
MICHA EL PE·IRCE

Programming with AppleTalk®

Programming with AppleTalk®

Michael Peirce

• " Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

Peirce, Michael, 1961-
Programming with AppleTalk I Michael Peirce.

p. cm. - (Macintosh inside out)
Includes index.
ISBN 0-201-57780-1
1. Macintosh (Computer)-Programming. 2. AppleTalk. 3. Local

area networks (Computer networks) I. Title. II. Series.
QA76.8.M3P45 1991
005.7'1369-dc20 91-4321

CIP

Copyright© 1991 by Michael Peirce

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

Sponsoring Editor: Rachel Guichard
Technical Reviewer: Peter Helme
Cover Design: Ronn Campisi
Set in 10.5-point Palatino by Total Concept Associates

12 3 45 6 7 8 9-MW-95 9493 92 91

First Printing, August 1991

For Kathleen, the Spud, and the Roo

Contents

Foreword by Scott Knaster xiii

Acknowledgments xv

Introduction xvii

1111- PART ONE Basic Networking on the Macintosh

1. Networking on the Macintosh 3
The Macintosh Communications Environment 3
AppleTalk Networking 4
The AppleTalk Protocol Stack 5

The Physical Layer 6
The Data Link Layer 7
The Network Layer 7
The Transport Layer 7
The Session Layer 7
The Presentation Layer 8
The Application Layer 8

Summary 8

2. AppleTalk Programming Issues 9
Using the Various AppleTalk Protocols 9

Link Access Protocols 10
Datagram Delivery Protocol 10

vii

viii ..,. Contents

Routing Table Maintenance Protocol 11
AppleTalk Echo Protocol 11
AppleTalk Transaction Protocol 11
Name Binding Protocol 12
Zone Information Protocol 12
AppleTalk Session Protocol 12
Printer Access Protocol 13
AppleTalk Data Stream Protocol 13
AppleTalk Filing Protocol 13

Internetworking 13
Repeaters 14
Routers 14
Gateways 15

The Preferred AppleTalk Interface 15
AppleTalk Transport Media 16

LocalTalk 16
Ethernet 17
Token Ring 18

Summary 18

..,. PART TWO A Practical Guide to AppleTalk Programming 21

3. Synchronous and Asynchronous Operations 23
Using Synchronous Calls 23
Using Asynchronous Calls 24

Polling for Completion of Asynchronous Calls 24
Using Completion Routines with Asynchronous Calls 29

Summary 33

4. AppleTalk Memory Management 35
Using Parameter Blocks with Synchronous Calls 35
Using Parameter Blocks with Asynchronous Calls 37

Parameter Block Integrity 37
Reuse of Parameter Blocks 38

Other Types of AppleTalk Storage 38
Additional AppleTalk Storage Management Considerations 39
Avoiding Heap Fragmentation 39
Non-Application Storage Management 40
Summary 42

5. Name Binding Protocol 43
Network Addresses 43
NBPNames 45

Wildcards in NBP Names 46
Using Name Binding Protocol 47

Registering a Name on the Network 47
Looking Up a Name on the Network 48
Confirming a Name on the Network 49

..., Contents ix

Detailed Descriptions of Important NBP Routines 50
PRegisterName 50
PLookupName 52
NBPSetEntity 53
NBPSetNTE 53
NBPExtract 54
NBPRemove 54
PConfirm 55

Summary 56

6. Zone Information Protocol 57
Using ZIP in Phase 1 AppleTalk Networks 58

Getting the Local Zone Name 58
Getting the Zone List 59

Using ZIP in Phase 2 AppleTalk Networks 61
Getting the Local Zone Name 62
Getting the Zone List 64
Getting the List of Local Zones 66

Detailed Descriptions of Important ZIP Routines 66
GetMyZone 67
GetZoneList 68
GetLocalZones 69

Summary 71

7. AppleTalk Transaction Protocol 73
The Mechanics of ATP Transactions 74
The Buffer Data Structure 77
Using AppleTalk Transaction Protocol 78

Making a Request 78
Using PNSendRequest Rather than PSendRequest 81
Receiving a Request 81
Sending a Response 82
Aborting ATP Calls 83

x ~ Contents

Detailed Descriptions of Important ATP Routines 84
PSendRequest 84
PNSendRequest 86
PGetRequest 88
PSendResponse 89
POpenATPSocket 90
PCloseATPSocket 91
PKillSendRequest 92
PKillGetRequest 92

Summary 93

8. AppleTalk Data Stream Protocol 95
ADSP Connections 95

Making an ADSP Connection 96
Using a Connection Listener to Open a Session 101

Sending Data Over a Connection 104
How ADSP Decides When to Transmit Data 106

The Structure of the Data Stream 106
Using dspRead and dspWrite 107
Using dspStatus 109
Attention Messages 109
Detailed Descriptions of Important ADSP Routines 111

dsplnit 111
dspOptions 112
dspOpen 114
dspNewCID 121
dspClose 122
dspCLinit 123
dspCLListen 124
dspCLDeny 125
dspCLRemove 127
dspStatus 128
dsp Write 129
dspRead 130
dspAttention 132
dspReset 133

Summary 134

9. Miscellaneous AppleTalk Interfaces 135
Opening the AppleTalk Drivers 135

Opening the .MPP Driver 135
Opening the .XPP Driver 136
Opening the .DSP driver 137

PSelfSend 137
PGetAppleTalklnfo 138

..,. Contents xi

IsSelfSendOn routine using PGetAppleTalklnfo 141
AreWeAServer routine using PGetAppleTalklnfo 142
GetNetRange using PGetAppleTalklnfo 143
GetOurAddr using PGetAppleTalklnfo 144
GetRouterAddr using PGetAppleTalklnfo 145
GetMaxs using PGetAppleTalklnfo 146

The Transition Queue 147
Inserting an Entry into the Transition Queue 148
The Transition Handling Routine 149

The Chooser 151
The Chooser User Interface 151
Basic Operation of a Chooser Interface 151
Configuring a Chooser Interface 155

Summary 160

..,. PART THREE AppleTalk Programming Examples 161

10. NameTool: An AppleTalk MPW Tool for Using NBP Lookups 163
Goals for NameTool 163
How to Use NameTool 164

The Help Option 164
The Zone, Name, and Type Options 164
The Interval and Timeout Options 165

General Comments About NameTool 165
Sample of the NameTool Output 166
The Structure of NameTool 167

The Header Section of NameTool 168
The General Routines 170
The AppleTalk Routines 173
The Main Routine 187

Summary 189

11. RemoteSyslnfo: An RDEV/INIT Example Program 191
Goals for RemoteSyslnfo 191
How to Use RemoteSyslnfo 192
The Structure of RemoteSyslnfo 193

The Source Code Structure of RemoteSyslnfo 194
The Common Unit 195
The Example !NIT 198

xii ~ Contents

The Resident Code 204
The RDEV Code 209

Summary 214

12. Checkers: An ADSP Example Program 215
Goals for Checkers 216
How to Use Checkers 216
General Comments about Checkers 216
The Structure of the Checkers Player Objects 217
Tour of the Players' Class Hierarchy 219

The T AsyncOp Class 219
The T ADSP Abstract Class 224
The TPlayer Abstract Class 230
The T ActivePlayer and TPassivePlayer Classes 242

Summary 247

Index 249

Foreword by Scott Knaster

What a difference "always" makes! Folks who make personal computers
offer lots of options for their buyers: different kinds of monitors, graphics
cards, printers, keyboards, disk drives, and so on. This provides great
flexibility for customers. They can figure out exactly what they need and
they don't have to spend money on stuff that doesn't fit their require­
ments.

Usually, though, computer technology goes faster than the ability of
people to learn about it. Neat new Things are invented before computer
buyers can understand what they're good for. In cases like this, most
buyers won't be interested in the new, unfamiliar Thing, because they
can't see why it's useful to them. When nobody buys the new Thing,
software developers are reluctant to write software that takes advantage
of it. That's a vicious circle: Nobody buys it, so nobody writes software
for it, so nobody buys it.

How do you break the circle? The boldest way is by building the Thing
into the computer in the first place. Steve Jobs and the folks who made the
Macintosh understood this principle and were willing to take the risks
that it forces. The Macintosh designers believed in the mouse and
bitmapped graphics as fundamental parts of the computer, so they made
sure that nobody could ever get a Macintosh without those vital pieces.

Note that building breakthrough features into a computer isn't always
an obvious, easy win. Every little feature that's added to a computer costs
money and makes the retail price go up, which causes a few more people
to think twice (or change their minds) about buying the computer. Build­
ing in breakthroughs is not a strategy for the timid.

xiii

xiv ~ Foreword

One of the Macintosh's niftiest built-in breakthroughs was the Apple Talk
network system and the LocalTalk connector on the back (originally, both
the network and the wire were called AppleTalk). For the first time, com­
puter buyers didn't have to think about whether they wanted to spend
extra money to hook their computers together (which is a good thing,
because there wasn't much for them to do after they were hooked together
way back in 1984).

Once Apple broke the spell by shipping the Macintosh, a computer
which included built-in network hardware and software, the vicious circle
started to collapse. Helped by the LaserWriter' s success, smart folks started
adding goodies like file servers and electronic mail to the network. As the
state of the art progressed, connections between networks appeared, as
well as faster transport systems for heavy-duty applications.

Today, the network brings us file sharing, program linking, and other
magic. In this book, Michael Peirce shows you how you can take advan­
tage of this doorway to the world that's inside every Macintosh. Michael
gives you access to his years of experience in exploring the AppleTalk
connections between Macintoshes. If you supply the creative spark, you
can use Michael's wise guidance to help you follow the Macintosh's net­
working vision.

Scott Knaster
Macintosh Inside Out Series Editor

Acknowledgments

Writing a book is a big job and there is no way I could have finished this
book without the support of many folks.

My most important supporter is my wonderful wife Kathleen. Without
her support, this project would have never taken place. Thank you,
Kathleen, for believing in me and sharing my dreams.

An important catalyst for this book was Tony Meadow. It was over
pasta at Florentine's that this book first took shape. Thank you Tony for
putting me in touch with the good people at Addison-Wesley.

The people at Addison-Wesley have been a pleasure to work with.
Their professionalism and drive to make this the best book possible is
appreciated. Rachel Guichard got the ball rolling and took care of so
many details. Joanne Clapp Fullagar provided much needed advice,
guidance, and editing. Valerie Haynes Perry did such a great job of copy
editing that this book may now be readable, and Kathy Traynor was able
to take things from mere words and make it a real book.

Another important person was Pete Helme from Apple Computer who
provided value technical feedback and caught many a subtle gaffe on my
part.

I'd also like to thank Apple Computer for sneaking such a great net­
working system into such a little box.

And of course, I must thank my cats, Sushi and Schnitzel, for keeping
my lap warm and entertaining me as I wrote this book.

xv

Introduction

This book is about writing programs that use AppleTalk, the networking
system built into every Macintosh computer made by Apple Computer.
Because AppleTalk is built-in, programmers can rely on it for program­
to-program communication over a network in the same way they can rely
on QuickDraw to handle their graphics needs .

...., Who This Book Is For

This book is for programmers who want to learn to use AppleTalk in their
programs written for the Macintosh. It assumes an understanding of
programming the Macintosh, though not necessarily any previous network
programming experience.

Programmers reading this book should be familiar with Pascal. The
examples used in this book were written using the MPW Pascal compiler
from Apple Computer and have been compiled using MPW Pascal version
3.1. The examples also work with little or no modification with THINK
Pascal from Symantec. However, extensive knowledge of Pascal is not
required; the Pascal code found in this book is easily transliterated into
other similar languages such as C or Modula 2.

This book focuses on the AppleTalk protocols that are most practical
for use with Macintosh application programs. The protocols that allow
you to find network entities and easily transfer data back and forth over
the network are covered in a fair amount of detail. Other protocols that
are for special purposes not of general interest to the application pro­
grammer are briefly described, but not covered in detail.

xvii

xviii .,.. Introduction

This books also covers a number of network related areas. How to build
a Chooser-based interface is discussed, as is the construction of a resident
INIT. Topics such as completion routines and the use of synchronous and
asynchronous device calls that are important to AppleTalk programming
can also be applied to non-AppleTalk-related programming .

...,. Who This Book Is Not For
This book is not for those who are trying to write their own implementa­
tion of the AppleTalk protocols. It assumes that the reader will be using
the standard programming interfaces provided by Apple for the Macintosh
computer. People who are interested in these low-level protocol issues
are referred to Inside AppleTalk, published by Addison-Wesley. It provides
a detailed description of exactly how all the protocols operate at a fun­
damental level.

This book is also not specifically for those trying to set up and maintain
an AppleTalk network. Although this book may provide some insight
that can be helpful in administering a network, this book is not about
AppleTalk network management.

...,. Organization of This Book
Programming with AppleTalk book is organized into three parts. The first
part provides an introduction to the AppleTalk system and how its pieces
fit together. It also details each protocol found in AppleTalk and discusses
why you may or may not want to use that protocol in your own programs.

The second part digs into the details of using AppleTalk. Various
techniques are discussed and issues explored that are important when
designing your AppleTalk-based programs.

Each of the major protocols used by application programs is discussed
in detail in the second part. Each call in those protocols is explained and
you are shown how to use the calls. Detailed, field-by-field explanations
of each of the important calls found in the protocols are also included in
this part.

The final part of the book is an in-depth discussion of three working
programs-NameTool, Remote Syslnfo, and Checkers-that use
Apple Talk. Although very different types of programs, they each illustrate
important aspects of AppleTalk programming. They can be used as a
starting point for your own projects.

IJli- Introduction xix

...,. Summary
This introduction provided some guidance about who would most likely
benefit from reading this book and who might not. It also discussed what
type of background is required to fully take advantage of the material
found in this book.

Chapter 1 delves into the concepts and terms you will need to become
familiar with in order to understand Macintosh networking.

PART ONE

~ Basic Networking on
the Macintosh

Part One of this book gets you started with the fundamentals of network
programming on the Macintosh. It explains the basic concepts of net­
working in general as well as discusses each of the protocols provided in
AppleTalk and what they are used for. When you finish Part One you
should have a basic understanding of the issues involved in programming
AppleTalk on the Macintosh. This part consists of two chapters.

• Chapter 1 introduces some basic concepts in network programming.
It focuses on the AppleTalk protocol stack and how it can be fit into
the International Standards Organization Open Systems Interconnect
(ISO-OSI) seven-layer model.

• Chapter 2 discusses a variety of programming issues related to
AppleTalk programming. It covers which protocol to use in various
circumstances. It also covers the issues involved in internetworking
and using the preferred AppleTalk interfaces.

1

1 Networking on the
'Macintosh

This chapter introduces you to some basics of networking and how net­
works function. It shows how AppleTalk networking fits in with other
communications systems on the Macintosh and puts AppleTalk net­
working in the context of other computer networking systems. The ISO­
OSI reference model is discussed as a model for a general networking
system and the chapter shows how AppleTalk can be placed into the ISO­
OSI framework.

...,. The Macintosh Communications Environment
The Macintosh computer has a rich variety of communications systems
available as part of its standard system software. Three general areas
exist: serial communications, Apple events, and AppleTalk networking.

Serial communications allows the Macintosh to send streams of data in
and out over its serial lines. This data moves at a relatively low speed and
is most commonly used to communicate with other computers, printers,
or modems, often with the Macintosh emulating a terminal. This simple
model has recently been enhanced with the addition of the Communica­
tions Toolbox (CTB) so that serial data can be transmitted using serial
lines other than just the two that are built-in.

Apple events, available with System 7.0 and later systems, provides a
standard way for Macintosh applications to send control information and
share data. In most circumstances this takes place within one machine,
but Apple events can be sent over the network. Underlying Apple events
can be found in the Program to Program Communication (PPC) Toolbox.

3

4 ..,.. Chapter 1 Networking on the Macintosh

This provides a standard way to convey relatively small amounts of data
between programs.

AppleTalk networking provides a rich and varied set of protocols that
allow Macintoshes connected by network hardware to share data. This
type of communication is much more general than the two previous types,
so much so that both serial communications and Apple events can be
partially implemented on top of AppleTalk.

In the case of serial communications, the Communications Toolbox
provides a tool that lets two Macintoshes connected by an AppleTalk
network exchange data as if they were connected via serial lines. This
tool, called the ADSP tool, is built on top of the AppleTalk Data Stream
Protocol (ADSP) and is part of the standard set of CTB tools.

In the case of Apple events, all Apple events that are sent between
different Macintoshes are conveyed using the AppleTalk network.

Each of these communications environments is appropriate for the tasks
for which it was built. There is some overlap between them of course, but
close examination of the problem to be solved can tell you which type of
communications system is most appropriate for your task.

~ AppleTalk Networking

A computer network can be defined as a group of computers all intercon­
nected to allow easy exchange of information with each other. Networks
are used to share resources beyond those available to just a single machine.
AppleTalk is such a system. It physically interconnects Macintosh com­
puters, as well as other devices such as printers, file servers, shared
modems, and a wide variety of other machines, and allows them to
exchange information with each other.

AppleTalk is made up of a set of hardware protocols and software
protocols that allow this interconnectivity to take place. In the early days
of Apple Talk, it was not much more than a nice way to connect Macintosh
computers to LaserWriter printers. Today, though still a fine way to
communicate with printers, AppleTalk has grown to support a very diverse
set of interactions. These range from file sharing and file transfer to elec­
tronic mail and teleconferencing. New uses for AppleTalk continue to be
introduced all the time.

~ The AppleTalk Protocol Stack 5

...,. The AppleTalk Protocol Stack
AppleTalk is made up of a wide variety of interrelated protocols. Each
protocol builds on the others with each providing a unique set of capa­
bilities.

In order to organize groups of network protocols and bring some
structure to the way we talk about them, the International Standards
Organization came up with what they call the Open Systems Interconnect
reference model (ISO-OSI). This organizes network protocols into seven
layers: physical, data link, network, transport, session, presentation, and
application. Figure 1-1 shows a diagram of the ISO-OSI reference model.

In a networking system that conforms completely to the ISO-OSI ref­
erence model, each protocol fits into exactly one layer and only commu­
nicates with layers immediately above and below it. In practice, many
network systems only roughly conform to the model, but it is still helpful
to view these systems using ISO-OSI reference model terms.

Physical Layer (lowest)
(1)

Data Link Layer
(2)

Network Layer
(3)

Transport Layer
(4)

Session Layer
(5)

Presentation Layer
(6)

Application Layer (highest)
(7)

Figure 1-1 . The ISO-OSI seven-layer reference model

6 ..,.. Chapter 1 Networking on the Macintosh

AppleTalk actually conforms rather well to the ISO-OSI reference model.
Some of the protocols fit into more than one layer and many of the proto­
cols directly make use of layers more than one position away. Still, the
IS0-05I reference model can provide a good way to talk about the rela­
tionships between the various AppleTalk protocols.

Figure 1-2 shows how the AppleTalk protocols can be mapped onto the
IS0-051 reference model.

Physical

J
LocalTulk Hardware Layer

(lowest) Ethernet Hardware Token Ring Hardware

Data

J Link EtherTulk Link Access LocalTulk Link Access Token Tulk Link Access
Layer Protocol (ELAP) Protocol (LLAP) Protocol (TLAP)

Network

J
Datagram Delivery

Layer Protocol (DDP)

li'ansport J AppleTulk li'ansaction Routing Tuble Maintenance
Layer Protocol (ATP) AppleTulk Echo Protocol (RfMP) Name Binding

Protocol (AEP) Protocol (NBP)

Session J
AppleTulk Session AppleTulk Data Stream

Layer Protocol (ASP) Zone Infomation Protocol (ADSP) Printer Access
Protocol (ZIP) Protocol (PAP)

Presentation J
Layer AppleTulk Filing

Protocol (AFP)

Application J
Layer Your Application (highest)

Figure 1-2. AppleTalk protocols in the ISO-OSI reference model

..,.. The Physical Layer

The lowest possible layer in the ISO-OSI reference model is the physical
layer. It is responsible for transmitting raw data across the various physical
wires, optic fibers, radio links, and so forth. It is concerned with details
about mechanical and electrical interfaces such as how to transmit a one
or a zero.

In AppleTalk networks, this layer encompasses the LocalTalk, Ethernet,
token ring, or other hardware.

..,.. The AppleTalk Protocol Stack 7

..,.. The Data Link Layer

The data link layer is built upon the physical layer. Its responsibility is to
take the raw physical layer and provide a way to send packets of data
back and forth. This layer deals with such issues as error detection, colli­
sion detection, and basically taking care of all the details involved with
accessing a specific physical layer.

On AppleTalk networks, the data link layer consists of the various Link
Access Protocols, such as EtherTalk Link Access Protocol (ELAP),
LocalTalk Link Access Protocol (LLAP), and TokenTalk Link Access
Protocol (TLAP) .

..,.. The Network Layer

The network layer is built upon the data link layer. It is responsible for
routing packets of data from node to node. This layer deals with such
issues as packet generation and management.

On AppleTalk networks, the network layer consists of the Datagram
Delivery Protocol (DDP) .

..,.. The Transport Layer

The transport layer is built upon the network layer. It is responsible for
conveying reliable information across the network and providing this
service to the session layer.

On AppleTalk networks, the transport layer primarily consists of the
AppleTalk Transaction Protocol (ATP), although the Routing Table
Maintenance Protocol (RTMP), AppleTalk Echo Protocol (AEP), and Name
Binding Protocol (NBP) are often lumped into this layer .

..,.. The Session Layer

The session layer is built upon the transport layer. It is responsible for
establishing and maintaining high-level sessions. These sessions provide
a higher level of service than the transport layer.

On AppleTalk networks, the session layer consists of the AppleTalk
Session Protocol (ASP), Zone Information Protocol (ZIP), AppleTalk Data
Stream Protocol (ADSP), and Printer Access Protocol (PAP).

Remember that the ISO-OSI reference model is simply a guide. For
efficiency, some protocols access layers farther down the stack than a

8 ~ Chapter 1 Networking on the Macintosh

single layer. For example, ADSP makes direct use of DDP on the network
layer rather than using a protocol found on the transport layer.

~ The Presentation Layer

The presentation layer is built on the session layer. It provides common
services for the application layer. These services could well reside in the
application layer, but are common or useful enough that they are provided
as part of the overall networking system.

On AppleTalk networks, the presentation layer contains the AppleTalk
·Filing Protocol (AFP).

~ The Application Layer

The Application layer is built on top of all the other protocols. It contains
a wide variety of application-specific protocols built up by you, the
application programmer.

On AppleTalk networks, the application layer consists of many appli­
cation-specific protocols. Each network-based product makes use of some
of the protocols found in AppleTalk and imposes its own structure on
them, forming its own special protocol.

..,_ Summary
This chapter discussed the concept of computer networks. It described
how AppleTalk networking fits into the overall scheme of Macintosh
communication software. It also described the ISO-OSI reference model
and how the AppleTalk protocols can fit into this model.

Chapter 2 discusses AppleTalk programming issues involving the
various protocols.

2 AppleTalk Programming
Issues

In this chapter you will learn about some of the issues involved when you
program AppleTalk on the Macintosh. A quick synopsis of the available
AppleTalk protocols is provided. This can help you to decide which pro­
tocol to use for various tasks. Other areas discussed include using the so­
called preferred interface and some general networking issues such as
internetworking and its impact on your code, as well as the various
transport media available .

...,. Using the Various Applelalk Protocols
AppleTalk offers a wide variety of protocols. These range from low-level
protocols that provide basic services, such as the various Link Access
Protocols, to high-level protocols that provide advanced services, such as
AppleTalk Filing Protocol. Fortunately, most of the AppleTalk protocols
are for very specialized uses and need not be used by most programmers.

This book provides a detailed look at the major AppleTalk protocols
used by the vast majority of AppleTalk applications programs. AppleTalk
contains rich and varied protocols and some of the less widely used pro­
tocols may also be of interest to you. For this reason, the following section
provides a broad overview of all the AppleTalk protocols. Some of the
less frequently used protocols that this book does not cover in great detail
are provided with references to aid you in finding further information
about them.

9

1 O ~ Chapter 2 Apple Talk Programming Issues

.,.. Link Access Protocols

AppleTalk provides a variety of Link Access Protocols. These provide
access and management of the various hardware interfaces.

Originally, LocalTalk was the only supported network hardware in
AppleTalk and it was managed by the LocalTalk Link Access Protocol
(LLAP). Because LocalTalk hardware is built into all Macintoshes and
LaserWriters, LLAP is the most widely used Link Access Protocol.

By the Way ..,. , Origi~~¥1Apple used the word AppleTalk to refer to both the
entjre ~ppleTalk protocol suite and. the physical connections we
now calll.ocalTalk. This was unambiguous when LocaITalk was
the only Link Access Protocol used by AppleTalk, but once other
Link Access Protocols were provided, primarily Ethernet, things
became confusing. That's when Apple adopted theAppleTalk
nomenc;fature to specifically refer to the protocol suite. Apple then
·came up with the term LocalTalkto describe the built-in network­
ing hardware. This allowed them to use EtherTalkto refer to
AppleTalk protocols running on Ethernet hardware and TokenTalk
to refer to Apple Talk protocols running on token ring hardware.

Two other Link Access Protocols are also in fairly wide use on AppleTalk
networks. They are the Ethernet Link Access Protocol (ELAP) and
Token Talk Link Access Protocol (TLAP). ELAP provides access to Ethernet
based networks, whereas TLAP provides access to token ring based
networks.

The various Link Access Protocols provide very low-level access to the
AppleTalk network that is seldom needed. Also, because the different
Link Access Protocols may or may not be available on a given machine,
very few programs deal with them directly.

~ Datagram Delivery Protocol

Datagram Delivery Protocol (DDP) is the low-level workhorse protocol in
AppleTalk. It provides socket-to-socket, best effort delivery of packets on
the network. It uses whichever Link Access Protocol the user has selected.

...., Using the Various AppleTalk Protocols 11

DDP is used by all higher-level protocols in AppleTalk to deliver their
data across the network. Because DDP only provides best effort data
delivery, any protocol or program that makes direct use of DDP should
expect to lose packets on occasion and should be prepared to handle this
loss.

DDP can be an appropriate choice for some programs to use directly.
However, other higher-level protocols provide more services and make it
much easier to reliably move data between programs. DDP is discussed
briefly in this book.

...., Routing Table Maintenance Protocol

Routing Table Maintenance Protocol (RTMP) provides a way for internet
routers to manage their routing tables. These routing tables allow the
internet routes to forward datagrams between different networks. RTMP
is not normally used by application programs .

...., Apple Talk Echo Protocol

Apple Talk Echo Protocol (AEP) provides one simple service: the ability to
send a single DDP packet to a node and have it echoed back. This service
is used to detect if a node is online and to measure round-trip packet
transmission times.

To detect if a remote node exists, AEP can be used to ask a remote node
to echo back a DDP packet. If this packet comes back, the node exists.
Note, however, because DDP is used to transport the data, the packets
may be dropped. Repeat attempts should be made to establish contact
before you conclude that the remote node is not online.

To measure round-trip transmission times, a packet is sent using DDP.
It is then received back after measuring the time between the two trans­
missions. This information can be used to tune the use of the network. Of
course, this method requires repetition to determine a good average round­
trip time.

.... Apple Talk Transaction Protocol

Apple Talk Transaction Protocol (ATP) provides a reliable way to exchange
data between two sockets. Its basic model of operation is the transaction,
that is, a request followed by a response.

12 .,.. Chapter 2 Applelalk Programming Issues

ATP transactions are a simple and efficient means of transporting rela­
tively small amounts of data across the network. ATP is extensively dis­
cussed in this book.

.,.. Name Binding Protocol

Name Binding Protocol (NBP) is another of AppleTalk's workhorse
protocols. It is used by almost all programs using AppleTalk because it
provides the means for finding services on AppleTalk.

AppleTalk provides a very flexible address assignment scheme.
Addresses are assigned dynamically to nodes as they join the network.
This means that services cannot be assigned a fixed address that programs
can use to find them. This is where NBP comes in. It allows programs to
assign names to themselves that other programs can look up and then get
a full address from that name.

Name Binding Protocol should be used by your programs to advertise
their existence so that other programs can make contact with them. NBP
should also be used to find remote services.

Name Binding Protocol is extensively discussed in this book.

.,.. Zone Information Protocol

Zone Information Protocol (ZIP) is used to maintain the zone name-to­
network number mappings on internet routers. ZIP also provides a way
for non-router nodes to get the zone-to-network mapping information.
Chapter 6 discusses the use of ZIP to obtain zone information from rout­
ers .

.,.. Apple Talk Session Protocol

AppleTalk Session Protocol (ASP) provides an asymmetric transport
mechanism between client programs and a server program. Sessions are
always initiated by the clients. These clients initiate requests of the server
and the server is responsible for servicing those requests.

ASP is appropriate for basic client and server based networking. Unfor­
tunately, only the client side of ASP is implemented on the Macintosh. If
someone wishes to write a server for ASP, they are required to implement
it themselves. Because of this, ASP is beyond the scope of this book.

..,. lnternetworking 13

..,.. Printer Access Protocol

Printer Access Protocol (PAP) is an asymmetric protocol that provides
access to printer servers sue~ as the Apple LaserWriter.

PAP is not used beyond the scope of printer access and is therefore
beyond the scope of this book.

..,. Apple Talk Data Stream Protocol

AppleTalk Data Stream Protocol (ADSP) provides a symmetric, full-du­
plex, reliable stream of data between two programs.

ADSP allows two programs to exchange large amounts of data very
efficiently. It allows the programs to treat the data streams as either con­
tinuous streams of data or logically divided messages that can be indi­
vidually interpreted. It also provides an out-of-band attention signal. This
attention signal allows control information to pass without disrupting the
primary data streams.

ADSP is discussed extensively in this book.

..,. Apple Talk Filing Protocol

AppleTalk Filing Protocol (AFP) provides a way to access remote
AppleShare file systems. It is an asymmetric protocol based on ASP.

Normal access to remote AppleShare servers is accomplished by using
the file system and does not require direct use of AFP. Also, only the AFP
client software is provided on the Macintosh. AFP is not discussed further
in this book.

~ lnternetworking
AppleTalk networks are often interconnected to form larger networks
known as internetworks or simply internets. This is done using a variety of
devices. These include devices known as repeaters, routers, and gate­
ways. Each approach provides a different set of services and performance
characteristics.

Generally, the use of internetworking is transparent to your networking
program, but because they affect network performance, care needs to be
taken to allow for their impact. Transmission delays and lengthy timeouts
are the main consideration.

14 ..,.. Chapter 2 Applelalk Programming Issues

..,.. Repeaters

The simplest forms of internetworking are repeaters. Repeaters provide a
way to extend wiring beyond its normal limitations. Repeaters simply
receive data transmissions and retransmit them onto another wire. They
do not modify the data in any way as they retransmit it.

Logically, repeaters are transparent to the network software. They do
introduce a very minor transmission delay, but in practice, it is virtually
insignificant.

..,.. Routers

Routers, also known as bridges, connect two or more segments of a net­
work together. Unlike repeaters, they store and forward data. This means
they receive a complete data packet before retransmitting it out the other
side.

In AppleTalk networks, routers define zone names for their constituent
networks. They communicate among themselves to keep this information
up-to-date using the Routing Table Maintenance Protocol (RTMP).

Routers come in a variety of configurations. Some routers are made up
of two half-routers, that is, two devices that cooperate together to provide
a full router. Half-routers are connected by some type of transport medium,
such as a phone line or a microwave link. These connections are often
slower than those found at either end.

Other types of routers can be connected to a large number of networks
that use a variety of transport media. A common type of router in
AppleTalk networks is one that is connected to an Ethernet network and
routes data to a number of LocalTalk networks.

Routers often process the data that passes through them. Some routers
can be configured to isolate certain types of traffic. This can lead to sig­
nificantly improved network performance by keeping local data on a
local network instead of taking up bandwidth throughout a large net­
working system.

Routers can introduce significant transmission delays, especially if they
are half-routers with a slow intermediate transport media (such as a phone
line). These situations can often lead to timeouts occurring if your timeout
values are set too low.

Logically, routers are virtually transparent to the network software
(unless you need to talk to it to get zone information). But care must be
taken to consider the wide variety of network topologies that users may
be operating on when designing your software.

.,.. The Preferred AppleTalk Interface 15

.,.. Gateways

Gateways translate the protocols of one network into the protocols of the
other network. Gateways provide a way to connect very different networks
together. For example, gateways are available to connect AppleTalk net­
works with DECnet networks. Each of these networks uses a completely
different set of protocols, but there is some commonality between them.

Gateways often do an incomplete job of translation because all the
services of one networking system are rarely found on another network­
ing system. They also can introduce significant delays as translation must
be performed rather than simple data retransmission.

Using protocol gateways often requires special attention in your pro­
grams. Various gateways can impose important restraints on your program
because of the way protocol conversion is done in the gateway .

.,._ The Preferred AppleTalk Interface

Bytheway..,.,

The original Pascal interface supplied for AppleTalk, and discussed in
Inside Macintosh, Volume II, describes what is now known as the alternate
interface. This interface used a parameter block containing all relevant
information for the call. It also used a flag to signal the synchronous or
asynchronous version of the call. (Chapter 3 discusses synchronous and
asynchronous operations in detail.)

In the synchronous version of the call, the program was blocked until
the specified operation completed. In the asynchronous version of the
call, program control returned immediately and completion of the op­
eration was signaled by the posting of what was known as a network
event to the event queue.

This scheme using network events had a number of problems, among
them the fact that this could only work for applications, not other types of
code such as VBL tasks. Also, it was not MultiFinder friendly as events
were not guaranteed to be posted to the originating application.

16 ~ Chapter 2 Applelalk Programming Issues

To remedy this situation a new interface was introduced in Inside
Macintosh, Volume V, called the preferred interface. The preferred interface
was modeled after the Device Manager. Much like the alternate interface,
the preferred interface uses a parameter block and a flag to denote syn­
chronous or asynchronous operation. The preferred interface lets you use
a completion routine rather than handle a network event.

With the new preferred interface, programming AppleTalk became
much more like programming other toolbox services such as the File
Manager or the Serial Manager. Similar techniques could be used and
non-application access to asynchronous operations became available. In
short, the preferred interface made programming AppleTalk much more
flexible than it was in the days of the alternate interface. This book uses
the preferred interface .

...,. AppleTalk Transport Media

In the early days of AppleTalk, discussing the transport media available
for AppleTalk was very straightforward because there was only one type
of transport media available: LocalTalk. Today AppleTalk can use a rich
variety of transport media including LocalTalk, Ethernet, token ring, and
others. Each of these media brings its own mix of speed, costs, and reli­
ability.

~ LocalTalk

LocalTalk is the most common AppleTalk transport medium simply
because LocalTalk hardware is built into every Macintosh ever manufac­
tured by Apple Computer. Thus, it provides the lowest common
denominator for comparing AppleTalk networks.

LocalTalk hardware can transfer data at a rate of 230.4 kilobits per
second over a twisted-pair wire. This translates to 28.8 kilobytes per sec­
ond and, with overhead, you can expect to transfer approximately 25
kilobytes of data per second over an otherwise unused LocalTalk cable.
Of course, networks are shared resources and often have other traffic
vying for their capacity, so actual data transfer speeds can be even lower.

When many users are accessing a LocalTalk network, some mechanism
must be used to arbitrate the usage of the cable. Only one machine can be
transmitting at any one time. To minimize these access collisions, LocalTalk
uses what's known as CSMA/CA or Carrier Sense Multiple Access with
Collision Avoidance.

~ AppleTalk Transport Media 17

CSMA/ CA is a sophisticated technique that attempts to minimize the
chances of two machines trying to transmit data over the same wire at the
same time. It works by sensing if the wire is already in use. If so, it defers
to the transmission already in progress. It then waits a minimum amount
of time after the wire is quiet plus a small random amount of additional
time before attempting to begin its transmission.

Once a transmission has begun, LocalTalk cannot sense if a collision
has occurred. Rather, it sends a very short handshake across the wire and
from this it can infer that a collision has occurred. If there has been no
collision, the entire transmission is sent. In practice, little data is lost due
to collisions.

The data carrying capacity of LocalTalk is limited compared with most
other network transport media. Because it trades off speed for low cost, it
can be built into a wide variety of relatively low-cost computers, printers,
and other peripherals. And even at its somewhat slow speed, it has proven
to be a capable transport medium for small networks and a feeder net­
work for larger internets.

~ Ethernet

AppleTalk running on Ethernet accounts for a growing number of
AppleTalk networks. It provides a significantly higher performance net­
work medium than does LocalTalk.

Ethernet networks can transfer data at a rate of 10 megabits per second
over a coaxial or twisted-pair wire. This translates to 1280K per second
and with overhead, well over 1 megabyte per second.

When many users are accessing an Ethernet network, some mechanism
must be used to arbitrate the usage of the cable. Only one machine can be
transmitting at any one time. To minimize these access collisions, Ethernet
uses what's known as CSMA/CD or Carrier Sense Multiple Access with
Collision Detection.

Like CSMA/CA, CSMA/CD is also a sophisticated technique that
attempts to minimize the chances of two machines trying to transmit data
over the same wire at the same time. It works by sensing if the wire is
already in use. If so, it defers to the transmission already in progress. It
then waits a random amount of time before attempting to begin its
transmission.

In contrast to CSMA/CA, once a transmission has begun, CSMA/CD
can sense if a collision has occurred and the transmitters both back off and
try again after another random wait.

18 ~ Chapter 2 AppleTalk Programming Issues

The data carrying capacity of Ethernet is quite adequate for a wide
variety of data transmission tasks. Because there is often spare capacity
on an Ethernet, it is well suited for providing a large number of connections
or acting as a backbone for numerous LocalTalk networks.

Ethernet provides roughly an order of magnitude better performance
for roughly an order of magnitude increase in cost, although these eco­
nomics are changing as Ethernet hardware continues to drop in price.

~ Token Ring

AppleTalk running on token ring accounts for a small number of
AppleTalk networks. Most of these networks are in place to provide
connectivity with token ring based networks.

Token ring networks can transfer data at a rate of 4 megabits per second
over a coaxial or twisted-pair wire. This translates to 512 megabits per
second and with overhead, just under 1 /2 megabyte per second.

Token rings operate very differently than either LocalTalk or Ethernet.
Token rings are constructed in a ring shape and continually pass data
around that ring. A token is passed around the ring when it is idle, and
when a machine wants to transmit data, it must first take the token from
the network. In this way, it precludes other machines on that same ring
from gaining the token and trying to transmit. When the transmission is
complete, the token is returned to the ring and other machines can then
take it and have their turn at transmitting.

The data carrying capacity of token ring is adequate for a wide variety
of data transmission tasks. It isn't quite as fast as a lOMbps Ethernet, but
it is still much faster than LocalTalk. It is well suited to speedy data
transmission.

~ Summary
This chapter discussed the various protocols that make up AppleTalk.
Also discussed in this chapter were internetworking issues and how vari­
ous transport media used by AppleTalk affect your programs.

..,.. Summary 19

Information on AppleTalk protocols may be found in several chapters
of several volumes of Inside Macintosh as well as in other books. See the
following references:

ADSP

AEP
AFP

ASP
ATP

DDPand Link
Access Protocols
NBP

PAP

RTMP
ZIP

Inside Macintosh, Volume II; Inside Macintosh,
Volume V; and Inside AppleTalk.
Inside Macintosh, Volume V and Inside AppleTalk.
Inside Macintosh, Volume V and Inside AppleTalk.
Inside Macintosh, Volumes II and V.
Inside Macintosh, Volume II; Inside Macintosh,
Volume V; and Inside AppleTalk.
Inside Macintosh, Volumes II and VI and
Inside AppleTalk.
Inside Macintosh, Volume II; Inside Macintosh,
Volume V; and Inside AppleTalk.
Inside AppleTalk, Inside Laser Writer, and
Programming the Laser Writer (David Holzgang,
Addison-Wesley, 1991).
Inside AppleTalk.
Inside Macintosh, Volume II; Inside Macintosh,
Volume V; and Inside AppleTalk.

Chapter 3 deals with synchronous and asynchronous operations. You
will learn about polling, spinning the cursor, using a progress dialog, and
other relevant ways to use these two operations.

PART TWO

~ A Practical Guide to
AppleTalk Programming

Part Two of this book focuses on the practical, nitty-gritty techniques you
need to master to write real AppleTalk-based programs. It also discusses
each AppleTalk protocol used by application programmers in detail. This
part consists of seven chapters.

• Chapter 3 discusses the issues involved in making synchronous and
asynchronous calls. When to use each type of call is covered, as well
as specific techniques that can be applied when using each type of
call.

• Chapter 4 discusses memory management issues you will encounter
when programming AppleTalk. It covers parameter block manage­
ment and other types of data used by AppleTalk.

•Chapter 5 discusses the Name Binding Protocol (NBP). It covers the
calls provided for dealing with the NBP. It also covers how NBP
works and how you can best make use of it in your own programs.

•Chapter 6 discusses the Zone Information Protocol (ZIP). It covers
how to use ZIP in both Phase 1 AppleTalk environments as well as in
Phase 2 AppleTalk environments. It also covers important calls pro­
vided by AppleTalk to access ZIP.

• Chapter 7 discusses the AppleTalk Transaction Protocol (ATP). It
covers two ATP works and how you can best make use of it in your
own programs. It also provides a detailed description of how the
various ATP calls work.

21

22 ..,_ Part Two A Practical Guide to AppleTalk Programming

• Chapter 8 discusses the AppleTalk Data Stream Protocol (ADSP). It
covers how to set up and tear down connections and how to transfer
data over a connection. It also covers additional features of ADSP
such as attention messages and provides a detailed description of the
various calls used to access ADSP.

•Chapter 9 discusses a variety of miscellaneous AppleTalk routines
and interfaces. It covers opening the various AppleTalk drivers,
setting SelfSend mode, getting general AppleTalk information, and
using the Chooser to build a user interface.

3 Synchronous and
Asynchronous Operations

When programming AppleTalk, there are two basic ways to interface
with it: synchronously and asynchronously. Synchronous operation means
that the program is blocked or prevented from doing any other processing
until the requested operation has finished. Asynchronous means that the
program can continue with other ·processing while the asynchronous
operation finishes .

...,. Using Synchronous Calls
Synchronous operations are very straightforward to use. A synchronous
call simply returns when the operation is complete. There is no fuss or
bother with later polling for completion or use of completion routines
running at interrupt level.

Of course, synchronous operations have disadvantages too. Because
the program is blocked until the call completes, the program can be sus­
pended for long periods of time. This is especially true with AppleTalk,
where calls can take many seconds to complete. This behavior is often
unacceptable as it locks up the entire machine. Users don't like that.

Another area where synchronous calls cannot be used is while your
code is running at interrupt level. Interrupt level is a restrictive environ­
ment for your code, and one of those restrictions is that synchronous calls
are not allowed.

Yet another concern with using synchronous calls is avoiding race
conditions. This is a situation similar to having A wait for B, but B is

23

24 ..,. Chapter 3 Synchronous and Asynchronous Operations

waiting for A; neither A nor Bever can finish and this hangs the machine.
Again, users don't like this.

There are times when one can take advantage of the simplicity of syn­
chronous calls. Simple, fast operations that don't require sending data
over the network are fine candidates for use of the synchronous calls.
Such things as opening or closing sockets are fine and using the syn­
chronous variation of these calls can simplify your program.

~ Using Asynchronous Calls
There are two basic variations in using asynchronous calls. The first
involves polling for completion of the operation by inspecting the status
field in the parameter block. The second involves using completion
routines .

..,. Polling for Completion of Asynchronous Calls

Polling for completion of AppleTalk calls works by taking advantage of
the fact that the ioResult field of the parameter block is set to 1 when the
asynchronous call is made. It remains set to 1 while the call is being
performed. Once the AppleTalk call is completed, the ioResult is changed
from 1 to an appropriate result code-either noErr or some error condi­
tion code.

To use polling with an asynchronous Apple Talk call, you have to inform
the AppleTalk call that it should not attempt to call a completion routine
when the operation is complete. You do this by setting the ioCompletion
field of the parameter block to NIL (zero).

This polling technique can be useful in a number of circumstances, for
example, spinning the cursor, displaying a progress dialog, yielding to
other applications in MultiFinder, or performing parallel operations.

Spinning the Cursor to Show Status

The simplest example of using polling would be to spin the cursor to tell
the user that some processing is going on and they should wait for it to
finish. To use this technique simply request an asynchronous call, then
repeatedly poll the ioResult field.

~ Using Asynchronous Calls 25

Listing 3-1 illustrates an example of spinning the cursor while you are
waiting for an ATP PSendRequest call to complete. In line 1, the ATP
parameter block is loaded with NIL, signaling that no completion routine
will be used.

Listing 3-1. Spinning the cursor

1: anATTPPB.ioCompletion :=NIL;
2: stat := PSendRequest(@anATPPB,kASYNC);
3: IF stat = noErr THEN BEGIN
4: WHILE anATPPB.ioResult = 1 DO BEGIN
5: DoSpinMyCursor;
6: END;
7: END;
8: IF anATPPB.ioResult <> noErr THEN BEGIN
9: HandleError(anATPPB.ioResult);

10: END;

In line 2, the PSendRequest call is issued using the asynchronous ver­
sion of the call (the constant kASYNC would be defined as TRUE). These
two actions, the NIL completion routine and the asynchronous version of
the call, allow you to use polling to determine when the operation actually
does complete.

After checking the status of the PSendRequest call in line 3, the
DoSpinCursor procedure is repeatedly called until the ioResult field of
the parameter block is no longer equal to 1.

Errors are checked again in line 8 using the ioResult field of the parameter
block. If the PSendRequest call completed normally, the ioResult field is
set to noErr, otherwise it contains the error encountered in the
PSendRequest call and appropriate action is taken by calling an error
handler.

Using a Progress Dialog to Show Activity

A better way to show that the machine is busy (rather than just spinning
the cursor) is to present a progress dialog to the user. This allows them to
see how long things might take and to see progress being made. This is
very important for operations that may take more than a few seconds.

It's also important to provide a cancel button in this dialog so that users
can stop the operation if they wish. Often, in network operation, problems
can arise and operations take longer than you would expect. When this

26 ~ Chapter 3 Synchronous and Asynchronous Operations

Tran sf erring lots of data ...

[Cancel Il
Figure 3-1. A progress dialog

happens, you should give the users the option of stopping the operation
and regaining control of their machine.

A useful technique to use in this circumstance is to put up a modal
dialog, or better yet, a movable modal dialog, with a process bar and a
cancel button as shown in Figure 3-1.

The code to make this work entails repeatedly doing the following:

1. Starting the AppleTalk operation.
2. Calling the ModalDialog toolbox trap with a filter routine (this

filter routine polls for the completion of the AppleTalk operation
and returns a "fake" item press when the ioResult <> 1).

3. Handling the result of the ModalDialog call by either continuing,
canceling, or responding to an error.

Yielding to Other Applications in MultiFinder

It is also good practice to yield to other programs running under
MultiFinder when possible. Quite often AppleTalk calls take a long time
to complete; yielding processor resources to the other programs running
on the Macintosh makes for a more satisfied user.

For example, say your code is waiting for an ATP request from another
program and you're not sure when the request will come in. You can
make this request asynchronously and then later you can poll for the
completion of the request in your main event loop.

Listings 3-2 and 3-3 illustrate how you would do this. Listing 3-2 shows
you how to make the asynchronous request in part of your program
while Listing 3-3 is your main event loop.

...,. Using Asynchronous Calls 27

Listing 3-2. Yielding to another application in MultiFinder-the initial
call

1: requestATPPB.ioCompletion := NIL;
2: stat := PGetRequest(@requestATPPB,kASYNC);
3: IF stat = noErr THEN BEGIN
4: pollingState := kWaitingForRequest;
5: END ELSE BEGIN
6: HandleError(stat);
7: END;

This code is similar to the code in Listing 3-1. It shows the parameter
block's ioCompletion field being loaded with NIL in line 1 and the call
using the asynchronous version of the call (the constant kASYNC would
be defined as TRUE). Line 4 shows a global state variable being set that
will be used later in the event loop (line 2 of Listing 3-3) to keep track of
which state you are in.

The actual polling is shown in Listing 3-3. It shows you a normal event
loop, with the addition that in line 2 it checks the state variable. If the state
is kWaitingForRequest, the code then checks the ioResult field of the
parameter block. Once this becomes something other than one, process­
ing of the request can take place. Using this model, other parts of your
code can perform other asynchronous operations and set the state variable
to reflect that. In your main event loop, the case statement would be
extended to handle other states. Keep in mind that this example only
applies to the case where there is only one asynchronous operation out­
standing at any one time. If you want to perform more than one at a time,
you need additional state variables.

Listing 3-3. Yielding to another application in MultiFinder-the main
event loop

1: REPEAT
2: CASE pollingState OF
3: kNotPolling: {just continue}
4: kWaitingForRequest: BEGIN
5: IF requestATPPB.ioResult = 1 THEN BEGIN
6: { Do nothing, it'& not done_ }
7: END ELSE BEGIN
8: HandleincomingRequest;
9: END;
10: END;
11: END;
12: { Do normal event handling
13: UNTIL quitingProgram;

28 ..., Chapter 3 Synchronous and Asynchronous Operations

Parallel Operations

Sometimes while programming AppleTalk it can be helpful to perform
more than one operation at the same time. Parallel operations (using asyn­
chronous AppleTalk calls in this situation) allow you to do this.

A good example of a parallel operation would be when you are looking
up a name in NBP. Typically you only need to look up one NBP type, but
it is sometimes the case that you have two NBP types that are important
to you. So you would perform two NBP lookup calls. You could, of course,
do them one after another, but to save time, it can be faster to issue both
calls in quick succession, then poll for their completion. Listing 3-4 shows
an example of how this would be done.

Listing 3-4. Performing parallel NBP lookup operations

l:NBPSetEntity(@EntityBufferl,kNameWildCard,kNBPTypel,zoneName);
2:NBPSetEntity(@EntityBuffer2,kNameWildCard,kNBPType2,zoneName);
3:
4 : { You fill in the rest of the NBP record information here }
5:
6: firstMPPPB.ioCompletion := NIL;
7: secondMPPPB.ioCompletion := NIL;
8:
9: stat := PLookUpName(@firstMPPPB,kASYNC);
10: IF stat <> noErr THEN BEGIN
11: HandleError(stat);
12: END;
13:
14: { Issue Second NBP Lookup }
15: stat := PLookUpName(@secondMPPPB,ASYNC);
16: IF stat <> noErr THEN BEGIN
17: HandleError(stat);
18: END;
19:
20: { Now poll for completion
21: WHILE (firstMPPPB. ioResult
22: (secondMPPPB.ioResult
23: DoSpinMyCursor;
24: END;

1) OR
1) DO BEGIN

25: IF firstMPPPB.ioResult <> noErr THEN BEGIN
26: HandleError(firstMPPPB.ioResult.ioResult);
27: END;
28: IF SecondMPPPB. ioResult <> noErr THEN BEGIN
29: HandleError(SecondMPPPB.ioResult.ioResult);
30: END;

..,_ Using Asynchronous Calls 29

Lines 1 and 2 set the NBP entities used by each lookup and then fill in
the rest of the parameter block on line 4. Lines 6 and 7 get it ready to use a
polled asynchronous operation by filling in a NIL completion routine and
signaling the asynchronous version of the call (the constant kASYNC
would be defined as TRUE).

Lines 9 through 18 actually issue the NBP PLookUpName calls asyn­
chronously and check for errors. Then, in lines 21 though 30, it waits until
both the first and the second call have completed by checking the ioStatus
field.

I By the Way .,. , Performing AppleTalk operations concurrently catlbe a p<>werful ·
t9<?1.,jJ:J, 9'eating high perforroru:u;e Appl~Talk program~, . . ':re
a~li! ~ll\~ta.tions to this approa5~· The ~ry-ent implementltj of
A.f>f>Iel'alk set limits on the n~l:>er <:>{ 5()ncurrent operati
~ t~e .place on various ~~tgsh ll).()c:iels. . ·

}1<>~ instance, the example issu~~ concurrent PLooktJ'
c~.J1s. li\lhen using a ~cintosJ:\. Plus with the v~ion. ()f
f()~9 in its RQMs, .there is ~ ljlnit of only one concurre
request at a time, Th': ~x~ple code would fail.

On.larger Macintosh~ ~a with later versi()~
;e}imlts are llish~ e.;ROM-based ve ·

· · .shSE ano <:tµ'l'eX}..tNB
't of tel). fel-sio

..,. Using Completion Routines with Asynchronous Calls

When using the preferred AppleTalk interfaces, the asynchronous mode
of operation allows a completion routine to be called when a given
operation has completed. This is done by setting the asynchronous
parameter in the call to TRUE and supplying the address of a completion
routine in the ioCompletion field of the parameter block.

30 llll- Chapter 3 Synchronous and Asynchronous Operations

Completion routines operate in a more limited environment than nor­
mal code does. They are called at interrupt level and may not call any trap
that can move memory since the heap may not be in a defined state (the
Memory Manager may be in the process of moving heap blocks around).
A list of the traps that move memory can be found in Inside Macintosh,
Volumes III, IV, and V.

Completion routines also have another severe constraint imposed upon
them: They do not have normal access to data found in other parts of a
program. This means that if data needs to be accessed that is not local to
the completion routine, some special technique must be used to accomplish
this.

The way to deal with this problem is to make use of the fact that
completion routines are passed a reference to the parameter block used
for that particular operation. To complicate matters further, this reference
is passed in processor register AO and isn't readily accessed via Pascal. A
small amount of assembly language is required to get around this.

The technique used throughout this book to access shared data is based
on the idea of extending the parameter block referred to by register AO to
include a reference to shared data. The examples always put an additional
long word immediately before the regular parameter block. This long
word contains an address that points to a block of data that can be used
by the completion routine. A small assembly language routine is used to
fetch this address and feed it into the Pascal routine as a parameter.

A variation of this approach is to store and restore the program's AS
register so the completion routine can access the program's global vari­
ables. This works well when the program is an application. If the program
is not an application, storing a reference to AS clearly doesn't work since
AS is not defined for non-application situations such as resident code
installed by an INIT (System 7.0 calls these system extensions).

When using the data block technique, the first step is to identify which
types of calls will be used with completion routines. Examine each call
and come up with a list of the various parameter block types used. Then,
for each of these parameter blocks, define a new record that contains two
items: a long word that will be used to store your shared data reference
and the real parameter block that will be used by the call: Listing 3-S
shows three examples of extended parameter blocks: one for an ATP
parameter block, one for a Time Manager task block, and one for an HFS
parameter block.

..,. Using Asynchronous Calls 31

Listing 3-5. Extended parameter blocks

xATPParamBlock = RECORD
SharedDataRef
realATPPB

END;

xTMTask = RECORD
SharedDataRef
realTMTask

END;

xHParamBlock = RECORD

Longint;
ATPParamBlock;

Longint;
TMTask;

SharedDataRef Longint;
realHPB HParamBlockRec;

END;

Once you have defined the extended parameter blocks you require,
you need to allocate the shared data record and put its address into the
extended parameter blocks before they are used. Listing 3-6 shows an
example of this. It allocates a block in the heap using NewPtr in line 1. Note
that using the SIZEOF function on a type returns the size of the type-in
this case, the DataBlockRec. This allows us to allocate the right amount of
storage if we later change the definition of DataBlockRec.

Listing 3-6. Setting up an extended parameter block

1: sharedDataPtr := NewPtr(SIZEOF(DataBlockRec));
2: WITH sharedDataPtrA DO BEGIN
3: { Fill in the data }
4: maxTimeout := 5;
5: otherData := 205;
6: END;
7: incomingATPPB.SharedDataRef := Longint(sharedDataPtr);
8: incomingATPPB.realATPPB.ioCompletion := @preHandleRequest;
9: stat := PGetRequest(@incomingATPPB.realATPPB,kASYNC);

10: IF stat <> noErr THEN BEGIN
11: HandleError(stat);
12: END;

Lines 3 through 7 would be replaced with your own code that sets
initial values of the variables stored in the shared data block. Line 7 is
important. It is where the address of the shared data block is stored right
before the parameter block using the extended parameter block.

32 .,... Chapter 3 Synchronous and Asynchronous Operations

Lines 8 and 9 tell PGetRequest to call the preHandleRequest comple­
tion routine when the asynchronous operation completes.

By the Way ~ I Remember that if you use a local variable for your parameter block,
it will be allocated on the stack. This storage is reclaimed when you ·
exit a routine. If the operation does not complete before you exit the
current routine, the parameter block will be reused for some other
purpose. Chaos will ensue. In this circumstance, you should allo­
cate the parameter block in the heap using NewPtr.

Now the tricky part is handling the completion routine itself. When the
operation is complete, the AppleTalk drivers call the completion routine
at interrupt level, with the address of the parameter block in register AO.
The shared data pointer is stored in the four bytes before that, so you
access it with a negative offset of four bytes from register AO. Then you
move it onto the stack so that the Pascal completion routine can access it
as a parameter. Listing 3-7 shows the 68000 assembly language code that
does this. As the routine is entered, it stores registers D3 through D7 and
registers A2 through A6 onto the stack in line 4. Registers DO through D2
and registers AO and Al are saved by the interrupt handler for you. Later,
when the completion routine is finished, these same registers are restored
off the stack in line 8.

Listing 3-7. Assembly language completion routine using an
extended parameter block

1: IMPORT HANDLEREQUEST
2 : PREHANDLEREQUEST
3 : PROC EXPORT
4 : MOVEM .L D3 - D7/A2 - A6 ,-(A7)
5: MOVE . L - 4 (A0), DO
6 : MOVE .L D0 ,-(A7)
7 : JSR HANDLEREQUEST
8 : MOVEM . L (A7)+,A2-A6 / D3-D7
9 : RTS

save the registers
get our block pointer
pass it as a parameter
call the Pascal routine
restore the registers

Line 5 shows how to get the address of the shared data block from in
front of the parameter block. Since register AO points to the beginning of

..,.. Summary 33

the parameter block, a negative offset of four from register AO points to
the shared data block address. Line 6 puts that address onto the stack so
that the Pascal routine will get it as a parameter. Line 7 actually calls the
Pascal routine.

The Pascal completion routine is called with the shared data pointer
passed in as a parameter. Once the Pascal completion routine is entered,
all the shared data can be accessed by using this parameter. You can
explicitly reference it each time using the following syntax:
sharedDataPtr'\yourltem, where yourltem is any field in the shared data
record. You must access it this way if you are using C with the syntax:
sharedDataPtr->yourltem. An alternative approach available with Pascal
is to use Pascal's WITH statement; this makes access more convenient.

Listing 3-8 shows how to use an extended parameter block in a Pascal
completion routine. Line 1 shows the declaration of the Pascal completion
routine with sharedDataPtr being passed in as a parameter. The WITH
statement on line 3 allows line 4 to refer to any field in the shared data
block without prefixing the reference with sharedDataPtrA. This ap­
proach also leads to more efficient access with most Pascal compilers,
since they optimize it and usually place the sharedDataPtr into a register.

Listing 3-8. Pascal completion routine using an extended parameter
block

1: PROCEDURE HandleRequest(sharedDataPtr DataBlockPtr);
2: BEGIN
3: WITH sharedDataPtrA DO BEGIN
4: { Do the real work of the completion routine }
5: END;
6: END;

..,. Summary
This chapter examined the differences between using AppleTalk proto­
cols synchronously and asynchronously and discussed the circumstances
where each approach is appropriate. Examples were given for each type
of operation and a number of strategies were covered for using asynchro­
nous calls.

Chapter 4 covers AppleTalk memory management. Using parameter
blocks (synchronously and asynchronously) is discussed in detail.

4 AppleTalk Memory
Management

AppleTalk programming on the Macintosh involves using and managing
a wide variety of data storage types. Most calls to the AppleTalk drivers
involve parameter blocks and many of these calls require additional
temporary and permanent storage .

...,_ Using Parameter Blocks with Synchronous Calls
Most AppleTalk calls require the use of parameter blocks. These blocks
contain the information required by the call as well as the information
returned by the call.

When using the synchronous version of the AppleTalk interfaces,
parameter blocks are only used briefly. The input data for the call is
loaded into the parameter block, the call is made, then the results can be
read out of the parameter block. After this, the parameter block is available
for reuse in another operation.

The parameter blocks used in synchronous calls can be allocated in a
variety of ways. Often the most convenient way is to simply use a local
variable. A local variable is allocated on the stack with the helpful side
effect of reclaiming the storage once the scope of the local variable is
exited.

Listing 4-1 shows an example of this technique. Lines 5-9 show the
local variables for the SendBuffer routine. The storage for these variables
is allocated on the stack as the routine begins execution. Line 23 calls
PSendRequest synchronously and when the routine exits at line 24, the
storage is reclaimed from the stack.

35

36 IJllo- Chapter 4 Apple Talk Memory Management

Listing 4- l . Using local storage with synchronous routines

1: PROCEDURE SendBuf f er (buffer : Ptr ;
2 :
3 :
4 : VAR
5 :
6:

out Pa cket
localATPPB

bufferSize : integer ;
who : AddrBlock);

PacketRec ;
ATP ParamB l ock ;

7 : BDSCount integer ;
8: BDSBu f f st r 255 ;
9 : o utBDS BDS Type;

10 : BEGIN {SendBuf fer}
1 1 : BDSCount : = Bui l dBDS (@BDSBuff, @outBD S , 2 55);
1 2 : out Pa cket . s i ze := bufferSize ;
1 3 : Bl ockMove (buffer , @out Packet . b uf f e r , b u f f e r Size);
14 : WI TH l oca l ATPP B DO BEGI N
15 :
16 :
1 7 :

1 8 :
1 9 :
20 :
2 1:
22:

b dsPo i nter
AddrBlock
t imeout Va l
retryCount
numOfBu ffs
reqLe ngt h
req Po i nter

END; {WITH}

·= @out BDS ;
who ;

·= kS t dT i me out;
kSt dRetry Coun t ;

. - 1 ;
· = kMi nPacketS i ze;
· = @o utPa c ket;

23 : Check Status (PSe ndRequest(@localATPP B, k SYNC));
24 : END ;

Of course there may be times when allocating the parameter blocks in
other ways than as local variables may be more appropriate even for
synchronous operations. You may wish to allocate some parameter blocks
as global variables or use NewPtr. This is of course perfectly acceptable.

By the Way ~) One problem to be aware of when using local variables to hold
your parameter blocks is the limited amount of stack space avail­
able to your routine. If you attempt to have local varial:)les that take
up large amounts of space, be aware ofthe possibil!ty erflpw-
ing your stack. A particularly dan,gerous practice is to t tq .t
declare a large buffer on the stack as a local variable. It o akes''
one large buffer to blow up your stack.

..,.. Using Parameter Blocks with Asynchronous Calls 37

...,,_ Using Parameter Blocks with Asynchronous Calls
You must be more careful when using parameter blocks with asynchro­
nous calls than you need to be with synchronous calls. Asynchronous
calls are not necessarily finished when they return to the caller. Because
of this, the parameter block may still be in use long after the call has
returned. The parameter block is in use by the asynchronous call until it
has completely finished its operation and has signaled this by setting
ioResult to something other than l.

Because of the way AppleTalk is implemented on the Macintosh, two
important rules must be observed when using parameter blocks with
asynchronous calls:

l. A parameter block's integrity must be maintained until the
operation is completed.

2. A parameter block cannot be reused until the operation it was
used with has completely finished .

..,.. Parameter Block Integrity

Maintaining parameter block integrity means that a parameter block does
not move in memory and is not written to before the completion of the
operation. If you choose to allocate a parameter block from the heap as a
handle using NewHandle, you must first lock this block before using it in
an asynchronous AppleTalk call, and it must remain locked until the
operation has completed. AppleTalk expects the parameter block to stay
put in memory.

38 ..,. Chapter 4 Applelalk Memory Management

Another aspect of parameter block integrity is that you must not write
to a parameter block while it is being used by AppleTalk. A common
source of having your parameter block clobbered is to use a parameter
block that was a local variable in a subroutine, then exit the routine before
the operation has completed. All local variables are allocated on the stack
and after exiting the subroutine the stack space is reused.

There are times when using parameter blocks with asynchronous calls
that are allocated on the stack is perfectly acceptable (such as while poll­
ing for busy cursor feedback). Nevertheless, it is good practice to statically
allocate the parameter blocks used with asynchronous calls using NewPtr
or NewHandle with the handle locked when the parameter block is used .

..,.. Reuse of Parameter Blocks

The implementation of AppleTalk used on the Macintosh uses the param­
eter block supplied to a call for the duration of the call. Unlike some other
operating systems, no copy is made, but rather the parameter block sup­
plied by the caller becomes the property of AppleTalk until the operation
completes. This means that you cannot reuse a parameter block until the
call it was used with completes. If you wish to perform parallel operations,
multiple parameter blocks are required .

..._ Other Types of AppleTalk Storage

In addition to parameter blocks, AppleTalk uses many other types of
permanent data. Often buffers must be allocated for long durations. Care
must be taken in these circumstances to make sure that these buffers are
left alone while they are in use.

Many examples of these persistent buffers exist throughout AppleTalk.
One example is registering a name using NBP. A buffer containing the
name, type, and socket for a given name is needed from the time you
register the name until the time you unregister it. Another example is the
various buffers used by ADSP to hold information relating to a session
during the life of that session.

All permanent buffers must be allocated and maintained by your pro­
gram for the duration of their use. Allocating them as local variables must
be done with care to assure that the buffers are not lost when exiting the
local scope. Most buffers are appropriately managed as global variables
or they are allocated from the heap.

..,.. Avoiding Heap Fragmentation 39

...,. Additional AppleTalk Storage
Management Considerations
There are other essential considerations when dealing with Macintosh
memory management. If you are frequently allocating and deallocating
buffers using NewHandle or NewPtr and the heap is very fragmented,
the Memory Manager may have to move large amounts of data around to
satisfy your request. This can introduce noticeable pauses into your
program.

Another area to take extra care over is your use of system permanent
memory, such as memory in the system heap, or the memory above BufPtr.
This memory is permanently taken away from the user and there is no
way for the user to get it back. Often there is no alternative to using this
memory, but always minimize its use. Note that Apple recommends
against using the memory above BufPtr with System 7.0 and later
systems .

...,. Avoiding Heap Fragmentation
Memory management is always important when programming the
Macintosh. Using Apple Talk requires additional considerations when you
are planning your application's memory management strategy. A brief
discussion of these considerations follows.

The memory buffers AppleTalk requires are commonly allocated with
a call to NewPtr. This returns a block of memory of the desired size ref­
erenced by a pointer. Because these blocks allocated by NewPtr are allo­
cated in the heap as non-relocatable blocks, care must be taken not to
fragment the heap.

Heap fragmentation comes from allocating non-relocatable blocks in
the middle of your heap. The Memory Manager attempts to put new non­
relocatable blocks as low in the heap as possible to lessen the chances of
heap fragmentation. Nevertheless, these blocks can sometimes be allocated
in the middle of the heap when your heap becomes full.

If your program is using a fixed number of parameter blocks and buff­
ers, often the best way to allocate them is to do so during the initialization
of your program before other large objects are allocated on your heap.
Another approach is to simply use global variables.

40 ~ Chapter 4 Applelalk Memory Management

By the Way ... I

~ Non-Application Storage Management

Code that does not execute as a standard application has special needs
when it comes to storage management. If your code is installed at startup
time by an INIT, it obviously can't make use of an application heap for its
data storage needs. There are basically two places available for data storage
for resident code installed at startup time: the system heap and the memory
above Buf Ptr.

Bu£Ptr is a low-memory global that points to the logical top of memory.
The space between where Buf Ptr points and the physical end of memory
can be used to store static data. This is done by moving Bu£Ptr down by
the amount of storage that you require. For example, if your INIT needs
32K for some purpose and you wish to store it above Bu£Ptr, you would
move BufPtr down by 32K by subtracting 32768 from Bu£Ptr. Listing 4-2
illustrates how you might do this.

..,. Non-Application Storage Management 41

Listing 4-2. Allocating permanent storage using Bufptr

1: TYPE SomeBufferType = ARRAY[O .. 32767] of Byte;
2:
3: Handle(BufPtr)A := Handle(BugPtr)A -SIZEOF(SomeBufferType);
4: aBufferPtr := Handle(BufPtr);

Line 1 defines a 32K buffer type.
Line 3 moves Buf Ptr down by the size of the buffer type.
Line 4 saves the address of the space that was reserved above BufPtr.
The other approach for using permanent data storage is to use the

system heap. The system heap is always available and is never destroyed
(unlike the various application heaps) so data placed in it can be accessed
anytime.

To assist in the use of system heap space, the Startup Manager provides
a mechanism for INITs (and RDEVs too) to request a certain amount of
system heap space when they are run. This mechanism relies on the use of
a 'sysz' resource with ID=O located in the INIT file. If this 'sysz' resource
exists in your INIT file, the system will look at the first long word of data
contained in the resource and try to make sure that there is this much
space available in the system heap for your use. Of course, there are limits
to the amount of space available on any machine, but the Startup Manager
does guarantee that there will be at least 16K of contiguous space available
to you.

To make use of the system heap space, you have to set the current zone
to be the system zone using the Memory Manager SetZone trap; use the
function SystemZone to return the system zone pointer. Then use normal
Memory Manager traps such as NewPtr or NewHandle to allocate blocks
from that heap.

Resource Manager calls can also be used to load resources into the
system heap. Using the system heap flag for the resource ensures that the
resource is loaded into the system heap. Listing 4-3 illustrates how this
can be done. It starts at line 1 by setting the current heap zone to be the
system heap. Then it allocates a block in the system heap of the appropriate
size on line 2.

42 ~ Chapter 4 AppleTalk Memory Management

Listing 4-3. Allocating permanent storage from the system heap

1: SetZone(SystemHeap);
2:
3: dataBlockPtr :=DataBlockPtr(NewPtr(SIZEOF(DataBlockRec)));
4: FailNil(dataBlockPtr);
5:
6: codeH := GetlResource('CBlk',kMyResidentCodeBlockID);
7: FailNil(codeH);
8: DetachResource(codeH);
9: HNoPurge(codeH);

10: HLock(codeH);
11:
12: SetZone(ApplicZone);

Line 6 brings the code resource into the system heap and lines 8, 9, and
10 make sure that it is detached from the resource map, locked, and not
purgeable. Note: If you don't detach the resource from the resource map,
it will be purged when the resource file is closed.

At times you may want to alert the user about something important
that happens when your application is running in the background. To do
so, you can use the Notification Manager to install a notification request.
You request a notification by passing the Notification Manager the address
of a notification record, which contains information about the ways in
which the Notification Manager should alert the user. nmRefCon, one of
the fields in the notification record, is a reference constant that is reserved
for your application's use. When you set up a notification request, you
can use that field to hold a reference to your own storage.

~ Summary
This chapter discussed the issue of memory management as it pertains to
using the AppleTalk protocols. Allocating parameter blocks and other
types of AppleTalk-related storage was covered. Special attention was
given to storing data outside the bounds of a running application using
the system heap or the memory above Bu£Ptr.

Chapter 5 discusses Name Binding Protocol. It covers how to handle
network names and offers detailed descriptions of specific NBP routines.

5 Name Binding Protocol

Name Binding Protocol (NBP) is a basic component of AppleTalk. It pro­
vides a way for programs to find each other over the network.

A good analogy for NBP is directory assistance in the telephone system.
Directory assistance allows you to get the telephone number of someone
else by making a special call to the directory assistance operator and
asking for them by name. With that information, the operator can then
tell you the specific phone number you want. NBP works much like this:
You can ask for a specific name on the network, and get a network
address back.

NBP provides services for registering a name for an address, looking
up an address given a name, confirming a name, and unregistering a
name.

~ Network Addresses
AppleTalk has a very specific way of identifying network entities. It's
called the entity's address and is made up of three components: the socket
number, the node ID, and the network number.

The first part of the entity's address, the socket number, identifies the
specific socket on a given node. Each entity can have one or more unique
sockets assigned to it.

43

44 • Chapter 5 Name Binding Protocol

By the Way..,. I

The second part of the entity's address, the node ID, identifies the com­
puter the program is running on (a Macintosh, LaserWriter, or other
network computer). The node ID is unique on a network and is set at the
time the computer is turned on and connected to the network. It can
change after a node is either reset or turned off and back on.

The third part of the entity's address, the network number, identifies
the network the Macintosh is connected to. Networks are a number of
computers connected by a single logical wire, for example a daisy chain
of LocalTalk cables or a single Ethernet cable. Groups of networks are
connected by routers and these groups of networks form internets. The
internet routers maintain information about the other networks in an
internet and pass data between networks so that the data will ultimately
arrive at the right place.

Note.,...

.,... NBP Names 45

...,. NBP Names

NBP names are made up of three components: object, type, and zone.
These three components are often written in sequence with a colon (:)
separating the object and type, and an at-sign (@) separating the type
from the zone. Here's how the components look when written out:

object:type@zone

Each component is a string of up to 31 characters.
The object part of the name typically identifies the Macintosh where the

name resides. It is almost always set to the Chooser name that the user
has selected. Sometimes, an additional identifier is appended to the
Chooser name when a duplicate name is found, for example, "Jose Smith"
and "Jose Smith 2."

The Chooser name is stored as a resource of type 'STR' with ID =
-16096 in the System file. Because the resource fork of the System file is
always available to applications (and INITs too), your program can re­
trieve this name by using a call to the GetString trap for the string with
the ID of -16096.

By the Way ~ I In-System 7, the so-called Chooser,name is no longer set in the
Chooser. Instead, there is a Cohtrol Panel called Network Setup
that handles this function. This Control Panel lets the user assign
two names: the Owner name and the Macintosh name. The Owner
name is used to identify the user of a given Madntosh and is stored
in 'STR' ID= -16096. This is the same as the old Chooser name. The
Macintosh name is used to identify a particular Macintosh and is
stared in 'STR' ID= -16413.

For example, if a user had two maehines, he or she could have
the same Owner name, say "Pat" on each maehine, but then

""' ;,:

46 ..,.. Chapter 5 Name Binding Protocol

different Macintosh names, say "Pat's Classic" and ''Pat's Ma~
Hsi."

With this new naming scheme, it is often more appropriate to US!
the Macintosh name to identify services on a Macintosh. Use the
Owner name when specifically referring to the user rather than the
machine. ·

The type part of the name is used to differentiate between different
types of services on a given Macintosh. This should be a unique string
that identifies the service. For example, "Laser Writer," "AFPServer," or
"Public Folder," are used to identify LaserWriters, AppleShare servers,
and Public Folders.

The zone part of the name identifies which zone the name resides on.
Zones are used to identify which network a given name belongs to. Zones
are managed by internet routers using the Zone Information Protocol
(ZIP) .

..,.. Wildcards in NBP Names

NBP allows you to make use of certain special characters to match more
than one name at a time. These special characters are called wildcards.

Both object and type strings use the equal (=) wildcard to match all
possible values. For example, the "=:LaserWriter@HQEthernet" string
would match all LaserWriters in the HQEthernet zone. Likewise, the
"Bob:=@HQEthernet" string would match all types of entities with the
name Bob in the HQEthernet zone.

In the zone string, the asterisk (*) wildcard is used to signify the default
value. This is either the zone that the node is currently in, or no zone
when there is only a simple AppleTalk network setup and zones are not
needed to differentiate between multiple networks.

~ Using Name Binding Protocol 47

By the Way ~ I ·

~ Using Name Binding Protocol
There are two basic network functions that you can perform with NBP:
registering your name so that others can see it, and looking up someone
else's name. In many situations you will do both. This section explains
these two options as well as how to confirm a name on the network.

~ Registering a Name on the Network

To register a name for a given socket, you use the PRegisterName trap. You
will also need to create an NBP names table element for it. Use the
NBPSetNTE trap to supply PRegisterName with the desired name, type,
and zone strings. Listing 5-1 shows how this is done.

Listing 5-1. Registering an NBP name on the network

1 : NBPSetNTE(@theElementBuff,theName,theType,'*' ,theSocket) ;
2 : WITH theMPPPB DO BEGIN
3:
4 :

5:
6 :

entityPtr
interval
count
verifyFlag

7: END;

:= @theElementBuffer;
·= 3 ;
.- 2;
.- $FF;

8 : CheckStatus(PRegisterName(@theMPPPB,kSYNC));

48 ..,.. Chapter 5 Name Binding Protocol

Line 1 is the call to NBPSetNTE. The first parameter is a pointer to a
buffer that will contain the names table element. The next three parameters
are the NBP name, type, and zone strings. And the final parameter is the
socket that is being assigned the name.

Lines 2-7 set up the parameter block with the entity buffer, retry infor­
mation (it retries twice, waiting 24 ticks between each retry), and set the
verifyFlag to TRUE ($FF) so it will check for duplicate names.

Line 8 actually issues the PRegisterName trap using the synchronous
variation. It also calls a status-checking routine to handle any errors that
could be returned from the trap .

..,.. Looking Up a Name on the Network

Important..,..

You use the PLookupName trap to look up a name on the network. You
give it an entity name, and it returns a list of matching names and addresses
in a buffer. You then extract the names and addresses from the buffer
using the NBPExtract trap.

To use the PLookupName trap, you need to create an NBP entity name
to supply to the PRegisterName trap. This is done by using the
NBPSetEntity trap, supplying it with the desired name, type, and zone
strings. NBPExtract is also used after PLookupName to extract the
address and actual entity name from the buffer returned from
PLookupName.

Listing 5-2 shows how you would look up a specific name and get its
address.

..,.. Using Name Binding Protocol 49

Listing 5-2. Looking up an NBP name on the network

1: NBPSetEntity(@theEntityBuffer,theName,theType,theZone);
2: WITH theMPPPB DO BEGIN
3: entityPtr := @theEntityBuffer;
4: retBuffSize:= kReturnBufferSize;
5: retBuffPtr := @theReturnBuffer;
6: maxToGet := l;
7: interval := 3;
8: count := 2;
9: verifyFlag ·= $FF;

10: END;
11: CheckStatus(PLookupName(@theMPPPB,kSYNC));
12: IF theMPPPB.numGotten > 1
13: THEN BEGIN
14: CheckStat(NBPExtract(@theReturnBuffer,

theMPPPB.numGotten,l,theEntity,theAddress));
15: END;

Line 1 is the call to NBPSetEntity. It converts the name, type, and zone
strings provided into an NBP entity stored in theEntityBuffer.

Lines 4 and 5 set the return buffer information. The return buffer should
be large enough to contain the number of names tuples expected to match
the specified entity. If it's too small, the error nbpBuffOvr will be
returned.

Line 6 tells it to only look for one match.
Lines 7 and 8 tell it to retry twice, waiting 24 ticks between each retry.
Once the call is made, and if there are no errors, NBPExtract is used in

Line 14 to get the address for the given entity .

..,.. Confirming a Name on the Network

To confirm a name on the network, use the PConfirmName trap. You give
it an entity name and address and it tells you if that name and address are
still associated with each other.

PConfirmName should be used when some time has passed since you
originally looked up a name. It is much more efficient than using
PLookupName because it can ask the specified machine directly rather
than doing a general lookup.

To use this trap you need to create an NBP entity name to supply to the
PRegisterName trap. Use the NBPSetEntity trap, supplying it with the
desired name, type, and zone strings.

50 ..,. Chapter 5 Name Binding Protocol

Listing 5-3 shows how you would confirm an NBP name and get its
new socket address if it has changed.

Listing 5-3. Confirming an NBP name on the network

1: NBPSetEntity(@theEntityBuffer,theName,theType,theZone);
2: WITH theMPPPB DO BEGIN
3: entityPtr ·= @theEntityBuffer;
4:
5:
6:

interval · = 3;
count ·= 2;
confirmAddr:= old.Address;

7: END;
8: status := PConfirmName(@theMPPPB,kSYNC);
9: CASE status OF

10: noErr {The name & address were confirmed};
11: nbpNoConfirm: {The name was not confirmed}
12: nbpConfDiff : {The name was assigned another socket};
13: old.Address.socket := theMPPPB.newSocket;
14: END;

Line 1 is the call to NBPSetEntity. It converts the name, type, and zone
strings provided into an NBP entity stored in theEntityBuffer.

Lines 4 and 5 tell it to retry twice, waiting 24 ticks between each retry.
Line 6 tells it which address to confirm.
Line 8 makes the call to PConfirmName synchronously.
Lines 10-12 handle the three possible return statuses: confirmation, no

confirmation, and confirmation at another socket. If the socket has changed,
Line 13 shows how to update the address by using the newSocket field to
update the socket portion of the old address.

~ Detailed Descriptions of Important NBP Routines

The following section describes each important NBP routine. Each routine's
prototype is shown, and all parameters or parameter block fields and
error codes are listed. Each parameter or parameter block field and error
code is then described in detail.

..,. PRegisterName

PRegisterName is used to get your NBP name registered on the network.
All code that creates an NBP name for others to see will use the following
routine.

Note..,.

..,. Detailed Descriptions of Important NBP Routines 51

FUNCTION PRegisterName(thePBPtr:MPPPBPtr; async:
BOOLEAN) :OSErr;

Using the following fields in the MPP Parameter Block:

~ ioCompletion
f- ioResult
~ interval
H count
~ entityPtr
~ verifyFlag

Errors Returned:

noErr (0)
nbpDuplicate (-1027)
nbpNISErr (-1029)

- address of completion routine
- result of operation
- retry interval in eight tick units
- retry count
- names table entry pointer
- should verification be done

No error.
This name already exists.
Error opening the NIS.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

interval and count determine the retry behavior of the trap. count tells
it how many retries should be attempted and interval tells it how long to
wait between retries in 8-tick units. count is decremented with each retry.

entityPtr contains a pointer to an NBP names table entry. This is usually
built with the NBPSetNTE trap. It contains a names table entry plus some
additional information stored by NBP; it is 108 bytes in size.

entityPtr does not point to a NameEntity in this case, but rather a names
table entry. The names table entry is owned by NBP until it is released
using the RemoveName trap. Make sure that this memory is not reused
in your program!

52 ...,. Chapter 5 Name Binding Protocol

verifyFlag should always be set to TRUE. There are some rare circum­
stances when this flag can be set to FALSE, but this is almost never done
in application code. When set to TRUE, verifyFlag tells NBP to look for
the given name on the network to check for duplicates.

noErr is returned when the trap completes normally.
nbpDuplicate is returned when the specified name is already in use.
nbpNISErr is returned when AppleTalk is unable to open the Names

Information Socket.

...,. PLookupName

PLookupName is used to get the address of an NBP name. It also handles
looking up a set of names using the NBP wildcards and will return a list
of the matching names and their corresponding addresses. The PLookup­
Name routine follows.

FUNCTION PLookupName(thePBPtr:MPPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the MPP Parameter Block:

~ ioCompletion
f- ioResult
~ interval
H count
~ entityPtr
~ retBuffPtr
~ retBuffSize
~ maxToGet
f- numGotten

Errors Returned:

noErr (0)
nbpBuffOvr (-1024)

- address of completion routine
- result of operation
- retry interval in eight tick units
- retry count
- names table entry pointer
- pointer to match data buffer
- match data buffer size
- how many matches to try to get
- how many matches were found

No error.
Error opening the NIS.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

interval and count determine the retry behavior of the trap. count tells
it how many retries should be attempted and interval tells it how long to
wait between retries in 8-tick units. count is decremented with each retry.

~ Detailed Descriptions of Important NBP Routines 53

entityPtr contains a pointer to an NBP entity. The NBP entity is usually
built with the NBPSetEntity trap. An NBP entity is 99 bytes in size.
Wildcards are allowed in this entity.

retBuf£Ptr and retBuffSize describe a buffer used to hold the result of
the lookup. If the return buffer is too small to hold all the names that
match, nbpBuffOvr will be returned.

maxToGet is the maximum number of names that the trap should try
to find. If this number of names is found before all the retries are done, the
trap will complete early.

numGotten is the number of names that were actually found on the
network that matched the specified entity.

noErr is returned when the trap completes normally.
nbpBuffOvr is returned when there are more names matching the

specified entity than there is buffer space to hold the result.

~ NBPSetEntity

NBPSetEntity is a utility routine provided to assist you in creating NBP
entity data structures. It takes three strings-the object name, type, and
zone-and puts them into an entity buffer. Here's how the NBPSetEntity
utility routine is written:

PROCEDURE NBPSetEntity(buffer
Str32);

Ptr; nbpObject, nbpType,nbpZone :

buffer is a pointer to where the new entity will be stored. It must be at
least 99 bytes long.

nbpObject, nbpType, and nbpZone are the three strings that make up
the name of the new entity. Each of these strings can be up to 31 characters
in length.

~ NBPSetNTE

NBPSetNTE is a utility routine provided to assist you in creating names
table entries. It takes three strings-the object name, type, and zone-as
well as a socket number and puts them into a names table entry. The
NBPSetNTE routine follows.

PROCEDURE NBPSetNTE(ntePtr
Str32; socket : integer);

Ptr; nbpObject, nbpType,nbpZone:

ntePtr is a pointer to where the new names table entry will be stored. It
must be at least 109 bytes long.

54 .,.. Chapter 5 Name Binding Protocol

nbpObject, nbpType, and nbpZone are the three strings that make up
the name of the new entity. Each of these strings can be up to 31 characters
in length.

socket is the number of the socket that will be associated with the entity
specified .

..,. NBPExtract

NBPExtract is a utility routine provided to assist you in extracting infor­
mation from the list of names and addresses returned by PLookupName.
It takes a pointer to the buffer and an index into the table and returns the
specified entry's name and address. This is how the NBPExtract routine
looks:

FUNCTION NBPExtract(theBuffer : Ptr; numinBuf : INTEGER; whichOne:
INTEGER; VAR abEntity : EntityName; VAR address : AddrBlock) : OSErr;

theBuffer is a buffer pointer containing raw entity name and address
information. This is normally the return buffer from PLookupName.

numlnBuf is the number of entity names and addresses that can be
found in the buffer. This is normally the numGotten field from
PLookupName.

whichOne tells the trap which one of the various entity names and
addresses should be retrieved from the buffer.

ab Entity is the entity name returned by the call.
address is the address returned by the call.
noErr is returned when the trap completes normally .

..,. NBPRemove

Using NBPRemove removes a previously registered NBP name. Use it
when you are finished with a given NBP name and no longer wish others
to be able to see it on the network. The NBPRemove routine follows.

FUNCTION NBPRemove(abEntity: EntityPtr): OSErr;

abEntity is the entity name that you want to remove from the local
names table.

noErr is returned when the trap completes normally.
nbpNotFound is returned when the specified entity name is not found

in the local names table.

~ Detailed Descriptions of Important NBP Routines 55

~ PConfirm

PConfirm confirms that a specified name is associated with a particular
address. If the address is no longer associated with the name, a number of
possible circumstances may have occurred, such as the name being
removed from the target socket, or the target node could have been
rebooted with the name being assigned to a different socket. PConfirm
should be used instead of PLookupName because it uses fewer network
resources to accomplish its task. The PConfirm routine follows.

FUNCTION PConfirm(thePBPtr: MPPPBPtr; async: BOOLEAN)): OSErr;

Using the following fields in the MPP Parameter Block:

~ ioCompletion
f- ioResult
~ interval
~ count
~ entityPtr
~ confirmAddr
~ newSocket

Errors Returned:

noErr (0)
nbpConfDif f
nbpNoConfirm

(-1026)
(-1025)

- address of completion routine
- result of operation
- retry interval in eight tick units
- retry count
- names table entry pointer
- address to confirm
- socket number to confirm

No error.
Name confirmed at different
Name not confirmed.

socket.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation, this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

interval and count determine the retry behavior of the trap. count tells
it how many retries should be attempted and interval tells it how long to
wait between retries in 8-tick units. count is decremented with each retry.

entityPtr contains a pointer to the NBP entity you want to confirm.
confirmAddr is the address you want to confirm.
newSocket returns the socket number of the entity you confirmed. This

will be different from the socket found in confirmAddr when the status
nbpConfDiff is returned.

noErr is returned when the trap completes normally.

56 .,.. Chapter 5 Name Binding Protocol

nbpConfDiff is returned when the entity you just checked isn't at the
same socket specified in confirmAddr. The new socket number can be
found in newSocket when this status is returned.

nbpNoConfirm is returned when NBP cannot confirm that the specified
entity name is associated with the specified address.

~ Summary
This chapter described the operation of the Name Binding Protocol. After
discussing what names and address are, it detailed how to make use of
them in your own programs by providing examples of code fragments.
Furthermore, each NBP routine that you need to use in order to incorpo­
rate network names into your programs was described. Each parameter
or parameter block field used in each routine was discussed in detail.

Chapter 6 discusses Zone Information Protocol for Phase 1 and Phase 2
AppleTalk networks. These discussions are followed by descriptions of
specific ZIP routines.

6 Zone Information Protocol

The Zone Information Protocol (ZIP) provides three basic functions that
are useful to most application programs:

• getting the list of all zones on a network
• getting the list of all local zones (available only on Phase 2 AppleTalk

networks)
• getting the name of the current zone

ZIP provides a fairly low-level interface. For its most basic functions
(normally not required by application programs), ZIP requires that you
use Datagram Delivery Protocol (DDP) to send and receive information.
For the information needed by most application programs, ZIP provides
an ATP-based interface. Although easier than handling DDP packets, this
does require building ATP requests in a certain format, setting the proper
user bytes, and repeating transactions to get all the information you need.
The requirement that you use ATP has been removed in Phase 2 AppleTalk
with the addition of ZIP specific calls to the .XPP driver, although the
older technique is still supported.

This chapter shows how to use ZIP with pofu Phase 1 and Phase 2
Apple Talk networks. If you are confident that your, code will not be oper­
ating in Phase 1 environments, you can ignore the discussion of ZIP in
Phase 1 AppleTalk networks.

57

58 ..,.. Chapter 6 Zone Information Protocol

...., Using ZIP in Phase 1 AppleTalk Networks
Using ZIP in Phase 1 AppleTalk requires you to build requests and get
responses using ATP in order to retrieve your current zone name or to
retrieve a list of all available zones. Each type of request is specified by a
unique value stored in the user Bytes field of the ATP message .

..,.. Getting the Local Zone Name

To get the name of the current zone from ZIP in Phase 1 AppleTalk, you
have to build a GetMyZone request using ATP. This ATP request doesn't
have an ATP message body; it only specifies the ZIP function in the user
bytes. This is done by setting the first byte of the ATP user bytes to be 7
because GetMyZone is ZIP function 7. The other user bytes should be set
to zero.

The GetM4yZone message should be sent to your local router. Its
address, made up of the socket number, the node ID, and the network
number, are generated in the following way.

1. The router's ZIP information socket number is always 6. Unlike
most socket addresses used by AppleTalk, the ZIP information
socket in a router is always statically assigned to be socket number 6.

2. The node ID of your local router is retrieved by making a call to the
GetBridgeAddress call. If this returns zero, it means that there is no
router available and that the current network is made up of only one
zone.

3. The network number of the router is the same as your local network
number. This can be retrieved by making a call to GetN odeAddress.

Listing 6-1 shows a function that implements these three steps.

Listing 6-1. GetZIPAddr function

1: FUNCTION GetRouterAddr(VAR ZIPAddr AddrBlock)
2: CONST
3: kZIPSocket 6;
4: VAR
5: theNode
6: theNet

integer;
integer;

7: theRouterNode integer;
8: BEGIN {GetZIPAddr}
9: GetRouterAddr := FALSE;

BOOLEAN;

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

..,. Using ZIP in Phase 1 AppleTalk Networks 59

IF GetNodeAddress(theNode, theNet) <> noErr
THEN BEGIN

EXIT(GetZIPAddr);
END;

theRouterNode := GetBridgeAddress;
IF (theRou~erNode = 0)

THEN BEGIN {No zones}
EXIT(GetZIPAddr);

END;
WITH ZIPAddr DO BEGIN

aNet := theNet;
aNode := theRouterNode;
aSocket := kZIPSocket;

23: END;
24: GetRouterAddr ·= TRUE;
25: END; {GetZIPAddr}

Line 10 makes the call to GetNodeAddress, exiting the function with a
value of FALSE if there is any error encountered.

Line 14 calls GetBridgeAddress to fetch the node ID of the router. Line
15 checks for a result of zero indicating that there is no router on the
network.

Lines 19-23 assign the address values to the return parameter ZIP Addr.
Then line 24 sets the return value of the function to be TRUE, indicating
that the function succeeded in getting the address of the router for use
with ZIP .

..,. Getting the Zone List

In order to get the list of all the defined zones in a network from ZIP in
Phase 1 AppleTalk, you have to build a GetZoneList request using ATP.
This ATP request contains no ATP message body, but only specifies the
ZIP function in the user bytes. This is done by setting the first byte of the
ATP user bytes to be 8 because GetZoneList is ZIP function 8.

In addition to setting the first user byte to 8, the GetZoneList message
requires you to supply an index in the last two bytes of the user bytes.
This index mechanism is needed because often a complete zone list cannot
fit into a single response packet. In this case, subsequent requests are
made for additional parts of the list until the entire list is completely
retrieved.

60 ..,.. Chapter 6 Zone Information Protocol

The first time you make the GetZoneList request, you should set the
index to 1. This tells the router to give you the first portion of the zone list.
In the response packet, the router indicates how many zones are listed in
the packet and if there are any more zones left to be received.

The last two user bytes are used to contain the zone count of the packet;
the first byte contains the flag indicating if there are additional zones to be
gotten.

Listing 6-2 shows how to define a Pascal type that directly maps the
response user byte into a more tractable form. The first field, IsLastPacket,
corresponds to the first byte of the user bytes and tells you if the packet is
the last one needed to fetch an entire list. A filler field is supplied to skip
over the second user byte that is unused. Then, the ZoneCount field is
mapped over the final two user bytes that tell you how many zones are in
the packet.

Listing 6-2. Alternate type for the GetZonelist user bytes

1: GetZoneUserBytes = PACKED RECORD
2: IsLastPacket: BOOLEAN;
3: Filler 0 .. 255;
4: ZoneCount
5: END;

integer;

Listing 6-3 is a code fragment that shows how to repeatedly send the
GetZoneList ATP request and process the response. In this example, a
call is made to ProcessZone for each zone name that is received.

Listing 6-3. GetZonelist loop in Phase l AppleTalk

1: index := 1;
2: count ·= O;
3:
4: REPEAT
5: theATPPB.userData := kGZLCall + index;
6: stat := PSENDRequest(@theATPPB, kSYNC);
7: IF stat <> noErr
8: THEN handleError(stat);
9: count := count +

10: GetZoneUserBytes(theBDS.userBytes) .ZoneCount;
11: currZonePtr := zonePtr;
12: REPEAT
13: zoneName := StrFromPtr(currZonePtr,currZonePtrA);
14: ProcessZone(zoneName);

...., Using ZIP in Phase 2 AppleTalk Networks 61

15: currZonePtr := Ptr(LONGINT(currZonePtr) +
16: currZonePtr"+l);
17: index := index+ l;
18: UNTIL index > count;
19: UNTIL (GetZoneUserBytes(theBDS.userBytes) .IsLastPacket);

Lines 1 and 2 initialize the counters that keep track of how many zone
list names you have processed.

Line 4 begins the loop for sending ATP requests. Each time through the
loop, you need to send the proper index and function code. This is set in
line 5 by adding the index to the function, with the function already
shifted over into the first user byte position (kGZLCall = $08000000).

Line 6 makes ATP send the request synchronously and lines 7 and 8
check for any errors, calling an error handling routine if there is one.

Lines 9 and 10 increment the count variable by the number of zones
returned in the response packet using the GetZoneUserBytes structure that
was defined in Listing 6-2.

Lines 12""'.' 18 define a loop that repeats for each zone listed in the response
packet.

Line 13 uses a routine, StrFromPtr, that copies a string starting at the
specified address for the specified length. StrFromPtr copies the zone name
into the zoneName variable.

Line 14 feeds the zone name from line 13 into a function that can then
process the zone name as it sees fit.

Lines 15 and 16 move the currZonePtr to the next zone name.
Line 17 bumps up the index and line 18 checks it to see if it is done

processing the response packet.
Finally, line 19 checks to see if the packet is the last packet in the zone

list. It does this by checking the flag in the user bytes using the
GetZoneUserBytes structure defined in Listing 6-2.

~ Using ZIP in Phase 2 AppleTalk Networks

Instead of constructing the ATP messages and sending them yourself in
order to use ZIP in Phase 2 AppleTalk, the .XPP driver now includes calls
to do this for you. You still have to make repeated calls to the .XPP driver
because each call will only get a single buffer full of the zone name data.
However, this simplifies the use of ZIP substantially.

62 .. Chapter 6 Zone Information Protocol

In order to make the ZIP calls to the .XPP driver, you need to make a
PBControl call to the .XPP driver with the csCode field in the parameter
block set to 246, meaning this is an .XPP driver call. The xppSubCode
field must be set to either 7 for GetMyZone, 6 for GetZoneList, or 5 for
GetLocalZones. You also need to have the ioRefNum set to the correct
value for the .XPP driver. The easiest way to get this is to simply open the
.XPP driver and use the reference number that the open call returns.

Another enhancement found in Phase 2 ZIP is the ability to get a list of
all the local zones for your network. This is important because with Phase
2 AppleTalk, a given local network can contain more than one zone. This
is often found in larger Ethernet-based AppleTalk networks.

.. Getting the Local Zone Name

To get the local zone name under AppleTalk Phase 2, you need to make a
call to PB Control with the parameter block's csCode field set to 246 and
the xppSubCode field set to 7. ·

Listing 6-4 shows a function that gets the local zone using the PBControl
call to the .XPP driver.

Listing 6-4. Getting the local zone

1: FUNCTION GetMyZonePhase2 str255;
2: CONST
3: kXPPCall 24 6;
4: kGetMyZone 7;
5: VAR

6: theXPBPB xCallParam;
7: xppDriverRefNum integer;
8: returnedZoneName: str255;
9: BEGIN {GetMyZonePhase2}

10:
11: GetMyZonePhase2 := '*';
12:
13: IF OpenDriver('.XPP', xppDriverRefNum) <> noErr
14: THEN EXIT(GetMyZonePhase2);
15:
16: WITH theXPBPB DO BEGIN
17: zipinfoField[l] := O;
18: zipinfoField[2] := O;
19:
20:
21:
22:

ioRefNum .- xppDriverRefNum;
csCode := kXPPCall;
xppSubCode .- kGetMyZone;

..,.. Using ZIP in Phase 2 AppleTalk Networks 63

23: xppTimeOut := kATPTimeOutVal;
24: xppRetry := kATPRetryCount;
25: zipBuffPtr := @returnedZoneName;
26: END;
27:
28: IF PBControl(@theXPBPB,kSYNC) = noErr
29: THEN BEGIN
30:
31:
32:

END;
GetMyZonePhase2 .- returnedZoneName;

33: END; {GetMyZonePhase2}

Line 11 sets the return value to '*' by default. This will be returned if
there are no zones found or there is some other error condition encountered
inside the function.

Lines 13 and 14 open the .XPP driver. This is a good way to get the
reference number for the .XPP driver. If any error is encountered, the
code exits the function without doing any further processing.

Lines 17 and 18 set the first word in the ziplnfoField field of the
parameter block to zero, which is required by this call.

Line 20 fills in the ioRefNum field of the parameter block with the
reference number for the .XPP driver that was received from the
OpenDriver call.

Lines 21 and 22 assign the csCode and xppSubCode fields with the
appropriate values for making the GetMyZone call.

Lines 23 and 24 fill in values that are passed along to the underlying
ATP calls made by the .XPP driver on your behalf. These values tell it
how long the ATP SendRequest should wait for retries and how many
retries it should perform. See Chapter 7 for further information
about ATP.

Line 25 assigns the address of the variable returnedZoneName to the
zipBuffPtr field in the parameter block. returnedZoneName must be 33
bytes long-long enough to contain a 32-byte Pascal string-the maximum
size of a zone name.

Line 28 makes the call to PBControl synchronously and line 30 assigns
the returned zone name to the result of the function. If there is an error,
the previously assigned value of '*' will be returned.

64 ~ Chapter 6 Zone Information Protocol

~ Getting the Zone List

In order to build a list of the zones in a Phase 2 AppleTalk network, you
need to make a call to PB Control with the parameter block's csCode field
set to 246 and the xppSubCode field set to 6.

Listing 6-5 shows a function that gets the local zone using the PBControl
call to the .XPP driver.

Listing 6-5. Getting the zone list

1: PROCEDURE BuildZoneList;
2: CONST
3: kZonesSize = 578;
4: VAR
5: theXPBPB
6: zonePtr, currZonePtr
7: index, count
8: xppDriverRefNum
9: zoneName

10: stat
11: BEGIN {BuildZoneList}
12:

xCallParam;
Ptr;
INTEGER;
INTEGER;
str255;
OSErr;

13: IF OpenDriver(' .XPP', xppDriverRefNum) <> noErr
14: THEN EXIT(BuildZoneList);
15:
16: zonePtr := NewPtr(kZonesSize);
17: IF zonePtr =NIL
18: THEN EXIT(BuildZoneList);
19:
20: WITH theXPBPB DO BEGIN
21: zipinfoField[l)
22: zipinfoField[2)
23: zipLastFlag
24:
25:
26:
27:
28:
29:
30:
31:
32:

ioRefNum
cs Code
xppSubCode
xppTimeOut
xppRetry
zipBuffPtr

END;

33: index := 1;
34: count := 0;
35:
36: REPEAT

:=
:=
.-
:=
:=
:=

:= O;
:= 0;
:= 0;

xppDriverRefNum;
xCall;
zipGetZoneList;
kATPTimeOutVal;
kATPRetryCount;
zonePtr;

~ Using ZIP in Phase 2 AppleTalk Networks 65

37: stat := PBControl(@theXPBPB, kSYNC);
38: IF stat <> noErr THEN Leave;
39:
40: count := count + theXPBPB.zipNumZones;
41: currZonePtr := zonePtr;
42: REPEAT
43: zoneName := StrFromPtr(currZonePtr,currZonePtrA);
44: ProcessZone(zoneName);
45: currZonePtr := Ptr(LONGINT(currZonePtr) +
46: currZonePtrA+l);
47: index := index + 1;
48: UNTIL index > count;
49: UNTIL (theXPBPB.zipLastFlag <> 0);
50: DisposPtr(zonePtr);
51: END; {BuildZoneList}

Lines 13 and 14 open the .XPP driver. This is a good way to get the
reference number for the .XPP driver. If any error is encountered, the
code exits the function without doing any further processing.

Line 16 allocates the 578 bytes of buffer space to store the zone infor­
mation. Lines 17 and 18 exit if the memory couldn't be allocated.

Lines 21 and 22 set the first word in the ziplnfoField field of the
parameter block to zero, which is required by this call.

Line 23 clears the zipLastFlag field to zero.
Line 25 fills in the ioRefNum field of the parameter block with the

reference number for the .XPP driver that was received from the
OpenDriver call.

Lines 26 and 27 assign the csCode and xppSubCode fields with the
appropriate values for making the GetZoneList call.

Lines 28 and 29 fill in values that are passed along to the underlying
ATP calls made by the .XPP driver on your behalf. These values tell it
how long the ATP SendRequest should wait for retries and how
many retries it should perform. See Chapter 7 for further information
about ATP.

Line 30 assigns the zone buffer, allocated in line 16, to the zipBuffPtr
field of the parameter block.

Line 36 begins a loop that is repeated until the calls to GetZoneList tell
you there are no more zones to get.

Line 37 makes the actual call to the PBControl, which is really the call
GetZoneList. If the call returns an error condition, it exits the loop at
line 38.

66 ..,.. Chapter 6 Zone Information Protocol

Line 40 increments the counter variable count by the number of zones
that the call to GetZoneList returned.

Line 41 positions the currZonePtr to the beginning of the zone buffer in
anticipation of the loop beginning at line 41. This loop repeats until each
of the zones returned is processed.

Line 42 copies the zone name into a string so that line 43 can call a
routine to do some processing based on that name.

Line 45 advances the pointer, currZonePtr, to point to the next zone
name.

Line 47 increments the index so you can determine if you have finished
processing the zone buffer in line 47 and exit the loop.

Line 49 tests for the zipLastFlag. When this is TRUE, it indicates that
there are no more zone buffers to retrieve and process.

Line 50 cleans up the zone buffer that was allocated earlier .

..,.. Getting the List of Local Zones

Because Phase 2 AppleTalk allows more than one zone to be assigned to a
given local network, there needs to be a way for you to get this list. The
GetLocalZones call is provided for this purpose.

The GetLocalZones call functions in a way very similar to the
GetZoneList call. In fact, the same algorithm can be used to access it. The
only difference is that you would make the PBControl call with the
xppSubCode field of the parameter block set to 5 rather than 6.

Rather than list a code fragment to show how this is done, simply refer
to Listing 6-5 and change the assignment of the xppSubCode field on line
27 to be zipGetLocalZones 5, rather than zipGetZoneList .

..,.. Detailed Descriptions of Important ZIP Routines
The following section describes each important ZIP routine discussed
previously in this chapter. It is restricted to the Phase 2 calls, because the
Phase 1 "calls" aren't really calls, but rather ATP transactions. It shows
the routine's prototype, lists all parameters or parameter block fields, and
lists error codes. Each parameter or parameter block field and error code
is then described in detail.

..,._ Detailed Descriptions of Important ZIP Routines 67

..,.. GetMyZone

GetMyZone is used to get the name of the zone of the node on which
your application is currently executing. The GetMyZone routine follows.

FUNCTION PBControl(theXPPPBPtr:XPBPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the XP Parameter Block:

~ cs Code

~ xppSubCode

~ ioCompletion

f-- ioResult

~ xppTimeOut

~ xppRetry

~ zipBuffPtr

~ zipinfoField

Errors Returned:

noErr (0)

noBridgeErr (-93)

reqFailed (-1096)

tooManyReq (-1097)

noDataArea (-1104)

- always xCall

- always zipGetMyZone

- address of completion routine

- result of operation

- retry interval for the ATP call

- retry count for the ATP call

- pointer to the zip buffer

- buffer space used by zip

No error.

No router is present.

Too many concurrent requests.

Too many outstanding ATP calls.

No data area for request to MPP.

csCode always contains xCall, which is the constant 246.
xppSubCode always contains zipGetMyZone, which is the constant 7.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

xppTimeout and xppRetry determine the retry behavior of the under­
lying ATP transaction. xppRetry tells the ATP transaction how many
retries should be attempted and xppTimeout tells it how long to wait
between retries in 8-tick units.

zipBuf£Ptr contains a pointer to a buffer that will contain the zone
name. This must be at least 33 bytes in size as the zone name is of the
type Str32.

68 ..., Chapter 6 Zone Information Protocol

ziplnfoField is a 70 byte buffer used by ZIP. The first two bytes of
ziplnfoField must be set to zero before making the call.

noErr is returned when the trap completes normally.
noBridgeErr is returned when there is no router present in the network.
reqFailed is returned when the retry count is exceeded before a valid

response is completely received in the underlying ATP transaction.
tooManyReq is returned when there have been too many concurrent

ATP requests made.
noDataArea is returned when AppleTalk runs out of memory to hold

transaction information .

..., GetZonelist

GetZoneList is used to retrieve the list of all known zones from a local
router. It must be repeatedly called until it indicates there is no more zone
information to return. The GetZoneList routine.follows.

FUNCTION PBControl(theXPPPBPtr:XPBPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the XP Parameter Block:

~ cs Code

~ xppSubCode

~ ioCompletion

f- ioResult

~ xppTimeOut

~ xppRetry

~ zipBuffPtr

~ zipinfoField

f- zipNumZones

f- zipLastFlag

Errors Returned:

noErr (0)

noBridgeErr (-93)

reqFailed (-1096)

tooManyReq (-10~7)

noDataArea (-1104)

- always xCall

- always zipGetZoneList

- address of completion routine

- result of operation

- retry interval for the ATP call

- retry count for the ATP call

- pointer to the zip buffer

- buffer space used by zip

- number of zones gotten

- set to nonzero when no more zones

No error.

No router is present.

Too many concurrent requests.

Too many outstanding ATP calls.

No data area for request to MPP.

..,.. Detailed Descriptions of Important ZIP Routines 69

csCode always contains xCall, which is the constant 246.
xppSubCode always contains ZipGetZoneList, which is the con­

stant 6.
ioCompletion contains that address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

xppTimeout and xppRetry determine the retry behavior of the under­
lying ATP transaction. xppRetry tells it how many retries should be
attempted and xppTimeout tells it how long to wait between retries in
8-tick units.

zipBuf£Ptr contains a pointer to a buffer that will contain the zone
name information. This must be at least 578 bytes in size-large enough
to contain an entire ATP packet.

ziplnfoField is a 70 byte buffer used by ZIP. The first 2 bytes of
ziplnfoField must be set to zero before making the call.

zipNumZones contains the number of zones received by this call.
zipLastFlag contains a flag that indicates if there is more zone informa­

tion to be gotten. It is either zero if there is more information to get or
nonzero when there is no more.

noErr is returned when the trap completes normally.
noBridgeErr is returned when there is no router present in the network.
reqFailed is returned when the retry count is exceeded before a valid

response is completely received in the underlying ATP transaction.
tooManyReq is returned when there have been too many concurrent

ATP requests made.
noDataArea is returned when AppleTalk runs out of memory to hold

transaction information .

..,.. GetlocalZones

GetLocalZones is used to retrieve the list of all the local zones for the local
network. It must be repeatedly called until it indicates there is no more local
zone information to return. The GetLocalZones routine follows.

70 .,.. Chapter 6 Zone Information Protocol

FUNCTION PBControl(theXPPPBPtr:XPBPBPtr; async:
BOOLEAN) :OSErr;

Using the following fields in the XP Parameter Block:

-+ cs Code

-+ xppSubCode

-+ ioCompletion

-+ ioResult

-+ xppTimeOut

-+ xppRetry

-+ zipBuffPtr

-+ zipinfoField

~ zipNumZones

~ zipLastFlag

Errors Returned:

noErr (0)

noBridgeErr (-93)

reqFailed (-1096)

tooManyReq (-1097)

noDataArea (-1104)

- always xCall
- always zipGetLocalZones

- address of completion routine

- result of operation

- retry interval for the ATP call

- retry count for the ATP call

- pointer to the zip buffer

- buffer space used by zip

- number of zones gotten

- set to nonzero when no more zones

No error.

No router is present.

Too many concurrent requests.

Too many outstanding ATP calls.

No data area for request to MPP.

csCode always contains xCall, which is the constant 246.
xppSubCode always contains zipGetLocalZones, which is the con­

stant 5.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

xppTimeout and xppRetry determine the retry behavior of the under­
lying ATP transaction. xppRetry tells it how many retries should be
attempted and xppTimeout tells it how long to wait between retries in
8-tick units.

zipBuffPtr contains a pointer to a buffer that will contain the zone
name information. This must be at least 578 bytes in size-large enough
to contain an entire ATP packet.

ziplnfoField is a 70 byte buffer used by ZIP. The first two bytes of
ziplnfoField must be set to zero before making the call.

..,. Summary 71

zipNumZones contains the number of zones received by this call.
zipLastFlag contains a flag that indicates if there is more zone informa­

tion to be gotten. It is either zero if there is more information to get or
nonzero when there is no more.

noErr is returned when the trap completes normally.
noBridgeErr is returned when there is no router present in the network.
reqFailed is returned when the retry count is exceeded before a valid

response is completely received in the underlying ATP transaction.
tooManyReq is returned when there have been too many concurrent

ATP requests made.
noDataArea is returned when AppleTalk runs out of memory to hold

transaction information .

...,. Summary
This chapter covered the Zone Information Protocol. It showed how ZIP
can be used to get zone information. Specifically, it showed how to get
your local zone name, the list of all zones, and the list of all local zones.

This chapter also showed how ZIP can be used in both Phase 1 and
Phase 2 Apple Talk environments using ATP transactions or calls to the
.XPP driver.

Chapter 7 covers the AppleTalk Transaction Protocol. Details of making
and receiving requests are discussed along with sending responses and
aborting calls. Specific ATP routines follow the discussions.

7

Note ..

AppleTalk Transaction
Protocol

AppleTalk Transaction Protocol (ATP) is a I?asic component of AppleTalk.
It provides you with a simple way to reliably transfer relatively small
amounts of data across AppleTalk networks.

ATP makes use of the basic idea of a transaction to move data across the
network. This is an asymmetric operation where on one side, the requester
makes a request, and on the other side, the responder responds. These
transactions are limited in the amount of data that can be transferred, but
it is easy to work around this limitation by performing multiple transac­
tions when larger amounts of data are to be transferred across the network.

There are many uses for ATP. AppleTalk itself uses it to implement the
Zone Information Protocol (ZIP) as well as Printer Access Protocol (PAP)
and AppleTalk Session Protocol (ASP). Any application where a program
needs to make a request of a remote program should consider using ATP.

73

74 ~ Chapter 7 Appletalk Transaction Protocol

...,. The Mechanics of ATP Transactions
ATP transactions provide reliable service. That is, the transaction will
complete properly or an error will be returned to you. All of the details
dealing with retransmission of dropped or lost packets are handled by
this protocol. ATP does its best to complete the transaction for you.

Even though ATP takes care of the details of implementing a transaction,
some understanding of how a transaction works is helpful to make the
best use of ATP. ATP provides a number of controls over the details of a
transaction and the proper utilization of these controls can make your
program more efficient.

ATP's basic model for a transaction is that first the requester sends out
a request packet. Then the responder receives the request packet and does
some processing to prepare a response. The response is then sent back to
the receiver in up to eight response packets. These packets are assembled
into a response message and delivered to the original requester. This
process is illustrated in Figure 7-1.

There are some obvious limitations with this scheme. Clearly, ATP
transactions are asymmetric-more data can be transferred in the response
than in the request.

Also, because ATP is layered on top of DDP and ATP packets are
layered inside of DDP packets, ATP packets can only contain up to 578
data bytes. DDP packets have 586 data bytes and ATP uses 8 of these
bytes as a header. This means that the request can be up to 578 bytes long
and the response can be up to 4624 bytes long. To transfer more than these
amounts, multiple transactions are required.

When a transaction does not complete, ATP will retry it a number of
times. This is controlled by two fields in the parameter block used in the

Responder

Request
Packet

Requester

Figure 7-1. Normal ATP transaction

~ The Mechanics of ATP Transactions 75

PSendRequest call: timeOutVal and retryCount. The timeOutVal
determines how long ATP waits before resending the original request
packet. The number of times this is done is controlled by the retryCount
field. So the total retry time is timeOutVal (in seconds) times the retry
count.

One important optimization that ATP makes when performing retries
has to do with the response bitmap that it maintains in the ATP packet
header. This bitmap (8 bits, one for each possible response packet) is used
in the request packet to tell the responder which response packets have
not been received by the requester. (Note that the response packets are
numbered from zero to seven.) In the case of retries, this bitmap tells the
responder which packets have already been safely received by the
requester. The responder only has to resend the packets that have not
been received and not bother to send the others. Figure 7-2 shows how
this works. It shows a request being made that expects four reply packets.
These packets are sent by the responder. Packet 2 is lost during transmis­
sion. After the timeout period is up, the requester resends its request
packet with a bitmap telling the responder that it still needs packet 2. This
is then sent by the responder to complete the transaction.

Another common scenario is to have the responder disappear during a
transaction (it gets turned off, crashes, or is disconnected from the network).
In this case, AppleTalk will wait for the retry period, then resend the
request. It repeats this retryCount the number of times specified in the
retryCount field of the parameter block. After exhausting the retries,
AppleTalk gives up and returns an error of reqFailed (-1096) telling you
that the retry count has been exceeded.

Choosing the proper combination of timeOutVal and retryCount is very
specific to your application. If your program will be used by a variety of
users on a variety of networks, make sure you allow generous values.

Responder

Request
bitmap=DOOOl l l l

Requester

Request
bitmap=00000100 Resp 2

i-----Retry Timeout •

Figure 7-2. ATP transaction with lost response

76 ..,. Chapter 7 Appletalk Transaction Protocol

Large networks often have large delays caused by multiple routers, net­
work congestion, or slow links (such as modems). Values for these
parameters that work well in a small test network are often too restrictive
for larger networks.

Sometimes it can be good to allow power users to directly set these
values, though remember that most users will have no idea what these
parameters mean. A better approach can be to send some test transactions
to estimate network performance and adapt your values to this. You may
also use the AppleTalk Echo Protocol (AEP) which is discussed in
Chapter2.

There are times when you want ATP to keep retrying indefinitely. For
this type of situation, Apple Talk treats a retryCount of 255 as meaiting retry
forever. With this setting, AppleTalk will continue retrying over and over
again until either the transaction completes or it is explicitly canceled.

The use of the bitmap for lost packet recovery works well, but it depends
on the requester asking for a certain number of packets and the responder
sending that many packets back. There are times when the responder
does not wish to send a response with as many packets as the requester
asked for. This case is handled by setting the end-of-message flag in the
response packet.

Another control you have over ATP is choosing either at-least-once
transactions or exactly-once transactions. At-least-once transactions are the
most efficient type of ATP transaction. They guarantee that a given request
is received by the responder at least once. This means that it could be
received, and acted upon by the responder, more than once. This mode of
operation is appropriate for transactions that don't have any side effects
on the responder side. For example, getting a status from a remote machine
often works this way. You specify an at-least-once transaction by clearing
the XO flag in the atpFlags field of the ATP parameter block. Figure 7-3
illustrates this process. A request is sent and received. The response is lost
for any of a number of reasons, so after the timeout period the request is
resent. This request is again received by the responder and acted upon.
The second response is sent and received by the requester.

Exactly-once transactions have more overhead than at-least-once trans­
actions, but they guarantee that the responder only receives a given request
once. AppleTalk does this by saving the response packets until the trans­
action is complete. This means that AppleTalk can retransmit packets
itself without the intervention of your code.

Of course there must be a way to free up the saved response packets.
This is done with an additional packet called a transaction release packet. The
transaction release packet is sent by the requester when it has received all
the response packets it expects from the responder. If for any reason the
transaction release packet is lost, AppleTalk uses another mechanism to

Note~

~ The Buffer Data Structure 77

Responder

1 \
Re uest Resp 2

· Requester
Retry Timeout)It

Figure 7-3. ATP transaction with XO option

free up the saved response packets. This mechanism is the transaction
release timer. Each packet saved for possible retransmission is timestamped
when it is saved. If more than the release time passes, the packet is dis­
carded and the space consumed by the packet is freed.

The release time is fixed at 30 seconds in AppleTalk Phase 1. This has
been expanded in AppleTalk Phase 2 to allow the programmer to select
from five possible release times: 30 seconds, 1 minute, 2 minutes, 4 minutes,
or 8 minutes. You specify these release times by setting the last 3 bits of
the atpFlags field of the ATP parameter block using the following values:

000 (0) for 30 seconds
001 (1) for 1 minute
010 (2) for 2 minutes
011 (3) for 4 minutes
100 (4) for 8 minutes

..,. The Buffer Data Structure
The Buffer Data Structure (BOS) exists to handle ATP responses that are
made up of multiple response packets, which can be returned in any
order. AppleTalk needs some way to manage these returning packets and
the BOS does this.

78 ..,.. Chapter 7 Appletalk Transaction Protocol

The basic structure of the BDS is an array of eight records, one for each
returning packet. Each of these records, known as a BDSElement, is
structured as shown in Listing 7-1. The BDSElement contains a pointer to
a buffer where the data from the response packet is actually stored along
with a size for that buffer. It also contains the actual size of the data
received in the packet and the user bytes from the packet.

Listing 7-1. Structure of a BDS element

TYPE BDSElement = RECORD
buffSize INTEGER;
buffPtr PTR;
dataSize INTEGER;
userBytes LONGINT;

END; {BDSElement}

Size of buffer in bytes }
Pointer to buffer }
Actual size of data received
User bytes received in packet }

It is possible to set up and manage your own BOS, but the AppleTalk
Manager provides a routine to do this for you that is often more convenient
to use. This routine is called BuildBDS. To use BuildBDS you pass it a
pointer to your response message buffer along with the size of this buffer,
as well as a pointer to your BOS. Remember that your entire message
cannot be more than 4624 bytes long.

Returned as the value of BuildBDS is the number of actual BOS ele­
ments required to contain your message. For example, if your response
message buffer is the maximum 4624 bytes long, BuildBDS will return 8
since this length of message requires the full eight possible elements to
manage it. A shorter response message, say 100 bytes long, would only
require one element to manage, so BuildBDS would return 1 .

...., Using AppleTalk Transaction Protocol

There are two basic sides to using ATP: acting as a requester and acting as
a responder. There are a number of variations on these basic operations
and descriptions of these variations follow .

..,.. Making a Request

To send an ATP request, you use the PSendRequest trap. This trap sends
your data to another ATP socket and waits for the response to come back.

..,. Using AppleTalk Transaction Protocol 79

Listing 7-2 shows the code for a simple routine named SendStrRequest
that shows how ATP requests are sent. ATP sends a single string to a
remote ATP socket, then receives a single string back as its response. It
has the following three parameters:

1. A destination address where the message is to be sent
2. A string to be sent to the remote location
3. A response string that should come back from the remote program

Listing 7-2. SendStrRequest routine using PSendRequest

1: PROCEDURE SendStrRequest(destination
2: sendString
3: VAR respString
4: VAR
5: myBDS BDSType;
6: stat OSErr;
7: myATPPB ATPParamBlock;
8: BDSCount INTEGER;
9: BEGIN {SendStrRequest}

10:

AddrBlock;
str255;
str255);

11: BDSCount := BuildBDS(@respString,@myBDS,
12: SIZEOF(respString));
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

WITH

END;

my ATP PB DO
bdsPointer
numOfBuffs
addrBlock
timeout Val
retryCount
atpFlags
reqLength
reqPointer
ioCompletion

BEGIN
.- @myBDS;
:= BDSCount;
:= destination;
·= kATPTimeOutVal;
:= kATPRetryCount;
:= atpXOvalue;
:= SIZEOF(sendString);
:= @sendString;
:= NIL;

26: IF PSendRequest(@myATPPB,kSYNC) <> noErr
27: THEN BEGIN
28:
29:
30:

END;
respString := 'ERROR';

31: END; {SendStrRequest}

80 ~ Chapter 7 Appletalk Transaction Protocol

The first thing SendStrRequest does is build its BOS at line 11. The
message coming back is a simple response string, so you pass a pointer to
the response string variable and its size. The finished BOS is built using
myBDS, and also passed via a pointer. The number of BDS elements used
by BuildBDS is returned by BuildBDS into the variable BDSCount.

Next, SendStrRequest fills in the needed fields of the ATP parameter
block. Lines 15 and 16 deal with the response BOS. Line 15 assigns the
address of myBDS to the bdsPointer field and line 16 assigns the
BDSCount returned by BuildBDS to the numOfBuffs field.

Line 17 puts the address of the remote ATP socket you wish to talk to
into the addrBlock field. This address is typically found using an
NBPLookup, though this is not shown in this example.

Lines 18 and 19 fill in the timeout and retry values used by this trans­
action. Here global constants are used.

Line 20 specifies that the exactly-once mode of ATP should be used by
setting the XO flag in the atpFlags field.

Lines 21 and 22 specify the outgoing message. In this case it is simply
the string passed into SendStrRequest so you assign the length of the
string data to the reqLength field and the address of the string to the
reqPointer field. Note that you use the length of the entire string as the
req Length. You could also have passed the length of the string itself (plus
1 for the length byte). This would reduce the message size and lead to a
faster transmission time.

After sending the message at line 26 asynchronously, either the response
is returned, or an error condition is flagged in the result returned from
PSendRequest.

If there is no error, the incoming message will have already been stored
in the resp String parameter because you built the BOS using the respString
parameter as its storage.

The example in Listing 7-2 doesn't utilize the user bytes. User bytes can
be set to anything you wish for such things as command information or
additional data you don't want placed in your main message. You send
user bytes by simply assigning a long word to the userData field of the
parameter block before sending the message.

Note that the example in Listing 7-2 does use the synchronous mode of
operation. This keeps the example simple, but it isn't very often that a
synchronous PSendRequest is used in real life. Most of the time you need
to operate asynchronously, using either one of the polling techniques, or
a completion routine. See Chapter 3 for further details.

/

.... Using AppleTalk Transaction Protocol 81

.... Using PNSendRequest Rather than PSendRequest

There is another call provided to make ATP requests; this is
PNSendRequest. It is a variation of the PSendRequest call that pays
attention to one additional field in the ATP parameter block.
PNSendRequest looks at the atpSocket field and uses the specified socket
for the ATP transaction. The specified socket must have been opened for
use by ATP using the POpenA TPSocket call.

The PSendRequest call dynamically opens an ATP socket for each re­
quest it sends, then closes this socket when the request completes. Using
PNSendRequest, you can open a single ATP socket and use it for several
transactions. This eliminates the slight overhead of opening and closing a
socket for each transaction .

...., Receiving a Request

To receive an ATP request you use the PGetRequest trap. This trap waits
for an ATP request to come in on the specified socket. 99 percent of the
time, you will want to use this call asynchronously-sitting around waiting
for ATP requests is a very unpopular pastime for most users.

Listing 7-3 shows a fragment of code that makes an asynchronous
PGetRequest. This listing illustrates receiving a message defined by the
type PacketRec with a buffer allocated of tha~ type called incomingPacket.

Listing 7-3. Making an asynchronous PGetRequest

1: WITH incomingATPPB DO BEGIN
2: reqLength := SIZEOF(PacketRec);
3: reqPointer := @incomingPacket;
4: atpSocket := mySocket;
5: ioCompletion :=NIL;
6: END;
7:
8: stat := PGetRequest(@incomingATPPB,kASYNC);

Line 2 assigns the size of the expected incoming packet to the reqlength
field of the ATP parameter block. No more data will be accepted than the
amount specified here.

Line 3 assigns the address of the incoming packet buffer to the reqPointer
field of the ATP parameter block. This tells the Apple Talk Manager where
to store the incoming data.

82 ...,. Chapter 7 Appletalk Transaction Protocol

Line 4 assigns the socket address stored in mySocket to the atpSocket
field. This socket must have been previously opened using
POpenA TPSocket.

Finally, line 5 assigns NIL to the ioCompletion routine field of the ATP
parameter block. This indicates to the AppleTalk Manager that no
completion routine should be called upon completion of the request. This,
together with specifying in line 8 that asynchronous mode should be
used, allows us to poll for an actual incoming request.

Once you have issued the asynchronous PGetRequest, you need to poll
for the completion of the routine since no ioCompletion routine was
specified. See the Example RDEV code in Chapter 11 for an illustration of
using a completion routine with PGetRequest. Listing 7-4 shows a code
fragment that checks for the completion of the PGetRequest call made in
Listing 7-3.

Listing 7-4. Completion polling of PGetRequest

1: IF incomingATPPB.ioResult <> 1 THEN
2: IF incomingATPPB.ioResult = noErr THEN
3: Processincoming(incomingATPPB)
4: ELSE
5: HandleError(incomingATPPB.ioResult);

Line 1 checks for the completion of the PGetRequest. The call is com­
pleted for one of two reasons: either a request came in or some error
occurred. Line 2 checks this and if all is well, line 3 calls a routine that will
process the incoming packet. Otherwise, line 5 calls an error handling
routine .

...,. Sending a Response

Once an ATP request has been received, it needs a response. The
PSendResponse call serves this function. Many of the fields in the ATP
parameter block required by PSendResponse are the same as those that
are filled in by PGetRequest. These fields should be copied from the pa­
rameter block used by PGetRequest into the parameter block used by
PSendResponse. These fields include addrBlock, reqTID, and atpSocket;
however, there may be times when you wish to use a socket other than
the one the request came in on to send back the response. In that case, you
could fill in atpSocket with any socket that has been opened with
POpenA TPSocket.

Listing 7-5 shows a code fragment for issuing a response to a request. It

..,. Using AppleTalk Transaction Protocol 83

begins by constructing a BDS for the outgoing message using BuildBDS
on line 1.

Listing 7-5. Responding to a Request

1: BDSCount := BuildBDS(@outPacket,@myBDS,
2: SIZEOF (respString));
3: outgoingATPPB := incomingATPPB;
4: WITH outgoingATPPB DO BEGIN
5:
6:
7:

8:
9:

atpFlags
bdsPointer
bdsSize
numOfBuf f s
ioCompletion

10: END;

·= atpEOMvalue;
.- @outgoingBDS;
.- BDSCount;
·= BDSCount;
:= NIL;

11: stat := PSendResponse(@outgoingATPPB,kASYNC);

Line 3 copies the entire incoming parameter block into the outgoing
parameter block. This fills in the addrBlock, reqTID, and atpSocket fields
for us.

Line 5 sets the atpFlags field to the constant value atpEOMvalue, which
denotes that this includes the end of message.

Lines 6 assigns the bdsPointer field to point to the beginning of the
outgoing BDS prepared in lines 1 and 2.

Lines 7 and 8 assign BDSCount, the number of BDS elements returned
by the BuildBDS call in lines 1 and 2, to both the bdsSize and the
numOfBuffs fields. These almost always are set to the same value.

Finally, line 11 makes an asynchronous call to PSendResponse to have
the response actually sent as you continue processing.

.... Aborting ATP Calls

There are times when you need to cancel an ATP call that you have
previously issued. There are two basic ways to accomplish this: closing
the socket, or using the provided "kill" call.

Closing a socket will abort any outstanding operation using that socket.
This is often the easiest way to abort everything when you are finished
with a socket.

A more precise way to abort specific calls is to use PKillSendRequest
or PKillGetRequest. As their names imply, PKillSendRequest aborts a
PSendRequest or a PNSendRequest call and PKillGetRequest aborts a
PGetRequest call.

Both PKillSendRequest and PKillGetRequest take as their parameters

84 ~ Chapter 7 Appletalk Transaction Protocol

the address of the parameter block used by the specific request you are
sending or getting.

~ Detailed Descriptions of Important ATP Routines

The following section describes each important ATP routine. It shows the
routine's prototype, lists all parameters or parameter block fields, and
lists error codes. Each parameter or parameter block field and error code
is then described in detail.

~ PSendRequest

PSendRequest is used to send an ATP request to another program. It
completes operation after either receiving a response message or en­
countering an error condition such as a timeout. The PSendRequest
routine follows.

FUNCTION PSendRequest(thePBPtr:ATPPBPtr; async:
BOOLEAN) :OSErr;

Using the following fields in the ATP Parameter Block:

~ ioCompletion
f- ioResult
~ timeout Val
H retryCount
~ userData
f- reqTID
f- atpSocket
H atpFlags
~ addrBlock
~ reqLength
~ reqPointer
~ bdsPointer
~ numOfBuf f s
f- numOfResps

Errors Returned:

noErr (0)
reqFailed (-1024)
tooManyReqs (-1096)
noDataArea (-1104)
reqAborted (-1105)

- address of completion routine
result of operation

- retry interval in eight tick units
- retry count
- user bytes

transaction ID used in request
- current bitmap
- control information
- destination socket address
- request size

pointer to request data
- pointer to response BDS

number of response packets expected
number of response packets received

No error.
Retry count exceeded.
Too many concurrent requests.
Too many outstanding ATP calls.
Request canceled by user.

..,.. Detailed Descriptions of Important ATP Routines 85

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

timeOutVal and retryCount determine the retry behavior of the trap.
retryCount tells it how many retries should be attempted and timeOutVal
tells it how long to wait between retries in 8-tick units. retryCount is
decremented with each retry.

userData contains 4 bytes of data that are sent with the message in its
header. They can be used for any purposes the user wishes.

reqTID is a number that identifies the current transaction. It can be
used later in PNKillSendRequest to abort the transaction.

atpSocket returns the bitmap showing which response packets were
actually received before completion. This can be used to recover partial
data and assist in error recovery.

atpFlags contains the ATP flag values. You set the XO bit (bit 5) to use
an exactly-once transaction, or clear it to use an at-least-once transaction.
When using an exactly-once transaction, you set the release timer by
setting the low 3 bits (bits 0-2) with the values shown in "The Mechanics
of ATP Transactions" earlier in this chapter; when not using an exactly­
once transaction, these bits should be set to zero.

addrBlock contains the address of the responder's socket.
reqLength and reqPointer describe the location and size of the data

that should be sent to the responder. It must not be larger than 578 bytes
in size.

bdsPointer points to the response BOS that will contain the response
data.

numOfBuffs contains the number of response packets expected from
the responder.

numOfResps contains the number of response packets actually received
from the responder.

noErr is returned when the trap completes normally.
reqFailed is returned when the retry count is exceeded before a valid

response is completely received.
tooManyReqs is returned when the number of concurrent ATP requests

exceeds the maximum. The maximum number of ATP requests is deter­
mined by the version of AppleTalk running along with which CPU you
are running on.

86 ..,. Chapter 7 Appletalk Transaction Protocol

noDataArea is returned when AppleTalk runs out of memory to hold
transaction information.

reqAborted is returned when the trap is aborted by the us.er using the
PKillSendRequest trap .

..,. PNSendRequest

PNSendRequest is identical to PSendRequest with one difference:
Rather than dynamically allocating a socket to use for the transaction, it
uses the socket specified in the atpSocket field of the parameter block. The
PNSendRequest routine follows.

FUNCTION PNSendRequest(thePBPtr:ATPPBPtr; async:
BOOLEAN) :OSErr;

Using the following fields in the ATP Parameter Block:

~ ioCompletion
f- ioResult
~ timeout Val
H retryCount
~ userData
f- reqTID
H atpSocket
H atpFlags
~ addrBlock
~ reqLength
~ reqPointer
~ bdsPointer
~ numOfBuf f s
f- numOfResps
f- intBuf f

Errors Returned:

noErr (0)
reqFailed (-1024)
tooManyReqs (-1096)
noDataArea (-1104)
reqAborted (-1105)
badATPSocket (-1099)

address of completion routine
result of operation
retry interval in eight tick units
retry count
user bytes
transaction ID used in request
socket to use I current bitmap
control information
destination socket address
request size
pointer to request data
pointer to response BOS
number of response packets expected
number of response packets received
internal use

No error.
Retry count exceeded.
Too many concurrent requests.
Too many outstanding ATP calls.
Request canceled by user.
Socket does not exist.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

..,.. Detailed Descriptions of Important ATP Routines 87

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

timeOutVal and retryCount determine the retry behavior of the trap.
retryCount tells it how many retries should be attempted and timeOutVal
tells it how long to wait between retries in 8-tick units. retryCount is
decremented with each retry.

userData contains 4 bytes of data that are sent with the message in its
header. They can be used for any purposes the user wishes.

reqTID is a number that identifies the current transaction. It can be
used later in PNKillSendRequest to abort the transaction.

atpSocket is used to pass in the socket number that ATP should use for
the transaction. This same parameter also returns the bitmap showing
which response packets were actually received before completion. This
can be used to recover partial data and assist in error recovery.

alp Flags contains the ATP flag values. You can either set the XO bit (bit
5) to use an exactly-once transaction, or clear it to use an at-least-once
transaction. When using an exactly-once transaction you set the release
timer by setting the low 3 bits (bits 0-2) with the values shown in "The
Mechanics of ATP Transactions" earlier in this chapter; when not using
an exactly-once transaction, these bits should be set to zero.

addrBlock contains the address of the socket of the responder.
reqLength and reqPointer describe the location and size of the data

that should be sent to the responder. It must not be larger than 578 bytes
in size.

bdsPointer points to the response BOS that contains the response data.
numOfBuffs contains the number of response packets expected from

the responder.
numOfResps contains the number of response packets actually received

from the responder.
intBuff is an internal buffer used by ATP.
noErr is returned when the trap completes normally.
reqFailed is returned when the retry count is exceeded before a valid

response is completely received.
tooManyReqs is returned when the number of concurrent ATP requests

exceeds the maximum. The maximum number of ATP requests is deter­
mined by the version of AppleTalk running along with which CPU you
are running on.

noDataArea is returned when AppleTalk runs out of memory to hold
transaction information.

reqAborted is returned when the trap is aborted by the user using the
PKillSendRequest trap.

badATPSocket is returned when the specified socket is invalid.

88 ~ Chapter 7 Appletalk Transaction Protocol

~ PGetRequest

PGetRequest is used to ask ATP for any incoming request messages. It is
almost always called asynchronously. The PGetRequest routine follows.

FUNCTION PGetRequest(thePBPtr:ATPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the ATP Parameter Block:

~ ioCompletion
f- ioResult
~ userData
f- reqTID
H atpSocket
H atpFlags
~ addrBlock
~ reqLength
~ reqPointer
~ bitMap

Errors Returned:

noErr (0)
reqAborted (-1105)
badATPSocket (-1099)

- address of completion routine
- result of operation
- user bytes
- transaction ID used in request
- socket to use
- control information
- destination socket address
- request size
- pointer to request data
- transaction bitmap

No error.
Request canceled by user.
Socket does not exist.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

userData contains 4 bytes of data from the message header. They can
be used for any purposes the user wishes.

reqTID is a number that identifies this transaction. It is used later in the
PSendResponse trap.

atpSocket is the socket where ATP should look for an incoming request.
atpFlags contains the ATP flag values.
addrBlock contains the address of the socket of the requester.
reqLength and reqPointer describe the location and size of the request

data. This buffer should be 578 bytes long (the maximum size of a request
packet), unless you are sure that the request will be shorter than this.

bitMap contains the transaction bitmap. This can be used to ascertain
how many packets the requester expects as a response.

noErr is returned when the trap completes normally.

..,. Detailed Descriptions of Important ATP Routines 89

reqAborted is returned when the trap is aborted by the user using the
PKillSendRequest trap.

badATPSocket is returned when the specified socket is invalid .

..,. PSendResponse

PSendResponse is used to send the response message back to the
requester. It is called after a request has been received and a response
message has been created. The PSendResponse routine follows.

FUNCTION PSendResponse(thePBPtr:ATPPBPtr; async:
BOOLEAN) : OSErr;

Using the following fields in the ATP Parameter Block:

4 ioCompletion
f- ioResult
4 userData
f- reqTID
H atpSocket
H atpFlags
4 addrBlock
4 bdsPointer
4 bdsSize
4 numOfBuf f s

Errors Returned:

noErr (0)
badATPSocket (-1099)
noRelErr (-1101)
noDataArea (-1104)
badBuffNum (-1100)

address of completion routine
result of operation
user bytes

- transaction ID used in request
- socket to use

control information
destination socket address

- pointer to response BDS
size of the BDS
number of response packets

No error.
Socket does not exist.
No release received.
Too many outstanding ATP calls.
Bad response buffer number.

ioCompletion contains the .address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

userData contains 4 bytes of data that are sent with the message in its
header. They can be used for any purposes the user wishes.

reqTID is a number that identifies this transaction. It should be copied
from the incoming request.

90 ..,. Chapter 7 Appletalk Transaction Protocol

atpSocket is the socket to use to send the response.
atpFlags contains the ATP flag values. You should set the end-of­

message bit (bit 4) when you are sending fewer response packets than the
requester expects.

addrBlock contains the address where the response should be sent.
bdsPointer points to the response BDS with enough space for the

response packets.
bdsSize is the size of the response BDS in elements. This is normally

the returned value from the BuildBDS call.
numOfBuffs contains the number of response packets to be sent with

this call. This is usually the same as bdsSize.
noErr is returned when the trap completes normally.
badA TPSocket is returned when the specified socket is invalid.
noRelErr is returned when no release message is received.
noDataArea is returned when AppleTalk runs out of memory to hold

transaction information.
badBuffNum is returned when a bad buffer response number is

specified .

..,. POpenATPSocket

POpenA TPSocket is used to open an ATP socket for use later to either
make a request using PNSendRequest, or to receive requests using
PGetRequest. The POpenATPSocket routine follows.

FUNCTION POpenATPSocket(thePBPtr:ATPPBPtr; async:BOOLEAN): OSErr;

Using the following fields in the ATP Parameter Block:

~ ioCompletion - address of completion routine
f-- ioResult - result of operation
H atpSocket - socket number to open
f-- addrBlock - addresses to accept on this socket

Errors Returned:

noErr (0)
tooManySockets (-1098)

noDataArea (-1104)

No error.
Too many sockets are already
open.
Too many outstanding ATP calls.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

..,.. Detailed Descriptions of Important ATP Routines 91

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

atpSocket contains the socket to open. If this contains 0, ATP will assign
any free socket and fill in this field with that socket number.

addrBlock contains an address that specifies which other sockets this
socket will accept requests from. Fill this with zeros if you want to accept
requests from any socket.

noErr is returned when the trap completes normally.
tooManySockets is returned when the ATP runs out of available sockets.
noDataArea is returned when ATP runs out of memory .

..,.. PCloseATPSocket

PCloseA TPSocket closes the specified socket. Any memory consumed
by that socket is given up and any outstanding asynchronous operation
pending on that socket is aborted and its ioResult field is set to sktClosed.
The PCloseA TPSocket routine follows.

FUNCTION PCloseATPSocket(thePBPtr:ATPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the MPP Parameter Block:

~ ioCompletion
f- ioResult
H atpSocket

Errors Returned:

noErr (0)
noDataArea (-1104)

- address of completion routine
- result of operation
- socket number to close

No error.
Too many outstanding ATP calls.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

atpSocket contains the socket to close.
noErr is returned when the trap completes normally.
noDataArea is returned when ATP runs out of memory.

92 ~ Chapter 7 Appletalk Transaction Protocol

~ PKillSendRequest

PKillSendRequest is used to abort an outstanding request made by ei­
ther PGetRequest or PNGetRequest. The PKillSendRequest routine
follows.

FUNCTION PKillSendReq(thePBPtr:ATPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the ATP Parameter Block:

~ ioCompletion
(--- ioResult
~ aKillQEl

Errors Returned:

noErr (0)
cbNotFound (-1102)

- address of completion routine
- result of operation
- control block of call to abort

No error.
Control block not found.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

aKillQEl contains a pointer to the control block (parameter block) of the
SendReq or NSendReq trap that is to be aborted.

noErr is returned when the trap completes normally.
cbNotFound is returned when the specified pointer does not point to a

valid SendReq or NSendReq parameter block.

~ PKillGetRequest

PKillGetRequest is used to abort an outstanding PGetRequest call. The
PKillGetRequest routine follows.

..,.. Summary 93

FUNCTION PKillGetReq(thePBPtr:ATPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the ATP Parameter Block:

ioCompletion
ioResult
aKillQEl

Errors Returned:

noErr (0)
cbNotFound (-1102)

- address of completion routine
- result of operation
- control block of call to abort

No error.
Control block not found.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

aKillQEl contains a pointer to the control block (parameter block) of
the GetReq trap that is to be aborted.

noErr is returned when the trap completes normally.
cbNotFound is returned when the specified pointer does not point to a

valid GetReq parameter block.

~ Summary
This chapter described the operation of ATP. It detailed the low-level
operation of ATP and how this can affect your use of it. Examples of how
to use the ATP routines in your own programs were then provided. Fur­
thermore, each ATP routine that you would need to use was described.
Each parameter or parameter block field used in every routine was dis­
cussed in detail.

Chapter 8 is about AppleTalk Data Stream Protocol. More specific
routines will be given after discussions of connection, structure, the Data
Stream, and attention messages.

8 AppleTalk Data Stream
Protocol

The AppleTalk Data Stream Protocol (ADSP) provides a full-duplex data
stream between any two sockets on an AppleTalk network. That is, it lets
two programs send and receive continuous streams of data back and
forth across the network. It also provides for out-of-band signaling via
attention messages. These messages are sent between the two programs
without disrupting the primary data stream.

ADSP provides a service that is in many ways analogous to serial
communications. Serial communications involves sending continuous
streams of data bidirectionally, as does ADSP. However, unlike serial
communications, which sends its data as a continuous stream of bits
down a wire, ADSP actually sends its data across the network in packets
using DDP. In most circumstances, you don't have to concern yourself
with the mechanics of how the data is accumulated into packets for
transmission over DDP, but ADSP does provide some control over this
for you when it is required.

~ ADSP Connections
One of the basic concepts in ADSP is the connection. An open connection
connects two sockets together and allows data and attention messages to
flow freely across it. Before an open connection can be established, both
ends must prepare for it by creating a connection end. The connection
ends can then be combined into a fully operational open connection.

95

96 ..,. Chapter 8 Appletalk Data Stream Protocol

Half-open Connection

Closed Connection

Figure 8-1 . A typical life cycle of a connection

Once a connection is opened, it can be closed by either end. If one
connection end loses contact with the other, the connection becomes half­
open. ADSP will close a half-open connection after two minutes if the
connection cannot be reestablished.

Figure 8-1 shows the life cycle of a typical connection. It begins at time
t1 as two connection ends on two separate Macintosh computers on an
AppleTalk network. Then, at time t

2
, the connection is made allowing the

two ends to exchange data and attention messages (a section is devoted to
attention messages later in this chapter). At time t

3
the second Macintosh

loses contact with the first (maybe the first one has been powered off or
has turned off AppleTalk) leaving a half-open connection. After two
minutes, at time t4, the half-open connection is closed .

..,. Making an ADSP Connection

There are two basic models for establishing connections in ADSP. The
first and simplest model is shown in Figure 8-2. It involves opening one
connection end using the passive mode and opening the other connection
end using the request mode.

.... ADSP Connections 97

Macintosh 1 Macintosh 2

Passive Connection End

Passive Connection End Active Connection End

Passive Connection End Active Connection End

Open Connection

Figure 8-2. Opening a connection using request and passive modes

First one side opens a connection end using the passive mode. This is
shown in Figure 8-2 at time t1• Typically you register an NBP name for the
socket used. This allows the other side of the connection to find you using
an NBP lookup operation.

At time t2, a second connection is opened using the request mode. Using
the request mode requires you to specify the address of the other
connection end you want to connect to. This address is usually found
using NBP. Once the request connection is initiated, ADSP attempts to
join the two connection ends into an open full connection. This is shown
as time t

3
.

Finally the connection is declared open, and communication can com­
mence. This is shown as time t4•

Listings 8-1, 8-2, and 8-3 are code fragments illustrating how to create
connection ends using the passive and request modes. Listing 8-1 shows
how to initialize a connection end. This is done the same way for both
request and passive modes. Listing 8-2 shows how to open a connection
end in the passive mode and Listing 8-3 shows how to open a connection
end in the request mode.

98 ..,. Chapter 8 Appletalk Data Stream Protocol

Listing 8-1. Initializing a connection end

1: gCCBPtr := TPCCB(NewPtr(SIZEOF(TRCCB)));
2: IF gCCBPtr =NIL THEN HandleError;
3: sendQueue := NewPtr(kADSPSendBufSize);
4: IF sendQueue = NIL THEN HandleError;
5: recvQueue := NewPtr(kADSPRecvBufSize);
6: IF recvQueue = NIL THEN HandleError;
7: attnPtr := NewPtr(attnBufSize);
8: IF attnPtr = NIL THEN HandleError;
9:

10: WITH theDSPPB DO BEGIN
11: csCode := dspinit;
12: ioCompletion:= NIL;
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

userRoutine
ioCRefNum
ccbPtr
sendQSize
recvQSize
sendQueue
recvQueue
attnPtr
localSocket

END;

:=
:=
:=
:=
:=
:=
:=
:=
:=

NIL;
gADSPRefNum;
gCCBPtr;
kADSPSendBufSize;
kADSPRecvBufSize;
gSendQueue
gRecvQueue
gAttnPtr
O;

24: IF PBControl(@theDSPPB,kSYNC) <> noErr
25: THEN HandleError;

Lines 1-8 in Listing 8-1 allocate the following four buffers that are
required by the connection:

1. The connection control block (CCB)
2. The send buffer
3. The receive buffer
4. The attention buffer

Both the CCB and the attention buffer are of fixed predefined size, but the
send and receive buffers are as big or as small as you wish.

Line 11 fills in the csCode field with dsplnit telling the driver that this
is an initialization call.

Line 12 fills in the ioCompletion field with NIL indicating that no
completion routine is to be called.

Line 13 fills in the userRoutine field with NIL indicating that no routine
should be called when a connection event happens. When this is NIL, you
must poll the userFlags field of the CCB for connection events.

..,.. ADSP Connections 99

Line 14 fills in the ioCRefNum field. This should have been received
previously by opening the .DSP driver.

Line 15 fills in the ccbPtr field with a pointer to the CCB that was allo­
cated in line 1.

Lines 16-19 fill in the fields pertaining to the send and receive buffers
that were allocated in lines 3 and 5.

Line 20 fills in the attnPtr field with a pointer to the attention buffer that
was allocated in line 7.

Line 21 indicates that ADSP should select a socket for this connection
end. You can specify your own socket by filling in the localSocket field with
a previously allocated socket.

Line 24 finally makes the call to the .DSP driver. It is done synchronously
in this call because the dsp INIT call finished quickly-no network activ­
ity is required.

Listing 8-2 illustrates how to open the initialized connection end in the
passive mode. It calls the driver asynchronously and later code would
then poll for completion to see when the connection is actually opened.
Two types of polling are possible here: either check the ioResult field of
the parameter block to be non-one, or check the state field of the CCB to
see when it is set to sOpen.

Listing 8-2. Opening a connection in passive mode

1: WITH theDSPPB DO BEGIN
2: cs Code ·= dspOpen;

3: ioCompletion .- NIL;

4: ioCRefNum ·= gADSPRefNum;
5: filterAddress ·= AddrBlock(O);
6: ocMode := ocPassive;
7: oclnterval ·= 0;
8: ocMaximum := O;
9: END;

10:
11: IF PBControl(@theDSPPB,kASYNC) <> noErr
12: THEN HandleError;

Line 2 sets the csCode field to be dspOpen so the driver will know an
open request is being made.

Line 3 sets the ioCompletion field to NIL indicating that no completion
routine is to be called when the call is finished.

Line 4 fills in the ioCRefNum with the reference number of the .DSP
driver.

Line 5 sets the filterAddress field to be zero. This indicates that open
requests should be accepted from any socket address in the network.

100 ~ Chapter 8 Appletalk Data Stream Protocol

Line 6 fills in the ocMode field with ocPassive telling the driver that this
open request should use the passive mode.

Lines 7 and 8 specify that you want to use the default values for the
oclnterval and ocMaximum fields.

Line 11 finally calls the .DSP driver and makes the passive open request.
Later on, your code must either poll the ioResult field or the state field

of the CCB to determine when the connection has been opened.
Listing 8-3 illustrates how to open the initialized connection in the

request mode. It calls the driver synchronously. Your code may want to
call it asynchronously because the opening process can take some time if
the remote connection end is busy.

Listing 8-3. Opening session in request mode

1: WITH theDSPPB DO BEGIN
2:
3:
4:
5:
6:
7:
8:
9:

10:

cs Code
ioCRefNum
remoteAddress
filterAddress
ocMode
ocinterval
ocMaximum

END;

:= dspOpen;
:= gADSPRefNum;
:= theAddr;
:= AddrBlock(O);
:= ocRequest;
:= 0;
:= 0;

11: IF PBControl(@theDSPPB,kSYNC) <> noErr
12: THEN HandleError;

Line 2 sets the csCode field to be dspOpen so the driver will know an
open request is being made.

Line 3 fills in the ioCRefNum with the reference number of the .DSP
driver.

Line 4 sets the remoteAddress field to the address of the remote con­
nection end you wish to connect with. This is typically retrieved using an
NBP name lookup.

Line 5 sets the filterAddress. field to be zero. This indicates that you
will connect to any socket address in the network. You will normally
connect to the socket specified in remoteAddress, but when a connection
listener is encountered, you will be handed off to another connection that
may not be using that same socket.

Line 6 fills in the ocMode field with ocRequest telling the driver that
this open request should use the request mode.

Lines 7 and 8 specify that you want to use the default values for the
oclnterval and ocMaximum fields.

Line 11 finally calls the .DSP driver and makes the open request.

..,.. ADSP Connections · 101

..,.. Using a Connection Listener to Open a Session

The other common method for establishing a connection involves a con­
nection listener rather than opening a connection end using the passive
mode. When the remote connection end attempts to open a connection
using the request mode, the connection listener hands off the request to a
new connection end opened specifically for this purpose. Alternately, the
connection listener can deny the connection request. This type of operation
is typical of a server environment where a single NBP name is registered
to identify the server. This NBP name references the connection listener.
Requests come into it from a variety of sources and the connection listener
creates connection ends to service the incoming requests. It may have to
reject requests when local resources are exhausted.

Figure 8-3 illustrates the type of connection listener scenario just de­
scribed. It shows a single connection listener on Macintosh 1. A connection
request has already come in, resulting in a connection being established
with Macintosh 4. Two additional connection requests are just coming in
from Macintoshes 2 and 3. The connection listener is creating the passive
mode connection ends that will make a full connection with Macintoshes
2 and 3.

Connection Listener

Passive Connection End

Passive Connection End

Figure 8-3. Connecting using a connection listener

102 ~ Chapter 8 Appletalk Data Stream Protocol

Listings 8-4, 8-5, and 8-6 show code fragments illustrating how to create
and service a connection listener. Listing 8-4 shows how to open a con­
nection listener. Listing 8-5 shows how to open a passive connection end
in response to receiving a connection request. Listing 8-6 shows how to
deny a connection request.

Listing 8-4 starts out by preparing the parameter block with the values
required for the dspCLinit call. Line 2 sets the csCode field to dspCLinit
so a connection listener will be initialized when the driver is called.

Listing 8-4. Opening a connection listener

1:
2:
3:
4:
5:
6:
7:

WITH theDSPPB DO BEGIN
cs Code
ioCRefNum
ccbPtr
local Socket

END;

:= dspCLinit;
:= gADSPRefNum;
:= @theCCB;
:= 0;

8: IF PBControl(@theDSPPB,kSYNC) <> noErr
9: THEN HandleError;

10:
11: gCCBRefNum := theDSPPB.ccbRefNum;
12:
13: WITH theDSPPB DO BEGIN
14: csCode . - dspCLListen;
15: ioCRefNum := gADSPRefNum;
16: ccbRefNum := gCCBRefNum;
17: filterAddress .- AddrBlock(O);
18: END;
19:
20: IF PBControl(@theDSPPB,kASYNC) <> noErr
21: THEN HandleError;

Line 3 fills in the icCRefNum field with the reference number for the
.DSP driver.

Line 4 sets the ccbPtr field to point to the connection control block set
up previously.

Line 5 sets the localSocket field to zero, instructing the driver to get any
available socket and use it with this connection listener.

Line 8 calls the driver synchronously. You can do it this way since the
connection listener initialization function is relatively quick.

Line 11 copies t4e returned CCB reference number into the global
variable gCCBRefNum for future reference.

..,.. ADSP Connections 103

Next, a parameter block is filled in in preparation for calling the CLListen
call. It starts by setting the csCode field to dspCLListen to tell the driver
that a CLListen should be performed.

Lines 15 and 16 set the ioCRefNum and ccbRefNum fields to the
appropriate reference numbers.

Line 17 sets the filterAddress field to zero indicating that you want to
accept connection requests from any address on the network.

Finally line 20 makes the call to the driver asynchronously. This is done
so that later your code can poll the ioResult field to see if a connection
request has come in.

Once a connection request has come in, you usually want to create a
new connection end and have it complete the connection request. Listing
8-5 illustrates how to do this.

This code assumes that you are using the same parameter block as was
used by the connection listener in Listing 8-4. If you do not use the same
parameter block, you need to copy the remoteCID, remoteAddress,
sendSeq, sendWindow, and attnSendSeq fields from the connection lis­
tener parameter block to the parameter block used when you make the
call to dspOpen.

Listing 8-5. Opening a connection using accept mode

1: WITH theDSPPB" DO BEGIN
2: cs Code := dspOpen;
3: ioCRefNum := gADSPRefNum;
4: ccbRefNum := gCCBRefNum;
5: ocMode := ocAccept;
6: ocinterval := O;
7: ocMaximum := O;
8: END;
9:

10: IF PBControl(@theDSPPB,kSYNC) <> noErr
11: THEN HandleError;

Line 2 sets the csCode field to be dspOpen so the driver will know an
open request is being made.

Lines 3 and 4 set the ioCRefNum and ccbRefNum fields to the appro­
priate reference numbers.

Line 5 fills in the ocMode field with ocAccept telling the driver that this
open request should use the accept mode.

Lines 6 and 7 specify that you want to use the default values for the
oclnterval and ocMaximum fields.

Line 10 finally calls the .DSP driver and makes the open request.

104 lill- Chapter 8 Appletalk Data Stream Protocol

If rather than granting the open request, you want to deny it, you can
use the CLDeny call. This will tell the requesting connection end that the
connection request has failed. Listing 8-6 shows an example of how this is
done. It begins with lines 1 and 2 copying the remote connection ID and
remote address from the connection listener's parameter block.

Listing 8-6. Denying a connection request

1: denyCID .- listeningDSPPB.remoteCID;
2: denyAddress .- listeningDSPPB.remoteAddress;
3:
4: WITH theDSPPB DO BEGIN
5: csCode := dspOpen;
6: ioCRefNum := gADSPRefNum;
7: ccbRefNum .- gCCBRefNum;
8: remoteCID := denyCID;
9: remoteAddress := denyAddress;

10: END;
11:
12: IF PBControl(@theDSPPB,kSYNC) <> noErr
13: THEN HandleError;

Line 5 sets the csCode field to be dspCLDeny so the driver will know a
listener deny call is being made.

Lines 6 and 7 set the ioCRefNum and ccbRefNum fields to the appro­
priate reference numbers.

Line 8 fills in the remoteCID field with the remote CID retrieved from
the connection listener's parameter block.

Line 9 fills in the remoteAddress field with the remote address gotten
from the connection listener.

Line 12 finally calls the .DSP driver and completes the open request.
It is also important to remember to call CLListen again after you either

grant or deny the connection request; that is, if you want to accept further
connection requests using the same connection listener .

...,. Sending Data Over a Connection

Once you have set up a connection, the next step is usually to send or
receive data over it. This is done using the dspRead and dspWrite routines.
These routines actually only read or write data into or out of the

..,.. Sending Data Over a Connection 105

connection's send or receive buffers. The actual transmission or reception
of data over the network is done by ADSP independently. This is known
as double buffering.

Figure 8-4 illustrates double buffering. The three arrows show the three
times that data is moved. The first arrow represents the data being moved
from the writing program's data area to the connection's send buffer. The
second arrow represents the data being transmitted from the local con­
nection end's send buffer over the network into the receive buffer of the
remote connection end. The final arrow represents the data being copied
from the connection's receive buffer to the reading program's data area.

Because reading and writing ADSP data only copies data into and out
of buffers, dspWrite and dspRead operations complete when the copying
is done. The actual transmission of the data may occur some time later.

write data read data buffer

dspWrite dspRead

send buffer receive buffer

Figure 8-4. Double buffering in ADSP

106 ..,. Chapter 8 Appletalk Data Stream Protocol

By the Way~ I

..,. How ADSP Decides When to Transmit Data

ADSP determines when to transmit the data in the send queue based on a
number of factors. ADSP will not transmit the data in the send buffer if
the receive buffer on the other end is full. ADSP always waits until there
is free space in the receive buffer before attempting to send any data. If
this condition is satisfied, ADSP will send data when any of the following
four conditions is satisfied:

• The send buffer contains as many bytes or more than the blocking
factor.

•The send timer expires with data in the send buffer.
• An acknowledgment packet must be sent to the remote connection

end and there is data in the send buffer.
• The flush flag was set in a call to dspWrite.

The first three conditions will happen without your intervention, while
the last condition, using the flush flag in a dspWrite, is how you can force
the transmission of data .

..., The Structure of the Data Stream
ADSP treats the data it handles as a continuous stream of bytes. At times
this is precisely what is needed. For example, when emulating the behavior
of a serial line you would send and receive a simple stream of ASCII data
across a connection.

By the Way..,. I

..,.. Using dspRead and dspWrite 107

At other times it is useful to impose some structure on the data sent
over a connection. For this purpose, ADSP provides a mechanism for
grouping data into messages. When these messages are sent, they are
terminated by a logical end-of-message. This logical end-of-message
forces a read on the receiver end of the connection to finish even if the
requested number of bytes has not been copied. Also, note that you never
see this logical end-of-message as data; you just observe its effect.

For example, say you wish to send a series of Pascal strings across a
connection. These strings vary in size and you only want to send the
actual data; you don't want to pad them all out to a fixed 256 bytes in
length. Say your first two strings are "Hello" and "Goodbye." You would
send the five characters of the first string using dspWrite with the end-of­
message flag set, then send the seven characters of the second string with
the end-of-message flag set.

On the receiver side, your program would have made a dspRead asking
for 256 bytes of data. It completes after only receiving the "Hello" data,
but the actCount field would contain five rather than 256, telling you that
only five bytes had actually been received. Likewise, a second read asking
for 256 bytes would complete after receiving the "Goodbye" data and the
actCount field would tell you that seven bytes had actually been received.

use of the way ented,
ery ffi:iie you sena message, ~OS cfs a '

separate DDP packet. tin a large number of very
sin.all packets if you send all amout of data between logical
end-of-message flags. This can have a detrimental impact on
overall throughput.

~ Using dspRead and dspWrite

Listing 8-7 shows a routine that sends a single string using ADSP. It sets
the end-of-message and flush flags so that the data will be sent as one
message right away.

108 ...,. Chapter 8 Appletalk Data Stream Protocol

Listing 8-7. Sending a string using dspWrite

1: PROCEDURE SendString(dataString
2: BEGIN
3: WITH theDSPPB DO BEGIN

:= dspWrite;
·= gADSPRefNum;
.- gCCBRefNum;

Str255);

4:
5:
6:
7:
8:
9:

cs Code
ioCRefNum
ccbRefNum
reqCount
dataPtr
eom

·= LENGTH(dataString)+l;
·= @dataString;

10: flush
11: END;
12:

·= 1;

.- 1;

13: IF PBControl(@theDSPPB,kSYNC) <> noErr
14: THEN HandleError;
15: END;

Line 4 sets the csCode field to be dspWrite so the driver will know a
write call is being made.

Lines 5 and 6 set the ioCRefNum and ccbRefNum fields to the appro­
priate reference numbers.

Line 7 sets the reqCount field to be the length of the string that is being
sent plus 1 for the Pascal string's length byte.

Line 8 sets the dataPtr field to point to the string data.
Lines 9 and 10 set the flags that tell the driver to send a logical end-of­

message after this message and to send it as soon as possible.
Line 13 finally calls the .DSP driver and does a write operation.
Listing 8-8 shows a routine that will read the strings sent by the routine

in Listing 8-7.

Listing 8-8. Reading a string using dspRead

1: PROCEDURE GetString(VAR dataString : Str255;
2: VAR bytesRead : integer);
3: BEGIN
4:
5:
6:
7:
8:
9:

WITH theDSPPB DO BEGIN

10:
11:

cs Code
ioCRefNum
ccbRefNum
reqCount
dataPtr

END;

.- dspWrite;

.- gADSPRefNum;
·= gCCBRefNum;
:= 256;
·= @dataString;

..,. Attention Messages 109

12: IF PBControl (@theDSPPB, kSYNC) <> noErr
13: THEN HandleError;
14:
15: bytesRead := theDSPPB.actCount;
16: END;

Line 5 sets the csCode field to be dspWrite so the driver will know a
write call is being made.

Lines 6 and 7 set the ioCRefNum and ccbRefNum fields to the appro-
priate reference numbers.

Line 8 sets the reqCount field to 256, the maximum length of a string.
"hlne 9 sets the dataPtr field to point to the string data.
Line 13 calls the .DSP driver and does a read operation.
Line 15 copies the actCount field into the return parameter bytesRead,

telling the caller how many bytes were actually read.

~ Using dspStatus
ADSP provides a way to get useful information about an open connec­
tion. The dspStatus call lets you check the status of the send and receive
buffers and also returns a pointer to the connection's CCB.

The information returned by dspStatus lets you see two things about
the send and receive buffers: how many bytes are free, and how many
bytes are used. This has a number of useful applications.

Suppose, for example, that you would like to use the synchronous
forms of dspRead and dspWrite so that you don't have to poll for
completion. If you attempt to write more data into the send buffer than
there is space for, your write call will hang until ADSP can make room for
your data. By using dspStatus, you can peek into the send buffer and see
if there is enough free space to hold the number of bytes you want to
send. If there isn't, you can wait until there is.

Likewise, say you want to read 20 bytes of data. You can use dspStatus
to see how many bytes of data are waiting there for you. Once you know
the data is there, you can safely do a synchronous read and know that you
won't be blocked.

~ Attention Messages
Another feature of ADSP is the ability to send attention messages without
disrupting the normal message flow. This is known as out-of-band signaling.

Attention messages can be useful in a wide variety of circumstances.
For example, when sending unstructured data across the connection,

11 O .,.. Chapter 8 Appletalk Data Stream Prot~ol

control information can be exchanged using attention messages. Another
example would be sending status information while doing a large data
transfer.

An ADSP attention message consists of a 16-bit attention code along
with up to 570 bytes of additional data. The attention code must be in the
range $0000 through $EFFF. The attention codes in the range $FOOO through
$FFFF are reserved for use by ADSP itself.

When an attention messsage is issued, ADSP sends it to the remote
connection end before sending any more data. This assures that the
attention message is delivered as quickly as possible.

When an attention message is received by the remote connection end,
ADSP sets the eAttention bit (bit 5) in the userFlags field of the remote
connection end's connection control block. It will also call the routine
specified in the userRoutine field of the dsplnit call if one was specified.
This allows two ways to detect attention messages: either poll the
eAttention bit of the userFlags or have a completion routine called.

Once the attention message has been received, yoµ must set the userFlags
to zero. This allows another attention message, or other unsolicited con­
nection event, to occur. Failure to clear the userFlags will result in your
connection hanging.

Listing 8-9 shows an example of how to send an attention message.

Listing 8-9. Sending an attention message

1: WITH theDSPPB DO BEGIN
2: cs Code := dspAttention;
3: ioCRefNum := gADSPRefNum;
4: ccbRefNum := gCCBRefNum;
5: attnCode := kWakeup;
6: attnData := @WakeUpMessage;
7: attnSize := SIZEOF(WakeUpMessageRec);
8: END;
9:

10: IF PBControl(@theDSPPB,kSYNC) <> noErr
11: THEN HandleError;

Line 1 sets the csCode field to be dspAttention so the driver will know
an attention message is being sent.

Lines 3 and 4 set the ioCRefNum and ccbRefNum fields to the appro­
priate reference numbers.

Line 5 sets the attnCode field to be kWakeUp, a constant known to both
sides of the connection.

..,.. Detailed Descriptions of Important ADSP Routines 111

Lines 6 and 7 set the attnData field to point to the wakeup message buffer
and attnSize field to the size of this data.

Line 10 finally calls the .DSP driver and sends the attention message.

~ Detailed Descriptions of Important ADSP Routines

The following section describes each important ADSP routine. It shows
the routine's prototype, lists all parameters or parameter block fields, and
lists error codes. Each parameter or parameter block field and error code
is then described in detail.

..,.. dsplnit

dsplnit is used to create and initialize a connection end. It must be called
before the connection is opened. The dsplnit routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

-+ cs Code
-+ ioCompletion
+- ioResult
-+ ioCRefNum
+- ccbRefNum

-+ ccbPtr

-+ userRoutine
-+ sendQSize
-+ sendQueue
-+ recvQSize
-+ recvQueue
-+ attnPtr

+-+ local Socket

Errors Returned:

noErr (0)
ddpSktErr (-91)
errDSPQueueSize (-1274)

- always dspinit
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- pointer to the connection control

block
- address of connection event routine
- size of the send queue
- pointer to the send queue
- size of the receive queue
- pointer to the receive queue
- pointer to attention buffer
- socket number for the connection end

No error.
Error when opening DDP socket.
Send or receive queue is too
small.

112 ..,.. Chapter 8 Appletalk Data Stream Protocol

csCode always contains dsplnit, that is, the constant 255.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum returns the reference number assigned to the connection
control block for this connection end.

ccbPtr contains the pointer to a connection control block that will be
used by the connection end.

userRoutine contains the address of the userRoutine routine called
when an unsolicited connection event happens on this connection end.
This should be set to NIL if no userRoutine is desired. This routine is called
under the same conditions as a completion routine (at interrupt level) and
must follow the same rules as a completion routine.

sendQSize contains the size of the send buffer. The minimum size for a
send buffer is 100 bytes, which is found in the constant minDSPQueueSize.

sendQueue contains a pointer to the send buffer.
recvQSize contains the size of the receive buffer. The minimum size for

a receive buffer is 100 bytes, which is found in the constant
minDSPQueueSize.

recvQueue contains a pointer to the receive buffer.
attnPtr contains a pointer to the attention buffer. This buffer must be

570 bytes in size, which is found in the constant attnBufSize.
localSocket contains the socket number that this connection end should

use. If it is set to zero, ADSP will assign a new socket to the connection
end and return the socket number in this field.

noErr is returned when the trap completes normally.
ddpSktErr is returned when DDP encounters an error opening the

socket.
errDSPQueueSize is returned when ADSP determines that the supplied

send or ~eceive buffers are smaller than the minimum required (100 bytes) .

..,.. dspOptions

dspOptions is used to set a number of parameters pertaining to a connec­
tion end. The dspOptions routine follows.

~ Detailed Descriptions of Important ADSP Routines 113

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

~ sendBlocking
~ badSeqMax

~ useCheckSum

Errors Returned:

noErr (0)
errRefNum (-1280)

- always dspOptions
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- size at which data is sent
- threshold for retransmission

request
- indicates use of DDP checksums

No error.
Unknown connection reference number.

csCode always contains dspOptions, that is, the constant 243.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

sendBlocking contains the new value for the send blocking factor. It
specifies the maximum number of bytes that should accumulate in the
send buffer before an attempt is made to transmit the bytes. If this is set to
zero, no change is made to the blocking factor. Other valid values range
from 1 to 572-the maximum number of bytes found in a DDP packet. A
default value of 16 is set by dsplnit.

badSeqMax contains the new value for the bad sequence factor. It
specifies the maximum number of out-of-sequence packets that will be
received before ADSP will make a special request for the missing packets.
If badSeqMax is set to zero, no change is made to the bad sequence factor.
Other valid values range from 1 to 255. A default value of 3 is set by
dsplnit.

114 .,.. Chapter 8 Appletalk Data Stream Protocol

useCheckSum contains a flag specifying whether DDP should use
checksums for all packets transmitted. A value of 1 means to use DDP
checksums; a value of 0 means not to. A default of not using DDP
checksums is set by dsplnit.

noErr is returned when the trap completes normally.
errRefNum is returned when the supplied connection reference number

is illegal.

.,.. dspOpen

dspOpen is used to open a connection end. Because the four modes avail­
able for opening connection ends use difference fields in the parameter
block, each mode is listed separately below.

dspOpen in Passive Mode

dspOpen in passive mode is used to open a connection end that can later
be connected to by another connection end using request mode. The
dspOpen routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

cs Code
ioCompletion
ioResult
ioCRefNum
ccbRefNum

ocMode
ocinterval

ocMaximum

localCID
remoteCID.
remoteAddress
filterAddress

sendSeq
sendWindow
attnSendSeq

always dspOpen
address of completion routine
result of operation
reference number of .DSP driver
reference number of connection
control block
always ocPassive
interval between open request
retransmissions

- max number of open request
retransmissions
local connection end ID
remote connection end ID
address of remote connection end
addresses that are acceptable for
connections
sequence t of the first byte sent
sequence t of the last remote byte
sequence t of the next attention to
be sent

..,.. Detailed Descriptions of Important ADSP Routines 115

Errors Returned:

noErr (0)
errOpenDenied (-1273)
errOpening (-1277)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

No error.
Open request denied.
Open request failed.
Connection end is not closed.
Request aborted by either
dspRemove or dspClose.
Connection reference number was bad.

csCode always contains dspOpen, that is, the constant 253.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

ocMode always contains ocPassive, that is, the constant 2.
oclnterval and ocMaximum determine the retry behavior of the open

request. ocMaximum tells how many retries should be attempted and
oclnterval tells how long to wait between retries in 10-tick units.

local CID returns the connection ID of the local connection end.
remoteCID return~ the connection ID of the remote connection end.
remoteAddress returns the socket address of the remote connection

end.
filterAddress contains the address from which connection requests will

be accepted. A zero value in the network number, node ID, or socket
number indicates that any value for those fields will be accepted.

sendSeq, sendWindow, and attnSendSeq return synchronization
information for the connection. When using the passive mode, this is
returned for informational purposes only.

noErr is returned when the trap completes normally.
errOpenDenied is returned when the open request has been denied.
errOpening is returned when the open request fails.
errState is returned when the connection is not in the closed state and

an open request is made.

116 ..,. Chapter 8 Appletalk Data Stream Protocol

errAborted is returned when the open request is aborted by either the
dspRemove or the dspClose call.

errRefNum is returned when the supplied connection reference num­
ber is illegal.

dspOpen in Request Mode

dspOpen in request mode is used to open a connection end that will
complete the connection with the specified remote connection end. The
dspOpen routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

cs Code
ioCompletion
ioResult
ioCRefNum
ccbRefNum

ocMode
ocinterval

ocMaximum

localCID
remoteCID
remoteAddress
filterAddress

sendSeq
sendWindow
attnSendSeq

Errors Returned:

noErr (0)
errOpenDenied (-1273)
errOpening (-1277)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

always dspOpen
address of completion routine
result of operation
reference number of .DSP driver
reference number of connection
control block
always ocRequest
interval between open request
retransmissions
max number of open request
retransmissions
local connection end ID
remote connection end ID
address of remote connection end
addressess that are acceptable for
connections
sequence # of the first byte sent
sequence # of the last remote byte
sequence # of the next attention to
be sent

No error.
Open request denied.
Open request failed.
Connection end is not closed.
Request aborted by either dspRemove
or dspClose.
Connection reference number was bad.

~ Detailed Descriptions of Important ADSP Routines 117

csCode always contains dspOpen, that is, the constant 253.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

cd>RefNum contains the reference number for the connection control
block.

ocMode always contains ocRequest, that is, the constant l.
oclnterval and ocMaximum determine the retry behavior of the open

request. ocMaximum tells how many retries should be attempted and
oclnterval tells how long to wait between retries in 10-tick units.

localCID returns the connection ID of the local connection end.
remoteCID returns the connection ID of the remote connection end.
remoteAddress contains the socket address of the remote connection

end or connection listener that you wish to communicate with. This con­
tains the socket address of the remote connection end you finally establish
an open connection with. This may be a different address than you specified
because a connection listener can connect you with a connection end at
another socket.

filterAddress contains the address from which connection requests will
be accepted. A zero value in any of either the network number, node ID,
or socket number indicates that any value for those fields will be accepted.
You can use this to restrict the range of socket addresses that a remote
connection listener can connect you with.

sendSeq, sendWindow, and attnSendSeq return synchronization
information for the connection. When using the passive mode, this is
returned for informational purposes only.

noErr is returned when the trap completes normally.
errOpenDenied is returned when the open request has been denied.
errOpening is returned when the open request fails.
errState is returned when the connection is not in the closed state and

an open request is made.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

118 ... Chapter 8 Appletalk Data Stream Protocol

dspOpen in Accept Mode

dspOpen in accept mode is used by a connection listener to complete a
connection request.

FUNCTIONPBControl(theDSPPBPtr:DSPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

~ ocMode
~ ocinterval

~ ocMaximum

~ localCID
~ remoteCID
~ remoteAddress
~ sendSeq
~ sendWindow
~ attnSendSeq

Errors Returned:

noErr (0)
errOpenDenied (-1273)
errOpening (-1277)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

always dspOpen
address of completion routine
result of operation
reference number of .DSP driver
reference number of connection
control block
always ocAccept
interval between open request
retransmissions
max number of open request

retransmissions
local connection end ID
remote connection end ID
address of remote connection end
sequence # of the first byte sent
sequence # of the last remote byte
sequence # of the next attention to
be sent

No error.
Open request denied.
Open request failed.
Connection end is not closed.
Request aborted by either
dspRemove or dspClose.
Connection reference number was bad.

csCode always contains dspOpen, that is, the constant 253.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

..,.. Detailed Descriptions of Important ADSP Routines 119

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

ocMode always contains ocAccept, that is, the constant 3.
oclnterval and ocMaximum determine the retry behavior of the open

request. ocMaximum tells how many retries should be attempted and
oclnterval tells how long to wait between retries in 10-tick units.

localCID returns the connection ID of the local connection end.
remoteCID contains the connection ID of the remote connection end;

this is received from the connection listener.
remoteAddress contains the socket address of the remote connection

end; this is gotten from the connection listener.
sendSeq, sendWindow, and attnSendSeq contain synchronization in-

formation; this is retrieved from the connection listener.
noErr is returned when the trap completes normally.
errOpenDenied is returned when the open request has been denied.
errOpening is returned when the open request fails.
errState is returned when the connection is not in the closed state and

an open request is made.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

dspOpen in Establish Mode

dspOpen in establish mode is used to open a connection end when the
entire setup process is handled by you. The dspOpen routine follows.

120 .,.. Chapter 8 Appletalk Data Stream ·Protocol

FUNCTIONPBControl(theDSPPBPtr:DSPPBPtr; async: BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

~ ocMode
~ remoteCID
~ remoteAddress
~ sendSeq
~ sendWindow
~ recvSeq

~ attnSendSeq

~ attnRecvSeq

Errors Returned:

noErr (0)
errOpenDenied (-1273)
errOpening (-1277)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

always dspOpen
address of completion routine
result of operation
reference number of .DSP driver
reference number of connection
control block
always ocEstablish
remote connection end ID
address of remote connection end
sequence # of the first byte sent
sequence # of the last remote byte
sequence # of the first byte to
receive
sequence # of the next attention to
be sent
sequence # of the next attention to
receive

No error.
Open request denied.
Open request failed.
Connection end is not closed.
Request aborted by either dspRemove
or dspClose.
Connection reference number was bad.

csCode always contains dspOpen, that is, the constant 253.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the 'trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

..,.. Detailed Descriptions of Important ADSP Routines 121

ocMode always contains ocEstablish, that is, the constant 4.
remoteCID contains the connection ID of the remote connection end.
remoteAddress contains the socket address of the remote connection

end.
sendSeq, sendWindow, recvSeq, attnSendSeq, and attnRecvSeq

contain synchronization information for the connection.
noErr is returned when the trap completes normally.
errOpenDenied is returned when the open request has been denied.
errOpening is returned when the open request fails.
errState is returned when the connection is not in the closed state and

an open request is made.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

..,.. dspNewCID

dspNewCID is used to create a connection ID for your use in setting up
your own connection. This should only be used with the establish mode
of the open connection call. The dspNewCID routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

---7 cs Code
---7 ioCompletion
~ ioResult
---7 ioCRefNum
---7 ccbRefNum

---7 theNewCID

Errors Returned:

noErr (0)
errState (-1278)
errRefNum (-1280)

always dspNewCID
address of completion routine

- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- new connection ID

No error.
Connection end is not closed.
Connection reference number was bad.

122 .,.. Chapter 8 Appletalk Data Stream Protocol

csCode always contains dspNewCID, that is, the constant 241.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

theNewCID contains the new connection ID for use when opening a
connection using the establish mode.

noErr is returned when the trap completes normally.
errState is returned when the connection is not in the closed state and

an open request is made.
errRefNum is returned when the supplied connection reference number

is illegal.

.,.. dspClose

dspClose is used to close a connection end. After closing the connection
end still exists and can be opened again later. You should use dspRemove
if you want to destroy the connection end and release its resources. The
dspClose routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

~ abort

Errors Returned:

noErr (0)
errState (-1278)
errRefNum (-1280)

- always dspClose
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- abort outstanding send requests

No error.
Connection end is not closed.
Connection reference number was bad.

..,.. Detailed Descriptions of Important ADSP Routines 123

csCode always contains dspClose, that is, the constant 252.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

abort contains a flag indicating if outstanding dspWrite or dspAttention
calls should be aborted or not. Set the flag to 1 to abort the dspWrite and
dspAttention calls or 0 to allow them to complete before closing the
connection.

noErr is returned when the trap completes normally.
errState is returned when the connection is not open.
errRefNum is returned when the supplied connection reference num­

ber is illegal.

..,.. dspCLlnit

dspCLinit initializes a connection listener. You should call dspCLListen
to begin receiving a connection request on this listener. The dspCLinit
routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

~ ccbPtr

H local Socket

Errors Returned:

noErr (0)
ddpSktErr (-91)

- always dspCLinit
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- pointer to the connection control

block
- socket number for the connection

listener

No error.
Error when opening DDP socket.

124 ~ Chapter 8 Appletalk Data Stream Protocol

csCode always contains dspCLinit, that is, the constant 251.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

ccbPtr contains the pointer to a connection control block that will be
used by the connection listener.

localSocket contains the socket number that this connection listener
should use. If it is set to zero, ADSP will assign a new socket to the
connection listener and return the socket number in this field.

noErr is returned when the trap completes normally.
ddpSktErr is returned when DDP encounters an error opening the

socket.

~ dspCLListen

dspCLListen initiates the connection to listen for connection requests. It
is almost always called asynchronously. The dspCLListen routine
follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

cs Code
ioCompletion
ioResult
ioCRefNum
ccbRefNum

remoteCID
remoteAddress
filterAddress

sendSeq
sendWindow
attnSendSeq

- always dspCLListen
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- remote connection end ID
- address of remote connection end
- addresses that are acceptable for

connections
- sequence * of the first byte sent
- sequence * of the last remote byte
- sequence * of the next attention to

be sent

..,.. Detailed Descriptions of Important ADSP Routines 125

Errors Returned:
no err (0)
errState (-1278)
errAborted (-1279)
errRefNum . (-1280)

No error.
Connection end is .not closed.
Request aborted by dspCLRemove.
Connection reference number was bad.

csCode always contains dspCLListen, that is, the constant 249.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

remoteCID returns the connection ID of the remote connection end.
This should be passed along to the connection open call or dspCLDeny.

remoteAddress returns the socket address of the remote connection
end. This should be passed along to the connection open call or
dspCLDeny.

filterAddress contains the address from which connection requests will
be accepted. A zero value in any of either the network number, node ID,
or socket number indicates that any value for those fields will be accepted.

sendSeq, sendWindow, and attnSendSeq return synchronization in­
formation for the connection. This should be passed along to the connec­
tion open call.

noErr is returned when the trap completes normally.
errState is returned when the connection is not in the closed state and

an open request is made.
errAborted is returned when the listen request is aborted by the

dspCLRemove call.
errRefNum is returned when the supplied connection reference number

is illegal.

..,.. dspCLDeny

dspCLDeny is used to deny a connection request. Remember to call
dspCLListener again if you wish to continue to listen for further connec­
tion requests. The dspCLDeny routine follows.

126 ..,.. Chapter 8 Appletalk Data Stream Protocol

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

~ remoteCID
~ remoteAddress

Errors Returned:

noErr (0)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

- always dspCLDeny
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- remote connection end ID
- address of remote connection end

No error.
Connection end is not closed.
Request aborted by either dspCLRemove

or dspClose.
Connection reference number was bad.

csCode always contains dspCLDeny, that is, the constant 248.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

remoteCID contains the connection ID of the remote connection end.
This should be retrieved from dspCLListen.

remoteAddress contains the socket address of the remote connection
end. This should be retrieved from dspCLListen.

noErr is returned when the trap completes normally.
errState is returned when the connection is not in the closed state and

an open request is made.
errAborted is returned when the deny request is aborted by either the

dspCLRemove or the dspClose call.
errRefNum is returned when the supplied connection reference num­

ber is illegal.

~ Detailed Descriptions of Important ADSP Routines 127

~ dspCLRemove

dspCLRemove is used to close a connection listener. You should release
the memory used by the CCB if you expect to open the connection listener
again later. The dspCLRemove routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

---7 cs Code
---7 ioCompletion
~ ioResult
---7 ioCRefNum
---7 ccbRefNum

---7 abort

Errors Returned:

noErr (0)
errRefNum (-1280)

- always dspCLRemove
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- abort outstanding listen and deny

requests

No error.
Connection reference number was bad.

csCode always contains dspCLRemove, that is, the constant 250.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

abort contains a flag indicating if outstanding dspCLListen or
dspCLDeny calls should be aborted or not. Set this to 1 to abort them or to
0 to allow them to complete sending any data before closing the
connection.

noErr is returned when the trap completes normally.
errRefNum is returned when the supplied connection reference number

is illegal.

128 ..,. Chapter 8 Appletalk Data Stream Protocol

..,. dspStatus

dspStatus is used to get information about an open connection. It returns
information about the send and receive queues and the current CID. The
dspStatus routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
+-- ioResult
~ ioCRefNum
~ ccbRefNum

+-- statusCCB
+-- sendQPending

+-- sendQFree
+-- recvQPending

+-- recvQFree

Errors Returned:

noErr (0)
errRefNum (-1280)

- always dspStatus
- address of completion routine
- result of operation
- reference number of .DSP driver
- reference number of connection

control block
- pointer to the connection's CCB
- amount of data to be sent or

acknowledged
- amount of send buffer space free
- amount of data to be read from

receive buffer
- amount of receive buffer space free

No error.
Connection reference number was bad.

csCode always contains dspStatus, that is, the constant 247.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

statusCCB returns the connection control block of the specified
connection.

.,.. Detailed Descriptions of Important ADSP Routines 129

sendQPending returns the number of bytes that are in the send queue
waiting to be sent. Included in the count is each logical end-of-message
indicator (counted as 1 byte). Some of this data may have already been
sent to the remote connection end, but not acknowledged.

sendQFree returns the number of bytes free in the send queue.
recvQPending returns the number of bytes that are in the receive queue

waiting to be read. Included in the count is each logical end-of-message
indicator (counted as 1 byte).

recvQFree returns the number of bytes free in the receive queue.
noErr is returned when the trap completes normally.
errRefNum is returned when the supplied connection reference number

is illegal.

.,.. dspWrite

dspWrite is used to send data across an ADSP connection. The dspWrite
routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

cs Code
ioCompletion
ioResult
ioCRefNum
ccbRefNum

reqCount
act Count
dataPtr
eom

flush

Errors Returned:

noErr (0)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

always dspWrite
address of completion routine
result of operation
reference number of .DSP driver
reference number of connection
control block
number of bytes requested to send
number of bytes actually sent
pointer to data buffer
flag indicating end-of-message
should be sent
flag indicating connection
should be flushed

No error.
Connection end is not open.
Request aborted by either dspRemove
or dspClose.
Connection reference number was bad.

130 ..,. Chapter 8 Appletalk Data Stream Protocol

csCode always contains dspWrite, that is, the constant 245.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

reqCount contains the number of bytes to send.
actCount returns the number of bytes actually sent. Fewer bytes are

sent than requested if the dspWrite operation aborts.
dataPtr contains the pointer to the data that should be sent.
eom contains a flag indicating if a logical end-of-message should be sent

after the data. A value of 1 indicates an end-of-message should be sent; a
value of 0 indicates that an end-of-message shouldn't be sent.

flush contains a flag indicating if the data should be forced to be
immediately sent to the remote connection. A value of 1 indicates the data
should be sent immediately; a value of 0 indicates that it shouldn't.

noErr is returned when the trap completes normally.
errState is returned when the connection is not in the open state.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

..,. dspRead

dspRead is used to read data from an ADSP connection. The dspRead
routine follows.

..,.. Detailed Descriptions of Important ADSP Routines 131

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

cs Code
ioCompletion
ioResult
ioCRefNum
ccbRefNum

reqCount
act Count
dataPtr
eom

Errors Returned:

noErr (0)
errFwdReset)-1275)

errState (-1278)
errAborted (-1279)

errRefNum (-1280)

always dspRead
address of completion routine
result of operation

- reference number of .DSP driver
- reference number of connection

control block
- number of bytes requested to send
- number of bytes actually sent

pointer to data buffer
flag indicating end-of-message
should be sent

No error.
Read was terminated by a forward
reset.
Connection end is not open.
Request aborted by either dspRemove
or dspClose.
Connection reference number was bad.

csCode always contains dspRead, that is, the constant 246.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

reqCount contains the number of bytes you want to read.
actCount returns the number of bytes you actually read.
dataPtr contains the pointer to the data buffer where you should put

the read data.
eom returns a flag indicating if the last byte read was the logical end-of­

message indicator. When this is TRUE, your actCount will often not equal
your reqCount.

132 .,.. Chapter 8 Appletalk Data Stream Protocol

noErr is returned when the trap completes normally.
errFwdReset is returned when the read operation is terminated by a

forward reset coming from the remote connection end.
errState is returned when the connection is not in the open state.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

.,.. dspA ttention

You use dspAttention to send an attention message. The dspAttention
routine follows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
f- ioResult
~ ioCRefNum
~ ccbRefNum

~ attnCode
~ attnSize
~ attnData

Errors Returned:

noErr (0)
errAttention (-1276)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

always dspAttention
address of completion routine
result of operation
reference number of .DSP driver
reference number of connection
control block
attention code
size of attention message
pointer to attention message data

No error.
Attention message is too large.
Connection end is not open.
Request aborted by either dspRemove
or dspClose.
Connection reference number was bad.

csCode always contains dspAttention, that is, the constant 244.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

..,.. Detailed Descriptions of Important ADSP Routines 133

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

attnCode contains the two-byte attention code. This must be in the
range $0000 through $EFFF.

attnSize contains the number of bytes in the attention message.
attnData contains the pointer to the attention message data.
noErr is returned when the trap completes normally.
errAttention is returned when the specified attention message is larger

than 570 bytes.
errState is returned when the connection is not in the open state.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

..,.. dspReset

Use dspReset to clear all data sent from the connection and to
resynchronize the connection. When this call is issued, all data not yet
received by the remote connection end is lost. The dspReset routine fol­
lows.

FUNCTION PBControl(theDSPPBPtr:DSPPBPtr; async:BOOLEAN) :OSErr;

Using the following fields in the ADSP Parameter Block:

~ cs Code
~ ioCompletion
~ ioResult
~ ioCRefNum
~ ccbRefNum

Errors Returned:

noErr (0)
errAttention (-1276)
errState (-1278)
errAborted (-1279)

errRefNum (-1280)

- always dspReset
address of completion routine

- result of operation
- reference number of .DSP driver
- reference number of connection

control block

No error.
Attention message is too large.
Connection end is not open.
Request aborted by either dspRemove
or dspClose.
Connection reference number was bad.

134 ..,.. Chapter 8 Appletalk Data Stream Protocol

csCode always contains dspReset, that is, the constant 242.
ioCompletion contains the address of the completion routine called

when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

ioCRefNum contains the reference number for the .DSP driver. This is
usually retrieved by opening it with PBOpen.

ccbRefNum contains the reference number for the connection control
block.

noErr is returned when the trap completes normally.
errAttention is returned when too much data is specified for the

attention message.
errState is returned when the connection is not in the open state.
errAborted is returned when the open request is aborted by either the

dspRemove or the dspClose call.
errRefNum is returned when the supplied connection reference number

is illegal.

~ Summary
This chapter covered the AppleTalk Data Stream Protocol. It illustrated
what connections are and how they can be created using a variety of
techniques. This chapter also covered how to read and write data over
ADSP and how to send and receive attention messages.

Chapter 9 discusses miscellaneous AppleTalk interfaces such as driv­
ers, SelfSend, and the Chooser. The last section of Chapter 9 is about
configuring a Chooser interface. This section also explains the 'STR',
'GNRL', 'nrct', 'LDEF', and 'PACK' resources.

9 Miscellaneous AppleTalk
Interfaces

When programming AppleTalk on the Macintosh, there are a number of
lesser issues that come up beyond using the main protocols. These issues
range from using the Chooser as a user interface to detecting when
AppleTalk is turned on or off. This chapter deals with these issues, taking
each one in turn, and providing you with insight into how to deal with
them.

~ Opening the AppleTalk Drivers

In the old days, initializing AppleTalk for your program involved a vari­
ety of calls and reading low memory. This complicated matters and led to
some questionable programming practices, such as accessing low memory
directly, which should be avoided at all costs since Apple has said this
may break in future system software. Modern Apple Talk programs (those
using System 6 or beyond) don't have to fool with those older techniques.
You should not use the older techniques in order to be compatible with
future system software and alternate operating environments such as
A/UX .

..., Opening the .MPP Driver

In order to access the basic AppleTalk protocols, including Name Binding
Protocol (NBP) and AppleTalk Transaction Protocol (ATP), among others,
you should open the driver called .MPP. Opening this driver checks a

135

136 ..,.. Chapter 9 Miscellaneous Appletalk Interfaces

variety of things that you were required to do for yourself in the past. It
also opens ATP, which used to require a separate operation. This simpli­
fies the AppleTalk opening process significantly. Listing 9-1 shows how
this is done. It defines a routine for opening the .MPP driver. This routine
returns TRUE if it succeeds and FALSE if it fails.

Listing 9-1. Opening the .MPP driver

1: FUNCTION myOpenMPP : BOOLEAN;
2: VAR

3: refNum : integer;
4: BEGIN
5: myOpenMPP :=
6: OpenDriver(' .MPP',refNum)
7: END;

noErr;

The major reason for the call to OpenDriver to fail is that the user has
turned off AppleTalk. A reasonable behavior in many circumstances is to
put up a dialog telling the user that AppleTalk is not available, asking
them to please turn it back on .

..,.. Opening the .XPP Driver

The .MPP driver does not contain all of the AppleTalk protocols. An
additional driver must be opened in order to access AppleTalk Echo
Protocol (AEP), AppleTalk Session Protocol(ASP), and AppleTalk Filing
Protocol(AFP). These additional protocols can be found in the .XPP driver.

Opening the .XPP driver is done in a similar way to opening the .MPP
driver. The .XPP driver should be opened after you have opened the
.MPP driver. Listing 9-2 shows how this is done. It defines a routine that
attempts to open the .XPP driver and returns TRUE if it succeeds, or
FALSE if it doesn't.

Listing 9-2. Opening the .XPP driver.

1: FUNCTION myOpenXPP : BOOLEAN;
2: VAR
3: refNum : integer;
4: BEGIN
5: myOpenXPP :=
6: OpenDriver(' .XPP',refNum)
7: END;

noErr;

..,. PSelfSend 137

..,. Opening the .DSP driver

The AppleTalk Data Stream Protocol (ADSP) arrived on the scene after
the .XPP driver. So Apple put ADSP into its own driver that must be
opened separately from the .MPP driver and the .XPP driver-this is the
.DSP driver.

Opening the .DSP driver is done in a similar way to opening the .MPP
and J<PP drivers. The .DSP driver should be opened after you have opened
the .MPP driver. Listing 9-3 shows how this is done. It defines a routine
that attempts to open the .DSP driver and returns TRUE if this open
succeeds, or FALSE if it doesn't.

Listing 9-3. Opening the .DSP driver

1: FUNCTION myOpenDSP : BOOLEAN;
2: VAR

3: refNum : integer;
4: BEGIN
5: myOpenDSP :=
6: OpenDriver(' .DSP',refNum)
7: END;

...,. PSelfSend

noErr;

In the early days of AppleTalk, Apple decided that networking was for
communicating across the network and not for talking to yourself on the
same machine. This made some sense because MultiFinder hadn't arrived
on the scene and it didn't really make too much sense to have a program
use AppleTalk to talk to itself rather than calling its own routines directly.
But times changed-MultiFinder let users run more than one program at
a time on a single machine. Programmers discovered INITs and this lEi!d to
a proliferation of small programs all running along with the applications.
Finally someone in the AppleTalk group decided that having a Macintosh
talk to itself wasn't such a silly idea after all.

The call PSelfSend was born. This handy little call allows you to tell
AppleTalk to allow intranode message delivery. This means that two
programs running on the same Macintosh can now talk to each other
using any of the standard AppleTalk protocols.

Listing 9-4 shows how the PSelfSend call works. It's very simple really,
but it does require that you use an MPP parameter block and fill it out
correctly.

138 ..,.. Chapter 9 Miscellaneous Appletalk Interfaces

Listing 9-4. Turning SelfSend mode on

1: myMPPPB.newSelfFlag := kSelfSendOn;
2: stat := PSetSelfSend(@myMPPPB,kSYNC);

Line 1 fills in the newSelfSend field of the MPP parameter block with
kSelfSendOn. The newSelfSend field tells PSelfSend what the new state
should be: on or off. kSelfSend, defined as 1, means sending to yourself
should be turned on. A value of zero means it should be turned off.

Line 2 makes the call to PSelfSend.
After a call to PSelfSend, there is a returned value in the oldSelfFlag

field of the MPP parameter block which contains the previous setting of
the SelfSend flag so you can set it back later if you so wish. It is normally
okay to leave this turned on.

In the earliest days of SelfSend, you could cause a few glitches by
turning it on. Now, everybody expects to tum it on and write their pro­
grams accordingly. There are even a number of common utility programs
that simply tum it on the first chance they get and leave it on thereafter.
This means that your code should expect SelfSend to be turned on­
turning it on yourself shouldn't do any harm .

...._ PGetAppleTalklnfo

Included with the other enhancements added by Phase 2 AppleTalk is a
new MPP call, PGetAppleTalklnfo, that returns to you a wide variety of
AppleTalk information. Some of this information is new with Phase 2
AppleTalk, the rest of it had to be read from low-memory globals, a
practice that is now being actively discouraged by Apple.

Like other MPP calls, PGetAppleTalklnfo takes two parameters, the
address of an MPP parameter block and a Boolean that indicates whether
the call is synchronous or asynchronous, and it returns a status value. The
PGetAppleTalklnfo routine follows.

..... PGETApplelalklnfo 139

FUNCTION PGetAppleTalkinfo(theMPPPBPtr
boolean) : OSErr;

MPPPBPtr; async:

Using the following fields in the MPP Parameter Block:

~ ioCompletion
~ ioResult
~ version
~ varsPtr
~ dcePtr
~ port ID
~ configuration
~ selfSend
~ net Lo
~ net Hi
~ ourAddr
~ routerAddr
~ numOfPHs
~ numOfSkts
~ numNBPEs

~ ntQueue
~ laLength
~ linkAddr
~ zoneName

Errors Returned:

noErr (0)

paramError (-50)

address of completion routine
result of operation
always 1 for now
pointer to MPP variables
pointer to MPP device control entry
port number
configuration flags
is selfSend turned on or off
lower bound of network range
upper bound of network range
this node's network address
router's network address
maximum number of protocol handlers
maximum number of static sockets
maximum number of concurrent NBP
requests
pointer to names queue
length of data link address
pointer to data link address buffer
pointer to zone name buffer

No error.
Unknown version number.

ioCompletion contains the address of the completion routine called
when the asynchronous version of the trap is used. This should be set to
NIL if no completion routine is desired.

ioResult contains the result of the trap when it is finished. During
asynchronous operation this field is first set to 1 (denoting that the trap is
in process) then set to the final result code when the trap is completed.

version contains the version of PGetAppleTalklnfo. This is currently
version one.

varsPtr is the pointer to the MPP globals. These variables are private to
MPP and can be changed by Apple in the future. You shouldn't depend
on these.

140 ~ Chapter 9 Miscellaneous Appletalk Interfaces

dcePtr is the pointer to the device control entry for the .MPP driver.
portID is the port number for the .MPP driver. This is always zero

unless the driver is being used by a router.
configuration is a long word containing a variety of flags that describe

the state of AppleTalk. Bit 31 is set if the machine is using a node number
in the server range. Bit 30 is set if the Apple Internet Router is running on
this machine. Bit 15 is set if you are on an extended network. Bit 6 is clear
if you have multiple zones available on an extended network.

selfSend is zero if selfSend is turned off; otherwise it is one.
netLo is the lower bound of the range of network numbers available if

you have an extended network. If you do not have an extended network,
this is the network number.

netHi is the upper bound of the range of network numbers available if
you have an extended network. If you do not have an extended network,
this is the network number.

ourAddr is the 24-bit address for this node. The lower byte contains the
node ID and the middle two bytes contain the network number.

routerAddr is the 24-bit address for the last router the machine has
talked to. The lower byte contains the node ID of the router and the
middle two bytes contain the network number of the router.

numOfPHs is the maximum number of protocol handlers that the .MPP
driver allows.

numOfSkts is the maximum number of sockets that the .MPP driver
allows for statically assigned sockets.

numOfNBPEs is the maximum number of concurrent NBP operations
that this .MPP driver allows.

ntQueue is the pointer to the names table queue.
laLength and linkAddr describe the size of location of the buffer for the

data link address. The laLength returns the actual length of the data link
address stored in the buffer.

zoneName is the pointer to a buffer containing the zone name.
noErr is returned when the trap completes normally.
paramError is returned when the version number is invalid.
The following sections show examples of using the PGetAppleTalklnfo

call to fetch various AppleTalk parameters.

.... PGETAppleTalklnfo 141

..,.. lsSelfSendOn routine using PGetAppleTalklnfo

The IsSelfSend routine in Listing 9-5 can be used to determine if a Macin­
tosh can send packets to itself.

Listing 9-5. lsSelfSendOn routine using PGetAppleTalklnfo

1: FUNCTION IsSelfSendOn : BOOLEAN;
2: VAR
3: theMPPPB : MPPParamBlock;
4: BEGIN {IsSelfSendOn}
5: WITH theMPPPB DO BEGIN
6: version := 1;
7: linkAddr := nil;
8: zoneName := nil;
9: END;

10: IF PGetAppleTalkinfo(@theMPPPB,kSYNC)
11: THEN BEGIN
12: IF theMPPPB.selfSend = 0
13: THEN BEGIN

IsSelfSendOn := FALSE;
END

14:
15:
16:
17:
18:
19:
20:

ELSE BEGIN
IsSelfSendOn := TRUE;

END;
END
ELSE BEGIN

21: IsSelfSendOn := FALSE;
22: END;
23: END; {IsSelfSendOn}

noErr

It begins at lines 6-8 by setting the input parameter block fields to
acceptable values. The version is always one and neither the linkAddress
buffer or the zoneName buffers are used, so they are set to NIL.

Line 10 makes the call to PGetAppleTalklnfo synchronously. If this call
fails, line 21 returns FALSE as the result of the function.

As long as the call succeeds, line 12 checks the value of the selfSend
field in the parameter block. If it is zero, self sending is disabled, so
FALSE is returned at line 14; otherwise TRUE is returned at line 21.

142 ..,.. Chapter 9 Miscellaneous Appletalk Interfaces

..,.. AreWeAServer routine using PGetAppleTalklnfo

The AreWeAServer routine in Listing 9-6 can be used to determine if a
Macintosh has a node ID assigned to it in the server range.

Listing 9-6. AreWeAServer routine using PGetAppleTalklnfo

1: FUNCTION AreWeAServer : BOOLEAN;
2: CONST
3: kSrvAdrBit = 31;
4: VAR
5: theMPPPB : MPPParamBlock;
6: BEGIN {AreWeAServer}
7: WITH theMPPPB DO BEGIN
8: version := l;
9: linkAddr := NIL;

10: zoneName : = NII.i;
11: END;
12: IF PGetAppleTalkinfo(@theMPPPB,kSYNC) = noErr
13: THEN BEGIN

END

IF BTst(theMPPPB.configuration,kSrvAdrBit)
THEN BEGIN

AreWeAServer := TRUE;
END
ELSE BEGIN

AreWeAServer := FALSE;
END;

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

ELSE BEGIN
AreWeAServer := FALSE;

24: END;
25: END; {AreWeAServer}

It begins at lines 8-10 by setting the input parameter block fields to
acceptable values. The version is always one and neither the linkAddress
buffer or the zoneName buffers are used so they are set to NIL.

Line 12 makes the call to PGetAppleTalklnfo synchronously. If this call
fails, line 23 returns FALSE as the result of the function.

As long as the call succeeds, line 14 checks the server address bit (bit 31)
in the configuration flags field of the parameter block. If this bit is set, line
16 returns TRUE; otherwise line 19 returns FALSE.

This code can be adapted to check the router bit, the extended bit, the
Apple Internet Router bit, and the one zone bit by simply changing line 14
to check these bits instead of the server bit that is shown in Listing 9-6.

.... PGETAppleTalklnfo 143

..,. GetNetRange using PGetApple Talklnfo

The GetNetRange routine in Listing 9-7 can be used to determine the
range of network numbers available on the local wiring.

Listing 9-7. GetNetRange routine using PGetAppleTalklnfo

1: PROCEDURE GetNetRange(VAR lo,hi : integer);
2: VAR
3: theMPPPB : MPPParamBlock;
4: BEGIN {GetNetRange}
5: WITH theMPPPB DO BEGIN
6: version := l;
7: linkAddr : = nil;
8: zoneName := nil;
9: END;

10: IF PGetAppleTalkinfo(@theMPPPB,kSYNC)
11: THEN BEGIN

END

WITH theMPPPB DO BEGIN
lo := netLo;
hi := netHi;

END;

12:
13:
14:
15:
16:
17: ELSE BEGIN
18: lo := 0;
19: hi := O;
20: END;
21: END; {GetNetRange}

noErr

It begins at lines 6-8 by setting the input parameter block fields to
acceptable values. The version is always one and neither the linkAddress
buffer or the zoneName buffers are used, so they are set to NIL.

Line 10 makes the call to PGetAppleTalklnfo synchronously. If this call
fails, lines 18 and 19 set the variable parameters lo and hi to zero.

As long as the call succeeds, lines 13 and 14 set the var parameters lo
and hi to the netLo and netHi fields in the parameter block.

144 .,.. Chapter 9 Miscellaneous Appletalk Interfaces

.,.. GetOurAddr using PGetAppleTalklnfo

The GetOurAddr routine in Listing 9-8 can be used to get the node ID
and network number of your Macintosh.

Listing 9-8. GetOurAddr routine using PGetAppleTalklnfo

1: PROCEDURE GetOurAddr(VAR theNodeID : integer;
2: VAR theNetworkNumber : integer);
3: VAR
4: theMPPPB MPPParamBlock;
5: BEGIN {GetOurAddr}
6: WITH theMPPPB DO BEGIN
7:
8:
9:

END;

version
linkAddr

:= 1;
:= NIL;

zoneName := NIL;

IF PGetAppleTalkinfo(@theMPPPB,kSYNC)
THEN BEGIN

WITH theMPPPB DO BEGIN

noErr
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

theNodeID := BAnd(ourAddr,$000000FF);
theNetworkNumber :=

BSR(BAnd(ourAddr,$00FFFF00),8);
END;

END
ELSE BEGIN

22: END;

theNodeID ·= 0;
theNetworkNumber ·= 0;

23: END; {GetOurAddr}

It begins at lines 7-9 by setting the input parameter block fields to
acceptable values. The version is always one and neither the linkAddress
buffer or the zoneName buffers are used so they are set to NIL.

Line 11 makes the call to PGetAppleTalklnfo synchronously. If this call
fails, lines 20 and 21 set the var parameters theNodeID and
theNetworkNumber to zero.

As long as the call succeeds, lines 14 sets the var parameter theNodeID
to the low byte of the ourAddr field in the parameter block. This is done
by using a logical AND operation (BAnd is a routine provided in MPW
Pascal to perform the Bitwise AND operation between two long words)
to mask the higher bytes of the long word. This leaves the low byte as the
result.

.... PGETAppleTalklnfo 145

Lines 15 and 16 perform a similar operation of masking the middle two
bytes of the long word with the addition of a bitwise shift right by eight
bits. This allows the two middle bytes to be shifted into the low bytes and
be returned as a regular number .

.... GetRouterAddr using PGetAppleTalklnfo

The GetRouterAddr routine in Listing 9-9 can be used to get the node ID
and network number of the last router that your Macintosh has commu­
nicated with.

Listing 9-9. GetRouterAddr routine using PGetAppleTalklnfo

1: PROCEDURE GetRouterAddr(VAR theNodeID : integer;
2: VAR theNetworkNumber : integer);
3: VAR
4: theMPPPB MPPParamBlock;
5: BEGIN {GetRouterAddr}
6: WITH theMPPPB DO BEGIN
7:
8:
9:

END;

version
linkAddr

:= 1;
:= NIL;

zoneName := NIL;

IF PGetAppleTalkinfo(@theMPPPB,kSYNC)
THEN BEGIN

WITH theMPPPB DO BEGIN

noErr
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

theNodeID := BAnd(routerAddr,$000000FF);
theNetworkNumber :=

BSR(BAnd(routerAddr,$00FFFF00),8);
END;

END
ELSE BEGIN

theNodeID := 0;
21: theNetworkNumber := 0;
22: END;
23: END; {GetRouterAddr}

It begins at lines 7-9 by setting the input parameter block fields to
acceptable values. The version is always one and neither the linkAddress
buffer or the zoneName buffers are used so they are set to NIL.

Line 11 makes the call to PGetAppleTalklnfo synchronously. If this call
fails, lines 20 and 21 set the var parameters, theNodeID, and
theNetworkNumber to zero.

146 ~ Chapter 9 Miscellaneous Appletalk Interfaces

As long as the call succeeds, line 14 sets the variable parameter
theNodeID to the low byte of the routerAddr field in the parameter block.
This is done by using a logical AND operation (BAnd is a routine provided
in MPW Pascal to perform the Bitwise AND operation between two long
words) to mask the higher bytes of the long word. This leaves the low
byte as the result.

Lines 15 and 16 perform a similar operation of masking the middle two
bytes of the long word with the addition of a bitwise shift right by eight
bits. This allows the two middle bytes to be shifted into the low bytes and
be returned as a regular number.

~ GetMaxs using PGetAppleTalklnfo

The GetMaxs routine in Listing 9-10 can be used to get the maximum
number of protocol handlers, the maximum number of static sockets, and
the maximum number of concurrent NBP operations that the current
.MPP driver allows.

Listing 9-10. GetMaxs routine using PGetAppleTalklnfo

1: PROCEDURE GetMaxs(VAR theMaxPHs
2: VAR theMaxSkts
3: VAR theMaxNPBEs

integer;
integer;
integer);

4: VAR
5: theMPPPB MPPParamBlock;
6: BEGIN {GetMaxs)
7: WITH theMPPPB DO BEGIN
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

END;

version
linkAddr

:= 1;
:= NIL;

zoneName := NIL;

IF PGetAppleTalkinfo(@theMPPPB,kSYNC)
THEN BEGIN

WITH theMPPPB DO BEGIN
theMaxPHs := numOfPHs;
theMaxSkts := numOfSkts;
theMaxNPBEs := numNBPEs;

END;
END
ELSE BEGIN

theMaxPHs
theMaxSkts
theMaxNPBEs

:= 0;
:= 0;
:= 0;

24: END;
25: END; {GetMaxs}

noErr

..,. The Transition Queue 147

It begins at lines 8-10 by setting the input parameter block fields to
acceptable values. The version is always one and neither the linkAddress
buffer or the zoneName buffers are used so they are set. to NIL.

Line 12 makes the call to PGetAppleTalklnfo synchronously. If this call
fails, lines 21-23 set the var parameters theMaxPHs, theMaxSkts, and
theMaxNBPEs to zero.

As long as the call succeeds, lines 15-17 set the var parameters
theMaxPHs, theMaxSkts, and theMaxNBPEs to the maxPHs, maxSkts,
and maxNBPEs fields in the parameter block.

...,. The Transition Queue
Another new feature in AppleTalk Phase 2 is the transition queue. The
transition queue provides you a way to be informed of important
AppleTalk events such as the opening or closing of the .MPP driver. This
normally indicates that the user is turning on or off the AppleTalk network.

To use the transition queue, you can insert a queue entry. This entry
contains a pointer to a routine that will then be called when a transition
event occurs. This routine is passed information about the transition event
and returns a value to the caller that indicates whether the routine accepts
the event or, in some circumstances, rejects it. The routine can also com­
municate with the rest of your program to perform actions appropriate
for the transition event.

You can respond to four predefined transitions:

• open transition
• prepare to close transition
• permission to close transition
• cancel close transition

The open transition is used to indicate that the .MPP driver has just
been opened. It isn't called if the .MPP driver is already open and some
program opens it again.

The prepare to close transition is called just before the .MPP driver is to
be closed. When this transition is received, there is no way to prevent the
.MPP driver from closing, but it can be used to perform appropriate
actions in preparation for the driver closing.

The permission to close transition is called when a program wants to
close the .MPP driver and calls PATalkClosePrep to ask permission to do
so. Your routine should indicate whether it wants to allow the close request
or not. Note: even if you deny permission, the other program may still
close the .MPP driver anyway.

148 ~ Chapter 9 Miscellaneous Appletalk Interfaces

The cancel close transition is called after some program has denied
permission to close the .MPP driver in response to the prepare to close
transition.

Remember that after you receive a permission to close transition, you
will always receive either a prepare to close transition (if permission was
granted) or a cancel close transition (if permission was denied). This means
that you can take certain actions after you receive a prepare to close
transition, such as no longer accepting connections or accepting other
requests. Then, you can either cancel this action when you get the cancel
close transition, or you can continue your shutdown when you get the
prepare to close transistion.

~ Inserting an Entry into the Transition Queue

You insert your own entry into the transition queue using the
LAPAddATQ call and remove it using LAPRmvATQ. These calls are
defined as follows:

FUNCTION LAPAddATQ(theATQEntry:
FUNCTION LAPRmvATQ(theATQEntry:

ATQEntryPtr):
ATQEntryPtr):

OSErr;
OSErr;

The ATQEntryPtr points to a standard queue element having the fol­
lowing format:

ATQEntry RECORD
qLink ATQEntryPtr;
qType INTEGER;
CallAddr ProcPtr;

END;

It can also be extended to include additional information such as the
following:

MyATQEntry RECORD
qLink ATQEntryPtr;
qType INTEGER;
CallAddr ProcPtr;
my AS Reg longint;
myDataPtr DataBlockPtr;

END;

~ The Transition Queue 149

~ The Transition Handling Routine

Important.,

Your routine that handles transitions cannot be written directly in Pascal.
For some reason, you must use C-style parameter passing. This means
that you either write your routine in C or assembler, or write a small
assembler stub that calls a Pascal routine.

The C declaration for your transition handling routine has the following
form:

"SErr Transition (long code, ATQentryPtr qElem, void *p);

The code parameter contains the transition selector with the following
values:

0 = Open Transition
2 = Prepare to Close Transition

3 = Permission to Close Transition
4 = Cancel Close Transition

The qElement is a pointer to your queue entry.
The final pointer, p, points to different data depending on which tran­

sition is happening.
For open transitions it points to the Device Manager parameter block

for the open call that is opening MPP. You should not modify data found
there, but you can look at it if you want to.

For permission to close transitions, it points to four bytes that you can
store a pointer to the name of your application if you are denying per­
mission. This name is displayed in a dialog that informs the user which
application denied permission.

For both the prepare to close and the cancel close transitions, it is simply
NIL.

150 ~ Chapter 9 Miscellaneous Appletalk Interfaces

Listing 9-11 shows an assembly language transition handling routine
that simply calls a Pascal transition handling routine. This code was
derived by compiling the small MPW C routine found in Listing 9-12.

Listing 9- 11 . Assembler glue for a Pascal transition handler

1 : A TRANS PROC EXPORT
2 :
3 : LINK A6 , #$0000
4 : MOVEM . L A3/A4 , - (A7)
5: MOVEA . L $0010 (A6) , A4
6 : MOVEA . L $000C (A6), A3
7 : SUBQ . L #$2 , A7
8 : MOVE . L $0008 (A6),-(A7)
9 : MOVE . L A3 ,-(A7)

10: MOVE . L A4 ,-(A7)
11: JSR PTRANS ITI ON
12 : MOVE . W (A7) +, DO
13 : MOVEM . L - $0008 (A6), A3/A4
14 : UNLK A6
1 5 : RTS
16:
1 7 : END PROC

Listing 9- 12. C version of Pascal transition handler glue

1 : OSEr r TRANSITION (long code , ATQentryPtr qElem , vo i d *p)
2 : {

3 : r eturn (PTRANSITION (code, qEl e m,p));
4 :

By the Way ~ I When the transition handler is called, you should observe all the
rules of interrupt routines since it is possible that it is bein,g called
at interrupt time. This means you should not access unlocke'ti data
referenced by a handle or move memory. You also need to restore
your own AS register if you want to access your own global
variables.

...,. The Chooser 151

~ The Chooser
The Chooser provides a very simple and effective way for your users to
select or connect to a network resource. It provides a number of benefits
to your users-they are familiar with it from using it to select printers,
and all they need to do to install a Chooser interface program is to drop
the file into their System folder .

...,. The Chooser User Interface

The Chooser provides a very well-defined and fairly restrictive user
interface. You have a single text string across the top that you can set, as
well as up to two buttons for the user tO press. The Chooser fills in a list of
remote NBP entities in the list for you by default, but you can override
this behavior if it suits your purposes. This may seem rather basic, but
this user interface is often adequate for the basic operations of connecting
to a remote program and setting up preferences.

Once the connection is made, you are free to put up your own dialog or
series of dialogs to lead the user through any series of operations that you
see the need for. The only restriction is that you must use a modal dialog,
because there is no mechanism built into the Chooser for handling anything
else. The Chooser only calls you once, so you have to grab the opportunity
and not let go until your program is finished .

...,. Basic Operation of a Chooser Interface

To add your own icon to the Chooser, you create a file with creator type
'RDEV' and define a number of specific resources that make up an RDEV
file (commonly referred to as simply an RDEV). The user places the RDEV
file into their System folder and then opens the Chooser Desk Accessory.

Your RDEV is invoked when the user selects your RDEV's icon. The
Chooser then loads in your resources, displays the desired buttons and
text in the Chooser, and begins a conversation with your code.

This conversation consists of repeated calls to your 'PACK' resource.
These calls pass six parameters and return an error result. Listing 9-13
shows the prototype of this call interface. Your code should expect to be
called in this manner.

152 ..,.. Chapter 9 Miscellaneous Appletalk Interfaces

Listing 9- 13. Call Interface for the 'PACK' code resource

FUNCTION YourCode(message
caller
obj Name
zoneName
pl,p2

integer;
integer;
StringPtr;
StringPtr;
LONGINT) : OSErr;

The message parameter indicates which action the Chooser wants you
to perform. The other parameters take on various meanings based on the
value of the message parameter.

When building a simple Chooser interface, the only message you need
to worry about is the button message (18). This message is sent when
either of the two buttons are pressed by the user. If the user double-clicks
on a list item, it acts as if the left button was pressed and a button message
is sent to your code.

When the button message is received, the caller parameter is always set
to l, meaning that the Chooser was the caller. Apple reserves any other
values for future expansion. Your RDEV code would normally ignore this
parameter.

The objName parameter contains the null string when button mes­
sages are sent. The zoneStr parameter contains the name of the currently
selected zone or '*' if there is only one zone present on the network.

The pl parameter is filled in with a handle to a List Manager list. This
list is the one used by the Chooser to display the selections available to the
user. This handle is important not only as a way to get the name of the
selected entity in that list, but also because the second column of the list
(not visible to the user) is where the Chooser stores the network address
for that entity. This must be accessed to get the proper socket address for
the selected entity.

Listing 9-14 shows how you can retrieve the address of the selected
item using List Manager routines.

Listing 9- 14. Retrieving the address block for the selected Item

1: theCell := Point(LONGINT(O));
2:
3: IF LGetSelect(TRUE,theCell,ListHandle(pl))
4: THEN {it should always be true};
5: theCell.h := l;
6: LGetCell(@ATAddr,SIZEOF(AddrBlock),
7:

8: END;
theCell,ListHandle(pl));

By the Way..,. I

..,.. The Chooser 153

Line 1 sets the variable theCell to be [O,O], the top-left cell of the list.
This is needed because the following LGetSelect call looks for the first
selection after the cell you pass in. Using [O,O] instructs LGetSelect to find
the first and only selection (in this case) in the list.

Line 3 calls LGetSelect to find the selected cell. This always succeeds
when there is a selected cell.

Line 5 sets theCell' s horizontal component to be 1. This actually speci­
fies the second column in the list, with column 0 being the first, and is
where the Chooser stores the address of the entity that has the name
found in column 0.

Line 6 calls LGetCell to retrieve the address data and place it into the
AT Addr variable.

The p2 parameter contains two pieces of information, each stored in the
low-order or the high-order word of the long word parameter. The low­
order word contains either a 1, denoting that the left button was pressed,
or a 2, denoting that the right button was pressed. The high-order word
contains the modifier bits from the event. These let you check for things
like the Shift or Option key being down when the button was pressed.

When creating a simple Chooser interface that only uses button
messages, it can be useful to define a special type that makes accessing the
p2 data easier. You can then declare the p2 parameter to be of this type.
Listing 9-15 shows an example of this.

154 Chapter 9 Miscellaneous Appletalk Interfaces

Listing 9-15. Responding to a button message

1: ModifierBooleans = PACKED RECORD
2:
3:
4:
5:
6:
7:
8:

fillerl
controlKeyisDown
optionKeyisDown
capsLockKeyisDown
shiftKeyisDown
comrnandKeyisDown
filler2

9: END;
10:
11: ButtonP2 = RECORD

0 •. 7;
boolean;
boolean;
boolean;
boolean;
boolean;
0 .. 255;

12: modifiers ModifierBooleans;
13: whichButton : integer;
14: END;
15:
16: FUNCTION myRDEV
17:
18:
19:
20:

message, caller
objName,zoneName
pl
p2

21: BEGIN

INTEGER;
StringPtr;
LONGINT;
ButtonP2) OSErr;

22: IF message buttonMsg THEN
23: IF p2.whichButton = kLeftButtonPressed THEN
24: IF p2.modifiers.optionKeyisDown
25: THEN HandleOptionLeftButton
26: ELSE HandleLeftButton;
27: ELSE HandleRightButton;
28: END;

Lines 1-9 define the ModifierBooleans record that allows direct access
to the modifier key flags in the high-order word of p2. By using a packed
record, the compiler puts each field in the minimum number of bits.

Lines 11-14 combine the ModifierBooleans record with an integer for
checking which button was pressed.

Line 20 shows the substitution of the ButtonP2 type for the normal
longint type with the p2 parameter. ButtonP2 must be exactly the same
size as longint.

Line 23 shows a check for the left button being pressed.
Line 24 shows a check for the Option key being down.

Note..,._

..,._ The Chooser 155

..,.. Configuring a Chooser Interface

Chooser documents contain a number of resources that define how
Chooser documents work. Each resource is described below. You can
define your own resources for your RDEV in addition to these standard
resources. The only restriction is that they must not conflict with the ones
defined by the Chooser and your resources must have IDs in the range
-4096 through -4065.

The 'STR' Resources

Chooser documents contain the following four required string resources:

• The 'STR' resource with ID = -4096-This resource tells the Chooser
which NBP type it should use when it looks for network entities on
your behalf. For example, if you want it to list all the AppleShare
servers in the selected zone, you would have this 'STR' resource
contain the string "AFP Server."

•The 'STR' resource with ID= -4091-This is the 'STR' resource that
defines the message displayed across the top of the Chooser dialog.
The message should be simple, as anything long will not fit. Something
like "Select an XXX" is often all that is required.

The last two 'STR' resources define the title of the two buttons you have
at your disposal:

• 'STR' resource with ID = -4093-defines the left button title
• 'STR' resource with ID = -4092-defines the right button title

Again, space is at a premium so these must be short button titles.

156 .,.. Chapter 9 Miscellaneous Appletalk Interfaces

Listing 9-16 shows Rez source codes that define each of these 'STR'
resources.

Listing 9-16. Rez definition for 'STR' resources

1: resource 'STR ' (-4096, purgeable) {
2: "Example RDEV"
3: } ;
4: resource 'STR ' (-4093, purgeable) {
5: "Connect"
6: } ;
7: resource 'STR ' (-4092, purgeable) {
8: "Customize'
9: } ;

10: resource 'STR ' (-4091, purgeable) {
11: "Select a Target:"
12: I;

The 'GNRL' Resource

There is a single 'GNRL' resource defined by the Chooser. This is the
'GNRL' resource with ID = -4096 and it contains 2 bytes that define the
timeout information for the NBP lookup performed by the Chooser. The
first byte is the interval and the second byte is the retry count. These two
values correspond to the equivalent values in the NBP PLookup call.

Listing 9-17 shows Rez source code that defines a 'GNRL' resource that
instructs the Chooser to use a timeout value of 5 and 3 retries.

Listing 9-17. Rez definition for the 'GNRL' resource

1: data 'GNRL' (-4096, purgeable) {
2: $"05 03"
3: } ;

The 'nrct' Resource

There is a single 'nrct' resource defined by the Chooser. It defines the
bounding rectangles for the left and right buttons. The 'nrct' resource
with ID = -4096 contains a two-item list of rectangle coordinates-the
first for the left button, and the second for the right button.

Listing 9-18 shows Rez source code that defines an 'nrct' resource that
places the left and right buttons.

.,.. The Chooser 157

Listing 9-18. Rez definition for the 'nrct' resource

1: resource 'nrct' (-4096) {

2: {

3: { 112, 206, 132, 266 } '
4: { 112, 286, 132, 364 }

5:

The 'LDEF' Resource

The Chooser uses the standard List Manager 'LDEF' to display the names
it finds when it does the NBP lookup. It is possible to substitute your own
'LDEF' for the standard one by including it as 'LDEF' with resource ID =
-4096.

Substituting your own 'LDEF' lets you present a more informative or
aesthetic list than the default one. For example, your 'LDEF' could display
a small icon next to each name to indicate something about the remote
entities involved or display the names in different colors or typefaces.

The 'PACK' Resource

The key resource in an RDEV is the 'PACK' resource with ID= -4096. This
resource contains the code that implements the functionality of your RDEV.
Because it is a 'PACK' code resource, it must conform to the standard
structure of a 'PACK' resource.

'PACK' resources have a header consisting of 16 bytes of data that are
interpreted by the Chooser to define the RDEV' s characteristics. Figure
9-1 shows a 'PACK' header used by an RDEV.

$60!$0E branch over header (BRA. S 16)
·$00:$80 device id

' $50:$41 'PACK' constant
$43:$4B
$FO:$OO -4096 constant
$00!$01 version number
$8E:$00 flags (longword)
$00!$00

Figure 9-1. 'PACK' header structure

158 ~ Chapter 9 Miscellaneous Appletalk Interfaces

Listing 9-19 shows the 68000 assembly language source code that pro­
duced the header. It begins with a branch instruction on line 1. This
branch instruction will skip over the data portions of the header. This is
done because the Chooser jumps to the beginning of the 'PACK' code
resource to invoke it.

Listing 9-19. Source code for a 'PACK' header

1: BRA.S @1
2: DC.W 80
3: DC.L ('PACK')
4: DC.W $FOOO
5: DC.W 1
6: DC.L %10001110000000000000000000000000

Line 2 is a word containing the device ID. 'This provides an identifier
for your RDEV to the Chooser.

Lines 3 and 4 define two constants consisting of the four characters 'P',
'A', 'C', 'K', and the number -4096. ·

Line 5 defines a version number for the 'PACK' resource.
Line 6 defines a long word of flag bits. The values for these flags are

detailed in Figure 9-2.
The flags found in the 'PACK' resource are used by the Chooser to

determine the specific behavior of the RDEV. These flags control such
things as which messages are received by the RDEV, which buttons are
actually used by the RDEV, if multiple selections are supported, and how
zone names are handled.

Simple RDEVs only set two to four of the flags, but more sophisticated
RDEVs will make use of some of the other flags. The four flags set by
simple RDEVs are the following:

•Bit 25 Simple RDEVs don't save zone names
• Bit 26 Simple RDEVs sometimes use the right button
• Bit 27 Simple RDEVs sometimes use the left button
• Bit 31 Simple RDEVs do use AppleTalk

Figure 9-2 lists all of these flags with a short description of their use.
Further information can be found in Inside Macintosh, Volume IV.

..,. The Chooser 159

Bit # Explanation

0 Reserved.
1 Reserved.
2 Reserved.
3 Reserved.
4 Reserved.
5 Reserved.
6 Reserved.
7 Reserved.
8 Reserved.
9 Reserved.

10 Reserved.
11 Accepts terminate messages.
12 Accepts deselect messages.
13 Accepts select messages.
14 Accepts getSel messages.
15 Accepts fillList messages.
16 Accepts newSel messages.
17 Reserved.
18 Reserved.
19 Reserved.
20 Reserved.
21 Reserved.
22 Reserved.
23 Reserved.
24 Uses actual zone names.
25 No zone name is saved.
26 Uses right button.
27 Uses left button.
28 Multiple selections allowed.
29 Reserved.
30 Reserved.
31 Uses AppleTalk.

Figure 9-2. RDEV flags

160 .,.. Chapter 9 Miscellaneous Appletalk Interfaces

By the Way~ I

...._ Summary

This chapter described a variety of AppleTalk topics not covered in other
parts of this book. First the issue of opening the various AppleTalk driv­
ers was covered- how and why you should open the .MPP driver, the
.XPP driver, and the .DSP driver were discussed and illustrated. Then the
PSelfSend and PGetAppleTalklnfo calls were described. You were shown
how to allow your program to talk to other programs on the same
Macintosh using the PSelfSend call and how to get information about
AppleTalk using the PGetAppleTalklnfo call. The transition queue was
also described. You were shown how to have AppleTalk inform you
about important AppleTalk events.

Finally, the Chooser was discussed. Its defining resources were examined
and examples were shown of each of these resources. The flags found in
the 'PACK' code resource were also discussed.

The final section of this book follows. It offers detailed walkthroughs of
AppleTalk programs. Chapter 10 is about NameTool-the Macintosh
Programmer's Workshop (MPW) NBP tool.

PART THREE

~ AppleTalk Programming
Examples

Part Three of this book walks you through three real Apple Talk programs.
These are meant to be basic models that demonstrate how to put the
information in the previous chapters to work in a working program. You
should be able to take these examples and build your own programs
using many of the same techniques.

• Chapter 10 discusses the NameTool. The NameTool illustrates how
to use NBP, ZIP, and ATP to get information about names used on
the network. It does this in the context of an MPW tool.

•Chapter 11 discusses the RemoteSyslnfo RDEV. It uses NBP and
ATP to exchange information over the network using a simple client
server model. It describes how the three pieces of RemoteSystemlnfo­
the INIT, the resident code, and the RDEV Chooser interface-are
built.

• Chapter 12 discusses the network checkers game. It uses NBP and
ADSP in a MacApp framework to exchange game data between two
players running the game on different Macintoshes on an AppleTalk
network. It explains the object classes used to work with asynchronous
ADSP operations.

161

10 _.... NameTool: An AppleTalk MPW
Tool for Using NBP Lookups

NameTool is a Macintosh Programmer's Workshop (MPW) tool that
allows you to explore the use of the Name Binding Protocol and the Zone
Information Protocol. It is invoked by entering it on the MPW command
line. The results are directed to the standard MPW output.

NameTool has a very simple console-oriented interface that leads to a
very simple program structure that doesn't interfere with understanding
the AppleTalk code .

..._ Goals for NameTool
NameTool illustrates a number of basic AppleTalk programming tech­
niques. It uses ZIP to look up the zones on the current network and NBP
to look up names in each zone. It handles both Phase 1 and Phase 2
AppleTalk networks, illustrating how to use ZIP in each of these envi­
ronments. If you expect your programs to operate in only one of these
environments, or the other, you can simplify your own programs by just
using one approach.

NameTool is implemented as an MPW tool, but the code can be easily
adapted to other environments, such as Symantec' s THINK Pascal.

163

164 ..,.. Chapter 10 NameTool: An Appletalk MPW Tool for Using NBP Lookups

...,. How to Use NameTool
The basic operation performed by NameTool is looking up NBP names
on your AppleTalk network. By default, NameTool looks up all names in
all the zones found in your network. A number of options are provided to
give more control over its operation.

NameTool deals with the following three types of options:

•The help option
• Specifying which names to look up
• Controlling the NBP and ATP timeout and retry behavior

..,.. The Help Option

The help option is invoked by typing "-h" on the command line. When
this option is used, NameTool prints out a small help message that tells
the user how to use the other options. Listing 10-1 shows NameTool used
with the help option and its output.

Listing l 0- l . Output from the help option

NameTool -h
NameTool 1.0 - Looks at network names.
-z {zoneName} Only looks in specified zone.
-n {serverName} Only looks for servers with specified

-t {typeName}

-i {interval}
-c {count}
-m
-?

name.
Only looks for types with specified
name.
Interval for NBPLookup call.
Count for NBPLookup call.
Use local zone.
Prints this text.

..,.. The Zone, Name, and Type Options

NameTool provides the following three options to specify which names
to look up on the network:

•The zone option-invoked by "-z" followed by the zone name, is
used to indicate specific zones that you want to look up

• The name option-invoked by "-n" followed by the name, is used
to indicate specific names that you want to look up

..., General Comments About NameTool 165

• The type option-invoked by "-t'' followed by the type, is used to
indicate specific types that you want to look up

These options can be combined to look up, say, a specific name in a
specific zone, or certain types with a certain name. These options can also
contain appropriate wildcard characters to further refine what you are
looking up.

The zone, name, and type options correspond directly to the three parts
of the NBP name used by the PLookupName trap. This means that they
must conform to the rules that govern NBP names. That is, they must be
less than or equal to 31 characters in length. They can also contain the
wildcard characters that PLookupName handles. See Chapter 5 for details.

There is a related option, "-m", that overrides the zone option. It specifies
that only the local zone should be looked at ("-m" stands for My zone).

.... The Interval and Timeout Options

Two options are provided for controlling the timing used by the NBP
PLookup call, the ZIP calls to the .XPP driver, and the ATP calls used to
access ZIP in Phase 1 AppleTalk networks. These two options are: the
timeout option (invoked by "-t'' followed by the timeout value) and the
interval option (invoked by "-c" followed by the interval count). The
interval option is used to specify the interval count used in these calls.
The timeout option is used to specify the timeout used in these calls.
These options correspond directly to the timeout and retry fields in the
various parameter blocks used .

..,.. General Comments About NameTool
NameTool makes use of the synchronous variations of the AppleTalk
calls. It could have used the asynchronous variations, and instead of locking
up the Macintosh while waiting for the completion of the calls, it could
have made the calls asynchronously and yielded time to other processes
running. The synchronous variation was used here only to simplify the
example.

Another important consideration in NameTool is that it uses AppleTalk
Phase 2 features if it can; otherwise it uses techniques appropriate for
Phase 1. This ability to use AppleTalk Phase 2, if available, comes up in
two places: when getting the current zone name and when getting a list of
all known zones. In both of these cases the code checks for an AppleTalk
version number and uses the Phase 2 approach if it is greater than or
equal to version 53.

166 ~ Chapter 10 Namelool: An Appletalk MPW Tool for Using NBP Lookups

...., Sample of the NameTool Output

Listings 10-2, 10-3, and 10-4 show three examples of using NameTool to
look at a network. Each command was issued on the same AppleTalk
network. The network is small-only two zones and four machines-but
sufficient for the purpose of seeing how NameTool works.

Listing 10-2 shows the output from issuing the NameTool command
without any options specified. It shows every NBP name found in the
entire network. There were three Macintoshes and one LaserWriter run­
ning a variety of network software.

The format of the output is NBP name, followed by the type, zone,
network, node, and socket numbers.

Listing 10-2. NameTool results #1

NameTool

"Router SE" "Public Foldert" "Downstairs" net=2 node=l58 socket=251
"Router SE" "Example RDEV" "Downstairs" net=2 node=l58 socket=252

"Router SE" "AppleRouter" "Downstairs" net=2 node=l58 socket=253

"Michael's Mac !lei" "Macintosh" "Upstairs" net=! node=9 socket=251
"Michael's Mac !lei" "Public Foldert" "Upstairs" net=l node=9

socket=252

"Michael's Mac !lei" "Example RDEV" "Upstairs" net=l node=9 socket=253
"Kathleen's Mac !lex" "Macintosh IIcx" "Upstairs" net=l node=l22

socket=252

"Kathleen's Mac !lex" "Example RDEV" "Upstairs" net=l node=l22
socket=253

"South Bay NTX " "LaserWriter" "Upstairs" net=l node=l90 socket=250

2 zones

9 NBP names

Listing 10-3 shows the output from issuing the NameTool command
using the name option. It specifies that only NBP names with the name
"Router SE" should be shown. The results illustrate three names that
match.

~ The Structure of Namelool 167

Listing 10-3. Name Tool results #2

NameTool -name 'Router SE'

"Router SE" "Public Foldert" "Downstairs" net=2 node=158 socket=251

"Router SE" "Example RDEV" "Downstairs" net=2 node=158 socket=252

"Router SE" "AppleRouter" "Downstairs" net=2 node=158 socket=253

2 zones

3 NBP names

Listing 10-4 shows the output from issuing the NameTool command
using the type option. It specified that only NBP names with the type
"Example RDEV" should be shown. The results show three matching
names.

Listing 10-4. Name Tool results #3

NameTool -type 'Example RDEV'

"Router SE" "Example RDEV" "Downstairs" net=2 node=158

socket=252

"Michael's Mac !lei" "Example RDEV" "Upstairs" net=l node=9

socket=253

"Kathleen's Mac !lex" "Example RDEV" "Upstairs" net=l node=122

socket=253

2 zones

3 NBP names

..._ The Structure of NameTool
NameTool has a very simple structure. It consists of a single source file
containing the main program with a small number of supporting sub­
routines. These supporting subroutines fall into two major categories:
general support routines and network access support routines.

The general support routines contained in NameTool perform general
housekeeping functions such as parsing the MPW command line, check­
ing for error return values, and handling strings. These routines can be
used in other MPW tools and do not rely on AppleTalk for their operation.
See "The General Routines" section later in this chapter for details.

The network access support routines do the work of accessing
AppleTalk. They use NBP, ATP, and ZIP to accomplish their tasks and

168 ~ Chapter 1 O Name Tool: An Appletalk MPW Tool for Using NBP Lookups

are very self-contained. They can be used in other programs with little
modification. Do keep in mind that they are oriented toward a synchro­
nous approach and that most programs usually call for using an asyn­
chronous approach. See "The AppleTalk Routines" section later in this
chapter for details.

Figure 10-1 lists the routines used by NameTool and what category of
routine they fall into.

Routine Name
CheckStat
Get Parm
StrFromPtr
PrintHelp
GetMyZone
GetMyZone1
GetMyZone2
BuildZonelist
BuildZonelist1
BuildZonelist2
ProcessZone

Routine Category
General Routine
General Routine
General Routine
General Routine
AppleTalk Routine
AppleTalk Routine
AppleTalk Routine
AppleTalk Routine
AppleTalk Routine
AppleTalk Routine
AppleTalk Routine

Figure 10-1. Routines found in NameTool

~ The Header Section of Name Tool

Listing 10-5 shows the header section of NameTool. It contains the pro­
gram statement, constants, types, and variables used by the entire pro­
gram.

Listing l 0-5. Header section of Name Tool

1: PROGRAM NameTool;
2:
3: USES
4: OSintf, AppleTalk, PasLibintf, Packages,
5: IntEnv, CursorCtl;
6:
7: CONST
8:

9:
10:
11:
12: TYPE

kSYNC
kASYNC

FALSE;
TRUE;

..,.. The Structure of NameTool 169

13: xCallParam = PACKED RECORD
14: qLink:QElemPtr;
15: qType: INTEGER;
16: ioTrap:INTEGER;
17: ioCmdAddr:Ptr;
18: ioCompletion:ProcPtr;
19: ioResult:OSErr;
20: ioNamePtr:StringPtr;
21: ioVRefNum:INTEGER;
22: ioRefNum:INTEGER;
23: csCode: INTEGER;
24: xppSubCode:INTEGER;
25: xppTimeOut:Byte;
26: xppRetry:Byte;
27: filler:INTEGER;
28: zipBuffPtr:Ptr;
29: zipNumZones:INTEGER;
30: zipLastFlag:INTEGER;
31: zipinfoField: PACKED ARRAY [1 .. 70] of Byte;
32: END; {xCallParam}
33:
34: VAR
35:
36:
37:

nameCount,
zoneCount

3 8: tempStr,
39: zoneParm,
40: typeParm,
41:
42:
43:
44:

name Parm

intervalNumber
count Number

integer;

str255;

longint;
long int;

Listing 10-5 begins in the traditional Macintosh manner with a program
statement at line 1 and a USES section at lines 3-5 that reference the units
that the tool makes use of.

Two global constants are defined at lines 7-11. kSYNC and kASYNC
are used rather than TRUE and FALSE to aid in readability.

170 ~ Chapter 1 O Name Tool: An Appletalk MPW Tool for Using NBP Lookups

Lines 12-32 define the type xCallParam. This is a parameter block used
by the ZIP calls to the .XPP driver. xCallParam needs to be defined here
because it is not included in the MPW 3.1 interface files. Later versions of
MPW will probably provide this record definition; when that happens,
you should use the definition provided and remove the old definition
from the code.

Lines 34-44 define the global variables used by NameTool. One of these
variables, tempStr, is simply that; a temporary string used when parsing
the command line. It must be global since it is used in the main routine.

The nameCount and zoneCount variables are used to accumulate the
total number of zones and names found during the lookup process. These
statistics are reported to the user when the program is finished.

The rest of the global variables are filled in with values from the com­
mand line to control the operation of the tool. If no value is specified for
them on the command line, a default value is used.

~ The General Routines

The general routines used by NameTool are not specific to NameTool; they
are general purpose routines that can be used in any MPW tool or program.

CheckStat

CheckStat is a very simple procedure that checks the value passed in
against noErr (0). If any other value besides noErr is encountered,
CheckStat beeps to get your attention and writes the offending error
value and a user-supplied message to the standard output.

CheckStat can be modified in a number of ways to provide additional
value to you. For example, adding a call to the Debugger trap will drop
you into Macsbug (or your debugger of choice) to let you inspect the
environment when the error occurred. Listing 10-6 shows the CheckStat
routine.

Listing l 0-6. The CheckStat routine

1: PROCEDURE CheckStat(status: OSErr; displayText: str255);
2: BEGIN {CheckStat}
3: IF status <> noErr
4: THEN BEGIN

SysBeep(S); 5:
6: writeln('CheckStat: stat=',
7: status:l, ', ',DisplayText);
8: END;
9: END; {CheckStat}

~ The Structure of NameTool 171

GetParm

GetParm is a function that checks for the existence of a specific option on
the command line. The options consist of a dash followed by a single
character, then another string. An example of this is the zone option in
NameTool. It has the form "-z zonename". You specify which character
you are looking for in the first parameter, and if there is such an option on
the command line, the function returns TRUE and passes the other string
back in the second parameter.

The algorithm used assumes there is no match, then checks each argu­
ment of the command line to see if it has a "-" followed by the specified
single character. If it finds a match, it returns the next argument if one
exists. Listing 10-7 shows the GetParm routine.

Listing 10-7. The GetParm routine

1: FUNCTION GetParm(c : char; var s
2: VAR
3: i : integer;
4: BEGIN {GetParm}
5: s:=";
6: GetParm := FALSE;

i : = l;
WHILE i <= argC DO BEGIN

str255) boolean;

7:
8:
9: IF (argV" [i]" [l] = '-') and (argV" [i] "[2] c)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21: END;

THEN BEGIN

END

IF i < argC
THEN BEGIN

s := ArgV"[i+l]";
END;

GetParm := TRUE;
Exit (GetParm);

ELSE BEGIN
i := i + l;

END;

22: END; {GetParm}

172 ~ Chapter 10 NameTool: An Appletalk MPWTool for Using NBP Lookups

StrFromPtr

StrFromPtr is a function that returns the string pointed to by the pointer,
p. It is useful for copying strings out of buffers, such as the zone names
from the zone name buffer passed back from the ZIP calls. Listing 10-8
shows the StrFromPtr routine. The length of the string is also specified.

Listing 10-8. The StrFromPtr routine

1: FUNCTION StrFromPtr(p : Ptr; len integer)
2: TYPE
3: CharPtr Achar;
4: VAR

5: tStr str255;
6: i integer;
7: BEGIN {StrFromPtr}
8:
9: tStr[O] := chr(len);

10: for i := 1 to len do BEGIN
11: tStr[i] := CharPtr(p)A;
12: p := Ptr(ORD4(p)+l);
13: END;
14:
15: StrFromPtr := tStr;
16:
17: END; {StrFromPtr}

str255;

The algorithm in line 9 starts by putting the length into the first byte of
the string that is being built up. This is because Pascal strings store their
length in this location.

The rest of the string is filled in using the loop in lines 10-13. The
character is copied from the memory pointer pointed to by the pointer
into the string. As the loop repeats, the pointer is moved to the next byte
of memory.

Finally in line 15, the temporary string is assigned to the function so it
will be returned as the value of the function.

PrintHelp

PrintHelp is a very simple procedure that writes the help text to the
standard MPW output. Change this text if you change the tool to operate
differently. Listing 10-9 shows the PrintHelp routine.

Listing 10-9. The PrintHelp routine

1: PROCEDURE PrintHelp;
2: BEGIN {PrintHelp}

~ The Structure of NameTool 173

3: write ('# NameTool 1.0 - Looks ');
4: writeln('at network names.');
5: write('# -z {zoneName} ');
6: writeln('Only looks in specified zone.');
7: write ('# -n {serverName} Only looks ');
8: writeln('for servers with specified name.');
9: write ('# -t {typeName} Only looks ');

10: writeln('for types with specified name.');
11: write ('# -i {interval} ');
12: writeln('Interval for NBPLookup call.');
13: write('# -c {count} ');
14: writeln('Count for NBPLookup call.');
15: write ('# -m ');
16: writeln('Use local zone.');
17: write ('# -? ');

18: writeln('Prints this text.');
19: END; {PrintHelp}

~ The AppleTalk Routines

The AppleTalk routines that NameTool uses perform some very common
Apple Talk operations. They can be adapted for use on your own programs
with little change. The only real shortcoming of these routines is that they
call AppleTalk synchronously and your programs should probably call
them asynchronously.

GetZIPAddr

GetZIPAddr is a function that passes back the address of your local router.
The function returns FALSE if no local router is available, or TRUE if
there is one. Listing 10-10 shows the GetZIP Addr routine.

174 ..,,. Chapter 10 NameTool: An Appletalk MPWTool for Using NBP Lookups

Listing 10-10. The GetZIPAddr routine

1: FUNCTION GetZIPAddr(VAR ZIPAddr AddrBlock)
2: CONST
3: kZIPSocket 6;
4: VAR
5:
6:

the Node
theNet

integer;
integer;

7: theRouterNode integer;
8: BEGIN {GetZIPAddr}
9: GetZIPAddr := FALSE;

10: IF GetNodeAddress(theNode, theNet) <> noErr
11: THEN BEGIN
12: EXIT(GetZ~PAddr);

13: END;
14: theRouterNode := GetBridgeAddress;
15: IF (theRouterNode = 0)
16: THEN BEGIN {No zones}
17: EXIT(GetZIPAddr);
18: END;
19: WITH ZIPAddr DO BEGIN
20: aNet := theNet;
21: aNode := theRouterNode;
22: aSocket := kZIPSocket;
23: END;
24: GetZIPAddr :=TRUE;
25: END; {GetZIPAddr}

BOOLEAN;

The first step to finding the local router is to get the network number.
This is retrieved easily by using the GetNodeAddress call as shown on
line 10. GetNodeAddress normally shouldn't fail, but if it does, it usually
means that the .MPP driver hasn't been opened yet.

Next, you want to get the node address of the router using the
GetBridgeAddress routine shown on line 14. If this routine returns 0, you
know there are no routers out there.

Because you know that the ZIP socket is always 6, you don't have to do
anything more-you have the address. Lines 19-23 collect the three
components of the router's address into the ZIPAddr that is returned to
the call.

If you get to line 24, you know that you have assembled the router's
address; returning TRUE will signal success to the calling routine.

..,_ The Structure of NameTool 175

GetMyZone

GetMyZone is a simple dispatching routine. It checks to see which ver­
sion of AppleTalk is running. If it finds AppleTalk version 53 or later it
calls the Phase 2 implementation GetMyZone2. If a Phase 1 driver is
present, GetMyZonel is called. Listing 10-11 shows the GetMyZone
routine.

Listing 10-11. The GetMyZone routine

1: FUNCTION GetMyZone : str255;
2: VAR
3: thisMac : SysEnvRec;
4: BEGIN {GetMyZone}
5: IF SysEnvirons(l, thisMac) = noErr
6: THEN BEGIN
7:
8:
9:

END

IF thisMac.atDrvrVersNum >= 53
THEN BEGIN

GetMyZone := GetMyZone2;
END
ELSE BEGIN

GetMyZone := GetMyZonel;
END;

10:
11:
12:
13:
14:
15:
16:

ELSE BEGIN
GetMyZone ·= '*';

17: END;
18: END; {GetMyZone}

GetMyZonel

GetMyZonel is the Phase 1 implementation of the GetMyZone function.
To get the local zone name, it constructs a ZIP request and sends it (using
ATP) to the local router. Then, it returns the zone name that comes back in
the response message. Listing 10-12 shows the GetMyZonel routine.

176 ~ Chapter 10 NameTool: An Appletalk MPW Tool for Using NBP Lookups

Listing 10-12. The GetMyZone 1 routine

1: FUNCTION GetMyZonel : str255;
2: CONST
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

VAR
kMyZoneCall

stat
theATPPBptr
theBDS
resultBuff
currZonePtr
index, count
ignore
theATPPB
theZIPAddr

14: BEGIN {GetMyZonel)

$07000000;

OSErr;
ATPPBptr;
BDSElement;
str255;
Ptr;
integer;
integer;
ATPParamBlock;
AddrBlock;

15: GetMyZonel := '*';
16: IF NOT GetZIPAddr{theZIPAddr)
17: THEN BEGIN
18: EXIT{GetMyZonel);
19: END;
20: WITH theBDS DO BEGIN
21: buffSize := 255;
22: buffPtr := @resultBuff;

END;
WITH theATPPB DO BEGIN

atpFlags := 0;
addrBlock := theZIPAddr;
reqLength := 0;
reqPointer := NIL;
bdsPointer := @theBDS;
numOfBuf f s := l;
timeout Val := intervalNumber;
retryCount := countNumber;
userData := kMyZoneCall;

END;
IF PSendRequest{@theATPPB, kSYNC)

THEN BEGIN
noErr

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

GetMyZonel :=
StrFromPtr{@resultBuff,Ptr{@resultBuff)A);

END;
40: END; {GetMyZonel)

~ The Structure of NameTool 177

It begins by assuming that there are no zone names found and sets the
function result to be '*'. If something happens to indicate that no zone
name exists, the function need only exit and the return values will already
be correct for that case.

Lines 16-19 attempt to get the router's address. If this fails, it goes with
the previous assumption and exits.

Next it builds a BDS on lines 20-23. It uses a convenient variable of type
str255 as the result buffer because the result is guaranteed to be smaller
than this.

Then lines 24-34 fill in the ATP parameter block in preparation for
sending the ATP request to the router. Note the userBytes being set to the
constant $07000000. The high-byte contains 7 bytes, indicating that the
message is requesting the local zone's name.

The ATP request is sent on line 35 using a synchronous call to
PSendRequest. If no error is encountered, lines 37 and 38 set the return
value to the zone name found in the ATP response message.

GetMyZone2

GetMyZone2 is the Phase 2 implementation of the GetMyZone function.
To get the local zone name, it makes a call to the .XPP driver with the
subcode set to zipGetMyZone.

It begins by assuming that there are no zone names found and sets the
function result to be '*' denoting this. If something comes up indicating
that no zone name exists, the function need only exit and the return
values will already be correct for that case. Listing 10-13 shows the
GetMyZone2 routine.

178 ~ Chapter 10 NameTool: An Appletalk MPWTool for Using NBP Lookups

Listing 10-13. The GetMyZone2 routine

1: FUNCTION GetMyZone2
2: CONST
3:
4:
5: VAR

6:

xCall
zipGetMyZone

theXPBPB

str255;

246;
7;

xCallParam;

26: GetMyZone2 := returnedZoneName;
27: END;
28: END; {GetMyZone2}

The .XPP driver is opened on line 11. If any error is encountered, it
exits.

Next, on lines 13-23, it fills in the XPP parameter block with the values
needed. Note on line 19 that the subCode field is being set to
zipGetMyZone to tell the .XPP driver which action should really be called.

If the PBControl call returns no error on line 24, line 26 sets the func­
tion's return to be the zone name the .XPP driver returned in
returnedZoneName.

..,.. The Structure of NameTool 179

BuildZonelist

BuildZoneList is a simple dispatching routine. It checks to see which
version of AppleTalk is running; if it finds AppleTalk version 53 or later,
it calls the Phase 2 implementation BuildZoneList2. If a Phase 1 driver is
present, BuildZoneListl is called. Listing 10-14 shows the BuildZoneList
routine.

Listing 10-14. The BuildZonelist routine

1: PROCEDURE BuildZoneList;
2: VAR
3: thisMac : SysEnvRec;
4: BEGIN {BuildZoneList)
5: IF SysEnvirons(l, thisMac) = noErr
6: THEN BEGIN
7: IF thisMac.atDrvrVersNum >= 53
8: THEN BEGIN
9: BuildZoneListl;

10:
11:
12:
13:
14: END;

END
ELSE BEGIN

BuildZoneList2;
END;

15: END; {BuildZoneList)

BuildZonelist l

BuildZoneListl is the Phase 1 implementation of the BuildZoneList
function. To get the zone list it constructs a ZIP request and sends it
(using ATP) to the local router. Then it extracts the zone name from the
response packet and passes the zone name to the ProcessZone routine. It
repeats this process until all zones have been fetched and processed.
Listing 10-15 shows the BuildZoneListl routine.

180 • Chapter 10 NameTool: An Appletalk MPW Tool for Using NBP Lookups

Listing 10-15. The BuildZonelistl routine

1: PROCEDURE BuildZoneListl;
2: CONST
3: kGZLCall
4: kZonesSize

$08000000;
578;

5: TYPE
6:
7:
8:
9:

GetZoneUserBytes = PACKED RECORD
IsLastPacket: BOOLEAN;
Filler 0 .. 255;

10:
11:
12:
13:
14:
15:
16:
1 7:

VAR

ZoneCount
END;

theBDS
zonePtr
currZonePtr
index, count
zoneName
theATPPB

integer;

BDSElement;
Ptr;
Ptr;
INTEGER;
str255;
ATPParamBlock;

18: theZIPAddr AddrBlock;
19: BEGIN {BuildZoneListl}
20: IF zoneParm <> '*'
21: THEN BEGIN
22: ProcessZone(zoneParm);
23: zoneCount := 1;
24: EXIT(BuildZoneListl);
25: END;
26: IF NOT GetZIPAddr(theZIPAddr)
27: THEN BEGIN
28: ProcessZone ('*');

29: zoneCount := 1;
30: EXIT(BuildZoneListl);
31: END;
32: zonePtr := NewPtr(kZonesSize);
33: IF zonePtr =NIL
34: THEN EXIT(BuildZoneListl);
35: WITH theBDS DO BEGIN
36: buffSize := kZonesSize;
37: buffPtr := zonePtr;
38: END;
39: WITH theATPPB DO BEGIN
40: numOfBuffs := 1;
41: atpFlags := 0;
42: reqLength := 0;

..., The Structure of NameTool 181

43:
44:
45:
46:
47:

reqPointer := NIL;
bdsPointer := @theBDS;
addrBlock := theZIPAddr;
timeOutVal := intervalNumber;
retryCount := countNumber;

48: END;
49: index := l;
50: count := 0;
51: SpinCursor(32);
52: REPEAT
53: theATPPB.userData := kGZLCall + index;
54: CheckStat(PSendRequest(@theATPPB,
55: kSYNC), 'PSendRequest failed');
56: count := count +
57: GetZoneUserBytes(theBDS.userBytes) .ZoneCount;
58: currZonePtr := zonePtr;
59: REPEAT
60: zoneName :=
61: StrFromPtr(currZonePtr,currZonePtrA);
62: IF (zoneName = zoneParm) OR (zoneParm = '*')
63: THEN BEGIN
64: ProcessZone(zoneName);
65: END;
66: zoneCount := zoneCount + l;
67: currZonePtr := Ptr(LONGINT(currZonePtr) +
68: currZonePtrA+l);
69: index := index + l;
70: UNTIL index > count;
71: UNTIL GetZoneUserBytes(theBDS.userBytes) .IsLastPacket;
72: IF zonePtr <> NIL THEN
73: DisposPtr(zonePtr);
74: END; {BuildZoneListl}

Listing 10-15 begins by checking to see if a specific zone has been indi­
cated. Line 20 checks this, and if only one zone has been specified, it is
processed alone and the routine exits.

Line 26 attempts to get the address of the router. If none is found, only
the local zone is processed by passing ProcessZone the string '*'.

Lines 32-34 attempt to allocate a buffer for response data from the
router. It's large enough to contain an entire response packet. If the call to
NewPtr fails, the routine bails out by simply exiting.

Lines 35-38 set up the BDS for the response message using the buffer
allocated in lines 32-34.

182 • Chapter 10 NameTool: An Appletalk MPW Tool for Using NBP Lookups

Lines 39-48 fill in the ATP parameter block with the required values.
Note that the atpFlags are set to zero, requesting that XO (exactly once)
mode not be used. Also note that no request message data is sent; just the
user Data.

Lines 49 and 50 set up the loop.
Line 51 calls Spin Cursor to yield some time to other processes and spin

the MPW cursor, providing feedback to the user that work is being done.
Line 53 sets the proper userData to indicate to the router that a zone list

request is being made and that the index into the zone names should be
the value of the index variable. This starts out as 1, then increases each
time through the loop.

Line 54 makes the call to PSendRequest to send the ATP request to the
router.

Line 56 increments the zone count by the number of zones that came in
the current response packet, and line 57 sets the currZonePtr to point to
the beginning of the zone names buffer.

The loop that goes from lines 56-70 processes the zones in the response
packet.

Line 60 copies the zone name found at the current pointer position into
zoneName, and this is fed into the ProcessZone routine at line 64, as long
as it either matches the specific zone requested, or no specific zone was
specified.

Lines 66-68 do the loop maintenance. The currZonePtr is bumped to
point to the next zone name and the zone index is incremented to keep
track of how many zone names have been processed.

Line 70 allows the inner loop to exit when all the zone names in the
response packet have been processed.

Line 71 allows the outer loop to exit when the response packet has the
lsLastPacket flag set to TRUE.

Line 72 cleans up by deallocating the memory used to store the response
packet.

BuildZoneList2

BuildZoneList2 is t~e Phase 2 implementation of the BuildZoneList
function. To get the local zone name, it makes a call to the .XPP driver
with the subcode set to zipGetZoneList.

Listing 10-16 shows the BuildZoneList2 routine. It begins by checking
to see if a specific zone has been indicated. Line 14 checks this, and if only
one zone has been specified, it is processed alone and the routine exits.

.... The Structure of NameTool 183

Listing 10-16. The BuildZonelist2 routine

1: PROCEDURE BuildZoneList2;
2: CONST
3:
4:
5:
6: VAR

kZonesSize
xCall
zipGetZoneList

7: theXPBPB

578;
246;
6;

8: zonePtr, currZonePtr
9: index, count, dNode, dNet

10: xppDriverRefNum
11: zoneName
12: stat
13: BEGIN {BuildZoneList2}
14: IF zoneParm <> '*'
15: THEN BEGIN
16: ProcessZone(zoneParm);
17: zoneCount := 1;
18: EXIT(BuildZoneListl);
19: END;

xCallParam;
Ptr;
INTEGER;
INTEGER;
str31;
OSErr;

20: IF OpenDriver('.XPP', xppDriverRefNum} <> noErr
21: THEN EXIT(BuildZoneList2);
22: zonePtr := NewPtr(kZonesSize):
23: IF zonePtr = NIL
24: THEN EXIT(BuildZoneList2);
25: WITH theXPBPB DO BEGIN
26: zipinfoField[l] := 0;
27: zipinfoField[2] := O;
28: zipLastFlag : = 0;
29: ioRefNum := xppDriverRefNum;
30: csCode := xCall;
31:
32:
33:
34:
35: END;

xppSubCode
xppTimeOut
xppRetry
zipBuffPtr

3 6 : index : = 1;
37: count := O;
38: SpinCursor(32);
39: REPEAT

:= zipGetZoneList;
:= intervalNumber;
:= countNumber;
:= zonePtr;

40: stat.:= PBControl(@theXPBPB, kSYNC};
41: IF stat <> noErr THE.N Leave;
42: count :=count + theXPBPB.zipNumZones;

184 ..,. Chapter 10 NameTool: An Appletalk MPW Tool for Using NBP Lookups

43: currZonePtr := zonePtr;
44: REPEAT
45: zoneName :=
46: StrFromPtr(currZonePtr,currZonePtrA);
47: IF (zoneName = zoneParm) OR (zoneParm = '*')
48: THEN BEGIN
49: ProcessZone(zoneName);
50: END;
51: currZonePtr := Ptr(LONGINT(currZonePtr) +
52: currZonePtrA+l);
53: zoneCount := zoneCount + 1;
54: index :=index+ 1;
55: UNTIL index > count;
56: UNTIL (theXPBPB.zipLastFlag <> 0);
57: IF zonePtr <> NIL THEN
58: DisposPtr(zonePtr);
59: END; {BuildZoneList2}

The .XPP driver is opened on line 20. If any error is encountered, it
exits.

Lines 22-24 attempt to allocate a buffer for response data from the
router. It's large enough to contain an entire response packet. If the call to
NewPtr fails, the routine bails out by simply exiting.

Lines 25-35 fill in the XPP parameter block. Note that the xppSubCode
field is filled in with zipGetZoneList to indicate to the driver which action
should really be performed.

Lines 36 and 37 set up the loop. Line 38 calls SpinCursor to yield some
time to other processes and to spin the MPW indicator, providing feedback
to the user that work is being done.

Line 40 makes the call to the .XPP driver with any errors causing the
loop to be exited on line 42.

Line 42 increments the zone count by the number of zones that came in
the current response packet and line 43 sets the currZonePtr to point to the
beginning of the zone names buffer.

The loop that goes from lines 56-70 processes the zones in the response
packet.

Line 45 copies the zone name found at the current pointer position into
zoneName and this is fed into the ProcessZone routine at line 49 as long
as it either matches the specific zone requested or no specific zone was
specified.

..,. The Structure of Namelool 185

Lines 51-54 do the loop maintenance. The currZonePtr is bumped to
point to the next zone name and the zone index is incremented to keep
track of how many zone names have been processed.

Line 55 allows the inner loop to exit when all the zone names in the
response packet have been processed.

Line 56 allows the outer loop to exit when the zipLastFlag in the XPP
parameter block is TRUE.

Lines 57 and 58 clean up by deallocating the memory used to store the
response packet.

ProcessZone

ProcessZone does the NBP name lookup for the specified zone. It calls
PLookupName and then processes the buffer that is returned so it can
display the name and other information of each matching name.

Listing 10-17 shows the ProcessZone routine. It begins by trying to al­
locate a large buffer at line 13 that will contain all the raw data from the
PLookupName routine. If it can't be allocated, lines 13 and 14 write out
an error message and exit.

Listing l 0-17. The ProcessZone routine

1: PROCEDURE ProcessZone(zoneName
2: CONST
3: kBigBuffSize = 10000;
4: VAR
5:
6:
7:

8:
9:

10:

EntityBuff
bigBuff
i
addr
anEntity
theMPPPB

str255;
Ptr;
integer;
AddrBlock;
EntityName;
MPPParamBlock;

11: stat OSErr;
12: BEGIN {ProcessZone}
13: bigBuff := NewPtr(lOOOO);
14: IF bigBuff =NIL
15: THEN BEGIN

str255);

16:
17:
18:

Writeln('bigBuff NIL');
Exit(ProcessZone);

END;
19: NBPSetEntity(@EntityBuff,nameParm,typeParm,zoneName);
20: WITH theMPPPB DO BEGIN

186 ..., Chapter 10 NameTool: An Appletalk MPW Tool for Using NBP Lookups

21:
22:
23:
24:
25:
26:
27: END;

EntityPtr
retBuf fPtr
retBuffSize
Interval
count
maxToGet

:= @EntityBuff;
:= bigBuff;
:= kBigBuffSize;
:= intervalNumber;
:= countNumber;
:= 1000;

28: stat := PLookUpName(@theMPPPB,kSYNC);
29: IF stat = noErr
30: THEN BEGIN
31: FOR i := 1 TO theMPPPB.numGotten DO BEGIN
32: nameCount := nameCount + 1;
33: stat := NBPExtract(bigBuff,
34: theMPPPB.numGotten,i,anEntity,addr);
35: write('"',anEntity.objStr, '" ');
36: write('"',anEntity.typeStr, '" ');
37: write('"',zoneName,'" ');
38: WITH addr DO BEGIN
39: writeln(' net=',aNet:l,' node=',
40: aNode:l,' socket=',aSocket:l);
41: END;
42: PLFlush(output);
43: SpinCursor(32);
44: END
45: END
46: ELSE BEGIN
47: CheckStat(stat, 'PLoo~UpName');
48: END;
49: IF bigBuff = NIL
50: THEN BEGIN
51: DisposPtr(bigBuff);
52: END;
53: END; {Processzone}

Line 19 sets up the NBP entity that describes the NBP name that should
be looked up. The values either come from the MPW command line, or
they are defaults.

Lines 20-27 fill in the MPP parameter block for the PLookupName call
at line 28.

If the PLookupName call is error free, lines 30-45 process the results.
Otherwise, line 47 logs the error using the CheckStat routine.

Line 31 sets up a FOR loop that repeats for each name that has been
retrieved.

..,. The Structure of NameTool 187

Line 32 increments the counter for the number of names that have been
found during all processing.

Line 33 calls NBPExtract to retrieve the data for the specified name in
the buffer.

Lines 35-41 format the resulting data and write it to the MPW standard
output. Line 42 forces the output to be displayed immediately. Without
this line, MPW would buffer the output.

Lines 49-52 deallocate the buffer that was used to hold the results of the
PLookupName call .

..,. The Main Routine

With all of the routines (previously discussed in this chapter) available,
the main routine for NameTool is fairly short. It begins by parsing the
command line, then it does the ZIP and NBP processing, and finishes by
writing out some statistics.

Listing 10-18 shows the main routine. It begins with a call to
InitCursorCtl. This sets up the cursor spinning that MPW tools use to
indicate to the user that progress is being made.

Listing l 0-18. The main routine

1: BEGIN {main}
2: InitCursorCtl(NIL);
3: IF GetParm ('m' , zoneParm)
4: THEN BEGIN
5:
6:
7:
8:
9:

zoneParm := GetMyZonel;
END
ELSE

IF NOT GetParm('z',zoneParm)
THEN BEGIN

10:
11:

zoneParm
END;

12: IF NOT GetParm('n',nameParm)
13: THEN BEGIN
14: nameParm := '=';
15: END;
16: IF NOT GetParm('t',typeParm)
17: THEN BEGIN
18: typeParm := '=';
19: END;

:= '*' i

188 ..,.. Chapter 10 Namelool: An Appletalk MPW Tool for Using NBP Lookups

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47: END.

IF GetParm('i',tempStr)
THEN BEGIN

StringToNum(tempStr,intervalNumber);
END
ELSE BEGIN

intervalNumber := 3;
END;

IF GetParm('c',tempStr)
THEN BEGIN

StringToNum(tempStr,countNumber);
END
ELSE BEGIN

countNumber := 3;
END;

IF GetParm('h',tempStr)
THEN BEGIN

PrintHelp;
END
ELSE BEGIN

CheckStat(MPPOpen,'MPPOpen');
zoneCount := 0;

END;

nameCount := O;
BuildZoneList;
writeln(' ');;
writeln(zoneCount:2,' zones');
writeln(nameCount:2,' NBP names');

Next it checks for the existence of the local zone option at line 3. If it's
found, the zoneParm is set to be the local zone name. Otherwise it checks
for the z option, setting the zoneParm to its value or to the default '*'.

Line 12 checks for the existence of the name option setting nameParm
to its value or the default'='.

Line 16 checks for the existence of the type option setting typeParm to
its value or the default 3.

Line 20 checks for the existence of the interval option setting
intervalNumber to its value or the default'='.

Line 27 checks for the existence of the count option, setting countNumber
to its value or the default 3.

Line 34 checks for the existence of the help option. If it's found the help
text is written out. Otherwise normal processing will take place.

..,_ Summary 189

Line 39 opens the .MPP driver and lines 40 and 41 zero out the statisti­
cal counters.

Line 42 calls the real processing routine.
Lines 43-45 write out some statistics about what was found during the

processing routines .

..,_ Summary

This chapter described the NameTool MPW tool. It explored the use of
the Name Binding Protocol and the Zone Information Protocol in Phase 1
and Phase 2 AppleTalk networks. Using the AppleTalk Transaction Pro­
tocol to communicate with a local router was also covered in this chapter.

Chapter 11 discusses RemoteSyslnfo, providing an example of a
Chooser RDEV /INIT.

1 1 RemoteSyslnfo: An RDEV /INIT
Example Program

RemoteSyslnfo is an RDEV /INIT that allows yc;m to retrieve system
information about another Macintosh over an AppleTalk network. It is
made up of two parts: The RDEV (a Chooser interface) and an INIT that
installs an ATP socket listener in the system heap.

The RDEV part allows the user to browse through all the Macintoshes
on the network that have RemoteSyslnfo installed. It lets the user connect
to any of the remote Macintoshes and displays some system information
about that remote machine.

The INIT part installs a code resource that responds to the requests
made by the RDEV part. It operates completely asynchronously using a
state machine model.

..,._ Goals for RemoteSyslnfo
RemoteSyslnfo illustrates using ATP to exchange information on an
AppleTalk network. It also explores the use of Chooser interfaces, and an
INIT that installs some resident code into the system heap, which asyn­
chronously listens for requests coming into an ATP socket. RemoteSyslnfo
attempts to provide a realistic look at how this type of utility program is
built without getting bogged down with too much complexity. The task it
performs-getting system information-may not be too terribly exciting.
However, RemoteSyslnfo does provide a good teaching example, and
can serve as the base for implementing a more complex and challenging
utility.

191

192 ..,.. Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

...,. How to Use RemoteSyslnfo
To use RemoteSyslnfo, drop it into your System folder and reboot. If no
errors are encountered, it displays its icon during system startup. If any
error is encountered (such as AppleTalk being turned off), it displays an
icon with an X drawn through it.

Once RemoteSyslnfo has been installed on at least one Macintosh in
your network, you can use the Chooser interface. This is done by selecting
the Chooser from the Apple Menu, and selecting the RemoteSyslnfo
icon. The Chooser will then display all the Macintoshes that have
RemoteSyslnfo installed.

You select the Macintosh that you would like to inspect by clicking on
its name. Pressing the connect button will bring up a dialog of that
machine's system information.

Figure 11-1 shows what the Chooser looks like when the RemoteSyslnfo
icon is selected. It lists three Macintoshes running RemoteSyslnfo.

~ '23
.-.n.- ,::[

LW Laser'w'riter

::J2::
LinkSaver . . . Pub lie F o Ider

App 1eTa1 k Zones:

Chooser

Select a Target:

Kathleen's Mac I lcx
Router SE

'Connect D (Customize)

User Name:

AppleTalk
@Active
0 Inactive

3.3.1

Figure 11-l . RemoteSyslnfo selected in the Chooser

~ The Structure of RemoteSyslnfo 193

E:w.mple BDEV

Computer: Mnc 11 ci
System: 6.05

CPU:68030
FPU:Yes

Color: Yes
Keybonrd:EHtended
Hpplelnlk: Uersion 53

'l'lritten b\I Michael Peirce for
Programming with App le Talk

Figure 11-2. RemoteSyslnfo displaying the remote system information

Figure 11-2 shows the modal dialog that RemoteSyslnfo displays once
a particular remote Macintosh is selected. It is displayed after the remote
Macintosh is sent an ATP request and it sends back its response .

...,. The Structure of RemoteSyslnfo
RemoteSyslnfo is made up of three code resources that are executed at
different times. They are: INIT, ExRC, and RDEV. There is an INIT code
resource that is run at system startup time. It loads a resident code resource
into the system heap. This resident code resource handles the incoming
requests from the network. The RDEV code resource is executed when
the Chooser brings it in. Figure 11-3 shows the three code resources in the
RemoteSyslnfo file. It illustrates the three code resources that make up
this example and how the ExRC code exchanges data with the RDEV
code over AppleTalk through their respective ATP sockets.

194 ~ Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

RemoteSyslnfo Code Resources
. .~ .. ~ t

INIT l
RDEV

Ex RC

Figure 11-3. The RemoteSyslnfo code resources

~ The Source Code Structure of RemoteSyslnfo

A number of source files are used to generate the three code resources
that make up RemoteSyslnfo. Figure 11-4 shows how these source files
are combined to produce the three code resources.

The first code resource, the INIT, is made up of three source files.

• Examplelnit.p-the main code of the INIT

• Showlnit.a-the utility unit that allows INITs to display their icon
at startup time

• ExampleCommonUnit.p-the unit that contains all the common
definitions for RemoteSyslnfo

The second code resource, the RDEV, is also made up of three source
files.

~ The Structure of RemoteSyslnfo 195

Examplelnit.p
INIT Show I nit.a

Examp leCommonUni t.p

ExampleRDEV.p
RDEV ExampleRDE V.a

Examp l eCommonUn i t.p

Examp leResidentUni t.p
Ex RC Examp l eRes i dent. a

Ex amp l eCommonUn it. p

Figure 11-4. Source code files that make up each code resource

• ExampleRDEV.p-the main code of the RDEV

• ExampleRDEV.a-the assembly language code that defines the
RDEVheader

• ExampleCommonUnit.p- the unit that contains all the common
definitions for RemoteSyslnfo

The third code resource, the ExRC (Example Resident Code), is also
made up of three source files.

• ExampleResidentUnit.p-the main code of the ExRC

• ExampleResident.a-the assembly language code that provides the
glue for the completion routines

• ExampleCommonUnit.p-the unit that contains all the common
definitions for RemoteSyslnfo

~ The Common Unit

ExampleCommonUnit.p provides a place to put all the definitions that
are shared by the various parts of RemoteSyslnfo. All other code refer­
ences this unit, ensuring that they will each be using the same definitions.
It doesn't contain any code, only constants and type definitions.

196 ..,. Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

The Common Unit Constants

The CONST ANT section of the common unit is a place to put any con­
stants that are shared by the entire system. In the case of RemoteSyslnfo,
only three constants are defined. Listing 11-1 illustrates the common unit
constants.

On line 2, kCurrProtoRev defines which version of the protocol is being
used. It's 1 now, but if any significant changes are made, this should be
bumped up.

The constants kSYNC and kASYNC are defined in lines 3 and 4. They
are used throughout the other files; putting them here allows them to be
defined only once.

Listing 11-1. The common unit constants

1: CONST
2: kCurrProtoRev = 1;
3: kSYNC = FALSE;
4: kASYNC = TRUE;

The Common Unit Types

The TYPE section of the common unit is a place to put any types that are
shared by the entire system. In the case of RemoteSyslnfo, these types fall
into three broad categories, based on how the types are used. Common
unit types are:

• used by the ATP messages
• used to define parameter blocks with additional space added for

storing a pointer to the common variables record
• used to define the common variables record

Listing 11-2 shows the types used to define the messages sent over
ATP. It begins by defining the packet types on lines 1 and 2. The enu­
merated type lists each type of packet that can be sent across the network.
This would be added to as new packet types are defined.

..,.. The Structure of RemoteSyslnfo 197

Listing 11-2. Message related types

1: PacketType = (kACK,kNAK,kSysEnvironsReq,
2: kSysEnvironsResp);
3:
4: SysEnvironsRespRec =RECORD
5: stat us : OSErr;
6: SysEnvData : SysEnvRec;
7: END; {ProbeReqRec}
8:
9: PacketRec = RECORD

10: version : longint;
11: case kind : PacketType of
12: kACK, kNAK (status integer);
13: kSysEnvironsReq : (fillerl str32);
14: kSysEnvironsResp : (
15: sysEnvRespRec : SysEnvironsRespRec);
16: END; {PacketRec}

Lines 4-7 define a type that is used to send the SysEnvirons data back
in response to a request. It contains a field that will contain the status
returned from the SysEnvirons call and a field that will contain that
SysEnvirons data block itself.

Finally, lines 9-16 define the packet record itself. The packet record is a
variant record, and takes on different forms, based on which kind of
packet is being sent. It contains a version field that is always filled in with
the protocol version that the code is using, which is defined in a constant
in this unit. Line 11 shows a tag field for this variant record. It determines
which variation of the record is used.

Line 12 defines the variant part of the packet record for the kACK and
kNAK packets. These are simple packets that only contain a status value.

Line 13 defines the SysEnvirons request packet. It contains no real data,
so a filler field is used since at least one field is required in this construct.

Lines 14 and 15 define the SysEnvirons response packet, which uses the
SysEnvironsRespRec defined in line 4.

The next types defined in the common unit are those used to store a
pointer ahead of a parameter block. This is used to gain access to the block
at interrupt time. See Chapter 3 for a discussion of this technique.

Listing 11-3 shows an extended parameter block for the ATP parameter
block. In this example, only one extended parameter block is used.

198 ..,.. Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

Listing 11-3. The ATP extended parameter block

1: myATPParamBlock = RECORD
2: dataPtr : LONGINT;
3: realATPPB : ATPParamBlock;
4: END; {myATPParamBlock}

The last type defined in the common unit contains all the variables that
need to be preserved across calls to the completion routine. Listing 11-4
shows this.

Listing 11-4. The completion routine data block

1: dataBlockRec RECORD
2: stat . . OSErr;
3: sig str31;
4: outATPPB,
5: inATPPB myATPParamBlock;
6: mySocket byte;
7: inPacket PacketRec;
8: responsePacket PacketRec;
9: outBDS BDSType;

10: entityBuff str255;
11: END; {dataBlockRec}
12:
13: DataBlockPtr = ADataBlockRec;

Listing 11-4 contains the various parameter blocks and other buffers
that are needed by the resident code. Note the sig field in the dataBlockRec.
This is filled in with a short string unique to your program. Then as you
are debugging your code, you can have your debugger search for this
string to locate the block in the system heap. It can also be useful as a
sanity check when viewing the block to make sure it really is your block.

.... The Example INIT

ExamplelNIT.p is the place where all the startup code for RemoteSyslnfo
goes. It makes use of two other units: Showlnit and ExampleCommonUnit.
Showlnit is a library function, available from Apple, that provides a way
for an INIT to display a startup icon. ExampleCommonUnit.p provides a
number of common elements for the RemoteSyslnfo system and was
explained earlier.

• The Structure of RemoteSyslnfo 199

ExampleINIT is organized as three nested routines. This is done to
divide them into three easily understood pieces of routines. INITEntry, an
outer routine, handles drawing the icons and calling the next level,
ExampleResidentCodelnstall. ExampleResidentCodelnstall opens the
AppleTalk .MPP driver and installs the resident code. Then it calls the
next level, GoOnline, which registers an NBP name and calls PGetRequest
with the resident code providing the completion routine.

INITEntry

INITEntry is a fairly simple routine. Its purpose is to display the startup
icons to tell the user if the INIT has been installed properly or not. The
icon with the X through it is displayed if the user tells it not to load by
holding down either the Shift key or the mouse button. The X icon will
also be displayed if any error is encountered while installing the resident
code. INITEntry is shown in Listing 11-5.

Listing 11-5. INITEntry

1: PROCEDURE INITEntry;
2: CONST
3: kNormalICON -4080;
4: kErroricon -4079;
5: shiftKey 56;
6: VAR

theKeys 7:
8: aLong,lastTick

KeyMap;
longint;
integer; 9: icon ID

10: BEGIN
11: GetKeys(theKeys);
12: IF Button or theKeys[shiftKey]
13: THEN BEGIN
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24: END;

END
ELSE

showINIT(kErroricon,-1);

IF ExampleResidentCodeinstall = noErr
THEN BEGIN

snowINIT(kNormalICON,-1);
END
ELSE BEGIN

showINIT(kErroricon,-1);
END;

200 ..,. Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

INITEntry begins by checking for the Shift key or mouse button being
down on lines 11-12. These are generally accepted ways to tell an INIT not
to load.

If the Shift key or the mouse button is down, the error icon is shown on
line 14 and no further processing is done. Otherwise line 17 calls the
routine that attempts to install the resident code. If this succeeds the
standard icon is displayed on line 19. If the resident code is not successfully
installed, the error icon is displayed on line 22.

ExampleResidentCodelnstall

ExampleResidentCodelnstall does much of the work of the INIT. It opens
the AppleTalk .MPP driver, turns on SelfSend, loads in the resident code
resource, allocates the global data block in the system heap, then calls the
GoOnline routine. ExampleResidentCodelnstall is shown in Listing
11-6.

Listing 11-6. ExampleResidentCodelnstall

1: FUNCTION ExampleResidentCodeinstall OSErr;
2: VAR
3:
4:
5:
6:
7:

8:
9:

10:

DataBlockP
stat
serverName
userName
theMPPPB
theATPPB
refNum
codeH

DataBlockPtr;
osErr;
str255;
stringHandle;
MPPParamBlock;
ATPParamBlock;
integer;
handle;

11: (GoOnline is nested here}
12: BEGIN (ExampleResidentCodeinstall}
13: stat := OpenDriver(' .MPP',refNum);
14: IF stat = noErr
15: THEN BEGIN (go ahead }
16: theMPPPB.newSelfFlag := l;
17: stat := PSetSelfSend(@theMPPPB,kSYNC);
18: SetZone(SystemZone);
19: codeH := GetlResource('ExRC',1);
20: IF codeH =NIL
21: THEN BEGIN
22: sysbeep(S);
23:
24:
25: END

stat := 5;
DebugStr('No ExRC resource!');

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42: END;

.,.. The Structure of RemoteSyslnfo 201

ELSE BEGIN
DetachResource(codeH);
HNoPurge(codeH);
HLock(codeH);
DataBlockP := DataBlockPtr(

NewPtr(SIZEOF(DataBlockRec)));
SetZone(ApplicZone);
DataBlockPA.sig :=

END;
END {noErr}
ELSE BEGIN

'RemoteSysinfo datablock
GoOnline;
ExampleResidentCodeinstall :=

ExampleResidentCodeinstall := stat;
END;

{ExampleResidentCodeinstall}

I• ,

noErr;

GoOnline begins by opening the .MPP driver on line 13. If this fails, it
does nothing further and just returns this status to its caller.

If the .MPP driver is successfully opened, lines 16 and 17 attempt to set
SelfSend to be on. Any error is ignored.

Line 18 sets the current heap zone to be the system heap zone. This
allows line 19 to load the resident code resource into the system heap. It
must be loaded there because it will be left there after the INIT terminates.

Line 20 checks to make sure the resource loaded. If it did not, it makes
some noise and calls the debugger to tell you about the problem in lines
22-24. This type of code is very helpful when developing your code, but
should be removed before you release it!

Line 27 detaches the code resource from the resource file. If you fail to
do this, the resource can be purged when the resource file is closed.

Line 28 and 29 ensure that the handle (no longer a resource) will not be
moved or removed.

Line 30 allocates the global data storage the resident code needs. Because
the current heap is still the system heap, it will reside there.

Line 32 sets the current hec;i.p to be the application heap so that any
further resources will load there.

Line 33 puts a signature into the data block. This can help you to find
the data block in memory later during debugging.

Line 35 calls the GoOnline routine.
If the code has reached line 36 without error, it sets the return code for

the routine to noErr.

202 ..,. Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

GoOnline

GoOnline does three basic tasks: it opens an ATP socket, assigns a unique
name to it, and issues an asynchronous PGetRequest using the socket. The
GoOnline routine is shown in Listing 11-7.

Listing 11-7. The GoOnline routine

1: PROCEDURE GoOnline;
2: VAR
3:
4:

nameCount
theNBPType

integer;
str255;

5: countStr str255;
6: BEGIN {GoOnline}
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

WITH DataBlockPA DO BEGIN
WITH theATPPB DO BEGIN

END;

atpsocket := 0; {ask for any available}
addrBlock.aNet := 0;
addrBlock.aNode
addrBlock.aSocket

:= 0;
:= 0;

IF POpenATPSkt(@theATPPB,kSYNC) <> noErr
THEN DebugStr('POpenATPSkt');

mySocket := theATPPB.atpSocket;
userName := GetString(-16096);
theNBPType := GetString(-4096)AA;
serverName
nameCount
REPEAT

:= userNameAA;
:= l;

NBPSetNTE(@entityBuff,serverName,
theNBPType, '*',mySocket);

WITH theMPPPB DO BEGIN

END;

EntityPtr
Interval
count
verifyFlag

:= @entityBuff;
:= 3;
:= 3;
:= $FF;

stat := PRegisterName(@theMPPPB,kSYNC);
IF stat = nbpDuplicate

THEN BEGIN

END;

nameCount := nameCount + l;
HLock(Handle(userName));
NumToString(nameCount,countStr);
serverName := concat(userNameAA'

' [', countStr, '] ') ;
HUnlock(Handle(userName));

40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55: END;

.,.. The Structure of RemoteSyslnfo 203

UNTIL stat <> nbpDuplicate;
IF stat <> noErr

THEN BEGIN
DebugStr('PRegisterName');

END;
WITH inATPPB.realATPPB DO BEGIN

atpSocket := mySocket;
reqLength := SIZEOF(PacketRec);
reqPointer := @inPacket;
numOfBuffs := 1;
ioCompletion := codeHA;

END;
inATPPB.dataPtr := Longint(DataBlockP);
IF PGetRequest(@inATPPB.realATPPB,kASYNC) <> noErr

THEN DebugStr('PGetRequest');

56: END; {GoOnline}
42: END; {ExampleResidentCodeinstall}

GoOnline begins by opening an ATP socket at line 14. Lines 9-12 specify
that AppleTalk should give it any open socket and that requests should
be accepted from any network address.

Line 16 stores the returned socket number into the data block for use
later.

Lines 17 and 18 get the user's Chooser name, stored in the System file as
string ID= -16096, and the NBP type string, stored in the program file as
string ID = -4096.

Line 19 makes a copy of the server name so that it can be used later to
generate a unique name if need be.

The loop beginning at line 21 is used to repeatedly generate server
names and test for their uniqueness. If a name isn't unique, the string
"[n]" is appended to the user name, with n being a number, until a unique
name is found. This generates a progression of names such as "Michael",
"Michael [l]", "Michael [2]", and so on.

Line 22 creates the names table entry for the desired name.
Lines 24-29 fill in the parameter block with appropriate values for the

NBPRegisterName call found at line 30.
If the NBPRegisterName call returns nbpDuplicate (indicating that the

desired name is already in use on the network), lines 33-38 generate the
next possible name in the progression.

Line 40 terminates the loop when no duplicate names are found.
Of course other errors besides duplicate names can be returned from

NBPRegisterName. If this happens, lines 41-44 report this by calling the
debugger.

204 ~ Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

Lines 45-51 fill in the ATP parameter block with values appropriate for
the PGetRequest call. Line 50 sets the completion routine to be the code
starting at the beginning of the resident code resource, assuming that the
first instructions found in the code resource implement the completion
routine.

Line 52 stores a pointer to the global data block into the data pointer
space found right before the ATP parameter block. This allows the
completion routine to easily find the data block at interrupt time.

Line 53 calls PGetRequest asynchronously. Note that the code resource
must have been loaded in and locked down prior to this call.

~ The Resident Code

The code that makes up the resident code resource lives in two files

• ExampleResident.a-contains the assembly language glue code
• ExampleResidentUnit.p-contains the Pascal code

The resident code also references the ExampleCommonUnit.
The resident code is called only at interrupt time in response to the

completion of the PGetRequest call. It processes the incoming request
and sends back a response. It must then issue another PGetRequest with
itself as the completion routine so that it will be called again when another
request comes in.

The Resident Assembly Routine

The resident assembly code has two functions. Its first function is to save
the processor registers upon entering the routine and to restore them to
their previous state before leaving. Its second function is to fetch the
pointer to the global data block stored ahead of the parameter block and
pass it in as a parameter to the Pascal completion routine. Listing 11-8
illustrates the resident assembly routine.

..,.. The Structure of RemoteSyslnfo 205

Listing 11-8. The resident assembly routine

1: ;---
2:
3: Example Resident Code Macro Glue
4:
5: The idea here is that the completion routines need
6: to have some context (the data block where we store
7: all our variables) when they run. So what we do
8: here in front of the io block, and push it onto the
9: stack. This allows the Pascal code to take it in

10: as a parameter and then do a nice big WITH. The
11: effect is that all data is stored off A4 (setup by
12: the with) instead of AS (bad carma is used from
13: within a completion routine.
14:
15: Oh yes, we also do the usual register store/reload
16: stuff here so we don't step on interrupted code.
1 7:
18:
19:
20:

BLANKS
INCLUDE
IMPORT

ON
'::Aincludes:SysEqu.a'
INCOMING

21: ;---
22: XINCOMING PROC EXPORT ; Glue for INCOMING procedure
23:

MOVEM.L
MOVE.L
MOVE.L
JSR
MOVEM.L
RTS

D3-D7/A2-A6,-(A7)
-4 (AO), DO

D0,-(A7)
INCOMING
(A7)+,A2-A6/D3-D7

save them registers
get our block pointer
pass it as a parameter
call Pascal routine
restore the registers

24:
25:
26:
27:
28:
29:
30:
31:

·---,
END

The resident assembly routine begins by saving the processor registers
at line 24. Note that registers DO, 01, 02, AO, and Al need not be preserved
because the interrupt dispatcher does this for you.

Lines 25 and 26 retrieve the global data block pointer and push it onto
the stack for the Pascal routine. Note that completion routines are called
with AO pointing to the ATP parameter block. This allows you to access
the global data block pointer with a negative 4 byte offset from AO.

Line 27 calls the Pascal completion routine.
Line 28 restores the processor registers to the state they were in before

executing the completion routine.
Line 29 returns from this subroutine.

206 ~ Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

Incoming

Incoming is the code that processes the incoming ATP request. It handles
the request by looking at the packet kind and handling each kind sepa­
rately. After processing each request, it then sends back a response and
makes a call to PGetRequest to be ready for the next request. Listing 11-9
illustrates the Incoming routine.

Listing 11-9. Incoming

1: PROCEDURE Incoming(dataBlock
2: BEGIN {Incoming}

DataBlockPtr);

3: WITH dataBlockA DO BEGIN
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31: END;

outATPPB := inATPPB;
WITH outATPPB.realATPPB DO BEGIN

atpSocket
atpFlags
{addrBlock
bdsPointer
bdsSize
numOfBuf f s
{trans ID
ioCompletion

END;

·=
:=
·=
.-
:=
:=
.-
:=

mySocket;
atpEOMvalue;
__ from the incoming Packet}

@outBDS;
1;
1;
_from the incoming Packet}
NIL;

responsePacket.version := kCurrProtoRev;
CASE inPacket.kind OF

kSysEnvironsReq: BEGIN
WITH responsePacket DO BEGIN

kind := kSysEnvironsResp;
sysEnvRespRec.status :=

SysEnvirons(l,
sysEnvRespRec.SysEnvData);

END;
END;
otherwise BEGIN

responsePacket.kind
responsePacket.status

END;
END; {CASE}
SendResponse(dataBlock);

·= kNAK;
:= noErr;

32: END; {Incoming}

..,.. The Structure of RemoteSyslnfo 207

Incoming begins by using the data block pointer passed in a WITH
statement on line 3. This allows any of the fields in the data block to be
accessed without explicitly referencing them off the pointer.

At line 4 the parameter block used by the PGetRequest is copied into
the parameter block used by the PSendResponse. (The PSendResponse
call shown in Listing 11-10 copies a number of important fields such as
the address of the requester and the transaction ID.)

Lines 5-14 fill in the ATP parameter block used by the PSendResponse
with appropriate values.

Line 15 copies the protocol revision level that this code was built with
into the version field of the response message. This can be used on the
other end to deal with new revisions to the packet formats.

At line 16 is the case statement that handles each of the possible incoming
request packet types. In this example, there aren't many variations, but
this is where you would expand to handle new packet types.

Lines 17-24 handle the requests for system information. Line 19 sets the
response packet's kind to be a system information response and lines 20-
22 fill in the SysEnvData field with the results of a call to SysEnvirons.

Lines 25-29 handle any other incoming requests. Because the code isn't
built to handle any other type of request, it responds to other types of
requests with a kNAK. This tells the requester that its request wasn't
understood. This is handy for later when an enhanced version of the code
hits the network. It's very hard to get rid of old versions, and this allows
those old versions to behave in a reasonable way when they get requests
they don't understand.

Finally, line 30 calls the SendResponse routine to ship the response back
to the responder and reissue the PGetRequest call. It also passes the data
block pointer to the SendResponse routine so that it can access the data
stored there.

Send Response

SendResponse is the code that sends the response message back to the
requester. It figures the correct message size based on the type of message
being sent. It also reissues the PGetRequest so that additional requests
can be received later. Listing 11-10 shows the SendResponse routine.

208 ..,. Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

Listing 11-10. Send Response

1: PROCEDURE SendResponse(var dataBlock
2: VAR

DataBlockPtr);

3: buffSize : INTEGER;
4: BEGIN {SendResponse}
5: WITH dataBlockA DO BEGIN
6:
7:
8:
9:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: END;

CASE responsePacket.kind OF
kACK,

END;

kNAK : buffSize := 8 + 2;
kSysEnvironsReq,- not generated by server}
kSysEnvironsResp: buffSize := 8 +

SIZEOF(SysEnvironsRespRec);
otherwise buffSize :=

SIZEOF(PacketRec);

WITH outATPPB.realATPPB DO BEGIN

END;

bdsSize := BuildBDS(@responsePacket,
@outBDS,buffSize);

numOfBuffs := bdsSize;

stat := PSendResponse(@outATPPB.realATPPB,kASYNC);
IF stat <> noErr THEN BEGIN

debugStr('pSENDResp');
END;
WITH inATPPB.realATPPB DO BEGIN

reqLength := SIZEOF(PacketRec);
atpSocket := mySocket;
reqPointer := @inPacket;
ioCompletion := @XIncoming;

END;
stat := PGetRequest(@inATPPB.realATPPB,kASYNC);
IF stat <> noErr THEN BEGIN

debugStr('pGetReq');
END;

34: END; {SendResponse}

SendResponse begins by using the data block pointer in a WITH
statement on line 5. This allows any of the fields in the data block to be
accessed without explicitly referencing the pointer.

..,.. The Structure of RemoteSyslnfo 209

The case statement at lines 6-13 figures the correct message size to
send. Each message kind has a separate case that does the right calculation
for that message kind. With the few message types used by this example,
there isn't much variation here; if you want to handle many types of
messages, more cases get added here. Note that the calculation adds 8
bytes (the version, kind, and some slop) to the size of the record used by
each kind of response.

Line 19 sends the response back to the requester.
Lines 23-28 prepare the ATP parameter block for issuing another

PGetRequest at line 29. Note that line 27 sets the completion routine to
be the Xincoming assembly language routine.

Finally the PGetRequest is called asynchronously at line 29.

.... The RDEV Code

The code that makes up the RDEV code resource lives in two files:
ExampleRDEV.a contains the assembly language that provides the PACK
header that begins an RDEV, and ExampleRDEV.p contains the Pascal
code. It also references the ExampleCommonUnit.p.

The RDEV code resource takes the form of a PACK resource. This
means that the header defined in the assembly language code must be
linked in as the first part of the code resource.

This code is divided into a number of subroutines. The assembly code
found in Listing 11-11 consists of just the PACK header and a jump to the
main Pascal routine. The main Pascal routine handles the messages sent
from the Chooser. It calls the main dialog handling routine if appropriate.
The main dialog handling routine sends the request to the remote
Macintosh and formats the response into the modal dialog. It also makes
use of a number of utility routines.

The RDEV Assembly Routine

The RDEV assembly code has two functions. Its first function is to define
the PACK structures that the Chooser looks at. The second function is to
jump to the actual RDEV handling code written in Pascal. Listing 11-11
illustrates the RDEV assembly routine.

. 21 O ~ Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

Listing 11-11 . The RDEV assembly routine

1: BLANKS ON
2: INCLUDE '::Aincludes:SysEqu.a'
3: ExampleRDEV PROC EXPORT
4: IMPORT pExampleRDEV
5: BRA.S @1 skip over header
6: DC.W 80 Device ID

7: DC.L ('PACK')
8: DC.W $FOOO -4096
9: DC.W 1 version 1

10: DC.L %10001110000000000000000000000000
11:
12: @1 JMP pExampleRDEV
13: END

The RDEV assembly routine begins with a branch instruction at line 5.
This is needed because the Chooser not only calls the first instruction of
the code resource, but also requires that data be stored immediately after
that first instruction. So you simply jump over the data to code placed
after the data.

Line 6 declares the device ID word. This code simply fills it with a value
of 80.

Line 7 declares the constant four characters, 'P', 'A', 'C', and 'K',
required in a 'PACK' code resource.

Line 8 declares the constant -4096 ($FOOO in hex) required of an RDEV.
Line 9 declares the version of this RDEV, version 1.
Line 10 declares the flags used by the Chooser to determine the behavior

of an RDEV. This specifies that, yes, this is an RDEV, that both right and
left buttons are used, and that this RDEV uses AppleTalk. See Figure 9-2
for all the values of these flags.

Line 12 jumps to the Pascal code that handles the RDEV.

The RDEV Main Pascal Routine

The RDEV Pascal code responds to the messages sent in from the Chooser.
This example only responds to the button message. In fact, the right­
button message is there simply for show. When the left-button message is
pressed the main dialog handling code is called. Listing 11-12 shows the
pExampleRDEV routine.

.,.. The Structure of RemoteSyslnfo 211

Listing 11-12. pExampleRDEV

1: FUNCTION pExampleRDEV
2: message INTEGER;
3: caller INTEGER;
4: objName StringPtr;
5: zoneName StringPtr;
6: pl LONGINT;
7: p2 ButtonP2) : OSErr;
8: MainRDEVDialog is nested here
9: BEGIN {pExampleRDEV}

10: IF message = buttonMsg THEN BEGIN
11: IF p2.whichButton = kLeftButtonPressed
12: THEN BEGIN {They pressed the CONNECT button}
13: MainRDEVDialog;
14:
15:
16:
17:
18:
19:
20:
21: END;

END
ELSE BEGIN {They pressed the the right button,

the CUSTOMIZE button}

END;

SysBeep(5);
IF p2.modifiers.optionKeyisDown

THEN SysBeep(5);

22: pExampleRDEV := noErr;
23: END;

On line 10, pExampleRDEV begins checking for a button message. If
one is received, either the main dialog handling routine is called on line
13 or line 17 calls SysBeep. Note that this example uses the ButtonP2 type
discussed in Chapter 9.

Line 22 always forces the return value of noErr indicating that no seri­
ous problems were encountered.

The RDEV Main Dialog Routine

The main dialog routine gets the target address from the list manager list.
It then sends a request to the resident code at that address. When the
response comes back, it puts up a dialog that displays the information
found in the response message.

Listing 11-13 shows the MainRDEVDialog routine. Note that this rou­
tine is nested in the pExampleRDEV routine so it is in the scope of the
pExampleRDEV routine, and the MainRDEVDialog routine can directly
access the parameters of the pExampleRDEV routine.

212 ~ Chapter 11 RemoteSyslnfo: An RDEV/INIT Example Program

Listing 11-13. MainRDEVDialog

1: PROCEDURE MainRDEVDialog;
2: VAR
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

info SysEnvRec;
theDialog DialogPtr;
itemHit INTEGER;
tempStr,temp2Str: str255;
size
the Cell
ATAddr
theATPPB
BDSCount
outBDS
reqPacket,
replyPacket
itemHandle

INTEGER;
Cell;
AddrBlock;
ATPParamBlock;
INTEGER;
BDSType;

PacketRec;
Handle;

itemRect Rect;
itemType INTEGER;

BEGIN {MainRDEVDialog}
theCell := Point(LONGINT(O));
IF LGetSelect(TRUE,theCell,ListHandle(pl))

THEN {Do Nothing};
theCell.h := 1;
size := SIZEOF(AddrBlock);
LGetCell(@ATAddr,size,theCell,ListHandle(pl));
theDialog := GetNewDialog(kMainRDEVDialogID,

NIL, WindowPtr(- 1));
IF theDialog = NIL

THEN Exit(MainRDEVDialog);
BDSCount := BuildBDS(@replyPacket,@outBDS,

SIZEOF(PacketRec));
WITH reqPacket DO BEGIN

version := kCurrProtoRev;
kind := kSysEnvironsReq;

END;
WITH theATPPB DO BEGIN

bdsPointer := @outBDS;
addrBlock := ATAddr;
timeout Val := kATPTimeOutVal;
retryCount := kATPRetryCount;
numOfBuf f s := BDSCount;
atpFlags := atpXOvalue;
reqLength := SIZEOF(PacketRec);
reqPointer := @reqPacket;
ioCompletion := NIL;

END;

• The Structure of RemoteSyslnfo 213

46: IF PSendRequest(@theATPPB,kASYNC) <> noErr
47: THEN DebugStr('PSendRequest');
48: REPEAT
49: SystemTask;
50: UNTIL (theATPPB.ioResult <> 1);
51: IF (theATPPB.ioResult = noErr) AND
52: (replyPacket.kind = kSysEnvironsResp) THEN BEGIN
53: info := replyPacket.sysEnvRespRec.SysEnvData;
54: SetDialogStringitem(theDialog,kComputeritem,
55: LookupString(kMachineStrID,info.machineType));
56: NumToString(LONGINT(info.systemVersion DIV 256),
57: tempStr);
58: NumToString(LONGINT(info.systemVersion MOD 256),
59: temp2Str);
60: IF LENGTH(temp2Str) < 2
61: THEN BEGIN
62: temp2Str := CONCAT('0',temp2Str);
63: END;
64: tempStr := CONCAT(tempStr, '.',temp2Str);
65: SetDialogStringitem(theDialog,kSystemitem

tempStr);
66: SetDialogStringitem(theDialog,kCPUitem,
67: LookupString(kCPUStrID,info.processor));
68: IF info.hasFPU
69: THEN tempStr := 'Yes'
70: ELSE tempStr := 'No';
71: SetDialogStringitem(theDialog,kFPUitem,tempStr);
72: IF info.hasColorQD
73: THEN tempStr := 'Yes'
74: ELSE tempStr := 'No';
75: SetDialogStringitem(theDialog,kColoritem,tempStr);
76: SetDialogStringitem(theDialog,kKeyBoarditem,
77: LookupString(kKeyBoardStrID,info.keyBoardType));
78: NumToString(LONGINT(info.atDrvrVersNum), tempStr);
79: tempStr := CONCAT('Version ',tempStr);
80: SetDialogStringitem(theDialog,
81: kAppleTalkitem,tempStr);
82: GetDitem(theDialog, kOKButtonOutline,
83: itemType, itemHandle, itemRect);
84: itemHandle := @DefaultButtonFilter;
85: SetDitem(theDialog, kOKButtonOutline,
86:
87:
88: END;

itemType, itemHandle, itemRect);
ModalDialog(NIL, itemHit);

89: CloseDialog(theDialog);
90: END; {MainRDEVDialog}

214 ~ Chapter 11 RemoteSyslnfo: An RDEV /INIT Example Program

MainRDEVDialog begins by extracting the address of the selected item
in the list. It does this on lines 19-24 by first getting the selected cell on
line 20, then accessing the address data stored in column 2 of the selected
row-the first column is column zero. Line 24 copies the data stored there
into the AT Addr variable.

Line 25 loads in the dialog that will be used later to display the response
data.

Line 29 builds a BOS for the response message.
Lines 31-34 build the request message to be a SysEnvirons request.
Lines 35-45 fill in the ATP parameter block with the appropriate values

to make a request of the remote Macintosh.
Line 46 makes the PSendRequest call asynchronously. This allows lines

48-50 to use the polling technique discussed in Chapter 3, yielding time
until the response comes back.

If a kSysEnvironsResp is received back, lines 54-86 process the re­
sponse message into the appropriate dialog items. Processing the response
uses two utility routines-one that sets a specified dialog item to be a
specific string, and another that takes a number and returns a string. You
specify a string by using its number as an index into an 'STR#' resource.
Having a number as an index is very helpful for turning numbers like 2 or
3 into strings like "Mac Plus" or "Mac SE".

Line 87 handles the dialog until the OK button is pressed. No further
dialog processing is done so the dialog is closed at line 89.

~ Summary
This chapter explored the RemoteSyslnfo RDEV /INIT. It described the
code that went into each of the three code resources that make up
RemoteSyslnfo. First, the INIT and how it was loaded in the resident
code was discussed. Then the resident code and how it serviced an in­
coming request at interrupt time was covered. Finally, the RDEV code
and how it handled interfacing with the Chooser to provide a user inter­
face for the user was described.

Chapter 12, the final chapter of this book, outlines an ADSP example
program called Checkers. It shows you how to play a game of checkers on
an AppleTalk network.

12 Checkers: An ADSP
Example Program

Checkers is a MacApp-based application that allows two people to play a
game of checkers over an AppleTalk network. It includes code that man­
ages the ADSP connection between two instances of the application run­
ning, exchanging game information during play.

One unit, UAsyncOp, provides an abstract class, TAsyncOp, that
implements asynchronous operations. This unit can be used to implement
a wide variety of asynchronous tasks using polling for completion of
operations. It is used here with ADSP, but it can also be used with other
protocols such as ATP or NBP. It can also be used with non-AppleTalk
functions such as serial communications, file operations, or Time Manager
tasks.

The primary unit implementing the ADSP connection is UNetStuff. It
defines a subclass of TAsyncOp called T ADSP that implements some
general ADSP functionality. Another abstract class is also defined in
UNetStuff: TPlayer. It is a subclass of TADSP, and implements commu­
nication between the two players. TPlayer is a superclass for the two
concrete classes: TUs and TThem; these implement the differences found
in the two players.

215

216 ~ Chapter 12 Checkers: An ADSP Example Program

..., Goals for Checkers
Checkers illustrates the basic function of communicating data across an
ADSP connection built within a MacApp-based framework. It uses some
basic techniques from object-oriented programming to simplify and
generalize the ADSP connection handling. Some of the building blocks
provided can be used in other circumstances for very different purposes
with little change .

..., How to Use Checkers
This version of checkers is a fairly straightforward game to play. It uses a
simple game model, so that the focus is on the network coding techniques
rather than on a more sophisticated game. Once the game is launched the
user can either actively select a partner over the network or sit passively
waiting for a connection request to come in from someone else.

Once the connection is established, play begins. Each player has control
of the board in turn. Checkers are moved by clicking and dragging. The
movement of the checkers is sent over the network in real-time so that as
a checker is dragged across the board, the other board also shows the
movement. After each move, the state of the board is sent over the con­
nection, and control of the board is turned over to the other player .

..., General Comments about Checkers
The basic communications strategy used by checkers is to first open a
connection, then exchange play data back and forth across the connection
until the game is over.

The opening of the connection is handled differently by the two types
of players. When the program starts up, the user chooses to either wait
passively for a connection from someone else, or to seek out a passive
player and connect to them. The passive player opens a connection end in
passive mode and simply waits. The active player actively seeks out the
the passive player and connects to them using request mode. Once the
connection is established, play begins. The active player always goes first.

~ The Structure of the Checkers Player Objects 217

The player whose turn it is clicks and drags a checker to make a move.
Moves are tracked in real-time on the other player's board by sending the
StartTracking message followed by many Track messages as the checker
is dragged across the board. When dragging is done, the StopTracking
message is sent. When the move is finished, the state of the board is
determined by the player making the moves, and is sent to the other
player using the UpdateBoard message. Finally, a YourTurn message is
sent. This turns control over to the other player and the process is con­
tinued. Play is ended when the YourTurn message has a flag set that
indicates that the game has been won by one of the players.

To provide reasonable tracking performance, the receiving program
goes into a tight loop using synchronous reads. This allows for very smooth
tracking of the checkers pieces. Its drawback is that it locks out user
control on the receiving Macintosh while the loop is taking place. Control
is returned to the user as soon as the checker tracking stops.

Another simplification found in the code is that once a game is over, the
connections are simply torn down. This is done by freeing the player
objects. No special code is provided to detect half-closed connections .

..,.. The Structure of the Checkers Player Objects

The ADSP-related code in checkers is contained in two rather arbitrary
units. The first unit, UAsyncOp, contains an abstract class, TAsyncOp,
which provides a general framework for constructing asynchronous
objects. The second unit, UNetStuff, contains the abstract classes TADSP
(used to construct ADSP objects), and TPlayer (used to construct the
checkers player objects). UNetStuff also contains two concrete classes,
TActivePlayer and TPassivePlayer, which implement the two players.

The two concrete classes, TActivePlayer and TPassivePlayer, inherit
most of their behavior from their superclass. They differ only in the way
they make the connection, and in which one goes first when play begins.
Figure 12-1 shows the class hierarchy.

218 ~ Chapter 12 Checkers: An ADSP Example Program

TObject

TEvtHandler

TAsyncOp
fState
fFreqWhen Waiting
ITAsyncOp
DoOperation
PollForCompletion
DoAfterCompletion
UseldleFreq
Abort
Free
Do Idle

TADSP
fADSPSocket
fADSP
fCCBPtr
fSendQueue
fRecvQueue
fAttnPtr
fADSPData
fNTE
fNBPName
fNBPType
fNamelsRegistered
ITADSP
DoOperation
PollForCompletion
RegisterName
UnRegisterName
Free

TPlayer
f PlayerState
ITPlayer T ActivePlayer

IT Active Player
OpenConnect ion
DoAfterConnection

1---_.... StartTracking

TPassivePlayer
ITPassivePlayer
OpenPassiveConnection
DoAfterConnection

Track
Stop Tracking
YieldTurn
5endBoard5 tate
ReadAMessage
HandlelncomingMessage
DoAfterCompletion
DoAfterConnection

Figure 12-l . The class hierarchy

~ Tour of the Players' Class Hierarchy 219

..,.. Tour of the Players' Class Hierarchy
To understand how the players function and interact, you have to under­
stand the behavior of each of the superclasses that go into making them.
The following section begins with abstract class TAsyncOp, progresses
through T ADSP and TPlayer, and ends with the two concrete player
classes, TUs and TThem.

~ The TAsyncOp Class

The abstract class TAsyncOp is a very general abstract class. It provides a
set of methods that build a framework for implementing many types of
asynchronous operations.

TAsyncOp is a subclass of TEvtHandler. This means that it can install
itself into the cohandler queue and it will be called periodically when the
application has idle time. This allows TAsyncOp to poll for the comple­
tion of an asynchronous operation during this idle time.

The basic model TAsyncOp uses is that there are three basic phases to
every asynchronous operation:

• setup and issuance
• polling for completion
•post-processing

Setup and issuance are performed by the subclass. These would typi­
cally be such tasks as filling in a parameter block and calling a driver
asynchronously. Once this has been done, the subclass must call the
DoOperation method to start the polling process.

Polling is performed periodically when the application has idle time.
The method PollForCompletion is called repeatedly. It returns TRUE when
the asynchronous operation has completed. This method must be over­
ridden by the subclass to implement polling in the appropriate way.

Finally, once the asynchronous operation has completed, the
DoAfterCompletion method is called. Again, this must be overridden by
the subclass to take appropriate action. Listing 12-1 shows the declaration
for the T AsyncOp class.

220 ~ Chapter 12 Checkers: An ADSP Example Program

Listing 12-1. Declaration of the class TAsyncOp

1: AsyncOpStates = (kidling,kWaiting);
2:
3: TAsyncOp = OBJECT(TEvtHandler)
4: fState : AsyncOpStates;
5: fFreqWhenWaiting : longint;
6: PROCEDURE TAsyncOp.ITAsyncOp;
7: PROCEDURE TAsyncOp.DoOperation;
8: FUNCTION TAsyncOp.PollForCompletion : BOOLEAN;
9: PROCEDURE TAsyncOp.DoAfterCompletion;

10: PROCEDURE TAsyncOp.UseidleFreq(newFreq: LONGINT);
11: PROCEDURE TAsyncOp.Abort;
12: PROCEDURE TAsyncOp.Free; OVERRIDE;
13: FUNCTION TAsyncOp.Doidle(phase: IdlePhase)
14: BOOLEAN; OVERRIDE;
15: PROCEDURE TAsyncOp.Fields(PROCEDURE DoToField(
16: fieldName: Str255;
17: fieldAddr: Ptr;
18: fieldType: INTEGER)); OVERRIDE;
19: END; {TAsyncOp}

Note the state variable at line 4. This can take on two values as defined
on line 1: idling and waiting. The TAsyncOp is idling when no polling is
being performed and waiting when polling is being performed.

Also note the £Freq When Waiting field on line 5. This is set to a default
value at initialization but can be reset by calling the method UseldleFreq.
This is the frequency at which the polling will take place.

TAsyncOp.ITAsyncOp

The ITAsyncOp method is used to initialize the object. Listing 12-2 shows
this method.

Listing 12-2. The ITAsyncOP method (TAsyncOp.ITAsyncOp)

1: {$S Ainit}
2: PROCEDURE TAsyncOp.ITAsyncOp;
3: BEGIN {TAsyncOp.ITAsyncOp}
4: fState := kidling;
5: fidleFreq := kMaxidleTime;
6: fFreqWhenWaiting := l;
7: gApplication.InstallCohandler(SELF,TRUE);
8: END; {TAsyncOp.ITAsyncOp}

...., Tour of the Players' Class Hierarchy 221

IT AsyncOp begins by initializing the three instance variables £State,
fldleFreq, and fFreqWhenWaiting on lines 4-6. Note that setting the
fldleFreq to kMaxldleTime really means that this object will not get idle
time until the idle frequency is changed.

Line 7 installs this object into the cohandler chain.

TAsyncOp.DoOperation

The DoOperation method is called to indicate that an asynchronous op­
eration has been started and that polling should begin. In order for this
object's idle method to be called, the fldleFreq must be changed from
kMaxldleFreq to a smaller number.

Listing 12-3 illustrates this method.

Listing 12-3. The DoOperation method (TAsyncOp.DoOperation)

1: {$S ARes}
2: PROCEDURE TAsyncOp.DoOperation;
3: BEGIN {TAsyncOp.DoOperation}
4: fState := kWaiting;
5: fidleFreq := fFreqWhenWaiting;
6: END; {TAsyncOp.DoOperation}

Line 4 changes the state of the object to waiting to indicate that polling
is being done. Line 5 sets it to the desired frequency.

TAsyncOp.PollForCompletion

The PollForCompletion method (shown in Listing 12-4) is really a place­
holder for a method that must be supplied by the subclass. This version of
it simply always returns FALSE. The subclass must override this method
and implement the proper polling behavior for itself. This method typically
implements a check for the ioResult field of a parameter block.

Listing 12-4. The PollForCompletion method
(TAsyncOp.PollForCompletion)

1: { $S ARes}
2: FUNCTION TAsyncOp.PollForCompletion BOOLEAN;
3: BEGIN {TAsyncOp.PollForCompletion}
4: PollForCompletion :=FALSE;
5: END; {TAsyncOp.PollForCompletion}

222 lill- Chapter 12 Checkers: An ADSP Example Program

TAsyncOp.DoAfterCompletion

The DoAfterCompletion method is also a placeholder for a method that
must be supplied by the subclass. But unlike PollForCompletion, this
method must be called by the subclass' method so that the instance vari­
ables can be reset to the proper values. Listing 12-5 illustrates the
DoAfterCompletion method.

Listing 12-5. The DoAfterCompletion method
(TAsyncOp. DoAfterCompletion)

1: { $S ARes}
2: PROCEDURE TAsyncOp.DoAfterCompletion;
3: BEGIN {TAsyncOp.DoAfterCompletion}
4: fState := kidling;
5: fidleFreq := kMaxidleTime;
6: END; {TAsyncOp.DoAfterCompletion}

TAsyncOp.UseldleFreq

The UseldleFreq method is used to reset the idle frequency to some value
other than the default. This method is rarely overridden. Listing 12-6
displays the UseldleFreq method.

Listing 12-6. TAsyncOp.UseldleFreq

1: { $S ARes}
2: PROCEDURE TAsyncOp.UseidleFreq(newFreq LONGINT);
3: BEGIN {TAsyncOp.UseidleFreq}
4: fFreqWhenWaiting := newFreq;
5: IF fState = kWaiting
6: THEN BEGIN
7: fidleFreq := newFreq;
8: END;
9: END; {TAsyncOp.UseidleFreq}

Line 4 sets the waiting frequency to the new value, and line 7 sets the
current idle frequency to the new value the object is currently polling.

.,.. Tour of the Players' Class Hierarchy 223

TAsyncOp.Abort

The Abort method is meant to be overridden to provide a way to abort
the current asynchronous operation. Listing 12-7 illustrates the Abort
method.

Listing 12-7. The Abort method (TAsyncOp.Abort)

1: {$S ARes}
2: PROCEDURE TAsyncOp.Abort;
3: BEGIN {TAsyncOp.Abort}
4:
5: END; {TAsyncOp.Abort}

TAsyncOp.Free

The Free method is used to abort any pending operations and to remove
the object from the cohandler list. Because no dynamic memory allocation
is used, none is freed here. If a subclass of TAsyncOp used dynamically
allocated storage, it should be reclaimed in this method. Listing 12-8 shows
the Free method.

Listing 12-8. The Free method (TAsyncOp.Free)

1: {$S AFree}
2: PROCEDURE .TAsyncOp. Free; OVERRIDE;
3: BEGIN {TAsyncOp.Free}
4: IF fState = kWaiting
5: THEN BEGIN
6: SELF.Abort;
7: END;
8: gApplication.InstallCohandler(SELF,FALSE);
9: SELF.Free;

10: END; {TAsyncOp.Free}

TAsyncOp.Doldle

The Doldle method is the meat of the polling process. It is called when
the application has idle time and at least fldleFreq time has passed since
the last time the idle method was called. Listing 12-9 illustrates the
T AsyncOp.Doldle method.

224 .,... Chapter 12 Checkers: An ADSP Example Program

Listing 12-9. TAsyncOp.Doldle

1: ($S ARes}
2: FUNCTION TAsyncOp.Doidle(phase: IdlePhase)
3: BOOLEAN; OVERRIDE;
4: BEGIN {TAsyncOp.Doidle}
5: IF phase = IdleContinue { others: idleBegin, idleEnd }
6: THEN BEGIN
7: IF fState = kWaiting
8: THEN BEGIN
9: REPEAT

10:
11:
12:
13:

IF SELF.PollForCompletion
THEN BEGIN

DoAfterCompletion;
END
ELSE BEGIN

Leave;
END;

. 14:
15:
16:
17: UNTIL fState <> kWaiting;
18: END;
19: END;
20: END; {TAsyncOp.Doidle}

Line 5 checks for the IdleContinue idle phase. This indicates that real
idle time is available and not something else (like a menu being pressed).

Line 7 checks that the object is in fact in the waiting state.
Line 10 checks to see if the object is done polling. If it is, line 12 calls the

DoAfterCompletion method to perform post-processing.
The extra check of PollForCompletion is placed in the loop from lines

9-17 to handle the case where the DoAfterCompletion method chains
another operation right away. It results in another polling check without
having to wait for the idle method to be called again. With this scheme, a
series of operations can be performed quickly with no wasted time in­
between .

.,... The TADSP Abstract Class

The T ADSP abstract class implements a basic ADSP class on top of the
T AsyncOp class. Its methods implement common ADSP functionality
that is used by all of its subclasses.

TADSP allocates and deallocates all the various buffers needed by ADSP.
T ADSP opens and initializes a connection end as well as implements the
PollForCompletion method for ADSP operations. TADSP does this by
checking the ioResult field of the ADSP parameter block.

..,_ Tour of the Players' Class Hierarchy 225

Another feature of the TADSP class is that it can register and unregister
an NBP name on the socket used by the connection end. Listing 12-10
shows the declaration for the TADSP class.

Listing 12-l 0. Declaration of the class TADSP

1:
2:
3:
4:
5:
6:
7:

8:
9:

10:
11:

TADSP = OBJECT(TAsyncOp)
fADSPSocket
fADSP
fCCBPtr
fSendQueue
fRecvQueue
fAttnPtr
fADSPData
fNTE
fNBPName
fNBPType

integer;
DSPPBPtr;
TPCCB;
Ptr;
Ptr;
Ptr;
Ptr;
ANamesTableEntry;
str32;
str32;

12: fNameisRegistered boolean;
13: PROCEDURE TADSP.ITADSP(NBPName : str255;
14: NBPType : str255);
15: FUNCTION TADSP.PollForCompletion : BOOLEAN;
16: OVERRIDE;
17: PROCEDURE TADSP.Free; OVERRIDE;
18: PROCEDURE TADSP.RegisterName;
19: PROCEDURE TADSP.UnRegisterName;
20: PROCEDURE TADSP.Fields(PROCEDURE DoToField(
21: fieldName: Str255;
22: fieldAddr: Ptr;
23: fieldType: INTEGER)); OVERRIDE;
24: END; {TADSP}

TADSP.ITADSP

The ITADSP method is used to initialize the object. Listing 12-11 shows
this method. It begins by calling the initialization method for its parent
class-TAsyncOP-on line 18.

226 ..,. Chapter 12 Checkers: An ADSP Example Program

Listing 12-11. The ITADSP method (TADSP.ITADSP)

1: { $S AI nit}
2: PROCEDURE TADSP.ITADSP(NBPName

str255);
3: VAR
4: myMPPPB : MPPParamBlock;
5: s : str255;
6: PROCEDURE InitADSP;
7: VAR
8: dummy : integer;
9: BEGIN {InitNet}

str255; NBPType

10: FailOSErr(OpenDriver('.MPP',dummy));
11: IF OpenDriver('.DSP',gADSP) <> noErr
12: THEN BEGIN
13: StdAlert(kADSPAbsent);
14: ExitMacApp;
15: END;
16: END; {InitNet}
17: BEGIN {TADSP.ITADSP}
18: SELF.ITAsyncOp;
19: InitADSP;
20: fNameisRegistered :=FALSE;
21: IF NBPName = ''
22: THEN BEGIN
23: NBPName := GetString(kChooserNameStrID)AA;
24: END;
25: fNBPName := NBPName;
26: fNBPType := NBPType;
27: fADSP := DSPPBPtr(NewPtr(SIZEOF(DSPParamBlock)));
28: FailNil(fADSP);
29: fADSPData := NewPtr(kADSPMaxCommand);
30: FailNil(fADSPData);
31: WITH fADSPA DO
32: BEGIN
33: ccbPtr := TPCCB(NewPtr(SIZEOF(TRCCB)));
34: FailNil(ccbPtr);
35: sendQueue := NewPtr(kADSPSendBufSize);
36: FailNil(sendQueue);
37: recvQueue := NewPtr(kADSPRecvBufSize);
38: FailNil(recvQueue);
39: attnPtr := NewPtr(attnBufSize);
40: FailNil(attnPtr);
41: ioCompletion:= NIL;
42: userRoutine :=NIL;
43: ioCRefNum := gADSP;

~ Tour of the Players' Class Hierarchy 227

44:
45:
46:
4 7:
48:
49:
50:
51:
52: END;

fCcbPtr
sendQSize
recvQSize
fSendQueue
fRecvQueue
fAttnPtr
local Socket
cs Code

:= ccbPtr;
:= kADSPSendBufSize;
:= kADSPRecvBufSize;
.- sendQueue;
.- recvQueue;
.- attnPtr;
.- 0;
.- dspinit;

53: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
54: fADSPSocket := fADSPA.localSocket;
55: END; {TADSP.ITADSP}

Line 19 calls the routine InitADSP. The routine is shown on lines 6-16
and it opens the .MPP and .ADSP drivers.

Line 20 sets the fNamelsRegistered to an initial value of FALSE be­
cause it isn't registered yet.

Line 21 checks for a supplied NBP name. If none was supplied, it gets
the user-name string from the System file. Line 26 sets the NBP type to the
string supplied.

Line 27 allocates the ADSP parameter block and line 28 allocates a
general purpose buffer for use when sending or receiving data.

Lines 33-40 allocate the send, receive, and attention buffers as well as
the connection control block.

Lines 41-49 fill in the ADSP parameter block with appropriate values.
Line 50 indicates that any free socket should be allocated to this con-

nection end by ADSP.
Line 51 tells the .ADSP driver that it should initialize a connection end.
Line 53 makes the call to the driver.
Line 54 saves the socket number returned by the dsplnit call into the

£Socket instance variable for use later.

TADSP. PollForCompletion

The PollForCompletion method implements the proper polling action
for asynchronous ADSP operations. It checks the ioResult field of the ADSP
parameter block for any value other than 1. Listing 12-12 shows this
method.

228 ..,.. Chapter 12 Checkers: An ADSP Example Program

Listing 12-12. The PollForCompletion method
(T ADSP.PollForCompletion)

1: {$8 ARes}
2: FUNCTION TAD8P.PollForCompletion : boolean; OVERRIDE;
3: BEGIN {TAD8P.PollForCompletion}
4: PollForCompletion := (fAD8PA.ioResult <> 1);
5: END; {TAD8P.PollForCompletion}

TADSP.Free

The Free method deallocates all dynamic storage used by the TADSP
object. It also closes down the connection end and unregisters the NBP
name. Listing 12-13 shows the Free method.

Listing 12-13. The Free method (TADSP.Free)

1 : { $8 AFree}
2: PROCEDURE TAD8P.Free; OVERRIDE;
3: VAR
4: stat : 08Err;
5: theD8PPB : D8PParamBlock;
6: BEGIN {TAD8P.Free}
7: UnRegisterName;
8: theDSPPB := fAD8PA;
9: WITH theDSPPB DO BEGIN

10: abort := 1;
11: csCode := dspRemove;
12: END;
13: stat := PBControl(@theD8PPB,k8YNC);
14: DisposPtr(Ptr(fCcbPtr));
15: DisposPtr(f8endQueue);
16: DisposPtr(fRecvQueue);
17: DisposPtr(fAttnPtr);
18: DisposPtr(Ptr(fAD8P));
19: DisposPtr(fAD8PData);
20: INHERITED Free;
21: END; {TAD8P.Free}

Line 7 unconditionally calls the UnRegisterName method. No check for
a name being registered is done here because the UnRegisterName method
does that itself.

~ Tour of the Players' Class Hierarchy 229

Next, lines 8-13 tell the .ADSP driver to close the connection end.
Lines 14-19 deallocate all dynamic storage used by the object.
Line 20 calls the superclass' Free method so it can deallocate its storage.

TADSP.ReglsterName

The RegisterName method registers a name for the connection end's
socket. Listing 12-14 illustrates the RegisterName method.

Listing 12-14. The TADSP.RegisterName

1: {$S ARes}
2: PROCEDURE TADSP.RegisterName;
3: VAR
4: tNameStr str255;
5: tTypeStr str255;
6: theMPPPB MPPParamBlock;
7: BEGIN {TADSP.RegisterName}
8: IF fNameisRegistered
9: THEN BEGIN

10: UnRegisterName;
11: END;
12: fNTE := Pointer(NewPtr(SIZEOF(NamesTableEntry)));
13: FailNil(fNTE);
14: tNameStr := fNBPName;
15: tTypeStr := fNBPType;
16: NBPSetNTE(Ptr(fNTE),tNameStr,tTypeStr, '*',

fADSPSocket);
17: WITH theMPPPB DO BEGIN
18:
19:
20:
21:
22:
23:

interval
count
entityPtr
verifyFlag

:= kNBPTimeOutVal;
:= kNBPRetryCount;
:= Ptr(fNTE);
:= 1;

END;
FailOSErr(PRegisterName(@theMPPPB,kSYNC));

24: fNameisRegistered := TRUE;
25: END; {TADSP.RegisterName}

TADSP.RegisterName first checks for a previously registered name
and unregisters it if there is one on lines 8-11.

Line 12 allocates a names table entry for the name and lines 14-16 create
it.

230 ..,. Chapter 12 Checkers: An ADSP Example Program

Lines 17-22 set up a parameter block for registering the name.
Line 23 calls the PRegisterName routine to actually register the name.
If line 24 is reached, the name has been registered so the flag

fNamelsRegistered is set to TRUE.

TADSP.UnRegisterName

The UnRegisterName method unregisters a name if there is an NBP name
registered.

It first checks to see if there is a registered name. If there is, it calls
PRemoveName for that names table entry. After the name is removed, it
sets the fNamelsRegistered flag to FALSE. Listing 12-15 displays the
UnRegisterName method.

Listing 12-15. The UnRegisterName method (TADSP.UnRegisterName)

1: {$8 ARes}
2: PROCEDURE TADSP.UnRegisterName;
3: VAR
4: theMPPPB : MPPParamBlock;
5: stat : OSErr;
6: BEGIN {TADSP.UnRegisterName}
7: IF fNameisRegistered
8: THEN BEGIN
9: theMPPPB.entityPtr :=

10: Ptr(ord4(@fNTEA.nteData)+l);
11:
12:
13: END;

stat := PRemoveName(@theMPPPB,kSYNC);
fNameisRegistered := FALSE;

14: END; {TADSP.UnRegisterName}

..,. The TPlayer Abstract Class

The TPlayer abstract class implements the player message handling. It
has methods for sending the outgoing player messages as well as handling
the incoming message. It also keeps track of the player state with the
fPlayerState instance variable.

TPlayer provides the method DoAfterConnection for its subclass to
override so that it can perform the proper action at that point.

Listing 12-16 shows the declaration for the TPlayer class.

~ Tour of the Players' Class Hierarchy 231

Listing 12-16. Declaration of the TPlayer class

1: PlayerStates = (kConnecting,kMyTurn,kYourTurn);
2:
3: CheckersMessages = (kStartTracking,kTrack,
4: kStopTracking,kUpdateBoard,kYieldTurn);
5:
6: TPlayer = OBJECT(TADSP)
7: fPlayerState : PlayerStates;
8: PROCEDURE TPlayer.ITPlayer;
9: PROCEDURE TPlayer.StartTracking(

10: whichPiece : GamePieceSpecifier);
11: PROCEDURE TPlayer.Track(oldRect FakeVRectPtr
12: newRect : FakeVRectPtr);
13: PROCEDURE TPlayer.StopTracking;
14: PROCEDURE TPlayer.YieldTurn(theGameState : GameState);
15: PROCEDURE TPlayer.SendBoardState;
16: PROCEDURE TPlayer.ReadAMessage;
17: PROCEDURE TPlayer.HandleincomingMessage;
18: PROCEDURE TPlayer.DoAfterCompletion; OVERRIDE;
19: PROCEDURE TPlayer.DoAfterConnection;
20: PROCEDURE TPlayer.Fields(PROCEDURE DoToField(
21: fieldName: Str255;
22: fieldAddr: Ptr;
23: fieldType: INTEGER)); OVERRIDE;
24: END; {TPlayer}

TPlayer. ITPlayer

The ITPlayer method is used to initialize the object.
All ITPlayer does is call its initialization routine for the parent class

with the checkers application NBP type and no name, forcing the Chooser
name to be used. Listing 12-17 shows the ITPlayer method.

Listing 12-17. The ITPlayer method (TPlayer. ITPlayer)

1: {$S Ainit}
2: PROCEDURE TPlayer.ITPlayer;
3: BEGIN {TPlayer.ITPlayer}
4: ITADSP('',KCheckersNBPType);
5: END; {TPlayer.ITPlayer}

232 .,,. Chapter 12 Checkers: An ADSP Example Program

TPlayer.StartTracking

The StartTracking method is called when a player starts moving a checker
by clicking and dragging. It signals to the other end that it should get
ready to accept track messages. Listing 12-18 displays the StartTracking
method.

Listing 12-18. The StartTracking method (TPlayer.StartTracking)

1: {$S ARes}
2: PROCEDURE TPlayer.StartTracking(
3: whichPiece : GarnePieceSpecifier);
4: VAR
5: theMessage : CheckersMessages;
6: BEGIN {StartTracking}
7: theMessage := kStartTracking;
8: WITH fADSPA DO BEGIN
9:

10:
11:
12:
13:

dataPtr
reqCaunt
earn
flush
cs Cade

·= @theMessage;
·= SIZEOF(CheckersMessages);
·= 0;
·= 0;
·= dspWrite;

14: END;
15: FailOSErr(PBCantral(ParrnBlkPtr(fADSP),kSYNC));
16: WITH fADSPA DO BEGIN
17:
18:
19:
20:
21:
22:
23:

dataPtr := @whichPiece;
reqCaunt := SIZEOF(GarnePieceSpecifier);
earn
flush
cs Cade

.- l;
:= l;

:= dspWrite;
END;
FailOSErr(PBCantral(ParrnBlkPtr(fADSP),kSYNC));

24: END; {StartTracking}

The message is sent in two parts. First, the kind of message being sent is
written to the ADSP connection. This is done on lines 7-15.

Then the data that goes along with it is sent, in this case specifying
which game piece is being moved. This is done on lines 16-23.

Note that the first part of the message is sent with the eom and flush
flags set to zero. This allows ADSP to buffer it and not necessarily send it
right away. When the last part of the message is sent, the eom and flush
flags are set to 1; this tells ADSP to send it right away.

.,.. Tour of the Players' Class Hierarchy 233

The eom flag doesn't really need to be set, but is helpful when debug­
ging. If the size of the sent messages and the expected sizes don't match,
setting the eom flag can help synchronize things.

TPlayer. Track

The Track method is called as the player is moving the checker by drag­
ging. It allows the other end to track the checker in real-time. Listing 12-19
displays the Track method.

Listing 12-19. The TPlayer.Track method (TPlayer.Track)

1: { $S ARes}
2: PROCEDURE TPlayer.Track(oldRect,newRect
3: VAR
4: theMessage : CheckersMessages;
5: BEGIN {Track}
6: theMessage := kTrack;
7: WITH fADSPA DO BEGIN

dataPtr := @theMessage;

FakeVRectPtr);

8:
9: reqCount := SIZEOF(CheckersMessages);

10:
11:
12:
13: END;

eom
flush
cs Code

:= 0;
:= O;
:= dspWrite;

14: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
15: WITH fADSPA DO BEGIN
16:
17:
18:
19:
20:
21: END;

dataPtr
reqCount
eom
flush
cs Code

:= @oldRect;
:= SIZEOF(FakeVRectPtr);
·= O;
·= 0;
:= dspWrite;

22: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
23: WITH fADSPA DO BEGIN
24:
25:
26:
27:
28:
29: END;

dataPtr
reqCount
eom
flush
cs Code

·= @r.ewRect;
:= SIZEOF(FakeVRectPtr);
:= 1;
:= 1;
:= dspWrite;

30: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
31: END; {Track}

234 ~ Chapter 12 Checkers: An ADSP Example Program

The message is sent in three parts. First the kind of message being sent
is written to the ADSP connection. This is done on lines 6-14.

Then the data that describes the old checker location and the new checker
location is sent. This is done by writing each VRect to the connection on
lines 15-30.

Note that the first part of the message is sent with the eom and flush
flags set to zero. This allows them to buffer up and not send right away.
When the last part of the message is sent, the eom and flush flags are set
to 1; this tells ADSP to send it right away.

TPlayer .Stop Tracking

The StopTracking method is called when the player stops dragging the
checker and has released the mouse button. It allows the other end to
know that the checker tracking operation is complete. Listing 12-20 shows
the StopTracking method.

Listing 12-20. The StopTracking method (TPlayer.StopTracking)

1: { $8 ARes}
2: PROCEDURE TPlayer.StopTracking;
3: VAR
4: theMessage : CheckersMessages;
5: BEGIN {StopTracking}
6: theMessage := kStopTracking;
7: WITH fADSPA DO BEGIN
8:
9:

10:
11:
12:
13: END;

dataPtr
reqCount
eom
flush
cs Code

:= @theMessage;
:= SIZEOF(CheckersMessages);
·= 1;
:= 1;
:= dspWrite;

14: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
15: END; {StopTrecking}

The message is short because it only indicates the message kind and no
other data is sent. The message kind is written to the connection in lines
6-14. The eom and flush flags are set to 1 forcing the end of message so
that the message is sent right away.

.,.. Tour of the Players' Class Hierarchy 235

TPlayer. YieldT urn

The YieldTum method is called when a player's turn is over. It signals to
the other end that it should take its turn. Listing 12-21 illustrates the
YieldTum method.

Listing 12-21. The YieldTurn method (TPlayer.YieldTurn)

1: { $S ARes}
2: PROCEDURE TPlayer.YieldTurn(theGameState
3: VAR
4: theMessage : CheckersMessages;
5: BEGIN {YieldTurn}
6: fPlayerState := kYourTurn;
7: theMessage := kYieldTurn;
8: WITH fADSPA DO BEGIN

dataPtr := @theMessage;

GameState);

9:
10:
11:
12:
13:

reqCount := SIZEOF(CheckersMessages);
eom := 0;
flush := 0;
cs Code := dspWrite;

14: END;
15: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
16: WITH fADSPA DO BEGIN
17:
18:
19:
20:
21:
22: END;

dataPtr
reqCount
eom
flush
cs Code

.- @theGameState;
:= SIZEOF(GameState);
:= l;
·= l;
:= dspWrite;

23: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
24: END; {YieldTurn}

The message is sent in two parts. First, the kind of message being sent is
written to the ADSP connection. This is done on lines 5-15. Note how on
line 6 the player state gets set to k YourTum indicating that this player has
yielded its turn.

Then the part of the message indicating whether the current player has
determined if the game is over is sent. This is done on lines 16-23.

236 ...,. Chapter 12 Checkers: An ADSP Example Program

TPlayer.SendBoardState

The SendBoardState method is called before the tum is yielded. It tells
the remote player about the new board setup. The entire board setup is
sent to ensure that the two sides don't accidentally end up with different
representations of the game board. Listing 12-22 illustrates the
SendBoardState method.

Listing 12-22. The SendBoardState method (TPlayer.SendBoardState)

1: {$5 ARes}
2: PROCEDURE TPlayer.SendBoardState;
3: VAR
4: theMessage : CheckersMessages;
5: BEGIN {TPlayer.SendBoardState}
6: theMessage := kUpdateBoard;
7: WITH fADSPA DO BEGIN
8:
9:

10:
11:
12:
13: END;

dataPtr
reqCount
eom
flush
cs Code

:= @theMessage;
:= SIZEOF(CheckersMessages);
:= 0;
:= 0;
:= dspWrite;

14: FailOSErr{PBControl{ParmBlkPtr{fADSP),kSYNC));
15: WITH fADSPA DO BEGIN
16:
17:
18:
19:
20:
21: END;

dataPtr
reqCount
eom
flush
cs Code

:= @gBoardData;
:= SIZEOF(BoardData);
:= 1;
:= 1;
:= dspWrite;

22: FailOSErr(PBControl(ParmBlkPtr(fADSP),kSYNC));
23: END; {TPlayer.SendBoardState}

The message is sent in two parts. First the kind of message being sent is
written to the ADSP connection. This is done on lines 6-14.

Then the part of the message containing the board state is sent. This is
done on lines 15-22.

~ Tour of the Players' Class Hierarchy 237

TPlayer. ReadAMessage

The ReadAMessage method is called to start an asynchronous read on
the connection. Listing 12-23 displays the ReadAMessage method.

Listing 12-23. The ReadAMessage method (TPlayer.ReadAMessage)

1: { $S ARes}
2: PROCEDURE TPlayer.ReadAMessage;
3: VAR
4: stat : OSErr;
5: BEGIN {TPlayer.ReadAMessage}
6: WITH fADSPA DO BEGIN
7:
8:
9:

10: END;

dataPtr .- @fADSPData;
reqCount := SIZEOF(CheckersMessages);
csCode ·= dspRead;

11: stat := PBControl(ParmBlkPtr(fADSP),kASYNC);
12: IF SELF.PollForCompletion
13: THEN BEGIN
14: DoAfterCompletion;
15: END
16: ELSE BEGIN
17: DoOperation;
18: END;
19: END; {TPlayer.ReadAMessage}

ReadAMessage hangs the read on the connection on lines 6-11. Then,
rather than wait for the next idle time to check for completion, it calls
PollForCompletion itself right away. It this returns TRUE, indicating the
read has already completed, it calls DoOperation on line 17 to process the
read. This leads to a much more efficient read process than waiting for
idle time each time a read is issued.

TPlayer. DoAfterCompletion

The DoAfterCompletion method is used to process the read operation
after it has completed. Listing 12-24 shows the DoAfterCompletion
method.

238 ~ Chapter 12 Checkers: An ADSP Example Program

Listing 12-24. The DoAfterCompletion method
(TPlayer. DoAfterCompletion)

1: ($S ARes}
2: PROCEDURE TPlayer.DoAfterCompletion; OVERRIDE;
3: BEGIN (TPlayer.DoAfterCompletion}
4: INHERITED DoAfterCompletion;
5: CASE fPlayerState OF
6: kConnecting : BEGIN
7: IF fADSPA.ioResult = noErr
8: THEN BEGIN
9: DoAfterConnection;

10: END
11: ELSE BEGIN
12: DebugStr('open connection error');
13: END;
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32: END;

END;
otherwise BEGIN

END;

IF fADSPA.ioResult = noErr
THEN BEGIN

END

IF (fADSPA.actCount
(fCcbPtrA.state
THEN BEGIN

SysBeep(5);
END

0) AND
sClosed)

ELSE BEGIN
HandleincomingMessage;
ReadAMessage;

END;

ELSE BEGIN
DebugStr('adsp read error');

END;

33: END; {TPlayer.DoAfterCompletion}

DoAfterCompletion handles two cases. The first is the completion of a
connection request. This is indicated by the £PlayerState being set to
kConnecting and is handled by calling the DoAfterConnection method
at line 9 if no error is encountered.

The second case is if a read has been issued on the connection. This is
indicated by the fPlayerState not being set to kConnecting. This is
handled on lines 15-31.

.,.. Tour of the Players' Class Hierarchy 239

If the connection has not been closed, checked on lines 18 and 19, and
only indicated by a beep at line 21, the HandlelncomingMessage method
is called to process the message and the ReadAMessage method is called
to reissue the read request.

TPlayer.DoAfterConnection

The DoAfterConnection method is a placeholder for the subclasses. The
subclass will implement this method to perform the actions that are needed
when an open connection is completed. It must be overridden to do any­
thing useful. Listing 12-25 displays the DoAfterConnection method.

Listing 12-25. The DoAfterConnection method
(TPlayer.DoAfterConnection)

1: {$S ARes)
2: PROCEDURE TPlayer.DoAfterConnection;
3: BEGIN {TPlayer.DoAfterConnection)
4:
5: END; {DoAfterConnection)

TPlayer.HandlelncomingMessage

The HandlelncomingMessage method processes all the incoming mes­
sages. Each type of message is processed separately. Note that in order
to provide real-time tracking of the checkers once a StartTracking message
is received, this code performs its own reads of the Track messages until a
StopTracking message is received. Listing 12-26 illustrates the
HandlelncomingMessage routine.

Listing 12-26. The Handlelncoming Message method
(TPlayer.HandlelncomlngMessage)

1: {$S ARes)
2: PROCEDURE TPlayer.HandleincomingMessage;
3: VAR
4: theGameState: GameState;
5:
6:
7:

first
stat
inRect

boolean;
OSErr;
FakeVRect;

240 ~ Chapter 12 Checkers: An ADSP Example Program

8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:

oldRect : FakeVRect;
incomingMessageKind : CheckersMessages;
whichGamePiece : GamePieceSpecifier;

BEGIN {TPlayer.HandleincomingMessage}
BlockMove(fADSPData,@incomingMessageKind,

SIZEOF(CheckersMessages));
CASE incomingMessageKind OF

kStartTracking : BEGIN
WITH fADSPA DO BEGIN

END;

dataPtr
reqCount
cs Code

:= fADSPData;
:= SIZEOF(GamePieceSpecifier);
:= dspRead;

stat := PBControl(ParmBlkPtr(fADSP),kSYNC);
BlockMove(fADSPData,@whichGamePiece,

SIZEOF(GamePieceSpecifier));
StartMoving(whichGamePiece);
first := TRUE;
HideCursor;
REPEAT

WITH fADSPA DO BEGIN
dataPtr := fADSPData;

END;

reqCount := SIZEOF(Checke~sMessages);
csCode := dspRead;

stat := PBControl(ParmBlkPtr(fADSP),kSYNC);
BlockMove(fADSPData,@incomingMessageKind,

SIZEOF(CheckersMessages));
IF incomingMessageKind = kTrack

THEN BEGIN
WITH fADSPA DO BEGIN

END;

dataPtr := fADSPData;
reqCount := SIZEOF(FakeVRect);
csCode := dspRead;

stat :=
PBControl(ParmBlkPtr(fADSP),kSYNC);

BlockMove(fADSPData,@inRect,
SIZEOF(FakeVRect));

WITH fADSPA DO BEGIN
dataPtr := fADSPData;
reqCount := SIZEOF(FakeVRect);
csCode := dspRead;

END;
stat :=

..,. Tour of the Players' Class Hierarchy 241

53:
54:
55:
56:
57:
58:
59:
60:

PBControl(ParmBlkPtr(fADSP),kSYNC);
BlockMove(fADSPData,@oldRect,

SIZEOF(FakeVRect));
IF first

THEN BEGIN
Locateit(inRect,FALSE,FALSE);
first := FALSE;

END;
61: Moveit(inRect,oldRect);
62: YieldTime;
63: END;
64: UNTIL incomingMessageKind <> kTrack;
65: Locateit(inRect,FALSE,TRUE);
66: ShowCursor;
67: END;
68: kTrack : BEGIN
69: DebugStr('Rogue kTrack Message');
70: END;
71: kStopTracking : BEGIN
72: DebugStr('Rogue kStopTracking Message');
73: END;
74: kUpdateBoard : BEGIN
75: WITH fADSPA DO BEGIN
76: dataPtr := fADSPData;
77: reqCount := SIZEOF(BoardData);
78: csCode := dspRead;
79: END;
80: stat := PBControl(ParmBlkPtr(fADSP),kSYNC);
81: BlockMove(fADSPData,@gBoardData,
82: SIZEOF(BoardData));
83: UpdateBoard(gBoardData);
84: END;
85: kYieldTurn : BEGIN
86: WITH fADSPA DO BEGIN
87:
88:
89:
90: END;

dataPtr := fADSPData;
reqCount := SIZEOF(GameState);
csCode := dspRead;

91: stat := PBControl(ParmBlkPtr(fADSP),kSYNC);
92: BlockMove(fADSPData,@theGameState,SIZEOF

(boolean));
93: MyTurn(theGameState);
94: fPlayerState := kMyTurn;
95: END;
96: END;
97: END; {TPlayer.HandleincomingMessage}

242 ...,. Chapter 12 Checkers: An ADSP Example Program

Line 12 copies the data read from the objects buffer into the
incomingMessageKind variable. This is then used on line 14 to deter­
mine what kind of message has been received and proper processing is
done.

Lines 15-67 process the StartTracking message. It first reads in which
game piece is specified on lines 16-23. Then it calls the StartMoving
procedure to tell the application that the specified piece will be moving.

Next it goes into a loop to read Track messages. This loop is exited at
line 64 when a message that isn't a Track message is received.

Lines 28-35 read in the message kind. If it's a Track message, then lines
38-63 handle it. Otherwise the loop exits.

If a Track message is received, the two VRects describing the before and
after position are read in on lines 38-55. If it's the first time through, the
Locatelt procedure is called to fix the checkers position.

Then the Movelt procedure is called on line 61 to actually move the
checker.

Yield time is called on line 62 to give the background tasks some time.
Once the loop is exited, the Locatelt call is called again to fix the final

location of the checker.
If either the Track or StopTracking messages are received outside of

the loop in StartTracking, this is because of an error.. So lines 68-73 call
the debugger to indicate this.

Lines 78-84 handle the Update Board message, which reads in the board
data and calls the UpdateBoard procedure to have the application set the
board to the state received from the other side.

Lines 85-95 handle the YieldTum message, which reads in the game
state data and calls the application's MyTum procedure to indicate that it
is this player's turn now .

...,. The TActivePlayer and TPassivePlayer Classes

The names T ActivePlayer and TPassivePlayer only refer to the mode they
use to open the connection. Both players actively play the game. The
TPlayer class is used as the superclass for the two concrete classes that are
used to implement the checkers game. Each of these classes is very similar
because they inherit most of their behavior from the TPlayer class.

T ActivePlayer and TPassivePlayer implement two things in addition
to the operations found in TPlayer. First, they both open the connection
slightly differently, one in request mode, the other in passive mode. The
second difference is that TActivePlayer always takes its turn first, while
TPassivePlayer always goes second.

..,.. Tour of the Players' Class Hierarchy 243

Listings 12-27 and 12-28 list the declarations of the TActivePlayer and
TPassivePlayer classes. The only real difference between the two classes
is that they call their connection methods by different names.

Listing 12-27. Declaration of the TActivePlayer class

1: TActivePlayer = OBJECT(TPlayer)
2: PROCEDURE TActivePlayer.ITActivePlayer;
3: PROCEDURE TActivePlayer.OpenConnection;
4: PROCEDURE TActivePlayer.DoAfterConnection; OVERRIDE;
5: PROCEDURE TActivePlayer.Fields(PROCEDURE DoToField(
6: fieldName: Str255;
7: fieldAddr: Ptr;
8: fieldType: INTEGER)); OVERRIDE;
9: END; {TActivePlayer}

Listing 12-28. Declaration of the TPassivePlayer class

1: TPassivePlayer = OBJECT(TPlayer)
2: PROCEDURE TPassivePlayer.ITPassivePlayer;
3: PROCEDURE TPassivePlayer.OpenPassiveConnection;
4: PROCEDURE TPassivePlayer.DoAfterConnection; OVERRIDE;
5: PROCEDURE TPassivePlayer.Fields(PROCEDURE DoToField(
6: fieldName: Str255;
7: fieldAddr: Ptr;
8: fieldType: INTEGER)); OVERRIDE;
9: END; {TPassivePlayer}

TActivePlayer.ITActivePlayer

The IT ActivePlayer method is used to initialize the object. It is called
right after the object is created.

IT ActivePlayer calls its parent class initialization method, then the
OpenConnection method to get the connection going for this object.
Listing 12-29 illustrates the IT ActivePlayer method.

244 ..,.. Chapter 12 Checkers: An ADSP Example Program

Listing 12-29. The ITActivePlayer method
(T ActivePlayer.IT ActivePlayer)

1: {$8 Ainit}
2: PROCEDURE TActivePlayer.ITActivePlayer;
3: BEGIN {TActivePlayer.ITActivePlayer}
4 : ITP layer;
5: OpenConnection;
6: END; {TActivePlayer.ITActivePlayer}

TPassivePlayer .ITPassivePlayer

The ITPassivePlayer method is used to initialize the object. It is called
right after the object is created.

ITPassivePlayer calls its parent class initialization method, then the
OpenPassiveConnection method to get the connection going for this
object. It also registers its name on the network so that the other player
can find it. Listing 12-30 illustrates the ITPassivePlayer method.

Listing 12-30. The ITPassivePlayer method
(TPassivePlayer. ITPassivePlayer)

1: {$8 Ainit}
2: PROCEDURE TPassivePlayer.ITPassivePlayer;
3: BEGIN {TPassivePlayer.ITPassivePlayer}
4: ITP layer;
5: OpenPassiveConnection;
6: RegisterName;
7: END; {TPassivePlayer.ITPassivePlayer}

TActivePlayer.OpenConnection

The OpenConnection method opens the connection for the active player.
This method is displayed in Listing 12-31.

..,.. Tour of the Players' Class Hierarchy 245

Listing 12-31 . The OpenConnection method
(T ActivePlayer.OpenConnection)

1: {$S ARes}
2: PROCEDURE TActivePlayer.OpenConnection;
3: VAR
4: stat OSErr;
5: theName,theZone str255;
6: theAddr addrBlock;
7: BEGIN {TActivePlayer.OpenConnection}
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

IF SelectName('=', '=',theName,theZone, the~ddr)

THEN BEGIN
WITH fADSPA DO BEGIN

remoteAddress := theAddr;
filterAddress := AddrBlock(O);
ocMode := ocRequest;
ocinterval := O;
ocMaximum := 0;
cs Code := dspOpen;

END;
stat := PBControl(ParmBlkPtr(fADSP),kASYNC);

19: fPlayerState := kConnecting;
20: DoOperation;
21: END;
22: END; {TActivePlayer.OpenConnection}

OpenConnection starts by calling the SelectName function on line 8.
This routine puts up a Chooser-like dialog that lets the user connect to
another checkers player.

If the user selects a remote player, then lines 10-18 issue an asynchronous
dspOpen to the remote player using the request mode.

Line 19 sets the player state to connecting and line 20 calls DoOperation
to start the polling. This uses the T AsyncOp technique for handling
asynchronous operations during idle times.

TPassivePlayer.OpenPassiveConnection

The OpenPassiveConnection method opens the connection for the pas­
sive player. It issues an asynchronous dspOpen call using the passive
mode. Listing 12-32 shows the OpenPassiveConnection method.

246 ..,. Chapter 12 Checkers: An ADSP Example Program

Listing 12-32. The OpenPassiveConnection method
(TPassivePlayer.OpenPassiveConnection)

1: ($5 ARes}
2: PROCEDURE TPassivePlayer.OpenPassiveConnection;
3: VAR
4: stat : 05Err;
5: BEGIN {TPassivePlayer.OpenPassiveConnection}
6: WITH fAD5PA DO BEGIN
7:
8:
9:

10:
11:
12:
13: END;

ioCompletion
filterAddress
ocMode
ocinterval
ocMaximum
csCode

:= NIL;
:= AddrBlock(O);
:= ocPassive;
:= 0;
:= O;
:= dspOpen;

14: stat := PBControl(ParmBlkPtr(fAD5P),kA5YNC);
15: fPlayer5tate := kConnecting;
16: DoOperation;
17: END; {TPassivePlayer.OpenPassiveConnection}

Line 15 sets the player state to connecting and line 20 calls DoOperation
to start the polling. This uses the T AsyncOp technique for handling
asynchronous operations during idle times.

TActivePlayer.DoAfterConnection

The DoAfterConnection method is called after the dspOpen completes.
This allows the active player to set up the game as it should be at the
beginning of play. Listing 12-33 displays the DoAfterConnection method.

Listing 12-33 The DoAfterConnection method
(T ActivePlayer. DoAfterConnection)

1: ($5 ARes}
2: PROCEDURE TActivePlayer.DoAfterConnection; OVERRIDE;
3: BEGIN {TActivePlayer.DoAfterConnection}
4: fPlayer5tate := kMyTurn;
5: MyTurn(kPlaying);;
6: END; {TActivePlayer.DoAfterConnection}

..,.. Summary 247

Line 4 sets the player state to be this player's turn. The active player
always goes first.

Line 5 calls the MyTum procedure that tells the checkers application
that it should start this player's turn.

TPassivePlayer. DoAfterConnection

The DoAfterConnection method is called after the dspOpen completes.
This allows the passive player to set up the game as it should be at the
beginning of play. Listing 12-34 shows the DoAfterConnection method.

Listing 12-34. The DoAfterConnection method
(TPassivePlayer. DoAfterConnection)

1: { $S ARes}
2: PROCEDURE TPassivePlayer.DoAfterConnection; OVERRIDE;
3: BEGIN {TPassivePlayer.DoAfterConnection}
4: fPlayerState := kYourTurn;
5: ReadAMessage;
6: END; {TPassivePlayer.DoAfterConnection}

Line 4 sets the player state to be the other player's turn. The passive
player always goes second.

Line 5 calls the ReadAMessage method to get ready for an incoming
message from the active player.

~ Summary
This chapter described a series of Pascal object classes that implement the
communications needed to build a two-player checkers game. The code
illustrated asynchronous operations using polling during idle times. It
also showed how to set up an ADSP connection and then send messages
back and forth over that connection.

Index

A
Abort method, 223

TAsyncOp.Abort listing, 223
Addresses, 43-44
ADSP. See AppleTalk Data

Stream Protocol
Alternate interface, 15
Alternate type for GetZoneList

user bytes listing, 60
Apple events, 3-4
AppleShare file systems,

accessing remote, 13
AppleTalk, 4

AppleTalk Data Stream
Protocol (ADSP), 13

AppleTalk Echo Protocol
(AEP), 11

AppleTalk Filing Protocol
(AFP), 13

AppleTalk Session Protocol
(ASP), 12

AppleTalk Transaction
Protocol (ATP), 11-12

application layer, 8
basic programming

techniques, 163

data link layer, 7
Datagram Delivery Protocol

(DDP), 10-11
drivers, 135-137
finding services, 12
Link Access Protocols (LAP),

10
miscellaneous interfaces, 135-

160
Name Binding Protocol (NBP),

12
NameTool program routines,

173-187
networks, 4, 7
physical layer, 6
preferred interface, 15-16
presentation layer, 8
Printer Access Protocol (PAP),

13
programming issues, 9-18
protocols, 5-13
Routing Table Maintenance

Protocol (RTMP), 11
session layer, 7
transport layer, 7
transport media, 16-18

249

250 ~ Index

AppleTalk (continued)
turning network on/off, 147-

150
versions, 175-185
Zone Information Protocol

(ZIP), 12
AppleTalk Data Stream Protocol

(ADSP), 4, 13, 73, 95-134,
137

attention messages, 109-111,
132-133

connections,95-106
data stream structure, 106-107
double buffering, 105
open connection information,

109
out-of-band signaling, 109
reading data, 130-132
routines, 111-134
sending data, 104-106, 129-

130
AppleTalk Echo Protocol (AEP),

11, 76, 136
AppleTalk Filing Protocol (AFP),

13, 136
AppleTalk Phase 2. See Phase 2

AppleTalk network
AppleTalk Session Protocol

(ASP), 12, 136
AppleTalk Transaction Protocol

(ATP), 11-12, 73-93, 135
aborting calls, 83-84
Buffer Data Structure (BDS),

77-78
opening, 136

naming socket, 202-204
Phase 1 AppleTalk networks,

58-61
requesters, 78-84
routines, 84-93
transactions,74-77

Zone Information Protocol
(ZIP)., 57

AreWeAServer routine, 142
using PGetAppleTalklnfo

routine, 142
Assembler glue for Pascal

transition handler listing,
150

Assembly language completion
routine with extended
parameter block listing,
32

Asterisk (*) wildcard, 46 ·
Asynchronous calls, 23-33

completion routines, 29-33
parameter blocks, 37-38
polling for completion, 24-29

Asynchronous PGetRequest
, listing, 81

At-least-once ATP transactions,
76

ATP. See AppleTalk Transaction
Protocol

Attention buffer, 98
Attention messages, 109-111,

132-133

B
BDS element structure listing, 78
BDSCount variable, 80
BDSElement, 78
Bridges. See routers
Buffer Data Structure (BDS), 77

BDSElement, 78
Buffers, 38-40
BufPtr

allocating permanent storage
listing, 41

low-memory global, 40-41
BuildBDS routine, 78, 80, 83

BuildZoneList routine, 179
listing, 64-65, 179

BuildZoneListl routine, 179-182
listing, 180-181

BuildZoneList2 routine, 182-
185

listing, 183-184

c
C version of Pascal transition

handler glue listing, 150
Call interface for the 'PACK' code

resource listing, 152
Calls

asynchronous,24-33
synchronous,23-24

Cancel close transition, 148
Checkers program, 215-247

class hierarchy, 218
general comments, 216-217
goals, 216
structure of player objects,

217
UAsyncOp unit, 217
UNetStuff unit, 217
using, 216

CheckStat routine, 170, 186
listing, 170

Chooser, 151-160
buttons, 155-157
configuring interface, 155-

158
dialog message, 155
displaying NBP lookup names,

157
modal dialog, 151
name,45
NBP type looking for entities,

155
operation, 151-154

~ Index 251

RDEV file, 151-160
RemoteSyslnfo program,

192
timeout information for NBP

lookup, 156
user interface, 151

CLDeny call, 104
Client programs and asymmetric

transport between server
program, 12

CLListen call, 104
Color QuickDraw stack size, 37
Common unit RemoteSyslnfo

program, 195-198
constants, 196-198
listing, 196
message related types, 197-

198
Communications environment,

3-4
Communications Toolbox

(CTB), 3-4
Completion block routine data

block common unit type
listing, 198

Completion polling of
PGetRequest listing, 82

Completion routines
accessing program's global

variables, 30
asynchronous calls, 29-33
extended parameter block, 32-

33
parameter blocks, 30-32

Computers, identifying, 44
Confirming NBP name on

network listing, 50
Connection control block (CCB),

98
Connections (ADSP)

attention buffer, 98

252 ..,.. Index

Connections (continued)
clearing all, 133-134
connection control block

(CCB), 98
connection end, 111-112

closing, 122-123
initializing,98-99
opening, 114-121
parameters, 112-114

connection listener, 101-104
closing, 127
initialing, 123-124

connection request, 124-126
establishing, 96-104
half-open, 96
ID, 121-122
open,95,109,128-129
passive mode, 97-100
receive buffer, 98
requestmode,97-100
send buffer, 98
sending data, 104-106

CSMA/CA (Carrier Sense
Multiple Access with
Collision Avoidance), 16-
17

CSMA/CD (Carrier Sense
Multiple Access with
Collision Detection), 17

Cursor spinning to show status,
24-25

D
Data

exchanging between sockets,
11-12

transferring across network,
73

Data stream
full duplex, 95
logical end-of-message, 107
structure, 106-107

Datagram Delivery Protocol
(DDP), 10-11, 57

Declaration of class TAsyncOp
listing, 220

Declaration of TPlayer class
listing, 231

Denying connection request
listing, 104

DoAfterCompletion method, 219,
222,237-239

TAsyncOp.DoAfter­
Completion listing, 222

TPlayer .DoAfter-
Completion listing, 238

DoAfterConnection method, 239,
246-247

TActivePlayer.DoAfter­
Connection listing, 246

TPassivePlayer.DoAfter­
Connection listing, 247

TPlayer.DoAfterConnection
listing, 239

Doldle method, 223-224
T AsyncOp.Doldle listing, 224

DoOperation method, 219, 221
TAsyncOp.DoOperation

listing, 221
DoSpinCursor procedure, 25
Double buffering, 105
Double tilde (:::::) wildcard, 47
Drivers

.DSP,99-100,103,137

.MPP, 135-136, 147-150

.XPP, 57, 61-66, 136
DSP driver, 99-100, 103, 137
dspAttention routine, 132-133
dspCLDeny routine, 125-126
dspCLinit routine, 102, 123-124
dspCLListener routine, 124-

125
dspClose routine, 122-123
dspCLRemove routine, 127

dsplnit routine, 110-112
dspNewCID routine, 121-122
dspOpen routine, 114-122

acceptinode, 118-119
establish inode, 119-121
passive inode, 114-116
requestinode,116-118

dspOptions routine, 112-114
dspRead routine, 104-109, 130-

132
dspReset routine, 133-134
dspStatus routine, 109, 128-129
dspWrite routine, 104-109, 129-

130

E
end-of-inessage flag, 76
Equal(=) wildcard, 46
Ethernet, 17-18

CSMA/CD (Carrier Sense
Multiple Access with
Collision Detection), 17

Ethernet Link Access Protocol
(ELAP), 10

EtherTalk, 10
Exactly-once ATP transactions,

76
ExainpleCoill1llonUnit.p source

code file, 194-195, 198, 204,
209

Exainplelnit.p source code file,
194,198-204

ExainpleResidentCodelnstall
routine, 200-201

GoOnline routine, 202-204
INITEntry routine, 199-200

ExainpleRDEV.a source code file,
195,209

ExainpleRDEV.p source code
file, 195,209

ExainpleResident.a source code
file, 195, 204

~ Index 253

ExainpleResidentCodelnstall
routine, 200-201

listing, 200
ExainpleResidentUnit. p source

code file, 195, 204
ExitToShell trap, 40
ExRC (Exainple Resident Code)

code resource, 193, 195
Extended paraineter block, 32-33

listing, 31

F
Free inethod, 223, 228-229

TADSP.Free listing, 228
TAsyncOp.Free listing, 223

Full-duplex data streain, 95

G
Gateways, 15
GetBridgeAddress call, 58-59,

174
GetLocalZones routine, 66, 69-

71
GetMaxs routine, 146-147

using PGetAppleTalklnfo
routine, 146-147

GetMyZone (ZIP function 7)
request, 58

GetMyZone routine, 63, 67-68,
175

listing, 175
GetMyZonelroutine,175-177

listing, 176
GetMyZone2 routine, 177-178

listing, 178
GetMyZonePhase2 function

listing, 62-63
GetNetRange routine, 143

using PGetAppleTalklnfo
routine, 143

254 ~ Index

GetNodeAddress call, 58-59,
174

GetOurAddr routine, 144--145
using PGetAppleTalklnfo

routine, 144--145
GetParm function, 171

listing, 171
GetRouterAddr routine, 145-

146
using PGetAppleTalklnfo

routine, 145-146
GetString trap, 45
GetZIP Addr function, 58-59

listing, 58-59
GetZIPAddr routine, 173-174

listing, 174
GetZoneList

(ZIP function 8) request, 59-
61

routine,65-66,68-69
loop in Phase 1 AppleTalk

listing, 60-61
GetZoneUserBytes structure, 60-

61
GoOnline routine, 200-204

listing,202-203
Global variables, 39

buffers, 38
parameter blocks as, 36

'GNRL' resource, 156

H
Half-routers, 14
HandleincomingMessage

method, 239-242
TPlayer .Handleincoming­

Message listing, 239-241
Hardware interfaces, 10
Header section ofNameTool

listing, 168-169

incomingPacket buffer, 81
incoming routine, 206-207

listing, 206
InitADSP routine, 227
InitCursorCtl call, 187
InitEntry routine, 199-200

listing, 199
INIT code resource, 193-194,

199
See also RemoteSysinfo

program
Initializing connection end

listing, 98
Interfaces

Chooser user, 151
miscellaneous, 135-160

International Standards
Organization-Open
Systems Interconnect

reference model (150-051). See
ISO-OSI reference model

Internetworking, 13-15
gateways, 15
repeaters, 14
routers, 14

Intranode message delivery, 137-
138

ISO-OSI reference model, 5-8
IsSelfSendOn routine using

PGetAppleTalklnfo
routine, 141

IT ActivePlayer method, 243-
244

TActivePlayer.ITActivePlayer
listing, 244

IT ADSP method, 225-227
TADSP.IT ADSP listing, 226-227

IT AsyncOp method, 220-221
T AsyncOp.ITAsyncOp listing,

220

ITPassivePlayer method, 244
TPassivePlayer.ITPassive­

Player listing, 244
ITPlayer method, 231

TPlayer.ITPlayer listing, 231

K
kASYNC global constant, 25, 27,

29, 169, 196
kCurrProtoRev constant, 196
kWaitingForRequest state

variable, 27
kSYNC global constant, 169,

196

L
LAP AddATQ call, 148
LAPRmvATQ call, 148
Layers and protocols, 5
'LDEF' resource, 157
LGetSelect call, 153
Link Access Protocols, 10

Ethernet Link Access Protocol
(ELAP), 10

LocalTalk Link Access Protocol
(LLAP), 10

Token Talk Link Access
Protocol (TLAP), 10

Listings. See program listings
Local variables, 35-36

buffers, 38
Local zone name, 58

Phase 1 AppleTalk networks,
59

Phase 2 AppleTalk networks,
62-63

LocalTalk, 10, 16-17
CSMA/CA (Carrier Sense

Multiple Access with

.,.. Index 255

Collision Avoidance), 16-
17

handshake, 17
LocalTalk Link Access Protocol

(LLAP), 10
Logical end-of-message, 107
Looking up NBP name on

network listing, 49

M
Machine busy

progress dialog, 25-26
spinning cursor to show status,

24-25
Macintosh

ability to send packets to itself,
141

Apple events, 3-4
AppleTalk networking, 4
communications environment,

3-4
name,45
serial communications, 3-4

Macintosh Programmer's
Workshop(MPW)and
NameTool, 163

MainRDEVDialog routine, 211-
214

listing, 212-213
Memory management, 35-42

above BufPtr, 39
avoiding heap fragmentation,

39-40
buffers, 38-39
non-application storage, 40-

42
parameter blocks, 35-38
system permanent memory, 39

Message related common unit
type listing, 197-198

256 ~ Index

Modal dialog, 26
Chooser, 151
movable,26
RemoteSyslnfo program, 193

ModalDialog toolbox trap, 26
MPP driver, 135-136

opening/closing, 147-150, 200--
201

MultiFinder, yielding to other
programs, 26-27

N
Name Binding Protocol (NBP),

12,43-56,135, 163, 165
Chooser, 155-157
entities, 43-44, 52-53
maximum number of

concurrentoperations,146
network names, 45-47

address, 55-56
confirming, 49-50
looking up, 48-49, 164-167
objects, 45-46
registering, 47-48, 50--51
removing, 54
type,46
wildcards, 46-47
zone,46

routines, 50--56
Name Binding Tool (NBT) zone

name lookup, 185-187
NameToolprogram, 163-189

AppleTalk routines, 173-187
global variables, 170
goals, 163
headersection,168-170
help option, 164
interval option, 165
looking up

NBP names on network,
164-167

with name option listing,
167

with type option listing, 167
without options listing, 166

main routine, 187-189
listing, 187-188

name option, 164
Phase 2 AppleTalk features

and, 165
routines, 168
structure, 167-170
synchronous variations of

calls, 165
timeoutoption,165
type option, 165
zone option, 164

NBP. See Name Binding Protocol
nbpBuffOvr error, 49
NBPExtract routine, 48-49, 54
NBPRegisterName call, 203
NBPSetEntity trap, 48-50, 53
NBPSetNTE routine, 47-48, 51,

53-54
Network Setup Control Panel, 45
Networks,4

basic concepts, 3-8
identification, 44
intranode message delivery,

137-138
maximum number of protocol

handlers, static sockets,
and concurrent NBP
operations, 146-147

names, 48-49
NBP,164-167
registering, 47-48, 50--52

node ID and network number,
144-146

packetdelivery,10--11
programs finding other

programs, 43-45

range of numbers available on
local wiring, 143

retrieving information about
another Macintosh, 191-
193

routers, 44--45
transferring data, 73

Nodes
detecting existence, 11
ID, 44, 142
name of zone, 67-68
socket number, 43

Non-applications, memory
management and system
heap storage, 41-42

Non-color QuickDraw, stack
size, 37

NewHandle trap, 37-38, 41
NewPtr trap, 31-32, 36, 38-39, 41
nmRefCon field, 42
'nrct' resource, 156-157

0
Open Systems Interconnect

reference model (ISO­
OSI). See ISO-OSI
reference model

Open transition, 147
OpenConnection method, 244-

245
T ActivePlayer.OpenConnection

listing, 245
OpenDriver call, 63, 65, 136
Opening .MPP driver listing, 136
Opening .XPP driver listing, 136
Opening connection listener

listing, 102
Opening connection with accept

mode listing, 103
Opening DSP driver listing, 137

..,. Index 257

OpenPassiveConnection method,
245-246

PassivePlayer.OpenPassive­
Connection listing, 246

Operations
asynchronous,23-33
parallel, 28-29
synchronous,23-24

Out-of-band attention signal, 13,
109

Output fromNameTool help
option listing, 164

p
'PACK' resource, 151-153

defining structures, 209-210
header, 157-158,209
ID = -4096, 157

PacketRec message type, 81
Packets, measuring round-trip

transmission times, 11
Parallel NBP lookup operations

listing, 28
Parallel operations, 28-29
Parameter blocks, 35-38
Pascal completion routine with

extended parameter block
listing, 33

Passive mode connection listing,
99

PA TalkClosePrep call, 147
PBControl call, 62-66, 178
PCloseA TPSocket routine, 91
PConfirm routine, 55-56
PConfirmName trap, 49-50
Permission to close transition,

147
pExampleRDEV routine, 210--

211
listing, 211

258 ..., Index

PGetAppleTalklnfo call, 138-147
PGetRequest routine, 32, 81-83,

88-89,202-204,206-207,
209

Phase 1 AppleTalk networks
AppleTalk Transaction

Protocol (ATP), 5~1
local zone name, 58-59
Zone Information Protocol

(ZIP),5~1

zone list, 59-61
Phase 2 AppleTalk networks

AppleTalk information, 138-
147

double tilde(=) wildcard, 47
local zone name, 62-63
Macintosh sending packets to

itself, 141
maximum number of protocol

handlers, static sockets,
and concurrent NBP
operations, 146-147

NameTool program and, 165
node ID

and network number, 144-
146

assigned in server range,
142

range of numbers available on
local wiring, 143

transition queue, 147-150
Zone Information Protocol

(ZIP), 61-66
zone list, 64-66

PI<illGetRequest routine, 83-84,
92-93

PI<illSendRequest routine, 83-84,
86, 89, 92

Player objects (Checkers
program)structure,217

PLookupName routine, 29, 48,
52-54, 165, 185-186

listing, 52

PNI<illSendRequest call, 85, 87
PNSendRequest routine, 81, 83,

87
PollForCompletion method, 219,

221,224,227-228
TADSP.PollForCompletion

listing, 228
TAsyncOp.PollForCompletion

listing, 221
POpenA TPSocket routine, 81-82,

90-91
Preferred interface, 15-16
PRegisterName routine, 47-52

listing, 51
preHandleRequest completion

routine, 32
Prepare to close transition, 147-

148
Printer Access Protocol (PAP), 13
Printer servers, 13
PrintHelp procedure, 172-173

listing, 173
ProcessZone routine, 60, 179, 182,

184-187
listing, 185-186

Program listings and program
fragments

See also programs
Abort method

TAsyncOp.Abort, 223
alternate type for GetZoneList

user bytes, 60
AreWeAServer routine using

PGetAppleTalkinfo, 142
assembler glue for Pascal

transition handler, 150
assembly language completion

routine with extended
parameter block, 32

asynchronous PGetRequest, 81
ATP extended parameter

block common unit type,
198

BDS element structure, 78
BufPtr allocating permanent

storage, 41
BuildZoneList routine, 64-65,

179
BuildZoneListl routine, 180-

181
BuildZoneList2 routine, 183-

184
C version of Pascal transition

handler glue, 150
call interface for the 'PACK'

code resource, 152
CheckStat routine, 170
common unit constants,

196
completion block routine data

block common unit type,
198

completion polling of
PGetRequest, 82

confirming NBP name on
network, 50

declaration of classTAsyncOp,
220

declaration of TActivePlayer
class, 243

declaration of TPassivePlayer
class, 243

declaration of TPlayer class,
231

denying connection request,
104

DoAfterCompletion method
TAsyncOp.DoAfter­

Completion, 222
TPlayer .DoAfterCompletion,

238
DoAfterConnection method

TActivePlayer .DoAfter­
Connection, 246

TPassivePlayer.DoAfter­
Connection, 247

~ Index 259

TPlayer.DoAfterConnection,
239

Doldle method
TAsyncOp.Doldle, 224

DoOperation method
TAsyncOp.DoOperation,
221

ExampleResidentCodelnstall
routine, 200

extended parameter blocks, 31
Free method

TADSP.Free, 228
TAsyncOp.Free, 223

GetMaxs routine using
PGetAppleTalklnfo, 146-
147

GetMyZone routine, 175
GetMyZonel routine, 176
GetMyZone2 routine, 178
GetMyZonePhase2 function,

62-63
GetN etRange routine using

PGetAppleTalklnfo, 143
GetOurAddr routine using

PGetAppleTalklnfo, 144-
145

GetParm routine, 171
GetRouterAddr routine using

PGetAppleTalklnfo, 145-
146

GetZIP Addr function, 58-59
GetZIPAddr routine, 174
GetZoneList loop in Phase 1

AppleTalk, 60-61
GoOnline routine, 202-203
HandlelncomingMessage

method TPlayer.Handle­
IncomingMessage, 239-
241

header section ofNameTool,
168-169

incoming routine, 206
INITEntry routine, 199

260 ..., Index

Program listings (continued)
initial call yielding to

application in MultiFinder,
27

initializing connection end, 98
Openconnection method
OpenPassiveConnection

method
IsSelfSendOn routine using

PGetAppleTalklnfo, 141
ITActivePlayer method

TActivePlayer.ITActive­
Player, 244

ITADSP method
TADSP.ITADSP, 226-227

ltAsyncOp method
TAsyncOp.IT AsyncOp, 220

ITPassivePlayer method
TPassivePlayer .ITPassive­
Player, 244

ITPlayer method
TPlayer.ITPlayer,
231

looking up NBP name on
network,49

main event loop yielding to
application in MultiFinder,
27

MainRDEVDialog routine,
212-213

message related common unit
type, 197

NameTool
lookup with name option,

167
lookup with type option,

167
lookup without options, 166
program main routine, 187-

188
opening .DSP driver, 137
opening .MPP driver, 136

opening .XPP driver, 136
opening connection listener,

102
opening connection with

accept mode, 103
output from NameTool help

option, 164
parallel NBP lookup

operations, 28
Pascal completion routine with

extended parameter block,
33

passive mode connection, 99
pExampleRDEV routine, 211
PGetAppleTalklnfo routine,

139
PLookupName routine, 52
PollForCompletion method

TADSP.PollForCompletion,
228

TAsyncOp.PollForCompletion,
221

PRegisterName, 51
PrintHelp routine, 173
ProcessZone routine, 185-186
RDEV assembly routine, 210
ReadAMessage method

TPlayer.ReadAMessage,
237

reading string using dspRead,
108-109

RegisterName method
TADSP.RegisterName, 229

registering NBP name on
network,47

resident assembly
RemoteSyslnfo routine,
205

responding to button message,
154

retrieving address block for
selected item, 152

Rez definition
'GNRL' resource, 156
'nrct' resource, 157
'STR' resources, 156

SendBuffer procedure, 36
SendBoardState method

TPlayer.SendBoardState,
236

sending an attention message,
110

sending string using dspWrite,
108

SendResponse routine, 208
SendStrRequest routine

usingPSendRequest, 79
setting up extended parameter

block, 31
source code for 'PACK' header,

158
spinning cursor, 25
StartTracking method

TPlayer.StartTracking, 232
StopTracking method

TPlayer.StopTracking, 234
StrFromPtr routine, 172
system heap allocating

permanentstorage,42
TActivePlayer.OpenConnection,

245
TPassivePlayer.OpenPassive­

Connection, 246
Track method TPlayer.Track,

233
turning SelfSend mode on,

138
UnRegisterName method

TADSP.UnRegisterName,
230

UseldleFreq method
TAsyncOp.UseldleFreq, 222

YieldTurn method
TPlayer.YieldTurn, 235

..._ Index 261

Program to Program
Communications (PPC)
Toolbox, 3

Programs
See also program listings and

individual program
listings

Checkers, 215-247
exchanging data, 13
finding other programs on

network, 43--45
NameTool, 163-189
RemoteSyslnfo, 191-214
yielding to others in

MultiFinder, 26-27
Progress dialog, 25-26
PSelfSend call, 137-138
PSendRequest routine, 25, 35, 75,

78-81,83-86, 177, 182,214
PSendResponse routine, 82-83,

88-90,207
Protocol handlers, maximum

number, 146-147
Protocols and layers, 5

R
RDEV assembly routine listing,

210
RDEV code resource, 193-195,

209-214
assembly routine, 209-210
main dialog routine, 211-214
main Pascal routine, 210-211

RDEV file, 151-160
See also RemoteSyslnfo

program
debugging, 160
flags, 158-159

ReadAMessage method, 237
TPlayer .ReadAMessage listing,

237

262 ~ Index

Reading string using dspRead
listing, 108-109

Receive buffer, 98
RegisterName method, 229-230

TADSP.RegisterName listing,
229

Registering NBP name on
network listing, 47

RemoteSyslnfo program, 191-
214

Chooser, 192
common unit, 195-198
ExRC (Example Resident

Code) code resource, 193,
195

goals, 191
INIT code resource, 193-194
modal dialog, 193
RDEV code resource, 193-195,

209-214
resident code, 204-209
source code structure, 194-

204
structure, 193-214
using, 192-193

RemoveName trap, 51
Repeaters, 14
Requesters, 78-84
Resident assembly

RemoteSyslnfo routine
listing, 205

Resident code RemoteSyslnfo
program,204-209

assembly routine, 204-205
incoming routine, 206-207
loading resource, 200-201
SendResponse routine, 207-

209
Responding to button message

listing, 154
Retrieving address block for

selected item listing, 152

returnedZoneName variable,
63

Rez definition
'GNRL' resource listing, 156
'nrct' resource listing, 157
'STR' resources listing, 156

Routers, 14, 44-45
half, 14
list of zones, 68-69
managing tables, 11
node ID and network number,

145-146
passing back address, 173-174
zone information, 12

Routing Table Maintenance
Protocol (RTMP), 11, 14

s
Send buffer, 98
SendBoardState method, 236

Player.SendBoardState listing,
236

SendBuffer routine, 35
listing, 36

SendRequest call, 63, 65
SendResponse routine, 207-209

listing, 208
SendStrRequest routine, 79-80

using PSendRequest listing,
79

Sending an attention message
listing, 110

Sending string using dspWrite
listing, 108

Serial communications, 3-4
Server program and asymmetric

transport between client
programs, 12

Services, identifying, 46
SetZone trap, 41
Setting up extended parameter

block listing, 31

Showlnit.a source code file,
194

Showlnit function, 198
SIZEOF function, 31
Socket number, 43
Source code for 'PACK' header

listing, 158
Source code structure

RemoteSyslnfo program
ExampleCommonUnit.p, 194-

195, 198,204,209
Examplelnit.p, 194, 198-204
ExampleRDEV.a, 195, 209
ExampleRDEV.p, 195, 209
ExampleResident.a, 195, 204
ExampleResidentUnit.p, 195,

204
Showlnit.a, 194

SpinCursor call, 182, 184
Spinning cursor listing, 25
Stacks, Color QuickDraw vs.

non-color QuickDraw size,
37

StartTracking message, 217
StartTracking method, 232-233

TPlayer .StartTracking listing,
232

Static
memory, 40-41
sockets, 146-147

StopTracking message, 217
StopTracking method, 234

TPlayer.StopTracking listing,
234

'STR' resource, 45, 155-156
StrFromPtr function, 172

listing, 172
StrFromPtr routine, 61
Synchronous calls, 23-24

parameter blocks, 35-37
Synchronous operations, 23-24
SysEnvirons call, 197, 207

...,. Index 263

SystemZone function, 41
System 7, 45-46
System heap

T

allocating global data block,
200-201

allocating permanent storage
listing, 42

avoiding fragmentation, 39-40
non-application storage, 41-42

TActivePlayer concrete class, 217,
242-247

declaration listing, 243
DoAfterConnection method,

246-247
ITActivePlayer method, 243-

244
OpenConnection method, 244-

245
TADSP abstract class, 217, 224-

230
declaration of class, 225
Free method, 228-229
IT ADSP method, 225-227
PollForCompletion method,

224,227-228
RegisterName method, 229-

230
UnRegisterName method,

230
TAsyncOp abstract class, 217,

219-224
Abort method, 223
DoAfterCompletion method,

222
Doldle method, 223-224
DoOperation method, 219,

221
Free method, 223
ITAsyncOp method, 220-221

264 ~ Index

TAsyncOp (continued)
PollForCompletion method,

219,221
UseldleFreq method, 220, 222

TEvtHandler class, 219
theEntityBuffer, 49-50
Token ring, 18
TokenTalk, 10
TokenTalk Link Access Protocol

(TLAP), 10
TPassivePlayer concrete class,

217,242-247
declaration listing, 243
DoAfterConnection method,

247
ITPassivePlayer method, 244
OpenPassiveConnection

method, 245-246
TPlayer abstract class, 217, 230-

242
class declaration, 231
DoAfterCompletion method,

237-239
DoAfterConnection method,

239
HandlelncomingMessage

method, 239-242
ITPlayer method, 231
ReadAMessage method, 237
SendBoardState method, 236
StartTracking method, 232-

233
StopTracking method, 234
Track method, 233-234
YieldTum method, 235

Track method, 233-234
TPlayer.Track listing, 233

Transactions (ATP)
at-least-once, 76
exactly-once, 76
freeing up response packets,

76-77

mechanics, 74-77
release packet, 76
release timer, 77
response bitmap, 75
retrying, 74-77

Transition queue, 147-150
Transport media

Ethernet, 17-18
LocalTalk, 16-18
Token ring, 18

Turning SelfSend mode on
listing, 138

u
UAsyncOp unit, 217
UNetStuff unit, 217
UnRegisterName method, 228,

230
TADSP.UnRegisterName

listing, 230
UpdateBoard message, 217
UseldleFreq method, 222

TAsyncOp. UseldleFreq listing,
222

w
Wild cards

asterisk(*), 46
double tilde(:==), 47
equal(=), 46
Name Binding Protocol (NBP)

names, 46-47

x-v
XPP driver, 57, 61--66, 136

Yielding to application in
MultiFinder

initial call listing, 27
main event loop listing, 27

YieldTurn method, 235
TPlayer.YieldTum listing, 235

z
ZIP. See Zone Information

Protocol
Zone Information Protocol (ZIP),

12,46,57-71, 163, 165
AppleTalk Transaction

Protocol (ATP), 57
Datagram Delivery Protocol

(DDP),57
GetMyZone (function 7), 58
GetZoneList (function 8), 59--61
Phase 1 Appletalk networks,

58--61

...,. Index 265

Phase 2 Appletalk networks,
61--66

routines, 66-71
Zone list, 59--60

Phase 1 AppleTalk networks,
61

Phase 2 AppleTalk networks,
64--66

zoneName variable, 61
Zones, 46

information from routers, 12

Titles in the Macintosh Inside Out Series

... Extending the Macintosh® Toolbox
Programming Menus, Windows, Dialogs, and More
John C. May and Judy B. Whittle
A complete guide to programming the Macintosh interface.
352 pages, $24.95, paperback, order #57722

.,. Programming QuickDraw™
Includes Color QuickDraw and 32-Bit QuickDraw
David A. Surovell, Fred M. Hall, and Konstantin Othmer ·
The first in-depth reference to the Macintosh graphics system.
352 pages, $24.95, paperback, order #57019

... Programming for System 7
Gary Little and Tim Swihart
A complete programmer's handbook to the newest version of the Macintosh system software.
400 pages, $26.95, paperback, order #56770

.,. Programming with AppleTalk®
Michael Peirce
An accessible guide to creating applications that run with AppleTalk.
352 pages, $24.95, paperback, order #57780

... The AJUX® 2.0 Handbook
Jan L. Harrington
A complete and up-to-date introduction to UNIX on the Macintosh.
448 pages, $26.95, paperback, order #56784

.,. System 7 Revealed
Anthony Meadow
A first look inside the important new Macintosh system software from Apple.
368 pages, $22.95, paperback, order #55040

... ResEdit™ Complete
Peter Alley and Carolyn Strange
Contains the popular ResEdit software and complete information on how to use it.
576 pages, $29.95, book/ disk, order #55075

... The Complete Book of HyperTalk® 2
Dan Shafer
Practical guide to HyperTalk 2.0 commands, operators, and functions.
480 pages, $24.95, paperback, order #57082

... Programming the LaserWriter®
David A. Holzgang
Now Macintosh programmers can unlock the full power of the LaserWriter.
480 pages, $24.95, paperback, order #57068

... Debugging Macintosh® Software with MacsBug
Includes MacsBug 6.2
Konstantin Othmer and Jim Straus
Everything a programmer needs to start debugging Macintosh software.
576 pages, $34.95, book/ disk, order #57049

.. Developing Object-Oriented Software for the Macintosh®
Analysis, Design, and Programming
Neal Goldstein and Jeff Alger
An in-depth look at object-oriented programming on the Macintosh.
352 pages, $24.95, paperback, order #57065

.. Writing Localizable Software for the Macintosh®
Daniel R. Carter
A step-by-step guide which opens up international markets to Macintosh software developers.
352 pages, $24.95, paperback, order #57013

.. Programmer's Guide to MPW®, Volume I
Exploring the Macintosh® Programmer's Workshop
Mark Andrews
Essential guide and reference to the standard Macintosh software development system, MPW.
608 pages, $26.95, paperback, order #57011

.,. Elements of C++ Macintosh® Programming
Dan Weston
Teaches the basic elements of C++ programming, concentrating on object-oriented style and syntax.
512 pages, $22.95, paperback, order #55025

.. Programming with MacApp®
David A. Wilson, Larry S. Rosenstein, and Dan Shafer
Hands-on tutorial on everything you need to know about MacApp.
576 pages, $24.95, paperback, order #09784
576 pages, $34.95, book/ disk, order #55062

.. C++ Programming with MacApp®
David A. Wilson, Larry S. Rosenstein, and Dan Shafer
Learn the secrets to unlocking the power of MacApp and C++.
624 pages, $24.95, paperback, order #57020
624 pages, $34.95, book/ disk, order #57021

Order Number Quantity Price Total

TOTAL ORDER

Shipping and state sales tax will be added
automatically.

Credit card orders only please.

Offer good in USA only. Prices and avail­
ability subject to change without notice.

Address-------------------

City/State/Zip _______________ _

Signature (required) _______________ _

_ Visa _MasterCard _AmEx

Account# ___________ Exp. Date ___ _

Addison-Wesley Publishing Company
Order Department
Route 12S
Reading, MA 01867
To order by phone, call (617) 944-3700

Programming
with !ppleTallt

M I CHAEL

AppleTalk® is the comprehensive
network system built into every
Macintosh®. All Macintosh
programmers, beginners or advanced,
need to learn the ins and outs of
working with the Apple Talk system .

Programming with AppleTalk is the
first hands-on guide to understanding
and working with Apple Talk. This book
describes the important features and
functions of the system in detail,
showing you how to create applications
and system extensions that run with
Apple Talk. Topics covered include
AppleTalk protocols and the protocol
stack, transport media, the Preferred
AppleTalk Interface, and storage
management. Numerous working code
examples walk you through using
RDEV, INIT, NBP, ATP, and ADSP and
provide special tips and techniques for
writing efficient and effective programs.

Cover design by Ronn Campisi

Addison-Wesley Publishing Company. Inc.

PE I RCE

You will also learn how to:
• Use synchronous and

asynchronous calls
• Avoid heap fragmentation
• Configure a Chooser Interface
• Work with Apple Talk drivers
and much more.

This thorough coverage of vital
Apple Talk concepts and features makes
Programming with AppleTalk an
essential reference for all
Macintosh programmers.

Michael Peirce is an
independent computer
consultant specializing in
Macintosh networking.
He formerly worked as a
senior software engineer
with Claris Corporation,
where he created a popular network
fil e sharing utility, Public Folder.

52495>

9 780201 577808

ISBN 0-201-57780-1
57780

