PROGRAMMING WITH

MACINTOSH
TURBO PASCAL -

&
b]

1 B

TOM SWAN

PROGRAMMING WITH

-MACINTOSH™
TURBO PASCAL

Tom Swan

John Wiley & Sons, Inc.
New York - Chichester - Brisbane - Toronto - Singapore

To Bill and Carmen
Never as near as friends should be

Turbo Pascal is a registered trademark of Borland International, Inc.

IBM is a registered trademark of International Business Machines, Inc.

CP/M is a trademark of Digital Research, Inc.

Apple, Macintosh, Mac, the Apple logo, the Macintosh logo, MacWrite, MacPaint,
and MacDraw are trademarks of Apple Computer, Inc.

Publisher: Stephen Kippur

Editor: Therese A. Zak

Managing Editor: Ruth Greif

Editing, Design & Production: G&H SOHO, Ltd.

This publication is designed to provide accurate and authoritative information
in regard to the subject matter covered. It is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other profes-
sional service. If legal advice or other expert assistance is required, the services
of a competent professional person should be sought. FROM A DECLARA-
TION OF PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE OF
THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF
PUBLISHERS.

Copyright © 1987 by Tom Swan
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted
by section 107 or 108 of the 1976 United States Copyright Act without the per-
mission of the copyright owner is unlawful. Requests for permission or fur-
ther information should be addressed to the Permission Department, John Wiley
& Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Swan, Tom.
Programming with Macintosh Turbo Pascal.

1. Macintosh (Computer)—Programming. 2. PASCAL
(Computer program language) 3. Turbo Pascal (Computer
program) I. Title.

QA76.8.M3S95 1987 005.265 87-18980
ISBN 0-471-62417-9

Printed in the United States of America

878 10987654321

Preface

Good tools simplify complex tasks. Good software tools help you write pro-
grams the way saber saws help carpenters build houses. You wouldn’t expect
carpenters to build their own saws and hammers. And you shouldn’t have to spend
months constructing your own software tools merely to add features that every well-
designed Macintosh program must have.

You probably know that the Macintosh comes with a programmer’s toolbox,
which controls just about everything the computer does. The Turbo Pascal soft-
ware tools in this book enhance the toolbox by adding new commands to Pascal
in the form of library units, which you compile ahead of time and store on disk
until you need them.

Chapters list the complete source code for several units. They also include de-
tailed technical descriptions, instructions, and many programming examples. In
here you’ll find tools for building program shells, operating the mouse, using
QuickDraw graphics, creating windows, designing dialog boxes, reading and writing
disk files, transferring among applications, and clicking and dragging icons. By
using these and other tools and by following the examples, you’ll master the dif-
ficult art of programming the Macintosh in Turbo Pascal. You’ll also find clear
instructions and hints about managing memory, a controversial topic and a
recognized breeding ground for program bugs.

You’re ready to use these tools if you have any size Macintosh, your Turbo Pascal
disks, and a fundamental knowledge of Pascal programming. You don’t have to
be an expert, full-time programmer to understand this material, but you should
have read one or more language tutorials—or have completed a Pascal introduc-
tory course—and be able to write, compile, and run at least a small program of
about 200 lines or so.

Who are you? You might be a student interested in a programming career. You
might be a professional programmer with deadlines fast approaching and plenty
of IBM PC or other computing experience but only a smattering of knowledge
about the Mac. You might own or work for a business that needs special software
but you’re reluctant to gamble time and money on a custom program. You’ve heard

iii

1V == Programming with Macintosh Turbo Pascal

all the horror stories and you know that to do the job right, you have to do it
yourself. Or you might be a serious hobbyist with more than a casual interest in
programming. If you’re any of these, you’ll find many uses for my software tools.

I wrote the tools in this book out of necessity. When I needed a hammer, I
made one. And then I used hammer to build saw, and saw to build plane, and so
on, until I had a kit full of Turbo Pascal tools for building Macintosh software.
It is my sincere wish that you get as much out of them as I have.

I am grateful for the contributions of many people including Teri Zak, Heather
Goguen, Ruth Greif, and Claire McKean. Joe Schrader carefully critiqued the en-
tire manuscript and made many fine suggestions. My wife and assistant, Anne Swan,
helped in ways too numerous to list. I am also thankful for the professional care
and expertise from everyone at John Wiley & Sons, Inc. and associates.

Tom Swan

Note to the Reader

Just before this book was printed, Apple Computer announced new system
software with features to take advantage of its SE and Macintosh II computers.
Although most changes have no effect on the programs in this book, a few icon
symbols are different and no longer match those in Chapter 6 and elsewhere. For
example, the caution, note, and stop alert symbols (see Figure 6.7 on page 260)
have the new designs shown in the table here. The toolbox functions in the center
of the table produce the symbols on the right for System versions 4.1 and later;
they produce the symbols on the left for earlier releases.

Original Toolbox New
icon function icon

|E CautionAlert &
|E NoteAlert
|E StopAlert 0

Contents

one Introducing Turbo Pascal

How to Get the Most from This Book

Programming by Example
Someone’s in the Kitchen with Turbo
About Debuggers
Using Turbo with Single-Sided Drives
Setting Up a Program Disk
Starting Turbo Pascal
Compiling to Disk

Turbo’s Menus
The Apple Menu
The File Menu
The Edit Menu
The Search Menu
The Format Menu
The Font Menu
The Compile Menu
The Transfer Menu

two Textbook Programs and Dumb Terminals

Line Numbers
Typing and Compiling Number
Number Play-by-Play

-

O NS RANWwW NN o~

b
IxzIscaN

21

21
22
26

viii == Programming with Macintosh Turbo Pascal

Tabbing in Text
TABS.INC Play-by-Play

Removing Tabs from Text
DeTab Play-by-Play

Adding Tabs to Text
ReTab Play-by-Play

Converting IBM PC Programs to Macintosh
IBM PC Identifiers Changed or Deleted
New Macintosh Identifiers Not in IBM PC

Turbo Pascal

three Turtle Graphics vs. QuickDraw

Turtle Graphics

A Star Is Born
Star Play-by-Play

The Twirling Turtle
Twirl Play-by-Play

QuickDraw Graphics
Above the Coordinate Plane
Points and Rectangles

A Graphics Shell
GraphShell Play-by-Play
Saving Graphics in MacPaint Files

Pens and Lines

Drawing Text
Chars Play-by-Play

Using Rectangles
Drawing Curved Shapes
Drawing Modes

Bit Maps

Regions
Regions Play-by-Play

31
34

35
38

38
41

41
2

51

55

57

57
59

60
62

64
64
67

70
72
77

77

82
86

88
90
92
95

97
99

four

five

Using screenBits
Animate Play-by-Play

Fractals
Fractal Play-by-Play

In Any Event

The Parts of an Application
Global Declarations
Program Actions
Display Handlers
Event Handlers
Initializations
Program Engine

Developing an Application—ApShell
ApShell Play-by-Play
ApShell Global Declarations (26-50)
ApShell Program Actions (54-175)
ApShell Display Handlers (179-216)
ApShell Event Handlers (220-339)
ApShell Initializations (343-393)
ApShell Program Engine (397-456)

ApShell Resources

Creating a Resource Text File
ApShell Resource Play-by-Play

MacExtras Unit
MacExtras Play-by-Play

Windows, Text, and Scroll Bars

Heaps Are for Keeps
All About Handles
Molding Your Own Handles
Disposing Handles

Multiple Windows
MultiWind Play-by-Play

Contents == Ix

100
104

10
116

121

122
122
123
123
124
126
126

128
136
138
140
144
145
153
154
156
156
159

163
170

181

181
183
190
194

194
200

X == Programming with Macintosh Turbo Pascal

Text in Windows 203
MacStat Play-by-Play 209
Picture Windows 211
Picture Play-by-Play 216
Text and Scroll Bars 217
Reader Play-by-Play 234
TextUnit Play-by-Play 236
SiX Computer Conversations 245
Standard File Dialogs 246
SF Play-by-Play 250
Dialog Item Lists 252
Buttons Play-by-Play 256
Dialogs in Memory 259
Alerts 259
Quit Play-by-Play 264
Radio Buttons 265
Radio Play-by-Play 271
Simple Data Entry 272
Entry Play-by-Play 277
Check Boxes 279
Options Play-by-Play 283
Using Options in Programs : 284
Error Messages 285
ErrorUnit Play-by-Play 288
Testing Error Messages 290
Erriest Play-by-Play 294
Data Entry Forms 295
DataEntry Play-by-Play 316
Dialog Tools 324

DialogUnit Play-by-Play 328

Contents == Xxi

seven Units as Software Tools 333
Developing a Software Library 333
Installing Units in the Compiler 334
The UnitMover Information Window 335
Transfer Tools 336
Transfer Play-by-Play 338
Let’s Do Launch 340
Launcher Play-by-Play 343
Icon Tools 344
IconUnit Play-by-Play 349
Clicking and Dragging Icons 353
IconTest Play-by-Play 360
Printing Tools 361
ImageUnit Play-by-Play 369
Using ImageUnit Tools 374
Putting Your Tools to Work 375
MaclLister Play-by-Play 392
Bibliography 395
Software 395
Books 395

Index 397

one

Introducing Turbo Pascal

In this book, I describe methods for writing Macintosh computer programs
in Turbo Pascal. I explain tricks and techniques for using disk files, opening win-
dows, designing dialogs, displaying icons, and driving printers. I include many soft-
ware tools that you can pull out and use in your own projects. And I fully explain
every statement in each listing so that you know exactly why—as well as how—the
programs do what they do.

Reading the book, you’ll start at the simplest level, typing in examples that
run in Turbo’s textbook environment, which does not have the familiar pull-down
menus and windows, and which does not let you operate desk accessories while
your programs run. Although that may seem contrary to what you’ve come to ex-
pect from Macintosh software, textbook programs are easy to write and often equal-
ly simple to use. They may not win any Macintosh design awards, but they come
in handy when all you need is a “quick and dirty” utility. And they’re ideal for
short tests and simple experiments that help you to choose one programming
method over another.

But my main goal in writing this book is to explain how to write fully charged
Macintosh programs, ones that use all the features of the standard interface—
what you see on screen in response to the things you tell the computer to do. Turbo
Pascal shines by letting you write both simple textbook examples as well as these
more sophisticated programs—without requiring you to change disks or to men-
tally switch gears. As you will learn, this is a language that lets you putter around
one day but get down to serious play the next.

HOW TO GET THE MOST FROM THIS BOOK

This is a hands-on book and, to get the most from it, you’ll need to get your
hands a little dirty. Do type in the programs and make them run. Do modify them
according to the suggestions I’ll make from time to time. Do experiment. Even if
all you do is type in the listings, at the very least you’ll add several new programs

2 == Programming with Macintosh Turbo Pascal

to your software library. And at best, you’ll acquire many useful tools along with
the knowledge that will help you to write your own projects. (If you would rather
not type in listings, you can order them on disk by sending in the form at the back
of the book.)

While that describes what this book is, you should know that it also is not
two things. It is not a complete reference to the Macintosh toolbox, the software
routines and data structures that give this computer its unique personality. And
it is not a Pascal tutorial. Other books cover these subjects and I avoid duplicating
their contents here. (See the Bibliography on page 395.) You don’t have to purchase
other books in order to use this one but you might want to pick up at least the
first volume of the Inside Macintosh series—the Macintosh programmer’s bible,
Of course, you’ll also need your Turbo Pascal Users Guide and Reference Manual,
which I’ll call the Guide from now on.

By the way, the programming in Inside Macintosh is almost entirely in Pascal
in a dialect that, except for minor details, Turbo Pascal follows exactly. If you have
any doubts about Pascal being a good choice of Macintosh programming languages,
consider that Apple Computer employees featured Pascal in Inside Macintosh.
What could be more reassuring than this direct endorsement?

PROGRAMMING BY EXAMPLE

If you haven’t already read through Inside Macintosh, don’t do so now. Even
that well-written reference makes boring reading material—whether or not you enjoy
paging through technical manuals as much as I do. Of course, Inside Macintosh
and the Guide contain important information and you should read them. Rather
than spending your time buried in references, though, a better plan is to read each
of the following chapters, type in the examples, run the programs, and then turn
to the references for more information about those subjects you don’t fully
understand.

By following this approach: typing examples, running programs, and reading
the descriptions of how they work—and then digging into the references for more
details—you’ll avoid making the common mistake of trying to memorize all 1,586
pages of the four Inside Macintosh volumes before even writing your first program.

The truth is, it’s simply unreasonable to expect to learn how to program the
Macintosh by reading only technical references. You can no more accomplish your
goal that way than you could learn how to cook haute cuisine by reading only nutri-
tional guides and cookstove repair manuals. Everyone knows that one of the best
ways to learn how to cook is to follow recipes and prepare dinners for guinea pig
friends and family. You can follow the same approach to learn more easily how
to cook up computer programs, too.

If anything, then, this is a book of recipes with ingredients for writing com-
puter software—with special emphasis on preparing dishes in Macintosh Turbo
Pascal. As the author of these recipes, I’'m aware that, like your taste in food, your

Introducing Turbo Pascal == 3

taste in software might not be the same as mine. But that’s unimportant. My goal
is not to convince you that my programs represent ideal designs but, rather, to help
you acquire the ability to season your own efforts. Of course, before learning how
much salt and pepper to throw in, you should know your way around the kitchen.
So put on your chef’s cap and let’s begin.

Someone’s in the Kitchen with Turbo

If you have at least 512K memory and two double-sided disk drives or, even
better, a hard disk, you’ll have no trouble compiling and running the programs in
this book. To help you set up your own work disks, Figure 1.1 shows the directory
of my Turbo Pascal boot disk running on a Macintosh Plus with two 800K drives.
On my disk, the System Folder contains the System, Finder, and ImageWriter files—
a bare bones configuration that leaves the most room for storing programs. On
your boot disk in your System Folder, you might have additional files that your
printer, network, or desk accessories require.

Along the top row of Figure 1.1, in addition to the System Folder, are two files,
RMaker and Turbo. Of course, Turbo is the Turbo Pascal editor and compiler.
RMaker is a resource compiler. It reads a text file and, much in the same way the
Turbo compiler reads and compiles a Pascal program, translates resources into a
binary form that programs can use.

All of the fully charged examples in this book include their resources in text

[ECJI===—=—= Turbo Pascal =[]

i

7 items 651K in disk 123K available
>
-
s
System Folder RMaker Turbo
) - ™
UnitMover ResEdit TMON User Area | |
5
*] o]

Figure 1.1 1 organize my boot disk this way. To type in and run the
examples in this book, you need only the three files on the top row
of icons. The files on the bottom are optional though useful utilities.

4 == Programming with Macintosh Turbo Pascal

form. After typing them in, you compile them with RMaker to produce a binary
file which Turbo then combines with your program to produce a finished result.

The bottom row of icons in Figure 1.1 are utility programs that make program-
ming easier—at least that’s what they intend to do. These “kitchen helpers” are
optional and you can remove them if you need more room on disk. UnitMover,
included on the Turbo Pascal disk, operates on precompiled units, which contain
common routines and data that you want various programs to share. It lets you
directly install units in the Turbo compiler to customize the way it works. By doing
that, you reduce the number of separate files the compiler accesses while it does
its work. You can also use UnitMover to remove units from the compiler.

The three other files along the bottom row do not come with your Turbo disks.
You don’t need any of them to type in and run the programs in this book, but I
include them here because I’ve found them to be useful utilities. You might want
to add them to your system someday. ResEdit is Apple Computer’s resource editor
program. It helps you design various resources such as dialog boxes, scroll bar con-
trols, radio buttons, windows, and other Macintosh features. TMON (The Monitor)
and its associated User Area file is a debugger—a program that sits in memory
looking over your program’s shoulder while it runs.

About Debuggers

Debuggers like TMON let you peer into memory to look at the actual byte
values that make up your program’s code and data. Most debuggers have a variety
of commands to trace your program’s instructions in hopes of finding errors.
Although many programmers swear by their debuggers, it’s wise not to rely too
heavily on them every time something goes wrong. There are other techniques you
should try first before looking into memory and attempting to puzzle out why
runaway software ran away. You’ll learn many such techniques as you read this book.

One such debugger, MacsBug, is in the Misc folder on your original Turbo
Pascal disk. It operates similarly to TMON but with considerably less aplomb.
MacsBug has no windows—just a “dumb terminal” display that scrolls up when
you type. It works well enough, though, to solve many problems and the price cer-
tainly is fair. (It comes free of charge on your Turbo disk.) To install it, just drag
the MacsBug file into your System folder and reboot. You should see the message
“MacsBug installed” below the familiar “Welcome to Macintosh” startup message.

Whichever debugger you decide to use, you activate it by pressing the excep-
tion button on the rear left side of the Macintosh case. This is the button nearest
the back edge of the computer. (The Macintosh’s 68000 microprocessor handles
unusual conditions by a method it calls exception processing. In general, this pro-
cess lets you interrupt a program’s normal flow, go do something else, and then
return to the original program—exactly what happens when you interrupt your pro-
gram to use the debugger.)

Introducing Turbo Pascal = 5

Pressing the second button, the one closest to you, reboots the Macintosh—
the same as turning off the power and then turning it back on. If there are no but-
tons on your case, you need to install them. Look in your original packing materials
for a light gray plastic piece with long fingers. Your Macintosh manual tells you
how to install it into the bottom vents on the rear left side.

If you don’t install a debugger, pressing the exception button on a Macintosh
Plus runs a ROM debugger that displays a small window and an angle bracket
prompt (>). The program can’t do very much and you should probably use TMON
or MacsBug instead. If you accidentally trigger the ROM debugger, though, type
G to return to your program. If that doesn’t work, try SM 0 A9F4 followed by
G 0, which sets up a command to exit to the shell—usually running the Finder.

Obviously, pressing either of the two debugging switches at the wrong time
can have serious consequences. Pressing the reboot button without first saving your
typing throws away changes since the last time you saved your file to disk. Press-
ing the exception button is somewhat less dangerous. This button activates the
debugger—TMON, MacsBug, or another brand. After pressing the button, you
can usually return to your program without missing a beat. Type EA (Exit to Ap-
plication) and press RETURN to leave MacsBug, or click TMON’s exit command.
Beware, though, that you might not be able to revive a badly damaged program.
In that case you’d have to reboot, losing any changes you forgot to save before ac-
tivating the debugger.

If you have trouble exiting from TMON when compiling and running programs
directly from Turbo, select the debugger’s user menu and page to the Launch com-
mand. Choose the option that launches (runs) the Finder. This works because of
the way the compiler fools running programs into thinking that Turbo is actually
the desktop Finder. If this method fails, follow these steps instead:

* Click open the Dump window. Type “ResumeProc” with the quotes after
the message, DUMP FROM.

* Note the first four bytes displayed in the window.

« Click open the Regs (Registers) window. Type the four bytes from the dump
window as the new PC (program counter). You do not have to type the first
two bytes if they are zero.

» Click Exit to return to your program.

A different sort of debugger, HeapShow, graphically illustrates memory in a
way that lets you see large amounts of the Macintosh’s innards on screen—up to
four megabytes at one glance! Unlike most debuggers, HeapShow installs and runs
as a desk accessory. You install it in your System file with Font/DA Mover and
then choose it from the Apple pull-down menu. You can even run it alongside your
program to see the effects of opening dialog windows and choosing program
commands.

6 == Programming with Macintosh Turbo Pascal

See the Bibliography for addresses where you can write for information about
these debuggers and programming utilities.

Using Turbo with Single-Sided Drives

You can use Turbo Pascal with two single-sided, 400K disk drives. In that case,
your boot disk should have only the files on the top row of Figure 1.1. A good
idea is to make up separate disks with UnitMover, ResEdit, and other utilities.
Reboot with those disks when you need to work on resources or debug a renegade
procedure.

If you have the TMON debugger, you could prepare a boot disk to load the
program, and after booting, replace it with your Turbo Pascal compiler disk. You
don’t need the debugger disk files after loading the debugger into memory—it stays
there until you reboot.

Macintosh owners with only one single-sided drive will have trouble compil-
ing larger programs. If you have this setup, make sure your System Folder con-
tains only the Finder, System, and ImageWriter files. Use the utility Font/DA Mover,
which you received with your Turbo disk, to remove extra desk accessories and text
fonts. These take up space and you don’t need them to compile programs. You need
only the bare bones System Folder and the Turbo file. (Font/DA Mover prevents
you from removing the fonts and single desk accessory required for normal opera-
tion.) Make up other disks with RMaker, UnitMover, and other utilities. With this
setup, you’ll be swapping disks in and out to compile and run programs.

Another possibility for single-drive owners is to purchase a RAM disk pro-
gram, which lets you simulate a second disk drive in memory. Place your Turbo
file on this RAM drive and boot to a disk with nothing more than a System Folder.
This will give you enough room to save and run most programs.

Setting Up a Program Disk

Many of the programs in this book expect to find certain files in named folders
and volumes. You can change these requirements without doing any harm, but you’ll
have to watch for specific references in the listings. In all cases, such references are
compiler directives (commands to the Turbo compiler) that look like the following
and usually appear early in the program:

{$0 Programs:Shells.F: }

To avoid making changes to the listings, format a blank disk and give it the
volume name Programs. When you see a name such as Shells.F in the listings you
know by the .F ending that it refers to a folder. Create this folder with the Finder’s

Introducing Turbo Pascal = 7

New Folder command, click its icon, type the folder name, and save your typing
under the file names suggested in the chapter notes. All of this is optional. If you
want to use a different setup, go ahead.

Starting Turbo Pascal

Double-click the Turbo icon to start the Turbo Pascal editor. In a moment,
you’ll see Turbo’s menu commands in the menu bar on the top line and, in the center
of the screen, an untitled, blank window with a flashing vertical bar cursor in the
upper left corner (Figure 1.2).

You probably need no instructions about pulling down menus, choosing com-
mands, typing, selecting, cutting, and pasting text. Most of you already know how
to work the scroll bars and save files to disk. Neophytes who just unpacked their
Macs might want to spend about an hour each with those classic programs Mac-
Paint and MacWrite and then come back to Turbo Pascal. It won’t take you long
to become a Macintosh expert. Easy-to-learn is not just a sales pitch but a prime
feature of this remarkable computer.

Typing and running programs in Turbo Pascal could not be simpler. But don’t

& File Edit Search Format Font Compile Transfer
— = Untitled

Figure 1.2 When starting a new program, the Turbo Editor gives you a blank win-
dow in which to type. At most, you can have eight windows open at one time.

== Programming with Macintosh Turbo Pascal

Listing 1.1. NUMS.PAS

PROGRAM Nums;
VAR
n : INTEGER;

BEGIN
Writeln;
Writeln('A few numbers...');
Writeln;
FOR n := 1 TO 10 DO
Writeln(n : 8);
END.

take my word for it. Prove it to yourself by typing Listing 1.1. Use the tab and
backspace keys to line up columns and don’t worry if your alignment isn’t exactly
as the listing shows.

When you’re done, choose the Save As command from the File menu, and
type NUMS.PAS to save your program text on disk. (The file name ending, .PAS,
is merely traditional. You can name your programs anything you want but ending
your Pascal source text files in .PAS tells you in a glance that this is a program
listing and not something else.) After naming your text file with the Save As com-
mand, choose Save to save any changes you make. Or, choose Save As again and
type a different name if you want to preserve a previously saved version. Some pro-
grammers keep all their revisions in files such as MyProg.001, MyProg.002,
MyProg.003, and so on. If you do this, you can always go back to previous ver-
sions in case you find later that a change led you down a blind alley and you want
to back out to the street and try another route. Of course, this also takes more disk
space.

After saving your program text, choose the Run command from the Compile
menu. What happened? You should have seen a brief display of numbers and then
the Turbo screen again. This demonstrates a problem when writing textbook style
programs such as this simple example. To make the program pause while you look
at its results, insert the statements:

Writeln;
Write('Press Return...');
ReadlLn;

just above END. Then run the program again. This time, when it gets to ReadLn,
it waits for you to press the Return key. Then it goes back to the Turbo Editor. Keep
this trick in mind when typing examples from a Pascal tutorial such as my book,
Mastering Turbo Pascal. If your programs end before you’re ready, insert the above
statements to make them pause before returning to the editor.

Introducing Turbo Pascal = 9

Compiling to Disk

What you just did is to compile a Pascal program in source code form—
meaning text—to binary code, or machine language. When you do this with Tur-
bo’s Run command, your program operates in a sort of piggy-back fashion on top
of Turbo Pascal, which remains in memory along with the program code and text.

Another way to compile and run programs is to choose the Compile menu’s
To Disk command. This compiles programs into binary code the same way the Run
command does but stores the result on disk as an application—a program that you
run directly from the Finder. On disk, the name of your program is the same as
the name you use after the PROGRAM identifier, in this example, Nums. To change
the name of your program’s code disk file, insert an Output compiler option as
the first line in your program. The option has the form:

{$0 fileName)

Replace fileName with the name you want the compiler to use. You can also
specify volume names and folders by putting them in front of the name and
separating the parts with colons. If you have the disk volume MyDisk and a folder
Programs, save the Nums application code in that folder by writing this as the first
line:

{$0 MyDisk:Programs:Nums }

If you leave out Nums and just end the file specification with a colon, the out-
put goes to the volume and folder you specify, but it has the same name as the
identifier after PROGRAM, just as it does when you don’t use an Output com-
piler option. This is the method many examples in this book use to send their code
to specific folders on disk.)

When compiling to disk code files, there are two ways to run a program. These
are:

» Quit Turbo and double-click the application icon.

» Choose the File menu’s Transfer command and select your program (or any
other application).

When you transfer to another application, Turbo does not stay in memory.
After you quit your program, you return to the Finder and must restart Turbo Pascal
to compile another program. Of course, your program may have its own Transfer
command, in which case you could transfer back again to Turbo. (Chapter 7 ex-
plains how to add a Transfer command to your own projects.)

Figure 1.3 shows the relationship among the Finder, Turbo Pascal, and your
program. The shaded lines enclose items in memory depending on the compiling
method you use. The arrows show the order in which you use the items. For exam-

10 == Programming with Macintosh Turbo Pascal

A R AR S AR e

¢
§ Program Text
i
. 6 Turbo
Finder Pascal
? ; Compile to Disk

O O S D B SO SR PO 0

Figure 1.3 There are two ways to run Pascal programs in Turbo: directly from the
editor or from the Finder. The first method takes more space because your program
text, the compiler, and your code exist in memory together. The second method
opens more memory to your program, which no longer has to share space with other
items.

ple, from the Finder, you can run a code file—an application—or you can run Turbo,
which ean run code two different ways. As you can see when you compile to
memory, Turbo Pascal and your program’s source text and binary code are all in
RAM at the same time. When you compile to disk, only your program code is in
memory.

Because the editor lets you open eight windows, you can have up to that many
programs in memory and switch among them simply by bringing a window to the
front and choosing the Run command. But remember that this might cause you
to run out of RAM—especially if you have a smaller Macintosh or if you have
large debuggers and RAM disks, which occupy even more memory space. For that
reason, it’s probably best, at least for the examples in this book, to work on one
program at a time. Turbo’s in-memory compiling ability is extremely useful but you
must remember that it cannot work under all possible conditions.

Introducing Turbo Pascal = 11

TURBO’S MENUS

The Turbo system has eight pull-down menus. This section gives brief descrip-
tions of what every command does. Figures 1.4 through 1.13 illustrate each menu,
adding brief descriptions to the right of the commands. Of course, the Guide details
every Turbo feature and command. Rather than duplicate this information here,
the following notes suggest several hints that you might not pick up on your own.

The Apple Menu

The only command here that belongs to Turbo Pascal is the first, About Tur-
bo. When you choose it, you see Borland International’s commercial message. (In
later chapters, I’ll show you how to add similar commercials to your own programs.)

The other commands in the Apple menu are desk accessories, some of which
come on your Turbo disk. The Alarm Clock, Control Panel, Key Caps, and Note
Pad are probably old friends. Even if you’ve been using your Macintosh for a brief
time, these standard accessories need little introduction.

But the reason I list this menu here is to point out the HeapShow and miniDos
accessories, which do not come with Turbo Pascal. I mentioned HeapShow
earlier—it’s the debugger that displays large amounts of memory. There are two
versions, one loading into the system heap (HeapShowS) and the other into the
application heap (HeapShowA). (If you don’t know what the heap is, you’ll learn
more about it in future chapters.) Although you can use either version, HeapShowA
is probably best. It displays the memory area containing your program’s data struc-
tures along with its code if you run it from disk.

The miniDos accessory is a public domain program, available through most
user groups. (If you can’t find this program, try looking through magazines for

About Turbo... | - Display commercial message
Alarm Clock - Standard desk accessory
Control Panel | - Standard desk accessory
HeapShowA - Debugger in application heap
HeapShow$ - Debugger in system heap
Key Caps - Keyboard characters
miniDos - Public domain disk file utility
Note Pad - Standard desk accessory

Figure 1.4 Turbo’s Apple menu.

12 == Programming with Macintesh Turbo Pascal

sources that distribute public domain software.) Once you use a utility like miniDos,
you won’t want to give it up. It adds renaming, deleting, and other disk file com-
mands to programs such as Turbo Pascal that don’t have these abilities. If I knew
the author of this program, I’d certainly give credit here. It’s a valuable program.

The File Menu

The File menu’s New command (Figure 1.5) opens an untitled window—use
Save As to give it a name. Open reads an existing text file, ready to compile or edit.
Close removes a window from the screen. If you made changes, it asks whether
you want to save your file to disk. Save writes your file to disk using the name you
last supplied to Open or to Save As. If you didn’t specify a name, Save asks you
to supply one. All of these commands operate similarly in many other Macintosh
programs.

Not so familiar is the Open Selection command. To use it, select a file name
by clicking and dragging the mouse over the characters in the active window. Or
double-click the mouse to select an entire word. For example, if you have the com-
piler Include directives,

{$I MyProg1 }

{$I MyProg2 >
{$1I MyProg3 }

New %N | - Open new window (up to 8)

Open... 30 | - Open existing text file

Open Selection 3P |- Open file name selected in text
Close 3. | - Close active window

Save 38S | - Save changes to disk

Save fis... - Name a file before saving
Page Setup... - Prepare printer options

Print... - Print text in active window
Edit Transfer... - Edit entries in the transfer menu
Save Defaults - Save Turbo options

Transfer... T | - Transfer to another application
Quit $Q | - Quit Turbo and return to Finder

Figure 1.5 Turbo's File menu.

Introducing Turbo Pascal = 13

you can double-click on MyProgl, 2, or 3, and then choose Open Selection to read
that file from disk into a new window. This is handy when your program is in
separate files and you want the compiler to include those pieces as though they
were one. (That’s what the Include directive does—it loads a separate text file as
if that text were in the main file at that position.) Using the Open Selection com-
mand is easier than opening separate files one-by-one.

Page Setup and Print are standard commands to configure your printer and
print text from the active window. Before printing Pascal listings, though, you might
want to wait until you type in MacLister in Chapter 7. The program uses the Im-
ageWriter printer’s native text mode, which is faster than Turbo’s standard print-
ing ability.

The Edit Transfer command lets you add or subtract the names that appear
in the Transfer menu (see Figure 1.13 on page 20). By installing application names
in this menu, you can transfer to them by choosing their names from this menu.
This is particularly useful when switching among various utility programs such
as ResEdit and RMaker. You can also compile your program to disk, insert its name
into the Transfer menu, and select it just as you do other commands.

Save Defaults writes to disk changes you make to the Turbo Editor. It saves
the names you type with the Edit Transfer command plus the contents of the two
Options dialogs from the Edit and Compile menus. After setting the options the
way you want them and choosing Save Defaults, Turbo uses those same selections
the next time you start it from the Finder.

The Transfer command brings up a standard file dialog, from which you select
the name of another application you want to run. It does the same thing as typing
an application name with Edit Transfer and then using the Transfer menu to run
that program. If you transfer to the same program many times, it’s probably best
to install its name in the Transfer menu rather than use the Transfer command,
which simply takes more steps. Quit—of course—quits Turbo and returns to the
Finder.

The Edit Menu

Undo, Cut, Copy, Paste, and Clear (Figure 1.6) undoubtedly hold no mysteries
for most Macintosh owners. Undo is reasonably smart and usually can reconstruct
an entire line after you’ve made changes to it. But if you make changes to one line
and then use the mouse to position the cursor elsewhere, you might lose the ability
to undo what you previously could have undone.

Shift Left and Shift Right are two commands that ought to be required by law
in other Pascal program editors. (They’re easiest to use by typing the command
and left or right square bracket keys—1I rarely choose them from the menu.) To-
shift lines, select them by clicking and dragging the mouse. Be careful to select on-
ly entire lines—the commands do not work if you select only a partial line. (If you
do it correctly, your selected text appears as a perfectly rectangular dark block with

14 == Programming with Macintosh Turbo Pascal

| Eart I

Undo 382 |- Undo most recent editing change

Cut 8H |- Cut selected text

Copy 38C | - Copy selected text

Paste 8D | - Paste cut or copied text at cursor
Clear - Erase texnt (can't later be pasted)

Shift Left %[|- Shift selected lines left
Shift Right 3] |- Shift selected lines right

Options... - Change editing options

Figure 1.6 Turbo's Edit menu.

no over- or underhangs.) After selecting the text you want to move, shift the lines
left or right, moving one character position for every keypress. This is most handy
for Pascal listings where you frequently change indentations to show nesting levels
in WHILE loops and in other situations.

The Edit menu Options command brings up the dialog in Figure 1.7. It lets
you change the tab width and tell Turbo if you want it to automatically indent lines
and whether or not to start with a blank, untitled window. (There’s another Op-
tions command in the Compile menu—don’t let it confuse you.) I set tab widths
to 3 and you should do the same if you want your listings to look like the examples
in this book. But you are free to use any setting you want—it doesn’t affect the
way programs run.

Switch on Auto Indent if, after pressing Return, you want Turbo to place the
cursor directly below the first non-blank character in the line above. (It’s normally
on.) The advantage when typing Pascal listings is that you don’t have to tab to the
beginning of each new line in order to maintain indentation levels. The disadvan-

. & Auto Indent
Tab width: [] startup Window

Figure 1.7 Turbo's Edit menu Options command displays this
dialog window.

Introducing Turbo Pascal = 15

tage is that you have to press the backspace key or use the mouse to move the cur-
sor to the left. Try both settings to see which you prefer. (I keep it on.)

Switch the Startup Window option off and Turbo will not automatically open
a new window every time you start it. This is the setting I use. It avoids having to
close the untitled window every time I start Turbo simply to edit another file. (This
is a good option to consider for your own programs. How many times have you
started MacWrite or MacPaint only to have to close its window in order to load
a different file?)

Remember to choose the Save Defaults command from the File menu to save
your options. That way, Turbo remembers your settings for the next time.

The Search Menu

The menu in Figure 1.8 may be somewhat misnamed—only the first three com-
mands do any searching. Find lets you search for text fragments. After you choose
it, a dialog window appears (not shown here). Type the string you want to find
and click OK to begin searching from the current cursor position down towards
the end of your text.

If you want to find only whole words—surrounded by blanks or punctuation—
click that option. This is helpful when you have a lot of words such as SecrnDump
and ClearScrn and you want to find Scrn all by itself. Click the Case Sensitive button
to find only exact upper- and lowercase spellings of words. With this button off,
While, while, and WHILE are no different to the search operation.

One trick to remember is that you can double-click any word in your text and
then choose the Find command. Doing that automatically loads the selected word
as the next search fragment.

Find Next is the same as Find but repeats the same search without making
you type the fragment again. Get in the habit of typing Command-D to locate the
next occurrence of words.

Choose Change when you want to replace one word with another. (You can

|_searcn N

Find... %F | - Find text fragment
Find Next %D | - Find same text fragment
Change... %A | - Find fragment(s) and change

Home Cursor $H | - Move cursor to top of window

Window $W| - Switch to another window

Figure 1.8 Turbo’s Search menu.

16 == Programming with Macintesh Turbo Pascal

double-click the search fragment just as you did with the Find command.) Press
the Tab key to advance to the line that says Change To: and type whatever new
text you want. If Turbo finds at least one of your search fragments, it asks you
for permission to change it (click Yes or No), whether you want to replace all such
fragments without being asked for permission from now on (click All), or if you
want to stop searching now (click Cancel).

Type Command-H to home the cursor—meaning to send it to the top left cor-
ner of the active window. This also redisplays text from the first line. Before using
the Find and Change commands, first remember to home the cursor. Searching
always proceeds from the cursor down toward the end of the text—despite what
portion of text you see in the window. If the cursor is at the end of your document
and you try to Find something, you probably will hear a beep, indicating that Tur-
bo didn’t find your search fragment. This can be confusing if you are viewing your
text from the top but you left the cursor at the bottom. Remember to home the
cursor and you won’t have that problem. (Sometimes you may want to search from,
say, the middle of your text and ignore words above the cursor. In that case, don’t
home the cursor before starting a search.)

The final command in the Search menu, Window, rapidly changes from one
window to another. When you have several windows open at the same time, it’s
easier to type Command-W than it is to drag windows aside and click inside their
borders to activate the window you want. The disadvantage of the Window com-
mand is it doesn’t let you choose which window you want to see next—it just cycles
through them all. It works fast enough, though, that this is more of a minor an-
noyance than a major problem.

The Format Menu

The upper part of the Format menu (Figure 1.9) affects windows; the lower
part affects text inside windows. When you have more than one window open, you
can Stack them on top of each other like shingles on a roof. Or you can Tile them,
placing each window in its own area on the screen. With tiling, the more windows
you have, the smaller each becomes.

I prefer tiling multiple windows and selecting the one I want by clicking its
title bar. Then I use the Zoom Window command to expand that window to full
size. After making changes to the text in that window, I again choose Zoom Win-
dow to reduce the window back to its original size. That uncovers the other tiled
windows, letting me select another one to zoom. If you open four or six windows
now and Tile them, you’ll see what I mean.

A shortcut is to double-click any window title bar, which does the same thing
as zooming. This is much easier than choosing the Zoom command, and it works
in both directions—that is, from little window to full size and back again.

The font sizes in the bottom part of the Format menu let you choose the size
of text in windows. For programming, you probably should use the default setting

7
€00
03ew>

Wb 35epe
L1030 95-81

Introducing Turbo Pascal = 17

Stack Windows | - Restack windows like shingles
Tile Windows - Separate windows like tiles
Zoom Window | - Expand or shrink active window

v9 point - Select font size
10 point
12 point
14 point
18 point
24 point

Figure 1.9 Turbo’s Format menu.

of 9 points unless you have trouble seeing such small text. Another good choice
is 12 points. Other sizes don’t look very good in the standard Monaco text font.

If you change the point size, it affects only the current window. If you then
load another file, its text uses the new size setting. But remember that changing
font sizes, unlike some other editors such as MacWrite, never changes anything on
disk. The next time you load a file, its text displays in whatever point size is now
in effect. Remember to save the default settings if you change point sizes and want
Turbo to use that size from now on.

The Font Menu

There’s not much to say about the menu in Figure 1.10. You can select different
fonts in which to display text although the default Monaco font is the one most
programmers prefer. This font, whose name is a play on words—it’s a Monospaced
font—makes it easy to line up columns, a fact that makes indented languages like
Pascal easy to read. The other fonts are proportionally spaced and, therefore, don’t
produce as good-looking listings.

Chicago | - System font (do not remove)
Geneva - Application font (do not remove)
Helvetica | - Extra font (okay to remove)

vMonaco | - Programming font (do not remove)
Times - Extra font (okay to remove)

Figure 1.10 Turbo's Font menu.

18 == Programming with Macintosh Turbo Pascal

The Monaco font does have a few annoying features that detract from its
usefulness in programming. For example, the lowercase | and the uppercase I are
identical—a disaster for programmers who tend to be fussy about single bits, not
to mention whole characters. Some people use a utility like ResEdit to add a hat
and foot to uppercase I’s and put a slash through zeros.

If you need the disk space, use the Font/DA Mover utility to remove the
Helvetica and Times fonts (in their various point sizes). You don’t need them to
write programs. Be careful, though, not to remove fonts that other programs need—
including your own.

The Compile Menu

You’ll probably use the Compile menu (Figure 1.11) the most often. I already
explained the Run and To Disk commands. To Memory is similar to Run in that
it compiles your program directly into Macintosh memory. After you do that, choos-
ing Run runs the program without recompiling. But if you make any changes be-
tween the time you compile to memory and choose Run, Turbo recompiles your
program anyway.

It may seem redundant to have the To Memory command when Run also com-
piles to memory. But there are two times when you need it. When you have a pro-
gram in two or more pieces and use compile Include directives to compile those
pieces as explained earlier, choose Run to compile and all goes well. But if you
then make a change to a file that is not the main program and choose Run, Turbo
knows you didn’t change the main text and it just reruns your same program—it
doesn’t recompile it and include the changes you just made to the other pieces.
The compiler doesn’t know that text in other windows is related to the text you
tell it to compile. For this reason, you first have to compile to memory after changing
a supporting text file and then choose Run to run the program.

| compite I

Run %R |- Compile and/or run program
To Memory 8M| - Compile only--do not run

To Disk %K | - Compile to disk file

Check Syntax Y |- Check for errors in program
Find Error $E |- Find fault of run-time error
Get Info 81 |- Display facts about program
Options... - Change compiling options

Figure 1.11 Turbo's Compile menu.

Introducing Turbo Pascal = 19

The other time to compile to memory is when you design your own units, con-
taining precompiled routines and data that you want other programs to share. As
with Include files, if you change something in a unit after running your program,
Turbo won’t recompile that same program unless you make a change to it. To force
Turbo to read the new programming in your modified unit, select To Memory and
then Run. (The To Disk command doesn’t have this same idiosyncrasy, by the way.
It always compiles your program from scratch.)

The Check Syntax command compiles the program in the frontmost window,
but it does not generate machine language code. Because it skips this step, it is faster
than Run or To Memory. Check Syntax can’t tell if your program will run correct-
ly; it tells only whether you wrote it according to Pascal syntax, the rules that define
the language and how its parts go together.

Use the Find Error command to locate where in your program an error oc-
curred while the program was running. If you receive a “Bomb Box” error and
click the Resume button, Find Error locates the instruction that caused the prob-
lem. This assumes, though, that you are able to return to the editor. Some errors
won’t let you back into Turbo and, in that case, you have no choice but to reboot.

Choose Get Info for some information about your program. A window tells
you how many bytes your text occupies in memory, how many lines it contains,
whether you compiled the program and, if you did, the size of its code and data
sections. It also tells you how much memory you have available in the heap—a
term that refers to an area of memory of which we’ll be seeing a lot in future
chapters.

The final Compile menu command, Options, brings up the dialog in Figure
1.12. The Symbol table default setting of 32K is plenty for all the examples in this
book. To conserve memory, lower this value. While compiling, if you ever receive
the error message “Too many symbols,” set it a little higher.

The Auto Save Text option is very helpful and I suggest you turn it on. (Nor-
mally, it is off.) That way, every time you choose Run from the Compile menu,
Turbo automatically saves to disk text in all windows in which you made changes.
The first time you run a program but forget to save your text—and have to reboot
due to a program bug—you’ll appreciate the value of the Auto Save feature.

The Default Directories tell Turbo where to look for various files. Each of the
letters to the left of the long boxes stands for one type of file according to this plan:

U—Unit code files

I—Include files

R—Resource files

L—Assembly language .REL files
O—Output files

For example, if you want to load Include files from the volume PRO-
GRAMS:LIBRARY:, then type that in the box next to the letter I. This lets you
keep files of one type together in folders and is particularly useful if you have a

20 == Programming with Macintosh Turbo Pascal

symbol table K-Bytes [32 | Xl Auto Save Text
Default Directories:

suU
]
$R
$L
$0

_ |

Figure 1.12 Turbo's Compile menu Options command displays this dialog
window.

hard disk. Rather than cluttering a main directory with all kinds of files, you can
put your units in one folder, your resources in another, and send your compiled
code to yet another folder.

Turbo saves these options along with the Edit menu options when you choose
the File menu’s Save Defaults command.

The Transfer Menu

The commands in the Transfer menu (Figure 1.13) are completely up to you.
Anything you type using the Edit Transfer command in the File menu shows up
in the Transfer menu. To transfer to another program, just choose its name from
this menu.

Be aware that Turbo doesn’t check whether the names you type are the actual
names of real applications. If you type Rumpelstiltskin, Turbo presents that name
in the Transfer menu. If you try to transfer to a file that doesn’t exist, you receive
a “File not found” error. If that happens, click the mouse to return to Turbo.

Transfer

RMaker - Transfer to resource compiler
ResEdit - Transfer to resource editor
UnitMover | - Transfer to unit utility

Figure 1.13 Turbo's Transfer menu.

two

Textbook Programs and
Dumb Terminals

When you run simple Pascal programs, Turbo displays a simulated dumb ter-
minal, similar to the computer terminals of old with no processing ability and, in
some cases, unable even to position the cursor, erase lines, or do other screen opera-
tions. The Turbo dumb terminal is a bit smarter than that, but it’s still no fancy
CRT. Don’t expect much from it.

Despite being primitive, though, Turbo’s dumb terminal display is useful for
writing short examples such as the ones you might find in a Pascal textbook—
hence the name, textbook program. You can also use this display for experiments
and utilities that do simple jobs when you don’t care whether you can access desk
accessories or use windows.

If you are typing programs from a Pascal tutorial, the last part of this chapter
lists keywords that are different on the Macintosh and IBM PC versions of the com-
piler. This list, along with your other references, helps you to weed out and rewrite
statements that work on only one or the other computer.

To demonstrate that textbook programs do have value, though, following are
three programs I used frequently to help prepare this text and to convert program
examples and tests created with other text editors.

LINE NUMBERS

Line numbers in program listings may seem out of place to experienced Pascal
programmers, but I include them for several reasons in all examples (except for
the short program in Chapter 1). They make it easy for me to refer to specific lines
and, therefore, they make it easier for you to find those lines without hunting
through the text, looking for words and phrases. They also prevent accidentally
leaving lines on the cutting floor while preparing this book for publication. If the
line numbers are in sequence, you can be sure that the listings are intact. Remember,

21

22 == Programming with Macintosh Turbo Pascal

though, that the line numbers are not part of the program and you must exclude
them while typing. Type only the text to the right of the numbers and colons in
the left column.

And that brings us to the first example of a textbook style program—the same
program I used to add the line numbers to the listings in this book. The program
demonstrates also how to read and write disk text files.

In the following sections, I describe how to type in, compile, and run Number.
I then explain each line of the program in a “play-by-play” description, pointing
out details that will help you to write similar examples of your own. I follow this
same format for most of the examples to come.

Typing and Compiling Number

Type in Listing 2.1, shown on page 24. (Remember not to type the line
numbers.) Use the Tab key to maintain approximately the indentation in the listing.
But don’t worry if your typing doesn’t match exactly the printed copy here—Pascal
ignores indentation when it compiles a program.

Save your program as NUMBER.PAS using the File menu’s Save As command.
Compile to memory or to a disk code file. (If you have the Auto Save option on,
you can simply Run. In that case, Turbo automatically saves your text to disk. If

NUMBER: Numbers lines in a text file

1, For the input file, type the name of any text file,

2, For the output file, type CONSOLE: or PRINTER:, or type
the name of a disk file to hold the output text,

3, Press RETURN to end program,

Input file? number .pas
Output file? L2.1
153 lines done

Input file?

Figure 2.1 The Number program (Listing 2.1) uses Turbo’s dumb terminal window,
which has a blank line at top instead of the usual pull-down menus.

Textbook Programs and Dumb Terminals = 23

you haven’t given your file a name, Turbo will ask for one before running the
program.)

Figure 2.1 shows Number in action and illustrates Turbo’s dumb terminal
display. Notice that at the top there are no menus or desk accessories, just a blank
space. Although the window has a drag bar along the top, you cannot move it by
dragging with the mouse. It’s cemented in place.

The window title is the name of the program now running. Below the title bar
appears the program’s output—the strings and other information you insert in Write
and Writeln statements. Such text always appears in the default 9-point Monaco
font—you cannot change to a different font or point size. Inside the window, you
can display up to 25 rows of 80 columns, exactly the same dimensions as a stan-
dard IBM PC display as well as many other computer displays and terminals.

Number starts by identifying itself and listing a few instructions. It then re-
quests input and output file names. If it finds the input name you type and if it
has no trouble creating the output file, it reads all lines of text from the input, adds
line numbers, and writes the result to the output file. If you accidentally type the
name of an existing file for your output, Number displays this message:

ERROR: Bad or duplicate file name

In that case, type a different name or remove the existing file and try again.
If you don’t receive an error, the program runs, reporting as it goes how many lines
are done. When finished, it requests another file. Type a different name or press
Return to end. This takes you back to the Turbo editor or to the Finder, depending
on the way you originally ran the program.

This format—typing input and output file names and pressing the Return key
to end the program—is archaic and contrary to the Macintosh way of doing things.
But the 153-line program, short as Macintosh programs go, does its job well enough.
To do the same thing and include pull down menus and desk accessories might
take four or five times that number of program lines. That’s not to argue against
such Macintosh features but to suggest that, when designing programs, you con-
sider whether it is worth the trouble of always following the Macintosh interface
guidelines. At times, a quick and dirty utility like Number is adequate if it does
what you need it to do.

You might wonder how to number the lines in text files inside other volumes
and folders. To do that, add volume and folder names with colons in between. If
you have a disk named WORK and a folder named LISTINGS, you could type:

Output file? WORK:LISTINGS:LINES.TXT

Apple experts recommend never requiring people to type volume and folder
names that way but, when using Turbo’s dumb terminal interface, you don’t have
any choice. There’s no easy way to use the standard file name dialog to select files
by clicking their names. Of course, I’ll show you how to do exactly that when we
get to writing fully charged Macintosh examples.

24 == Programming with Macintosh Turbo Pascal

Listing 2.1. NUMBER.PAS

1: PROGRAM Number;

Number lines in a text file
Macintosh / Turbo Pascal / Textbook interface
Tom Swan

6: * SYSTEM
7: * AUTHOR

9: *)

12: TYPE
14: String64 = Stringl[64];
16: VAR

18: inFile, outFile

19: inName, outName
20: done : BOOLEAN;

TEXT;
String64;

23: FUNCTION Verified(message : String64) : BOOLEAN;
25; { TRUE if Y typed, else false }

27: VAR

29: ch : CHAR;

31: BEGIN

32: Write (message, '? (y/n) ');

33: Readln(ch);

34: Verified := (ch = 'Y'") OR (ch="'y')
35: END; { Verified }

36:

37:

38: FUNCTION Duplicated(name : String64) : BOOLEAN;
39:

40: { TRUE if disk file already exists or permission granted to erase }
41:

42: VAR

43:

44: tempFile : TEXT;

45:

46: BEGIN

47: IF Pos(':', name) = Length(name)

48: THEN

49: Duplicated := FALSE { Not a disk file if it ends with : }
50: ELSE

51: BEGIN

52: {$i-) Reset(tempFile, name); {$i+}

53: IF IoResult <> 0

54: THEN

55: Duplicated := FALSE { File not found }

56: ELSE

57: BEGIN

58: Duplicated :=

59: NOT verified(Concat('Remove old ', name));
60: Close(tempFile) { Close the temporary file }
61: END { else }

62: END { else }

63: END; { Duplicated }

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
17:
78:
79:
80:

111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:

Textbook Programs and Dumb Terminals =

FUNCTION FilesOpened(VAR done : BOOLEAN) : BOOLEAN;

{ Return true if input and output files opened. }
{ Set done to TRUE if no input file name entered. }

VAR

okayFlag : BOOLEAN;

BEGIN
okayFlag := FALSE; { assume the worst case }
Write('Input file? ');

Readln(inName);
done := length(inName) = 0;
IF NOT done THEN
BEGIN
{$i-} Reset(inFile, inName); ($i+}
IF IoResult = 0 THEN
BEGIN
Write('Output file? '):
Readln(outName);
IF length(outName) > 0 THEN
IF NOT Duplicated(outName) THEN

BEGIN
{$i-} Rewrite(outFile, outName); {$i+}
okayFlag := (IoResult = 0);

END; { if }

IF NOT okayFlag
THEN close(inFile)
END { if }
END; { if }
FilesOpened := okayFlag
END; { FilesOpened }

PROCEDURE NumberLines;
{ Read lines from inFile, attach line numbers, and write to outFile }
CONST
bs = #8; { Backspace control char }
VAR

oneLine : String([255];
lineNo : INTEGER;

BEGIN
lineNo := 0;
WHILE NOT EOF(inFile) DO

BEGIN
lineNo := lineNo + 1;
Readln(inFile, oneLine);
Writeln(outFile, lineNo:3, ': ', oneline);

Write(lineNo:4, bs, bs, bs, bs) { display line numbers }
END; { while }
Writeln(lineNo:4, ' line(s) done')
END; { NumberLines }

PROCEDURE DisplayInstructions;

25

(continued)

26 == Programming with Macintosh Turbo Pascal

129: BEGIN

130: Writeln('NUMBER: Numbers lines in a text file');

131: Writeln;

132: Writeln('l. For the input file, type the name of a text file.');
133: Writeln('2. For the output file, type CONSOLE: or PRINTER:, or');
134: Writeln(' the name of a disk file to hold the output text.');
135: Writeln('3. Press RETURN to end program.');:

136: Writeln

137: END; { DisplayInstructions }

138:

139:

140: BEGIN

141: DisplayInstructions;

142: REPEAT

143: Writeln;

144: IF FilesOpened(done) THEN

145: BEGIN

146: NumberLines;

147: Close(inFile);

148: Close(outFile)

149: END ELSE

150: IF NOT done

151: THEN Writeln('ERROR : bad or duplicate file name')

152: UNTIL done

153: END.

Number Play-by-Play

Without its main procedure, NumberLines (101-124), Number is like a shell—an
unfinished program that handles various common details but lets you decide what
the main purpose is to be. You could take out the NumberLines procedure and
use the remaining shell as the basis for other programs that read text, do something
to its lines, and write the result to another file.

The program begins, as do all Pascal programs, by identifying itself on line
1. (If you use the Output directive {$O name} to send the compiled code to a file
other than the program name, Number, put it above line 1.) Several comments (3-9)
list the purpose of the program, what system it runs on, and the author. The com-
piler ignores everything between the symbols (* and *).

Lines 12-20 make up the program’s global declarations. First is a new data
type, String64, a string of 64 characters, large enough to hold most file and folder
names. The value in brackets indicates how many characters the string can hold.

Variables inFile and outFile are both of type TEXT, a standard file type in
Turbo as well as in other Pascal systems. Using standard file variables this way makes
reading and writing text files on the Macintosh much easier than the typical ap-
proach of using the toolbox file manager, where you have to be concerned with
such details as memory buffers, file markers, and other parameters. (The toolbox
is the collection of programming and data types installed in ROM and in the System
folder in every Macintosh.) There are times when these requirements give you more
freedom, helping you to write better programs but, for short utilities such as
Number, using standard TEXT files is as capable as other methods.

Textbook Programs and Dumb Terminals = 27

One problem when using TEXT files occurs if you read text created by other
programs. For example, MacWrite and other word processors divide text into
paragraphs, placing a carriage return at the end of each division. Because you nor-
mally use ReadIn statements to read lines out of a standard TEXT file, you’ll
discover that you cannot read paragraphs longer than the longest possible
string—255 characters.

The reason for this problem is important to understand. Text lines and
paragraphs exist only by agreement among the programs that read and write them.
If you process a file that another program divides into paragraphs, Number thinks
that the file’s paragraphs are actually lines and tries to read them that way. It
misinterprets the data in the file, an error that might cause the program to fail.

Is this a bug or not? It’s probably more of a design limitation—something to
be aware of when writing your own text file programs. You’ll never have the pro-
blem reading text that you create with the Turbo editor, though. It ends all lines
with carriage returns—the format that Number expects.

Function Verified (23-35) is worth extracting for your program library. It
displays a message and asks you to type Y (Yes) or N (No), returning a Boolean
value TRUE only if you type Y. Use the function this way:

IF Verified('Do you want toquit')
THEN Halt;

This displays the message “Do you want to quit? (y/n)” and ends the program
with a Halt statement only if you answer yes. Notice that the function adds the
question mark and (y/n) for you. This saves you from typing those characters at
the end of every such yes-no prompt.

The way Verified works is to wait for you to type a single character and press
the Return key at the Readln statement in line 33. If you type anything other than
Y or vy, line 34 sets the function to FALSE and ends. Otherwise, it returns TRUE
before going back to the place in the program that called the routine.

If you would rather not press Return after typing a response, replace line 33
with these statements:

REPEAT

ch :=ReadChar
UNTILchINTLC'Y', 'y', 'N', 'n'];
Writeln(Cch);

Turbo’s ReadChar function waits for you to type a single character and, while
it waits, displays a flashing underline cursor. As soon as you type any key, it returns
that character as the function result, which this example then assigns to variable ch.

ReadChar does not display the character you type. For that reason, you might
want to follow it with a Writeln statement so people can see their responses. It’s

28 == Programming with Macintosh Turbo Pascal

disconcerting to type something on a computer terminal but not be able to see what
you type.

The REPEAT loop in this example shows how to limit responses to one of
the four characters listed in brackets, an example of a character set. Only if the
character in variable ch is IN the set of characters does the REPEAT loop end.
If you type another character, it simply repeats again. Because ReadChar doesn’t
display anything, typing illegal responses appears to have no effect.

The second function in Number, Duplicated (38-63), checks whether a file
already exists on disk. It returns TRUE only if it cannot find the file name you
pass to the function. If it does find that same file, it returns TRUE only if you
then give your permission to remove it. At lines 85-92 is an example showing how
to use Duplicated to prevent programs from accidentally erasing existing files.

Notice that lines 47-49 set Duplicated to FALSE if they find a colon at the
end of the file name. The Pos procedure returns the position of *’ (or any other
character or string) in the second string, in this case, name. If that position equals
the length of the string, then there’s a colon at the end. This indicates that the name
is a folder or volume and not a file.

Lines 52-62 check whether a valid file name exists. First, line 52 resets (opens)
the file for reading and writing. But, in this case, the program doesn’t actually read
or write anything. It just wants to test whether it is possible to reset the file. If so,

_then the file exists. Otherwise it doesn’t.

To accomplish this, line 52 surrounds the Reset statement with the compiler
directives {$i—} and {$i+}, which turn off automatic Input/Output (1/0) error
checking (=) or turn it back on (+). If it didn’t do this and the file did not exist,
the program would halt with an error. But with the directives in effect, it ignores
errors, checking on its own for problems and taking appropriate action. The next
IF statement does this by checking the integer value of the built-in IoResult func-
tion (53). With I/0 error checking turned off, IoResult returns the result of the
preceding 1/0 statement, in this example, the Reset instruction in the line above.

If ToResult was not zero, then there was an error trying to Reset the file, in-
dicating that in all probability the file does not exist. (It’s possible that a bad disk
could cause an error here, but the program ignores that unlikely possibility.) If
IoResult was zero, then the file exists and the program goes on to request permis-
sion to remove it. In that case, line 59 calls Verified for your yes-no response to
the question, “Remove old name?”’ Notice how a Concat function—which joins
two or more strings—passes that question along with the file name to Verified.
Because of the Concat, if the file name is MyfileTxt, the complete prompt comes
out looking like this: .

Remove old Myfile.Txt? (y/n)

The program assigns Verified’s result to the function identifier Duplicated, pass-

Textbook Programs and Dumb Terminals = 29

ing that result back to the program statement that called it. If you type Y, Duplicated
returns TRUE; otherwise it returns FALSE.

Line 60, which closes the temporary file variable, is an optional step—Turbo
automatically closes files at the ends of procedures in which you declare file
variables. But it’s probably a good idea to close local files anyway. A future change
in the operating system or in the Turbo compiler might remove this invisible
guarantee of an automatic close at procedure ends.

The third function in Number, FilesOpened (66-98), returns TRUE if it can
open both the input and ouput files. This is a useful routine in any program that
needs to open two files—one for reading and one for writing. If the function returns
TRUE, you know it’s okay to use the global inFile and outFile TEXT variables.
If FALSE, then something went wrong opening a file or creating a new one. Also,
if it returns FALSE, variable done indicates whether someone typed a name for
the input file or merely pressed Return.

FilesOpened prompts for an input file name (77-79), gets your response, and
sets done to TRUE if the length of that response is zero. The IF statement (80-96)
takes effect only if done is FALSE, indicating that inName is not empty.

Line 82 uses the same method as Duplicated to check if file inName exists.
Only if IoResult is zero does it go on to request an output file name. Continuing
on, the program prompts for a name (85) and reads your response (86), checking
here too (87) whether you press Return. Only if you didn’t and only if function
Duplicated returns FALSE at line 88, does the program attempt to create a new
output file with a Rewrite statement (90). Notice the compiler directives there and
the subsequent check of IoResult. If an error occurs when rewriting the file, this
sets okayFlag FALSE and, therefore, returns FALSE when this same value passes
back at line 97 as the function value.

All of this may seem overly involved merely to open two files for reading and
writing. But the steps, while not inviolate, cover all possible situations and errors
that might occur. Prove that claim to yourself by manually running through each
program step and writing down the values of variables okayFlag and done for
various scenarios. Put your own routines through similar walk-throughs rather than
blindly trusting your impeccable programming skills without testing your inven-
tions. Youw’ll be surprised at the number of bugs you catch this way.

Up to this point, the program has ignored its main purpose, namely to add
line numbers to text files. The procedure at lines 101-124 does this while illustrating
how to read text files line-by-line. As I mentioned earlier, you can take this pro-
cedure out and store the result as a shell into which you can later insert various
processes. Just replace NumberLines with your own routine.

NumberLines has a strange looking constant at line 107. The number sign (#)—
some people call it a pound sign—specifies an ASCII (American Standard Code
for Information Interchange) character of a specific value, in this case, an 8. Writing
the backspace character to Turbo’s dumb terminal display moves the cursor one

30 == Programming with Macintosh Turbo Pascal

space to the left. Use the number sign to assign other control characters to character
constants such as these:

CONST

Return = #13; { Carriagereturn?’
Esc = #27; { Escape character }
CtrlX =#24; {Control X2}

Control characters are unusual on the Macintosh, which doesn’t have the con-
trol key that other terminal keyboards typically have. To simulate control keys, use
the ReadChar function explained earlier. With ReadChar, typing the Macintosh
Command key and any letter returns a control character with the value of that let-
ter’s alphabetical position. In other words, Command-A returns ASCII 01,
Command-B returns 02, and so on.

Most of NumberLines’s actions occur in the WHILE statement at lines 116-122.
This loop repeats as long as the standard function EOF (End of File) returns
FALSE. Therefore, the statements at lines 118-121 repeat until the program reaches
the last line of text in inFile.

Line 119 reads one line of text from inFile, inserting that text into string variable
oneLine, which is large enough to hold 255 characters, the maximum string length.
The next line, 120, writes that same line to outFile, adding the line number (lineNo),
a colon, and a blank. The :3 after lineNo means “write the number in at least three
columns.” This format specification lines up the numbers in neat columns. If your
files have more than 999 lines, change 3 to 4.

Notice too that Readln (119) and Writeln (120) specify the input and output
file variables as the first parameter in parentheses. This redirects the input and out-
put through those variables—and, consequently, to the physical disk files. With
no file variable parameters, Readln and Writeln (and also Read and Write) operate
on the dumb terminzl display.

The Write statement at line 121 uses the backspace character constant bs to
move the cursor left four times after displaying the line number, placing it back
at the extreme left edge of the window. Displaying line numbers this way gives you
some feedback that the program is working. It’s always a good idea to reassure
people this way, letting them know that the program hasn’t taken a left turn
somewhere and is headed out into the countryside.

Procedure DisplaylInstructions at lines 127-137 requires no special explanations.
It merely displays a few reminders about how the program works. The main pro-
gram body is at lines 140-153. This, too, is simple to understand. After calling
DisplaylInstructions, it repeats until function FilesOpened sets variable done to
TRUE, indicating you pressed Return in response to the input file name prompt.
In that event, the program calls NumberLines and then closes both the input and
output files. If FilesOpened returns FALSE, the program displays an error message
(150-151).

Textbook Programs and Dumb Terminals = 31

An improvement you can make is to move the two Close statements (147-148)
to a separate procedure or function. You could turn off I/0 error checking with
the {$i—} compiler directive, and test IoResult after each Close to see whether there
were any problems. Sometimes, it’s possible to write a file to disk, but discover later
that you cannot update the disk directory—the main responsibility of Clese. The
way the program stands now, it ignores this kind of error.

TABBING IN TEXT

The next two examples, Délab and RéTab, operate similarly. Therefore, to cut
down on duplication, they both use the text in Listing 2.2. Type it in and save as
TABS.INC (meaning INClude file). Turbo includes this text while compiling both
programs.

Using include files to write programs cuts down on file sizes while building
libraries of common routines that many programs share. This is the most basic
way to reduce duplication among programs. In future chapters, you’ll learn another
way to do the same thing by writing your own precompiled library units. The dif-
ference between units and include files is that, by including common routines, you
compile the procedures, functions, and other declarations for each program that
uses those items. With units, you compile such elements only once. Even so, knowing
how to use include files is important. Not only does it let you read common routines
from a subroutine library, it also helps you divide large programs into pieces, let-
ting the compiler join those pieces to produce a finished result.

Some of Listing 2.2 resembles the programming in Number. But don’t reuse
the procedures with the same names—they contain subtle but important differences.

Listing 2.2. TABS.INC

1: { Common declarations and routines for DeTab.PAS and ReTab.PAS }
2:

3:

4: CONST

S:

6: TempName = 'TEMP.$$$'; { Temporary output file name }
7: FixedTab = 4; { Default fixed tab width }

8:

9:

10: TYPE

11:

12: String64 = String(64];

13: String255 = String([255];

14:

15:

16: VAR

17:

18: inFile, outFile : TEXT; { Input, output files }

19: inName, outName : String64; { Input, output file names }
20: done : BOOLEAN; { TRUE when no more files to do }
21: tabwWidth : INTEGER; { Fixed tab width }

22:

(continued)

32 == Programming with Macintosh Turbo Pascal

23:

24: PROCEDURE SeparateName(name : String64; VAR folder, fileName : String64);
25:

26: { Separate name into two parts: a folder and file name }

27:

28: VAR

29:

30: p : INTEGER;

31:

32:

33: FUNCTION ColonPosition(VAR p : INTEGER) : INTEGER;

34:

35: { Return indexed position of ':' in fileName, or return 0 }
36:

37: BEGIN

38: p := Pos(':', fileName);

39: ColonPosition := p

40: END; { ColonPosition }

41:

42:

43: BEGIN { SeparateName }

44: folder := ''; { Null string -- no space between quotes }
45: fileName := name;

46: WHILE ColonPosition(p) > 0 DO

47: BEGIN

48: folder := CONCAT(folder, Copy(fileName, 1, p));
49: Delete(fileName, 1, p)

50: END { while }

51: END; { SeparateName }

52:

53:

54: FUNCTION FilesOpened(VAR done : BOOLEAN) : BOOLEAN;

55:

56: { Return true if input and output files opened. }
57: { Set done to TRUE if no input file name entered. }

58:

59: VAR

60:

61: okayFlag : BOOLEAN;

62: folder, FileName : String64;

63:

64: BEGIN

65: okayFlag := FALSE; { assume the worst case }
66: Write('Input file? ');

67: Readln(inName);

68: done := length(inName) = 0;

69: IF NOT done THEN

170: BEGIN

71: {$i-)} Reset(inFile, inName); {$i+}

72: IF IoResult <> 0

73: THEN

74: Writeln('ERROR: cannot find ', inName)
15: ELSE

76: BEGIN

17: SeparateName (inName, folder, fileName);
78: outName := concat(folder, TempName);
79: {$i-} Rewrite(outFile, outName); {$i+}
80: okayFlag := (IoResult = 0);

81: IF NOT okayFlag THEN

82: BEGIN

83: close(inFile);

84: Writeln('ERROR: cannot create ', outName)
85: END { if }

86: - END { else }

87: END; { if }

88: FilesOpened := okayFlag

89: END; { FilesOpened }
90:

Textbook Programs and Dumb Terminals

91:

92: PROCEDURE Report (oldLength, newLength : INTEGER);

93:

94: { Display a little report on before and after file sizes
95:

-~

96: VAR
97:
98: difference : INTEGER;
99:
100: BEGIN
101: Writeln;
102: Writeln('Original file length = ', oldLength:5);
103: Writeln('New file length = ', newlength:5);
104: difference := abs(newLength - oldLength):;
105: IF newLength > oldLength
106: THEN Writeln('Characters added = ', difference:5)
107: ELSE IF newLength < oldLength
108: THEN Writeln('Characters saved = ', difference:5)
109: ELSE Writeln('No change in file length');
110: Writeln;
111: END; { Report }
112:
113:
114: PROCEDURE RenameFiles;
115:

116: { After all processing is done, rename original file <name>+Backup }
117: { and name the TEMP.$$$ output file to <name>. }

118:

119: VAR

120:

121: backupName : Stringé64;

122:

123: BEGIN

124:

125: backupName := concat(inName, ' Backup');

126:

127: ($1-} erase(backupName); {$i+} { Erase old backup }
128: IF IoResult <> 0

129: THEN { ignore the error }; { ...don't worry if not there. }
130: Rename (inName, backupName); { Save copy of original file. }
131: Rename (outName, inName) { Rename new file. }
132: END; { RenameFiles }

133:

134:

135: PROCEDURE GetTabWidth;

136:

137: { Prompt for and set global tabWidth variable }

138:

139: BEGIN

140: Writeln('Tab width is ', FixedTab);

141: Writeln;

142: Write('Enter new width, or 0 for no change : ');
143: Readln(tabWidth);

144: IF tabWidth <= 0

145: THEN tabWidth := FixedTab;

146: Writeln

147: END; { GetTabWidth }

33

34 == Programming with Macintosh Turbo Pascal

TABS.INC Play-by-Play

Because it’s not a complete program, the listing does not start with PRO-
GRAM. This is not an error. You might want to change the two constants at lines
6 and 7. The first, TempName, is the name of a temporary disk file for storing
intermediate data. If you change it, be careful to choose a name such as TEMP.$$$
that no other file is likely to use. Although the second constant, FixedTab, is 4,
you could use 8 or 6 or any other small value for the default tab width. (Don’t
be too concerned with choosing the correct value—both ReTab and Déelab let you
type another tab width if you don’t want to use the default value.)

Two string constants String64 and String255 define string types of 64 and 255
characters (12-13). As in Number, inFile and outFile (18) are standard TEXT files
while inName and outName (19) are of the 64-character string type. Boolean variable
done controls when the program ends, and tabWidth equals the number of spaces
in each tab column, using the default FixedTab value if you don’t specify another.

The first procedure in TABS.INC is SeparateName (24-51), a tool for which
yow’ll undoubtedly find other uses. It takes as its parameter a file name and returns
in the two variables, folder and fileName. If you set name to Programs: Text-
book:Number.PAS and call SeparateName, it returns folder equal to the string ‘Pro-
grams: Textbook:” and fileName equal to ‘Number.PAS.’

Separating file names into their components gives you the option of accessing
other files in the same folder without typing the folder name over and over. It also
lets DeTab and ReéTab perform a critical operation, one that many word processors
and text editors—including the Turbo editor—fail to do: save a backup copy of
your text. The next section explains the technique.

Backing Up Files

With a backup copy of your text containing all lines as they existed before pro-
cessing, you don’t have to ask “Remove old DataTXT?” as Number does. Saving
a backup copy is a better idea because it avoids the obvious problem that often
occurs when people answer Yes to that question when they mean No. In general,
to save a backup copy requires these seven steps:

. Open the input file
. Create a temporary output file
. Process the lines in the input file, writing the new lines to the output

. If an error occurs, erase the temporary file and end. Otherwise, continue
with step 5

. Erase any old backup file
. Rename the original file “ <name> Backup”
7. Rename the temporary file “ <name >

AW N =

AN W

Textbook Programs and Dumb Terminals = 35

Programs that follow this plan protect you from accidentally erasing files. Even
if you take all the tabs out of your only copy of an important report, you can recover
your original text by throwing away the new file and using the backup. This is an
important feature to add to all programs that create files on disk.

Function FilesOpened (54-89) is similar to the same routine in Number but,
because of the backup copy scheme, it no longer asks whether you want to remove
an existing file. For that reason, it’s a bit more useful than the other version and
you might want to use it instead. If you followed the comments about the earlier
program, you shouldn’t have any trouble understanding how this one works.

Procedure Report (92-111) displays a few statistics about the before and after
file lengths. When changing blanks to tabs with RéTab, it’s nice to know how much
disk space you saved. Because of the heavy indentation in Pascal programs, you
might be surprised to learn that you can often save quite a lot of space—as much
as 40% or more per file—just by scrunching blanks into tabs.

The next procedure, RenameFiles, (114-132), performs steps 5, 6, and 7 from
the plan outlined earlier. First, it adds “Backup” to the end of the input file name
(125) and then erases any file now on disk with that name (127). Removing the old
backup file is a most important step. If you don’t do it, the following Rename pro-
cedures will not work properly.

Notice that lines 128-129 ignore any errors reported by IoResult from the erase
operation in the previous line. This takes care of the good possibility that there
won’t be any old backup file on disk. At the same time, it demonstrates an impor-
tant requirement when turning off I/0 error checking with {$i—} as we’ve been
doing. When you use this method, you must check IoResult following all 1/0
operations—even if, as in this case, you plan to ignore any errors. The reason for
this requirement is that if any errors do occur, they set an invisible flag inside Tur-
bo Pascal’s run-time routines, which contain the code for various commands and
features. When errors occur with I/0 checking off, this internal flag prevents future
1/0 operations until you check IoResult. If you don’t check it, then, errors can
shut down all future I/0, meaning that Readln, Writeln, and other file operations
won’t work from then on.

RenameFiles ends by renaming the input file to backupName, which saves the
backup copy of the original text. It also renames the output file—which now has
the name you assign to the constant TempName.

The final procedure, Get TabWidth (135-147), lets you type a different value
than the default constant FixedTab. Both Délab and ReéTab call this procedure to
let you change tab widths.

REMOVING TABS FROM TEXT

DéTab is the simpler of the two tab utilities. Type in Listing 2.3 and save as
DETAB.PAS. You can compile it to memory or to disk. If you have trouble com-
piling, you might have to change the include directive in line 12. On my system,

36 == Programming with Macintosh Turbo Pascal

I name my disk volume Programs and store DETAB.PAS, RETAB.PAS, and
TABS.INC in the folder Textbook. Line 12 includes TABS.INC, compiling the com-
mon routines and data. If you call your disk and folders something else, insert their
names here.

When you run Délab, supply the name of the file from which you want to
remove tab characters, replacing them with blanks while maintaining the same col-
umn spacing in the original. Be aware that, because it replaces single tabs with multi-
ple blanks, the program usually increases the file size. It could easily double or
triple the size of a heavily tabbed file. Make sure you have plenty of free space on
disk.

Unless it detects errors, Délab stores the result in a new file with the same name
as your original. Your old text—with its tabs intact—is in the backup file (with the
name of the original plus “Backup”).

Listing 2.3. DETAB.PAS

: PROGRAM DeTab;

* SYSTEM : Macintosh / Turbo Pascal / Textbook interface

1
2
3
4:
5: * PURPOSE : Remove tabs from a text file
6
7 * AUTHOR : Tom Swan

8

9

*)

10

11:

12: {$I Programs:Textbook:Tabs.INC }

13:

14:

15: PROCEDURE ProcessLine(VAR line : String255);

16:

17: { Remove tabs from this line. }

18:

19: CONST

20:

21: Blank = ' '; { One blank character }

22: Tab = *I; { Control-I = ASCII tab character }
23:

24: VAR

25:

26: temp : String255; { Temporary string holder }
27: i : INTEGER; { FOR-loop control variable }
28:

29: BEGIN

30: temp := ''; { Null string -- no space between the quotes }
31: FOR i := 1 TO Length(line) DO

32: BEGIN

33: IF line(i] = Tab

34: THEN

35: REPEAT

36: temp := concat(temp, Blank)

37: UNTIL (Length(temp) MOD tabWidth = 0)
38: ELSE

39: temp := concat(temp, line[i])

40: END; { for }

41: line := temp

42: END; { ProcessLine }

Textbook Programs and Dumb Terminals = 37

44:

45: PROCEDURE ProcessFile;

46:

47: { Read lines from inFile, remove tabs, and write to outFile }
48:

49: CONST

50:

51: bs = #8; { Backspace control char }

52:

53: VAR

54:

55: oneLine : String255; { Holds one line of text }

56: lineNo : INTEGER; { For displaying line numbers }

57: oldLength,

58: newLength : INTEGER; { Statistics }

59:

60: BEGIN

61: lineNo := 0; oldLength := 0; newlength := 0;

62: WHILE NOT EOF (inFile) DO

63: BEGIN

64: lineNo := lineNo + 1;

65: Readln(inFile, oneline);

66: oldLength := oldLength + Length(onelLine); { Length before }
67: ProcessLine(onelLine);

68: newLength := newlength + Length(oneLine); { ...and after }
69: Writeln(outFile, oneLine);

70: Write(lineNo:4, bs, bs, bs, bs) { display line numbers }
71: END; { while }

72: Writeln(lineNo:4, ' lines done');

73: Report (oldLength, newLength)

74: END; { ProcessFile }

75:

76:

77: PROCEDURE Initialize;

78:

79: BEGIN

80: Writeln('DETAB: Remove tabs from a text file');

81: Writeln;

82: Writeln('l. For the input file, type the name of any text file.');
83: Writeln('2 The program removes tabs from the text, replacing');
84: Writeln(them with the correct number of blanks.');

85: Writeln('3. Use the program to convert tabbed text files created');
86: Writeln(°® with a text editor such as the one in the MDS 68000°');
87: Writeln(' development system for use by Turbo Pascal.');

88: Writeln('4. The program saves a copy of your original text,');
89: Writeln(' adding "Backup" to the end of the file name.');

90: Writeln;

91: GetTabWidth

92: END; { Initialize }

93:

94:

95: BEGIN

96: Initialize;

97: REPEAT

98: Writeln;

99: IF FilesOpened(done) THEN
100: BEGIN
101: ProcessFile;
102: Close(inFile);
103: Close(outFile);

104: RenameFiles
105: END

106: UNTIL done

107: END.

38 == Programming with Macintosh Turbo Pascal

DeTab Play-by-Play

DéTab’s main action occurs in procedure ProcessLine (15-42). The program
sends each line of text to ProcessLine, which removes the tabs it finds, replacing
them with blanks. It does this by cycling through each character in a FOR loop
at lines 31-40. If the character is a tab (33), then the loop adds a blank to the end
of a temporary string with a Concat statement (36). It repeats this until the length
of the string equals some multiple of the tabWidth, a calculation it performs at
line 37. If the character is not a tab, line 39 adds it to the end of the temporary string.

After examining each character, ProcessLine ends at line 41 by reassigning the
temporary string back to the line parameter, passing the now tabless string back.

ProcessFile (45-74) and Initialize (77-92) are nearly identical to NumberLines
and DisplayInstructions in program Number (Listing 2.1). ProcessFile keeps track
of the old and new line lengths for the later report on file size savings. Initialize
displays instructions and ends with a call to Get TabWidth (91) to let you enter a
different tab value each time you run the program. If you will always use the default
setting, remove line 91.

The main loop is simpler than it is in Number because FilesOpened now handles
its own error messages. Notice that line 104 calls RenameFiles after closing the in-
put and output files. This is the step that renames the temporary output file
TEMP.$$$ and saves your original text by adding Backup to its name.

ADDING TABS TO TEXT

ReTab runs similarly to Délab but does the opposite job. It adds tabs to text
files, replacing as many multiple blanks as possible with tab characters. This can
reduce the size of text files, especially Pascal listings which typically have many
blanks in front of indented lines.

You can use RéTab to save archival copies of source code listings that you don’t
want to discard but are not likely to need soon. To bring a file out of the archives
and revive it for further editing, run it through Délab, replacing the tabs with blanks.

Type in Listing 2.4 and save as RETAB.PAS. Compile the program either to
memory or to a disk code file. When you run it, type the name of the text file to
which you want to add tabs. The program reads your text, converts multiple blanks
to tabs and saves a copy of your file as a backup.

Listing 2.4. RETAB.PAS

PROGRAM ReTab;

(*

* PURPOSE : Add tabs to a text file

* SYSTEM : Macintosh / Turbo Pascal / Textbook interface
* AUTHOR : Tom Swan

*)

CLVwOJIaUs W

Textbook Programs and Dumb Terminals = 39

11:

12: {$I Programs:Textbook:Tabs.INC }

13:

14:

15: PROCEDURE ProcessLine(VAR line : String255);
16:

17: { Add tabs to this line. }

18:

19: {

20: Based on an algorithm from:

21: *“Software Tools in Pascal"

22: by Brian W. Kernighan and P. J. Plauger
23: Addison-Wesley Publishing Company; 1981

24: }

25:

26: CONST

27:

28: Blank = ' '; { One blank character }

29: Tab = ~I; { Control-I = ASCII tab character }
30: cr = “M; { Control-M = ASCII cr character }
31:

32: VAR

33:

34: temp : String255; { Temporary string holder }
35: col, newCol : INTEGER; { Line indexes }

36: ch : CHAR; { Single character holder }
37:

38:

39: FUNCTION NextChar(VAR ch : CHAR) : CHAR;

40:

41: { Return next character from line }

42:

43: BEGIN

44: ch := line[succ(newCol)];

45: NextChar := ch

46: END; { NextChar }

47:

48: BEGIN

49: temp := ''; { Null string -- no space between the quotes }
50: line := concat(line, cr); { Add end of line marker to line }
51: col := 0;

52: REPEAT

53: newCol := col;

54: WHILE NextChar(ch) = Blank DO

55: BEGIN

56: newCol := newCol + 1;

57: IF newCol MOD TabWidth = O THEN

58: BEGIN

59: temp := concat(temp, Tab);

60: col := newCol

61: END { if }

62: END; { while }

63: WHILE(col < newCol) DO

64: BEGIN

65: temp := concat(temp, Blank);

66: col :=col + 1

67: END; { while }

68: IF ch <> cr THEN

69: BEGIN

70: temp := concat(temp, ch);

71: col :=col + 1

72: END { if }

73: UNTIL ch = cr;

74: line := temp

15: END; { ProcessLine }

76:

17:

(continued)

40 == Programming with Macintosh Turbo Pascal

78: PROCEDURE ProcessFile;

79:

80: { Read lines from inFile, add tabs, and write to outFile }
81:

82: CONST

83:

84: bs = #8; { Backspace control char }

85:

86: VAR

87:

88: oneLine : String255; { Holds one line of text }

89: lineNo : INTEGER; { For displaying line numbers }
90: oldLength,

91: newLength : INTEGER; { Statistics }

92:

93: BEGIN

94: lineNo := 0; oldLength := 0; newLength := 0;

95: WHILE NOT EOF(inFile) DO

96: BEGIN

97: lineNo := lineNo + 1;

98: Readln(inFile, oneLine);

99: oldLength := oldLength + Length(oneLine); { Length before }
100: ProcessLine(oneLine);

101: newLength := newLength + Length(oneLine); { ...and after }
102: Writeln(outFile, oneline);

103: Write(lineNo:4, bs, bs, bs, bs) { display line numbers }
104: END; { while }

105: Writeln(lineNo:4, ' lines done');

106: Report (oldLength, newLength)

107: END; { ProcessFile }

108:

109:

110: PROCEDURE Initialize;

111:

112: BEGIN

113: Writeln('RETAB: Add tabs to a text file');

114: Writeln;

115: Writeln('l. For the input file, type the name of any text file.');
116: Writeln('2. The program adds tabs to the text, replacing groups'):;
117: Writeln(' of blanks with tabs wherever possible.');

118: Writeln('3. After converting, the text may take less disk room,');
119: Writeln(°* but may look "strange" in the Turbo Pascal editor.');
120: Writeln('4. The program saves a copy of your original text');
121: Writeln(' adding "Backup" to the end of the file name.'):;
122: Writeln;

123: GetTabWidth

124: END; { Initialize }

125:

126:

127: BEGIN

128: Initialize;

129: REPEAT

130: Writeln;

131: IF FilesOpened(done) THEN

132: BEGIN

133: ProcessFile;

134: Close(inFile):

135: Close(outFile);

136: RenameFiles

137: END

138: UNTIL done
139: END.

Textbook Programs and Dumb Terminals = 41

ReTab Play-by-Play

Except for procedure ProcessLine (15-75), all of RéTab is similar to DeTab. The
procedure follows an algorithm for replacing sequences of blanks with tabs while
maintaining the same relative position of columns.

The main action occurs in a REPEAT statement at lines 52-73 that examines
each character in a line with the help of function NextChar (39-46). Inside the
REPEAT loop, a WHILE loop (54-62) tests successive characters, adding tabs in
place of blanks whenever variable newCol reaches a fixed tab position.

A second WHILE loop (63-67) adds blanks to the line to fill out columns with
less than the minimum number of blanks that a tab could replace. This situation
occurs only if variable col is less than newCol. (The prior WHILE loop assigns
newCol to col every time it inserts a tab into the line.) Together, the two WHILE
loops compress as many blanks as possible into tabs.

Following that, an IF statement (68-72) adds non-blank characters to the line
and checks for a carriage return (cr) which ends the REPEAT loop at line 73. This
works because line 50 adds a carriage return to the end of the line. It has to do
this because, when Readln reads strings, it never ends them with carriage return
characters. You could use a different ending character as a flag but, because you
can be sure strings never will have carriage returns in them, this seems to be the
best choice.

Together, DeTab and RéTab add and remove tabs from text files. You can use
De€Tab to remove tab characters from files that another text editor or word proc-
essor created. This is necessary because, even though it lets you press the tab key,
the Turbo editor doesn’t actually insert tab characters into text. Instead, when you
tab, Turbo adds the correct number of spaces at that point, simulating what a tab
control character usually does. Even worse, when Turbo finds tabs in text, instead
of lining up characters into neat columns, it simply ignores them! If text files from
other editors look odd in Turbo, try processing them with DeTab.

Use the other program, RéTab, to add tabs to text files, replacing multiple spaces
with tab characters without changing the column spacing. This can reduce the
amount of room that a file takes on disk by compressing multiple spaces into single
tab characters.

Number, DéTab, and Rélab are three useful utilities, all of a category of pro-
grams that read and write text files. You should be able to use many of the ideas
in them in your own textbook programs. To convert other kinds of programs from
IBM PC Turbo Pascal to the Macintosh, though, requires more information about
the differences between the two systems, as the next section explains.

CONVERTING IBM PC PROGRAMS TO MACINTOSH

The following list of identifiers either do not exist in Macintosh Turbo Pascal
or differ from the IBM PC and CP/M versions. These notes help you to convert
programs from one system to another.

42 == Programming with Macintosh Turbo Pascal

The first section describes identifiers that changed or disappeared in the Macin-
tosh compiler. The second section describes new identifiers found only on the
Macintosh version. Use the first section to convert IBM PC programs to the Macin-
tosh. Use the second to avoid writing Macintosh programs that will be difficult
to convert later to the IBM PC.

The following is not a complete reference to Turbo Pascal. For that, and for
the exact format of these and other commands, consult the Guide and other
references. Some of these commands apply only to textbook style programs or to
those that use PasInOut, PasConsole and other units. Some of the programming
references in the notes require toolbox interfaces such as MemTIypes, QuickDraw,
OSIntf, ToolIntf, and others.

IBM PC Identifiers Changed or Deleted
Addr

Use @ in front of the identifier whose address you want. For example, instead
of Addr(wordsArray), write @wordsArray.

Append

No equivalent.

Assign

This is a major change. In IBM PC Turbo Pascal, you assign a file name to
a file variable before resetting or rewriting that file. There’s no equivalent procedure
in Macintosh Turbo Pascal. Instead, now there are two forms of Reset (see later
description). Use the original form Reset(f) to rewind a file to its top, not to open
it the first time. Instead, use Reset(f,name) to open existing files. This takes the
place of the two IBM PC statements:

Assign(f, name) ;
Reset(f);

BDOS, BDOSHL, BIOS, and BIOSHL

No equivalents. BDOS and BIOS commands call routines in the CP/M
operating system for that version of Turbo Pascal. On the Macintosh, you do similar
jobs by calling toolbox procedures.

BlockRead and BlockWrite

No equivalents. These two procedures read and write disk blocks with no regard
for their contents. You use them in programs that don’t care what files contain.
For example, a copy program might use them to copy the bytes in one file to another.

Textbook Programs and Dumb Terminals == 43

The Macintosh toolbox has its own such low-level disk routines, FSRead and
FSWrite, which Volume 2 of Inside Macintosh describes how to use. These pro-
cedures are more powerful than BlockRead and BlockWrite because they read and
write any number of bytes rather than only entire blocks at a time.

Chain

You cannot chain from one program to another. Use the {$S+} and {$S
SegName} compiler directives to segment large programs into pieces, or overlays.

Another possibility is to add a Transfer menu to your program and let people

choose other programs to run. (See Chapter 7.) Or, you could hard-wire the names
of certain programs to which others transfer, in effect simulating a Chain.

ChDir

Use the toolbox File manager function SetVol to change the default volume
number for subsequent disk operations.

CIrEol and ClIrScr

These procedures exist but have the new names ClearEol and ClearScreen. They
work only with dumb terminal textbook style programs.

Rather than revise all such commands in every IBM PC program you convert
to the Macintosh, write two procedures named ClrEol and ClrScr. For example:

PROCEDURE ClrEol;
BEGIN

ClearEol
END; { ClLrEol }

This translates the IBM PC ClrEol to the new spelling, ClearEol, and avoids
having to touch up your program’s source code.

CrtExit and CrtInit

These two procedures send control codes (usually) to the terminal before
(CrtInit) and after (CrtExit) programs run. There are no equivalents and no need
for them on the Macintosh.

CSeg

No equivalent. This is a processor-dependent function that returns the Code
segment of the 8088/86 processor. There is no similar value on 68000 systems like
the Macintosh.

44 == Programming with Macintosh Turbo Pascal

DelLine

The same procedure exists, but it has a new name, DeleteLine. It deletes the
display line at the cursor position in Turbo’s dumb terminal textbook window.

Delay

Although it’s no longer one of Turbo’s native commands, the Macintosh
toolbox has a similar routine with the different form:

Delay(numTicks : LONGINT; VAR finalTicks : LONGINT);

NumTicks is the number of ticks, or heartbeats, in 1/60-second intervals to

delay. FinalTicks is the number of such heartbeats from the time you turned on
the Macintosh until the delay ends.

Don’t trust this routine for complete accuracy. Use it only in situations where
an approximate time delay is adequate.

Draw

Use Turbo’s Turtlegraphics unit commands PenDown, Forwd, and Back (among
others) to draw lines. Or, even better, use toolbox QuickDraw procedures Lin€To
and Line.

DSeg

No equivalent. This is a processor-dependent function that returns the Data

segment of the 8088/86 processor. There is no similar value on 68000 systems like
the Macintosh.

Erase

The same procedure exists for programs that use the PasInOut unit, as do all
textbook style programs. But it has the new form:

Erase(fileName);

where fileName is a string. Other Turbo versions assign a name to a file variable
and use Erase(f) to erase that file. The new form replaces those two steps.

Execute

No equivalent. See Chain.

Textbook Programs and Dumb Terminals = 45

Flush

No equivalent. In textbook programs, close and reopen files to flush in-memory
data to disk. In fully charged Macintosh programs, call the File manager routine
FlushVol.

Frac
To extract the fractional part of a real number, add this function to your
program.

FUNCTION Frac (r: REAL) : REAL;
BEGIN

Frac :=r - INT(r)
END; { Frac }

FreeMem

No equivalent. Use toolbox memory manager routines to manipulate the heap.

GetDir

Use the File manager GetVol function to get a specific drive name.

GetMem

No equivalent. Use toolbox memory manager routines NewHandle and NewPtr
to create memory areas in the heap.

GraphBackground and GraphColorMode

No equivalents. Use QuickDraw routines instead.

HighVideo

No equivalent. Textbook style programs use 9-point Monaco for text with no
reversed video or other display attributes. To display various fonts and text styles
in windows, use QuickDraw text routines.

Hires and HiresColor

On the IBM PC, these commands switch to the graphics display and set the
drawing color. The Macintosh graphically draws everything and the commands
aren’t needed.

46 == Programming with Macintosh Turbo Pascal

InLine

You can insert in-line, 68000 machine language into Pascal programs but not
in the same way you insert 8088/86 machine code into IBM PC programs. On the
Macintosh, in-line code follows a procedure header. Everywhere in your program
that you use that procedure name, the compiler inserts the in-line code. This operates
more like an assembler macro—a way to consolidate instructions under a single
label—than a direct insert of machine language into what the compiler produces.

Converting IBM PC programs that heavily use InLine statements is extremely
difficult. Probably, the best plan would be to remove the InLine statements from
the PC program and, on that computer, write equivalent Pascal procedures. After
the program is working correctly, translate it to Macintosh Turbo Pascal. Then,
if certain operations need the extra speed that only machine language can give,
convert them to 68000 in-line code. This method avoids the difficulties of trying
to translate 8088/86 into 68000 machine language, a shaky limb upon which I do
not wish to stand for very long.

InsLine

The same procedure exists, but has a new name, InsertLine. It inserts a blank
display line at the cursor position in Turbo’s dumb terminal textbook window.

Kbd

No equivalent. In IBM PC programs, this standard file typically goes in a Read
statement such as this:

Read(Kbd, ch);

With this technique, you read a single character from the keyboard but don’t
display that character. This is useful when you want to avoid pressing Return after
typing single character responses such as Y or N and also when you want to read
control characters but not display them.

To do the same thing on the Macintosh, use the ReadChar function as explained
early in this chapter.

LongFilePos, LongSeek, and LongFileSize

These three procedures let you use real numbers to access records at random
in disk files. They eliminate the file size restrictions that integer record numbers
impose. To do the same thing on the Macintosh, use the toolbox File manager
routines GetFPos for LongFilePos; SetFPos for LongSeek; and GetEOF for
LongFileSize. The toolbox routines use the LONGINT data type for byte counts
and, therefore, increase file size to the maximum long integer of 2,147,483,647. That’s

Textbook Programs and Dumb Terminals = 47

equal to more than 4 million 512-byte disk blocks—a goodly amount as they say
in our part of the country.

LowVideo
No equivalent. See HighVideo.

Mark

Memory management is more sophisticated on the Macintosh than the sim-
ple ability provided by marking the heap and, after creating objects there, releas-
ing that memory with the standard Release procedure.

Some people will lament the passing of Mark and Release from Macintosh
Turbo Pascal. But you can get into serious trouble if you attempt to manage the
heap in this simplistic way. Undoubtedly, your program would conflict with pull
down menus, windows, controls, dialogs, desk accessories, and other processes that
also use memory while your program runs.

After creating dynamic objects with New, use Dispose to recover their memory
for later use. It’s difficult to convert programs that rely on Mark and Release for
memory management, but not impossible. Just be certain to Dispose every variable
the program creates with New. This lets Turbo and the Macintosh toolbox manage
memory in ways that won’t conflict with other processes.

MkDir

No equivalent. Create your own folders with the Finder.

Move

Use MoveLeft and MoveRight instead, two procedures that move memory bytes
to lower (MoveLeft) or to higher (MoveRight) addresses. The original Move
prevented you from accidentally moving in the wrong direction and, in the proc-
ess, destroying data you meant to preserve. The replacement procedures do allow
this to happen but only if the destination and source areas overlap. If your source
and destination areas do not overlap, then you can safely use either MoveLeft or
MoveRight. In that case, they have identical effects.

MsDos

No equivalent.

NormVideo

No equivalent. See HighVideo.

48 == Programming with Macintosh Turbo Pascal

NoSound

Use the toolbox Sound driver procedure StopSound instead.

Ofs

No equivalent. This is a processor-dependent function that returns an offset
address for variables on systems using the 8088/86 processor.

Palette

No equivalent. Use the QuickDraw routine PenPat to change pen patterns and
to draw in various shades of gray.

ParamCount and ParamStr

The toolbox segment loader routines CountAppFiles, GetAppFiles, ClrApp-
Files, and ClrAppParms duplicate what these two IBM PC procedures do. General-
ly, you use CountAppFiles in place of ParamCount and GetAppFiles in place of
ParamStr. But, unlike on the IBM PC, the Macintosh procedures return only the
names of data files opened by clicking their icons in the Finder. Another time to
use GetAppFiles is when someone opens several files along with an application
at the same time.

The IBM PC version lets people type other parameters—not just file names—
that programs can recover with ParamCount and ParamStr. In this sense, you can-
not do the same thing on the Macintosh.

Plot

To plot a point with Turtle Graphics, use the following two statements:

PenDown;
Forwd (0);

This places a tiny dot at the current pen location. (You might need a magnify-

ing glass to see it.) Another way to plot points at a location (h,y) is with these
QuickDraw statements:

MoveTo(h, v);
LineTo(Ch, v);
Ptr

The toolbox memory manager data type Ptr replaces this function, which sets
a pointer variable to a specific address in CP/M and IBM PC Turbo Pascal systems.

Textbook Programs and Dumb Terminals = 49

You can do the same thing on the Macintosh by using POINTER to assign specific
addresses to pointers. For example, this sets pointer p to address 3:

VAR

p: "INTEGER;
BEGIN

p :=POINTER(3)
END.

Ptr is now a data type declared in the MemTypes interface. You can simulate
the way it works on the PC by declaring a variable of type Ptr and then using type
coercion to assign specific values to that variable. (A coercion forces Pascal to treat
data as a different data type than its original declaration.) You could write:

USES MemTypes;

VAR
p:Ptr;
BEGIN
p:=Ptr(3)
END.

But notice that this is not quite the same thing as assigning an address to any
type of pointer variable. In order for the coercion to work, the variable must be
of type Ptr.

Random and Randomize

Use QuickDraw’s Random function instead. Unfortunately, this returns only
integer values, not reals in the range 0 < = random < 1.0. Use RandSeed in place
of Randomize to start new random sequences.

Release

No equivalent. See Mark.

Rename

The same procedure exists for textbook programs, but it takes two string
parameters instead of a file variable and string as in the IBM PC version. To rename
fileNameA to fileNameB do this:

{$i-}
Rename(fileNameA, fileNameB);
{$i+}
IF IoResult <> 0
THEN writeln('Error renaming!"');

50 == Programming with Macintosh Turbo Pascal

Reset and Rewrite

For textbook programs that use Turbo’s PasInOut interface, Reset and Rewrite
are similar to their IBM PC counterparts. Both now come in two forms. To open
a file for reading, use Reset(f,name). To rewind a file to its top after opening, use
Reset(f) without the name. To create a new file, use Rewrite(f,name). To rewind a
file and start writing it from the top, use Rewrite(f) without a name.

When you Rewrite a text file, you can only write to it. When you Reset a text
file, you can only read from it. See also the comments under Assign.

RmbDir

No equivalent. Use the Finder to remove folders.

Seg

No equivalent. This is a processor-dependent function that returns a segment
address for variables on systems using the 8088/86 processor.

Sound

Use the toolbox Sound driver procedure StartSound instead.

SSeg

No equivalent. This returns the stack segment register value on systems using
the 8088/86 processor.

Str

Use the Binary-Decimal Conversion Package procedures StringToNum and
NumToString to convert strings and integer values. Unfortunately, unlike Str, you
cannot format strings as you can in statements such as Str(r:8:2,s) on the IBM PC.

TextBackground, TextColor, and TextMode

No equivalents. Use QuickDraw routines to change text fonts and styles in
windows.

UpCase

No equivalent although you can use the OS (Operating System) Utility routine
UprString to convert strings to uppercase. (UpCase converts only single characters.)

It’s a simple matter to write your own UpCase function, duplicating the IBM
PC command. Here’s one way to do it:

Textbook Programs and Dumb Terminals = 51

FUNCTION UpCase(ch : CHAR) : CHAR;
BEGIN
IFchINTC 'a'.
THEN UpCase :
ELSE UpCase :
END; {UpCasel}

'z' 1
CHR(Ord(ch) -32)
ch

Val

No equivalent. Use toolbox procedures StringloNum and NumToString to con-
vert strings and numbers. See also Str.

WhereX and WhereY

No equivalent. In Turbo’s textbook window, it’s not possible to locate the cur-
sor position. But, because the Macintosh uses a graphics display for everything
you see, you can always use QuickDraw routines such as GetPen to locate where
text will appear. Remember, though, that this returns a single point on the Macin-
tosh’s 512 x 342 visible display (or in different limits on larger-screen models), not
an (x,y) character coordinate as WhereX and WhereY do.

Window

Use the Window manager. You cannot use IBM PC pseudo-windows in Macin-
tosh textbook style programs.

New Macintosh Identifiers Not in IBM PC Turbo Pascal

Ord4

This returns the long integer ordinal (whole number) value of 32-bit objects.
Use Ord4 to convert pointers to LONGINT variables. For example, if you have a
pointer p, and a variable Addr of type LONGINT, you could write:

Addr :=0rdé&(p);

Pointer

This function replaces Ptr in the IBM PC version. Use it to assign specific ad-
dresses to pointer variables or to convert one pointer type to another. To assign
a specific address, do this:

VAR

p: INTEGER;
BEGIN

p :=POINTER(3000)
END.

52 == Programming with Macintosh Turbo Pascal

To convert one pointer type to another, use POINTER in the assignment.
Because the function returns a generic type, you can always assign it to any pointer
variable. For example,

VAR
recPtr : AAnyRecord;
intPtr : AINTEGER;
BEGIN

intPtr := POINTER(3000);
recPtr := POINTER(C intPtr)
END.

Doing this assigns the same address to both intPtr and recPtr. Use this tech-
nique if you need two or more pointers to the same memory location but want
to interpret the contents of that memory as different objects.

Float

It’s doubtful you’ll ever use Float. It converts integer values to reals. If you
have an integer n, you can assign it to a real variable r with the statement:

r:=Float(n);

The only reason to do this is for documentation. In other words, Float makes
it obvious that you are converting a variable from one type to another, a fact that
in mathematically critical programs may be important to know. But you can always
write more simple statements such as:

r:=ij;

to do the same thing. This works because Turbo converts integers to reals in ex-
pressions that it evaluates to real results. Remember that the reverse is not true:
you cannot directly assign reals to integers. For that, use the standard functions
Trunc or Round, the complements of Float.

ClearEol and ClearScreen

These two procedures replace CIrEol and ClrScr in IBM PC Turbo Pascal. They
do the same thing—clear from the cursor to the end of the line and clear the entire
screen—as the PC commands. They work only in textbook programs that use the
PasConsole unit.

ReadChar

ReadChar reads single characters from the keyboard without displaying those
characters in the dumb terminal textbook window. ReadChar simulates control

Textbook Programs and Dumb Terminals = 53

characters when you press the Command key and then type a character. It returns
ASCII controls for keys Return (13); Enter (3); and Clear (27), as well as for others
such as the arrow keys on a numeric keypad or on a Macintosh Plus keyboard.

MoveLeft and MoveRight

MoveLeft moves bytes in memory from higher to lower addresses. MoveRight
does the same, but it moves from lower to higher addresses. On the IBM PC, the
single Move does the same thing, figuring out for you the correct direction to move
while avoiding overlapping bytes from the source to the destination.

In one sense, Move is more powerful than MoveLeft and MoveRight—it helps
you avoid errors. But in another sense, the two commands are improvements. For
one thing, because they don’t have the logic that decides in which direction to go,
you can assume that MoveLeft and MoveRight run faster than Move would if it
existed in the Macintosh compiler.

Be extremely careful with these two instructions. They move memory with no
regard for other items they might disturb. A good rule to follow is: if you move
non-overlapping blocks, use either MoveRight or MoveLeft; if you move overlap-
ping blocks, use MoveRight when tiie destination is higher than the source; use
MoveLeft when the destination is lower.

ScanEQ and ScanNE

These two functions scan memory for matching (ScanEQ) or non-matching
(ScanNE) byte values. To scan the first 100 bytes of an array MyArray for the off-
set byte position from the start of the array to the first occurrence of a byte 255,
you could write:

Offset :=ScanEQ(100, 255, MyArray);

If Offset has the value 100, then ScanEQ did not find 255 in the array. If Off-
setisintherangeO. .99, it represents the position MyArray[Offset] where it found
the byte value 255.

ScanNE works the same way, but it finds the occurrence of the first value not
equal to another.

HiWord, LoWord, and SwapWord

These three new commands are the LONGINT equivalents of Hi, Lo, and Swap,
available in all versions of Turbo Pascal. HiWord returns the high order 16-bit IN-
TEGER value of a 32-bit LONGINT variable. LoWord returns the low order IN-
TEGER. SwapWord reverses the low and high words of a 32-bit value.

When dealing with specific parts of integers, remember that byte values are
already swapped on the IBM PC and CP/M Turbo Pascal versions. In fact, on most

54 == Programming with Macintosh Turbo Pascal

8- and many 16-bit computers, the low byte (0 . . 255) is physically ahead (at a
lower address) of the high byte ((0 . . 255)*256). In computers with 68000 processors,
the low byte comes after (at a higher address) the high byte value.

Such machine dependencies quickly lead to migraines and other programmer
maladies. In subjects such as these, the best medicine is preventive: don’t write
machine dependent code in the first place.

three

Turtle Graphics
vs. QuickDraw

There are two ways to draw images with Turbo Pascal. For simple displays,
there’s Turtle Graphics, an easy-to-learn set of commands that produces surpris-
ingly sophisticated patterns with a minimum number of program steps. Or, for bet-
ter control and speed, you have all of QuickDraw’s impressive power. QuickDraw
is a toolset of programming, mostly in ROM, that Macintosh programs use to
display windows, icons, shapes, and just about everything else you see on screen.

Unlike many computers, the Macintosh draws what it shows you. Boxes, lines,
window borders, text, and other images appear as the result of commands that
ultimately turn to white or black one or more of the display’s 175,104 pixels, or
picture elements.

This differs from conventional computers, which usually display text by en-
coding characters in memory. For example, to display the letter Q somewhere on
the screen, a program would store the ASCII value 81 at a specific location. Hav-
ing done that, the computer’s video circuits read that and other character values
to display pages of text.

The Macintosh is different. Instead of storing ASCII values in memory to
display text, it graphically draws letters and symbols the same way it forms boxes,
circles, and other shapes. Those shapes also have corresponding values in memory
just as in a conventional display but, in this case, each of a pattern’s memory bits
represents a single display pixel.

There are several consequences of this approach to displaying visual informa-
tion. For one, the Macintosh requires a large amount of memory to hold just one
screen-full of graphics. On a traditional computer terminal where each memory
byte can store one character, it takes only 2,000 bytes to hold all the ASCII values
for an entire 80-column by 25-line screen. In contrast, because the typical Macin-
tosh display has 512 horizontal by 342 vertical pixels, and because it takes one
memory bit to hold each teensy dot, the Mac’s display takes more than ten times

55

56 == Programming with Macintosh Turbo Pascal

that amount of memory—to be exact, 21,888 bytes (512 x 342 divided by 8 bits
per byte). To show something on this bit-mapped display, programs change in-
dividual bits in a screen buffer, a memory area that corresponds with the images
you see.

The obvious disadvantage with a bit-mapped display is a loss of speed. Because
the Macintosh has to read more than ten times the number of bytes per screen than
most other computers, it potentially takes longer to redraw, or refresh, a page of
text or graphics than it does on a traditional text-only terminal. Even worse, to keep
the CRT (Cathode Ray Tube) phosphors from fading, as they quickly do unless
constantly regenerated, the Macintosh must redraw its screen 60 times a second,
a time-consuming juggling act from which it can never rest. (For those who care
about accuracy, the exact rate is 60.15 hertz, or cycles per second.) Obviously, the
amount of time it takes to scan 21,888 bytes of memory 60 times a second is a much
greater slice of pie than reading only 2,000 bytes.

The extra effort is worth the trouble. On a text-only computer terminal, the
hard-wired characters indelibly burned into the computer’s circuits are all you get.
You might be able to fake graphics with characters that look like lines and sym-
bols, but you cannot change their bit patterns or combine them with other im-
ages. Of course, the Macintosh lets you do all of that and more. Because it draws
everything you seg, it paints italics, bold, and underlined text the same way it draws
landscapes and animates figures. To the Macintosh, everything is a picture.

The one-to-one relationship between memory bits and display pixels is impor-
tant to understand. But don’t make the common mistake of thinking that bits and
pixels are one and the same. They are two very different items. A memory bit is
an electrical charge in a circuit somewhere in the RAM belly of your Mac. A pixel
is a point of light, something you see on screen. The computer reads memory bits
to know which points to turn on.

The difference might seem trivial on computers such as the Macintosh where
pixels directly correspond with bits in memory. But it becomes even more impor-
tant on color displays where many bits specify the color of individual pixels, no
longer a one-to-one relationship. For example, the Macintosh II’s video display
stores color values in single bytes, using up to eight bits per visible pixel. By
understanding now that bits and pixels are not necessarily equivalent, you’ll find
programming such displays easier in the future.

Another peculiarity you should know about is the way the black and white
Macintosh interprets 0 bits as white pixels and 1 bits as black. This is opposite from
usual graphics displays where 1 bits stand for white pixels. Many people see the
Macintosh as behaving backwards in this department although, logically speak-
ir =, the Macintosh and traditional displays are the same—Dboth interpret a 1 bit
as significant, the value that produces something to see. Remember that it’s what
you see on the Macintosh that’s different—usually black images on white
backgrounds. As stored in memory, the images are no different than on most
graphics computer displays.

Turtle Graphics vs. QuickDraw = 57

TURTLE GRAPHICS

Seymour Papert and MIT coworkers invented Turtle Graphics in the late 1970s
as a way to teach coordinate geometry to young people. By placing a turtle-like
robot on a large sheet of paper, attaching a pen to the turtle’s tail, and whizzing
the little creature off in one direction or another, Papert discovered that complex
patterns were easy to draw with only simple commands. Basically, there are four
command types in the Turtle Graphics set:

PenDown—Put the pen down to start drawing
PenUp—Pull up the pen to stop drawing
Turn—Turn by a certain amount

Move—Move a certain distance

Variations on these commands turn the turtle to specific angles or move it to
X.Y coordinates. Still other variations interrogate the turtle to get its current loca-
tion and heading. To draw a box with such commands, you simply put the pen
down and execute the following statements using a Pascal FOR loop:

PenDown;
FOR side :=1T0 4 DO
BEGIN
Move (50);
Turn(90)
END;

The most interesting fact about algorithms like this is that they work anywhere
on the floor—or on the computer screen. You don’t need to initialize variables or
specify X,Y coordinates or line endings. You simply place the turtle at any loca-
tion and tell it to move and turn until it draws a box.

Even more important, Turtle Graphics helps you to visualize what you want
to draw. Instead of pondering formulas and mathematical equations, you envi-
sion the processes that make images. After all, what could be simpler than imagining
a turtle scooting around leaving trails behind?

Of course, Turbo Pascal’s turtle is a phantom. You never actually see the
creature; you see only its trails. Some other languages that have Turtle Graphics,
most notably Logo, do show a turtle figure, but not Turbo.

A STAR IS BORN

Turtle Graphics commands come packed inside a unit—a collection of precom-
piled routines and other definitions. There are commands to send the turtle to

58 == Programming with Macintosh Turbo Pascal

specific locations, change its heading, clear the display, and so on. To use the com-
mands, you tell Turbo to add the unit to your program.

Listing 3.1 demonstrates how to use the Turtle unit. It draws a five-point star
in the center of a window, the same dumb-terminal from Chapter 2. Although this
is a very simple example containing only 47 lines, it explains several features you
will include in most of your own Turtle Graphics programs.

Type in the listing, save as STAR.PAS, and compile to memory. When you run
it, you see a star in the center of the screen. Click the mouse button to end the
program and return to Turbo.

Listing 3.1. STAR.PAS

: {$0 Programs:Turtle.F: } { Send compiled code to here }

: PROGRAM Star;
i

1
2
3
4
5
6
7
8 * PURPOSE : Draw a five-point star
9: * SYSTEM : Macintosh / Turbo Pascal
10 * AUTHOR : Tom Swan

11

12

13

*)

14:

15: USES

16:

17: MemTypes, QuickDraw, OSIntf, ToollIntf, Turtle;
18:

19:

20: CONST

21:

22: Distance = 160;

25: VAR

27: side : INTEGER;

30: BEGIN

31: Home;

32:

33: PenUp;

34: SetHeading(216);

35: Forwd(Distance DIV 2); { Center star in window }
36:

37 SetHeading(18);

38: PenDown;

39: FOR side := 1 TO 5 DO { Draw star }
40: BEGIN

41: Forwd(Distance);

42: TurnRight (144)

43: END; { for }

45:; WHILE NOT Button DO { wait } { Wait for mouse click }
46:
47: END.

Turtle Graphics vs. QuickDraw == 59

Star Play-by-Play

Line 1 directs the compiler to send its compiled code to the disk volume and
folder Programs: Turtle.F:. Create this folder with the Finder, or change line 1 if
you want to store the code file somewhere else. Whatever names you specify in this
output compiler directive, Turbo uses them only when you compile to disk. It ig-
nores line 1 when you compile directly to memory.

The USES clause in lines 15-17 tells Pascal to add the interfaces from five units,
MemTypes, QuickDraw, OSIntf, ToolIntf, and Turtle. Turtle (the name of the Tur-
tle Graphics unit) always comes after the preceding four names. You can use other
units in Turtle Graphics programs—PasPrinter, for example, if you want to print
text—but Turtle always follows the other four as shown here. The reason for this
is that the Turtle unit itself uses the definitions in the other units. For example,
to draw a line, Turtle routines such as Forwd call line drawing procedures in
QuickDraw. And QuickDraw in turn uses the definitions in MemTypes, and so on.

Having told Pascal to include various units, you can then use their commands,
constants, data types, and variables. For example, line 31 homes the turtle, send-
ing it to the center of the window at coordinate (0,0) and turning it to face up
(angle=0). If you take out the Turtle unit from the USES clause in line 17, the pro-
gram would no longer compile because Home is not a command Pascal normally
recognizes. It exists only in the Turtle unit.

To see the effect of Home, remove it and rerun the program. What happens?
What does the result tell you? Removing commands this way is an excellent method
to discover for yourself the effects they have. If you don’t fully understand a se-
quence, take it out and observe what happens. Often, this simple debugging tech-
nique solves more mysteries than any other. But instead of erasing commands, and
then having to retype them or reload the original file from disk, you can “com-
ment them out,” meaning you turn them into a comment. For example, to com-
ment out line 31, change it to this:

(x Home; *)

I point this out to show you another small trick I use often. When I comment
out a section of code, I always use the comment symbols (* and *). For normal
comments (except for the program header) I use the alternate braces { and }. For
examples, see lines 35, 39, and 45. Each of these lines ends, by my convention of
using braces, in a regular comment. To comment such lines out, you could write
(* in line 32 and *) in 36. Because they use two different kinds of brackets, the
comments do not conflict with each other, an example of nested comments—one
comment inside the other. This would not work if you used the same symbols, either
(* and *) or { and } in both cases.

Lines 33-35 pull up the turtle’s tail, set its heading to 216 degrees, and move
it forward half the Distance constant value of 160, centering the star in the win-
dow. Lines 37-38 initialize the turtle’s heading and put its pen down so that, when

60 = Programming with Macintosh Turbo Pascal

it moves, it draws a line. Then the FOR loop (39-43) moves the turtle forward by
a certain distance and turns it by 144 degrees (42) each time through the loop, draw-
ing a star.

Notice that, except for the number of loops and the angle, the algorithm for
drawing stars is no different from drawing boxes. It takes more steps (five instead
of four) but it takes no additional statements to draw these two very different ob-
jects. This is typical of Turtle Graphics programs—a minimum number of pro-
gram steps plus a curious ability to draw very different patterns using similar
commands.

The final statement in Listing 3.1 uses the Toolbox Event Manager function
Button to wait for you to click the mouse before the program ends. You activated
the Button function, plus a few dozen other routines, by including the ToolIlntf
(Toolbox Interface) unit in the USES clause at line 17. You could put a ReadIn state-
ment here in place of Button as you did in the textbook examples in Chapter 2,
but then you’d see a flashing cursor on display along with the star. Using Button
avoids displaying the cursor.

THE TWIRLING TURTLE

The next example, TWIRL.PAS in Listing 3.2, shows off Turtle Graphic’s speed
and takes advantage of the observation that a small number of similar steps can
produce a variety of patterns. Type in the program the same way you typed in
STAR.PAS. Compile to memory or to a disk code file.

When you run Twirl, read the brief introduction and click the mouse to begin.
To stop the display and return to the Turbo editor, press the Return key (or any
other key). Your only other job is to watch.

Listing 3.2. TWIRL.PAS

1: ($0 Programs:Turtle.F: } { Send compiled code to here }
2:

3:

4: PROGRAM Twirl;

5:

6: (*

7:

8: * PURPOSE : Animated TurtleGraphics display

9: * SYSTEM : Macintosh / Turbo Pascal

10: * AUTHOR : Tom Swan

11:

12: *)

13:

14:

15: USES

16:

17: MemTypes, QuickDraw, OSIntf, ToollIntf, Turtle;
18:

19:

20: VAR

Turtle Graphics vs. QuickDraw == 61

22: maxSides : INTEGER;

26: PROCEDURE DrawPoly(Alen : INTEGER);

28: { Draw a polygon at the pen position with sides = len }
30: VAR

32: side : INTEGER;

34: BEGIN

35: PenDown;

36: FOR side := 1 TO MaxSides DO
37: BEGIN

38: Forwd(len);

39: TurnRight (360 DIV MaxSides)
40: END; { for }

41: PenUp

42: END; { DrawPoly }

45: PROCEDURE Graphics;

47: { Display patterns by calling Box with various parameters }

49: VAR

50:

51: steps, distance : INTEGER;

52:

53: BEGIN

54: Clear;

55: steps := 1 + (ABS(Random) MOD 100);
56: maxSides := 1 + (ABS(Random) MOD 12);
57: FOR distance := 10 TO 1000 DIV maxSides DO
58: BEGIN

59: DrawPoly(distance);

60: TurnRight (steps)

61: END { for }

62: END; { Graphics }

63:

64:

65: BEGIN

66:

67: Writeln('Twirl');

68: Writeln('----- ')

69: Writeln;

170:

71: Writeln('This program displays a variety of graphics patterns all');
72: Writeln('by rotating polygons around the screen center and ');

73: Writeln('increasing the size and orientation of each shape until');
74: Writeln('the screen is full.');

75: Writeln;

76: Writeln('Press the Return key (or any other key) to stop the show.'):;
17: Writeln;

78: Write('Click the mouse button to begin...');

80: WHILE NOT Button DO { nothing };
82: HideCursor;

84: WHILE NOT Keypressed DO Graphics

62 == Programming with Macintosh Turbo Pascal

Twirl Play-by-Play

Procedure DrawPoly (26-42) uses the same algorithm to draw a many-sided
polygon as Star uses to draw stars. A FOR loop (36-40) repeats two statements,
Forwd and TurnRight, the number of times global variable maxSides specifies. This
moves the turtle forward according to the value of len, the procedure’s only
parameter. Notice that in line 39 the angle passed to TurnRight is (360 DIV max-
Sides), roughly ensuring that the final line ends back at the starting place, closing
the shape. Of course, this works perfectly only for steps that divide evenly into 360.
And, as you can see by reading the procedure, I use the word polygon loosely. If
len equals 1, DrawPoly obviously does not draw a many-sided object. Also, values
like 7 and 19 don’t produce closed shapes. But, as you see when you run Twirl,
there’s no need to be so exacting in our definition of a polygon.

Notice also that DrawPoly puts the pen down when the procedure begins (35)
and then pulls it up just before ending (41). This is a good plan to follow when
designing your own graphics tools. If all routines leave the pen up, then you don’t
have to worry at other times whether moving the turtle will draw a line. You know
it won’t because all your tools cooperate, following guidelines you devise. On the
negative side, the two PenUp and PenDown commands might make programs run
more slowly, especially if they call DrawPoly many times.

The next procedure, Graphics (45-62), repeatedly calls DrawPcly, supplying
various parameters to change polygon sizes and shapes. By now, you’ve probably
run the program and seen the dramatic effect this has. The patterns twirl out at
you starting at the center of the window and expanding until the display is full.
Curves strangely appear even though the turtle draws only straight lines. And
remember, everything you see is drawn by the Forwd(len) statement at line 38. What
an amazing effect with such simple commands!

Line 54 shows how to clear the graphics window. Replace this line with the
dumb terminal ClearScreen command and see what happens. The reason this
doesn’t work is that ClearScreen erases only text lines from the window. Always
use Clear to erase the entire Turtle Graphics window out to the borders.

To randomly change the patterns, lines 55 and 56 set variables steps and max-
Sides to values selected at random by the QuickDraw toolset Random function,
which returns an unpredictable value from the range -32,767 to +32,767. To keep
steps and maxSides within a particular range, the program uses the typical approach
of adding a minimum value (1 in line 56) to the value of Random modulo 12 (mean-
ing the remainder after dividing by 12). But don’t use this common formula:

n:=Low+ (Random MOD High);

On many computers, that sets n to an unpredictable value ranging from Low
to High. But, because QuickDraw’s Random returns negative as well as positive
values, if Low=1 and High=100 in the above formula, n could be any value from
—98 to 100, not at all what you might expect. To get positive values only, pass the

Turtle Graphics vs. QuickDraw == 63

value of Random to function ABS (absolute value) as in lines 55 and 56. This forces
Random to return only positive numbers from 0 to 32,767.

Similar to the way STAR.PAS ends, line 80 waits for you to click the mouse
button. Unlike STAR.PAS, where clicking the mouse ends the program, this starts
Twirl’s action but also causes the arrow cursor to appear. Therefore, line 82 hides
the cursor with a call to the QuickDraw HideCursor procedure. To redisplay the
arrow, call ShowCursor. If you do that, be aware that HideCursor counts the
number of times you call it. Before the cursor reappears, you must call ShowCur-
sor an equal number of times.

Just to be different, line 84 uses Turbo’s Keypressed function to end Twirl by
pressing a key. If you would prefer clicking the mouse to end, replace line 84 with
this:

WHILE NOT Button DO Graphics;

What happens when you do that? The answer is nothing, at least unless you’re
the fastest clicker in the land. When you click the mouse to start the program, line
84 executes before you can possibly release the mouse button and the program ends
without displaying anything. One solution to this predicament is to wait for a release
of the mouse button before starting the graphics display. To do that, insert this
statement at line 81:

WHILE Button DO { wait for release };

Unfortunately, when you try this, you discover yet another problem, (Terrible
how problems like these propagate, isn’t it?) Now, when you click the mouse the
first time, the program runs but, when you click it again, it doesn’t end. (If you
can’t figure out how to end the program, hold the mouse button down between
graphics frames—that should return you to Turbo.)

This demonstrates that programs don’t see mouse clicks in the same way they
see keypresses, an important distinction to remember. Keypresses go into a type-
ahead memory area, or buffer, so that programs can check at any time whether
you typed something earlier. Mouse clicks don’t go into buffers. Instead, you have
to sense them in real time. If the program doesn’t check for a mouse click at the
time that someone holds down the button, you can click all day and it won’t have
any effect. How can we solve this problem?

The solution is to check for mouse clicks inside the most time consuming loop
in the program, the FOR loop at lines 57-61. If the program senses a mouse click
there, it can call Turbo’s Exit command to end the current procedure, jumping out
of the FOR loop and letting the modified line 84 end when it senses the mouse
button down. To make this change, insert the following IF statement between lines
58 and 59:

IF Button THEN Exit;

64 == Programming with Macintosh Turbo Pascal

Solving problems by backtracking this way and revising previously correct pro-
cedures goes by the technical term stepwise refinement. In other words, after get-
ting the program steps working the way you want, you may find it necessary to
refine those steps to handle unforeseen situations that later arise.

QUICKDRAW GRAPHICS

The previous examples use Turbo Pascal’s textbook interface, displaying
everything in the dumb terminal window, which automatically appears when you
compile and run programs. But you can also write graphics programs that draw
directly on the Macintosh screen. Not only does this do away with Turbo’s fixed
window, it opens all QuickDraw routines and features to you and to your programs.

You pay for this newfound ability with added complexity. To fully use
QuickDraw and other Macintosh toolsets requires you to follow certain rules and
regulations. No longer can you write a simple program to draw lines by moving
the turtle around. Instead, you have to initialize QuickDraw and tell it where you
want it to draw (usually, but not always, the display). Then you can start drawing.

To make these added steps easier, it helps to have a shell—a do-nothing pro-
gram that outlines the common steps most programs require. When you start a
new program, you begin with a copy of the shell to which you add your own pro-
cedures, functions, and other declarations. The next section develops such a shell
and then lists several examples that use it. To understand how it works, though,
you first need to learn about the Macintosh coordinate system and a few QuickDraw
data types.

Above the Coordinate Plane

If you’ve programmed other graphics computers, you’ll find the Macintosh
way a little different. The visible display is a mere chip off the entire coordinate
block (more correctly called a plane) in which drawing occurs. You might think
of the display as a sort of window (not the Macintosh kind of window) that sits
above the plane and through which you view small sections of the entire surface.
The full plane is 65,535 points wide and deep for a total of 4,294,836,225 (65,535
X 65,535) points, every one available to you and your graphics programs.

Although large, the entire coordinate grid is not just sitting there in memory
waiting for you to use one section or another. The plane is only a /logical area into
which you can draw shapes and other objects. If the entire plane were physically
in memory, it would occupy over 500 million bytes—somewhat larger than the
typical Macintosh holds.

You locate each coordinate point on this logical grid with two integers in the
range —32,767 to +32,767. (Astute programmers will realize there is a missing
negative value, —32,768, in this 16-bit integer range. Even though this is a legal

Turtle Graphics vs. QuickDraw = 65

-32,767 L 0 » +32,767
|
4 I
h Coordinate
-IT- Plane 1 °
v I
I
+32,767 0

Figure 3.1 QuickDraw’s coordinate plane is 65,535 pixels
square with values ranging from -32,767 to +32,767 in both
the vertical and horizontal axes.

integer, it’s outside of QuickDraw’s coordinate range.) As Figure 3.1 shows, negative
values are to the top and left while positive values are to the bottom and right.
Coordinate (0,0) is at dead center. On the horizontal axis, values follow the usual
mathematics convention of putting negative X values to the left of zero and positives
to the right. But on the vertical axis, values are opposite to mathematical conven-
tion, with negative values above zero and positive values below. (Figure 3.2 lists
a Pascal function that converts Macintosh vertical coordinate values to standard
mathematics convention.)

Because the Macintosh coordinate plane doesn’t follow standard X,Y nota-
tion, it’s best to label horizontal and vertical axes H and V rather than X and Y.

. FUNCTION InvertV(v : INTEGER) : INTEGER;

{ Invert vertical coordinate component v to convert Macintosh
coordinates to standard mathematical convention }

BEGIN
InvertV := 65536 - v
END; { InvertV }

Figure 3.2 Use this function to convert vertical coordinate
values to standard mathematics convention where positive
values are above zero and negative ones below—exactly the op-
posite in QuickDraw graphics.

66 == Programming with Macintosh Turbo Pascal

Whenever examples in this book use H and V, or variations like H1 and vMax,
you know they refer to points on the Macintosh coordinate plane.

Each coordinate point (H,V) is infinitely small—not a play on words, and not
a reference to the fact that Macintosh pixels are tiny, as some people mistakenly
assume. Points on the coordinate grid do not coincide directly with pixels on the
screen. If you keep that simple fact in mind, you’ll understand more than many
people do about QuickDraw graphics.

Figure 3.3 shows why this is important. The figure represents a 4 X § section
of the Macintosh coordinate grid containing four black pixels (the shaded cells).
Notice that the coordinate values along the horizontal and vertical axes refer to
the grid /ines—not to the pixel columns and rows as they do on many other com-
puter graphics screens. The leftmost shaded pixel is below and to the right of coor-
dinate point (1,2) as marked by the arrow in the figure. The bottom shaded pixel
has its top left corner at coordinate point (2,3).

This organization makes certain operations more logical than if coordinate
values marked columns and rows instead of grid axes. For example, imagine a rec-

1,2

5

Figure 3.3 QuickDraw coordinates rest on the divi-
sions between pixels, not on the rows and columns
as in conventional computer graphics. As the arrow
indicates, a pixel’s coordinate locates its top left
corner.

Turtle Graphics vs. QuickDraw = 67

tangle around the four shaded pixels in Figure 3.3. How wide is it? How tall? Of
course, the answer is three pixels. Now, if you write down the coordinate points
of that rectangle’s four corners, you see an interesting fact.

(1,1)—Top left
(4,1)—Top right
(1,4)—Bottom left
(4,4)—Bottom right

Notice that subtracting the left and right coordinate values (4 — 1) gives 3,
the width of the rectangle in pixels. Likewise, subtracting the top from the bottom
value also gives 3. This observation leads to a rule, one of the most important in
Macintosh graphics programming: Subtracting two coordinate points tells you how
many pixels lie between those points.

As a result, you don’t have to use formulas such as 1 + (right — left) to
calculate object widths, as many computers require. To find the length of a line,
you merely subtract its endpoint coordinate values, avoiding a common confusion
that Inside Macintosh aptly calls “endpoint paranoia.” An interesting side effect
of this coordinate system is that you can specify zero-width objects. If two points
have the same coordinates, there are no pixels between them. On a conventional
system, there is one visible pixel at two points having the same coordinates even
though subtracting the two vertical or horizontal coordinate values gives zero—a
confusing contradiction the Macintosh neatly avoids.

Points and Rectangles

Two QuickDraw data types, Point and Rect, specify points and rectangular
areas on the Macintosh coordinate plane. Figure 3.4 shows how QuickDraw defines
these two record types.

VHSelect is an enumerated type with two components, V and H, representing
vertical and horizontal axes values. Point is a variant record with two possible con-
figurations, an example of a free union. The integers 0 and 1 (directly under
RECORD) tell Pascal to treat the record fields either as two integers with the labels
v and h (CASE 0) or as an array of integers indexed by type VHSelect (CASE 1).
(If you read Inside Macintosh, you’ll see that VHSelect’s components V and H
are in lowercase. I use uppercase for these enumerated elements to distinguish them
from the lowercase v and h integer fields in the Point record type. This follows the
general rule in this book that variables start with lowercase letters while types and
constants start with capitals.)

Point’s free union structure specifies coordinate points two ways: either as
separate h and v values or as an array of two integers indexed by VHSelect iden-
tifiers H and V. If you have a variable AnyPoint of type Point, you can use the
following statements to assign coordinate (100,50) to it:

68 == Programming with Macintosh Turbo Pascal

TYPE
VHSelect = (V, H);

Point =
RECORD CASE INTEGER OF

0 : (v : INTEGER;
h : INTEGER);

1 : (vh : ARRAY[VHSelect] OF INTEGER)
END; { Point }

Rect =
RECORD CASE INTEGER OF

0 : (top : INTEGER;
left : INTEGER;
bottom : INTEGER;
right : INTEGER);

1 : (topLeft : Point;
botRight : Point)

END; { Rect }

Figure 34 QuickDraw defines Point and Rect data
types as free-union, variant records, allowing
many ways to describe points and rectangles on
screen.

AnyPoint.h :=100;
AnyPoint.v :=50;

Or, you could do the same thing with the vh array like this:

AnyPoint.vh[H] :=100;
AnyPoint.vh[V1] :=50

It may seem useless to have two different ways to specify points but there’s
a good reason for the vh array even though two array index operations appear ex-
cessive merely to assign two integers. Usually, you’ll use the prior method and assign
values to the v and h integer fields. But with the vh array, you can use a variable
as the index and let the program logic decide whether to affect a horizontal or a
vertical component. For example, you might have the procedure in Figure 3.5a.

The first procedure (Figure 3.5a) adds amount to the vh array field, using
parameter select as an index and, therefore, selecting either the horizontal or the
vertical component—without the procedure itself knowing in advance to which
component it adds amount. The second procedure (Figure 3.5b) adds amount to
the v or h integer fields but, in this case, an IF statement decides which addition
to make.

Although these examples are not necessarily ideal ways to add values to coor-

Turtle Graphics vs. QuickDraw = 69

PROCEDURE MovePointl(VAR p : Point;
select : VHSelect; amount : INTEGER)

BEGIN

p.vh([select] := p.vh[select] + amount
END; { MovePoint }

(@)

PROCEDURE MovePoint2(VAR p : Point;
select : VHSelect; amount : INTEGER);

BEGIN
IF select =V

THEN p.v := p.v + amount
ELSE p.h := p.h + amount
END; { MovePoint }

Figure 3.5 Although the two procedures do the
same job, MovePointl (a) uses array indexing to
assign coordinate values to point p rather than
record field designations as in MovePoint 2 (b).

dinates, they demonstrate what many programmers often forget: one or two array
index operations like p.vh[select] in some circumstances may be more efficient than
two or four record field specifications like pv and p.h.

Another variant record, Rect (see Figure 3.4), defines a rectangular area on
screen. Rectangles figure in many QuickDraw operations. You’ll use them to draw
various shapes—not only rectangular ones—and to define regions, which specify
arbitrarily shaped portions of the visible display. You’ll use them also to define
the size and location of Macintosh windows.

Rectangles are never visible on their own. Because their borders lie on infinitely
thin axes grid lines, they merely define areas on the coordinate plane. You can fill
rectangles with patterns, outline them, and use them to draw circles and arcs. The
rectangles define only where and how large such shapes are to be—they have no
visible pattern themselves.

The Rect data type is a free union, similar in that way to Point. As Figure 3.4
shows, there are two ways to assign and use its fields. The first way (CASE 0) offers
four integer variables: top, left, bottom, and right, marking the coordinate points
of the top-left and bottom-right rectangle corners. Alternatively, you can assign
Point records to fields topLeft and botRight (CASE 1). This is useful when you
already have two coordinate points and you want to use them to define a rectangle,
perhaps as the result of someone clicking the mouse at two screen locations. A
third way to assign rectangle fields is to call the QuickDraw procedure SetRect.
As an example of these methods, the following statements define a rectangle r en-
compassing the entire grid in Figure 3.3.

r.top:=0; r.left :=0;
r.bottom:=5; r.right :=4;

70 == Programming with Macintosh Turbo Pascal

You could do the same thing by assigning values to Point fields topLeft and
botRight this way:

r.topLeft.v :=0; r.topLeft.h :=0;
r.botRight.v :=5; r.botRight.h :=4;

As you can see, such assignments are confusingly complex. For extra clarity,
call procedure SetRect as follows.

SetRect(r, 0,0, 4,5); {Left, Top, Right, Bottom 12

Although this looks neater, you might think it to be less efficient than the other
direct assignments to rectangle fields. In fact, there is so little difference between
the methods, the best plan is to use SetRect—it makes your programs more readable.

Always remember that Rect variables can enclose exactly one pixel. For exam-
ple, a Rect with topLeft = (1,2) and botRight = (2,3) encloses the single leftmost
shaded pixel in Figure 3.3. Similarly, you can have empty rectangles that enclose
no bits. A Rect value with topLeft = (3,5) and botLeft = (3,5) is a legitimate con-
struction but has no width or height. These are important concepts to keep in mind.

By the way, some people have trouble remembering SetRect’s parameter order:
Left, Top, Right, and Bottom. This is confusing especially because Rect’s fields
are in the more natural sequence: Top, Left, Bottom, and Right. Having mixed up
these parameters too many times, I finally remembered the correct order with the
help of a mental trick. It may seem silly but there’s a famous brewery town in our
state where they make a favorite beer, Rolling Rock. The town’s name happens to
be Latrobe (LTRB, get it?) and that’s the way I remember SetRect’s parameter order.
I can’t imagine why I chose this particular mnemonic late one night. I must have
been thirsty.

A GRAPHICS SHELL

All QuickDraw routines draw in something called a GrafPort—a complex
record that keeps track of various parameters affecting what you see on screen—
and often a lot of things you don’t see. Of the GrafPort’s 25 fields, you’ll rarely
need to use more than one or two. For most operations, yow’ll call QuickDraw
routines that properly assign and use GrafPort field values. You won’t assign those
values yourself. (The complete definition for GrafPort is in the Guide and Inside
Macintosh.)

Listing 3.3 is a shell that you can use for most QuickDraw graphics programs.
It properly initializes a GrafPort, erases the screen to a black background, and draws
a white border around the outer edges. Although this is contrary to the usual Macin-
tosh black on white display, it’s a popular format—especially for games and other
graphics programs. Type in the listing and save as GRAPHSHELL.PAS. As in the
other examples, change line 1 to compile to different volume and folder names.
When you run the program, it waits for you to click the mouse button—but it
doesn’t do anything except outline the screen.

Turtle Graphics vs. QuickDraw = 71

Listing 3.3. GRAPHSHELL.PAS

1: {$0 Programs:Graphics.F: } { Send compiled code to here }

2: {$U-} { Turn off standard library units }
3:

4:

5: PROGRAM GraphShell;

6:

7 (*

8:

9: * PURPOSE
10: * SYSTEM

QuickDraw graphics shell
Macintosh / Turbo Pascal

[T

11: * AUTHOR Tom Swan

12:

13: *)

14:

15: USES

16:

17: Memtypes, QuickDraw, OSIntf, ToollIntf;

18:

19:

20: VAR

21:

22: gPort : GrafPort;

23:

24:

25: PROCEDURE SetupScreen;

26:

27: { Initialize display for upcoming graphics }

28:

29: VAR

30:

31: r : Rect;

32:

33: BEGIN

34: OpenPort (@gPort); { Open new graphics port }

35: r := gPort.portRect; { Copy portRect to temporary variable }
36: PenPat (Black); { Select drawing color }

37: PaintRect(r); { Fill screen with black }

38: PenPat (White); { Select white drawing color }
39: FrameRect(r); { Draw border around display }
40: InsetRect(r, 1, 1); { Preserve a l-pixel border }
41: ClipRect(r) { Clip to within this region }
42: END; { SetupScreen }

43:

44:

45: PROCEDURE DoGraphics;

46:

47: { Fill in with your own graphics routines }

48:

49: BEGIN

50: REPEAT

51:

52: { insert QuickDraw commands here }

53:

54: UNTIL Button

55: END; { DoGraphics }

56:

57:

58: BEGIN

59: InitGraf(@thePort); { Initialize Quickdraw }
60: InitFonts; { Initialize Font manager }
61: InitCursor; { Make sure cursor level = 0 }
62: HideCursor; { Make cursor invisible }
63: FlushEvents(everyEvent, 0); { Erase any pending events }
64: SetupScreen; { Initialize display }

65: DoGraphics { Draw whatever you want }

66: END.

72 == Programming with Macintosh Turbo Pascal

GraphShell Play-by-Play

Line 2 turns off Turbo’s standard library units, automatically used by textbook
style programs. Because of this, GraphShell specifies four toolbox units, Memtypes,
QuickDraw, OSIntf, ToolIntf (17). Usually, these four are the minimum you need
to write QuickDraw graphics programs. Memtypes defines a few standard data types
but contains no code or calls to ROM routines as do most units. QuickDraw, of
course, defines the Macintosh drawing procedures, functions, data types, and
variables. OSIntf is the operating system interface. It handles memory manage-
ment, I/0 operations, device drivers, and other low-level jobs. Although it con-
tains many definitions you’ll rarely if ever use, you still must include it. Contrasting
OSIntf is the fourth unit, ToolIlntf, which contains routines that you’ll probably
use more often than many others. Although this chapter uses only a few Toollntf
commands, later examples rely heavily on this toolset to display and manipulate
windows.

Line 22 defines a single variable gPort of type GrafPort. Because this creates
the port as a global variable in the program, it permanently takes up space above
the stack—as do all global variables, which are located in memory specifically set
aside for this purpose. Another way to create a GrafPort is to put it on the heap,
the memory area where programs create dynamic structures, meaning those that
it creates when the program runs as opposed to those that you create when you
write the program.

Figure 3.6 lists a function, MakeGrafPort, that you can use to create new Graf-
Ports on the heap. Notice that it returns a pointer to a GrafPort (of type GrafPtr)—
not a GrafPort record. This pointer holds the address of the GrafPort record that
the function creates on the memory heap.

One danger of using MakeGrafPort is that it might fragment the heap, a con-
dition that leaves holes in memory between other objects. Those holes can cause
programs to run out of memory if they need to create memory areas bigger than
the largest available hole. This is an especially critical condition on the Macintosh
where desk accessories and toolbox routines compete with your program for
memory. Later, we’ll see how to prevent this problem.

To modify Listing 3.3 to use the MakeGrafPort, insert the function into
GraphShell at line 23 and change three other lines to read as follows:

22 gPort : GrafPtr;
34 gPort := MakeGrafPort;
35 r :=gPort*.portRect;

In programs that reference gPort as a variable, add a caret (*) as shown in
modified line 35. Doing this is called “dereferencing the pointer,” meaning that
you tell Pascal to use not the address stored in pointer gPort, but the object to which
it points—in this case, a GrafPort record on the heap. If you’re unclear about do-
ing this, read a Pascal tutorial’s chapter on using pointers.

Turtle Graphics vs. QuickDraw = 73

FUNCTION MakeGrafPort : GrafPtr;

{ Create a GrafPort variable on the heap and return its address
as the function result. }

VAR
tempPtr : GrafPtr;

BEGIN
tempPtr := GrafPtr(NewPtr(SIZEOF(GrafPort)));
OpenPort (tempPtr);
MakeGrafPort := tempPtr

END; { MakeGrafPort }

Figure 3.6 Use this function to create GrafPorts on the heap
rather than as variables on the stack.

If you decide to create a global variable GrafPort as in Listing 3.3, the only
disadvantage is a limit of about 32K for all program globals combined. Because
GrafPorts take up only 108 bytes, though, a few of them permanently in memory
aren’t likely to cause severe shortages.

SetupScreen (25-42)

Continuing with GraphShell (Listing 3.3), procedure SetupScreen initializes
the graphics display, erases it to a black background, and draws a white border.
SetupScreen calls seven QuickDraw procedures—ones you’ll undoubtedly use fre-
quently in your own programs.

Even though you created the GrafPort variable (either as a global variable or
on the heap), you need to initialize it. OpenPort (34) does this by setting the Graf-
Port fields to default values and by creating a few other internal structures that
QuickDraw uses to keep track of the clipping and visible regions (clipRgn and
visRgn fields in GrafPort). You never need to access these items directly, but you
should be aware of their existence. The clipping region defines a boundary around
which no drawing appears. If you tell QuickDraw to draw outside of this area, it
automatically c/ips the lines (and other shapes) at the boundaries. The visible region
is used mostly by windows to keep track of visible and hidden portions behind other
windows on top. Because these structures are regions and not rectangles, they can
have any size and shape within the confines of the Macintosh coordinate system.
It is difficult and even unwise to manipulate regions in Pascal programs and, for
that reason, you should let QuickDraw handle them on its own.

Line 36 of GraphShell calls PenPat to set the drawing pattern for subsequent
QuickDraw commands. Patterns are small, eight-byte objects, which Pascal defines
as follows.

TYPE
Pattern = PACKED ARRAY[L O .. 731 0FO0 .. 255;

74 == Programming with Macintosh Turbo Pascal

White

Black

Gray

LtGray

DkGray

Figure 3.7 QuickDraw’s five standard 8 x 8 pen
patterns on the left paint the shades on the right.

This makes a 64-bit object which QuickDraw uses for all drawing operations.
Figure 3.7 illustrates five of these, defined as global variables in the QuickDraw
unit. The boxes on the left are blow-ups of the pixel arrangements that produce
the standard shades on the right. You can also create your own patterns by setting
the bytes in a Pattern variable any way you like and then passing that variable to
PenPat or to any other QuickDraw routine that takes a Pattern as a parameter.

After setting PenPat to Black, PaintRect (37) erases the display, filling it with

Turtle Graphics vs. QuickDraw = 75

black bits. Next, another call to PenPat (38) returns to the default pattern, White.
Calling FrameRect (39) then draws a white border around the display area.

To preserve this border, lines 40-41 reduce rectangle r by one pixel in from each
border (reducing also both the width and height of the display by two). First line
40 calls InsetRect, which subtracts one from its left and right borders, and one from
the top and bottom. You can use InsetRect also to expand rectangles. For example,

InsetRect(r, -5, -10);

increases rectangle r’s width by 10 and its height by 20 pixels. After changing a rec-
tangle, you can then restrict drawing to within its borders by passing it to procedure
ClipRect, as line 41 does. By doing this, GraphShell protects the white outline from
overdrawing by other commands.

DoGraphics (45-55)

As you can see in the listing, DoGraphics simply waits for you to press the
mouse button. It does this only so you can see what GraphShell does—admittedly
not much on its own. Line 52 shows where to insert Quick Draw routines to display
graphics. After describing the rest of the shell, I’lf explain in more detail how to
do that.

GrafShell Body (58-65)

Before using the QuickDraw toolset, you must initialize it. Line 59 does this
by calling InitGraf, passing the address of thePort, a GrafPtr pointer to a Graf-
Port record. This GrafPort tells QuickDraw routines how and where to draw shapes,
lines, patterns, text and other patterns. It defines the characteristics of visible
graphics as well as the lower-level details of where in memory drawing takes place.
GrafPorts limit QuickDraw’s view into memory the way a ship’s porthole limits
a sailor’s view onto the sea. As we proceed, I’ll explain many of the details that
make up GrafPort records. But for now, all you need to know is that graphics pro-
grams need one before they can do any drawing.

Line 34 in procedure SetupScreen opens gPort with a call to procedure Open-
Port, which initializes the GrafPort’s fields. This has no visible effect on the display
but serves only to prepare the port for subsequent drawing commands. Notice the
at-sign (@) in front of gPort in line 34. In Turbo Pascal, this means “pointer to,”
indicating that the statement OpenPort(@gPort) passes not the contents of the
gPort record but a pointer to its address in memory. You probably know that in
Pascal the caret (#) also means “pointer to.” But carets are strictly for defining
pointer data types as in:

TYPE
IntPointer = AINTEGER;

76 == Programming with Macintosh Turbo Pascal

and for dereferencing pointers to variables on the heap as in:

VAR

iPtr : IntPointer;
BEGIN

iPtrr :=100
END.

To distinguish between these types of pointers and a variable’s address, Turbo
Pascal uses an at-sign. This is typical in Macintosh programming. Many procedures
such as OpenPort, GetPort, and SetPort require pointers to GrafPort variables in
this way.

But, you might wonder, what is thePort (59)? It’s not a variable in GrafShell
but rather a variable in QuickDraw, which defines thePort (TYPE GrafPtr) for
every program that uses the unit. This pointer locates the current GrafPort. Every
QuickDraw routine that doesn’t take a GrafPtr parameter gets the information it
needs from thePort’s fields. Lines, for example, always appear in thePort. Chang-
ing text fonts affects text in thePort.

You change the current port by passing a different GrafPtr to QuickDraw’s
SetPort routine. You also change it when you call OpenPort as in line 34, which
sets thePort to point to the shell’s gPort variable (22) and initializes its fields. This
completes the initialization, sets up the port, and readies QuickDraw.

Line 60 initializes the Font Manager, required only if you are going to display
text. (It does no harm, however, to initialize it anyway.)

The next two lines (61-62) initialize the mouse pointer cursor and then im-
mediately hide it from view. Even though the program hides the cursor, it still must
initialize it as in the listing. The reason for this is if someone manages to start a
program while the cursor is a shape other than the usual arrow—as sometimes hap-
pens to super-fast clickers—when the program ends, it will redisplay the cursor as
that shape instead of an arrow. This may last only a few seconds but, if you want
an arrow to appear later, always initialize the cursor by calling InitCursor.

Line 63 calls FlushEvents to remove any waiting keypresses or mouse clicks
from an internal waiting area called the event queue. In this queue, which operates
as a list where items go in one end and come out the other like cars queuing up
at the gas pump, the Macintosh operating system inserts records that describe events
such as keypresses and mouse clicks. Programs receive and respond to these events
to update displays and perform other actions. Chapter 4 describes how to write
event-driven programs that cooperate with the operating system to move windows,
use desk accessories, and choose commands from pull-down menus. Here, we'll
use the event queue in a simpler fashion—perfectly allowable in pure graphics
programs.

Finally, lines 64-65 call the GraphShell’s SetupScreen procedure and then
DoGraphics, displaying graphics with commands you insert between REPEAT and
UNTIL (50-54).

Turtle Graphics vs. QuickDraw = 77

Saving Graphics in MacPaint Files

To save your masterpiece graphics displays in MacPaint disk files, you need
to modify GraphShell (Listing 3.3). After making these modifications, pressing
Command-Shift-3 creates a MacPaint picture file of the screen. To make the
changes, insert the following DoGraphics routine at lines 45-55.

PROCEDURE DoGraphics;
VAR

theEvent : EventRecord;
BEGIN

REPEAT

{insert QuickDraw commands here }

UNTIL GetNextEvent(mDownMask+keyDownMask, theEvent)

END; { DoGraphics }

This new procedure works by calling GetNextEvent. The first parameter
specifically checks for mouse button and key presses in the event queue. The sec-
ond parameter is the event record. (Chapter 4 explains what events are and how
to use them in programs.) This allows the operating system to recognize Command-
Shift-3 as a command to create a MacPaint file containing the screen contents and
still let you end graphics programs by clicking the mouse.

PENS AND LINES

For most operations, QuickDraw uses an imaginary pen that touches the in-
tersection of one point on the coordinate plane. You can move this pen to new loca-
tions, tell QuickDraw to draw shapes there, and set various parameters that change
the way the pen works.

Two routines examine and change the PenState, a data type that describes the
current pen. Use GetPenState to examine the pen’s settings and SetPenState to
change them. Figure 3.8 shows the four fields in a PenState record, which these
routines take as a parameter. Field pnLoc, a Point record, is the location of the

TYPE

PenState =
RECORD
pnLoc : Point; { Pen coordinate (h,v) }
pnSize : Point; { Pen width (h) and height (v) }
pnMode : INTEGER; { Bit transfer (display) mode }
pnPat : Pattern { Drawing pattern to use }

END; { PenState }

Figure 3.8 The drawing pen has four distinguishing character-
istics, stored in a QuickDraw PenState record with this structure.

78 == Programming with Macintosh Turbo Pascal

pen on the coordinate plane. In GraphShell, the pen starts at location (0,0), usual-
ly the top left corner of the visible screen. The pnSize field describes the width
and height of the pen in pixels. The h component of pnSize equals the width; the
v component equals the height. (Don’t mistake h [horizontal] for the pen height!)

When changing pen parameters, you have two choices. You can use routines
in Table 3.1 to modify various settings, or you can store parameters in a PenState
record and pass them to SetPenState. Probably, it’s best to use routines like Pen-
Mode and PenSize rather than storing directly into PenState fields. Most of the
time, you’ll use GetPenState and SetPenState to save and restore a pen’s configura-
tion as in this fragment:

VAR
pnState : PenState;

BEGIN
GetPenState(pnState);

{...routines that change
the current pen state... }

SetPenState(pnState)
END;

Drawing lines and dots is easy with Line, Lin€To, Move, and MoveTo routines
(see Table 3.1). A few examples help clarify how they work. Use a copy of GraphShell
(Listing 3.3) and insert the new procedure from Figure 3.9 in place of DoGraphics
(45-55). When you run the program, you see two lines crossing from corner to cor-
ner of the display.

Table 3.1 QuickDraw’s line and pen tools.

PROCEDURE GetPen(VAR pt : Point);

PROCEDURE GetPenState(VAR pnState : PenState);
PROCEDURE Line(dh, dv : INTEGER);

PROCEDURE LineTo(h, v : INTEGER);

PROCEDURE Move(dh, dv : INTEGER);

PROCEDURE MoveTo(h, v : INTEGER);

PROCEDURE PenMode (mode : INTEGER);

PROCEDURE PenNormal;

PROCEDURE PenPat (pat : Pattern);

PROCEDURE PenSize(width, height : INTEGER);

PROCEDURE SetPenState(pnState : PenState);

Turtle Graphics vs. QuickDraw = 79

PROCEDURE DoGraphics;
BEGIN

WITH screenBits.bounds DO
BEGIN
LineTo(right, bottom);
MoveTo(right, top);
LineTo(left, bottom)
END; { with }

REPEAT
UNTIL Button
END; { DoGraphics }

Figure 3.9 Replace procedure DoGraphics in
Listing 3.3 with this programming to draw a sim-
ple test pattern.

The WITH statement in this example uses QuickDraw’s global screenBits
variable bounds rectangle to obtain the Macintosh screen boundary coordinates.
Whenever you need to determine the limits of the Macintosh screen, get them from
screenBits.bounds. Never assume that the screen is so many pixels wide or tall.
Otherwise, your programs won’t work on different size screens likely to show up
in future models of the computer.

It takes three statements in Figure 3.9 to draw the two lines from corner to
corner. Lin€To draws a line in the current pen pattern (white in this case) starting
from the pen’s position and extending in a straight line to the bottom right corner
of the display. The pen automatically moves to this new location after drawing the
line. Similarly, MoveTo moves the pen but doesn’t draw anything. The program uses
this technique to move the pen to new starting places, here the top right corner.
A second Liné€To then finishes the drawing.

There’s no restriction on the pen size. You can make it fat or skinny. It can
be a block or a rectangle of any practical dimension. To change the pen size, insert
this statement above the WITH statement in the new DoGraphics procedure:

PenSize(5, 5);

Run the new program and the lines are much heavier now that the pen is five
pixels wide and tall. Try other values. Change the width and height and observe
the effect. Try (25,25) to see a problem. The lines are no longer centered in the cor-
ners. What makes them go askew?

Seeing this problem demonstrates something you should remember about the
pen. QuickDraw always draws as though the pen touched a rectangle’s upper left
corner. The size of that rectangle is the size of the pen. As Figure 3.10 illustrates,
visible drawing effects (shown by the darkened squares) occur to the right and down
from the pen’s (h,v) coordinate. Therefore, drawing with large pen sizes doesn’t center
the lines at the pen point. Use the procedure in Figure 3.11 to fix the problem and

80 == Programming with Macintosh Turbo Pascal

Pen (h,v)

Figure 3.10 The pen’s ink flows down and to the
right of its coordinate (hyv).

center lines by positioning them so they meet the corners dead center. Be sure you
understand how this works. Experiment with the values until you do. And always
remember where the pen is in relation to the lines it draws.

Besides moving the pen, you can use GetPen to find out its current location
(see Table 3.1). GetPen returns a Point record equal to the (h,v) coordinate of the
pen. You can also use other patterns by passing them to PenPat. Try adding one
of the following statements to DoGraphics:

PenPat(gray);
PenPat(LtGray);
PenPat(dkGray) ;

To see the effect, it helps to have a rather fat pen, maybe 15 or 20 pixels wide.
Even more interesting is to make up your own pen patterns. As you learned earlier,
a pattern is simply an array of eight byte values in the range 0 to 255 (Figure 3.7).
The values represent the bits that the pen ink draws in. Add a pen pattern p, an
integer variable i, plus these statements to DoGraphics before the WITH statement:

VAR
i : INTEGER;
p: Pattern;

FOR i :=1TO0 6 DO
plil :=145;

pL0] :=255;

pL?7] :=255;

PenPat(p);

In this and future fragments, I list only the necessary statements in order to
save space and avoid too many duplications. I assume that you know the VAR

Turtle Graphics vs. QuickDraw = 81

PROCEDURE DoGraphics;
{ Fill in with your own graphics routines }
CONST
width = 16;
BEGIN
PenSize (width, width);

WITH screenBits.bounds DO

BEGIN
LineTo(right, bottom - (width DIV 2));
MoveTo (right - width, top):
LineTo(left, bottom - width)

END; { with }

REPEAT
UNTIL Button
END; { DoGraphics }

Figure 3.11 Change the pen size to draw fat or
skinny lines. Replace procedure DoGraphics in
Listing 3.3 with this programming for an example.

declaration goes in the procedure’s VAR section. (You don’t need to duplicate the
keyword VAR if the procedure already has one—I use it here merely for reference.)
I assume also that you know to add the statements to the body of the program.
If you have no trouble with this fragment, you’ll have no trouble with others.
Figure 3.12 shows why you see crosshatches after designing your own Pattern

FF = 255
81 =145
81 =145
81 =145
81 =145
81 =145
81 =145
FF = 255

Figure 3.12 To design your own pen patterns, fill in squares
inan 8 x 8 grid and calculate the values each row represents
in hex, converting that number to decimal (the far right col-
umn here).

82 == Programming with Macintosh Turbo Pascal

variable p. Each row of the pen pattern corresponds to a binary value, which in
turn corresponds to hex and integer equivalents as shown at the right of the Figure.
To draw in a custom pattern, simply insert these values into a Pattern array, pass
it to PenPat and start drawing.

DRAWING TEXT

One of QuickDraw’s great features is its ability to draw text in as many dif-
ferent fonts and styles as you can install in your System file. Just pick whatever
font you want and you can display characters in that style anywhere on screen.

Table 3.2 lists the major text procedures in QuickDraw. Use TextFont to select
a new font according to the partial list of constants in Table 3.3. If you try to use
a font that doesn’t exist, nothing bad happens—QuickDraw simply ignores your
request.

To display text, insert the procedure in Figure 3.13 in a copy of GraphShell,
replacing procedure DoGraphics. This new procedure begins by setting the text mode
to notPatCopy. The text mode is the method by which QuickDraw copies bits to
the display. (For more information about this subject, see the heading Drawing

Table 3.2 QuickDraw’s text tools.

FUNCTION CharWidth(ch : CHAR) : INTEGER;

PROCEDURE DrawChar(ch : CHAR);

PROCEDURE DrawString(s : Str255);

FUNCTION StringWidth(s : Str255) : INTEGER;
1

PROCEDURE TextFace(face ": Style);

PROCEDURE TextFont(font : INTEGER);

PROCEDURE TextMode (mode : INTEGER);

PROCEDURE TextSize(size : INTEGER);

Table 3.3 QuickDraw’s font constants.

CONST
systemFont = 0; toronto = 9;
applFont = 1; cairo = 11;
newYork = 2; losAngeles = 12;
geneva = 3; times = 20;
monaco = 4; helvetica = 21;
venice = 5; courier = 22;
london = 6; symbol = 23;
athens = 7; taliesin = 24;

sanFran

Turtle Graphics vs. QuickDraw = 83

PROCEDURE DoGraphics;

BEGIN
TextMode (notPatCopy)i
MoveTo(S0, 75);

DrawString('Text and the single character');

REPEAT
UNTIL Button
END; { DoGraphics }

Figure 3.13 QuickDraw draws everything, even text
as this DoGraphics replacement procedure for
Listing 3.3 demonstrates.

Modes a little later in this chapter.) Here, the program changes the text mode to
force QuickDraw to display white characters on the graphics screen’s black
background. You could display black on white characters by erasing the display
to white in procedure SetupScreen (change line 36 from Black to White). In that
case, you do not have to change text modes to display characters.

Try changing to different fonts by adding TextFont statements with one of the
constants from Table 3.3. Use systemFont to display characters in the style that
you normally see for menu bars, commands, and window titles. Usually, the system-
Font is Chicago. Use applFont to display text in the style most programs use for
text inside windows, usually Geneva. Use Monaco for monospaced text that Tur-
bo and most other program editors display.

You can also change point size, a phrase that refers to a typesetter’s unit measure
for character height in 1/72-inch increments. Because pixels on the Macintosh are
very nearly as tall as a single point, text on display closely matches printed text
in the same point size. To display 18-point Helvetica, for example, you could write:

TextFont(helvetica);
TextSize(18);

In addition to fonts and sizes, you can select among various styles by passing
a Style set to procedure TextFace. QuickDraw defines TYPE Style as in Figure 3.14.
You can use any combination (or none) of the Styleltem elements such as bold

TYPE

StyleItem = (bold, italic, underline, outline, shadow,
condense, extend);

Style = Set of Styleltem;
Figure 3.14 Text can have any of the seven Styleltems

shown here plus one—plain. Represent combinations of
styles as Style sets, for example, [bold, outline].

84 == Programming with Macintosh Turbo Pascal

and outline inside set brackets to change text styles. For example, add the next three
statements to DoGraphics (Figure 3.13) between Movelo and DrawString:

TextFont(systemFont);
TextFace([outline, shadow, underline 1);
TextSize(18);

One thing to remember about point sizes in QuickDraw is that some values
have corresponding bit patterns in the System file and others do not. For instance,
there might not be a 24-point NewYork font although there may be a 12-point size.
In that case, QuickDraw scales the nearest font size up or down in an attempt to
meet your request for a certain text size. Usually, the results are blocky and often
unreadable. Also, any point size smaller than 9 is probably too tiny to show clearly.

Two routines draw characters in the font, size, and style you choose. Figure
3.13 shows how to display entire strings or string variables with the DrawString
procedure. Similar to DrawString is DrawChar, which draws a single character.

Because most fonts are proportional, different letters have different widths.
As a general rule, a capital M is probably the widest character and a lowercase |
the thinnest, but not always. Combined with a variety of fonts, sizes, and styles,
it’s often necessary to know just how much space a character or string occupies
on the graphics display.

To find out, use functions CharWidth and StringWidth to calculate the pixel-
width of characters and strings. You can use this information to avoid running text
off the edge of the display—a harmless although poor-looking condition.
(Remember that the coordinate plane is 65,535 points square. You can attempt to
draw outside of the visible display with no bad effect; you just won’t see the result.)

Listing 3.4 uses CharWidth and other QuickDraw routines to display a font’s
character set. Type it in and save as CHARS.PAS. When you run it, you’ll see a
display of all the characters available in the font that line 98 chooses. (The square
boxes indicate characters that have no corresponding symbol.)

Listing 3.4. CHARS.PAS

1: {$0 Programs:Graphics.F: } { Send compiled code to here }
2: {$U-}) { Turn off standard library units }
3:
4:
5: PROGRAM Chars;
6:
7: (*
8:
9: * PURPOSE : Display a font's character set
10: * SYSTEM : Macintosh / Turbo Pascal
11: * AUTHOR : Tom Swan
12:
13: *)
14:
15:
16: USES
17:

18: Memtypes, QuickDraw, OSIntf, ToolIntf;

71:
72:
13:
74:
75:
76:
17:
78:
79:
80:
81:
82:
83:
84:
85:

Turtle Graphics vs. QuickDraw = 85

VAR

gPort : GrafPort;

PROCEDURE SetupScreen;

{ Initialize display for upcoming graphics }

BEGIN
OpenPort (@gPort); { Open new graphics port }
PenPat (Black); { Select drawing color }

PaintRect (gPort.portRect) { Fill screen with black)}
END; { SetupScreen }
FUNCTION TextHeight : INTEGER;
{ Returns the height in pixels }
VAR
fInfo : FontInfo; { Holds information about current font }
BEGIN
GetFontInfo(fInfo);
WITH fInfo DO
TextHeight := ascent + descent + leading
END; { TextHeight }

FUNCTION EndOfLine(ch : CHAR) : BOOLEAN;

{ Returns TRUE if drawing this character would move pen beyond
the right screen border }

VAR
penLocation : Point;
BEGIN
GetPen (penLocation);
WITH penLocation DO
EndOfLine :=
(h + CharWidth(ch) > screenBits.bounds.right)
END; { EndOfLine }
PROCEDURE CrLf;
{ Simulate a carriage return, line feed for the current font }
VAR
penLocation : Point;
BEGIN
GetPen(penLocation);
MoveTo(0, penLocation.v + TextHeight)
END; { CrLf }
PROCEDURE DoGraphics;

{ Display ASCII a font's characters }

(continued}

86 == Programming with Macintosh Turbo Pascal

86:

87: CONST

88:

89: PointSize = 24;

90:

91: VAR

92:

93: ch : CHAR;

94: penlocation : Point;

95:

96: BEGIN

97: TextMode (notPatCopy)/

98: TextFont (systemFont);

99: TextSize(PointSize);
100:
101: MoveTo(0, pointSize);

102:
103: FOR ch := chr(0) TO chr(255) DO

104: BEGIN
105: IF EndOfLine(ch)

106: THEN CrLf;

107: DrawChar(ch)

108: END; { for }

109:

110: REPEAT

111: UNTIL Button

112: END; { DoGraphics }

113:

114:
115: BEGIN
116: InitGraf(@thePort); { Initialize Quickdraw }
117: InitCursor; { Make sure cursor level = 0 }
118: HideCursor; { Make cursor invisible }
119: FlushEvents (everyEvent, 0); { Erase any pending events }
120: SetupScreen; { Initialize display }
121: DoGraphics { Draw whatever you want }
122: END.

Chars Play-by-Play

You’ll recognize some of the Listing from earlier examples. Lines 1-23 and
115-122 are identical to GraphShell (Listing 3.3). SetupScreen (26-34) is similar
but doesn’t draw a white border around the display. Notice that here there is no
need to copy the GrafPort portRect field to a temporary variable in order to reduce
it by one pixel, protecting the border as in GraphShell. Instead, line 33 just paints
the port’s enclosing rectangle to erase the screen to all black.

TextHeight, EndOfLine, and CrLf (37-80)

Two functions and one procedure are three tools you might want to extract
for your own graphics programs that display text. Function TextHeight (37-49)
returns the total height in pixels of the current font’s point size. Because characters
like y and j extend below the base line of capital letters, a font’s display height is
not equal to its point size. To calculate the true height, line 46 calls GetFontInfo,
which returns a FontInfo record with the structure in Figure 3.15. Adding the as-

Turtle Graphics vs. QuickDraw = 87

TYPE

FontInfo =
RECORD
ascent : INTEGER; { Pixels above base line (at pen) }
descent : INTEGER; { Pixels below base line (at pen) }
widMax : INTEGER; { Maximum width of any character }
leading : INTEGER { Pixels between single-spaced text lines }

END; { FontInfo }

Figure 3.15 A FontInfo record describes the font's size in four integer fields.

cent (the height in pixels above the pen position, or base line), descent (the height
in pixels below the base line), and leading (the number of pixels between single-
spaced text lines) for this font gives its actual height in pixels.

Function EndOfLine (52-66) returns TRUE if drawing character ch would
move the pen beyond the right border. Use this tool to test the pen position before
drawing characters. If it returns TRUE, move the pen to the next line (or do
something else) to prevent chopping characters in half.

The function works by examining the pen’s location, calling GetPen (62) for
its current coordinate. The horizontal value of this coordinate (h) plus the character
width indicates whether there is enough room to the right of the pen. To make this
calculation, EndOfLine calls CharWidth (65) and uses the global screenBits.bounds
rectangle to locate the screen’s right edge.

To start a new display line on conventional terminals, you simply type Writeln
which sends carriage return and line feed control characters to the video terminal.
The Macintosh doesn’t work that way. Because there are no fixed character posi-
tions and because fonts can be any size and have proportional-width symbols, pro-
grams have to simulate carriage returns and line feeds in softw~re.

Procedure CrLf (69-80) shows one way to do this. It first examines the pen’s
current position, calling GetPen to load a local Point record variable, penLoca-
tion. After that, it moves the pen by calling Movélo, passing 0 as the new hori-
zontal coordinate value and the pen’s vertical component (v) plus the height in pixels
of the current font (TextHeight).

DoGraphics (83-112)

DoGraphics displays a font’s character set. It first selects the notPatCopy text
mode (97) to display white characters on the graphic screen’s black background.
Next, it selects the font (98). Try other font names in place of systemFont (see Table
3.3). Line 99 sets the text size to the constant PointSize, which you can change by
using a different value at line 89. The default value 24 looks good even for fonts
that don’t have corresponding bit images for this size, forcing QuickDraw to scale
the image from the nearest size actually stored on disk. But you can use any point
size you want.

Line 101 moves the pen to the first display position, with h equal to zero and
v equal to the font’s point size. This moves the pen down from the top of the display
the number of pixels of the tallest character above the font’s base line. Usually,

88 == Programming with Macintosh Turbo Pascal

the point size equals this value—the ascent field in the font info record as explained
for function TextHeight (37-49). To make the program more correctly locate the
first base line, read the FontInfo record and use the ascent field in place of con-
stant pointSize in line 101.

The FOR loop (103-108) draws each character, starting with ASCII value 0
and ending at 255. On conventional text-only terminals, visible ASCII characters
normally range from 32 to 126 or 127. Other values either go unused or represent
controls that cause display hardware to perform certain actions. On the Macin-
tosh, all ASCII characters are visible although some may not have bit patterns
representing characters. There are no control characters in QuickDraw text—drawing
a carriage return (ASCII 13) displays a symbol; it doesn’t move the cursor to the
start of a line.

Line 105 checks whether drawing each successive character ch will fit between
the current pen position and the screen’s right border. If not, CrLf (106) positions
the pen one line down at far left. The next line (107) draws the single character
by calling QuickDraw’s DrawChar routine.

USING RECTANGLES

Rectangle records (type Rect) have a variety of uses in QuickDraw. You’ve seen
how they define rectangular areas on the screen, but there is much more you can
do with them. You can use them to draw boxes, either filled or unfilled; to draw
ovals and circles within their borders; and even to draw wedges that you might need
in a pie chart program.

Table 3.4 lists the QuickDraw procedures that either change rectangles or use
them in calculations.. We’ve already seen SetRect, which simply assigns left, top,
right, and bottom values to a Rect record.

OffsetRect and InsetRect change the shape of a rectangle after you assign its

Table 34 QuickDraw’s rectangle tools.

PROCEDURE EraseRect(r : Rect);

PROCEDURE FillRect(r : Rect; pat : Pattern);
PROCEDURE FrameRect(r : Rect);

PROCEDURE InsetRect(VAR r : Rect; dh, dv : INTEGER);
PROCEDURE InvertRect(r : Rect);

PROCEDURE OffsetRect(VAR r : Rect; dh, dv : INTEGER);
PROCEDURE PaintRect(r : Rect);

PROCEDURE SetRect(VAR r : Rect; left, top, right, bottom : INTEGER);

Turtle Graphics vs. QuickDraw = 89

corner coordinates. OffsetRect repositions the rectangle according to the two
parameters, dh and dv. For example, this moves a rectangle r right 25 pixels:

OffsetRect(r, 25, 0);
And this moves r up 75 pixels:
OffsetRect(r, 0, -75);

Positive dh values move right; positive dv values move down. Negative dh values
move left; negative dv values move up. This is logical because OffsetRect adds dh
to r’s left and right fields and dv to its bottom and top.

InsetRect changes a rectangle shape in a different way. In this case, QuickDraw
adds dh to the top value and subtracts it from the bottom, moving the top and
bottom coordinates in toward the center. Similarly, it adds dv to the left and sub-
tracts it from the right, moving those borders toward the center, too. The follow-
ing statement shrinks a rectangle r by 20 pixels vertically and 50 pixels horizontally.

InsetRect(r, 25, 10);

Notice that the values you pass to InsetRect are one half the total number of
pixels by which you want to shrink the rectangle in either the horizontal or vertical
direction. This is because two borders move by the amounts dh and dv.

To expand rectangles, use negative values. This statement expands r 64 pixels
horizontally, while not changing its height:

InsetRect(r, =32, 0);

After setting a rectangle or modifying its values, you can use it in drawing com-
mands. For example, FrameRect draws a line connecting a rectangle’s four corners.
You already used FrameRect and PaintRect to outline and paint the screen to all
black in GraphShell (Listing 3.3, lines 37, 39). Another way to clear the screen
follows:

BackPat(Black);
EraseRect(gPort.portRect);

If you pass a Pattern variable to BackPat, EraseRect uses it to fill a Rect area.
This example passes the GrafPort’s enclosing rectangle, portRect, but you can erase
any other rectangle, too. Because this method does not require changing the pen
pattern, you can improve GraphShell by inserting these two statements in place
of those at lines 36 and 37.

Pass a rectangle to InvertRect and QuickDraw reverses all pixels inside that
area. Black pixels become white and vice versa. For a sample of what this routine
does, insert the following statement at line 109 in Listing 3.4, CHARS.PAS.

90 == Programming with Macintosh Turbo Pascal

InvertRect(gPort.portRect);

The difference between FillRect and PaintRect is that FillRect takes a pattern
as a parameter; PaintRect uses the current pen pattern to fill rectangles. But there
is a more important difference that’s not obvious. PaintRect fills rectangles using
the pen’s current transfer mode, changing not only the pattern you see but the
method by which QuickDraw copies bits to the display. (For details about transfer
modes, see the section Drawing Modes later in this chapter.) FillRect always uses
the patCopy mode, which simply copies patterns bit for bit into a rectangle without
combining those bits in any way with other images already there.

DRAWING CURVED SHAPES

QuickDraw uses a novel idea to draw circles. Instead of specifying radii and
center points, you simply declare a rectangle and then call a routine to draw an
oval within its borders. This simplifies the usual way to draw curves on computer
displays. It also lets you draw both circles and ovals with the same routine.

Table 3.5 lists five procedures that draw ovals inside rectangles. Notice the
similarity of these names and those in Table 3.4. Because of this, their operations
should be obvious. EraseOval erases a circular shape inside Rect r to the current
background pattern (BackPat). FillOval fills an oval with a specific pattern.
FrameOval outlines a circle inside its rectangle. InvertOval reverses all bits inside

Table 3.5 QuickDraw’s oval tools.

PROCEDURE EraseOval(r : Rect);

PROCEDURE FillOval(r : Rect; pat : Pattern);
PROCEDURE FrameOval(r : Rect);

PROCEDURE InvertOval(r : Rect);

PROCEDURE PaintOval(r : Rect);

Table 3.6 QuickDraw’s round rectangle tools.

PROCEDURE EraseRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);
PROCEDURE FillRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER;

pat : Pattern);
PROCEDURE FrameRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);
PROCEDURE InvertRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);

PROCEDURE PaintRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);

Turtle Graphics vs. QuickDraw = 91

/

Figure 3.16 To alter the curvature in round rectangles, vary
the width and height of an imaginary oval fitting snuggly in-
side each corner.

PROCEDURE DoGraphics;
{ Illustrate relationship between ovals and round rectangles }
CONST

ovalWidth = 75;
ovalHeight = 60;

VAR

box, oval : Rect;
theEvent : EventRecord;

BEGIN

SetRect (box, 80, 70, 430, 270);
FillRect (box, white):
InsetRect (box, 25, 25);

oval := box;
WITH box DO
BEGIN
oval.right := left + ovalWidth;
oval.bottom := top + ovalHeight
END; { with }

PenPat (Black);

PenSize(2, 2);

Filloval(oval, ltGray);

FrameOval(oval);

FrameRoundRect (box, ovalWidth, ovalHeight);

REPEAT
SystemTask
UNTIL GetNextEvent (mDownMask+keyDownMask, theEvent)
END; { DoGraphics }

Figure 3.17 Replace Listing 3.3’s DoGraphics procedure
with this routine to draw the design in Figure 3.16,
demonstrating round rectangles.

92 == Programming with Macintosh Turbo Pascal

the oval. And PaintOval is like PaintRect—it paints ovals in the current pen pat-
tern and transfer mode.

Another kind of curved shape is a round rectangle, an oxymoron if ever there
was one. To draw one, use the procedures in Table 3.6. Because their names are
similar to those in Tables 3.4 and 3.5, you should have little trouble understanding
what they do. (Try them in GraphShell if you are unsure.)

Figure 3.16 explains the relationship between round rectangle corners and the
parameters ovalWidth and ovalHeight in each of the five RoundRect procedures.
QuickDraw rounds the rectangle as though it contained a shaded oval nested in-
side its corners. (Although only one oval is shown here, the same curve applies to
all four corners.) As you can see, changing the oval’s shape affects the amount of
curve in each corner and, therefore, changes the degree of rectangular roundness.
Figure 3.17 lists the DoGraphics routine that produced the round rectangle illustra-
tion. It also shows how to use some of the QuickDraw commands described earlier.
Add it to a copy of GraphShell, replacing the DoGraphics procedure there.

DRAWING MODES

QuickDraw understands eight methods of combining one group of bits with
another. By changing modes, you affect the way QuickDraw displays bits on screen
by altering how it combines them with pixels already there. The four basic methods
are: Copy, Or, Xor (eXclusive or), and Bic (Bit clear). Inverting each of these—
changing white bits to black and vice versa before drawing—gives a total of eight
possible modes. Each mode is similar to standard Boolean logic operations. For
that reason, they are best illustrated by the truth tables in Table 3.7.

In the truth tables, 0 stands for a white pixel and 1 stands for black, the same
as their bit values in memory. Column S is the source bit, from a pen pattern for

Table 3.7 Drawing-mode truth tables.

Copy Or

S D R S D R
0 0 0 0 0 0
1 0 1 1 0 1
0 1 0 0 1 1
1 1 1 1 1 1
Xor Bic

S D R S D R
0 0 0 0 0 0
1 0 1 1 0 0
0 1 1 0 1 1
1 1 0 1 1 0

Turtle Graphics vs. QuickDraw = 93

Table 3.8 QuickDraw’s drawing-mode tools.

PROCEDURE PenMode (patMode : INTEGER);

PROCEDURE TextMode (srcMode : INTEGER);

example; D is the destination, probably the display; and R is the result—what you
see on the display after combining two bits according to the rules for this table.

The Copy‘mode transfers source bits directly to the destination, ignoring
whatever is already there. (Column R is an exact copy of S.) Mode Or displays a
white bit only if both the source and destination are white. If either the source,
destination, or both, are black, so is the result. Xor mode displays black if either
the source or destination is black—but not both. In this mode, if both bits have
the same value, they turn white in the drawing. Xor mode also has the interesting
property of restoring the original destination when you redraw the same pattern
twice. This is a useful technique in animations where patterns move overtop of others
without disturbing them.

In the Bic (bit clear) mode’s truth table, the result is always white unless the
source is white and the destination black. Bic mode is useful in clearing areas (called
“punching a hole”) on screen for displaying icons (see Chapter 7).

Two QuickDraw routines use transfer modes to affect the way other routines
draw graphics and text. (See Table 3.8.) PenMode changes the way the pen pattern
appears. After calling PenMode, the pen behaves according to one of the truth tables
in Table 3.7. TextMode similarly affects the way text routines display characters.

Both procedures take a single INTEGER parameter that stands for one of the
eight basic drawing modes. Inside Macintosh identifies both parameters as mode.
To avoid confusing text and pen modes, here I use patMode (pattern mode) in Pen-
Mode and srcMode (source mode) for TextMode. (The word source refers to the
way QuickDraw copies bits from a source area, in this case the bits that make up
a character in a font.) This makes it easier to remember which of the two groups
of constants in Table 3.9 apply to which procedure. Use the constants on the left
with PenMode; the ones on the right with TextMode.

Table 3.9 QuickDraw’s drawing mode constants.

CONST

{ Pattern modes Source modes }

{ }
patCopy = 8; srcCopy = 07
patOr = 9; srcOr = 1;
patXor = 10; srcXor = 2;
patBic = 11; srcBic = 3;
notPatCopy = 12; notSrcCopy = 4;
notPatOr = 13; notSrcOr = 5;
notPatXor = 14; notSrcXor = 6;
notPatBic = 15; notSrcBic = 7;

94 == Programming with Macintosh Turbo Pascal

PROCEDURE DoGraphics;
{ Test text source transfer modes }

CONST

message = 'TextMode Test String.';
hText = 10;
vText = 50;

BEGIN

BackPat (ltGray):;
EraseRect (gPort.portRect);

TextSize(32);
TextMode (srcXor);

MoveTo(hText, vText);
DrawString (message);

REPEAT UNTIL Button;

MoveTo(hText, vText);
DrawString (message)

WHILE Button DO {wait for release};
REPEAT
UNTIL Button

END; { DoGraphics }

Figure 3.18 Text transfer modes affect text ap-
pearance by changing the way QuickDraw com-
bines font bit patterns with pixels already on
display. Replace DoGraphics in Listing 3.3 with
this procedure for a demonstration.

Experimenting with various modes is easy—just insert TextMode and PenMode
commands into any drawing program and use an appropriate constant from Table
3.9. One of the most useful modes is Xor (eXclusive or). With this almost magical
drawing mode, you can draw on top of patterns, remove the drawing, and
automatically restore the original graphics beneath. An experiment demonstrates
how this works. Type procedure DoGraphics from Figure 3.18 into a copy of
GraphShell (Listing 3.3), replacing the procedure at lines 45-55.

When you run the program, you see a light gray background with a message
near the top. Click the mouse and the message disappears. Click again to end the
program. The procedure works by setting TextMode to srcXor. Then, it displays
the test message, waits for you to click the mouse, and redisplays the same message
to erase it and restore the background. This works no matter what graphics you
draw over. With the exclusive or mode, redrawing any shape twice restores whatever
was there before.

Try all eight source modes from Table 3.9 in DoGraphics, replacing srcXor in
procedure TextMode. As you can see, many varieties of text styles, backgrounds,
and effects are possible simply by changing the way QuickDraw combines character

Turtle Graphics vs. QuickDraw = 95

bits with graphics already on display. You can achieve similar effects with line draw-
ing by passing pattern modes (Table 3.9) to PenMode.

A third QuickDraw procedure, CopyBits, transfers bit patterns on a more fun-
damental level. With this procedure, you copy one area of memory to another, ap-
plying one of the eight transfer modes to the result. Usually, you put CopyBits to
work copying figures from unseen memory areas to the video buffer. Doing that
repeatedly, overlaying figure over figure, is an easy way to animate graphics. The
process resembles the way a professional animator shoots successive frames and
then projects them at high speed to make a cartoon film.

BIT MAPS

Before using CopyBits, you need to understand two more QuickDraw struc-
tures, bit maps and regions. A bit map is an area in memory that translates, or
maps, those bits as though they were pixels on display. In other words, by specify-
ing memory areas as bit maps, you are in effect saying, “If these bits were displayed,
this is how I want QuickDraw to arrange them.”

The display itself is one giant bit map. In this case, the bits in memory and
the pixels coincide—you actually see the bits in the arrangement you specify. But
you can make bit maps anywhere in memory and then tell QuickDraw to draw there
instead of on the visible screen. After drawing in your offscreen bit map, you tell
CopyBits to copy the drawing to the display where you can see it. In many cases,
this action produces a smoother effect than drawing directly to the visible screen.

Figure 3.19 defines QuickDraw’s BitMap record. Three fields hold a starting
address in memory, the number of bytes in one row, and an enclosing rectangle,
which imposes a coordinate system on the bit map. The starting address, expressed
as a pointer (Ptr) to signed memory bytes with values —128 to +127, must be even
because of the way the Macintosh’s 68000 processor (and descendants) use memory
in two-byte chunks, or words, at a time. The baseAddr pointer tells where in memory
the bit map starts. For similar reasons, rowBytes must also be an even number.
It describes how many bytes are in a single row. The bounds rectangle imposes a

TYPE
BitMap =
RECORD
baseAddr t Bhry { Starting address in memory }
rowByte : INTEGER; { Number of bytes in one row }
bounds : Rect { Coordinate system }
END;

Figure 3.19 A BitMap record tells QuickDraw where and how
to draw in memory.

96 == Programming with Macintosh Turbo Pascal

01T 2345617 89 ABEDETF

2000
2010
2020
2030
2040
2050
2060
2070

Figure 3.20 Bit maps, as defined by BitMap records, organize
memory into two-dimensional arrays, possibly wasting a few un-
needed bits shown here as the shaded cells on the right.

coordinate system on the bit map, telling in effect which pixels appear in which
positions relative to others.

Bit maps are easier to understand with an illustration. Figure 3.20 shows the
relation between the following programming and bytes in memory.

VAR bits : BitMap;

WITH bits DO
BEGIN
baseAddr := POINTER($2000);
rowBytes :=2;
SetRect(bounds, 0, 0, 13, 8)
END; { with }

The first job is to assign an area of memory, here starting at hexadecimal ad-
dress $2000. In practice, you never assign actual addresses as in this illustration.
Instead, you’ll normally declare variables to hold bit maps and assign their addresses
to the baseAddr field. Or, you can use the memory manager to allocate memory
to hold bit maps, a technique we’ll use later.

Field rowBytes equals the number of full, eight-bit bytes in one row of bits.
As you can see from Figure 3.20, the example bit map has exactly two bytes per
row (16 bits, 0 to F). This organization is completely up to you. A bit map can
have any number of bytes per row, up to 32,766, as long as the value is even.
Whatever value you choose, you must be certain that it contains the number of
bits per row that you want to use.

The third field in a bit map record is a bounds rectangle. Its four fields, left,
top, right, and bottom, establish three bit map characteristics.

Turtle Graphics vs. QuickDraw = 97

» The number of bits in one row
* The number of bits in one column
* The bit map’s size in bytes

Figure 3.20 outlines in bold the rectangle corresponding to the horizontal coor-
dinate values left =0 and right =13. (The shaded cells are outside of this area.) You
can use any values as long as the number of bits they encompass (right-left) is no
greater than (rowBytes*8). Notice that the illustration wastes three bits per row (the
shaded cells). As far as QuickDraw is concerned, these bits do not exist.

The bounds rectangle declares also the number of bits in one column, equal
to the rectangle’s height (bottom-top). In the example, the height is eight bits.
Together, bounds and rowBytes exactly limit the amount of memory the bit map
occupies according to the following formula for a BitMap b:

WITH b DO
bytes := (bottom - top) * rowBytes;

Applying this formula to the illustration in Figure 3.20 gives 16 bytes. Notice
that changing the width of the bounds rectangle has no effect on the size of the
bit map in memory—it merely tells QuickDraw how many bits in each row of bytes
to use. But changing the bounds height and the number of bytes per row does af-
fect the bit map size. For that reason, after setting up a bit map, never change its
parameters without careful thought. It’s your responsibility to ensure that the
parameters you specify actually correspond to a reserved area in memory large
enough to hold the entire bit map.

REGIONS

Another important QuickDraw structure is a region. In much the same way
that Rect variables define rectangular areas on the coordinate plane, regions define
areas with no particular shape. A region can be rectangular, circular, pear shaped,
or as convoluted as an island’s shoreline. In fact, islands in the ocean resemble
regions on the coordinate plane. Both enclose freeform areas in their worlds.

Regions have many uses in Macintosh software. Windows use them to update
portions of themselves uncovered when you move other windows aside. You can
use them to limit, or c¢/ip, drawing to irregular shaped areas on the screen. And
you can also put a region to work as a sort of graphics collector into which you
draw closed shapes with standard QuickDraw routines. After collecting your draw-
ing into a region, QuickDraw can outline it, fill it, and perform other operations
to affect how the region appears.

Listing 3.5 demonstrates one way to use regions. Insert the listing in place of
GraphShell’s DoGraphics (lines 45-55, Listing 3.3). Save as REGIONS.PAS. When
you run it, type the space bar (or any other key) to change patterns. Hold down
the mouse button while you type any key to end the program.

98 == Programming with Macintosh Turbo Pascal

Listing 3.5. REGIONS.PAS

1: FUNCTION Keypressed : BOOLEAN;
2:

3: { TRUE if a key was pressed }
4:

5: VAR

6:

7: theEvent : EventRecord;
8:

9: BEGIN

10: Keypressed := GetNextEvent (KeyDownMask, theEvent)
11: END; { Keypressed }

12:

13:

14: PROCEDURE Randomize;

15:

16: { Start new random sequence }
17:

18: VAR

19:

20: time : LONGINT;

21:

22: BEGIN

23: GetDateTime(time);
24: RandSeed := time

25: END; { Randomize }

26:

27:

28: FUNCTION randH : INTEGER;

29:

30: { Return a horizontal coordinate value at random }
31:

32: BEGIN

33: WITH screenBits.bounds DO

34: randH := ABS(Random) MOD (right - left)
35: END; { randH }

36:

37:

38: FUNCTION randV : INTEGER;

39:

40: { Return a vertical coordinate value at random }

41:

42: BEGIN

43: WITH screenBits.bounds DO

44: randV := ABS(Random) MOD (bottom - top)
45: END; { randV }

46:

47:

48: PROCEDURE DoGraphics;

49:

50: { Draw shapes by collecting in region. Type space bar (or any key)
51: to change picture. Hold mouse down and type space bar to end. }
52:

53: VAR

54:

55: rh : RgnHandle; { Handle to region }

56: tempRect : Rect; { For drawing ovals }

57: i : INTEGER; { Loop control variable }
58:

59: BEGIN

60:

61: Randomize; { Start new random sequence }
62: BackPat (black): { Background is black }

63:

Turtle Graphics vs. QuickDraw = 99

64: REPEAT

65: EraseRect (gPort.portRect); { Erase old image }
66:

67: rh := NewRgn; { Start new region }
68: OpenRgn;

69:

70: FOR i := 1 TO 25 DO { Invisibly draw things }
i BEGIN

725 SetRect (tempRect, randH, randV, randH, randV);
T30 FrameOval (tempRect)

74: END; { for }

752

76: CloseRgn(rh); { Stop collecting graphics }
A - FillRgn(rh, 1ltGray); { Display region }
78: DisposeRgn(rh); { Remove from memory }
19:

80: WHILE NOT Keypressed DO {wait}

81:

82: UNTIL Button

83:

84: END; { DoGraphics }

Regions Play-by-Play

Although the four miscellaneous tools at lines 1-45 have nothing to do with
regions, it’s convenient to introduce them here. Function Keypressed (1-11) returns
TRUE after someone types a key. It calls GetNextEvent to request whether the
operating system received any keyboard events. (Chapter 4 explains events in more
detail.) Earlier you learned that Turbo has its own Keypressed routine. Unfortunate-
ly, it’s available only to textbook programs that use Turbo’s dumb terminal win-
dow. The function here adds the same ability to QuickDraw graphics and fully
charged programs with windows and pull-down menus.

Function Randomize (14-25) starts new random sequences by reading the cur-
rent time (23) and assigning it to global variable RandSeed (24). Because the Macin-
tosh represents the time as the number of elapsed seconds from January 1, 1904,
Randomize sets RandSeed to a different value every time it runs. To see why this
is necessary, turn lines 23-24 into a comment and run the program. View a few
pictures and end. Then rerun. Because it doesn’t start a new random sequence, the
program shows the same pictures again.

Some programmers attempt to start new random sequences by assigning Ran-
dom to RandSeed like this:

RandSeed := Random;

This never works. Random sequences are predictable if you know the starting
point. Because the starting random number is the same unless you change it, us-
ing Random to initialize RandSeed simply uses the second value in a predictable
sequence. Assigning the time to RandSeed, though, does set it to an unpredictable
value and always generates new random sequences.

100 == Programming with Macintosh Turbo Pascal

Two functions, randH (28-35) and randV (38-45), return horizontal and ver-
tical coordinate values at random, limited to the Macintosh display width and
height. Use them to select coordinates at random. Because they use the global screen-
Bits variable, they work with any size Macintosh display. For example, you could
draw randomly placed lines with the following statements, which you can add to
a copy of GraphShell along with randH and randV from Listing 3.5:

PenPat(white);
WHILE NOT Button DO
LineTo(randH, randV) ;

DoGraphics (48-84)

Variable rh is a region handle—a special kind of pointer—which QuickDraw
uses to locate in memory where it saves region information. (Remember, the exact
nature of that information is unimportant. Your program simply needs to keep track
of the handle for QuickDraw’s use.) Lines 61-62 start a new random sequence and
set the background to black for clearing old images with EraseRect (65) each time
you press a key.

Lines 67-68 show the correct way to start a new region. NewRgn reserves
memory for QuickDraw’s use and returns a handle, which the program saves in
variable rh. Line 68 opens the region, telling QuickDraw to begin saving lines and
shapes as the program draws them. This also hides the pen, meaning that no visi-
ble drawing takes place while QuickDraw collects its regional data.

Because the pen is now invisible, the FOR loop (70-74) doesn’t actually draw
images. Instead, it defines the borders of the region for QuickDraw by calling
SetRect and FrameOval to create a number of ovals of various sizes and shapes.

After that, line 76 closes the region, making the pen visible again and telling
QuickDraw to stop collecting regional information. FillRgn (77) fills the region
with a light gray pattern, showing the entire drawing at one time. Everything you
see on screen happens when this single instruction executes. Line 78 calls
DisposeRgn to remove the regional data from memory. Always dispose your region
handles after you’re done using them. Otherwise, the program risks running out
of memory.

USING SCREENBITS

A most important bit map variable, screenBits, tells QuickDraw the location
and size of the Macintosh display. Its baseAddr field points to the first byte of
memory that holds the bit image of what you see on screen. If you need to locate
this address, never assume that it starts at a fixed location. Different size Macin-
toshes place the display bit map at different locations. Always use screen-
Bits.baseAddr to get the starting address of display memory.

ScreenBits’ other two fields, rowBytes and bounds, define the size of the visi-

Turtle Graphics vs. QuickDraw = 101

ble display, giving it a system of coordinates that match the width and height of
the bounds rectangle. You’ll rarely refer to rowBytes, but you’ll use bounds often.
Because future Macintosh models might have larger displays, never assume that
the screen is 512 pixels wide by 342 pixels high, as it is in Macintosh and Macin-
tosh Plus models. Instead, get the width and height from screenBits this way:

WITH screenBits.bounds DO
BEGIN
width :=right - left;
height :=bottom - top
END; { with}

Related to screenBits is a GrafPort field, portBits. When you create a Graf-
Port (see Listing 3.3, line 34), QuickDraw copies screenBits to the portBits field,
making every new GrafPort initially use the entire display. But you are free to
reassign this bit map to another area in memory, draw something there, and then
copy the results to the visible screen.

When you create new GrafPorts, QuickDraw also copies the screenBits.bounds
rectangle to the GrafPort portRect field. In other words, new GrafPort fields port-
Bits.bounds and portRect are identical. Don’t be confused by this apparent duplica-
tion. The portRect field can change size—for example, to limit drawing to a win-
dow’s contents or another area on screen. But the portBits bit map bounds field
never changes size—it defines the coordinate system physically imposed on memory.
Changing portBits.bounds can have the disastrous effect of telling QuickDraw to
draw anywhere in memory, even over your program and variables! Be sure you
understand the difference between portBits and portRect. PortBits defines the
physical in-memory bit map. PortRect defines coordinates relative to the coordinate
plane. PortBits can never exceed the memory allocated to the bit map. PortRect
can be as large or as small as you need.

An example helps explain how to use bit maps to draw images off screen and
then copy those images to the display. Understanding the example will help you
to understand the relationship between PortBits and PortRect. It animates a walking
figure by copying successive frames from bit maps to the screen. Using a copy of
GraphShell (Listing 3.3), replace procedure DoGraphics (45-55) with all of Listing
3.6 and save as ANIMATE.PAS.

Listing 3.6. ANIMATE.PAS

1: PROCEDURE DoGraphics;

23

3: { Fill in with your own graphics routines }

4:

5 CONST

6:

7 maxFrameNumber = 5; { Number of frames in animation }

8 maxRows = 22; { Number of 2-byte rows in a frame }
9

(continued)

102 == Programming with Macintosh Turbo Pascal

1.0: TYPE

11s

122 Frame = ARRAY[1 .. 22] OF INTEGER; { Exactly 44 bytes
13z

14: VAR

15:

16: theEvent : EventRecord;

173 frameNumber : INTEGER;

18: srcBits : BitMap;

193 destRect : Rect;

20: frames : ARRAY[1 .. maxframeNumber] OF Frame;
21

22:

23: PROCEDURE PrepareFrames;

24:

25 { Create off-screen bit maps. Each bit map is an individual
26: frame in the animation. }

272

28: BEGIN

29:; StuffHex (@frames (1],

30: Concat ('0000', '0030', '0078', 'O0OFC', 'O3FF',
31: '00F8', 'OOFC', 'OOF8', 'OOFO', '07CO',
32: 'OFEO', 'lFEO', '33E0', '67E6', '67FE',
33: 'OFF8', 'lF80', '3F80', '79C8', '70F8',
34: '7070', '3820'));

35)

36: StuffHex (@frames[2],

33 Concat ('0000', '0000', '00CO', 'O1EO', 'O3FO',
38: 'OFFC', 'O3EO', '0O3F0', '03E0', '03CO',
39: 'OF80', 'lFCO', '3FCO', '37C0', '67E8',
40: *67F8'; '07CO', ‘'OF80'; '7DCO', '78CO',
41: '60C0', '60F0'));

42:

43: StuffHex (@frames[3],

44: Concat ('0000', '0060', 'OOFO', 'OlF8', 'O7FE',
45: '0l1F0', 'O1F8', '0O1F0', 'OOEO', 'O1lEO',
46: '03E0', '07CO0', 'OFCO', 'OFCO', 'OFFO',
47: 'OFFO', 'OF80', '7F80', '7B0O', '7300',
48: '6380', '03CO0*')):

49:

50: StuffHex (@frames[4],

513 Concat ('0000', '0030', '0078', 'OOFC', 'O3FF',
524 '0O0F8', 'OOFC', 'OOF8', '0070', 'OOEO',
533 '0l1E0', 'O3EO', 'O3EQ0', '0O7EO0', 'O7EO',
54: '07r0', '07FO0', 'OFCO', 'OFCO', '07CO',
55z '0600', 'OF00'));

56:

57 StuffHex (@frames(5],

58: Concat ('0000', '0030', '0078', 'OOFC', 'O3FF',
59: 'O0F8', 'OOFC', 'OOF8', '0070', 'O3EOQ',
60: '07E0', 'O7E0', 'O7E4', '0O7FC', 'O7FC',
61: 'o3co', '0O3E0', '0360', '0770', '1E78',
62: '1Cc00', '1lE00')):

63:

64: END; { PrepareFrames }

65:

66:

67: PROCEDURE InitDestRect;

68:

69: { Set destRect to area where animation is to appear. Assumes
70: srcBits record initialized. }

Tz

72 BEGIN

733 destRect := srcBits.bounds;

74: OffsetRect (destRect, 50, 50)

153 END; { InitDestRect }

76:
17:
78:
179:

81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:

Turtle Graphics vs. QuickDraw = 103

PROCEDURE InitBitMap;
{ Initialize global bit map record }

BEGIN
WITH srcBits DO
BEGIN
baseAddr := NIL; { Filled in by CopyFrame }
rowBytes := 2;
SetRect (bounds, 0, 0, 16, maxRows)
END; { with }
InitDestRect
END; { InitBitMap }

PROCEDURE CopyFrame(frameNumber : INTEGER);

{ Copy one bit map from off-screen memory to the display.
Similar to displaying one frame of a cartoon film. }

BEGIN
srcBits.baseAddr := @frames[frameNumber];
CopyBits(srcBits, screenBits,
srcBits.bounds, destRect, notSrcCopy, NIL);
IF destRect.right < screenBits.bounds.right
THEN
BEGIN
OffsetRect (destRect, 1, 0); { Move frame }
END
ELSE
BEGIN
FillRect (destRect, black); { Reset to beginning }
InitDestRect
END
END; { CopyFrame }

PROCEDURE Pause(n : INTEGER);
{ Wait for a small amount of time proportional to n }

BEGIN
WHILEn >0 DOn :=n -1
END; { Pause }

BEGIN
PrepareFrames;
InitBitMap;
frameNumber := 1;
REPEAT
CopyFrame(frameNumber);
Pause (10000) ;
frameNumber := frameNumber + 1;
IF frameNumber > maxframeNumber
THEN frameNumber := 1
UNTIL GetNextEvent (KeyDownMask, theEvent)
END; { DoGraphics }

104 == Programming with Macintosh Turbo Pascal

Figure 3.21 The blowup on the left is the second frame of five in the
animation sequence on the right. Listing 3.6 displays each of these
frames in rapid succession to animate a walking figure.

Animate Play-by-Play

When you run the program, you see a tiny figure (looking like a forest ranger
to me) walking from left to right across the screen. As you can see, the animation
is very smooth with no flicker. By following a few simple rules, you can do the
same in your own programs.

Figure 3.21 is a blowup of the second animation frame of five, shown in the
rounded box to the right. I drew these images with MacPaint. To make the blowup,
I copied the FatBits screen to disk, then reloaded that image into MacPaint, cut
the exploded figure, and copied it into the final picture along with the normal-sized
frames. To design your own images, use a similar technique or fill in the squares
on a sheet of graph paper. Keep your images small. Sixteen bits wide by 20 to 30
bits tall is an ideal size.

After designing the animation frames, the next step is to convert them to a
form you can type in a program. Because each dot in an image equals a single
memory bit, it’s convenient to express bit images as hexadecimal digits 0 through
F, representing the four-bit binary values 0000 through 1111. Figure 3.22 is a form
you can use to convert your images to hex values. Each square represents a single
bit in memory. The numbers along the top are the positions of each bit in a byte,
with two bytes per row. These numbers and those on the left are for your reference
only—they are not coordinate values. (If you purchased the disks that accompany
this book, the form is in MacDraw file named Form in folder Graphics.F)

Turtle Graphics vs. QuickDraw = 105

7 6 543 21017 6543210 Hex

0 0 =0000
1 1=0001
2 2=0010
3 3=0011
4 4 =0100
5 5=0101
6 6=0110
7 7=0111
8 8 =1000
9 9 =1001
10 A =1010
11 B =1011
12 C =1100
13 D =1101
14 E = 1110
15 F=1111
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 3.22 Use this form to design your own animation frames. After filling in the
boxes on the left (containing 32 rows of 16 cells each), convert groups of four cells into
hex digits, writing them into the four-cell Hex column on the right. Use the hex-to-
binary chart as a guide. A 1 stands for filled-in cells; 0 for blanks.

106 == Programming with Macintosh Turbo Pascal

7651321076513210 Hex
0] ojo[3]o0
1 ll/%%/ ojo]7]8
2 D227 ololF|c
3 A (0l3[F(F

Figure 3.23 This shows the first four rows of the animation figure's hat in the
form from Figure 3.22. The hex digits on the right represent the filled-in cells
on the left as binary values.

PrepareFrames (23-64)

After X-ing in your image into Figure 3.22, use the hex table on the right to
convert each group of four bits to one hex digit. To illustrate the process, Figure
3.23 shows the first four lines (the little fellow’s hat) of the blowup frame from
Figure 3.21 as you would enter them into the grid. The hex digits to the right repre-

sent the darkened squares to the left as 16-bit binary values.

' With all the images designed and converted to hex digits, you’re ready to type
them into the program. Lines 29-34 in procedure PrepareFrames illustrate how to
type each of the five frames. Procedure StuffHex takes a pointer to a variable
(@frame[1], for example) and a string of hex digits. When the program runs, it
converts those digits into binary values and stuffs them four-bit nybble-by-nybble
into memory. For clarity, Concat joins each group of four hex digits correspond-
ing with the graph (Figures 3.22 and 3.23). But you could simply string them all
together like this if you want: ‘000000300078C0FC .

Global array frames (20) holds five arrays of 22 integers, taking exactly 44 bytes
of memory. One danger when using StuffHex to store binary values into variables
is that it does not check whether the variable has enough room to hold the digits
you stuff into it. Grouping values into four-digit strings as in the Listing makes
it easy to count values and helps prevent overstuffing. Each four-digit group oc-
cupies 16 bits and, as you can see, there are 22 groups in each of the five StuffHex
statements—exactly the size of each frame.

InitDestRect, InitBitMaps (67-90)

To animate images requires a destination rectangle to tell QuickDraw where
to draw on screen. Procedure InitDestRect (67-75) sets global destRect to the same
size as the bitmap srcBit’s bounds rectangle. The srcBit bitmap points to the off-
screen animation images stored in array frames. Using its bounds rectangle as the
destination tells QuickDraw not only where to display images but also how large
to draw them, in this case the same size as the original.

Turtle Graphics vs. QuickDraw = 107

InitBitMap (78-90) defines the global sreBits record. It sets baseAddr to NIL,
meaning nowhere in particular. For each animation frame, the base address of the
bit image changes to one of the five images stored in array frames. The program
uses the same bit map to define the location and size of each frame. Later, to draw
different images, it needs only to assign baseAddr to the address of one image. It’s
important to understand that the bitmap record merely defines where in memory
the image exists—it doesn’t hold the image itself. Many people confuse the term
bit map with the bitmap record. The bit map image contains the image; the bit-
map record defines its location and size, a subtle and potentially confusing
distinction.

Lines 86-87 finish defining srcBits, setting rowBytes to 2 (the number of bytes
in one image row as Figure 3.23 shows), and calling SetRect to initialize the bounds
rectangle. Fields left and top are usually zero as they are here. Right is 16 and bot-
tom is equal to maxRows, the coordinates that exactly correspond with a single
frame 16-pixels wide by 22-pixels tall. As its last job, InitBitMap calls InitDestRect
(89) to set the global destination rectangle to the same size as the srcBits.bounds
field and to position this rectangle somewhere on the display.

CopyFrame (93-112)

CopyFrame displays a single animation frame. By calling it repeatedly and
cycling parameter frameNumber from one to five, the program draws successive
animation frames at the destRect location. At the same time, moving destRect makes
the animated figure move, appearing to walk from side to side.

Line 99 assigns the address of one frame to srcBits baseAddr field. Next,
CopyBits copies that image to the area destRect defines on the visible screen.
CopyBits has the general form:

PROCEDURE CopyBits (
srcBits, dstBits : BitMap;
srcRect, dstRect : Rect;
mode : INTEGER;
maskRgn : RgnHandle) ;

The first two parameters define the source BitMap (srcBits) and the destina-
tion (dstBits). In this example, the source is the off-screen animation frame; the
destination is the display, a typical setup. Next are the source and destination rec-
tangles, srcRect and dstRect. The example uses srcBits.bounds as the source rec-
tangle to copy the entire animation frame to the display. In other situations, you
could use a smaller source rectangle to display only a portion of the source bit
image. The destination rectangle is destRect, the on-screen area where CopyBits
transfers images. Parameter mode is any one of source transfer mode constants
on the left side of Table 3.9. (See page 93.) Animations almost always use srcCopy

108 == Programming with Macintosh Turbo Pascal

or, as in this example, notSrcCopy to display a white image on a black background.
This causes each successive frame to completely overlay the previous image. To limit
copying to a specific area, define a region and pass its handle to CopyBits as the
last parameter. If you do that, images appear only inside the region’s boundaries.
The example passes NIL (101) for this value, telling CopyBits not to limit drawing
to any particular boundaries.

All of this accomplishes one job—drawing a single animation frame. When
done, lines 102-111 check whether destRect is at the extreme right edge. If not, line
105 advances the destination rectangle one pixel to the right, causing the figure
to move. Turn line 105 into a comment, and the little fellow walks in place—he’ll
never reach the right edge.

Lines 109-111 erase the final image and reset the destination rectangle by call-
ing InitDestRect. This causes the image to reappear at the left after bumping into
the right screen border. If the program didn’t do this, the little guy would walk
to the ends of the earth or, rather, the end of the coordinate plane.

Pause, DoGraphics (115-135)

Pause (115-121) waits for a time proportional to parameter n, which has no
relation to real time. Pass larger values to Pause to wait for longer times. The anima-
tion example calls it from line 130 with a value of 10,000, causing a 10,000-loop
wait at line 120 between each animation frame. To see why this is necessary, turn
line 130 into a comment and the little guy now runs an Olympian 100-yard dash.
Try other values at line 130 to change animation speed, pausing for more or less
time between frames.

The main DoGraphics loop (124-135) is simple. It first initializes the bit map
and frame images (125-126) before setting frameNumber to one. The REPEAT loop
(128-134) cycles variable frameNumber from 1 to 5 (maxFrameNumber), calling
CopyFrame (129) to animate the display. The loop ends at line 134 when you press
the space bar (or any other key).

You can adjust the animation by varying some of the parameters the program
passes to CopyBits. For example, to make the figure walk down and to the right,
change line 105 to:

OffsetRect(destRect, 1, 1);

This adds one to both the horizontal and vertical coordinates of the image,
making it travel diagonally. Another interesting trick is to alter not only the posi-
tion of the destRect rectangle but also its size. Doing this causes QuickDraw to
scale the original image up or down to match the new destination boundaries. To
make the figure grow larger, as though it were walking toward you, add the follow-
ing statement between lines 105 and 106:

IF frameNumber = maxFrameNumber
THEN InsetRect(destRect, -1, -1);

Turtle Graphics vs. QuickDraw = 109

The negative values expand destRect by one pixel along each border. (Positive
values shrink destRect.) The IF statement prevents the image from growing too fast,
changing size only just before starting a new animation sequence.

Another modification you can try is to insert WHILE loops to wait for mouse
clicks between animation frames. This is useful when you want to study each im-
age in slow motion. I used the idea when designing the example here in order to
refine the images. Add these statements between lines 129 and 130, just after the
call to CopyFrame. (If you later have trouble ending the program, hold down the
mouse button while you press the space bar. That should work.) You need two
WHILE statements because you probably cannot click the mouse quickly enough
to avoid advancing the image beyond one frame at a time. Take out the second
WHILE statement and you’ll see what I mean.

WHILE NOT Button DO {wait for button)};
WHILE Button DO {wait for releasel};

Avoiding Animation Flicker

As you can see, Listing 3.6 smoothly animates the figure without the flicker
you may have seen in other programs. It accomplishes this magic with the help
of a simple trick.

Many programmers attempt animation by drawing an image, erasing it, and
then redrawing it a tiny distance away. Unfortunately, the erase step causes an ob-
jectionable flicker, which requires careful planning to avoid. For a demonstration,
change two of the four-digit hex values in lines 33 and 34 as follows:

'70F8"' changeto 'FOF8'
'7070"' change to 'FO70'

When you run the modified program, the figure leaves a part of his shoe behind
as he walks from left to right. This happens because the modified values insert
single bits in the extreme left column of the image. (Hex 7 is 0111 in binary; F is
1111 and has an extra 1 bit to the left.)

By leaving the far left column blank, moving the image one pixel to the right
causes it to erase itself as it walks. Similarly, leaving a blank row on top lets the
image move one pixel down. This may be difficult to visualize, but it always works.
To prove to yourself that it does, sketch figures into the worksheet in Figure 3.22.
Leave the left column blank. Hold successive frames up to the light and shift them
as they would during animation. As you can see with this experiment, subsequent
frames always erase any far left bits in previous images. Without the blank col-
umn, bits are not erased, leaving a trail. This leads to a simple rule for designing
animation frames that erase themselves as they travel, avoiding flicker.

Leave blank columns or rows in the opposite direction of travel as many pixels
wide as the number of pixels the image shifts during animation.

110 == Programming with Macintosh Turbo Pascal

FRACTALS

The final example in this chapter demonstrates several more QuickDraw
features with a program that grows life-like patterns such as those in Figure 3.24.
To me, these shapes resemble sea coral, moss, or nerve complexes. They grow as
the result of a simple idea, explained by Leonard M. Sander in “Fractal Growth,”

q) \

1

Figure 3.24 Variations of Listing 3.7 drew these four fractal-like images a pixel at a
time. Even though the Macintosh is a fast computer, it took many hours to produce
these pictures.

Turtle Graphics vs. QuickDraw = 111

Scientific American, January 1987, Vol. 256, No. 1, p. 94. But the reason they look
as they do remains a mystery, at least in a mathematical sense.

A typical fractal image resembles a shoreline. From high above the shore, you
see the general outline of continents with many bays and peninsulas. As you des-
cend, you see less of the shoreline but more detail. When very close, perhaps on
your hands and knees and looking through a magnifier, you still see something
that looks like a shoreline. No matter how close you get, the shoreline retains its
general characteristics.

The following program draws fractals of a different sort. In this case, objects
grow by releasing small dots somewhere outside of the visible display. The pro-
gram walks these dots toward the center, letting them wander at random as they
travel. A single dot at center serves as a seed to which the wandering dots attach.
When a moving dot touches another, it sticks to it, perhaps resembling the way
the skeletons of tiny marine polyps congregate to form coral.

Interestingly, that simple idea produced the four patterns in Figure 3.24. In
the bottom pattern, the dots vary in size with later ones becoming smaller as the
shape grows. As you can see, the individual feathers are similar to the larger stems—
they exhibit a fractal-like appearance. The theory is that the shapes grow because
randomly traveling dots are more likely to stick to bumps, forming larger bumps
which are more likely to attract more dots, and so on. This tends to amplify small
irregularities, producing regular patterns from random events.

Type in Listing 3.7 and save as FRACTAL.PAS. Plan to let this program run
for a long time—it took several hours to produce the patterns in the figure.

Listing 3.7, FRACTAL.PAS

{$0O Programs:Graphics.F: } { Send compiled code to here }
{$U-} { Turn off standard library units }

PROGRAM Fractal;

(*

WOIO D WN
oe se ee ev s ee ss as we

* PURPOSE : Fractal graphics
10: * SYSTEM : Macintosh / Turbo Pascal
11: * AUTHOR : Tom Swan

13: * Based on ideas appearing in "Fractal Growth" by Leonard M. Sander;
14: * Scientific American, Jan 1987, Vol 256, No 1, pg 94

16: *)

19: USES

21: Memtypes, QuickDraw, OSIntf, Toollntf;

24: VAR

26: gPort : GrafPort;

(continued)

112 == Programming with Macintosh Turbo Pascal

29: FUNCTION Quitting : BOOLEAN;

30:

31: { TRUE if next event is a MouseDown event }
32:

33: VAR

34:

35: event : EventRecord;

36:

37: BEGIN

38: IF GetNextEvent(everyEvent, event)
39: THEN Quitting := (event.what = MouseDown)
40: ELSE Quitting := FALSE

41: END; { Quitting }

42:

43:

44: PROCEDURE Randomize;

45:

46: { Start new random sequence }

47:

48: VAR

49:

50: time : LONGINT;

51:

52: BEGIN

53: GetDateTime(time);

54: RandSeed := time

55: END; { Randomize }

56:

57:

58: PROCEDURE SetupScreen;

59:

60: { Initialize display for graphics }

61:

62: BEGIN

63: OpenPort (@gPort); { Open new graphics port }
64: PenPat (Black); { Select drawing color }
65: PaintRect (gPort.portRect) { Fill screen with black }
66: END; { SetupScreen }

67:

68:

69: PROCEDURE Plot(h, v : INTEGER);

70:

71: { Plot a single white point at coordinate h,v }
72:

13: BEGIN

74: MoveTo(h, v);

75: PenPat (White);

76: LineTo(h, v);

17: PenPat (Black)

78: END; { Plot }

79:

80:

81: PROCEDURE UnPlot (h, v : INTEGER);

82:

83: { Plot a single black point (erasing a white point there) at h,v }
84:
85: BEGIN

86: MoveTo(h, v);
87: PenPat (Black);
88: LineTo(h, v)
89: END; { Plot }

90:

91:

92: PROCEDURE DoGraphics;
93:

94: { Create display }
95:

96:

97:

98:

99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:

CONST

MaxP$S

ps

WalkSpeed
DecisionSpee:

VAR

pointSet
hMax

vMax

radius
leftBorder
rightBorder
topBorder
bottomBorder

PROCEDURE Initialize;

{ Initialize global variables and change origin }

VAR
r : Rect;
X,y @ ;
BEGIN
Randomize; { Start new random sequence }

WITH screenBits.bounds DO

BEGIN
hMax := right; { Calculate maximum horizontal }
vMax := bottom; { and vertical dimensions. }
rightBorder := (right DIV 2) - 1; { Calculate border }

bottomBorder := (bottom DIV 2) - 1; { coordinates. }

leftBorder := -1 * rightBorder;
topBorder := -1 * bottomBorder
END; { with }

SetOrigin

-—

Calculate
radius is
to one of

_——

x := hMax
y := vMax
radius :=

ClipRect (gPort.portRect); { Clip to visible area }

PenSize(ps, ps); { Preset pensize for each point }
pointSet := [0 .. ps-1]; { The set of pixels in one point }
Plot(0, 0) { Start fractal with single "seed" }

END; { Initi

Set origin so that (0,0) is at screen center }

Turtle Graphics vs. QuickDraw = 113

= 16; { Maximum dimensions of a single point }

= 2; { Actual pen size 2 <= ps <= MaxPS }

= 2; { Positive values >= 2 to change speed }
d = 24; { Lower values for "crazier" movement }

SET OF Byte; Set of pixels in one point }

: {

: INTEGER; { Maximum h coordinate value }

: INTEGER; { Maximum v coordinate value }

: REAL; { Circle radius for new points }
: INTEGER; { Drawing border coordinates }

: INTEGER;

: INTEGER;

: INTEGER;

(-1 * (hMax DIV 2), -1 * (vMax DIV 2));

radius of a circle that encloses the display. The }

equal to the length of a line from the display center }
its corners. }

/ 2.0;

/ 2.0;

sqrt(x * x +y *y);

alize }

(continued)

114 == Programming with Macintosh Turbo Pascal

162: PROCEDURE NewDelta(n : INTEGER; VAR d : INTEGER);
163:

164: { Return new direction and speed value in d, so that }
165: { n tends to converge toward 0 }

166:

167: VAR

168:

169: j : INTEGER;

170:

171: BEGIN

172: 3§ := ABS(Random) MOD WalkSpeed;
173: IFn >0

174: THEN d := -Jj

175: ELSE d := Jj

176: END; { NewDelta }

177:

178:

179: PROCEDURE Walk(h, v : INTEGER; VAR dh, dv, nH, nV : INTEGER);
180:

181: { Adjust coordinate h,v producing new coordinate nH,nV and making }
182: { the original point tend to walk randomly toward the origin 0,0 }
183:

184: BEGIN

185: IF Random MOD DecisionSpeed = 0 { i.e. once in a while... }
186: THEN NewDelta(h, dh); { ... change directions }
187: IF Random MOD DecisionSpeed = 0

188: THEN NewDelta(v, dv);

189: nH := h + dH; { Move point by delta h and v }

190: nv := v + dv

191: END; { Walk }

192:

193:

194: PROCEDURE StartNewPoint(VAR h, v, dh, dv : INTEGER);

195:

196: { Start new point outside a circle enclosing entire screen }

197:

198: VAR

199:

200: angle : INTEGER;

201: w : REAL;

202:

203: BEGIN

204: angle := ABS(Random) MOD 360; { Random value from 0 to 359 }
205: w := angle * Pi / 180.0; { w = angle in radians }
206: h := TRUNC(radius * cos(w)); { Calculate coordinate h,v }
207: v := TRUNC(radius * sin(w)); { on circle's circumference. }
208: NewDelta(h, dh); { Initialize speed and }
209: NewDelta(v, dv) { direction values. }

210: END; { StartNewPoint }

211:

212:

213: FUNCTION PixelOn(h, v : INTEGER) : BOOLEAN;

214:

215: { TRUE if pixel at h,v is white and inside borders }

216:

217: BEGIN

218: PixelOn := FALSE;

219: IF GetPixel(h, v) THEN exit ELSE

220: IF (h <= leftBorder) OR (h >= rightBorder) THEN exit ELSE
221: IF (v <= topBorder) OR (v >= bottomBorder) THEN exit;

222: PixelOn := TRUE

223: END; { PixelOn }

224:

225:

226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:

Turtle Graphics vs. QuickDraw = 115

stick to any }

point coordinates }

Get new point values }

Display initial position }
Do following until stuck }
to a point or mouse down }

Move point (maybe) }
Erase old position }
Display new position }
Remember values for }
next possible loop }

287: END.

Initialize Quickdraw }

Make sure cursor level = 0 }
Make cursor invisible }
Erase any pending events }

Prepare display for graphics }

FUNCTION Stuck(h, v : INTEGER) : BOOLEAN;
{ TRUE if another point borders the one at h,v }
VAR
i, j : INTEGER;
BEGIN
FOR i := -1 TO ps DO
FOR j := -1 TO ps DO
IF PixelOn(h + i, v + j) THEN
IF NOT ((i IN pointSet) AND
(j IN pointSet)) THEN
BEGIN
Stuck := TRUE;
exit
END;
Stuck := FALSE
END; { Stuck }
PROCEDURE RandomWalk;
{ Make a point walk randomly toward center and
{ existing points. }
VAR
PH, pV, npH, npV, dh, dv : INTEGER; {
BEGIN
StartNewPoint (pH, pV, dh, dv): {
Plot(pH, pV): {
WHILE (NOT Stuck(pH, pV)) AND {
(NOT Button) DO {
BEGIN
Walk(pH, pV, dh, dv, npH, npV); {
UnPlot (pH, pV): {
Plot (npH, npV); {
pH := npH; {
pV := npV {
END { while }
END; { RandomWalk }
BEGIN
Initialize;
REPEAT
RandomWalk
UNTIL Quitting
END; { DoGraphics }
BEGIN
InitGraf(@thePort); {
InitCursor; {
HideCursor; {
FlushEvents (everyEvent, 0); {
SetupScreen; {
DoGraphics

116 == Programming with Macintosh Turbo Pascal

Fractal Play-by-Play

Much of the program is probably familiar by now. Function Quitting (29-41)
returns TRUE when you click the mouse. This lets you write loops such as at lines
274-276 later on in the program. One advantage of using this function instead
of Button to sense mouse clicks as in earlier examples is the ability to type
Command-Shift-3 to copy the display to MacPaint disk files. This works because
line 38 calls GetNextEvent, giving the operating system the opportunity to sense
your command to save the screen to disk.

Plot, UnPlot (69-89)

These two little procedures belong in every graphics toolbox. Plot paints a single
dot equal to the pen width and height at coordinate (h,v). Before Plot ends, it
changes the pen to Black (77). For black on white displays, you might want to change
it to White instead.

UnPlot (81-89) reverses what Plot does. It paints a single dot in black, erasing
a white dot at this position. Fractal calls UnPlot to erase dots before moving them
in order to show the Fractal’s individual elements as they form. (This also produces
a slight animation flicker avoided in the previous example. But, because Fractal
animates only single dots, the flicker is hardly noticeable. It would be if you drew
larger images this way.)

DoGraphics (92-277)

DoGraphics is a long procedure that contains several others. First come four
constants (98-101) that you can change to produce different effects. MaxPS is here
as a reminder that individual dots probably should not be larger than 16 pixels
square. The constant isn’t used anywhere in the program. Constant ps defines the
pen size, with the width always equal to its height. Large values (4-8 or higher, but
less than MaxPS) produce blocky figures as in the center of the bottom fractal in
Figure 3.24. Setting ps to 1 produces fine hair-like structures as in the top of the
figure. You might turn ps into an integer variable and vary it randomly or change
it over a period of time. I used a similar approach (not listed here) to produce the
bottom fractal.

Constant WalkSpeed affects the amount dots move during each program cy-
cle. Larger values move dots more quickly but initially makes it harder for them
to stick together. Values greater than 8 or so are probably too large. Try 3 or 4.

DecisionSpeed controls the behavior of dot movement by varying the amount
of time it takes for a dot to “decide” to turn. Larger values make dots plod for-
ward in more or less straight lines. Lower values make dots go crazy, like fruit flies
over a rotten banana.

Variable pointSet (106) stores a set of coordinate values that belong to a single

Turtle Graphics vs. QuickDraw = 117

dot of any size. The program uses pointSet while examining its border to deter-
mine if the dot has touched another. (See lines 238-239.) Variables hMax and vMax
hold the display maximum and minimum coordinates, which the program gets from
global screenBits so that Fractal works on any size display.

Variable radius defines an imaginary circle that completely encloses the rec-
tangular display. Fractal always releases new dots on this circle’s circumference. You
might consider changing this algorithm—release dots along one or two borders,
or from a single location—and see what effect such changes have.

The four integer variables, leftBorder to bottomBorder (110-113) help deter-
mine whether dots are inside or outside the visible display. They speed the pro-
gram by avoiding repeated references to the fields in the screenBits.bounds rectangle,
an action that takes Pascal longer to calculate than referring directly to simple
variables.

Initialize (116-159)

Procedure Initialize has plenty to do. It first starts a new random sequence
(127) and then assigns values to global variables (131-136). It also adjusts border
variables to place coordinate (0,0) in screen center. Line 142 completes this idea
by calling SetOrigin, which has the general form:

SetOrigin(Ch, v : INTEGER) ;

Passing (0,0) to SetOrigin gives the pixel in the top left corner that coordinate,
the default condition when you initialize Quick Draw. Passing negative values moves
the (0,0) coordinate down and to the right—just what you would expect if the pix-
el in the top left corner had negative coordinate values. Passing negative values
equal to one half the screen width and height, as in line 142, shifts the origin to
the screen center.

Shifting the origin doesn’t move images now on display—it affects only what
you later draw there. If you draw a line and then change the origin, the line does
not move. But if you draw a second line at the same coordinates, it appears at a
different location after the origin changes.

To understand what SetOrigin does, imagine the display as a window through
which you view a portion of the coordinate plane (see Figure 3.25). Shifting the
origin moves the window over the plane, exposing different areas. Drawing occurs
not on the plane, but on the window glass, sticking to it so that, when you shift
its location by calling SetOrigin, anything already on display moves along. (In other
words, what’s now on display appears not to move from your perspective.)

After shifting the origin to center coordinate (0,0), Initialize calculates the radius
of a circle that encompasses the entire display (149-151). Because new dots start
on that circle’s circumference, line 154 sets clipping to the visible display rectangle,
limiting drawing to that area. Line 155 sets the pen size. After that, line 156 ini-

118 == Programming with Macintosh Turbo Pascal

Coordinate
Plane

New origin

~Na

==

Display

Figure 3.25 When shifting the origin—telling
QuickDraw to view a different portion of the entire coor-
dinate plane—existing images stick to the display and
do not move. For an example, see Listing 3.7 which shifts
the origin placing coordinate (0,0) at screen center.

tializes pointSet to the set of all points in a pen of that size. And finally, line 157
seeds the image, placing a starting point in the center of the display. (Notice that
if you did not shift the origin, line 157 would display a point in the upper left corner.)

NewDelta, Walk (162-191)

Together, NewDelta and Walk move dots at random around the display. The
dots tend to converge toward the center, sticking to other dots they touch. Walk
calls NewDelta after using constant DecisionSpeed to determine whether to change
a dot’s direction (185-188). Larger DecisionSpeed values cause the expressions in
185 and 187 to produce zero less often. Therefore, the dots change directions more
infrequently. Lower values do the opposite.

NewDelta returns a positive value at random limited to the WalkSpeed less
one (172). By examining the dot’s current coordinate value n and setting the new
direction negative if n is greater than zero or positive if not, NewDelta ensures that
points try to move toward the center—without forcing them to travel directly there.
In theory, a dot might wander forever and never approach the center. But that’s
not likely. At least it hasn’t yet happened to me.

After possibly setting new direction values in dh and dv, Walk adds those values
to the current coordinate, passing the result to the caller in parameters nH and nV
(189-90). This is the direction in which the current dot then moves.

Turtle Graphics vs. QuickDraw = 119

StartNewPoint (194-210)

This procedure decides where the next point should begin. It also randomly
sets the direction of the point by calling NewDelta twice (208-209). Lines 204-207
calculate a coordinate (h,v) on the circumference of an imaginary circle with a large
radius. It does this by selecting an angle at random between zero and 359 degrees
(204) and converting that angle to the radians (205) that Pascal’s COS (Cosine)
and SIN (Sine) functions require. Lines 206-207 use standard geometry to locate
the endpoint (h,v) of an imaginary line starting from the circle’s center and point-
ing out at this angle.

All of this may seem overly complex simply to start new dots. But placing them
on the circle’s circumference seems to give each dot an equal shot at reaching the
center. With that in mind, you might try other methods for releasing new dots.
What happens, for example, if you start them purely at random on the entire coor-
dinate plane or on the borders of a triangle?

PixelOn, Stuck (213-245)

PixelOn returns TRUE if the pixel at coordinate (h,v) is white and inside the
visible display borders. The function calls QuickDraw’s GetPixel function, which
returns TRUE if the point at (h,v) is black. (Remember, black pixels are normally
on (1); white ones are off (0). The graphics programs in this chapter reverse that
logic and, therefore, cannot directly use GetPixel’s result.) Lines 220-221 solve an
apparent quirk in GetPixel, which returns FALSE for pixels outside the screen
boundaries. Checking that (h,v) is inside the screen borders solves this problem.

Function Stuck (226-245) returns TRUE if the dot at coordinate (h,v) touches
another already on display. It does this by examining every pixel around the dot’s
border, calling PixelOn to look for adjacent dots.

RandomWalk, DoGraphics (248-277)

RandomWalk controls the dot action, calling StartNewPoint, Plot, Walk, and
UnPlot to move dots toward the center, stopping only when a dot sticks to another
or when you press the mouse button. The main procedure loop (272-277) simply
initializes the program and calls RandomWalk repeatedly until you quit.

]
four

In Any Event

The Macintosh is an eventful computer in more than just a casual sense. As
you probably know, there’s plenty of action and interaction in Macintosh
software—pull-down menus, desk accessories running along with other programs,
and windows that you can move and resize by clicking and dragging the mouse.
To make all of these actions cooperate, programs respond to events—mouse clicks,
requests to redraw window contents, and other things—rather than issue commands
as in conventional software design.

Because of the event-driven nature of a Macintosh program, routines often
appear out of place. Suppose someone requests an action, perhaps to draw a figure
inside a window. Instead of the program doing that, it might change a variable
or two but not actually draw anything at that time. Or it might call a procedure
that collects information about items that require updating. Later, another routine
actually draws the figure based on this information. Rather than drawing directly
in windows, programs tell the toolbox that something needs changing in a win-
dow, and the toolbox issues an event that eventually ends up calling your drawing
routine. How to write such event-driven software is the subject of this chapter.

It may seem overly complex to write programs by the event-driven method.
Why not simply draw things in windows? Isn’t that easier? Yes, but in event-driven
systems, foreign programs can issue events to which your program must respond.
(An example of a foreign program is a desk accessory or a device driver in memory.)
If all you want to do is draw figures in windows, then you can write Turtle Graphics
or simple QuickDraw programs similar to the examples in previous chapters. But
adding pull-down menus, movable windows, and desk accessories requires the fancy
footwork that event-driven software allows.

In this chapter, you’ll learn about the basic parts of Pascal programs that follow
event-driven programming rules. You’ll be able to write programs to activate the
Macintosh pull-down menu bar, add overlapping windows, and use desk accessories.
The goal of this chapter is to develop an application shell, an empty vessel into
which you insert your own routines, similar to the graphics shell in the previous
chapter. The shell handles most of the details of an event-driven program letting

121

122 == Programming with Macintosh Turbo Pascal

you concentrate on other jobs rather than forcing you to rewrite the same procedures
over every time you start a new program. Most of the remaining examples in this
book use variations of the shell in this chapter.

THE PARTS OF AN APPLICATION

Based on thousands of programming lines, public domain examples, and
documents released by Apple Computer to software developers, it appears that most
event-driven programs have six fundamental parts:

1. Global Declarations
2. Program Actions
3. Display Handlers
4. Event Handlers
S. Initializations

6. Program Engine

It will help you to write your own event-driven programs if you understand
the nature of these six parts. Dividing your program this way helps reduce com-
mon confusions in event-driven programming where actions seem not to take place
at logical times but, rather, in procedures that appear to have nothing to do with
the actions you want to perform. The best way to avoid such confusion is to con-
centrate on writing code for each part’s purpose, rather than concentrating on your
routine’s order among the other programming statements. Event-driven program-
ming is purposeful programming. You concentrate more on purpose than
arrangement.

The following notes describe the six parts to an application. If you look ahead
to Listing 4.1 on page 129, you’ll see these same parts as large comment blocks.
For example, see lines 26 and 54. Even if you don’t understand all the program-
ming in the listing, you might want to glance at it while you read the following
description about the way an event-driven program works.

Global Declarations

A program’s Global De-larations define the constants, data types, and variables
that the program uses. Although this is no different than in normal Pascal, every
Macintosh program begins with a list of declarations usually describing, among
other things, the identifying numbers of resources that the program uses. (A resource
is a predefined object such as a template for a window or a menu title. You create
resources separately and tell Turbo to combine them with your program to pro-
duce the finished result.)

Because the Macintosh memory manager limits you to about 32K for all global

In Any Event = 123

variables, it’s probably best to be frugal in your declarations. Don’t create large
arrays and other data structures that take a lot of memory. If you do, you might
run out of room. This doesn’t mean programs cannot have large variables. They
can if you create them on the heap at run-time, a technique I’ll show you as we
proceed.

Program Actions

Program Actions handle whatever unique operations the program does. In a
printing program, you’d put the printing routines in this part. In a database, you’d
add searching and sorting procedures, and so on.

Program Actions include procedures to respond to pull-down menu choices.
They also include programming to respond to clicking the mouse in a window or
to pressing the Return key. Understand the difference here between the response
to something and the sensing of the event that requires such a response. Sensing
a mouse click in a window’s close box and actually closing the window are dif-
ferent though related processes. In the Program Actions section, concentrate on
what it is you want mouse clicks and keypresses to do—not on the method by which
your program knows whether mouse clicks have occurred. Understand this distinc-
tion and apply it when writing your own programs. It’s vital to good Macintosh
software design.

Display Handlers

Display Handlers are responsible for drawing shapes, figures, lines, text, and
other graphics, usually in windows. Similar to a Program Action, a Display Handler
concerns itself with what it should do—never with when it should do it. For exam-
ple, in a program that displays a bar graph, you would write a Display Handler
routine to display graphs in windows. But you would not worry about when bar
graphs should appear, and you would not be concerned with the commands peo-
ple might give in order to display the graphs.

You might wonder how this works if, for example, you have to draw a different
bar graph in response to a command or an option setting of some kind. Suppose
you need to draw an oval at one time but a box at another depending upon which
of those shapes someone tells the program to draw. In such circumstances, it seems
impossible to disassociate completely your drawing routine from the actions that
require it to respond differently at one time or another.

But you can easily handle these and other instances where window contents
change at different times. One solution is to write a Program Action routine to
set variables for specific commands and a Display Handler to examine those
variables in order to know whether to draw one object or another. As a very sim-
ple example, the following procedures demonstrate this idea. First comes the global
variable and Program Action procedure:

124 == Programming with Macintosh Turbo Pascal

VAR
whichFigure : (anOval, aBox);

PROCEDURE DoCommand(command : INTEGER) ;
BEGIN
IF command =0
THEN whichFigure :=anOval
ELSE whichFigure := aBox
END; { DoCommand }

DoCommand simply sets whichFigure to anOval or aBox depending on the
value of its parameter, command. A zero specifies an oval; other values specify
a box. Exactly how command gets its value is unimportant. What matters is the
fact that DoCommand itself doesn’t draw any ovals or boxes. It merely changes
the program’s knowledge. As a Program Action, it responds to commands. It’s the
Display Handler’s job to actually draw the appropriate figure. There, you might
use this routine:

PROCEDURE DrawContents;

VAR
r : Rect;

BEGIN
SetRect(r, 10, 10, 75, 75);
IF whichFigure = anOval
THEN FrameOval(r)
ELSE FrameRect(r)
END; { DrawContents 2}

DrawContents draws an oval with QuickDraw’s FrameQOval procedure or a box
with FrameRect depending on the value of the global variable, whichFigure. Be
certain you understand the relationship between DoCommand (the Program Ac-
tion procedure) and DrawContents (the Display Handler). DoCommand assigns
a value to whichFigure. DrawContents examines that value to know which figure
to draw—either an oval or a box. DoCommand knows nothing about drawing
figures. DrawContents knows nothing about program commands. Each does its
job and neither knows anything about the other nor about why, when, or how it
might be called to respond as the program runs.

Event Handlers

Event Handlers direct program flow. They have complete responsibility for call-
ing Program Actions and Display Handlers according to a program’s needs along
with the needs of other processes that run at the same time. Remember always that

In Any Event = 125

your program is rarely alone. Desk accessories and devices such as disk drives and
serial input ports have their own needs to which your program must respond. For
example, if you move a desk accessory window to one side, your program must
redraw the newly exposed portion of a window underneath. If you click an inac-
tive window, your program must deactivate the current window, bring the new win-
dow to the front and, in the process, draw the contents of the now frontmost win-
dow. Event Handlers receive these and other events such as mouse clicks and
keypresses. They determine the nature of the events and call the appropriate Pro-
gram Action or Display Handler in response. In general, there are only four main
events that you need to handle in most programs. These are:

* Mouse down events
« Key down events

+ Update events

+ Activate events

Mouse down events occur every time you click the mouse button. Because the
mouse operates independently (you can almost always move the mouse pointer,
even while other operations proceed), mouse down events can occur at any time.
The mouse down Event Handler checks the location of the mouse pointer and,
based on that location, determines what other procedures to call in order to re-
spond to mouse clicks. If, for example, you choose a menu command, the Event
Handler calls a Program Action procedure to respond. If you click inside an inac-
tive window, the Event Handler brings that window to the front.

Key down events occur when you type keys. To respond, the Event Handler
checks whether you also held down the command key to choose a menu command.
If so, it calls the appropriate Program Action to respond to the command—the
same way it does for mouse down events that choose commands from pull-down
menus. It handles normal keypresses by calling a Program Action that presumably
knows what to do with typing—maybe inserting a character into a text document
or simulating cursor keys.

Update events take place as the result of actions that require redrawing items
on display. In response, the program activates your Display Handler routine, drawing
the contents of one or another window. For example, the program might receive
an update event when you change a window’s size, uncovering in the process the
contents of another window below. Or, you might close a window, erasing it from
the display. The update routine would take care of calling your Display Handler
to redraw the contents of any windows previously hidden from view.

Activate events are the fourth type. They occur when windows become active
or inactive in response to mouse clicks and to commands that create new windows
overtop those already on display. (Despite its name, an activate event can be either
for making windows active or for making them inactive. The activate Event Handler
takes care of both kinds of activate events.) Most of the time, activate events and
update events come in pairs. When you click inside an inactive window, it becomes

126 == Programming with Macintosh Turbo Pascal

active, requiring the program to draw any newly visible parts and also deactivating
a previously active window. It’s rare that you’ll need to know it but, in such cases,
deactivate events come first—they have priority over activate events.

Initializations

Every application needs to initialize its variables before the program kicks in-
to high gear. On the Macintosh, initializations prepare pull-down menus and call
certain toolbox routines to allow them to set up their own variables.

Usually, initialization procedures run only one time at the start of the program.
Some initializations you must do. Others are optional. Still others you determine
according to the needs of your program.

For lack of a better place, I include among an application’s Initializations a
shut-down procedure—a routine that programs call just before they end. (You might
think of it as a deinitialization procedure.) There’s been much written about how
to start a Macintosh program but not as much about properly ending one. Because
there might be open windows, changed documents, and other unfinished business
when someone chooses the Quit command, it’s important for programs to respond
properly. The best way to do this is with a deinitialization plan that guards against
losing information if you end too early, perhaps forgetting to save changed data
on display in a window.

Program Engine

The final part of a standard Macintosh application is the Program Engine,
the motor that makes a program go. Its first job is to call the program’s Initializa-
tion part. Then, as all engines, it cycles—in this case, repeating these important
jobs for as long as the program runs:

» Perform system operations
« Intercept events
« Ensure a proper shut-down

Perform system operations. The Program Engine repeatedly calls procedure
SystemTask, which gives desk accessories such as the alarm clock a chance to up-
date their displays. (In long loops, call SystemTask if you know the Program Engine
will be idle for more than 1/60 second—not a hard and fast rule, but one to observe
as closely as possible.) Along with calling SystemTask, the Engine dims or highlights
certain menu commands depending on which windows are active. It can also change
cursor shapes depending on the mouse pointer’s location. In the coming program
shell, procedure DoSystemTask performs these system operations.

In Any Event = 127

Intercept events. Most important of the Program Engine’s responsibilities is
its job of intercepting and directing events. When you click the mouse button, the
Macintosh operating system posts an event, meaning it inserts into a special list,
or queue, a data object that records where the mouse was (among other things)
at the time you clicked its button. The Program Engine obtains this plus other events
by repeatedly calling Boolean function GetNextEvent, which returns TRUE if it
can pass back an event of a type the Engine requests. (It’s possible to request the
next event of a particular kind—only mouse clicks, for example—and ignore others.
Usually, though, the Program Engine requests all events and simply ignores the
ones it doesn’t care about.)

After receiving an event, the Program Engine directs it to one of the four Event
Handlers, calling procedures to handle mouse down, key down, update, and ac-
tivate events as they occur. This drives the program, putting into effect all its other
parts at the proper times. Update events find their way to Display Handler pro-
cedures while mouse down events cause Program Actions to respond to commands.
These actions are at the heart of an event-driven program—driven by the cycling
Program Engine.

Ensure a proper shut-down. The final job ends programs in a logical, clearly
defined way following the idea that program actions should not have direct effects
but, rather, should change a program’s knowledge. In this case, the action might
be what happens when you choose the pull-down menu’s Quit command. The
knowledge is that fact—we’ll call it QuitRequested. If QuitRequested is TRUE, then
the program assumes that you want it to stop. (It doesn’t care how or why it ac-
quired this knowledge.) Sensing this, the Program Engine verifies that it is indeed
okay to end the program at this time. If not—for example, if you added text to
a document but forgot to save those changes—it calls the appropriate procedures
to let you clean up before ending. This also gives you the chance to change your
mind and not quit the program after all. Putting these ideas together, the Program
Engine has the following Pascal-like form:

BEGIN
Initialize;
REPEAT
Do system tasks;
Direct events to Event Handlers;
UNTIL QuitConfirmed
END.

If you are familiar with Macintosh programming, you know that this Engine—
more commonly called the main loop—is simpler than usual. It initializes the pro-
gram and then cycles, performing system tasks and directing events to Event Handler
routines. Very important is the next to last line where Boolean function QuitCon-
firmed checks whether it’s time to end the program and, if all is well, returns TRUE,
giving the Engine permission to turn itself off.

128 == Programming with Macintosh Turbo Pascal

That concludes the description of a Macintosh application. It’s not vital for
you to memorize every preceding point but, rather, to have a good sense of what
the term event-driven means. Before continuing, you should understand that the
actions a program takes are separate from the ordering of those actions. You should
understand that the Program Engine directs events to Event Handlers, which take
care of calling the appropriate routines to perform program chores.

The rest of this chapter develops the programming steps to implement a full-
bodied Macintosh application shell that fleshes out these six basic parts. Although
meaty, it’s still mostly a skeleton that doesn’t do any useful processing. Even so,
the shell is invaluable for writing new programs. Rather than starting from scratch,
you begin with a copy of the bare-bones skeleton. This saves time while ensuring
that you don’t forget an important step.

DEVELOPING AN APPLICATION—APSHELL

Together, Listings 4.1, 4.2, and 4.3 make up an application shell, AP-
SHELL.PAS, that fully implements the six parts of a Macintosh event-driven pro-
gram. In many cases, you can write complete programs by replacing only one or
two shell procedures and adding your own constants and variables. Chapters 5-7
have many such examples.

The first ApShell part, Listing 4.1, contains routines and other declarations
that might change from one program to another. Its many place holders are pro-
cedures that show you where to add your own programming. The second ApShell
part, Listing 4.2, contains the text form of the shell’s resources. It describes the
menus, English language strings, and a window template that goes with the shell.
The third ApShell part is a unit, MacExtras in Listing 4.3, which contains many
useful tools that probably won’t change for different programs.

ApShell offers several features. It adds desk accessories to the pull-down menu
bar and lets you close them either by clicking their close boxes or by choosing the
Close command from the File menu. Many programs (including Turbo Pascal) fail
to follow this recommended guideline—Close should work for any frontmost win-
dow, whether or not it belongs to your program.

The shell also has a complete Edit menu with Undo, Cut, Copy, Paste, and
Clear commands that work correctly with desk accessories such as the familiar
Note Pad, Key Caps, and Scrapbook utilities. Unlike many programs, ApShell prop-
erly dims and highlights this menu at appropriate times rather than allow you to
select an Edit command even when the program doesn’t allow cutting and pasting.

Another shell feature is window zooming. By clicking the zoom box in the upper
right corner of a window, you expand the window to full-screen size. Clicking the
zoom box again shrinks the window to its former size. (Window zooming is available
only on Macintoshes with 128K ROMs. Older 64K ROM systems can use the shell
without modification but won’t have zoomable windows.)

ApShell has one more feature not often included in other program shells: a
mechanism to help you properly shut down a program, closing opened windows

In Any Event = 129

and saving data without having to write a series of Boolean flags or fiddle with
the event queue. Of course, in the shell itself, there isn’t anything to save. But later,
in programs that create disk files, you’ll see how this mechanism protects you from
losing your work.

The following sections describe each of the three listings that make up the shell.
If you want to type in the entire program now, skip the Play-by-Play descriptions
but read the introductions that precede each listing. They contain notes about com-
piling the listings to produce a finished program.

Listing 4.1 is the main ApShell listing. Type it in and save as APSHELL.PAS.
Change lines 1 and 2 to use different volume and folder names. You cannot run
ApShell until you type in the other two listings (4.2 and 4.3). Continue to the next
listing under the heading ApShell Resources if you want to type in the entire pro-
gram before reading the play-by-play descriptions.

Listing 4.1. APSHELL.PAS

: {$0 Programs:Shells.F: } { Send compiled code to here }
: {$R Programs:Shells.F:ApShell.Rsrc} { Use this compiled resource file }
: {$U-) { Turn off standard library units }

PROGRAM ApShell;
8: (*

10: * PURPOSE : Application shell
11: * SYSTEM : Macintosh / Turbo Pascal
12: * AUTHOR : Tom Swan

14: *)

17: {$U Programs:Units.F:MacExtras } { Open this library unit file }

19:

20: USES

21:

22: Memtypes, QuickDraw, OSIntf, ToolIntf, PackIntf, MacExtras;
23:
24:
25:
26:
27:
28:
29:
30:
31:
32: CONST

33:

34: FileID = 2; { File menu Resource ID and commands }
35: NewCmd =1;

36: CloseCmd = 2;

37: {(—==—--- }
38: QuitCmd
39:

40: WindowID = 1; { Window resource ID }
41:

42:

43:

GLOBAL DECLARATIONS

—

4;

(continued)

130 == Programming with Macintosh Turbo Pascal

44: VAR
45:
46: wRec : WindowRecord; { Program's window data record }
47: wPtr : WindowPtr; { Pointer to above wRec }
48:
49: quitRequested
50: windowOpen
51:
52:
53:
54: {
55: {
56: { PROGRAM ACTIONS
{
{

BOOLEAN; { TRUE if quitting }
BOOLEAN; { TRUE only if window is open }

57:
58:
59:
60:
61: PROCEDURE DoKeypress(ch : CHAR);

62:

63: { Do something with an incoming character }

64:

65: BEGIN

66: END; { DoKeypress }

67:

68:

69: PROCEDURE DoMouseClick (whichWindow : WindowPtr);
70:

71: { Process mouse clicks inside windows }

72:

13: BEGIN

74: END; { DoMouseClick }

75:

76:

77: PROCEDURE DoNew;

18:

79: { Respond to File menu New command }

80:

81: BEGIN

82: IF NOT windowOpen THEN

83: BEGIN

84: wPtr := GetNewWindow(WindowID, @Wrec, POINTER(-1));
85: windowOpen := wPtr <> NIL;

86: IF windowOpen THEN

87: BEGIN

88: SetPort (wPtr);

89: EnableItem(fileMenu, CloseCmd);

90: DisableItem(fileMenu, NewCmd)

91: END

92: END { if)

93: END; { DoNew }

94:

95:

96: PROCEDURE CloseProgramWindow;

97:

98: { Close the global wPtr window }

99:
100: BEGIN
101:
102: IF windowOpen THEN
103: BEGIN
104: CloseWindow (wPtr);
105: windowOpen := FALSE;
106: EnableItem(fileMenu, NewCmd);
107: DisableItem(fileMenu, CloseCmd)
108: END { if }
109:
110: END; { CloseProgramWindow }
111:

112:

113: PROCEDURE DoClose;

114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:

In Any Event = 131

{ Respond to File menu Close command }

BEGIN
IF

END;

FrontWindow

= WPtr

THEN CloseProgramWindow { Close the program's window }

ELSE CloseDAWindow

{ DoClose }

{ Close desk accessory window }

PROCEDURE DoFileMenuCommands (cmdNumber : INTEGER);

{ Execute command in the File menu }

BEGIN

CASE cmdNumber OF

NewCmd : DoNew;

CloseCmd : DoClose;

QuitCmd : quitRequested := TRUE
END (case }
{ DoFileMenuCommands }

END;

PROCEDURE DoEditMenuCommands (cmdNumber : INTEGER);

{ Execute command in the Edit menu }

BEGIN
IF NOT SystemEdit (cmdNumber - 1) THEN
BEGIN
{ Do program's edit menu commands }
END { if }
END; { DoEditMenuCommands }

PROCEDURE DoCommand (command : LONGINT);

{ Execute a menu command }

VAR
whichMenu : INTEGER; { Menu number of selected command }
whichItem INTEGER; { Menu item number of command }
BEGIN
whichMenu := HiWord(command): { Find the menu }
whichItem := LoWord(command); { Find the item }

CASE whichMenu

ApplelD :
FileID :
EditID H

{ Add other

END; { case }

Hi

END;

liteMenu(0)

{ DoCommand }

OF

DoAppleMenuCommands (whichItem);
DoFileMenuCommands (whichItem);
DoEditMenuCommands (whichItem);

program menus here }

{ Unhighlight menu title }

(continued)

132 == Programming with Macintosh Turbo Pascal

179:

180:
181:
182:

DISPLAY HANDLERS

— - -

183:
184:
185:
186: PROCEDURE DrawScrollBars(whichWindow : WindowPtr);

187:

188: { Draw v & h scroll bars. In the shell, this draws only the scroll
189: bar outline and grow box. }

190:

191: VAR

192:

193: vBarRect : Rect; { Vertical scroll bar }
194: hBarRect : Rect; { Horizontal scroll bar }
195: gbRect : Rect; { Grow box }

196:

197: BEGIN

198: DrawGrowIcon (whichWindow);

199: CalcControlRects (whichWindow, hBarRect, vBarRect, gbRect);
200: ValidRect (hBarRect);

201: ValidRect (vBarRect);

202: ValidRect (gbRect)

203: END; { DrawScrollBars }

204:

205:

206: PROCEDURE DrawContents(whichWindow : WindowPtr);
207:

208: { Display window contents }

209:

210: BEGIN

211: EraseRect (whichWindow”.portRect);

212: DrawScrollBars (whichWindow);

213:

214: { Add commands to draw window's contents }
215: .

216: END; { DrawContents }

217:
218:
219:
220:

221:

223:

{
{
222: { EVENT HANDLERS
{
{

224:
225:
226:
227: PROCEDURE MouseDownEvents;

228:

229: { Someone pressed the mouse button. Check its location and respond.
230:

231: VAR

232:

233: partCode : INTEGER; { Identifies what item was clicked. }
234:

235: BEGIN

236:

237: WITH theEvent DO

238:

239: BEGIN

240:

241: partCode := FindWindow(where, whichWindow);

242:

243: CASE partCode OF

244:

}

In Any Event = 133

245: inMenuBar

246: : DoCommand(MenuSelect(where));
247:

248: inSysWindow

249: : SystemClick (theEvent, whichWindow);
250:

251: inContent

252: : IF whichWindow <> FrontWindow

253: THEN SelectWindow(whichWindow)
254: ELSE DoMouseClick (whichWindow);
255:

256: inDrag

257: : DragTheWindow(whichWindow, where);
258:

259: inGrow

260: : IF whichWindow <> FrontWindow

261: THEN SelectWindow(whichWindow)
262: ELSE ResizeWindow(whichWindow, theEvent.where);
263:

264: inGoAway

265: : IF TrackGoAway(whichWindow, where)
266: THEN DoClose;

267:

268: inZoomIn, InZoomOut

269: : IF TrackBox(whichWindow, where, partCode)
270: THEN ZoomInOut(whichWindow, partCode)
271:

272: END { case }

273:

274: END { with }

275:

276: END; { MouseDownEvents }

277:

278:

279: PROCEDURE KeyDownEvents;

280:

281: { A key was pressed. Do something with incoming character. }
282:

283: VAR

284:

285: ch : CHAR;

286:

287: BEGIN

288: WITH theEvent DO

289: BEGIN

290:

291: ch := CHR{ BitAnd(message, charCodeMask)); { Get character }
292:

293: IF BitAnd(modifiers, CmdKey) <> O { If command key pressed }
294: THEN DoCommand(MenuKey(ch)) { then execute command }
295: ELSE DoKeypress(ch) { else use character }
296:

297: END { with }

298: END; { KeyDownEvents }

299:

300:

301: PROCEDURE UpdateEvents;

302:

303: { Part or all of a window requires redrawing }
304:

305: VAR

306:

307: oldPort : GrafPtr; { For saving / restoring port }
308:

{continued)

134 == Programming with Macintosh Turbo Pascal

309: BEGIN

310: GetPort (oldPort): { Save current port }

311: whichWindow :=

312: WindowPtr (theEvent.message); { Extract window pointer }

313: SetPort (whichWindow); { Change current grafPort }
314: BeginUpdate (whichWindow); { Calculate new visRgn }

315: DrawContents (whichWindow); { Draw/redraw window contents }
316: EndUpdate (whichWindow); { Reset original visRgn }

317: SetPort (oldPort) { Restore old port }

318: END; { UpdateEvents }

319:

320:

321: PROCEDURE ActivateEvents;

322:

323: { Activate or deactivate windows }

324:

325: BEGIN

326: WITH theEvent DO

327: BEGIN

328:

329: whichWindow := WindowPtr(message); { Extract window pointer }
330: SetPort (whichWindow); { Change current port }
331:

332: DrawScrollBars(whichWindow); { Draw bars & grow box }
333:

334: IF BitAnd(modifiers, activeFlag) <> 0

335: THEN FixEditMenu(FALSE) { Activate a window }
336: ELSE FixEditMenu(TRUE) { Deactivate a window }
337:

338: END { with }

339: END; { ActivateEvents }

340:

341:

342:

343: { }
344: { }
345: { INITIALIZATIONS }
346: { }
347: { }
348:

349:

350: PROCEDURE SetUpMenuBar;

351:

352: { Initialize and display menu bar }

353:

354: BEGIN

355:

356: appleMenu := GetMenu(AppleID); { Read menu resources }

357: fileMenu := GetMenu(FileID);

358: editMenu = GetMenu(EditID);

359:

360: InsertMenu(appleMenu, 0); { Insert into menu list }

361: InsertMenu(fileMenu, 0);

362: InsertMenu(editMenu, 0);

363:

gg;: AddResMenu (appleMenu, 'DRVR'); { Add desk accessory names }
g::: DrawMenuBar { Display the menu bar }

368: END; { SetUpMenuBar }

369:

370:

371: PROCEDURE Initialize;

372:

373: { Program calls this routine one time at start }
374:

In Any Event = 135

375: BEGIN

376: SetUpMenuBar; { Initialize and display menus }
377: quitRequested := FALSE; { TRUE on selecting Quit command }
378: windowOpen := FALSE { TRUE after using New command }
379: END; { Initialize }

380:

381:

382: FUNCTION QuitConfirmed : BOOLEAN;

383:

384: { The program's "deinitialization" routine. If someone chooses quit
385: command, this routine closes any open windows and tells the main

386: program loop whether it is okay to end the program now. }

387:

388: BEGIN

389: IF quitRequested THEN

390: IF windowOpen

391: THEN CloseProgramWindow;

392: QuitConfirmed := quitRequested

393: END; { QuitConfirmed }

394:

395:

396:

397: {

398: {
{
{

399:
400:
401: {
402:
403:
404: PROCEDURE DoSystemTasks;

405:

406: { Do operations at each pass through main program loop }

407:

408: BEGIN

409:

410: SystemTask; { Give DAs their fair share of time }

411:

412: IF FrontWindow = NIL THEN

413:

414: BEGIN { Set up menu commands for empty desktop }

415:

416: FixEditMenu(FALSE);

417: EnableItem(fileMenu, NewCmd);

418: DisableItem(fileMenu, CloseCmd);

419:

420: END ELSE

421:

422: IF FrontWindow <> wPtr THEN

423:

424: BEGIN { Set up menu commands for active desk accessory }
425:

426: FixEditMenu(TRUE);

427: EnableItem(fileMenu, CloseCmd)

428:

429: END { else / if }

430:

431: END; { DoSystemTasks }

432:

433:

434: BEGIN

435:

436: Initialize;

437:

438: REPEAT

439:

440: DoSystemTasks;

441:

PROGRAM ENGINE

(continued)

136 == Programming with Macintosh Turbo Pascal

442: IF GetNextEvent(everyEvent, theEvent) THEN
443:
444: CASE theEvent.what OF
445:
446: MouseDown : MouseDownEvents;
447: KeyDown : KeyDownEvents;
448: AutoKey : { ignored };
449: UpdateEvt : UpdateEvents;
450: ActivateEvt : ActivateEvents
451:
452: END { case }
453:
454: UNTIL QuitConfirmed
455:
456: END.
ApShell Play-by-Play

Lines 1-3 select three compiler directives that most of the remaining programs
in this book use. Line 1 you’ve seen before. It tells Turbo where to send the output
code file when it compiles this program to disk. It has no effect on compiling to
memory.

Line 2 tells the compiler which resource file to combine with this program’s
code. (This file contains the binary form of the program’s resources, not the text
in Listing 4.2. Don’t confuse the two.) When Turbo compiles a program to memory,
it opens the file in line 2 to read its resources as needed while your program runs.
When compiling to disk, it combines the resources with the program code, pro-
ducing a complete application in a single file. This adds menu titles, window
templates, and other resources to programs.

Line 3 switches off Turbo’s standard library units, eliminating its dumb ter-
minal interface. Because we want to write programs that open their own windows,
add desk accessories, and contain pull-down menus, we don’t want Turbo’s fixed
window to interfere. Unfortunately, switching off standard library units has another
effect that makes programming more difficult. No longer can you add a simple
Writeln statement to display text in a window. Without the standard units in ef-
fect, you have to use QuickDraw commands to draw text. (You can also use the
Macintosh TextEdit tools to display text—but more on that later.) The advantage,
of course, is that you can use the many available fonts and styles to display text.
And you can combine graphics and text on screen in any way you can imagine.

It’s helpful to know exactly what you’ve turned off in line 3. With standard
library units on {$U + }, Turbo automatically includes three units with every pro-
gram it compiles: PasSystem, PasInOut, and PasConsole. PasSystem adds low-level
items such as math routines, string handlers, sets, and other native Pascal elements.
PasInOut adds standard [/0 routines to programs. This includes Write, Writeln,
Read, and Readln along with code to implement files that you use with those pro-
cedures to read and write data to disk or to devices like printers and modems.
PasConsole contains the dumb terminal interface that you use in textbook programs.

In Any Event = 137

Of these three, Turbo always adds PasSystem. You cannot remove Pascal’s fun-
damental abilities to use sets and handle strings (nor would you want to). Turning
off the standards eliminates only the two units, PasInOut and PasConsole.

Having switched off standard units, you can always explicitly add them back
in the program’s USES clause. For example, a useful debugging technique is to
change line 20 to read:

USES PasInOut, PasPrinter,

and then insert statements to print various information while a program runs. Let’s
say you have a variable XMax that you suspect is not being initialized properly.
Somewhere in the program, you can write:

WRITELNC PRINTER, '"XMAX="', XMAX);

When the program gets to that statement, it prints Xmax’s value. PRINTER
is defined in the PasPrinter unit. Adding it as the first parameter in Write and
Writeln procedures sends text and other items to the printer. Another trick is to
put statements like these at the beginning and end of procedures.

PROCEDURE A;
BEGIN
WRITELN(PRINTER, 'ENTER PROCEDURE A') ;

WRITELNC PRINTER, 'EXIT PROCEDURE A')
END;

Doing this in every procedure, or in a select few, traces a program’s execution,
listing all the procedures it calls. You might also print variables to determine if they
contain what you think they should. Printing data this way is a useful debugging
technique and, because you remain on Pascal’s level, is often more useful than trac-
ing the machine language code with a conventional debugger. As shown here, I -
usually write my debugging procedures in all uppercase to make them easy to find
and remove later.

One unit you should never use with standard units switched off is PasCon-
sole, which initializes Turbo’s dumb terminal and interferes with Macintosh pro-
grams that set up their own windows. Never insert PasConsole in a program’s USES
clause. Let Pascal automatically include it when you compile textbook programs
(without the {$U—-} directive in line 3).

Notice that line 17 tells Pascal to read the compiled MacExtras unit (Listing
4.3). Be sure to modify this line if you compile MacExtras to different volume and
folder names. Alternatively, you can use Turbo’s UnitMover program to add MacEx-
tras to the compiler. In that case, remove line 17. (See Chapter 7 for details on us-
ing UnitMover.)

138 == Programming with Macintosh Turbo Pascal

Lines 20-22 tell Pascal to use six units, including MacExtras. The newcomer
here is PackIntf (Package Manager Interface), which adds packages to your pro-
gram. Originally, a package was a kind of after-thought toolset—containing pro-
gramming that, for one reason or another, was left out of the Macintosh ROMs.
Today, packages are just miscellaneous toolsets in the System file (called RAM-
based tools because they share memory with your program’s code) or in ROM.
One package adds the standard file dialog for selecting file names, ejecting disks,
and opening folders. Another standardizes date and time formats and selects in-
ternational currency symbols and decimal points depending on where in the world
your program is running. By using the International Utilities Package, your pro-
gram can automatically use pound signs instead of dollar symbols and commas
instead of periods for decimal points—strange to us Yankees perhaps, but all the
same to a program in London.

ApShell Global Declarations (26-50)

As in all Macintosh applications, ApShell has a Global Declaration part. Con-
stants define the File menu and a window. If you’ve already run the shell, you might
wonder where the Apple and Edit menus are. Because these rarely change, their
constants are in the MacExtras unit (Listing 4.3). Even though ApShell doesn’t
define them, you certainly can add commands to these menus. Future programs
explain how.

The five constants in lines 34-38 require explanation. FileID is the identifier
that the Macintosh Resource Manager toolset uses to read this menu into memory.
The menu resource comes from the resource file, which you specify in line 2 and
which you create by running Listing 4.2 through RMaker, the Resource Compiler
program that comes with your Turbo Pascal system. At line 39 in Listing 4.2, you’ll
see the resource ID 2, the same value as in line 34 of ApShell.

The File menu’s commands (35-38) are constants, too, but their values do not
represent resource IDs. Instead, a menu command’s value is simply its position in
the menu. The first command is always 1, the second 2, and so on. Observe one
caution when assigning values to these constants. As line 37 shows, you must allow
for divider lines in menus even though such lines are deadwood—they don’t do
anything, they just help organize menus into subcategories. As far as the Menu
Manager toolset is concerned, though, a divider line still is a command even though
no one can choose it. Notice that QuitCmd’s value is 4, not 3, leaving that value
for the divider line, represented in the listing by the comment {------— }.

Line 40 in ApShell defines another constant, WindowID. Similar to FileID,
this is the number of a corresponding resource definition. In this case, WindowID
refers to a window template, which describes the size, location, and style of win-
dows that the program uses. The template is the resource that defines what the win-
dow looks like, not the window data structure as it exists in memory. The line that

In Any Event = 139

corresponds to the constant definition is in Listing 4.2 at line 67. The shell uses
WindowlID to load this template into memory when it creates a new window.

Lines 46-47 declare two variables that add a single window to the shell: wRec
keeps track of various details such as the window’s location, its style and features
(such as whether it has a go-away box); wPtr (47) points to the wRec variable. This
may seem odd to expert Pascal programmers who are familiar with the normal use
of pointers, which rarely if ever address common variables. In Turbo Pascal, this
is not only possible but critical to Macintosh programming.

Despite its name, window pointer wPtr does not point to a structure of type
WindowRecord, the record in which the toolbox Window Manager keeps facts
about a program’s windows. (The Guide and Inside Macintosh describe the Win-
dowRecord data type in full.) Window pointers actually point to GrafPorts, exact-
ly the same records used in the graphics programs in Chapter 3. In other words,
the definition for WindowPtr is:

TYPE
WindowPtr =GrafPtr;

As you can see, there is no difference between WindowPtr and GrafPtr
variables—both point to GrafPort records. The Macintosh toolbox accomplishes
this apparent magic because every WindowRecord contains a GrafPort record as
its first field. Because of this duality, you can pass the address of a window record
to procedures that operate on windows or to procedures that operate on GrafPorts.
For example, you can pass ApShell’s wPtr to Window Manager procedure Select-
Window, which takes as its parameter a WindowPtr variable, or to SetPort, which
takes a GrafPtr variable.

Still, even though WindowPtr and GrafPtr types are the same, and you can
pass variables of either type to any procedure that requires the other, you can use
only WindowPtr variables for windows and GrafPtr variables for pure GrafPorts.
The reason for this is to prevent you from mixing the two types in cases where it
does matter to which kind of record they point. Although they include a GrafPort
as their first field, WindowRecords attach additional fields that the Window
Manager requires in order to manipulate windows. For those rare times when you
need to access those fields, Pascal defines another pointer type as follows:

TYPE
WindowPeek = *WindowRecord;

Never declare variables of this type. Except for low-level procedures for which
you probably will have little use, no Window Manager procedures accept them as
parameters. The way to use the WindowPeek data type is in a type casting state-
ment, one that converts one data type to another by using the type identifier with
a variable in parentheses. An example helps clarify how this works. Let’s say you
declare wPtr as in line 47 but later want to read the value of the WindowRecord

140 == Programming with Macintosh Turbo Pascal

field goAwayFlag, a Boolean variable that tells whether this window has a go-away
box in the upper left corner. You cannot do this:

IF wPtr*.goAwayFlag
THEN {do somethingl};

because wPtr points to a GrafPort and such records do not have goAwayFlag fields.
Still, you know that wPtr actually addresses a WindowRecord—it’s the compiler
that doesn’t have that same understanding. Therefore, to tell Pascal to ignore what
it thinks it knows—to force it, in other words, to consider that wPtr addresses a
window record—you recast the pointer into a new role, using WindowPeek this way:

IF WindowPeek(wPtr)*.goAwayFlag
THEN {do something};

This use of WindowPeek generates no code—it just looks as though it does.
It’s not a function call, but a translation of a variable’s data type (in this case a
WindowPtr) into something else (WindowPeek). Notice that the caret, dereferencing
the pointer, comes after the parentheses. If you put the caret inside after wPtr, you
receive an “Invalid type cast argument,” meaning Pascal knows better than to allow
you to convert an entire GrafPort into a WindowPeek variable. When type casting
one type to another, they must have the same byte size. Other than that, there’s
no restriction.

The other two variables in ApShell’s Global Declarations are two Boolean flags,
quitRequested and windowOpen (49-50). The first, quitRequested, is TRUE after
someone chooses the File menu’s Quit command. This single flag controls the Pro-
gram Engine’s task of ensuring a secure shut-down before the program ends. The
second Boolean variable, windowOpen, is TRUE if a program window is open.
It does not indicate whether any other windows are open, such as those belonging
to desk accessories. In a way, this flag is redundant. You could set wPtr to NIL—
the pointer value that means “nowhere in particular’’—to indicate that no window
is open. But having the windowOpen flag makes for more readable programs. In-
stead of statements such as:

IF wPtr <> NIL
THEN EraseWindow(wPtr);

you can write the more understandable:

IF windowOpen
THEN EraseWindow(wPtr);

ApShell Program Actions (54-175)

The eight procedures in ApShell’s Program Actions respond to commands that
you choose from pull-down menus or by typing command keys like Command-Q.

In Any Event = 141

Because they Do the things that make this program unique—in other words, because
they perform the program’s actions—procedure names in this section typically begin
with “Do.” For example, the DoNew procedure performs the action you want when
someone chooses the File menu’s New command.

Two procedures, DoKeypress and DoMouseClick (61-74) are do-nothing
shells—empty place holders that you fill in later. DoKeypress receives a character
typed on the keyboard. In the shell, typing has no effect and the procedure ignores
the characters it receives. To prove that it works, replace it with the following pro-
gramming. (Use a copy of ApShell to protect your original text. Never modify your
only copy of the shell—you’ll need it for future examples and for your own
programs.)

PROCEDURE DoKeypress(ch : CHAR) ;
BEGIN
IFch="'@"
THEN quitRequested := TRUE
END; { DoKeypress }

When you run the modified program, type an at-sign (@) and the program
ends. Notice that this happens without your knowing exactly the steps involved
in shutting down the program. The procedure merely sets Boolean flag quitRe-
quested to TRUE indicating that the state of the program has changed—that is,
somebody typed the new at-sign Quit command.

Another do-nothing procedure, DoMouseClick (69-74), takes care of mouse
clicks in windows. Its parameter is a WindowPtr variable that addresses the win-
dow to which the mouse pointer points. Similar to the way you tested DoKeypress,
you can verify that DoMouseClick works by replacing it with the following.

PROCEDURE DoMouseClick(whichWindow : WindowPtr) ;
BEGIN

SysBeep(2)
END; { DoMouseClick }

SysBeep sounds a tone for the length of time in parentheses. The value stands
for the number of ticks, or 1/60-second internal heartbeats in sync with Macin-
tosh display updates, known technically as vertical retrace interrupts. Supposedly,
the tone lasts for that length of time. But it’s only an approximation of real time—
the actual value is not that accurate.

When you run the program, choose the File menu’s New command and click
the mouse inside the window. Notice that it beeps only when the pointer touches
the area under the window drag bar and inside the other borders.

By the way, remember SysBeep for those times when you simply want to know
whether a certain procedure runs. Sometimes, you may wonder if a section of code
executes. Insert a SysBeep and run the program to receive an audible answer.

142 == Programming with Macintosh Turbo Pascal

DoNew (77-93)

Procedure DoNew opens a new window in response to choosing the File menu’s
New command. In a sense, this breaks the rule that action procedures affect only
a program’s knowledge. To follow that rule exactly, DoNew would have to generate
an event that would /afer result in a window opening. Although not shown here,
doing this requires creating your own custom event type and then adding code to
intercept that event in the program’s Event Handler section. There is an operating
system function called PostEvent for this purpose but, in this case, using it would
only complicate DoNew to no advantage.

Lines 82-92 check for open windows by examining the windowOpen flag.
Because the shell dims the New command after opening a window, it shouldn’t
be possible to accidentally open another. Even so, checking the windowOpen flag
eliminates the slightest possibility of an accident, a good rule of thumb to follow.

Line 84 creates and displays the window in a single statement. It does this by
calling function GetNewWindow, which reads the window template from the
resource file and returns a pointer to a new window record containing all the details
that the Window Manager needs to manipulate this window. There are several im-
portant points to observe in line 84.

The first parameter, WindowID, is the constant with the resource ID value ex-
plained earlier. The second parameter, @wRec, equals the address of the global
wRec variable. GetNewWindow needs this address to know where to do its work.
The third and last parameter is POINTER(-1), another example of type casting.
In this case, the integer value —1 is recast as a general POINTER, a generic type
that Pascal recognizes as being compatible with any other kind of pointer. The value
(—1) tells GetNewWindow to place the new window in front of all others. You can
use NIL as the third parameter to create new windows behind all others on display.
Or, you can pass the WindowPtr address of another window to create your new
window behind that one. Despite these choices, you’ll usually just use POINTER(-1)
and create the new window on top. It’s difficult to imagine a situation where you
wouldn’t want to do that.

The rest of DoNew checks to see if the call to GetNewWindow succeeded by
testing in line 85 whether wPtr is NIL, in which case something went wrong trying
to create the new window. As long as all is okay, lines 88-90 ensure that the pro-
gram window is the current GrafPort (88), enable the File menu’s Close command
(89), and disable Open (90) to prevent opening another window. Enableltem and
Disableltem are routines in the toolbox’s Menu Manager. Enableltem activates a
menu command, allowing you to choose it from a menu. DisableItem does the
opposite, dimming the command and preventing you from choosing it.

You might wonder where variable fileMenu comes from. The MacExtras unit
defines this and two other menus (appleMenu and editMenu), which are practically
set-in-concrete standards in Macintosh software. The MacExtras play-by-play ex-
plains how to use them.

In Any Event = 143

CloseProgramWindow, DoClose (96-121)

These two procedures go together. Only if a window is open does line 104 close
it, removing it from the display and also erasing from memory certain miscellaneous
structures that the Window Manager creates when you open a new window.
CloseWindow is the correct procedure to use when your window record is on the
stack or, as wRec, declared as a global variable. Another procedure, DisposeWin-
dow, does the same job as CloseWindow, but also makes available the memory
that the window record occupies. Never use DisposeWindow to close windows when
the window record is a Pascal variable. Later, we’ll see how to use this technique
to manage window records on the heap, where you must be concerned with dispos-
ing objects you no longer need.

CloseProgramWindow also sets windowOpen to FALSE (105) and changes the
File menu commands to the proper state when there aren’t any open windows, dim-
ming the Close and activating the New commands.

Procedure DoClose (113-121) checks if the front window belongs to the pro-
gram. It does this by calling function FrontWindow (118), which returns a Win-
dowPtr to the window now active. By checking whether this pointer is the same
as the value in global variable wPtr, DoClose determines if the window belongs
to a desk accessory or to this program. If it’s a desk accessory window, DoClose
calls CloseDAWindow in the MacExtras unit. Otherwise it calls CloseProgram-
Window described earlier.

DoFileMenuCommands, DoEditCommands, and DoCommand
(124-175)

The remaining three procedures in ApShell’s Program Actions section are
DoFileMenuCommands, DoEditMenuCommands, and DoCommand. Let’s take
the last one first, as it merely calls the others.

As you can see at lines 163-171, DoCommand directs a menu command to
one of the Do . . . MenuCommands procedures that precede it in the program.
DoCommand’s single LONGINT parameter, command, contains the menu ID
number along with the line number of a command selected from a menu. The first
job is to extract those parts, which DoCommand does at lines 160-161. Function
HiWord returns the high-order 16-bits from a 32-bit LONGINT (see Figure 4.1).
LoWord returns the low-order 16-bits.

Two local variables, whichMenu and whichItem, save the extractions of the
command parameter. The first of these, whichMenu, figures in the CASE state-
ment at lines 163-171. It selects one of the cases labeled by the menu resource ID
numbers, ApplelD, FileID, and EditID. If you have other menus, put their ID
numbers after EditID where the comment indicates.

DoCommand passes whichItem, representing the menu command number, to
one of the Do . . . MenuCommands procedures. Notice that DoCommand only

144 == Programming with Macintosh Turbo Pascal

< 32 bits >

High Order Low Order

44— 16 bits >4 16 bits ————

Figure 4.1 In memory, 32-bit objects order their bytes as shown here.
The high order bits precede the low order—the opposite of the way some
computers (the IBM PC for example) store multi-byte values.

redirects a command to the proper procedure—it doesn’t take any actions itself.
One of those procedures, DoAppleMenuCommands, is in the MacExtras unit. The
Apple menu usually contains the familiar About Program command and desk ac-
cessories. Because it rarely varies from that setup, it’s best kept in the unit along
with other common routines.

DoCommand’s final task is to call HiliteMenu (173), changing the now inverted
menu title back to black on white, its normal state. When you choose a menu com-
mand, the Menu Manager erases the pull-down menu but leaves the menu title in
reversed white on black. Surround HighliteMenu(0) with comment brackets to see
what effect this has when you choose menu commands.

Backing up a few lines, DoFileMenuCommands at lines 124-134 handles the
New, Close, and Quit commands in a CASE statement. For New and Close, it calls
the proper action procedure, DoNew or DoClose. For Quit, it sets the quitRequested
flag TRUE. Notice that parameter cmdNumber is the integer value passed by
DoCommand representing the command position in the menu.

Procedure DoEditMenuCommands (137-146) has a slightly different form. It
calls a Boolean function SystemEdit, passing parameter cmdNumber minus one.
This allows desk accessories to recognize Edit menu commands Undo, Cut, Copy,
Paste, and Clear. If SystemEdit returns TRUE, ignore the command—it’s been taken
care of for you. Otherwise, process the command to cut and paste information
belonging to your program. Of course, in the shell, there’s nothing to cut or paste.
Therefore, the rest of the IF statement is empty (143-145).

ApShell Display Handlers (179-216)

There are only two display handlers in the shell. In a real program, this area
might be the largest—it’s responsible for just about everything you see during the
course of a program.

The first procedure, DrawScrollBars (186-203), draws the window’s grow box
icon in the lower right corner and also the lines that form the inside borders of

In Any Event = 145

vertical and horizontal scroll bars. In ApShell, there aren’t any real scroll bars—
only the outlines. Later examples add these and other controls. (See Chapter 5.)

DrawScrollBars takes a WindowPtr as its parameter indicating in which win-
dow to draw. This is necessary because the window might not be active. For active
windows belonging to the program, procedures use MacExtras global variable,
whichWindow. But that’s not possible here. Consider, for example, the situation
when you move a desk accessory window aside, uncovering a window underneath.
In that case, the program has to redraw the scroll bar areas in the inactive window,
which it does by passing the window pointer to DrawContents. The procedure then
calls DrawScrollBars to redraw the newly exposed portions of the scroll bar outlines.
In general, when designing procedures that might operate on non-active windows
this way, pass them a window pointer. Otherwise, use the global whichWindow
variable.

Notice the three calls to ValidRect in lines 200-202 and the call to CalcCon-
trolRects at line 199. The reason for these items will be more understandable after
you read the play-by-play for the shell’s Event Handlers. The statements help avoid
redrawing portions of windows more than once, preventing an annoying problem
that causes scroll bars to flutter briefly. I’ll show you in the next section how
ValidRect eliminates this problem.

Procedure DrawContents (206-216) erases the window contents and calls
DrawScrollBars. In a real program, you’d put other commands here to draw
whatever you want in the window. Notice that DrawContents passes the window’s
portRect to QuickDraw procedure EraseRect. You’ll recall from the previous chapter
that the portRect is the portion of the GrafPort in which QuickDraw draws. With
window records, this equals the interior area of the window minus the title bar on
top. Because WindowPtr and GrafPtr pointers are equivalent, you can pass the
window’s portRect to EraseRect, clearing the window’s insides but leaving un-
disturbed everything else on display.

One important fact is that DrawContents normally draws everything that ap-
pears in the window. Remember when adding your own commands not to be con-
cerned with when this might happen. In fact, DrawContents will be called many
times—when you create a window; when you zoom it in and out; when you expose
portions of it by moving other windows; and when you click it to bring it to the
front. But in the Display Handler section, you do not have to observe any rules
relating to these various conditions. You simply draw everything in the window and
let the next section, the Event Handlers, decide when that should happen.

ApShell Event Handlers (220-339)

The shell’s Event Handlers process the four main events that most programs
need to recognize. Procedure MouseDownEvents (227-276) is first. It determines
exactly where the mouse pointer was at the time you clicked the button and, from
that information, calls an appropriate routine. For example, if you click inside an

146 == Programming with Macintosh Turbo Pascal

inactive window, MouseDownEvents brings that window to the front. Or, if you
choose a pull-down menu command, MouseDownEvents discovers that fact and
responds.

The large WITH statement beginning at line 237 gives access to fields in Record
variable theEvent (also from MacExtras) containing the data associated with this
event. It’s the Program Engine’s responsibility to set theEvent record so that Event
Handlers can interpret its data.

To accomplish that, the procedure calls function FindWindow (241) with two
parameters. The first, where from theEvent, is the Point record with the global coor-
dinate of the cursor hot spot—the tip of the arrow pointer or the center of a cross
hair. FindWindow assigns to whichWindow (the global MacExtras variable) the
address of the window (if any) that contains where, indicating the mouse click was
inside that window’s contents. FindWindow returns also a part code, locating the
part number of the desktop item (the menu bar or zoom box, for example) where
you clicked the mouse. The procedure assigns this value to a local INTEGER, part-
Code, for later use.

Inside the large CASE statement (243-272), part codes select one of seven possi-
ble mouse click activities. If the part code indicates a mouse click in a pull-down
menu, meaning a command was chosen, the program calls DoCommand (246) pass-
ing the event’s where Point record through toolbox function MenuSelect. This con-
verts the record to a LONGINT type (containing the menu and command numbers)
that DoCommand requires.

If the mouse click was in a system window, meaning a desk accessory probably,
lines 248-249 call SystemClick passing the two parameters theEvent and whichWin-
dow. SystemClick passes the event on to a desk accessory, for example, if you click
its close button. You don’t have to handle such events yourself, but you are respon-
sible for making sure that desk accessories receive the events that belong to them.

Lines 251-254 represent the traditional way of handling mouse clicks inside
program windows. As written here, if the window is not now the active one, deter-
mined by comparing whichWindow with FrontWindow (252), the program calls
SelectWindow to bring it to the front. If it is the front window, then the program
passes the mouse click location on to action procedure DoMouseClick, described
earlier.

With this approach, if you click inside an inactive window, you have to click
a second time to accomplish something there. If you instead want to click in an
inactive window, bring it to the front, and process that mouse click immediately,
replace lines 251-254 with the following. Either approach is acceptable. It’s your
choice.

inContent
: BEGIN
IF whichWindow <> FrontWindow
THEN SelectWindow(whichWindow);
DoMouseClick(whichWindow)
END;

In Any Event = 147

Lines 256-257 drag windows to new locations when you click on the window’s
title bar. DragTheWindow, a procedure in the MacExtras unit, takes two parameters
whichWindow and where, and completely handles all window dragging details, a
subject we'll see again later. If the window is inactive, clicking the title bar also
activates it unless you also hold down the Command key.

Lines 259-262 process clicks in the window’s grow box at the lower right cor-
ner, letting you resize a window by stretching its rubbery outline and then releas-
ing the mouse button. The program does this by calling the MacExtras unit pro-
cedure ResizeWindow if the window is now active. If it’s not active, it calls Select-
Window to make it active. Because it takes two clicks to activate an inactive win-
dow and resize it, you might want to modify these lines as you did for mouse clicks
in window contents.

The two remaining cases in MouseDownEvents handle clicks in the close and
zoom boxes at either side of the window’s title bar. Lines 264-266 call TrackGoAway,
which explodes the little go-away box, displaying the shock wave lines you see when
you click it, and returning TRUE only if you then release the mouse button while
the pointer remains inside the box. If you move the mouse and release the button,
TrackGoAway returns FALSE. This gives you the chance to change your mind about
closing windows. Only if you release the mouse with the arrow still in the box does
the program call DoClose at line 266.

Lines 268-270 work similarly. In this case, two part codes inZoomlIn and in-
ZoomOut indicate the mouse was inside the window zoom box. If so, TrackBox,
a more general form of TrackGoAway, returns TRUE if you release the button while
still pointing to the box. If so, line 270 calls ZoomInOut (in MacExtras) to zoom
the window either to full size or back to a former size.

KeyDownEvents (279-298)

Event Handler KeydownEvents is much simpler than MouseDownEvents. It
checks the event record in a WITH statement (288-297), pulling the character’s
ASCII code out of the event message field with the statement:

ch :=CHR(BitAnd(message, charCodeMask));

The BitAnd function uses global constant charCodeMask to extract the
character code from message, a field in the event record. You can use a similar state-
ment to extract the character key code by replacing charCodeMask with
keyCodeMask. The character code is the key’s ASCII value; the key code is its posi-
tion on the keyboard. (See Figure 4.2 for the location of these values in theEvent
message field.) Normally, the ASCII code is what you want. But there are times
when you need to check the key code, sometimes known also as a scan code. For
example, on the Macintosh Plus, there are two plus sign (+) keys that produce the
same ASCII value (hex $2B) for that symbol. To distinguish between them, use
the KeyDownEvents procedure in Figure 4.3.

148 == Programming with Macintosh Turbo Pascal

theEvent.message
Key ASCII
Unused Code Code
31 16 15 8 7 0

Figure 4.2 Key down events return both a key code and
ASCII character, stored as shown here in the low order part
of the event record’s message field.

If you have a Macintosh Plus or a numeric keypad, replace KeyDownEvents
in a copy of ApShell with this procedure and insert SysBeep(2) in place of the com-
ment, “Handle keypad plus key.” Typing the keypad’s plus key beeps the speaker;
typing the regular plus key doesn’t beep, proving that even though both keys generate
the same ASCII code, they have different key codes.

After extracting the character or key code, the next step is to determine whether
a modifier key was pressed at the same time. Lines 293-295 show how to check

PROCEDURE KeyDownEvents;
CONST
KeyPadPlus = 70;
VAR
keyCode : INTEGER;
BEGIN
WITH theEvent DO
BEGIN
keyCode := BitAnd(message, keyCodeMask) DIV 256;
IF keyCode = KeyPadPlus THEN
BEGIN
{ Handle key pad plus key }
END ELSE
BEGIN
{ Handle regular keypresses }
END
END { with }

END; { KeyDownEvents }

Figure 4.3 To distinguish between keys that produce the
same ASCII character code, examine their key codes as this
procedure demonstrates.

In Any Event = 149

Table 4.1 Event record modifiers constants.

BtnState = 128; { Bit set if mouse button is UP }
CmdKey = 256; { Bit set if command key typed }
ShiftKey = 512; { Bit set if shift key typed }
AlphaLock = 1024; { Bit set if caps lock key is down }
OptionKey = 2048; { Bit set if option key typed }

for the Command key (CmdKey), calling DoCommand to respond to Command-
Q, Command-N, and other alternatives to choosing pull-down menu commands.
KeyDownEvents checks for the command key by logically ANDing the event record
modifiers field with the constant CmdKey (293). If the result is not zero, then some-
one pressed the command key and the program calls DoCommand, translating the
ASCII character to a menu command with the help of the toolbox MenuKey func-
tion. Otherwise, it calls DoKeypress to process normal typing.

Table 4.1 lists modifier key values that you can use to determine whether other
keys were pressed. If you do this frequently, use functions such as the two in Figure
4.4 instead of directly programming BitAnd expressions in KeyDownEvents. They
make programs more readable. For example, to test whether someone typed the
Option and A keys, you could insert something like this at lines 293-295 in
KeyDownEvents:

IF KeyedOption
THEN DoOptionKeys ELSE

IF KeyedCommand
THEN DoCommand (MenuKey(ch))
ELSE DoKeypress(ch)

FUNCTION KeyedOption : BOOLEAN;
{ TRUE if option key held down }
BEGIN
KeyedOption := BitAnd(theEvent.modifiers, OptionKey) <> 0
END; { KeyedOption }
FUNCTION KeyedCommand : BOOLEAN;
{ TRUE if command key held down }
BEGIN

KeyedCommand := BitAnd(theEvent.modifiers, CmdKey) <> 0
END; { KeyedCommand }

Figure 4.4 Use functions such as these to tell whether keys like
Command and Option are held down while typing.

150 == Programming with Macintosh Turbo Pascal

Table 4.2 Diacritical keys.

Key Symbol Name Example

h) grave accent

.

a
e acute accent é
i A circumflex i
u " umlaut i
n ~ tilde it

When testing for Option keys, remember there are five predefined diacritical
keys (Table 4.2). To use them, hold down the Option key, type a key in the left col-
umn of the table, let up on the Option key and type a letter. For example, holding
down the Option key and typing two n’s produces fi. (See the examples in the right
column.) The problem is, you cannot redefine what these key sequences do.
Therefore, don’t use the five keys in the table when designing your own Option
key commands.

UpdateEvents (301-318)

The next Event Handler procedure, UpdateEvents, responds to requests for
drawing a window’s contents. Other procedures and programs make such requests
when you uncover previously hidden windows or when you take an action that
changes what windows display. For example, if you close a window, the operating
system generates an update event for a window underneath. This causes Up-
dateEvents to start the sequence that redraws that window’s contents.

The first job in UpdateEvents is to save the current GrafPort. The reason for
this step is that update events might not be for the frontmost window. Therefore,
line 310 saves a pointer to the current GrafPort in local variable oldPort. Later,
line 317 restores this value just before UpdateEvents ends.

Lines 311-312 use type casting to convert the event record’s message field to
type WindowPtr, assigning this value to global variable whichWindow. After that,
a call to procedure SetPort (313) changes the current GrafPort to the window that
requires updating.

The next three steps (314-316) tell the Window Manager to begin an update
for this window. The call to BeginUpdate (314) does these two jobs:

+ Calculates the intersection of the window’s visible and update regions
« Empties the update region

The visible region is that part of the window visible prior to the request for
an update. The update region is the part of the window that needs redrawing (which
might include portions of the window not now visible). The intersection of these

In Any Event = 151

two elements exactly locates only that part of the window that is both visible and
requires redrawing.

You don’t have to understand or directly manipulate these regions. Just
remember that when the program calls BeginUpdate, it limits the visible region of
the GrafPort to the portion of the window that needs redrawing. Because this also
clips, or restricts, drawing to that area, even if you redraw the entire window, you
affect only the correct portion the update event requires. In other words, in your
drawing routine, you can just redraw everything and let the system figure out what
to actually display. This saves time, not to mention the hassle of calculating which
portions of windows cover others every time you need to draw something.

Line 315 calls the drawing procedure in ApShell’s Display Handler section.
As programmed here, DrawContents merely erases the window—it doesn’t draw
anything. When you run the program, try moving desk accessories aside and observe
what happens. Because BeginUpdate limits drawing to the proper areas,
DrawContents erases and reconstructs only the necessary window parts.

Finally, UpdateEvents calls EndUpdate (316) reversing what BeginUpdate did.
This restores the visible region of the window to indicate correctly what portions
of the window are now visible. Because it complements what BeginUpdate does,
EndUpdate always ends an update event after the drawing routines finish. (Note:
even if you have nothing inside a window to redraw, you still must call BeginUp-
date and EndUpdate to clear the event.)

ActivateEvents (321-339)

The final Event Handler procedure, ActivateEvents, takes care of activating
some windows, bringing them to the front, and hiding others. It extracts the win-
dow pointer (329) and changes the GrafPort (330) to the window for this event.
It does not save the current port as in UpdateEvents because the purpose of this
procedure is to change that port.

Line 332 redraws any scroll bars that belong to this window, even though there
aren’t any such controls in ApShell. In this example, DrawScrollBars merely draws
the outlines where scroll bars eventually go. It also redraws the grow box icon in
the lower right corner.

Lines 334-336 test the event record’s modifiers field to check whether this event
applies to a window becoming active or to one that the procedure should hide. Such
events usually come in pairs; the deactivate followed by the activate event. In the
shell, lines 335-336 use this information to change the edit menu commands, dim-
ming them when windows become active (335) and enabling the commands when
windows become inactive. It does this because the shell doesn’t allow Cut, Copy,
Paste and other editing commands for its own windows. Therefore, it disables these
commands. Because desk accessories might need these same commands, it enables
them when windows become inactive, assuming that this might uncover a desk ac-
cessory window below.

152 == Programming with Macintosh Turbo Pascal

Later, we’ll see other operations that ActivateEvents handles. For example, it
might activate or deactivate controls and scroll bars, display or remove a cursor,
or highlight text for newly active windows.

Generating Update Events

Turn back to the Display Handlers section and look at lines 199-202 in pro-
cedure DrawScrollBars. Now that you know how programs deal with update events,
you can better understand this procedure.

After drawing the grow box icon and displaying the scroll bar outlines (198),
CalcControlRects from the MacExtras unit calculates three rectangles encompassing
the horizontal scroll bar (hBarRect), the vertical bar (vBarRect), and the grow box
(gbRect).

It does this because the procedure DrawGrowlIcon breaks one of QuickDraw’s
own rules—that no routine directly draw into windows. Because an activate event
often precedes an update event for a window (if a window becomes active, its con-
tents usually need redrawing), the program inadvertently calls DrawScrollBars
twice—once from line 332 in procedure ActivateEvents and then once again when
UpdateEvents (315) calls DrawContents (206). Because DrawContents also has to
redraw the scroll bars and grow icon (it does not know whether an activate event
preceded it), this sometimes draws those objects twice in succession.

To see the problem, turn lines 199-202 into a comment by surrounding the
statements with (* and *). Run the modified program. Open a new window and
a desk accessory such as the Note Pad or Control Panel. Look closely as you move
the desk accessory window aside and as you activate and deactivate the program
window. You should see the grow box and scroll bar outlines shudder quickly. They
do that because the program now draws them twice, once during activate events
and once during updates.

To amplify the shudder, making it easier to see, add an integer variable i to
DrawScrollBars and insert the following statement between lines 198 and 199.

FOR i :=1T7032000D0;

ApShell solves the shuddering scroll bar problem with three ValidRect
statements (200-202), subtracting, or validating, areas from the GrafPort’s update
region. During update events, QuickDraw draws only in the area intersecting the
update region (the parts that require redrawing) with the visible region (the parts
you can see). By subtracting already-drawn areas from that region, QuickDraw
avoids redrawing them. Therefore, when an activate event calls DrawScrollBars,
validating the scroll bar regions prevents redrawing those same areas during subse-
quent updates. In general, whenever you draw directly into a window, call ValidRect
to tell QuickDraw it does not have to update the area you just drew.

In Any Event = 153

ApShell Initializations (343-393)

SetUpMenuBar (350-368) reads the menu definitions from the program’s
resources and inserts them into the menu bar. As you can see, creating pull-down
menus is not difficult. In general, adding a new menu requires only these two steps:

* Read the menu resource
* Insert the menu into the menu bar

After performing those two steps for every menu, call DrawMenuBar (366)
to display the program’s menu. You can call this procedure again at any time. You
must call it if you later make any changes to menu titles.

Menus are MenuHandle variables, which ApShell lets the MacExtras unit
define. Most programs probably will have at least Apple, File, and Edit menus.
To add others, declare new MenuHandle variables, create resources for them, and
initialize them in SetUpMenuBar. Of course, you also need programming to re-
spond to the new menu commands. Future chapters have many examples of how
to do this.

Lines 356-358 load the resources for the three standard menus by calling
GetMenu, passing the resource ID as the lone parameter. Lines 360-362 insert each
of these menus into the menu bar. The 0 tells the Menu Manager to insert menus
behind others. To insert a new menu to the right of another, pass its ID number
instead. Usually, though, youw’ll simply initialize menus as the listing shows.

The program adds desk accessory (DA) names to the Apple menu by calling
AddResMenu (364). This adds resource names—the DA titles—to the Apple menu.
The string ‘DRVR’ (Driver) is the resource type of all desk accessories. Although
there are other ways to add DA names to a menu, you should always do it as in
SetUpMenuBar. This makes the order of menu commands identical for all pro-
grams that use the same set of DAs.

Initialize, QuitConfirmed (371-393)

ApShell calls Initialize (371-379) once at the start of the program. In turn, it
calls SetUpMenuBar (376) and sets two Boolean variables FALSE (377-378). It
could, of course, do other jobs: initialize other variables, display startup messages,
or open windows. Whatever you need to do before the program starts, do it in
Initialize.

Function QuitConfirmed (382-393) is the program’s deinitialization routine.
Its job is to ensure that the Program Engine does not end unless all conditions
are right. In this case, conditions are always right and, therefore, QuitConfirmed
simply closes any open window if variable quitRequested is TRUE.

Understand QuitConfirmed’s logic. If someone chooses the Quit command
(quitRequested=TRUE), then if a window is open, QuitConfirmed calls

154 == Programming with Macintosh Turbo Pascal

CloseProgramWindow to close it. After that, it passes the value of quitRequested
back as QuitConfirmed’s function value. This makes the function mirror quitRe-
quested’s state, TRUE or FALSE. In an application, quitRequested becomes more
important. As you’ll see in later examples, it needs to perform three jobs to let you:

* Return to the program
= Save changes to files
« Throw away changes to files

Any program that modifies data should follow these three steps before ending
the program, avoiding potential loss of information. You’ve probably seen these
actions in programs like MacWrite and Turbo Pascal when you choose Quit after
editing a file and forgetting to save your changes.

ApShell Program Engine (397-456)

The Program Engine makes the program go. Before looking at procedure
DoSystemTasks (404-431), it helps to understand how the Engine churns.

The first step is to call Initialize (436), setting up menus and doing other start-
up jobs. Then a REPEAT loop (438-454) cycles until the program ends. Inside that
loop, the Engine calls GetNextEvent (442), receiving events such as mouse clicks
and window update requests from the operating system as they occur and passing
those events on to the proper Event Handler. It does this by examining the what
field of the event record (444) in a CASE statement, selecting one of five main event
types. (This program ignores AutoKey events, generated when you hold down a
key as you do in text editors to repeat characters.)

The REPEAT loop cycles until function QuitConfirmed returns TRUE. Notice
that this simplifies the usual flag checks and double REPEAT loops found in other
shells and examples you may have seen. You know that QuitConfirmed gives every
opportunity to save changes, discard unwanted editing, close windows, and the like.
Such jobs belong in procedures, not in the main program body.

This follows a general rule for Pascal programs: that the main body be small
and easy to follow. Reading it gives you an eagle’s view of the program—you see
the landscape, not every detail. But don’t attempt to simplify the main loop fur-
ther, as many programmers do. For example, the following is a popular Program
Engine:

BEGIN
Initialize;
MainLoop

END.

In Any Event = 155

Apparently, procedure MainLoop handles all the REPEAT loop details in Ap-
Shell. While this appears to reduce the program to two steps, it’s a bad design. When
the program calls MainLoop, it creates on the stack an activation record which
keeps track of, among other things, the location of the procedure that called it and
certain variables that maintain the level of such calls throughout a program’s life.
You don’t need to be concerned with the nature of the activation record, but you
should be aware that calling MainLoop from the main program body this way does
nothing but increase the program’s nesting level by one for no good reason. (The
nesting level is the depth to which a group of procedures call each other. If pro-
cedure A is on level 0 and calls B which calls C, the nesting level at that point is
2.) As ApShell shows, keeping the program loop in the main body keeps the nesting
level at zero each time the Engine cycles, the best plan.

DoSystemTasks (404-431)

Procedure DoSystemTasks runs each time the Engine cycles. It first calls System-
Task (410), which gives desk accessories their fair share of time and lets them up-
date their displays, making alarm clocks tick and debuggers debug. After that, the
rest of DoSystemTasks performs an important task, which many programs often
overlook.

If the frontmost window pointer is NIL, then no window is visible and the
program disables the entire edit menu (416), enables the File menu’s New command
(417), and disables Close (418). Otherwise, if the front window is not NIL, then
there is a window on display. But does it belong to the program? Line 422 checks
by comparing the window pointer value returned by FrontWindow with ApShell’s
global wPtr variable. If they are not the same, then the front window must belong

.to a desk accessory and the program therefore enables the Edit menu commands
(426). It also enables the File menu’s Close command (427). That way, you can
choose Close to remove desk accessories as well as clicking their close boxes.

It’s helpful to remove the programming from lines 412-429 and observe the
effect. Open a window and a desk accessory, then click in the window to bring
the window to the front. Close the program window, leaving the desk accessory
on screen, and pull down the Edit menu. As you can see, the proper commands
are not activated. You cannot fix this problem by enabling the Edit menu com-
mands in procedure ActivateEvents (321-339) as many people try. This is not possi-
ble because closing a window does not generate a deactivate event for it. If it did,
line 336 would take care of enabling the Edit menu commands. Obviously, this
doesn’t happen, requiring a check for such situations at every Engine cycle.

Don’t be concerned that these checks will slow the program. They won’t, at
least not by much. It may seem that keeping the Program Engine running efficiently
is important, and it is—but only to a point. The Engine, remember, doesn’t run
the program statement-by-statement but, rather, on a procedural level. When it calls

156 == Programming with Macintosh Turbo Pascal

a procedure to handle an event, which in turn might call another routine, the Engine
completely gives up control until that procedure ends. Therefore, adding a few pro-
gramming statements to highlight and dim menus has a negligible effect on the
speed of those other routines.

APSHELL RESOURCES

Listing 4.2 is a resource text file, which describes the program’s resources—
various constants and templates that programs need to display menus, create win-
dows, and display text such as the familiar commercial message better known as
the About Program box. Many people are confused about resources. Just what
are they?

I think of resources as everything that is not consumer data. By consumer data,
I mean items such as text, database files, and speadsheets—all of the data that peo-
ple process with computers. Resources are in a different category. They contain
program data, items that programs use during their run-time lives. Window
templates, menu titles, error messages, dialog boxes, and even the program’s code
itself all comprise a program’s resources.

Just as a program’s source code differs from its compiled run-time file, its
resource text differs from its binary resource file. The resource text is what you type
to define a program’s resources. After typing that text, you compile it with RMaker,
a utility program on the Turbo disk. RMaker translates that resource text into the
binary resource file, the data that the Turbo compiler then combines with your
program.

Creating a Resource Text File

As you can see from Listing 4.2, this is not a Pascal program. In fact, it’s not
a program at all but a list of definitions. Even so, like all listings in this book, it
has line numbers and colons in the left column. They are purely for reference—
don’t type them.

Type in Listing 4.2 with the Turbo editor and save as APSHELL.R (the R stands
for Resource). Line 5 tells RMaker where to store the binary form of these resources
when it compiles the text. Change line 5 to use different volume and folder names.
Before typing, you might want to click off the Auto Indent option using Turbo’s
Options command from the Edit menu. This helps avoid accidentally typing spaces
in blank lines, a situation that often confuses RMaker. If, after typing the Listing,
you have trouble with RMaker, check for blank lines that aren’t really blank. It’s
fussy about such things.

After typing the listing, run RMaker with Turbo’s Transfer menu or with the

In Any Event = 157

@ File Transfer

Resource Compiler

& Shells.F
Programs

Figure 4.5 RMaker compiles a text file to produce a program’s binary resources. Shown
here is a copy of RMaker’s main display.

File menu’s Transfer command. Your display should resemble Figure 4.5. Select
APSHELL.R (the file name may or may not be visible) and click the Open button
to begin compiling. If your display does not resemble the figure, choose the File
menu’s Compile command, select APSHELL.R, and click Open.

While compiling, RMaker displays your text in the left half of its window and
reports three statistics in the right half, listing the data, map, and total sizes of the
finished resource file. When compiling the resource text examples in this book, if
you receive any errors, check that your typing exact/y matches the book. Unlike
Pascal, where you have some freedom in inserting blank lines and changing the
indentation, RMaker is unforgiving, unfriendly, and likely to reject any unplanned
modifications you make. Before changing details in resource text files, then, com-
pile them as listed here. Then make your changes. Be especially careful that blank
lines do not contain any spaces, which of course you cannot see on the screen. An
easy way to do this is to place the cursor to the far left on the first of a group of
blank lines, cut all those lines out of the text, and then press Return to add them
back. This ensures that blank lines are truly blank.

After compiling your resources, use RMaker’s Transfer menu to go back to
the Turbo editor. The result of compiling Listing 4.2 is a new file, APSHELL.RSRC
in the volume and folder that line 5 specifies. In this file are the binary forms of

158 == Programming with Macintosh Turbo Pascal

the same resources that Listing 4.2 describes. It is this binary data that Turbo com-
bines with your program to produce a finished application.

You now have two of the three parts that make up the complete application
shell. Continue to the next and final listing under the heading MacExtras Unit if
you want to type in the entire program before reading the play-by-play descriptions.

Listing 4.2. APSHELL.R

1: * *

2: * ApShell.PAS resources -- Compile with RMaker *

3: * *

4:

5: Programs:Shells.F:ApShell.RSRC ;; Send output to here

6:

7:

8: * *

9: * About box string list *

10: * . *

11:

12: TYPE STR# ;; String list resource
13: ,1 (32) ;:; ID and attribute (purgeable)
14: 6 ;; Number of strings that follow
15: ApShell ;: Program name

16: by Tom Swan ;; Author

17: Version 1.00 ;7 Version number

18: (C) 1987 by Swan Software ;; Copyright notice

19: P. O. Box 206, Lititz, PA 17543 ;; Address

20: (717)-627-1911 :: Telephone

21:

22:

23: * *

24: * The Apple Info menu *

25: * *

26:

27: TYPE MENU

28:)1 ;: Menu ID number to use in program
29: \14 ;; Bitten-apple graphics symbol

30: About ApShell... ;; The command as shown in menu

31: (- ;; Divider line between command and DAs
32:

33:

34: * *

35: * The File menu *

36: * *

37

38: TYPE MENU

39: .2 ;; Menu ID number to use in program
40: File ;: Menu title as shown in menu bar
41: New /N

42: (Close

43: (-

44: Quit /Q

45:

46:

47: * *

48: * The Edit menu *

In Any Event = 159

51: TYPE MENU
52: .3

53: Edit

54: (Undo /2
55: (-

56: (Cut /X
57: (Copy /C
58: (Paste /V
59: (Clear

62; * *
63: * Window template
64: * *

*

66: TYPE WIND

67: 1 (32) ;7 ID number and attribute (purgeable)

68: Untitled ;i Window title

69: 46 7 328 502 ;; top, left, bottom, right coordinates

70: Visible GoAway ;: Visible window with close button

71: 8 ;; Standard doc window with grow & zoom boxes
72: 0 ;; Window reference (none)

76: * END

ApShell Resource Play-by-Play

Resource text always begins with the file name to which you want RMaker to
compile the resources to disk. Line 5 places ApShell’s resources on disk volume
Programs in folder Shells.F in the file APSHELL.RSRC.

Following this required line, you can insert whatever resources you like. In my
own designs, I start with six strings, identifying the program name, version, author,
copyright notice, and other information. When the program displays its “About
program . . .” box, it displays these strings.

Lines 12-13 show how all resource definitions begin. First comes the word
TYPE followed by a 4-character string that identifies the resource variety. STR#
means string list. The Guide and Inside Macintosh list other resource types. (We'll
see many of them in future examples.) After specifying the resource type, line 13
lists its ID number, in this case a 1 preceded by a comma. The indentation makes
ID numbers stand out on the page but it’s not required. These numbers are the
same as the numbers programs use to locate resource definitions. They form a link
between the program and its resources.

All such ID numbers must be different for any one resource type. For exam-
ple, look at lines 27-28. This menu resource ID number (1) is the same as the string
list’s number in line 13. Because they are different resource types, they may have
the same numbers. But all Menu resources—as well as other categories—must have
different ID numbers within that category. You cannot have two menus or two win-
dows with the same ID.

160 == Programming with Macintosh Turbo Pascal

?eo\as a

|y
2
%
o

paf‘)a‘(ﬂa

i5°)
&
S
.
)

< 7
e 2
[

[]
2 e

B

(o}

(¢

Figure 4.6 Resource attribute bits have these meanings. The shaded cells are
not used.

After the ID is an optional decimal number in parentheses, the resource at-
tribute. Figure 4.6 describes what the bits in these numbers mean. The shaded cells
are reserved—don’t use them. Setting a bit to 1 activates that option. For example,
binary value 00100100, or $24 hex (36 decimal) represents the options “Purgeable,
Preload.” Although examples in this book do not use all possible attribute com-
binations, the following are brief descriptions of what the various settings offer.
The numbers in parentheses after the labels are the values to use with the ID number
in the resource text. Add these values together to combine attributes. (See Inside
Macintosh for more information.)

System heap (64). This loads the resource onto the system heap (1) or onto
the application heap (0), the normal and usually recommended setting.

Purgeable (32). This allows the memory manager to throw out memory that
resources occupy (1) anytime after loading the resource from disk. To pre-
vent this from happening, set bit 5 to 0. Use this setting only for resources
that the system copies before using, for example, strings. Others that might
be used directly (menu resources and some others) must never be purgeable.

Locked (16). Set bit 4 to lock the resource memory on the heap (1), preventing
the memory manager from moving it to make room for other objects. Use
this option only in rare circumstances. Normally, reset this bit (0) to let
the memory manager make efficient use of memory. Using this option
overrides the Purgeable setting because memory cannot be locked on the
heap and purgeable at the same time. (See Chapter 5 for more informa-
tion about the heap and Memory Manager.)

In Any Event = 161

Protected (8). This disallows (1) changes to the resource or enables (0) pro-
grams to make changes. Normally set it to zero. Because programs can
themselves change resource attributes, resetting the protected bit if they
want, this option cannot fully protect your resources from modification.

Preload (4). This immediately reads a resource into memory when opening
the resource file (1) or leaves the resource on disk only until the program
requires it (0). In Turbo Pascal, the resource file is open when the program
runs. Normally, this bit is zero except for error dialogs (see Chapter 6) that
display messages such as “Disk error,” which you might not be able to
read after such an error occurs. In that case, you can preload the message
into memory by setting attribute bit 2.

Write resource (2). This tells the system to write changed resources to disk (1),
usually when the program ends. Never directly set this bit—the toolbox
resource manager uses it in programs that change resources on the fly.

Notice that line 13 in Listing 4.2 specifies the string list to be purgeable. (32
is $20 in hex, the byte value with Figure 4.6’s Purgeable bit set to one.) This means
that after reading and displaying the strings, the memory space they occupy is
available for other uses. The next time the Resource Manager attempts to read this
same string list, it might find them gone and will have to reload them from disk.
In the meantime, though, if no other process used the memory the strings occupy,
the memory manager reuses the in-memory copy—it doesn’t automatically reload
from disk.

Lines 23-59 define menu titles and commands. These resources must not be
purgeable because the Menu Manager refers directly to their definitions in memory.
Lines 27-28 define the Apple menu, giving it ID number 1. Line 29’s cryptic \14
stands for the bitten-apple symbol, the Macintosh’s menu bar trademark in the
upper left corner. In other menus (see lines 40 and 53), you’ll usually type the full
menu title at this position.

After these three lines come the menu commands. In this first menu, there
is only one, About ApShell. The indentation makes the resource text more readable.
But if you prefer, type everything flush against the left border. Line 31 is a divider
line, which, although it takes up one menu position, is permanently inactive. The
dash (-) tells the Menu Manager to draw a line at this position. The preceding left
parenthesis tells it to disable this item. If you don’t include the parenthesis, the
divider line becomes an active menu command. Try this on a copy of AP-
SHELL.PAS and APSHELL.R. When you run the program, select the divider line
from the Apple menu. Obviously, this is a mistake.

The File and Edit menus follow a similar design. Notice that a few commands
such as Close and Cut have left parentheses, disabling these commands when the
program starts. Later, the program enables some commands at appropriate times
and disables others. The slashed character endings to some commands (/N and
/Q for example) specify equivalent Command keys. The Menu Manager ignores
case when you type these keys, but it’s traditional to enter them in uppercase.

162 == Programming with Macintosh Turbo Pascal

You don’t have to do anything special to enable command keys. ApShell
automatically handles them for you. If you want to type Command-P to print,
for example, just add /P after that menu command and ApShell does the rest. Be
careful not to duplicate Command keys in different menus, though. Unfortunate-
ly, RMaker is not smart enough to notice this error.

The final resource definition is a window template (66-72). It has type WIND,
ID number 1, and is purgeable. Remember that the resource is only a template.
The Window Manager creates the actual window record in memory from this
information—it doesn’t need it afterwards. If you didn’t make it purgeable, the
template would remain in memory even though the program might never need it
again, causing no harm but wasting space.

At line 68 is the window title, which programs can easily change as you’ll see
in future examples. Line 69 declares the top, left, bottom, and right coordinates
of where you want the window contents to appear. Remember that these coordinates
do not include the window’s borders or its title bar, features the Window Manager
adds when it creates and displays the window. If you want a window’s content area
exactly 150 pixels wide, for example, just make right-left equal to 150. Similarly,
if you want a 200-pixel tall window, make sure bottom-top equals 200. Remember-
ing this simple fact helps define windows exactly the size you want.

Line 70 of the window resource definition declares whether the window should
immediately become visible when the program creates it and whether it should have
a close or GoAway box in the upper left corner. Alternatively, you could specify
Invisible and NoGoAway. You normally make windows invisible if the program
relocates and resizes them immediately after reading the resource definition. To
display the window, the program would then call toolbox procedure ShowWindow.

Line 71 declares the window’s definition ID, a value that the Window Manager
uses to load various internal routines that take care of drawing window borders,
title bars, and other jobs. (Figure 5.7 in the next chapter lists other definition IDs
you can use to display a variety of window styles.) The value 8 here specifies a stan-
dard document window with a resize box (and scroll bar outlines) and a zoom box
in the upper right corner. If you don’t want a zoom box, use zero instead. In either
case, it won’t appear on 64K ROM Macintoshes.

The final line of the window resource definition (72) is a zero, the window
reference. Window records contain a 32-bit field into which you can store whatever
you like. Programs often use it to keep pointers to items (usually text) associated
with the window. (Chapter 5 explains how to do this.) Rather than keep track of
associated data by other means, which you certainly can do, this lets windows point
to their own data, simplifying the program. You can store any other 32-bit value
here—it doesn’t have to be a pointer variable.

The last line, 76, is not required. I add it here so you know this is the end of
the resource text. Notice that it begins with an asterisk (*), causing RMaker to ig-
nore everything afterward. Other comments begin with double semicolons (;;). Be
careful if you leave the comments out, by the way. Some resource types such as

In Any Event = 163

PAT and STR are three characters instead of four, the required length for all type
names. In that case, a line such as this: ‘

TYPE STR ;ithis is a comment

lets RMaker recognize STR as a four-character ID, because at least one blank space
follows the name (between STR and ;;). But, if you remove the comment and write:

TYPE STR

RMaker refuses to compile the resource text unless you explicitly type a blank space
after STR. Such idiosyncrasies have given resources a bad name and lead many
programmers not to use them. That’s unfortunate. Resources are vital to writing
good Macintosh software. They isolate strings for translating into other human
languages and they help the Memory Manager purge unneeded data from memory,
making room for other routines. They define templates for windows and dialogs,
reducing the amount of programming needed to create such items. It is true, though,
that RMaker is cranky, ornery, and difficult to use. If you receive errors, check every
character and be sure your file exactly matches the listings here.

MACEXTRAS UNIT

Listing 4.3 collects various constants, types, variables, procedures, and func-
tions that are unlikely to change from one program to another. By putting these
items into a unit—instead of putting them into APSHELL.PAS—you avoid recom-
piling these unchanging parts every time you compile a new program. To add the
common elements to programs, insert MacExtras into the USES clause as you do
for other units such as QuickDraw and Toollntf.

- Type in Listing 4.3 and save as MACEXTRAS.PAS. Change line 1 to use dif-
ferent volume and folder names.