc. Here are the meanings of the remaining four
parameters:

typeCode-The variable in which AEGetParamPtr returns the actual
descriptor type of the specified parameter.

dataPtr-A pointer to a buffer in which the data referred to in the
keyword-specified descriptor record for the parameter is returned. Your
application must reserve space for this buffer before making the call to
AEGetParamPtr.

136 ~ Chapter 4 Apple Events

Note 11>

maximumSize-The size of the buffer pointed to by dataPtr.

actualSize-The variable in whichAEGetParamPtr returns the actual size
of the data referred to in the keyword-specified descriptor record. If this
value is greater than maximumSize, not all the data will have been retrieved,
so you should call AEGetParamPtr again after allocating a buffer of
actualSize bytes.

There is a pair of similar routines for extracting information about attributes
from anAppleEvent record: AEGetAttributePtr andAEGetAttributeDesc.
You won't use these routines very often since applications will rarely need to
deal with attributes directly. The exception is the keyMissedKeywordAttr
attribute discussed later in this chapter.

~ Handling Lists of Descriptor Records

It is not uncommon for a parameter to an Apple event to consist of a list of
descriptor records. The Finder's kAEOpenDocuments (' odoc ') and
kAEPrintDocuments ('pdoc ')events, for example, each include a list of alias
records describing a group of files to be opened or printed.

The Apple Event Manager includes three routines you can use to deal with
lists of descriptors: AECountitems, AEGetNthPtr, and AEGetNthDesc.

~ Receiving Apple Events 137

Use AECountitems to return the number of items in a descriptor list. Here
is its function prototype:

pascal OSErr AECountitems(const AEDescList *theAEDescList,
long *theCount);

The first parameter is a pointer to an AEDescList record. If the descriptor
returned by AEGetParamDesc describes a list of descriptors, pass its address
coerced to an AEDescList-to AECountitems. The number of elements in the
list is returned in the theCount variable.

To retrieve the data for a given descriptor record in a list, use AEGetNthDesc
and AEGetNthPtr. Here are the function prototypes:

pascal OSErr AEGetNthDesc(const AEDescList *theAEDescList,
long index,
DescType desiredType,
AEKeyword *theAEKeyword,
AEDesc *result);

pascal OSErr AEGetNthPtr(const AEDescList *theAEDescList,
long index,
DescType desiredType,
AEKeyword *theAEKeyword,
DescType *typeCode,
Ptr dataPtr,
Size maximumSize,
Size *actualSize);

As is apparent, these routines are quite similar to AEGetParamDesc and
AEGetParamPtr. Remember thatthe AEDescList type is equivalent to AEDesc.
The only substantive difference is that they both take an index parameter
indicating which element of the list is to be dealt with (the first element has an
index of 1). Remember to use AEDisposeDesc to dispose of the descriptor
returned by AEGetParamDesc once you've finished using it.

.., Determining the Size of Parameters and Attributes

Sometimes you need to determine the size of an Apple event parameter that
you've extracted or are about to extract. For example, if you're going to extract
a parameterwithAEGetParamPtr,itis helpful to know the size of the parameter
in advance so that you can pass a buffer that is large enough to hold the result.

138 ..,, Chapter 4 Apple Events

Three size-related routines are available to you: ABSizeOfParam,
ABSizeOfNtbl'tem, and ABSizeOfAttribute. Here are their function
prototypes:

pascal OSErr AESizeOfParam(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
DescType *typeCode,
Size *dataSize);

pascal OSErr AESizeOfAttribute(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
DescType *typeCode,
Size *dataSize);

pascal OSErr AESizeOfRthitem(const AEDescList *theAEDescList,
long index,
DescType *typeCode,
Size *dataSize)~

Notice that you pass the same two input parameters to ABSizeOf Par am and
ABSizeOfAttribute: a pointer to theAppleEvent record (theAppleEvent) and
the keyword for the Apple event parameter or attribute you're interested in
(theAEKeyword). These routines return the descriptor type and the size of the
descriptor data in the typeCode and dataSize variables.

ABSizeOfNtbitemreturns the descriptor type and size of alistitem. The two
input parameters you pass to it are a pointer to the list descriptor
(theAEDescList) and a list index (index) .

..,, Checking for Completeness

It is good coding practice to verify that you have retrieved all required
parameters for an Apple event after you think you have done so. Do this by using
ABGetAttributePtr to retrieve information on the descriptor record for the
attribute whose keyword is keyMissedKeywordAttr.

The data for the keyMissedKeywordAttr attribute is the descriptor type of
a required parameter that has not yet been retrieved with ABGetParamDesc or
ABGetParamPtr. The attribute is not present if all required parameters have
already been retrieved; thus, if AEGetAttributePtr returns
errAEDescNotFound you know that all is well. If it returns noErr, you forgot
to retrieve an important parameter and you should exit the Apple event
handler with an appropriate error code as the result.

Listing 4-7 shows a routine your Apple event handler can call to verify that
it has retrieved all required parameters.

~ Receiving Apple Events 139

Listing 4-7. Call the RequiredCheck routine to determine if your
Apple event handler has retrieved all required parameters. It has
if RequiredCheck returns noErr.

OSErr RequiredCheck(AppleEvent *theAppleEvent
{

OSErr
DescType
Size

myErr;
typeCode;
actualSize;

myErr = AEGetAttributePtr(theAppleEvent, keyMissedKeywordAttr,
typeWildCard, &typeCode, OL, O, &actualSize);

if (myErr == errAEDescNotFound) return(noErr);
if (myErr == noErr) return(errAEEventNotHandled);
return(myErr);

~ User Interaction Decisions

Once an application has extracted all the parameters from an Apple event, it
may or may not have all the data it needs to perform the requested operation.
Depending on the operation, more data may be needed from the user of the
application that is processing the incoming Apple event-perhaps by
displaying a data entry dialog box.

It is not proper to always interrupt the user to request this extra data. The
correct approach is to call the AEinteractwi thus er routine just before you
would otherwise interact with the user. AEinteractWithUser checks two
interaction preferences-one ~pecified by the application using the
AESetinteractionAllowed routine and one specified by the sender of the
Apple event (see the description of AESend in the next section)-and returns
one of three results:

• noErr-lnteraction is permitted and the user has broughtthe application
to the front (or the application was already at the front).
AEinteractWithUser uses the services of the Notification Manager to
prompt the user to bring the application to the front.

• errAETimeout-Interaction would have been permitted but the user
didn't bring the application to the front within the specified period.

• errAEHoUserinteraction-lnteraction is not allowed.

If the result is not noErr, your application should try to complete the operation
with a default set of data; if that's not appropriate, the Apple event handler
should return an appropriate error code.

140 Ill- Chapter 4 Apple Events

Note Ill>

Here is the function prototype for AEinteractWitbUser:

pascal OSErr AEinteractWitbUser(long timeOutinTicks,
NMRecPtr runReqPtr,
IdleProcPtr idleProc);

Here are the meanings of the parameters to AEinteractwi tbuser:

timeOutin'licks-The length of time, in ticks, thatthe application will wait
forthe user to bringthe application to the foreground. If the application isn't
brought to the foreground within this time period, AEinteractwi tbUser
returns an errAETimeout error code. Two common values for this parameter
are kAEDefaultTimeout (a default value of about one minute) and
kNoTimeout (no time-out).

nmReqPtr-If AEinteractionAllowed determines that interaction is
permitted, but the application is not in the foreground, it uses the Notification
Manager to alert the user to bring the application to the foreground. This
parameter is a pointer to a notification request record that
AEinteractWitbUser passes to HMinstall to issue the notification (see
Chapter 3). If you specify a value of OL, a default notification request record
is used.

idleProc-A pointer to an idle procedure that deals with events-update,
activate, and operating-system (suspend, resume, and mouse-moved)
that might occur while the AEinteractwi tbUser routine is waiting for the
user to bring the application to the foreground. You will learn how to write
an idle procedure in the next subsection.

The application's interaction preference thatAEinteractwi tbUserinspects
is set using the AESetinteractionAllowed routine:

pascal OSErr AESetinteractionAllowed(AEinteractAllowed level) ;

~ Receiving Apple Events 141

The three choices for the level parameter are:

• kAEinteractwithSelf-Allow interaction only if the source of the
Apple event is the application itself.

• kAEinteractWithLocal-Allow interaction only if the source of the
Apple event is an application running on the same Macintosh.

• kAEinteractWithAll-Always allow interaction.

As you will see in the next section, the sender of the Apple event indicates
its interaction preference in the sendMode parameter of the ABSend routine. If
the preference is set to kAENeverinteract, no interaction will be allowed,
regardless of the application's interaction preference setting.

~ Writing an Idle Procedure

The function prototype for the idle procedure whose address you pass to
ABinteractWi thUser is as follows:

pascal Boolean myidleProc(EventRecord *theEvent,
long *sleepTime,
RgnHandle *mouseRgn);

Here are the meanings of the three parameters:

theBvent-A pointer to the event record describing the event. The events
that are passed to the idle procedure are updateEvt, activateEvt, osEvt,
and nullEvent. In most cases, you will handle the first three types of events
exactly as you do when you retrieve them in your main event loop. Handle
a nullEvent by setting the value of sleepTime and mouseRgn and
performing any periodic tasks required.

sleep~ime-When the idle procedure receives its first nullEvent, it must
return in this variable a tick count indicating how long it will wait for the
next nullEvent. By specifying a value of no less than 15 ticks or so, the
application can share processor time with all other running applications.
The sleepTime parameter has the same meaning as it does for
WaitHextBvent (see Chapter 3).

mouseRgn-When the idle procedure receives its first nullEvent, it must
return a region handle in this variable. As described in Chapter 3 in the section
on the parameters to the waitHextBvent routine, a mouse-moved event
(reported via a osEvt) is posted when the mouse moves outside this region.
You can set this parameter to OL if you don't need to perform cursor
management.

142 ~ Chapter 4 Apple Events

An idle procedure for AEinteractWitbuser normally returns false to
indicate that AEinteractWi tbUser should continue to wait for the user to
bring the application to the front. It is difficult to think of a situation where true
would be returned to force an immediate cancellation. As you will see in the
next section, however, you will also use an idle procedure with the AESend
routine (the routine you use to send an Apple event) when you specify that you
want to wait for a reply from the receiver of the event. In this situation, you
would want to allow the user to cancel the operation by typing Command
period, so you would check for that event in the idle procedure and return true
if you found it.

Listing 4-8 shows a simple idle procedure that is suitable for use with
AEinteractWitbUser.

Listing 4-8. An idle procedure you can use with AElnteractWithUser

pascal Boolean myidleProc(EventRecord *theEvent, long *sleepTime, RgnHandle
*mouseRgn)

switch (theEvent->what) {

case activateEvt:
case updateEvt:
case osEvt:

DoEvent(theEvent); /*use Skeleton's main event loop handler*/
break;

case nullEvent:
•mouseRgn = OL; /* no cursor management */
*sleepTime = GetDblTime();
/* insert here: any periodic tasks */
break;

return(false);

~ Error Handling

If an error occurs while processing an incoming Apple event, just exit the event
handler with the error code as the result. (If no error occurred, exitwith a noErr
result.) The Apple Event Manager automatically sends a reply Apple event at
the request of the sender of the original Apple event. The reply contains the
error number as a parameter with a keyword of keyErrorStr inq. A pointer
to the AppleEvent record for this reply event is passed to the Apple event
handler.

Optionally, you can also return an error string to the caller via the reply
Apple event. To do this, add a parameter whose keyword is keyErrorStrinq

""' Receiving Apple Events 143

to the reply AppleEvent record. The data referred to by the parameter's
AEDesc record has a descriptor type of typeChar and is a block of text with no
length byte or trailing zero byte. In the next section you will see how to use
AEPutParamPtr or AEPutParamDesc to add a keyword-specified descriptor
record (which defines a parameter) to an AppleEvent record.

""' Handling Required Apple Events

Table 4-1 summarized the required set of Apple events that every 7.0-specific
application must support. You install handlers for any Apple event with the
AEinstallEventBandler routine. These required events are sent by the
Finder to an application that is running on the system, and each has an event
class of kCoreEventClass (' aevt ').

Here are more detailed descriptions of how you should react to these events:

kAEOpenApplication (' oapp')-The Finder sends this Apple event to the
application when an application first starts up. The application should react
by performing a ''New" operation. For a text editor, for example, this would
mean bringing up a new, untitled window. This event has no parameters.

kAEQui tApplication ('quit')-The Finder sends this Apple event to the
application when it wants the application to quit (presumably because
some sort of system error occurred). This event has no parameters.

kAEOpenDocuments (' odoc')-The Finder sends this event to an application
when you open a document (or group of documents) from the Finder. This
applicationhasoneparameter-a direct object (keyword: keyDirectObject)
whosedescriptorreferstoalistofaliasrecords(descriptortype:typeAEList).
Your application should react by opening each document referred to in the
list.

kAEPrintDocuments (' pdoc ')-The Finder sends this event to an
application when you print a document (or group of documents) from the
Finder. This application has one parameter-a direct object (keyword:
keyDirectObject) whose descriptor refers to a list of alias records
(descriptor type: typeAEList). Your application should react by printing
each document referred to in the list.

Look at the source code for the Skeleton application in Chapter 1
for examples of how to write the kAEOpenApplication and
kAEQuitApplication handlers.

The handlers for kAEOpenDocuments and kAEPrintDocuments are similar.
The only difference is that one will call your open routine for each document
and the other will call your print routine.

144 ~ Chapter 4 Apple Events

Listing4-9 shows a typicalhandlerforkAEOpenDocwnents. It begins by calling
AEGetParamDesc to obtain the descriptor for the list of aliases (descriptor type:
typeAEList) associated with the direct object parameter (keyword:
keyDirectObj ect). It then calls RequiredCheck (Listing 4-7) to verify thatthis
was the only required parameter. Finally, it processes each alias in the list by
calling AEGetNthPtr to coerce the alias to a file system specification record
(descriptor type: typeFSS) that can be passed to a routine that opens the file.

Listing 4-9. An event handler for the Finder's kAEOpenDocuments
('odoc') event

pascal OSErr HandleODOC(AppleEvent *theAppleEvent,
AppleEvent •reply, long myRefCon)

OSErr myErri
AEDescList docListi
FSSpec myFSS;
long itemsinListi
AEKeyword theKeywordi
DescType typeCodei
Size actualSizei
long i;
Handle winDataHndli
Finf o theFinfoi
Boolean isStationeryi

myErr = AEGetParamDesc(theAppleEvent, keyDirectObject,
typeAEList, &docList)l

if (myErr) return (myErr) l

myErr = RequiredCheck(theAppleEvent)l

if (myErr) return(myErr)l

myErr = AECountitems(&docList, &itemsinList)l

if (myErr) return(myErr)l

for (i = 1; i <= itemsinListi i++)

}

myErr = AEGetNthPtr(&docList, i, typeFSS, &theKeyword, &typeCode,
(Ptr)&myFSS, sizeof(FSSpec),
&actualSize)l

if (myErr) return(myErr)l

FSpGetFinfo(&myFSS, &theFinfo)l /* check for stationery */
isStationery = ((theFinfo.fdFlags & OxOBOO) I= 0)l

CreateFileWindow(&myFSS, isStationery)l /* Skeleton uapenn routine */

return(noErr)l

~ Sending Apple Events 145

..,. Sending Apple Events
Sending an Apple event is as easy as receiving one. There are five basic steps
to follow:

• Determine the target address using one of the routines described at the
beginning of this chapter (PPCBrowser or GetHextProcess and
GetProcessinformation), then put the address into an address
descriptor using AECreateDesc.

• Create the Apple event record by passing the address descriptor to
AECreateAppleEvent.

• Add each parameter using AEPutParamPtr or AEPutParamDesc.

• Send the Apple event using AESend.

• Check for errors.

Let's review these steps one by one.
First, use PPCBrowser to allow the user to select the program that is to

receive the Apple event. PPCBrowser returns a LocationNameRec and a
PortinfoRec you can use to complete a TargetID record that we can use to
create an address descriptor. Here's a sample code fragment:

TargetID
PortinfoRec
OSErr

myTarget;
myPortinfo;
myError;

myError = PPCBrowser(OL, OL, false, &(myTarget.location),
&myPortinfo, OL, OL);

if (myError) return;

BlockMove(&myPortinfo.name, &myTarget.name, sizeof(PPCPortRec));

Nowthatyou'vegota TargetID, youneed tocreateadescriptorforitsothat
you can pass it to AECreateAppleEvent. Use the AECreateDesc routine to do
this; here is the function prototype:

pascal OSErr ABCreateDesc(DescType typeCode,
Ptr dataPtr,
Size dataSize,
AEDesc *result);

Since you're dealing with a TargetID, you will pass typeTargetID to
AECreateDesc as the descriptor type. If you were using one of the other
possible addressing techniques, you would use types es s ion ID,

146 ~ Chapter 4 Apple Events

typeApplSignature, or typeProcessSerialNumber. dataPtr is a pointer to
the descriptor's data and dataSize is the size of the data. AECreateDesc
returns the descriptor it creates in the space pointed to by result. This AEDesc
must be disposed of with AEDisposeDesc when you're through using it.

Here is another code fragment (following from the earlier code fragment)
showing how to make the call to AECreateDesc in your program:

AEAddressDesc theAddressDesc;

myError = ABCreateDesc(typeTargetID, &myTarget,
sizeof(TargetID), &theAddressDesc);

Once you've created the address descriptor, you can create an empty Apple
event record using theAECreateAppleEvent routine. The word empty actually
refers totheparametersonly. WhenAECreateAppleEvent creates anew record,
it inserts all the attributes needed to describe an Apple event, notably the target
address, the event class, and the event ID. Here is the function prototype for
AECreateAppleEvent:

pascal OSErr ABCreateAppleEvent(AEEventClass theAEEventClass,
AEEventID theAEEventID,
const AEAddressDesc *target,
short returnID,
long transactionID,
AppleEvent *result);

Here are the meanings of the parameters passed toAECreateAppleEvent:

tbeAEEventClass-The event class for the Apple event you are sending.

tbeAEEventID-The event ID for the Apple event you are sending.

target-A pointer to the address descriptor describing the target
application.
returnID-1£ you request a return receipt when sending an Apple event
(with AESend), the return receipt Apple event will include a
keyReturnIDAttr attribute containing the value of returnID you pass to
AECreateAppleEvent. Thus, by specifying a unique returnID for each Apple
event you create, you will always be able to determine what receipt
corresponds to each Apple event. Alternatively, you can set returnID to
kAutoGenerateReturnID to tell the Apple Event Manager to automatically
generate a unique returnID for you. (Retrieve the value generated by
calling the AEGetAttributePtr routine; the keyword for the attribute is
keyReturnIDAttr .)

..,. Sending Apple Events 147

transactionID-When communicating with another application via the
Apple event mechanism, you may want to exchange a series of events to
complete a given operation. In this situation, you should use the same
transactionID for each event in the series so that both participants can
keep track of the transaction more easily. If the Apple event is not part of a
transaction, specify the constant kAnyTransactionID.

result-Points to a space you've reserved for an AppleEvent record.
AECreateAppleBvent returns the correctly-formatted AppleEvent record
in this space. This AppleEvent record must be disposed of with
AEDisposeDesc when you're through using it.

..,. Adding Parameters to an AppleEvent Record

The final step before actually sending the Apple event is to add any required
parameters to the AppleEvent record. Most Apple events that require
parameters require only one-the direct object (keyDirectObject). Consult
the description of the Apple event in the Apple Event Registry for information
on required parameters for any given Apple event.

The two routines for adding parameters are ABPutParamPtr and
AEPutParamDesc. Use AEPutParamPtr in situations where you have the raw
data for a parameter, but not the descriptor itself. Here is its function prototype:

pascal OSErr AEPutParamPtr(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
DescType typeCode,
Ptr dataPtr,
Size dataSize);

The first three parameters reflect the Apple event to which you are adding
the parameter, the keyword for the parameter, and the descriptor type for the
parameter's data. dataPtr points to the data itself and dataSize is the size of
the data. For example, to add a direct object parameter to the AppleEvent
record, you would make a call like this:

myError = AEPutParamPtr(&theAppleEvent, keyDirectObject,
typeChar, myTextBlockPtr, sizeOfTextBlock);

This example adds a block of text (descriptor type: typeChar) that is
sizeOfTextBlock bytes long.

148 IJl> Chapter 4 Apple Events

If you already have your data formatted as a descriptor, useABPutParamDesc
instead. Here is its prototype:

pascal OSErr ABPutParamDesc(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

The first two parameters have the same meaning as they do for
ABPuUaramPtr. The third parameter, theAEDesc, is a pointer to the descriptor
record to be associated with the Apple event parameter.

IJl> Descriptor Lists

A descriptor list is a descriptor record with a descriptor type of typeAEList. The
data it refers to is a list of descriptor records, such as alias records (descriptor type:
typeAlias) describing a group of files for a command to act on.

To create a descriptor list, use the ABCreateList routine. Its function
prototype is as follows:

pascal OSErr ABCreateList(Ptr factorin9Ptr,
Size factoredSize,
Boolean isRecord,
AEDescList *resultList);

You will usually set the first two parameters to zero. However, if the data
referred to by each element in the list will begin with the same sequence of data,
pass a pointer to this common data in factorin9Ptr and the size of the data
in factoredSize; this allows the Apple Event Manager to pack data more
efficiently.

If you're creating a standard descriptor list, set the isRecord parameter to
false. Set it to true to create an AppleEvent record (a list of keyword-specified
descriptor records)-you won't do this very often since you usually create
AppleEvent records using the ABCreateAppleBvent routine.

The last parameter, resul tList, points to a space where ABCreateList
returns a descriptor for the list it creates.

To add descriptors to the list, use the ABPutDesc routine. Its function
prototype is as follows:

pascal OSErr ABPutDesc(const AEDescList *theAEDescList,
long index,
const AEDesc *theAEDesc);

~ Sending Apple Events 149

The first parameter, theAEDescList, is the address of the descriptor list
(returned by AECreateList) to which you are adding the descriptor given by
theAEDesc. The index parameter indicates the position at which the descriptor
is to be inserted in the list (the position count begins at 1); specify a value of 0
to add to the end of the list. If there is already a descriptor at the specified index
position, it is replaced.

Since a descriptor list is simply an instance of a descriptor record, you can
associate it with a parameter and add it to an AppleEvent record using the
ABPutParamDescroutine. When doing so, don't forget to coercetheAEDescList
parameter returned by ABCreateList to the AEDesc type.

~ Sending the Apple Event

The final step is to actually send the Apple event with the ABSend routine. The
function prototype for ABSend is as follows:

pascal OSErr ABSend(const AppleEvent *theAppleEvent,
AppleEvent *reply,
AESendMode sendMode,
AESendPriority sendPriority,
lonq timeOutinTicks,
IdleProcPtr idleProc,
EventFilterProcPtr filterProc)~

Here are the meanings of each parameter passed to ABSend:

theAppleBvent-A pointer to the AppleEvent record defining the Apple
event you want to send. Dispose of this AppleEvent record with
ABDisposeDesc when you're through using it (you should do this even if
ABSend returns an error.)

reply-A pointer to a space of size sizeof (AppleEvent) you've reserved
for a reply AppleEvent record. If the sendMode parameter indicates you will
wait for a reply to the Apple event you send, it will be returned here. Dispose
of thisAppleEvent record withABDisposeDesc when you're through using
it (you should do this evenif ABSendreturns an error.) If ABSend returns with
a errAETimeout error-meaning a reply did not come back in time-the
reply could still arrive later on. If you try to retrieve a parameter from the
reply and the reply has still not arrived, you will get a errAEReplyNotArrived
error.

sendMode-Contains flags you can use to set the reply mode, the interaction
preference, and other miscellaneous behavior. To determine the value for
sendMode, add together the values of the desired flags.

150 .,. Chapter 4 Apple Events

There are three reply modes to choose from, only one of which can be
selected at a time. They are as follows:

• kAEHoReply-The application does not want a reply (AESend returns as
soon as it has sent the Apple event).

• kAEQueueReply-The application wants a reply, but it is to be put in the
event queue when it arrives (AESend returns before the reply arrives).

• kAEWaitReply-The application wants a reply returned in the reply
parameter (AESend does not return until the reply arrives).

If the reply mode is kAEWaitReply, the timeOutinTicks, idleProc, and
f il terProc parameters are relevant and should be given appropriate values.

There are three interaction preferences to choose from, only one of which
can be selected at a time. They are as follows:

• kAEHeverinteract-The receiving application should never interact
with the user. This is the default if the Apple event is being sent to a
remote application since there may be no user present at the remote
system. As you saw in the previous section, AEinteractWitbUser
(called by the receiving application) will not bring the receiving application
to the front if the sender specifies the kAENeverinteract interaction
preference.

• kAECaninteract-The receiving application can interact with the user
if it needs additional data to perform the requested operation. This is the
default if the Apple event is being sent to a local application. The
receiving application will be brought to the foreground (via
AEinteractWithUser) only if the receiving application's interaction
preference, set with AESetinteractionAllowed, permits it.

• kAEAlwaysinteract-The receiving application should always interact
with the user, even if no additional data is needed from the user. The
receiving application will be brought to the foreground (via
AEinteractWitbUser) only if the receiving application's interaction
preference, set with AESetrnteractionAllowed, permits it.

Each of the following three miscellaneous flags may also be selected:

• kAECanSwitcbLayer-The receiving application, if it's running in the
background, should immediat~ly bring itself to the foregreund when
AEinteractWi tbUser is called. You would normally set this flag only in
situations where the sender and receiver are running on the same
Macintosh and you want complete control to pass to the receiving
application.

..,, Sending Apple Events 151

• kAEDontReconnect-The Apple Event Manager should try to reconnect
if the connection to the receiving application closes. If you don't set this
flag, no reconnection is attempted.

• kAEWantReceipt-AESend should wait for the receiving application to
send a return receipt before returning.

sendPriority-Can be set to either kAENormalPriority or
kAEHighPriority. If the priority is kAENormalPriority, the usual case,
the Apple event is placed at the end of the event queue of the receiving
application. If the priority is kAEHighPrior i ty, the Apple event is inserted
in the queue ahead of all other Apple events. Use this priority only when it's
important that the receiving application retrieve the Apple event as quickly
as possible. This would be appropriate if the Apple event you're sending is
for cancelling an Apple event transaction.

timeOutinTicks-The length of time, in ticks, that AESend should wait for
a reply. If no reply is forthcoming within this time period, AESend returns
an errAETimeout error code. Two common values for this parameter are
kAEDefaultTimeout (a default time-out of about one minute) and
kNoTimeout (no time-out).

idleProc-A pointer to an idle procedure that deals with events-update,
activate, and operating-system (suspend, resume, and mouse-moved)
that might occur while the AESend routine is waiting for the reply to the
Apple event or a return receipt. You saw how to write an idle procedure in
the previous section on the AEinteractWithUser routine. A typical idle
procedure for AESend looks like the one you would use for
AEinteractWi thUser except that it should also include code to check
whether a Command-period keyboard event is in the event queue
particularly if no time-out period is specified. If Command-period is
pressed, the idleProc can return true and AESend will terminate with an
errAEWai tcanceled error. Here is a code fragment you can put at the
beginning of an idle procedure to implement this behavior:

EventRecord testEvent;
Boolean gotKbd;
char key;

gotKbd = GetOSEvent(keyDownMask, &testEvent); /*get next kbd event*/

if (gotKbd) {

key = testEvent.message & charCodeMask;
if ((key== •.•) && (testEvent.modifiers & cmdKey))

return(true);

152 Ill> Chapter 4 Apple Events

Important~

Note~

filterProc-A pointer to a filter procedure you can provide to handle
Apple event activity that occurs while you're waiting for a reply. By
providing a filter procedure, you can design your application to respond to
Apple events while it is waiting for a response. For information on how to
write a filter procedure, see Inside Macintosh, Volume VI.

Ill> Checking for Errors

AESend returns an error code of noErr if the Apple Event Manager was able to
send the Apple event successfully. Common error conditions that can occur
are errAEEventNotHandled (the receiver did not not have an Apple event
handler installed to handle the event), errAETimeout (no reply was received
within the time-out period), and errAEWaitCanceled (the idle procedure
returned true, presumably because the user canceled the wait for a reply or a
receipt by typing Command-period).

.,.. Sending Apple Events 153

Use AEGetParamPtr to retrieve the keyErrorNumber parameter from the
reply Apple event to determine if the event was handled without error. If
AEGetParamPtr returns an errAEDescNotFound error, no error number
descriptor was in the reply, so, by convention, there was no error. If the
descriptor does exist, its data (a long) reflects the error code.

Here is a code fragment you can use to provide complete error checking
once you've successfully sent an Apple event to a target application:

AppleEvent
DescType
long

theReplyi
actualTypei
actualSizei
eventErrori long

myError = AEGetParamPtr(&theReply, keyErrorNumber,
typeLonginteger, &actualType,
&eventError, sizeof(eventError),
&actualSize)1

if (myError I= errAEDescNotFound) {

if (eventError I= noErr) { SysBeep(l)i returni }

}

/* all OK if you reach here */

.,.. Example: Sending an Apple Event to ToolServer

The DoDeRez routine in Listing 4-10 is a complete example of how to send an
Apple event to another application. In this case, the other application is
Apple's ToolServer program, a Macintosh Programmer's Workshop tool
execution environment. The Apple event you're sending tells ToolServer to
execute the MPW DeRez tool so that you can obtain a Rez source description
of a particular resource. The description, returnedinAESend' s reply AppleEvent
record, is placed on the clipboard by the DoDeRez routine. Refer to Appendix
A for an introduction to the Rez and DeRez tools.

The characteristics of the Apple event used in this example are as follows:

• event class-kToolServerEventClass ('misc')

• eventID-kTSReplyOutput('dosc')

• parameter-keyDirectObject

• descriptor type-typeChar (a block of text)

154 ~ Chapter 4 Apple Events

This event, described in the ToolServer documentation, tells ToolServer to
execute the tool command stored in the text block referred to by the descriptor.
The output of the command, a block of text, is returned in AESend's reply

Apple event as the data for the direct object parameter.
The DeRez command string you attach to the direct parameter is of the form:

DeRez 'filename• -only ''o''resType'o''(resID)' •typesFile' > dev:console

The values for filename (the pathname of the file containing the resource),
res Type (the resource type), res ID (the resource ID), and typesFile (the name
of the file containing the Rez resource template) are passed as parameters to the
DoDeRez routine.

The DoDeRez routine uses the techniques described to obtain the target
address, create a descriptor for it, create the AppleEvent record, and put the
direct parameter into the AppleEvent record. The routine then calls AESend
with sendMode set to kAEWaitReply and tirneOutinTicks set to kNoTirneout.

This means it will wait indefinitely for ToolServer to complete the operation
and send a reply. (It uses an idle procedure that cancels the operation if the user
types Command-period; if it didn't, the application would freeze if the
receiver didn't send a reply.)

The result of the operation (a block of text) is returned as the data for the
direct parameter of the reply record. The DoDeRez routine obtains a handle to
the data by calling AEGetParamDesc to get the AEDesc for the direct parameter,
then retrieving the dataHandle field of the AEDesc record; the routine uses
AESizeof Pa ram to determine the size of the data. With the handle and size in
hand, it copies the data to the clipboard using the PutScrap routine.

Notice how careful DoDeRez is to dispose of descriptor records before
returning. Don't forget to be just as careful in your own routines that use the
Apple Event Manager to create descriptor records, including AppleEvent

records.

Listing 4-10 Sending an Apple event to the ToolServer application

#define
#define
#define

ToolServerCreator 'MPSX' /* Toolserver signature */
kToolServerEventClass 'misc• /* event class */
kTSReplyOutput 'dose• /* event ID - put result in reply */

/* Call the DoDeRez routine to return (on the clipboard) the Rez source
code for the resource given by theResType, theResID, and filePath.
The typesName parameter is the name of the Rez template file.
Both filepath and typesName are c strings.

*/
void DoDeRez(char filePath[J, char typesName[], ResType theResType,

long theResID)

Str255 typeString, IDString;

.,.. Sending Apple Events 155

Listing 4-10 Sending an Apple event to the ToolServer application
(continued)

char

Str255
Str255
Target ID
Portinf oRec
OSErr

AEAddressDesc
AppleEvent
AEDesc
DescType
long
long

Str255

myTSCommand[512Ji

myPrompt = •\pChoose a ToolServer to link to:"i
myListTitle = "\pToolServer hosts:";
myTargeti
myPortinfo;
myError, sendErrori

theAddressDesci
theAppleEvent, theReplyi
theResultDescriptori
theDescriptorType, actualType;
theResultSize, actualsizei
eventErrori

numberString, MPWErrorString;

TypeToCString(theResType, typestring)1 /*convert res type to string*/
NumToCString(theResID, IDString)1 /*convert res ID to string*/

myTSCommand[OJ = 0;
strcat(myTSCommand, "DeRez '")1

strcat(myTSCommand, (char *)filePath)1
strcat(myTSCommand, '" -only I 'iJ''")1

strcat(myTSCommand, (char *)typeString)1
strcat(myTSCommand, ,, 'iJ,, (")1

strcat(myTSCommand, (char *)IDString)1
strcat(myTSCommand, .) ' "')1

strcat(myTSCommand, (char *)typesName)1
strcat(myTSCommand, .. > dev:console")1

myError = PPCBrowser(myPrompt, myListTitle, false, &(myTarget.location),
&myPortinfo,
(PPCFilterProcPtr)ToolServerFilter, OL);

if (myError) return;

BlockMove(&myPortinfo.name, &myTarget.name, sizeof(PPCPortRec))1

myError = AECreateDesc(typeTargetID, &myTarget, sizeof(TargetID),
&theAddressDesc)1

myError AECreateAppleEvent(kToolServerEventclass, kTSReplyOutput,
&theAddressDesc, kAutoGenerateReturnID,
kAnyTransactionID, &theAppleEvent)1

myError AEDisposeDesc(&theAddressDesc)1 /*we don't need it anymore*/

myError AEPutParamPtr(&theAppleEvent, keyDirectObject, typeChar,
myTSCommand, strlen(myTSCommand))1

sendError AESend(&theAppleEvent, &theReply, kAEWaitReply,

156 ~ Chapter 4 Apple Events

Listing 4-10 Sending an Apple event to the ToolSeNer application
(continued)

kAENormalPriority, kNoTimeOut, myidleProc, OL);

myError = AEDisposeDesc(&theAppleEvent); /*we don't need it anymore */

if (sendError) {

myError = AEDisposeDesc(&theReply);
SysBeep(1);
return;

myError = AEGetparamPtr(&theReply, keyErrorNumber, typeLonginteger,
&actualType, &eventError,
sizeof(eventError),
&actualSize) ;

if (myError I= errAEDescNotFound) {

if (myError) {

} else

myError = AEDisposeDesc(&theReply);
SysBeep(1);
return;

if eventError I= noErr) {

}

myError = AEDisposeDesc(&theReply);
sysBeep(1);
return;

myError = AEGetParamDesc(&theReply, keyDirectObject, typeChar,
&theResultDescriptor);

if (myError) { /* no direct object exists! */

myError = AEDisposeDesc(&theReply);
sysBeep(1);
return;

myError = AESizeOfParam(&theReply, keyDirectObject,
&theDescriptorType, &theResultsize);

.,.. Sending Apple Events 157

Listing 4-10 Sending an Apple event to the ToolServer application
(continued)

myError
myError

ZeroScrap () ;
PutScrap(theResultSize, 'TEXT',

*theResultDescriptor.dataHandle);

myError = AEDisposeDesc(&theResultDescriptor);
myError = AEDisposeDesc(&theReply);

return;

/* Filter procedure for PPCBrowser */
pascal Boolean ToolServerFilter(LocationNamePtr locationName,

PortinfoPtr thePortinfo

StringPtr
OS Type

s;
theCreator;

if ((thePortinfo->name).portKindSelector == ppcByCreatorAndTYPe) {

theCreator = (thePortinfo->name).u.port.creator;

} else { /* must be ppcByString */
/* AppleEvent Manager uses ppcByString. The string is 8 characters

long: a 4-byte creator followed by •ep' and a 2-byte ID number */

s = (thePortinfo->name).u.portTypeStr;

if (*s++ I= 8) return(false);

theCreator = *(OSType *)s;

if (theCreator I= ToolServerCreator) return(false);
return (true);

pascal Boolean myidleProc(EventRecord *theEvent, long *sleepTime,
RgnHandle *mouseRgn)

EventRecord
Boolean
char

testEvent;
gotKbd;
key;

gotKbd GetOSEvent(keyDownMask, &testEvent); /*get next kbd event*/

if (gotKbd) { /* check for Command-period */

key = testEvent.message & charCodeMask;
if ((key == • •) && (testEvent.modifiers & cmdKey))

158 .., Chapter 4 Apple Events

Listing 4-10 Sending an Apple event to the ToolServer application
(continued)

return(true);

switch (theEvent->what) {

case activateEvt:
case updateEvt:
case osEvt:

DoEvent(theEvent); /*call main event loop handler*/
break;

case nullEvent:
mouseRgn = OL; / no cursor management */
*sleepTime = GetDblTime();
/* insert here: any periodic tasks */
break;

return(false);

/* Convert an OSType to a C-string.
*/
void TypeToCString(ResType theType, Str255 typeString)

short i;

for (i = O; i <= 3 ; i++, theType = theType >> 8)
typeString[3-i] (char)(theType & OxOOOOOOff);

typestring[4) = O;

/* Convert a number to a c-string.
*/
void NumToCString(long theNumber, Str255 theString)
{

short i, length;

NumToString(theNumber, theString);

for (i = 1, length= theString[O]; i <= length i++)
theString[i-1) = theString[i];

theString[i-1] = O;

IJJJJ- Summary 159

.,.. Summary
In this chapter you saw how to use the Apple Event Manager to send and
receive Apple events that pass from one application to another, either locally
or across a network. Apple events can be used to remotely control the
operation of another application or request its status information. You can use
events described in the Apple Event Registry or define your own if you need any
new ones. You also examined the required Apple events in detail and learned
how to support them in your applications.

One important client of the Apple Event Manager is the Edition Manager.
It uses a set of Apple events to facilitate the live copying and pasting of data
between diverse applications. You will read about the Edition Manager in the
next chapter.

5 ~ Edition Manager

The Edition Manager is a new System 7 manager that uses a set of high
level Apple events to control the transfer of data from one application to
another through an intermediate file called an edition. Transferring data
between applications is obviously not a new concept. The novelty of an
Edition Manager transfer, however, is that it takes place asynchronously
either locally or across a network-the sender and receiver do not have to
be running at the same time for the transfer to occur, nor do they have to
be running on the same computer. Furthermore, one application can
transmit data for use by multiple applications and does not need to know
which applications will use the data.

In this chapter, you will learn how your applications can benefit from
the Edition Manager as you study the following topics:

• the meaning of the terms section, publisher, subscriber, and edition
• the new menu items that applications need to implement to support

the Edition Manager

• managing publishers and subscribers
• supporting publisher and subscriber options
• Apple events used by the Edition Manager

Before you can use the features of the Edition Manager, your applica
tion must call the InitEditionPack routine once when it first starts up
(after it confirms than System 7 is running). InitEditionPack takes no
parameters and returns an error code of type OS Err. If the error code

161

162 ~ Chapter 5 Edition Manager

returned is memFullErr, there was not enough memory available to sup
port Edition Manager operations and the application should either quit
immediately or continue with Edition Manager features disabled.

~ Edition Manager Overview
Every Macintosh user knows how easy it is to copy data from one
application to another via the clipboard. This technique provides an
effective, though sometimes tedious, means of pulling together informa
tion from multiple documents, even if each document was created by a
different application. There are two problems with this approach,
however:

• If the information in one of the documents changes, the user must
manually copy and paste it into every document that relies on that
information.

• The user must have access to all the applications used to create the
component documents as well as the documents themselves.

Under System 7, applications can use the Edition Manager to avoid the
problems inherent in the clipboard technique. In particular, applications
that use the Edition Manager can be configured so that any data in their
documents that originated with another application is updated automati
cally whenever the other application modifies the data. Furthermore,
users no longer need access to the application that created the data or
even the document containing the original data (unless the user is also
the "keeper" of the original data) because there is no need to transfer the
data to the clipboard.

The Edition Manager provides a "super clipboard" that any applica
tion across the network can access. The "super clipboard" can contain
multiple clippings and can automatically transfer modified data to all
documents that refer to it.

Each clipping on this "super clipboard" is a file known as an edition. To
create an edition, a user selects information within a document and
publishes it. Users "paste" this information into their documents by sub
scribing to the edition that contains the information. Since editions are
disk files, it is easy for an application on one Macintosh to publish data to
which any application running on another Macintosh on the same net
work can subscribe.

~ Edition Manager Menu Items 163

The Edition Manager allows for either automatic or manual updating
of both the published and the subscribed data. The application should
allow the user to control this behavior to suit the needs of each document.

The selection area within the publishing document that is saved to an
edition is known as a publisher. Any changes made to the publisher should
be saved to the edition file; this does not happen automatically-it is the
responsibility of your application to do the publishing. From the user's
perspective, everything happens transparently; from the developer's per
spective, however, there's plenty of behind-the-scenes work to be done.

Documents can subscribe to multiple editions. For example, a word
processing file containing a chapter of a book may subscribe to several
different editions (one for each listing, table, or figure in the chapter, for
example). The listings, tables, and figures would be created by another
application (being used by the staff artist) that publishes them; changes
would automatically be reflected in the word processing file each time it's
opened. This is much simpler than having to remember whether the
listings, tables, and figures are current before the chapter goes to press
and then having to paste them in manually if they're not. Each area of a
document that is associated with an edition is known as a subscriber.

A subscribing application should treat the contents of each subscriber
as a single object. Users should be able to make stylistic changes to the
entire subscriber (changing its color, rotating it, and so on), but should
not be able to change a subscriber's contents. The only time a subscriber's
contents should change is when the publisher updates the edition file.

When the creator of an edition changes the contents of the edition, the
Edition Manager sends a special Read Section Apple event to all open
documents that have subscribed to that edition. If a document containing
a subscriber is not open at the time the publisher updates the edition, the
Read Section Apple event telling the application to update the subscriber
is deferred and is not sent until the document is open.

~ Edition Manager Menu Items
Applications that tap into the Edition Manager's publish and subscribe
capabilities must provide several standard menu items and two standard
dialogs to ensure consistency across applications. Since publish and sub
scribe operations are analogous 'to copy and paste, the menu items that
provide user control over the Edition Manager should be included in the
Edit menu.

164 .,. Chapter 5 Edition Manager

Users need menu items to initiate the following tasks:

• publishing information to an edition
• subscribing to an edition
• controlling options for publishing and subscribing
• forcing editions to be disconnected (so they stop receiving or send

ing changes)
• toggling the highlighting of publishers and subscribers within a

document

The first three items should be in all applications that support publish
ing and subscribing; the last two items are optional, but are highly
recommended because they provide complete control and feedback to
users.

A typical application's Edit menu, showing the optional items for
controlling publish and subscribe, is shown in Figure 5-1. Another view
of the same menu, with items whose names have been toggled or checked,
is shown in Figure 5-2.

Undo

Cut
Copy
Paste
Clear

xz

XH
xc
XU

Create Publisher ...
Subscribe To ...
Publisher Options ...
Stop Rll Editions
Show Borders

~-&---This item is optional.

-4--&---This item is optional.

Show Clipboard

Figure 5-1. A complete Edit menu for a typical System 7 application

Undo

Cut
Copy
Paste
Clear

XH
xc
XU

Create Publisher ...
Subscribe To ...
Subscriber Options ...

IJJJJ- Edition Manager Menu Items 165

./Stop Rll Editions
Hide Borders

-4--+-This item is optional.

---This item is optional.

Show Clipboard

Figure 5-2. Another view of the Edit menu for a typical System 7
application showing the Subscriber Options ... and Hide Borders items
(these items toggle with Publisher Options ... and Show Borders,
respectively)

The Create Publisher ... item is for creating a new edition file. It should
be enabled any time the user has selected something in the frontmost
document window. Later in this chapter you will see how to ask the user
for the name of the edition for the publisher and how to create that file.

The Subscribe To ... item is for adding a subscriber to an open docu- ·
ment. It should be enabled any time the front window in the application
can accept new data. Later in this chapter you will see how to ask the user
. for the name of the edition file to be subscribed to and how to incorporate
the data within an edition into a document.

The third item toggles between Publisher Options ... and Subscriber
Options ... depending on whether the user has selected a publisher or a
subscriber within a document. If neither is selected, this item should read
Publisher Options ... and be disabled. The standard dialogs your applica
tions should display in response to the selection of this menu item are
discussed later in this chapter.

166 .,.. Chapter 5 Edition Manager

The Stop All Editions item disconnects all publishers and subscribers
in a document from their editions. For publishers, this means changes to
their contents should not be written to their edition files when a Write
Section Apple event is received. For subscribers, this means changes
made to edition files by their publishers will not be reflected in subscrib
ers when a Read Section Apple event is received. (These events are
described at the end of the chapter.) Individual publishers and subscrib
ers can also be disconnected by setting their update mode to manual (as
explained later in this chapter), but the Stop All Editions item provides a
convenient way to turn on or off all publishers and subscribers within a
document. When editions are stopped, the Stop All Editions item should
have a check mark placed next to it (as shown in Figure 5-2) .

.,.. Drawing Borders

The final standard menu item toggles between Show Borders and Hide
Borders and controls whether borders should be drawn around publish
ers and subscribers within the document. When borders are shown, they
should be drawn differently for publishers and subscribers. The standard
publisher border is three pixels wide drawn with a 50 percent gray line.
The standard subscriber border is the same width, but uses a 75 percent
gray line. To prevent the border from overwriting the data within the
publisher or subscriber, both types of borders should be outset 1 pixel
from the rectangle that frames the publisher or subscriber.

A border should also be drawn around a publisher when the user
clicks within it. When a user clicks within a subscriber, the entire contents
of the subscriber should be selected and the subscriber treated as a single
unit of information.

Listing 5-1 shows the source code for a routine that draws the proper
border around a rectangular publisher or subscriber. Pass this routine a
pointer to the rectangle that surrounds the publisher or subscriber, a
Boolean indicating whether the border is for a publisher or a subscriber,
and a Boolean indicating whether the rectangle is specified in global or
local coordinates. Use setPort to set the active port to the window con
taining the publisher or subscriber before calling this routine.

Listing 5- l . General purpose border drawing routine

/* The following routine draws either a publisher border or a subscriber */
/* border around the rect that's passed to it. First Boolean indicates */
/* whether a publisher (true) or subscriber (false) border should be */
/* drawn. Second Boolean indicates whether theRect is in local coords */
/* (true) or global coords (false). The window being drawn into should*/
/* be set as the current grafPort before this routine is called. */

..- Sections 167

Listing 5-1. General purpose border drawing routine (continued)

void DraWOneBorder(Rect theRect, Boolean shouldDrawPub,
Boolean isinLocalcoords)

PenState oldPenState;
Point myTL, myBR1

/* buffer for current pen state */
/* no topLeft/botRight in interfaces */

GetPenState(&oldPenstate); /* buffer current pen's state */

if (shouldDrawPub)
PenPat(gray);

else {
PenPat(dkGray);

/* is this for a publisher or subscriber? */
/* publisher gets 50% gray border */

/* subscriber gets 75% gray border */

if (lisinLocalCoords) { /* rect should be in local coordinates */
SetPt(&myTL, theRect.left, theRect.top)1
SetPt(&myBR, theRect.right, theRect.bottom)1
LocalToGlobal(&myTL)1
LocalToGlobal(&myBR)1
SetRect(&theRect, myTL.h, myTL.v, myBR.h, myBR.v)1

}

/* Borders are drawn 3 pixels wide, outset one pixel
/* pen size of 3,3 and widen rect by 4 pixels (3 for

from image, use */
pen's width + 1 */

/* for outset from section) */
InsetRect(&theRect, -4, -4)1 /* outset by using negative amounts */

/* pen is 3 x 3 wide */ PenSize(3,3)1
FrameRect(&theRect)1 /* draw it! */

SetpenState(&oldPenstate)1 /* restore original pen state */

~ Sections
Publishers and subscribers are known collectively as sections and the key
data structure for dealing with them is the section record. The anatomy of
a section record is shown in Listing 5-2.

Listing 5-2. The structure of a SectionRecord record

struct SectionRecord {
SignedByte version1
sectionType kind1
UpdateMode mode1
TimeStamp mdDate1
long sectionID1
long refCon1
AliasBandle alias1

/* always OxOl irt system 7.0 */
/* stsubscriber or stPublisher */
/* auto or manual */
/* last change in document */
/* app. specific, unique per document */
/* application specific */
/* handle to alias record for edition */

168 IJIJ> Chapter 5 Edition Manager

Listing 5-2. The structure of a SectionRecord record (continued)

};

long subPart;
struct SectionRecord ~*nextsection;
Handle controlBlock;
EditionRefNum refNum;

/* used internally */
/* used internally */
/* used internally */
/* used internally */

The meanings of the fields in SectionRecord are as follows:

version-The version of the SectionRecord data structure. For Sys
tem 7.0, this field is always 1.

kind-Indicates whether the section is a publisher or a subscriber. Use
the following constants defined in the Editions.h interface file:

#define stSubscriberOxOl /* section type subscriber */
#define stPublisher OxOA /* section type publisher */

mode-Determines whether editions and subscribers are automatically
or manually updated. Use the following constants defined in the
Editions.h interface file:

#define sumAutomatic 0 /* subscriber update mode - Automatically */
#define sumManual l /* subscriber update mode - Manually */
#define pumOnSave O /* publisher update mode - update when doc saved */
#define pumManual l /* publisher update mode - Manually */

mdDate-The date this section was last modified. For subscribers, the
Edition Manager compares the value in this field with the modification
date stored in the corresponding edition. If the edition's mdDate field
contains a more recent date than that of a subscriber, the Edition
Manager brings the subscriber up to date by sending a Read Section
Apple event to the application. This Apple event is discussed at the
end of this chapter. For publishers, the application should update this
field whenever a publisher's data changes so that the date stored in the
edition file will be updated when you save the publisher data to the
edition. Use the GetDateTime routine to return the current date in the
format required for mdDate.

sectionID-Contains a unique number identifying the section within
the document. The first section should have an ID of 1 and no section
should be given the value 0 or -1.

.,,. Sections 169

refCon-Not used by the Edition Manager. This field has been set
aside for applications to use as they see fit.

alias-The handle to the alias record identifying the edition associ
ated with this section.

subPart-This field is private and should not be used by applications.
nextSection-This field is private and should not be used by applica
tions.
controlBlock-This field is private and should not be used by appli
cations. The Edition Manager assigns each edition a unique control
block for its own tracking purposes.
refNum-This field is private and should not be used by applications .

.,,. Creating New Sections

Both the SectionRecord and the alias to its corresponding edition file
(stored in the alias field) are created by a single call to Newsection. The
function prototype for Newsection follows:

pascal OSErr RewSection(const EditionContainerSpec *container,
const FSSpec *sectionDocwnent,
SectionType kind,
long sectionID,
UpdateMode initialMode,

SectionHandle *sectionH);

The meanings of the parameters used by NeWSection are as follows:

container-The EditioncontainerSpec describing the edition file
associated with this section. Newsection uses container to create an
alias record for the document and puts a handle to it in the section
record's a 1 i as field. For more information on the
Edi tioncontainerSpec data type, see the "Publishing'' section later
in this chapter.
sectionDocument-The FSSpec for the document that contains the
publisher or subscriber for which this section record is being created. If
the document has never been saved, pass OL for this parameter-you
can specify the FSSpec later, after you have saved the document, by
calling the AssociateSection routine described below.

170 .,.. Chapter 5 Edition Manager

kind-Indicates whether the section is a publisher or a subscriber. Use
the following constants defined in the Editions.h interface file:

#define stSubscriber OxOl
#define stPublisher OxOA

I* section type
/* section type

subscriber */
publisher *I

sectionID-Contains a unique number identifying the section within
the document. The first section should have an ID of 1 and no section
should be given the value 0 or -1.

initialMode-Determines whether editions are initially updated
automatically or manually (the user can change this setting later if
desired by using an options dialog described below). Use the following
constants defined in the Editions.h interface file:

#define sumAutomatic 0 /* subscriber update mode - Automatically */
#define swnManual 1 /* subscriber update mode - Manually */
#define pumonsave O /* publisher update mode - update when doc saved */
#define pwnManual 1 /* publisher update mode - Manually */

sections-The handle to the newly created SectionRecord is re
turned in this variable. This variable is set to OL if the call to RewSection
fails.

The two most common error codes that Rewsection returns are actu
ally only warnings: mul tiplePublisherWrn and notThePublisherWrn. A
mul tiplePublisherWrn error occurs if another publisher is already reg
istered to the edition; in most situations it's not appropriate to have more
than one publisher for an edition, so you may want to warn the user and
proceed only if the operation is confirmed. The notThePublisherwrn
error occurs if another publisher was the last section to write to the
edition; this serves to alert you that another publisher has recently
updated the edition and that perhaps you shouldn't .

.,.. Section Management

Each application is responsible for tracking the sections that are part of a
document. The source code samples in this chapter implement a tracking
system by maintaining a linked list of handles to a custom data structure
called a sectioninfo record (one record for each section in the docu
ment) that includes miscellaneous information about a section, a handle
to the section record, and a handle to the next sectioninfo record in the
list. A handle to the beginning of the linked list is stored in the private

., Sections 171

data area accessed via the handle stored in the refcon field of the win
dow record. The structure of the sectioninfo record, which is suitable
for tracking sections in a TextEdit document, is shown in Listing 5-3.

Listing 5-3. The structure of the custom sectionlnfo record

struct sectioninfo {

};

long siSectionID; /* ID of this section */
Boolean siisPublisher; /* true = publisher, false = subscriber */
short siTextStart; /* text starting position */
short siTextEnd; /* text ending position */
SectionHandle sisectionHndl; /* handle to section's SectionRecord */
struct sectioninfo ** siNextSectioninfo; /* hndl to next sectioninfo */

typedef struct sectioninfo sectioninfo, *siPtr,**siHandle;

The fields in the sectioninfo data structure are as follows:

siSectionID-The ID for the section. This ID is also part of the
section record, but repeating it here saves you a handle dereference
each time you need this information.

siisPublisher-A Boolean indicating whether the section is a pub
lisher (true) or a subscriber (false). You could extract the same informa
tion from the kind field of the Section Record, but repeating it here
saves you a handle dereference each time you need this information.

siirextstart-The offset to the start of the TextEdit data that is in the
section. The application must update this field if the offset changes
when the user edits the TextEdit document.

siTextEnd-The offset to the end of the TextEdit data that is in the
section. The application must update this field if the offset changes
when the user edits the TextEdit document.
siSectionBndl-A handle to the section record.
siNextsectioninfo-Set to OL if this is the last section in the list. If
there are more sections after this one in the linked list, this field should
be set to the handle to the sectioninfo structure for the next section.

IJlii> Loading and Saving Sections

When you create a section using Newsection, you will create both a sec
tion record and an alias record for the edition. Both of these records
should be stored as resources in the document's resource fork when the
file is saved-give them the same resource ID so you can pair them up

172 ..,. Chapter 5 Edition Manager

more easily when the file is loaded. Use the resource type 'sect'
(rsectionType) for section records and 'alis' (rAliasType) for alias
records. The SavesectionToFork routine in Listing 5-4 shows how to
save a given section to the resource fork of a document.

Listing 5-4. A routine for saving a section record and its
corresponding alias record to the resource fork of a document

/* save the section record (and associated alias resource) given

*/

by theSectionH to the resource fork of the document file given
by docName. This code assumes the resource fork is empty to
begin with; if it isn't you would first have to remove any
existing 'sect' (and 'alis') resource with the same ID as the
one you are adding.

ApplCreator and DocumentType are constants for the application
signature and the document file type, respectively.

OSErr SaveSectionToFork(FSSpec *docName, SectionHandle theSectionH
{

OSErr
short
SectionHandle
Alias Handle

fileError, myErr;
fileRef;
tempSectionHndl;
tempAliasHndl;

/* create the resource fork (in case it doesn't already exist) */
FSpCreateResFile(docName, ApplCreator, DocumentType,
smSystemScript);

/* open resource fork */
fileRef = FSpOpenResFile(docName, fsCurPerm);
if (fileRef == -1) {

}

fileError = ResError();
return(fileError);

/* copy section record so we can attach it to Resource Mgr */
tempSectionHndl = theSectionH;
myErr = HandToHand((Handle *)&tempSectionHndl);

/* copy alias record so we can attach it to Resource Mgr */
tempAliasHndl = (**tempSectionHndl).alias;
myErr = HandToHand((Handle *)&tempAliasHndl);

/* write •sect' resource */
AddResource((Handle)tempSectionHndl, rSectionType,

~ Sections 173

Listing 5-4. A routine for saving a section record and its
corresponding alias record to the resource fork of a document
(continued)

}

(**tempSectionHndl).sectionID, OL);

/* write 'alis• resource */
AddResource((Handle)tempAliasHndl, rAliasType,

(**tempSectionHndl).sectionID, OL);

CloseResFile(fileRef);
return(noErr) ;

When you load a document, you should also load all its ' sect'
(rsectionType) resources and corresponding •al is' (rAliasType)
resources from the resource fork, detach the resource handles so the
Resource Manager no longer owns them, then store the alias handles in
the corresponding section records. You can use the LoadSectionsFromFork
routine shown in Listing 5-5 to do this. LoadSectionsFromFork also
creates a linked list of private sectioninfo records (described above) for
each section and stores a handle to the start of the linked list in the
private data area accessed via a handle stored in the window's refcon
field. It also registers each section using the technique described in the
next subsection.

Listing 5-5. A routine for loading section records and
corresponding alias records from the resource fork of a
document. This routine also builds a linked list of sectlonlnfo
records and registers the sections

I* Load all sections (and corresponding aliases) from the
resource fork of the document, create the linked
list of sectioninfo records, and add it to the
private data area referenced via the refCon of the
window record. */

void LoadSectionsFromFork(FSSpec *docName, WindowPtr wp
{

short initialRefNum, refNum;
short sectioncount, i;
winPrivateHndl thePrivate;
SectionHandle theSectionH;
AliasHandle theAliasH;
OSErr
Boolean
short

myErr;
was Updated;
textStart, textEnd;

174 lilll- Chapter 5 Edition Manager

Listing 5-5. A routine for loading section records and
corresponding alias records from the resource fork of a
document. This routine also builds a linked list of sectionlnfo
records and registers the sections (continued)

/* Get handle to private data area. One of the fields in
this area, winsiHndl, is a handle to start of the
linked list of sectioninfo records (Listing 5-3). */

thePrivate = (winPrivateHndl)GetWRefCon(wp);

refNum = FSpOpenResFile(docName, fsCurPerm);

initialRefNum = CurResFile();
UseResFile(refNum);

/* get number of •sect' resources */
sectionCount = CountlResources(rSectionType);

for (i=l ; i <= sectionCount ; i++) {

}

/* get nth 'sect' resource */
theSectionH = (SectionHandle)GetlindResource(rSectionType, i);
DetachResource(theSectionH); /* claim ownership of handle*/

/* 'alis' resource ID is the same as the 'sect' resource ID,
which is the same as the sectionID in the section record
(because that's the way we planned it when we saved
the section) */

theAlias~ = (AliasHandle)GetlResource(rAliasType,
(**theSectionH).sectionID);

DetachResource(theAliasH); /* claim ownership of handle */

/* place alias handle into section record */
(**theSectionH).alias = theAliasH;

/* Register the section; we can ignore possible errors.
If wasUpdated comes back true, mark the section record as
udirtyu and save it to disk when the document is closed.
(We don't do it here, but you should.) */

myErr = Registersection(docName, theSectionH, &wasUpdated);

/* Get the offsets to the start and end of the text block
associated with this section. GetSectionTextRange
traverses a data structure you maintain that maps sections
to text ranges. */

GetSectionTextRange(wp, theSectionH, &textStart, &textEnd);

AddSectionToList(thePrivate, theSectionH, textStart, textEnd) ;

.,,_ Sections 175

Listing 5-5. A routine for loading section records and
corresponding alias records from the resource fork of a
document. This routine also builds a linked list of sectionlnfo
records and registers the sections (continued)

}

CloseResFile(refNum);
UseResFile(initialRefNum);

/* Add a sectioninfo record to the end of the linked list.
(See Listing 5-3 for the structure of sectioninfo.)
A handle to the first element in the list is stored in
the winsiHndl field of the window's private data area.
You access this area via a handle stored in the window's
refCon field. */

voidAddSectionToList(winPrivateHndl thePrivate, SectionHandle theSectionH,
short textStart, short textEnd)

{

}

siHandle newsiHndl, tempsiHndl;

/* set up the new sectioninfo record */
newsiHndl = (siHandle)NewHandle(sizeof (sectioninfo));
(**newsiHndl).siSectionID = (**theSectionH).sectionID;
{**newsiHndl).siisPublisher = ((**theSectionH).kind == stPublisher);
(**newsiHndl).siSectionHndl = theSectionH;
(**newsiHndl).siTextStart = textStart;
(**newsiHndl).siTextEnd = textEnd;
{**newsiHndl).siNextSectioninfo =nil;

/* Find the end of the linked list and save the new element */

tempsiHndl = (**thePrivate).winsiHndl; /*get 1st element*/

if (tempsiHndl) { /* nil unless sections exists */
/* walk list to find last sectioninfo record */
while ((**tempsiHndl).siNextSectioninfo) {

tempsiHndl = (**tempsiHndl).siNextSectioninfo;
}

(**tempsiHndl).siNextSectioninfo = newsiHndl;
} else {

(**thePrivate).winsiHndl = newsiHndl;
}

When you save a document's •sect' and •al is• resources, you must
also save a custom resource that contains the data needed to map each
section with the portion of the document with which it is associated. For
the simple case of a TextEdit document, for example, you would save an

176 liJJJ- Chapter 5 Edition Manager

array, each element of which contains a section ID, the offset to the start
of the section data, and the offset to the end of the section data. This data
permits you to construct fully the private sectioninfo record you main
tain for each section.

liJJJ- Registering and Unregistering Sections

When you create a new section by calling Hewsection, it is automatically
registered so that the Edition Manager knows about it. The Edition Man
ager sends Apple events to publishers and subscribers telling publishers
to write or subscribers to read an edition only if the publishers and
subscribers are registered. (See the "Apple Events Used by the Edition
Manager" section of this chapter for more information on these events.)
The Edition Manager performs its duties more efficiently and quickly
when it only has to track registered sections.

When opening a document that already contains publishers or sub
scribers, do not call Hewsection. Instead, retrieve the section records and
alias records from the document's resource fork as described above and
register each section by calling Registersection. The function prototype
for RegisterSection is:

pascal OSErr RegisterSection(canst FSSpec *sectionDocument,
SectionHandle sectionH,
Boolean *aliaswasUpdated);

The parameters used by RegisterSection are the following:

sectionDocument-The FSSpec of the document containing the sec
tion that is being registered.

sectione-A handle to the section record for the section being
registered.
aliaswasUpdated-After the call to RegisterSection, this variable
indicates whether the alias referred to in the section record was up
dated to more efficiently describe the location of the document. If this
variable is true, your application should update the 'alis' resource for
the section by writing the new alias record to the resource fork of the
document. In practice, you don't usually write the updated informa
tion back to disk right away-you simply mark the section record as
"dirty" and save it just before the user closes the document.

~ Sections 177

Two common errors that Registersection can return for a subscriber
section are userCanceledErr and containerNotFoundWrn. The
usercanceledErr error occurs if the user clicked the Cancel button
when asked to log on to the server on which the edition container is
located. The containerNotFoundWrn error is a warning that occurs if the
edition container cannot be located (perhaps because it was deleted).

For a publisher, if RegisterSection returns a containerNotFoundWrn,
it creates an empty edition file and sends a Write Section Apple event to
your application-when the application receives the Write Section event,
it saves the publisher to the edition. See the "Apple Events Used by the
Edition Manager" section for more information.

When a document containing a section is closed, your application
should unregister each section it contains by calling UnRegisterSection.
(You should also call UnRegisterSection if you cancel a section; see the
"Publisher and Subscriber Options" section in this chapter.) This tells the
Event Manager not to send any more Apple events relating to it and
simplifies its housekeeping chores. The function prototype for
UnRegisterSection is the following:

pascal OSErr UnRegisterSection(SectionHandle sectionH);

The sectionH parameter is a handle to the section record for the
section being unregistered.

~ Associating Sections

Whenever you change the name of the document with which a section
record is associated, you should call AssociateSection to ensure the
Edition Manager knows about the change. This allows the Edition Man
ager to manage the section properly and effectively; for a publisher, for
example, it means the Finder will be able to automatically open the
document that created an edition when you open the edition file from the
Finder.

If the sectionDocument parameter was set to OL when Newsection
was called to create a publisher because the document hadn't been saved
to disk yet, you need to call Associatesection once the document has
been saved.

You may also want to call Associatesection after you save a copy of
a document in response to a Save As ... command or when you copy a
section from one document to another. Do this for publishers only if you

178 IJi> Chapter 5 Edition Manager

want the copy to be brought up-not the original-when the user re
quests that the publisher be opened. (You may want to prevent the user
from creating multiple publishers to the same edition, however. This can
lead to confusion.)

The function prototype for AssociateSection is as follows:

pascal OSErr Associatesection(SectionHandle sectionH,
const FSSpec •newSectionDocument);

The parameters used by Associatesection are the following:

sectione-A handle to the section record for the publisher.

newsectionDocument-The FSSpec of the document containing the
section whose handle is passed in sectionH.

After calling Associatesection, your application should save the up
dated section record, and the alias record to which it refers, to the
document's resource fork using the techniques described earlier in this
chapter.

llJJJl. Publishing
An edition is similar to the clipboard in that you can save publisher data
to it in a variety of formats, allowing the subscriber to deal with the
richest format it can handle. The most common edition formats have the
following identifiers: 'TEXT' (a block of text), 'PICT' (a QuickDraw pic
ture), and 'snd ' (a sound).

New editions are created when the user selects the Create Publisher ...
menu item from the Edit menu and specifies a name for the edition file.
(This item should only be highlighted when something in the document
has been selected.) Once the edition file has been created and opened, the
publisher can be created and saved to the edition.

An existing publisher whose data has been modified should update its
edition file either automatically when the document is saved to disk or only
when the user clicks the Send Edition Now button in the publisher options
dialog box (see the ''Publisher and Subscriber Options" section in this chapter).
Update editions automatically when the document is saved only when the
value stored in the mode field of the section record is pumonsave.

Before you learn how to publish a section record to an edition, you
need to understand two other data structures: the EditioncontainerSpec
and the NewPublisherReply.

IJll> Publishing 179

An Edi tionContainerSpec is an expanded version of a file specifica
tion record and identifies the edition file associated with a given section.
The structure of an Edi tioncontainerSpec is shown in Listing 5-6.

Listing 5-6. The structure of an EditionContainerSpec record

struct EditionContainerSpec {
FSSpec theFile;
ScriptCode theFileScript;
long thePart;

};

Str31 thePartName;
ScriptCode thePartScript;

The fields in an EditioncontainerSpec are the following:

tbeF ile-The file specification for the edition file, or edition container. As
explained in Chapter 2, an FSSpec is made up of three components: a
volume reference number (vRefNum) identifying the disk volume, a di
rectory ID (parID) identifying the parent folder, and the name of the
file itself (name[64 J).

tbeFileScript-The script code of the file name given by theFile.

tbePart-Not currently used, but should be set to kPartsNotUsed to
ensure compatibility with future releases of the Edition Manager.
tbePartName-Not used in System 7.0.

tbePartScript-Not used in System 7.0.

The second important data structure is the NewPublisherReply record
and is used in connection with the NewPublisherDialog routine. This
routine displays the standard publisher dialog box shown in Figure 5-3
which allows the user to specify the name of the edition in which the
publisher is to be saved.The function protoype for NewPublisberDialog
is as follows:

pascal OSErr NewPublisherDialog(NewPublisherReply *reply);

The sole parameter to NewPublisherDialog is a pointer to a
NewPublisherReply record. The structure of NewPublisherReply is shown
in Listing 5-7.

180 .., Chapter 5 Edition Manager

Listing 5-7. The structure of a NewPublisherReply record

struct NewPublisherReply {

};

Boolean canceled;
Boolean replacing;
Boolean usePart;
Handle preview;
FormatType previewFormat;
EditionContainerSpec container;

Preuiew

Previews can be done as
either TEXT or a PICT.
This one is done as TEXT
since we 're publishing
text - giving users a
better idea of what
they 're publishing.
There's only room for
about 200 characters ...

I <:51 Editions for Chapter 5 ~ I
c 1:i9ure ":i···I ~
c 1:19ure ~i· .. z
C 1.i~Un~i 5 .. t
C l.i~Un~t ~; .. 2
C 1.i~Un1.l ~}··'.\

C li~ Unq ~} ·· 4

Name of new edition:

I Figure 5-~

c:::iSwlhart's

Ejt~ct

Desktop

(New LJ)

(Cancel)

([Publish)J

Figure 5-3. The standard publisher dialog box

The fields in a NewPublisherReply record are as follows:

canceled-Set to true by the Edition Manager if the user clicks the
Cancel button (see Figure 5-3).

replacing-Set to true by the Edition Manager if the user selects an
edition file that already exists and has verified that its contents should
be replaced. It is set to false if a new edition file needs to be created.
You can create new edition containers by calling
CreateEditionContainerFile.

usePart-Always set this field to false.
preview-Holds the handle to the preview data. As you will see, the
preview data should be of type 'TEXT', 'PICT', 'snd ', or 'prvw'.

""Publishing 181

previewFormat-Describes the format of the data whose handle is in
the preview field. This field should be set to 'TEXT', 'PICT', 'snd ',
or 'prvw'.

container-This is where you specify the file system specification
describing the default file name and location for the edition. When
HewPublisherDialog ends, this field identifies the file actually speci
fied by the user.

"" Publisher Previews

Notice the Preview area on the left side of the publisher dialog box in
Figure 5-3. Your application is responsible for providing the content of
this 120-pixel-square area for any edition it creates. It is also responsible
for saving the preview data to the edition container using the
writeEdition routine. The purpose of the preview is to remind users of
the contents of the publisher.

The preferred edition format for a preview is a QuickDraw picture that
you've tuned to look attractive in the 120x120 preview area. It should be
added to the edition file in the kPreviewFormat (' prvw') format. Users
will see the preview when subscribing to your edition from other appli
cations or when they double-click on an edition container file in the
Finder. The preview data is generally not used in any other way by the
subscribing application.

If you don't save a preview in the kPreviewFormat format, the Edition
Manager generates a preview picture from data in the 'TEXT', 'PICT', or
'snd ' format that may have been saved to the edition.

The preview derived from the 'TEXT ' format is made up of the first
few characters in the text block. About 200 characters of unstyled text can
be squeezed into such a preview. The preview derived from the 'PICT'
format is a QuickDraw picture scaled to fit the 120-pixel-square preview
area. The preview for the 'snd ' format is a loudspeaker icon.

"" Creating Editions

Create new edition containers by calling CreateBditioncontainerFile.
The function prototype for CreateEditionContainerFile is as follows:

pascal OSErr CreateEditionContainerFile(const FSSpec *editionFile,
OSType fdCreator,
ScriptCode editionFileNameScript);

182 ~ Chapter 5 Edition Manager

The parameters used by CreateEditioncontainerFile are the fol
lowing:

editionFile-The FSSpec for the edition container to be created.
Use the value returned in the container. theFile field of the
NewPublisherReply record returned by NewPublisherDialog.

fdCreator-The creator type of the application creating this edition.
This parameter should be set to your application's creator type (see
Chapter 9 for more information on creator types).

editionFileNameScript-The script code of the file name used for
the edition container being created. Use the value returned in the
container. theFileScript field of the NewPublisherReply record
returned by NewPublisherDialog.

~ Opening Editions

Before a section can be published, an edition container must be opened by
calling OpenNewEdi tion. The function prototype for OpenNewEdi tion is as
follows:

pascal OSErr OpenNewEdition(SectionHandle publisherSectionH,
OSType fdCreator,
const FSSpec *publisherSectionDocument,
EditionRefNum *refNum);

The parameters used by OpenNewEdition are the following:

publisherSectionB-The section handle to the publisher that will be
written to the edition container being opened.

fdCreator-The creator type of the application creating this edition.
This parameter should be set to your application's creator type (see
Chapter 9 for more information on creator types).
publisherSectionDocument-A pointer to the FSSpec of the docu
ment containing the publisher that will write the data to the edition
container being opened. This FSSpec is used to create an alias record
for the document and is stored in the edition file. Pass OL for this pa
rameter if the document containing the publisher has not yet been
saved.

Note~

~ Publishing 183

refNum-The reference number for the edition container is returned in
this variable. If you aren't permitted to write to this container (because
the file is locked or someone else is accessing it), OL is returned.

The two common errors that OpenNewEdition can return are flLckdErr
and permErr. The flLckdErr code is returned if another application
(perhaps running on another Macintosh across the network) is currently
reading the edition.

The permErr code is returned if the edition is already associated with a
registered publisher that is not on the local system. Multiple publishers
are permitted only when they reside on the same computer.

Your application should allow the user to select the edition file to
publish to by calling NewPublisherDialog and then, if the replacing
field of the NewPublisherReply record is false (meaning the user speci
fied a new edition rather than an existing one), create the new edition
container by calling CreateEditioncontainerFile. Finally, the applica
tion should open the edition container for writing by calling
OpenNewEdi tion.

~ Publishing Sections

Once the edition container has been opened, use WriteEdition to write
the data being published. The function prototype for WriteEdition is as
follows:

pascal OSErr WriteEdition(EditionRefNum whichEdition,
FormatType whichFormat,
const void *buffPtr,
Size buffLen);

184 ~ Chapter 5 Edition Manager

The parameters used by WrHeBdition are the following:

whichBdition-The refNum of the open edition container. This is the
refNum returned by OpenNewBdition.

whichFormat-Indicates the format of the data being written. To prop
erly support the exchange of common data types with other applica
tions, you should try to save data to the edition file in both the 'TEXT'
and 'PICT' formats (using separate calls to writeBdition). To save
styled text to an edition, save the text itself in the 'TEXT' format and the
styling information in the 'styl' format. In addition, don't forget to
save the publisher preview in the 'prvw' format.

buff Ptr-A pointer to the buffer containing the data to be written

buffLen-The number of bytes of data to be written to the edition
container. This data is in the buffer pointed to by buffPtr.

WriteBdition returns standard file system and Memory Manager
errors that occur if there are problems encountered when saving the
publisher to disk.

~ Closing Editions

After writing the data, dose the edition container by calling
CloseBdition.The function prototype for CloseBdition is as follows:

pascal OSErr CloseBdition(EditionRefNum whichEdition,
Boolean successful);

The parameters used by CloseBdi tion are the following:

whichBdition-Set to the refNum of the open edition container.

successful-If your application was successful in writing the data to
the edition container (using WriteBdition), set this parameter to true.
If the write failed, set this parameter to false. When set to true,
CloseBdition causes the Edition Manager to set the edition container's
modification date to the mdDate field in the publisher's section record.
It also causes the Edition Manager to send a Read Section Apple event
to all registered subscribers of this edition informing them that new
data is ready to be read. (For more information on Apple events sent
by the Edition Manager, see the "Apple Events Used by the Edition
Manager" section later in this chapter.)

~ Publishing 185

You now have all the information you need to publish data to edition
containers. Listing 5-8 shows the source code for creating a new edition
container, including a simple example of how to publish to it.

Listing 5-8. Source code for creating an edition and writing a
publisher to it

/* The following routine is responsible for publishing the front
window's current TextEdit selection in an edition file. Only
the 'TEXT' format is supported, but other formats should be
easy to add.

*/

This code assumes a handle to a private data structure has
been stored in the window's refCon field. This private data
structure has the following definition:

typedef struct {
FSSpec winFSSpec1
siHandle winsiHndl 1

longwinSectionID1
TEHandle winTEHndl 1

- file specification for the document
- handle to first sectioninfo record
- (defined in Listing 5-3)
- the section ID
- handle to the TextEdit record

winPrivate, **winPrivateHndl1

void DoCreatePublisher(void)
{

winPrivateHndl myPrivHndl1
TEHandle tempTEHndl1
Boolean aliasChanged1
sectionHandle mySectionHndl1
long mysectionID1
OSErr myErr;
NewPublisherReply myReply1
EditionContainerSpec mySpec1

/* handle to window's private data */
/* temporary handle to TE field */

/* ID of the section being created */

/* needed for NewPublisherDialog */

Handle myData1 /* handle to info to write out */
Handle myPreviewHndl1 /* handle to preview */
siHandle newsiHndl, tempsiHndl1
Str63 defaultName = •\pGary•s Edition"1

/* Note: this code assumes the front window has a TextEdit record and a
selection range. Disable the Create Publisher- menu item if it
doesn't so that you don't have to do any error checking here. */

myPrivHndl = (winPrivateHndl)GetWRefCon(FrontWindow());
HLock((Handle)myPrivHndl)1

/* set the section's ID to the last section ID for this document + 1 */
mySectionID = (**myPrivHndl).winSectionID + 11

tempTEHndl = (**myPrivHndl).winTEHndl1 /* simplifies life*/
HLock((Handle)tempTEHndl)1

/* Get a handle to the preview data - we're using 'TEXT' */
DoGetTextPreview(tempTEHndl, &myPreviewHndl)1

186 ~ Chapter 5 Edition Manager

Listing 5-8. Source code for creating an edition and writing a
publisher to it (continued)

/* initialize mySpec */
/* use GetLastEditionContainerused info for everything but the name */
myErr = GetLastEditionContainerUsed(&mySpec);
BlockMove(defaultName, mySpec.theFile.name, sizeof(defaultName));

/* initialize the fields of myReply */
myReply.container = mySpec;
myReply.previewFormat = 'TEXT';
myReply.preview myPreviewHndl;
myReply.usePart = false;

/* using text for preview */
/* handle to the preview */
/* always set to false */

/* prompt the user to specify an edition file */
/* (we won't bother checking for an error; you should) */
myErr = NewPublisherDialog(&myReply);

/* free the memory allocated by DoGetTextPreview() */
if myPreviewHndl) { DisposHandle((Handle)myPreviewHndl); }

if lmyReply.canceled) { /*if •cancel' wasn't hit, carry on ..• */
if (lmyReply.replacing) {

/* if replacing was false, create a new edition container */
myErr = CreateEditioncontainerFile(&myReply.container.theFile,

Applcreator,
myReply.container.theFileScript);

if (myErr) {
PrintString(u\pError during CreateEditionContainerFileu);
HUnlock((Handle)myPrivHndl);
Hunlock((Handle)tempTEHndl);
return;

/* Create new publisher */
myErr = NewSection(&myReply.container, &(**myPrivHndl).winFSSpec,

stPublisher, mySectionID, pumOnSave,
&mysectionHndl);

if (lmyErr) {
/* new section was created, set up sectioninfo record */
newsiHndl = (siHandle)NewHandle(sizeof(sectioninfo));
(**newsiHndl).siSectionID = mySectionID;
(**newsiHndl).siisPublisher =true;/* true =publisher */
(**newsiHndl).siSectionHndl = mySectionHndl;
(**newsiHndl).siNextSectioninfo =nil;

/* get its contents */
DoGetPubcontents(tempTEHndl, &myoata);

/* Write it out! */
myErr = DoWriteContents(mySectionHndl,

&(**myPrivHndl).winFSSpec, myData);

..,. Publishing 187

Listing 5-8. Source code for creating an edition and writing a
publisher to it (continued)

}

Disposeandle(myoata); /* free the memory used by myData */

/* record new value of last section used in document */
(**myPrivBndl).winSectionID = mySectionID;

/* store handle to new sectioninfo record at end of linked list •/
tempsiendl = (**myPrivBndl).winsiBndl;
if (tempsiendl) { /* nil unless sections exists •/

/* walk list to find last sectioninfo record •/
while ((**tempsiBndl).siNextSectioninfo) {

tempsiBndl = (**tempsiBndl).siNextsectioninfo;

else

(**tempsiBndl).siNextsectioninfo = newsiBndl;
else {

(**myPrivBndl).winsiBndl = newsiBndl;

/* we didn't get a new section, so punt */
Printstring(•\pError in Newsection");

BUnlock((Bandle)myPrivBndl);
Hunlock((Bandle)tempTEBndl);

/* The following routine is responsible for opening the edition,
writing the publisher data, and closing the edition.

*/
OSErr DoWriteContents(Sectioneandle theSectionHndl,

FSSpecPtr docsspecPtr, Bandle theData

myErr, ignoreErr; OS Err
EditionRefNum theEdRefNum; /* refNum for edition container •/

Setcursor(*GetCursor(watchCursor); I* wristwatch cursor */

BLock((Bandle)theSectionBndl);
/* stuff current time into mdDate, so subscribers get update notice */
GetDateTime(&{**thesectionBndl).mdDate);
BUnlock((Bandle)theSectionHndl);

/* Open the edition for writing */
myErr = OpenNewEdition(theSectionendl, Applcreator,

docsSpecPtr, &theEdRefNum) ;
if (lmyErr) { /* if the open was successful, write to itl */

HLock(theData);

/* write the publisher data */
myErr = WriteEdition(theEdRefNum, 'TEXT', *theData,

188 ..,. Chapter 5 Edition Manager

Listing 5-8. Source code for creating an edition and writing a
publisher to it (continued)

GetHandleSize(theData));

HUnlock(theData);

if (myErr) {
ignoreErr

else {
ignoreErr

CloseEdition(theEdRefNum, false); /*write failed*/

CloseEdition(theEdRefNum, true); /*write is OK*/

Ini tCursor () ;
return (myErr);

/* normal cursor */

/* This routine returns a handle to the preview data in the
thePreviewHandle variable. The data is a block of text
extracted from the TextEdit record.

*/
void DoGetTextPreview(TEHandle theTERecord, Handle *thePreviewHandle)
{

char *dataPtr;
long dataSize;

dataPtr = *((**theTERecord).hText);
dataPtr += (**theTERecord).selStart;
datasize = (**theTERecord).selEnd - (**theTERecord).selStart;
if (dataSize > 200) dataSize = 200;
PtrToHand(dataPtr, thePreviewHandle, dataSize);

/* This routine returns a handle to the ·data to be published in the
thePubData variable. The data is a block of text extracted from
the TextEdit record.

*I
void DoGetPubContents(TEHandle theTERecord, Handle *thePubData)
{

char *dataPtr;
long dataSize;

dataPtr = *((**theTERecord).hText);
dataPtr += (**theTERecord).selStart;
datasize = (**theTERecord).selEnd - (**theTERecord).selStart;
PtrToHand(dataPtr, thePubData, dataSize);

..,. Subscribing 189

llll> Subscribing
As you learned above, an application should provide a Subscribe To ...
menu item so that users can subscribe to an existing edition file. You
enable this item any time a paste operation makes sense.

The application should react to the selection of the Subscribe To ... item
by presenting the standard subscriber dialog box shown in Figure 5-4.

Preuiew

Previews can be done as
either TEXT or a PICT.
This one is done as TEXT
since we 're publishing
text - giving users a
better idea of what
they 're publishing.
There's only room for
about 200 characters ...

la Editions for Chapter 5 j
o Figure 5-1 ~
o Figure 5-2

i ~i~l~~ ~~~ I
O Listing 5-4 {}

Figure 5-4. The standard subscriber dialog box

e:> Swihart's

Desktop

[Cancel

([Subscribe J

Notice the Preview area on the left side of the subscriber dialog box.
As you saw earlier, the application that created the edition is responsible
for providing the content of the preview area. Your application could also
use this preview as a fast way to represent the data within a subscriber
instead of displaying the entire subscriber. (The preview is usually stored
in the edition in the 'prvw' format and you can read it by calling
ReadEdition, described below.)

Bring up the subscriber dialog box by calling the NewSubscriberDialog
routine which requires a pointer to a NewSubscriberReply record as its
sole parameter. The structure of NewSubscriberReply is shown in List
ing 5-9.

Listing 5-9. The structure of a NewSubscriberReply record

struct NewSubscriberReply {
Boolean canceled;

} ;

unsigned char formatsMask;
EditionContainerSpec container;

190 ~ Chapter 5 Edition Manager

Note.,,.

The fields in a NewSubscriberReply are as follows:

canceled-Set to true by the Edition Manager if the user clicks the
Cancel button (see Figure 5-4).

formatsMask-Set this before calling HewSubscriberDialog to reflect
the formats you want to subscribe to. The Edition Manager uses this
mask to filter out editions that do not contain the desired formats
(similar to file filtering in a standard open file dialog). Each format is
represented by a constant (defined in the Editions.h interface file);
more than one format can be specified by adding the appropriate
constants together. The standard formats that applications should sup
port are the following:

#define kTEXTformatMask 'TEXT'
#define kPICTformatMask 'PICT'
#define ksndFormatMask 'snd '

container-Before calling HewSubscriberDialog, store here the
Edi tionContainerSpec of the last edition file created by a call to
Hewsection from any application on the user's computer (call
GetLastEditioncontainerused to obtain this information). This edi
tion file becomes the default and its name will be highlighted when the
dialog appears. The edition file actually selected by the user will be
returned in this FSSpec field of container, overwriting the default
settings supplied by your application if the user picks an edition other
than the default.

Using the edition container returned by GetLastEditionContainerused
simplifies the user's interaction with other applications on the same
computer since it lets them publish a new edition from one application
and have that edition as the default to subscribe to from another applica
tion. This is similar to copying something to the clipboard in one applica
tion and having that data available for immediate pasting in another
application.

.,. Subscribing 191

The function prototype for GetLastEdi tionContainerUsed is the following:

pascal OSErr GetLastEditionContainerused(EditionContainerSpec *container);

The sole parameter passed to GetLastEditionContainerused is a
pointer to the space for an Edi tionContainerSpec record that this rou
tine returns. The fields within this record reflect the edition container that
was last referenced by a call to Newsection from any application running
on the computer. If no calls to Newsection have been made on the user's
computer, the fields in the EditionContainerSpec returned by
GetLastEditionContainerused will be set to safe values so that the
returned value is always a usable default when calling
NewSubscriberDialog.

After calling GetLastEditionContainerused, and using the informa
tion it returns to prepare your NewSubscriberReply record, call
NewsubscriberDialog to allow users of your application to select the
edition to which they want to subscribe. The sole parameter to
NewSubscriberDialog is a pointer to a NewSubscriberReply record. The
function prototype for NewSubscriberDialog is the following:

pascal OSErr NewSubscriberDialog(NeWSubscriberReply *reply);

After determining which edition a user wants to subscribe to, your
application should not open the edition and start reading its contents.
Instead, create a new section for the subscriber and return to your main
event loop. The Edition Manager will register your newly created section,
detect that this section needs to be updated, and send an Apple event to
your application telling it to read the section. This Read Event, and how
to react to it, is described in the "Apple Events Used by the Edition
Manager" section later in this chapter.

Listing 5-10 shows the source code for a routine that allows the user to
select an edition to subscribe to and to create a subscriber section.

Listing 5-10. Source code for selecting and creating a new
subscriber

/* The following routine is responsible for creating a subscriber
at the insertion point in the front window. This routine does
NOT read the subscriber's content - we wait for the Read Event
to come from the Edition Manager and handle it with our Apple
event handler.

This code assumes a handle to a private data structure has

192 _.. Chapter 5 Edition Manager

Listing 5-10. Source code for selecting and creating a new
subscriber (continued)

*/

been stored in the window's refCon field. This private data
structure has the following definition:

typedef struct {
FSSpec winFSSpec;
siHandle winsiHndl;

long winSectionID;
TEHandle winTEBndl;

- file specification for the document
- handle to first sectioninfo record
- (defined in Listing 5-3)
- the section ID
- handle to the TextEdit record

winPrivate, **winPrivateHndl;

void DoCreateSubscriber(void)
{

winPrivateHndl
Boolean
SectionHandle

myPrivHndl; /* handle to window's private data */
aliasChanged;
mySectionHndl;

long mySectionID;
OS Err
NewSubscriberReply
siHandle

myErr;
myReply; /* for NeWSubscriberDialog */
tempsiHndl, newsiHndl;

/* Note: this code assumes the front window has a TextEdit record. */

myPrivHndl = (winPrivateHndl)GetWRefCon(FrontWindow());
HLock((Handle)myPrivHndl);

/* initialize container's spec */
myErr = GetLastEditionContainerUsed(&myReply.container);

/* set mask to allow only editions with TEXT in them */
myReply.formatsMask = kTEXTformatMask;

/* ready to prompt user to select an edition file */
/* (we won't bother checking for an error; you should) */
myErr = NewSubscriberDialog(&myReply);

if (lmyReply.canceled) /*if 'Cancel' wasn't hit, carry on ••• */
/* set this section's ID */
mySectionID = (**myPrivHndl).winSectionID + l;

/* Create new subscriber */
myErr = Newsection(&myReply.container, &(**myPrivHndl).winFSSpec,

stsubscriber, mySectionID,
sumAutomatic,
&mySectionHndl);

if (lmyErr) {
/* new section has been created, record new section's info */

newsiHndl = (siHandle)NewHandle(sizeof(sectioninfo));
(**newsiHndl).sisectionID = mySectionID;
(**newsiHndl).siisPublisher false; /* false=subscriber */
(**newsiHndl).siSectionHndl = mySectionHndl;

~ Publisher and Subscriber Options 193

Listing 5-10. Source code for selecting and creating a new
subscriber (continued)

(**newsiHndl).siNextsectioninfo = nili

/* record new value of last section used in this document */
(**myPrivHndl).winSectionID = mySectionIDi

/* store handle to new sectioninfo record at end of linked list */
tempsiHndl = (**myPrivHndl).winsiHndli
if (tempsiHndl) { /* nil unless sections exist */

/* walk list to find last sectioninfo record •/
while ((**tempsiHndl).siNextSectioninfo) {

tempsiHndl = (**tempsiHndl).siNextSectioninfoi

(**tempsiHndl).siNextSectioninfo = newsiHndli
} else {

(**myPrivHndl).winsiHndl = newsiHndli

HUnlock((Handle)myPrivHndl)1

~ Publisher and Subscriber Options

~ Publisher Options

When the user selects a publisher within a document, the application
should enable the Publisher Options ... menu item in the Edit menu. If the
user selects this item, or double-clicks on the publisher, the standard
publisher options dialog (see Figure 5-5) should be displayed. This dialog
allows the user to specify whether the selected publisher will be updated
On Save (automatically every time the document is saved) or Manually
(only at the specific request of the user).

Publisher to: IC Listing 5-1 ,..I

--send Editions:·-·----.. --------·-·-·

oon saue I
@ Manually (Send Edition Now J I

Cancel Publisher

~~~II~~ :8!"~~;:--ff-,r""'~~~~~;;~~·- =::_;:.;~_;;J;~.~.;;,,;, __ J 
Is highlighted. 

[ Csncel I n OK ' 

Figure 5-5. The standard publisher options dialog 



194 IJJJ> Chapter 5 Edition Manager 

A publisher with its update mode set to On Save should have its con
tents written to its edition every time the document containing the pub
lisher is saved, but only if the contents of the publisher have changed 
since the last time the document was saved. This minimizes the time it 
takes to save a document with many publishers since only those publish
ers that have been changed and are set to On Save need to be written to 
their edition files. Your application is responsible for determining when a 
publisher needs to be saved to its edition file; this is not handled auto
matically by the Edition Manager. 

An immediate transfer of a publisher's contents to its edition can be 
forced by clicking the Send Edition Now button in the publisher options 
dialog, regardless of whether that publisher is normally sent Manually or 
On Save. This provides a method of quickly updating individual editions 
without having to save the entire document, and it is the only way to 
update an edition whose publisher update mode is Manually. 

You can display the publisher options dialog by calling 
sectionOptionsDialog. The sole parameter to this routine is a pointer 
to a SectionOptionsReply record. Some of the fields in a 
SectionOptionsReply record are set by the application before calling 
SectionOptionsDialog and others are set by the Edition Manager in 
response to user selections in the dialog. The structure of a 
SectionOptionsReply record is shown in Listing 5-11. 

Listing 5-11. The structure of a SectionOptionsReply record 

struct SectionOptionsReply { 
Boolean canceled; 
Boolean changed; 
SectionHandle sectionH; 
ResType action; 

/* 
/* 
/* 
/* 

set by Edition Manager */ 
set by Edition Manager */ 
set by the application */ 
set by Edition Manager */ 

} ; 

The fields in a sectionOptionsReply record for a publisher are as follows: 

canceled-Set to true by the Edition Manager if the user clicks the 
Cancel button. If this field is set to false, the user dismissed the 
publisher options dialog by clicking one of the other three buttons. 
Examine the action field to determine which button was clicked. 
changed-Set to true by the Edition Manager if the publisher's section 
record changed-selecting a different update mode causes this to hap
pen. If this field is true, the section record for this publisher, stored as a 



Important"" 

~ Publisher and Subscriber Options 195 

'sect' resource in the document containing the publisher, needs to be 
updated to reflect the change. 

sectionR-The handle to the section record for the currently selected 
publisher. The kind field within the section record tells the Edition 
Manager whether this is the section record for a publisher or sub
scriber (it will be set to stpublisher for a publisher). 

action-There are three possible actions that the user can request 
from the publisher options dialog if the operation was not canceled. 
This field indicates which one of these actions was requested. Each 
action is represented by a four-character string. The possible actions 
and their meanings are: 

• 'encl 1 -User clicked the Cancel Publisher button. 

• 'writ •-User clicked the Send Edition Now button. 

• ' '-User clicked the OK button (four blank spaces are used 
for the action code). 

If the action code returned is 'encl', the application should unregister 
the publisher from its edition, dispose of the memory used by the alias 
handle stored in the alias field of the section record, then dispose of the 
memory used for the section record itself. Use the following three lines of 
code to do all this: 

myErr = UnRegisterSection( theSectionH ); 
DisposHandle( (**theSectionH).alias ); /*only if alias is not nil*/ 
DisposHandle( theSectionH ); 

The application should also remove references to the publisher in any 
private data structures it uses to track the sections in a document. 



196 ~ Chapter 5 Edition Manager 

If the action code returned is 'writ ', the application should immedi
ately write the current contents of the publisher to its edition container. It 
can do this by calling a routine such as the DoWriteContents routine in
cluded in Listing 5-8. If DoWriteContents returns an error, you should 
warn the user by displaying an appropriate dialog box. 

If the action code returned is ' ' (four blank spaces-Ox20202020), 
the user dismissed the publisher options dialog by clicking the OK button. 

~ Subscriber Options 

When a user selects a subscriber within a document, the application 
should change the name of the Publisher Options ... item in the Edit menu 
to Subscriber Options... and should enable the item. If the user selects 
this item or double-clicks the subscriber, the standard subscriber options 
dialog (see Figure 5-6) should be displayed. This dialog allows the user to 
specify whether the selected subscriber will be updated Automatically 
(whenever its edition changes) or Manually (only at the specific request of 
the user). 

Subscriber to: I O Listing 5-1 •I 

-Ge~:~!::~uc:;;-·-·-.. ---·-·----·-----1 
® Manually ( Get Edition Now ] I 

This line doesn~ show LalestEcHtion: Tuosdau, Apri12, 1991 12:26:39 AM 
HtheAutomatlca//y --tt.L>.~~Reotivod: Tuosda~,Aprfl2,199112:26:3'i1AM _j 
button Is highlighted. 

Figure 5-6. The standard subscriber options dialog 

( cancel Subscriber J 

[ Open Publisher ] 

( Cancel J n OK B 

A subscriber with its update mode set to Manually has its contents up
dated only when the user clicks the Get Edition Now button in the sub
scriber options dialog. 

You can display the subscriber options dialog by calling 
sectionOptionsDialog. The sole parameter to this routine is a 
SectionOptionsReply record. As described in the previous subsection, 
the sectionH field in the SectionOptionsReply record needs to be set 
by the application before calling SectionOptionsDialog; the other fields 
are set by the Edition Manager in response to user's selections in the 
dialog. 



_.. Publisher and Subscriber Options 197 

The fields in a SectionOptionsReply record for a subscriber are as 
follows: 

canceled-Set to true by the Edition Manager if the user clicks the 
Cancel button. If this field is set to false, the user dismissed the 
subscriber options dialog by clicking one of the other four buttons. 
Examine the action field to determine which button was clicked. 

changed-Set to true by the Edition Manager if the subscriber's section 
record changed-selecting a different update mode causes this to hap
pen. If this field is true, the section record for this subscriber, stored as 
a ' sect' resource in the document containing the subscriber, needs to 
be updated to reflect the change. 
sectione-The handle to the section record for the currently selected 
subscriber. The kind field within the section record tells the Edition 
Manager whether this is the section record for a publisher or sub
scriber (it will be set to stSubscriber for a subscriber). 

action-Four possible actions that the user can request from the 
publisher options dialog if the operation was not canceled. This field 
indicates which one of these actions was requested. Each action is 
represented by a four character string. The possible actions and their 
meanings are as follows: 

• 'encl' -User clicked on the Cancel Subscriber button. 

• 'read' -User clicked on the Get Edition Now button. 

• ' •-User clicked on the OK button (four blank spaces are used 
for the action code). 

• 'goto•-User clicked on the Open Publisher button. 

If the action code returned is 'encl', the application should unregister 
the subscriber from its edition, dispose of the memory used by the alias 
handle stored in the alias field of the section record, then dispose of the 
memory used for the section record itself. Do not delete the information 
in the document that was imported from the edition-simply stop treating 
the information as a subscriber. Use the following three lines of code to 
do all this: 

myErr = UnRegisterSection( theSectionH ); 
DisposHandle( (**theSectionH).alias ); /*only if alias is not nil*/ 

DisposHandle( theSectionH ); 



198 IJll> Chapter 5 Edition Manager 

The application should also remove references to the subscriber in any 
private data structures it uses to track the sections in a document. 

If the action code returned is 'read', the application should immedi
ately retrieve the current contents of the subscriber's edition container. 
This allows the user to force a specific subscriber to be updated as 
discussed earlier in this section. It can do this by calling a routine such as 
the DoReadContents routine included in Listing 5-14. 

If the action code returned is ' ' (four blank spaces-Ox20202020), 
the user dismissed the subscriber options dialog by clicking the OK 
button. 

If the action code returned is 'goto', the application should send an 
Apple event to the Finder telling it to open the document that contains 
the publisher for this edition. To do this, the application should first 
locate the edition container in question by calling GetEditioninfo. The 
function prototype for GetEditioninfo is as follows: 

pascal OSErr GetEditioninfo( const SectionHandle sectionH, 
EditioninfoRecord *editioninfo ); 

The parameters passed to GetEdi tioninfo are as follows: 

sectionB-A handle to the section record for the currently selected 
subscriber. 

editioninfo-Points to a space for an EditioninfoRecord. 
GetEditioninfo returns the subscriber's edition information record 
here. 

The structure of an EditioninfoRecord is shown in Listing 5-12. 

Listing 5-12. The structure of an EditionlnfoRecord record 

struct EditioninfoRecord { 

}; 

TimeStamp crDate; /* date EditionContainer was created */ 
TimeStamp mdDate; /* date of last change */ 
OSType fdCreator; /* file creator */ 
OSType fdType; /* file type */ 
EditioncontainerSpec container; /* the Edition */ 



~ Apple Events Used by the Edition Manager 199 

The meanings of the fields in an Edi tioninfoRecord are as follows: 

crDate-The date and time the edition was created. 

mdDate-The date and time at which the edition was last updated. 

fdCreator-The creator type of this edition. 

fdType-The file type of this edition. 

container-The EditionContainerSpec (explained earlier in this 
chapter) for this edition. 

If GetEdi tioninfo cannot locate the edition file, it returns a fnfErr 
error code. This may happen if the file has been deleted or moved. 

The Apple event for opening the document containing the publisher 
can be sent to the Finder by calling GoToPublisherSection, with its sole 
parameter pointing to the container field in the Edi tioninfoRecord 
obtained by the call to GetEditioninfo. The function prototype for 
GoToPublisherSection is as follows: 

pascal OSErr GoToPublisherSection( const EditionContainerSpec 
*container ); 

This routine also sends a Scroll Section Apple event to the publisher 
after the publisher has been registered by the application containing it. 
This event is described in the next section. 

llJll> Apple Events Used by the Edition Manager 
The Edition Manager defines four Apple events that each application that 
uses the Edition Manager must support. Some of these events are sent to 
the application that created an edition and others are sent to applications 
whose documents contain subscribers to that edition. 

Applications must prepare to deal with these Apple events in the usual 
way-by installing high-level event handlers for them with 
AEinstallEventHandler and reacting to kHighLevelEvent events by calling 
AEProcessAppleEvent. Refer to Chapter 4 if this sounds mysterious. 

The four Edition Matiager Apple events each use the event class of 
sectionEventMsgClass ('sect'). The event IDs are as follows: 

'encl' 
'read' 
'scrl' 
'writ' 

Cancel Section 
Read Section 
Scroll Section 
Write Section 



200 ~ Chapter 5 Edition Manager 

Each of these Apple events passes a single parameter in the direct 
parameter (the keyword for which is keyDirectObject). The parameter 
is a handle to a section record and its data type is typeSectionH. The 
meaning of each of these Apple events is briefly described in Table 5-1. 

Table 5-1. Apple events used by the Edition Manager and their 
destinations 

Apple Event's 
Event Name Event ID Destination Meaning 

Cancel Section 'encl' Not sent at (provide handler for future 
present compatibility) 

Read Section 'read' Subscriber's Read new information from 
application edition 

Scroll Section 'scrl' Publisher's Scroll document so publiser is 
application visible 

Write Section 'writ' Publisher' Write published material to 
application edition file 

When you call AEinstallEventBandler to install the handlers for the 
Edition Manager-related Apple events, the first parameter you specify 
should be sectionEventMsgClass (the event class). The second param
eter (the event ID) should be set to one of the following constants: 

sectionCancelMsgID 
sectionReadMsgID 
sectionScrollMsgID 
sectionWriteMsgID 

for the Cancel Section ('encl') handler 
for the Read Section (' read ' ) handler 
for the Scroll Section (' scrl ')handler 
for the Write Section ('writ') handler 

Each Edition Manager-related Apple event deals with only one section 
at a time. Call AEGetKeyPtr to retrieve a handle to the sectionRecord to 
which the event relates. 

Since it is possible that the section was unregistered after the Apple 
event was placed in the event queue, verify that the affected section is 
still registered before acting on a section referred to in the event. A 
section's registration status can be determined by passing its section 
handle as the sole parameter to IsRegisteredSection. If the error code 
returned by IsRegisteredSection is notRegisteredSectionErr (defined 
in the interface file Errors.h), the section is not registered and you should 
ignore the Apple event. . 



..,. Apple Events Used by the Edition Manager 201 

..,. Cancel Section 

The System 7.0 version of the Edition Manager does not use Cancel 
events, but you should still provide a handler for them to ensure compat
ibility with future releases of system software. Handle this event just as 
you would handle a user clicking on the Cancel Publisher or Cancel Sub
scriber button in the publisher or subscriber options dialog box described 
earlier in this chapter. In particular, it should unregister the section, 
dispose of the alias record inside the section record, then dispose of the 
section record itself . 

..,. Read Section 

When a publisher updates its edition, the Edition Manager sends a Read 
Section event to all applications that have sections registered as subscrib
ers to the edition and whose update mode is set to automatic. (Read 
Section events are never sent to a subscriber that has its update mode set 
to manual.) Your application should handle the Read Section event by 
updating a subscriber, but only if the Stop All Editions item in the Edit 
menu is not marked. To determine the item's mark character, use the 
following statement: 

GetitemMark( GetMHandle( mEdit ), iStopEditions, &theMark ); 

where mEdi t is menu ID for the Edit menu and iStopEdi tions is the 
Stop All Editions item number. If the character returned in the theMark 
variable (a char) is not noMark, simply exit the event handler and return 
noErr. Otherwise, respond to the Read Section event by opening the 
edition file for the subscriber, reading the new contents, and closing the 
edition file. 

Opening an edition file to subscribe to its contents is slightly different 
from opening it to publish new contents. Instead of calling 
OpenNewEdition, call OpenEdition. The function prototype for 
OpenEdi tion is as follows: 

pascal OSErr OpenEdition( SectionHandle subscriberSectionH, 
EditionRefNwn *refNwn ); 



202 IJJ. Chapter 5 Edition Manager 

The parameters used by OpenEdition are the following: 

subscriberSectionB-The handle to the section record for the sub
scriber whose data is about to be read from the edition. You obtain this 
handle from the direct parameter of the Read Section Apple event. 

re fHum-The reference number for the opened edition is returned in 
this variable. 

Once the edition has been successfully opened, you can read its con
tents by calling ReadEdi tion. The function prototype for ReadEdi tion is 
as follows: 

pascal OSErr ReadBdition{ EditionRefNum whichEdition, 
FormatType whichFormat, 
void *buffPtr, 
Size *buffLen ); 

The parameters used by ReadEdi tion are the following: 

whichEdition-The refNum for the edition container returned by 
OpenBdition. 

whichFormat-The format of the data to be read. To support the 
exchange of common data types with other applications, your applica
tion should be able to deal with both the 'TEXT' and the 'PICT' 
formats. The formats of the data read from an edition are the same as 
those read from the clipboard. Editions can contain data in more than 
one format, but each format must be read by a separate call to 
ReadBdition. 

buffPtr-Set to a pointer to the buffer where the data being read is to 
be placed. The buffer must be large enough to hold the number of 
bytes specified by the buff:i;.en parameter. 
buffLen-Indicates the number of bytes to be read from the edition 
container-these bytes will be read into the buffer pointed to by 
buffPtr. After the read operation finishes, this variable is set by the 
Edition Manager to the actual number of bytes read. If the value 
returned is the same value that was passed to ReadEdi tion, more data 
is waiting to be read from the requested format and you should 
continue to call ReadEdition until all of the data has been read. All 
data has been read when the returned value of buffLen is smaller than 
the requested value. 



~ Apple Events Used by the Edition Manager 203 

Once you've read all of the desired formats from an edition, close it by 
calling CloseEdi tion. CloseEdi tion was described earlier in this chap
ter but the description will be repeated here because the meaning of the 
last parameter changes slightly when closing an edition file that has been 
read. The function prototype for CloseEdi tion is as follows: 

pascal OSErr CloseEdition( EditionRefNum whichEdition, 
Boolean successful ); 

The parameters used by CloseEdition are the following: 

whichBdition-Set to the refNum of the open edition container. 
successful-If your application was able to read the data from the 
edition container, set this parameter to true; otherwise, set it to false. 
When set to true, CloseBdition causes the Edition Manager to adjust 
the mdDate field in the subscriber's section record so that it is the same 
as the edition container's modification date. You should save the 
updated section record to the document's resource fork so that you 
don't get an unnecessary Read Section event the next time the section 
is registered. 

~ Scroll Section 

The subscriber options dialog (discussed in the "Publisher and Subscriber 
Options" section of this chapter) provides an Open Publisher button that 
allows users to launch the application that published that edition and 
load the document containing the publisher. Once the publishing applica
tion has been launched, the Edition Manager sends it a Scroll Section 
Apple event; the application should react to it by scrolling the document 
so that the publisher appears in the visible portion of the document's 
window. 

~ Write Section 

Your application should handle the Write Section event by writing a 
publisher to an edition, but only if the Stop All Editions item in the Edit 
menu is not marked. Use the technique described above in connection 
with the Read Section event to determine whether this item is marked. 

If editions are not stopped and a Write Section event comes in, the 
receiving application should open the edition for the section with 
OpenNewBdition, write the contents of the section to it with WriteEdition, 
then close the edition with CloseEdition. 



204 .,,_ Chapter 5 Edition Manager 

A Write Section event is automatically generated when you create a 
new publisher by calling Newsection or when you register an existing 
publisher with Registersection and the edition container does not 
already exist or cannot be found. In these situations, the edition container 
is automatically created before you receive the Write Section event. 

Earlier in this chapter, you learned how to create a new 
publisher by explicitly creating the edition file first by calling 
CreateEditionContainerFile. When you do this, then call ReWSection 
to create the new publisher, no Write Section event is generated because 
the edition file already exists. Thus, you have to write to the edition file 
immediately by calling Wri teEdi Uon. An alternative technique for creating 
a new publisher and writing it to its edition is simply to call NeWSecUon-the 
Edition Manager will create the edition file for you and the Write Section 
event handler will write the publisher data to it. 

Listing 5-13 shows the source code for installing handlers for all four 
Edition Manager-related Apple events. Listing 5-14 shows the source 
code for the four handlers used in the Skeleton application. 

Listing 5-13. The source code for installing the Apple event 
handlers for Apple events used by the Edition Manager 

/* The following routine installs the four handlers for */ 
/* the Apple events defined by the Edition Manager. */ 
void DoEditionsAEinstallation( void ) 
{ 

} 

/* Install the handler for Cancel Events */ 
AEinstallEventHandler( sectionEventMsgClass, sectionCancelMsgID, 

(EventHandlerProcPtr)DoCancelEdition, 
OL, false ) ; 

/* Install the handler for Read Events */ 
AEinstallEventHandler( sectionEventMsgClass, sectionReadMsgID, 

(EventHandlerProcPtr)DoReadEdition, 
OL, false ) ; 

/* Install the handler for Scroll Events */ 
AEinstallEventHandler( sectionEventMsgClass, sectionScrollMsgID, 

(EventHandlerProcPtr)DoScrollEdition, 
OL, false ); 

/* Install the handler for Write Events */ 
AEinstallEventHandler( sectionEventMsgClass, sectionWriteMsgID, 

(EventHandlerProcPtr)DoWriteEdition, 
OL, false ) ; 



_.. Apple Events Used by the Edition Manager 205 

Listing 5-14. The source code for Skeleton's handlers for the Apple 
events used by the Edition Manager 

/* The following routines assume a handle to a private data 
structure has been stored in the window's refCon field. 
This private data structure has the following definition: 

*/ 

typedef struct { 
FSSpec winFSSpec 1 
sieandle winsiendl1 

long winSectionID1 
TEHandle winTEHndl 1 

- file specification for the document 
- handle to first sectioninfo record 
- (defined in Listing 5-3) 
- the section ID 
- handle to the TextEdit record 

winPrivate, **winPrivateHndl1 

/* The following routine is called when a 'Cancel section• event occurs */ 
pascal OSErr DoCancelEdition( AppleEvent *theAppleEvent, AppleEvent •reply, 

long myRefCon ) 

WindowPtr 
Sectioneandle 
OS Err 
DescType 

wp1 /* pointer to section's window •/ 
mySectionHndl1 
myErr, ignoreErr1 
typeCode1 

Size actualSize1 
FSSpec 
Boolean 

tempSpec1 /* FSSpec for section's edition file */ 
aliasChanged1 

SetCursor( *GetCursor( watchCursor ) )1 /*wristwatch cursor*/ 

/* extract the section handle from the direct parameter */ 
myErr = AEGetKeyPtr( theAppleEvent, keyDirectObject, typeSectione, 

&typeCode, (Ptr)&mySectionHndl, 
sizeof( mySectionendl ), &actualsize )1 

if ( lmyErr ) { 
/* make sure section is unregistered •/ 
ignoreErr = UnRegisterSection( mysectionendl )1 

/* Tip on canceling a publisher: don't delete the edition 
with DeleteEditioncontainerFile right now. To support 
revert or undo, flag the section record as canceled and 
delete the edition when the file is being closed. The 
section is a publisher if (**mySectionHndl).kind is 
equal to stPublisher. */ 

/* Find the window associated with this section. 
(DoFindSectionWindow scans the sectioninfo linked 
lists for each window until it finds one corresponding 
to the sect~on record. It returns a pointer to the 
window containing the section.) •/ 

wp = DoFindSectionWindow( mysectionendl )1 

/* DoRemovesectioninfo removes the sectioninfo record 
for the section from the linked list. */ 



206 ~ Chapter 5 Edition Manager 

Listing 5-14. The source code for Skeleton's handlers for the Apple 
events used by the Edition Manager (continued) 

if ( wp ) DoRemovesectioninfo( wp, mysectionHndl ); 

/* dispose of the section's alias record */ 
DisposHandle( (Handle)(**mySectionHndl).alias ); 

/* dispose of the section record */ 
DisposHandle( (Handle)mysectionHndl ); 

InitCursor(); 
return( myErr ); 

/* restore normal cursor */ 

/* The following routine is called when a 'Read section' event occurs */ 
pascal OSErr DoReadEdition( AppleEvent *theAppleEvent, AppleEvent *reply, 

long myRef Con ) 

WindowPtr 
winPrivateHndl 
SectionHandle 
OS Err 
DescType 
Size 
Size 
EditionRefNum 
Chars Handle 
char 

wp; /* pointer to section's window */ 
myPrivHndl; /* handle to wp's private data stash */ 
mysectionHndl; 
myErr, regErr; 
typeCode; 
actualSize; 
myBuffLength;/* numer of chars to read */ 
myEdRefNum; /* refuNum for edition container */ 
tempCharsHndl;/* handle to text in TE field */ 
theMark; /* Stop All Editions mark character •/ 

myErr = noErr; /* default response •I 
/* handle event only if the Stop All Editions item is not marked */ 
/* mEdit is the menu ID; iStopEditions is the item number •/ 
GetitemMark( GetMBandle( mEdit ), istopEditions, &theMark ); 
if ( theMark == noMark ) { 

SetCursor( *GetCursor( watchcursor ) ); /*wristwatch cursor •/ 

/* extract the section handle from the direct parameter •/ 
myErr = AEGetKeyPtr( theAppleEvent, keyDirectobject, typeSectionH, 

&typeCode, (Ptr)&mySectionHndl, 
sizeof( mySectionHndl ), &actualSize ); 

if ( lmyErr ) { 
/* is section registered? (may have been unregistered while 

event was in queue) */ 
regErr = IsRegisteredSection( mySectionHndl ); 
if ( lregErr ) { /* if it's registered, read it in */ 

DoReadContents( mySectionHndl ); 

InitCursor(); /* restore normal cursor •/ 

return( myErr ); 



Ill> Apple Events Used by the Edition Manager 207 

Listing 5-14. The source code for Skeleton's handlers for the Apple 
events used by the Edition Manager (continued) 

/* This routine is responsible for opening, reading, and closing 
an edition file in order to extract the contents of a subscriber. 
The data that is read is put directly into the document 
that owns the subscriber whose contents are are being read. */ 

void DoReadContents( SectionBandle mySectionBndl ) 
{ 

WindowPtr wp; /* pointer to section's window */ 
winPrivateBndl myPrivBndl; /* handle to private data area */ 
OS Err myErr; 
Size myBuffLength; /* number of chars to read */ 
EditionRefNwn myEdRefNum; /* refuNum for edition container 
CharsBandle tempCharsBndl; /* handle to text in TE field */ 

/* open the edition file */ 
myErr = OpenEdition( mySectionBndl, &myEdRefNwn ); 

if ( lmyErr ) { /* if it opened, keep going */ 
/* make room to hold data being read */ 

*/ 

tempCharsBndl = (CharsBandle)NewBandle( 32000 * sizeof( char ) ); 
HLock( (Handle)tempCharsBndl ); 

/* read the TEXT from the edition container */ 
/* (we're not expecting more than 32000 characters) */ 
myBuffLength = 32000; 
myErr = ReadEdition( myEdRefNum, 'TEXT', *tempCharsHndl, 

&myBuffLength ); 

if ( lmyErr ) { 

/* Find the window associated with this section. 
(DoFindSectionWindow scans the sectioninfo linked 
lists for each window until it finds one correspcnding 
to the section record. It returns a pointer to the 
window containing the section.) */ 

wp = DoFindSectionWindow( mySectionHndl ) ; /* Find section• s owner *I 
myPrivHndl = (winPrivateHndl)GetWRefCon( wp ); 
HLock( (Handle)myPrivBndl ); 

/* stuff TEXT we just read into TE field */ 
TEinsert( *tempCharsHndl, myBuffLength, (**myPrivHndl).winTEHndl ); 

HUnlock( (Handle)myPrivHndl ); 

DisposBandle( (Handle)tempCharsHndl ); 

if ( myErr ) { 
myErr = CloseEdition( myEdRefNum, false ); /* read failed */ 



208 Ill> Chapter 5 Edition Manager 

Listing 5-14. The source code for Skeleton's handlers for the Apple 
events used by the Edition Manager (continued) 

else { 
myErr CloseEdition( myEd.RefNum, true ); /* read succeeded */ 

/* The following routine is called when a •scroll Section• event occurs */ 
pascal OSErr DoScrollEdition( AppleEvent *theAppleEvent, AppleEvent *reply, 

long myRefCon ) 

WindowPtr wp; /* pointer to section's window */ 
OSErr myErr; 
sectioneandle mySectionendl; 
DescType typeCode; 
Size actualSize; 
ProcessSerialNwnbermyserialNum; /* serial nwnber for this app */ 
Rect tempRect; /* section's bounding rect */ 
WindowPtr wpTemp; 

Setcursor( *GetCursor( watchCursor ) ); /*wristwatch cursor*/ 

/* extract the section handle from the direct parameter */ 
myErr = AEGetKeyPtr( theAppleEvent, keyDirectObject, typesectione, 

&typeCode, (Ptr)&mySectionHndl, 
sizeof( mySectionHndl ), &actualSize ); 

if ( lmyErr ) { 
/* we could have been in background or foreground when this event */ 
/* was received. If we weren't even launched, Finder launched us */ 
/* and we're just waking up. So, make sure we're in front of all */ 
/* other applications. */ 
GetCurrentProcess( &mySerialNum ); /* get serial nwnber for this app */ 
SetFrontProcess( &mySerialNum ); /* force us to front*/ 

/* Find the window associated with this section. 
(DoFindSectionWindow scans the sectioninfo linked 
lists for each window until it finds one corresponding 
to the section record. It returns a pointer to the 
window containing the section.) */ 

wp = DoFindSectionWindow( mySectionHndl ); 
if(wp){ 

DoForceWindowToFront( wp );/*force to front of all my windows */ 

/* make this window the current grafPort */ 
GetPort( &wpTemp ); 
SetPort ( wp ) ; 

/* Scroll the document so that the section is visible. 
(DoShowSection is a routine that you provide.) */ 

ooshowsection( wp, mySectionendl ); 

/* Draw a border around the publisher. 



IJJJ. Apple Events Used by the Edition Manager 209 

Listing 5-14. The source code for Skeleton's handlers for the Apple 
events used by the Edition Manager (continued) 

(DrawPubBorder is a routine that you provide.) */ 
DrawPubBorder( wp, mySectionBndl ); 
SetPort( wpTemp ); 

InitCursor(); 
return ( myErr ) ; 

/* restore normal cursor */ 

/* The following routine is called when a 'Write Section• event occurs */ 
pascal OSErr DoWriteEdition( AppleEvent *theAppleEvent, AppleEvent •reply, 

long myRef Con ) 

WindowPtr 
winPrivateBndl 
OSErr 

wp; 
myPrivHndl; 
myErq 
aliasChanged; 
mySectionBndl; 
typeCode; 
actualsize; 
tempTEHndl; 
myData; 
theMark; 

/* pointer to section's window */ 
/* handle to wp•s private data stash */ 

Boolean 
SectionBandle 
DescType 
Size 
TEBandle 
Bandle 

/* TEHandle for wp•s window */ 
/* publisher's contents go here */ 

char /* Stop All Editions mark character */ 

myErr = noErr; /* default response */ 
/* handle event only if the stop All Editions item is not marked */ 
/* mEdit is the menu ID;• iStopEditions is the item number */ 
GetitemMark( GetMBandle( mEdit ), iStopEditions, &theMark ); 
if ( theMark == noMark ) { 

SetCursor( *GetCursor( watchCursor ) ); /*wristwatch cursor */ 

/* extract the section handle from the direct parameter */ 
myErr = AEGetKeyPtr( theAppleEvent, keyDirectObject, typeSectionB, 

&typeCode, (Ptr)&mySectionBndl, 
sizeof( mySectionHndl ), &actualSize ); 

if ( lmyErr ) { 
/* Find the window associated with this section. 

(DoFindSectionWindow scans the sectioninfo linked 
lists for each window until it finds one corresponding 
to the section record. It returns a pointer to the 
window containing the section.) */ 

wp DoFindSectionWindow( mySectionHndl ); 

if(wp){ 

/* get handle to wp•s TextEdit record */ 
myPrivBndl = (winPrivateBndl)GetWRefCon( wp ); 
HLock( (Bandle)myPrivBndl ); 



210 IJJ.. Chapter 5 Edition Manager 

Listing 5-14. The source code for Skeleton's handlers for the Apple 
events used by the Edition Manager (continued) 

tempTEHndl = (**myPrivHndl).winTEHndl; 

/* Get data that should be written. 
(DoGetThePublisher retrieves the data from the publisher 
and stores a handle to it in the myData variable.) */ 

DoGetThePublisher( wp, mySectionHndl, &myData ); 
&Lock( myData ) ; 

/* open, write, close requested edition */ 
/* See Listing 5-8 for the DoWriteContents source code */ 
myErr = DoWriteContents( mySectionHndl, 

&{**myPrivHndl).winFSSpec, myData); 

Hunlock( (Handle)myData ); 
&Unlock( (Handle)myPrivHndl ); 
/*free memory allocated by DoGetThePublisher() */ 
DisposHandle( myData ); 

InitCursor(); /* restore normal cursor */ 

return( myErr ) ; 

.._ Summary 

In this chapter you learned about the publish and subscribe mechanism 
and examined sample source code showing how your application can 
support the Edition Manager. Application developers have some work to 
do to implement Edition Manager support, but the functionality it pro
vides is well worth the effort! Publish and subscribe is clearly the next 
generation of the copy and paste capability that once seemed so novel. 
Soon, all System 7 customers will come to expect it, so don't let them 
down. 

In Chapter 6, we continue our exploration of System 7 by navigating 
through the Communications Toolbox. Along the way, we'll provide 
important information that will allow all types of applications to easily 
communicate with other computers, even if they are not on the same local 
area network. 



6 ~ Communications Toolbox 

Although System 7's advanced interapplication communication capabili
ties-provided by the PPC Toolbox, Apple Event Manager, and Edition 
Manager-enable you to add useful new functionality to an application, 
they allow your application to communicate with another application 
only across a local-area network. System 7 also contains a Communications 
Toolbox that addresses the problem of connecting Macintoshes to remote 
computers, such as mainframes and minicomputers, using a variety of 
standard protocols. The toolbox is flexible enough to handle network 
communications as well. The Communications Toolbox is ideal for quickly 
designing a terminal emulator, a general-purpose communications pro
gram, or an interactive multi-player game that requires management of 
one or more communications channels. 

The Communications Toolbox uses three types of tools to manage 
different aspects of the communications environment: 

• terminal emulation tools (such as VT102 and TTY) 

• connection tools (such as modem, serial, and ADSP) 

• file transfer tools (such as text and Xmodem) 

System 7 does not include any tools for the Communications Toolbox
tools must be purchased separately from the Apple Programmers and 
Developers Association (see Appendix C) and installed by putting them 
in the Extensions folder (inside the System folder). The product that 
includes the tools referred to in parentheses above is called the Macintosh 

211 



212 .,.. Chapter 6 Communications Toolbox 

Communications Tools Basic Connectivity Set. You can also purchase a 
Local Access Transport (LAT) connection tool and a VT320 terminal 
emulation tool from APDA. If you want to distribute any of these tools 
with your application, you need a license from Apple Software Licensing. 

This chapter explores the following areas of the Communications 
Toolbox: 

• Communications Toolbox managers 

• connection tools 

• terminal emulation tools 

• configuring the Communications Toolbox tools 

One interesting topic not covered here is how to use file transfer tools. 
Refer to the definitive reference for the Communications Toolbox, Inside the 
Macintosh Communications Toolbox, for information on file transfer tools. 
That book also covers how to write your own Communications Toolbox 
tools. 

~ Communications Toolbox Managers 
The Communications Toolbox is made up of four managers and some 
utilities that implement a variety of connection-related services for appli
cations-data communications, terminal emulations, and protocol trans
fers. The application program makes high-level calls to the Communica
tions Toolbox to gain access to these services; it is not concerned about 
which emulations and file transfer protocols are available, which have 
been selected, or how they work. 

The three main managers inside the Communications Toolbox are the 
Terminal Manager, the Connection Manager, and the File Transfer Man
ager. (Two other managers, the Communications Resource Manager and 
the Communications Toolbox Utilities, manage communications-related 
resources and devices.) Each of these managers encompasses the basic 
functions of one aspect of connectivity and its routines implement the 
specific protocols of that connectivity. The Terminal Manager's tools 
implement various terminal emulations, the Connection Manager's tools 
implement various data connection protocols, and the File Transfer 
Manager's tools implement various file transfer protocols. 



lilll- Communications Toolbax Managers 213 

Before using the Communications Toolbox, its managers must be ini
tialized in a particular order by calling five Init routines. The required 
order is as follows: 

• In it c RM-Initializes the Communications Resource Manager 
• InitCTBUtilities-Initializes the Communications Toolbox 

utilities 
• InitTM, InitCM, InitFT (in any order)-Initializes the Terminal 

Manager, Connection Manager, and File Transfer Manager 

The function prototypes for these five initialization routines are as 
follows: 

pascal CRMErr InitCRM( void ) ; 
pascal CTBUErr InitCTBUtilities( void ) ; 
pascal TMErr InitTM( void ) ; 
pascal CMErr InitCM( void ) ; 
pascal FTErr InitFT( void ) ; 

The data types CRMErr, CTBUErr, TMErr, CMErr, FTErr represent error 
codes and are equivalent to the data type OSErr. If either InitCRM or 
InitCTBUtilities returns an error, the other initialization routines must 
not be called, and you won't be able to use the Communications Toolbox. 

Adding communications capabilities to your application using the 
Communications Toolbox is remarkably straightforward. The basic steps 
to be performed are as follows: 

• When the application first starts up, initialize the Communications 
Toolbox and set up connection and terminal records for the default 
connection and terminal emulation tools. These records are used if 
the user tries to open a connection without first configuring the tools 
and are described in the "Connection Tools" and "Terminal Emula
tion Tools" sections. 

• Modify your waitNextBvent event handler so that you react to 
Communications Toolbox-related events properly. See the "Event 
Handling" section in this chapter for instructions on how to do this. 

• Add menu items for selecting and configuring a connection tool, a 
terminal emulation tool, and a file transfer tool. These menu items 
are usually called Connection ... , Terminal..., and File Transfer ... , 
respectively. See the "Configuring the Communications Toolbox 



214 .,.. Chapter 6 Communications Toolbox 

Tools" section in this chapter for instructions on how to handle the 
selection of these items. 

• Add menu items for opening a new or existing terminal emulation 
window and for closing a terminal emulation window. These menu 
items are usually called New Terminal, Open Terminal..., and Close 
Terminal. 

• Add menu items for opening and closing a connection. These menu 
items are usually called Open Connection and Close Connection . 

.,.. Connection Tools 
Connection tools manage the transport of data between the Macintosh 
and other computer systems. The user needs to select and configure a 
connection tool before a communications session can begin. 

The fundamental data structure for a connection tool is the connection 
record. This data structure is of type connRecord and defines the type of 
connection (serial, modem, and so on) being used, which communications 
channels are available (data, attention, or control), whether the tool's 
custom menus should appear, the configuration settings for the tool, and 
pointers to the buffers for reading and writing the channels. 

All connection tools support a data channel which is the primary 
channel for data exchange. They may or may not support attention and 
control channels which are used for specialized handshaking services . 

.,.. The ConnRecord Structure 

The Connection Manager uses the data in a connRecord to manage and 
maintain the underlying communications channel. Your application cre
ates this record by calling CMNew-it does not have to understand how to 
maintain the connection or be concerned about which connection the user 
has selected. The structure of a connRecord is shown in Listing 6-1. 

Listing 6-1. The structure of a ConnRecord record 

struct ConnRecord { 
short 
CMRecFlags 
CMErr 
long 
long 
ProcPtr 
Ptr 

procID; 
flags; 
errCode; 
ref Con; 
userData; 
defProc; 
config; 



Important..,. 

.., Connection Tools 215 

Listing 6-1. The structure of a ConnRecord record 

Ptr 
long 
long 
long 
Ptr 
CMBuffers 
CMBufferSizes 
long 
CMBufferSizes 

oldConfig; 
asyncEOM; 
reservedl; 
reserved2; 
cmPrivate; 
bufferArray; 
bufSizes; 
mluField; 
asyncCount; 

} ; 

The meanings of the fields in connRecord are as follows: 

procID-The ID of the connection tool associated with the ConnRecord. 

You normally use the CMNew routine, described below, to put the ap
propriate value in this field. 
flags-Reflects the general attributes of the connection tool. The 
Connections.h interface file defines the following constants for the bits 
in this field: 

#define cmData (l<<O) 
#define cmCntl (l<<l) 
#define cmAttn (1<<2) 
#define cmDataClean (1<<8) 
#define cmCntlClean (1<<9) 
#define cmAttnClean (1<<10) 
#define cmNoMenus (1L<<16) 
#define cmQuiet (1L<<l7) 

/* data channel exists */ 
/* control channel exists */ 
/* attention channel exists */ 
/* data channel is error-free */ 
/* control channel is error-free */ 
/* attention channel is error-free */ 
/* don't insert tool's custom menus */ 
/* don't display status/error msgs */ 

To specify more than one attribute, simply add together the constants 
for the desired attributes. 



216 ~ Chapter 6 Communications Toolbox 

errcode-Set by the Connection Manager to reflect the last error 
encountered 
refcon-Can hold whatever data the application wants and is initial
ized by the CMHew routine. Use the CMGetRefCon and CMSetRefCon 
routines to read and write this field. CMGetRefCon takes a handle to a 
connRecord as its only parameter and returns a long value represent
ing the data stored in the refcon field. CMSetRefCon returns nothing, 
but requires both a handle to a ConnRecord and the long value that is 
to be put into the ref Con field of the ConnRecord. 

userData-Can hold whatever data the application wants and is ini
tialized by the CMHew routine. Use the CMGetUserData and 
CMSetUserData routines to read and write this field. CMGetuserData 
takes a handle to a ConnRecord as its only parameter and returns a 
long value representing the data stored in the userData field. 
CMSetUserData returns nothing, but requires both a handle to a 
ConnRecord and the long value that is to be put into the userData 
field of the connRecord. 

defProc-Set by the Connection Manager 

config- The Connection Manager stores here a pointer to a private 
data space the connection tool uses to hold its configuration informa
tion. This field should not be read or written directly. Use the 
CMGetConfig and CMSetConfig routines instead (described in this 
chapter). 

oldConfig-Store a pointer to the last saved configuration for the 
connection tool here. Since the Connection Manager provides no rou
tines to read or write this field, you must access it directly. 

asyncEOM-If your application makes an asynchronous call to the 
CMRead routine, the cmFlagsEOM bit of this field is set if an end-of
message indicator was received before your completion routine was 
called. 
reservedl-Reserved by Apple Computer, Inc. It should not be used 
by your application. 

reserved2-Reserved by Apple Computer, Inc. It should not be used 
by your application. 

cmPrivate-Set by the Connection Manager to the address of another 
private data space used by the connection tool 

bufferArray-Set by the Connection Manager. It is an array of point
ers to the buffers used by the data, control, attention, and reserved 
channels. Separate buffers are used for reading and writing, meaning 
there is a total of eight buffer pointers in the array. The Connections.h 



.,,.. Connection Tools 217 

interface file defines symbolic constants to represent the array indices 
of the six channels your application can use (if the selected connection 
tool supports all six). The constants, listed in the order the buffer 
pointers appear in the array (the reserved channel's input and output 
buffer pointers appear after the attention channel's buffers), are as 
follows: 

#define cmDatain 0 /* data channel's input buffer */ 
#define cmDataOut 1 /* data channel's output buffer */ 
#define cmCntlin 2 /* control channel's input buffer */ 
#define cmCntlOut 3 /* control channel's output buffer */ 
#define cmAttnin 4 /* attention channel's input buffer */ 
#define cmAttnOut 5 I* attention channel's output buffer *I 

bufSizes-The sizes of the data buffers referred to in bufferArray. 

mluField-A private field that should not be used by your application. 

asynccount-The number of bytes that were read or written by the 
last asynchronous call to CMRead or CMWrite. (Both these routines are 
covered later in this section.) Completion routines will be interested in 
accessing this information . 

.,,.. Determining a Connection Tool's Name 

Applica~ions can convert a connection tool's name into the correct value 
to put in the procID field of a ConnRecord by calling CMGetProcID. Pass 
the tool's name as the sole parameter to CMGetProcID and use the re
turned value as the procID. The function prototype for CMGetProcID is as 
follows: 

pascal short CMGetProcID( ConstStr255Param name )~ 

If no connection tool is found with the specified name, CMGetProcID 
retums-1. 

If you don't know the name of a tool to pass to CMGetProcID, obtain the 
name of the first connection tool installed in the system by calling the 
Communications Resource Manager routine CRMGetindToolName with the 
index parameter set to 1. 



218 .,. Chapter 6 Communications Toolbox 

The function prototype for CRMGetindToolName is as follows: 

pascal OSErr CRMGetindToolName( OSType bundleType, 
short index, 
Str255 toolName ); 

The parameters to CRMGetindToolHame are as follows: 

bundleType-Describes the type of tool (terminal emulation, connec
tion, or file transfer) being requested. Use classCM to specify a con
nection tool. The possible values for this field are the following: 

#define classCM 'cbnd'/* connection tool*/ 
#define classFT 'fbnd' /* file transfer tool */ 
#define classTM 'tbnd' /* terminal emulation tool */ 

index-Indicates which tool within the class of tools (described by 
bundleType) is to have its name returned. Set this parameter to 1 to 
obtain the name of the first tool; keep incrementing this parameter and 
calling CRMGetindToolName for a complete list of tool names. When 
the value in index exceeds the number of installed tools, an empty 
string is returned for the tool's name. 

toolHame-The name of the requested tool is returned as a Pascal 
string in the space to which this parameter points . 

.,. Creating a ConnRecord 

In practice, your application will implement a connection in response to 
the selection of an Open Connection menu item. To create a connection 
record (connRecord), call the CMNew routine. Your application passes much 
of the data needed to complete the connRecord, the Terminal Manager 
supplies the rest. The function prototype for CMHew is as follows: 

pascal ConnHandle CMHew( short procID, CMRecFlags flags, 
const CMBufferSizes desiredSizes, 
long refCon, long userData ); 

The purposes of the parameters for CMHew are the following: 

procID-The ID of the requested connection tool. Use CMGetProcID to 
obtain the procID from the tool's name. Use CRMGetindToolName to 



lill> Connection Tools 219 

determine the name of the tool. If the user has not yet selected a 
connection tool, use the tool whose name is returned by 
CRMGetind~oolHame when you pass it an index of 1. 

flags-Indicates the general attributes of the connection tool. Refer to 
the discussion of the flags field in a connRecord earlier in this section 
for more information. 
desiredSizes-Points to an array of buffer sizes (each element is a 
long value). This array contains the requested sizes of the read and 
write buffers for each communications channel (data input, data out
put, control input, control output, attention input, and attention out
put, in that order) maintained by the connection tool. The connection 
tool may not provide buffers of the requested size, depending on the 
amount of available memory-the actual buffer sizes used are stored in 
the bufSizes field of the ConnRecord. Pass zeros for the requested 
sizes to allow the connection: tool to use whatever buffer size it consid
ers appropriate. The constants cmDatain, cmDataOut, cmcntlin, 
cmcntlout, cmAttnin, and cmAttnout are the indices for the elements 
of this array. 

refCon-Available for your application to use as needed. It is put into 
the ConnRecord's refCon field and thereafter should be read or changed 
only by calling CMGetRefCon and CMSetRefCon. 

userData-A vailable for your application to use as needed. It is put 
into the ConnRecord's userData field and thereafter should be read or 
changed only by calling CMGetuserData and CMSetUserData. 

CMHew returns a handle to the connection record if it was successfully 
created; otherwise, it returns OL. 

lill> Opening a Connection 

After creating a connection record, you should allow the user to configure 
it by calling either CMChoose or CMSetconfig (both of which are dis
cussed at the end of this chapter) or simply use the defaults set up by 
CMHew. Once configuration has been completed, initiate a connection by 
calling CMOpen. This dials the phone (if you're using the modem connec
tion tool) or simply opens a direct channel through the selected serial port 
(if you're using the serial tool). The function prototype for CMOpen is as 
follows: 

pascal CMErr CMOpen( ConnHandle hConn, Boolean async, 
ProcPtr completer, long timeout ); 



220 .,.. Chapter 6 Communications Toolbox 

Note.,. 

The parameters passed to CMOpen are the following: 

hConn-The handle to your connection record. 

async-Set to true if your application is making an asynchronous call 
to open the connection (this would allow your application to perform 
other tasks while waiting for the modem to dial, the called system to 
answer, and so on). Set it to false if the connection is being opened 
synchronously. 
completor-lf the async parameter is set to true, this parameter must 
contain the address of the completion procedure that your application 
wants called when the connection is completed or when CMOpen times 
out. If your application is opening the connection synchronously, set 
this field to OL. 

timeout-Set to the maximum number of ticks your application is 
willing to wait for the connection to be completed. If the connection is 
not completed within this period, CMOpen returns a cmTimeOut error. 
Some connection tools attempt to complete a connection more than 
once if the first attempt failed (because of a busy signal, line noise, and 
so on). If only one connection attempt is permitted, set this field to 0. 
Set this field to -1 if no time-out period is to be used. 

.,.. Writing to the Connection 

Data can be sent out over the connection by calling CMWrite. Only one 
write request at a time can be processed since queuing is not supported. 
The function prototype for CMWrite is as follows: 

pascal CMErr CMWrite( ConnHandle hConn, Ptr theBuffer, 
long *toWrite, CMChannel theChannel, 
Boolean async, ProcPtr completer, 
long timeout, CMFlags flags )1 



.,.. Connection Tools 221 

The purposes of the parameters passed to CMWr i te are the following: 

hConn-A handle to the connection record. 

theBuffer-The address of the buffer containing the data to be writ
ten through the connection. 

towrite-Set this variable to the number of bytes in theBuffer to be 
written. If CMWrite is called synchronously, the connection tool re
turns here the actual number of bytes written. If the call is made 
asynchronously, the connection record's asynccount field will contain 
the actual number of bytes that were written. 

theChannel-Set to the channel to which the data should be written. 
Use one of the following constants (defined in Connections.h): 

#define cmData (l<<O) /* use data channel */ 
#define cmCntl (l<<l) /* use control channel */ 
#define cmAttn (1<<2) /* use attention channel */ 

async-Set it to true if your application is making an asynchronous 
call to write to the connection. Set it to false if the write is being made 
synchronously. When writing asynchronously, your application must 
first verify that an earlier write command is not pending-see the 
discussion of the CMStatus routine, in this chapter. 

completor-If the async parameter is set to true, this parameter must 
be set to the address of the completion procedure to be called when the 
write operation completes or when it times out. If your application is 
writing the data synchronously, set this field to OL. 

timeout-Set to the maximum number of ticks your application will 
wait for the writing to be completed. If the writing is not completed 
within this period, CMWrite returns a cmTimeout error. If your appli
cation sets this field to 0, only one attempt to write the data is made 
and as many bytes as possible (not exceeding towrite) are written on 
this single attempt. Set this field to -1 if no time-out period is to be 
used. 

flags-Set this parameter to indicate whether an end-of-message 
indicator should be sent after each write. Some communication proto
cols require an end-of-message indicator to signal that the complete 
message has been transferred. 



222 IJJi. Chapter 6 Communications Toolbox 

Important.,.. 

The function prototype for CMStatus is as follows: 

pascal CMErr CMStatus( ConnHandle hConn, 
CMBufferSizes sizes, 
CMStatFlags *flags ); 

The meanings of the parameters passed to CMStatus are: 

hConn-The handle to your connection record. 

sizes-The address of a space for an array of buffer sizes. On return, 
CMStatus completes the array to indicate the amount of data waiting 
to be read and written for each channel. For more information on this 
array, refer to the description of the buffSizes field of the connRecord 
earlier in this section. 

flags-This value, returned by the CMStatus, reflects the current sta
tus of the connection. The bit numbers of interest to programmers are 
defined by the following constants: 

#define cmStatusOpening (l<<O) /* channel is being opened */ 
#define cmStatusOpen (l<<l) /* connection is currently open */ 
#define cmStatusClosing (1<<2) /* channel is being closed */ 
idefine cmStatusoataAvail (1«3) /* data waiting on data channel */ 
idef ine cmStatusCntlAvail (1<<4) /* data waiting on cntl channel */ 
#define cmStatusAttnAvail (l<<S) /* data waiting on attn channel */ 
#define cmStatusDRPend (1<<6) /* async data read pending */ 
idef ine cmStatusDWPend (1«7) /* a sync data write pending */ 
#define cmStatusCRPend (1«8) /* async control read pending */ 
#define cmStatusCWPend (1«9) /* a sync control write pending */ 
#define cmStatusARPend (1«10) /* a sync attention read pending */ 
#define cmStatusAWPend (1<<11) /* async attention write pending */ 
#define cmStatusBreakPend (1<<12) /* async break is pending */ 
#define cmStatusListenPend (1<<13) /* tool listening for call */ 
idef ine cmStatusincomingCallPresent (1«14) /* incoming call waiting */ 



IJl> Connection Tools 223 

IJl> Reading from the Connection 

The data coming in from the connection can be read by calling CMRead. 
Once read, it can be passed to the Terminal Manager for display to the 
user by calling TMStream, which is discussed later in this chapter. The 
read operation can be performed either synchronously or asynchronously, 
but only one asynchronous read can be pending at a time because there is 
only one input buffer for a particular channel. Call CMStatus to deter
mine whether or not an asynchronous read is pending before calling 
CMRead. The function prototype for CMRead is as follows: 

pascal CMErr CMRead( ConnHandle hConn, Ptr theBuffer, 
long *toRead, CMChannel theChannel, 
Boolean async, ProcPtr completor, 
long timeout, CMFlags *flags ); 

The parameters passed to CMRead are as follows: 

hConn-The handle to your connection record. 

theBuffer-The address of the buffer into which the data being read 
should be placed. 
toRead-The number of bytes that should be read into theBuffer. If 
CMRead is being called synchronously, the connection tool returns here 
the actual number of bytes read. If the call is made asynchronously, the 
connection record's asynccount field will contain the actual number 
of bytes that were read. 
theChannel-The channel from which the data should be read. Use 
one of the following constants to specify the channel: 

#define cmData (l<<O) 
#define cmCntl (l<<l) 
#define cmAttn (1<<2) 

/* use data channel */ 
/* use control channel */ 
/* use attention channel */ 

async-Set to true if your application is making an asynchronous call 
to read data from the connection. Set this parameter to false if the read 
is being made synchronously. When reading asynchronously, your 
application must first verify that an earlier read command is not 
pending-see the discussion of the CMStatus routine, in this chapter. 



224 ~ Chapter 6 Communications Toolbox 

completor-If the async parameter is set to true, this parameter must 
be set to the address of the completion procedure to be called when the 
read is completed or when it times out. If your application is reading 
the data synchronously, set this field to OL. 

timeout-Set to the maximum number of ticks your application will 
wait for the reading to be completed. If the reading is not completed 
within this period, CMRead returns a cmTimeout error. If your applica
tion sets this field to 0, only one attempt to read the data is made and 
as many bytes as possible (not exceeding toRead) are read on this 
single attempt. Set this field to -1 if no time-out period is to be used. 

flags-Set to the address of your end-of-message flag variable. If you 
call CMRead synchronously, it sets the cmFlagsEOM bit of this variable if 
an end-of-message indicator was received. If called asynchronously, 
the cmFlagsEOM bit of the asyncEOM field of the ConnRecord is set if an 
end-of-message indicator was received. 

~ Closing and Disposing of the Connection 

When no longer needed, an active connection should be closed by calling 
CMClose. An application normally does this when the user selects a Close 
Connection menu item. Like many other Connection Manager calls, 
CMClose can be made synchronously or asynchronously. If the call is 
being made asynchronously, call CMStatus first to verify that the connec
tion is open or opening. The function prototype for CMClose is as follows: 

pascal CMErr CMClose( ConnHandle hConn, Boolean async, 
ProcPtr completor, long timeout, 
Boolean now ) ; 

The parameters for CMClose are the following: 

hConn-The handle to the ConnRecord for the connection being closed. 
async-True if the close operation should be performed asynchro
nously. Set it to false to close synchronously. 
completor-set to the address of the procedure that should be called 
once an asynchronous close has completed. Set it to OL if closing syn
chronously. 



Note.,. 

~ Terminal Emulation Tools 225 

timeout-Set to the maximum number of ticks that your application 
will wait for the close operation to be completed. If the close operation 
does not complete within this period, CMClose returns a cmTimeout 
error. If this field is set to 0, the connection tool makes only one 
attempt to close the connection. Set this field to -1 if no time-out period 
is to be used. 

now-Set to false if the connection should be closed after all pending 
read/write operations have completed. To force the connection to be 
closed immediately, set it to true. 

When the connection record is no longer needed, the memory it uses 
should be released by calling CMDispose. The sole parameter to CMDispose 
is a handle to the affected ConnRecord. The function prototype for 
CMDispose is as follows: 

pascal void CMDispose( ConnHandle hConn ); 

.·::.::·,=.,::-.-

rr~(~:~~fci~~k~i 
. r~~~<tl?lisAf ~1h~ ~q 0 

· e~lll.ple;;As a'r~· 

. r~~~~.d.()~~;~he.1l,$~~~~~ 

.,,,. Terminal Emulation Tools 
Terminal emulation tools are used to manage the display of information 
on a "screen" that appears in a window. These tools emulate standard 
terminals that are commonly used with systems with which the Macin
tosh might communicate-a DEC VT102 terminal or a TeleType, for 
example. 

~ The TermRecord Structure 

The fundamental data structure for a terminal emulation tool is the 
terminal record. This data structure, shown in Listing 6-2, is of type 
TermRecord and defines which type of terminal emulation tool is being 
used, whether the tool's custom menus should appear in the menu bar, 
and the configuration settings for the tool. 



226 ~ Chapter 6 Communications Toolbox 

The Terminal Manager uses the data in a TermRecord to manage all 
aspects of the terminal emulation. Your application creates this record 
with the 'lMNew routine-it does not have to understand how the terminal 
emulation works or which emulation the user has selected. 

Listing 6-2. The structure of a TermRecord record 

struct TermRecord { 

} ; 

short procID; 
TMFlags flags; 
TMErr errCode; 
long refCon; 
long userData; 
ProcPtr defProc; 
Ptr config; 
Ptr oldConfig; 
ProcPtr environsProc; 
long reserved!; 
long reserved2; 
Ptr tmPrivate; 
ProcPtr sendProc; 
ProcPtr breakProc; 
ProcPtr cacheProc; 
ProcPtr clikLoop; 
WindowPtr owner; 
Re ct termRect; 
Re ct viewRect; 
Re ct visRect; 
long lastidle; 
TMSelection selection; 
TMSelTypes selType; 
long mluField; 

The fields in TermRecord are as follows: 

procID-The ID of the terminal emulation tool associated with the 
TermRecord. You normally use the 'lMNew routine described in this 
chapter to put the appropriate value in this field. 



~Terminal Emulation Tools '227 

flags-Reflects the general attributes of the terminal emulation tool. 
The Terminals.h interface file defines the following constants for the 
bits in this field: 

#define tminvisible (l<<O) 
#define tmSaveBeforeClear (l<<l) 
#define tmNoMenus (1<<2) 
#define tmAutoScroll (1<<3) 

/* don't display emulation */ 
/* cache screen before clear */ 
I* don't insert tool's own menu *I 
/* scroll while selecting */ 

To specify more than one attribute, simply add the constants for the 
desired attributes together. By specifying tmNoMenus, the tool's custom 
menus are suppressed, thus preserving valuable menu bar real estate and 
minimizing the changes you must make to your application to support 
the Communications Toolbox. 

You normally use the TMNew routine, described in this chapter, to put 
the appropriate value in this field. 

errCode-Not currently used, but reserved. 

refCon-Can hold whatever information the application wants and is 
initialized by the TMNew routine. Use the TMGetRefCon and TMSetRefCon 
routines to read and write this field. TMGetRefCon takes a handle to a 
TermRecord as its only parameter and returns a long value represent
ing the data stored in the TermRecord's refCon field. TMSetRefCon 
returns nothing, but requires both a handle to a TermRecord and the long 
value that is to be put into the ref Con field of the TermRecord. 

userData-Can hold whatever information the application wants and 
is initialized by the TMNew routine. Use the TMGetUserData and 
TMSetuserData routines to read and write this field. TMGetUserData 
takes a handle to a TermRecord as its only parameter and returns a 
long value representing the data stored in the TermRecord's userData 
field. TMSetUserData returns nothing, but requires both a handle to a 
TermRecord and the long value that is to be put into the userData 
field of the TermRecord. 

def Proc-Set and maintained by the Terminal Manager. Your applica
tion should not touch it. 
config-The Terminal Manager stores a pointer here to the private 
data space the terminal emulation tool uses to hold its configuration 
information. This field should not be read or written directly. Use the 
TMGetConfig and TMSetConfig routines instead (they are described 
in this chapter). 



228 "" Chapter 6 Communications Toolbox 

oldConfig-Store a pointer to the last saved configuration for the 
terminal emulation tool here. Since the Terminal Manager provides no 
routines to read or write this field, you must set and read its contents 
directly. 
environsProc-Set by the Terminal Manager to the address of a 
procedure within your application that the terminal emulation tool 
calls to learn about the connection environment. This pointer is set up 
when you call ~MNew to create a TermRecord. See the Required Proce
dures for Terminal Emulation Tools subsection later in this section for 
instructions on how to write an environsProc. 

reservedl-Reserved by Apple Computer, Inc. It should not be used 
by your application. 
reserved2-Reserved by Apple Computer, Inc. It should not be used 
by your application. 
tmPrivate-Set by the Terminal Manager to point to another private 
data space used by the terminal emulation tool. 

sendProc-Set by the Terminal Manager to the address of a procedure 
within your application that the terminal emulation tool calls when it 
needs to send data. This pointer is set up when you call ~MNew to create 
a TermRecord. See the "Required Procedures for Terminal Emulation 
Tools" subsection later in this section for instructions on how to write a 
sendProc. 

breakProc-Set by the Terminal Manager to the address of a proce
dure within your application that the terminal emulation tool calls 
when it needs to send a break signal. See the "Required Procedures for 
Terminal Emulation Tools" subsection later in this section for more 
instructions on how to write a breakProc. 

cacheProc-Set by the Terminal Manager to the address of a proce
dure within your application that the terminal emulation tool calls to 
save lines of text that are about to scroll off the top of the emulation 
screen. See the "Optional Terminal Emulation Tool Procedures" sub
section later in this section for instructions on how to write a cacheProc. 

clikLoop-Set by the Terminal Manager to the address of a procedure 
within your application that the terminal emulation tool calls when the 
user clicks the mouse in the terminal window. See the "Optional 
Terminal Emulation Tool Procedures" subsection later in this section 
for more instructions on how to write a clikLoop. 

owner-The address of the graf Port for the window with which the 
terminal emulation tool is associated. 



liJJ> Terminal Emulation Tools 229 

termRect-The portRect of the window with which the terminal 
emulation screen is associated (adjusted to exclude the scroll bar rect
angles). 

viewRect-The rectangle that surrounds the terminal emulation screen 
itself. 

visRect-While this field is of type Rect, its contents are not a stan
dard QuickDraw rectangle. Instead, the fields represent the first row, 
first column, last row, and last column in the terminal emulation 
window that are currently visible. The window itself may be resized, 
but the emulated screen represented by visRect is often a fixed size, 
leaving some portions of the emulated screen no longer visible. Col
umns and rows are numbered starting with 1, not 0. This field is 
maintained by the Connection Manager. 

lastidle-Holds the time, in ticks, when the terminal emulation 
tool's idleProc was last called. Call TMidle once for each active ter
minal emulation each time through your application's main event loop 
so that the terminal emulation tool has the opportunity to perform 
idling tasks (such as blinking the cursor). TMidle returns nothing and 
takes a handle to the TermRecord for which it is to perform idle pro
cessing. 

selection-Either a rectangle or a region handle describing the data 
within the terminal emulation window that the user has selected. 
Several selection methods are supported (see the description of the 
selType field)-Selection contains a region handle when the selType 
is selGraphicsLasso. For the other methods, selection contains a 
rectangle whose coordinates describe row and column positions on a 
text terminal or pixel coordinates on a graphics terminal. 

se!Type-Terminal emulation tools support four different selection 
methods but only one can be used at a time. These methods are 
represented by the following constants: 

#define selTextNormal (l<<O) 
idefine selTextBoxed (l<<l) 
#define selGraphicsMarquee (1<<2) 
#define selGraphicsLasso (1<<3) 

/*standard TextEdit selection*/ 
/* rectangular selection */ 
/* marquee selection */ 
/* lasso selection */ 

mluField-This field is private and should be ignored by your appli
cation. 



230 ~ Chapter 6 Communications Toolbox 

~ The T ermDataBlock Structure 

The Terminal Manager uses another important data structure, called a 
TermDataBlock, as its conduit for sharing the contents of a terminal 
emulation window with your application. The TermDataBlock contains a 
flag describing the type of emulation in effect (text or graphics) and a 
handle to the data it uses to update the terminal emulation window. 
Listing 6-3 presents the definition of the TermDataBlock structure. 

Listing 6-3. The structure of the TermDataBlock record 

struct TermDataBlock { 

}; 

TMTermTypes 
Handle 
Handle 
long 

flags; 
theData; 
auxData; 
reserved; 

The fields in TermDataBlock are as follows: 

flags-Indicates whether the terminal being emulated is a text or a 
graphics terminal. Use the constants defined in Terminals.h when 
setting or comparing this field: 

#define tmTextTerminal (l<<O) /* text terminal */ 
#define tmGraphicsTerminal (l<<l) /* graphics terminal */ 

theData-A handle to the data which defines the emulated terminal's 
screen display. If flags is set to tmTextTerminal, theData is a handle 
to text; if flags is set to tmGraphicsTerminal, theData is a handle to 
a QuickDraw picture. 

The remaining two fields, auxData and reserved, are not currently used 
and are reserved. Your application should not use them. 

~ Determining a terminal Emulation Tool's Name 

Applications can convert a terminal emulation tool's name into the correct 
value to put in the procro field of a TermRecord by calling '!rMGetProcID. 



IJlii- Terminal Emulation Tools 231 

Pass the tool's name as the sole parameter to TMGetProcID and use the 
returned value as the procID. The function prototype for TMGetProcID is 
as follows: 

pascal short TMGetProcID( ConstStr255Param name ); 

If no terminal emulation tool is found with the specified name, 
TMGetProcID returns -1. 

If you don't know the name of a tool to pass to TMGetProcID, obtain the 
name of the first terminal emulation tool installed on the user's 
system by calling the Communications Resource Manager routine 
CRMGetindToolName with the index parameter set to 1. Other tool names 
can be obtained by incrementing index and calling CRMGetindToolName
see the Connection Tools section for information on CRMGetindToolName. 

IJlii- Caring for the Environment 

A terminal emulation tool occasionally needs to know about the commu
nications channel it is working with, so your application must provide a 
procedure, called an environsProc, that the tool can call to learn about 
the characteristics of the channel. The terminal emulation tool requires 
information be returned in the form of a ConnEnvironRec record shown 
in Listing 6-4. 

Listing 6-4. The structure of the ConnEnvironRec record 

struct ConnEnvironRec { 

} ; 

short version; 
long baudRate; 
short dataBits; 
CMChannel channels; 
Boolean swFlowControl; 
Boolean hwFlowControl; 
CMFlags flags; 

The fields in ConnEnvironRec are as follows: 

version-The version of the data structure. Under System 7, this 
equals curconnEnvRecVers (defined in Connections.h). 

baudRate-The current baud rate being used by the selected connec
tion tool. 



232 ..,, Chapter 6 Communications Toolbox 

dataBits-The number of significant bits per byte that are being used 
by the selected connection tool. 
channels-A bit pattern indicating which channels are available. The 
constants defined in the Connections.h interface file can be used to 
interpret the contents of this field: 

#define cmData (l<<O) 
#define cmCntl (1<<1) 
#define cmAttn (1<<2) 
#define cmDataClean (1<<8) 
#define cmCntlClean (1<<9) 
#define cmAttnClean (1<<10) 

/* data channel exists */ 
/* control channel exists */ 
/* attention channel exists */ 
/* data channel is error-free */ 
/* control channel is error-free */ 
/*attention channel is error-free*/ 

swFloWControl-Set to true if some form of software flow control 
(such as the Control-S/Control-Q start-stop protocol) is being used. 

bwFloWCon'llrol-Set to true if some form of hardware flow control is 
being used. 

flags-If the connection tool needs an end-of-message flag at the end 
of each message, set the cmFlagsEOM bit of this field. 

In the next section, you will see how to write an environsProc that 
returns a completed connEnvironRec when the Terminal Manager calls it. 

..,, Required Procedures for Terminal Emulation Tools 

Your application must provide certain procedures-such as sending data 
through the connection, sending break signals, and so on-that the termi
nal emulation tools call to perform actions that are not implemented by 
the terminal emulation tools themselves. The procedures you provide 
will often call Connection Manager routines to perform the required 
action, but this is not a requirement. 

Writing an environsProc 

The first of the required routines provides the terminal emulation tool 
with an updated ConnEnvironRec (described in the "Caring for the Envi
ronment" subsection). Known as an environsProc, its function prototype 
is as follows: 

pascal CMErr yourEnvironsProc( long refCon, 
ConnEnvironRecPtr theEnvPtr ); 



IJll- Terminal Emulation Tools 233 

The parameters passed to yourEnvironsProc are as follows: 

refCon-The value stored in the ref Con field of the TermRecord for the 
terminal emulation tool that called yourEnvironsProc. 

theEnvPtr-A pointer to the space for a ConnEnvironRec. Your pro
cedure should return the environment information in this space. 

yourEnvironsProc-Should return an error code for any error that 
occurred while getting the environment, or noErr if no error occurred. 

If your application is using a connection tool, an appropriate 
ConnEnvironRec can be obtained by calling CMGetConnEnvirons (pass it 
a handle to the connection record and a pointer to the space for the 
connEnvironRec). This is the technique used in Listing 6-5. If your 
application is maintaining a connection without using the services of the 
Connection Manager, it must fill in the fields of the ConnEnvironRec on its own. 

Listing 6-5. Minimalist implementation of yourEnvironsProc 

/* The following routine is responsible for determining the current */ 
/*connection environment and returning it via "theEnvironsPtr". This */ 
/* routine is called by terminal emulation tools. */ 
pascal CMErr yourEnvironsProc(long refCon, ConnEnvironRecptr theEnvPtr) 
{ 

} 

/* We're using the Connection Manager to manage our */ 
/* connection, so let it figure out the environment. */ 
return(CMGetConnEnvirons(qConnRecHndl, theEnvironsPtr)); 

Writing a sendProc 

Your application must provide a procedure that the terminal emulation 
tool calls when it needs to send out data. In most cases, your procedure 
will call a Connection Manager routine (CMWrite), but other processing of 
the data could be performed as well. Known as a sendProc, its function 
prototype is as follows: 

pascal long yourSendProc( Ptr buffPtr, long howMany, 
long refCon, CMFlags flags ); 



234 ~ Chapter 6 Communications Toolbox 

The parameters passed to yourSendProc are as follows: 

buffPtr-The address of a buffer containing the data to be sent. 
howMany-The number of bytes in the buffer that should be sent. 
refCon-The value of the ref Con field of the TermRecord for the ter
minal emulation tool that called yourSendProc. 
flags-Indicates whether the connection tool should send an end-of
message indicator-some communication protocols require an end-of
message indicator and others do not. If your application uses the 
Connection Manager to maintain the connection, simply pass the value 
in this parameter along to the Connection Manager by putting the 
value of this parameter into the flags parameter passed to CMWrite. 
yourSendProc-Retums a long value describing how many characters 
were actually sent. 

The easiest way to implement a sendProc is shown in Listing 6-6. This 
procedure simply calls the Connection Manager's CMWrite routine. 

Listing 6-6. Minimalist implementation of yourSendProc 

/* The following routine is called by the terminal emulation tool when */ 
/* it wants to send data out. We're doing no filtering, so just pass */ 
/* the buck to the connection tool. */ 
pascal long yoursendProc(Ptr buffPtr, long howMany, long refcon, 

CMFlags flags) 

OS Err 

if (gConnRecHndl) /* only send if there's a connection record */ 
/* make the Connection Manager do the work */ 
myErr = CMWrite(gConnRecHndl, buffPtr, &howMany, cmData, false, nil, 

15, flags); 
if (lmyErr) { howMany = O; } /*if error, claim nothing was sent*/ 

} else { 
howMany = O; /* no connection record, so nothing sent */ 

return(howMany); /*tell caller how many we really sent*/ 



~ Terminal Emulation Tools 235 

Writing a breakProc 

If the terminal emulation tool needs to send a modem break signal, 
instead of data, it calls a different procedure provided by your applica
tion. Known as a breakProc, its function prototype is as follows: 

pascal void yourBreakProc( long duration, long refCon )7 

The parameters passed to yourBreakProc are as follows: 

duration-The duration of the break signal, in ticks. 
refCon-The value of the refCon field of the TermRecord for the ter
minal emulation tool that called yourBreakProc. 

The easiest way to implement yourBreakProc is to call the Connection 
Manager's CMBreak routine, as shown in Listing 6-7. The function proto
type for CMBreak is as follows: 

pascal void CMBreak( ConnHandle hConn, long duration, 
Boolean async, ProcPtr completer )7 

The parameters passed to CMBreak are as follows: 

hConn-A handle to your connection record. 
duration-The duration of the break signal, in ticks. Store here the 
value of the duration parameter passed to the breakProc. 
async-True if the call to CMBreak is to be made asynchronously. Set 
to false if the call is to be made synchronously. 
completer-Set this parameter to the address of your completion 
routine if the call to CMBreak is being made asynchronously. It will be 
called once the break signal has been sent. If the call is being made 
synchronously, set this parameter to OL. 

Listing 6-7. Minimalist implementation of yourBreakProc 

/* The following routine is responsible for sending a 'break' that */ 
/* lasts for 'duration• ticks through the connection. Since our */ 
/* connection is being managed by the Connection Manager, pass the */ 
/*buck to it •••• */ 
pascal void yourBreakProc(long duration, long refCon) 
{ 

} 

/* Send it synchronously, so no completion routine will be needed. */ 
CMBreak(gConnRecHndl, duration, false, OL)7 



236 ~ Chapter 6 Communications Toolbox 

~ Optional Procedures for Terminal Emulation Tools 

You can add two optional terminal emulation tool procedures, a cacheProc 
and a clikLoopProc, to enhance your application. These procedures 
enable you to manage the storage and selection of lines of data that scroll 
off the top of a terminal emulation screen. 

Writing a cacheProc 

The first optional procedure is called by a terminal emulation tool just 
before a line scrolls off the top of the emulated screen. By providing an 
appropriate procedure, your application can easily cache these lines (per
haps by saving them to disk) and implement a scroll-back buffer. The 
function prototype of this cacheProc is as follows: 

pascal long yourCacheProc( long refCon, 
TermDataBlock *tdbPtr ); 

The parameters passed to yourcacheProc are as follows: 

refCon-The value of the refCon field of the TermRecord for the ter
minal emulation tool that called yourcacheProc. 

tdbPtr-A pointer to a TermDataBlock record. The theData field of the 
TermoataBlock contains a handle to the data that should be cached 
and is owned by the terminal emulation tool-make a copy of it (using 
RandToRand) if you need to retain a copy for your own use. Examine 
the flags field in the TermDataBlock to determine whether theData 
is a handle to text or to a QuickDraw picture. 

Your cache procedure should return an appropriate error code, or 
tmNoErr if no error occurred. The sample source code in this chapter 
does not support caching. See Inside the Macintosh Communications Toolbox 
for more information on writing cacheProc procedures. 

Writing a clikloop 

If your application intends to allow users to select text from the emula
tion screen or the scroll-back buffer and copy it to the clipboard, you need 
to provide a clikLoop procedure. 

If the target window for a mouseDown event is a terminal emulation 
window, your application should call TMClick which, in turn, calls the 



.,.. Terminal Emulation Tools 237 

procedure specified in the clikLoop field of the TermRecord. The func
tion prototype for ~Melick is as follows: 

pascal void ~Click( TermHandle hTerm, 
const EventRecord *theEvent ); 

The purposes of the parameters to ~Melick are the following: 

h~erm-The handle to your terminal record. 

theEvent-A pointer to the event record describing the mouseDown 
event. 

~Melick repeatedly calls the procedure specified in the clikLoop field 
while the mouse is held down. When called, your procedure receives the 
value of the refCon field of the TermRecord for the terminal emulation 
tool that called it. The function prototype for this procedure is as follows: 

Boolean yourClickLoop( long refCon ); 

yourClickLoop should return true if the mouse was clicked within the 
cached region and false if the mouse was clicked outside of the cached 
region. The cached region is the area of the screen maintained by the 
yourcache procedure to support the scroll-back feature. 

Since the sample source code in this chapter doesn't support caching 
and doesn't allow text on the emulated screen to be copied to the clipboard, 
it has no need for a clikLoop procedure. See Inside the Macintosh Com
munications Toolbox for more information on writing a clikLoop procedure . 

.,.. Creating a TermRecord 

In practice, your application will implement a terminal emulation in 
response to the selection of an Open Terminal or New Terminal menu 
item. It should first open a standard window which acts as the terminal 
emulation screen and then use setPort to ensure it is the active graf Port. 
Provide a name for the window that identifies it as a terminal emulation 
screen. 

To create a terminal record (TermRecord) and call the ~MHew routine. 
Your application passes much of the data needed to complete the 



238 IJJI- Chapter 6 Communications Toolbox 

TermRecord, the Terminal Manager supplies the rest. The function proto
type for TMNew is as follows: 

pascal TermHandle TMNew( const Rect *termRect, 
const Rect *viewRect, 
TMFlags flags, short procID, 
WindowPtr owner, ProcPtr sendProc, 
ProcPtr cacheProc, 
ProcPtr breakProc, ProcPtr clikLoop, 
ProcPtr environsProc, long refCon, 
long userData )1 

The parameters passed to TMHew are the following: 

termRect-Set this parameter to the rectangle that bounds the termi
nal emulation region. 

viewRect-Set this parameter to the rectangle within the termRect 
that bounds the area in which the terminal emulation tool can write. 
This parameter may be changed later by the terminal emulation tool. 
flags-The general attributes of the terminal emulation tool. The 
Terminals.h interface file defines the following constants for the bits of 
this parameter: 

#define tminvisible (l<<O) /* don't display emulation */ 
#define tmSaveBeforeClear (l<<l) /* cache screen before clear */ 
#define tmNoMenus (1<<2) /* don't insert tool's own menu */ 
#define tmAutoScroll (1<<3) /* scroll while selecting */ 

To specify more than one attribute, simply add the constants for the 
desired attributes together. By specifying tmNoMenus, the tool's menus are 
suppressed. 

procID-The ID of the requested terminal emulation tool. Use 
TMGetProcID to obtain the procID from the tool's name. Use 
CRMGetindToolName to determine the name of the tool. If the user has 
not yet selected a terminal emulation tool, use the tool whose name is 
returned by CRMGetindToolHame when you pass it an index of 1. 

owner-A pointer to the window record for the window in which the 
terminal emulation is to appear. If tminvisible attribute was not 
specified in the flags field, the terminal emulation tool assumes com
plete control over the window. See the "Event Handling" section in 



Note.,. 

.,. Terminal Emulation Tools 239 

this chapter for information on how to handle events that relate to a 
terminal emulation window. 

sendProc-The address of yourSendProc. 

cacheProc-The address of yourcacheProc. If your application is not 
providing a cacheProc procedure, pass OL instead. 

breakProc- The address of yourBreakProc. 

clikLoop-The address of yourClikLoop. If your application is not 
providing a clikLoop procedure, pass OL instead. 

environsProc-The address of yourEnvironsProc. 

refCon-Available for your application to use as needed. The value 
stored here is put into the TermRecord's refCon field where it can be 
read or set by calling TMGetRefCon and TMSetRefCon. 

userData-Available for your application to use as needed. The value 
stored here is put into the TermRecord's useroata field where it can 
be read or set by calling TMGetUserData and TMSetUserData. 

TMNew returns a handle to the terminal record if it was able to success
fully create one; otherwise, it returns OL. 

~ Writing Data to the Terminal 

Sending text data to the terminal's screen requires only a simple call to 
TMStream. This data typically comes from the computer to which the 
application is connected via the Connection Manager. The function proto
type for TMStre_am is as follows: 

pascal long TMStream( TermHandle hTerm, void *theBuffer, 
long theLength, CMFlags flags )~ 



240 IJli. Chapter 6 Communications Toolbox 

The purposes of the parameters for TMStream are the following: 

hTerm-The handle to the TermRecord for the terminal to which the 
data is being written. 
theBuffer-The address of the buffer containing the data to be writ
ten to the terminal's screen. 
theLength-The number of bytes to be written from theBuffer 

flags-Set the cmFlagsEOM bit of this parameter if the data stream 
includes an end-of-message indicator. If you're streaming data re
ceived by calling the CMRead routine, set this parameter to the value 
returned in the flags variable passed to CMRead. 

TMStream returns the number of bytes that were actually written to the 
terminal. 

Graphics data can be written on the terminal's screen by calling !l'MPaint. 
The function prototype for TMPaint is as follows: 

pascal void !l'MPaint( TermHandle hTerm, 
const TermDataBlock *theTermData, 
const Rect *theRect ); 

The parameters for TMPaint are the following: 

hTerm-A handle to the TermRecord for the terminal to which the data 
is being written. 

theTermData-The address of the TermDataBlock that defines the 
graphics data to be painted. The graphics data should be held in a 
handle allocated on the heap and the handle should be put into the 
theData field of the TermDataBlock before calling TMPaint. 

theRect-The rectangle in which theTermData should be drawn. 
Specify this rectangle in the local coordinates of the terminal emulation 
window. 

~ Reading Data from the Terminal 

If the user has selected a range of data on the emulated terminal's screen, 
your application can obtain a copy of the data by calling TMGetSelect. The 
function prototype for TMGetSelect is as follows: 

pascal long TMGetSelect( TermHandle hTerm, Handle theData, 
ResType *theType ); 



Ill> Terminal Emulation Tools 241 

The parameters passed to DGetSelect are the following: 

bTerm-A handle to the TermRecord for the terminal that contains the 
data being retrieved. 

theData-Pass a handle to a block of size 0 in this parameter. The 
terminal emulation tool resizes the handle before putting a copy of the 
selected data into it. Your application is responsible for disposing of 
the handle when it is no longer needed. 

theType-On return, this variable contains the data type for the selec
tion-' TEXT' for text or 'PICT' for a QuickDraw picture. 

DGetSelect returns the number of bytes retrieved-this will be 0 if 
there was no selection range in the terminal window. When the call 
completes, you can use theData and theType to put the returned 
information on the clipboard (by calling Putscrap). 

If your application needs to obtain a specific line of text but the line is 
not selected, the application can retrieve the line by calling '.rMGetLine. The 
function prototype for DGetLine is as follows: 

pascal void TMGetLine( TermHandle hTerm, short lineNo, 
TermDataBlock *theTermData ); 

The purposes of the parameters passed to TMGetLine are the following: 

bTerm-A handle to the TermRecord for the terminal containing the 
line being retrieved. 
lineNo-The line number that your application wants to retrieve from 
the emulation buffer. Lines are numbered starting at 1. 

tbeTermData-The address of a TermDataBlock record that is to hold 
the retrieved line. The theData field of the TermDataBlock should be 
a handle to a block of size 0 that the application owns. The terminal 
emulation tool resizes the handle before putting the contents of the line 
into it. 

Ill> Disposing of the Terminal Emulation 

When the terminal emulation is no longer needed-perhaps because the 
user selected a Close Terminal menu item or clicked in the window's 
close box-the terminal record and its associated data structures need to 



242 ..,. Chapter 6 Communications Toolbox 

be disposed. To do this, call DI>ispose, which has the following function 
prototype: 

pascal void 'l'MDispose( TermHandle hTerm )~ 

The hTerm parameter is a handle to the TermRecord of the terminal 
you're disposing. 

~ Event Handling 
Some Communications Toolbox managers may, from time-to-time, dis
play private status windows or dialog boxes on the screen. (The window 
used for the emulation screen is not considered private.) The Communi
cations Toolbox provides routines you must use to process events that 
relate to these windows: CMEvent: (for Connection Manager windows) and 
TMEvent: (for Terminal Manager windows). (There is also a similar rm~
tine for File Transfer windows.) The four window-related events you 
have to handle with these routines are as follows: 

• a mouseDown event in the menu bar when the front window 
(returned by Front:Window) is a private Communications Toolbox 
window 

• a keyDown or autoKey event when the front window (returned by 
Front:Window) is a private Communications Toolbox window 

• an updateEvt when the message field of the event record contains a 
pointer to a private Communications Toolbox window 

• an activateEvt when the message field of the event record con
tains a pointer to a private Communications Toolbox window 

To determine if one of these window-related events relates to a private 
Communications Toolbox window, first use Get:WRefCon to obtain the 
value stored in the window's refCon field. If this value is a handle to an 
active TermRecord or connRecord (or file transfer record), it is a private 
window and you should call TMEvent: or CMEvent:, as the case may be, to 
handle the event. You will have to maintain a list of handles to active 
terminal records and connection records to determine whether the window 
is owned by the Communications Toolbox. 



.- Event Handling 243 

The function prototypes for 'l!MEvent and CMEvent are as follows: 

pascal void 'l!MEvent( TermHandle hTerm, 
const EventRecord *theEvent ); 

pascal void CMEvent( ConnHandle hConn, 
const EventRecord *theEvent ); 

The first parameter passed to these routines is a handle to a TermRecord 
or a ConnRecord. The second parameter is the address of the event record. 

If the window associated with one of the four window-related events 
just described is not a private Communications Toolbox window, but it is 
a terminal emulation window (one you passed as a parameter to the 
'fMNew routine), there are other Communications Toolbox routines you 
must call to handle the event properly. These are covered in separate 
subsections of this chapter. There are also special routines to call for 
handling suspend and resume events. 

There are two common methods for determining whether a window is 
a terminal emulation window. One method is to maintain a list of the 
windows you've passed to 'l!MHew and check to see whether the window 
in which you're interested is in the list. The other method, mentioned 
previously in the discussion of 'l!MHew, is to store a unique value in the 
windowKind field of the window record after calling 'fMNew. If you use this 
method, you simply have to check whether the windowKind field of the 
window in which you are interested contains this value . 

., Activate Events 

For activateEvt events, call 'l!MActivate with a handle to the TermRecord 
associated with the window and a Boolean set to true if the window is 
being activated or false if it is being deactivated. Also call CMActivate 
for the connection record you're using to handle data transmission to and 
from the terminal. 

The function prototypes for these routines are as follows: 

pascal void 'l!MActivate( TermHandle hTerm, 
Boolean activate ); 

pascal void CMActivate( ConnHandle hConn, 
Boolean activate ); 



244 ..,. Chapter 6 Communications Toolbox 

..,. Update Events 

For updateEvt events, call BeginUpdate, 'lMUpdate, and then EndUpdate. 
For 'lMUpdate, pass a handle to the TermRecord being affected along with 
a handle to the region to be updated. The function prototype for 'lMUpdate 
is as follows: 

pascal void 'lMUpdate( TermHandle hTerm, RgnHandle visRgn )7 

..,. Keyboard Events 

For keyDown and autoKey events, call the 'lMKey routine. It requires a 
handle to the TermRecord being affected and a pointer to the event record 
describing the event. 

The function prototype for 'lMKey is as follows: 

pascal void notey( TermHandle hTerm, 
const EventRecord *theEvent )7 

..,. Mouse-Down Events 

For mouseDown events in the content region of a terminal emulation 
window, call 'lMClick with a handle to the TermRecord affected and a 
pointer to the event record. The function prototype for 'lMClick is as 
follows: 

pascal void 'lMClick( TermHandle hTerm, 
const EventRecord *theEvent )7 

For mouseDown events in the grow box area of a terminal emulation 
window, first call GroWWindow and Sizewindow as you would when 
resizing a standard window. Then call 'lMResize with a handle to the 
TermRecord affected and the address of a rectangle describing the dimen
sions of the new terminal rectangle (this is usually set to the portRect of 
the resized window). The function prototype for 'lMResize is as follows: 

pascal void !l'MR.esize( TermHandle hTerm, 
const Rect *newViewRect )7 



~ Configuring the Communications Toolbox Tools 245 

~ Suspend/Resume Events 

For osEvt events caused by suspend or resume operations, call the 
'rMResume routine once for each active terminal emulation session and the 
CMResume routine once for each active connection. The function prototype 
these routines are as follows: 

pascal void 'rMR.esume( TermHandle hTerm, Boolean resume ); 
pascal void CMResume( ConnHandle hConn, Boolean resume ); 

The first parameter in each routine is a handle to the TermRecord or 
connRecord, as the case may be. The second parameter is a Boolean 
indicating whether the application is being resumed (true) or suspended 
(false) . 

..,_ Configuring the Communications Toolbox Tools 
An important aspect of the Communications Toolbox is that its tools can 
be easily configured by the user through the use of standard dialog boxes. 
These dialog boxes allow the user to change the values of the parameters 
that tools use to perform their tasks-the serial connection tool, for 
example, uses baud rate and data format parameters to set the data 
transmission speed and the format of the serial data stream. 

This section focuses on the routines you can use to display the dialog 
boxes that enable the user to change the settings of tool options. These 
dialogs are typically brought up in response to the selection of a related 
menu item. 

Although there are several techniques for configuring the tools used by 
the Terminal, Connection, and File Transfer Managers use, only two will 
be examined here. The first technique involves displaying a standard 
configuration dialog box for each class of tools-terminal tools, connec
tion tools, and file transfer tools. Every Communications Toolbox tool 
provides routines for handling user input in this dialog. This is the 
technique you will likely implement in your applications. 

The second technique relies on the fact that, once configured, you can 
query a tool for a text string that describes the tool's current configuration. 
The configuration string can be saved in the document's resource fork so 
that it can be retrieved and used to restore the configuration the next time 
the document is opened. 

You can also obtain configuration settings using custom configuration 
dialogs, but this technique is far more complex and is not needed in most 



246 ~ Chapter 6 Communications Toolbox 

circumstances. For more information on this technique, refer to Inside the 
Macintosh Communications Toolbox. 

Many of the standard Communications Toolbox tools also support 
their own menus for allowing individual tool settings to be changed 
directly. You can easily suppress these menus, requiring the user to make 
all configuration changes by bringing up a configuration dialog box, if 
you wish. The sample source code presented in this chapter does suppress 
the tool menus. If you choose to use the tool menus, refer to Inside the 
Macintosh Communications Toolbox for instructions on how to handle them 
properly. 

~ Configuring Terminal Emulation Tools 

The simplest way for an application to allow a user to select and configure 
a terminal emulation tool is to use the standard configuration dialog for 
the tool. Bring up the configuration dialog by calling TMChoose. The 
function prototype for 'fMChoose is as follows: 

pascal short 'fMChoose( TermHandle *hTerm, Point where, 
ProcPtr idleProc ); 

The purposes of the parameters passed to 'fMChoose are as follows: 

h'ferm-The address of the handle to your terminal record (TermRecord). 

where-The location of the dialog's top left corner (in global coordi
nates). This point should be kept close to the top left corner of the 
screen since the dialog's height and width can differ for each terminal 
emulation tool and both can be quite large. 

idleProc-The address of the procedure the Terminal Manager is to 
call during idle time while the dialog is being displayed. No param
eters are passed to the idle procedure. Specify OL if your application is 
not providing an idle procedure. 



~ Configuring the Communications Toolbox Tools 247 

TMChoose returns a result indicating which of several possible actions 
your application should take. These results are defined by the following 
constants in the CTBUtilities.h interface file: 

#define chooseCancel 3 
#define chooseOKMajor 2 
#define chooseOKMinor 1 
#define chooseFailed -1 
#define chooseoisaster -2 

The appropriate actions your application should take in response to 
these results are as follows: 

chooseCancel-The Cancel button was clicked. No special action is 
required by your application in response to this return code. 
chooseOKMaj or-The OK button was clicked and the user changed at 
least one configuration setting for the tool. The Terminal Manager 
returns in hTerm a handle that refers to the new TermRecord; you should 
save the new terminal record the next time the user saves the document. 

chooseOKMinor-The OK button was clicked, but no changes were 
made to the configuration settings. 

chooseFailed-The configuration failed, but the terminal record is 
still intact. The application should inform the user of the problem and 
offer to try again. 
chooseDisaster-The configuration failed and the terminal record 
was destroyed in the process. The Terminal Manager sets hTerm to OL 

and the application should inform the user of the problem and offer to 
try again. 

Your application will typically call TMChoose when the user selects the 
Terminal . . . item (or similarly named item) from a Communications 
menu you've put in the menu bar. 



248 ..,. Chapter 6 Communications Toolbox 

The configuration dialogs for the TTY and VT102 terminal emulation 
tools are shown in Figures 6-1 and 6-2. Notice the Emulation pop-up 
menu near the upper left corner in both dialogs. This pop-up menu 
allows the user to change the type of terminal emulation desired. By 
imbedding this tool-selection function in the configuration dialog (under 
the control of the Communications Toolbox), the application can support 
all terminal emulation tools without source code changes. If each type of 
terminal emulation had to be understood and handled specially by the 
application, writing your application would be much harder. 

Terminal Settings ( OK 1] 
Emulation: TTY Tool ( Cancel ) 

' I 181 On Line i 

D Local Echo .=.l .::: :::. O Block 9-· l•:;mm•l_J 

Text Cursor 

···-·.. @ Underline 
........................................................................................ 1 ........................................................................................ . 

Width: I 80 ... ..,. I ! Scroll Text 

Size: I 9 po ... ..,. ' I @ Jump 0 Smooth 
ooooHHoooooooooOOOHOOOOOOOoOOoHOHOOOOOOOOHOOoooooooooooooOffOOOHHHoOoooooooooooiOOOOOooOooOOooooOOoooooooooooooooooOooooooooooOHOOOOOOOOOHOOHOOooOoOOHOOHOOOHOOHoO 

Characters 

D Show Control Charactet 

D Auto Wrap to Next Line 

; 
; 
I 

80 

I jyj:;"i"; .. ··1·;· .. ;;;· .. ;;;;~jjT~ .. ·~t="""y"""! 
: !This is a sample of T ! 

........................................................................................ ! !This is a sample of T ! 
Holding Down Keys Will ! .............. :·:::::::::::::::::::::::::.:·:::::::::::.:·:::.::·::.::·::.:·::.::·:.::·.: ..... .. 
181 Auto Repeat Keys I 181 Swap 'Backspace' and 'Delete' 

' I D Repeat Contro 1 Keys D New Line on a Return 
' 

Figure 6-1. The configuration dialog box for the TIY terminal 
emulation tool 



~Configuring the Communications Toolbox Tools 249 

Terminal Settings t OK D 
Emulation: UTl 02 Tool .,... I ( Cancel ) 

• 111111 

Keyboard 

A 
Character Set'{} 

Width : I 80 Columns ... 1 1,,, ~ J:;rpoll Te
0
xt Smooth 

Size : I 9 point ... I ~ 

·~~··~~~:. ~:·~o·t~:;~W·c~;··a·n··;··r· ·t·o·

0
·1 ... ~···:··x·a· ·:·· ·a·L·c·,·.·: .. : .. r ... s ........... ,,,:',.::,,,,,, ... ...... .. .............................................. .............. s.o 

r+·t;••i··~· · ···i·~····~····~~·~·p· ·i·~·· · ·~· f"· · ·vr! 

!This is a sample of VTi 
!This is a sample of VT! 

D Insert Characters [~.~ .. i .. ~ ..... i .. ~ .... ~ .... ~.~.~.~ .. l .. ~ .. .. ~.~ .... ~.~j 
··[i·~;;·~;·~··~~ ··~·~~·:;·;;·~~··~~·;~·;~· · · ··l·· · ··[i·;~·~·~~·~~··~;·~~·:······ .. ······················ 

Figure 6-2. The configuration dialog box for the VTl 02 terminal 
emulation tool 

The configuration settings the user selects can be retrieved from the 
terminal emulation tool by calling TMGetConfig. The function prototype 
for TMGetConfig is as follows: 

pascal Ptr TMGetConfig( TermHandle hTerm ); 

TMGetConfig requires a handle to a terminal record (TermRecord) as its 
only input. 

This routine returns a pointer to the configuration string for the tool. 
This string is null-terminated, can be of any length, and should be dis
posed of by calling DisposPtr when no longer needed. The format of a 
configuration string is unique to each tool. 

A configuration you've previously saved can be easily invoked by 
calling TMSetConfig. The function prototype for TMSetconfig is as fol
lows: 

pascal short TMSetConfig( TermHandle hTerm, 
const void *thePtr ); 



250 .,.. Chapter 6 Communications Toolbox 

Note 111> 

The parameters to TMSetConfig are as follows: 

hTerm-The handle to the terminal record (TermRecord). 

thePtr-The address of the null-terminated configuration string 
(obtained earlier from TMGetconfig or read from a resource). 

.,.. Configuring Connection Tools 

Configuring a connection tool is similar to configuring a terminal emulation 
tool. In fact, the routines your application needs to call seem almost 
identical to those made when configuring a terminal emulation tool. The 
main differences are the type of handle passed and the structure of data 
referred to by the handle. 

Bring up the configuration dialog for a connection tool by calling 
CMChoose. The function prototype for CMChoose is as follows: 

pascal short CMChoose( ConnHandle *hConn, Point where, 
ProcPtr idleProc ); 

The purposes of the parameters passed to CMChoose are as follows: 

hConn-The address of the handle to your connection record 
(connRecord). 

where-The location of the dialog's top left corner (in global coordi
nates). This point should be kept close to the top left corner of the 
screen since the dialog's height and width can differ for each connec
tion tool and both can be quite large. 



.._ Configuring the Communications Toolbox Tools 251 

idleProc-The address of the procedure the Terminal Manager is to 
call during idle time while the dialog is being displayed. No param
eters are passed to the idle procedure. Specify OL if your application is 
not providing an idle procedure. 

CMChoose returns a result indicating which of several possible actions 
your application should take. These results are defined by the following 
constants in the CTBUtilities.h interface file: 

#define choosecancel 3 
#define chooseOKMajor 2 
#define chooseOKMinor 1 
#define chooseAborted 0 
#define chooseFailed -1 
idef ine chooseDisaster -2 

The appropriate actions your application should take in response to 
these results are as follows: 

choosecancel-The Cancel button was clicked. No special action is 
required by your application in response to this return code. 
chooseOKMaj or-The OK button was clicked and the user changed at 
least one configuration setting for the tool. The Connection Manager 
returns in hConn a handle that refers to the new connection connRecord; 
you should save the new connection record the next time the user 
saves the document. 
chooseOKMinor-The OK button was clicked, but no changes were 
made to the configuration settings. 
chooseDisaster-The configuration failed and the connection record 
was destroyed in the process. The Connection Manager sets hConn to OL 

and the application should inform the user of the problem and offer to 
try again. 
chooseAborted-If the user changes the connection settings while a 
connection is open and clicks the OK button, the Connection Manager 
displays a dialog asking for confirmation. If the user clicks that dialog's 
Cancel button, CMChoose returns chooseAborted. 

chooseFailed-The configuration failed, but the connection record is 
still intact. The application should inform the user of the problem and 
offer to try again. 



252 ~ Chapter 6 Communications Toolbox 

Your application will typically call CMChoose when the user selects the 
Connection ... item (or similarly named item) from a Communications 
menu you've put in the menu bar. 

The configuration dialog for the serial and Apple modem connection 
tools are shown in Figures 6-3 and 6-4. Notice the Method pop-up menu 
near the upper left corner in both dialogs. This pop-up menu allows the 
user to change the type of connection desired. By imbedding this tool
selection function in the configuration dialog (under the control of the 
Communications Toolbox), the application can support all connection 
tools without source code changes. If each type of connection had to be 
understood and handled specially by the application, writing your appli
cation would be much harder. 

Connection Settings t OK , 

Method: Serial Tool ,.. I ( Cancel ) 

Port Settings 

Baud Rate : s1600 ~I i 

~.~I ! 
Parity : 

Data Bits: 

Stop Bits : 

Handshake : I XON / XOFF 

Current Port 

• Ill ti iii Printer Port 

~ f .. ............ ........................ .. .. ..... .. ..... .......................... .. ...... .... ............. ............ . 
W'hen Closing Document 

[gl Hold Connection 

D Remind to Disconnect 

Figure 6-3. The configuration dialog box for the serial connection tool 



liJJi- Configuring the Communications Toolbox Tools 253 

Connection Settings 

1.!lr.11 ~Y"'Rpple Modem Tool 1 
Serial Tool 

Modem Settings 

0 Answer Phone After[.·~""""""] Rings 

@Dial Phone Number i.:..11 _____ ....J 

Modem : Hay es-Compa ... .,.. I 

Port Settings 

Baud Rate : 

Parity : 

Data Bits : 

Stop Bits : 

2400 .... 1 

None '"'I 
8 .... 1 

n OK J) 
( Cancel J 

Figure 6-4. The configuration dialog box for the Apple modem 
connection tool 

The configuration settings the user selects can be retrieved from the 
connection tool by calling CMGetconfig. The function prototype for 
CMGetConf ig is as follows: 

pascal Ptr CMGetConfig( ConnHandle hConn ); 

CMGetConfig requires a handle to a connection record (connRecord) as 
its only input. 

This routine returns a pointer to the configuration string for the tool. 
This string is null-terminated, can be of any length, and should be dis
posed of by calling DisposPtr when no longer needed. The format of a 
configuration string is unique to each tool. 

A configuration you've previously saved can be easily invoked by calling 
CMSetConfig. The function prototype for CMSetConfig is as follows: 

pascal short CMSetConfig( ConnHandle hConn, Ptr thePtr ); 



254 IJli- Chapter 6 Communications Toolbox 

Note~ I 

The parameters to CMSetconfig are as follows: 

hConn-The handle to the connection record (connRecord). 

thePtr-The address of the null-terminated configuration string (ob
tained earlier from CMGetconfig or read from a resource). 

~ Putting the Pieces Together 
Now that you are familiar with the groundwork and have seen how to 
implement the features of the Communications Toolbox, it's time to put 
all the pieces together to provide the Skeleton application with telecom
munications capabilities. 

First, you'll need to define menu items to configure a terminal emula
tion tool, to configure a connection tool, to open the connection, and to 
close the connection. You'll also need a window for the terminal emulation 
tool to use as its screen (it could be created in response to a New or 
Open ... item in the File menu) and a set of required procedures (breakProc, 
sendProc, and environsProc) that the selected terminal emulation tool 
can use. 

Listing 6-8 shows the procedure that is called when Skeleton's Connec
tion... menu item is selected. Listing 6-9 shows the procedure called 
when Skeleton's Terminal... menu item is selected. 



.,.. Putting the Pieces Together 255 

Listing 6-8. Skeleton's Connection ... routine 

/* The following routine is responsible for displaying a configuration */ 
/* dialog for the connection tools or using a configuration string to */ 
/* configure the connection. If the "configString" is nil, use the */ 
/*dialog, otherwise use the passed-in configuration string ••• */ 
void DoCMConfiguration(Ptr configString) 
{ 

} 

short 
short 
Point 

junkErr; 
myCode; 
myTopLeft; 

/* holds the code returned by CMChoose */ 
/* top, left corner of configuration dialog */ 

if (configString) { /* non-nil means use configuration string */ 
junkErr = CMSetConfig(gConnRecHndl, configString); 

} else { 

} 

SetPt(&myTopLeft, 20, 40); /* keep it high and left on screen */ 
if (gConnRecHndl) { /* global ConnRecord */ 

myCode = CMChoose(&gConnRecHndl, myTopLeft, OL); 
} 

Listing 6-9. Skeleton's Terminal ... routine 

/* The following routine is responsible for displaying a configuration */ 
/* dialog for the terminal emulation tools or using a configuration */ 
/* string to configure the terminal. If the "configString" is nil, */ 
/*use the dialog, otherwise use the passed-in configuration string ••• */ 
void DoTMConfiguration(Ptr configString) 
{ 

} 

short 
short 
Point 

junkErr; 
myCode; 
myTopLeft; 

/* holds the code returned by TMChoose */ 
/* top, left corner of configuration dialog */ 

if (configString) { /* non-nil means use configuration string */ 
junkErr = TMSetConfig(gTermRecHndl, &configString); 

} else { 
SetPt(&myTopLeft, 20, 40); /* keep it high and left on screen */ 
if (gTermRecHndl) { /* global TermRecord */ 

myCode = TMChoose(&gTermRecHndl, myTopLeft, OL); 
} 

Listing 6-10 shows the procedure called when Skeleton's Open Con
nection menu item is selected. Listing 6-11 shows the procedure called 
when Skeleton's Close Connection menu item is selected. 



256 II> Chapter 6 Communications Toolbox 

Skeleton's implementation of the required procedures needed to support 
the terminal emulation tools can be found in Listings 6-5, 6-6, and 6-7. 

Listing 6-10. Skeleton's Open Connection routine 

/* The following routine is responsible for opening the connection. */ 
void DoOpenConnection(void) 
{ 

OS Err 
CMStatFlags 
CMBufferSizes 

myErri 
myFlagsi 
myCMBufSizesi 

SetCursor(*GetCursor(watchCursor))1 /*set cursor to watch*/ 

/* Check to see if connection is already open, or is being opened */ 
myErr = CMStatus(gConnRecRndl, myCMBufSizes, &myFlags)i 

if (lmyErr) { /* if status check worked, keep going*/ 

} 

/* only open connection if it's not already open or being opened •/ 
if (l((myFlags & cmStatusOpen) I I (myFlags & cmstatus0pening))) 

myErr = CMOpen(gConnRecRndl, false, OL, 2400)1 

Initcursor()i /* restore normal cursor */ 

Listing 6-11. Skeleton's Close Connection routine 

/* The following routine is responsible for shutting down connections. */ 
void DoCloseconnection(void) 
{ 

OS Err 
CMStatFlags 
CMBuf ferSizes 

myErri 
myFlagsi 
myCMBufSizesi 

Setcursor(*Getcursor(watchCursor))i /*set cursor to watch*/ 

/* Check to see if connection is already closed, or is being closed */ 
myErr = CMStatus(gConnRecRndl, myCMBufSizes, &myFlags)i 

if (lmyErr) { /*if status check worked, keep going*/ 
/* only close it if it's open or being opened */ 
if (((myFlags & cmStatus0pen)) I I (myFlags & cmstatus0pening)) 

myErr = CMClose(gConnRecRndl, false, OL, 1200, true)i 

Initcursor()1 /*restore normal cursor*/ 



IJiii> Summary 'J57 

..,. Summary 
This chapter described the services and functions that System 7 offers all 
applications through the Communications Toolbox. The basic operation 
of the Communications Toolbox and the ease with which you can harness 
its power were demonstrated. The major routines in both the Terminal 
Manager and the Connection Manager were described. 

While not discussed, the File Transfer Manager's routines are similar to 
those of the Terminal and Connection Managers, making file transfers as 
easy as establishing a connection or emulating a terminal. For more 
information on all the capabilities of the Communications Toolbox, refer 
to Inside the Macintosh Communications Toolbox. 

The next chapter moves away from the communications area and 
discusses Apple's new font technology, TrueType, and how it affects the 
way you develop applications. 



7 ~ Font Manager 

The Macintosh has worked with bit-mapped fonts since day one. With the 
release of System 7, however, a powerful new font technology is avail
able-TrueType. TrueType fonts offer several advantages over their bit
mapped cousins, stemming from the fact that by installing just one file 
containing the TrueType definition for a particular font, the System can 
truly render the font in almost any point size. 

This chapter will explore the following topics: 

• the scaling characteristics of TrueType fonts 

• what a System 7 application has to do to work seamlessly with both 
TrueType and bit-mapped fonts 

• designing a Size menu that makes sense in a TrueType world 

llll- TrueType Scaling 
The problem with a bit-mapped font is that if you haven't installed the 
font definition for the point size you want to use, the font has to be 
scaled, and scaling, particularly to unusual point sizes, can result in very 
jagged and very unattractive glyphs. (A glyph is the visual representation 
of a character.) To be fair, scaling from a font that is twice as big or twice 
as small works fairly well, but the result still looks a bit rough. This poor 
scalability is due to the fact that bit-mapped fonts are defined as a simple 
array of pixels at 72 pixels per inch; a resolution this coarse isn't particu
larly conducive to effective scaling. 

259 



260 ..,. Chapter 7 Font Manager 

Each glyph in a TrueType font is stored as a set of points, not an array 
of pixels. But don't confuse these points with a font's point size or a 
QuickDraw point, the points that define the glyph are expressed in terms 
of a grid with far finer resolution than the pixels on a screen or the dots 
on a printer's page. 

The points for a particular glyph definition can either be on the curve 
of the glyph or off of it. Glyphs are rendered by connecting consecutive 
on-curve points with a line. This line is usually straight, but can be bent 
by intervening off-curve points that behave like magnets, bending the 
line towards the off-curve points. The result is a glyph with the curved 
shapes it needs to be clearly represented. 

The set of points for a glyph is used as the input to a mathematical 
curve-fitting algorithm (known as a parametric Bezier equation). The Font 
Manager uses this algorithm to render the font perfectly at any arbitrary 
point size. The result is a much better representation at a given point size 
than would be possible if you had to scale a bit-mapped font to the same 
point size. 

Another advantage of TrueType fonts is that they don't eat up a lot of 
disk space. One TrueType font file per typeface can be scaled to produce 
beautiful looking output at any point size. If you're using bit-mapped 
fonts and you want to avoid scaling, you have to provide definitions in 
all point sizes of interest to your customers. This is clearly impractical. 

llli- Living with Bit-Mapped and TrueType Fonts 
The user may install both bit-mapped and TrueType fonts in System 7, so 
your application should be prepared to handle both font types in a 
sensible way. As you will see, there's actually not much the application 
has to do since much of the hard work is done transparently by the 
operating system. 

The Font Manager is responsible, for example, for determining which 
type of font to display if a font is available in both a bit-mapped and a 
TrueType version. The default behavior is to choose the bit-mapped font 
if it exists in the exact point size desired, otherwise the TrueType font is 
chosen. This is because presumably the bit-mapped font has been fine
tuned to look just right at the point size for which it was designed; a 
TrueType font, on the other hand, scales much better to an arbitrary point 
size. Obviously, if only a bit-mapped font is installed, that font is always 
used; the same goes for TrueType fonts. 

You can override the default font type selection using the 
SetOutlinePreferred routine. The function prototype for 



~ TrueType's Impact on Applications 261 

SetOutlinePreferred is the following: 

pascal void SetOutlinePreferred( Boolean outlinePreferred ); 

The outlinePreferred parameter controls whether a TrueType font 
will be used even if a bit-mapped font exists at the desired size. Set this 
field to true to use TrueType fonts and set it to false to use bit-mapped 
fonts. 

You can determine the current font selection behavior by calling 
GetOutlinePreferred: 

pascal Boolean GetOutlinePreferred( void ); 

This routine returns true if the Font Manager prefers to use TrueType 
fonts or false if it uses bit-mapped fonts that are available in the desired 
size. 

Using True Type fonts in a document does not impair the user's ability 
to view the document on systems that have only bit-mapped versions of 
the same fonts. The Font Manager does not insist that the TrueType fonts 
be present. Off course if you're using unusual point sizes, the document 
will not look as good when viewed on a system that does not have 
TrueType fonts. 

TrueType fonts scaled to a specific point size for display on the screen 
will look almost as good as hand-tuned bit-mapped fonts of the same 
size. In general, however, TrueType fonts look much better than bit
mapped fonts when drawn on the printed page by a high-resolution 
printer like one of Apple's Laser Writers. The exception is where a 
Postscript version of the bit-mapped font exists in the printer; in this case, 
the quality is about the same as when the TrueType font is used. 

Perhaps the best strategy for managing fonts is to use 
SetoutlinePreferred to set the Font Manager's preferred font technol
ogy to TrueType so that you get nice looking output both on the screen 
and on paper. If the desired font is available only as a bit map, the Font 
Manager will still use it. The fact that you indicate a preference for 
TrueType technology does not foreclose the use of bit-mapped fonts. 

~ TrueType's Impact on Applications 
Since the Font Manager can scale TrueType fonts to any point size and 
the result will look attractive, a System 7 application should provide the 
user with more control over the choice of point size than was the case in 
older applications. In particular, the application should include menu 



262 ~ Chapter 7 Font Manager 

items for increasing and decreasing the current point size by one point at 
a time as well as a menu item for allowing the selection of any arbitrary 
point size. 

The established convention for pre-System 7 applications is to draw, in 
outline styling, the menu item name of any point size for which an 
exact font description is available. This convention still applies to System 
7 applications, but for TrueType fonts, nearly all font sizes will need to be 
outlined. However, a TrueType font can have a minimum size embedded 
in its definition by its designer indicating the smallest size at which the 
designer feels the font looks appropriate. Menu item names for sizes 
below the minimum size should not be in outline styling. 

Use the RealFont routine to determine if the font size you're inter
ested in is available (for bit-mapped fonts) or above the limit (for TrueType 
fonts). The function prototype for RealFont is the following: 

pascal Boolean RealFont( short fontNum, short size ); 

Here are the meanings of the two parameters to RealFont: 

fontHum-The font number for the font family in question. Each font 
family has a unique number assigned by the system when it is first 
installed. Since this number can vary from system to system, but font 
names are unique, the best strategy for determining the font number is 
to use the GetFNum routine (described below) to convert the font name 
to a font number. 

size-The point size in which you're interested. 

RealFont returns true if the font specified by fontNum exists in the size 
specified by size. If the requested size is not available, RealFont 
returns false. 

The function prototype for GetFHum is the following: 

pascal void GetFNum(ConstStr255Param name, short *familyID); 

Here are the meanings of the parameters to GetFHum: 

name-The font whose font number you want to determine. 

familyID-The family ID for the specified font is returned in this 
variable. Use this value as the font number input to RealFont. 



Note~ 

.,.. TrueType's Impact on Applications 263 

Figure 7-1 shows a sample Size menu that you should use in applica
tions that allow users to change point sizes for text selections. The follow
ing sections discuss how to implement such a menu. 

@ 

um 
..... u~ 
u~ 
um 
~~ 

~m 

Common Font Sizes 
(checked item is current size) 

Larger 3€] > 
Smaller 3€[ Commands for changing point sizes 
Custom Size ... 

>User-added custom sizes 

Figure 7-1. A typical Size menu for managing TrueType font size 
changes 



264 ~ Chapter 7 Font Manager 

~ Incremental Font Size Adjustments 

The menu item named Larger in Figure 7-1 increases the current point 
size by one, while the item named Smaller decreases the current point 
size by one. These are provided to allow the user to quickly adjust the 
size of a TrueType font to one that looks just right. 

Listing 7-1 shows a single routine you can use to increase or decrease 
the point size of the currently selected text by one point. Pass 1 to the 
DoNudgeFontSize routine to increase the point size by one and pass -1 to 
decrease it by one. 

Listing 7-1. A routine for increasing or decreasing the type size by 
one point 

/*put this short chunk into DoMenuCommand() */ 
case mSpecial: 

switch ( menuitem ) { 
case iLarger: 

DoNudgeFontSize( 1 ) 1 /*increase size by 1 point*/ 

} 

break1 

break1 
case iSmaller: 

DoNudgeFontSize( -1 )7 
break1 

/*decrease size by 1 point*/ 

/* put this chunk anywhere */ 
void DoNudgeFontSize(short nudgeBy) 
/* add •nudgeBy' to current selection's font size */ 
{ 

} 

TextStyle myStyle7 
winPrivateHndl myPrivHndl7 

/* should buffer current style so UNDO works */ 

myStyle.tsSize = nudgeBy7 /* amount to nudge font size by */ 

/* get handle to data stashed in front window's refCon */ 
myPrivHndl = (winPrivateHndl)GetWRefCon( FrontWindow() )7 

if (myPrivHndl) { /* ignore front window if nothing is stashed */ 
/* force selected text to new size */ 
TESetStyle(addSize, &myStyle, true, (**myPrivHndl).winTEHndl)7 

} 



II> Truelype's Impact on Applications 265 

To adjust the point size, call the HSetStyle routine and tell it to add 
(or subtract) one point to (or from) the point size of the selected text. The 
function prototype for TESetstyle is the following: 

pascal void TESetStyle( short mode, const TextStyle 
*newStyle, Boolean redraw, TEHandle hTE ); 

The meanings of the parameters are as follows: 

mode-Controls which style attributes are affected by the newstyle 
parameter. Possible values for mode are: 

#define doFont 1 /* set font (family) number */ 
#define doFace 2 /* set character style */ 
#define doSize 4 /* set type size */ 
#define doColor 8 /* set color */ 
#define do All 15 /* set all attributes */ 
#define addSize 16 /* adjust type size */ 

newstyle-Contains the style information to be imposed on the 
selected text, based on the mode specified in the mode parameter. To 
increase the font's size by a specific number of points, set mode to 
addSize and set the newstyle->tssize field to the number of points 
that should be added to the selected text's point size. Use a negative 
value for newStyle->tsSize to decrease the selected text's point size 
by a specific number of points. 
redraw-If true, TextEdit immediately redraws the TextEdit field to 
reflect the style changes. If false, the TextEdit field is not redrawn; style 
changes are hidden until something else forces the TextEdit field to be 
redrawn. 
hTE-A handle to the TextEdit record containing the text to which the 
new style is being applied. 

If the selection range includes fonts of different sizes, each font will be 
increased or decreased by the amount specified in newStyle->tsSize. 
Thus, if the user selects a range of text that includes 10-point, 12-point, 
and 18-point text, then selects Larger from the Size menu, the 10-point 
text becomes 11-point, the 12 becomes 13, and the 18 becomes 19. 

When shrinking text, the Font Manager prevents font sizes from going 
below 1 point. The same selected text (10-, 12-, and 18-point mixed 
together), if decreased (with Smaller) 13 times, will convert the 10- and 
12-point text into 1 point. When the text size is increased (with Larger), 



266 ..,. Chapter 7 Font Manager 

all of what used to be 10-point text will be the same size as the text that 
used to be 12-point (the Font Manager loses the information that these 
two subranges are supposed to be a different size) . 

..,. Custom Font Size Selection 

Providing a method for users to enter any arbitrary font size takes a little 
more thought. Perhaps the easiest implementation is to bring up a modal 
dialog that prompts for a new size, as shown in Figure 7-2. If the user 
dismisses the dialog by clicking the OK button, the custom size entered is 
applied to the selected text. 

Desired Font Size: _I 2_9 ___ _ 

(Cancel ) ( OK ) 

Figure 7-2. A simple modal dialog for changing the point size 

Another alternative is to include within the dialog a text sample drawn 
in the point size the user selects (see Figure 7-3). This technique isn't 
appropriate when dealing with large point sizes because the dialog has to 
be very large or most of the text sample won't show up. As with the 
previous example, if the user dismisses the dialog by clicking the OK 
button, the custom size is applied to the selected text. 



.,.. TrueType's Impact on Applications '267 

Desired Font Size: _I 2_9 ___ 1 ( Preuiew ) 

Click the Preuiew button to see a sample 
of teHt at the selected size. 

( Cancel ) ( OK ) 

Figure 7-3. A better method for changing the point size 

Using a non-modal point size control window is probably the best 
solution (see Figure 7-4). Such a strategy allows users to quickly switch 
back and forth between the document window and the size control 
window until the desired size is entered. This approach also makes it 
possible to quickly see new sizes, using the actual selected text in the 
context of its surrounding text, without having to first dismiss the font 
size dialog. The next section describes a routine you can use to implement 
such a window. 



268 ""° Chapter 7 Font Manager 

Desired Font Size: 1 ...... 2_9 ___ _ 

( Reuert J ( Rpply J 

Figure 7-4. A modeless dialog for allowing custom font size entry 

You should also consider providing the ability for the user to append 
custom font sizes to the Size menu so they can be quickly selected. The 
names of these custom sizes should have outline styling if RealFont 
returns true for the font at that point size. Figure 7-1 shows where custom 
fonts would be installed in the sample Size menu . 

...,. Implementing Custom Size Control 
The ability to allow a change in the point size of selected text in a 
background window (using a non-modal dialog like the one shown in 
Figure 7-4) was available in TextEdit prior to System 7 (through the use of 
the GetstylScrap, SetstylScrap, and TESetstyle routines), but is 
particularly helpful for demonstrating TrueType's flexibility. Prior to 
System 7, only bit-mapped fonts were available and there was little point 
in allowing the user to choose any possible font size because the scaled 
fonts looked so unattractive. Thus, this feature in TextEdit was generally 
untapped. 

Applying a new size to the selected text is similar to the Larger and 
Smaller menu items discussed earlier in this chapter. The desired size is 
extracted from the data entry field of the modeless dialog and that 
number is passed to ~ESetStyle; the mode field should be set to doSize 
instead of addSize since we want all of the selected text to be forced to 
the custom size selected by the user. 

Reverting to the original sizes is trickier than applying a new size since 
the text being restored could easily be of several different sizes. (Apply 
makes them all one size, but Revert has to restore their original, possibly 
mixed, sizes). The best way to accomplish this is to save the current styles 
of the selected text before applying the user's custom size. The saved 
styles can be stored in the window's private data area (accessed via the 



IJlil. Implementing Custom Size Control 269 

handle stored in the window's ref Con field) and retrieved later if the user 
selects Revert. 

The easiest way to save the current styles of the selected text is to use 
the GetStylScrap routine. The function prototype for GetStylScrap is the 
following: 

pascal StScrpHandle GetStylScrap( TEHandle hTE ); 

The hTE parameter is a handle to the TextEdit record containing the 
selected text. GetstylScrap returns a handle to the styles used for the 
selected text. Up to 1,601 styles can be mixed in the selected range. 

GetStylScrap is similar to a Copy command, except that the clip
board and TextEdit's scrap are unaffected by the routine (which prevents 
their contents from being trampled). The handle that GetStylScrap returns 
reflects the styles for only the text that was selected by the user. If no text 
was selected, the handle reflects the style associated with the insertion 
point. 

Restoring the styles requires only that the saved styling information be 
retrieved from the window's private structure and passed to 
SetStylScrap. The function prototype for SetstylScrap is the 
following: 

pascal void SetStylScrap( long rangeStart, 
long rangeEnd, StScrpHandle newStyles, 
Boolean redraw, TEHandle hTE ); 

The meanings of the parameters to SetStylScrap are as follows: 

rangestart-The offset into the TextEdit field of the first character to 
which the style information should be applied. This value should be 
saved in the window's private data area before the user's new size is 
applied. 
rangeEnd-The offset into the TextEdit field of the last character to 
which the style information should be applied. This value should be 
saved in the window's private data area before the user's new size is 
applied. 
newstyles-The handle returned by GetStylScrap and saved in the 
window's private data area. This handle reflects up to 1,601 styles to be 
applied to the selection range specified by rangeStart and rangeEnd. 



270 ~. Chapter 7 Font Manager 

Important..,. 

redraw-If true, TextEdit immediately redraws the TextEdit field to 
reflect the style changes. If false, redrawing occurs when the next 
update event is handled. 

h'l'E-A handle to the TextEdit record in which the selected text is 
included. 

SetstylScrap applies the styles specified in newstyles to the text 
within the TextEdit record without disturbing the user's current selec
tion. One range of text could be selected, a new size applied, another 
range selected, and Revert would still be able to restore the original 
sizes for the first range of text while leaving the new range still 
selected. 

Controlling the TextEdit record for a window that is not at the front is 
fairly simple. All that's needed is a handle to the TextEdit record for that 
window. The sample code in Listing 7-2 assumes that this handle has 
been stored in the private data structure whose handle is stored in the 
window's ref Con field (an old trick). Before making calls to TextEdit that 
affect the window behind a modeless dialog, the TextEdit field should be 
made active by calling 'l'EActivate. Then, after adjusting the size of the 
selected text, restore the TextEdit field to its inactive state by calling 
!rBDeactivate. 

The function prototypes for !rBActivate and !rBDeacti vate are as follows: 

pascal void !rBActivate( TEHandle hTE ); 

pascal void !rBDeactivate( TEHandle hTE ); 

The hTE parameter is a handle to the TextEdit record containing the 
selected text that you want to resize. 

Listing 7-2 shows a routine you can use to implement the custom font 
size entry shown in Figure 7-4. It provides support for an Apply button 
(for applying the entered point size to the text selection in the window 
behind it) and a Revert button (for undoing the result of the previous 
Apply operation). 



I>- Implementing Custom Size Control 271 

Listing 7-2. A routine to implement the modeless dialog shown in 
Figure 7-4 for changing type sizes 

#define rFontSize 
#define rcustomSizeNwn 
#define rcustomSizeRevert 

150 /* resource ID of our modeless dialog */ 
2 /* second item in DITL is editText field •/ 
3 /* third item in DITL is 'Revert• button •/ 

idef ine rCustomSizeApply 4 /* fourth item in DITL is 'Apply' button */ 

extern DialogPtr gCustomFontsizeDlgPtr; 

/* The following routine creates the Custom Font Size modeless dialog. */ 
void ShowFontSize(WindowPtr wp) 
{ 

short 
Randle 

itemsType; 
itemsRndl; 

Rect itemsRect; 
winPrivateRndl myPrivRndl; 

if (gCustomFontSizeDlgPtr nil) { 
gCustomFontSizeDlgPtr = GetNewDialog(rFontSize, nil, (WindowPtr) -1); 

/* disable Revert button - enabled when Apply is pressed •/ 
GetDitem(gCustomFontsizeDlgPtr, rcustomSizeRevert, &itemsType, 

&itemsRndl, &itemsRect); 
RiliteControl( (ControlRandle) itemsRndl, 255); /* 255 =disable */ 

/* select all text in data entry field */ 
SelIText(gCustomFontSizeDlgPtr, rcustomSizeNwn, O, 32767); 

myPrivRndl = (winPrivateRndl)GetWRefCon( wp ); /* get stashed info*/ 

/* activate the TextEdit field we're working with */ 
TEActivate((**myPrivRndl).winTERndl); 

/* buffer currently selected text */ 
(**myPrivRndl).winscrapRndl = GetStylScrap((**myPrivRndl).winTERndl); 

/* buffer selection range as well */ 
(**myPrivRndl).winSelStart = (**{{**myPrivHndl).winTERndl)).selStart; 
(**myPrivHndl).winSelEnd = (**{{**myPrivHndl).winTEHndl)).selEnd; 

/* deactivate the TextEdit field we're working with */ 
TEDeactivate((**myPrivHndl).winTEHndl); 

else { /* already exists, so bring it to the front */ 
SelectWindow( gCustomFontSizeDlgPtr ); 
/* Check flag to see if text has changed since Apply button was */ 
/* last pressed. If it has changed, disable Revert button. */ 

/* The following routine handles item hits in modeless dialog. •/ 
void DoRandleRit(short hititemsNwn) 



272 lilll- Chapter 7 Font Manager 

Listing 7-2. A routine to Implement the modeless dialog shown in 
Figure 7-4 for changing type sizes (continued) 

short itemsType; 
itemsHndl; 
itemsRect; 
itemsText; 
applysize; 
myStyle; 
myPrivBndl; 

Handle 
Rect 
Str255 
long 
Textstyle 
winPrivateHndl 
WindowPtr 
WindowPtr 

wpus; /* window ptr to modeless dialog •/ 
wpThem; /* window ptr to window behind modeless dialog •/ 

/* We need a pointer to the window immediately behind this dialog, so •/ 
/* call FrontWindow to get a pointer to ourselves, then peek into the •/ 
/* WindowRecord and grab the pointer to the next window in the list. •/ 
wpUs = FrontWindow(); 
wpThem = (WindowPtrj ((*((WindowPeek) wpUs)).nextWindow); 

switch (hititemsNum) 
case rCustomSizeNum: /* key was pressed •/ 

PrintString((Conststr255Param) •\pTim Swihart was here"); 
break; 

case rCustomSizeApply: /* APPLY button was clicked •/ 
/* get stashed info •/ 
myPrivHndl = (winPrivateHndl)GetWRefCon( wpThem ); 

/* extract requested font size •/ 
GetDitem(wpUs, rcustomSizeNum, &itemsType, &itemsHndl, 

&itemsRect); 

/* get text out of data entry field •/ 
GetIText(itemsHndl, itemsText); 
StringToNum( (ConstStr255Param) itemsText, &applySize ); 
mystyle.tssize = applySize; /* put the number in new font's size •/ 

I* activate TE field before setting new font size •/ 
TEActivate((**myPrivBndl).winTEBndl); 

/* buffer currently selected text */ 
(**myPrivBndl).winScrapHndl = 

GetStylscrap((**myPrivBndl).winTEBndl); 

/* buffer selection range as well */ 
(**myPrivBndl).winSelStart = 

(**((**myPrivBndl).winTEBndl)).selStart; 
(**myPrivBndl).winSelEnd = (**((**myPrivBndl).winTEBndl)).selEnd; 

/* set new size for the selected text */ 
TESetstyle(doSize, &myStyle, true, (**myPrivBndl).winTEBndl); 

/* deactivate TE field now that we're done •/ 
TEDeactivate((**myPrivBndl).winTEBndl); 



~ Implementing Custom Size Control 273 

Listing 7-2. A routine to implement the modeless dialog shown In 
Figure 7-4 for changing type sizes (continued) 

} 

/* enable the Revert button - disabled by typing & reverting */ 
GetDitem(wpUs, rCustomsizeRevert, &itemsType, &itemsHndl, 

&itemsRect); 
HiliteControl((ControlHandle) itemsHndl, O); /* o =enable*/ 
break; 

case rcustomsizeRevert:/* Revert button was clicked •/ 
/* get stashed info */ 
myPrivHndl = (winPrivateHndl)GetWRefCon( wpThem ); 

/* activate TE field before setting new font size */ 
TEActivate((**myPrivHndl).winTEHndl); 

/* restore original style */ 
SetStylScrap((**myPrivHndl).winSelStart, (**myPrivHndl).winSelEnd, 

(**myPrivHndl).winScrapHndl, true, 
(**myPrivHndl).winTEHndl); 

/* deactivate TE field now that we're done */ 
TEDeactivate((**myPrivHndl).winTEHndl); 

/* disable Revert button - enabled when Apply is pressed */ 
GetDitem(wpUs, rCustomsizeRevert, &itemsType, &itemsHndl, 

&itemsRect); 
Hilitecontrol( (ControlHandle) itemsHndl, 255); /* 255 =inactive*/ 
break; 

~ User Interface Tip 

TextEdit supports outline highlighting for inactive TextEdit records. Out
line highlighting surrounds the selected text with an open rectangle when 
the window containing the TextEdit record is inactive. Few applications 
make use of this feature-they provide no inactive highlighting at all. 
When using a modeless dialog which affects the text selection in another 
(inactive) window, you should use outline highlighting to remind the 
user what text will be affected by the Apply button. 

You can turn on outline highlighting using the TEFeat:ureFlag routine. 
The function prototype for TEFeat:ureFlag is as follows: 

pascal short TEFeat:ureFlag( short feature, 
short action, TEHandle hTE ); 



27 4 ~ Chapter 7 Font Manager 

Note Ill> 

Here are the meanings of the parameters to TEFeatureFlag: 

feature-Specifies which features should be turned on, turned off, or 
have their current settings returned to the caller. Values for this param
eter are the following: 

#define teFTextBuffering 1 /*text buffering-speeds TE up*/ 
#define teFOutlineHilite 2 /* outline highlighting */ 
#define teFinlineinput 3 /* inline input features */ 
#define teFUseTextServices 4 /* use inline input services */ 

action-Tells TextEdit whether to turn on the requested feature, turn 
off the requested feature, or return its value. Values for this parameter 
are the following: 

#define TEBitSet 1 
#define TEBitClear 0 
#define TEBitTest -1 

/* turn feature on */ 
/* turn feature off */ 
/* return current setting */ 

hTE-The handle to the TextEdit record being affected by this routine. 

Specify teFOutlineHilite for feature and TEBitSet for action to 
turn outline highlighting on for the TextEdit record given by hTE. 



..,. Special Characters 275 

llJi> Special Characters 
Bit-mapped fonts are designed to have a fixed maximum height for a 
given point size, a height that is sufficient to accommodate the placement 
of accent marks (like the first 'e' in 'Bezier') above the tallest characters. 
TrueType fonts, however, do not share this feature. TrueType fonts are 
designed to be closer to the original (non-computer-based) typeface's 
design and certain glyphs within some typefaces extend further above the 
normal top (ascent line) or below the normal bottom (descent line) for 
those typefaces. Examples of special characters like this include the inte
gral sign used in calculus or a capital letter that has an accent mark 
above it. 

Most applications set the spacing between lines of text to the sum of 
the ascent, descent, and leading fields in the Fontinfo record. Since a 
TrueType font may have glyphs that extend beyond the ascent or descent 
line, collisions will occur with an adjacent line of text unless precautions 
are taken. 

The Font Manager's default strategy for avoiding such a collision is to 
automatically scale oversized TrueType characters to be no higher than 
the ascent line and no lower than the descent line. Your System 7 applica
tion can prevent this scaling, thus preserving the full size of the character, 
by calling SetPreserveGlyph. The function prototype for 
SetPreserveGlyph is the following: 

pascal void SetPreserveGlypb( Boolean preserveGlyph ); 

The Boolean passed to setPreserveGlyph tells the Font Manager 
whether it should scale oversized characters (false) or preserve their sizes 
(true). 

When saving a document to disk, it's good practice to save the state of 
the preserveGlyph flag in the resource fork of the document. If you do 
this, the flag can be retrieved the next time the document is loaded and 
used to set the proper state of preserveGlyph. 

If you don't know the current setting of preserveGlyph, you can call 
GetPreserveGlyph. The function prototype for GetPreserveGlypb is the 
following: 

pascal Boolean GetPreserveGlypb( void ); 

GetPreserveGlyph returns false if oversized characters are to be scaled; 
otherwise, it returns true. 



276 ~ Chapter 7 Font Manager 

If you choose not to scale oversized characters, take care to 
ensure that they do not interfere with the text above or below. The 
easiest way to avoid interference is to increase the spacing between 
the lines. You can use the outlineMetrics routine, described in 
Inside Macintosh, Volume VI, to quickly determine the actual height 
of a line to see if you need to increase the line spacing beyond the 
value given by ascent+descent+leadin9 . 

..,. Summary 
In this chapter you learned about the benefits of TrueType fonts and saw 
how easy it is to exploit, not just support, the TrueType font technology. 
You also saw how easy it is to write an application that works properly 
with both TrueType and bit-mapped fonts. 

In Chapter 8 we continue our exploration of System 7 by showing how 
to use the Help Manager to provide online help for your application. You 
will learn the different aspects of balloon help, aided by numerous source 
code samples. 



8 _.. Balloon Help 

Over the years, Macintosh applications have grown increasingly sophisti
cated and complex. As a result, the need to include on-line user assistance 
in applications has grown. Today, the best applications frequently include 
Help ... menu items and on-line tutorials. 

System 7 simplifies the user support issue by providing an easy, yet 
effective, means of on-screen help for practically every aspect of an 
application. Called balloon help, this system lets users turn help on and off 
via a Help menu on the right side of the menu bar, next to the Applica
tion menu (see Figure 8-1). 

,. s File Edit 
, 

Show Balloons 

The Balloon Help menu _j 

Figure 8-1. A typical menu bar showing the location of the Help menu 

When balloon help is on, System 7's Help Manager draws comic-book
style balloons for various items of interest on the screen as the user passes 
the mouse pointer over them. The balloons contain information that tells 
the user more about the item and how to use it. Balloons cover small 

277 



278 _., Chapter 8 Balloon Help 

Note 11> 

portions of the screen until the user moves the mouse away from an 
item's hot area, but do not otherwise interfere with normal operation of 
the application. 

This chapter covers the following topics: 

• what help balloons look like 
• providing help balloons for menu items 
• adding items to the standard Help menu 
• providing help balloons for dialog and alert boxes 
• providing help balloons for windows and their contents 

Ill> What Help Balloons Look Like 
Balloon help is available for menu titles and items, dialogs and alerts, 
window frames and contents, and the application's icon itself. Balloon 
help for application icons that the Finder displays is covered in Chapter 9. 
Figure 8-2 shows a typical desktop with various types of balloons 
superimposed on it-on an actual desktop, only one balloon appears 
at a time. 



~ What Help Balloons Look Like 279 

s File 

!!U 
10 items 

[iJ 
Skeleton.'11 

Edit !HPW Lnbt~l Special 

Bone yard E!l~ 
12 .1 MB in disk 6.4 MB av 

LJ ~ 
0 

Skeleton Skeleton .h 

Help menu 

Use this menu to get 
information that helps 
you use your computer. 

~ c:::J 

Skeleton.'11.r 

~ 
Skeleton.c 

Do ldle .c 

Use the source code 
for this application 
to learn more about 
programming for 
System 7.0. 

Tim's Skeleton 

Foat Wuth 

Trash 

To discard an item, eject a disk , or 
remove a hard disk or shared disk 
icon from your desktop, drag it to the 
Trash. To permanently remove items 
in the Tr ash, choose Empty Tr ash 
from the Special menu . 

Trash 

Figure 8-2. Desktop showing many different types of balloons 

Most techniques for adding balloon help to applications do not require 
you to add any code to your application. They generally involve only 
adding sets of resources to the application. The techniques discussed in 
this chapter are summarized in Table 8-1. 

Table 8- l . Summary of the techniques used for adding help 
balloons to an application 

For adding help balloons to ... 

Menus and menu items 

Dialog and alert boxes 

Use these techniques .... 

' hmn u ' resource 

'DITL' Helpitem + 'hdlg' resource 

or 

'DITL ' Helpitem + 'hrct' resource 

or 

'hwin' + ' hdlg' resources 

or 

'hwin' + 'hrct' resources 



280 ~ Chapter 8 Balloon Help 

Table 8-1. Summary of the techniques used for adding help 
balloons to an application (continued) 

For adding help balloons to... Use these techniques ... 

Windows (with static items) 'hwin' + 'hrct' resources 
Windows (with movable items) use BMShowBalloon routine 
Application icon in Finder 'hfdr' resource 

..,, Balloon Help Resources 
Most of the resource types that support balloon help include a header 
that contains the following four fields: 

• the version number of the Help Manager (HelpMgrVersion) 

• an options field 
• a pointer to a balloon definition procedure 

• a balloon variation code 

The Rez template file that defines the formats of all the Help Manager 
resources is BalloonTypes.r. Read it carefully to learn about resource 
formats and the symbolic names you can use for values in resource fields 
(such as HelpMgrVersion for the version number). 

The number you store in the options field of a header will vary from 
one type of help resource to another and will be discussed throughout 
this chapter as the need arises. When in doubt, set this field to 
hmDefaultOptions; this tells the Help Manager to use its default values 
for all options. 

If you want to override the shape of the standard balloons, pass the 
resource ID of your own balloon definition procedure in the third field 
(balloon definition procedures are 'WDEF' resources). In most circum
stances, the standard balloon definition function is adequate, so put 0 in 
this field. 

The Help Manager has eight built-in balloon shapes, each with the tip 
in a different location, which you can select using the balloon variation 
codes shown in Figure 8-3. This provides a great deal of versatility to the 
Help Manager in its quest to make the entire balloon fit on the screen. 
The Help Manager checks to see if the balloon with the variation code 
you specify fits on the screen-if it doesn't, the Help Manager uses a 
more appropriate variation code instead. 



Balloon Variant 
0 

Balloon Variant 
1 

Balloon Variant 
2 

Balloon Variant 
3 

IJJi> Balloon Help Resources 281 

Balloon Variant 
4 

Balloon Variant 
5 

Balloon Variant 
6 

Balloon Variant 
7 

Figure 8-3. The eight standard balloon variations and their numeric 
codes 

Balloons for menus, windows, and dialogs can be created using a 
general resource development tool such as Rez or using Apple's 
BalloonWriter program. BalloonWriter is essentially a "balloon proces
sor'' that simplifies the task of connecting help messages to the more 
common instances of balloons. BalloonWriter cannot currently define a 



282 ~ Chapter 8 Balloon Help 

help balloon for the application icon itself-for that you must use Rez, as 
you will see in Chapter 9. 

~ Balloon Help for Menus and Menu Items 
Balloon help for each menu and its menu items is provided by a single 
resource of type 'hmnu'. This resource specifies a different message for 
each of several states for a menu title and for each of the items it contains. 
The three states of a menu title are as follows: 

• enabled 
• disabled (dimmed) 

• modal dialog is present, forcing menu title to be disabled 

The five states of a menu item are the following: 

• enabled, but not checked or marked 

• disabled (dimmed) 

• marked by a check mark and enabled 

• marked by a character other than a check mark and enabled 

• modal dialog is present, forcing the menu item to be disabled 

The resource ID of an ' hmnu ' resource should be the same as the menu 
with which it is associated. An 'hmnu' for a menu with a resource ID of 
133, for example, would use 133 as its own resource ID. 

The 'hmnu' resource begins with the standard help header, messages 
for any item that lacks its own balloon message, messages for each state 
of the menu title, and messages for each state of each item. (The sets of 
messages for the menu items appear in the same order as the menu items 
appear in the menu.) The message for a menu item that is disabled due to 
the presence of a modal dialog is actually part of the set of messages for a 
menu title. This means each message section contains four messages. 

Balloon messages can be specified in one of five different ways in the 
Rez source for the 'hmnu' definition (or in any other Help Manager 
resource): 

• as an imbedded Pascal string-Use the HMStringitem keyword. 
• as a picture ('PICT' resource)-Use the HMP ictitem keyword. 

• as a Pascal string (' STR ' resource)-Use the HMSTRResitem keyword. 



.,,_ Balloon Help for Menus and Menu Items 283 

• as a Pascal string and index (' s TR# ' resource)-Use the 
HMStringResitem keyword. 

• as styled text (a 'TEXT' and a 'styl' resource)-Use the 
HMTEResitem keyword. 

It is easiest to put embedded Pascal strings in an 'hmnu' resource since 
you only need to define a single long resource instead of several smaller 
resources. Localization may be a bit more difficult, however, since strings 
will be imbedded in the 'hmnu' resource itself. 

Listing 8-1 shows the Rez source used to create menu help balloons for 
the Special menu in the Skeleton application. Figure 8-4 shows Skeleton's 
Special menu with some of its possible help balloons. 

Listing 8-1 . Rez source for Skeleton's balloon help messages for the 
Special menu 

II Balloon help for the Special menu · 
II resource ID must match that of the 'Special' menu 
resource 'hmnu' (mspecial, "Special menu's Balloons•, purgeable) { 

II Standard header block comes first 

} ; 

HelpMgrVersion, 
hmDefaultOptions, // use defaults 
o, II use std balloon def function 
O, II use balloon position 0 
/I Now we do the messages for items without messages 
HMSkipitem { // no items will be missing, so skip this section 

}, 
{ 

II Now we do the messages for the menu title 
HMStringitem { // use embedded pstrings 

•special Menu\n\nUse the item in this " 
"menu to call your test routine.",// 'enabled' message 
•special Menu\n\nUse the item in this " 
•menu to call your test routine.\n\n• 
•unavailable right now.•, II 'disabled' message 
"This menu is unavailable until you " 
"dismiss the dialog/alert.", // 'dimmed title' due to dialog 
"This item is unavailable until you " 
"dismiss the dialog/alert.•, II 'dimmed item' due to dialog 
}, 

II Now we do the first menu item's messages 
HMStringitem { // use embedded pstrings 

•calls your test routine.", //enabled message 
"Not available until a window " 
"has been opened.", 

} , 
II Additional items would go here ••. 
II No more items, so wrap it up. 

II disabled message 
II item is never checked 
II item is never marked 



284 IJJl. Chapter 8 Balloon Help 

Note.,,. 

Special 

Special Menu 

Use the item In this 
menu to ca 11 your 
test routine. 

Calls your 
test routine. 

Not available 
until a window 
has been opened. 

Figure 8-4. Skeleton's Special menu and some of its balloons 

Listing 8-2 shows how to define help balloon messages using each of 
the other techniques the Help Manager understands. You can use any of 
these techniques instead of the HMStrinqitem technique used in the Rez 
source in Listing 8-1. 

Listing 8-2. Different ways to implement balloon messages 

II Use 'STR#' resource 
II Each entry is a 'STR#' resource ID and an index 
II into that 'STR#' resource. 
HMStrinqResitem { // use "0,0" for no messaqe 

}, 

mSpecial, 1, II enabled messaqe 
mSpecial, 2, II disabled messaqe 
O, O, II item is never checked 
O, O, II item is never marked 



.,_ Dynamic Menu Items 285 

Listing 8-2. Different ways to implement balloon messages 
(continued) 

II Use 'STR ' resource 
II Each entry is 
HMSTRResitem { 

2362, 
2363, 
o, 
0, 

}, 

the ID of a 'STR ' resource 
II use "0" for no message 
II enabled message 
II disabled message 
II items is never checked 
II items is never marked 

II Use 'PICT' resource 
II Each entry is the ID of a 'PICT' resource 
HMPictitem { II use "0" for no message 

2362, II enabled message 
2363, II disabled message 
O, II items is never checked 
O, II items is never marked 

} , 

II Use styled text ('TEXT' + 'styl' resource) 
II Each entry is the ID of a 'TEXT' and 'styl' resource 
II 'TEXT' & 'styl' resource IDs MUST be identical 
II for each item 
HMTEResitem { II use "0" for no message 

2362, 
2363, 
O, 
O, 

}, 

II 
II 
II 
II 

enabled message 
disabled message 
items is never checked 
items is never marked 

.,. Dynamic Menu Items 
It is quite common for a menu item to change its name when selected-a 
Show Palette item could be renamed Hide Palette after it is selected and 
vice versa. As explained earlier, sets of balloon messages for menu items 
are specified in an 'hmnu' resource in the order the items appear in the 
menu, with each item having one message for each of its four possible 
states (enabled, disabled, checked, and marked). However, none of these 



286 IJi> Chapter 8 Balloon Help 

states relate to the situation where an item changes its name, even though 
a new set of messages is clearly needed for such an item. 

Instead of including a single HMStrin9Item entry for this kind of menu 
item, include a HMCompareitem entry for each name the item may assume. 
Each HMCompareitem includes one of the item names and an HMStrin9Item 

defining the set of four help messages to be used when that item name is 
active. 

Listing 8-3 shows the Rez source for a fictitious menu whose second 
item's name toggles between two values. 

Listing 8-3. Rez source for a menu with a dynamic item 

#define SystemSevenOrLaterl 
#include "Types.r" 
#include "SysTypes.r" 
#include "BalloonTypes.r" 
#define mFictitious 132 I* three items. second items has two 

possible names *I 

II Balloon help for the 'Fictitious' menu 
resource 'hmnu' (mFictitious, uFictitious help", purgeable) { 

II Standard header block comes first 
HelpMgrVersion, 
hmDefaultOptions, II use defaults 
o, II use std balloon def function 
3, II use balloon position 3 
II Now we do the messages for items without messages 
HMSkipitem { II no missing items, so skip this section 
}, 
{ 

II Now we do the messages for the menu title 
HMStringitem { II use embedded pstrings 

"Fictitious Menu\n\nUse the items in this " 
"menu to do various things.", II 'enabled' message 
uFictitious Menu\n\nUse the items in this u 

umenu to do various things.\n\n" 
"Unavailable right now.", II 'disabled' message 
"This menu is unavailable until you u 

"dismiss the dialoglalert.", 
uThis item is unavailable until you " 
udismiss the dialoglalert.", 
}, 

II Now we do the first menu item's messages 
HMStringitem { II use embedded pstrings 

"Sends information to the Debug Window", 11 enabled 
usends information to the Debug Window" 
"\n\nNot available until the Debug u 

"Window is visible.", II disabled 



~ Adding Items to the Help Menu 287 

Listing 8-3. Rez source for a menu with a dynamic item 
(continued) 

} ; 

"" I 

} I 

II item is never checked 
II item is never marked 

II Now we do the second menu item's messages 
HMCompareitem { I* second item, first name *I 

"Show Debug Window", I* the i tern's name *I 

} I 

HMStringitem { II use embedded pstrings 

} I 

"Makes the Debug window appear.", II enabled message 
"", 11 item is never disabled 

II item is never checked 
II item is never marked 

HMCompareitem { I* second item, second name *I 
"Hide Debug Window", I* the i tern's name *I 
HMStringitem { II use embedded pstrings 

"Makes the Debug window disappear.", II enabled 
II item is never disabled 
II item is never checked 
II item is never marked 

} I 

}, 
II Now we do the third menu item's messages 
HMStringitem { II use embedded pstrings 

} 

"Drops into MacsBug. ", I I enabled message 
"Drops into MacsBug.\n\nNot available" 
"since MacsBug is not installed.", II disabled message 

II item is never checked 
II item is never marked 

} I 

~ Adding Items to the Help Menu 
With System 7's introduction of a Help menu that's always available, you 
no longer need an application to add its own help menu items to the 
Apple menu or to include a Help button in its About box. Instead, your 
application should append its help menu items to the Help menu, the 
standard place System 7 users will look for help. 

Items appended to the system's Help menu are available only to the 
application that appended them, since every application has its own copy 
of the Help menu. This prevents overcrowding of the Help menu when 



288 .,.. Chapter 8 Balloon Help 

Wamlng~ 

many applications are running at once. Still, added items should include 
the name of the application to emphasize that they are specific to a 
particular application and are not system help items. 

The proper technique is to call the BMGetBelpMenuBandle routine to 
obtain a handle to the Help menu that is specific to your application. 
Then use the handle returned by BMGetBelpMenuBandle as an input to 
the standard AppendMenu routine in order to add your help items to the 
Help menu. The function prototype for BMGetBelpMenuBandle is as 
follows: 

pascal OSErr BMGetBelpMenuBandle( MenuHandle *mh ); 

When a user selects an application-specific item from the Help menu, 
the menu item number is returned in the low word and the menu ID is 
returned in the high word of the result returned by MenuSelect and 
MenuKey. The Help menu's ID is represented by the constant 
kHMHelpMenuID in the interface file Balloons.h. 

Care should be taken to determine which item in the Help menu 
belongs to the application. At present, System 7 uses the first four positions 
(two of which are dividing lines) for its own needs, but that number 
could climb in the future, so don't assume the item ID for your custom 
help item will be 5. Instead, call countMitems to find the ID of the last 
item in the menu, which is the help item you added. 

Naturally, you should also provide help balloons for the items you 
append to the Help menu. To do this, you use a slightly different 'hmnu' 
resource, with an ID of kHMHelpMenuID, to attach balloons to the 
appended items. The menu title section of this 'hmnu' resource is omit
ted; you provide only the header, missing items, and menu items sections. 
The Help Manager provides messages of its own for the standard items in 
the Help menu. 



.,.. Adding Items to the Help Menu 289 

Listing 8-4 shows the source code for adding two items to the Help 
menu and Listing 8-5 shows how to handle the selection of those items. 
Listing 8-6 shows the Rez source for attaching help messages to the two 
extra items in the Help menu. 

Listing 8-4. Source code for adding items to the Help menu 

/* The following routine is responsible for appending */ 
/* application-specific help items to the 'Help' menu.*/ 
I* It's called from "Initialize()", just before*/ 
/* "DrawMenuBar()" is called.*/ 
void DoAddHMitems(void) 
{ 

} 

MenuHandle 
OSErr 

myHelpMenuHndl; 
myErr; 

myErr = HMGetHelpMenuHandle(&myHelpMenuHndl); 
if ((lmyErr) && (myHelpMenuHndl 1= nil)) { 

AppendMenu(myHelpMenuHndl, 

} 

(ConstStr255Param) "\pSkeleton Tutorial"); 
AppendMenu(myHelpMenuHndl, 

(ConstStr255Param) "\pPizza Help"); 

Listing 8-5. Source code for detecting hits on the appended Items 

/*add the following to the variables in 'DoMenuCommand()' */ 
short 
short 
MenuHandle 
OSErr 

tutHelpID; 
pizHelpID; 

myHelpMenuHndl; 
myErr; 

/*add to the end of 'switch' statement in 'DoMenuCommand()' */ 
case kHMHelpMenuID: 

myErr = HMGetHelpMenuHandle(&myHelpMenuHndl); 
if ((lmyErr) && (myHelpMenuHndl 1= nil)) { 

pizHelpID = CountMitems(myHelpMenuHndl); 
tutHelpID = pizHelpID - 1; 
if ( menuitem == tutHelpID) { 

} 

break; 

/* put code here to provide quick tutorial on app */ 
} 

else { 
if (menuitem == pizHelpID) { 

/* put code here to provide list of pizza places */ 
} 



290 ..,. Chapter 8 Balloon Help 

Listing 8-6. Rez source for help messages for items added to the 
Help menu 

resource 'hmnu• (kHMHelpMenuID, "Help Menu balloons", purgeable) { 
II Standard header block comes first 

}; 

HelpMgrVersion, 
hmDefaultOptions, II use defaults 
o, II use std balloon def function 
O, II use balloon position 0 
II Now we do the messages for items without messages 
HMSkipitem { II no missing items 

}, 
{ 
II Now we do the first appended item's messages 
HMStringitem { 

"Provides a quick tutorial for this application.", 
"", II never disabled by app 

"" I 
} , 

II never checked by app 
II never marked by app 

II Now we do the second appended item's messages 
HMStringitem { 

} 

"Provides a list of the author's favorite pizza vendors.", 

.... , 
}, 

II never disabled by app 
II never checked by app 
II never marked by app 

~ Balloon Help for Dialogs and Alerts 
The Help menu is always enabled, even if a modal dialog or alert box is 
on the screen. Users puzzled by items in a dialog or alert box can use the 
standard help system to learn more before selecting an option from the 
dialog. Generally, each item in a dialog or alert should have its own 
balloon help message, but some items, such as a set of radio buttons, can 
be grouped together for clarity so that they all share the same message. 

System 7's Help Manager provides two basic methods for applications 
to add balloon help to dialog and alert boxes. One method involves the 
use of 'hwin' resources and may require changes to the application's 
source code. This approach will be covered in the "Using 'hwin' Resources 
with Dialogs and Alerts" section of this chapter. 

The other method for adding balloon help to a dialog or alert box is to 
include a Helpitem at the end of the dialog's 'DITL' resource that refers to 
either a dialog help resource (' hdlg ') or a help rectangle resource (' hrct '). 



IJll> Balloon Help for Dialogs and Alerts 291 

IJll> Using 'hdlg' Resources 

A dialog help resource contains a slightly modified balloon help header, 
messages to be displayed for items lacking a specific message, and mes
sages for each item in the dialog's 'DITL' list. The Help Manager auto
matically displays and removes the help balloons for each item in the 
'DITL' based on the information it finds in the 'hdlg' resource. 

The help entries in an 'hdlg' resource can be specified using the same 
Rez keywords used for an 'hmnu' resource: HMStringitem, HMPict:Item, 
HMStringResitem, HMTEResitem, and HMSTRResitem. The structures of 
these 'hdlg' entries are different, however, in that they begin with a 
balloon tip point and a hot rectangle. 

The tip point mdicates where the tip of the balloon is to appear and is 
expressed relative to the top left corner of the rectangle of the 'DITL' 
item to which it corresponds. Specify a point of {O, O} to select the default 
tip location (the middle right edge of the item's rectangle). 

The hot rectangle, also expressed relative to the 'DITL' item rectangle, 
is the area of the screen for which you want to provide balloon help; 
when the mouse cursor enters this area, and balloon help is on, the help 
balloon appears. If you specify the default rectangle of {O, 0, 0, O}, the 
Help Manager uses the rectangle of the 'DITL' item to which the 'hdlg' 
entry corresponds. 

The help header for an 'hdlg' resource has an extra field inserted 
between the standard help header's first and second fields. This extra 
field tells the Help Manager which item is the first one for which help 
balloons are defined. By arranging dialog items carefully and adjusting 
the starting number in the 'hdlg' header, minor items that need no bal
loons can be easily skipped. Just put the items that don't need balloons 
first in the 'DITL' resource and set the "first item to get a balloon" field 
of the • hdlg' resource appropriately. Items are numbered starting from 
zero, so if you want to skip the first two items in a 'DITL', for example, put 
a 2 in this field. 

There are two other ways to prevent a balloon message from appearing 
for an individual dialog item. The first is to define all 'DITL' items that 
should not have messages at the end of the 'DITL' resource and then 
provide balloon messages in the 'hdlg' resource only for the items that 
need them (that is, provide fewer messages than there are items). Since 
messages within the 'hdlg' resource match up with consecutive 'DITL' 
items, the last items will have no messages-if no message is available, no 
balloon is displayed. 

The second method is to use the constant HMSkipitem instead of 
HMStringitem in the 'hdlg' resource for the items that are to have no 



292 ~ Chapter 8 Balloon Help 

balloon messages-this way, individual items can be skipped without 
juggling them to the beginning or end of the 'DITL' resource. 

For the Help Manager to know whether a dialog has help balloons 
associated with it, you must add a hidden item, known as a Helpitem, to 
the dialog's 'DITL' resource. The presence of the help item tells the Help 
Manager to scan the dialog's 'DI TL ' resource and match the messages in 
an 'hdlg' resource with the items in the 'DITL'. 

The last field of the help item's resource definition determines whether 
an 'hdlg' or an 'hrct' resource (explained later in this section) is used. 
Specify HMScanhdlg to use an 'hdlg' resource or HMScanhrct to use an 
'hrct' resource. The ID of the matching 'hdlg 'or 'hrct' resource is 
given just after the HMScanhdlg keyword in the Rez source for the help 
item's definition. 

Listing 8-7 shows the Rez source for the help balloon item (Helpitem) 
that should be added, just like any other item, to the 'DITL' resource for 
the About box. The Skeleton application's About box is an alert and 
Listing 8-8 shows the Rez source for the 'hdlg' resource that provides the 
balloons for it. If you forget to include the Help Item in the 'DITL ', the 
'hdlg' resource is ignored and no balloons will appear for the dialog! 

Figure 8-5 shows Skeleton's About box along with all of its balloons. 

Listing 8-7. Rez source for the About box's help item 

'hdlg' 
II the rect for the help item 
II Helpitem defined in Types.r 
II disable it 

II Use this one for 
{0, 0, 0, 0}, 
Helpitem { 

disabled, 
HMScanhdlg 
} I 

{rAboutBox} II use 'hdlg', ID= rAboutBox 

II Use this one for 'hrct' 
{O, 0, 0, 0}, 
Helpitem { 

disabled, 
HMScanhrct {rAboutBox} II use 'hrct', ID= rAboutBox 

} I 

Listing 8-8. Rez source for the About box's 'hdlg' resource 

II Balloon help for the About box (which is an alert) 
resource 'hdlg' (rAboutBox, "About box's help", purgeable) { 

II Standard header block comes first 
HelpMgrVersion, 
o, 
hmSaveBitsNoWindow, 
0, 

II provide help starting with first item 
II makes alert cleaner 
II use std balloon def function 



IJJJi- Balloon Help for Dialogs and Alerts 293 

Listing 8-8. Rez source for the About box's 'hdlg' resource 
•(continued) 

O, II use balloon position O 

}; 

II Now we do the messages for items without messages 
HMSkipitem { II all items are given their own message 

}, 

II Now we do the messages for the items 
{ 

} 

II the OK button comes first in our DITL 
HMStringitem { II use embedded pstrings 

} , 

{0,0}, II tip at default location 
{O,o,o,o}, II use item's rect 
"Click this button to " II the enabled OK button 
"hide the About box.", 
"", II OK btn never disabled 
"", II OK btn never has check mark 
"", II or any other marking 

II the application 
HMStringitem { 

name and version number comes 
II use embedded pstrings 

second 

}, 

{5,80}, 
{0,0,0,0}, 

II put tip on top right 
II use item's rect 

"", II static text never enabled 
"Shows the name of this " II msg for dimmed item 
"application and its version number.", 
"", II never has a check 

II or any other marking 

II the text of our 
HMStringitem { 

copyright message comes third 
II use embedded pstrings 

} 

{5,115}, 
{0,0,0,0}, 

II put tip along top right 
II use item's rect 

"", II static text never enabled 
"Explains who wrote this application " II msg for this 
"and when it was copyrighted.", II dimmed item 
"", II never has a check 

II or any other marking 



294 Ill> Chapter 8 Balloon Help 

Skeleton 1.0 
Shows the name of 

© 1 991 Gary Lit this application and 
its version number. 

Skeleton 1.0 

© 1991 Gary Little 

Skeleton 1.0 

© 1991 Gary Little 

OK 

Explains who wrote 
this application and 
when it was 
copy righted. 

ll OK .J..r 

Figure 8-5. Skeleton's About box and its balloons 

Click this button 
to hide the About 
box. 

The bold outline surrounding the default button in an alert or dialog 
box is not redrawn properly when a help balloon covering it disappears. 
To avoid this problem, use the pre-defined constant hmSaveBitsNoWindow 
in the options field of the balloon header. This option causes the Help 
Manager to buffer the pixels on the screen prior to drawing the balloon 
and to replace those pixels after the balloon is removed. 



Warning..,. 

~ Balloon Help for Dialogs and Alerts 295 

~ Using 'hrct' Resources 

An 'hrct' resource is a series of rectangles and messages associated 
with those rectangles. You can use it, instead of an 'hdlg' resource, to 
provide balloon messages for items within dialogs and alerts. 

When told to use an 'hrct' resource, the Help Manager uses the rect
angles specified within the 'hrct' resource to determine whether the 
mouse cursor is in a hot area-item rectangles in a 'DITL' resource are not 
used as they usually are for 'hdlg' resources. This means you can easily 
arrange for a group of related items to share the same help balloon by 
providing one rectangle that surrounds all the items. This strategy makes 
sense where a single message is clearer than individual messages for each 
item. 

The 'hrct' format is somewhat simpler than 'hdlg' since it provides 
only one message for each item, regardless of whether that item is enabled 
or disabled. The 'hdlg' resource, on the other hand, permits four differ
ent messages (enabled, disabled, checked, and marked) for each item. 
Another difference is that the 'hrct' resource does not include messages 
for missing items since the resource deals with rectangles, not items. 

Specifying where the balloon's tip should be placed is handled differ
ently in an 'hrct' resource than it is in an 'hdlg' resource. Balloon tip 
locations in an 'hrct' resource are relative to the dialog's frame, with 
the top left corner of the dialog being considered 0,0. Tip locations in an 
'hdlg' resource are relative to the item's rectangle given in the 'DITL' 
resource, with the top left corner of the item's rectangle being considered 
0,0. 

Listing 8-9 shows the Rez source for the ' hrct ' resource you could use 
to accomplish the same task as the 'hdlg' resource in Listing 8-8. 



296 IJll. Chapter 8 Balloon Help 

Listing 8-9. Rez source for the About box's 'hrct' resource 

II Balloon help for the About box - using hrct's 
resource 'hrct' (rAboutBox, "About box's help", purgeable) { 

}; 

HelpMgrVersion, 
hmSaveBitsNoWindow, II makes Alert look cleaner 
o, 
o, 

} 

{ 

II use std balloon def function 
II use balloon position O 

II the OK button comes first in our 'DITL' 
HMStringitem { II use embedded pstrings 

{98,186}, II tip on left side 
{88, 180, 108, 260}, II must provide the rect 
"Click this button to u 

"hide the About box.", 
}, 
II the application name and version number comes second 
HMStringitem { II use embedded pstrings 

{13,6}, II place balloon tip along left side 
{8, 8, 24, 214}, II must provide item's rect 
"Shows the name of this application u 

"and its version number.", 
}, 
II the text of our copyright message comes third 
HMStringitem { II use embedded pstrings 

{37,6}, II place balloon tip along left side 
{32, 8, 48, 237}, II rect around the collar 
"Explains who wrote this application u 

"and when it was copyrighted.", 
} 

llll> Testing Help Balloons 

Testing your attempts to provide balloon help for dialogs and alerts can 
be simplified considerably by the BMSetBalloons routine that lets you 
force balloons to be shown or hidden. BMSetBalloons takes a Boolean as 
its only input-true turns balloon help on, false turns it off. 

The function prototype for BMSetBalloons is the following: 

pascal OSErr BMSetBalloons( Boolean flag ); 

Before forcing balloon help on with BMSetBalloons, the user's current 
setting should be saved so it can be restored later. Call BMGetBalloons to 
return this setting; it returns a Boolean true for on, or false for off. 



.., Balloon Help for standard Windows 'J!/7 

Listing 8-10 shows the source code for a ShowAlert routine that saves 
the current status of balloon help, forces balloon help on, displays the 
same alert used for the About box (so the balloon messages for its items 
can be seen easily), and restores the user's setting for balloon help after 
the dialog is dismissed. The user can change the state of balloon help 
while the dialog is present, so you must call BMGetBalloons after the alert 
has been dismissed and use its return value to determine whether to 
restore the earlier setting. Otherwise, the user could have balloon help on 
going into the alert, turn it off before dismissing the alert, and the 
ShowAlert routine would erroneously turn it back on before exiting. 

Listing 8-10. Source code to force balloon help on 

void ShowAlert(void) 
{ 

} 

short 
Boolean 
Boolean 
OSErr 

itemBit; 
curHMStatus; 
myHMStatus; 
myErr; 

curHMStatus = HMGetBalloons(); /*buffer current status*/ 
myErr = HMSetBalloons( true ); /* force balloons on*/ 
itemBit =Alert( rAboutBox, OL ); /*display About box*/ 
myHMStatus = HMGetBalloons()I /*check current status*/ 
if myHMStatus { /* did user leave Help on? */ 

myErr = HMSetBalloons(curHMStatus)i 
} 

.., Balloon Help for Standard Windows 
To define help balloons for a standard window-one not associated with 
a 'DITL' resource-use an 'hwin' resource. An 'hwin' resource ties an 
'hrct ' resource to all windows whose names match the name specified 
in the 'hwin' resource, or whose windowKind values match the windowKind 
specified in the 'hwin' resource. (You can also use an 'hwin' resource to 
tie an 'hdlg' resource to dialog and alert windows as you will read in 
the next section.) 

An ' hwin' resource's header contains less information than the stan
dard balloon header, using only the version and options fields. An 'hwin' 
resource also includes a series of items, each of which specifies the type of 
help resource to use (' hrct' or 'hdlg ') and the matching window name 
or windowKind value. 



298 .,. Chapter 8 Balloon Help 

The window name field consists of the number of characters of a 
window's name to use when checking for a match, followed by the actual 
name string. If your application opens all new documents as ''Untitledl", 
"Untitled2", and so on, it could use "8" as the number of characters and 
"Untitled" as the string to check against. In this case, all "Untitledxxx" 
windows would have the same set of help messages. 

To match based on windowKind, the third field (number of characters 
to match) should be a negative number. The absolute value of that 
negative number is the windowKind value to match and the negative sign 
tells the Help Manager to match by windowKind instead of by 
window title. 

You may design your application so that each document window has 
the same windowKind value and other types of windows have a different 
windowKind value. This would allow you to attach one set of help mes
sages for the common elements of all windows with a given windowKind 
(such as rulers in a word processor's document windows). 

If the hmMatchinT i tle bit is set in the options field of the 'hwin' 
resource, the Help Manager returns a match if any portion of the window 
name contains the string specified in the last field. Thus, a window 
named "I'm Untitled" would be considered a match for "Untitled" only if 
the hmMatchinTitle bit is set. Otherwise, only strings such as "Untitledl" 
or "Untitled and Loving It" would be considered matches. 

Listing 8-11 shows the Rez source for an 'hwin' resource connecting the 
message window of the Skeleton application to its help message. Don't 
use this technique for Skeleton's main window because it can be resized. 
See the section "Windows with Dynamic Objects" for tips on how to add 
balloon help to a window like this. 

Listing 8-11. Rez source for window help based on 'hwin' resources 

II Balloon help for all windows - using 'hwin' resource 
II 'hwin' connects to either 'hrct' or 'hdlg' 

resource 'hwin' ( rWHelp, "Help for all wdnws", purge able) { 
HelpMgrVersion, 
hmDefaultOptions, 
{ 

rMainWindow, I I 
'hrct', 
8, 
"Untitled", 

II 
II 
II 

resource ID of main window 
resource type to connect with 
match 8 characters in name 
the 8 characters to match ••• 

rDebugWindow, II resource ID of message window 
'hrct', II resource type to connect with 
7, II match 7 characters in name 



"" Using 'hwin' Resources with Dialogs and Alerts 299 

Listing 8-11. Rez source for window help based on 'hwin' resources 
(continued) 

} ; 

"Message", II the 7 characters to match ••• 
}, 

resource 'hrct' (rDebugWindow, "Msg wndw's help", purgeable) { 

} ; 

HelpMgrVersion, 
hmDefaultOptions, II use default options 
0, 
6, 
{ 

} 

II use std balloon def function 
II use balloon position 6 

HMStringitem { II use embedded pstrings 
{15, 410}, II tip's location 
{O, O, 30, 475}, II item's rect 
"Debugging messages are sent " 
"here during development.", 
}, 

.._ Using 'hwin' Resources with Dialogs and Alerts 
As mentioned at the beginning of the previous section, you can add 
balloon messages to dialog and alert windows by including resources of 
type 'hwin' in the application. This is an alternative to the technique of 
adding a Helpitem to the dialog's 'DITL' resource which ties to an 'hdlg' 
or an ' hrct ' resource. 

The 'hwin' resource ties an 'hrct' or an 'hdlg' resource to a win
dow by matching either the window's name or its windowKind value to 
information in the 'hwin' resource. For dialogs and alerts you will usually 
want to match the windowKind of 2, since modal dialogs aren't normally 
titled. The use of an 'hwin' resource for tying help messages to dialogs 
and alerts requires fewer resources (since all dialogs and alerts share the 
same 'hwin' resource), but results in less flexibility than using a 'DITL' 
Helpitem that allows each dialog or alert to have its own set of messages. 

You can compensate for this lack of flexibility by dynamically attach
ing another set of help messages to a dialog or alert using the 



300 ~ Chapter 8 Balloon Help 

BMSetDialogResID routine. The function prototype for BMSetDialogResID 
is the following: 

pascal OSErr BMSetDialogResID( short resID ); 

The sole parameter passed to BMSetDialogResID is the resource ID of 
an 'hdlg' resource. The messages within this 'hdlg' resource, in addi
tion to any messages attached through an 'hwin' resource (matched via 
the windowKind field), are used the next time a dialog or alert is dis
played. You are responsible for defining no more than one balloon for the 
same item-if you do, the results are unpredictable. 

If you define a single 'hwin' resource for the common elements in all 
alerts and dialogs in an application (such as the OK and Cancel buttons), 
you can use BMSetDialogResID to attach additional messages to the rest 
of the items within each alert or dialog. This strategy reduces the redun
dancy within help messages by combining all common messages into one 
resource and still permits each item to have its own unique message by 
attaching the additional messages. 

When using this strategy for a child dialog (one that is brought up by 
another dialog), you should save the resource ID of the current dialog's 
attached 'hdlg' before calling BMSetDialogResID to attach a different 
set of messages to the child dialog. The resource ID of the currently
attached 'hdlg' resource can be obtained by calling BMGetDialogResID 
and restored when the child dialog is closed by calling BMSetDialogResID. 

The function prototype for BMGetDialogResID is as follows: 

pascal OSErr BMGetDialogResID( short *resID ); 

The current 'hdlg' resource ID is returned in the res ID variable passed 
to BMGetDialogResID. 

Passing a -1 for the res ID parameter when calling BMSetDialogResID 
removes the attached set of messages without attaching another set. This 
causes only those messages within the 'hwin' resource's message block 
to be used, since passing -1 clears the additional messages. 

IJJJ- Windows with Dynamic Objects 
As you've seen, the best way to attach help messages to windows that 
have a fixed size and static objects is to use 'hwin' and 'hrct' resources. 
You must use a different strategy to add help messages to windows that 
can be resized or that contain dynamic objects that move about because of 



..,_ Windows with Dynamic Objects 301 

scrolling or dragging operations. You cannot use 'hrct' resources 
because the rectangles in them are fixed and cannot be changed easily. 

Showing the balloons associated with dynamic objects in a window is 
the application's responsibility. To do this properly, it must track the 
location of the dynamic objects and carefully maintain the rectangles 
surrounding them. When the mouse enters a help rectangle, it must call a 
routine to display the help balloon. You don't have to worry about 
explicitly removing the balloon when the mouse leaves the help rectangle 
because the Help Manager does this for you automatically in most cases. 

Before an application displays a balloon, it should call BMGetBalloons 
to determine whether or not the user wants to see balloons. If 
BMGetBalloons returns true, a balloon can be displayed by calling 
BMShowBalloon and hidden (for those situations the Help Manager does 
not handle) by calling BMRemoveBalloon. The function prototypes for 
BMSbowBalloon and BMRemoveBalloon are as follows: 

pascal OSErr BMSbowBalloon( HMMessageRecord *aHelpMsg, 
Point tip, 
RectPtr alternateRect, 
Ptr tipProc, 
short theProc, 
short variant, 
short method ); 

pascal OSErr BMRemoveBalloon( void ); 

The meaning of each of these parameters is as follows: 

aBelpMsg-Contains a pointer to a help message record 
(HMMessageRecord) that ties a help message to a dynamic rectangle. 
The structure of an HMMessageRecord is shown in Listing 8-12. 

Listing 8-12. The structure of an HMMessageRecord record 

struct HMMessageRecord { 
short hmmHelpType; 
union { 

char 
short 
Handle 
HMStringResType 
short 
Handle 

hmmString[256]; 
hmmPict; 
hmmTEHandle; 
hmmStringRes; 
hmmPictRes; 
hmmPictHandle; 



302 liJl.- Chapter 8 Balloon Help 

Listing 8-12. The structure of an HMMessageRecord record 
(continued) 

} u; 
}; 

short 
short 

hmmTERes; 
hmmSTRRes; 

The HMStrin9ResType data type is a structure composed of two words: 
hmmResID (the 'STRi' resource ID) and hmmindex (the 'STU' resource 
index). 

The first field in a help message record, hmmHelpType, is an integer 
describing the type of balloon message referred to in the union that 
follows it. Use the following symbolic names in the Rez source to specify 
the balloon message type: 

#define khmmStrinq 1 /* a literal pstrinq */ 
#define khnmPict 2 /* a resource ID to a 'PICT' resource */ 
idefine khmmStrinqRes 3 /* a resource ID and index to a 'STRi' rare */ 
idefine khmmTEBandle 4 /* a TextEdit handle */ 
#define khnmPictBandle 5 /* a QuickDraw picture handle */ 
#define ldumnTERes 6 /* a resource ID to 'TEXT' I 'styl' resources */ 
#define khmmSTRRes 7 /* a resource ID to a 'STR ' resource */ 

The next field contains the actual reference to the help message, which 
is either a resource ID or a handle, depending on what's in hmmHelpType. 

tip-The point on the screen, in global coordinates, where the Help 
Manager should place the tip of the help balloon. 
al ternateRect-The rectangle, in global coordinates, in which the 
mouse should be tracked. If you provide a nonzero value and the 
mouse moves outside of this rectangle, the the Help Manager removes 
the balloon automatically. If you put zeros here, the application is 
responsible for determining when to remove a displayed help bal
loon-you remove it with the BMRemoveBalloon routine. 
tipProc-Points to a routine that is called before the balloon is actu
ally displayed. This gives the application a chance to modify the tip 
location and the al ternateRect if needed. To use the standard tipProc, 
put OL in this field. 
tbeProc-Specifies which balloon definition procedure the Help Man
ager is to use to draw the balloon. Balloon definition procedures are 
stored as 'WDEF ' resources. Putting a 0 in this field tells the Help 



lilJ> Windows with Dynamic Objects 303 

Manager to use the standard balloon definition procedure. To use a 
different balloon definition procedure, store the resource ID of the 
desired 'WDEF ' resource in this field. 

variant-The variation code to use when drawing the balloon. Varia
tion codes of 0 through 7 are standard to the Help Manager (see Figure 
8-3). If you specify a custom balloon definition procedure in theProc, the 
value of variant is passed to the procedure. 

method-Describes how the screen should be redrawn when a help 
balloon is removed-similar in concept to the options field of a stan
dard balloon header. Only three values are supported and constants 
have been defined for each: 

#define kHMRegularWindow 0 

#define kHMSaveBitsNoWindow 1 
#define kHMSaveBitsWindow 2 

/* don't save bits behind balloon, 
generate update event when 
balloon is removed */ 

/* save bits, no update event */ 
/* save bits, generate update 

event when balloon is removed */ 

An array of rectangles, referenced by the ref Con field of each window 
record, is perhaps the easiest way to keep track of the rectangles sur
rounding movable objects within a window. The mouse's position should 
be checked during null events to determine whether it is within one of 
the front window's dynamic rectangles. If the user has turned balloon 
help on and the mouse is within a dynamic rectangle, the application 
should call BMShowBalloon. 

The routines within an application that move dynamic objects should 
also be responsible for adjusting that object's entry in the array of rect
angles. The routines that add new movable objects should be responsible 
for adding a rectangle to the array and setting it to match the new object's 
location. This way, the rectangles always match the true location of 
dynamic objects and there's always a rectangle for each object. 

Listing 8-13 contains the source code for a Doidle routine that displays 
a different balloon message for each of three rectangles in a window 
when balloon help is on. Each rectangle represents one dynamic object in 
the main window. The outlines of the rectangles are drawn (by the 
window's content-drawing procedure) to make it easier to test the rou
tine. Listing 8-14 shows the Rez source for the ' STR# ' resource used by 
the BMShowBalloon routine. 



304 .,. Chapter 8 Balloon Help 

Listing 8-13. Providing balloon help for dynamic objects 

idefine rDynamicBalloon 131 

/* The following routine is responsible for implementing manual balloon help */ 
void Doidle( EventRecord *event) 
{ 

extern Rect 
extern short 
extern Rect 

WindowPtr 
GrafPtr 
Point 
short 
OS Err 
Rect 
BMMessageRecord 
Boolean 
Boolean 

gMyRect[); /*defined in Skeleton.c - 3 elements */ 
gMyBalloon; /* defined in Skeleton.c */ 
gTempRect; 

myWindow; 
curPort; 
myTip, myTL, myBR; 
i,j,k; 
myErr; 
myTempRect; 
myBelpMsg; 
isBBelpon; 
ourBalloon; 

isBBelpOn = BMGetBalloons(); 
if (isBBelpOn) { /* skip all this if help is off */ 

ourBalloon = false; /* assume no balloon up */ 
GetPort(&curPort); 
myWindow = FrontWindow(); 
SetPort(myWindow); 
GetMouse(&myTip);/* get the current location of the mouse */ 
if (PtinRect(myTip, &(myWindow->portRect))) {/*is the mouse in the 

front window? */ 
for (i = O ; i < 3 ; i++) { 

if (PtinRect(myTip, &gMyRect[i])) { /*is the mouse any a rect? */ 
ourBalloon = true; 
if (i I= gMyBalloon) { /* if no balloon on this rect yet */ 

/* convert the rect from local to global coords */ 
myTempRect = gMyRect(i]; 
setPt(&myTL, myTempRect.left, myTempRect.top); 
SetPt(&myBR, myTempRect.right, myTempRect.bottom); 
LocalToGlobal(&myTL); 
LocalToGlobal(&myBR); 
SetRect(&myTempRect, myTL.h, myTL.v, myBR.h, myBR.v); 

/* set the tip to the middle of the rect */ 
j = (myBR,h - myTL.h) >> l; 
k = (myBR.v - myTL.v) >> l; 
SetPt(&myTip, myTL.h + j , myTL.v + k ); 

/* set up the help message record */ 
myBelpMsg.hmmHelpType = khmmStringRes; /* 'STRi' */ 
myBelpMsg.u.hmmStringRes.hmmResID = rDynamicBalloon; 
myHelpMBg.u.hmmStringRes.hmmindex = i + l; 



.._ Summary 305 

Listing 8-13. Providing balloon help for dynamic objects 
(continued) 

/* show the balloon */ 
myErr = HMShowBalloon(&myHelpMsg, myTip, 

&myTempRect, nil, O, O, 
kHMRegularWindow); 

if ( lmyErr) { 
gMyBalloon = i; /* balloon for item #i is on */ 

if (lourBalloon) 
gMyBalloon = -1; /* no balloon is active */ 

SetPort(curPort); /*restore original GrafPort */ 

Listing 8-14. Rez source for the 'STR#' resource used by the routine 
in Listing 8- 13 

idefine rDynamicBalloon 131 

resource 'STR#' (rDynamicBalloon, "Dynamic item messages", purgeable) { 

}; 

"Adjusts the TAB stops for this document.", 
"Adjusts the indentation of the current line.", 
"Adjusts the left edge of the current line.", 

~ Summary 
In this chapter, you learned the benefits that balloon help offers users of 
your applications, explained the major features of balloon help, and 
presented several examples of how to implement balloon help. By adding 
balloon help to your applications, your customers will enjoy the benefits 
of an on-screen, context-sensitive help system-something they will quickly 
come to expect from all Macintosh applications. 

Chapter 9 completes our exploration of System 7 by focusing on new 
capabilities provided by the System 7 Finder. 



Fit and Finish 

Macintosh applications are renowned for the fact that they all use the 
same consistent user interface. As a result, users can learn to use new 
applications more quickly than would otherwise be possible. Just as 
important as the user interface an application employs, however, is how 
the application and its documents interact with the user through the 
services of the Finder. 

This chapter focuses on several techniques you can use to make your 
application fit seamlessly with the Finder, thereby enhancing the user 
experience. In particular, the following topics are covered: 

• how to define icon families for your application and its documents 

• how to associate file types with the icons you define 

• how to tell the Finder to associate documents with your application 
• how to define a Finder help balloon for your application 
• how to define a custom message the Finder can display if it can't 

find the application associated with a given document 
• how to add comments to a file that can be viewed with the Finder 

Get Info command 

By studying these topics and implementing the features they describe, 
you'll make your application an excellent Finder citizen. 

307 



308 liJll. Chapter 9 Fit and Finish 

lllll- Icons, Signatures, and Bundles 
One of the most endearing features of the Finder is its ability to automati
cally launch the correct application when the user opens (from the desktop) 
a document. Another is the Finder's ability to display unique icons for 
each type of application and document it encounters. 

However, the Finder needs help before it can implement these features 
for your application. In particular, your application must include the 
following types of resources: 

• icons for the application itself and each unique document type it 
creates 

• a file reference (' FREF') that maps document types to specific icons 
• a signature that uniquely identifies the application 
• a bundle (' BNDL ') that ties the signature, file references, and icons 

together 

Experienced Macintosh programmers will realize that the same general 
rules also apply to pre-System 7 applications. However, it is now possible 
to define these resources in such a way as to take advantage of Finder 
features that are unique to System 7. 

LID 
liJll. ~ ···· Icon Families 

Prior to System 7, all standard Finder icons were simple monochrome 
32x32-pixel bitmaps. When the Finder needed a smaller version of an 
icon, it scaled the 32x32-pixel image into a 16x16-pixel image (often 
resulting in fuzzy mush). System 7, however, works with icons with 1, 4, 
or 8 bits of color information in both large (32x32) and small (16x16) sizes. 
A complete set of icons, called an icon family, is made up of six icons-an 
'ICN#' (32x32 pixels, 1-bit deep), an 'ic14' (32x32, 4-bits deep), an 'iclB • 
(32x32, 8-bits deep), an 'ics#' (16x16, 1-bit deep), an 'ics4' (16x16, 4-bits 
deep), and an 'icsB' (16x16, 8-bits deep). 

The Finder always uses the deepest color icon available (not exceeding the 
current setting in the Monitors control paneD but will use a shallower icon if 
you fail to provide an icon that matches the specified monitor depth. 

If an application does not provide an icon for a given type of file, the 
Finder is forced to use generic icons for files of that type. Figure 9-1 
shows the Finder's generic icons for applications, documents, and statio
nery pads. Don't get caught using them! 



~ Icons, Signatures, and Bundles 309 

~DD 
/ 

Application Document Stationery 

Figure 9- l . Generic icons the Finder uses when an application 
doesn't define its own icon family 

All resources within an icon family have the same resource ID. An 
application icon traditionally has an ID of 128 and its document icons 
have consecutively numbered IDs beginning at 129. You should define an 
icon family for each type of document file your application supports. 

Icon Editors 

So how do you create an icon family? Rez is definitely not the appropriate 
tool to use to create icon resources from scratch unless you enjoy staring 
at hex digits. The best tool is a graphical resource editor like ResEdit or 
Resorcerer. Figure 9-2 shows ResEdit's icon editor in action. 

Icon Family "Rpplication" ID = 128 from Testing 

........_ 

•o 
•o 
•o 
I I 

• • • • • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••• • • •• •• • • • ••• ••• • • • •• •• •• •• • • • • ••• ••• • • • • •• • • •• • • ••••••• • • • • • • • • • • • • • • • • • • • • • • •• • ••• • • • • • • ••••••••••••• • • • • • • • • • • • • • • 

Figure 9-2. ResEdit's icon editor in action 

~~ 
llmll 

~~ 
ic18 

~~ 
icl4 

~! 
Mask 



31 O .- Chapter 9 Fit and Finish 

Note.,. 

When using ResEdit, begin creating a new icon family by requesting a 
new 'ICN#' resource for the application file. The best strategy is to define 
the 'iclB' icon first, then drag its image onto the 'icl4' image. ResEdit 
will automatically perform color substitution. Tweak the resulting image 
so that the 'icl4' icon looks just right, then drag it onto the 'ICN#' 
image and tweak it. 

To quickly create small versions of the three large icons, drag their 
images to the corresponding small icon images. ResEdit will automati
cally scale your 32x32 images into 16x16 images. After tweaking the small 
icons, create masks by dragging the 'iclB' image to the 32x32 mask and 
the 'icsB' image to the 16x16 mask. 

For complete information about how to use the ResEdit icon editor, 
refer to ResEdit Reference. 

Stationery Pad Icons 

If your application supports stationery pad files, you should provide an 
icon family for each type of stationery pad. A stationery pad icon should 
follow the convention of having a "turned-up bottom corner" visual 
element but otherwise resemble the corresponding standard 
document icon. 

Figure 9-3 shows the 32x32-pixel black-and-white icons defined for Skeleton. 

Application Document Stationery 

Figure 9-3. Skeleton's 32x32-pixel icons 



IJ). Icons, Signatures, and Bundles 311 

Custom Icons 

A new feature is that the System 7 Finder lets you define a custom icon 
family for any file. The Finder uses this family in preference to the one the 
application may have defined for all files of that file type. The custom 
icon family is stored in the file's resource fork and each icon in the family 
has an ID of-16455. 

Take advantage of the custom icon feature to make all the document 
files that ship with your application look like they belong together even if 
they were created with different applications. For example, if you're 
including a HyperCard help stack with your product, include in the file a 
custom icon family that incorporates unique elements of your standard 
icon design. Preserving the look of the original icon helps the user re
member what application will launch when the document is opened from 
the Finder. 

~~ 
.._ EIEI 'FREF' Resources 

The Finder has always used 'FREF' (file reference) resources to associate 
document types the application supports with icons defined in the 
application's resource fork. 

An 'FREF' resource consists of a file type, a local icon ID (which maps 
to a specific file type), and a file name field that should be left blank (see 
the definitions in Listing 9-1). Local IDs are used instead of actual IDs to 
prevent Finder conflicts from arising over use of the actual icon resource 
numbers. (Most applications use an icon with an ID of 128 for their 
application icon.) 

The Finder translates local icon IDs into actual icon IDs using informa
tion in the 'BNDL' resource that you will learn about later in this section. 

Stationery Pad Pseudo-File Types 

A stationery pad document has the same file type as the corresponding 
standard document. (If a file is a stationery pad, the is Stationery bit in 
its Finder information record will be set; see Chapter 2.) So how can we 
provide special icons for stationery pad documents? When the Finder 
tries to find an icon for a stationery pad document, it seeks an icon 
associated with the pseudo-file type ' sxxx' where xxx represents the last 
three characters of the stationery pad's file type. For example, if the 
stationery pad is a ' TEXT ' file, the Finder looks for an icon associated 
with the ' sEXT ' file type. Thus, to attach an icon family to a stationery 



312 .._ Chapter 9 Fit and Finish 

pad document of a given type, include an 'FREF ' resource for the appro
priate pseudo-file type in the application's resource fork. 

Opening with Foreign Documents 

The System 7 Finder introduces the ability to open an application and 
pass it the name of a document created by another application. This occurs 
if the user drags a document icon on top of the application icon and the 
application includes an 'FREF' resource for the document's file type. A 
well-written application should therefore include an 'FREF' resource for 
itself, its documents, its stationery pads, and any foreign file type (created 
by another application) it can handle. 

An application that supports all possible file types, as ResEdit does for 
example, should include an 'FREF' for the wildcard file type (' * * * * '). If 
the application performs special operations with folders or disk volumes, 
it should also include 'FREF' resources for 'fold' and 'disk', respec
tively, so that the user can easily pass to it from the Finder a folder or 
disk name to act on. 

Rez source for the ' FREF ' resources in the Skeleton application are 
shown in Listing 9-1. 

Listing 9-1. Rez source for Skeleton's 'FREF' resources 

II 'FREF' resources map local ID's to file types 
resource 'FREF' (rRefAPPL, "Application") { 

'APPL', 0, "" II FREF for our app itself 
}; 

resource 'FREF' (rRefTEXT, "TEXT Document") { 
'TEXT', 1, "" II FREF for our document files 

}; 

resource 'FREF.' ( rRefsEXT, "Our Stationery Files") { 
'sEXT', 2, "" II FREF for our stationery files 

}; 

resource 'FREF' (rRefttro, "TeachText Read-Only Files") { 
'ttro•, 3, "" II FREF for TeachText files 

} ; 



Note JI> 

1)1011101 
OtlO 1001 
OllOIOliOi 

'°'*'°'' 11 loQo l)l(u)OOOO 

""' Icons, Signatures, and Bundles 313 

""' sKEL Signature Resources 

How does the Finder associate a document with the correct application? 
Each application has a unique signature and all files have a file type and a 
creator type. A signature is a special resource type that the Finder uses to 
identify each application. A file created by an application should have its 
creator type set to the signature of the creating application. This allows 
the Finder to determine the correct application to launch in response to a 
request to open or print a document. 

A signature resource is just a 'STR ' resource whose type is four unique 
characters, in this case 'SKel '.The ID of a signature resource is generally 
0, but this is a conventional choice, not a requirement. Listing 9-2 shows 
the Rez source for the signature resource used by the Skeleton application. 

Listing 9-2. Signature resource example 

II Signature resource - used by the Finder to map 
II documents to application. 

type 'SKel' as 'STR '; 
resource 'SKel' ( 0, "Our John Hancock ... ") { 

}; 

"Skeleton v.1.0, ©Copyright 1991 Gary Little, " 
"All Rights Reserved." 



314 IJll> Chapter 9 Fit and Finish 

~rEI 
t..413 
El 'BNDL' Resources 

Having your icon families tied (via 'FREF' resources) to their respective 
file types isn't enough to make things work smoothly. The Finder has to 
be able to match documents with applications as well as determine actual 
icon numbers from local icon numbers. Icons are great for permitting 
visual identification by users, but are a poor way for the Finder to match 
applications to documents. Instead, the Finder looks at the signature 
resource within the user's document anq tries to match that unique, four
character resource to an application with the same signature (comparing 
four characters is much faster than trying to compare icons). 

A 'BNDL ' resource contains the type and ID of the application's signa
ture resource, a mapping of local IDs to icon family IDs, and a mapping 
of local IDs to file references (' FREF' resources). Think of a 'BNDL' as the 
glue that ties everything together to make it possible for a user to double
click on an icon and have the correct application launched. 

The signature's resource ID is included in a 'BNDL' in case you decide 
to buck tradition and use something other than 0 as its resource ID. 

The ' FREF ' resources maps file types to local icon IDs, and the 'BNDL' 
maps local icon IDs to the actual resource IDs for the icons within an 
application. Mapping within a 'BNDL' resource occurs in both its 'ICN#' 
section (where each icon family within the application is assigned a local 
ID) and in its 'FREF' section (where each 'FREF' resource is assigned a 
local ID). The local ID is listed first, followed by the resource's actual ID. 
Foreign file types (created by other applications, folders, disks, and so on) 
are not mapped into an actual icon because you don't define an icon 
family for them. This prevents foreign files from looking like your appli
cation created them (and confusing the user), but still allows your appli
cation to open those files if the user drags the foreign file icon on top of 
your application's icon. 

The Rez source for the Skeleton application's 'BNDL' resource is shown 
in Listing 9-3. 

Listing 9-3. Rez source for Skeleton's 'BNDL' resource 

resource 'BNDL' (128) { 

'SKel', II signature's resource type 
O, II signature's resource ID 
{ 

'ICN#', II mapping of local IDs to icon 
II families 

{ 



Note~ 

IJJJ. Icons, Signatures, and Bundles 315 

Listing 9-3. Rez source for Skeleton's 'BNDL' resource (continued) 

o, riconAPPL, II local ID 0 app's icon family 
1, riconTEXT, II local ID 1 document's ICN# 
2, riconsEXT, II local ID 2 stationery ICN# 

}, 
'FREF', II mapping of local IDs to file 

II references 
{ 

0, rRefAPPL, II local ID 0 app 
1, rRefTEXT, II local ID 1 documents 
2, rRefsEXT, II local ID 2 stationery 
3, rRefttro, II local ID 3 TeachText's 

II Read-Only files 
} 

} 

}~ 

Notice that the 'BNDL' resource in Listing 9-3 indicates that there is an 
'FREF' resource in our application for TeachText files, but there is no 
corresponding icon family. This "stray" 'FREF' tells the Finder that it 
should pass a TeachText document to Skeleton if the user drags such a 
document on top of the Skeleton application icon. All such foreign file 
types that an application supports should have a corresponding 'FREF' 
resource and be listed in the 'FREF ' section of the ' BNDL' resource. Do not 
include icon families for foreign files. 



316 ~ Chapter 9 Fit and Finish 

.,.. Version Information 
Since applications tend to take more than one compile to create and tend 
to be updated periodically after release, most applications include a 
version number. Prior to System 7, the Finder's Get Info window was the 
only place a user was likely to see version information without launching 
an application. Under System 7, users who check Show Version in the Views 
control panel will see version information in all non-icon views (that is, 
when viewing by name, size, kind, date, and so on) under the Finder. 

Version information is kept in resources of type 'vers '-only 
resource IDs 1 and 2 afe used at this time. Any application lacking these 
'vers' resources will have the text from its signature resource displayed 
in the Finder's Get Info window and will have only a dash("-") displayed 
in its version field when viewed by name, size, and so on. 

Rez source for the 'vers ' resources for the Skeleton application is 
shown in Listing 9-4. Figure 9-4 indicates where the various pieces of 
both the 'vers' 1 and 'vers' 2 resources are displayed in the Finder's 
Get Info window. Figure 9-5 indicates where the 'vers' 1 version num
ber string is shown in a non-icon view under the Finder. 

Listing 9-4. Expanded Rez source for Skeleton's 'vers' resources 

resource 'vers' (1, purgeable) { 
Oxl, II first 'digit' of version# 
OxOO, 
final, 
OxO, 
verus, 
"1. 0" I 

II second & third 'digits' 
II release level (alpha, beta, etc) 
II pre-release level 
II country code 
II version number pstring 

"1.0, © 1991 Gary Little" II version message pstring 
}; 

resource 'vers' (2, 
Oxl, 

}; 

OxOO, 
final, 
OxO, 
verus, 
"1. 0"' 
"Skeleton 1.0" 

purgeable) { 
II first 'digit' of version# 
II second & third 'digits' 
II release level (alpha, beta, 
II pre-release level 
II country code 
II version number pstring 
II version message pstring 

etc.) 



..,. Version Information 317 

=o Skeleton Info 

Skeleton ... ~---------1----' 
Skeleton 1 .0 .... ~--------+---

Kind: application program 
Size: 1 OK on disk (9 ,695 bytes used) 

Yhere : Sy stem 7 : tims .code : Skeleton f : 

Created: Tue, Feb 26, 1991 , 12 :00 PM 
Modified: Tue, Feb 26 , 1991, 12 :00 PM 
Version: 1 .0, © 1 991 Gary L iHle ... ~ir----+--

Comments: 

0Locked 

,····Memory ···········································: 
i Suggested size : 384 K i 
i Current size : ~ K i 
: ..................................................................... ; 

File's name 

Version message from 
'vers' ID 2 resource 

Version message from 
'vers ' ID 1 resource 

Figure 9-4. Where "Get Info" puts 'vers' ID 1 and 'vers' ID 2 
information 

-D !Skeleton Code 0_ 
6 items 17.7 MB in disk 827K available .................................. ................... .. ..................................................................................................................... 

Name Kind Version 

~Skeleton application program 1 .0 -- 1Ci. 
r-

D Skeleton .c THINK C document -
D Skelet on .h THINK C document -
D Skeleton .r MP'w' Shell document -
D Skeleton .11 THINK C document -
~ skeleton .11 .rsrc application pro gr am 1.0 tzy 

¢1 1¢ Q] 

Figure 9-5. Version information in Finder folder windows 

Version number 
from 'vers' ID 1 
resource 



318 IJlii- Chapter 9 Fit and Finish 

.,.. Finder Help Balloons for Applications 
In Chapter 8 you saw how to add help balloons to your application that 
will appear when the application is running. As you will see in this 
section, you can also define a special help balloon that appears when the 
application is not running. The balloon appears when the user is in the 
Finder with balloon help on and moves the mouse cursor over the appli
cation icon on the desktop or in a window. Such a balloon can explain 
what your application is or does without the user having to launch the 
application. 

System 7 provides a default help balloon for all applications that lack a 
specific description, but the contents of this balloon are quite general and 
not particularly helpful (see Figure 9-6). 

6 items 

~ 
Skeleton.h 

Skeleton .11.rsrc 

¢ 

Skeleton 
17. This is an application-a program 

with which you can perform a 
task or create a document. 
Applications include word 
processors, graphics programs, 
database programs, games, and 
spreadsheets. 

Figure 9-6. The Finder's default help balloon for an application 



.,. Finder Help Balloons for Applications 319 

Skeleton 
6 items 1 2. 1 MB in disk 6.4 MB avail 

~ 
Skeleton.h 

Use the source code 
for this application 
to learn more about 
programming for 
System 7. 

Skeleton .11.rsrc 

T;m's Skeleton 

¢ 

Figure 9-7. You can define a custom Finder help balloon for an 
application 

Adding a custom balloon help resource enables the Finder to display a 
description of your application (see Figure 9-7). To do this, add a resource 
of type 'hfdr' with a resource ID of kHMHelpID to the resource fork of 
your application (see the Rez definition in Listing 9-5). A 'hfdr' resource 
can include the resource ID of a 'STR ', 'PICT', styled TextEdit string (a 
combination of a 'TEXT' and a 'styl' resource), or a 'STR#' (and an in
dex). A standard Pascal string can also be imbedded directly in the 
'hfdr' resource; this technique is shown in Listing 9-5. Examples of 
using 'STR ', 'PICT', styled TextEdit string, and 'STR#' resources for 
balloon messages can be found in Chapter 8. 

Listing 9-5. A sample Finder help balloon resource for an 
application 

II Balloon Help message for the app (when viewed by Finder) 
II The resource ID must be kHMHelpID (defined in BalloonTypes.r) 
II Finder help - using a pstring resource 

resource 'hfdr' (kHMHelpID, "Balloon help for app's icon") { 
HelpMgrversion, II version of the Help Manager 
hmDefaultOptions, II use defaults for Help Mgr resources 



320 ~ Chapter 9 Flt and Finish 

Listing 9-5. A sample Finder help balloon resource for an 
application (continued) 

}; 

o, 
o, 
{ 

} 

II use standard Balloon Proc 
II Balloon position 

HMStringitem { II using a pstring 

} 

"Use the source code for this application to " 
"learn more about programming for System 7." 

., Leaving a Calling Card with Documents 
Most applications you write will create document files of some type. As 
you saw at the beginning of this chapter, if you manage matters just right, 
the user can automatically launch your application by double-clicking on 
a document icon from the Finder. But what happens if a document 
created by your application is sent to another user who doesn't have your 
application? How can you tell this user to buy your application in order 
to view the file? 

Under System 6.x, the Finder displays the rather unhelpful generic 
alert shown in Figure 9-8 when it can't find a document's application. 
You'll also see this alert under System 7 if you don't provide a helping 
hand to the Finder. 

The document "Really Important Info" 
could not be opened, because the 
application program that created it could 
not be found. 

(( OK JI 

Figure 9-8. The default "application not found" dialog 

How do you do that? Simple. Add either a message string resource or a 
name string resource (' STR ' resources with IDs of -16397 and -16396, 
respectively) to the resource fork of each document your application 
creates. When the Finder tries to open or print your document file, but 



~ Leaving a Calling Card with Documents 321 

can't find the application, it retrieves the string from the message string 
resource and displays it instead of the standard message. Figure 9-9 
shows an alert defined by a message string resource. 

This file was created by Skeleton u.1.0 
which appears to be missing at the 
moment. If you do not own a copy of this 
application, please order your own copy 
by contacting: 

Gary Little 
123 Rny Street 
Cupertino, CR 95014 
(408) 555-1212 

Figure 9-9. A message string resource (see Listing 9-6) added to a 
document enables the Finder to use your message as the text in the 
"application not found" dialog 

If the Finder finds no message string resource in the document, it uses 
the contents of the name string resource instead of the phrase program that 
created it in the generic alert. Figure 9-10 shows an alert that incorporates 
a name string resource of "Skeleton v .1.0". 

The document "Really Important Info" 
could not be opened, because the 
application "Skeleton u.1.0" could not be 
found. 

Figure 9-10. A name string resource (see Listing 9-7) in a document 
enables the Finder to include your application's name in the 
"application not found" dialog 



322 .,. Chapter 9 Fit and Finish 

Listing 9-6 is the Rez source for a sample message string. Listing 9-7 is 
the Rez source for a sample name string. 

Listing 9-6. The Rez definition for a message string resource 

II Message string resource - used by the Finder when a 
II document's application can't be found. 

resource 'STR ' (-16397, "Document's message") { 
"This file was created by Skeleton v.1.0 " 
"which appears to be missing at the moment." 

}; 

"If you do not own a copy of this application, 11 

"please order your own copy by contacting:\n\n" 
"Gary Little\n" 
"123 Any Street\n" 
"Cupertino, CA 95014\n" 
"(408) 555-1212" 

Listing 9-7. This is the Rez definition for a name string resource 

II Name string resource - used by the Finder when 
II a document's application can't be found instead of 
II the standard "Application can't be found ••• " alert. 

resource 'STR ' (-16396, "Application Not Found-.") { 
"Skeleton v.1.0" 

Keep name string resources short. As shown in Figure 9-10, the name 
string is part of a longer paragraph that appears in the alert and space is 
limited. So don't put your company's phone number, business hours, 
price list, and so on, in the name string resource! (Use a message string 
resource for that.) Stick with the application name, or, better yet, the 
application name and version number. Including the version number 
eliminates confusion in the event the user has an older version of your 
application that is not able to read new document types the newer ver
sion creates. 



Notell1'-

~ File Comments 323 

The document "Today's Org Chart" could 
not be opened, because the application 
program that created it could not be 
found. Do you want to open it using 
"TeachTeHt"? 

( Cancel J [ OK J 

Figure 9-11. The dialog that appears when you double-click a 'TEXT' 
or 'PICT' file and the application that created it is not available 

• File Comments 
The Finder stores the information in 'BNDL' resources in a desktop data
base file on any volume with a capacity of 2 Mb or more. Volumes with 
capacities under 2 Mb store their desktop information in the resource fork 
of the invisible Desktop file-as was done in earlier versions of system 
software. . 

Applications rarely need to access the information in the Finder's new 
desktop database, but the following five major types of information can 
be easily retrieved from the desktop database by applications: 

• the size and parent directory of the desktop database 
• the file name, parent directory ID, and creation date for the applica

tion with a given signature 
• any icon type and its associated file type for a given application 



324 ~ Chapter 9 Flt and Finish 

• the bitmap for any member of an icon family stored in the database 
• the user comments for files and volumes seen when using the Finder 

Get Info command 

This section focuses on three routines: PBDTGetPath, PBDTGetcomment, 

and PBDTSetComment. For complete information on how to use and ma
nipulate the desktop database, refer to the Finder Interface chapter of 
Inside Macintosh, Volume VI. 

~ Reading Comments 

Listing 9-8 shows the source code for a ReadComment routine you can call 
to retrieve and display the user comment for a specific file from the 
desktop database. The comment can be up to 200 characters long. This 
routine uses the PBDTGetPath routine to obtain the desktop database's 
reference number, which must be passed to PBDTGetComment in order to 
retrieve the actual comment. 

Listing 9-8. Reading user comments from the desktop database 

/* Retrieve the canment that's stored in the desktop database for */ 
/* the user-selected file.*/ 

void ReadComment( void 
{ 

StandardFileReply reply; 
OSErr myError; 
DTPBRec theDTRecord; 
char theComment[201] = "Room for 200 chars & length byte"; 

StandardGetFile( OL, -1, OL, &reply ); 

if ( reply.sfGood ) { 
theDTRecord.ioCompletion = OL; 
theDTRecord.ioNamePtr = OL; 
theDTRecord.ioVRefNum = reply.sfFile.vRefNum; 

myError = PBDTGetPath( &theDTRecord ); 
if (myError == noErr) { 

theDTRecord.ioNamePtr = reply.sfFile.name; 
theDTRecord.ioDirID = reply.sfFile.parID; 

/* leave room for length byte at the beginning */ 
theDTRecord.ioDTBuffer = theComment + 1; 

myError = PBDTGetComment( &theDTRecord, false ); 



~ File Comments 325 

Listing 9-8. Reading user comments from the desktop database 
(continued) 

} 

} 

} 

if (myError == noErr) { 
/* put in length byte */ 
theComment[O] = theDTRecord.ioDTActCount; 
/* draw the string in the message window */ 
PrintString( theComment ); 

The function prototype for PBDTGetPath is as follows: 

pascal OSErr PBDTGetPath( DTPBPtr paramBlock ); 

The parameter you pass to PBDTGetPath is a pointer to a DTPBRec 
record which is used to provide data to, and return results from, this 
routine. There are 25 parameters in DTPBRec, but you only need to be 
concerned about a few of them for retrieving and setting comments. The 
parameters you will be most interested in for the PBDTGetPath routine are 
as follows: 

ioHamePtr-A pointer to the name of the volume whose desktop 
database reference number you're trying to determine. If this field is 
OL, PBDTGetPath identifies the volume by the ioVRefNum. 

ioVRefHum-Contains the reference number for the volume containing 
the file whose comment you want to obtain or set. The desktop database 
for this volume contains the comment for the file. 
ioDTRefHum-Contains the desktop database reference number. You 
need this reference number to use most other desktop database 
routines. 

The function prototype for PBDTGetComment is the following: 

pascal OSErr PBDTGetComment( DTPBPtr paramBlock, 
Boolean async ); 

The Boolean tells the system whether this call is to be made synchro
nously (false) or asynchronously (true). When called synchronously, the 
routine does not return until it is finished. When called asynchronously, 



326 IJJ. Chapter 9 Fit and Finish 

PBDTGetComment returns immediately, retrieves the comments while the 
calling application continues running, then calls a completion routine 
(supplied as a pointer in the iocompletion field of the parameter block) 
when it's done. 

paramBlock is a pointer to the same DTPBRec used by PBDTGetPath. The 
parameters in that record of interest to the PBDTGetComment routine are the 
following: 

ioRamePtr-A pointer to the name of the file whose comment you ar~ 
trying to retrieve. 
ioVRefNum-The reference number for the volume on which the file 
resides. 
ioCompletion-Contains a pointer the completion routine if you call 
PBDTGetComment asynchronously. For synchronous calls (the usual 
case), set this field to OL. 

ioDirID-Contains the directory ID for the folder containing the file 
whose comment in which you are seeking. 
ioDTBuffer-A pointer to a buffer that will hold the comment after 
the call to PBDGetcomment; the buffer must be 200 characters long since 
that's the maximum size for a comment. (When using PBDSetComment, 
you store the comment in this buffer before making the call.) 

ioDTActCount-The length of the comment, in bytes. 
ioDTRefNum-The desktop database reference number for the volume 
containing the file in which you are interested. 

You can call the ReadComment routine from the DoTest procedure in the 
Skeleton program, so that you can try it out by selecting the Test item in 
the Special menu. To simplify the example, standardGetFile is called to 
select the file whose comment you want to retrieve. In an actual application, 
the file would already be known and this step could be eliminated. 

IJJ. Saving Comments 

Adding a comment to a file is almost as easy as reading the comment
see the sample code for the Savecomment routine in Listing 9-9. Such a 
comment would be visible at the Finder level (so the user could see it 
without opening the file). In addition, the application itself could display 
the comment at an appropriate time-perhaps when the file is being 
loaded. Remember that the comment will be lost if the user rebuilds the 



ll> Fiie Comments 327 

desktop database, so don't include essential information in the comment 
unless you are able to recreate it. 

Listing 9-9. Source for recording a file's comment in the desktop 
database 

/* Set the comment that's stored in the desktop database for */ 
I* the user-selected file.*/ 

void Savecomment( void ) { 
StandardFileReply reply; 

} 

OSErr myError; 
DTPBRec theDTRecord; 
char theComment[201] = uThis is a demand letter template.n; 

StandardGetFile( OL, -1, OL, &reply ); 

if ( reply.sfGood ) { 

} 

theDTRecord.ioCompletion = OL; 
theDTRecord.ioNamePtr = OL; 
theDTRecord.ioVRefNum = reply.sfFile.vRefNum; 

myError = PBDTGetPath( &theDTRecord ); 
if (myError == noErr) { 

} 

theDTRecord.ioNamePtr = reply.sfFile.name; 
theDTRecord.ioDirID = reply.sfFile.parID; 
theDTRecord.ioDTReqCount = 33; /* i of chars */ 
theDTRecord.ioDTBuffer = theComment; 

myError = PBDTSetComment( &theDTRecord, false ); 

The function prototype for the PBDHet.Comment. routine used in Lis~g 
9-9 is as follows: 

pascal OSErr PBDTSet.Comment.( DTPBPtr paramBlock, 
Boolean async )1 

The two input parameters have the same meanings as they do in the 
PBDTGet.Comment. routine. 



328 Iii>- Chapter 9 Fit and Finish 

Figure 9-12 shows what a custom save file dialog that allows the user 
to specify a file comment might look like. See Chapter 2 for information 
on how you can create such a custom dialog. 

IOI Source.,... I 
D [ olourU W.h 
D lH~~hH.~U W.c 
D o~~~fo~.~u W.h 
D fHHWA 
l".1 m Mnn 
D Usc~d 1 c~mProc .c 

Saue file as: 

I My File 

Comment to attach: 

~system 7 

( [j•~c1 ) 
( Desktop ) 
( New LJ ) 

( Cancel ) 

Saue 

Figure 9-12. Custom Save File Dialog for attaching user comment to 
files 

~ Summary 
In this chapter, we told you about several new System 7 features that 
improve the interaction between the Finder and your application and its 
documents, demonstrated what you have to do to take advantage of these 
new features, and presented several examples along the way. By follow
ing the tips and techniques discussed in this chapter, your application 
and its documents will look their best and fit seamlessly with the System 
7 Finder. 



Appendix A 

A Rez Primer 

Each of the two basic techniques for creating Macintosh resources has its 
own set of advantages and disadvantages. 

The first technique is to use a tool, such as ResEdit or Resorcerer, that 
allows resources to be created and edited visually by direct manipulation. 
This technique is fine for resources that have a visual component, but 
cannot be used to create a source document that describes precisely how 
to recreate the resources. 

The second technique is to define resources in a readable source-code 
form that can be compiled to create the actual resources. This technique 
can be awkward or inappropriate for defining complex images, such as 
icons and pictures, but it does provide an exact description of the 
resources. You can then compile this description to automatically recreate 
the resources when you need them. 

The standard resource description language for the Macintosh is called 
Rez. Under Macintosh Programmer's Workshop (MPW), Rez is also the 
name of the tool for converting text descriptions of resources into actual 
resources, so the name is often used to refer to the resource compiler. Un
der THINK C and THINK Pascal, this tool is called SARez (for standalone 
Rez) and runs as a separate application. The resource examples in this 
book are all presented as lines of Rez source code so that you can easily 
reproduce them. 

329 



330 ..., Appendix A : A Rez Primer 

Key Point~ 

Some of the important features of Rez are discussed in this appendix. 
For a complete description, see the reference manuals that come with 
THINK C (or THINK Pascal or Macintosh Programmer's Workshop). 

~ Rez Templates 
Unlike traditional compilers, Rez creates only data structures. It does not 
generate any machine-executable code. The syntax for Rez is similar to 
that of a typical C compiler. If you can read C code, you can read Rez 
code as well. 

Templates for standard resource types are available in the interface 
folder for SARez. You use statements like #include "Types. r" to refer 
Rez to standard resource templates when compiling. Templates are avail
able in other files for resources used by the Help Manager (BalloonTypes.r), 
Communications Toolbox (CTBTypes.r), the Installer (InstallerTypes.r), 
and the System (SysTypes.r). 

Take a few minutes to open Types • r and browse through it to get a 
feel for what Rez templates look like. Understanding how a template is 
constructed makes it easier to create a resource from that template. 

Listing A-1. Template for a 'STR' resource 

type 'STR ' { 
pstring; 

}; 
/* pascal string */ 

Listing A-1 shows the template from Types • r that defines the struc
ture of a ' STR ' resource (a simple string resource). The keyword type 
tells Rez that the information following this keyword defines a template 
of a specific type-in this case, 'STR ' . The left brace starts the definition 
of this resource type and the right brace closes it. The trailing semicolon 
notifies Rez that the type definition is complete. 



llll- Rez Resource Definitions 331 

The pstrinq between the braces is the data type for the only data 
element in this resource-a Pascal string (a string of characters preceded 
by a length byte). The Rez language supports several other data types, 
including integer, longint, boolean, point, rect, and cstring. 

~ Rez Comments 
Programming languages always allow comments in source files, and Rez 
is no different. In this respect Rez is more like C++ than C, since it 
supports both the I I and /* *I style comments. A pair of slashes (//) 
means Rez treats the rest of that line, and only that line, as a comment. A 
slash followed immediately by an asterisk (I*) starts the other style of 
comment. To end such a comment, R~z expects an asterisk followed by a 
slash ( * /). This second form can be as long as you like and can span 
multiple lines. Where space is critical for formatting in the various list
ings throughout this book, the shorter double-slash style is used. 

~ Rez Resource Definitions 
You specify resources in Rez using a template as a guide, since templates 
simplify working with Rez and provide a convenient type-checking 
mechanism. The description for each· resource starts with the keyword 
resource, followed by the resource type (which tells Rez which template 
to use), and, in parentheses, the resource ID, resource name, and 
attributes for that resource. The resource name and attributes are op
tional, but the type and ID are mandatory. This information is followed 
by an opening brace (marking the beginning of the resource's contents), 
the contents of the resource, and a closing brace followed by a semicolon. 
Listing A-2 shows a simple resource definition. 

Listing A-2. Rez source for a 'STR ' resource 

resource 'STR ' (131, "TAB help", purgeable) { 
"Rent this space." 

}; 

The resource defined in Listing A-2, after compilation with SARez or 
Rez, will be of type 'STR ', have an ID of 131, carry the name TAB help, 
and have its purgeable attribute set. This is a simple string resource, and 
the string it represents is Rent this space. 



332 -.. Appendix A : A Rez Primer 

Key Point..,. 

Like C, Rez supports the #define command for associating symbolic 
names with constants-making Rez sources much easier to read. Re
sources that include the IDs of other resources in them (such as menu bar 
resources), are harder to read and maintain if the IDs inside the resource 
definition are hard-coded. Using a well-named constant simplifies life 
considerably. Using a constant for the ID of the 'STR ' resource pre
sented in Listing A-2, for example, makes it easier to guess how the 
application uses the string (see Listing A-3). 

Listing A-3. Rez source for a 'STR ' resource, using a symbolic 
constant 

#define rTabStopHelpMessage 131 
resource 'STR ' (rTabStopHelpMessage, "TAB help", purgeable) { 

"Rent this space." 
}; 

Some resource templates contain multiple items. A comma separates 
each item within the text describing the resource. A simple example is a 
'STR# ' resource (a list of strings). Listing A-4 shows the Rez source for a 
'STR# ' resource containing three strings; each string is separated by a 
comma. 

Listing A-4. Rez source for a 'STR#' resource with three strings 

#define rDynamicBalloonContents 131 
resource 'STRll' (rDynamicBalloonContents, "dynamic help", purgeable) { 

{ 

} 

}; 

"Tune in tomorrow to find out what this does.", 
"Slide this dohickey to adjust the florple.", 
"Click this button to activate " 

II string 1 
11 string 2 
II string 3 

"the intercerebral telelink.", II still string 3 



~ Symbolic Constants 333 

.,... Symbolic Constants 
Not all constants are created using #define; some templates have imbed
ded constants that have meaning only within that resource's template. 
Balloon Help resources (see Chapter 8) are a complex example of this. A 
simpler example is shown in Listing A-5, where development, alpha, beta, 
final, and release are defined as symbolic constants for the value of 
the third byte of a 'vers' resource. Instead of specifying the hex number 
when creating a resource of this type, you can use the constants (which 
makes our sources much easier to read and maintain). Listing A-6 pre
sents a sample resource created using the template from Listing A-5 and 
shows how the constants are used when creating a resource from a 
template. 

Listing A-5. Template for a 'vers' resource 

type 'vers' { 
hex byte; 
hex byte; 
hex byte 

}; 

hex byte; 
inte9er 
pstrin9; 
pstrin9; 

/* Major revision in BCD*/ 
/* Minor revision in BCD*/ 

development = Ox20, /* Release sta9e */ 
alpha = Ox40, 
beta = Ox60, 
final OxSO, /* or */ release = Ox80; 

/* Non-final release t */ 
Re9ion; /* Re9ion code */ 

/* Short version number */ 
/* Lon9 version number */ 

Listing A-6. Resource created using 'vers' template from Listing A-5 

resource 'vers' (1, pur9eable) { 

}; 

Oxl, /*Major revision in BCD* I 
OxOO, 
beta, 
Ox9, 
verUS, 
"v.1.0B9", 
"v.1.0B9, © 1991 Gary Little" 

/* Minor revision in BCD* I 
/* Release sta9e */ 
/* Non-final release i */ 
/* Re9ion code */ 
I* Short version number *I 
/* Lon9 version number */ 



334 .,.. Appendix A : A Rez Primer 

...,. Resource Type Coercion 
Some custom resource types you may define use the same internal repre
sentation as a standard resource type. For example, signature resources 
are identical to ' STR ' resources in that they are made up of a single 
Pascal string. Rather than create a custom template for your signature 
resource, you can just tell Rez to treat your signature resource as though 
it were a 'STR ' resource. Do this by specifying the type keyword, fol
lowed by your custom resource type (' SKel' in this case), the word as, and 
the type it should be treated like (' STR ' in this case). Listing A-7 shows 
you how to do this. 

Listing A-7. Example of Rez type substitution 

II treat this resource as though it were of type 'STR ' 
type 'SKel' as 'STR '; 
resource 'SKel' (0, "App's Signatur~") { 

"Skeleton, v.1.0, ©Copyright 1991 Gary Little" 



Appendix B 

The 'SIZE' Resource 

For versions of the Macintosh operating system prior to System 7, 
MultiFinder is an optional desktop environment. The user can also choose 
to use Finder, which allows only one application to run at a time. Under 
System 7, however, MultiFinder is always present, although it's now 
referred to as Finder. 

Applications that are MultiFinder-aware need to communicate their 
level of awareness to MultiFinder (or the System 7 Finder) through a 
special resource, known as a 'SIZE' resource, attached to the application 
itself. The System 7 Finder inspects the 'SIZE' resource to determine the 
level of awareness; it also determines the application's ability to deal with 
certain new System 7 features, such as stationery pad documents and 
high-level events. 

A 'SIZE' resource contains one flag word (16 single-bit flags) and two 
long words containing Finder partition size information; the ID of the 
original 'SIZE' resource is always -1. If the user changes the settings of 
the Preferred Partition field or the localAndRemoteHLEvents flag from the 
Finder, a 'SIZE' (ID 0) resource is created which the system refers to 
instead. 

The structure of a 'SIZE' resource is shown in Listing B-1 as a Rez 
template. The flag settings for the most common types of System 7 
applications are highlighted in boldface. 

335 



336 _... Appendix B : The 'SIZE' Resource 

Listing B-1. The Rez template for a 'SIZE' resource. The most 
important flags are in bold. 

type 'SIZE' { 
boolean 
boolean 

reserved; // so don't use itl 
ignoresuspendResumeEvents,// app can suspend and resume 
acceptSuspendResumeBvents; 

boolean reserved; II private, keep out 
boolean cannotBackground, II does something if in background 

canBackground; 
boolean needsActivateOnFGSwitch, II app will activate own stuff 

doesActivateODFGSwitch; 
boolean backgroundAndForeground, II not a background-only application 

onlyBackground; 
boolean dontGetFrontClicks, II ignore click that activates 

getFrontClicks; 
boolean ignoreAppDiedBvents, // don't say if sublaunched app died 

acceptAppDiedEvents; 
/* the next five bits are new for system 7 */ 

boolean not32BitCompatible, // copes with 32-bit addressing 
is32BitCompatible; 

boolean notHighLevelEventAware, // sends/accepts high level events 
isBighLevelBventAware; 

boolean onlyLocalHLEvents, // sends/accepts events over network 
localAndRemoteBLEvents; 

boolean notStationeryAware, // handles stationery pads properly 
isStationeryAware; 

boolean dontuseTextEditServices, //uses TextEdit inline text stuff 
useTextBditServices; 

/* the last three bits are reserved */ 
boolean reserved; II no trespassing 

II off limits boolean reserved; 
boolean reserved; //yeah, what he said 

/* preferred and minimum memory partition settings */ 

}; 

unsigned longint; //preferred partition size 
unsigned longint; //minimum partition size 

The purpose of each entry in the 'SIZE' resource is as follows: 

acceptSuspendResumeEvents-Indicates that the application knows 
how to react properly to suspend and resume events. If you write 
System 7 applications properly, you should always set this flag to 
acceptSuspendResumeEvents. See Chapter 3 for more information on 
suspend and resume events. 
canBackground-Indicates that the application is able to perform some 
activities in the background. To avoid stealing processor time need
lessly, set this flag to canBackqround only if your application has 
something useful to do in the background; otherwise, set it to 



.,.. The 'SIZE' Resource 337 

cannotBackground. See Chapter 3 for a discussion of background 
processing under the System 7 Finder. 
doesActivateOnFGSwitch-lndicates that the application correctly 
handles switches into or out of the foreground. Applications with this 
flag set to doesActi vateOnFGSwi tch should treat a suspend event as 
a deactivate event (by hiding scroll bars, dimming controls, and so on) 
and should treat a resume event as an activate event. This flag should 
be set to doesActivateOnFGSwitch for all well-written System 7 ap
plications. 
backgroundAndForeground-lndicates that the application, like most 
applications, can run in the background or foreground. If your applica
tion operates only in the background (and thus doesn't directly interact 
with the user), set this flag to onlyBackground. 

dontGetFrontClicks-Tells the operating system not to let the appli
cation see the click used to bring a background application to the 
foreground. This flag is usually set to dontGetFrontclicks (so the click 
is absorbed by the operating system) to prevent a user's click from also 
performing an action within the application as it is brought to the 
foreground. If you want clicks to be passed through, as the Finder 
does, for example, set this flag to getFrontClicks. 
ignoreAppDiedBvents-Set by most applications. However, if your 
application launches other applications and wants to be notified via an 
Apple event when the other application crashes or quits, set this flag to 
acceptAppDiedEvents. 

is32Bitcompatible-lndicates that the application uses 32-bit ad
dressing and is otherwise 32-bit clean. Ensure that all applications you 
write are 32-bit clean by not directly manipulating flag bits that are 
stored in the upper 8 bits of addresses when the 24-bit Memory Manager 
is in effect. If System 7 is running with the 32-bit Memory Manager 
active and the user tries to launch an application that has this flag set 
to not32BitCompatible, the Finder displays a warning dialog. 
isBighLevelBventAware-lndicates that the application is able to 
handle high-level events it may receive when calling Wai tRextBvent. All 
System 7-specific applications should be able to handle high-level 
events, so they will set this flag to isHighLevelEventAware. 

localAndRemoteBLEvents-lndicates that the application is willing to 
accept high level events that originate from another computer on the 
network. Users can toggle this flag using the Sharing ... command in the 
Finder's File menu if the isHighLevelEventAware flag is set and 



338 IJJl> Appendix B : The 'SIZE' Resource 

Program Linking is turned on (use the Sharing Setup control panel to 
turn Program Linking on and off). Figure B-1 shows the Finder win
dow that gives users direct control over this flag. Toggling this flag via 
the Sharing window creates a 'SIZE' resource with an ID of 0. The 
Finder uses the settings in this 'SIZE' resource instead of the 'SIZE' (ID 
-1) resource settings, which contains the original "factory" settings. 

-0 ~lceleton 

~ Skeleton 

Ki•d: application program 
Yhere: S~stem 7 : Tim Swihart : 

Pro11ram UnkWig 

~ Allow remote program linking ... ~---- Toggles the localAndRemoteHLEvents 

flag in the ' SIZE' resource 

Figure B-1. The Finder's Sharing .. . window allows users to toggle the 
state of the localAndRemoteHLEvents flag 

isStationeryAware-Indicates that the application understands the 
concept of a stationery pad file . If this flag is set to notStationeryAware 
and the user double-dicks on a stationery pad file, the Finder presents 
a dialog box advising that a copy of the file will be made and passed to 
the application instead. Proper handling of stationery pad files is covered 
in Chapter 2. 

useTextEditServices-Indicates that the application uses TextEdit's 
inline text services. The inline text services TextEdit provides allow 
non-Roman script system users to enter two-byte characters directly 
into a TextEdit field instead of into a special conversion window. See 
Inside Macintosh,Volume VI, for more information on TextEdit's inline 
text services. 



.,.. The 'SIZE' Resource 339 

Preferred Partition-The first unsigned longint in a 'SIZE' resource, 
known as either the preferred partition size or the current size; tells the 
Finder how much memory the application would like to have when it 
is launched. The user can change this value by entering a new value in 
the Current Size field of the Finder's Get Info window for the application. 
The Finder stores the new value in the 'SIZE' (ID 0) resource, which 
overrides the value stored in the 'SIZE' (ID -1) resource. 

Minimum Partition-The second unsigned longint, known as the 
minimum partition size or the suggested size; tells the Finder the minimum 
amount of memory in which the application is willing to run. If the 
Finder is unable to allocate this much memory, it will not launch the 
application. 



Appendix C 
Support for Macintosh 
Programmers 

Important to the success of any Macintosh development project are sup
port and service organizations that can help solve your programming 
problems, teach you new programming techniques, or keep you informed 
on developments of interest to programmers. This appendix provides you 
with information on many such organizations that specialize in Macin
tosh issues. 

~ Services for Developers from Apple 
For complete information on the various programs that Apple offers to 
Macintosh developers, contact Apple's developer hotline at: 

Apple Computer, Inc. 
20525 Mariani A venue, MS: 75-2C 
Cupertino, CA 94014 
Attn: Developer Hotline 
Telephone: 408/974-4897 
AppleLink: DEVHOTLINE 

341 



342 ..- Appendix C : Support for Macintosh Programmers 

""' Developer Associations 
BMUG-BMUG is a large, national user group that caters to Macintosh 
users and programmers. It publishes a variety of useful material, includ
ing an excellent (and very large) newsletter, public-domain software on 
CD-ROM, and books. For membership information, contact: 

BMUG 
1442A Walnut Street, #62 
Berkeley, CA 94704 
Telephone: 415/849-9114 

MacApp Developers Association-The MacApp Developers Associa
tion (MADA) is for developers interested in using Apple's object-oriented 
application framework, MacApp. MADA publishes an excellent technical 
journal, Frameworks, and holds an annual developers' conference. For 
membership information, contact: 

MacApp Developers Association 
P.O. Box23 
Everett, WA 98206 
Telephone: 206 /252-6946 
AppleLink: MADA 

MacTechGroup of the Boston Computer Society-The Boston Com
puter Society (BCS) is another large, national user group that supports 
Macintosh developers through its MacTechGroup special interest group. 
The MacTechGroup has a large library of public-domain material for 
programmers and publishes a newsletter. For membership information, 
contact: 

The Boston Computer Society 
48 Grove Street 
Somerville, MA 02144 
Telephone: 617 /625-7080 



~ Electronic Information Services 343 

SPLAsh-SPLAsh is an association for programmers who use Symantec's 
THINK C and THINK Pascal languages. For more information, contact: 

SPLAsh 
1678 Shattuck Avenue, #302 
Berkeley, CA 94709 
Telephone: 415/527-0122 
AppleLink: SPLASH 

..,,. Training Courses 
The following organizations offer classroom-style technical training courses 
for Macintosh developers: 

Apple Computer, Inc. 
20525 Mariani A venue, MS: 75-6U 
Cupertino, CA 95014-6299 
Attn: Developer University 
Telephone: 408/974-6215 
AppleLink: DEVUNIV 

Bear River Institute, Inc. 
P.O. Box 1900 
Berkeley, CA 94701 
Telephone: 415/644-0555 
AppleLink: D1939 

..,,. Electronic Information Services 
An excellent source of support for Macintosh developers are national 
electronic information services, most of which have specific forums for 
discussing Macintosh development issues. The three most popular are 
America Online, CompuServe, and GEnie: 

America Online-America Online has a lot of material useful to 
Macintosh programmers. To get on to America Online, you need to 
buy a starter kit from any convenient source. The starter kit includes 
the software you need to run to access America Online; you can't 
access it from a general-purpose communications program. 
Call 800/227-6364 for more information about America Online. 



344 IJJi- Appendix C : Support for Macintosh Programmers 

CompuServe-CompuServe's forum for Macintosh developers is called 
MACDEV. To join CompuServe, buy a starter kit at your favorite 
computer store and follow the instructions that come with it. You can 
call 800/848-3199 for more information. Once you've logged on to 
CompuServe, you can go to MACDEV by typing GO MACDEV (followed 
by Return) at the system prompt. 

GEnie-GEnie's forum for Macintosh developers is called MACPRO. 
To join GEnie, place a modem call to 800/638-8369 at 300, 1200, or 2400 
baud (half duplex). (For voice information, call 800/638-9636.) When 
you connect, type HHH and wait for the U#= prompt; when you see it, 
type XTX9 9 4 9 6, GENIE followed by Return and GEnie will guide you 
through the rest of the sign-up process. Once you're a member of 
GEnie, you can access MACPRO by typing MACPRO at the prompt for 
the opening menu on the system . 

..,, Acquiring Apple Development Tools 
Most of Apple's development tools are available only by mail order from 
Apple's Apple Programmers and Developers Association (APDA) group. 
APDA also carries a great number of popular tools from third-party 
vendors. For information, contact: 

APDA 
Apple Computer, Inc. 
20525 Mariani A venue, MS: 33-G 
Cupertino, CA 95014-6299 
Telephone: 800/282-2732 (U.S.A.) 
Telephone: 800/637-0029 (Canada) 
Telephone: 408/562-3910 (international) 
AppleLink: APDA 



Appendix D 

Bibliography for Macintosh 
Programmers 

This appendix contains lists of useful books and magazines for Macintosh 
programmers. 

llJii> Encyclopedic References 
Apple Computer, Inc. Designing Cards and Drivers for the Macintosh Family, 
Second Edition. Reading, Mass.: Addison-Wesley, 1990. This book explains 
how to write drivers and firmware for a peripheral device attached to a 
Macintosh through a processor direct slot or a NuBus slot. 

Apple Computer, Inc. Guide to the Macintosh Family Hardware, Second 
Edition. Reading, Mass.: Addison-Wesley, 1990. This book contains com
prehensive information on all Macintosh computers up to the Macintosh 
Ilfx. (Information on each model introduced since then is generally avail
able from the Apple Programmers and Developers Association.) 

Apple Computer, Inc. Inside Macintosh, Volumes I, II, and III. Reading, 
Mass.: Addison-Wesley, 1985. Inside Macintosh is the definitive reference 
to the Macintosh toolbox and Macintosh system software. You cannot 
survive without it if you are writing software for the Macintosh. 

Apple Computer, Inc. Inside Macintosh, Volume IV. Reading, Mass.: 
Addison-Wesley, 1986. This volume covers extensions made to the 
Macintosh toolbox to support the Macintosh Plus. 

Apple Computer, Inc. Inside Macintosh, Volume V. Reading, Mass.: 
Addison-Wesley, 1988. This volume covers extensions made to the Macin
tosh toolbox to support the Macintosh SE and Macintosh II computers. 

345 



346 ~ Appendix D : Bibliography for Macintosh Programmers 

Apple Computer, Inc. Inside Macintosh, Volume VI. Reading, Mass.: 
Addison-Wesley, 1991. This volume is a comprehensive reference to pro
gramming for System 7. 

Apple Computer, Inc. Inside the Macintosh Communications Toolbox. 
Reading, Mass.: Addison-Wesley, 1991. This book is the definitive reference 
to System 7's Communications Toolbox. 

~ Tutorials 
Chernicoff, Stephen. Macintosh Revealed, Volume One: Unlocking the Toolbox, 
Second Edition. Indianapolis: Hayden, 1988. This great book deserves to be 
in every programmer's library. It covers the most important toolbox 
concepts and explains them in understandable terms. 

Chernicoff, Stephen. Macintosh Revealed, Volume Two: Programming With 
the Toolbox, Second Edition. Indianapolis: Hayden, 1987. This book is a 
tutorial on some of the most common toolbox managers on the Macintosh. 

Huxham, Fred A.; Burnard, David; and Takatsuka, Jim. Using the 
Macintosh Toolbox With C, Second Edition. Alameda, Calif.: Sybex, 1989. This 
book shows how to use the C programming language to access many of 
the most common Macintosh toolbox routines. 

Mark, Dave, and Reed, Cartwright. Macintosh C Programming Primer, 
Volume I: Inside the Toolbox Using THINK C. Reading, Mass.: Addison
Wesley, 1989. This is an excellent introduction to toolbox programming. 
Examples are given in the THINK C language. 

Mark, Dave, and Reed, Cartwright. Macintosh Pascal Programming 
Primer, Volume I: Inside the Toolbox Using THINK Pascal. Reading, Mass.: 
Addison-Wesley, 1990. This book is the THINK Pascal adaptation of the 
previous book. 

Mark, Dave. Macintosh C Programming Primer, Volume II: Mastering the 
Toolbox Using THINK C. Reading, Mass.: Addison-Wesley, 1990. This book 
maintains the spirit of Volume I and explains how to use more toolbox 
managers, notably Color QuickDraw and TextEdit. It also contains an 
introduction to object-oriented programming. 

~ Debugging and Resource Editing 
Alley, Peter, and Strange, Carolyn. ResEdit Complete. Reading, Mass.: 
Addison-Wesley, 1991. This book is chock full of all sorts of interesting 
information on how to use ResEdit effectively. It comes with the ResEdit 
software. 



~ Specific Languages and Environments 347 

Apple Computer, Inc. MacsBug Reference and Debugging Guide. Reading, 
Mass.: Addison-Wesley, 1991. This is Apple's official reference for the 
MacsBug debugger. It also contains a great deal of useful information on 
how to debug Macintosh applications. Editions of the book are available 
with and without the MacsBug software. 

Apple Computer, Inc. ResEdit Reference for ResEdit version 2.1. Reading, 
Mass.: Addison-Wesley, 1991. This is Apple's official reference for the 
ResEdit resource editor. Editions of the book are available with and 
without the ResEdit software. 

Knaster, Scott. How to Write Macintosh Software. Indianapolis: Hayden, 
1988. This book is an invaluable source of debugging information for 
Macintosh programmers. Get it if you really want to know what's going 
on underneath the hood of the Macintosh. 

Knaster, Scott. Macintosh Programming Secrets. Reading, Mass.: Addison
Wesley, 1988. This follow-up to How to Write Macintosh Software is not quite 
as generally useful, but it contains all sorts of interesting information 
about the inner workings of various toolbox managers . 

.,. Advanced Programming 
Chernicoff, Stephen. Macintosh Revealed, Volume Four: Expanding the Toolbox. 
Indianapolis: Hayden, 1990. This latest volume in the Macintosh Revealed 
series covers such topics as MultiFinder, programming in color, and 
styled TextEdit. 

Chernicoff, Stephen. Macintosh Revealed, Volume Three: Mastering the 
Toolbox. Indianapolis: Hayden, 1989. This book covers toolbox 
customization techniques, device drivers, the Print Manager, the Sound 
Manager, and how to write desk accessories . 

.,. Specific Languages and Environments 
Andrews, Mark. Programmer's Guide to MPW, Volume I. Reading, Mass.: 
Addison-Wesley, 1991. This book is indispensable if you're programming 
in the Macintosh Programmer's Workshop environment. It provides a 
great deal of tutorial material that you won't find in Apple's MPW 
documentation. 

Weston, Dan. Elements of C++ Macintosh Programming. Reading, Mass.: 
Addison-Wesley, 1990. This is currently the only book that teaches the 
C++ programming language from the point of view of a Macintosh 
programmer. 



348 ..., Appendix D : Bibliography for Macintosh Programmers 

Wilson, Dave; Rosenstein, Larry; and Shafer, Dan. Programming with 
MacApp. Reading, Mass.: Addison-Wesley, 1990. MacApp is Apple's ob
ject-oriented application framework. This book carefully explains how to 
write applications with MacApp and provides examples in the MPW 
Object Pascal language. 

__ . C++ Programming with MacApp. Reading, Mass.: Addison-Wesley, 
1990. This book is similar to the previous book except that the program
ming examples are in the MPW C++ language. 

~ Magazines 
develop, Apple Computer, Inc., 20525 Mariani Avenue, MS: 33-G, Cupertino, 
CA 95014 (telephone: 408/282-2732). This journal for programmers is 
published by Apple, and comes out four times per year. 

MacTutor, 1250 North Lakeview, #0, Anaheim, CA 92807 (telephone: 
714/777-1255). MacTutor has been an invaluable monthly source of 
Macintosh programming material since 1984. The MacTutor people also sell 
Best of MacTutor books which are collections of articles that have appeared 
in back issues of MacTutor. 



Index 

A 
AS World, 88, 90 
AcceptHighLevelEvent, 127 
acceptSuspendResumeEvents flag, 

336 
AddResource, 63 
ADSP, 119 
AEAddressDesc record, 129 
AECountltems, 136-137 
AECreateAppleEvent, 145-146, 148 
AECreateDesc, 145-146 
AECreateList, 148-149 
AEDesc record, 128-131 
AEDescList record, 129 
AEDisposeDesc, 136, 137 
AEGetAttributeDesc, 136 
AEGetAttributePtr, 136, 138-139 
AEGetNthDesc, 136-137 
AEGetNthPtr, 136-137, 144 
AEGetParamDesc, 133-134, 144 
AEGetParamPtr, 135-136 
AEinstallEventHandler, 11, 

131-132 
AEinteractWithUser, 139-140 

idle procedure, 141-142 
AEKeyDesc record, 128-131 

AEProcessAppleEvent, 11, 127, 132 
AEPutDesc, 148-149 
AEPutParamDesc, 147-148 
AEPutParamPtr, 147-148 
AESend, 140, 149-152 

filter procedure, 152 
idle procedure, 151-152 

AESetlnteractionAllowed, 139-141 
AESizeOfAttribute, 138 
AESizeOfNthltem, 138 
AESizeOfParam, 138 
Alias 

file, 2, 60, 62-65 
preserving, 62 
record, 43, 60-65 
resolving, 60, 61 
resource type, 61 

Alias Manager, 43 
'alis'resource,61,63 
Allocate, 48 
APDA,344 
AppendMenu, 

Help menu and, 288 
Apple Event Interprocess 

Messaging Protocol, 115, 120, 
127-128 

349 



350 ~ Index 

Apple Event Registry, 128, 130 
Apple events, 3, 115-159 

adding parameters, 147-148 
attributes, 130-131 
core, 128 
custom, 128 
data structures, 128-131 
descriptor lists, 136-137, 148-149 
descriptor types, 129-130 
direct parameter, 130 
Edition Manager and, 176, 177, 

191, 198, 199-204 
cancel section, 201 
read section, 201-203 
sample code, 205-210 
scroll section, 203 
write section, 203-204 

error handling, 133, 142-143, 
152-153 

extracting parameters, 133-137 
functional-area, 128 
handlers, 132-133 
interaction preferences, 150 
missing descriptor, 138-139 
open application event, 106, 143 
open documents event, 143-144 
parameters, 130-131 
print documents event, 143 
quit event, 143 
receiving, 131-144 
reply modes, 150 
required, 127, 128, 143-144 
return receipt, 146 
sending, 145-158 
sizes of data, 137-138 
transaction ID, 147 
type coercion, 134-135 
user interaction, 139-141 

AppleEvent record, 128-131 
Apple Menu Items folder, 58 
Apple Sound Chip, 8 

ApplicationlsRunning routine, 
122-123 

AssociateSection, 177-178 
Attribute, Apple event, 130-131 

B 
Background application, 90-92 
Background processing, 92-98 
backgroundAndForeground flag, 

337 
Balloon help, 1 

alerts and, 290-295, 299-300 
application icons and, 318-320 
definition, 277 
dialogs and, 290-295, 299-300 
documents and, 320-322 
dynamic menu items and, 

285-287 
sample code, 286-287 

examples,279,281,284 
Help menu and, 287-290 
menu items and, 282-287 
menus and, 282-285 
'PICT' resource and, 285 
'STR' resource and, 285 
'STR#' resource and, 284 
techniques for adding, 279-280, 

284-285 
'TEXT' resource and, 285 
turning on or off, 296-297 
variants, 303 
windows and, 297-299, 300-305 

Balloon Writer, 281-282 
Bibliography, 345-348 
'BNDL' resource, 308, 311, 314-315 

Finder and, 315, 323 
sample Rez source, 314-315 

Borders, 166 
drawing, 166-167 
hiding, 166 
publisher, 166 



sample code, 166-167 
showing,166 
subscriber, 166 

breakProc,228,235,239 
sample code, 235 
writing, 235 

Bundle resource, see 'BNDL' 
resource 

c 
cacheProc,228,236,239 

writing, 236 
canBackground flag, 97, 336-337 
Cancel section Apple event, 201 

sample code, 205-206 
OnfoPBRec record, 51-53 
clikLoopProc,228,236,239 

writing, 236-237 
CloseDeskAcc, 12 
CloseEdition, 203 
CloseWindow, 12 
Closing editions, 184, 203 

sample code 188 
CMActivate, 243 
CMBreak, 235 
CMChoose, 219, 250-251, 252 
CMClose, 224-225 
CMDispose, 225 
CMEvent, 242-243 
CMGetConfig, 253, 254 
CMGetConnEnvirons, 233 
CMGetlndToolName, 217-218, 219 
CMGetProdD, 217 
CMGetRefCon, 219 
CMGetUserData, 219 
CMNew, 214, 218-219 
CMOpen, 219-220 
CMRead, 223-224, 240 
CMResume,245 
CMSetConfig,219,253-254 
CMSetRefCon,219 

Ill> Index 351 

CMSetUserData, 219 
CMStatus,220,222,223,224 
CMWrite, 220-222, 233, 234 
Comments, 

custom save file dialog and, 328 
Finder and, 323-328 
reading, 324-326 
writing, 326-328 

Communications Toolbox, 4 
Communications Resource 

Manager, 212 
Communications Toolbox 

Utilities, 212 
configuring, 245 
Connection Manager, 212 
File Transfer Manager, 212 
initializing, 213 
managers, 212 
TerminalManager,212 

ConcatString routine, 13 
Connection tools, 

configuring, 250-254 
determining name of, 217-218 
sample code, 255, 256 

ConnEnvironRec, 231-232 
ConnRecord, 214-217 

creating,214,218 
disposing, 225 

Control Panels folder, 58 
Cooperative multitasking, 87-113 
CountAppFiles, 12 
CountMitems, 

Help menu and, 288 
CreateEditionContainerFile, 180, 

181-182, 183, 204 
Creating editions, 181-182 

sample code, 185-188 
Creator type, 313 

registering your own, 313 
CRLF routine, 12, 111 
CRMGetlndToolName, 217-218, 

231,238 



352 .- Index 

CSParam record, 51-53 
CustomGetFile, 65, 70-73 

dialog-hook procedure, 75-77, 
81-83 

how to use, 78-83 
CustomPutFile, 45, 74-75 

dialog-hook procedure, 75-77 
how to use, 83-86 

D 
Data Access Manager, 4-5 
DeleteEditionContainerFile, 195 
DeRez tool, 153, 330 
Descriptor record, see AEDesc 
Descriptor types (Apple events), 

129-130 
Desktop database, 121, 323 

reading file comments from, 
324-326 

rebuilding, 315 
writing file comments to, 

326-328 
Desktop Folder, 59 
Dialog-hook procedure, 75-77, 

81-83 
Direct parameter, Apple event, 130 
DisposeWindow, 12 
DoAddHMitems routine, 289 
DoCancelEdition routine, 205-206 
DoCloseConnection routine, 256 
DoCreatePublisher routine, 

185-187 
DoCreateSubscriber routine, 

192-193 
DoEditionsAEinstall routine, 204 
doesActivateOnFGSwitch flag, 337 
DoGetPubContents routine, 188 
DoGetTextPreview routine, 188 
DoHandleHit routine, 271-273 
Doldle routine, 304-305 
DoLongTask routine, 94-97 
DoNotify routine, 102-103 

dontGetFrontClicks flag, 337 
DoNudgeFontSize routine, 264 
DoOpenConnection routine, 256 
DoReadContents routine, 207-208 
DoReadEdition routine, 206-207 
DoScrollEdition routine, 208-209 
DoTransfer routine, 104 
DoWriteContents routine, 187-188 
DoWriteEdition routine, 209-210 
Dragging documents onto 

application icon, 312-315 
DrawOneBorder routine, 167 
DTPBRec record, 325, 326 

E 
Edition Manager, 3 
Editions, 162 

borders, 166 
drawing, 166-167 
hiding, 166 
publisher, 166 
sample code, 166-167 
showing,166 
subscriber, 166 

closing, 184, 188, 203 
creating, 181-182 

sample code, 185-188 
opening, 182-183, 201-202 
publishers, 

automatic update mode, 194 
borders, 166 
canceling, 195, 201 
creating, 165, 178 
definition, 163 
forcing immediate update, 

194 
manual update mode, 194 
opening, 182 
options, 165, 193-196 
previews, 181 
writing contents of, 183-184, 

185-188 



related menu items, 164-166 
subscribers, 

automatic update mode, 196 
borders, 166 
canceling, 197-198, 201 
creating, 165 
definition, 163 
forcing immediate update, 

196,198 
manual update mode, 196 
opening, 201-202 
options, 165, 196-199 
previews, 189 
reading contents of, 191, 198, 

201 
stopping editions, 166 

EditionContainerSpec record, 179 
EditionlnfoRecord, 198-199 
Environs,6 
environsProc,228,231,232,239 

sample code, 233 
writing, 232-233 

Event mask, 95 
Event record, 93 
Extensions folder, 58 

F 
File Manager, 3, 43-86 

low-level routines, 51 
File system specification record, 

seeFSSpec 
File types, supporting foreign, 312, 

314,315 
Files 

loading, 48-49 
saving, 49-50 

Finder, 87-88 
"application not found" and, 

320-323 
Balloon Help and, 318-322 

IJJiii- Index 353 

'BNDL' resource and, 315, 323 
comments and, 323-328 
icons, 308-311 
message string resources and, 

320-323 
name string resources and, 

320-323 
'vers' resource and, 316-317 

FindFolder, 59, 63 
Flnforecord,46-7 
Folders 

special, 57-60 
locating, 59 

Font size selection, 266-268 
Foreground application, 90-92 
'FREF'resource,311,314 

'"'"'"'"" and, 312 
'disk' and, 312 
'fold' and, 312 
foreign documents and, 312 
sample Rez source, 312 

FSClose, 48, 50 
FSpCatMove, 45 
FSpCreate,45,50 
FSpCreateResFile, 45, 63 
FSpDelete, 45, 47, 50 
FSpDirCreate, 45 
FSpExchangeFiles, 62 
FSpGetFinfo, 46, 48 
FSpC>penDF,47,48,50 
FSpC>penResFile, 47, 63 
FSpOpenRF, 47 
FSpRename, 47 
FSpRstFLock,47,50 
FSpSetFinfo,48,50 
FSpSetFLock, 48 
FSRead,48 
FSSpec,3,4,12,43,60 

definition, 44 
routines that use, 44-48 

FSWrite, 48, 50 



354 liJJ. Index 

G 
Gestalt, 6-10, 41 

response values, 7-8 
selectors, 6-7 

_ GestaltDispatch, 8 
GetAppFiles, 12 
GetAPPLNames routine, 56-57 
GetCaretTime, 94 
GetCurrentProcess, 108 
GetEditionlnfo, 198 
GetEOF,48 
GetFNum, 262-263 
GetFPos,48 
GetFrontProcess, 108 
GetltemMark, 201 
GetLastEditionContainerUsed, 

186, 190-191 
sample code, 186, 192 
GetMHandle, 
Help menu and, 288 
GetNextEvent, 11 

GetNextProcess, 109, 111, 121 
GetOutlinePreferred, 261 
GetPreserveGlyph, 275 
GetProcesslnformation, 109, 111, 

121 
GetStylScrap, 268, 269 
Glyph,259 
GoToPublisherSection, 199 

H 
'hdlg' resource, 291-295 

sample code, 292-293 
heap,88 
Help Manager 

resource definitions, 330 
Help menu, 

adding items to, 287-290 
AppendMenu and, 288 
CountMitems and, 288 
GetMHandle and, 288 

HMGetHelpMenuHandle and, 
288 

MenuKey and, 288 
MenuSelect and, 288 
sample code, 289-290 

'hfdr' resource, 319-320 
sample Rez source, 319-320 

high-level events, 115, 119-127 
HMGetBalloons, 296, 301 
HMGetDialogReslD, 300 
HMGetHelpMenuHandle 

Help menu and, 288 
HMMessageRecord, 301-303 
'hmnu' resource, 282-283 

sample code, 283 
HMPictltem example, 285 
HMRemoveBalloon,301,302 
HMSetBalloons, 296 
HMSetDialogReslD, 300 
HMSho"W"Balloon,301,303 
HMStringResltem example, 284 
HMSTRResltem example, 285 
HMTEResltem example, 285 
'hrct' resource, 295-296 

sample code, 296 
'h"W"in' resource, 297-300 

sample code, 298· 299 

Icon family, 308-310 
bundles and, 314 
custom,311 
editing, 309-310 
'icl4' resource and, 308 
'icl8' resource and, 308 
'ICN#' resource and, 308 
'ics#' resource and, 308 
'ics4' resource and, 308 
'ics8' resource and, 308 
stationery pad files and, 310, 311 

kons,2 



idleProc, 229 
ignoreAppDiedEvents flag, 337 
InitCM,213 
InitCRM,213 
InitCTBUtilities, 213 
InitEditionPack, 161 
InitFf, 213 
InitTM,213 
is32BitCompatible flag, 106, 337 
isAlias (Finder flag), 63 · 
isHighLevelEventAware flag, 3, 

12, 115,337 
IsRegisteredSection, 200 
isStationery (Finder flag), 48, 50, 67 
isStationeryAware flag, 3, 67, 338 

K 
Keyword-specified descriptor 

record, see AEKeyDesc 
kHighLevelEvent, 11 

L 
LaunchApplication, 103-106, 

121-122 
Launching applications, 103-106 
LaunchMy Application routine, 

122-123 
LaunchParamBlockRec record, 

104-106 
LoadSectionFromFork routine, 

173-175 
localAndRemoteHLEvents flag, 

115,119,335,337-338 
LocationNameRec record, 120-121, 

123 

M 
Macintosh Programmer's 

\'Vorkshop,10,329-330 
Major switch, 91 
MakeAlias routine, 63-64 
MatchAlias, 61 
Memory map, 88-90 

• 

..,. Index 355 

MenuKey, 
Help menu and, 288 

Menus, 
Balloon Help and, 282-285, 

287-290 
Edition Manager and, 164-166 
TrueType fonts and, 263 

MenuSelect, 
Help menu and, 288 

Message string resource, 320-322 
'PICT' files and, 323 
sample Rez source, 322 
'TEXT' files and, 323 

Minor switch, 92 
Mouse region, 98, 141 
MultiFinder, 87-88 

N 
Name string resource, 320-322 

'PICT' files and, 323 
sample Rez source, 322 
'TEXT' files and, 323 

NewAlias,60-61,63 
NewPublisherDialog, 179-180, 183 
NewPublisherReply record, 

179-181, 183 
NewSection, 169-170, 176, 177, 191, 

204 
NewSubscriberDialog, 189, 191 
NewSubscriberReply record, 

189-190 
NMinstall, 99-101, 103, 140 
NMRec record, 99 
NMRemove, 101, 103 
Notification Manager, 98-103 

0 
OpenDoc routine, 48-49 
OpenEdition, 201-202 
OpenNewEdition, 182-183 

sample code, 185-188 
OutlineMetrics,276 



356 IJJ> Index 

p 
Parameters, Apple event, 130-131 

direct parameter, 130 
Partition sizes, 89-90, 335, 339 
PBCatSearch, 3, 51-57 
PBDTGetAPPL, 121 
PBDTGetComment, 324, 325-326, 

327 
PBDTGetPath, 324, 325 
PBDTSetComment, 324, 326, 327 
permission (for files), 47, 48 
Pop-up menu, 79-81 
PortinfoRec record, 120-121, 123 
PostHighLevelEvent, 119-120, 126 
PPC Toolbox, 119 
PPCBrowser, 123-125, 145 

filter procedure, 125-126 
PPCPortRec record, 120-121 
Preferences folder, 43, 59 
Previews, 

publisher, 181 
subcriber, 189 

PrintHex routine, 12 
PrintMonitor Documents folder, 58 
PrintOSTyperoutine,12 
PrintString routine, 12 
Process information, 108-112 
Process Manager, 4, 88 
Process serial number, 108, 120 
ProcesslnfoRec record, 109-111 
Program linking, 3, 118-119 
'prvw' resource, 181 

reading, 189 
pStringCopyroutine,13 
Publishers, 

borders, 166 
canceling, 195, 201 
creating, 165, 178 

sample code, 185-188 
definition,163 
forcing immediate update, 194 
opening,182 

options, 165, 193-196 
previews, 181 
update modes, 

automatic, 194 
manual, 194 

writing contents of, 183-184, 
185-188 

Q 
(2uickDra\oV,Color,4 

R 
Read section Apple event, 201-203 

sample code, 206-208 
ReadComment routine, 324-325 
ReadEdition, 189, 202-203 
Rea1Font262,268 
RegisterSection, 176-177, 204 
RequiredCheck routine, 139 
ResEdit, 2, 309-310, 329 
ResolveAlias, 61 
ResolveAliasFile, 65 
Resorcerer, 309, 329 
Resource Manager, 4, 43 
Resume event, 91-92 
Rez tool, 10, 153, 329-334 

s 
SaveCommentroutine,326,327 
SaveDoc routine, 49-50 
SaveSectionToFork routine, 

172-173 
Script system, 45, 48, 68 
scriptTag, 45, 48 
Scroll section Apple event, 203 

sample code, 208-209 
Sectionlnfo record, 171 
building, 173-175 
SectionOptionsDialog, 194, 196 

SectionOptionsReply record, 
194-195, 196, 197 



SectionRecord, 167-169 
sample code, 172-175 

Sections 
Apple events and, 176, 177, 191, 

198, 199-204 
sample code, 205-210 

associating documents with, 177 
canceling, 201 
closing, 203 
closing documents containing, 

176 
definition, 167 
creating new, 169 
loading, 171, 173-175 
managing,170-171 
opening documents containing, 

176 
publisher options, 193-196 
publishing, 183-184 
reading, 201 
registering, 176 
saving, 171-172, 176 
scrolling, 203 
subscriber options, 196-199 
unregistering, 176-177 
writing, 203-204 

sendProc, 228, 233-234, 239 
sample code, 234 
writing, 233-234 

Session ID, 120 
SetA5, 100-101 
SetCurrentAS,100-101 
SetEOF,48 
SetFPos,48 
SetOutlinePreferred, 260-261 
SetPreserveGlyph, 275 
SetStylScrap, 268, 269-270 
SFGetFile, 12 
SFPutFile, 12 
Shared Trash folder, 59 
Sharing files, 118-119 

Ill> Index 357 

Sharing Setup control panel, 
116-117 

Show Alert, 297 
ShowError routine, 12 
ShowFontSize routine, 271 
ShowProcesses routine, 111-112 
'SICN' resource, 98-99 
Signatures, 120, 308, 313, 314 

registering, 313 
sample Rez source, 313 

'SIZE' resource, 110,335-339 
acceptSuspendResumeEvents 

flag,336 
backgroundAndForeground 

flag,337 
canBackground flag, 97, 336-337 
doesActivateOnFGSwitch flag, 

337 
dontGetFrontClicks flag, 337 
ignoreAppDiedEvents flag, 337 
is32BitCompatible flag, 106, 337 
isHighLevelEventAware flag, 3, 

12,115,337 
isStationeryAware flag, 67, 338 
localAndRemoteHLEvents flag, 

115, 119,335,337-338 
partition sizes, 89-90, 335, 339 
useTextEditServices flag, 338 

Skeleton program, 10-13 
source code, 13-40 

Sleep time, 94, 141 
'snd ' resource, 99 
stack, 88 
Standard File, 4, 12, 43, 65-86 
StandardFileReply record, 67, 68 
StandardGetFile, 12, 65, 66, 67-69 

file filtering, 69 
StandardPutFile, 12, 45, 66, 69-70 
Startup Items folder, 58 
Stationery pad, 2-3, 11, 49, 67-68, 83 

file types of, 311-312 



358 ~ Index 

Stopping editions, 166 
Subscribers, 

borders, 166 
canceling, 197-198,201 
creating, 165 

sample code, 191-193 
definition, 163 
forcing immediate update, 196, 

198 
opening, 201-202 
options, 165, 196-199 
previews, 189 
reading contents of, 191, 198, 

201 
update modes, 

automatic, 196 
manual, 196 

support, for programmers, 341-344 
Suspend event, 91-92 
SysEnvirons, 6 
System file, 59 
System Folder, 58 
System7Available routine, 8-9, 11 
T 
TargetID record, 120-121, 123 
TEActivate, 270 
TEDeactivate, 270 
TEFeatureFlag, 273-274 
Templ\1axl\1em, 107 
TempNewHandle, 107 
Temporary folder, 43, 59 
Temporary memory, 90, 106-108 
TENew,274 
TermDataBlock, 230, 240 
Terminal tools, 

configuring, 246-250 
determining name of, 230-231 
sample code, 255 

TermRecord, 225-229, 234, 235, 237, 
239 

creating, 226, 237-239 
disposing, 241-242 

TESetStyle, 265, 268 
TEStylNew, 274 
THINK environments, 10, 329-330 
Tl\1Activate, 243 
Tl\1Choose, 246-247 
Tl\1Click, 237, 244 
Tl\1Dispose, 242 
Tl\1Event, 242-243 
Tl\1GetConfig, 227, 249 
Tl\1GetLine, 241 
Tl\1GetProcID, 230-231, 238 
Tl\1GetRefCon, 227, 239 
Tl\1GetSelect, 240-241 
Tl\1GetUserData, 227, 239 
Tl\1Idle,229 
Tl\1Key,244 
Tl\1New,226,227,228,237-239 
Tl\1Paint, 240 
TMResize, 244 
Tl\1Resume, 245 
Tl\1SetConfig, 227, 249-250 
Tl\1SetRefCon,227,239 
Tl\1SetUserData, 227, 239 
Tl\1Stream, 223, 239-240 
Tl\1Update, 244 
ToolServer, 153-158 
Trash folder, 58-59 
TrueType fonts, 4 

bit-mapped fonts versus, 
260-261 

explained, 259-260, 
related menu items, 263 
special characters and, 275 



u 
UnregisterSection, 177 
Users & Groups control panel, 

117-118 
useTextEditServices flag, 338 

v 
'vers' resource, 316-317 

Finder and, 316-317 
sample Rez source, 316 

Version tracking, 316-317 
Virtual memory, 5 
Volumes 

searching, 51-57 

w 
WaitNextEvent, 11, 93-95, 126 
Write section Apple event, 203-204 

sample code, 209-210 
WriteEdition, 181, 183-184, 204 

.,.. Index 359 



Titles in the Macintosh Inside Out Series 

.- Extending the Macintosh® Toolbox 
Programming Menus, Windows, Dialogs, and More 
John C. May and Judy B. Whittle 
A complete guide to programming the Macintosh interface. 
352 pages, $24.95, paperback, order #57722 

.. Programming QuickDraw™ 
Includes Color QuickDraw and 32-Bit QuickDraw 
David A. Surovell, Fred M. Hall, and Konstantin Othmer 
The first in-depth reference to the Macintosh graphics system. 
352 pages, $24.95, paperback, order #57019 

.. Programming for System 7 
Gary Little and Tim Swihart 
A complete programmer's handbook to the newest version of the Macintosh system software. 
400 pages, $26.95, paperback, order #56770 

.. Programming with AppleTalk® 
Michael Peirce 
An accessible guide to creating applications that run with AppleTalk. 
352 pages, $24.95, paperback, order #57780 

.- The A!UX® 2.0 Handbook 
Jan L. Harrington 
A complete and up-to-date introduction to UNIX on the Macintosh. 
448 pages, $26.95, paperback, order #56784 

.. System 7 Revealed 
Anthony Meadow 
A first look inside the important new Macintosh system software from Apple. 
368 pages, $22.95, paperback, order #55040 

.. ResEdit™ Complete 
Peter Alley and Carolyn Strange 
Contains the popular ResEdit software and complete information on how to use it. 
576 pages, $29.95, book/ disk, order #55075 

.. The Complete Book of HyperTalk® 2 
Dan Shafer 
Practical guide to HyperTalk 2.0 commands, operators, and functions. 
480 pages, $24.95, paperback, order #57082 

.- Programming the LaserWriter® 
David A. Holzgang 
Now Macintosh programmers can unlock the full power of the LaserWriter. 
480 pages, $24.95, paperback, order #57068 

.. Debugging Macintosh® Software with MacsBug 
Includes MacsBug 6.2 
Konstantin Othmer and Jim Straus 
Everything a programmer needs to start debugging Macintosh software. 
576 pages, $34.95, book/ disk, order #57049 



"' Developing Object-Oriented Software for the Macintosh® 
Analysis, Design, and Programming 
Neal Goldstein and Jeff Alger 
An in-depth look at object-oriented programming on the Macintosh. 
352 pages, $24.95, paperback, order #57065 

"' Writing Localizable Software for the Macintosh® 
Daniel R. Carter 
A step-by-step guide which opens up international markets to Macintosh software developers. 
352 pages, $24.95, paperback, order #57013 

"' Programmer's Guide to MPW®, Volume I 
Exploring the Macintosh® Programmer's Workshop 
Mark Andrews 
Essential guide and reference to the standard Macintosh software development system, MPW. 
608 pages, $26.95, paperback, order #57011 

"' Elements of C++ Macintosh® Programming 
Dan Weston 
Teaches the basic elements of C++ programming, concentrating on object-oriented style and syntax. 
512 pages, $22.95, paperback, order #55025 

"' Programming with MacApp® 
David A. Wilson, Larry S. Rosenstein, and Dan Shafer 
Hands-on tutorial on everything you need to know about MacApp. 
576 pages, $24.95, paperback, order #09784 
576 pages, $34.95, book/ disk, order #55062 

"' C++ Programming with MacApp® 
David A. Wilson, Larry S. Rosenstein, and Dan Shafer 
Learn the secrets to unlocking the power of MacApp and C++. 
624 pages, $24.95, paperback, order #57020 
624 pages, $34.95, book/ disk, order #57021 

Order Number Quantity Price Total 

City/State/Zip ________________ _ 

Signature (required) _______________ _ 

TOTAL ORDER _Visa _ MasterCard _AmEx 

Shipping and state sales tax will be added 
automatically. 

Account# ___________ Exp. Date ___ _ 

Credit card orders only please. 

Offer good in USA only. Prices and avail
ability subject to change without notice. 

Addison-Wesley Publishing Company 
Order Department 
Route128 
Reading, MA 01867 
To order by phone, call (617) 944-3700 



Programming for System 7 The Disk 

All the programs and routines listed in this book are available on disk, in 
source code form, directly from the authors. The disk also includes several 
Communications Toolbox tools that have been licensed for redistribution 
from Apple Computer, Inc. 

To order the disk, simply clip or photocopy this entire page and 
complete the coupon below. Enclose a check or money order for $20.00 in 
U.S. funds made payable to Gary Little. (California residents add appli
cable state sales tax.) 

Mail to: · 

Gary Little 
3304 Plateau Drive 
Belmont, CA 94002 

Please send me a copy of the Programming for System 7 disk. I am 
enclosing the amount of $20.00 in U.S. funds, plus applicable California 
state sales tax. 

Your Name: 

Address: 

City:----------- State: __ Zip Code: ___ _ 

Country=-~----



Programming for System 1 
GARY LITTLE 

TIM SWIHART 

System 7, the newest version of the . 
Macintosh® system software, is a 
significant advance in Macintosh 
technology. Every Macintosh 
programmer, from beginner to 
advanced, needs to explore the 
powerful capabilities of this dynamic 
operating system. 

Programming for System 7 is a 
hands-on guide to creating applications 
for System 7 . It describes the new 
features and functions of the operating 
system in detail. Topics covered 
include file operations, cooperative 
multitasking, Balloon Help, Apple 
events, and the File Manager. 
Numerous working C code examples 
show programmers how to take 
advantage of each of these features 
and use them in developing their 
applications. 

You will also learn how to: 
Use the Communications Toolbox 
to add advanced communication 
capabilities to your applications 
Work with bitmapped and 
TrueType fonts 
Use 'hdlg' help resources with 
dialogs and alerts 

Cover design by Ronn Campisi 

Addison-Wesley Publishing Company, Inc. 

Make applications and documents 
work intelligently with the Finder 

and much more. 

In addition, special appendices cover 
the Rez tool and the 'SIZE' resource. 
This thorough coverage of vital System 
7 concepts and features makes 
Programming for System 7 
an essential reference for all 
Macintosh programmers. 

Gary Little is a product 
manager for development 
tools at Apple Computer, Inc. 
He is also the author of Macintosh 
Assembly Language, Exploring the 
Apple JIGS, and Exploring Apple 
GS/OS and ProDOS 8. 

Tim Swihart is a product 
manager at Apple Computer, 
Inc., and was responsible for 
marketing Apple's first release 
of C++. An expert on the MPw® and 
THINK programming environments, 
he has written several articles on 
programming Apple computers. 

9 780201 56 7700 

ISBN 0-201-56770-9 
56770 26§ .. 


