

PROGRAMMING WITH

MACINTOSH TM

TURBO PASCAL

Tom Swan

John Wiley & Sons, Inc.

New York · Chichester · Brisbane · Toronto · Singapore

To Bill and Carmen
Never as near as friends should be

Turbo Pascal is a registered trademark of Borland International, Inc.
IBM is a registered trademark of International Business Machines, Inc.
CP/M is a trademark of Digital Research, Inc.
Apple, Macintosh, Mac, the Apple logo, the Macintosh logo, MacWrite, MacPaint,

and MacDraw are trademarks of Apple Computer, Inc.

Publisher: Stephen Kippur
Editor: Therese A. Zak
Managing Editor: Ruth Greif
Editing, Design & Production: G&H SOHO, Ltd.

This publication is designed to provide accurate and authoritative information
in regard to the subject matter covered. It is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other profes
sional service. If legal advice or other expert assistance is required, the services
of a competent professional person should be sought. FROM A DECLARA
TION OF PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE OF
THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF
PUBLISHERS.

Copyright © 1987 by Tom Swan

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted
by section 107 or 108 of the 1976 United States Copyright Act without the per
mission of the copyright owner is unlawful. Requests for permission or fur
ther information should be addressed to the Permission Department, John Wiley
& Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Swan, Tom.
Programming with Macintosh Turbo Pascal.

1. Macintosh (Computer)-Programming. 2. PASCAL
(Computer program language) 3. Turbo Pascal (Computer
program) I. Title.
QA76.8.M3S95 1987 005.265 87-18980
ISBN 0-471-62417-9

Printed in the United States of America

87 88 IO 9 8 7 6 5 4 3 2 I

Preface

Good tools simplify complex tasks. Good software tools help you write pro
grams the way saber saws help carpenters build houses. You wouldn't expect
carpenters to build their own saws and hammers. And you shouldn't have to spend
months constructing your own software tools merely to add features that every well
designed Macintosh program must have.

You probably know that the Macintosh comes with a programmer's toolbox,
which controls just about everything the computer does. The Turbo Pascal soft
ware tools in this book enhance the toolbox by adding new commands to Pascal
in the form of library units, which you compile ahead of time and store on disk
until you need them.

Chapters list the complete source code for several units. They also include de
tailed technical descriptions, instructions, and many programming examples. In
here you'll find tools for building program shells, operating the mouse, using
QuickDraw graphics, creating windows, designing dialog boxes, reading and writing
disk files, transferring among applications, and clicking and dragging icons. By
using these and other tools and by following the examples, you'll master the dif
ficult art of programming the Macintosh in Turbo Pascal. You'll also find clear
instructions and hints about managing memory, a controversial topic and a
recognized breeding ground for program bugs.

You're ready to use these tools if you have any size Macintosh, your Turbo Pascal
disks, and a fundamental knowledge of Pascal programming. You don't have to
be an expert, full-time programmer to understand this material, but you should
have read one or more language tutorials-or have completed a Pascal introduc
tory course-and be able to write, compile, and run at least a small program of
about 200 lines or so.

Who are you? You might be a student interested in a programming career. You
might be a professional programmer with deadlines fast approaching and plenty
of IBM PC or other computing experience but only a smattering of knowledge
about the Mac. You might own or work for a business that needs special software
but you're reluctant to gamble time and money on a custom program. You've heard

iii

iv == Programming with Macintosh Turbo Pascal

all the horror stories and you know that to do the job right, you have to do it
yourself. Or you might be a serious hobbyist with more than a casual interest in
programming. If you're any of these, you'll find many uses for my software tools.

I wrote the tools in this book out of necessity. When I needed a hammer, I
made one. And then I used hammer to build saw, and saw to build plane, and so
on, until I had a kit full of Turbo Pascal tools for building Macintosh software.
It is my sincere wish that you get as much out of them as I have.

I am grateful for the contributions of many people including Teri Zak, Heather
Goguen, Ruth Greif, and Claire McKean. Joe Schrader carefully critiqued the en
tire manuscript and made many fine suggestions. My wife and assistant, Anne Swan,
helped in ways too numerous to list. I am also thankful for the professional care
and expertise from everyone at John Wiley & Sons, Inc. and associates.

Tom Swan

Note to the Reader

Just before this book was printed, Apple Computer announced new system
software with features to take advantage of its SE and Macintosh II computers.
Although most changes have no effect on the programs in this book, a few icon
symbols are different and no longer match those in Chapter 6 and elsewhere. For
example, the caution, note, and stop alert symbols (see Figure 6.7 on page 260)
have the new designs shown in the table here. The toolbox functions in the center
of the table produce the symbols on the right for System versions 4.1 and later;
they produce the symbols on the left for earlier releases.

Original Toolbox New
icon function icon

[IiJ CautionAlert ~

rs NoteAlert [E .

[ID Stop Alert

v

Contents

one Introducing Turbo Pascal 1

How to Get the Most from This Book 1

Programming by Example 2
Someone's in the Kitchen with Turbo 3
About Debuggers 4

Using Turbo with Single-Sided Drives 6
Setting Up a Program Disk 6
Starting Turbo Pascal 7

Compiling to Disk 9

Turbo's Menus 11
The Apple Menu 11
The File Menu 12
The Edit Menu 13
The Search Menu 15
The Format Menu 16
The Font Menu 17

The Compile Menu 18
The Transfer Menu 20

two Textbook Programs and Dumb Terminals 21

Line Numbers 21
zyping and Compiling Number 22
Number Play-by-Play 26

vii

viii == Programming with Macintosh Turbo Pascal

Tabbing in Text 31
TABS.INC Play-by-Play 34

Removing Tabs from Text 35
DeTab Play-by-Play 38

Adding Tabs to Text 38
ReTab Play-by-Play 41

Converting IBM PC Programs to Macintosh 41
IBM PC Identifiers Changed or Deleted 42
New Macintosh Identifiers Not in IBM PC

Turbo Pascal 51

three Turtle Graphics vs. QuickDraw 55

Turtle Graphics 57

A Star Is Born 57
Star Play-by-Play 59

The Twirling Turtle 60
Twirl Play-by-Play 62

QuickDraw Graphics 64
Above the Coordinate Plane 64
Points and Rectangles 67

A Graphics Shell 70
GraphShell Play-by-Play 72
Saving Graphics in MacPaint Files 77

Pens and Lines 77

Drawing Text 82
Chars Play-by-Play 86

Using Rectangles 88

Drawing Curved Shapes 90

Drawing Modes 92

Bit Maps 95

Regions 97
Regions Play-by-Play 99

Contents == ix

Using screenBits 100
Animate Play-by-Play 104

Fractals 110
Fractal Play-by-Play 116

four In Any Event 121

The Parts of an Application 122
Global Declarations 122
Program Actions 123
Display Handlers 123
Event Handlers 124
Initializations 126
Program Engine 126

Developing an Application-ApShell 128
ApShell Play-by-Play 136
ApShell Global Declarations (26-50) 138
ApShell Program Actions (54-175) 140
ApShell Display Handlers (179-216) 144
ApShell Event Handlers (220-339) 145
ApShell Initializations (343-393) 153
ApShell Program Engine (397-456) 154

ApShell Resources 156
Creating a Resource Text File 156
ApShell Resource Play-by-Play 159

MacExtras Unit 163
MacExtras Play-by-Play 170

five Windows, Text, and Scroll Bars 181

Heaps Are for Keeps 181
All About Handles 183
Molding Your Own Handles 190
Disposing Handles 194

Multiple Windows 194
MultiWind Play-by-Play 200

X = Programming with Macintosh Turbo Pascal

six

Text in Windows
MacStat Play-by-Play

Picture Windows
Picture Play-by-Play

Text and Scroll Bars
Reader Play-by-Play
TextUnit Play-by-Play

Computer Conversations

Standard File Dialogs
SF Play-by-Play

Dialog Item Lists
Buttons Play-by-Play

Dialogs in Memory

Alerts
Quit Play-by-Play

Radio Buttons
Radio Play-by-Play

Simple Data Entry
Entry Play-by-Play

Check Boxes
Options Play-by-Play
Using Options in Programs

Error Messages
ErrorUnit Play-by-Play

Testing Error Messages
Erffest Play-by-Play

Data Entry Forms
DataEntry Play-by-Play

Dialog Tools
DialogUnit Play-by-Play

203
209

211
216

217
234
236

245

246
250

252
256

259

259
264

265
271

272
277

279
283
284

285
288

290
294

295
316

324
328

seven Units as Software Tools

Developing a Software Library
Installing Units in the Compiler
The UnitMover Information Window

Transfer Tools
Transfer Play-by-Play

Let's Do Launch
Launcher Play-by-Play

Icon Tools
IconUnit Play-by-Play

Clicking and Dragging Icons
IconTest Play-by-Play

Printing Tools
ImageUnit Play-by-Play
Using ImageUnit Tools

Putting Your Tools to Work
MacLister Play-by-Play

Bibliography

Software
Books

Index

Contents ==: xi

333

333
334
335

336
338

340
343

344
349

353
360

361
369
374

375
392

395

395
395

397

one

Introducing Turbo Pascal

In this book, I describe methods for writing Macintosh computer programs
in Turbo Pascal. I explain tricks and techniques for using disk files, opening win
dows, designing dialogs, displaying icons, and driving printers. I include many soft
ware tools that you can pull out and use in your own projects. And I fully explain
every statement in each listing so that you know exactly why-as well as how-the
programs do what they do.

Reading the book, you'll start at the simplest level, typing in examples that
run in Turbo's textbook environment, which does not have the familiar pull-down
menus and windows, and which does not let you operate desk accessories while
your programs run. Although that may seem contrary to what you've come to ex
pect from Macintosh software, textbook programs are easy to write and often equal
ly simple to use. They may not win any Macintosh design awards, but they come
in handy when all you need is a "quick and dirty" utility. And they're ideal for
short tests and simple experiments that help you to choose one programming
method over another.

But my main goal in writing this book is to explain how to write fully charged
Macintosh programs, ones that use all the features of the standard interface
what you see on screen in response to the things you tell the computer to do. Turbo
Pascal shines by letting you write both simple textbook examples as well as these
more sophisticated programs-without requiring you to change disks or to men
tally switch gears. As you will learn, this is a language that lets you putter around
one day but get down to serious play the next.

HOW TO GET THE MOST FROM THIS BOOK

This is a hands-on book and, to get the most from it, you'll need to get your
hands a little dirty. Do type in the programs and make them run. Do modify them
according to the suggestions I'll make from time to time. Do experiment. Even if
all you do is type in the listings, at the very least you'll add several new programs

1

2 == Programming with Macintosh Turbo Pascal

to your software library. And at best, you'll acquire many useful tools along with
the knowledge that will help you to write your own projects. (If you would rather
not type in listings, you can order them on disk by sending in the form at the back
of the book.)

While that describes what this book is, you should know that it also is not
two things. It is not a complete reference to the Macintosh toolbox, the software
routines and data structures that give this computer its unique personality. And
it is not a Pascal tutorial. Other books cover these subjects and I avoid duplicating
their contents here. (See the Bibliography on page 395.) You don't have to purchase
other books in order to use this one but you might want to pick up at least the
first volume of the Inside Macintosh series-the Macintosh programmer's bible.
Of course, you'll also need your Turbo Pascal Users Guide and Reference Manual,
which I'll call the Guide from now on.

By the way, the programming in Inside Macintosh is almost entirely in Pascal
in a dialect that, except for minor details, Turbo Pascal follows exactly. If you have
any doubts about Pascal being a good choice of Macintosh programming languages,
consider that Apple Computer employees featured Pascal in Inside Macintosh.
What could be more reassuring than this direct endorsement?

PROGRAMMING BY EXAMPLE

If you haven't already read through Inside Macintosh, don't do so now. Even
that well-written reference makes boring reading material-whether or not you enjoy
paging through technical manuals as much as I do. Of course, Inside Macintosh
and the Guide contain important information and you should read them. Rather
than spending your time buried in references, though, a better plan is to read each
of the following chapters, type in the examples, run the programs, and then turn
to the references for more information about those subjects you don't fully
understand.

By following this approach: typing examples, running programs, and reading
the descriptions of how they work-and then digging into the references for more
details-you'll avoid making the common mistake of trying to memorize all 1,586
pages of the four Inside Macintosh volumes before even writing your first program.

The truth is, it's simply unreasonable to expect to learn how to program the
Macintosh by reading only technical references. You can no more accomplish your
goal that way than you could learn how to cook haute cuisine by reading only nutri
tional guides and cookstove repair manuals. Everyone knows that one of the best
ways to learn how to cook is to follow recipes and prepare dinners for guinea pig
friends and family. You can follow the same approach to learn more easily how
to cook up computer programs, too.

If anything, then, this is a book of recipes with ingredients for writing com
puter software-with special emphasis on preparing dishes in Macintosh Turbo
Pascal. As the author of these recipes, I'm aware that, like your taste in food, your

Introducing Turbo Pascal = 3

taste in software might not be the same as mine. But that's unimportant. My goal
is not to convince you that my programs represent ideal designs but, rather, to help
you acquire the ability to season your own efforts. Of course, before learning how
much salt and pepper to throw in, you should know your way around the kitchen.
So put on your chef's cap and let's begin.

Someone's in the Kitchen with Turbo

If you have at least 512K memory and two double-sided disk drives or, even
better, a hard disk, you'll have no trouble compiling and running the programs in
this book. To help you set up your own work disks, Figure 1.1 shows the directory
of my Turbo Pascal boot disk running on a Macintosh Plus with two SOOK drives.
On my disk, the System Folder contains the System, Finder, and ImageWriter files
a bare bones configuration that leaves the most room for storing programs. On
your boot disk in your System Folder, you might have additional files that your
printer, network, or desk accessories require.

Along the top row of Figure 1.1, in addition to the System Folder, are two files,
RMaker and Turbo. Of course, Turbo is the Turbo Pascal editor and compiler.
RMaker is a resource compiler. It reads a text file and, much in the same way the
Turbo compiler reads and compiles a Pascal program, translates resources into a
binary form that programs can use.

All of the fully charged examples in this book include their resources in text

D Turbo Pascal BJ
7 items 651K in disk 123K available

CJ ~ !§ lQ

Sy stem Folder RMaker Turbo

·~ b .. ~ .. D .
UnitMover ResEdit TMON User Area

~
IQ.I ~ '2J
Figure 1.1 I organize my boot disk this way. To type in and run the
examples in this book, you need only the three files on the top row
of icons. The files on the bottom are optional though useful utilities.

4 55 Programming with Macintosh Turbo Pascal

form. After typing them in, you compile them with RMaker to produce a binary
file which Turbo then combines with your program to produce a finished result.

The bottom row of icons in Figure 1.1 are utility programs that make program
ming easier-at least that's what they intend to do. These "kitchen helpers" are
optional and you can remove them if you need more room on disk. UnitMover,
included on the Turbo Pascal disk, operates on precompiled units, which contain
common routines and data that you want various programs to share. It lets you
directly install units in the Turbo compiler to customize the way it works. By doing
that, you reduce the number of separate files the compiler accesses while it does
its work. You can also use UnitMover to remove units from the compiler.

The three other files along the bottom row do not come with your Turbo disks.
You don't need any of them to type in and run the programs in this book, but I
include them here because I've found them to be useful utilities. You might want
to add them to your system someday. ResEdit is Apple Computer's resource editor
program. It helps you design various resources such as dialog boxes, scroll bar con
trols, radio buttons, windows, and other Macintosh features. TMON (The Monitor)
and its associated User Area file is a debugger-a program that sits in memory
looking over your program's shoulder while it runs.

About Debuggers

Debuggers like TMON let you peer into memory to look at the actual byte
values that make up your program's code and data. Most debuggers have a variety
of commands to trace your program's instructions in hopes of finding errors.
Although many programmers swear by their debuggers, it's wise not to rely too
heavily on them every time something goes wrong. There are other techniques you
should try first before looking into memory and attempting to puzzle out why
runaway software ran away. You'll learn many such techniques as you read this book.

One such debugger, MacsBug, is in the Misc folder on your original Turbo
Pascal disk. It operates similarly to TMON but with considerably less aplomb.
MacsBug has no windows-just a "dumb terminal" display that scrolls up when
you type. It works well enough, though, to solve many problems and the price cer
tainly is fair. (It comes free of charge on your Turbo disk.) To install it, just drag
the MacsBug file into your System folder and reboot. You should see the message
"MacsBug installed" below the familiar "Welcome to Macintosh" startup message.

Whichever debugger you decide to use, you activate it by pressing the excep
tion button on the rear left side of the Macintosh case. This is the button nearest
the back edge of the computer. (The Macintosh's 68000 microprocessor handles
unusual conditions by a method it calls exception processing. In general, this pro
cess lets you interrupt a program's normal flow, go do something else, and then
return to the original program-exactly what happens when you interrupt your pro
gram to use the debugger.)

Introducing Turbo Pascal == 5

Pressing the second button, the one closest to you, reboots the Macintosh
the same as turning off the power and then turning it back on. If there are no but
tons on your case, you need to install them. Look in your original packing materials
for a light gray plastic piece with long fingers. Your Macintosh manual tells you
how to install it into the bottom vents on the rear left side.

If you don't install a debugger, pressing the exception button on a Macintosh
Plus runs a ROM debugger that displays a small window and an angle bracket
prompt (>). The program can't do very much and you should probably use TMON
or MacsBug instead. If you accidentally trigger the ROM debugger, though, type
G to return to your program. If that doesn't work, try SM 0 A9F4 followed by
G 0, which sets up a command to exit to the shell-usually running the Finder.

Obviously, pressing either of the two debugging switches at the wrong time
can have serious consequences. Pressing the reboot button without first saving your
typing throws away changes since the last time you saved your file to disk. Press
ing the exception button is somewhat less dangerous. This button activates the
debugger-TMON, MacsBug, or another brand. After pressing the button, you
can usually return to your program without missing a beat. Type EA (Exit to Ap
plication) and press RETURN to leave MacsBug, or click TMON's exit command.
Beware, though, that you might not be able to revive a badly damaged program.
In that case you'd have to reboot, losing any changes you forgot to save before ac
tivating the debugger.

If you have trouble exiting from TMON when compiling and running programs
directly from Turbo, select the debugger's user menu and page to the Launch com
mand. Choose the option that launches (runs) the Finder. This works because of
the way the compiler fools running programs into thinking that Turbo is actually
the desktop Finder. If this method fails, follow these steps instead:

• Click open the Dump window. Type "ResumeProc" with the quotes after
the message, DUMP FROM.

• Note the first four bytes displayed in the window.

• Click open the Regs (Registers) window. Type the four bytes from the dump
window as the new PC (program counter). You do not have to type the first
two bytes if they are zero.

• Click Exit to return to your program.

A different sort of debugger, HeapShow, graphically illustrates memory in a
way that lets you see large amounts of the Macintosh's innards on screen-up to
four megabytes at one glance! Unlike most debuggers, HeapShow installs and runs
as a desk accessory. You install it in your System file with Font/DA Mover and
then choose it from the Apple pull-down menu. You can even run it alongside your
program to see the effects of opening dialog windows and choosing program
commands.

6 == Programming with Macintosh Turbo Pascal

See the Bibliography for addresses where you can write for information about
these debuggers and programming utilities.

Using Turbo with Single-Sided Drives

You can use Turbo Pascal with two single-sided, 400K disk drives. In that case,
your boot disk should have only the files on the top row of Figure I.I. A good
idea is to make up separate disks with UnitMover, ResEdit, and other utilities.
Reboot with those disks when you need to work on resources or debug a renegade
procedure.

If you have the TMON debugger, you could prepare a boot disk to load the
program, and after booting, replace it with your Turbo Pascal compiler disk. You
don't need the debugger disk files after loading the debugger into memory-it stays
there until you reboot.

Macintosh owners with only one single-sided drive will have trouble compil
ing larger programs. If you have this setup, make sure your System Folder con
tains only the Finder, System, and ImageWriter files. Use the utility Font/DA Mover,
which you received with your Turbo disk, to remove extra desk accessories and text
fonts. These take up space and you don't need them to compile programs. You need
only the bare bones System Folder and the Turbo file. (Font/DA Mover prevents
you from removing the fonts and single desk accessory required for normal opera
tion.) Make up other disks with RMaker, UnitMover, and other utilities. With this
setup, you'll be swapping disks in and out to compile and run programs.

Another possibility for single-drive owners is to purchase a RAM disk pro
gram, which lets you simulate a second disk drive in memory. Place your Turbo
file on this RAM drive and boot to a disk with nothing more than a System Folder.
This will give you enough room to save and run most programs.

Setting Up a Program Disk

Many of the programs in this book expect to find certain files in named folders
and volumes. You can change these requirements without doing any harm, but you'll
have to watch for specific references in the listings. In all cases, such references are
compiler directives (commands to the Turbo compiler) that look like the following
and usually appear early in the program:

{$0Programs:Shells.F:}

To avoid making changes to the listings, format a blank disk and give it the
volume name Programs. When you see a name such as Shells.Fin the listings you
know by the .Fending that it refers to a folder. Create this folder with the Finder's

Introducing .Turbo Pascal == 7

New Folder command, click its icon, type the folder name, and save your typing
under the file names suggested in the chapter notes. All of this is optional. If you
want to use a different setup, go ahead.

Starting Turbo Pascal

Double-click the Turbo icon to start the Turbo Pascal editor. In a moment,
you'll see Turbo's menu commands in the menu bar on the top line and, in the center
of the screen, an untitled, blank window with a flashing vertical bar cursor in the
upper left corner (Figure 1.2).

You probably need no instructions about pulling down menus, choosing com
mands, typing, selecting, cutting, and pasting text. Most of you already know how
to work the scroll bars and save files to disk. Neophytes who just unpacked their
Macs might want to spend about an hour each with those classic programs Mac
Paint and MacWrite and then come back to Turbo Pascal. It won't take you long
to become a Macintosh expert. Easy-to-learn is not just a sales pitch but a prime
feature of this remarkable computer.

Typing and running programs in Turbo Pascal could not be simpler. But don't

s File Edit Search Format Font Compile Transfer

D
I

Untitled

Figure 1.2 When starting a new program, the Turbo Editor gives you a blank win
dow in which to type. At most , you can have eight windows open at one time.

J

8 == Programming with Macintosh Turbo Pascal

PROGRAM Nums;

VAR

n : INTEGER;

BEGIN
Writeln;

Listing 1.1. NUMS.PAS

Writeln('A few numbers ... ');
Writeln;
FOR n := 1 TO 10 DO

Writeln(n : 8);
END.

take my word for it. Prove it to yourself by typing Listing I.I. Use the tab and
backspace keys to line up columns and don't worry if your alignment isn't exactly
as the listing shows.

When you're done, choose the Save As command from the File menu, and
type NUMS.PAS to save your program text on disk. (The file name ending, .PAS,
is merely traditional. You can name your programs anything you want but ending
your Pascal source text files in .PAS tells you in a glance that this is a program
listing and not something else.) After naming your text file with the Save As com
mand, choose Save to save any changes you make. Or, choose Save As again and
type a different name if you want to preserve a previously saved version. Some pro
grammers keep all their revisions in files such as MyProg.001, MyProg.002,
MyProg.003, and so on. If you do this, you can always go back to previous ver
sions in case you find later that a change led you down a blind alley and you want
to back out to the street and try another route. Of course, this also takes more disk
space.

After saving your program text, choose the Run command from the Compile
menu. What happened? You should have seen a brief display of numbers and then
the Turbo screen again. This demonstrates a problem when writing textbook style
programs such as this simple example. To make the program pause while you look
at its results, insert the statements:

Writeln;
Write('Press Return •.. ');
ReadLn;

just above END. Then run the program again. This time, when it gets to ReadLn,
it waits for you to press the Return key. Then it goes back to the Turbo Editor. Keep
this trick in mind when typing examples from a Pascal tutorial such as my book,
Mastering Turbo Pascal. If your programs end before you're ready, insert the above
statements to make them pause before returning to the editor.

Introducing Turbo Pascal == 9

Compiling to Disk

What you just did is to compile a Pascal program in source code form
meaning text-to binary code, or machine language. When you do this with Tur
bo's Run command, your program operates in a sort of piggy-back fashion on top
of Turbo Pascal, which remains in memory along with the program code and text.

Another way to compile and run programs is to choose the Compile menu's
To Disk command. This compiles programs into binary code the same way the Run
command does but stores the result on disk as an application-a program that you
run directly from the Finder. On disk, the name of your program is the same as
the name you use after the PROGRAM identifier, in this example, Nums. To change
the name of your program's code disk file, insert an Output compiler option as
the first line in your program. The option has the form:

{$0 fi LeName}

Replace fileName with the name you want the compiler to use. You can also
specify volume names and folders by putting them in front of the name and
separating the parts with colons. If you have the disk volume My Disk and a folder
Programs, save the Nums application code in that folder by writing this as the first
line:

{$0 MyDisk:Programs:Nums}

If you leave out Nums and just end the file specification with a colon, the out
put goes to the volume and folder you specify, but it has the same name as the
identifier after PROGRAM, just as it does when you don't use an Output com
piler option. This is the method many examples in this book use to send their code
to specific folders on disk.

are:
When compiling to disk code files, there are two ways to run a program. These

• Quit Turbo and double-click the application icon.
Choose the File menu's Transfer command and select your program (or any
other application).

When you transfer to another application, Turbo does not stay in memory.
After you quit your program, you return to the Finder and must restart Turbo Pascal
to compile another program. Of course, your program may have its own Transfer
command, in which case you could transfer back again to Turbo. (Chapter 7 ex
plains how to add a Transfer command to your own projects.)

Figure 1.3 shows the relationship among the Finder, Turbo Pascal, and your
program. The shaded lines enclose items in memory depending on the compiling
method you use. The arrows show the order in which you use the items. For exam-

10 = Programming with Macintosh Turbo Pascal

Program Text

R
- Turbo u -Finder Code -.. Pascal N in -. Memory

4~
...___

Compile to Disk

,,
Code -.. in

Memory

I

..... -
Figure 1.3 There are two ways to run Pascal programs in Turbo: directly from the
editor or from the Finder. The first method takes more space because your program
text, the compiler, and your code exist in memory together. The second method
opens more memory to your program, which no longer has to share space with other
items.

pie, from the Finder, you can run a code file-an application-or you can run Turbo,
which can run code two different ways. As you can see when you compile to
memory, Turbo Pascal and your program's source text and binary code are all in
RAM at the same time. When you compile to disk, only your program code is in
memory.

Because the editor lets you open eight windows, you can have up to that many
programs in memory and switch among them simply by bringing a window to the
front and choosing the Run command. But remember that this might cause you
to run out of RAM-especially if you have a smaller Macintosh or if you have
large debuggers and RAM disks, which occupy even more memory space. For that
reason, it's probably best, at least for the examples in this book, to work on one
program at a time. Turbo's in-memory compiling ability is extremely useful but you
must remember that it cannot work under all possible conditions.

Introducing Turbo Pascal = 11

TURBO'S MENUS

The Turbo system has eight pull-down rµenus. This section gives brief descrip
tions of what every command does. Figures 1.4 through 1.13 illustrate each menu,
adding brief descriptions to the right of the commands. Of course, the Guide details
every Turbo feature and command. Rather than duplicate this information here,
the following notes suggest several hints that you might not pick up on your own.

The Apple Menu

The only command here that belongs to Turbo Pascal is the first, About Tur
bo. When you choose it, you see Borland lnternational's commercial message. (In
later chapters, I'll show you how to add similar commercials to your own programs.)

The other commands in the Apple menu are desk accessories, some of which
come on your Turbo disk. The Alarm Clock, Control Panel, Key Caps, and Note
Pad are probably old friends. Even if you've been using your Macintosh for a brief
time, these standard accessories need little introduction.

But the reason I list this menu here is to point out the HeapShow and miniDos
accessories, which do not come with Turbo Pascal. I mentioned HeapShow
earlier-it's the debugger that displays large amounts of memory. There are two
versions, one loading into the system heap (HeapShowS) and the other into the
application heap (HeapShowA). (If you don't know what the heap is, you'll learn
more about it in future chapters.) Although you can use either version, HeapShowA
is probably best. It displays the memory area containing your program's data struc
tures along with its code if you run it from disk.

The miniDos accessory is a public domain program, available through most
user groups. (If you can't find this program, try looking through magazines for

About Turbo... - Display commercial message

Alarm C:lock
Control Panel
HeapShowA
HeapShows
Key C:aps
miniDos
Note Pad _______ ..

- Standard desk accessory
- Standard desk accessory
- Debugger in application heap
- Debugger in system heap
- Keyboard characters
- Public domain disk file utility
- Standard desk accessory

Figure 1.4 Turbo's Apple menu.

12 == Programming with Macintosh Turbo Pascal

sources that distribute public domain software.) Once you use a utility like miniDos,
you won't want to give it up. It adds renaming, deleting, and other disk file com
mands to programs such as Turbo Pascal that don't have these abilities. If I knew
the author of this program, I'd certainly give credit here. It's a valuable program.

The File Menu

The File menu's New command (Figure 1.5) opens an untitled window-use
Save As to give it a name. Open reads an existing text file, ready to compile or edit.
Close removes a window from the screen. If you made changes, it asks whether
you want to save your file to disk. Save writes your file to disk using the name you
last supplied to Open or to Save As. If you didn't specify a name, Save asks you
to supply one. All of these commands operate similarly in many other Macintosh
programs.

Not so familiar is the Open Selection command. To use it, select a file name
by clicking and dragging the mouse over the characters in the active window. Or
double-click the mouse to select an entire word. For example, if you have the com
piler Include directives,

{$1 MyProg1 }
{$I MyProg2}
{$I MyP rog3 }

New
Open •.•
Open Selection
Close
Saue
Saue Rs ...

Page Setup ...
Print ...

Edit Transfer ...
Saue Defaults

Transfer ...
Quit

XN - Open new window (up to 8)
XO - Open eHisting teHt file
XP - Open file name selected in teHt
X. - Close actiue window
XS - Saue changes to disk

- Name a file before sauing

- Prepare printer options
- Print teHt in actiue window

- Edit entries in the transfer menu
- Saue Turbo options

XT - Transfer to another application
XQ - Quit Turbo and return to Finder

--~~~~~~~~---

Figure 1.5 Turbo's File menu.

Introducing Turbo Pascal = 13

you can double-click on My Progl, 2, or 3, and then choose Open Selection to read
that file from disk into a new window. This is handy when your program is in
separate files and you want the compiler to include those pieces as though they
were one. (That's what the Include directive does-it loads a separate text file as
if that text were in the main file at that position.) Using the Open Selection com
mand is easier than opening separate files one-by-one.

Page Setup and Print are standard commands to configure your printer and
print text from the active window. Before printing Pascal listings, though, you might
want to wait until you type in MacLister in Chapter 7. The program uses the Im
ageWriter printer's native text mode, which is faster than Turbo's standard print
ing ability.

The Edit Transfer command lets you add or subtract the names that appear
in the Transfer menu (see Figure 1.13 on page 20). By installing application names
in this menu, you can transfer to them by choosing their names from this menu.
This is particularly useful when switching among various utility programs such
as ResEdit and RMaker. You can also compile your program to disk, insert its name
into the Transfer menu, and select it just as you do other commands.

Save Defaults writes to disk changes you make to the Turbo Editor. It saves
the names you type with the Edit Transfer command plus the contents of the two
Options dialogs from the Edit and Compile menus. After setting the options the
way you want them and choosing Save Defaults, Turbo uses those same selections
the next time you start it from the Finder.

The Transfer command brings up a standard file dialog, from which you select
the name of another application you want to run. It does the same thing as typing
an application name with Edit Transfer and then using the Transfer menu to run
that program. If you transfer to the same program many times, it's probably best
to install its name in the Transfer menu rather than use the Transfer command,
which simply takes more steps. Quit-of course-quits Turbo and returns to the
Finder.

The Edit Menu

Undo, Cut, Copy, Paste, and Clear (Figure 1.6) undoubtedly hold no mysteries
for most Macintosh owners. Undo is reasonably smart and usually can reconstruct
an entire line after you've made changes to it. But if you make changes to one line
and then use the mouse to position the cursor elsewhere, you might lose the ability
to undo what you previously could have undone.

Shift Left and Shift Right are two commands that ought to be required by law
in other Pascal program editors. (They're easiest to use by typing the command
and left or right square bracket keys-I rarely choose them from the menu.) To·
shift lines, select them by clicking and dragging the mouse. Be careful to select on
ly entire lines-the commands do not work if you select only a partial line. (If you
do it correctly, your selected text appears as a perfectly rectangular dark block with

14 == Programming with Macintosh Turbo Pascal

Undo

Cut
Copy
Paste
Clear

XZ - Undo most recent editing chonge

XH - Cut selected teHt
XC - Copy selected teHt
XU - Paste cut or copied teHt at cursor

- Erase teHt (can't loter be posted)

Shift Left X[- Shift selected lines left
Shift Right X] - Shift selected lines right

- Change editing options
.__~~~~~~~~

Options ...

Figure 1.6 Turbo's Edit menu.

no over- or underhangs.) After selecting the text you want to move, shift the lines
left or right, moving one character position for every keypress. This is most handy
for Pascal listings where you frequently change indentations to show nesting levels
in WHILE loops and in other situations.

The Edit menu Options command brings up the dialog in Figure 1.7. It lets
you change the tab width and tell Turbo if you want it to automatically indent lines
and whether or not to start with a blank, untitled window. (There's another Op
tions command in the Compile menu-don't let it confuse you.) I set tab widths
to 3 and you should do the same if you want your listings to look like the examples
in this book. But you are free to use any setting you want-it doesn't affect the
way programs run.

Switch on Auto Indent if, after pressing Return, you want Turbo to place the
cursor directly below the first non-blank character in the line above. (It's normally
on.) The advantage when typing Pascal listings is that you don't have to tab to the
beginning of each new line in order to maintain indentation levels. The disadvan-

Tab width: l••I 181 Auto Indent
D Startup Window

OK (Cancel)

Figure 1.7 Turbo's Edit menu Options command displays this
dialog window.

Introducing Turbo Pascal == 15

tage is that you have to press the backspace key or use the mouse to move the cur
sor to the left. Try both settings to see which you prefer. (I keep it on.)

Switch the Startup Window option off and Turbo will not automatically open
a new window every time you start it. This is the setting I use. It avoids having to
close the untitled window every time I start Turbo simply to edit another file. (This
is a good option to consider for your own programs. How many times have you
started MacWrite or MacPaint only to have to close its window in order to load
a different file?)

Remember to choose the Save Defaults command from the File menu to save
your options. That way, Turbo remembers your settings for the next time.

The Search Menu

The menu in Figure 1.8 may be somewhat misnamed-only the first three com
mands do any searching. Find lets you search for text fragments. After you choose
it, a dialog window appears (not shown here). Type the string you want to find
and click OK to begin searching from the current cursor position down towards
the end of your text.

If you want to find only whole words-surrounded by blanks or punctuation
click that option. This is helpful when you have a lot of words such as ScrnDump
and ClearScrn and you want to find Scrn all by itself. Click the Case Sensitive button
to find only exact upper- and lowercase spellings of words. With this button off,
While, while, and WHILE are no different to the search operation.

One trick to remember is that you can double-click any word in your text and
then choose the Find command. Doing that automatically loads the selected word
as the next search fragment.

Find Next is the same as Find but repeats the same search without making
you type the fragment again. Get in the habit of typing Command-D to locate the
next occurrence of words.

Choose Change when you want to replace one word with another. (You can

Find •••
Find NeHt
Change .•.

HF - Find teHt fragment
HD - Find same teHt fragment
HR - Find fragment(s) and change

Home Cursor HH - Moue cursor to top of window

Window HW - Switch to another window

Figure 1.8 Turbo's Search menu.

16 :::;;:;:: Programming with Macintosh Turbo Pascal

double-click the search fragment just as you did with the Find command.) Press
the Tab key to advance to the line that says Change To: and type whatever new
text you want. If Turbo finds at least one of your search fragments, it asks you
for permission to change it (click Yes or No), whether you want to replace all such
fragments without being asked for permission from now on (click All), or if you
want to stop searching now (click Cancel).

Type Command-H to home the cursor-meaning to send it to the top left cor
ner of the active window. This also redisplays text from the first line. Before using
the Find and Change commands, first remember to home the cursor. Searching
always proceeds from the cursor down toward the end of the text-despite what
portion of text you see in the window. If the cursor is at the end of your document
and you try to Find something, you probably will hear a beep, indicating that Tur
bo didn't find your search fragment. This can be confusing if you are viewing your
text from the top but you left the cursor at the bottom. Remember to home the
cursor and you won't have that problem. (Sometimes you may want to search from,
say, the middle of your text and ignore words above the cursor. In that case, don't
home the cursor before starting a search.)

The final command in the Search menu, Window, rapidly changes from one
window to another. When you have several windows open at the same time, it's
easier to type Command-W than it is to drag windows aside and click inside their
borders to activate the window you want. The disadvantage of the Window com
mand is it doesn't let you choose which window you want to see next-it just cycles
through them all. It works fast enough, though, that this is more of a minor an
noyance than a major problem.

The Format Menu

The upper part of the Format menu (Figure 1.9) affects windows; the lower
part affects text inside windows. When you have more than one window open, you
can Stack them on top of each other like shingles on a roof. Or you can Tile them,
placing each window in its own area on the screen. With tiling, the more windows
you have, the smaller each becomes.

I prefer tiling multiple windows and selecting the one I want by clicking its
title bar. Then I use the Zoom Window command to expand that window to full
size. After making changes to the text in that window, I again choose Zoom Win
dow to reduce the window back to its original size. That uncovers the other tiled
windows, letting me select another one to zoom. If you open four or six windows
now and Tile them, you'll see what I mean.

A shortcut is to double-click any window title bar, which does the same thing
as zooming. This is much easier than choosing the Zoom command, and it works
in both directions-that is, from little window to full size and back again.

The font sizes in the bottom part of the Format menu let you choose the size
of text in windows. For programming, you probably should use the default setting

rJ

.£•J,
00°'17°

X1 l OJ 0 17 °
LlOO 170-8l

Introducing Turbo Pascal == 17

Stack Windows - Restock windows like shingles
Tile Windows - Separate windows like tiles
Zoom Window - EHpand or shrink actiue window

..19 point
1 O point
12 point
14 point
18 point
24 point

- Select font size

Figure 1.9 Turbds Format menu.

of 9 points unless you have trouble seeing such small text. Another good choice
is 12 points. Other sizes don't look very good in the standard Monaco text font.

If you change the point size, it affects only the current window. If you then
load another file, its text uses the new size setting. But remember that changing
font sizes, unlike some other editors such as MacWrite, never changes anything on
disk. The next time you load a file, its text displays in whatever point size is now
in effect. Remember to save the default settings if you change point sizes and want
Turbo to use that size from now on.

The Font Menu

There's not much to say about the menu in Figure 1.10. You can select different
fonts in which to display text although the default Monaco font is the one most
programmers prefer. This font, whose name is a play on words-it's a Monospaced
font-makes it easy to line up columns, a fact that makes indented languages like
Pascal easy to read. The other fonts are proportionally spaced and, therefore, don't
produce as good-looking listings.

Chicago
Geneua
Heluetica

..IMonaco
Times ------

- System font (do not remoue)
- Application font (do not remoue)
- EHtra font (okay to remoue)
- Programming font (do not remoue)
- EHtra font (okay to remoue)

Figure 1.10 Turbo's Font menu.

18 == Programming with Macintosh Turbo Pascal

The Monaco font does have a few annoying features that detract from its
usefulness in programming. For example, the lowercase l and the uppercase I are
identical-a disaster for programmers who tend to be fussy about single bits, not
to mention whole characters. Some people use a utility like ResEdit to add a hat
and foot to uppercase I's and put a slash through zeros.

If you need the disk space, use the Font/DA Mover utility to remove the
Helvetica and Times fonts (in their various point sizes). You don't need them to
write programs. Be careful, though, not to remove fonts that other programs need
including your own.

The Compile Menu

You'll probably use the Compile menu (Figure 1.11) the most often. I already
explained the Run and To Disk commands. To Memory is similar to Run in that
it compiles your program directly into Macintosh memory, After you do that, choos
ing Run runs the program without recompiling. But if you make any changes be
tween the time you compile to memory and choose Run, Turbo recompiles your
program anyway.

It may seem redundant to have the To Memory command when Run also com
piles to memory. But there are two times when you need it. When you have a pro
gram in two or more pieces and use compile Include directives to compile those
pieces as explained earlier, choose Run to compile and all goes well. But if you
then make a change to a file that is not the main program and choose Run, Turbo
knows you didn't change the main text and it just reruns your same program-it
doesn't recompile it and include the changes you just made to the other pieces.
The compiler doesn't know that text in other windows is related to the text you
tell it to compile. For this reason, you first have to compile to memory after changing
a supporting text file and then choose Run to run the program.

To Memory
To Disk
Check SyntaH
Find Error

Get Info

XR - Compile and/or run program

XM - Compile only--do not run
XK - Compile to disk file
XY - Check for errors in program
XE - Find fault of run-time error

XI - Display facts about program

Options... - Change compiling options ~~~~~~~
Figure 1.11 Turbo's Compile menu.

Introducing Turbo Pascal == 19

The other time to compile to memory is when you design your own units, con
taining precompiled routines and data that you want other programs to share. As
with Include files, if you change something in a unit after running your program,
Turbo won't recompile that same program unless you make a change to it. To force
Turbo to read the new programming in your modified unit, select To Memory and
then Run. (The To Disk command doesn't have this same idiosyncrasy, by the way.
It always compiles your program from scratch.)

The Check Syntax command compiles the program in the frontmost window,
but it does not generate machine language code. Because it skips this step, it is faster
than Run or To Memory. Check Syntax can't tell if your program will run correct
ly; it tells only whether you wrote it according to Pascal syntax, the rules that define
the language and how its parts go together.

Use the Find Error command to locate where in your program an error oc
curred while the program was running. If you receive a "Bomb Box" error and
click the Resume button, Find Error locates the instruction that caused the prob
lem. This assumes, though, that you are able to return to the editor. Some errors
won't let you back into Turbo and, in that case, you have no choice but to reboot.

Choose Get Info for some information about your program. A window tells
you how many bytes your text occupies in memory, how many lines it contains,
whether you compiled the program and, if you did, the size of its code and data
sections. It also tells you how much memory you have available in the heap-a
term that refers to an area of memory of which we'll be seeing a lot in future
chapters.

The final Compile menu command, Options, brings up the dialog in Figure
1.12. The Symbol table default setting of 32K is plenty for all the examples in this
book. To conserve memory, lower this value. While compiling, if you ever receive
the error message "Too many symbols," set it a little higher.

The Auto Save Text option is very helpful and I suggest you turn it on. (Nor
mally, it is off.) That way, every time you choose Run from the Compile menu,
Turbo automatically saves to disk text in all windows in which you made changes.
The first time you run a program but forget to save your text-and have to reboot
due to a program bug-you'll appreciate the value of the Auto Save feature.

The Default Directories tell Turbo where to look for various files. Each of the
letters to the left of the long boxes stands for one type of file according to this plan:

U-Unit code files

I-Include files

R-Resource files
L-Assembly language .REL files
0-0utput files

For example, if you want to load Include files from the volume PRO
G RAMS:LIBRARY:, then type that in the box next to the letter I. This lets you
keep files of one type together in folders and is particularly useful if you have a

20 == Programming with Macintosh Turbo Pascal

Symbol table K-Bytes ~
Default Directories:

181 Auto Saue TeHt

SU
$1

SR
SL
so

OK (Cancel)

Figure 1.12 Turbo's Compile menu Options command displays this dialog
window.

hard disk. Rather than cluttering a main directory with all kinds of files, you can
put your units in one folder, your resources in another, and send your compiled
code to yet another folder.

Turbo saves these options along with the Edit menu options when you choose
the File menu's Save Defaults command.

The Transfer Menu

The commands in the Transfer menu (Figure 1.13) are completely up to you.
Anything you type using the Edit Transfer command in the File menu shows up
in the Transfer menu. To transfer to another program, just choose its name from
this menu.

Be aware that Turbo doesn't check whether the names you type are the actual
names of real applications. If you type Rumpelstiltskin, Turbo presents that name
in the Transfer menu. If you try to transfer to a file that doesn't exist, you receive
a "File not found" error. If that happens, click the mouse to return to Turbo.

RMaker
ResEdit
UnitMouer

- Transfer to resource compiler
- Transfer to resource editor
- Transfer to unit utility

Figure 1.13 Turbo's Transfer menu.

two

Textbook Programs and
Dumb Terminals

When you run simple Pascal programs, Turbo displays a simulated dumb ter
minal, similar to the computer terminals of old with no processing ability and, in
some cases, unable even to position the cursor, erase lines, or do other screen opera
tions. The Turbo dumb terminal is a bit smarter than that, but it's still no fancy
CRT. Don't expect much from it.

Despite being primitive, though, Turbo's dumb terminal display is useful for
writing short examples such as the ones you might find in a Pascal textbook
hence the name, textbook program. You can also use this display for experiments
and utilities that do simple jobs when you don't care whether you can access desk
accessories or use windows.

If you are typing programs from a Pascal tutorial, the last part of this chapter
lists keywords that are different on the Macintosh and IBM PC versions of the com
piler. This list, along with your other references, helps you to weed out and rewrite
statements that work on only one or the other computer.

To demonstrate that textbook programs do have value, though, following are
three programs I used frequently to help prepare this text and to convert program
examples and tests created with other text editors.

LINE NUMBERS

Line numbers in program listings may seem out of place to experienced Pascal
programmers, but I include them for several reasons in all examples (except for
the short program in Chapter 1). They make it easy for me to refer to specific lines
and, therefore, they make it easier for you to find those lines without hunting
through the text, looking for words and phrases. They also prevent accidentally
leaving lines on the cutting floor while preparing this book for publication. If the
line numbers are in sequence, you can be sure that the listings are intact. Remember,

21

22 == Programming with Macintosh Turbo Pascal

though, that the line numbers are not part of the program and you must exclude
them while typing. Type only the text to the right of the numbers and colons in
the left column.

And that brings us to the first example of a textbook style program-the same
program I used to add the line numbers to the listings in this book. The program
demonstrates also how to read and write disk text files.

In the following sections, I describe how to type in, compile, and run Number.
I then explain each line of the program in a "play-by-play" description, pointing
out details that will help you to write similar examples of your own. I follow this
same format for most of the examples to come.

Typing and Compiling Number

Type in Listing 2.1, shown on page 24. (Remember not to type the line
numbers.) Use the Tab key to maintain approximately the indentation in the listing.
But don't worry if your typing doesn't match exactly the printed copy here-Pascal
ignores indentation when it compiles a program.

Save your program as NUMBER.PAS using the File menu's Save As command.
Compile to memory or to a disk code file. (If you have the Auto Save option on,
you can simply Run. In that case, Turbo automatically saves your text to disk. If

Number
NUMBER: Numbers I ines in a text file

1, For the input file, type the name of any text file.
2, For the output file, type CONSOLE: or PRINTER:, or type

the name of a disk file to hold the output text.
3, Press RETURN to end program,

Input file? number.pas
Output file? L2.1

153 I i nes done

Input file?

Figure 2.1 The Number program (Listing 2 .1) uses Turbo's dumb terminal window,
which has a blank line at top instead of the usual pull-down menus.

J

Textbook Programs and Dumb Terminals == 23

you haven't given your file a name, Turbo will ask for one before running the
program.)

Figure 2.1 shows Number in action and illustrates Turbo's dumb terminal
display. Notice that at the top there are no menus or desk accessories, just a blank
space. Although the window has a drag ba~ along the top, you cannot move it by
dragging with the mouse. It's cemented in place.

The window title is the name of the program now running. Below the title bar
appears the program's output-the strings and other information you insert in Write
and Writeln statements. Such text always appears in the default 9-point Monaco
font-you cannot change to a different font or point size. Inside the window, you
can display up to 25 rows of 80 columns, exactly the same dimensions as a stan
dard IBM PC display as well as many other computer displays and terminals.

Number starts by identifying itself and listing a few instructions. It then re
quests input and output file names. If it finds the input name you type and if it
has no trouble creating the output file, it reads all lines of text from the input, adds
line numbers, and writes the result to the output file. If you accidentally type the
name of an existing file for your output, Number displays this message:

ERROR: Bad or duplicate fi Le name

In that case, type a different name or remove the existing file and try again.
If you don't receive an error, the program runs, reporting as it goes how many lines
are done. When finished, it requests another file. Type a different name or press
Return to end. This takes you back to the Turbo editor or to the Finder, depending
on the way you originally ran the program.

This format-typing input and output file names and pressing the R1::rnrn key
to end the program-is archaic and contrary to the Macintosh way of doing things.
But the 153-line program, short as Macintosh programs go, does its job well enough.
To do the same thing and include pull down menus and desk accessories might
take four or five times that number of program lines. That's not to argue against
such Macintosh features but to suggest that, when designing programs, you con
sider whether it is worth the trouble of always following the Macintosh interface
guidelines. At times, a quick and dirty utility like Number is adequate if it does
what you need it to do.

You might wonder how to number the lines in text files inside other volumes
and folders. To do that, add volume and folder names with colons in between. If
you have a disk named WORK and a folder named LISTINGS, you could type:

Output fi Le? WORK:LISTINGS:LINES.TXT

Apple experts recommend never requiring people to type volume and folder
names that way but, when using Turbo's dumb terminal interface, you don't have
any choice. There's no easy way to use the standard file name dialog to select files
by clicking their names. Of course, I'll show you how to do exactly that when we
get to writing fully charged Macintosh examples.

24 == Programming with Macintosh Turbo Pascal

Listing 2.1. NUMBER.PAS

1: PROGRAM Number;
2:
3: (*

4:
Number lines in a text file 5: * PURPOSE

6: * SYSTEM
7: * AUTHOR
8:

Macintosh / Turbo Pascal I Textbook interface
Tom Swan

9: *)

10:
11:
12: TYPE
13:
14:
15:

String64 String[64];

16: VAR
17:
18: inFile, outFile
19: inName, outName
20: done : BOOLEAN;
21:
22:

TEXT;
String64;

23: FUNCTION Verified(message : String64
24:
25:
26:
27:
28:

TRUE if Y typed, else false }

29:
30:

VAR

ch CHAR;

31: BEGIN
32: Write (message, '? (y /n) ') ;
33: Readln (ch) ;
34:
35:
36:
37:

Verified := (ch
END; { Verified }

'Y') OR (ch

BOOLEAN;

'y')

38: FUNCTION Duplicated(name : String64) : BOOLEAN;
39:
40: TRUE if disk file already exists or permission granted to erase }
41:
42: VAR
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

tempFile TEXT;

BEGIN
IF Pos(':', name)= Length(name)

THEN
Duplicated := FALSE (Not a disk file if it ends with

ELSE
BEGIN

($i-} Reset(tempFile, name); {$i+}
IF IoResult <> 0

THEN
Duplicated := FALSE

ELSE
BEGIN

Duplicated :=

{ File not found)

NOT verified(Concat('Remove old ', name));
Close(tempFile) (Close the temporary file }

END I else l
END { else }

END; (Duplicated l

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:

Textbook Programs and Dumb Terminals

FUNCTION FilesOpened(VAR done : BOOLEAN) : BOOLEAN;

Return true if input and output files opened.)
Set done to TRUE if no input file name entered.

VAR

okayFlag BOOLEAN;

BEGIN
okayFlag := FALSE;
Write('Input file?
Readln (inName) ;

{ assume the worst case l
);

done :=length(inName
IF NOT done THEN
BEGIN

O;

{$i-l Reset{ inFile, inName); {$i+l
IF IoResult = 0 THEN
BEGIN

Write{ 'Output file? ');
Readln(outName);
IF length(outName) > 0 THEN

IF NOT Duplicated(outName) THEN
BEGIN

{$i-l Rewrite(outFile, outName); {$i+}
okayFlag := { IoResult = 0);

END; { if I
IF NOT okayFlag

THEN close(inFile
END { if }

END; { if }
FilesOpened := okayFlag

END; { FilesOpened l

101: PROCEDURE NumberLines;
102:
103: Read lines from inFile, attach line numbers, and write to outFile I
104:
105: CONST
106:
107:
108:
109:
110:

bs #8; { Backspace control char l

111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:

VAR

oneLine
lineNo

BEGIN

String[255];
INTEGER;

lineNo := O;
WHILE NOT EOF(inFile) DO
BEGIN

lineNo := lineNo + 1;
Readln(inFile, oneLine);
Writeln(outFile, lineNo:3,

Write(lineNo:4, bs, bs, bs, bs
END; { while l
Writeln(lineNo:4, ' line(s} done'

END; { NumberLines l

127: PROCEDURE Displayinstructions;
128:

oneLine);

{ display line numbers }

25

(continued]

26 == Programming with Macintosh Turbo Pascal

129: BEGIN
130: Writeln('NUMBER: Nwnbers lines in a text file');
131: Writeln;
132: writeln('1. For the input file, type the name of a text file.•);
133: Writeln('2. For the output file, type CONSOLE: or PRINTER:, or');
134: Writeln(• the name of a disk file to hold the output text.•);
135: Writeln('3. Press RETURN to end program.•);
136: Writeln
137: END; { Displayinstructions)
138:
139:
140: BEGIN
141: Displayinstructions;
142: REPEAT
143: Writeln;
144: IF FilesOpened(done I THEN
145: BEGIN
146: NwnberLines;
147: Close(inFile);
148: Close(outFile I
149: END ELSE
150: IF NOT done
151: THEN Writeln('ERROR : bad or duplicate file name'
152: UNTIL done
153: END.

Number Play-by-Play

Without its main procedure, NumberLines (101-124), Number is like a shell-an
unfinished program that handles various common details but lets you decide what
the main purpose is to be. You could take out the NumberLines procedure and
use the remaining shell as the basis for other programs that read text, do something
to its lines, and write the result to another file.

The program begins, as do all Pascal programs, by identifying itself on line
1. (If you use the Output directive { $0 name} to send the compiled code to a file
other than the program name, Number, put it above line 1.) Several comments (3-9)
list the purpose of the program, what system it runs on, and the author. The com
piler ignores everything between the symbols (* and *).

Lines 12-20 make up the program's global declarations. First is a new data
type, String64, a string of 64 characters, large enough to hold most file and folder
names. The value in brackets indicates how many characters the string can hold.

Variables inFile and outFile are both of type TEXT, a standard file type in
Turbo as well as in other Pascal systems. Using standard file variables this way makes
reading and writing text files on the Macintosh much easier than the typical ap
proach of using the toolbox file manager, where you have to be concerned with
such details as memory buffers, file markers, and other parameters. (The toolbox
is the collection of programming and data types installed in ROM and in the System
folder in every Macintosh.) There are times when these requirements give you more
freedom, helping you to write better programs but, for short utilities such as
Number, using standard TEXT files is as capable as other methods.

Textbook Programs and Dumb Terminals == 27

One problem when using TEXT files occurs if you read text created by other
programs. For example, MacWrite and other word processors divide text into
paragraphs, placing a carriage return at the end of each division. Because you nor
mally use Readln statements to read lines out of a standard TEXT file, you'll
discover that you cannot read paragraphs longer than the longest possible
string-255 characters.

The reason for this problem is important to understand. Text lines and
paragraphs exist only by agreement among the programs that read and write them.
If you process a file that another program divides into paragraphs, Number thinks
that the file's paragraphs are actually lines and tries to read them that way. It
misinterprets the data in the file, an error that might cause the program to fail.

Is this a bug or not? It's probably more of a design limitation-something to
be aware of when writing your own text file programs. You'll never have the pro
blem reading text that you create with the Turbo editor, though. It ends all lines
with carriage returns-the format that Number expects.

Function Verified (23-35) is worth extracting for your program library. It
displays a message and asks you to type Y (Yes) or N (No), returning a Boolean
value TRUE only if you type Y. Use the function this way:

IF Verified< 'Do you want to quit')
THEN Halt;

This displays the message "Do you want to quit? (y/n)" and ends the program
with a Halt statement only if you answer yes. Notice that the function adds the
question mark and (yin) for you. This saves you from typing those characters at
the end of every such yes-no prompt.

The way Verified works is to wait for you to type a single character and press
the Return key at the Readln statement in line 33. If you type anything other than
Y or y, line 34 sets the function to FALSE and ends. Otherwise, it returns TRUE
before going back to the place in the program that called the routine.

If you would rather not press Return after typing a response, replace line 33
with these statements:

REPEAT
ch:= ReadChar

UNTIL ch IN ['Y', 'y', 'N', 'n' J;
Writeln(ch);

Turbo's ReadChar function waits for you to type a single character and, while
it waits, displays a flashing underline cursor. As soon as you type any key, it returns
that character as the function result, which this example then assigns to variable ch.

ReadChar does not display the character you type. For that reason, you might
want to follow it with a Writeln statement so people can see their responses. It's

28 == Programming with Macintosh Turbo Pascal

disconcerting to type something on a computer terminal but not be able to see what
you type.

The REPEAT loop in this example shows how to limit responses to one of
the four characters listed in brackets, an example of a character set. Only if the
character in variable ch is IN the set of characters does the REPEAT loop end.
If you type another character, it simply repeats again. Because ReadChar doesn't
display anything, typing illegal responses appears to have no effect.

The second function in Number, Duplicated (38-63), checks whether a file
already exists on disk. It returns TRUE only if it cannot find the file name you
pass to the function. If it does find that same file, it returns TRUE only if you
then give your permission to remove it. At lines 85-92 is an example showing how
to use Duplicated to prevent programs from accidentally erasing existing files.

Notice that lines 47-49 set Duplicated to FALSE if they find a colon at the
end of the file name. The Pos procedure returns the position of':' (or any other
character or string) in the second string, in this case, name. If that position equals
the length of the string, then there's a colon at the end. This indicates that the name
is a folder or volume and not a file.

Lines 52-62 check whether a valid file name exists. First, line 52 resets (opens)
the file for reading and writing. But, in this case, the program doesn't actually read
or write anything. It just wants to test whether it is possible to reset the file. If so,
then the file exists. Otherwise it doesn't.

To accomplish this, line 52 surrounds the Reset statement with the compiler
directives {$i-} and {$i+ }, which turn off automatic Input/Output (1/0) error
checking (-) or turn it back on (+). If it didn't do this and the file did not exist,
the program would halt with an error. But with the directives in effect, it ignores
errors, checking on its own for problems and taking appropriate action. The next
IF statement does this by checking the integer value of the built-in loResult func
tion (53). With 1/0 error checking turned off, loResult returns the result of the
preceding 1/0 statement, in this example, the Reset instruction in the line above.

If IoResult was not zero, then there was an error trying to Reset the file, in
dicating that in all probability the file does not exist. (It's possible that a bad disk
could cause an error here, but the program ignores that unlikely possibility.) If
IoResult was zero, then the file exists and the program goes on to request permis
sion to remove it. In that case, line 59 calls Verified for your yes-no response to
the question, "Remove old name?" Notice how a Concat function-which joins
two or more strings-passes that question along with the file name to Verified.
Because of the Concat, if the file name is Myfile.Txt, the complete prompt comes
out looking like this: '-

Remove old Myfi Le.Txt? (y/n)

The program assigns Verified's result to the function identifier Duplicated, pass-

Textbook Programs and Dumb Terminals == 29

ing that result back to the program statement that called it. If you type Y, Duplicated
returns TRUE; otherwise it returns FALSE.

Line 60, which closes the temporary file variable, is an optional step-Turbo
automatically closes files at the ends of procedures in which you declare file
variables. But it's probably a good idea to close local files anyway. A future change
in the operating system or in the Turbo compiler might remove this invisible
guarantee of an automatic close at procedure ends.

The third function in Number, FilesOpened (66-98), returns TRUE if it can
open both the input and ouput files. This is a useful routine in any program that
needs to open two files-one for reading and one for writing. If the function returns
TRUE, you know it's okay to use the global inFile and outFile TEXT variables.
If FALSE, then something went wrong opening a file or creating a new one. Also,
if it returns FALSE, variable done indicates whether someone typed a name for
the input file or merely pressed Return.

FilesOpened prompts for an input file name (77-79), gets your response, and
sets done to TRUE if the length of that response is zero. The IF statement (80-96)
takes effect only if done is FALSE, indicating that inName is not empty.

Line 82 uses the same method as Duplicated to check if file inName exists.
Only if IoResult is zero does it go on to request an output file name. Continuing
on, the program prompts for a name (85) and reads your response (86), checking
here too (87) whether you press Return. Only if you didn't and only if function
Duplicated retUrns FALSE at line 88, does the program attempt to create a new
output file with a Rewrite statement (90). Notice the compiler directives there and
the subsequent check of loResult. If an error occurs when rewriting the file, this
sets okayFlag FALSE and, therefore, returns FALSE when this same value passes
back at line 97 as the function value.

All of this may seem overly involved merely to open two files for reading and
writing. But the steps, while not inviolate, cover all possible situations and errors
that might occur. Prove that claim to yourself by manually running through each
program step and writing down the values of variables okayFlag and done for
various scenarios. Put your own routines through similar walk-throughs rather than
blindly trusting your impeccable programming skills without testing your inven
tions. You'll be surprised at the number of bugs you catch this way.

Up to this point, the program has ignored its main purpose, namely to add
line numbers to text files. The procedure at lines 101-124 does this while illustrating
how to read text files line-by-line. As I mentioned earlier, you can take this pro
cedure out and store the result as a shell into which you can later insert various
processes. Just replace NumberLines with your own routine.

NumberLines has a strange looking constant at line 107. The number sign(#)
some people call it a pound sign-specifies an ASCII (American Standard Code
for Information Interchange) character of a specific value, in this case, an 8. Writing
the backspace character to Turbo's dumb terminal display moves the cursor one

30 == Programming with Macintosh Turbo Pascal

space to the left. Use the number sign to assign other control characters to character
constants such as these:

CONST

Return= #13; {Carri age return}
Esc = #27; {Escape character}
CtrlX=#24; {ControlX}

Control characters are unusual on the Macintosh, which doesn't have the con
trol key that other terminal keyboards typically have. To simulate control keys, use
the ReadChar function explained earlier. With ReadChar, typing the Macintosh
Command key and any letter returns a control character with the value of that let
ter's alphabetical position. In other words, Command-A returns ASCII 01,
Command-B returns 02, and so on.

Most of NumberLines's actions occur in the WHILE statement at lines 116-122.
This loop repeats as long as the standard function EOF (End of File) returns
FALSE. Therefore, the statements at lines 118-121 repeat until the program reaches
the last line of text in inFile.

Line 119 reads one line of text from inFile, inserting that text into string variable
oneLine, which is large enough to hold 255 characters, the maximum string length.
The next line, 120, writes that same line to outFile, adding the line number (lineNo),
a colon, and a blank. The :3 after lineNo means "write the number in at least three
columns." This format specification lines up the numbers in neat columns. If your
files have more than 999 lines, change 3 to 4.

Notice too that Readln (119) and Writeln (120) specify the input and output
file variables as the first parameter in parentheses. This redirects the input and out
put through those variables-and, consequently, to the physical disk files. With
no file variable parameters, Readln and Writeln (and also Read and Write) operate
on the dumb termim:J display.

The Write statement at line 121 uses the backspace character constant bs to
move the cursor left four times after displaying the line number, placing it back
at the extreme left edge of the window. Displaying line numbers this way gives you
some feedback that the program is working. It's always a good idea to reassure
people this way, letting them know that the program hasn't taken a left turn
somewhere and is headed out into the countryside.

Procedure Displaylnstructions at lines 127-137 requires no special explanations.
It merely displays a few reminders about how the program works. The main pro
gram body is at lines 140-153. This, too, is simple to understand. After calling
Displaylnstructions, it repeats until function FilesOpened sets variable done to
TRUE, indicating you pressed Return in response to the input file name prompt.
In that event, the program calls NumberLines and then closes both the input and
output files. If FilesOpened returns FALSE, the program displays an error message
(150-151).

Textbook Programs and Dumb Tenninals == 31

An improvement you can make is to move the two Close statements (147-148)
to a separate procedure or function. You could turn off 110 error checking with
the { $i - } compiler directive, and test lo Result after each Close to see whether there
were any problems. Sometimes, it's possible to write a file to disk, but discover later
that you cannot update the disk directory-the main responsibility of Close. The
way the program stands now, it ignores this kind of error.

TABBING IN TEXT

The next two examples, DeTab and ReTab, operate similarly. Therefore, to cut
down on duplication, they both use the text in Listing 2.2. Type it in and save as
TABS.INC (meaning INCTude file). Turbo includes this text while compiling both
programs.

Using include files to write programs cuts down on file sizes while building
libraries of common routines that many programs share. This is the most basic
way to reduce duplication among programs. In future chapters, you'll learn another
way to do the same thing by writing your own precompiled library units. The dif
ference between units and include files is that, by including common routines, you
compile the procedures, functions, and other declarations for each program that
uses those items. With units, you compile such elements only once. Even so, knowing
how to use include files is important. Not only does it let you read common routines
from a subroutine library, it also helps you divide large programs into pieces, let
ting the compiler join those pieces to produce a finished result.

Some of Listing 2.2 resembles the programming in Number. But don't reuse
the procedures with the same names-they contain subtle but important differences.

Listing 2.2. TABS.INC

1 Common declarations and routines for DeTab.PAS and ReTab.PAS
2
3
4 CONST
5
6 TempName = •TEMP.$$$•; Temporary output file name
7 FixedTab = 4; Default fixed tab width I
8
9

10 TYPE
11
12 String64 = String[64];
13 String255 = String[255];
14
15
16 VAR
17
18
19
20
21
22

inFile, outFile : TEXT;
inName, outName : String64;
done : BOOLEAN;
tabWidth : INTEGER;

Input, output files I
Input, output file names
TRUE when no more files to do I
Fixed tab width I

(continued)

32 == Programming with Macintosh Turbo Pascal

23:
24: PROCEDURE SeparateName(name : String64; VAR folder, fileName
25:
26: Separate name into two parts: a folder and file name }
27:

VAR

p INTEGER;

FUNCTION ColonPosition(VAR p : INTEGER) : INTEGER;

Return indexed position of

BEGIN
p := Pos(':', fileName };
ColonPosition := p

END; (ColonPosition l

in fileName, or return 0 }

String64);

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:

BEGIN (SeparateName
folder := '';
fileName := name;

Null string -- no space between quotes }

Bl:
82:
83:
84:
85:
86:
87:
88:
89:
90:

WHILE ColonPosition(p) > 0 DO
BEGIN

folder := CONCAT(folder, Copy(fileName, l, p));
Delete(fileName, l, p)

END (while }
END; (SeparateName }

FUNCTION FilesOpened(VAR done : BOOLEAN) : BOOLEAN;

Return true if input and output files opened. }
Set done to TRUE if no input file name entered.

VAR

okayFlag : BOOLEAN;
folder, FileName : String64;

BEGIN
okayFlag := FALSE;
Write('Input file? '
Readln(inName };

(assume the worst case }
);

done := length(inName
IF NOT done THEN
BEGIN

0;

($i-l Reset(inFile, inName }; ($i+l
IF IoResult <> 0

THEN
WritelnJ 'ERROR: cannot find • inName)

ELSE
BEGIN

SeparateName(inName, folder, fileName);
outName := concat(folder, TempName);
($i-} Rewrite(outFile, outName }; ($i+I
okayFlag := (IoResult = o);
IF NOT okayFlag THEN
BEGIN

close(inFile };
Writeln('ERROR: cannot create

END (if }
END (else }

END; (if }
FilesOpened := okayFlag

END; (FilesOpened }

outName)

Textbook Programs and Dumb Terminals

91:
92: PROCEDURE Report(oldLength, newLength : INTEGER);
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:

Display a little report on before and after file sizes

VAR

difference INTEGER;

BEGIN
writeln;

= •, oldLength:S);
= •, newLength:5);

- oldLength) ;

Writeln('Original file length
writeln('New file length
difference :=abs(newLength
IF newLength > oldLength

THEN writeln('Characters added
ELSE IF newLength < oldLength

THEN writeln('Characters saved
ELSE writeln('No change in file length');
writeln;

END; (Report }

difference:5

difference:5

114: PROCEDURE RenameFiles;
115:

After all processing is done, rename original file <name>+Backup)
and name the TEMP.$$$ output file to <name>. l

VAR

backupName String64;

BEGIN

backupName := concat(inName, • Backup•);

($i-) erase(backupName); ($i+}
IF IoResult <> 0

Erase old backup

33

116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:

THEN { ignore the error);
Rename(inName, backupName);
Rename(outName, inName)

END; { RenameFiles I

... don't worry if not there.)
Save copy of original file. I
Rename new file.)

PROCEDURE GetTabwidth;

Prompt for and set global tabWidth variable I

BEGIN
writeln('Tab width is •, FixedTab);
writeln;
Write('Enter new width, or O for no change
Readln(tabwidth);
IF tabWidth <= 0

THEN tabWidth := FixedTab;
Writeln

END; { GetTabwidth I

.);

34 == Programming with Macintosh Turbo Pascal

TABS.INC Play-by-Play

Because it's not a complete program, the listing does not start with PRO
GRAM. This is not an error. You might want to change the two constants at lines
6 and 7. The first, TempName, is the name of a temporary disk file for storing
intermediate data. If you change it, be careful to choose a name such as TEMP.$$$
that no other file is likely to use. Although the second constant, FixedTab, is 4,
you could use 8 or 6 or any other small value for the default tab width. (Don't
be too concerned with choosing the correct value-both ReTab and DeTab let you
type another tab width if you don't want to use the default value.)

Two string constants String64 and String255 define string types of 64 and 255
characters (12-13). As in Number, inFile and outFile (18) are standard TEXT files
while inName and outName (19) are of the 64-character string type. Boolean variable
done controls when the program ends, and tabWidth equals the number of spaces
in each tab column, using the default FixedTab value if you don't specify another.

The first procedure in TABS.INC is SeparateName (24-51), a tool for which
you'll undoubtedly find other uses. It takes as its parameter a file name and returns
in the two variables, folder and fileName. If you set name to Programs: Text
book:Number.PAS and call SeparateName, it returns folder equal to the string 'Pro
grams: Textbook:' and fileName equal to 'Number.PAS.'

Separating file names into their components gives you the option of accessing
other files in the same folder without typing the folder name over and over. It also
lets DeTab and ReTab perform a critical operation, one that many word processors
and text editors-including the Turbo editor-fail to do: save a backup copy of
your text. The next section explains the technique.

Backing Up Files

With a backup copy of your text containing all lines as they existed before pro
cessing, you don't have to ask "Remove old Data.TXT?" as Number does. Saving
a backup copy is a better idea because it avoids the obvious problem that often
occurs when people answer Yes to that question when they mean No. In general,
to save a backup copy requires these seven steps:

I. Open the input file

2. Create a temporary output file

3. Process the lines in the input file, writing the new lines to the output

4. If an error occurs, erase the temporary file and end. Otherwise, continue
with step 5

5. Erase any old backup file

6. Rename the original file "<name> Backup"

7. Rename the temporary file " <name>"

Textbook Programs and Dumb Terminals == 35

Programs that follow this plan protect you from accidentally erasing files. Even
if you take all the tabs out of your only copy of an important report, you can recover
your original text by throwing away the new file and using the backup. This is an
important feature to add to all programs that create files on disk.

Function FilesOpened (54-89) is similar to the same routine in Number but,
because of the backup copy scheme, it no longer asks whether you want to remove
an existing file. For that reason, it's a bit more useful than the other version and
you might want to use it instead. If you followed the comments about the earlier
program, you shouldn't have any trouble understanding how this one works.

Procedure Report (92-111) displays a few statistics about the before and after
file lengths. When changing blanks to tabs with ReTab, it's nice to know how much
disk space you saved. Because of the heavy indentation in Pascal programs, you
might be surprised to learn that you can often save quite a lot of space-as much
as 40% or more per file-just by scrunching blanks into tabs.

The next procedure, RenameFiles, (114-132), performs steps 5, 6, and 7 from
the plan outlined earlier. First, it adds "Backup" to the end of the input file name
(125) and then erases any file now on disk with that name (127). Removing the old
backup file is a most important step. If you don't do it, the following Rename pro
cedures will not work properly.

Notice that lines 128-129 ignore any errors reported by IoResult from the erase
operation in the previous line. This takes care of the good possibility that there
won't be any old backup file on disk. At the same time, it demonstrates an impor
tant requirement when turning off 1/0 error checking with {$i-} as w~ve been
doing. When you use this method, you must check IoResult following all 1/0
operations-even if, as in this case, you plan to ignore any errors. The reason for
this requirement is that if any errors do occur, they set an invisible flag inside Tur
bo Pascal's run-time routines, which contain the code for various commands and
features. When errors occur with 1/0 checking off, this internal flag prevents future
1/0 operations until you check IoResult. If you don't check it, then, errors can
shut down all future 1/0, meaning that Readln, Writeln, and other file operations
won't work from then on.

RenameFiles ends by renaming the input file to backupName, which saves the
backup copy of the original text. It also renames the output file-which now has
the name you assign to the constant TempName.

The final procedure, GetTabWidth (135-147), lets you type a different value
than the default constant FixedTab. Both DeTab and ReTab call this procedure to
let you change tab widths.

REMOVING TABS FROM TEXT

DeTab is the simpler of the two tab utilities. Type in Listing 2.3 and save as
DETAB.PAS. You can compile it to memory or to disk. If you have trouble com
piling, you might have to change the include directive in line 12. On my system,

36 == Programming with Macintosh Turbo Pascal

I name my disk volume Programs and store DETAB.PAS, RETAB.PAS, and
TABS.INC in the folder Textbook. Line 12 includes TABS.INC, compiling the com
mon routines and data. If you call your disk and folders something else, insert their
names here.

When you run DeTab, supply the name of the file from which you want to
remove tab characters, replacing them with blanks while maintaining the same col
umn spacing in the original. Be aware that, because it replaces single tabs with multi
ple blanks, the program usually increases the file size. It could easily double or
triple the size of a heavily tabbed file. Make sure you have plenty of free space on
disk.

Unless it detects errors, DeTab stores the result in a new file with the same name
as your original. Your old text-with its tabs intact-is in the backup file (with the
name of the original plus "Backup").

1 PROGRAM DeTab;
2
3 (*

4

Listing 2.3. DETAB.PAS

5 * PURPOSE Remove tabs from a text file
6 * SYSTEM Macintosh I Turbo Pascal I Textbook interface
7 * AUTHOR Tom Swan
8
9 *)

10
11
12 {$I Programs:Textbook:Tabs.INC
13
14
15 PROCEDURE ProcessLine(VAR line String255);
16
17 Remove tabs from this line. I
18
19 CONST
20
21
22
23
24
25
26
27
28

Blank = ' '·
Tab = "'I;

VAR

temp String255;
i INTEGER;

29 BEGIN

One blank character I
Control-I = ASCII tab character

Temporary string holder }
FOR-loop control variable

30 temp := ''; I Null string -- no space between the quotes
31 FOR i := l TO Length(line) DO
32 BEGIN
33 IF line [i] = Tab
34 THEN
35 REPEAT
36 temp := concat (temp, Blank)
37 UNTIL (Length (temp) MOD tabWidth = 0)
38 ELSE
39 temp := concat(temp, line[i])
40 END; I for }
41 line := temp
42 END; { ProcessLine J
43

Textbook Programs and Dumb Terminals

44:
45: PROCEDURE ProcessFile;
46:
47: Read lines from inFile, remove tabs, and write to outFile }
48:
49:
50:
51:
52:
53:
54:

CONST

bs #8;

VAR

{ Backspace control char I

55:
56:
57:
58:
59:
60:

oneLine
line No

String255;
INTEGER;

Holds one line of text I
For displaying line numbers

oldLength,
newLength

BEGIN

INTEGER; Statistics I

lineNo := 0; oldLength := O; newLength := 0;
WHILE NOT EOF(inFile) DO
BEGIN

lineNo := lineNo + 1;
Readln(inFile, oneLine);
oldLength := oldLength +Length(oneLine);
ProcessLine(oneLine);

oneLine) ;

Length before

... and after

61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

newLength := newLength +Length(
Writeln(outFile, oneLine);
Write(lineNo:4, bs, bs, bs, bs) { display line numbers I

END; { while I
Writeln(lineNo:4, ' lines done');
Report(oldLength, newLength)

END; { ProcessFile I

77: PROCEDURE Initialize;
78:
79: BEGIN
80: Writeln('DETAB: Remove tabs from a text file');
81: Writeln;

37

82: Writeln('l. For the input file, type the name of any text file.');
83: Writeln('2. The program removes tabs from the text, replacing');
84: Writeln(them with the correct number of blanks.');
85: Writeln('3. Use the program to convert tabbed text files created');
86: Writeln(with a text editor such as the one in the MDS 68000');
87: Writeln(' development system for use by Turbo Pascal.');
88: Writeln('4. The program saves a copy of your original text,');
89: Writeln(adding "Backup" to the end of the file name.');
90: Writeln;
91: GetTabWidth
92: END; { Initialize
93:
94:
95: BEGIN
96: Initialize;
97: REPEAT
98: Writeln;
99: IF FilesOpened(done) THEN

100: BEGIN
101: ProcessFile;
102: Close (inFile) ;
103: Close(outFile);
104: RenameFiles
105: END
106: UNTIL done
107: END.

38 == Programming with Macintosh Turbo Pascal

DeTab Play-by-Play

DeTab's main action occurs in procedure ProcessLine (15-42). The program
sends each line of text to ProcessLine, which removes the tabs it finds, replacing
them with blanks. It does this by cycling through each character in a FOR loop
at lines 31-40. If the character is a tab (33), then the loop adds a blank to the end
of a temporary string with a Concat statement (36). It repeats this until the length
of the string equals some multiple of the tabWidth, a calculation it performs at
line 37. If the character is not a tab, line 39 adds it to the end of the temporary string.

After examining each character, ProcessLine ends at line 41 by reassigning the
temporary string back to the line parameter, passing the now tabless string back.

ProcessFile (45-74) and Initialize (77-92) are nearly identical to NumberLines
and Displayinstructions in program Number (Listing 2.1). ProcessFile keeps track
of the old and new line lengths for the later report on file size savings. Initialize
displays instructions and ends with a call to GetTabWidth (91) to let you enter a
different tab value each time you run the program. If you will always use the default
setting, remove line 91.

The main loop is simpler than it is in Number because FilesOpened now handles
its own error messages. Notice that line 104 calls RenameFiles after closing the in
put and output files. This is the step that renames the temporary output file
TEMP.$$$ and saves your original text by adding Backup to its name.

ADDING TABS TO TEXT

ReTab runs similarly to DeTab but does the opposite job. It adds tabs to text
files, replacing as many multiple blanks as possible with tab characters. This can
reduce the size of text files, especially Pascal listings which typically have many
blanks in front of indented lines.

You can use ReTab to save archival copies of source code listings that you don't
want to discard but are not likely to need soon. To bring a file out of the archives
and revive it for further editing, run it through DeTab, replacing the tabs with blanks.

Type in Listing 2.4 and save as RETAB.PAS. Compile the program either to
memory or to a disk code file. When you run it, type the name of the text file to
which you want to add tabs. The program reads your text, converts multiple blanks
to tabs and saves a copy of your file as a backup.

1: PROGRAM ReTab;
2:
3: (•
4:

Listing 2.4. RETAB.PAS

5: • PURPOSE : Add tabs to a text file
6: • SYSTEM : Macintosh I Turbo Pascal I Textbook interface
7: * AUTHOR : Torn Swan
8:
9: •)

10:

Textbook Programs and Dumb Terminals

11:
12: {$I Programs:Textbook:Tabs.INC f
13:
14:
15: PROCEDURE ProcessLine(VAR line
16:

String255);

17: Add tabs to this line. l
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:

Based on an algorithm from:
"Software Tools in Pascal"
by Brian W. Kernighan and P. J. Plauger
Addison-Wesley Publishing Company; 1981

CONST

Blank
Tab

I '; One blank character }
Control-I ASCII tab character l
Control-M = ASCII er character) er

VAR

temp : String255; Temporary string holder
Line indexes } col, newCol : INTEGER;

ch : CHAR; Single character holder

FUNCTION NextChar(VAR ch : CHAR) : CHAR;

Return next character from line)

BEGIN
ch :=line[succ(newCol)];
NextChar := ch

END; I NextChar }

BEGIN
temp := ''; I Null string -- no space between the quotes l
line := concat(line, er); I Add end of line marker to line
col := O;
REPEAT

newCol := col;
WHILE NextChar(ch) =Blank DO
BEGIN

newCol := newCol + l;
IF newCol MOD TabWidth
BEGIN

0 THEN

temp := concat(temp, Tab);
col := newCol

END { if)
END; { while)
WHILE(col < newCol) DO
BEGIN

temp :~ concat(temp, Blank);
col := col + 1

END; { while }
IF ch <> er THEN
BEGIN

temp := concat(temp, ch);
col := col + 1

END { if)
UNTIL ch = er;
line := temp

END; { ProcessLine

39

{continued]

40 == Programming with Macintosh Turbo Pascal

78: PROCEDURE ProcessFile;
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:

Read lines from inFile, add tabs, and write to outFile I

CONST

bs t8; { Backspace control char I

VAR

oneLine
lineNo
oldLength,
newLength

BEGIN

String255;
INTEGER;

INTEGER;

Holds one line of text I
For displaying line numbers

Statistics I

lineNo :~ O; oldLength := O; newLength :~ O;
WHILE NOT EOF(inFile I DO
BEGIN

lineNo := lineNo + 1;
Readln(inFile, oneLine);
oldLength := oldLength +Length(oneLine); Length before I
ProcessLine(oneLine);
newLength := newLength +Length(oneLine); ... and after I
writeln(outFile, oneLine);
Write(lineNo:4, bs, bs, bs, bs) { display line numbers I

END; { while I
Writeln(lineNo:4, ' lines done');
Report(oldLength, newLength)

END; { ProcessFile I

PROCEDURE Initialize;

BEGIN
Writeln('RETAB: Add tabs to a text file');

'1. For the input file, type the name of any text file.•);
'2. The program adds tabs to the text, replacing groups');

of blanks with tabs wherever possible.');

writeln;
writeln (
Writeln (
writeln (
Writeln ('3.
Writeln('
writeln (• 4.
Writeln('
writeln;
GetTabWidth

After converting, the text may take less disk room,•);
but may look "strange" in the Turbo Pascal editor.');
The program saves a copy of your original text');
adding "Backup" to the end of the file name.');

END; (Initialize

127: BEGIN
128: Initialize;
129: REPEAT
130: writeln;
131: IF FilesOpened(done) THEN
132: BEGIN
133: ProcessFile;
134: Close (inFile) ;
135: Close(outFile);
136: RenameFiles
137: END
138: UNTIL done
139: END.

Textbook Programs and Dumb Terminals == 41

ReTab Play-by-Play

Except for procedure ProcessLine (15-75), all of ReTab is similar to DeTab. The
procedure follows an algorithm for replacing sequences of blanks with tabs while
maintaining the same relative position of columns.

The main action occurs in a REPEAT statement at lines 52-73 that examines
each character in a line with the help of function NextChar (39-46). Inside the
REPEAT loop, a WHILE loop (54-62) tests successive characters, adding tabs in
place of blanks whenever variable newCol reaches a fixed tab position.

A second WHILE loop (63-67) adds blanks to the line to fill out columns with
less than the minimum number of blanks that a tab could replace. This situation
occurs only if variable col is less than newCol. (The prior WHILE loop assigns
newCol to col every time it inserts a tab into the line.) Together, the two WHILE
loops compress as many blanks as possible into tabs.

Following that, an IF statement (68-72) adds non-blank characters to the line
and checks for a carriage return (er) which ends the REPEAT loop at line 73. This
works because line 50 adds a carriage return to the end of the line. It has to do
this because, when Readln reads strings, it never ends them with carriage return
characters. You could use a different ending character as a flag but, because you
can be sure strings never will have carriage returns in them, this seems to be the
best choice.

Together, DeTab and ReTab add and remove tabs from text files. You can use
DeTab to remove tab characters from files that another text editor or word proc
essor created. This is necessary because, even though it lets you press the tab key,
the Turbo editor doesn't actually insert tab characters into text. Instead, when you
tab, Turbo adds the correct number of spaces at that point, simulating what a tab
control character usually does. Even worse, when Turbo finds tabs in text, instead
of lining up characters into neat columns, it simply ignores them! If text files from
other editors look odd in Turbo, try processing them with DeTab.

Use the other program, ReTab, to add tabs to text files, replacing multiple spaces
with tab characters without changing the column spacing. This can reduce the
amount of room that a file takes on disk by compressing multiple spaces into single
tab characters.

Number, DeTab, and ReTab are three useful utilities, all of a category of pro
grams that read and write text files. You should be able to use many of the ideas
in them in your own textbook programs. To convert other kinds of programs from
IBM PC Turbo Pascal to the Macintosh, though, requires more information about
the differences between the two systems, as the next section explains.

CONVERTING IBM PC PROGRAMS TO MACINTOSH

The following list of identifiers either do not exist in Macintosh Turbo Pascal
or differ from the IBM PC and CP/M versions. These notes help you to convert
programs from one system to another.

42 == Programming with Macintosh Turbo Pascal

The first section describes identifiers that changed or disappeared in the Macin
tosh compiler. The second section describes new identifiers found only on the
Macintosh version. Use the first section to convert IBM PC programs to the Macin
tosh. Use the second to avoid writing Macintosh programs that will be difficult
to convert later to the IBM PC.

The following is not a complete reference to Turbo Pascal. For that, and for
the exact format of these and other commands, consult the Guide and other
references. Some of these commands apply only to textbook style programs or to
those that use PasinOut, PasConsole and other units. Some of the programming
references in the notes require toolbox interfaces such as MemTypes, QuickDraw,
OSintf, Toollntf, and others.

IBM PC Identifiers Changed or Deleted

Addr

Use @ in front of the identifier whose address you want. For example, instead
of Addr(wordsArray), write @wordsArray.

Append

No equivalent.

Assign

This is a major change. In IBM PC Turbo Pascal, you assign a file name to
a file variable before resetting or rewriting that file. There's no equivalent procedure
in Macintosh Turbo Pascal. Instead, now there are two forms of Reset (see later
description). Use the original form Reset(f) to rewind a file to its top, not to open
it the first time. Instead, use Reset(f,name) to open existing files. This takes the
place of the two IBM PC statements:

Assign(f, name);
Reset(f);

BDOS, BDOSHL, BIOS, and BIOSHL

No equivalents. BDOS and BIOS commands call routines in the CP/M
operating system for that version of Turbo Pascal. On the Macintosh, you do similar
jobs by calling toolbox procedures.

BlockRead and BlockWrite

No equivalents. These two procedures read and write disk blocks with no regard
for their contents. You use them in programs that don't care what files contain.
For example, a copy program might use them to copy the bytes in one file to another.

Textbook Programs and Dumb Terminals ::::::::: 43

The Macintosh toolbox has its own such low-level disk routines, FSRead and
FSWrite, which Volume 2 of Inside Macintosh describes how to use. These pro
cedures are more powerful than BlockRead and BlockWrite because they read and
write any number of bytes rather than only entire blocks at a time.

Chain

You cannot chain from one program to another. Use the {$S+} and {$S
SegName} compiler directives to segment large programs into pieces, or overlays.

Another possibility is to add a Transfer menu to your program and let people
choose other programs to run. (See Chapter 7 .) Or, you could hard-wire the names
of certain programs to which others transfer, in effect simulating a Chain.

ChDir

Use the toolbox File manager function SetVol to change the default volume
number for subsequent disk operations.

ClrEol and ClrScr

These procedures exist but have the new names ClearEol and ClearScreen. They
work only with dumb terminal textbook style programs.

Rather than revise all such commands in every IBM PC program you convert
to the Macintosh, write two procedures named ClrEol and ClrScr. For example:

PROCEDURE Cl rEo l;
BEGIN

ClearEol
END; { ClrEol}

This translates the IBM PC ClrEol to the new spelling, ClearEol, and avoids
having to touch up your program's source code.

CrtExit and CrUnit

These two procedures send control codes (usually) to the terminal before
(Crtlnit) and after (CrtExit) programs run. There are no equivalents and no need
for them on the Macintosh.

CSeg

No equivalent. This is a processor-dependent function that returns the Code
segment of the 8088/86 processor. There is no similar value on 68000 systems like
the Macintosh.

44 == Programming with Macintosh Turbo Pascal

DelLine

The same procedure exists, but it has a new name, DeleteLine. It deletes the
display line at the cursor position in Turbo's dumb terminal textbook window.

Delay

Although it's no longer one of Turbo's native commands, the Macintosh
toolbox has a similar routine with the different form:

Delay(numTicks: LONGINT; VAR finalTicks: LONGINT);

NumTicks is the number of ticks, or heartbeats, in 1160-second intervals to
delay. FinalTicks is the number of such heartbeats from the time you turned on
the Macintosh until the delay ends.

Don't trust this routine for complete accuracy. Use it only in situations where
an approximate time delay is adequate.

Draw

Use Turbo's Turtlegraphics unit commands PenDown, Forwd, and Back (among
others) to draw lines. Or, even better, use toolbox QuickDraw procedures LineTo
and Line.

DSeg

No equivalent. This is a processor-dependent function that returns the Data
segment of the 8088/86 processor. There is no similar value on 68000 systems like
the Macintosh.

Erase

The same procedure exists for programs that use the PaslnOut unit, as do all
textbook style programs. But it has the new form:

Erase(fi leName);

where fileName is a string. Other Turbo versions assign a name to a file variable
and use Erase(f) to erase that file. The new form replaces those two steps.

Execute

No equivalent. See Chain.

Textbook Programs and Dumb Terminals == 45

Flush

No equivalent. In textbook programs, close and reopen files to flush in-memory
data to disk. In fully charged Macintosh programs, call the File manager routine
FlushVol.

Frac

To extract the fractional part of a real number, add this function to your
program.

FUNCTION Frac (r: REAL) REAL;
BEGIN

Frac := r - INT(r)
END;{Frac}

FreeMem

No equivalent. Use toolbox memory manager routines to manipulate the heap.

GeWir

Use the File manager GetVol function to get a specific drive name.

GetMem

No equivalent. Use toolbox memory manager routines NewHandle and NewPtr
to create memory areas in the heap.

GraphBackground and GraphColorMode

No equivalents. Use QuickDraw routines instead.

High Video

No equivalent. Textbook style programs use 9-point Monaco for text with no
reversed video or other display attributes. To display various fonts and text styles
in windows, use QuickDraw text routines.

Hires and HiresColor

On the IBM PC, these commands switch to the graphics display and set the
drawing color. The Macintosh graphically draws everything and the commands
aren't needed.

46 :;;;;;;;:: Programming with Macintosh Turbo Pascal

InLine

You can insert in-line, 68000 machine language into Pascal programs but not
in the same way you insert 8088/86 machine code into IBM PC programs. On the
Macintosh, in-line code follows a procedure header. Everywhere in your program
that you use that procedure name, the compiler inserts the in-line code. This operates
more like an assembler macro-a way to consolidate instructions under a single
label-than a direct insert of machine language into what the compiler produces.

Converting IBM PC programs that heavily use InLine statements is extremely
difficult. Probably, the best plan would be to remove the InLine statements from
the PC program and, on that computer, write equivalent Pascal procedures. After
the program is working correctly, translate it to Macintosh Turbo Pascal. Then,
if certain operations need the extra speed that only machine language can give,
convert them to 68000 in-line code. This method avoids the difficulties of trying
to translate 8088/86 into 68000 machine language, a shaky limb upon which I do
not wish to stand for very long.

InsLine

The same procedure exists, but has a new name, InsertLine. It inserts a blank
display line at the cursor position in Turbo's dumb terminal textbook window.

Kbd

No equivalent. In IBM PC programs, this standard file typically goes in a Read
statement such as this:

Read< Kbd, ch) ;

With this technique, you read a single character from the keyboard but don't
display that character. This is useful when you want to avoid pressing Return after
typing single character responses such as Y or N and also when you want to read
control characters but not display them.

To do the same thing on the Macintosh, use the ReadChar function as explained
early in this chapter.

LongFilePos, LongSeek, and LongFileSize

These three procedures let you use real numbers to access records at random
in disk files. They eliminate the file size restrictions that integer record numbers
impose. To do the same thing on the Macintosh, use the toolbox File manager
routines GetFPos for LongFilePos; SetFPos for LongSeek; and GetEOF for
LongFileSize. The toolbox routines use the WNGINT data type for byte counts
and, therefore, increase file size to the maximum long integer of 2,147,483,64 7. That's

Textbook Programs and Dumb Terminals = 47

equal to more than 4 million 512-byte disk blocks-a goodly amount as they say
in our part of the country.

LowVideo

No equivalent. See HighVideo.

Mark

Memory management is more sophisticated on the Macintosh than the sim
ple ability provided by marking the heap and, after creating objects there, releas
ing that memory with the standard Release procedure.

Some people will lament the passing of Mark and Release from Macintosh
Turbo Pascal. But you can get into serious trouble if you attempt to manage the
heap in this simplistic way. Undoubtedly, your program would conflict with pull
down menus, windows, controls, dialogs, desk accessories, and other processes that
also use memory while your program runs.

After creating dynamic objects with New, use Dispose to recover their memory
for later use. It's difficult to convert programs that rely on Mark and Release for
memory management, but not impossible. Just be certain to Dispose every variable
the program creates with New. This lets Turbo and the Macintosh toolbox manage
memory in ways that won't conflict with other processes.

MkDir

No equivalent. Create your own folders with the Finder.

Move

Use Movel.eft and MoveRight instead, two procedures that move memory bytes
to lower (Movel.eft) or to higher (MoveRight) addresses. The original Move
prevented you from accidentally moving in the wrong direction and, in the proc
ess, destroying data you meant to preserve. The replacement procedures do allow
this to happen but only if the destination and source areas overlap. If your source
and destination areas do not overlap, then you can safely use either Movel.eft or
MoveRight. In that case, they have identical effects.

MsDos

No equivalent.

Norm Video

No equivalent. See HighVideo.

48 = Programming with Macintosh Turbo Pascal

NoSound

Use the toolbox Sound driver procedure StopSound instead.

Ofs

No equivalent. This is a processor-dependent function that returns an offset
address for variables on systems using the 8088/86 processor.

Palette

No equivalent. Use the QuickDraw routine PenPat to change pen patterns and
to draw in various shades of gray.

ParamCount and ParamStr

The toolbox segment loader routines CountAppFiles, GetAppFiles, ClrApp
Files, and ClrAppParms duplicate what these two IBM PC procedures do. General
ly, you use CountAppFiles in place of ParamCount and GetAppFiles in place of
ParamStr. But, unlike on the IBM PC, the Macintosh procedures return only the
names of data files opened by clicking their icons in the Finder. Another time to
use GetAppFiles is when someone opens several files along with an application
at the same time.

The IBM PC version lets people type other parameters-not just file names
that programs can recover with ParamCount and ParamStr. In this sense, you can
not do the same thing on the Macintosh.

Plot

To plot a point with Turtle Graphics, use the following two statements:

Pen Down;
ForwdCO>;

This places a tiny dot at the current pen location. (You might need a magnify
ing glass to see it.) Another way to plot points at a location (h,v) is with these
QuickDraw statements:

Move To C h, v) ;
LineToCh,v>;

Ptr

The toolbox memory manager data type Ptr replaces this function, which sets
a pointer variable to a specific address in CP/M and IBM PC Turbo Pascal systems.

Textbook Programs and Dumb Tenninals == 49

You can do the same thing on the Macintosh by using POINTER to assign specific
addresses to pointers. For example, this sets pointer p to address 3:

VAR
p: "INTEGER;

BEGIN
p :=POINTER(3)

END.

Ptr is now a data type declared in the MemTypes interface. You can simulate
the way it works on the PC by declaring a variable of type Ptr and then using type
coercion to assign specific values to that variable. (A coercion forces Pascal to treat
data as a different data type than its original declaration.) You could write:

USES MemTypes;
VAR

p : Pt r;
BEGIN

p:=Ptr(3)
END.

But notice that this is not quite the same thing as assigning an address to any
type of pointer variable. In order for the coercion to work, the variable must be
of type Ptr.

Random and Randomize

Use QuickDraw's Random function instead. Unfortunately, this returns only
integer values, not reals in the range 0 < = random < 1.0. Use RandSeed in place
of Randomize to start new random sequences.

Release

No equivalent. See Mark.

Rename

The same procedure exists for textbook programs, but it takes two string
parameters instead of a file variable and string as in the IBM PC version. To rename
fileNameA to fileNameB do this:

{$i-}
Rename (f i L eNameA, f i LeNameB) ;
{$i+}
I F Io Res u l t <> 0

THEN writeln('Error renaming!'>;

50 ==: Programming with Macintosh Turbo Pascal

Reset and Rewrite

For textbook programs that use Turbo's PaslnOut interface, Reset and Rewrite
are similar to their IBM PC counterparts. Both now come in two forms. To open
a file for reading, use Reset(f,name). To rewind a file to its top after opening, use
Reset(f) without the name. To create a new file, use Rewrite(f,name). To rewind a
file and start writing it from the top, use Rewrite(f) without a name.

When you Rewrite a text file, you can only write to it. When you Reset a text
file, you can only read from it. See also the comments under Assign.

Rm.Dir

No equivalent. Use the Finder to remove folders.

Seg

No equivalent. This is a processor-dependent function that returns a segment
address for variables on systems using the 8088/86 processor.

Sound

Use the toolbox Sound driver procedure StartSound instead.

SSeg

No equivalent. This returns the stack segment register value on systems using
the 8088/86 processor.

Str

Use the Binary-Decimal Conversion Package procedures StringToNum and
NumToString to convert strings and integer values. Unfortunately, unlike Str, you
cannot format strings as you can in statements such as Str(r:8:2,s) on the IBM PC.

TextBackground, TextColor, and TextMode

No equivalents. Use QuickDraw routines to change text fonts and styles in
windows.

UpCase

No equivalent although you can use the OS (Operating System) Utility routine
UprString to convert strings to uppercase. (UpCase converts only single characters.)

It's a simple matter to write your own UpCase function, duplicating the IBM
PC command. Here's one way to do it:

Textbook Programs and Dumb Terminals == 51

FUNCTION UpCase(ch: CHAR) CHAR;
BEGIN

IFchlN['a' •• 'z'J
THEN UpCase := CHR(Ord(ch) - 32)
ELSE UpCase :=ch

END; {UpCase}

Val

No equivalent. Use toolbox procedures StringToNum and NumToString to con
vert strings and numbers. See also Str.

WhereX and WhereY

No equivalent. In Turbo's textbook window, it's not possible to locate the cur
sor position. But, because the Macintosh uses a graphics display for everything
you see, you can always use QuickDraw routines such as GetPen to locate where
text will appear. Remember, though, that this returns a single point on the Macin
tosh's 512x342 visible display (or in different limits on larger-screen models), not
an (x,y) character coordinate as WhereX and WhereY do.

Window

Use the Window manager. You cannot use IBM PC pseudo-windows in Macin
tosh textbook style programs.

New Macintosh Identifiers Not in IBM PC Turbo Pascal

Ord4

This returns the long integer ordinal (whole number) value of 32-bit objects.
Use Ord4 to convert pointers to WNGINT variables. For example, if you have a
pointer p, and a variable Addr of type WNGINT, you could write:

Addr := Ord4(p);

Pointer

This function replaces Ptr in the IBM PC version. Use it to assign specific ad
dresses to pointer variables or to convert one pointer type to another. To assign
a specific address, do this:

VAR
p: "INTEGER;

BEGIN
p :=POINTER(3000)

END.

52 == Progrmillning with Macintosh Turbo Pascal

To convert one pointer type to another, use POINTER in the assignment.
Because the function returns a generic type, you can always assign it to any pointer
variable. For example,

VAR
recPtr
intPtr

BEGIN

"AnyRecord;
"INTEGER;

intPtr :=POINTER(3000);
recPtr :=POINTER(intPtr)

END.

Doing this assigns the same address to both intPtr and recPtr. Use this tech
nique if you need two or more pointers to the same memory location but want
to interpret the contents of that memory as different objects.

Float

It's doubtful you'll ever use Float. It converts integer values to reals. If you
have an integer n, you can assign it to a real variable r with the statement:

r:=Float<n>;

The only reason to do this is for documentation. In other words, Float makes
it obvious that you are converting a variable from one type to another, a fact that
in mathematically critical programs may be important to know. But you can always
write more simple statements such as:

r : = i ;

to do the same thing. This works because Turbo converts integers to reals in ex
pressions that it evaluates to real results. Remember that the reverse is not true:
you cannot directly assign reals to integers. For that, use the standard functions
Trone or Round, the complements of Float.

ClearEol and ClearScreen

These two procedures replace ClrEol and ClrScr in IBM PC Turbo Pascal. They
do the same thing-clear from the cursor to the end of the line and clear the entire
screen-as the PC commands. They work only in textbook programs that use the
PasConsole unit.

Read Char

ReadChar reads single characters from the keyboard without displaying those
characters in the dumb terminal textbook window. ReadChar simulates control

Textbook Programs and Dumb Terminals = 53

characters when you press the Command key and then type a character. It returns
ASCII controls for keys Return (13); Enter (3); and Clear (27), as well as for others
such as the arrow keys on a numeric keypad or on a Macintosh Plus keyboard.

MoveLeft and MoveRigbt

Movel.eft moves bytes in memory from higher to lower addresses. MoveRight
does the same, but it moves from lower to higher addresses. On the IBM PC, the
single Move does the same thing, figuring out for you the correct direction to move
while avoiding overlapping bytes from the source to the destination.

In one sense, Move is more powerful than Movel.eft and MoveRight-it helps
you avoid errors. But in another sense, the two commands are improvements. For
one thing, because they don't have the logic that decides in which direction to go,
you can assume that Movel.eft and MoveRight run faster than Move would if it
existed in the Macintosh compiler.

Be extremely careful with these two instructions. They move memory with no
regard for other items they might disturb. A good rule to follow is: if you move
non-overlapping blocks, use either MoveRight or Movel.eft; if you move overlap
ping blocks, use MoveRight when the destination is higher than the source; use
Movel.eft when the destination is lower.

ScanEQ and ScanNE

These two functions scan memory for matching (ScanEQ) or non-matching
(ScanNE) byte values. To scan the first 100 bytes of an array MyArray for the off
set byte position from the start of the array to the first occurrence of a byte 255,
you could write:

Offset:= ScanEQC 100, 255, MyArray);

If Offset has the value 100, then ScanEQ did not find 255 in the array. If Off
set is in the range 0 .. 99, it represents the position MyArray[Offset] where it found
the byte value 255.

ScanNE works the same way, but it finds the occurrence of the first value not
equal to another.

HiWord, LoWord, and SwapWord

These three new commands are the WNGINT equivalents of Hi, Lo, and Swap,
available in all versions of Turbo Pascal. HiWord returns the high order 16-bit IN
TEGER value of a 32-bit WNGINT variable. LoWord returns the low order IN
TEGER. SwapWord reverses the low and high words of a 32-bit value.

When dealing with specific parts of integers, remember that byte values are
already swapped on the IBM PC and CP/M Turbo Pascal versions. In fact, on most

54 ===: Programming with Macintosh Turbo Pascal

8- and many 16-bit computers, the low byte (0 .. 255) is physically ahead (at a
lower address) of the high byte ((0 .. 255)*256). In computers with 68000 processors,
the low byte comes after (at a higher address) the high byte value.

Such machine dependencies quickly lead to migraines and other programmer
maladies. In subjects such as these, the best medicine is preventive: don't write
machine dependent code in the first place.

three

Turtle Graphics
vs. QuickDraw

There are two "lays to draw images with Turbo Pascal. For simple displays,
there's Turtle Graphics, an easy-to-learn set of commands that produces surpris
ingly sophisticated patterns with a minimum number of program steps. Or, for bet
ter control and speed, you have all of QuickDraw's impressive power. QuickDraw
is a toolset of programming, mostly in ROM, that Macintosh programs use to
display windows, icons, shapes, and just about everything else you see on screen.

Unlike many computers, the Macintosh draws what it shows you. Boxes, lines,
window borders, text, and other images appear as the result of commands that
ultimately turn to white or black one or more of the display's 175,104 pixels, or
picture elements.

This differs from conventional computers, which usually display text by en
coding characters in memory. For example, to display the letter Q somewhere on
the screen, a program would store the ASCII value 81 at a specific location. Hav
ing done that, the computer's video circuits read that and other character values
to display pages of text.

The Macintosh is different. Instead of storing ASCII values in memory to
display text, it graphically draws letters and symbols the same way it forms boxes,
circles, and other shapes. Those shapes also have corresponding values in memory
just as in a conventional display but, in this case, each of a pattern's memory bits
represents a single display pixel.

There are several consequences of this approach to displaying visual informa
tion. For one, the Macintosh requires a large amount of memory to hold just one
screen-full of graphics. On a traditional computer terminal where each memory
byte can store one character, it takes only 2,000 bytes to hold all the ASCII values
for an entire 80-column by 25-line screen. In contrast, because the typical Macin
tosh display has 512 horizontal by 342 vertical pixels, and because it takes one
memory bit to hold each teensy dot, the Mac's display takes more than ten times

55

56 == Programming with Macintosh Turbo Pascal

that amount of memory-to be exact, 21,888 bytes (512 x 342 divided by 8 bits
per byte). To show something on this bit-mapped display, programs change in
dividual bits in a screen buffer, a memory area that corresponds with the images
you see.

The obvious disadvantage with a bit-mapped display is a loss of speed. Because
the Macintosh has to read more than ten times the number of bytes per screen than
most other computers, it potentially takes longer to redraw, or refresh, a page of
text or graphics than it does on a traditional text-only terminal. Even worse, to keep
the CRT (Cathode Ray Tube) phosphors from fading, as they quickly do unless
constantly regenerated, the Macintosh must redraw its screen 60 times a second,
a time-consuming juggling act from which it can never rest. (For those who care
about accuracy, the exact rate is 60.15 hertz, or cycles per second.) Obviously, the
amount of time it takes to scan 21,888 bytes of memory 60 times a second is a much
greater slice of pie than reading only 2,000 bytes.

The extra effort is worth the trouble. On a text-only computer terminal, the
hard-wired characters indelibly burned into the computer's circuits are all you get.
You might be able to fake graphics with characters that look like lines and sym
bols, but you cannot change their bit patterns or combine them with other im
ages. Of course, the Macintosh lets you do all of that and more. Because it draws
everything you see, it paints italics, bold, and underlined text the same way it draws
landscapes and animates figures. To the Macintosh, everything is a picture.

The one-to-one relationship between memory bits and display pixels is impor
tant to understand. But don't make the common mistake of thinking that bits and
pixels are one and the same. They are two very different items. A memory bit is
an electrical charge in a circuit somewhere in the RAM belly of your Mac. A pixel
is a point of light, something you see on screen. The computer reads memory bits
to know which points to turn on.

The difference might seem trivial on computers such as the Macintosh where
pixels directly correspond with bits in memory. But it becomes even more impor
tant on color displays where many bits specify the color of individual pixels, no
longer a one-to-one relationship. For example, the Macintosh H's video display
stores color values in single bytes, using up to eight bits per visible pixel. By
understanding now that bits and pixels are not necessarily equivalent, you'll find
programming such displays easier in the future.

Another peculiarity you should know about is the way the black and white
Macintosh interprets 0 bits as white pixels and 1 bits as black. This is opposite from
usual graphics displays where 1 bits stand for white pixels. Many people see the
Macintosh as behaving backwards in this department although, logically speak
ir -:, the Macintosh and traditional displays are the same-both interpret a 1 bit
as significant, the value that produces something to see. Remember that it's what
you see on the Macintosh that's different-usually black images on white
backgrounds. As stored in memory, the images are no different than on most
graphics computer displays.

Turtle Graphics vs. QuickDraw ~ 57

TURTLE GRAPHICS

Seymour Papert and MIT coworkers invented Turtle Graphics in the late 1970s
as a way to teach coordinate geometry to young people. By placing a turtle-like
robot on a large sheet of paper, attaching a pen to the turtle's tail, and whizzing
the little creature off in one direction or another, Papert discovered that complex
patterns were easy to draw with only simple commands. Basically, there are four
command types in the Turtle Graphics set:

PenDown-Put the pen down to start drawing
PenUp-Pull up the pen to stop drawing

Tum-Turn by a certain amount
Move-Move a certain distance

Variations on these commands turn the turtle to specific angles or move it to
XY coordinates. Still other variations interrogate the turtle to get its current loca
tion and heading. To draw a box with such commands, you simply put the pen
down and execute the following statements using a Pascal FOR loop:

Pen Down;
FOR side:= 1TO4 DO
BEGIN

Move(50);
Turn< 90 >

END;

The most interesting fact about algorithms like this is that they work anywhere
on the floor-or on the computer screen. You don't need to initialize variables or
specify XY coordinates or line endings. You simply place the turtle at any loca
tion and tell it to move and turn until it draws a box.

Even more important, Turtle Graphics helps you to visualize what you want
to draw. Instead of pondering formulas and mathematical equations, you envi
sion the processes that make images. After all, what could be simpler than imagining
a turtle scooting around leaving trails behind?

Of course, Turbo Pascal's turtle is a phantom. You never actually see the
creature; you see only its trails. Some other languages that have Turtle Graphics,
most notably Logo, do show a turtle figure, but not Turbo.

A STAR IS BORN

Turtle Graphics commands come packed inside a unit-a collection of precom
piled routines and other definitions. There are commands to send the turtle to

58 ==: Programming with Macintosh Turbo Pascal

specific locations, change its heading, clear the display, and so on. To use the com
mands, you tell Turbo to add the unit to your program.

Listing 3.1 demonstrates how to use the Turtle unit. It draws a five-point star
in the center of a window, the same dumb-terminal from Chapter 2. Although this
is a very simple example containing only 47 lines, it explains several features you
will include in most of your own Turtle Graphics programs.

Type in the listing, save as STAR.PAS, and compile to memory. When you run
it, you see a star in the center of the screen. Click the mouse button to end the
program and return to Turbo.

Listing 3.1. STAR.PAS

1 ($0 Programs:Turtle.F:
2
3
4 PROGRAM Star;
5
6 (*
7

{ Send compiled code to here

8 * PURPOSE Draw a five-point star
9 * SYSTEM Macintosh I Turbo Pascal

10 * AUTHOR Tom Swan
11
12 *)

13
14
15 USES
16
17 MemTypes, QuickDraw, OSintf, Toolintf, Turtle;
18
19
20 CONST
21
22 Distance = 160;
23
24
25 VAR
26
27
28
29

side INTEGER;

30 BEGIN
31 Home;
32
33
34
35
36
37
38
39
40

PenUp;
SetHeading(216);
Forwd(Distance DIV 2);

SetHeading(18);
PenDown;
FOR side := 1 TO 5 DO

BEGIN
41 Forwd (Distance) ;
42 TurnRight (144)
43 END; { for }
44
45
46

WHILE NOT Button DO { wait

47 END.

{ Center star in window }

{ Draw star }

{ Wait for mouse click }

Turtle Graphics vs. QuickDraw == 59

Star Play-by-Play

Line 1 directs the compiler to send its compiled code to the disk volume and
folder Programs: Turtle.F:. Create this folder with the Finder, or change line 1 if
you want to store the code file somewhere else. Whatever names you specify in this
output compiler directive, Turbo uses them only when you compile to disk. It ig
nores line 1 when you compile directly to memory.

The USES clause in lines 15-17 tells Pascal to add the interfaces from five units,
MemTypes, QuickDraw, OSintf, Toollntf, and Turtle. Turtle (the name of the Tur
tle Graphics unit) always comes after the preceding four names. You can use other
units in Turtle Graphics programs-PasPrinter, for example, if you want to print
text-but Turtle always follows the other four as shown here. The reason for this
is that the Turtle unit itself uses the definitions in the other units. For example,
to draw a line, Turtle routines such as Forwd call line drawing procedures in
QuickDraw. And QuickDraw in turn uses the definitions in MemTypes, and so on.

Having told Pascal to include various units, you can then use their commands,
constants, data types, and variables. For example, line 31 homes the turtle, send
ing it to the center of the window at coordinate (0,0) and turning it to face up
(angle= 0). If you take out the Turtle unit from the USES clause in line 17, the pro
gram would no longer compile because Home is not a command Pascal normally
recognizes. It exists only in the Turtle unit.

To see the effect of Home, remove it and rerun the program. What happens?
What does the result tell you? Removing commands this way is an excellent method
to discover for yourself the effects they have. If you don't fully understand a se
quence, take it out and observe what happens. Often, this simple debugging tech
nique solves more mysteries than any other. But instead of erasing commands, and
then having to retype them or reload the original file from disk, you can "com
ment them out," meaning you turn them into a comment. For example, to com
ment out line 31, change it to this:

(*Home;*)

I point this out to show you another small trick I use often. When I comment
out a section of code, I always use the comment symbols (* and *). For normal
comments (except for the program header) I use the alternate braces { and}. For
examples, see lines 35, 39, and 45. Each of these lines ends, by my convention of
using braces, in a regular comment. To comment such lines out, you could write
(* in line 32 and *) in 36. Because they use two different kinds of brackets, the
comments do not conflict with each other, an example of nested comments-one
comment inside the other. This would not work if you used the same symbols, either
(* and *) or { and } in both cases.

Lines 33-35 pull up the turtle's tail, set its heading to 216 degrees, and move
it forward half the Distance constant value of 160, centering the star in the win
dow. Lines 37-38 initialize the turtle's heading and put its pen down so that, when

60 == Programming with Macintosh Turbo Pascal

it moves, it draws a line. Then the FOR loop (39-43) moves the turtle forward by
a certain distance and turns it by 144 degrees (42) each time through the loop, draw
ing a star.

Notice that, except for the number of loops and the angle, the algorithm for
drawing stars is no different from drawing boxes. It takes more steps (five instead
of four) but it takes no additional statements to draw these two very different ob
jects. This is typical of Turtle Graphics programs-a minimum number of pro
gram steps plus a curious ability to draw very different patterns using similar
commands.

The final statement in Listing 3.1 uses the Toolbox Event Manager function
Button to wait for you to click the mouse before the program ends. You activated
the Button function, plus a few dozen other routines, by including the Toollntf
(Toolbox Interface) unit in the USES clause at line 17. You could put a Readln state
ment here in place of Button as you did in the textbook examples in Chapter 2,
but then you'd see a flashing cursor on display along with the star. Using Button
avoids displaying the cursor.

THE TWIRLING TURTLE

The next example, TWIRL.PAS in Listing 3.2, shows off Turtle Graphic's speed
and takes advantage of the observation that a small number of similar steps can
produce a variety of patterns. Type in the program the same way you typed in
STAR.PAS. Compile to memory or to a disk code file.

When you run Twirl, read the brief introduction and click the mouse to begin.
To stop the display and return to the Turbo editor, press the Return key (or any
other key). Your only other job is to watch.

l ($0 Programs:Turtle.F: }
2
3
4 PROGRAM Twirl;
5
6 (*
7

Listing 3.2. TWIRL.PAS

I Send compiled code to here }

8 * PURPOSE : Animated TurtleGraphics display
9 * SYSTEM : Macintosh I Turbo Pascal

10 * AUTHOR ; Tom Swan
11
12 *}
13
14
15 USES
16
17 MemTypes, QuickDraw, OSintf, Toolintf, Turtle;
18
19
20 VAR
21

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

Turtle Graphics vs. QuickDraw ::= 61

maxSides INTEGER;

PROCEDURE DrawPoly (·len : INTEGER) ;

Draw a polygon at the pen position with sides = len)

VAR

side INTEGER;

BEGIN
PenDown;
FOR side := 1 TO MaxSides DO
BEGIN

Forwd(len);
TurnRight(360 DIV MaxSides)

END; (for I
Pen Up

END; I DrawPoly

PROCEDURE Graphics;

Display patterns by calling Box with various parameters I

VAR

steps, distance

BEGIN
Clear;

INTEGER;

steps := 1 + (ABS(Random) MOD 100);
maxSides := 1 + (ABS(Random) MOD 12);
FOR distance := 10 TO 1000 DIV maxSides DO
BEGIN

DrawPoly(distance);
TurnRight(steps

END (for)
END; I Graphics)

BEGIN

Writeln('Twirl');
Writeln(•-----•);
Writeln;

Writeln('This program displays a variety of graphics patterns all');
Writeln('by rotating polygons around the screen center and');
Writeln('increasing the size and orientation of each shape until');
Writeln('the screen is full.');
Writeln;
Writeln('Press the Return key (or any other key) to stop the show.');
Writeln;
Write('Click the mouse button to begin •.• •);

WHILE NOT Button DO I nothing };

HideCursor;

WHILE NOT Keypressed DO Graphics

END.

62 == Programming with Macintosh Turbo Pascal

Twirl Play-by-Play

Procedure DrawPoly (26-42) uses the same algorithm to draw a many-sided
polygon as Star uses to draw stars. A FOR loop (36-40) repeats two statements,
Forwd and TumRight, the number of times global variable maxSides specifies. This
moves the turtle forward according to the value of len, the procedure's only
parameter. Notice that in line 39 the angle passed to TurnRight is (360 DIV max
Sides), roughly ensuring that the final line ends back at the starting place, closing
the shape. Of course, this works perfectly only for steps that divide evenly into 360.
And, as you can see by reading the procedure, I use the word polygon loosely. If
len equals 1, DrawPoly obviously does not draw a many-sided object. Also, values
like 7 and 19 don't produce closed shapes. But, as you see when you run Twirl,
there's no need to be so exacting in our definition of a polygon.

Notice also that DrawPoly puts the pen down when the procedure begins (35)
and then pulls it up just before ending (41). This is a good plan to follow when
designing your own graphics tools. If all routines leave the pen up, then you don't
have to worry at other times whether moving the turtle will draw a line. You know
it won't because all your tools cooperate, following guidelines you devise. On the
negative side, the two PenUp and PenDown commands might make programs run
more slowly, especially if they call DrawPoly many times.

The next procedure, Graphics (45-62), repeatedly calls DrawPcly, supplying
various parameters to change polygon sizes and shapes. By now, you've probably
run the program and seen the dramatic effect this has. The patterns twirl out at
you starting at the center of the window and expanding until the display is full.
Curves strangely appear even though the turtle draws only straight lines. And
remember, everything you see is drawn by the ForwdOen) statement at line 38. What
an amazing effect with such simple commands!

Line 54 shows how to clear the graphics window. Replace this line with the
dumb terminal ClearScreen command and see what happens. The reason this
doesn't work is that ClearScreen erases only text lines from the window. Always
use Clear to erase the entire Turtle Graphics window out to the borders.

To randomly change the patterns, lines 55 and 56 set variables steps and max
Sides to values selected at random by the QuickDraw toolset Random function,
which returns an unpredictable value from the range -32,767 to +32,767. To keep
steps and maxSides within a particular range, the program uses the typical approach
of adding a minimum value (1 in line 56) to the value of Random modulo 12 (mean
ing the remainder after dividing by 12). But don't use this common formula:

n :=Low+ (Random MOD High);

On many computers, that sets n to an unpredictable value ranging from Low
to High. But, because QuickDraw's Random returns negative as well as positive
values, if Low= 1 and High= 100 in the above formula, n could be any value from
-98 to 100, not at all what you might expect. To get positive values only, pass the

Turtle Graphics vs. QuickDraw == 63

value of Random to function ABS (absolute value) as in lines 55 and 56. This forces
Random to return only positive numbers from 0 to 32,767.

Similar to the way STAR.PAS ends, line 80 waits for you to click the mouse
button. Unlike STAR.PAS, where clicking the mouse ends the program, this starts
Twirl's action but also causes the arrow cursor to appear. Therefore, line 82 hides
the cursor with a call to the QuickDraw HideCursor procedure. To redisplay the
arrow, call ShowCursor. If you do that, be aware that HideCursor counts the
number of times you call it. Before the cursor reappears, you must call ShowCur
sor an equal number of times.

Just to be different, line 84 uses Turbo's Keypressed function to end Twirl by
pressing a key. If you would prefer clicking the mouse to end, replace line 84 with
this:

WHILE NOT Button DO Graphics;

What happens when you do that? The answer is nothing, at least unless you're
the fastest clicker in the land. When you click the mouse to start the program, line
84 executes before you can possibly release the mouse button and the program ends
without displaying anything. One solution to this predicament is to wait for a release
of the mouse button before starting the graphics display. To do that, insert this
statement at line 81:

WHILE Button DO {wait for release};

Unfortunately, when you try this, you discover yet another problem. (Terrible
how problems like these propagate, isn't it?) Now, when you click the mouse the
first time, the program runs but, when you click it again, it doesn't end. (If you
can't figure out how to end the program, hold the mouse button down between
graphics frames-that should return you to Turbo.)

This demonstrates that programs don't see mouse clicks in the same way they
see keypresses, an important distinction to remember. Keypresses go into a type
ahead memory area, or buffer, so that programs can check at any time whether
you typed something earlier. Mouse clicks don't go into buffers. Instead, you have
to sense them in real time. If the program doesn't check for a mouse click at the
time that someone holds down the button, you can click all day and it won't have
any effect. How can we solve this problem?

The solution is to check for mouse clicks inside the most time consuming loop
in the program, the FOR loop at lines 57-61. If the program senses a mouse click
there, it can call Turbo's Exit command to end the current procedure, jumping out
of the FOR loop and letting the modified line 84 end when it senses the mouse
button down. To make this change, insert the following IF statement between lines
58 and 59:

IF Button THEN Exit;

64 == Programming with Macintosh Turbo Pascal

Solving problems by backtracking this way and revising previously correct pro
cedures goes by the technical term stepwise refinement. In other words, after get
ting the program steps working the way you want, you may find it necessary to
refine those steps to handle unforeseen situations that later arise.

QUICKDRAW GRAPHICS

The previous examples use Turbo Pascal's textbook interface, displaying
everything in the dumb terminal window, which automatically appears when you
compile and run programs. But you can also write graphics programs that draw
directly on the Macintosh screen. Not only does this do away with Turbo's fixed
window, it opens all QuickDraw routines and features to you and to your programs.

You pay for this newfound ability with added complexity. To fully use
QuickDraw and other Macintosh toolsets requires you to follow certain rules and
regulations. No longer can you write a simple program to draw lines by moving
the turtle around. Instead, you have to initialize QuickDraw and tell it where you
want it to draw (usually, but not always, the display). Then you can start drawing.

To make these added steps easier, it helps to have a shell-a do-nothing pro
gram that outlines the common steps most programs require. When you start a
new program, you begin with a copy of the shell to which you add your own pro
cedures, functions, and other declarations. The next section develops such a shell
and then lists several examples that use it. To understand how it works, though,
you first need to learn about the Macintosh coordinate system and a few QuickDraw
data types.

Above the Coordinate Plane

If you've programmed other graphics computers, you'll find the Macintosh
way a little different. The visible display is a mere chip off the entire coordinate
block (more correctly called a plane) in which drawing occurs. You might think
of the display as a sort of window (not the Macintosh kind of window) that sits
above the plane and through which you view small sections of the entire surface.
The full plane is 65,535 points wide and deep for a total of 4,294,836,225 (65,535
x 65,535) points, every one available to you and your graphics programs.

Although large, the entire coordinate grid is not just sitting there in memory
waiting for you to use one section or another. The plane is only a logical area into
which you can draw shapes and other objects. If the entire plane were physically
in memory, it would occupy over 500 million bytes-somewhat larger than the
typical Macintosh holds.

You locate each coordinate point on this logical grid with two integers in the
range - 32, 767 to + 32, 767. (Astute programmers will realize there is a missing
negative value, -32,768, in this 16-bit integer range. Even though this is a legal

-32,767

0

+32,767

Turtle Graphics vs. QuickDraw == 65

0 ------- +32,767

Coordinate
Plane

0

0

Figure 3.1 QuickDraw's coordinate plane is 65,535 pixels
square with values ranging from -32,767 to +32,767 in both
the vertical and horizontal axes.

integer, it's outside of QuickDraw's coordinate range.) As Figure 3.1 shows, negative
values are to the top and. left while positive values are to the bottom and right.
Coordinate (0,0) is at dead center. On the horizontal axis, values follow the usual
mathematics convention of putting negative X values to the left of zero and positives
to the right. But on the vertical axis, values are opposite to mathematical conven
tion, with negative values above zero and positive values below. (Figure 3.2 lists
a Pascal function that converts Macintosh vertical coordinate values to standard
mathematics convention.)

Because the Macintosh coordinate plane doesn't follow standard X;f nota
tion, it's best to label horizontal and vertical axes H and V rather than X and Y.

FUNCTION InvertV(v : INTEGER) : INTEGER;

Invert vertical coordinate component v to convert Macintosh
coordinates to standard mathematical convention I

BEGIN
InvertV := 65536 - v

END; { InvertV }

Figure 3.2 Use this function to convert vertical coordinate
values to standard mathematics convention where positive
values are above zero and negative ones below-exactly the op
posite in QuickDraw graphics.

66 = Programming with Macintosh Turbo Pascal

Whenever examples in this book use H and V, or variations like Hl and vMax,
you know they refer to points on the Macintosh coordinate plane.

Each coordinate point (HY) is infinitely small-not a play on words, and not
a reference to the fact that Macintosh pixels are tiny, as some people mistakenly
assume. Points on the coordinate grid do not coincide directly with pixels on the
screen. If you keep that simple fact in mind, you'll understand more than many
people do about QuickDraw graphics.

Figure 3.3 shows why this is important. The figure represents a 4 x 5 section
of the Macintosh coordinate grid containing four black pixels (the shaded cells).
Notice that the coordinate values along the horizontal and vertical axes refer to
the grid lines-not to the pixel columns and rows as they do on many other com
puter graphics screens. The leftmost shaded pixel is below and to the right of coor
dinate point (1,2) as marked by the arrow in the figure. The bottom shaded pixel
has its top left corner at coordinate point (2,3).

This organization makes certain operations more logical than if coordinate
values marked columns and rows instead of grid axes. For example, imagine a rec-

0 1 2 3 4
0

1

2

3

4

5

Figure 3.3 QuickDraw coordinates rest on the divi
sions between pixels, not on the rows and columns
as in conventional computer graphics. As the arrow
indicates, a pixel's coordinate locates its top left
corner.

Turtle Graphics vs. QuickDraw == 67

tangle around the four shaded pixels in Figure 3.3. How wide is it? How tall? Of
course, the answer is three pixels. Now, if you write down the coordinate points
of that rectangle's four corners, you see an interesting fact.

(1,1)-Top left
(4,1)-Top right

(1,4)-Bottom left

(4,4)-Bottom right

Notice that subtracting the left and right coordinate values (4 - 1) gives 3,
the width of the rectangle in pixels. Likewise, subtracting the top from the bottom
value also gives 3. This observation leads to a rule, one of the most important in
Macintosh graphics programming: Subtracting two coordinate points tells you how
many pixels lie between those points.

As a result, you don't have to use formulas such as 1 + (right - left) to
calculate object widths, as many computers require. To find the length of a line,
you merely subtract its endpoint coordinate values, avoiding a common confusion
that Inside Macintosh aptly calls "endpoint paranoia." An interesting side effect
of this coordinate system is that you can specify zero-width objects. If two points
have the same coordinates, there are no pixels between them. On a conventional
system, there is one visible pixel at two points having the same coordinates even
though subtracting the two vertical or horizontal coordinate values gives zero-a
confusing contradiction the Macintosh neatly avoids.

Points and Rectangles

Two QuickDraw data types, Point and Rect, specify points and rectangular
areas on the Macintosh coordinate plane. Figure 3.4 shows how QuickDraw defines
these two record types.

VHSelect is an enumerated type with two components, V and H, representing
vertical and horizontal axes values. Point is a variant record with two possible con
figurations, an example of a free union. The integers 0 and 1 (directly under
RECORD) tell Pascal to treat the record fields either as two integers with the labels
v and h (CASE 0) or as an array of integers indexed by type VHSelect (CASE 1).
(If you read Inside Macintosh, you'll see that VHSelect's components V and H
are in lowercase. I use uppercase for these enumerated elements to distinguish them
from the lowercase v and h integer fields in the Point record type. This follows the
general rule in this book that variables start with lowercase letters while types and
constants start with capitals.)

Point's free union structure specifies coordinate points two ways: either as
separate h and v values or as an array of two integers indexed by VHSelect iden
tifiers H and V. If you have a variable Any Point of type Point, you can use the
following statements to assign coordinate (100,50) to it:

68 ;;;;;;;;;;;;: Programming with Macintosh Turbo Pascal

TYPE

VHSelect = (v, H);

Point =
RECORD CASE INTEGER OF

0 : (v INTEGER;
h INTEGER) ;

1 : (vh ARRAY[VHSelect] OF INTEGER)

END; Point)

Rect =
RECORD CASE INTEGER OF

0 : (top INTEGER;
left INTEGER;
bottom INTEGER;
right INTEGER) ;

1 : (topLeft Point;
botRight Point

END; { Re ct }

Figure 3.4 QuickDraw defines Point and Rect data
types as free-union, variant records, allowing
many ways to describe points and rectangles on
screen.

AnyPoint.h := 100;
AnyPoint.v :=50;

Or, you could do the same thing with the vh array like this:

AnyPoint.vh[HJ:= 100;
AnyPoint.vh[VJ:= 50;

It may seem useless to have two different ways to specify points but there's
a good reason for the vh array even though two array index operations appear ex
cessive merely to assign two integers. Usually, you'll use the prior method and assign
values to the v and h integer fields. But with the vh array, you can use a variable
as the index and let the program logic decide whether to affect a horizontal or a
vertical component. For example, you might have the procedure in Figure 3.5a.

The first procedure (Figure 3.5a) adds amount to the vh array field, using
parameter select as an index and, therefore, selecting either the horizontal or the
vertical component-without the procedure itself knowing in advance to which
component it adds amount. The second procedure (Figure 3.5b) adds amount to
the v or h integer fields but, in this case, an IF statement decides which addition
to make.

Although these examples are not necessarily ideal ways to add values to coor-

Turtle Graphics vs. QuickDraw :=: 69

PROCEDURE MovePointl(VAR p : Point;
select : VHSelect; amount : INTEGER)

BEGIN
p.vh[select I := p.vh[select] + amount

END; (MovePoint }

(a)

PROCEDURE MovePoint2(VAR p : Point;
select : VHSelect; amount : INTEGER);

BEGIN
IF select = v

THEN p.v := p.v + amount
ELSE p.h :D p.h + amount

END; (MovePoint }

(b)

Figure 3.5 Although the two procedures do the
same job, MovePointt (a) uses array indexing to
assign coordinate values to point p rather than
record field designations as in MovePoint 2 (b).

dinates, they demonstrate what many programmers often forget: one or two array
index operations like p.vh[select] in some circumstances may be more efficient than
two or four record field specifications like p.v and p.h.

Another variant record, Rect (see Figure 3.4), defines a rectangular area on
screen. Rectangles figure in many QuickDraw operations. You'll use them to draw
various shapes-not only rectangular ones-and to define regions, which specify
arbitrarily shaped portions of the visible display. You'll use them also to define
the size and location of Macintosh windows.

Rectangles are never visible on their own. Because their borders lie on infinitely
thin axes grid lines, they merely define areas on the coordinate plane. You can fill
rectangles with patterns, outline them, and use them to draw circles and arcs. The
rectangles define only where and how large such shapes are to be-they have no
visible pattern themselves.

The Rect data type is a free union, similar in that way to Point. As Figure 3.4
shows, there are two ways to assign and use its fields. The first way (CASE 0) offers
four integer variables: top, left, bottom, and right, marking the coordinate points
of the top-left and bottom-right rectangle corners. Alternatively, you can assign
Point records to fields topl.eft and botRight (CASE 1). This is useful when you
already have two coordinate points and you want to use them to define a rectangle,
perhaps as the result of someone clicking the mouse at two screen locations. A
third way to assign rectangle fields is to call the QuickDraw procedure SetRect.
As an example of these methods, the following statements define a rectangle r en
compassing the entire grid in Figure 3.3.

r.top := O; r. Left:= O;
r.bottom := 5; r.right := 4;

70 = Programming with Macintosh Turbo Pascal

You could do the same thing by assigning values to Point fields topl..eft and
botRight this way:

r.topleft.v := O; r.topleft.h := O;
r.botRight.v := 5; r.botRight.h := 4;

As you can see, such assignments are confusingly complex. For extra clarity,
call procedure SetRect as follows.

SetRect(r, 0, 0, 4, 5 >; {Left, Top, Right, Bottom}

Although this looks neater, you might think it to be less efficient than the other
direct assignments to rectangle fields. In fact, there is so little difference between
the methods, the best plan is to use SetRect-it makes your programs more readable.

Always remember that Rect variables can enclose exactly one pixel. For exam
ple, a Rect with topl..eft = (1,2) and botRight = (2,3) encloses the single leftmost
shaded pixel in Figure 3.3. Similarly, you can have empty rectangles that enclose
no bits. A Rect value with topLeft = (3,5) and botl..eft = (3,5) is a legitimate con
struction but has no width or height. These are important concepts to keep in mind.

By the way, some people have trouble remembering SetRect's parameter order:
Left, Top, Right, and Bottom. This is confusing especially because Rect's fields
are in the more natural sequence: Top, Left, Bottom, and Right. Having mixed up
these parameters too many times, I finally remembered the correct order with the
help of a mental trick. It may seem silly but there's a famous brewery town in our
state where they make a favorite beer, Rolling Rock. The town's name happens to
be Latrobe (LTRB, get it?) and that's the way I remember SetRect's parameter order.
I can't imagine why I chose this particular mnemonic late one night. I must have
been thirsty.

A GRAPHICS SHELL

All QuickDraw routines draw in something called a GrafPort-a complex
record that keeps track of various parameters affecting what you see on screen
and often a lot of things you don't see. Of the GrafPort's 25 fields, you'll rarely
need to use more than one or two. For most operations, you'll call QuickDraw
routines that properly assign and use GrafPort field values. You won't assign those
values yourself. (The complete definition for GrafPort is in the Guide and Inside
Macintosh.)

Listing 3.3 is a shell that you can use for most QuickDraw graphics programs.
It properly initializes a GrafPort, erases the screen to a black background, and draws
a white border around the outer edges. Although this is contrary to the usual Macin
tosh black on white display, it's a popular format-especially for games and other
graphics programs. Type in the listing and save as GRAPHSHELL.PAS. As in the
other examples, change line I to compile to different volume and folder names.
When you run the program, it waits for you to click the mouse button-but it
doesn't do anything except outline the screen.

Turtle Graphics vs. QuickDraw == 71

Listing 3.3. GRAPHSHELL.PAS

1: {$0 Programs:Graphics.F:
2: {$U-}
3:
4:
5: PROGRAM GraphShell;
6:
7: {*
8:

Send compiled code to here
Turn off standard library units

9: * PURPOSE
10: * SYSTEM
11: * AUTHOR

QuickDraw graphics shell
Macintosh I Turbo Pascal

12:
13: *)

14:
15: USES
16:

Tom Swan

17: Memtypes, QuickDraw, OSintf, Toolintf;
18:
19:
20: VAR
21:
22:
23:
24:

gPort GrafPort;

25: PROCEDURE SetupScreen;
26:
27: Initialize display for upcoming graphics l
28:
29: VAR
30:
31: r Rect;
32:
33: BEGIN
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

OpenPort(@gPort);
r := gPort.portRect;
PenPat(Black);
PaintRect (r) ;
PenPat(White);
FrameRect(r);
InsetRect(r, 1, 1);
ClipRect(r)

END; (SetupScreen }

45: PROCEDURE DoGraphics;
46:

Qpen new graphics port }
Copy portRect to temporary variable }
Select drawing color }
Fill screen with black }
Select white drawing color
Draw border around display
Preserve a 1-pixel border }
Clip to within this region }

47: Fill in with your own graphics routines }
48:
49: BEGIN
50: REPEAT
51:
52:
53:

(insert QuickDraw commands here l

54:
55:
56:
57:

UNTIL Button
END; I DoGraphics

58: BEGIN
59: InitGraf(@thePort);
60: InitFonts;
61: InitCursor;
62: HideCursor;
63: FlushEvents(everyEvent, 0);
64: SetupScreen;
65: DoGraphics
66: END.

Initialize Quickdraw }
Initialize Font manager
Make sure cursor level = 0
Make cursor invisible }
Erase any pending events
Initialize display }
Draw whatever you want }

72 = Programming with Macintosh Turbo Pascal

GraphShell Play-by-Play

Line 2 turns off Turbo's standard library units, automatically used by textbook
style programs. Because of this, GraphShell specifies four toolbox units, Memtypes,
QuickDraw, OSintf, Toollntf (17). Usually, these four are the minimum you need
to write QuickDraw graphics programs. Memtypes defines a few standard data types
but contains no code or calls to ROM routines as do most units. QuickDraw, of
course, defines the Macintosh drawing procedures, functions, data types, and
variables. OSintf is the operating system interface. It handles memory manage
ment, 1/0 operations, device drivers, and other low-level jobs. Although it con
tains many definitions you'll rarely if ever use, you still must include it. Contrasting
OSintf is the fourth unit, Toollntf, which contains routines that you'll probably
use more often than many others. Although this chapter uses only a few Toollntf
commands, later examples rely heavily on this toolset to display and manipulate
windows.

Line 22 defines a single variable gPort of type Graf Port. Because this creates
the port as a global variable in the program, it permanently takes up space above
the stack-as do all global variables, which are located in memory specifically set
aside for this purpose. Another way to create a GrafPort is to put it on the heap,
the memory area where programs create dynamic structures, meaning those that
it creates when the program runs as opposed to those that you create when you
write the program.

Figure 3.6 lists a function, MakeGrafPort, that you can use to create new Graf
Ports on the heap. Notice that it returns a pointer to a GrafPort (of type GrafPtr)
not a Graf Port record. This pointer holds the address of the Graf Port record that
the function creates on the memory heap.

One danger of using MakeGrafPort is that it might fragment the heap, a con
dition that leaves holes in memory between other objects. Those holes can cause
programs to run out of memory if they need to create memory areas bigger than
the largest available hole. This is an especially critical condition on the Macintosh
where desk accessories and toolbox routines compete with your program for
memory. Later, we'll see how to prevent this problem.

To modify Listing 3.3 to use the MakeGrafPort, insert the function into
GraphShell at line 23 and change three other lines to read as follows:

22 gPort: GrafPtr;
34 gPort := MakeGrafPort;
35 r := gPortA.portRect;

In programs that reference gPort as a variable, add a caret ('')as shown in
modified line 35. Doing this is called "dereferencing the pointer," meaning that
you tell Pascal to use not the address stored in pointer gPort, but the object to which
it points-in this case, a GrafPort record on the heap. If you're unclear about do
ing this, read a Pascal tutorial's chapter on using pointers.

Turtle Graphics vs. QuickDraw == 73

FUNCTION MakeGrafPort : GrafPtr;

{ Create a GrafPort variable on the heap and return its address
as the function result.)

VAR

tempPtr : GrafPtr;

BEGIN
tempPtr := GrafPtr(NewPtr(SIZEOF(GrafPort)));
OpenPort(tempPtr);
MakeGrafPort := tempPtr

END; { MakeGrafPort)

Figure 3.6 Use this function to create GrafPorts on the heap
rather than as variables on the stack.

If you decide to create a global variable GrafPort as in Listing 3.3, the only
disadvantage is a limit of about 32K for all program globals combined. Because
Graf Ports take up only 108 bytes, though, a few of them permanently in memory
aren't likely to cause severe shortages.

SetupScreen {25-42}

Continuing with GraphShell (Listing 3.3), procedure SetupScreen initializes
the graphics display, erases it to a black background, and draws a white border.
SetupScreen calls seven QuickDraw procedures-ones you'll undoubtedly use fre
quently in your own programs.

Even though you created the GrafPort variable (either as a global variable or
on the heap), you need to initialize it. OpenPort (34) does this by setting the Graf
Port fields to default values and by creating a few other internal structures that
QuickDraw uses to keep track of the clipping and visible regions (clipRgn and
visRgn fields in GrafPort). You never need to access these items directly, but you
should be aware of their existence. The clipping region defines a boundary around
which no drawing appears. If you tell QuickDraw to draw outside of this area, it
automatically clips the lines (and other shapes) at the boundaries. The visible region
is used mostly by windows to keep track of visible and hidden portions behind other
windows on top. Because these structures are regions and not rectangles, they can
have any size and shape within the confines of the Macintosh coordinate system.
It is difficult and even unwise to manipulate regions in Pascal programs and, for
that reason, you should let QuickDraw handle them on its own.

Line 36 of GraphShell calls PenPat to set the drawing pattern for subsequent
QuickDraw commands. Patterns are small, eight-byte objects, which Pascal defines
as follows.

TYPE
Pattern= PACKED ARRAY[0 •• 7 l OF 0 •• 255;

74 ~ Programming with Macintosh Turbo Pascal

• White D
• Black

Ill Gray

1111 LtGray

Ill OkGray

Figure 3.7 QuickDraw's five standard 8 x 8 pen
patterns on the left paint the shades on the right.

This makes a 64-bit object which QuickDraw uses for all drawing operations.
Figure 3.7 illustrates five of these, defined as global variables in the QuickDraw
unit. The boxes on the left are blow-ups of the pixel arrangements that produce
the standard shades on the right. You can also create your own patterns by setting
the bytes in a Pattern variable any way you like and then passing that variable to
PenPat or to any other QuickDraw routine that takes a Pattern as a parameter.

After setting PenPat to Black, PaintRect (37) erases the display, filling it with

Turtle Graphics vs. QuickDraw :::::::::; 75

black bits. Next, another call to PenPat (38) returns to the default pattern, White.
Calling FrameRect (39) then draws a white border around the display area.

To preserve this border, lines 40-41 reduce rectangle r by one pixel in from each
border (reducing also both the width and height of the display by two). First line
40 calls lnsetRect, which subtracts one from its left and right borders, and one from
the top and bottom. You can use lnsetRect also to expand rectangles. For example,

InsetRect(r, -5, -10);

increases rectangle r's width by 10 and its height by 20 pixels. After changing a rec
tangle, you can then restrict drawing to within its borders by passing it to procedure
ClipRect, as line 41 does. By doing this, GraphShell protects the white outline from
overdrawing by other commands.

DoGraphics {45-55)

As you can see in the listing, DoGraphics simply waits for you to press the
mouse button. It does this only so you can see what GraphShell does-admittedly
not much on its own. Line 52 shows where to insert QuickDraw routines to display
graphics. After describing the rest of the shell, I'lt explain in more detail how to
do that.

GrafShell Body {58-65}

Before using the QuickDraw toolset, you must initialize it. Line 59 does this
by calling InitGraf, passing the address of thePort, a GrafPtr pointer to a Graf
Port record. This GrafPort tells QuickDraw routines how and where to draw shapes,
lines, patterns, text and other patterns. It defines the characteristics of visible
graphics as well as the lower-level details of where in memory drawing takes place.
GrafPorts limit QuickDraw's view into memory the way a ship's porthole limits
a sailor's view onto the sea. As we proceed, I'll explain many of the details that
make up GrafPort records. But for now, all you need to know is that graphics pro
grams need one before they can do any drawing.

Line 34 in procedure SetupScreen opens gPort with a call to procedure Open
Port, which initializes the GrafPort's fields. This has no visible effect on the display
but serves only to prepare the port for subsequent drawing commands. Notice the
at-sign (@) in front of gPort in line 34. In Turbo Pascal, this means "pointer to,"
indicating that the statement OpenPort(@gPort) passes not the contents of the
gPort record but a pointer to its address in memory. You probably know that in
Pascal the caret (") also means "pointer to." But carets are strictly for defining
pointer data types as in:

TYPE
IntPointer ="INTEGER;

76 ==:: Programming with Macintosh Turbo Pascal

and for dereferencing pointers to variables on the heap as in:

VAR
iPtr: IntPointer;

BEGIN
iPtrA := 100

END.

To distinguish between these types of pointers and a variable's address, Turbo
Pascal uses an at-sign. This is typical in Macintosh programming. Many procedures
such as OpenPort, GetPort, and SetPort require pointers to GrafPort variables in
this way.

But, you might wonder, what is thePort (59)? It's not a variable in GrafShell
but rather a variable in QuickDraw, which defines thePort (TYPE GrafPtr) for
every program that uses the unit. This pointer locates the current Graf Port. Every
QuickDraw routine that doesn't take a GrafPtr parameter gets the information it
needs from thePort's fields. Lines, for example, always appear in thePort. Chang
ing text fonts affects text in thePort.

You change the current port by passing a different GrafPtr to QuickDraw's
SetPort routine. You also change it when you call OpenPort as in line 34, which
sets thePort to point to the shell's gPort variable (22) and initializes its fields. This
completes the initialization, sets up the port, and readies QuickDraw.

Line 60 initializes the Font Manager, required only if you are going to display
text. (It does no harm, however, to initialize it anyway.)

The next two lines (61-62) initialize the mouse pointer cursor and then im
mediately hide it from view. Even though the program hides the cursor, it still must
initialize it as in the listing. The reason for this is if someone manages to start a
program while the cursor is a shape other than the usual arrow-as sometimes hap
pens to super-fast clickers-when the program ends, it will redisplay the cursor as
that shape instead of an arrow. This may last only a few seconds but, if you want
an arrow to appear later, always initialize the cursor by calling InitCursor.

Line 63 calls FlushEvents to remove any waiting keypresses or mouse clicks
from an internal waiting area called the event queue. In this queue, which operates
as a list where items go in one end and come out the other like cars queuing up
at the gas pump, the Macintosh operating system inserts records that describe events
such as keypresses and mouse clicks. Programs receive and respond to these events
to update displays and perform other actions. Chapter 4 describes how to write
event-driven programs that cooperate with the operating system to move windows,
use desk accessories, and choose commands from pull-down menus. Here, we'll
use the event queue in a simpler fashion-perfectly allowable in pure graphics
programs.

Finally, lines 64-65 call the GraphShell's SetupScreen procedure and then
DoGraphics, displaying graphics with commands you insert between REPEAT and
UNTIL (50-54).

Turtle Graphics vs. QuickDraw == 77

Saving Graphics in MacPaint Files

To save your masterpiece graphics displays in MacPaint disk files, you need
to modify GraphShell (Listing 3.3). After making these modifications, pressing
Command-Shift-3 creates a MacPaint picture file of the screen. To make the
changes, insert the following DoGraphics routine at lines 45-55.

PROCEDURE DoGraphics;
VAR
theEvent: EventRecord;

BEGIN
REPEAT
{insert Qui ckDraw commands here}

UNTIL GetNextEvent(mDownMask+keyDownMask, theEvent)
END; { DoGraphi cs}

This new procedure works by calling GetNextEvent. The first parameter
specifically checks for mouse button and key presses in the event queue. The sec
ond parameter is the event record. (Chapter 4 explains what events are and how
to use them in programs.) This allows the operating system to recognize Command
Shift-3 as a command to create a MacPaint file containing the screen contents and
still let you end graphics programs by clicking the mouse.

PENS AND LINES

For most operations, QuickDraw uses an imaginary pen that touches the in
tersection of one point on the coordinate plane. You can move this pen to new loca
tions, tell QuickDraw to draw shapes there, and set various parameters that change
the way the pen works.

Two routines examine and change the PenState, a data type that describes the
current pen. Use GetPenState to examine the pen's settings and SetPenState to
change them. Figure 3.8 shows the four fields in a PenState record, which these
routines take as a parameter. Field pnLoc, a Point record, is the location of the

TYPE

PenState =
RECORD

pnLoc Point;
pnSize Point;
pnMode INTEGER;
pnPat Pattern

END; (PenState }

(Pen coordinate (h,v) }
(Pen width (h) and height (v) }
(Bit transfer (display) mode }
(Drawing pattern to use }

Figure 3.8 The drawing pen has four distinguishing character
istics, stored in a QuickDraw PenState record with this structure.

78 == Programming with Macintosh Turbo Pascal

pen on the coordinate plane. In GraphShell, the pen starts at location (0,0), usual
ly the top left corner of the visible screen. The pnSize field describes the width
and height of the pen in pixels. The h component of pnSize equals the width; the
v component equals the height. (Don't mistake h [horizontal] for the pen height!)

When changing pen parameters, you have two choices. You can use routines
in Table 3.1 to modify various settings, or you can store parameters in a PenState
record and pass them to SetPenState. Probably, it's best to use routines like Pen
Mode and PenSize rather than storing directly into PenState fields. Most of the
time, you'll use GetPenState and SetPenState to save and restore a pen's configura
tion as in this fragment:

VAR
pnState PenState;

BEGIN
GetPenState(pnState);

{ ••• routines that change
the current pen state •.. }

SetPenState(pnState)
END;

Drawing lines and dots is easy with Line, LineTo, Move, and MoveTo routines
(see Table 3.1). A few examples help clarify how they work. Use a copy of GraphShell
(Listing 3.3) and insert the new procedure from Figure 3.9 in place of DoGraphics
(45-55). When you run the program, you see two lines crossing from corner to cor
ner of the display.

Table 3.1 QuickDraw's line and pen tools.

PROCEDURE GetPen(VAR pt : Point);

PROCEDURE GetPenState(VAR pnState : PenState);

PROCEDURE Line(dh, dv : INTEGER);

PROCEDURE LineTo(h, v INTEGER);

PROCEDURE Move(dh, dv INTEGER);

PROCEDURE MoveTo(h, v INTEGER);

PROCEDURE PenMode(mode : INTEGER);

PROCEDURE PenNormal;

PROCEDURE PenPat(pat : Pattern);

PROCEDURE PenSize(width, height : INTEGER);

PROCEDURE SetPenState(pnState: PenState);

Turtle Graphics vs. QuickDraw ::= 79

PROCEDURE DoGraphics;

BEGIN

WITH screenBits.bounds DO
BEGIN

LineTo(right, bottom);
MoveTo(right, top);
LineTo(left, bottom)

END; (with I

REPEAT
UNTIL Button

END; I DoGraphics

Figure 3.9 Replace procedure DoGraphics in
Listing 3.3 with this programming to draw a sim
ple test pattern.

The WITH statement in this example uses QuickDraw's global screenBits
variable bounds rectangle to obtain the Macintosh screen boundary coordinates.
Whenever you need to determine the limits of the Macintosh screen, get them from
screenBits.bounds. Never assume that the screen is so many pixels wide or tall.
Otherwise, your programs won't work on different size screens likely to show up
in future models of the computer.

It takes three statements in Figure 3.9 to draw the two lines from corner to
corner. LineTo draws a line in the current pen pattern (white in this case) starting
from the pen's position and extending in a straight line to the bottom right corner
of the display. The pen automatically moves to this new location after drawing the
line. Similarly, MoveTo moves the pen but doesn't draw anything. The program uses
this technique to move the pen to new starting places, here the top right corner.
A second LineTo then finishes the drawing.

There's no restriction on the pen size. You can make it fat or skinny. It can
be a block or a rectangle of any practical dimension. To change the pen size, insert
this statement above the WITH statement in the new DoGraphics procedure:

PenSize(5, 5 >;

Run the new program and the lines are much heavier now that the pen is five
pixels wide and tall. Try other values. Change the width and height and observe
the effect. Try (25,25) to see a problem. The lines are no longer centered in the cor
ners. What makes them go askew?

Seeing this problem demonstrates something you should remember about the
pen. QuickDraw always draws as though the pen touched a rectangle's upper left
corner. The size of that rectangle is the size of the pen. As Figure 3.10 illustrates,
visible drawing effects (shown by the darkened squares) occur to the right and down
from the pen's (h,v) coordinate. Therefore, drawing with large pen sizes doesn't center
the lines at the pen point. Use the procedure in Figure 3.11 to fix the problem and

80 == Programming with Macintosh Turbo Pascal

Pen (h,v)

/
,;.1' ~'

I"·~~~ ,e:fiii
I :'.' F .;~;

CI ,E::'.~ [,~

Figure 3.10 The pen's ink flows down and to the
right of its coordinate (h ,v).

center lines by positioning them so they meet the corners dead center. Be sure you
understand how this works. Experiment with the values until you do. And always
remember where the pen is in relation to the lines it draws.

Besides moving the pen, you can use GetPen to find out its current location
(see Table 3.1). GetPen returns a Point record equal to the (h,v) coordinate of the
pen. You can also use other patterns by passing them to PenPat. Try adding one
of the following statements to DoGraphics:

PenPat (gray);
PenPat(LtGray);
PenPat (dkGray);

To see the effect, it helps to have a rather fat pen, maybe 15 or 20 pixels wide.
Even more interesting is to make up your own pen patterns. As you learned earlier,
a pattern is simply an array of eight byte values in the range 0 to 255 (Figure 3.7).
The values represent the bits that the pen ink draws in. Add a pen pattern p, an
integer variable i, plus these statements to DoGraphics before the WITH statement:

VAR
INTEGER;

p Pattern;

FOR i : = 1 TO 6 DO
p[i] :=145;

p[QJ := 255;
p[7] := 255;
PenPat(p);

In this and future fragments, I list only the necessary statements in order to
save space and avoid too many duplications. I assume that you know the VAR

Turtle Graphics vs. QuickDraw == 81

PROCEDURE DoGraphics;

Fill in with your own graphics routines)

CONST

width = 16;

BEGIN

PenSize(width, width);

WITH screenBits.bounds DO
BEGIN

LineTo(right, bottom - (width DIV 2));
MoveTo(right - width, top);
LineTo(left, bottom - width)

END; (with)

REPEAT
UNTIL Button

END; { DoGraphics

Figure 3.11 Change the pen size to draw fat or
skinny lines. Replace procedure DoGraphics in
Listing 3.3 with this programming for an example.

declaration goes in the procedure's VAR section. (You don't need to duplicate the
keyword VAR if the procedure already has one-I use it here merely for reference.)
I assume also that you know to add the statements to the body of the program.
If you have no trouble with this fragment, you'll have no trouble with others.

Figure 3.12 shows why you see crosshatches after designing your own Pattern

FF = 255

81 = 145

81 =145

81 = 145

81 =145

81 =145

81 =145

FF = 255

Figure 3.12 To design your own pen patterns, fill in squares
in an 8 x 8 grid and calculate the values each row represents
in hex , converting that number to decimal (the far right col
umn here).

82 ;;;;;;;;:: Programming with Macintosh Turbo Pascal

variable p. Each row of the pen pattern corresponds to a binary value, which in
turn corresponds to hex and integer equivalents as shown at the right of the Figure.
To draw in a custom pattern, simply insert these values into a Pattern array, pass
it to PenPat and start drawing.

DRAWING TEXT

One of QuickDraw's great features is its ability to draw text in as many dif
ferent fonts and styles as you can install in your System file. Just pick whatever
font you want and you can display characters in that style anywhere on screen.

Table 3.2 lists the major text procedures in QuickDraw. Use TextFont to select
a new font according to the partial list of constants in Table 3.3. If you try to use
a font that doesn't exist, nothing bad happens-QuickDraw simply ignores your
request.

To display text, insert the procedure in Figure 3.13 in a copy of GraphShell,
replacing procedure DoGraphics. This new procedure begins by setting the text mode
to notPatCopy. The text mode is the method by which QuickDraw copies bits to
the display. (For more information about this subject, see the heading Drawing

Table 3.2 QuickDraw's text tools.

FUNCTION CharWidth(ch : CHAR) INTEGER;

PROCEDURE DrawChar(ch : CHAR);

PROCEDURE Drawstring(s : Str255);

FUNCTION StringWidth(s : Str255) INTEGER;

PROCEDURE TextFace(face Style);

PROCEDURE TextFont(font INTEGER);

PROCEDURE TextMode(mode INTEGER);

PROCEDURE TextSize(size INTEGER);

Table 3.3 QuickDraw's font constants.

CONST

systemFont = 0 toronto = 9
applFont = 1 cairo = 11
newYork 2 losAngeles = 12
qeneva = 3 times = 20
monaco = 4 helvetica = 21
venice 5 courier = 22
london 6 symbol = 23
a thens = 7 taliesin = 24
sanFran = e

Turtle Graphics vs. QuickDraw == 83

PROCEDURE DoGraphics;

BEGIN
TextMode(notPatCopy);
MoveTo(50, 75);

Drawstring('Text and the single character');

REPEAT
UNTIL Button

END; I DoGraphics I

Figure 3.13 QuickDraw draws everything, even text
as this DoGraphics replacement procedure for
Listing 3.3 demonstrates.

Modes a little later in this chapter.) Here, the program changes the text mode to
force QuickDraw to display white characters on the graphics screen's black
background. You could display black on white characters by erasing the display
to white in procedure SetupScreen (change line 36 from Black to White). In that
case, you do not have to change text modes to display characters.

Try changing to different fonts by adding TextFont statements with one of the
constants from Table 3.3. Use systemFont to display characters in the style that
you normally see for menu bars, commands, and window titles. Usually, the system
Font is Chicago. Use applFont to display text in the style most programs use for
text inside windows, usually Geneva. Use Monaco for monospaced text that Tur
bo and most other program editors display.

You can also change point size, a phrase that refers to a typesetter's unit measure
for character height in 1/72-inch increments. Because pixels on the Macintosh are
very nearly as tall as a single point, text on display closely matches printed text
in the same point size. To display 18-point Helvetica, for example, you could write:

TextFont(helvetica >;
TextSize(18 >;

In addition to fonts and sizes, you can select among various styles by passing
a Style set to procedure TextFace. QuickDraw defines TYPE Style as in Figure 3.14.

You can use any combination (or none) of the Styleltem elements such as bold

TYPE

Styleitem = (bold, italic, underline, outline, shadow,
condense, extend};

Style = Set of Styleitem;

Figure 3.14 Text can have any of the seven Styleltems
shown here plus one-plain. Represent combinations of
styles as Style sets, for example, [bold, outline].

84 == Programming with Macintosh Turbo Pascal

and outline inside set brackets to change text styles. For example, add the next three
statements to DoGraphics (Figure 3.13) between MoveTo and Drawstring:

TextFontC systemFont >;
TextFaceC [outline, shadow, underline J >;
Text Si zeC 18);

One thing to remember about point sizes in QuickDraw is that some values
have corresponding bit patterns in the System file and others do not. For instance,
there might not be a 24-point NewYork font although there may be a 12-point size.
In that case, QuickDraw scales the nearest font size up or down in an attempt to
meet your request for a certain text size. Usually, the results are blocky and often
unreadable. Also, any point size smaller than 9 is probably too tiny to show clearly.

Two routines draw characters in the font, size, and style you choose. Figure
3.13 shows how to display entire strings or string variables with the DrawString
procedure. Similar to Drawstring is DrawChar, which draws a single character.

Because most fonts are proportional, different letters have different widths.
As a general rule, a capital M is probably the widest character and a lowercase 1
the thinnest, but not always. Combined with a variety of fonts, sizes, and styles,
it's often necessary to know just how much space a character or string occupies
on the graphics display.

To find out, use functions CharWidth and StringWidth to calculate the pixel
width of characters and strings. You can use this information to avoid running text
off the edge of the display-a harmless although poor-looking condition.
(Remember that the coordinate plane is 65,535 points square. You can attempt to
draw outside of the visible display with no bad effect; you just won't see the result.)

Listing 3.4 uses CharWidth and other QuickDraw routines to display a font's
character set. Type it in and save as CHARS.PAS. When you run it, you'll see a
display of all the characters available in the font that line 98 chooses. (The square
boxes indicate characters that have no corresponding symbol.)

Listing 3.4. CHARS.PAS

1 ($0 Proqrams:Graphics.F: I
2 ($U-}
3
4
5 PROGRAM Chars;
6
7 (*
8

I Send compiled code to here I
I Turn off standard library units

9 *PURPOSE : Display a font's character set
10 * SYSTEM : Macintosh I Turbo Pascal
11 * AUTHOR : Tom Swan
12
13 *)
14
15
16 USES
17
18 Memtypes, QuickDraw, OSintf, Toolintf;

Turtle Graphics vs. QuickDraw == 85

19:
20:
21:
22:
23:
24:
25:

VAR

gPort GrafPort;

PROCEDURE SetupScreen; 26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

Initialize display for upcoming graphics }

BEGIN
OpenPort(@gPort);
PenPat(Black);
PaintRect(gPort.portRect

END; I SetupScreen }

Open new graphics port
Select drawing color J
Fill screen with black

37: FUNCTION TextHeight : INTEGER;
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:

Returns the height in pixels

VAR

finfo Font Info;

BEGIN
GetFontinfo{ finfo);
WITH flnfo DO

{ Holds information about current font J

TextHeight := ascent + descent + leading
END; { TextHeight }

52: FUNCTION EndOfLine(ch : CHAR) : BOOLEAN;
53:
54: Returns TRUE if drawing this character would move pen beyond
55: the right screen border I
56:
57: VAR
58:
59:
60:

penLocation

61: BEGIN

Point;

62: GetPen(penLocation);
63: WITH penLocation DO
64 : EndOfLine : =
65: (h + CharWidth(ch) > screenBits.bounds.right
66: END; { EndOfLine }
67:
68:
69: PROCEDURE CrLf;
70:
71: Simulate a carriage return, line feed for the current font)
72:
73:
74:
75:
76:
77:

VAR

penLocation

BEGIN

Point;

78: GetPen (penLocation l;
79: MoveTo(O, penLocation.v + TextHeight)
BO: END; { CrLf)
81:
82:
83: PROCEDURE DoGraphics;
84:
85: { Display ASCII a font's characters }

(continued}

86 =:: Programming with Macintosh Turbo Pascal

86:
87: CONST
88:
89: PointSize = 24;
90:
91: VAR
92:
93: ch : CHAR;
94: penLocation : Point;
95:
96: BEGIN
97:
98:
99:

TextMode(notPatCopy);
TextFont(systemFont);
TextSize(PointSize);

MoveTo(0, pointSize);
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

FOR ch := chr(O) TO chr(255) DO
BEGIN

IF EndOfLine(ch
THEN CrLf;

DrawChar(ch)
END; (for }

REPEAT
UNTIL Button

END; I DoGraphics

BEGIN
InitGraf(@thePort);

117: InitCursor;
118: HideCursor;
119: FlushEvents(everyEvent, 0);
120: SetupScreen;
121: DoGraphics
122: END.

Initialize Quickdraw }
Make sure cursor level = 0
Make cursor invisible }
Erase any pending events
Initialize display }
Draw whatever you want }

Chars Play-by-Play

You'll recognize some of the Listing from earlier examples. Lines 1-23 and
115-122 are identical to GraphShell (Listing 3.3). SetupScreen (26-34) is similar
but doesn't draw a white border around the display. Notice that here there is no
need to copy the GrafPort portRect field to a temporary variable in order to reduce
it by one pixel, protecting the border as in GraphShell. Instead, line 33 just paints
the port's enclosing rectangle to erase the screen to all black.

TexUleight, EndOfLine, and CrLf {37-80}

Two functions and one procedure are three tools you might want to extract
for your own graphics programs that display text. Function TextHeight (37-49)
returns the total height in pixels of the current font's point size. Because characters
like y and j extend below the base line of capital letters, a font's display height is
not equal to its point size. To calculate the true height, line 46 calls GetFontlnfo,
which returns a Fontinfo record with the structure in Figure 3.15. Adding the as-

TYPE

Fontinfo =
RECORD

ascent INTEGER;
descent INTEGER;
widMax INTEGER;
leading INTEGER

END; I Fontinfo I

Turtle Graphics vs. QuickDraw = 87

I Pixels above base line (at pen} I
I Pixels below base line (at pen} }
I Maximum width of any character I
I Pixels between single-spaced text lines I

Figure 3.15 A Fontinfo record describes the font's size in four integer fields.

cent (the height in pixels above the pen position, or base line), descent (the height
in pixels below the base line), and leading (the number of pixels between single
spaced text lines) for this font gives its actual height in pixels.

Function EndOfLine (52-66) returns TRUE if drawing character ch would
move the pen beyond the right border. Use this tool to test the pen position before
drawing characters. If it returns TRUE, move the pen to the next line (or do
something else) to prevent chopping characters in half.

The function works by examining the pen's location, calling GetPen (62) for
its current coordinate. The horizontal value of this coordinate (h) plus the character
width indicates whether there is enough room to the right of the pen. To make this
calculation, EndOfLine calls CharWidth (65) and uses the global screenBits.bounds
rectangle to locate the screen's right edge.

To start a new display line on conventional terminals, you simply type Writeln
which sends carriage return and line feed control characters to the video terminal.
The Macintosh doesn't work that way. Because there are no fixed character posi
tions and because fonts can be any size and have proportional-width symbols, pro
grams have to simulate carriage returns and line feeds in softw'.'re.

Procedure CrLf (69-80) shows one way to do this. It first examines the pen's
current position, calling GetPen to load a local Point record variable, penLoca
tion. After that, it moves the pen by calling MoveTo, passing 0 as the new hori
zontal coordinate value and the pen's vertical component (v) plus the height in pixels
of the current font (TextHeight).

DoGraphics {83-112}

DoGraphics displays a font's character set. It first selects the notPatCopy text
mode (97) to display white characters on the graphic screen's black background.
Next, it selects the font (98). Try other font names in place of systemFont (see Tuble
3.3). Line 99 sets the text size to the constant PointSize, which you can change by
using a different value at line 89. The default value 24 looks good even for fonts
that don't have corresponding bit images for this size, forcing QuickDraw to scale
the image from the nearest size actually stored on disk. But you can use any point
size you want.

Line 101 moves the pen to the first display position, with h equal to zero and
v equal to the font's point size. This moves the pen down from the top of the display
the number of pixels of the tallest character above the font's base line. Usually,

88 == Programming with Macintosh Turbo Pascal

the point size equals this value-the ascent field in the font info record as explained
for function TextHeight (37-49). To make the program more correctly locate the
first base line, read the Fontinfo record and use the ascent field in place of con
stant pointSize in line 101.

The FOR loop (103-108) draws each character, starting with ASCII value 0
and ending at 255. On conventional text-only terminals, visible ASCII characters
normally range from 32 to 126 or 127. Other values either go unused or represent
controls that cause display hardware to perform certain actions. On the Macin
tosh, all ASCII characters are visible although some may not have bit patterns
representing characters. There are no control characters in QuickDraw text-drawing
a carriage return (ASCII 13) displays a symbol; it doesn't move the cursor to the
start of a line.

Line 105 checks whether drawing each successive character ch will fit between
the current pen position and the screen's right border. If not, CrLf (106) positions
the pen one line down at far left. The next line (107) draws the single character
by calling QuickDraw's DrawChar routine.

USING RECTANGLES

Rectangle records (type Rect) have a variety of uses in QuickDraw. You've seen
how they define rectangular areas on the screen, but there is much more you can
do with them. You can use them to draw boxes, either filled or unfilled; to draw
ovals and circles within their borders; and even to draw wedges that you might need
in a pie chart program.

Table 3.4 lists the QuickDraw procedures that either change rectangles or use
them in calculations. We've already seen SetRect, which simply assigns left, top,
right, and bottom values to a Rect record.

OffsetRect and InsetRect change the shape of a rectangle after you assign its

Table 3.4 QuickDraw's rectangle tools.

PROCEDURE EraseRect(r : Rect);

PROCEDURE FillRect(r : Rect; pat Pattern);

PROCEDURE FrarneRect(r: Rect);

PROCEDURE InsetRect(VAR r : Rect; dh, dv : INTEGER);

PROCEDURE InvertRect(r : Rect);

PROCEDURE OffsetRect(VAR r : Rect; dh, dv: INTEGER);

PROCEDURE PaintRect(r : Rect);

PROCEDURE SetRect(VAR r : Rect; left, top, right, bottom : INTEGER);

Turtle Graphics vs. QuickDraw == 89

corner coordinates. OffsetRect repositions the rectangle according to the two
parameters, dh and dv. For example, this moves a rectangle r right 25 pixels:

OffsetRectC r, 25, 0 >;

And this moves r up 75 pixels:

OffsetRectC r, 0, -75 >;

Positive dh values move right; positive dv values move down. Negative dh values
move left; negative dv values move up. This is logical because OffsetRect adds dh
to r's left and right fields and dv to its bottom and top.

InsetRect changes a rectangle shape in a different way. In this case, QuickDraw
adds dh to the top value and subtracts it from the bottom, moving the top and
bottom coordinates in toward the center. Similarly, it adds dv to the left and sub
tracts it from the right, moving those borders toward the center, too. The follow
ing statement shrinks a rectangle r by 20 pixels vertically and 50 pixels horizontally.

InsetRectC r, 25, 10>;

Notice that the values you pass to lnsetRect are one half the total number of
pixels by which you want to shrink the rectangle in either the horizontal or vertical
direction. This is because two borders move by the amounts dh and dv.

To expand rectangles, use negative values. This statement expands r 64 pixels
horizontally, while not changing its height:

InsetRectC r, -32, 0 >;

After setting a rectangle or modifying its values, you can use it in drawing com
mands. For example, FrameRect draws a line connecting a rectangle's four corners.
You already used FrameRect and PaintRect to outline and paint the screen to all
black in GraphShell (Listing 3.3, lines 37, 39). Another way to clear the screen
follows:

BackPat CB Lack);
EraseRect C gPort .portRect);

If you pass a Pattern variable to BackPat, EraseRect uses it to fill a Rect area.
This example passes the GrafPort's enclosing rectangle, portRect, but you can erase
any other rectangle, too. Because this method does not require changing the pen
pattern, you can improve GraphShell by inserting these two statements in place
of those at lines 36 and 37.

Pass a rectangle to InvertRect and QuickDraw reverses all pixels inside that
area. Black pixels become white and vice versa. For a sample of what this routine
does, insert the following statement at line 109 in Listing 3.4, CHARS.PAS.

90 == Programming with Macintosh Turbo Pascal

InvertRect (gPort. portRect);

The difference between FillRect and PaintRect is that FillRect takes a pattern
as a parameter; PaintRect uses the current pen pattern to fill rectangles. But there
is a more important difference that's not obvious. PaintRect fills rectangles using
the pen's current transfer mode, changing not only the pattern you see but the
method by which QuickDraw copies bits to the display. (For details about transfer
modes, see the section Drawing Modes later in this chapter.) FillRect always uses
the patCopy mode, which simply copies patterns bit for bit into a rectangle without
combining those bits in any way with other images already there.

DRAWING CURVED SHAPES

QuickDraw uses a novel idea to draw circles. Instead of specifying radii and
center points, you simply declare a rectangle and then call a routine to draw an
oval within its borders. This simplifies the usual way to draw curves on computer
displays. It also lets you draw both circles and ovals with the same routine.

Table 3.5 lists five procedures that draw ovals inside rectangles. Notice the
similarity of these names and those in Table 3.4. Because of this, their operations
should be obvious. EraseOval erases a circular shape inside Rect r to the current
background pattern (BackPat). FillOval fills an oval with a specific pattern.
FrameOval outlines a circle inside its rectangle. InvertOval reverses all bits inside

Table 3.5 QuickDraw's oval tools.

PROCEDURE EraseOval(r : Rect);

PROCEDURE FillOval(r : Rect; pat Pattern);

PROCEDURE FrameOval(r: Rect);

PROCEDURE InvertOval(r: Rect);

PROCEDURE PaintOval(r : Rect);

Table 3.6 QuickDraw's round rectangle tools.

PROCEDURE EraseRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);

PROCEDURE FillRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER;

pat : Pattern);

PROCEDURE FrameRoundRect(r : Rect; ovalWidth, ovalHeight : !NTEGER);

PROCEDURE InvertRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);

PROCEDURE PaintRoundRect(r : Rect; ovalWidth, ovalHeight : INTEGER);

Turtle Graphics vs. QuickDraw ::= 91

Figure 3.16 To alter the curvature in round rectangles, vary
the width and height of an imaginary oval fitting snuggly in
side each corner.

PROCEDURE DoGraphics;

Illustrate relationship between ovals and round rectangles J

CONST

ovalWidth = 75;
ovalHeight = 60;

VAR

box, oval : Rect;
theEvent : EventRecord;

BEGIN

SetRect(box, 80, 70, 430, 270 J;
FillRect(box, white);
InsetRect (box, 25, 25) ;

oval := box;
WITH box DO
BEGIN

oval.right := left + ovalWidth;
oval.bottom := top + ovalHeight

END; { with }

PenPat(Black);
PenSize·(2, 2) ;
FillOval(oval, ltGray);
FrameOval(oval);
FrameRoundRect(box, ovalWidth, ovalHeight);

REPEAT
SystemTask

UNTIL GetNextEvent(mDownMask+keyDownMask, theEvent)
END; { DoGraphics }

Figure 3.17 Replace Listing 3.3's DoGraphics procedure
with this routine to draw the design in Figure 3.16,
demonstrating round rectangles.

92 == Programming with Macintosh Turbo Pascal

the oval. And PaintOval is like PaintRect-it paints ovals in the current pen pat
tern and transfer mode.

Another kind of curved shape is a round rectangle, an oxymoron if ever there
was one. To draw one, use the procedures in Table 3.6. Because their names are
similar to those in Tables 3.4 and 3.5, you should have little trouble understanding
what they do. (Try them in GraphShell if you are unsure.)

Figure 3.16 explains the relationship between round rectangle corners and the
parameters ovalWidth and ovalHeight in each of the five RoundRect procedures.
QuickDraw rounds the rectangle as though it contained a shaded oval nested in
side its corners. (Although only one oval is shown here, the same curve applies to
all four corners.) As you can see, changing the oval's shape affects the amount of
curve in each corner and, therefore, changes the degree of rectangular roundness.
Figure 3.17 lists the DoGraphics routine that produced the round rectangle illustra
tion. It also shows how to use some of the QuickDraw commands described earlier.
Add it to a copy of GraphShell, replacing the DoGraphics procedure there.

DRAWING MODES

QuickDraw understands eight methods of combining one group of bits with
another. By changing modes, you affect the way QuickDraw displays bits on screen
by altering how it combines them with pixels already there. The four basic methods
are: Copy, Or, Xor (eXclusive or), and Bic (Bit clear). Inverting each of these
changing white bits to black and vice versa before drawing-gives a total of eight
possible modes. Each mode is similar to standard Boolean logic operations. For
that reason, they are best illustrated by the truth tables in Table 3.7.

In the truth tables, 0 stands for a white pixel and 1 stands for black, the same
as their bit values in memory. Column S is the source bit, from a pen pattern for

Table 3.7 Drawing-mode truth tables.

Copy Or

s D R s D R

------------- -------------
0 0 0 0 0 0
l 0 l l 0 l
0 l 0 0 l l
l l l l l l

Xor Bic

s D R s D R

------------- -------------
0 0 0 0 0 0
l 0 l l 0 0
0 l l 0 l l
l l 0 l 0

Turtle Graphics vs. QuickDraw == 93

Table 3.8 QuickDraw's drawing-mode tools.

PROCEDURE PenMode(patMode : INTEGER);

PROCEDURE TextMode(srcMode : INTEGER);

example; Dis the destination, probably the display; and R is the result-what you
see on the display after combining two bits according to the rules for this table.

The Copyi mode transfers source bits directly to the destination, ignoring
whatever is already there. (Column R is an exact copy of S.) Mode Or displays a
white bit only if both the source and destination are white. If either the source,
destination, or both, are black, so is the result. Xor mode displays black if either
the source or destination is black-but not both. In this mode, if both bits have
the same value, they turn white in the drawing. Xor mode also has the interesting
property of restoring the original destination when you redraw the same pattern
twice. This is a useful technique in animations where patterns move overtop of others
without disturbing them.

In the Bic (bit clear) mode's truth table, the result is always white unless the
source is white and the destination black. Bic mode is useful in clearing areas (called
"punching a hole") on screen for displaying icons (see Chapter 7).

Two QuickDraw routines use transfer modes to affect the way other routines
draw graphics and text. (See Table 3.8.) PenMode changes the way the pen pattern
appears. After calling PenMode, the pen behaves according to one of the truth tables
in Tuble 3.7. TextMode similarly affects the way text routines display characters.

Both procedures take a single INTEGER parameter that stands for one of the
eight basic drawing modes. Inside Macintosh identifies both parameters as mode.
To avoid confusing text and pen modes, here I use patMode (pattern mode) iµ Pen
Mode and srcMode (source mode) for TextMode. (The word source refers to the
way QuickDraw copies bits from a source area, in this case the bits that make up
a character in a font.) This makes it easier to remember which of the two groups
of constants in Table 3.9 apply to which procedure. Use the constants on the left
with PenMode; the ones on the right with TextMode.

Table 3.9 QuickDraw's drawing mode constants.

CONST

I Pattern modes Source modes I
I ----------------- ----------------)

pat Copy = 8; srcCopy = 0
pat Or = 9; srcor = l
patXor = 10 srcXor = 2
patBic = ll srcBic = 3
notPatCopy = 12 notSrcCopy = 4
notPatOr = 13 notSrcOr = 5
notPatXor = 14 notSrcXor = 6
notPatBic = 15 notSrcBic = 7

94 = Programming with Macintosh Turbo Pascal

PROCEDURE DoGraphics;

Test text source transfer modes

CONST

message= 'TextMode Test String.';
hText = 10;
vText = 50;

BEGIN
BackPat(ltGray);
EraseRect(gPort.portRect);

TextSize(32);
TextMode(srCXor);

MoveTo(hText, vText);
Drawstring(message);

REPEAT UNTIL Button;

MoveTo(hText, vText);
Drawstring(message);

WHILE Button DO {wait for release);
REPEAT
UNTIL Button

END; { DoGraphics)

Figure 3.18 Text transfer modes affect text ap
pearance by changing the way QuickDraw com
bines font bit patterns with pixels already on
display. Replace DoGraphics in Listing 3.3 with
this procedure for a demonstration.

Experimenting with various modes is easy-just insert TextMode and PenMode
commands into any drawing program and use an appropriate constant from Table
3.9. One of the most useful modes is Xor (eXclusive or). With this almost magical
drawing mode, you can draw on top of patterns, remove the drawing, and
automatically restore the original graphics beneath. An experiment demonstrates
how this works. Type procedure DoGraphics from Figure 3.18 into a copy of
GraphShell (Listing 3.3), replacing the procedure at lines 45-55.

When you run the program, you see a light gray background with a message
near the top. Click the mouse and the message disappears. Click again to end the
program. The procedure works by setting TextMode to srcXor. Then, it displays
the test message, waits for you to click the mouse, and redisplays the same message
to erase it and restore the background. This works no matter what graphics you
draw over. With the exclusive or mode, redrawing any shape twice res~ores whatever
was there before.

Try all eight source modes from Tu.hie 3.9 in DoGraphics, replacing srcXor in
procedure TextMode. As you can see, many varieties of text styles, backgrounds,
and effects are possible simply by changing the way QuickDraw combines character

Turtle Graphics vs. QuickDraw == 95

bits with graphics already on display. You can achieve similar effects with line draw
ing by passing pattern modes (Table 3.9) to PenMode.

A third QuickDraw procedure, CopyBits, transfers bit patterns on a more fun
damental level. With this procedure, you copy one area of memory to another, ap
plying one of the eight transfer modes to the result. Usually, you put CopyBits to
work copying figures from unseen memory areas to the video buffer. Doing that
repeatedly, overlaying figure over figure, is an easy way to animate graphics. The
process resembles the way a professional animator shoots successive frames and
then projects them at high speed to make a cartoon film.

BIT MAPS

Before using CopyBits, you need to understand two more QuickDraw struc
tures, bit maps and regions. A bit map is an area in memory that translates, or
maps, those bits as though they were pixels on display. In other words, by specify
ing memory areas as bit maps, you are in effect saying, "If these bits were displayed,
this is how I want QuickDraw to arrange them."

The display itself is one giant bit map. In this case, the bits in memory and
the pixels coincide-you actually see the bits in the arrangement you specify. But
you can make bit maps anywhere in memory and then tell QuickDraw to draw there
instead of on the visible screen. After drawing in your off screen bit map, you tell
CopyBits to copy the drawing to the display where you can see it. In many cases,
this action produces a smoother effect than drawing directly to the visible screen.

Figure 3.19 defines QuickDraw's BitMap record. Three fields hold a starting
address in memory, the number of bytes in one row, and an enclosing rectangle,
which imposes a coordinate system on the bit map. The starting address, expressed
as a pointer (Ptr) to signed memory bytes with values -128 to + 127, must be even
because of the way the Macintosh's 68000 processor (and descendants) use memory
in two-byte chunks, or words, at a time. The baseAddr pointer tells where in memory
the bit map starts. For similar reasons, rowBytes must also be an even number.
It describes how many bytes are in a single row. The bounds rectangle imposes a

TYPE

BitMap ~
RECORD

baseAddr
r.owByte
bounds

END;

Ptr;
INTEGER;
Re ct

Starting address in memory
Number of bytes in one row
Coordinate system }

Figure 3.19 A BitMap record tells QuickDraw where and how
to draw in memory.

96 == Programming with Macintosh Turbo Pascal

2000
2010

2020

2030

2040

2050

2060

2070

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 3.20 Bit maps, as defined by BitMap records, organize
memory into two-dimensional arrays, possibly wasting a few un
needed bits shown here as the shaded cells on the right.

coordinate system on the bit map, telling in effect which pixels appear in which
positions relative to others.

Bit maps are easier to understand with an illustration. Figure 3.20 shows the
relation between the following programming and bytes in memory.

VAR bits: BitMap;

WITH bits DO
BEGIN

baseAddr := POINTER($2000);
rowBytes := 2;
SetRect(bounds, 0, 0, 13, 8)

END;{with}

The first job is to assign an area of memory, here starting at hexadecimal ad
dress $2000. In practice, you never assign actual addresses as in this illustration.
Instead, you'll normally declare variables to hold bit maps and assign their addresses
to the baseAddr field. Or, you can use the memory manager to allocate memory
to hold bit maps, a technique we'll use later.

Field rowBytes equals the number of full, eight-bit bytes in one row of bits.
As you can see from Figure 3.20, the example bit map has exactly two bytes per
row (16 bits, 0 to F). This organization is completely up to you. A bit map can
have any number of bytes per row, up to 32,766, as long as the value is even.
Whatever value you choose, you must be certain that it contains the number of
bits per row that you want to use.

The third field in a bit map record is a bounds rectangle. Its four fields, left,
top, right, and bottom, establish three bit map characteristics.

Turtle Graphics vs. QuickDraw == 97

The number of bits in one row

The number of bits in one column

The bit map's size in bytes

Figure 3.20 outlines in bold the rectangle corresponding to the horizontal coor
dinate values left= 0 and right= 13. (The shaded cells are outside of this area.) You
can use any values as long as the number of bits they encompass (right-left) is no
greater than (rowBytes*8). Notice that the illustration wastes three bits per row (the
shaded cells). As far as QuickDraw is concerned, these bits do not exist.

The bounds rectangle declares also the number of bits in one column, equal
to the rectangle's height (bottom-top). In the example, the height is eight bits.
Together, bounds and rowBytes exactly limit the amount of memory the bit map
occupies according to the following formula for a BitMap b:

WITHbD O
bytes:= (bottom - top)* rowBytes;

Applying this formula to the illustration in Figure 3.20 gives 16 bytes. Notice
that changing the width of the bounds rectangle has no effect on the size of the
bit map in memory- it merely tells QuickDraw how many bits in each row of bytes
to use. But changing the bounds height and the number of bytes per row does af
fect the bit map size. For that reason, after setting up a bit map, never change its
parameters without careful thought. It's your responsibility to ensure that the
parameters you specify actually correspond to a reserved area in memory large
enough to hold the entire bit map. ·

REGIONS

Another important QuickDraw structure is a region. In much the same way
that Rect variables define rectangular areas on the coordinate plane, regions define
areas with no particular shape. A region can be rectangular, circular, pear shaped,
or as convoluted as an island's shoreline. In fact, islands in the ocean resemble
regions on the coordinate plane. Both enclose freeform areas in their worlds.

Regions have many uses in Macintosh software. Windows use them to update
portions of themselves uncovered when you move other windows aside. You can
use them to limit, or clip, drawing to irregular shaped areas on the screen. And
you can also put a region to work as a sort of graphics collector into which you
draw closed shapes with standard QuickDraw routines. After collecting your draw
ing into a region, QuickDraw can outline it, fill it, and perform other operations
to affect how the region appears.

Listing 3.5 demonstrates one way to use regions. Insert the listing in place of
GraphShell's DoGraphics (lines 45-55, Listing 3.3). Save as REGIONS.PAS. When
you run it, type the space bar (or any other key) to change patterns. Hold down
the mouse button while you type any key to end the program.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

98 = Programming with Macintosh Turbo Pascal

Listing 3.5. REGIONS.PAS

FUNCTION Keypressed : BOOLEAN;

TRUE if a key was pressed I

VAR

theEvent EventRecord;

BEGIN
Keypressed := GetNextEvent(KeyDownMask, theEvent)

END; I Keypressed I

PROCEDURE Randomize;

Start new random sequence

VAR

time LONGINT;

BEGIN
GetDateTime (time) ;
RandSeed := time

END; I Randomize }

FUNCTION randH : INTEGER;

Return a horizontal coordinate value at random)

BEGIN
WITH screenBits.bounds DO

randH :=ABS(Random) MOD (right - left)
END; (randH)

FUNCTION randV : INTEGER;

Return a vertical coordinate value at random }

BEGIN
WITH' screenBits.bounds DO

randV :=ABS(Random } MOD (bottom - top)
END; (randV I

PROCEDURE DoGraphics;

Draw shapes by collecting in region. Type space bar (or any key)
to change picture. Hold mouse down and type space bar to end.)

VAR

rh
tempRect
i

BEGIN

RgnHandle;
Rect;
INTEGER;

Randomize;
BackPat(black);

Handle to region I
For drawing ovals }
Loop control variable

Start new random sequence
Background is black)

Turtle Graphics vs. QuickDraw == 99

64
65
66
67
68
69
70
71
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:

REPEAT
EraseRect(gPort.portRect);

rh : = NewRgn;
OpenRgn;

FOR i := 1 TO 25 DO
BEGIN

SetRect(tempRect, randH,
FrameOval(tempRect)

END; (for)

CloseRgn(rh);
FillRgn(rh, ltGray };
DisposeRgn(rh);

WHILE NOT Keypressed DO (wait}

82: UNTIL Button
83:
84: END; (DoGraphics

(Erase old image }

Start new region }

Invisibly draw things

randV, randH, randV);

Stop collecting graphics
Display region }
Remove from memory }

Regions Play-by-Play

Although the four miscellaneous tools at lines 1-45 have nothing to do with
regions, it's convenient to introduce them here. Function Keypressed (1-11) returns
TRUE after someone types a key. It calls GetNextEvent to request whether the
operating system received any keyboard events. (Chapter 4 explains events in more
detail.) Earlier you learned that Turbo has its own Keypressed routine. Unfortunate
ly, it's available only to textbook programs that use Turbo's dumb terminal win
dow. The function here adds the same ability to QuickDraw graphics and fully
charged programs with windows and pull-down menus.

Function Randomize (14-25) starts new random sequences by reading the cur
rent time (23) and assigning it to global variable RandSeed (24). Because the Macin
tosh represents the time as the number of elapsed seconds from January 1, 1904,
Randomize sets RandSeed to a different value every time it runs. To see why this
is necessary, tum lines 23-24 into a comment and run the program. View a few
pictures and end. Then rerun. Because it doesn't start a new random sequence, the
program shows the same pictures again.

Some programmers attempt to start new random sequences by assigning Ran
dom to RandSeed like this:

RandSeed :=Random;

This never works. Random sequences are predictable if you know the starting
point. Because the starting random number is the same unless you change it, us
ing Random to initialize RandSeed simply uses the second value in a predictable
sequence. Assigning the time to RandSeed, though, does set it to an unpredictable
value and always generates new random sequences.

100 == Programming with Macintosh Turbo Pascal

Two functions, randH (28-35) and randV (38-45), return horizontal and ver
tical coordinate values at random, limited to the Macintosh display width and
height. Use them to select coordinates at random. Because they use the global screen
Bits variable, they work with any size Macintosh display. For example, you could
draw randomly placed lines with the following statements, which you can add to
a copy of GraphShell along with randH and randV from Listing 3.5:

PenPat(white>;
WHILE NOT Button DO

Li neTo C randH, randV);

DoGraphics {48-84}

Variable rh is a region handle-a special kind of pointer-which QuickDraw
uses to locate in memory where it saves region information. (Remember, the exact
nature of that information is unimportant. Your program simply needs to keep track
of the handle for QuickDraw's use.) Lines 61-62 start a new random sequence and
set the background to black for clearing old images with EraseRect (65) each time
you press a key.

Lines 67-68 show the correct way to start a new region. NewRgn reserves
memory for QuickDraw's use and returns a handle, which the program saves in
variable rh. Line 68 opens the region, telling QuickDraw to begin saving lines and
shapes as the program draws them. This also hides the pen, meaning that no visi
ble drawing takes place while QuickDraw collects its regional data.

Because the pen is now invisible, the FOR loop (70-74) doesn't actually draw
images. Instead, it defines the borders of the region for QuickDraw by calling
SetRect and FrameOval to create a number of ovals of various sizes and shapes.

After that, line 76 closes the region, making the pen visible again and telling
QuickDraw to stop collecting regional information. FillRgn (77) fills the region
with a light gray pattern, showing the entire drawing at one time. Everything you
see on screen happens when this single instruction executes. Line 78 calls
DisposeRgn to remove the regional data from memory. Always dispose your region
handles after you're done using them. Otherwise, the program risks running out
of memory.

USING SCREENBITS

A most important bit map variable, screenBits, tells QuickDraw the location
and size of the Macintosh display. Its baseAddr field points to the first byte of
memory that holds the bit image of what you see on screen. If you need to locate
this address, never assume that it starts at a fixed location. Different size Macin
toshes place the display bit map at different locations. Always use screen
Bits.baseAddr to get the starting address of display memory.

ScreenBits' other two fields, row Bytes and bounds, define the size of the visi-

Turtle Graphics vs. QuickDraw ::= 101

ble display, giving it a system of coordinates that match the width and height of
the bounds rectangle. You'll rarely refer to rowBytes, but you'll use bounds often.
Because future Macintosh models might have larger displays, never assume that
the screen is 512 pixels wide by 342 pixels high, as it is in Macintosh and Macin
tosh Plus models. Instead, get the width and height from screenBits this way:

WITH screenBits.bounds DO
BEGIN

width:= right - Left;
height:= bottom - top

END; {with}

Related to screenBits is a GrafPort field, portBits. When you create a Graf
Port (see Listing 3.3, line 34), QuickDraw copies screenBits to the portBits field,
making every new GrafPort initially use the entire display. But you are free to
reassign this bit map to another area in memory, draw something there, and then
copy the results to the visible screen.

When you create new GrafPorts, QuickDraw also copies the screenBits.bounds
rectangle to the Graf Port portRect field. In other words, new Graf Port fields port
Bits.bounds and portRect are identical. Don't be confused by this apparent duplica
tion. The portRect field can change size-for example, to limit drawing to a win
dow's contents or another area on screen. But the portBits bit map bounds field
never changes size-it defines the coordinate system physically imposed on memory.
Changing portBits.bounds can have the disastrous effect of telling QuickDraw to
draw anywhere in memory, even over your program and variables! Be sure you
understand the difference between portBits and portRect. PortBits defines the
physical in-memory bit map. PortRect defines coordinates relative to the coordinate
plane. PortBits can never exceed the memory allocated to the bit map. PortRect
can be as large or as small as you need.

An example helps explain how to use bit maps to draw images off screen and
then copy those images to the display. Understanding the example will help you
to understand the relationship between PortBits and PortRect. It animates a walking
figure by copying successive frames from bit maps to the screen. Using a copy of
GraphShell (Listing 3.3), replace procedure DoGraphics (45-55) with all of Listing
3.6 and save as ANIMATE.PAS.

Listing 3.6. A NIMATE.PAS

1: PROCEDURE DoGraphics;
2:
3 I Fill in with your own graphics routines }
4

5 CONST
6
7
8
9

maxFrameNumber - 5;
maxRows = 22;

Number of frames in animation }
Number of 2-byte rows in a frame }

(continued)

102 Programming with Macintosh Turbo Pascal

10: TYPE
11:
12:
13:

Frame

14: VAR
15 :

theEvent

ARRAY(1 .. 22] OF INTEGER;

frameNumber
EventRecord;
I NTEGER;

srcBits
destRect

BitMap;
Rect;

{ Exactly 4 4 bytes)

16 :
17:
18:
19:
20:
21:

frames ARRAY(1 . . maxframeNumber] OF Frame;

22:
23: PROCEDURE PrepareFrames;
24:
25: Create off-screen bit maps. Each bit map is an individual
26: frame in the animation.)
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43 :
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54 :
55:
56:
57:
58:
59 :
60:
61:
62:
63:

BEGIN
Stuff Hex (

Concat (

Stuff Hex (
Concat (

StuffHex (
Concat(

Stuff Hex (
Concat(

StuffHex (
Concat (

@frames (1],
'0000'' ' 0030' '
'OOFS', ' OOFC ',
' OFEO' , 'lFEO',
' OFFS', '1F80',
'7070'' '3820'

@frames [2],

'0000' ' ' 0000''
'OFFC', ' 03EO',
'OFBO', 'lFCO',
'67F8 ' , '07CO',
'60CO', '60FO'

@frames [3],
' 0000'' '0060"
' OlFO', '01F8',
'03EO ' , '07CO',
' OFFO', 'OFBO ',
'6380" '03CO'

@frames [4 J,
' 0000'' '0030''
'OOFB', 'OOFC' ,
'OlEO', '03EO',
'07FO ', ' 07FO',
' 0600'' 'OFOO'

@frames [5],
' 0000" ' 0030''
'OOF8', ' OOFC ',
'07E0', ' 07EO' ,
'03C0' , '03EO',
'lCOO' , 'lEOO'

64: END; { PrepareFrames)
65:
66:
67: PROCEDURE InitDestRect;
68:

'0078'' ' OOFC' , '03FF',
' OOFS ', I OOFO I, '07CO',
1 33EO', '67E6', I 67FE',
' 3F80' , '7 9C8' , '70F8 ',
));

'OOCO', 'OlEO', '03FO' ,
I 03FO', '03EO ', '03CO',
' 3FCO ' , '37CO', ' 67E8 ',
'OFBO' , '7DCO', '78CO',
));

'OOFO', '01F8', '07FE ' ,
'OlFO', ' OOEO' , 'OlEO ',
'OFCO ', ' OFCO' , . OFFO I I

'7F80', '7BOO'' '7300''
));

'0078 " ' OOFC ', '03FF ',
'00F8', '0070'' ' OOEO' ,
'03E0' , '07EO', ' 07EO',
'OFCO ', 'OFCO', '07CO' ,
));

' 0078' ' 'OOFC' I ' 03FF',
' OOF8 ' , ' 0070 '' '03EO',
'07E4', '07FC', '07FC',
'0360" '07 70', '1E78',
));

69: Set destRect to area where animation is to appear. Assumes
70: srcBits record initialized. }
71:
72: BEGIN
73 : destRect :~ srcBits . bounds;
74: Offset Rect(destRect, 50, 50
75: END ; (I nitDestRect)

76:
11:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
.134:
135:

Turtle Graphics vs. QuickDraw ;;;;;;;;;:: 103

PROCEDURE InitBitMap1

Initialize qlobal bit map record I

BEGIN
WITH srcBits DO
BEGIN

baseAddr := NIL; Filled in by CopyFrame
rowBytes := 2;
SetRect(bounds, O, O, 16, maxRows)

END; (with I
InitDestRect

END; { InitBitMap

PROCEDURE CopyFrame(frameNumber : INTEGER);

Copy one bit map from off-screen memory to the display.
Similar to displayinq one frame of a cartoon film.)

BEGIN
srcBits.baseAddr :=@frames[frameNumber];
CopyBits(srcBits, screenBits,

srcBits.bounds, destRect, notSrcCopy, NIL);
IF destRect.riqht < screenBits.bounds.riqht

THEN
BEGIN

OffsetRect(destRect, 1, 0);
END

ELSE
BEGIN

END

FillRect(destRect, black);
InitDestRect

END; I CopyFrame I

PROCEDURE Pause(n: INTEGER);

I Move frame)

(Reset to beqinninq I

Wait for a small amount of time proportional to n)

BEGIN
WHILE n > 0 DO n := n - 1

END; (Pause)

BEGIN
PrepareFrames;
InitBitMap;
frameNumber := l;
REPEAT

CopyFrame(frameNumber);
Pause(lOOOO);
frameNumber := frameNumber + l;
IF f rameNumber > maxf rameNumber

THEN frameNumber := 1
UNTIL GetNextEvent(KeyDownMask, theEvent

END; I DoGraphics)

104 == Programming with Macintosh Turbo Pascal

•• • •••
•••••• ••••• •••• ••••• ••••••• •••••••• •• • •••• •• •••••• • •• • ••••••• ••••• ••••• •••••• • ••••• •• •• •

~' 1 fl

Figure 3.21 The blowup on the left is the second frame of five in the
animation sequence on the right. Listing 3.6 displays each of these
frames in rapid succession to animate a walking figure.

Animate Play-by-Play

When you run the program, you see a tiny figure (looking like a forest ranger
to me) walking from left to right across the screen. As you can see, the animation
is very smooth with no flicker. By following a few simple rules, you can do the
same in your own programs.

Figure 3.21 is a blowup of the second animation frame of five, shown in the
rounded box to the right. I drew these images with MacPaint. To make the blowup,
I copied the FatBits screen to disk, then reloaded that image into MacPaint, cut
the exploded figure, and copied it into the final picture along with the normal-sized
frames. To design your own images, use a similar technique or fill in the squares
on a sheet of graph paper. Keep your images small. Sixteen bits wide by 20 to 30
bits tall is an ideal size.

After designing the animation frames, the next step is to convert them to a
form you can type in a program. Because each dot in an image equals a single
memory bit, it's convenient to express bit images as hexadecimal digits 0 through
F, representing the four-bit binary values 0000 through 1111. Figure 3.22 is a form
you can use to convert your images to hex values. Each square represents a single
bit in memory. The numbers along the top are the positions of each bit in a byte,
with two bytes per row. These numbers and those on the left are for your reference
only-they are not coordinate values. (If you purchased the disks that accompany
this book, the form is in MacDraw file named Form in folder Graphics.F.)

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14
15
16

17

18

19

20

21
22
23

24

25
26

27

28

29

30
31

Turtle Graphics vs. QuickDraw == 105

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Hex

0 = 0000

1=0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7=0111

8=1000

9=1001

A= 1010

B =1011

c = 1100

D = 1101

E = 1110

F=llll

Figure 3.ZZ Use this form to design your own animation frames. After filling in the
boxes on the left (containing 32 rows of 16 cells each), convert groups of four cells into
hex digits, writing them into the four-cell Hex column on the right. Use the hex-to
binary chart as a guide. A 1 stands for filled-in cells; 0 for blanks.

0
1
2
3
4

106 ::;;;;;;: Programming with Macintosh Turbo Pascal

0
0
0
0

0
0
0
3

3 0
7 8
F c
F F

Figure 3.23 This shows the first four rows of the animation figure's hat in the
form from Figure 3.22. The hex digits on the right represent the filled-in cells
on the left as binary values.

PrepareFrames (23-64}

After X-ing in your image into Figure 3.22, use the hex table on the right to
convert each group of four bits to one hex digit. To illustrate the process, Figure
3.23 shows the first four lines (the little fellow's hat) of the blowup frame from
Figure 3.21 as you would enter them into the grid. The hex digits to the right repre
sent the darkened squares to the left as 16-bit binary values.

With all the images designed and converted to hex digits, you're ready to type
them into the program. Lines 29-34 in procedure PrepareFrames illustrate how to
type each of the five frames. Procedure StuffHex takes a pointer to a variable
(@frame[l], for example) and a string of hex digits. When the program runs, it
converts those digits into binary values and stuffs them four-bit nybble-by-nybble
into memory. For clarity, Concat joins each group of four hex digits correspond
ing with the graph (Figures 3.22 and 3.23). But you could simply string them all
together like this if you want: '00000030007800FC ... '

Global array frames (20) holds five arrays of 22 integers, taking exactly 44 bytes
of memory. One danger when using StuffHex to store binary values into variables
is that it does not check whether the variable has enough room to hold the digits
you stuff into it. Grouping values into four-digit strings as in the Listing makes
it easy to count values and helps prevent overstuffing. Each four-digit group oc
cupies 16 bits and, as you can see, there are 22 groups in each of the five StuffHex
statements-exactly the size of each frame.

IniWestRect, InitBitMaps {67-90}

To animate images requires a destination rectangle to tell QuickDraw where
to draw on screen. Procedure InitDestRect (67-75) sets global destRect to the same
size as the bitmap srcBit's bounds rectangle. The srcBit bitmap points to the off
screen animation images stored in array frames. Using its bounds rectangle as the
destination tells QuickDraw not only where to display images but also how large
to draw them, in this case the same size as the original.

Turtle Graphics vs. QuickDraw ::= 107

InitBitMap (78-90) defines the global srcBits record. It sets baseAddr to NIL,
meaning nowhere in particular. For each animation frame, the base address of the
bit image changes to one of the five images stored in array frames. The program
uses the same bit map to define the location and size of each frame. Later, to draw
different images, it needs only to assign baseAddr to the address of one image. It's
important to understand that the bitmap record merely defines where in memory
the image exists-it doesn't hold the image itself. Many people confuse the term
bit map with the bitmap record. The bit map image contains the image; the bit
map record defines its location and size, a subtle and potentially confusing
distinction.

Lines 86-87 finish defining srcBits, setting rowBytes to 2 (the number of bytes
in one image row as Figure 3.23 shows), and calling SetRect to initialize the bounds
rectangle. Fields left and top are usually zero as they are here. Right is 16 and bot
tom is equal to maxRows, the coordinates that exactly correspond with a single
frame 16-pixels wide by 22-pixels tall. As its last job, InitBitMap calls InitDestRect
(89) to set the global destination rectangle to the same size as the srcBits.bounds
field and to position this rectangle somewhere on the display.

CopyFrame {93-112)

CopyFrame displays a single animation frame. By calling it repeatedly and
cycling parameter frameNumber from one to five, the program draws successive
animation frames at the destRect location. At the same time, moving destRect makes
the animated figure move, appearing to walk from side to side.

Line 99 assigns the address of one frame to srcBits baseAddr field. Next,
CopyBits copies that image to the area destRect defines on the visible screen.
CopyBits has the general form:

PROCEDURE Copy Bi ts
srcBits, dstBits BitMap;
srcRect, dstRect Rect;
mode: INTEGER;
maskRgn: RgnHandle);

The first two parameters define the source BitMap (srcBits) and the destina
tion (dstBits). In this example, the source is the off-screen animation frame; the
destination is the display, a typical setup. Next are the source and destination rec
tangles, srcRect and dstRect. The example uses srcBits.bounds as the source rec
tangle to copy the entire animation frame to the display. In other situations, you
could use a smaller source rectangle to display only a portion of the source bit
image. The destination rectangle is destRect, the on-screen area where CopyBits
transfers images. Parameter mode is any one of source transfer mode constants
on the left side of Table 3.9. (See page 93.) Animations almost always use srcCopy

108 = Programming with Macintosh Turbo Pascal

or, as in this example, notSrcCopy to display a white image on a black background.
This causes each successive frame to completely overlay the previous image. To limit
copying to a specific area, define a region and pass its handle to CopyBits as the
last parameter. If you do that, images appear only inside the region's boundaries.
The example passes NIL (101) for this value, telling CopyBits not to limit drawing
to any particular boundaries.

All of this accomplishes one job-drawing a single animation frame. When
done, lines 102-111 check whether destRect is at the extreme right edge. If not, line
105 advances the destination rectangle one pixel to the right, causing the figure
to move. Turn line 105 into a comment, and the little fellow walks in place-he'll
never reach the right edge.

Lines 109-lll erase the final image and reset the destination rectangle by call
ing InitDestRect. This causes the image to reappear at the left after bumping into
the right screen border. If the program didn't do this, the little guy would walk
to the ends of the earth or, rather, the end of the coordinate plane.

Pause, DoGrapbics (115-135)

Pause (115-121) waits for a time proportional to parameter n, which has no
relation to real time. Pass larger values to Pause to wait for longer times. The anima
tion example calls it from line 130 with a value of 10,000, causing a 10,000-loop
wait at line 120 between each animation frame. To see why this is necessary, turn
line 130 into a comment and the little guy now runs an Olympian 100-yard dash.
Try other values at line 130 to change animation speed, pausing for more or less
time between frames.

The main DoGraphics loop (124-135) is simple. It first initializes the bit map
and frame images (125-126) before setting frameNumber to one. The REPEAT loop
(128-134) cycles variable frameNumber from 1 to 5 (maxFrameNumber), calling
CopyFrame (129) to animate the display. The loop ends at line 134 when you press
the space bar (or any other key).

You can adjust the animation by varying some of the parameters the program
passes to CopyBits. For example, to make the figure walk down and to the right,
change line 105 to:

OffsetRect (destRect, 1, 1) ;

This adds one to both the horizontal and vertical coordinates of the image,
making it travel diagonally. Another interesting trick is to alter not only the posi
tion of the destRect rectangle but also its size. Doing this causes QuickDraw to
scale the original image up or down to match the new destination boundaries. To
make the figure grow larger, as though it were walking toward you, add the follow
ing statement between lines 105 and 106:

IF frameNumber = maxFrameNumber
THEN InsetRect (destRect, -1, -1) ;

Turtle Graphics vs. QuickDraw = 109

The negative values expand destRect by one pixel along each border. (Positive
values shrink destRect.) The IF statement prevents the image from growing too fast,
changing size only just before starting a new animation sequence.

Another modification you can try is to insert WHILE loops to wait for mouse
clicks between animation frames. This is useful when you want to study each im
age in slow motion. I used the idea when designing the example here in order to
refine the images. Add these statements between lines 129 and 130, just after the
call to CopyFrame. (If you later have trouble ending the program, hold down the
mouse button while you press the space bar. That should work.) You need two
WHILE statements because you probably cannot click the mouse quickly enough
to avoid advancing the image beyond one frame at a time. Take out the second
WHILE statement and you'll see what I mean.

WHILE NOT Button DO {wait for button};
WHILE Button DO {wait for release};

Avoiding Animation Flicker

As you can see, Listing 3.6 smoothly animates the figure without the flicker
you may have seen in other programs. It accomplishes this magic with the help
of a simple trick.

Many programmers attempt animation by drawing an image, erasing it, and
then redrawing it a tiny distance away. Unfortunately, the erase step causes an ob
jectionable flicker, which requires careful planning to avoid. For a demonstration,
change two of the four-digit hex values in lines 33 and 34 as follows:

' 7 0 F 8 ' change to ' F 0 F 8 '
'7070' change to 'F070'

When you run the modified program, the figure leaves a part of his shoe behind
as he walks from left to right. This happens because the modified values insert
single bits in the extreme left column of the image. (Hex 7 is 0111 in binary; F is
1111 and has an extra 1 bit to the left.)

By leaving the far left column blank, moving the image one pixel to the right
causes it to erase itself as it walks. Similarly, leaving a blank row on top lets the
image move one pixel down. This may be difficult to visualize, but it always works.
To prove to yourself that it does, sketch figures into the worksheet in Figure 3.22.
Leave the left column blank. Hold successive frames up to the light and shift them
as they would during animation. As you can see with this experiment, subsequent
frames always erase any far left bits in previous images. Without the blank col
umn, bits are not erased, leaving a trail. This leads to a simple rule for designing
animation frames that erase themselves as they travel, avoiding flicker.

Leave blank columns or rows in the opposite direction of travel as many pixels
wide as the number of pixels the image shifts during animation.

110 ==: Programming with Macintosh Turbo Pascal

FRACTALS

The final example in this chapter demonstrates several more QuickDraw
features with a program that grows life-like patterns such as those in Figure 3.24.
To me, these shapes resemble sea coral, moss, or nerve complexes. They grow as
the result of a simple idea, explained by Leonard M. Sander in "Fractal Growth,"

Figure 3.24 Variations of Listing 3.7 drew these four fractal-like images a pixel at a
time. Even though the Macintosh is a fast computer, it took many hours to produce
these pictures.

Turtle Graphics vs. QuickDraw == 111

Scientific American, January 1987, Vol. 256, No. 1, p. 94. But the reason they look
as they do remains a mystery, at least in a mathematical sense.

A typical fractal image resembles a shoreline. From high above the shore, you
see the general outline of continents with many bays and peninsulas. As you des
cend, you see less of the shoreline but more detail. When very close, perhaps on
your hands and knees and looking through a magnifier, you still see something
that looks like a shoreline. No matter how close you get, the shoreline retains its
general characteristics.

The following program draws fractals of a different sort. In this case, objects
grow by releasing small dots somewhere outside of the visible display. The pro
gram walks these dots toward the center, letting them wander at random as they
travel. A single dot at center serves as a seed to which the wandering dots attach.
When a moving dot touches another, it sticks to it, perhaps resembling the way
the skeletons of tiny marine polyps congregate to form coral.

Interestingly, that simple idea produced the four patterns in Figure 3.24. In
the bottom pattern, the dots vary in size with later ones becoming smaller as the
shape grows. As you can see, the individual feathers are similar to the larger stems
they exhibit a fractal-like appearance. The theory is that the shapes grow because
randomly traveling dots are more likely to stick to bumps, forming larger bumps
which are more likely to attract more dots, and so on. This tends to amplify small
irregularities, producing regular patterns from random events.

Type in Listing 3.7 and save as FRACTAL.PAS. Plan to let this program run
for a long time-it took several hours to produce the patterns in the figure.

Listing 3.7. FRACTAL.PAS

1 {$0 Programs:Graphics.F: }
2 {$U-)
3
4
5 PROGRAM Fractal;
6
7 (*

8
9 * PURPOSE Fractal graphics

(Send compiled code to here
(Turn off standard library units

10 * SYSTEM Macintosh I Turbo Pascal
11 * AUTHOR Tom Swan
12
13 * Based on ideas appearing in 11 Fractal Growth" by Leonard M. Sander;
14 * Scientific American, Jan 1987, Vol 256, No 1, pg 94
15
16 *)

17
18
19 USES
20
21 Memtypes, QuickDraw, OSintf, Toolintf;
22
23
24 VAR
25
26 gPort Graf Port;
27
28

(continued}

112 ===: Programming with Macintosh Turbo Pascal

FUNCTION Quitting : BOOLEAN; 29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

TRUE if next event is a MouseDown event l

VAR

event EventRecord;

BEGIN
IF GetNextEvent(everyEvent, event)

THEN Quitting := (event.what = MouseDown
ELSE Quitting := FALSE

59:

END; { Quitting)

PROCEDURE Randomize;

Start new random sequence

VAR

time LONGINT;

BEGIN
GetDateTime(time);
RandSeed := time

END; { Randomize)

PROCEDURE SetupScreen;

60: Initialize display for graphics)
61:
62: BEGIN
63: OpenPort(@gPort);
64: PenPat(Black);
65: PaintRect(gPort.portRect
66: END; { SetupScreen l
67:
68:
69: PROCEDURE Plot(h, v : INTEGER);
70:

Open new graphics port
Select drawing color)
Fill screen with black

71: Plot a single white point at coordinate h,v)
72:
73: BEGIN
74: MoveTo(h, v);
75: PenPat(White);
76: LineTo(h, v) ;
77: PenPat (Black)
78: END; { Plot)
79:
80:
Bl: PROCEDURE.UnPlot(h, v: INTEGER);
82:
83: Plot a single black point (erasing a white point there) at h,v)
84:
85: BEGIN
86: MoveTo(h, v) ;
87: PenPat(Black);
88: LineTo (h, v)
89: END; { Plot)
90:
91:
92: PROCEDURE DoGraphics;
93:
94: { Create display)
95:

96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:

Turtle Graphics vs. QuickDraw =:: 113

CONST

MaxPS
ps
Walk Speed
DecisionSpeed

= 16;
= 2;
= 2;

24;

Maximum dimensions of a single point
Actual pen size 2 <= ps <= MaxPS)
Positive values >= 2 to change speed
Lower values for "crazier" movement }

VAR

point Set
hMax
vMax
radius
lef tBorder
rightBorder
topBcirder
bottomBorder

SET OF Byte;
INTEGER;
INTEGER;
REAL;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

PROCEDURE Initialize;

Set of pixels in one point
Maximum h coordinate value
Maximum v coordinate value
Circle radius for new points
Drawing border coordinates I

Initialize global variables and change origin I

VAR

r Rect;
x, y REAL;

BEGIN

Randomize; { Start new random sequence)

WITH screenBits.bounds DO
BEGIN

hMax := right; I Calculate maximum horizontal
vMax := bottom; I and vertical dimensions. I
rightBorder := (right DIV 2 I - 1; I Calculate border
bottomBorder := I bottom DIV 2 I - l; I coordinates. I
leftBorder := -1 * rightBorder;
topBorder := -1 * bottomBorder

END; I with I

Set origin so that {0,0) is at screen center I

SetOrigin(-1 * (hMax DIV 2), -1 * (vMax DIV 2));

Calculate radius of a circle that encloses the display. The I
radius is equal to the length of a line from the display center
to one of its corners. I

x := hMax I 2.0:
y :• vMax I 2.0;
radius :=sqrt(x * x + y * y);

ClipRect(gPort.portRect);
PenSize{ ps, ps);
pointSet := [O .. ps-1];
Plot (O, 0)

END; I Initialize

Clip to visible area)
Preset pensize for each point I
The set of pixels in one point I
Start fractal with single •seed"

(continued)

114 == Programming with Macintosh Turbo Pascal

162: PROCEDURE NewDelta(n : INTEGER; VAR d : INTEGER);
163:
164: Return new direction and speed value in d, so that
165: n tends to converge toward 0)
166:
161: VAR
168:
169: INTEGER;
110:
111: BEGIN
112: j :=ABS(Random) MOD WalkSpeed;
173: IF n > 0
174: THEN d := -j
115: ELSE d :=
116: END; (NewDelta
111:
118:
119: PROCEDURE Walk(h, v: INTEGER; VAR dh, dv, nH, nv: INTEGER);
180:
181: Adjust coordinate h,v producing new coordinate nH,nV and making
182: the original point tend to walk randomly toward the origin 0,0)
183:
184: BEGIN
185: IF Random MOD DecisionSpeed = 0 i.e. once in a while ...
186: THEN NewDelta(h, dh); ... change directions)
181: IF Random MOD DecisionSpeed = 0
188: THEN NewDelta (v, dv) ;
189: nH := h + dH; (Move point by delta h and v)
190: nV:=v+dV
191: END; (Walk }
192:
193:
194: PROCEDURE StartNewPoint(VAR h, v, dh, dv : INTEGER);
195:
196: Start new point outside a circle enclosing entire screen
197:
198: VAR
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:

angle
w

BEGIN

INTEGER;
REAL;

angle :=ABS(Random) MOD 360;
w := angle * Pi I 180.0;
h := TRUNC(radius* cos(w));
v := TRUNC(radius* sin(w));
NewDelta(h, dh);
NewDelta(v, dv)

END; { StartNewPoint)

Random value from 0 to 359
w = angle in radians }
Calculate coordinate h,v }

on circle's circumference.
Initialize speed and }
direction values. }

FUNCTION PixelOn(h, v : INTEGER) : BOOLEAN;

{ TRUE if pixel at h,v is white and inside borders

BEGIN
PixelOn := FALSE;
IF GetPixel(h, v) THEN exit ELSE
IF (h <= leftBorder) OR (h >= rightBorder) THEN exit ELSE
IF (v <= topBorder) OR (v >= bottomBorder) THEN exit;
PixelOn := TRUE

END; { PixelOn }

Turtle Graphics vs. QuickDraw == 115

FUNCTION Stuck(h, v : INTEGER) : BOOLEAN; 226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:

TRUE if another point borders the one at h,v

VAR

i, INTEGER;

BEGIN
FOR i := -l TO ps DO

FOR j := -1 TO ps DO
IF PixelOn(h + i, v + j) THEN

IF NOT ((i IN pointSet) AND
(j IN pointSet)) THEN

BEGIN
Stuck := TRUE;

242: exit
243: END;
244: Stuck := FALSE
245: END; (Stuck }
246:
247:
248: PROCEDURE RandomWalk;
249:
250: Make a point walk randomly toward center and stick to any)
251: existing points. l
252:
253: VAR
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:

pH, pV, npH, npV, dh, dv INTEGER;

BEGIN
StartNewPoint(pH,
Plot(pH, pV);
WHILE (NOT Stuck(

(NOT Button
BEGIN

pV, dh, dv) ;

pH, pV) AND
DO

Walk(pH, pV, dh, dv, npH, npV);
UnPlot(pH, pV);
Plot(npH, npV);
pH := npH;
pV := npV

END { while l
END; { RandomWalk

(point coordinates I

Get new point values)
Display initial position
Do following until stuck
to a point or mouse down

Move point (maybe))
Erase old position)
Display new position l
Remember values for)
next possible loop I

272: BEGIN
273: Initialize;
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:

REPEAT
RandomWalk

UNTIL Quitting
END; (DoGraphics

BEGIN
InitGraf(@thePort);
InitCursor;
HideCursor;
FlushEvents(everyEvent, 0);
SetupScreen;
DoGraphics

END.

Initialize Quickdraw)
Make sure cursor level O
Make cursor invisible)
Erase any pending events
Prepare display for graphics

116 == Programming with Macintosh Turbo Pascal

Fractal Play-by-Play

Much of the program is probably familiar by now. Function Quitting (29-41)
returns TRUE when you click the mouse. This lets you write loops such as at lines
274-276 later on in the Qrogram. One advantage of using this function instead
of Button to sense mouse clicks as in earlier examples is the ability to type
Command-Shift-3 to copy the display to MacPaint disk files. This works because
line 38 calls GetNextEvent, giving the operating system the opportunity to sense
your command to save the screen to disk.

Plot, UnPlot {69-89}

These two little procedures belong in every graphics toolbox. Plot paints a single
dot equal to the pen width and height at coordinate {h,v). Before Plot ends, it
changes the pen to Black (77). For black on white displays, you might want to change
it to White instead.

UnPlot (81-89) reverses what Plot does. It paints a single dot in black, erasing
a white dot at this position. Fractal calls UnPlot to erase dots before moving them
in order to show the Fractal's individual elements as they form. (This also produces
a slight animation flicker avoided in the previous example. But, because Fractal
animates only single dots, the flicker is hardly noticeable. It would be if you drew
larger images this way.)

DoGraphics {92-277)

DoGraphics is a long procedure that contains several others. First come four
constants (98-101) that you can change to produce different effects. MaxPS is here
as a reminder that individual dots probably should not be larger than 16 pixels
square. The constant isn't used anywhere in the program. Constant ps defines the
pen size, with the width always equal to its height. Large values (4-8 or higher, but
less than MaxPS) produce blocky figures as in the center of the bottom fractal in
Figure 3.24. Setting ps to 1 produces fine hair-like structures as in the top of the
figure. You might turn ps into an integer variable and vary it randomly or change
it over a period of time. I used a similar approach (not listed here) to produce the
bottom fractal.

Constant WalkSpeed affects the amount dots move during each program cy
cle. Larger values move dots more quickly but initially makes it harder for them
to stick together. Values greater than 8 or so are probably too large. Try 3 or 4.

DecisionSpeed controls the behavior of dot movement by varying the amount
of time it takes for a dot to "decide" to turn. Larger values make dots plod for
ward in more or less straight lines. Lower values make dots go crazy, like fruit flies
over a rotten banana.

Variable pointSet (106) stores a set of coordinate values that belong to a single

Turtle Graphics vs. QuickDraw == 117

dot of any size. The program uses pointSet while examining its border to deter
mine if the dot has touched another. (See lines 238-239.) Variables hMax and vMax
hold the display maximum and minimum coordinates, which the program gets from
global screenBits so that Fractal works on any size display.

Variable radius defines an imaginary circle that completely encloses the rec
tangular display. Fractal always releases new dots on this circle's circumference. You
might consider changing this algorithm-release dots along one or two borders,
or from a single location-and see what effect such changes have.

The four integer variables, leftBorder to bottomBorder (110-113) help deter
mine whether dots are inside or outside the visible display. They speed the pro
gram by avoiding repeated references to the fields in the screenBits.bounds rectangle,
an action that takes Pascal longer to calculate than referring directly to simple
variables.

Initialize {116-159}

Procedure Initialize has plenty to do. It first starts a new random sequence
(127) and then assigns values to global variables (131-136). It also adjusts border
variables to place coordinate (0,0) in screen center. Line 142 completes this idea
by calling SetOrigin, which has the general form:

SetOrigin(h, v: INTEGER);

Passing (0,0) to SetOrigin gives the pixel in the top left corner that coordinate,
the default condition when you initialize QuickDraw. Passing negative values moves
the (0,0) coordinate down and to the right-just what you would expect ifthe pix
el in the top left corner had negative coordinate values. Passing negative values
equal to one half the screen width and height, as in line 142, shifts the origin to
the screen center.

Shifting the origin doesn't move images now on display-it affects only what
you later draw there. If you draw a line and then change the origin, the line does
not move. But if you draw a second line at the same coordinates, it appears at a
different location after the origin changes.

To understand what SetOrigin does, imagine the display as a window through
which you view a portion of the coordinate plane (see Figure 3.25). Shifting the
origin moves the window over the plane, exposing different areas. Drawing occurs
not on the plane, but on the window glass, sticking to it so that, when you shift
its location by calling SetOrigin, anything already on display moves along. (In other
words, what's now on display appears not to move from your perspective.)

After shifting the origin to center coordinate (0,0), Initialize calculates the radius
of a circle that encompasses the entire display (149-151). Because new dots start
on that circle's circumference, line 154 sets clipping to the visible display rectangle,
limiting drawing to that area. Line 155 sets the pen size. After that, line 156 ini-

118 ;;;;;;;;:: Programming with Macintosh Turbo Pascal

Coordinate
Plane

Display

Figure 3.25 When shifting the origin-telling
QuickDraw to view a different portion of the entire coor
dinate plane-existing images stick to the display and
do not move. For an example, see Listing 3.7 which shifts
the origin placing coordinate (0,0) at screen center.

tializes pointSet to the set of all points in a pen of that size. And finally, line 157
seeds the image, placing a starting point in the center of the display. (Notice that
if you did not shift the origin, line 157 would display a point in the upper left corner.)

NewDelta, Walk {162-191}

Together, NewDelta and Walk move dots at random around the display. The
dots tend to converge toward the center, sticking to other dots they touch. Walk
calls NewDelta after using constant DecisionSpeed to determine whether to change
a dot's direction (185-188). Larger DecisionSpeed values cause the expressions in
185 and 187 to produce zero less often. Therefore, the dots change directions more
infrequently. Lower values do the opposite.

NewDelta returns a positive value at random limited to the WalkSpeed less
one (172). By examining the dot's current coordinate value n and setting the new
direction negative if n is greater than zero or positive if not, NewDelta ensures that
points try to move toward the center-without forcing them to travel directly there.
In theory, a dot might wander forever and never approach the center. But that's
not likely. At least it hasn't yet happened to me.

After possibly setting new direction values in dh and dv, Walk adds those values
to the current coordinate, passing the result to the caller in parameters nH and nV
(189-90). This is the direction in which the current dot then moves.

Turtle Graphics vs. QuickDraw ===: 119

StartNew.Point {194-210}

This procedure decides where the next point should begin. It also randomly
sets the direction of the point by calling NewDelta twice (208-209). Lines 204-207
calculate a coordinate (h,v) on the circumference of an imaginary circle with a large
radius. It does this by selecting an angle at random between zero and 359 degrees
(204) and converting that angle to the radians (205) that Pascal's COS (Cosine)
and SIN (Sine) functions require. Lines 206-207 use standard geometry to locate
the endpoint (h,v) of an imaginary line starting from the circle's center and point
ing out at this angle.

All of this may seem overly complex simply to start new dots. But placing them
on the circle's circumference seems to give each dot an equal shot at reaching the
center. With that in mind, you might try other methods for releasing new dots.
What happens, for example, if you start them purely at random on the entire coor
dinate plane or on the borders of a triangle?

PixelOn, Stuck {213-245}

PixelOn returns TRUE if the pixel at coordinate (h,v) is white and inside the
visible display borders. The function calls QuickDraw's GetPixel function, which
returns TRUE if the point at (h,v) is black. (Remember, black pixels are normally
on (I); white ones are off (0). The graphics programs in this chapter reverse that
logic and, therefore, cannot directly use GetPixel's result.) Lines 220-221 solve an
apparent quirk in GetPixel, which returns FALSE for pixels outside the screen
boundaries. Checking that (h,v) is inside the screen borders solves this problem.

Function Stuck (226-245) returns TRUE if the dot at coordinate (h,v) touches
another already on display. It does this by examining every pixel around the dot's
border, calling PixelOn to look for adjacent dots.

RandomWalk, DoGraphics {248-277)

RandomWalk controls the dot action, calling StartNewPoint, Plot, Walk, and
UnPlot to move dots toward the center, stopping only when a dot sticks to another
or when you press the mouse button. The main procedure loop (272-277) simply
initializes the program and calls RandomWalk repeatedly until you quit.

four

In Any Event

The Macintosh is an eventful computer in more than just a casual sense. As
you probably know, there's plenty of action and interaction in Macintosh
software-pull-down menus, desk accessories running along with other programs,
and windows that you can move and resize by clicking and dragging the mouse.
To make all of these actions cooperate, programs respond to events-mouse clicks,
requests to redraw window contents, and other things-rather than issue commands
as in conventional software design.

Because of the event-driven nature of a Macintosh program, routines often
appear out of place. Suppose someone requests an action, perhaps to draw a figure
inside a window. Instead of the program doing that, it might change a variable
or two but not actually draw anything at that time. Or it might call a procedure
that collects information about items that require updating. Later, another routine
actually draws the figure based on this information. Rather than drawing directly
in windows, programs tell the toolbox that something needs changing in a win
dow, and the toolbox issues an event that eventually ends up calling your drawing
routine. How to write such event-driven software is the subject of this chapter.

It may seem overly complex to write programs by the event-driven method.
Why not simply draw things in windows? Isn't that easier? Yes, but in event-driven
systems, foreign programs can issue events to which your program must respond.
(An example of a foreign program is a desk accessory or a device driver in memory.)
If all you want to do is draw figures in windows, then you can write Turtle Graphics
or simple QuickDraw programs similar to the examples in previous chapters. But
adding pull-down menus, movable windows, and desk accessories requires the fancy
footwork that event-driven software allows.

In this chapter, you'll learn about the basic parts of Pascal programs that follow
event-driven programming rules. You'll be able to write programs to activate the
Macintosh pull-down menu bar, add overlapping windows, and use desk accessories.
The goal of this chapter is to develop an application shell, an empty vessel into
which you insert your own routines, similar to the graphics shell in the previous
chapter. The shell handles most of the details of an event-driven program letting

121

122 ::= Programming with Macintosh Turbo Pascal

you concentrate on other jobs rather than forcing you to rewrite the same procedures
over every time you start a new program. Most of the remaining examples in this
book use variations of the shell in this chapter.

THE PARTS OF AN APPLICATION

Based on thousands of programming lines, public domain examples, and
documents released by Apple Computer to software developers, it appears that most
event-driven programs have six fundamental parts:

1. Global Declarations

2. Program Actions
3. Display Handlers

4. Event Handlers

5. Initializations

6. Program Engine

It will help you to write your own event-driven programs if you understand
the nature of these six parts. Dividing your program this way helps reduce com
mon confusions in event-driven programming where actions seem not to take place
at logical times but, rather, in procedures that appear to have nothing to do with
the actions you want to perform. The best way to avoid such confusion is to con
centrate on writing code for each part's purpose, rather than concentrating on your
routine's order among the other programming statements. Event-driven program
ming is purposeful programming. You concentrate more on purpose than
arrangement.

The following notes describe the six parts to an application. If you look ahead
to Listing 4.1 on page 129, you'll see these same parts as large comment blocks.
For example, see lines 26 and 54. Even if you don't understand all the program
ming in the listing, you might want to glance at it while you read the following
description about the way an event-driven program works.

Global Declarations

A program's Global De-::larations define the constants, data types, and variables
that the program uses. Although this is no different than in normal Pascal, every
Macintosh program begins with a list of declarations usually describing, among
other things, the identifying numbers of resources that the program uses. (A resource
is a predefined object such as a template for a window or a menu title. You create
resources separately and tell Turbo to combine them with your program to pro
duce the finished result.)

Because the Macintosh memory manager limits you to about 32K for all global

In Any Event == 123

variables, it's probably best to be frugal in your declarations. Don't create large
arrays and other data structures that take a lot of memory. If you do, you might
run out of room. This doesn't mean programs cannot have large variables. They
can if you create them on the heap at run-time, a technique I'll show you as we
proceed.

Program Actions

Program Actions handle whatever unique operations the program does. In a
printing program, you'd put the printing routines in this part. In a database, you'd
add searching and sorting procedures, and so on.

Program Actions include procedures to respond to pull-down menu choices.
They also include programming to respond to clicking the mouse in a window or
to pressing the Return key. Understand the difference here between the response
to something and the sensing of the event that requires such a response. Sensing
a mouse click in a window's close box and actually closing the window are dif
ferent though related processes. In the Program Actions section, concentrate on
what it is you want mouse clicks and keypresses to do-not on the method by which
your program knows whether mouse clicks have occurred. Understand this distinc
tion and apply it when writing your own programs. It's vital to good Macintosh
software design.

Display Handlers

Display Handlers are responsible for drawing shapes, figures, lines, text, and
other graphics, usually in windows. Similar to a Program Action, a Display Handler
concerns itself with what it should do-never with when it should do it. For exam
ple, in a program that displays a bar graph, you would write a Display Handler
routine to display graphs in windows. But you would not worry about when bar
graphs should appear, and you would not be concerned with the commands peo
ple might give in order to display the graphs.

You might wonder how this works if, for example, you have to draw a different
bar graph in response to a command or an option setting of some kind. Suppose
you need to draw an oval at one time but a box at another depending upon which
of those shapes someone tells the program to draw. In such circumstances, it seems
impossible to disassociate completely your drawing routine from the actions that
require it to respond differently at one time or another.

But you can easily handle these and other instances where window contents
change at different times. One solution is to write a Program Action routine to
set variables for specific commands and a Display Handler to examine those
variables in order to know whether to draw one object or another. As a very sim
ple example, the following procedures demonstrate this idea. First comes the global
variable and Program Action procedure:

124 ::= Programming with Macintosh Turbo Pascal

VAR
whichFigure: (anOval, aBox);

PROCEDURE DoCommand(command: INTEGER);
BEGIN

IF command= 0
THEN whichFigure := anOval
ELSEwhichFigure :=aBox

END; { DoCommand }

DoCommand simply sets whichFigure to anOval or aBox depending on the
value of its parameter, command. A zero specifies an oval; other values specify
a box. Exactly how command gets its value is unimportant. What matters is the
fact that DoCommand itself doesn't draw any ovals or boxes. It merely changes
the program's knowledge. As a Program Action, it responds to commands. It's the
Display Handler's job to actually draw the appropriate figure. There, you might
use this routine:

PROCEDURE DrawContents;

VAR
r Rect;

BEGIN
SetRect(r, 10, 10, 75, 75);
IF whichFigure = anOval

THEN FrameOva l (r)
ELSE FrameRect (r)

END; { DrawContents}

DrawContents draws an oval with QuickDraw's FrameOval procedure or a box
with FrameRect depending on the value of the global variable, whichFigure. Be
certain you understand the relationship between DoCommand (the Program Ac
tion procedure) and DrawContents (the Display Handler). DoCommand assigns
a value to whichFigure. DrawContents examines that value to know which figure
to draw-either an oval or a box. DoCommand knows nothing about drawing
figures. DrawContents knows nothing about program commands. Each does its
job and neither knows anything about the other nor about why, when, or how it
might be called to respond as the program runs.

Event Handlers

Event Handlers direct program flow. They have complete responsibility for call
ing Program Actions and Display Handlers according to a program's needs along
with the needs of other processes that run at the same time. Remember always that

In Any Event == 125

your program is rarely alone. Desk accessories and devices such as disk drives and
serial input ports have their own needs to which your program must respond. For
example, if you move a desk accessory window to one side, your program must
redraw the newly exposed portion of a window underneath. If you click an inac
tive window, your program must deactivate the current window, bring the new win
dow to the front and, in the process, draw the contents of the now frontmost win
dow. Event Handlers receive these and other events such as mouse clicks and
keypresses. They determine the nature of the events and call the appropriate Pro
gram Action or Display Handler in response. In general, there are only four main
events that you need to handle in most programs. These are:

• Mouse down events

• Key down events
• Update events

• Activate events

Mouse down events occur every time you click the mouse button. Because the
mouse operates independently (you can almost always move the mouse pointer,
even while other operations proceed), mouse down events can occur at any time.
The mouse down Event Handler checks the location of the mouse pointer and,
based on that location, determines what other procedures to call in order to re
spond to mouse clicks. If, for example, you choose a menu command, the Event
Handler calls a Program Action procedure to respond. If you click inside an inac
tive window, the Event Handler brings that window to the front.

Key down events occur when you type keys. To respond, the Event Handler
checks whether you also held down the command key to choose a menu command.
If so, it calls the appropriate Program Action to respond to the command-the
same way it does for mouse down events that choose commands from pull-down
menus. It handles normal keypresses by calling a Program Action that presumably
knows what to do with typing-maybe inserting a character into a text document
or simulating cursor keys.

Update events take place as the result of actions that require redrawing items
on display. In response, the program activates your Display Handler routine, drawing
the contents of one or another window. For example, the program might receive
an update event when you change a window's size, uncovering in the process the
contents of another window below. Or, you might close a window, erasing it from
the display. The update routine would take care of calling your Display Handler
to redraw the contents of any windows previously hidden from view.

Activate events are the fourth type. They occur when windows become active
or inactive in response to mouse clicks and to commands that create new windows
overtop those already on display. (Despite its name, an activate event can be either
for making windows active or for making them inactive. The activate Event Handler
takes care of both kinds of activate events.) Most of the time, activate events and
update events come in pairs. When you click inside an inactive window, it becomes

126 == Programming with Macintosh Turbo Pascal

active, requiring the program to draw any newly visible parts and also deactivating
a previously active window. It's rare that you'll need to know it but, in such cases,
deactivate events come first-they have priority over activate events.

Initializations

Every application needs to initialize its variables before the program kicks in
to high gear. On the Macintosh, initializations prepare pull-down menus and call
certain toolbox routines to allow them to set up their own variables.

Usually, initialization procedures run only one time at the start of the program.
Some initializations you must do. Others are optional. Still others you determine
according to the needs of your program.

For lack of a better place, I include among an application's Initializations a
shut-down procedure-a routine that programs call just before they end. (You might
think of it as a deinitialization procedure.) There's been much written about how
to start a Macintosh program but not as much about properly ending one. Because
there might be open windows, changed documents, and other unfinished business
when someone chooses the Quit command, it's important for programs to respond
properly. The best way to do this is with a deinitialization plan that guards against
losing information if you end too early, perhaps forgetting to save changed data
on display in a window.

Program Engine

The final part of a standard Macintosh application is the Program Engine,
the motor that makes a program go. Its first job is to call the program's Initializa
tion part. Then, as all engines, it cycles-in this case, repeating these important
jobs for as long as the program runs:

• Perform system operations

• Intercept events
• Ensure a proper shut-down

Perform system operations. The Program Engine repeatedly calls procedure
SystemTask, which gives desk accessories such as the alarm clock a chance to up
date their displays. (In long loops, call SystemTask if you know the Program Engine
will be idle for more than 1/60 second-not a hard and fast rule, but one to observe
as closely as possible.) Along with calling SystemTask, the Engine dims or highlights
certain menu commands depending on which windows are active. It can also change
cursor shapes depending on the mouse pointer's location. In the coming program
shell, procedure DoSystemTask performs these system operations.

In Any Event ;:;;;;;;: 127

Intercept events. Most important of the Program Engine's responsibilities is
its job of intercepting and directing events. When you click the mouse button, the
Macintosh operating system posts an event, meaning it inserts into a special list,
or queue, a data object that records where the mouse was (among other things)
at the time you clicked its button. The Program Engine obtains this plus other events
by repeatedly calling Boolean function GetNextEvent, which returns TRUE if it
can pass back an event of a type the Engine requests. (It's possible to request the
next event of a particular kind-only mouse clicks, for example-and ignore others.
Usually, though, the Program Engine requests all events and simply ignores the
ones it doesn't care about.)

After receiving an event, the Program Engine directs it to one of the four Event
Handlers, calling procedures to handle mouse down, key down, update, and ac
tivate events as they occur. This drives the program, putting into effect all its other
parts at the proper times. Update events find their way to Display Handler pro
cedures while mouse down events cause Program Actions to respond to commands.
These actions are at the heart of an event-driven program-driven by the cycling
Program Engine.

Ensure a proper shut-down. The final job ends programs in a logical, clearly
defined way following the idea that program actions should not have direct effects
but, rather, should change a program's knowledge. In this case, the action might
be what happens when you choose the pull-down menu's Quit command. The
knowledge is that fact-we'll call it QuitRequested. If QuitRequested is TRUE, then
the program assumes that you want it to stop. (It doesn't care how or why it ac
quired this knowledge.) Sensing this, the Program Engine verifies that it is indeed
okay to end the program at this time. If not-for example, if you added text to
a document but forgot to save those changes-it calls the appropriate procedures
to let you clean up before ending. This also gives you the chance to change your
mind and not quit the program after all. Putting these ideas together, the Program
Engine has the following Pascal-like form:

BEGIN
Initialize;
REPEAT

Do system tasks;
Direct events to Event Handlers;

UNTIL QuitConfi rmed
END.

If you are familiar with Macintosh programming, you know that this Engine
more commonly called the main loop-is simpler than usual. It initializes the pro
gram and then cycles, performing system tasks and directing events to Event Handler
routines. Very important is the next to last line where Boolean function QuitCon
firmed checks whether it's time to end the program and, if all is well, returns TRUE,
giving the Engine permission to turn itself off.

128 == Programming with Macintosh Turbo Pascal

That concludes the description of a Macintosh application. It's not vital for
you to memorize every preceding point but, rather, to have a good sense of what
the term event-driven means. Before continuing, you should understand that the
actions a program takes are separate from the ordering of those actions. You should
understand that the Program Engine directs events to Event Handlers, which take
care of calling the appropriate routines to perform program chores.

The rest of this chapter develops the programming steps to implement a full
bodied Macintosh application shell that fleshes out these six basic parts. Although
meaty, it's still mostly a skeleton that doesn't do any useful processing. Even so,
the shell is invaluable for writing new programs. Rather than starting from scratch,
you begin with a copy of the bare-bones skeleton. This saves time while ensuring
that you don't forget an important step.

DEVELOPING AN APPLICATION-APSHELL

Together, Listings 4.1, 4.2, and 4.3 make up an application shell, AP
SHELL.PAS, that fully implements the six parts of a Macintosh event-driven pro
gram. In many cases, you can write complete programs by replacing only one or
two shell procedures and adding your own constants and variables. Chapters 5-7
have many such examples.

The first ApShell part, Listing 4.1, contains routines and other declarations
that might change from one program to another. Its many place holders are pro
cedures that show you where to add your own programming. The second ApShell
part, Listing 4.2, contains the text form of the shell's resources. It describes the
menus, English language strings, and a window template that goes with the shell.
The third ApShell part is a unit, MacExtras in Listing 4.3, which contains many
useful tools that probably won't change for different programs.

ApShell offers several features. It adds desk accessories to the pull-down menu
bar and Jets you close them either by clicking their close boxes or by choosing the
Close command from the File menu. Many programs (including Turbo Pascal) fail
to follow this recommended guideline-Close should work for any frontmost win
dow, whether or not it belongs to your program.

The shell also has a complete Edit menu with Undo, Cut, Copy, Paste, and
Clear commands that work correctly with desk accessories such as the familiar
Note Pad, Key Caps, and Scrapbook utilities. Unlike many programs, ApShell prop
erly dims and highlights this menu at appropriate times rather than allow you to
select an Edit command even when the program doesn't allow cutting and pasting.

Another shell feature is window zooming. By clicking the zoom box in the upper
right corner of a window, you expand the window to full-screen size. Clicking the
zoom box again shrinks the window to its former size. (Window zooming is available
only on Macintoshes with 128K RO Ms. Older 64K ROM systems can use the shell
without modification but won't have zoomable windows.)

ApShell has one more feature not often included in other program shells: a
mechanism to help you properly shut down a program, closing opened windows

In Any Event == 129

and saving data without having to write a series of Boolean flags or fiddle with
the event queue. Of course, in the shell itself, there isn't anything to save. But later,
in programs that create disk files, you'll see how this mechanism protects you from
losing your work.

The following sections describe each of the three listings that make up the shell.
If you want to type in the entire program now, skip the Play-by-Play descriptions
but read the introductions that precede each listing. They contain notes about com
piling the listings to produce a finished program.

Listing 4.1 is the main ApShell listing. Type it in and save as APSHELL.PAS.
Change lines 1 and 2 to use different volume and folder names. You cannot run
ApShell until you type in the other two listings (4.2 and 4.3). Continue to the next
listing under the heading ApShell Resources if you want to type in the entire pro
gram before reading the play-by-play descriptions.

Listing 4.1. APSHELL.PAS

1: ($0 Programs:Shells.F:) Send compiled code to here
2: {$R Programs:Shells.F:ApShell.Rsrc)
3: {$U-)

Use this compiled resource file
Turn off standard library units

4:
5:
6: PROGRAM ApShell;
7:
8: (*
9:

10: * PURPOSE Application shell
11: * SYSTEM Macintosh I Turbo Pascal
12: * AUTHOR Tom Swan
13:
14: *)

15:
16:
17: ($U Programs:Units.F:MacExtras
18:

USES

(Open this library unit file)

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras;

G L 0 B A L D E C L A R A T I 0 N S

CONST

FileID = 2; { File menu Resource ID and commands)
NewCmd = 1;
CloseCmd = 2;

(--------)
QuitCmd = 4;

Window ID = 1; (Window resource ID)

(continued)

130 == Programming with Macintosh Turbo Pascal

44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

VAR

wRec
wPtr

quitRequested
windowOpen

WindowRecord;
WindowPtr;

BOOLEAN;
BOOLEAN;

Program's window data record
Pointer to above wRec I

TRUE if quitting
TRUE only if window is open I

56:
57:

P R 0 G R A M A C T I 0 N S

58:
59:
60:
61: PROCEDURE DoKeypress(ch : CHAR);
62:
63: Do something with an incoming character
64:
65: BEGIN
66: END; { DoKeypress)
67:
68:
69: PROCEDURE DoMouseClick(whichWindow : WindowPtr);
70:
71: Process mouse clicks inside windows
72:
73: BEGIN
74: END; (DoMouseClick)
75:
76:
77: PROCEDURE DoNew;
78:
79: Respond to File menu New command)
80:
81: BEGIN
82: IF NOT windowOpen THEN
83: BEGIN
84: wPtr := GetNewWindow(WindowID, @Wrec, POINTER(-1));
85: windowOpen := wPtr <>NIL;
86: IF windowOpen THEN
87: BEGIN
88: SetPort(wPtr);
89: Enableitem(fileMenu, CloseCmd);
90: Disableitem(fileMenu, NewCmd)
91: END
92: END { if)
93: END; { DoNew)
94:
95:
96: PROCEDURE CloseProgramWindow;
97:
98: Close the global wPtr window
99:

100: BEGIN
101:
102: IF windowOpen THEN
103: BEGIN
104: CloseWindow(wPtr);
105: windowOpen := FALSE;
106: Enableitem(fileMenu, NewCmd);
107: Disableitem(fileMenu, CloseCmd
108: END { if)
109:
110: END; { CloseProgramWindow
111:

In Any Event == 131

112:
113: PROCEDURE DoClose;
114:
115: Respond to File menu Close command }
116:
117: BEGIN
118:
119:
120:
121:
122:
123:

IF FrontWindow = wPtr
THEN CloseProgramWindow
ELSE CloseDAWindow

END; { OoClose }

Close the program's window)
Close desk accessory window }

124: PROCEDURE DoFileMenuCommands(cmdNwnber INTEGER };
125:
126: Execute command in the File menu }
127:
128: BEGIN
129: CASE cmdNwnber OF
130: NewCmd DoNew;
131: CloseCmd : DoClose;
132: QuitCmd quitRequested := TRUE
133: ENO I case l
134: ENO; I DoFileMenuCommands }
135:
136:
137: PROCEDURE OoEditMenuCommands(cmdNwnber INTEGER};
138:
139: Execute command in the Edit menu }
140:
141: BEGIN
142: IF NOT SystemEdit(cmdNwnber - 1) THEN
143: BEGIN
144: (Do program's edit menu commands }
145: END { if }
146: END; { OoEditMenuCommands
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:

PROCEDURE DoCommand(command LONGINT } ;

Execute a menu command }

VAR

whichMenu
whichitem

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command }

BEGIN

whichMenu := HiWord(command);
whichitem := LoWord(command};

Find the menu
Find the item

CASE whichMenu OF

AppleID
File ID
EditIO

OoAppleMenuCommands(whichitem);
OoFileMenuCommands(whichitem);
DoEditMenuCommands(whichitem);

Add other program menus here)

END; { case

HiliteMenu(0 (Unhighlight menu title)

175: ENO; { OoCommand
176:
177:
178:

(continued)

132 =:: Programming with Macintosh Turbo Pascal

179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:

D I S P L A Y H A N D L E R S

PROCEDURE DrawScrollBars(whichWindow : WindowPtr);

Draw v & h scroll bars. In the shell, this draws only the scroll
bar outline and grow box. I

VAR

vBarRect
hBarRect
gbRect

BEGIN

Rect;
Rect;
Rect;

Vertical scroll bar I
Horizontal scroll bar
Grow box I

DrawGrowicon(whichWindow);
CalcControlRects(whichWindow, hBarRect, vBarRect, gbRect);
ValidRect(hBarRect);
ValidRect(vBarRect);
ValidRect(gbRect)

END; (DrawScrollBars I

PROCEDURE DrawContents(whichWindow WindowPtr };

Display window contents I

BEGIN
EraseRect(whichWindowA.portRect);
DrawScrollBars(whichWindow);

Add commands to draw window's contents)

END; (DrawContents I

E V E N T H A N D L E R S

PROCEDURE MouseDownEvents;

Someone pressed the mouse button. Check its location and respond.)

VAR

part Code INTEGER; (Identifies what item was clicked. I

BEGIN

WITH theEvent DO

BEGIN

partCode := FindWindow(where, whichWindow);

CASE partCode OF

In Any Event

245: inMenuBar
246: : DoCommand(MenuSelect(where));
247:
248: inSysWindow
249: : SystemClick(theEvent, whichWindow);
250:
251: inContent
252: : IF whichWindow <> FrontWindow
253: THEN SelectWindow(whichWindow)
254: ELSE DoMouseClick(whichWindow);
255:
256: inDrag
257: : DragTheWindow(whichWindow, where);
258:
259: inGrow
260: : IF whichWindow <> FrontWindow
261: THEN SelectWindow(whichWindow
262: ELSE ResizeWindow(whichWindow, theEvent.where);
263:
264: inGoAway
265: : IF TrackGoAway(whichWindow, where)
266: THEN DoClose;
267:
268: inZoomin, InZoomOut
269: : IF TrackBox(whichWindow, where, partCode)
270: THEN ZoominOut(whichWindow, partCode)
271:
272: END I case
273:
274: END { with)
275:
276: END; { MouseDownEvents
277:
278:
279: PROCEDURE KeyDownEvents;
280:
281: A key was pressed. Do something with incoming character.)
282:
283: VAR
284:
285:
286:

ch

287: BEGIN

CHAR;

288: WITH theEvent DO
289: BEGIN
290:

133

291:
292:
293:
294:
295:
296:
297:
298:
299:
300:

ch:= CHR(BitAnd(message, charCodeMask)); I Get character)

301:
302:
303:
304:
305:
306:
307:
308:

IF BitAnd(modifiers, CmdKey) <> 0
THEN DoCommand(MenuKey(ch))
ELSE DoKeypress(ch)

END with
END; { KeyDownEvents

PROCEDURE UpdateEvents;

Part or all of a window requires redrawing J

VAR

If command key pressed)
then execute command)
else use character I

oldPort GrafPtr; { For saving I restoring port)

{continued]

134 Programming with Macintosh Turbo Pascal

309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:

BEGIN
GetPort(oldPort);
whichiiindow :=

iiindowPtr(theEvent.message);
SetPort(whichiiindow);
BeginUpdate(whichiiindow);
DrawContents(whichiiindow);
EndUpdate(whichiiindow);
SetPort(oldPort)

END; (UpdateEvents I

Save current port }

Extract window pointer
Change current grafPort I
Calculate new visRgn I
Draw/redraw window contents
Reset original visRgn I
Restore old port I

321: PROCEDURE ActivateEvents;
322:
323: Activate or deactivate windows
324:
325: BEGIN
326: WITH theEvent DO
327: BEGIN
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:

whichiiindow := iiindowPtr(message);
SetPort(whichiiindow);

DrawScrollBars(whichiiindow);

IF BitAnd(modifiers, activeFlag) <> 0

Extract window pointer
Change current port I

Draw bars & grow box I

THEN FixEditMenu(FALSE) (Activate a window I
ELSE FixEditMenu(TRUE) (Deactivate a window

END with
END; (ActivateEvents

I N I T I A L I Z A T I 0 N S

PROCEDURE SetUpMenuBar;

Initialize and display menu bar I

BEGIN

appleMenu
fileMenu
editMenu

:= GetMenu(AppleID); (Read menu resources I
:= GetMenu(FileID);
:= GetMenu(EditID);

InsertMenu (appleMenu, 0); (Insert into menu list I
InsertMenu (fileMenu, 0);

InsertMenu(editMenu, 0);

AddResMenu(appleMenu, 'DRVR'); Add desk accessory names

DrawMenuBar Display the menu bar J

END; (SetUpMenuBar

PROCEDURE Initialize;

(Program calls this routine one time at start I

In Any Event ~ 135

375:
376:
377:
378:
379:
380:
381:

BEGIN
SetUpMenuBar;
quitRequested := FALSE;
windowOpen := FALSE

END; I Initialize I

382: FUNCTION QuitConfirmed : BOOLEAN;
383:

Initialize and display menus)
TRUE on selecting Quit command
TRUE after using New command J

384: The program's "deinitialization" routine. If someone chooses quit
385: command, this routine closes any open windows and tells the main
386: program loop whether it is okay to end the program now. I
387:
388: BEGIN
389: IF quitRequested THEN
390: IF windowOpen
391: THEN CloseProgramWindow;
392: QuitConfirmed := quitRequested
393: END; { QuitConfirmed I
394:
395:
396:
397: --
398:
399: P R 0 G RA M E N G I N E
400:
401: --
402:
403:
404: PROCEDURE DoSystemTasks;
405:
406: Do operations at each pass through main program loop I
407:
408: BEGIN
409:
410: SystemTask; Give DAs their fair share of time I
411:
412: IF FrontWindow NIL THEN
413:
414: BEGIN I Set up menu commands for empty desktop J
415:
416: FixEditMenu(FALSE);
417: Enableitem(fileMenu, NewCmd);
418: Disableitem(fileMenu, CloseCmd);
419:
420: END ELSE
421:
422: IF FrontWindow <> wPtr THEN
423:
424: BEGIN I Set up menu commands for active desk accessory J
425:
426: FixEditMenu(TRUE);
427: Enableitem(fileMenu, CloseCmd I
428:
429: END (else I if I
430:
431: END; (DoSystemTasks I
432:
433:
434: BEGIN
435:
436: Initialize;
437:
438: REPEAT
439:
440: DoSystemTasks;
441:

{continued)

136 ;;;;;;;;;;; Programming with Macintosh Turbo Pascal

442: IF GetNextEvent(everyEvent, theEvent) THEN
443:
444: CASE theEvent.what OF

Mouseoown
KeyDown
AutoKey
UpdateEvt
ActivateEvt

END { case I

445:
446:
447:
448:
449:
450:
451:
452:
453:
454:
455:

UNTIL QuitConfirmed

456: END.

: MouseDownEvents;
: KeyDownEvents;
: { ignored I ;
: UpdateEvents;
: ActivateEvents

ApShell Play-by-Play

Lines 1-3 select three compiler directives that most of the remaining programs
in this book use. Line 1 you've seen before. It tells Turbo where to send the output
code file when it compiles this program to disk. It has no effect on compiling to
memory.

Line 2 tells the compiler which resource file to combine with this program's
code. (This file contains the binary form of the program's resources, not the text
in Listing 4.2. Don't confuse the two.) When Turbo compiles a program to memory,
it opens the file in line 2 to read its resources as needed while your program runs.
When compiling to disk, it combines the resources with the program code, pro
ducing a complete application in a single file. This adds menu titles, window
templates, and other resources to programs.

Line 3 switches off Turbo's standard library units, eliminating its dumb ter
minal interface. Because we want to write programs that open their own windows,
add desk accessories, and contain pull-down menus, we don't want Turbo's fixed
window to interfere. Unfortunately, switching off standard library units has another
effect that makes programming more difficult. No longer can you add a simple
Writeln statement to display text in a window. Without the standard units in ef
fect, you have to use QuickDraw commands to draw text. (You can also use the
Macintosh TextEdit tools to display text-but more on that later.) The advantage,
of course, is that you can use the many available fonts and styles to display text.
And you can combine graphics and text on screen in any way you can imagine.

It's helpful to know exactly what you've turned off in line 3. With standard
library units on {$U +},Turbo automatically includes three units with every pro
gram it compiles: PasSystem, PaslnOut, and PasConsole. PasSystem adds low-level
items such as math routines, string handlers, sets, and other native Pascal elements.
PaslnOut adds standard 110 routines to programs. This includes Write, Writeln,
Read, and Readln along with code to implement files that you use with those pro
cedures to read and write data to disk or to devices like printers and modems.
PasConsole contains the dumb terminal interface that you use in textbook programs.

In Any Event == 137

Of these three, Turbo always adds PasSystem. You cannot remove Pascal's fun
damental abilities to use sets and handle strings (nor would you want to). Turning
off the standards eliminates only the two units, PaslnOut and PasConsole.

Having switched off standard units, you can always explicitly add them back
in the program's USES clause. For example, a useful debugging technique is to
change line 20 to read:

USES PasinOut, PasPrinter,

and then insert statements to print various information while a program runs. Let's
say you have a variable XMax that you suspect is not being initialized properly.
Somewhere in the program, you can write:

WRITELNC PRINTER, 'XMAX=', XMAX);

When the program gets to that statement, it prints Xmax's value. PRINTER
is defined in the PasPrinter unit. Adding it as the first parameter in Write and
Writeln procedures sends text and other items to the printer. Another trick is to
put statements like these at the beginning and end of procedures.

PROCEDURE A;
BEGIN

WRITELNC PRINTER, 'ENTER PROCEDURE A'>;

WRITELN(PRINTER, 'EXIT PROCEDURE A')
END;

Doing this in every procedure, or in a select few, traces a program's execution,
listing all the procedures it calls. You might also print variables to determine if they
contain what you think they should. Printing data this way is a useful debugging
technique and, because you remain on Pascal's level, is often more useful than trac
ing the machine language code with a conventional debugger. As shown here, I
usually write my debugging procedures in all uppercase to make them easy to find
and remove later.

One unit you should never use with standard units switched off is PasCon
sole, which initializes Turbo's dumb terminal and interferes with Macintosh pro
grams that set up their own windows. Never insert PasConsole in a program's USES
clause. Let Pascal automatically include it when you compile textbook programs
(without the {$U-} directive in line 3).

Notice that line 17 tells Pascal to read the compiled MacExtras unit (Listing
4.3). Be sure to modify this line if you compile MacExtras to different volume and
folder names. Alternatively, you can use Turbo's UnitMover program to add MacEx
tras to the compiler. In that case, remove line 17. (See Chapter 7 for details on us
ing UnitMover.)

138 == Programming with Macintosh Turbo Pascal

Lines 20-22 tell Pascal to use six units, including MacExtras. The newcomer
here is Packlntf (Package Manager Interface), which adds packages to your pro
gram. Originally, a package was a kind of after-thought toolset-containing pro
gramming that, for one reason or another, was left out of the Macintosh ROMs.
Today, packages are just miscellaneous toolsets in the System file (called RAM
based tools because they share memory with your program's code) or in ROM.
One package adds the standard file dialog for selecting file names, ejecting disks,
and opening folders. Another standardizes date and time formats and selects in
ternational currency symbols and decimal points depending on where in the world
your program is running. By using the International Utilities Package, your pro
gram can automatically use pound signs instead of dollar symbols and commas
instead of periods for decimal points-strange to us Yankees perhaps, but all the
same to a program in London.

ApShell Global Declarations (26-50)

As in all Macintosh applications, ApShell has a Global Declaration part. Con
stants define the File menu and a window. If you've already run the shell, you might
wonder where the Apple and Edit menus are. Because these rarely change, their
constants are in the MacExtras unit (Listing 4.3). Even though ApShell doesn't
define them, you certainly can add commands to these menus. Future programs
explain how.

The five constants in lines 34-38 require explanation. FilelD is the identifier
that the Macintosh Resource Manager toolset uses to read this menu into memory.
The menu resource comes from the resource file, which you specify in line 2 and
which you create by running Listing 4.2 through RMaker, the Resource Compiler
program that comes with your Turbo Pascal system. At line 39 in Listing 4.2, you'll
see the resource ID 2, the same value as in line 34 of ApShell.

The File menu's commands (35-38) are constants, too, but their values do not
represent resource IDs. Instead, a menu command's value is simply its position in
the menu. The first command is always I, the second 2, and so on. Observe one
caution when assigning values to these constants. As line 37 shows, you must allow
for divider lines in menus even though such lines are deadwood-they don't do
anything, they just help organize menus into subcategories. As far as the Menu
Manager toolset is concerned, though, a divider line still is a command even though
no one can choose it. Notice that QuitCmd's value is 4, not 3, leaving that value
for the divider line, represented in the listing by the comment { --------}.

Line 40 in ApShell defines another constant, WindowlD. Similar to FileID,
this is the number of a corresponding resource definition. In this case, WindowID
refers to a window template, which describes the size, location, and style of win
dows that the program uses. The template is the resource that defines what the win
dow looks like, not the window data structure as it exists in memory. The line that

In Any Event == 139

corresponds to the constant definition is in Listing 4.2 at line 67. The shell uses
WindowlD to load this template into memory when it creates a new window.

Lines 46-47 declare two variables that add a single window to the shell: wRec
keeps track of various details such as the window's location, its style and features
(such as whether it has a go-away box); wPtr (47) points to the wRec variable. This
may seem odd to expert Pascal programmers who are familiar with the normal use
of pointers, which rarely if ever address common variables. In Turbo Pascal, this
is not only possible but critical to Macintosh programming.

Despite its name, window pointer wPtr does not point to a structure of type
WindowRecord, the record in which the toolbox Window Manager keeps facts
about a program's windows. (The Guide and Inside Macintosh describe the Win
dowRecord data type in full.) Window pointers actually point to GrafPorts, exact
ly the same records used in the graphics programs in Chapter 3. In other words,
the definition for WindowPtr is:

TYPE
WindowPtr = GrafPtr;

As you can see, there is no difference between WindowPtr and GrafPtr
variables-both point to GrafPort records. The Macintosh toolbox accomplishes
this apparent magic because every WindowRecord contains a GrafPort record as
its first field. Because of this duality, you can pass the address of a window record
to procedures that operate on windows or to procedures that operate on GrafPorts.
For example, you can pass ApShell's wPtr to Window Manager procedure Select
Window, which takes as its parameter a WindowPtr variable, or to SetPort, which
takes a GrafPtr variable.

Still, even though WindowPtr and GrafPtr types are the same, and you can
pass variables of either type to any procedure that requires the other, you can use
only WindowPtr variables for windows and GrafPtr variables for pure GrafPorts.
The reason for this is to prevent you from mixing the two types in cases where it
does matter to which kind of record they point. Although they include a GrafPort
as their first field, WindowRecords attach additional fields that the Window
Manager requires in order to manipulate windows. For those rare times when you
need to access those fields, Pascal defines another pointer type as follows:

TYPE
WindowPeek = "WindowRecord;

Never declare variables of this type. Except for low-level procedures for which
you probably will have little use, no Window Manager procedures accept them as
parameters. The way to use the WindowPeek data type is in a type casting state
ment, one that converts one data type to another by using the type identifier with
a variable in parentheses. An example helps clarify how this works. Let's say you
declare wPtr as in line 47 but later want to read the value of the WindowRecord

140 == Programming with Macintosh Turbo Pascal

field goAwayFlag, a Boolean variable that tells whether this window has a go-away
box in the upper left corner. You cannot do this:

IF wPtrA.goAwayFlag
THEN {do something};

because wPtr points to a GrafPort and such records do not have goAwayFlag fields.
Still, you know that wPtr actually addresses a WindowRecord-it's the compiler
that doesn't have that same understanding. Therefore, to tell Pascal to ignore what
it thinks it knows-to force it, in other words, to consider that wPtr addresses a
window record-you recast the pointer into a new role, using WindowPeek this way:

IF WindowPeek< wPtr)A.goAwayFLag
THEN {do something};

This use of WindowPeek generates no code-it just looks as though it does.
It's not a function call, but a translation of a variable's data type (in this case a
WindowPtr) into something else (WindowPeek). Notice that the caret, dereferencing
the pointer, comes after the parentheses. If you put the caret inside after wPtr, you
receive an "Invalid type cast argument," meaning Pascal knows better than to allow
you to convert an entire GrafPort into a WindowPeek variable. When type casting
one type to another, they must have the same byte size. Other than that, there's
no restriction.

The other two variables in ApShell's Global Declarations are two Boolean flags,
quitRequested and windowOpen (49-50). The first, quitRequested, is TRUE after
someone chooses the File menu's Quit command. This single flag controls the Pro
gram Engine's task of ensuring a secure shut-down before the program ends. The
second Boolean variable, windowOpen, is TRUE if a program window is open.
It does not indicate whether any other windows are open, such as those belonging
to desk accessories. In a way, this flag is redundant. You could set wPtr to NIL
the pointer value that means "nowhere in particular'!..._to indicate that no window
is open. But having the windowOpen flag makes for more readable programs. In
stead of statements such as:

IF wPtr <>NIL
THEN EraseWindow(wPtr >;

you can write the more understandable:

IF w i ndowOpen
THEN EraseWindow(wPtr >;

ApShell Program Actions (54-175)

The eight procedures in ApShell's Program Actions respond to commands that
you choose from pull-down menus or by typing command keys like Command-Q.

In Any Event =:: 141

Because they Do the things that make this program unique-in other words, because
they perform the program's actions-procedure names in this section typically begin
with "Do." For example, the Do New procedure performs the action you want when
someone chooses the File menu's New command.

Two procedures, DoKeypress and DoMouseClick (61-74) are do-nothing
shells-empty place holders that you fill in later. DoKeypress receives a character
typed on the keyboard. In the shell, typing has no effect and the procedure ignores
the characters it receives. To prove that it works, replace it with the following pro
gramming. (Use a copy of ApShell to protect your original text. Never modify your
only copy of the shell-you'll need it for future examples and for your own
programs.)

PROCEDURE DoKeypress (ch CHAR);
BEGIN

IF ch='@'
THEN qui tRequested :=TRUE

END; { DoKeypress}

When you run the modified program, type an at-sign(@) and the program
ends. Notice that this happens without your knowing exactly the steps involved
in shutting down the program. The procedure merely sets Boolean flag quitRe
quested to TRUE indicating that the state of the program has changed-that is,
somebody typed the new at-sign Quit command.

Another do-nothing procedure, DoMouseClick (69-74), takes care of mouse
clicks in windows. Its parameter is a WindowPtr variable that addresses the win
dow to which the mouse pointer points. Similar to the way you tested DoKeypress,
you can verify that DoMouseClick works by replacing it with the following.

PROCEDURE DoMouseClick(whichWindow: WindowPtr >;
BEGIN

SysBeep(2)
END; { DoMouseClick}

SysBeep sounds a tone for the length of time in parentheses. The value stands
for the number of ticks, or 1160-second internal heartbeats in sync with Macin
tosh display updates, known technically as vertical retrace interrupts. Supposedly,
the tone lasts for that length of time. But it's only an approximation of real time
the actual value is not that accurate.

When you run the program, choose the File menu's New command and click
the mouse inside the window. Notice that it beeps only when the pointer touches
the area under the window drag bar and inside the other borders.

By the way, remember SysBeep for those times when you simply want to know
whether a certain procedure runs. Sometimes, you may wonder if a section of code
executes. Insert a SysBeep and run the program to receive an audible answer.

142 ==: Programming with Macintosh Turbo Pascal

DoNew (77-93}

Procedure DoNew opens a new window in response to choosing the File menu's
New command. In a sense, this breaks the rule that action procedures affect only
a program's knowledge. To follow that rule exactly, DoNew would have to generate
an event that would later result in a window opening. Although not shown here,
doing this requires creating your own custom event type and then adding code to
intercept that event in the program's Event Handler section. There is an operating
system function called PostEvent for this purpose but, in this case, using it would
only complicate DoNew to no advantage.

Lines 82-92 check for open windows by examining the windowOpen flag.
Because the shell dims the New command after opening a window, it shouldn't
be possible to accidentally open another. Even so, checking the windowOpen flag
eliminates the slightest possibility of an accident, a good rule of thumb to follow.

Line 84 creates and displays the window in a single statement. It does this by
calling function GetNewWindow, which reads the window template from the
resource file and returns a pointer to a new window record containing all the details
that the Window Manager needs to manipulate this window. There are several im
portant points to observe in line 84.

The first parameter, Window ID, is the constant with the resource ID value ex
plained earlier. The second parameter, @wRec, equals the address of the global
wRec variable. GetNewWindow needs this address to know where to do its work.
The third and last parameter is POINTER(-1), another example of type casting.
In this case, the integer value -1 is recast as a general POINTER, a generic type
that Pascal recognizes as being compatible with any other kind of pointer. The value
(-1) tells GetNewWindow to place the new window in front of all others. You can
use NIL as the third parameter to create new windows behind all others on display.
Or, you can pass the WindowPtr address of another window to create your new
window behind that one. Despite these choices, you'll usually just use POINTER(-1)
and create the new window on top. It's difficult to imagine a situation where you
wouldn't want to do that.

The rest of DoNew checks to see if the call to GetNewWindow succeeded by
testing in line 85 whether wPtr is NIL, in which case something went wrong trying
to create the new window. As long as all is okay, lines 88-90 ensure that the pro
gram window is the current GrafPort (88), enable the File menu's Close command
(89), and disable Open (90) to prevent opening another window. Enableltem and
Disableltem are routines in the toolbox's Menu Manager. Enableltem activates a
menu command, allowing you to choose it from a menu. Disableltem does the
opposite, dimming the command and preventing you from choosing it.

You might wonder where variable fileMenu comes from. The MacExtras unit
defines this and two other menus (appleMenu and editMenu), which are practically
set-in-concrete standards in Macintosh software. The MacExtras play-by-play ex
plains how to use them.

In Any Event ==: 143

CloseProgramWindow, DoClose {96-121}

These two procedures go together. Only if a window is open does line 104 close
it, removing it from the display and also erasing from memory certain miscellaneous
structures that the Window Manager creates when you open a new window.
CloseWindow is the correct procedure to use when your window record is on the
stack or, as wRec, declared as a global variable. Another procedure, DisposeWin
dow, does the same job as CloseWindow, but also makes available the memory
that the window record occupies. Never use DisposeWindow to close windows when
the window record is a Pascal variable. Later, we'll see how to use this technique
to manage window records on the heap, where you must be concerned with dispos
ing objects you no longer need.

CloseProgramWindow also sets windowOpen to FALSE (105) and changes the
File menu commands to the proper state when there aren't any open windows, dim
ming the Close and activating the New commands.

Procedure DoClose (113-121) checks if the front window belongs to the pro
gram. It does this by calling function FrontWindow (118), which returns a Win
dowPtr to the window now active. By checking whether this pointer is the same
as the value in global variable wPtr, DoCiose determines if the window belongs
to a desk accessory or to this program. If it's a desk accessory window, DoClose
calls CloseDAWindow in the MacExtras unit. Otherwise it calls CloseProgram
Window described earlier.

DoFileMenuCommands, DoEditCommands, and DoCommand
{124-175}

The remaining three procedures in ApShell's Program Actions section are
DoFileMenuCommands, DoEditMenuCommands, and DoCommand. Let's take
the last one first, as it merely calls the others.

As you can see at lines 163-171, DoCommand directs a menu command to
one of the Do ... MenuCommands procedures that precede it in the program.
DoCommand's single WNGINT parameter, command, contains the menu ID
number along with the line number of a command selected from a menu. The first
job is to extract those parts, which DoCommand does at lines 160-161. Function
HiWord returns the high-order 16-bits from a 32-bit WNGINT (see Figure 4.1).
LoWord returns the low-order 16-bits.

Two local variables, whichMenu and whichltem, save the extractions of the
command parameter. The first of these, whichMenu, figures in the CASE state
ment at lines 163-171. It selects one of the cases labeled by the menu resource ID
numbers, ApplelD, FilelD, and EditID. If you have other menus, put their ID
numbers after EditID where the comment indicates.

DoCommand passes whichltem, representing the menu command number, to
one of the Do ... MenuCommands procedures. Notice that DoCommand only

144 == Programming with Macintosh Turbo Pascal

32 bits

High Order Low Order

16 bits 16 bits

Figure 4.1 In memory, 32-bit objects order their bytes as shown here.
The high order bits precede the low order-the opposite of the way some
computers (the IBM PC for example) store multi-byte values.

redirects a command to the proper procedure-it doesn't take any actions itself.
One of those procedures, DoAppleMenuCommands, is in the MacExtras unit. The
Apple menu usually contains the familiar About Program command and desk ac
cessories. Because it rarely varies from that setup, it's best kept in the unit along
with other common routines.

DoCommand's final task is to call HiliteMenu (173), changing the now inverted
menu title back to black on white, its normal state. When you choose a menu com
mand, the Menu Manager erases the pull-down menu but leaves the menu title in
reversed white on black. Surround HighliteMenu(O) with comment brackets to see
what effect this has when you choose menu commands.

Backing up a few lines, DoFileMenuCommands at lines 124-134 handles the
New, Close, and Quit commands in a CASE statement. For New and Close, it calls
the proper action procedure, DoNew or DoClose. For Quit, it sets the quitRequested
flag TRUE. Notice that parameter cmdNumber is the integer value passed by
DoCommand representing the command position in the menu.

Procedure DoEditMenuCommands (137-146) has a slightly different form. It
calls a Boolean function SystemEdit, passing parameter cmdNumber minus one.
This allows desk accessories to recognize Edit menu commands Undo, Cut, Copy,
Paste, and Clear. If SystemEdit returns TRUE, ignore the command-it's been taken
care of for you. Otherwise, process the command to cut and paste information
belonging to your program. Of course, in the shell, there's nothing to cut or paste.
Therefore, the rest of the IF statement is empty (143-145).

ApShell Display Handlers (179-216)

There are only two display handlers in the shell. In a real program, this area
might be the largest-it's responsible for just about everything you see during the
course of a program.

The first procedure, DrawScrollBars (186-203), draws the window's grow box
icon in the lower right corner and also the lines that form the inside borders of

In Any Event== 145

vertical and horizontal scroll bars. In ApShell, there aren't any real scroll bars
only the outlines. Later examples add these and other controls. (See Chapter 5.)

DrawScrollBars takes a WindowPtr as its parameter indicating in which win
dow to draw. This is necessary because the window might not be active. For active
windows belonging to the program, procedures use MacExtras global variable,
whichWindow. But that's not possible here. Consider, for example, the situation
when you move a desk accessory window aside, uncovering a window underneath.
In that case, the program has to redraw the scroll bar areas in the inactive window,
which it does by passing the window pointer to DrawContents. The procedure then
calls DrawScrolffiars to redraw the newly exposed portions of the scroll bar outlines.
In general, when designing procedures that might operate on non-active windows
this way, pass them a window pointer. Otherwise, use the global whichWindow
variable.

Notice the three calls to ValidRect in lines 200-202 and the call to CalcCon
trolRects at line 199. The reason for these items will be more understandable after
you read the play-by-play for the shell's Event Handlers. The statements help avoid
redrawing portions of windows more than once, preventing an annoying problem
that causes scroll bars to flutter briefly. I'll show you in the next section how
ValidRect eliminates this problem.

Procedure DrawContents (206-216) erases the window contents and calls
DrawScrollBars. In a real program, you'd put other commands here to draw
whatever you want in the window. Notice that DrawContents passes the window's
portRect to QuickDraw procedure EraseRect. You'll recall from the previous chapter
that the portRect is the portion of the GrafPort in which QuickDraw draws. With
window records, this equals the interior area of the window minus the title bar on
top. Because WindowPtr and GrafPtr pointers are equivalent, you can pass the
window's portRect to EraseRect, clearing the window's insides but leaving un
disturbed everything else on display.

One important fact is that DrawContents normally draws everything that ap
pears in the window. Remember when adding your own commands not to be con
cerned with when this might happen. In fact, DrawContents will be called many
times-when you create a window; when you zoom it in and out; when you expose
portions of it by moving other windows; and when you click it to bring it to the
front. But in the Display Handler section, you do not have to observe any rules
relating to these various conditions. You simply draw everything in the window and
let the next section, the Event Handlers, decide when that should happen.

ApShell Event Handlers (220-339)

The shell's Event Handlers process the four main events that most programs
need to recognize. Procedure MouseDownEvents (227-276) is first. It determines
exactly where the mouse pointer was at the time you clicked the button and, from
that information, calls an appropriate routine. For example, if you click inside an

146 = Programming with Macintosh Turbo Pascal

inactive window, MouseDownEvents brings that window to the front. Or, if you
choose a pull-down menu command, MouseDownEvents discovers that fact and
responds.

The large WITH statement beginning at line 237 gives access to fields in Record
variable theEvent (also from MacExtras) containing the data associated with this
event. It's the Program Engine's responsibility to set theEvent record so that Event
Handlers can interpret its data.

To accomplish that, the procedure calls function FindWindow (241) with two
parameters. The first, where from theEvent, is the Point record with the global coor
dinate of the cursor hot spot-the tip of the arrow pointer or the center of a cross
hair. FindWindow assigns to whichWindow (the global MacExtras variable) the
address of the window (if any) that contains where, indicating the mouse click was
inside that window's contents. FindWindow returns also a part code, locating the
part number of the desktop item (the menu bar or zoom box, for example) where
you clicked the mouse. The procedure assigns this value to a local INTEGER, part
Code, for later use.

Inside the large CASE statement (243-272), part codes select one of seven possi
ble mouse click activities. If the part code indicates a mouse click in a pull-down
menu, meaning a command was chosen, the program calls DoCommand (246) pass
ing the event's where Point record through toolbox function MenuSelect. This con
verts the record to a LONGINT type (containing the menu and command numbers)
that DoCommand requires.

If the mouse click was in a system window, meaning a desk accessory probably,
lines 248-249 call SystemClick passing the two parameters theEvent and whichWin
dow. SystemClick passes the event on to a desk accessory, for example, if you click
its close button. You don't have to handle such events yourself, but you are respon
sible for making sure that desk accessories receive the events that belong to them.

Lines 251-254 represent the traditional way of handling mouse clicks inside
program windows. As written here, if the window is not now the active one, deter
mined by comparing whichWindow with FrontWindow (252), the program calls
SelectWindow to bring it to the front. If it is the front window, then the program
passes the mouse click location on to action procedure DoMouseClick, described
earlier.

With this approach, if you click inside an inactive window, you have to click
a second time to accomplish something there. If you instead want to click in an
inactive window, bring it to the front, and process that mouse click immediately,
replace lines 251-254 with the following. Either approach is acceptable. It's your
choice.

inContent
BEGIN
IF whichWindow <> FrontWindow

THEN SelectWindow(whichWindow >;
DoMouseCLick(whichWindow)

END;

In Any Event == 147

Lines 256-257 drag windows to new locations when you click on the window's
title bar. DragTheWindow, a procedure in the MacExtras unit, takes two parameters
whichWindow and where, and completely handles all window dragging details, a
subject we'll see again later. If the window is inactive, clicking the title bar also
activates it unless you also hold down the Command key.

Lines 259-262 process clicks in the window's grow box at the lower right cor
ner, letting you resize a window by stretching its rubbery outline and then releas
ing the mouse button. The program does this by calling the MacExtras unit pro
cedure ResizeWindow if the window is now active. If it's not active, it calls Select
Window to make it active. Because it takes two clicks to activate an inactive win
dow and resize it, you might want to modify these lines as you did for mouse clicks
in window contents.

The two remaining cases in MouseDownEvents handle clicks in the close and
zoom boxes at either side of the window's title bar. Lines 264-266 call TrackGoAway,
which explodes the little go-away box, displaying the shock wave lines you see when
you click it, and returning TRUE only if you then release the mouse button while
the pointer remains inside the box. If you move the mouse and release the button,
TrackGoAway returns FALSE. This gives you the chance to change your mind about
closing windows. Only if you release the mouse with the arrow still in the box does
the program call DoClose at line 266.

Lines 268-270 work similarly. In this case, two part codes inZoomln and in
ZoomOut indicate the mouse was inside the window zoom box. If so, TrackBox,
a more general form of TrackGoAway, returns TRUE if you release the button while
still pointing to the box. If so, line 270 calls ZoomlnOut (in MacExtras) to zoom
the window either to full size or back to a former size.

KeyDownEvents {279-298}

Event Handler KeydownEvents is much simpler than MouseDownEvents. It
checks the event record in a WITH statement (288-297), pulling the character's
ASCII code out of the event message field with the statement:

ch:= CHR(BitAnd(message, charCodeMask) >;

The BitAnd function uses global constant charCodeMask to extract the
character code from message, a field in the event record. You can use a similar state
ment to extract the character key code by replacing charCodeMask with
keyCodeMask. The character code is the key's ASCII value; the key code is its posi
tion on the keyboard. (See Figure 4.2 for the location of these values in theEvent
message field.) Normally, the ASCII code is what you want. But there are times
when you need to check the key code, sometimes known also as a scan code. For
example, on the Macintosh Plus, there are two plus sign (+) keys that produce the
same ASCII value (hex $2B) for that symbol. To distinguish between them, use
the KeyDownEvents procedure in Figure 4.3.

148 == Programming with Macintosh Turbo Pascal

the Event.message

Key ASCII
Unused Code Code

31 16 15 8 7 0

Figure 4.Z Key down events return both a key code and
ASCII character, stored as shown here in the low order part
of the event record's message field.

If you have a Macintosh Plus or a numeric keypad, replace KeyDownEvents
in a copy of ApShell with this procedure and insert SysBeep(2) in place of the com
ment, "Handle keypad plus key." Typing the keypad's plus key beeps the speaker;
typing the regular plus key doesn't beep, proving that even though both keys generate
the same ASCII code, they have different key codes.

After extracting the character or key code, the next step is to determine whether
a modifier key was pressed at the same time. Lines 293-295 show how to check

PROCEDURE KeyDownEvents;

CONST

KeyPadPlus = 70;

VAR

keyCode : INTEGER;

BEGIN
WITH theEvent DO
BEGIN

keyCode := BitAnd(message, keyCodeMask) DIV 256;

IF keyCode = KeyPadPlus THEN

BEGIN
(Handle key pad plus key

END ELSE

BEGIN
{ Handle regular keypresses

END

END (with I
END; (KeyDownEvents

Figure 4.3 To distinguish between keys that produce the
same ASCII character code, examine their key codes as this
procedure demonstrates.

In Any Event == 149

Table 4.1 Event record modifiers constants.

BtnState
CrndKey
ShiftKey
AlphaLock
OptionKey

= 128;
= 256;
= 512;
~ 1024;
= 2048;

Bit set if mouse button is UP)
Bit set if command key typed I
Bit set if shift key typed)
Bit set if caps lock key is down
Bit set if option key typed }

for the Command key (CmdKey), calling DoCommand to respond to Command
Q, Command-N, and other alternatives to choosing pull-down menu commands.
KeyDownEvents checks for the command key by logically ANDing the event record
modifiers field with the constant CmdKey (293). If the result is not zero, then some
one pressed the command key and the program calls DoCommand, translating the
ASCII character to a menu command with the help of the toolbox MenuKey func
tion. Otherwise, it calls DoKeypress to process normal typing.

Table 4.1 lists modifier key values that you can use to determine whether other
keys were pressed. If you do this frequently, use functions such as the two in Figure
4.4 instead of directly programming BitAnd expressions in KeyDownEvents. They
make programs more readable. For example, to test whether someone typed the
Option and A keys, you could insert something like this at lines 293-295 in
KeyDownEvents:

IF KeyedOpt ion
THEN DoOptionKeys ELSE

IF KeyedCommand
THEN Do Command (Menu Key (ch))
ELSE DoKeypress(ch)

FUNCTION KeyedOption : BOOLEAN;

TRUE if option key held down I

BEGIN
KeyedOption := BitAnd(theEvent.modifiers, OptionKey) <> 0

END; I KeyedOption I

FUNCTION KeyedCommand BOOLEAN;

TRUE if command key held down I

BEGIN
KeyedCommand := BitAnd(theEvent.modifiers, CmdKey) <> 0

END; I KeyedCommand }

Figure 4.4 Use functions such as these to tell whether keys like
Command and Option are held down while typing.

150 == Programming with Macintosh Turbo Pascal

Table 4.2 Diacritical keys.

Key Symbol Name Example

grave accent a.
e acute accent e
i " circumflex i
u umlaut ii
n tilde ii.

When testing for Option keys, remember there are five predefined diacritical
keys (Table 4.2). To use them, hold down the Option key, type a key in the left col
umn of the table, let up on the Option key and type a letter. For example, holding
down the Option key and typing two n's produces ii. (See the examples in the right
column.) The problem is, you cannot redefine what these key sequences do.
Therefore, don't use the five keys in the table when designing your own Option
key commands.

UpdateEvents {301-318}

The next Event Handler procedure, UpdateEvents, responds to requests for
drawing a window's contents. Other procedures and programs make such requests
when you uncover previously hidden windows or when you take an action that
changes what windows display. For example, if you close a window, the operating
system generates an update event for a window underneath. This causes Up
dateEvents to start the sequence that redraws that window's contents.

The first job in UpdateEvents is to save the current GrafPort. The reason for
this step is that update events might not be for the frontmost window. Therefore,
line 310 saves a pointer to the current GrafPort in local variable oldPort. Later,
line 317 restores this value just before UpdateEvents ends.

Lines 311-312 use type casting to convert the event record's message field to
type WindowPtr, assigning this value to global variable whichWindow. After that,
a call to procedure SetPort (313) changes the current GrafPort to the window that
requires updating.

The next three steps (314-316) tell the Window Manager to begin an update
for this window. The call to BeginUpdate (314) does these two jobs:

• Calculates the intersection of the window's visible and update regions
• Empties the update region

The visible region is that part of the window visible prior to the request for
an update. The update region is the part of the window that needs redrawing (which
might include portions of the window not now visible). The intersection of these

In Any Event = 151

two elements exactly locates only that part of the window that is both visible and
requires redrawing.

You don't have to understand or directly manipulate these regions. Just
remember that when the program calls BeginUpdate, it limits the visible region of
the GrafPort to the portion of the window that needs redrawing. Because this also
clips, or restricts, drawing to that area, even if you redraw the entire window, you
affect only the correct portion the update event requires. In other words, in your
drawing routine, you can just redraw everything and let the system figure out what
to actually display. This saves time, not to mention the hassle of calculating which
portions of windows cover others every time you need to draw something.

Line 315 calls the drawing procedure in ApShell's Display Handler section.
As programmed here, DrawContents merely erases the window-it doesn't draw
anything. When you run the program, try moving desk accessories aside and observe
what happens. Because BeginUpdate limits drawing to the proper areas,
DrawContents erases and reconstructs only the necessary window parts.

Finally, UpdateEvents calls EndUpdate (316) reversing what Begin Update did.
This restores the visible region of the window to indicate correctly what portions
of the window are now visible. Because it complements what BeginUpdate does,
EndUpdate always ends an update event after the drawing routines finish. (Note:
even if you have nothing inside a window to redraw, you still must call BeginUp
date and EndUpdate to clear the event.)

ActivateEvents (321-339}

The final Event Handler procedure, ActivateEvents, takes care of activating
some windows, bringing them to the front, and hiding others. It extracts the win
dow pointer (329) and changes the GrafPort (330) to the window for this event.
It does not save the current port as in UpdateEvents because the purpose of this
procedure is to change that port.

Line 332 redraws any scroll bars that belong to this window, even though there
aren't any such controls in ApShell. In this example, DrawScrollBars merely draws
the outlines where scroll bars eventually go. It also redraws the grow box icon in
the lower right corner.

Lines 334-336 test the event record's modifiers field to check whether this event
applies to a window becoming active or to one that the procedure should hide. Such
events usually come in pairs; the deactivate followed by the activate event. In the
shell, lines 335-336 use this information to change the edit menu commands, dim
ming them when windows become active (335) and enabling the commands when
windows become inactive. It does this because the shell doesn't allow Cut, Copy,
Paste and other editing commands for its own windows. Therefore, it disables these
commands. Because desk accessories might need these same commands, it enables
them when windows become inactive, assuming that this might uncover a desk ac
cessory window below.

152 == Programming with Macintosh Turbo Pascal

Later, we'll see other operations that ActivateEvents handles. For example, it
might activate or deactivate controls and scroll bars, display or remove a cursor,
or highlight text for newly active windows.

Generating Update Events

Turn back to the Display Handlers section and look at lines 199-202 in pro
cedure DrawScrollBars. Now that you know how programs deal with update events,
you can better understand this procedure.

After drawing the grow box icon and displaying the scroll bar outlines (198),
CalcControlRects from the MacExtras unit calculates three rectangles encompassing
the horizontal scroll bar (hBarRect), the vertical bar (vBarRect), and the grow box
(gbRect).

It does this because the procedure DrawGrowlcon breaks one of QuickDraw's
own rules-that no routine directly draw into windows. Because an activate event
often precedes an update event for a window (if a window becomes active, its con
tents usually need redrawing), the program inadvertently calls DrawScrollBars
twice-once from line 332 in procedure ActivateEvents and then once again when
UpdateEvents (315) calls DrawContents (206). Because DrawContents also has to
redraw the scroll bars and grow icon (it does not know whether an activate event
preceded it), this sometimes draws those objects twice in succession.

To see the problem, turn lines 199-202 into a comment by surrounding the
statements with (* and *). Run the modified program. Open a new window and
a desk accessory such as the Note Pad or Control Panel. Look closely as you move
the desk accessory window aside and as you activate and deactivate the program
window. You should see the grow box and scroll bar outlines shudder quickly. They
do that because the program now draws them twice, once during activate events
and once during updates.

To amplify the shudder, making it easier to see, add an integer variable i to
DrawScrollBars and insert the following statement between lines 198 and 199.

FOR i := 1TO32000 DO;

ApShell solves the shuddering scroll bar problem with three ValidRect
statements (200-202), subtracting, or validating, areas from the GrafPort's update
region. During update events, QuickDraw draws only in the area intersecting the
update region (the parts that require redrawing) with the visible region (the parts
you can see). By subtracting already-drawn areas from that region, QuickDraw
avoids redrawing them. Therefore, when an activate event calls DrawScrollBars,
validating the scroll bar regions prevents redrawing those same areas during subse
quent updates. In general, whenever you draw directly into a window, call ValidRect
to tell QuickDraw it does not have to update the area you just drew.

In Any Event == 153

ApShell Initializations (343-393)

SetUpMenuBar (350-368) reads the menu definitions from the program's
resources and inserts them into the menu bar. As you can see, creating pull-down
menus is not difficult. In general, adding a new menu requires only these two steps:

Read the menu resource

Insert the menu into the menu bar

After performing those two steps for every menu, call DrawMenuBar (366)
to display the program's menu. You can call this procedure again at any time. You
must call it if you later make any changes to menu titles.

Menus are MenuHandle variables, which ApShell lets the MacExtras unit
define. Most programs probably will have at least Apple, File, and Edit menus.
To add others, declare new MenuHandle variables, create resources for them, and
initialize them in SetUpMenuBar. Of course, you also need programming to re
spond to the new menu commands. Future chapters have many examples of how
to do this.

Lines 356-358 load the resources for the three standard menus by calling
GetMenu, passing the resource ID as the lone parameter. Lines 360-362 insert each
of these menus into the menu bar. The 0 tells the Menu Manager to insert menus
behind others. To insert a new menu to the right of another, pass its ID number
instead. Usually, though, you'll simply initialize menus as the listing shows.

The program adds desk accessory (DA) names to the Apple menu by calling
AddResMenu (364). This adds resource names-the DA titles-to the Apple menu.
The string 'DRVR' (Driver) is the resource type of all desk accessories. Although
there are other ways to add DA names to a menu, you should always do it as in
SetUpMenuBar. This makes the order of menu commands identical for all pro
grams that use the same set of DAs.

Initialize, QuitConli.rmed {371-393)

ApShell calls Initialize (371-379) once at the start of the program. In turn, it
calls SetUpMenuBar (376) and sets two Boolean variables FALSE (377-378). It
could, of course, do other jobs: initialize other variables, display startup messages,
or open windows. Whatever you need to do before the program starts, do it in
Initialize.

Function QuitConfirmed (382-393) is the program's deinitialization routine.
Its job is to ensure that the Program Engine does not end unless all conditions
are right. In this case, conditions are always right and, therefore, QuitConfirmed
simply closes any open window if variable quitRequested is TRUE.

Understand QuitConfirmed's logic. If someone chooses the Quit command
(quitRequested =TRUE), then if a window is open, QuitConfirmed calls

154 ==::: Programming with Macintosh Turbo Pascal

CloseProgramWindow to close it. After that, it passes the value of quitRequested
back as QuitConfirmed's function value. This makes the function mirror quitRe
quested's state, TRUE or FALSE. In an application, quitRequested becomes more
important. As you'll see in later examples, it needs to perform three jobs to let you:

• Return to the program

• Save changes to files

• Throw away changes to files

Any program that modifies data should follow these three steps before ending
the program, avoiding potential loss of information. You've probably seen these
actions in programs like MacWrite and Turbo Pascal when you choose Quit after
editing a file and forgetting to save your changes.

ApShell Program Engine (397-456)

The Program Engine makes the program go. Before looking at procedure
DoSystemTasks (404-431), it helps to understand how the Engine churns.

The first step is to call Initialize (436), setting up menus and doing other start
up jobs. Then a REPEAT loop (438-454) cycles until the program ends. Inside that
loop, the Engine calls GetNextEvent (442), receiving events such as mouse clicks
and window update requests from the operating system as they occur and passing
those events on to the proper Event Handler. It does this by examining the what
field of the event record (444) in a CASE statement, selecting one of five main event
types. (This program ignores AutoKey events, generated when you hold down a
key as you do in text editors to repeat characters.)

The REPEAT loop cycles until function QuitConfirmed returns TRUE. Notice
that this simplifies the usual flag checks and double REPEAT loops found in other
shells and examples you may have seen. You know that QuitConfirmed gives every
opportunity to save changes, discard unwanted editing, close windows, and the like.
Such jobs belong in procedures, not in the main program body.

This follows a general rule for Pascal programs: that the main body be small
and easy to follow. Reading it gives you an eagle's view of the program-you see
the landscape, not every detail. But don't attempt to simplify the main loop fur
ther, as many programmers do. For example, the following is a popular Program
Engine:

BEGIN
Initialize;
Main Loop

END.

In Any Event == 155

Apparently, procedure MainLoop handles all the REPEAT loop details in Ap
Shell. While this appears to reduce the program to two steps, it's a bad design. When
the program calls MainLoop, it creates on the stack an activation record which
keeps track of, among other things, the location of the procedure that called it and
certain variables that maintain the level of such calls throughout a program's life.
You don't need to be concerned with the nature of the activation record, but you
should be aware that calling MainLoop from the main program body this way does
nothing but increase the program's nesting level by one for no good reason. (The
nesting level is the depth to which a group of procedures call each other. If pro
cedure A is on level 0 and calls B which calls C, the nesting level at that point is
2.) As ApShell shows, keeping the program loop in the main body keeps the nesting
level at zero each time the Engine cycles, the best plan.

DoSystemTasks {404-431}

Procedure DoSystemTasks runs each time the Engine cycles. It first calls System
Task (410), which gives desk accessories their fair share of time and lets them up
date their displays, making alarm clocks tick and debuggers debug. After that, the
rest of DoSystemTasks performs an important task, which many programs often
overlook.

If the frontmost window pointer is NIL, then no window is visible and the
program disables the entire edit menu (416), enables the File menu's New command
(417), and disables Close (418). Otherwise, if the front window is not NIL, then
there is a window on display. But does it belong to the program? Line 422 checks
by comparing the window pointer value returned by FrontWindow with ApShell's
global wPtr variable. If they are not the same, then the front window must belong

_.to a desk accessory and the program therefore enables the Edit menu commands
(426). It also enables the File menu's Close command (427). That way, you can
choose Close to remove desk accessories as well as clicking their close boxes.

It's helpful to remove the programming from lines 412-429 and observe the
effect. Open a window and a desk accessory, then click in the window to bring
the window to the front. Close the program window, leaving the desk accessory
on screen, and pull down the Edit menu. As you can see, the proper commands
are not activated. You cannot fix this problem by enabling the Edit menu com
mands in procedure ActivateEvents (321-339) as many people try. This is not possi
ble because closing a window does not generate a deactivate event for it. If it did,
line 336 would take care of enabling the Edit menu commands. Obviously, this
doesn't happen, requiring a check for such situations at every Engine cycle.

Don't be concerned that these checks will slow the program. They won't, at
least not by much. It may seem that keeping the Program Engine running efficiently
is important, and it is-but only to a point. The Engine, remember, doesn't run
the program statement-by-statement but, rather, on a procedural level. When it calls

156 == Programming with Macintosh Turbo Pascal

a procedure to handle an event, which in turn might call another routine, the Engine
completely gives up control until that procedure ends. Therefore, adding a few pro
gramming statements to highlight and dim menus has a negligible effect on the
speed of those other routines.

APSHELL RESOURCES

Listing 4.2 is a resource text file, which describes the program's resources
various constants and templates that programs need to display menus, create win
dows, and display text such as the familiar commercial message better known as
the About Program box. Many people are confused about resources. Just what
are they?

I think of resources as everything that is not consumer data. By consumer data,
I mean items such as text, database files, and speadsheets-all of the data that peo
ple process with computers. Resources are in a different category. They contain
program data, items that programs use during their run-time lives. Window
templates, menu titles, error messages, dialog boxes, and even the program's code
itself all comprise a program's resources.

Just as a program's source code differs from its compiled run-time file, its
resource text differs from its binary resource file. The resource text is what you type
to define a program's resources. After typing that text, you compile it with RMaker,
a utility program on the Turbo disk. RMaker translates that resource text into the
binary resource file, the data that the Turbo compiler then combines with your
program.

Creating a Resource Text File

As you can see from Listing 4.2, this is not a Pascal program. In fact, it's not
a program at all but a list of definitions. Even so, like all listings in this book, it
has line numbers and colons in the left column. They are purely for reference
don't type them.

Type in Listing 4.2 with the Turbo editor and save as APSHELL.R (the R stands
for Resource). Line 5 tells RMaker where to store the binary form of these resources
when it compiles the text. Change line 5 to use different volume and folder names.
Before typing, you might want to click off the Auto Indent option using Turbo's
Options command from the Edit menu. This helps avoid accidentally typing spaces
in blank lines, a situation that often confuses RMaker. If, after typing the Listing,
you have trouble with RMaker, check for blank lines that aren't really blank. It's
fussy about such things.

After typing the listing, run RMaker with Turbo's Transfer menu or with the

In Any Event == 157

la Shells.FI

D ApShell.A ~ lg) Programs

Eject

Driue

Open

Cancel

Figure 4.5 RMaker compiles a text file to produce a program's binary resources. Shown
here is a copy of RMaker's main display.

File menu's Transfer command. Your display should resemble Figure 4.5. Select
APSHELL.R (the file name may or may not be visible) and click the Open button
to begin compiling. If your display does not resemble the figure, choose the File
menu's Compile command, select APSHELL.R, and click Open.

While compiling, RMaker displays your text in the left half of its window and
reports three statistics in the right half, listing the data, map, and total sizes of the
finished resource file. When compiling the resource text examples in this book, if
you receive any errors, check that your typing exactly matches the book. Unlike
Pascal, where you have some freedom in inserting blank lines and changing the
indentation, RMaker is unforgiving, unfriendly, and likely to reject any unplanned
modifications you make. Before changing details in resource text files, then, com
pile them as listed here. Then make your changes. Be especially careful that blank
lines do not contain any spaces, which of course you cannot see on the screen. An
easy way to do this is to place the cursor to the far left on the first of a group of
blank lines, cut all those lines out of the text, and then press Return to add them
back. This ensures that blank lines are truly blank.

After compiling your resources, use RMaker's Transfer menu to go back to
the Turbo editor. The result of compiling Listing 4.2 is a new file, APSHELL.RSRC
in the volume and folder that line 5 specifies. In this file are the binary forms of

158 == Programming with Macintosh Turbo Pascal

the same resources that Listing 4.2 describes. It is this binary data that Turbo com
bines with your program to produce a finished application.

You now have two of the three parts that make up the complete application
shell. Continue to the next and final listing under the heading MacExtras Unit if
you want to type in the entire program before reading the play-by-play descriptions.

Listing 4.2. APSHELL.R

1: *--*
2: * ApShell.PAS resources -- Compile with RMaker
3: *--*
4:
5:
6:
7:

Programs:Shells.F:ApShell.RSRC ;; Send output to here

8:
9:

--
* About box string list *

10:
11:

--~---

12: TYPE STR#
13: , 1 (32)
14: 6
15: ApShell
16: by Tom Swan
17: Version 1.00

,, String list resource
,, ID and attribute (purgeable)
,, Number of strings that follow
, , Program name
, , Author

18: (C) 1987 by Swan Software
,, Version number
,, Copyright notice
, , Address 19: P. 0. Box 206, Lititz, PA 17543

20: (717)-627-1911 , , Telephone
21:
22:
23: *--*
24: * The Apple Info menu
25: *--*
26:
27: TYPE MENU
28: ,1
29: \14
30: About ApShell ...
31: (-
32:
33:

,, Menu ID number to use in program
,, Bitten-apple graphics symbol
,, The command as shown in menu
,, Divider line between command and DAs

34: *--*
35: * The File menu
36: *--*
37:
38: TYPE MENU
39: ,2 ,, Menu ID number to use in program
40: File ,, Menu title as shown in menu bar
41: New /N
42: (Close
43: (-
44: Quit /Q
45:
46:
47: *--*
48: * The Edit menu
49: *--*
50:

In Any Event == 159

51 TYPE MENU
52 ,3
53 Edit
54 (Undo /Z
55 (-
56 (Cut /X
57 (Copy /C
58 (Paste /V
59 (Clear
60
61

62: *--*
63: * Window template *
64: *--*
65:
66: TYPE WIND
67: ,1 (32)
68: Untitled
69: 46 7 328 502
70: Visible GoAway
71: 8
72: 0
73:
74:
75:
76: * END

;; ID number and attribute (purgeable)
; ; Window title
;; top, left, bottom, right coordinates
;; Visible window with close button
,, Standard doc window with grow & zoom boxes
;; Window reference (none)

ApShell Resource Play-by-Play

Resource text always begins with the file name to which you want RMaker to
compile the resources to disk. Line 5 places ApShell's resources on disk volume
Programs in folder Shells.F in the file APSHELL.RSRC.

Following this required line, you can insert whatever resources you like. In my
own designs, I start with six strings, identifying the program name, version, author,
copyright notice, and other information. When the program displays its "About
program ... " box, it displays these strings.

Lines 12-13 show how all resource definitions begin. First comes the word
TYPE followed by a 4-character string that identifies the resource variety. STR#
means string list. The Guide and Inside Macintosh list other resource types. (We'll
see many of them in future examples.) After specifying the resource type, line 13
lists its ID number, in this case a 1 preceded by a comma. The indentation makes
ID numbers stand out on the page but it's not required. These numbers are the
same as the numbers programs use to locate resource definitions. They form a link
between the program and its resources.

All such ID numbers must be different for any one resource type. For exam
ple, look at lines 27-28. This menu resource ID number (1) is the same as the string
list's number in line 13. Because they are different resource types, they may have
the same numbers. But all Menu resources-as well as other categories-must have
different ID numbers within that category. You cannot have two menus or two win
dows with the same ID.

160 == Programming with Macintosh Turbo Pascal

7 6 5 4 3 2 1 0

~ ~ "'° r" "'° "'° ~ ~ ~ 0 ~ ~

~ ~
0 ~ ?:· <fl

~ '; ~ 'CO 0 'CO ~ ~ i;.. ?l
~ p.. ~

~ ~
p..

~ ~
p.. 'r;f .,... p.. f/l p..

~ ~ 0

~ ~
r>
~

Figure 4.6 Resource attribute bits have these meanings. The shaded cells are
not used.

After the ID is an optional decimal number in parentheses, the resource at
tribute. Figure 4.6 describes what the bits in these numbers mean. The shaded cells
are reserved-don't use them. Setting a bit to 1 activates that option. For example,
binary value 00100100, or $24 hex (36 decimal) represents the options "Purgeable,
Preload." Although examples in this book do not use all possible attribute com
binations, the following are brief descriptions of what the various settings offer.
The numbers in parentheses after the labels are the values to use with the ID number
in the resource text. Add these values together to combine attributes. (See Inside
Macintosh for more information.)

System heap (64). This loads the resource onto the system heap (1) or onto
the application heap (0), the normal and usually recommended setting.

Purgeable (32). This allows the memory manager to throw out memory that
resources occupy (1) anytime after loading the resource from disk. To pre
vent this from happening, set bit 5 to 0. Use this setting only for resources
that the system copies before using, for example, strings. Others that might
be used directly (menu resources and some others) must never be purgeable.

Locked (16). Set bit 4 to lock the resource memory on the heap (1), preventing
the memory manager from moving it to make room for other objects. Use
this option only in rare circumstances. Normally, reset this bit (0) to let
the memory manager make efficient use of memory. Using this option
overrides the Purgeable setting because memory cannot be locked on the
heap and purgeable at the same time. (See Chapter 5 for more informa
tion about the heap and Memory Manager.)

In Any Event == 161

Protected (8). This disallows (1) changes to the resource or enables (0) pro
grams to make changes. Normally set it to zero. Because programs can
themselves change resource attributes, resetting the protected bit if they
want, this option cannot fully protect your resources from modification.

Preload (4). This immediately reads a resource into memory when opening
the resource file (1) or leaves the resource on disk only until the program
requires it (0). In Turbo Pascal, the resource file is open when the program
runs. Normally, this bit is zero except for error dialogs (see Chapter 6) that
display messages such as "Disk error," which you might not be able to
read after such an error occurs. In that case, you can preload the message
into memory by setting attribute bit 2.

Write resource (2). This tells the system to write changed resources to disk (1),
usually when the program ends. Never directly set this bit-the toolbox
resource manager uses it in programs that change resources on the fly.

Notice that line 13 in Listing 4.2 specifies the string list to be purgeable. (32
is $20 in hex, the byte value with Figure 4.6's Purgeable bit set to one.) This means
that after reading and displaying the strings, the memory space they occupy is
available for other uses. The next time the Resource Manager attempts to read this
same string list, it might find them gone and will have to reload them from disk.
In the meantime, though, if no other process used the memory the strings occupy,
the memory manager reuses the in-memory copy-it doesn't automatically reload
from disk.

Lines 23-59 define menu titles and commands. These resources must not be
purgeable because the Menu Manager refers directly to their definitions in memory.
Lines 27-28 define the Apple menu, giving it ID number 1. Line 29's cryptic \14
stands for the bitten-apple symbol, the Macintosh's menu bar trademark in the
upper left corner. In other menus (see lines 40 and 53), you'll usually type the full
menu title at this position.

After these three lines come the menu commands. In this first menu, there
is only one, About ApShell. The indentation makes the resource text more readable.
But if you prefer, type everything flush against the left border. Line 31 is a divider
line, which, although it takes up one menu position, is permanently inactive. The
dash (-) tells the Menu Manager to draw a line at this position. The preceding left
parenthesis tells it to disable this item. If you don't include the parenthesis, the
divider line becomes an active menu command. Try this on a copy of AP
SHELL.PAS and APSHELL.R. When you run the program, select the divider line
from the Apple menu. Obviously, this is a mistake.

The File and Edit menus follow a similar design. Notice that a few commands
such as Close and Cut have left parentheses, disabling these commands when the
program starts. Later, the program enables some commands at appropriate times
and disables others. The slashed character endings to some commands (/N and
IQ for example) specify equivalent Command keys. The Menu Manager ignores
case when you type these keys, but it's traditional to enter them in uppercase.

162 ===: Programming with Macintosh Turbo Pascal

You don't have to do anything special to enable command keys. ApShell
automatically handles them for you. If you want to type Command-P to print,
for example, just add IP after that menu command and ApShell does the rest. Be
careful not to duplicate Command keys in different menus, though. Unfortunate
ly, RMaker is not smart enough to notice this error.

The final resource definition is a window template (66-72). It has type WIND,
ID number J, and is purgeable. Remember that the resource is only a template.
The Window Manager creates the actual window record in memory from this
information-it doesn't need it afterwards. If you didn't make it purgeable, the
template would remain in memory even though the program might never need it
again, causing no harm but wasting space.

At line 68 is the window title, which programs can easily change as you'll see
in future examples. Line 69 declares the top, left, bottom, and right coordinates
of where you want the window contents to appear. Remember that these coordinates
do not include the window's borders or its title bar, features the Window Manager
adds when it creates and displays the window. If you want a window's content area
exactly 150 pixels wide, for example, just make right-left equal to 150. Similarly,
if you want a 200-pixel tall window, make sure bottom-top equals 200. Remember
ing this simple fact helps define windows exactly the size you want.

Line 70 of the window resource definition declares whether the window should
immediately become visible when the program creates it and whether it should have
a close or GoAway box in the upper left corner. Alternatively, you could specify
Invisible and NoGoAway. You normally make windows invisible if the program
relocates and resizes them immediately after reading the resource definition. To
display the window, the program would then call toolbox procedure ShowWindow.

Line 71 declares the window's definition ID, a value that the Window Manager
uses to load various internal routines that take care of drawing window borders,
title bars, and other jobs. (Figure 5.7 in the next chapter lists other definition IDs
you can use to display a variety of window styles.) The value 8 here specifies a stan
dard document window with a resize box (and scroll bar outlines) and a zoom box
in the upper right corner. If you don't want a zoom box, use zero instead. In either
case, it won't appear on 64K ROM Macintoshes.

The final line of the window resource definition (72) is a zero, the window
reference. Window records contain a 32-bit field into which you can store whatever
you like. Programs often use it to keep pointers to items (usually text) associated
with the window. (Chapter 5 explains how to do this.) Rather than keep track of
associated data by other means, which you certainly can do, this lets windows point
to their own data, simplifying the program. You can store any other 32-bit value
here-it doesn't have to be a pointer variable.

The last line, 76, is not required. I add it here so you know this is the end of
the resource text. Notice that it begins with an asterisk (*), causing RMaker to ig
nore everything afterward. Other comments begin with double semicolons (;;). Be
careful if you leave the comments out, by the way. Some resource types such as

In Any Event == 163

PAT and STR are three characters instead of four, the required length for all type
names. In that case, a line such as this:

TYPE STR ; ;this is a comment

lets RMaker recognize STR as a four-character ID, because at least one blank space
follows the name (between STR and;;). But, if you remove the comment and write:

TYPE STR

RMaker refuses to compile the resource text unless you explicitly type a blank space
after STR. Such idiosyncrasies have given resources a bad name and lead many
programmers not to use them. That's unfortunate. Resources are vital to writing
good Macintosh software. They isolate strings for translating into other human
languages and they help the Memory Manager purge unneeded data from memory,
making room for other routines. They define templates for windows and dialogs,
reducing the amount of programming needed to create such items. It is true, though,
that RMaker is cranky, ornery, and difficult to use. If you receive errors, check every
character and be sure your file exactly matches the listings here.

MACEXTRAS UNIT

Listing 4.3 collects various constants, types, variables, procedures, and func
tions that are unlikely to change from one program to another. By putting these
items into a unit-instead of putting them into APSHELL.PAS-you avoid recom
piling these unchanging parts every time you compile a new program. To add the
common elements to programs, insert MacExtras into the USES clause as you do
for other units such as QuickDraw and Toollntf.

Type in Listing 4.3 and save as MACEXTRAS.PAS. Change line 1 to use dif
ferent volume and folder names. Compile to disk. If you instead compile a unit
to memory, you can still compile programs that use the unit's features. But, unless
you compile to disk, you have to repeat that step every time you start Turbo to com
pile and run programs. This defeats the purpose of using units-to save time by
precompiling common routines. For that reason, always compile units to disk code
files. Also, be aware that running units has no effect. They are not stand-alone pro
grams but more like libraries that contain parts and pieces other programs can use.

After compiling MacExtras, you're ready to compile and run ApShell. If you're
typing these listings without reading the descriptions, return to ApShell play-by
play for information about using and modifying the shell.

164 Programming with Macintosh Turbo Pascal

Listing 4.3. MACEXTRAS.PAS

1: {$0 Prograrns:Units.F:
2: {$U-J

Send compiled code to here
Turn off standard library units

3:
4:
5:
6:

UNIT MacExtras(128);

7: (*

8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

* PURPOSE
* SYSTEM
* AUTHOR

Miscellaneous routines
Macintosh I Turbo Pascal
Tom Swan

•)

INTERFACE { Items visible to a host program J

USES

Memtypes, QuickDraw, OSintf, Toolintf, Packintf;

CONST

Apple ID = l; { Apple menu resource ID and commands }
AboutCmd = 1;

Edit ID = 3; (Edit menu resource ID and commands)
UndoCmd 1;

(--------}
CutCmd 3;
CopyCmd 4;
PasteCmd 5;
ClearCmd 6;

ScBarWidth 15; Width of a scroll bar)
MenuBarWidth 18; Width of a window title bar)
MaxMenuCmds 31; Maximum commands in a pull-down menu J

TYPE

MenuCmdSet =SET OF 1 .. MaxMenuCmds;

VAR

appleMenu
fileMenu
editMenu

theEvent
which Window

MenuHandle;
MenuHandle;
MenuHandle;

EventRecord;
WindowPtr;

FUNCTION InRange(n, min, max INTEGER)

(Handles to menus)

Events from operating system
Window applying to event)

BOOLEAN;

59: PROCEDURE Pause;
60:
61: PROCEDURE EnableMenu(mh : MenuHandle; commands : MenuCmdSet);
62:
63: PROCEDURE DisableMenu(mh: MenuHandle; commands: MenuCmdSet);
64:

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:

In Any Event == 165

PROCEDURE FixEditMenu(enableCommands : BOOLEAN);

PROCEDURE DragTheWindow(whichWindow : WindowPtr; startPoint : Point);

PROCEDURE ResizeWindow(whichWindow : WindowPtr; startPoint : Point);

PROCEDURE ZoominOut(whichWindow : WindowPtr; partCode : INTEGER);

PROCEDURE CloseDAWindow;

PROCEDURE GetPortSize(VAR width, height : INTEGER);

PROCEDURE CalcControlRects(whichWindow : WindowPtr;
VAR hBarRect, vBarRect, gbRect : Rect);

FUNCTION TextHeight(wPtr : WindowPtr) : INTEGER;

PROCEDURE CenterString(h, v, w : INTEGER; s : 5tr255);

PROCEDURE DisplayAboutBox;

PROCEDURE DoAppleMenuCommands(cmdNumber INTEGER);

IMPLEMENTATION I Items not visible to a host program }

FUNCTION InRange;

Returns TRUE if min <= n <= max)

BEGIN
InRange := (min <= n) AND (n <= max)

END; { InRange }

PROCEDURE Pause;

Wait for mouse button click. Also clear keyboard events. l

BEGIN

WHILE Button DO SystemTask;
WHILE NOT Button DO SystemTask;
FlushEvents(keyDownMask + autoKeyMask, 0)

END; I Pause }

PROCEDURE EnableMenu;

Enable these commands in this menu }

VAR

theCommand 1 •• MaxMenuCmds;

BEGIN
FOR theCommand := 1 TO MaxMenuCmds DO

IF theCommand IN commands
THEN Enableitem(mh, theCommand

END; I EnableMenu)

PROCEDURE DisableMenu;

(continued)

166 == Programming with Macintosh Turbo Pascal

132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:

Disable these commands in this menu l

VAR

theCommand 1 .. MaxMenuCmds;

BEGIN
FOR theCommand := 1 TO MaxMenuCmds DO

IF theCommand IN commands
THEN Disableitem(mh, theCommand

END; (EnableMenu l

PROCEDURE FixEditMenu;

Enable commands in Edit menu if param is TRUE, else disable them I

VAR

editSet MenuCmdSet;

BEGIN
editSet := [UndoCmd, CutCmd, CopyCmd, PasteCmd, ClearCmd];
IF enableCommands

THEN EnableMenu(editMenu, editSet l
ELSE DisableMenu(editMenu, editSet)

END; { FixEditMenu l

PROCEDURE DragTheWindow;

Respond to mouse click in window's drag bar }

VAR

limitRect Rect; { Limits window location J

BEGIN
WITH screenBits.bounds DO

SetRect(limitRect, left+ 4, top+ 24, right - 4, bottom - 4);
DragWindow(whichWindow, startPoint, limitRect I

END; { DragTheWindow l

PROCEDURE ResizeWindow;

Respond to clicking and dragging a window's grow box J

VAR

size
width, height
limitRect

BEGIN

LONGINT;
INTEGER;
Rect;

WITH screenBits.bounds DO

Window's new size)
Extracted from size
Limits min/max window size }

188: SetRect(limitRect, 100, 75, right, bottom - 24);
189: size := GrowWindow(whichWindow, startPoint, limitRect);
190: IF size <> 0 THEN
191: WITH whichWindowA DO
192: BEGIN
193: EraseRect(portRect);
194: width := LoWord(size);
195: height := HiWord(size);
196: SizeWindow(whichWindow, width, height, TRUE);
197: InvalRect(portRect)
198: END { if)
199: END; { ResizeWindow

200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:

In Any Event

PROCEDURE ZoominOut;

zoom window in (partCode=inZoomin) or out (partCode=inZoomOut).
Called only for windows with zoom boxes on Macs with l28K ROMS)

VAR

oldPort GrafPtr; (For saving/restoring port)

BEGIN
GetPort(oldPort); { Save current port)
SetPort(whichWindow);
EraseRect(whichWindowA.portRect);
ZoomWindow{ whichWindow, partCode, TRUE);
SetPort(oldPort) (Restore original port)

END; { ZoominOut l

167

220: PROCEDURE CloseDAWindow;
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:

Close a desk accessory window usually in response to a menu close
command when a desk accessory is the active window. It's up to you
to be sure a DA is the front window before calling this procedure.)

VAR

DAN umber
DAW ind ow

BEGIN

INTEGER;
WindowPeek;

Desk accessory reference number
Pointer to DA window record)

DAWindow := WindowPeek(FrontWindow);
DANumber := DAWindowA.windowKind;
CloseDeskAcc(DANumber)

END; { CloseDAWindow)

PROCEDURE GetPortSize;

Return width and height of current grafPort in pixels. If this is
a window, then the width equals the number of pixels between the right
and left borders and the height excludes the window's title bar. l

BEGIN
WITH thePortA.portRect DO
BEGIN

width := right - left;
height := bottom - top

END { with)
END; { GetPortSize }

PROCEDURE CalcControlRects;

Calculate horizontal, vertical, and grow box rectangles for
this window.)

BEGIN
WITH whichWindowA.portRect DO
BEGIN

gbRect.top := bottom - ScBarWidth;
gbRect.left := right - ScBarWidth;
gbRect.bottom := bottomr
gbRect.right := right;

[continued)

168 ;;;;;;;;;;: Programming with Macintosh Turbo Pascal

268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:

hBarRect := gbRect;
hBarRect.left := left;
hBarRect.right := gbRect.left;

vBarRect :m gbRect;
vBarRect.top := top;
vBarRect.bottom ·= gbRect.top

END { with I
END; I CalcControlRects

FUNCTION TextHeight;

Returns the height in pixels of the text font for this window I

VAR

finfo Font Info;
oldPort : GrafPtr;

Holds information about current font I
For saving and restoring current port I

BEGIN
GetPort(oldPort);
SetPort(wPtr);
GetFontinfo(finfo);
WITH finfo DO

TextHeight := ascent + descent + leading;
SetPort(oldPort)

END; I TextHeight I

PROCEDURE CenterString;

Center a string in a window or in a portion of a window)

BEGIN
w := w - StringWidth(s);
IF w < 0

THEN w := O;
MoveTo(h + (w DIV 2), v);
Drawstring(s)

END; { CenterString I

PROCEDURE DisplayAboutBox;

DispJ.ay information about program and author, usually in
response to selecting the About program •.. command from the
Apple menu. Requires 6-string STRt resource with ID = 1
containing strings to display in window as follows:

STRt 1 Program name ex. MacProgram
STRt 2 = Author ex. by Dee Bugger
STRt 3 = Version ex. Version l.OOa
STRt 4 Copyright ex. 1987 by NoWare Inc.
STRt 5 = Address ex. POB 9, NoWareLand, NW,
ST Rt 6 Phone number ex. 212-555-1212

CONST

00000

StrListID = l; (Resource ID of STRt (string list) resource }

VAR

334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:

In Any Event == 169

oldPort
wp
wRec
wr
i

GrafPtr;
WindowPtr;
WindowRecord;
Rect;
INTEGER;

For saving I restoring port
Pointer to following wRec I
Window details I
Enclosing rectangle I
Misc. FOR loop control

messages ARRAY[1 .. 6 J OF Str255; {Resource strings

BEGIN

FOR i :m 1 TO 6 DO
GetindString(messages[i], strListID, i);

wr :• screenBits.bounds;
InsetRect(wr, 100, 75);
wp := NewWindow(

@wRec, wr, '', TRUE, altDBoxProc, POINTER(-1), FALSE, 0);

IF wp <> NIL THEN WITH wpA.portRect DO
BEGIN

Save current port I GetPort(oldPort);
SetPort(wp); Make sure our window is the port I

TextFont(systemFont); Display title
TextSize(12);
CenterString(O, 30, right, messages[1 };

TextFont(geneva); { Display other info
TextSize(9);
CenterString (O, 60, right, messages[
CenterString(O, 90, right, messages[
CenterString(O, bottom-60, right, messages[
CenterString(O, bottom-40, right, messages[
CenterString (0, bottom-20, right, messages[

2);

3);
4);

5);
6);

Pause;
CloseWindow(wp);
SetPort(oldPort

Wait for mouse click
Erase "About box" window
Restore old port I

END I with I

END; (DisplayAboutBox

PROCEDURE DoAppleMenuCommands;

Execute command in the Apple menu l

VAR

daName
result

Str255;
INTEGER;

BEGIN
IF cmdNumber = AboutCmd

THEN
DisplayAboutBox

ELSE

Desk accessory name
Value ignored I

BEGIN I Open a desk accessory

IF FrontWindow = NIL
THEN FixEditMenu(TRUE); I Enable edit commands)

Getitem(appleMenu, cmdNumber, daName);
result :• OpenDeskAcc(daName)

END I else I
END; { DoAppleMenuCommands

(continued)

170 == Programming with Macintosh Turbo Pascal

403:
404:
405: BEGIN
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:

Initialize toolbox managers.

InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEinit;
InitDialogs(NIL);
InitCursor;
FlushEvents(everyEvent, 0)

418: END. { MacExtras unit)

Order is critical. l

Initialize Quickdraw
Initialize Font manager I
Initialize Window manager l
Initialize Menu manager)
Initialize TextEdit routines
Initialize Dialog manager l
Change cursor to a visible arrow
Ignore any pending events l

MacExtras Play-by-Play

MacExtras defines two standard menus, unlikely to change from one program
to another. These are the Apple (26-27) and Edit (29-35) menus, with the usual
commands Macintosh owners know by heart ten minutes after unpacking their com
puters. Notice that AppleID is 1 and EditID is 3. These values relate to the resource
menu IDs as Listing 4.2 shows (lines 28 and 52). Normally, programs also have
a File menu with resource ID 2. But, this is not a requirement and, therefore, MacEx
tras does not define its resource ID constant.

Three other values define the width of vertical and horizontal scroll bars (ScBar
Width), the width of a window title bar (MenuBarWidth), and the maximum
number of menu commands that any one menu can have (MaxMenuCmds). If you
design programs with this many commands, newer Macintoshes with 128K ROMS
automatically scroll them up and down inside the pop-up menu window, a feature
of dubious value because of the time it takes to select items at the bottom.

The lone data type, MenuCmdSet (44), defines a set of menu numbers from
one to the value of MaxMenuCmds. Programs can use these sets to enable and
disable groups of menu commands (see procedures EnableMenu and DisableMenu).

The unit defines three menu handles, appleMenu, fileMenu, and editMenu
(49-51). Use these variables to operate on menus, add check marks, disable com
mands, and so on. In ApShell, procedure SetUpMenuBar (350-368) initializes these
variables to locate the program's menu resources.

Two extremely important variables appear at lines 53-54. Variable theEvent
is of type EventRecord, which fully describes events as they occur, storing such
items as the mouse location, a handle to a window that requires updating, and
characters typed on the keyboard. You saw examples of such event descriptions in
ApShell's Event Handlers (220-339).

Line 54 declares a single WindowPtr variable, whichWindow, another impor
tant item. This pointer addresses the window that applies to the most recent mouse
down (MouseDown), update (UpdateEvt), and activate (ActivateEvt) events. Pro-

In Any Event == 171

gram Action and Display Handler routines use whichWindow to operate in the pro
per window and to avoid operating in those that don't belong to the program.

Even though MacExtras defines a single global whichWindow variable, this
does not mean programs can have only one window. As programmed here, Ap
Shell limits you to a single window, a restriction that's easy to change as future
examples show. The whichWindow global variable addresses one window from all
the windows the program uses. Use it to know which window applies to an event
don't use it as your program's fixed pointer to a window it opens. (See procedure
DoNew in ApShell (77-93). It assigns a pointer to variable wPtr, not to
whichWindow.)

The following notes describe each of the procedures in MacExtras. For
reference, the procedure declarations are repeated along with their parameters.

FUNCTION InRange(n, min, max: INTEGER) :
BOOLEAN;

InRange returns TRUE if value n is inclusively between min and max.
Mathematically speaking, InRange is TRUE if the expression min< = n < =max
is also TRUE. Use the function to avoid IF statements such as this:

IF (i > 0) AND (i <= 100)
THEN DoSomethi ng
ELSE DisplayError;

Instead, use InRange to make the program more readable.

IF InRange(i, 1, 100)
THEN DoSomet hi ng
ELSE DisplayError;

PROCEDURE Pause;

Pause waits for you to click the mouse button. It's useful to insert pauses in
routines such as DisplayAboutBox (313-376) that traditionally end when you click
the mouse. You can use it also as a debugging device. For example, insert Pause
at places where you want to slow down the program. For a test, insert the state
ment Pause; (with a semicolon) between lines 197 and 198 in a copy of ApShell
and tum lines 199-202 into a comment-the same experiment you typed earlier
to see the scroll box shudder problem. Run the new program and open a window.
Notice that the scroll bar outlines now display twice in succession when you click
the mouse button. Remember to use Pause in other situations when you suspect
a sequence of events occurs in an unexpected order.

If you examine Pause's programming, you might think lines 108 and 109 strange.
The first WHILE statement waits for you to release the mouse button in case you
insert a Pause in the program where the mouse might already be down (after click-

172 ===: Programming with Macintosh Turbo Pascal

ing the close box, for example). The second WHILE waits for you to press the mouse
button. If the mouse button is up, then the first WHILE loop has no effect. The
call to SystemTask in each case gives desk accessories their time share while Pause
waits for you to press or release the button. This lets the alarm clock and other
accessories update their displays and follows the general rule that you should call
SystemTask inside of loops that might take longer than 1/60-second to end.

The final statement in Pause flushes all keyboard events from the event queue.
The reason for this step is more obvious if you turn it into a comment, recompile
the unit, and then run ApShell. Run the program and open a window, then select
the About ApShell command from the Apple menu. Type Command-C, click the
mouse, and the window closes! What happened is that keypresses make it into the
event queue but aren't noticed by the Program Engine until Pause ends. This can
produce surprises as the experiment proves.

PROCEDURE EnableMenu(mh: MenuHandle;
commands : MenuCmdSet);

Call EnableMenu to activate a set of menu commands. Pass in mh a menu
handle such as AppleMenu or EditMenu. Pass in commands the set of command
numbers that you want to enable. These numbers represent the positions of the
commands in the menu, with the first command equal to one. Remember that
divider lines count as menu commands even though you cannot normally choose
them. For example, to enable the Undo and Paste commands in the Edit menu,
you could write:

EnableMenu(editMenu, [UndoCmd, PasteCmd J >;

This does not affect any other menu commands nor commands already en
abled. The procedure differs from the usual method of enabling commands one
by one because it lets you specify a set of commands, either one, two, or all the
commands in the menu with a single procedure call. Another way to do this is to
call the toolbox Enableltem procedure as follows:

Enableltem(editMenu, UndoCmd);
Enableltem(editMenu, PasteCmd >;

Using EnableMenu avoids long sequences of such statements often found in
Macintosh programs. One trick you can use is to enable entire menus with this
statement:

Enab L eMenu (ed i tMenu, [1 •• MaxMenuCmds J) ;

This works because Editltem, which EnableMenu calls, ignores commands
that don't exist in menus. But don't do this in menus that have divider lines or you'll
enable them, too!

In Any Event =: 173

PROCEDURE Di sableMenu(mh: MenuHandle;
commands : MenuCmdSet);

DisableMenu is similar to EnableMenu except that it dims a set of menu com
mands. As with EnableMenu, to disable all commands in a menu, use the follow
ing statement, which works even if the menu contains divider lines as these are
disabled anyway:

DisableMenu(editMenu, [1 •• MaxMenuCmd l >;

PROCEDURE FixEditMenu(enableCommands
BOOLEAN);

This procedure enables the standard editing commands (see lines 30-35) if
enableCommands is TRUE or disables them if it's FALSE. This is handy especially
for programs that don't enable their own editing commands but follow ApShell's
plan of enabling them for desk accessories.

PROCEDURE DragTheWindow(whichWindow
WindowPtr; startPoint: Point>;

ApShell calls DragTheWindow in response to mouse clicks inside the window's
title bar (but outside any close or zoom box). As long as you hold down the mouse
button, the procedure draws an outline of the window and lets you move it to a
new position.

Actually, toolbox procedure DragWindow handles most of the action. This
procedure merely sets rectangle limitRect (167) to a standard size four pixels in from
the left, right, and bottom borders, and 24 pixels down from the top. This tells
DragWindow to limit dragging to an area that prevents moving windows so far
they disappear off screen-obviously a bad situation. If you always call
DragTheWindow to drag windows, this will never happen.

Notice that the procedure uses the toolbox global variable screenBits.bounds
(a Rect field) to get the display's current boundaries (170). This field always in
dicates the limits of the Macintosh display and, presumably, of past and future
models with different screen sizes.

PROCEDURE ResizeWindow(whichWindow:
WindowPtr; startPoint: Point>;

When you click and drag a window's resize box in the lower right corner, this
procedure handles the details of drawing a window's outline and resizing the win
dow borders when you release the button. ApShell calls it automatically for all win
dows with resize buttons (also called grow boxes). You never have to call it yourself.

As in DragTheWindow, ResizeWindow relies on a toolbox procedure to do most

174 == Programming with Macintosh Turbo Pascal

of its work. Likewise, it begins by setting a rectangle, limitRect (187-188), to an
area that in this case limits the maximum and minimum sizes you can stretch and
shrink window boundaries. Although IimitRect is a standard rectangle variable,
toolbox procedure GrowWindow (189) uses its values differently than usual. In this
case the fields have these meanings:

• left-minimum width

• top-minimum height

right-maximum width

· bottom-maximum height

As programmed here, windows can be no smaller than 75 by 100 pixels and
no larger than the full screen width minus the 24-pixel menu bar. This means you
cannot make windows larger than the visible screen although there is no danger
if that should happen.

Most of the action occurs at line 189 with the call to GrowWindow, which re
quires a handle to the window (whichWindow), the location of the mouse (start
Point), and the limiting rectangle (limitRect) as parameters. The function returns
a WNGINT variable that tells if the window size changed and, if so, what the
new size is. It retains control as long as you hold down the mouse button.

After you release the button, ResizeWindow checks size (190). If zero, then the
window size did not change and nothing else needs to be done. If not zero, then
the statements at lines 193-197 set into motion the actions that eventually redraw
the window in its new size. First, the procedure erases the entire window contents,
passing the portRect field from the window's GrafPort to procedure EraseRect (193).
This step is optional, but it smooths the resizing steps by clearing everything out
of the old window before its size changes. If you want to experiment with the ef
fect this statement has, turn it into a comment and insert Pause; between lines 192
and 193 in MacExtras and between lines 210 and 211 in ApShell. Open a window
and change its size. Move the mouse pointer aside and click twice to see the series
of actions that grow and shrink windows. Notice that when you make the window
larger, the old scroll bar outlines clutter up the window while it grows. In high speed,
this looks choppy. Now, reenable EraseRect in MacExtras (193) but keep the Pause;
statements in place. This time, when you enlarge a window, the program erases the
scroll bar outlines, making a smoother animation.

PROCEDURE ZoomlnOut(whichWindow: WindowPtr;
part Code : INTEGER);

ApShell calls ZoomlnOut when you click a window's zoom box in the upper
right corner. This zooms windows to full screen or back again to original size. Never
call this procedure on Macintoshes with 64K ROM-the routines it calls exist only

In Any Event == 175

FUNCTION Has128KROM : BOOLEAN;

(TRUE if version number >= 117 I

VAR

rem, machine : INTEGER; { System identifiers I

BEGIN
Environs(rem, machine); (Get system environment info I
Has128KROM := (rem>= 117)

END; (Has128KROM I

Figure 4.7 Before calling tool ZoomlnOut in unit MacExtras, use
this function to determine whether the computer has 128K ROMS,
a zooming prerequisite.

in 128K ROMS (and, with any luck, in future ROM versions too). Normally, you'll
never call this procedure directly although you certainly can if you want. For ex
ample, you might add a Zoom-Window command similar to Turbo's and call
ZoomlnOut in response.

If you do that, use the function in Figure 4.7 to check whether the computer
has the new 128K ROMS before calling ZoomlnOut. (You might want to add this
function to MacExtras if you plan to use it often.) It works by calling Environs,
which returns the system environment-namely the ROM version number and
machine ID. We'll see this command again in the next chapter in a program that
lists various information about your system. But here, we just want to check the
ROM version. If it's at least 117, then the computer has the 128K ROMS and can
zoom windows in and out. Otherwise, it has older ROMS and your program must
not call ZoomlnOut.

ZoomlnOut saves and restores the current GrafPort (212-213, 216), a possibly
unnecessary step if you never explicitly call ZoomlnOut but let ApShell call it on
ly when someone clicks the zoom box. Because the zoom box never appears unless
the window is active, the current GrafPort is always the same as the window being
zoomed.

Line 214 erases the window contents for reasons similar to the ones that apply
when resizing windows. To see whether you agree this line is necessary, change it
to a comment and add Pause; statements as you did before. Run the program and
observe what happens to the scroll bar outlines when you zoom windows in and out.

Toolbox procedure ZoomWindow (215) takes three parameters: the window
to zoom (whichWindow), a value (partCode) that tells whether to zoom in or out,
and a parameter which, if TRUE, tells ZoomWindow to activate the window.
FALSE allows programs to zoom inactive windows (those covered by others), but
not to activate them. To do this in MacExtras, though, you'd have to rewrite
ZoomlnOut to include a similar Boolean parameter and pass it to ZoomWindow
at line 215.

176 == Programming with Macintosh Turbo Pascal

PROCEDURE CloseDAWindow;

When a desk accessory is the frontmost window, call CloseDAWindow
(220-237) to close it. You'll do this usually to close accessories by choosing the File
menu's Close command as well as by clicking the window close button. You can
also call it in your program's shut-down routine, although the system closes desk
accessories automatically when programs end and this step usually is not necessary.
ApShell calls it in DoClose when it discovers that the front window doesn't belong
to the program.

The procedure works by type casting the result of function FrontWindow to
a Window Peek data type (233). Because FrontWindow returns a WindowPtr result
(pointing to a GrafPort record), to get to the window record's fields requires con
verting to a WindowPeek pointer. Line 234 extracts the windowKind field from
that record, passing the number to toolbox procedure CloseDeskAcc.

PROCEDURE GetPortSize(VAR width, height:
INTEGER);

This procedure complements QuickDraw's PortSize routine, which changes
the current Graf Port's width and height. GetPortSize returns the current width and
height-a job that programs often need to do.

It works by examining thePort (TYPE GrafPtr), a global variable (247) available
to all programs that use QuickDraw. This pointer addresses the current GrafPort,
telling QuickDraw routines in which port to draw. You change it when you call
SetPort.

Notice that the port's width is simply its right coordinate value minus its left
(249). Similarly, its height is its bottom minus its top (250). This always works
because, as you recall from Chapter 3, coordinate values fall between pixels, never
on the columns and rows. Therefore, subtracting two coordinate values always equals
the number of pixels between.

PROCEDURE CalcControlRects(whichWindow:
WindowPtr; VAR hBarRect, vBarRect, gbRect
Re ct);

You saw this procedure (255-278) in action in ApShell's DrawScrollBars pro
cedure. It calculates rectangles that encompass the horizontal (hBarRect), vertical
(vBarRect), and grow box (gbRect) areas in a window. It assumes that the window
actually has such items-you wouldn't call it if it doesn't.

Pass the window pointer in whichWindow. The procedure uses that window's
portRect to calculate the three rectangles in the large WITH statement (261-277).
The order of these statements is critical-don't change it.

In Any Event ===: 177

FUNCTION TextHeight(wPtr: WindowPtr):
INTEGER;

The shell doesn't use this function, but later examples do. It calculates the ex
act height of the current display font by passing a Fontinfo record to GetFontlnfo
(293) and then adding the ascent, descent, and leading fields in that record to
calculate the font's height in pixels. The function is most useful to avoid chopping
text lines in half at window bottoms. Notice that GetFontlnfo works on the cur
rent window and, therefore, TextHeight saves and restores the current GrafPort in
the usual way.

PROCEDURE CenterString(h, v, w: INTEGER;
s:Str255);

Use this procedure (300-310) to center a string inside a window's borders or
inside any other rectangular area. For example, you could center several strings in
the upper quadrant of a window-you don't have to center them inside the full
window width.

Set parameter h to the left side of the width in which you want to center text.
Set parameter w to the width. To center a string between window horizontal coor
dinate values 20 and 100, set h to 20 and w to 80. Set parameter v to the vertical
coordinate where you want text to appear. Remember that QuickDraw draws text
with the base line-the line on which capital letters normally sit-and that lower
case letters like p and q extend below this line. The next procedure demonstrates
how to use CenterString.

PROCEDURE Di splayAboutBox;

ApShell calls DisplayAboutBox (313-376) when you choose the Apple menu
About ApShell command. It reads the string list with ID 1 from the program's
resources into string array messages (340). A FOR loop loads each string resource
(344-345), calling GetlndString (get indexed string).

To demonstrate how to create windows that don't have corresponding resource
templates (as the ApShell window does), lines 347-351 first initialize a rectangle
wr by copying the Macintosh screenBits.bounds values and then shrinking those
values with InsetRect (348). This reduces the window size by 100 horizontal and
75 vertical pixels in from each border, centering the new window in the screen-no
matter how large that screen is. (Remember that future Macintoshes might not have
the same screen dimensions. Try never to hard-wire coordinates into your program.
Always use coordinates relative to screenBits.bounds.)

Lines 349-350 create a new window by calling NewWindow, passing the ad
dress of a local WindowRecord (wRec), a WindowPtr (wp), a null string (' ')for
the title, and the value TRUE indicating the window is to be visible immediately.

178 ==Programming with Macintosh Turbo Pascal

Following this is the constant altDBoxProc-representing a plain window with a
shadow border along the left and bottom edges. The parameter POINTER(-1)
tells the Window Manager to place the window in front of all others. The next
parameter, FALSE, indicates that this window has no close box in the upper left
corner. Finally, the last parameter, 0, is a reference value, which in this case is
meaningless.

As you can see from all of this complexity, explicitly creating windows in pro
grams is more difficult than using resource templates as in ApShell. But this book
wouldn't be complete if it didn't have at least one example of how to create win
dows the hard way. As a project, you might want to modify MacExtras to use a
window template instead.

The statements at 355-373 change the current GrafPort to the new window
and display the six resource strings. Lines 358-359 and 362-363 select fonts and
text sizes. This displays the first string (the program title) in the system font, better
known as Chicago, using a point size of 12, approximately 12/72 inches tall. (Point
sizes are in 1/72-inch increments and it's customary not to reduce such fractions.
The correct value is 12/72, not 1/6.) This makes the title come out in bold, Chicago's
normal look. The other five strings display in the Geneva font, the default for most
Macintosh text, but in a smaller 9-point size that looks good for this commercial
message about the program.

The calls to CenterString (364-368) center the strings in the window. Pause
(370) waits for you to click the mouse button. Notice that CloseWindow at line
371 erases the window and internal variables that the Window Manager creates
for its own purposes. Line 372 finishes the procedure by restoring the current Graf
Port to its original setting.

You might want to display this same message when your program begins rather
than waiting for people to choose the About Program command. In fact, because
all Mac programs look similar with menu bars and windows, it's sometimes hard
to tell which program is running. To display a message when the program begins,
insert a call to DisplayAboutBox in ApShell's Initialize procedure between lines
378 and 379. (You also have to add a semicolon at the end of 378.) This displays
the program's commercial message at the beginning, which goes away as soon as
you click the mouse button. If you purchased the disks, you'll discover that most
examples operate this way. If you don't want this feature, remove the call to
DisplayAboutBox from the program's Initialize procedure.

PROCEDURE DoAppleMenuCommands(cmdNumber
INTEGER);

The final MacExtras procedure handles commands for the Apple menu, in
cluding displaying the About Program box and activating desk accessories. Because
this menu rarely changes, although it might list different accessory names, it's best
to keep it in a unit like MacExtras rather than recompiling it over and over for each
new program.

In Any Event == 179

Lines 389-391 display the About Program box if the cmdNumber equals con
stant AboutCmd. Otherwise, lines 393-401 open a desk accessory by first calling
Getltem, which returns daName equal to the menu command name, and passing
that name to OpenDeskAcc (399), which does the actual work. This function returns
a result code, called the driver reference number, which the program ignores. (A
desk accessory is known as a driver, a term that usually and probably more cor
rectly refers to code that runs, or drives, printers and other devices.) In this case,
the result code is meaningless and you always ignore it after calling OpenDeskAcc.

MacExtra's Main Body

A unit's main body runs before programs that use the unit. Some units don't
have main bodies, but MacExtras does-executing a very important sequence of
actions. Lines 409-416 initialize the Macintosh tools that ApShell and other pro
grams use. Because nearly every Macintosh program starts with these same initializa
tions, it's best to stuff them into a unit like MacExtras and forget about them.

The program comments tell you which toolset each line initializes. Three
statements, however, might not be so clear. Line 409 passes the address of global
GrafPort variable thePort to InitGraf. This must be the first step in any program
that uses QuickDraw routines.

Line 414 initializes the Dialog Manager, which Chapter 6 explains in more
detail. The NIL pointer value tells the Dialog Manager that this program has no
resume procedure, one that the operating system calls upon receiving a fatal system
error. Normally, you don't need to install such a procedure and can simply pass
NIL as the value to InitDialogs.

Line 416 calls FlushEvents, passing constant everyEvent and a zero, called the
stop mask. If instead of zero you passed a constant representing some other event
kind, updateMask for instance, then FlushEvents would remove pending events
only up to the first event of that kind. The zero tells it to remove all events in the
queue. Together, the two parameters completely flush the event queue, removing
any stray keypresses or mouse clicks that might be lurking there, waiting to sur
prise your program. (Seriously, this is important. Someone might click the mouse
before a program gains control. The FlushEvents call at line 416 throws such ex
traneous events out.)

five

Windows, Text,
and Scroll Bars

Nearly everything that happens in a fully charged Macintosh program takes
place inside windows. You write text and display graphics in windows. You drag,
resize, open, and close them. And, if you're like most people, you do all of those
operations almost without thinking.

As the previous chapter demonstrates, adding windows to programs is easy
because built-in ROM routines handle most of the details for you. Programs simply
respond to certain events-mouse clicks, for example-and call the proper pro
cedures to drag and resize windows and perform other standard operations.

But bare windows are useless-it's what's inside that counts. As you'll learn
in this chapter, displaying text, graphics, and controls such as scroll bars in win
dows requires careful programming. You have to be concerned not only with the
appearance of a window but with its structure in memory. For that reason, we'll
begin with a look at the memory heap-a subject that many programmers warily
approach as though it were a heap o' trouble. If you believe what many say, the
heap is a mysterious never-never land-a place where variables fly around like Peter
Pans, likely to be swallowed by the crocodile Memory Manager, never to be seen
again.

In truth, the heap is nothing more than a large area of memory that follows
specific organizational rules. The trouble is that many programmers misunderstand
these rules, causing themselves plenty of unnecessary anguish-a bunch of Cap
tain Hooks, nervous at every tick of the microprocessor clock. You won't be one
of them if you understand how the heap works, as the next section explains.

HEAPS ARE FOR KEEPS

The heap is where programs keep most things in memory, including the pro
gram itself. Desk accessories take up heap space and font images reside there, as
do many other variables and structures. In fact, it's almost ridiculous to describe

181

182 == Programming with Macintosh Turbo Pascal

the many things you might find on the heap-practically everything in memory
is there at one time or another.

To best understand this all-purpose heap, visualize memory as a block of empty
space with boundaries that rise and fall according to how many objects you throw
in. Figure 5.1 illustrates the idea with an over-simplification of Macintosh memory.
At the bottom is space that the operating system reserves for its own purposes.
Above that is the heap. At the top is the stack, expanding downwards toward the
heap, which rises up to meet it. Both compete for the free space in between. In
general, the heap contains data and code while the stack contains local variables
the ones you declare in Procedure and Function VAR sections-plus information
about the running program. For example, when procedures call other procedures,
the stack keeps information about who called whom and about the locations of
variables.

Memory

Stack

,,

Heap

Reserved

Figure 5.1 In memory, the stack grows down to
meet the heap, which grows up. Both areas com
pete for free memory in between. The system
reserves a portion of memory for its own use below
the heap.

Windows, Text, and Scroll Bars =:: 183

Because it's tied to the operation of a program, the stack grows and shrinks
according to the order in which routines run, expanding up and down like a stack
of pancakes. (In this case, it's an upside-down cake, but never mind.) Contrasting
that action, the heap grows to accommodate the objects you tell it to keep. Unlike
the stack, the heap may grow larger, but it never shrinks. Once the heap expands
to a certain size, it stays there like a thermometer that records the high temperature,
pushing the marker up and up but never letting it fall.

Inside the heap are blocks of memory, some with program variables and others
empty, available for programs to use. When the heap contains no empty blocks,
it expands to hold new objects. Otherwise, it uses as many empty blocks as it can,
keeping its top as low as possible and, therefore, keeping total memory use to a
minimum.

As you can see in Figure 5.1, if the top of the heap grows higher than the bot
tom of the stack, both areas overlap, a dangerous condition to avoid at all costs.
To detect this problem, the operating system "sniffs" 60 times a second for the smoke
released by a stack/heap collision. If this stack sniffer detects any smoke-in other
words, if the stack bottom is ever lower than the heap top-it calls the system er
ror handler, displaying a bomb box with error 28, stack overflow.

You must prevent this error from occurring. There is no recovery. In fact, you
must go further, preventing even its possibility. The stack sniffer finds out about
collisions on the average only 11120 of a second after they occur. That's eons of
computer time, enough for the stack to expand into the heap, destroy variables,
and then pull itself back up before the sniffer checks for the error! To avoid colli
sions, follow these rules.

• Keep procedure nesting to a minimum and use only small local variables,
particularly in recursive routines

• Always place big variables-arrays and large record structures, for example,
on the heap

• Dispose the objects your program no longer needs. This returns their memory
to the heap, making it available for other uses

• Avoid declaring simple pointers to objects. Use handles whenever you can

The last of these rules is the most important. A handle is a special kind of
pointer that lets the Memory Manager organize the heap to your program's benefit.
By using handles, you take advantage of the manager's ability to move memory
blocks and to use efficiently all available memory before expanding the heap. This
action tends to keep the heap top as low as possible, reducing the likelihood that
it ever will bump into the stack.

All About Handles

As you may know, a Pascal pointer points to an object in memory. To create
such objects, you declare pointers to their data types and use a New statement to

184 =:: Programming with Macintosh Turbo Pascal

allocate memory for variables of those types. The pointers hold the addresses of
variables in memory. If you're a little rusty on pointers, the following example helps
make them clear.

TYPE
OneRec =

RECORD

VAR

a, b: INTEGER
END;

p: "OneRec;

BEGIN
New(p);
p".a := 10;
p".b := 20;
Dispose(p)

END.

The statement New(p) allocates memory on the heap for a variable of type
OneRec, a record with two integer fields, a and b. Then, two statements assign IO
to the first field (a) and 20 to the other (b). The caret dereferences the pointer, tell
ing Pascal to refer to the object to which the pointer points-not to the pointer
itself as an object. (Remember that pointers are variables. They're special because
they point to other variables, in this example, a record with two integer fields.) The
last statement disposes the memory that p" occupies, making that memory available
for other uses.

The trick to good Macintosh memory management is to understand how the
standard Pascal method works and then forget it. Never use New to allocate memory
for pointers as this example demonstrates. Although it works, it's a poor memory

Memory Block

Header
4 Pointer

Data

Figure 5.2 All memory blocks begin with a
header, which the Memory Manager uses to
organize the heap. Program pointers address data
in blocks, not their headers.

Windows, Text, and Scroll Bars == 185

management technique. To understand why requires knowing how the Memory
Manager keeps track of memory areas, or blocks, on the heap.

Every time you request heap space for a program variable, the Memory
Manager creates a block containing the information it needs to organize and locate
all blocks in memory plus enough room to store your program's variables. Every
such block has the organization in Figure 5.2.

The memory block header contains information that records the block's size
along with other facts such as whether the Memory Manager can move it to make
room for other blocks. The header is always eight bytes long. You don't need to
know the header's exact contents and you'll probably never directly use it. Don't
even assume that it will remain at eight bytes in all future Macintosh incarnations.
Just be aware that every block-whether used or not-has a header.

Following the header are the bytes that belong to your dynamic object; in other
words, the variable in memory that a pointer addresses. (The object is dynamic
because you create it explicitly when your program runs and dispose the space later.)

When you create a dynamic variable with New, the Memory Manager reserves
a non-relocatable memory block with a header and space to hold your data. Even
tually, after many such statements, your heap looks like Figure 5.3 with many

s
t
a
c
k

H
e
a
p

Pointer 4

Pointer3

Pointer 2

Pointer 1

free space

Object 1

Figure 5.3 Simple pointers on the stack address
objects on the heap, a technically correct though
poor memory management practice.

186 == Programming with Macintosh Turbo Pascal

pointers and blocks. Notice that the pointers themselves are local program variables
on the stack. (They also could be global variables.)

Problems with this arrangement begin appearing when you dispose objects
in the middle of other non-relocatable blocks. The disposals leave holes in the
heap-the shaded areas in the figure. These holes are not lost to the Memory
Manager and it can use them for other objects. But new objects can be no bigger
than the largest hole available. To create an object larger than that requires expand
ing the heap, taking up more of the computer's free space, and increasing the danger
of a stack/heap collision.

Having many disposed non-relocatable objects in memory can cause a condi
tion called fragmentation. The objects fragment the heap into a gulf stream of im
movable islands. Consequently, you can build variables no larger than the available
land space.

Relocatable memory blocks help prevent this condition because the Memory
Manager can move them around to compact unused islands into a larger land mass.
Only if all such areas combined are too small to hold your new object will the heap
expand further into the ocean of available free space. But looking again at Figure
5.3, if the manager shifted objects in order to combine numbers 2 and 4, the pro
gram might lose the locations of 1 and 2, resulting in a problem that Figure 5.4
demonstrates.

Pointers 3 and 4 now are wrong! The heap is nicely arranged with its free space
and disposed objects together, making the most of available memory. All used ob
jects are as far down in memory as possible. But the pointers on the stack no longer
point to the correct objects and the program would fail to operate.

To fix this problem and to let programs find relocatable objects no matter where
the Memory Manager moves them, requires the help of a master pointer. Instead
of pointing directly to objects in memory, special variables called handles point
to these master pointers, which in turn locate the real variables on the heap. Because
the Memory Manager never moves master pointers and because it automatically
adjusts them when it moves memory blocks to which they point, handles always
locate objects while making the most of heap space.

Figure 5.5 shows how handles, master pointers, and relocatable objects
cooperate. Instead of simple pointers, the program creates handles as local variables
on the stack or as global variables permanently in memory. These handles point
to master pointers far down on the heap. The master pointers in turn point to the
actual objects. When the Memory Manager moves an object, it automatically ad
justs the master pointer to the correct value, locating objects in their new positions.

Notice that master pointers to disposed objects (numbers 2 and 4 in the figure)
are NIL, represented by electrical grounding symbols. But the handles still address
the same master pointers. This situation happens when memory blocks are not only
locatable but purgeable, meaning you give the Memory Manager the right to remove
the objects to which they point. For example, if you mark Object 3 purgeable, the
Memory Manager can reuse the space it occupies. If it does, it then sets Master
Pointer 3 to NIL. Before programs attempt to use purgeable memory blocks,

s
t
a
c
k

H
e
a
p

Windows, Text, and Scroll Bars == 187

Pointer4

Pointer 3

free space

Object 3

Figure 5.4 If objects were rearranged to combine
their memory with the free space between the
stack and the heap, simple pointers would lose
track of the objects to which they refer.

therefore, they must check whether the Memory Manager had previously removed
them from memory. If the master pointer is NIL, then the program must recreate
that object-perhaps reading it from disk. This is the way the operating system
loads various program resources such as the definitions for clickable buttons, scroll
bars, and even portions of the program's code. When you mark such items
purgeable, as you did in Chapter 4, you are telling the Memory Manager it is free
to remove them from memory when it needs more room.

You need to understand one more fact about master pointers. In Figure 5.5,
the four pointers at the bottom of the heap must never move. If they did, the pro
gram's handles couldn't find them-just as it couldn't find the movable objects
in Figure 5.4. For this reason, master pointers always reside in non-relocatable
memory blocks. You have a lifetime warranty from the operating system that your
master pointers will stay where they are.

188 == Programming with Macintosh Turbo Pascal

s
t
a
c
k

H
e
a
p

Handle 4

Handle 3

Handle 2

Handle 1

free space

Object 3

other objects

Master Pointer 1

Master Pointer 2

Master Pointer 3

Master Pointer 4

Figure 5.5 Good Macintosh memory management uses
handles instead of pointers. With this method, handles on the
stack address master pointers on the heap, which in turn ad
dress objects. This lets the Memory Manager move objects to
better use available memory but still allow programs to find
their data.

Windows, Text, and Scroll Bars == 189

Unfortunately, because master pointer blocks are immovable, they too can frag
ment the heap-reducing the advantage of using handles in the first place. To make
certain that never happens, the Memory Manager attempts to place master pointer
blocks as low on the heap as it can. At the start, all programs have a group of master
pointers available for new handles. (Currently, the operating system creates 64 master
pointers at a time, placing them all in one 256-byte non-relocatable block. But don't
rely on these numbers. They might change in the future.) If a program creates more
than that many handles, the Memory Manager automatically allocates an addi
tional block of master pointers.

Meanwhile, if you created immovable objects on the heap, above the original
block of master pointers, the new masters go above your objects. Later, if you
dispose of those objects, the master pointer blocks themselves fragment the heap,
as Figure 5.6 shows. To prevent this situation from occurring, programmers typically
add several MoreMasters statements to their initialization procedure. Each call to
this routine creates an additional block of master pointers. By calling it early in
the program-before it creates any objects on the heap-all master pointer blocks
are as low as possible, most likely compacted together near the bottom of the heap,
the ideal arrangement.

How many MoreMasters statements do you need? Some people use six or eight
such calls even in programs that use only one or two handles. Such overkill might
actually waste more memory than the worst possible fragmentation the program
could produce! A better solution, then, is to follow these suggestions:

• Calculate the maximum number of handles your program will use at one
time. Round this number up to the nearest multiple of 64, divide the result

Heap

Additional
Master Pointers

Original
Master Pointers

Figure 5.6 The Memory Manager creates blocks
of master pointers as needed, an action that can
fragment the heap as shown here. To prevent this
condition, call toolbox procedure MoreMasters to
create all the master pointers your program is like-
1 y to need.

190 == Programming with Macintosh Turbo Pascal

by 64, and call MoreMasters that many times. This creates a few extra handles
for programs such as desk accessories that share heap space with your
routines. Remember that toolbox routines create their own handles for various
reasons.

• Use a debugger like TMON or MacsBug to examine the heap after stepping
your program through its paces. Add MoreMasters calls until all master
pointer blocks are together near the bottom of the heap. If you cannot
calculate beforehand how many handles your program will create, you have
little choice but to use this trial-and-error technique.

• Use handles to relocatable objects for all dynamic variables. This way, the
Memory Manager will move your objects upward when it creates new master
pointer blocks, placing those blocks as low as it can on the heap. If you do
this, you don't have to call MoreMasters to reserve blocks ahead of time.

Although the last suggestion is probably best, and it lets the Memory Manager
organize memory rather than forcing the job onto your program, it doesn't always
work. One reason the idea fails is that window records must be in non-relocatable
memory blocks, an unbreakable if unfortunate rule. It also fails when programs
temporarily lock relocatable blocks to prevent the Memory Manager from mov
ing them for a limited amount of time. If the Memory Manager creates new master
pointer blocks while intervening relocatable blocks are locked, the heap can become
badly fragmented. Both of these cases defeat the manager's attempts to place non
relocatable master pointer blocks low on the heap. Therefore, it's probably a good
idea to call MoreMasters at least a few times in any program that uses many handles.

Molding Your Own Handles

Creating your own handles is easy although many people find the subject con
fusing at first. The best plan is to have a good mental image of the heap, as in
Figures 5.1 through 5.6. In particular, refer to Figure 5.5 on page 188. The follow
ing examples show how to create a program that follows this illustration.

First, define an object. I'll use a simple record structure, although you can create
any other kind of relocatable object, arrays, sets, strings, and so on. Here is the
data type.

TYPE
OneRec =

RECORD
a, b: INTEGER;
r : REAL;
s: STRING[40l

END;

Windows, Text, and Scroll Bars == 191

Each OneRec record has four fields: two integers, a real number, and a
40-character string. You could create local variables of this type, but then they would
take up valuable stack space. Instead, it's better to create variables on the heap as
relocatable objects. This requires two pointers:

TYPE
OneRecHand = AOneRecPtr;
OneRecPt r = AoneRec;

OneRecPtr is a simple pointer to a OneRec object. This is the master pointer
the one that actually addresses objects in memory. OneRecHand is a pointer to
a OneRecPtr. This is the handle, the variable that the program creates to address
the master pointer. Be sure you understand that the handle points to the master
pointer, which points to the actual object. With this design, we're ready to create
the program's variables, the four handles in Figure 5.5. To do that, you start with
this global VAR declaration:

VAR
Handle1, Handle2,
Handle3, Handle4: OneRecHand;

This completes the program's declarations. You now have a data type (OneRec),
a master pointer to that type (OneRecPtr), a handle to a master pointer,
(OneRecffand), and four variables, Handlel through Handle4. These variables cor
respond with those on the stack in Figure 5.5. If the variables are global, they ac
tually reside above the stack in the application's global space. In either case, the
organization is similar. Notice that everything but the handle variables are TYPE
declarations, which take no room in memory. They merely define structures that
don't yet exist.

The next step is to create space on the heap for objects defined by the earlier
TYPE declarations. You do that by calling the Memory Manager function Newffan
dle, which reserves space for an object (plus the header bytes that go with all memory
blocks), assigns the address of that space to a master pointer, and returns the ad
dress that becomes the program's handle. As shown here, one step accomplishes
all of these actions.

Handle1 :=OneRecHand NewHandle(Sizeof(OneRec)) >;
IF Handle1 =NIL

THEN DoErrorRoutine;

Placing Newffandle inside One Recffand's parentheses converts the plain han
dle data type to that of Handlel-an example of type casting. A variable of one
type is recast to another. Repeat that same step for each of your handles. Notice
that Sizeof passes OneRec's size in bytes to Newffandle. The Memory Manager
reserves that much space plus room for the block header. You never have to leave

192 == Programming with Macintosh Turbo Pascal

space for this header-as far as your program is concerned, objects are no bigger
than Sizeof reports. If New Handle cannot create space for an object, it returns NIL.
As the example shows, you should test for this problem immediately after calling
New Handle. There's no need to check beforehand whether enough memory exists
for new objects.

You now have a heap arranged similarly to the illustration in Figure 5.5. (Ob
jects 2 and 4 are not yet disposed, of course.) To assign values to variables, follow
the handles to the master pointers, which in tum locate the objects in memory.
For example, to add values to object 1, you could write:

WITH Handle1"" DO
BEGIN

a:=10;b:=20;
r := 3.14159;
s :='This is a string'

END;{with}

The two carets dereference the handle twice. As the standard Pascal example
that began this section illustrates, a single dereference locates the object to which
the pointer points. Therefore, the first caret finds the object that the handle
addresses-in other words, the master pointer. The second caret locates the object
to which that pointer points-the actual object in memory.

Some people would have you believe that you must never double dereference
handles in WITH statements as this example shows. Nonsense. You must dereference
handles in order to get to your objects and, by using a WITH statement, you
generate code that runs faster than the alternative many programs use. For exam
ple, the following statements work too hard to achieve the same result:

Handle1"".a :== 10;
Handle1"".b := 20;
Handle1AA. r := 3.14159;
Handle1"".s :='This is a string';

Every Handlel" " expression forces the compiler to generate code to perform
two address calculations. By using WITH, you let the compiler generate code to
calculate the address a single time and then use that same address for each of the
following assignments. Why, then, do so many Macintosh programmers do it the
hard way?

The answer is they know the Memory Manager might move relocatable ob
jects in order to make room for others. If that should happen in between the time
of your WITH statement and an assignment, the address calculation would become
invalid. This happens because WITH makes a copy of the master pointer and then
uses that copy to locate your objects. If, in the meantime, the Memory Manager
should change the master pointer's value-which it certainly will do if it moves
the associated memory block-the copy of that address might become wrong and
the program could reference an object after it moves to some other location.

Windows, Text, and Scroll Bars == 193

Out of fear of this happenstance, people avoid using WITH statements as
though they were viral bugs that plague only Macintosh programmers. But such
fears are groundless. The Memory Manager guarantees to you that it will move
objects only at specific times, and only when you call certain routines in the toolbox.
Objects will never move at any other time. Period. Volumes 3 and 4 of Inside Mac
intosh list all of these routines. As long as you don't call any of them, relocatable
objects will not move.

As with all perfect warranties, though, there's a catch. If you call a procedure
that calls other routines that in turn end up calling one of the routines in the list,
the Memory Manager might shuffle objects around even though it appears as
though such an event could never happen. For example, suppose you call a pro
cedure and pass it one of the fields from your object. If you write:

ProcessValueC Handle2"".r >;

and if ProcessValue declares its parameter as a variable, a fact that is not obvious
from the statement that calls it, Pascal passes a copy of the address of field r. If
ProcessValue then calls one of the memory-shuffling routines, that address might
become wrong if the object containing r moves. This can never happen when pass
ing parameters by value to routines, in which case Pascal makes a copy of the value
itself-not the value's address in memory. In other words, if the procedure you call
declares VAR parameters, be wary of double dereferencing handles in calls to that
procedure. If the procedure declares only value parameters, even if it calls one of
the memory-shuffling routines, you have nothing to worry about.

What do you do, then, when you have to use the address of objects in
relocatable blocks? There are two answers. One, make a copy of the value you want,
process that value, and then reassign it to the object on the heap. If you have a
REAL number variable tempR, you could write:

tempR := Handle2"".r;
ProcessValueC tempR >;
Handle2"".r := tempR;

Even if the object at Handle2" " should move during the call to ProcessValue,
the third statement locates it properly by again double dereferencing the handle.
This always works. Objects never move during simple assignments.

The second solution is to lock the object on the heap, temporarily preventing
the Memory Manager from moving it. Even if you call one of the memory-shuffling
routines, your locked objects will not move. The program now becomes:

Hlock< Handle< Handle2) >;
ProcessValueC Handle2"".r >;

HUnlockC Handle< Handle2));

Hlock locks the relocatable block associated with a certain handle. HUnlock
unlocks that block, allowing the Memory Manager to move it once again. Because

194 == Programming with Macintosh Turbo Pascal

both procedures take a plain vanilla Handle data type, you have to typecast your
handles to that generic type as shown.

Although this solution is attractive and avoids double dereferencing handles
more than once, you pay a heavy price for that advantage. Because you have locked
the relocatable memory block, you've defeated the purpose of using handles. Even
worse, you risk fragmenting the heap. If the Memory Manager needs more room,
it will not be able to move your locked block and might therefore have to expand
the heap needlessly. For these reasons, it's best to avoid locking relocatable blocks,
even temporarily.

Disposing Handles

When you're finished using dynamic objects, always dispose their handles. This
releases space the objects occupy on the heap, making it available for other uses.
You have to do nothing special to ensure that the Memory Manager reuses dis
posed memory. It will as Jong as you dispose your handles this way:

DisposHandle(Handle< Handle1) >;
DisposHandle(Handle(Handle2) >;

Calling DisposHandle gives the Memory Manager permission to reuse the
memory block associated with a handle. As when you create handles, you have
to typecast your variables to generic Handle types when passing them to this routine.
After disposing a handle, the master pointer it addresses is again available for future
calls to New Handle. For this reason, it may be a good idea also to set your handles
to NIL as follows:

Handle1 :=NIL;
Handle2 :=NIL;

This is optional, but what's important is that you never use a handle after
disposing it. You can assign to it the result of New Handle to create a fresh relocatable
object on the heap, but that's it. This is a doubly important rule because the Memory
Manager does not change your handle's value after you dispose its memory block.
It's up to you to guard against accidentally reusing disposed handles.

MULTIPLE WINDOWS

ApShell in Chapter 4 opens a single test window. Although some programs
need only one, most allow many windows at one time. The next example
demonstrates a good method for keeping track of multiple windows and shows
how to deal with the special memory management problems this presents.

Type in Listing 5.1, save as MULTIWIND.R, and compile with RMaker. Also

1:
2:
3:
4:
5:
6:
7:
8:
9:

Windows, Text, and Scroll Bars

Listing 5.1. MULTIWIND.R

--
* MultiNind.PAS resources -- Compile with RMaker *
--
Prograrns:Nindows.F:MultiNind.RSRC ;; Send output to here

--
* About box string list *
-- 10:

11:
12:
13:
14: 6
15:

TYPE STRt
, l (32)

Multi Window Demo

,, String list resource
,, ID and attribute (purgeable)
,, Number of strings that follow
, , Program name

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:

by Tom Swan
Version 1. 00

, , Author

(C) 1987 by Swan Software
P. o. Box 206, Lititz, PA
(717)-627-1911

17543

, , Version number
,, Copyright notice
, , Address
, , Telephone

--
* The Apple Info menu *
--
TYPE MENU

, 1
\14

About Multi ...
(-

,, Menu ID number to use in program
,, Bitten-apple graphics symbol
,, The conunand as shown in menu
,, Divider line between command and DAs

--
* The File menu
--
TYPE MENU

,2
File

New /N
(Close
(-

Quit /Q

--
* The Edit menu
--
TYPE MENU

,3
Edit

(Undo /Z
(-

(Cut /X
(Copy /C
(Paste /V
(Clear

* END

195

196 == Programming with Macintosh Turbo Pascal

type in Listing 5.2 and save as MULTIWIND.PAS. To save space here, lines 118
and 194 tell you to insert programming from ApShell (Listing 4.1). Compile MULTI
WIND.PAS. When you run the program, choose New from the File menu to open
windows. Each one overlaps the previous, similar to the way the Turbo Pascal editor
operates.

Listing 5.2. MULTIWIND.PAS

1: {$0 Programs:Windows.F: I Send compiled code to here I
Use this compiled resource file
Turn off standard library units

2: {$R Programs:Windows.F:MultiWind.Rsrc)
3: {$U-)
4:
5:
6: PROGRAM MultiWind;
7:
8: (*

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

* PURPOSE Multiple-windows demo
* SYSTEM Macintosh I Turbo Pascal
* AUTHOR Tom Swan

*)

{$U Programs:Units.F:MacExtras I (Open this library unit file)

USES

Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras;

CONST

FileID
NewCmd
CloseCmd

2;
1;
2;

I File menu Resource ID and commands)

{--------}
QuitCmd 4;

MaxWindow = 8; I Maximum windows open at once I

VAR

wPtrs: ARRAY(1 .. MaxWindow I OF WindowPtr;

numWindows : 0 .. MaxWindow;

quitRequested : BOOLEAN;

FUNCTION WindowisOurs(wPtr : WindowPtr;
VAR windex : INTEGER) : BOOLEAN;

Number of windows open

TRUE if quitting I

TRUE if the window at wPtr belongs to this program. If it is
ours, then windex = its wPtrs array index. Othewise, windex
is meaningless. }

55:
56:
57:
5B:

VAR

i

Windows, Text, and Scroll Bars

INTEGER;

59: BEGIN
60: FOR i := 1 TO MaxWindow DO
61: IF wPtrs[i] = wPtr THEN
62: BEGIN
63: WindowisOurs := TRUE;
64: windex : = i;
65: Exit
66: END; { if
67: WindowisOurs := FALSE
6B: END; I WindowisOurs)
69:
70:
71: FUNCTION Nextindex : INTEGER;
72:
73: Return next available index in wPtrs array for creating new
74: windows. Assumes numWindows < MaxWindow. Returns -1 if
75: no array index available.)
76:
77: VAR
7B:
79: i INTEGER;
BO:
Bl: BEGIN
82:
83:
B4:
85:
B6:
B7:
BB:
B9:
90:
91:
92:
93:
94:
95:
96:
97:
9B:
99:

100:
101:
102:
103:
104:
105:
106:
107:
lOB:
109:
110:
111:
112:
113:
114:
115:
116:
117:

FOR i := 1 TO MaxWindow DO
IF wPtrs[i] =NIL THEN
BEGIN

Nextlndex :""' i;
Exit

END; I for I if
Nextindex := -1

END; { Nextindex)
{ Fail safe value)

PROCEDURE CalcWindRect(windex : INTEGER; VAR wRect : Rect);

Calculate coordinate values for this window's bounds rectangle

CONST

Start Top
StartLeft

VAR

= 43;
= 16;

p, q INTEGER;

BEGIN
p := (windex - 1
q := ((windex -
WITH wRect DO
BEGIN

{ Fixed upper right corner coordinate)

{ Temporary work variables)

MOD 4;
) DIV 4) * 4;

top
left

:= StartTop + q + Ip* 21);
:= StartLeft + q - (p * 4);

bottom
right

END { with

:= screenBits.bounds.bottom - 5;
:= screenBits.bounds.right - 5

END; { CalcWindRect)

llB: << INSERT LINES 61-74 FROM APSHELL.PAS >>
119:
120:

197

(continued]

198 == Programming with Macintosh Turbo Pascal

121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:

PROCEDURE DoNew;

Respond to File menu New command I

CONST

Visibility
Window ID
HasGoAway
Ref Con

= FALSE;
8;

= TRUE;
0;

Window not immediately visible J
Standard window with zoom box I
Window has a close box }
Window reference value (none)

VAR

wPtr WindowPtr;
wTitle : Str255;
windex : INTEGER;
wRect : Rect;

BEGIN
IF numWindows < MaxWindow THEN
BEGIN

windex := Nextindex;
IF windex > 0 THEN
BEGIN

NumToString(windex, wTitle);
wTitle := Concat('Test Window# •, wTitle);
CalcWindRect(windex, wRect);
wPtr := NewWindow(NIL, wRect, wTitle, Visibility,

windowID, POINTER(-1), HasGoAway, RefCon);
IF wPtr <> NIL THEN
BEGIN
(* SetWTitle(wPtr, wTitle); *)

wPtrs[windex] := wPtr;
numWindows := numWindows + l;
ShowWindow(wPtr);
Enableitem(fileMenu, CloseCrnd);
IF numWindows = MaxWindow

THEN Disableitem(fileMenu, NewCrnd
END (if)

END (if I
END (if }

END; { DoNew }

165: PROCEDURE CloseProgramWindow(windex
166:

INTEGER) ;

167: Close this window in wPtrs array I
168:
169: BEGIN
170: DisposeWindow(wPtrs[windex l);
171: wPtrs[windex J :=NIL;
172: numWindows := numWindows - 1;
173: Enableitem(fileMenu, NewCmd)
174: END; { CloseProgramWindow I
175:
176:
177: PROCEDURE DoClose;
178:
179: Respond to File menu Close command }
180:
181:
182:
183:
184:

VAR

windex INTEGER;

Windows, Text, and Scroll Bars == 199

BEGIN 185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:

IF WindowisOurs(FrontWindow, windex)
THEN

CloseProgramWindow(windex
ELSE

CloseDAWindow
ENO; I OoClose I

Close program's window I

Close desk accessory window

<< INSERT LINES 124-368 FROM APSHELL.PAS >>

PROCEDURE Initialize;

Program calls this routine one time at start I

VAR

i INTEGER;
204:
205: BEGIN
206:
207:
208:
209:
210:
211:
212:
213:
214:

SetUpMenuBar;
quitRequested := FALSE;
numWindows := 0;
FOR i := 1 TO MaxWindow DO

wPtrs[i] :=NIL;
DisplayAboutBox

END; I Initialize I

215: FUNCTION QuitConfirmed : BOOLEAN;
216:

Initialize and display menus I
TRUE on selecting Quit command
No windows open I
Initialize window pointers array
to all NIL values. I

Identify program I

217:
218:
219:
220:

The program's "deinitialization" routine. If someone chooses quit
command, this routine closes any open windows and tells the main
program loop whether it is okay to end the program now. I

221: BEGIN
222: IF quitRequested THEN
223: WHILE FrontWindow <> NIL DO
224: DoClose;
225: QuitConfirmed := quitRequested
226: END; I QuitConfirmed)
227:
228:
229: PROCEDURE DoSystemTasks;
230:
231: Do operations at each pass through main program loop)
232:
233: VAR

234:
235:
236:
237:
238:

windex

BEGIN

INTEGER;

239: SystemTask; Give DAs their fair share of time I
240:
241: IF FrontWindow NIL THEN
242:
243: BEGIN { Set up menu commands for empty desktop I
244:
245: FixEditMenu(FALSE);
246: Enableitem(fileMenu, NewCrnd) ;
247: Disableitem(fileMenu, CloseCmd);
248:
249: END ELSE
250:

{continued)

200 == Programming with Macintosh Turbo Pascal

251: IF NOT WindowisOurs(FrontWindow, windex) THEN
252:
253: BEGIN (Set up menu commands for active desk accessory
254:
255: FixEditMenu(TRUE);
256: Enableitem(fileMenu, CloseCmd)
257:
258: END I else I if }
259:
260: END; (DoSystemTasks }
261:
262:
263: BEGIN
264:
265: Initialize;
266:
267: REPEAT
268:
269: DoSystemTasks;
270:
271: IF GetNextEvent(everyEvent, theEvent) THEN
272:
273: CASE theEvent.what OF
274:
275: MouseDown
276: KeyDown

: MouseDownEvents;
KeyDownEvents;

277: AutoKey
278: UpdateEvt
279: ActivateEvt
280:
281: END I case }
282:
283: UNTIL QuitConfirmed
284:
285: END.

I ignored };
UpdateEvents;
ActivateEvents

MultiWind Play-by-Play

MULTIWIND.R {1-62}

Notice that the resource text file for the program does not contain a template
for the window design as in ApShell. You could certainly design multiple window
programs that way, but in this case the program will create its windows on its own.
Other than this omission, MULTIWIND.R is the same as ApShell's resource text.

MULTIWIND.PAS {1-44}

Line 34 declares the maximum number of windows MultiWind can open at
one time. Change this value to allow as many windows as your program needs.
The program creates window records on the heap rather than as local or global
variables.

Array wPtrs (40) holds one WindowPtr for each possible window the program
opens. Some programmers do this differently, declaring an array of Window Record
variables instead of pointers to those records. Both methods are acceptable, but

Windows, Text, and Scroll Bars == 201

remember that WindowRecords are large, each taking more than 150 bytes. For
that reason, it's best to create them on the heap rather than permanently occupy
memory as global variables or take away scarce stack space as local variables in
procedures and functions.

Line 42 creates an associated variable, numWindows, which counts the number
of windows now open. This makes it easy for the program to know when it reaches
its maximum limit. When numWindows is zero, no windows are open.

WindowlsOurs to CalcWindRect {48-115}

WindowlsOurs (48-68) returns TRUE if parameter wPtr is the same as one
of the pointers in array wPtrs. You call the function to determine if a window
belongs to the program or to another process, most likely a desk accessory. (See
DoClose 177-191 for an example.) If it returns TRUE, then parameter wlndex equals
the index into array wPtrs for this window pointer.

Function Nextlndex (71-89) returns the value of an available window pointer
from array wPtrs. If no pointers are free, it returns -1, a situation that cannot
occur if you check beforehand that numWindows is less than MaxWindow. Multi
Wind calls Nextlndex when creating new windows in order to know where to store
their pointers in the wPtrs array.

For each new window that it creates, the program calls CalcWindRect (92-115),
which returns parameter wRect set to the window's initial boundary rectangle. The
formula calculates overlapping rectangles so that at least some of each window's
top and left borders are visible no matter how many windows you open at once.

DoNew to END {121-285}

Procedure DoNew (121-162) creates windows without using a resource template.
Its four constants (127-130) make the program more readable (see 148-149). Visibili
ty is FALSE to let the program create windows, adjust certain parameters, and then
display them with a single call to ShowWindow (155). In this example, you can set
Visibility to TRUE with no bad effect. But in many programs, you might want
the opportunity to perform some action on windows after creating them but before
displaying them the first time. Set WindowID (128) to 0 if you don't want a zoom
box. To use other window styles, change this constant to one of the values in paren
theses or to one of the underlined identifiers in Figure 5.7. If you change
HasGoAway to FALSE, then windows won't have close boxes. (You can still close
them with the File menu's Close command, though.)

To create a new window, DoNew first checks whether numWindows exceeds
MaxWindow (140). As long as it doesn't, line 142 calls Nextlndex to set local variable
wlndex to the next available wPtrs array index. Lines 145-147 create a window ti
tle string and calculate the window's boundary rectangle by calling CalcWindRect.
Then, lines 148-149 use window manager routine NewWindow to create the win
dow record in memory and assign its address to wPtr. Unlike the method that

202 ==: Programming with Macintosh Turbo Pascal

;;;;o Title

documentProc

(0)

eltDBoxProc

(3)

12:1

dBoxProc

(1)

~D Title

noGrowDocProc

(4)

12leinDBox

(2)

D Title

rDocProc

(16)

Figure 5.7 When designing windows, you have six styles to choose from. The under
lined identifiers are constants with the values in parentheses. Missing are windows
with zoom boxes (B), not a separate style but actually a variation of documentProc.

MacExtras uses to create the About Program window (see Listing 4.3, Lines
349-350), this window record is on the heap because the first parameter to NewWin
dow is NIL (148). The window manager understands this as an instruction to reserve
memory on the heap for storing various information it needs to keep track of a
program's windows.

As long as that works-it didn't if wPtr is NIL at line 150-the remaining
statements save the window pointer in wPtrs (153), count the total number of win
dows now open (154), and display the result (155). Lines 156-158 adjust the ap
propriate menus, activating the Close command now that at least one window is
open, and deactivating New if the number of windows equals the program's max
imum. Line 152 has comments around it because it is unnecessary. This line changes
the window title, already done earlier in the call to NewWindow (148-149). If you
were loading a resource template instead of creating window records this way, you
would enable line 152 to name the window before displaying it.

As you can see from this, the program does not use handles to refer to win
dow records on the heap. You are correct in thinking that this breaks the rules of
memory management at the start of this chapter but, in the case of window records,
you cannot use handles to address them. Window records must be in non-relocatable
memory blocks for "historical" reasons-meaning that was the way they were
designed in the Mac's infant days. Because of this, there's always the risk that the
heap will become fragmented with multiple window records.

This will not happen if you are careful to design handles to all other dynamic

Windows, Text, and Scroll Bars == 203

objects your program uses and if you never lock those objects in the heap. When
NewWindow creates new window records, the Memory Manager attempts to locate
them as low as possible, moving relocatable blocks upwards to gain room. Therefore,
even though you might fragment the heap with window records, the worst conse
quence usually is several holes of window record size near the heap bottom. Because
the Memory Manager uses those holes for subsequent windows, the problem is
not as severe as it otherwise might be.

Procedures CloseProgramWindow and DoClose (165-191) are similar to those
in Apshell. The difference here is the addition of array index windex, which selects
one out of many windows that might be open. As in the basic shell, DoClose
assumes that if a window does not belong to the program, it must belong to a desk
accessory. In that case it calls CloseDAWindow (190).

The only new element in Initialize (197-212) is the FOR loop at lines 209-210,
which initializes all window pointers to NIL. This follows the general rule that
pointer variables should be NIL if they don't point to actual objects. This is your
responsibility. Pascal does not initialize pointers automatically.

QuitConfirmed (215-226) is subtly different from the same function in Ap
Shell. The Program Engine calls it once at every program cycle (283), checking
whether quitRequested is TRUE (222). If so, then the WHILE loop (223-224) ex
amines FrontWindow. A NIL value indicates that no windows exist. As long as
this condition is not met, the loop calls DoClose (224). Because of our earlier design
rule that a close should work for both desk accessories and common windows,
these actions totally clean up the desktop, removing all windows before the pro
gram ends, no matter to whom they belong. To see this work, open several win
dows and desk accessories and quit the program. The windows peel off one by one
as the WHILE loop at line 223 cycles.

The rest of the program also is similar to ApShell. Instead of comparing Front
Window with a global program variable, though, DoSystemTask calls Win
dowisOurs (251) to check whether the frontmost window belongs to the program.
If not, it enables the appropriate menu commands for active desk accessories.

TEXT IN WINDOWS

Up to now, most of our windows have been empty. It's time to put something
in them, as the next example demonstrates. The program, MacStat, is a useful utility
that displays several facts about your computer. Type in Listing 5.3, save as
MACSTAT.R, and compile with RMaker. Type in Listing 5.4 and save as
MACSTAT.PAS. Insert the appropriate lines from ApShell at lines 18 and 289 and
compile with Turbo.

Running MacStat displays several facts about your system. It describes your
computer model, the ROM version, the amount of memory you have, and several
other items. In addition to using the program as is, you can extract its program
ming when your own projects need these same facts.

204 == Programming with Macintosh Turbo Pascal

Listin~ 5.3. MACSTAT.R

1: *--*
2: * MacStat.PAS resources -- Compile with RMaker
3: *--*
4:
5: Prograrns:Hindows.F:MacStat.RSRC ;; Send output to here
6:
7:

8: *--*
9: * About box string list

10: *--*
11: TYPE STR#
12: '1 (32)
13: 6
14: MacStat
15: by Torn Swan
16: Version 1.00

,, String list resource
,, ID and attribute (purgeable)
,, Number of strings that follow
, , Program name
, , Author

17: (C) 1987 by Swan Software
,, Version number
,, Copyright notice
, , Address 18: P. 0. Box 206, Lititz, PA 17543

19: (717) -627-1911 , , Telephone
20:
21:
22: *--*
23: * The Apple Info menu
24: *--·
25:
26: TYPE MENU
27: ,1
28: \14
29: About MacStat ...
30: (-
31:
32:

,, Menu ID number to use in program
,, Bitten-apple graphics symbol
,, The command as shown in menu
,, Divider line between command and desk aces.

33: •--*
34: * The File menu
35: *--*
36:
37: TYPE MENU
38: ,2
39: File
40: New /N
41: (Close
42: (-
43: Quit /Q
44:
45:

,, Menu ID number to use in program
,, Menu title as shown in menu bar

46: *--*
47: * The Edit menu
48: *--•
49:
50: TYPE MENU
51: ,3
52: Edit
53: (Undo /Z
54: (-
55: (Cut /X
56: (Copy /C
57: (Paste /V
58: (Clear
59:
60:
61: *--•
62: * Window template
63: *--•
64:

65: TYPE WIND
66: , l (32)
67: MacStat
68: 46 7 328 502
69: Visible GoAway
70: 8
71: 0
72:
73:
74:
75: * END

Windows, Text, and Scroll Bars

,, ID number and attribute (purgeable)
, , Window title
,, top, left, bottom, right coordinates
,, Visible window with close button
,, Standard doc window with grow & zoom boxes
,, Window reference (none)

Listing 5.4. MACSTAT.PAS

205

1: {$0 Programs:Windows.F: }
2: {$R Programs:Windows.F:MacStat.Rsrc}
3: ($U-)

Send compiled code to here I
Use this compiled resource file
Turn off standard library units

4:
5:
6: PROGRAM MacStat;
7:
8: (*
9:

10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:

Display various facts about your Mac
Macintosh I Turbo Pascal

14: *)
15:
16:
17:

Tom Swan

18: << INSERT LINES 17-203 FROM APSHELL.PAS >>
19:
20:
21:
22: PROCEDURE DrawContents(whichWindow : WindowPtr);
23:
24: Display statistics in whichWindow. }
25:
26:
27:
28:
29:

CONST

HWCfgFlags

30: TYPE
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

WordPointer

VAR

rom, machine
secs
sp
text Width
textHeight
flags
oldClipRgn

$622;

= "INTEGER;

INTEGER;
LONGINT;
SysPPtr;
INTEGER;
INTEGER;
WordPointer;
RgnHandle;

(Hardware configuration flags I

(Pointer to integer l

System identifiers }
Time/date encoded in seconds I
Pointer to system information I
Maximum width of a character I
Height of a character I
Pointer to low memory flags I
Handle to old clipping region

(continued)

206 == Programming with Macintosh Turbo Pascal

45: PROCEDURE DrawAt(x, y : INTEGER; S : Str255);
46:
47: Draw string at this coordinate, similar to an x,y location)
48: on a conventional computer terminal.)
49:
50: CONST
51:
52:
53:
54:

Xoff set
Yoff set

5;
12;

Blank pixels in left border)
Blank pixels in top border)

55: BEGIN
56: MoveTo(Xoffset + x • textWidth , Yoffset + y * textHeight);
57: Drawstring(s)
58: END; (DrawAt)
59:
60:
61: PROCEDURE NewFont(fontNumber, pointSize : INTEGER);
62:
63: (Select new font and adjust variables for DrawAt)
64:
65:
66: BEGIN
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:

TextFont(fontNumber);
TextSize(pointSize);
textHeight := pointSize + 2;
textWidth := CharWidth('M')

Use new font)
Use new size I
Cale new character height
Cale width of widest char

END; (NewFont)

PROCEDURE ShowPort(port : INTEGER);

Display serial port configuration encoded as an integer I

VAR

baudRate, dataBits, stopBits, parity

BEGIN
baudRate := BitAnd (port, $3FF);

dataBits := BitAnd(port, $COO };

parity := BitAnd(port, $3000);

stopBits := BitAnd(port, $COOO);

CASE baudRate OF
baud300 Drawstring (
baud600 Drawstring(
baudl200 Drawstring (
baud2400 Drawstring(
baud3600 Drawstring(
baud4800 Drawstring (
baud7200 Drawstring(
baud9600 Drawstring(
baudl9200 Drawstring (
baud57600 Drawstring(

OTHERWISE
Drawstring('??');

END; (case I
Drawstring('00 baud I ');

CASE dataBits OF
data5 Drawstring (
data6 Drawstring (
data? Drawstring (
data8 Drawstring (

OTHERWISE
Drawstring ('??') ;

END; (case I

'3');

'6' };

'12' };

'24' };

'36');
'48');
1 72 I);
'96');
'192');

'576'

'5'
'6'
'7'
'8'

);
};

);

);

};

Drawstring(' data bits I ');

INTEGER;

Windows, Text, and Scroll Bars == 207

114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:

CASE stopBits OF
stoplO
stop15
stop20

OTHERWISE

Drawstring ('1') ;
Drawstring('1.5');
Drawstring ('2') ;

Drawstring('??');
END; { case I
Drawstring(' stop bits I ');

CASE parity OF
noParity
oddParity
evenParity

OTHERWISE

Drawstring ('no') ;
Drawstring('odd');
Drawstring('even 1);

128: Drawstring('no'); { catch the 2nd of 2 no-parity settings J
129: END; { case I
130: Drawstring (' parity'
131:
132: END; { ShowPort I
133:
134:
135: PROCEDURE ShowTime(secs : LONGINT);
136:
137: Display date & time encoded as no. of secs from 1/1/04 I
138:
139: VAR
140:
141: s Str255;
142:
143: BEGIN
144: IUDateString(secs, longDate, s);
145: Drawstring(s);
146: Drawstring (' (') ;
147: IUTimeString(secs, TRUE, s);
148: Drawstring(s);
149: Drawstring (')')
150: END; { ShowTime I
151:
152:
153: PROCEDURE Drawinteger(n: LONGINT);
154:
155: Display integer value I
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:

VAR

s Str255;

BEGIN
NumToString(n, s);
Drawstring(s)

END; { Drawinteger

Convert number to string)
Display it I

168:
169:

PROCEDURE ShowFontName(fn : INTEGER);

170:
171:
172:
173:

Display name of font fn or its number if unknown I

174:
175:
176:

VAR

font Name

177: BEGIN
178:

Str255;

179: GetFontName (fn, fontName) ;
180: Drawstring (fontName)
181:
182: END; { ShowFontName I

(continued]

208

183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:

Programming with Macintosh Turbo Pascal

PROCEDURE DrawStats;

Display information in window }

BEGIN
Environs(rom, machine }; Get system environment info }

NewFont(applFont, 12); Use application font, 12 points
TextFace([bold, underline, italic J }; I in this text style }
DrawAt(3, 2, 'About your Mac ... ');

NewFont(monaco, 9);
Text Face ([J) ;

DrawAt (5, 5, 'Model
IF machine = macXLMachine

THEN
Drawstring('XL' }

ELSE

Use monaco font, 9 points
in plain style text }

Macintosh ');

BEGIN I Distinguish among 128K I 512K I and Mac Plus }
flags :=POINTER(HWCfgFlags); I Assign ptr address
IF flagsA < O

THEN Drawstring('Plus') { Mac Plus if bit 15=1
ELSE IF LONGINT(TopMem) > 500000 I else guess }

THEN Drawstring('512K')
ELSE Drawstring('128K')

END; I else }

OrawAt(5, 7, 'ROM Version ... ');
Drawinteger(rom);

DrawAt (5, 8, 1 ROM Size ') ;
IF rom >= 117

THEN Drawstring('128K')
ELSE Drawstring('64K');

DrawAt(5, 10, 'Total memory);
Drawinteger(LONGINT(TopMem));
Drawstring(•bytes');

GetDateTime(secs);
DrawAt (5, 12, 'Date & time ... ') ;
ShowTime(secs);

sp := GetSysPPtr;
WITH spA DO
BEGIN

DrawAt (5, 13, 'Alarm set) ;
ShowTime(alarm);
DrawAt (5, 15, 'Default font) ;
ShowFontName(font+l);
DrawAt (5, 17, 'PortA config ') ;
ShowPort(portA);
DrawAt (5, 18, 'PortB config ') ;
ShowPort(portB);
DrawAt (5, 20, 'Printer port Port ') ;
IF ODD(kbdPrint)

THEN DrawChar('B'
ELSE DrawChar('A'

END with }

248: END; { DrawStats
249:
250:

251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:

Windows, Text, and Scroll Bars == 209

PROCEDURE ClipToViewArea;

Set clipping area to window contents inside scroll bars

VAR

r Rect;

BEGIN

oldClipRgn := NewRgn;
GetClip(oldClipRgn);

Create region for saving
at oldClipRgn handle J

r := whichWindow'.portRect;
WITH r DO

Copy window's portRect J

BEGIN
right := right - scBarWidth; I Reduce rect to exclude
bottom := bottom - scBarWidth I scroll bars)

END; { with)
ClipRect(r) I Clip to this new area J

END; { ClipToViewArea

BEGIN (DrawContents)

EraseRect(whichWindow'.portRect);
DrawScrollBars(whichWindow);

(Standard update)
(actions I

ClipToViewArea;
DrawStats;
SetClip(oldClipRgn);
DisposeRgn(oldClipRgn

END; { DrawContents)

Change clipping and save old region
Display information in window J
Restore old clipping region J
Dispose handle to free heap space J

<< INSERT LINES 220-456 FROM APSHELL.PAS >>

(END MacStat)

MacStat Play-by-Play

MACSTAT.PAS {1-293}

Because there's nothing special about this program's resource text file, we'll skip
straight to the main listing. Line 28 assigns the address of the computer's hard
ware configuration flags to constant HWCfgFlags, an address that Apple Com
puter guarantees will never change. Later on, line 206 sets a pointer to this address,
allowing the program to examine the flags. In this case, all we want is to check bit
15. If this bit is 1, then the computer has a Macintosh Plus logic board.

Procedure DrawAt (45-58) is a useful tool you can extract for your own pro
grams. It takes three parameters. Integers x and y specify a coordinate in the win
dow where you want to display the third parameter, string s. That coordinate is

210 ===: Programming with Macintosh Turbo Pascal

not quite the same as on a conventional terminal or in Turbo Pascal's textbook
interface, although DrawAt attempts to align columns as best it can.

NewFont (61-71) is another tool you can use. It takes a font number and size,
changing the current window's text font to those parameters. Also, the procedure
sets textHeight and textWidth, which DrawAt uses to calculate where to display
text. Notice that line 70 sets textWidth to the pixel-width of a capital M. It does
this because M usually is the widest character in a font.

ShowPort (74-132) is a long procedure that displays the settings of the two
serial ports. Parameter port holds the encoded information about the port's set
tings obtained at line 231. Although you may never need to display the port set
tings, you can use lines 83-86 to decode the baud rate (meaning bits per second)
and other port settings as shown here.

Procedure ShowTime (135-150) demonstrates how to convert the date and time,
stored as the number of seconds from midnight, January 1, 1904. Lines 144-145
extract and display the date. The remaining lines extract and display the time.
Change longDate (144) to either shortDate or to abbrevDate to display different
formats. Change TRUE to FALSE in IUTimeString (147) if you don't want to
display seconds.

Drawlnteger (153-164) is a simple tool that displays value n at the current pen
location. It first converts the number into a string (162) and then displays that string.
ShowFontName (168-182) calls GetFontName (179) to set string variable fontName
to the title of the font with number fn. It then displays that string.

DrawStats to END {186-293}

DrawStats displays all of the statistics you see in MacStat's window. Line 191
calls Environs to retrieve certain system information, setting parameter rom to the
ROM version number, and machine to either macXLMachine if this is a Macintosh
XL, or to macMachine if not. The procedure uses this value along with
HWCfgFiags bit 15 to determine what computer the program is running (200-212).
You should be able to understand the rest of the procedure with no further
explanation.

An important tool for which you'll find a variety of uses is procedure Clip
ToViewArea (251-272). The procedure prevents the error that Figure 5.8 illustrates.
After shrinking the window, you notice that text overshoots the scroll bar bound
aries to the right and bottom. Obviously this is wrong.

The problem occurs because the window manager initially sets clipping-the
area to where it limits visible drawing-to the entire coordinate plane, which as
you recall, is 65,535 points square. When you draw something in a window, the
system restricts what you see to the combination of the clipping area (clipRgn),
the window boundary (portRect), and the visible area (visRgn). But that does not
account for the scroll bar outlines and, therefore, drawing overwrites them.

To fix the problem, ClipToViewArea excludes the scroll bar rectangles from the
window's clipping region. It first saves the current region in two steps (261-262).

Windows, Text, and Scroll Bars ::= 211

-o MacStat 0

About !J_our /foe. ..

Model Macintosh Plus

ROM Version ••• 117
ROM Size •••••• 128K

Total memory .. 1048576 bytes

Date & time ••• Thursday, Februc ry
Alarm set ••••• Thursday, Februc ry

Defau I t font .. 3 ~

Figure 5.8 Oops! Displaying text in windows without clipping
to the scroll bar outlines can produce the error illustrated here.

NewRgn starts a new region structure on the heap, passing back a handle, which
the program stores in oldClipRgn. Regions are relocatable memory blocks of varying
size. (You don't need to be concerned with their in-memory structure.) Procedure
GetClip then assigns the current clipping region to the initialized handle. When
DrawContents is done, it reverses these steps, calling SetClip (282) to restore the
original clipping region and DisposeRgn (283) to dispose of the handle and its
associated memory block on the heap. Always remember to dispose your handles
when you're done using them.

ClipToViewArea sets the new clipping region to rectangle r. It first calculates
the rectangle by setting it equal to the window's portRect (264) and subtracting
the scroll bar width from the right and bottom fields (267-268). Then it passes
this rectangle to ClipRect, which restricts drawing to the new area, protecting the
scroll bars from overwriting.

PICTURE WINDOWS

To display graphics, you can set up windows to operate like tape recorders, sav
ing drawing commands you give and then executing those commands later as need
ed. This lets you draw complex objects in windows and let the window manager
update your drawing rather than repeating those same commands in your update
handler procedure. For example, when you move one window aside to uncover

212 == Programming with Macintosh Turbo Pascal

another underneath, the window manager automatically redraws the uncovered
portion of your drawing-you don't have to respond to the event yourself.

The next example explains how to do this. Type in Listing 5.5, save as PIC
TURE.R, and compile with RMaker. Type in Listing 5.6, save as PICTURE.PAS,
and compile with Turbo. Notice that lines 48, 90, 93, 116, and 131 tell you to insert
various lines from ApShell. When you run the program, choose the File menu's
New command to display a window with a picture inside. Open a desk accessory
or two (Note Pad is a good choice), drag the windows, and move them on top of
each other. Notice that the window manager always redraws only as much of the
picture as it needs. This happens automatically without responding to update events
for this window as in previous examples.

Listing 5.5. PICTURE.R

1 *--*
2 * Picture.PAS resources -- Compile with RMaker *
3 *--*
4
5 Programs:Windows.F:Picture.RSRC ;; Send output to here
6
7

8 *--*
9 * About box string list

10 *--*
11
12 TYPE STRf
13 ,1 (32)
14 6
15 Picture Window
16 by Tom Swan

,, String list resource
ID and attribute (purgeable)

,, Number of strings that follow
, , Program name
, , Author

17 Version 1.00 ,, Version number
18 (C) 1987 by Swan Software ,, Copyright notice
19 P. 0. Box 206, Lititz, PA 17543 ,, Address
20 (717)-627-1911 ,, Telephone
21
22

23 ·--*
24 * The Apple Info menu *
25 *--*
26
27 TYPE MENU
28 , l
29 \14
30 About Picture ...
31 (-
32
33

,, Menu ID number to use in program
,, Bitten-apple graphics symbol
,, The command as shown in menu
,, Divider line between command and DAs

34 *--*
35 * The File menu
36 *--*
37
38 TYPE MENU
39
40
41
42
43
44
45
46

,2
File

New /N
(Close
(-

Quit /Q

,, Menu ID number to use in program
,, Menu title as shown in menu bar

47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
7l:
72:
73:
74:
75:
76:

Windows, Text, and Scroll Bars

--
* The Edit menu *
--
TYPE MENU

'3
Edit

(Undo /Z
(-

(Cut /X
(Copy /C
(Paste /V
(Clear

--
* Window template *
--
TYPE WIND

'l (32)
Picture Window
45 lO 200 300
Visible GoAway
4
0

* END

;; ID number and attribute (purgeable)
; ; Window title
;; top, left, bottom, right coordinates

,, Visible window with close button
,, Standard window without scroll bars
,, Window reference (none)

Listing 5.6. PICTURE.PAS

213

l:
2:
3:
4:

{$0 Programs:Windows.F:)
{$R Programs:Windows.F:Picture.Rsrc)
{$U-)

Send compiled code to here)
Use this compiled resource file
Turn off standard library units

5:
6:
7:

PROGRAM Picture;

8: (*
9:

* PURPOSE
* SYSTEM
* AUTHOR

*I

Demonstrate QuickDraw Pictures in Windows
Macintosh I Turbo Pascal
Tom Swan

lO:
ll:
12:
13:
14:
15:
16:
17:
18:
19:
20:

{$U Programs:Units.F:MacExtras) (Open this library unit file)

USES
21:
22: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras;
23:
24:
25:
26: CONST
27:

(continued I

214 = Programming with Macintosh Turbo Pascal

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:

FileID = 2; (File menu Resource ID and commands J
NewCmd l;

CloseCmd = 2;
(--------}
QuitCmd = 4;

WindowID = l; (Window resource ID }

VAR

wRec
wPtr

quitRequested
windowOpen

WindowRecord;
WindowPtr;

BOOLEAN;
BOOLEAN;

<< INSERT LINES 61-74 FROM APSHELL.PAS >>

PROCEDURE DoNew;

Open window and attach QuickDraw picture }

VAR

ph : PicHandle;
r Rect;
i : INTEGER;

BEGIN
IF NOT windowOpen THEN
BEGIN

Program's window data record
Pointer to above wRec }

TRUE if quitting
TRUE only if window is open }

wPtr := GetNewWindow(WindowID, @Wrec, POINTER(-1));
windowOpen := wPtr <> NIL;

82:

IF windowOpen THEN
BEGIN

SetPort(wPtr);
ClipRect(wPtr•.portRect);

r := wPtrA.portRect;
InsetRect(r, 25, 25 };
ph := OpenPicture(r);

InsetRect (r, 10, 10) ;
FOR i := 1 TO 20 DO
BEGIN

FrameOval (r } ;
InsetRect(r, 4, 0}

END; (for }
ClosePicture;
SetWindowPic(wPtr, ph);

Not optional! }

Prepare rectangle

Create a picture }

Draw into picture }

Close picture }
Attach to window

83: Enableitem(fileMenu, CloseCmd);
84: Disableitem(fileMenu, NewCmd)
85: END
86: END (if)
87: END; { DoNew }
88:
89:
90: << INSERT LINES 96-175 FROM APSHELL.PAS >>
91:
92:
93: << INSERT LINES 227-298 FROM APSHELL.PAS >>
94:
95:

Windows, Text, and Scroll Bars ~ 215

96: PROCEDURE ActivateEvents;
97:
98: Activate or deactivate windows
99:

100: BEGIN
101: WITH theEvent DO
102: BEGIN
103:
104:
105:
106:
107:
108:
109:
110:
111:

whichWindow := WindowPtr(message);
SetPort(whichWindow);

Extract window pointer
Change current port I

IF BitAnd(modifiers, activeFlag) <> 0
THEN FixEditMenu(FALSE) { Activate a window I
ELSE FixEditMenu{ TRUE) { Deactivate a window

END with
112: END; { ActivateEvents
113:
114:
115:
116: << INSERT LINES 350-368 FROM APSHELL.PAS >>
117:
118:
119: PROCEDURE Initialize;
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:

Program calls this routine one time at start)

BEGIN
SetUpMenuBar;
quitRequested := FALSE;
windowOpen := FALSE;
DisplayAboutBox

END; { Initialize I

Initialize and display menus J
TRUE on selecting Quit command
TRUE after using New command I
Identify program I

<< INSERT LINES 382-393 FROM APSHELL PAS >>

PROCEDURE DoSystemTasks;

Do operations at each pass through main program loop I

BEGIN

SystemTask; Give DAs their fair share of time I
141:
142: IF FrontWindow = NIL THEN
143:
144: BEGIN { Set up menu commands for empty desktop I
145:
146: FixEditMenu{ FALSE);
147: Enableitem (fileMenu, NewCmd I;
148: Disableitem(fileMenu, CloseCmd);
149:
150: END ELSE
151:
152: IF FrontWindow <> wPtr THEN
153:
154: BEGIN { Set up menu commands for active desk accessory I
155:
156: FixEditMenu (TRUE) ;
157: Enableitem(fileMenu, CloseCmd)
158:
159: END (else I if I
160:
161: END; { DoSystemTasks I
162:
163:

(continued]

216 == Programming with Macintosh Turbo Pascal

164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:

BEGIN

Initialize;

REPEAT

OoSystemTasks;

IF GetNextEvent(everyEvent, theEvent) THEN

CASE theEvent.what OF

MouseDown
KeyOown
AutoKey
ActivateEvt

ENO { case)

UNTIL QuitConfirmed

MouseDownEvents;
KeyDownEvents;
{ ignored) ;
ActivateEvents

185: ENO.

Picture Play-by-Play

PICTURE.PAS {1-185}

Picture's global declarations are similar to previous examples. Line 40 declares
a window record as a global variable instead of on the heap as in MultiWind.
Although this permanently takes space in the application's global memory area,
it's an acceptable method for small examples, especially those that have only a single
window.

Procedure DoNew (51-87) demonstrates how to open a window and attach
a picture. Line 57 declares a picture handle (PicHandle) that the window manager
uses to store drawing commands in a relocatable memory block on the heap. After
loading the resource template and displaying the window (64-65), the program
prepares the window for attaching a picture, setting the current port to the pro
gram window (68), and reducing the clipping region to inside its boundaries (69).
These steps are required when attaching pictures to windows-don't forget them.

Having prepared the window, lines 71-72 initialize a rectangle to the size of
the picture the procedure draws. Line 73 passes this rectangle to OpenPicture, which
starts a new picture on the heap and passes back a handle to the associated memory
block. With the picture open, all QuickDraw commands divert to the picture in
stead of the screen. The window manager traps the drawing commands (74-79),
storing them in memory in a form it can later use during window update events.

After finishing drawing, line 80 calls ClosePicture so that future QuickDraw
commands again go to the screen. The final step is in line 81, where SetWindowPic
attaches the picture handle ph to the window. From then on, the window manager
is able to automatically display the picture window with no further help from the
program. Except for a few changes, the rest of the program is similar to ApShell.

Windows, Text, and Scroll Bars == 217

TEXT AND SCROLL BARS

The final programs in this chapter develop a set of tools for displaying text
in windows and adding horizontal and vertical scroll bars. The tools operate similar
ly to the Turbo editor, but they do not allow you to change text or type anything.
(The next chapter explains ways to enter information in programs.) You might use
these tools to include on-line instructions on program disks or to display help
screens.

There are three listings in the set. Listing 5.7 is a unit that contains tools you
can add to any program. Type it in and save as TEXTUNIT.PAS. Compile with
Turbo to a disk code file. Before compiling, you previously must have typed in and
compiled the MacExtras unit from Chapter 4. An explanation of Text Unit's tools
ends this chapter.

Listing 5.8 is the resource text file that goes with the program. Type it in, save
as READER.R, and compile with RMaker. Then type in Listing 5.9, save as
READER.PAS, and compile. The program, Reader, demonstrates how to use the
TextUnit tools. It reads file ReadMe, which traditionally contains last minute notes
about programs on disk.

Reader simply ends if it does not find a ReadMe file on the same volume and
folder from which you run it. A better program would of course display an error
message or let you view other files-but those are subjects for the next chapter.
To test the program, use the Turbo editor to create a ReadMe file. Or rename any
MacWrite file saved with the text-only option. Specify carriage returns at the ends
of paragraphs if you want Text Unit to automatically adjust lines to fit inside the
window borders.

1 ($0 Programs:Units.F:
2 ($U-}
3

5 UNIT TextUnit(132);
6
7 (*

8

Listing 5.7. TEXTUNIT.PAS

Send compiled code to here
Turn off standard library units I

9 * PURPOSE : Text display tools
10 * SYSTEM : Macintosh I Turbo Pascal
11 * AUTHOR : Tom Swan
12
13 *)
14
15
16 INTERFACE
17
18

(Items visible to a host program)

19 ($U Programs:Units.F:MacExtras J (Open this library unit file
20
21

[continued]

218 == Programming with Macintosh Turbo Pascal

22: USES
23:
24: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras;
25:
26:
27: TYPE
28:
29:
30:
31:

TUHandle m ATUPtr;
TUPtr = ATURec;

TU Rec
RECORD

Pointer to a TURec pointer)
Pointer to a TURec variable l

32:
33:
34:
35:
36:
37:
38:
39:
40:

textRecH
hBarH

TEHandle; Handle to TextEdit record)
ControlHandle; Handle to horiz scroll bar)

vBarH ControlHandle; Handle to vert scroll bar)
linesPerPage
text Width

END; (TURec)

INTEGER; Max lines in window height)
INTEGER

41:
42:
43: FUNCTION TUAttach(wPtr
44: paragraphs

WindowPtr;
BOOLEAN;
INTEGER 45: columninches

46:
PROCEDURE TUDispose(wPtr : WindowPtr);

PROCEDURE TUClick(wPtr : WindowPtr; where

PROCEDURE TUUpdate(wPtr : WindowPtr);

Maximum width in pixels

BOOLEAN;

Point);

47:
48:
49:
50:
51:
52:
53:
54:
55:
56:

PROCEDURE TUActivate (wPtr : WindowPtr; activate BOOLEAN) ;

PROCEDURE TUResizeC wPtr : WindowPtr);

57: FUNCTION TUReadText(wPtr
58: fileName
59: volNum
60:
61:
62:

WindowPtr;
Str255;
INTEGER BOOLEAN;

63: IMPLEMENTATION (Items not visible to a host program)
64:
65:
66: CONST
67:

)

68:
69:
70:
71:
72:

overlap
blankMargin
col Width

4;
4;
16;
72;

Lines to overlap when paging up and down
Text window margins in pixels)

73:
74:
75:
76:
77:
78:
79:

one Inch

VAR

theTUHand TUHandle;

Minimum horiz scroll amount in pixels
Number of pixels in 1 inch (horiz))

(Currently active TURec handle)

80: FUNCTION GetTUHandle(wPtr : WindowPtr) : BOOLEAN;
81:
82: Returns TRUE if it can extract and verify global theTUHand from wPtr
83: refCon field.)
84:
85: LOCAL TO UNIT
86:

Windows, Text, and Scroll Bars 219

87: BEGIN
88: theTUHand := TUHandle(WindowPeek(wPtr)A.refCon);
89: GetTUHandle := theTUHand <> NIL
90: END; I GetTUHandle I
91:
92:
93: PROCEDURE ResizeScrollBar(wPtr
94: barType
95: cHand
96:

WindowPtr;
CHAR;
ControlHandle);

97: Resize and move scroll bar control addressed by cHand in window at wPtr.
98: BarType should be 'H' for horizontal or 'V' for vertical scroll bars.
99: NOTE: This procedure makes the control invisible. Call ShowControl

100: after. The reason for this requirement is to let other procedures set
101: control values before finally displaying a relocated scroll bar. I
102:
103: LOCAL TO UNIT)
104:
105: VAR
106:

wHeight
wWidth
ch
CV
cWidth
cHeight

BEGIN

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

Full window height in pixels I
Full window width in pixels I
Control h local coordinate value
Control v local coordinate value
Control width in pixels I
Control height in pixels I

107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:

HideControl(cHand);
WITH wPtrA.portRect DO
BEGIN

Make invisible, if it's not already. I
Resize using window's local coordinates.

137:

wHeight := 2 +
wWidth := 2 +

bottom - top l ;
right - left) ;

IF barType 'H' THEN

Calculate window height
and width in pixels. I

BEGIN I Calculate horizontal scroll bar sizes I
ch := -1;
cv := bottom - ScBarWidth;
cHeight := ScBarWidth + l;
cWidth := wWidth - ScBarWidth

END ELSE
BEGIN I Calculate vertical scroll bar sizes)

ch := right - ScBarWidth;
CV := -1;
cHeight := wHeight - ScBarWidth;
cWidth := ScBarWidth + 1

END; (else l

MoveControl(cHand, ch, cv);
SizeControl(cHand, cWidth, cHeight

Move to new location
Change to new size I

138: END; I with)
139: ValidRect(cHandAA.contrlRect) (Remove control from update region
140: END; { ResizeScrollBar)
141:
142:
143: PROCEDURE MakeNewScroll(
144:
145:
146:

wPtr
barType

VAR barHandle

WindowPtr;
CHAR;

ControlHandle);

147: Create a new scroll bar, attach it to window at wPtr, and return handle
148: to the control in barHandle. BarType should be •v• for vertical bars,
149: or 'H' for horizontal bars. Any errors return barHandle = NIL.)
150:
151: LOCAL TO UNIT)
152:

(continued)

220 Programming with Macintosh Turbo Pascal

153: BEGIN
154:
155: barHandle :=
156:
157:
158:
159:
160:
161:
162:
163:

NewControl(wPtr,
wptr"' .portRect,

FALSE,
o, o, 0,
scrollBarProc,
0) ;

164: IF barHandle <> NIL THEN
165: BEGIN

Attach control to this window J
Any Rect will do--resized later
Null string (no title needed) J
Make temporarily invisible J
Initialize value, min, and max
The scroll bar procedure id J
Reference value (none))

166: ResizeScrollBar(wPtr, barType, barHandle);
167:
168: END { if)
169:
170: END; { MakeNewScroll
171:
172:
173: PROCEDURE CheckNoScroll;
174:
175: Test control values. If either is zero, test whether control should
176: be enabled. If not, disable by setting control max to zero.)
177:
178: VAR
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:

vWidth, dWidth : INTEGER;
ch, cv : ControlHandle;
lines, lpp : INTEGER;

BEGIN

WITH theTUHand"'"', textRecH"'"' DO
BEGIN

ch := hBarH;
CV := vBarH;
vWidth := viewRect.right - viewRect.left;
dWidth := destRect.right - destRect.left;
lines := nLines;
lpp := linesPerPage

END; { with)

IF GetCtlValue(ch) = 0 THEN
IF vWidth >= dWidth

THEN SetCtlMax(ch, 0);

IF GetCtlValue(CV) = 0 THEN
IF lines <= lpp

THEN SetCtlMax(CV, 0)

END; { CheckNoScroll)

PROCEDURE SetScBarValues(horizValue, vertValue : INTEGER);

Set scroll bar vertical and horizontal values and calculate min, and max
settings based on TURec parameters. Assumes theTUHand global handle is
set properly. }

LOCAL TO UNIT

VAR

dWidth INTEGER;

Windows, Text, and Scroll Bars 221

219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:

BEGIN

HLock(Handle(theTUHand));

WITH theTUHand'' DO
BEGIN

HideControl(vBarH);
SetCtlMin(vBarH, 0);
SetCtlMax(vBarH, textRecH''.nLines);
SetCtlValue(vBarH, vertValue);
ShowControl(vBarH);

WITH textRecH'' DO
dWidth := destRect.right - destRect.left;

HideControl(hBarH);
SetCtlMin(hBarH, 0);
SetCtlMax(hBarH, dWidth);
SetCtlValue(hBarH, horizValue);
ShowControl(hBarH)

END; (with)

Hunlock(Handle(theTUHand));

CheckNoScroll

END; { SetScBarValues

PROCEDURE PageText;

Display a new page of text according to the scroll bar position.
Assumes theTUHandle global variable is set correctly.)

LOCAL .TO UNIT)

VAR

dh, dv INTEGER; { Pixels to scroll horizontally, vertically I

BEGIN

WITH theTUHand'', textRecH'' DO { HLock not needed here)
BEGIN

dv :=
viewRect.top - destRect.top) -

(GetCtlValue(vBarH) * lineHeight);

dh :=
viewRect.left - destRect.left) -
GetCtlValue (hBarH)) ;

IF dh <> 0) OR (dv <> 0)
THEN TEScroll(dh, dv, textRecH

Line off set I
Pixels to line

Column offset I
Pixels to colwnn

277: END; { with)
278:
279: (*CheckNoScroll*)
280:
281: END; { PageText)
282:
283:

(continued]

222 === Programming with Macintosh Turbo Pascal

284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:

PROCEDURE ScrollText(theControl : ControlHandle; partCode INTEGER) ;

Scroll text in window. Called as a TrackControl
action procedure.
as declared here.

LOCAL TO UNIT }

VAR

ctlValue
ctlMax
ctlMin
lineColFull
pageFull
amount

For that reason, the parameter list must be exactly
Assumes that global theTUHandle is set correctly. }

INTEGER; Current control value }
INTEGER; Control's maximum setting
INTEGER; Control's minimum setting
INTEGER; Amount to scroll for line or column
INTEGER; Amount to scroll for one page }
INTEGER; Actual amount to scroll }

302: BEGIN
303:
304: ctlValue := GetCtlValue(theControl);
305: ctlMax := GetCtlMax(theControl);
306: ctlMin := GetCtlMin(theControl);
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:

WITH theTUHand'', textRecH''.viewRect DO
IF theControl = vBarH THEN
BEGIN { Vertical bars)

pageFull := linesPerPage - overlap;
lineColFull := l

END ELSE
BEGIN { Horizontal bars }

pageFull := (right - left) DIV 2;
lineColFull := colWidth

F.ND; { else }

Lines to page up/down }
Lines to scroll up/down}

Pixels to page lt/rt }
Pixels to scroll lt/rt

amount := O; { Prevents thumb from moving beyond ends }

CASE partCode OF

inUpButton
IF ctlValue > ctlMin

THEN amount := -lineColFull; { Scroll DOWN or LEFT }

inDownButton
IF ctlValue < ctlMax

THEN amount := lineColFull; { Scroll UP or RIGHT }

inPageUp
IF ctlValue > ctlMin

THEN amount := -pageFull; { Page DOWN or LEFT }

inPageDown
IF ctlValue < ctlMax

THEN amount := pageFull { Page UP or RIGHT }

END; { case }

IF amount <> 0 THEN
BEGIN

{ i.e. if not at end of control }

SetCtlValue(theControl, GetCtlValue(theControl} +amount};
PageText

END { if }

END; { ScrollText

Windows, Text, and Scroll Bars 223

350: PROCEDURE FormatText(wPtr : WindowPtr; VAR dRect, vRect : Rect);
351:
352: Calculates linesPerPage field of the TURec associated with this window,
353: and returns dest (format) and view (clipping) rectangles for TextEdit's
354: TERec. Assumes TURec textWidth, vBarH, and hBarH fields set properly.)
355:
356: LOCAL TO UNIT)
357:
358:
359: VAR
360:
361: lineHeight, margin, wHeight, wWidth INTEGER;
362: £Info : Fontinfo;
363:
364: BEGIN
365: IF GetTUHandle(wPtr) THEN
366: BEGIN
367: GetFontinfo (£Info) ;
368: WITH theTUHandAA' wPtrA.portRect DO
369: BEGIN
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
40-1:
402:
403:
404:
405:
406:
407:
408:
409:

lineHeight := textHeight(wPtr);
margin := (blankMargin + blankMargin) + ScBarWidth;
wHeight := (bottom - top) - (margin+ £Info.leading);
wWidth := (right - left) - margin;
linesPerPage := wHeight DIV lineHeight;
SetRect(vRect, 0, 0, wWidth, linesPerPage * lineHeight);
OffsetRect(vRect, blankMargin, blankMargin);
dRect := vRect;
IF textWidth > wWidth

THEN dRect.right := textWidth
END { with)

END { if)
END; { FormatText)

FUNCTION TUAttach;

Returns TRUE if a new TURec can be allocated and attached to wPtr.
If TRUE, procedure stores the TUHandle in the window's refCon field.

VAR

error : BOOLEAN;
teH : TEHandle;
dRect, vRect : Rect;

PROCEDURE AddControls;

Add vertical and horizontal scroll bars to wPtr and to TURec.)

VAR

cv, ch ControlHandle;

BEGIN
MakeNewScroll (wPtr, 'V', cv) ;
MakeNewScroll(wPtr, 'H', ch);
WITH theTUHandAA DO
BEGIN

410: vBarH := cv; hBarH := ch
411: END { with)
412: END; { AddControls
413:
414:

(continued)

224 Programming with Macintosh Turbo Pascal

415:
416:
417:
418:
419:
420:
421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:
449:
450:
451:
452:
453:
454:
455:
456:
457:
458:
459:
460:
461:
462:
463:
464:
465:
466:

BEGIN I TUAttach)

error := TRUE; (Unless all that follows succeeds)

theTUHand := TUHandle(NewHandle(SizeOf(TURec)));
WindowPeek(wPtr)'.refCon := LONGINT(theTUHand);
IF theTUHand <> NIL THEN
BEGIN

theTUHand'".textWidth
AddControls;

:~ columninches • oneinch;
Add scroll bars

FormatText(wPtr, dRect, vRect);
teH := TENew(dRect, vRect);
IF teH m NIL

THEN

Cale linesPerPage & rects)
Allocate TERec)

BEGIN Deallocate TURec and exit with error
DisposHandle(Handle(theTUHand));
WindowPeek(wPtr)".refCon := LONGINT(NIL)

END
ELSE

BEGIN (Initialize remaining fields and exit with no error)
WITH teH'' DO

IF paragraphs
THEN crOnly := 0
ELSE crOnly := -1;

theTUHand•A.textRecH := teH;
error := FALSE

END (else)

er = end of paragraph)
er = end of line }
Assign the TERec handle

END; I if I with }

TUAttach := NOT error I Return function result }

END; (TUAttach }

PROCEDURE TUDispose;

Disposes of the TURec associated with this window. Call this procedure
before closing or disposing a window variable. You may reuse the window,
however, and even pass it again to TUAttach to display other text.)

BEGIN
IF GetTUHandle(wPtr) THEN
BEGIN

TEDispose(theTUHand•A.textRecH);
KillControls(wPtr);
DisposHandle(Handle(theTUHand));
WindowPeek(wPtr)A.RefCon := LONGINT(
theTUHand := NIL

END I if)
END; I TUDispose)

Dispose
Dispose
Dispose

NIL);

TERec record
all controls
TURec record
I For safety

467: PROCEDURE TUClick;
468:
469:
470:
471:
472:
473:
474:
475:
476:
477:
478:

Handles scrolling for mouse down events inside this window's scroll
bars. Call this procedure when you receive a MouseDown event and when
FindWindow indicates the location was in a control. Assumes wPtr
is the current port.)

VAR

theControl
part Code

ControlHandle;
INTEGER;

Windows, Text, and Scroll Bars 225

479: BEGIN
480: IF GetTUHandle(wPtr) THEN
481: BEGIN
482: GlobalToLocal(where);
483: partCode :=
484: FindControl(where, wPtr, theControl);
485: IF (theControl <> NIL) THEN
486: WITH theTUHandM DO
487: IF (theControl = vBarH OR If control is a horiz
488: (theControl = hBarH) THEN or vert bar, then ...
489: IF partCode = inThumb THEN If manually thumbing,
490: BEGIN ... then scroll to new page
491: partCode := TrackControl(theControl, where, NIL);
4 92: PageText
493: END ELSE { ... else do scroll buttons
494: partCode := TrackControl(theControl,where,@ScrollText
495: END (if
496: END; { TUClick
497:
498:
499: PROCEDURE TUUpdate;
500:
501: Updates text displayed in window. Call this procedure in response to an
502: update event. It's your responsibility to draw controls associated with
503: the window, however. This procedure updates only the text. }
504:
505: BEGIN
506: IF GetTUHandle(wPtr) THEN
507: WITH theTUHandM DO
508: TEUpdate (wPtrA. portRect, textRecH)
509: END; { TUUpdate I
510:
511:
512: PROCEDURE TUActivate;
513:
514: Activates (Activate=TRUE) or deactivates (Activate=FALSE) the controls
515: associated with this window. I
516:
517:
518:
519:
520:
521:
522:
523:
524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541:
542:
543:

PROCEDURE DoHilite(cHand : ControlHandle; hiliteState INTEGER) ;

Hilite or UnHilite cHand control unless NIL }

BEGIN
HiliteControl(cHand, hiliteState);
ValidRect(cHandAA.contrlRect

END; (DoHiLite }

BEGIN
IF GetTUHandle(wPtr) THEN
BEGIN

IF Activate THEN
BEGIN

DoHilite(theTUHandAA.vBarH, 0);
DoHilite(theTUHandAA.hBarH, 0)

END ELSE
BEGIN

DoHilite(theTUHandAA.vBarH, 255);
DoHilite(theTUHandAA.hBarH, 255)

END { else I
END { if)

END; (TUActivate)

{ Activate control J

(Deactivate control }

(continued}

226 Programming with Macintosh Turbo Pascal

544: PROCEDURE TUResize;
545:
546:
547:
548:
549:
550:
551:
552:
553:
554:
555:
556:
557:
558:
559:
560:
561:
562:
563:
564:
565:
566:
567:
568:
569:
570:
571:
572:
573:
574:
575:
576:
577:
578:
579:
580:
581:
582:
583:
584:
585:
586:
587:
588:
589:
590:
591:
592:
593:
594:
595:
596:
597:
598:
599:
600:
601:
602:
603:
604:
605:
606:
607:
608:
609:

Reformats scroll bars in response to a change to the window's size.
Call this procedure after using SizeWindow or ZoomWindow. Assumes
wPtr is the current port. l

VAR

dRect
vRect
CV
ch
teH

BEGIN

Rect;
Rect;
ControlHandle;
ControlHandle;
TEHandle;

IF GetTUHandle(wPtr } THEN
BEGIN

Copy fields of TURec to avoid having to lock heap }

WITH theTUHandAA DO
BEGIN

CV := vBarH;
ch := hBarH;
teH := textRecH;

END; { with }

Copy vertical scroll bar handle }
Copy horizontal scroll bar handle
Copy TERec handle l

FormatText(wPtr, dRect, vRect);
teHAA.viewRect := vRect;

ResizeScrollBar (wPtr, 'v 1 , cv) ;
ResizeScrollBar (wPtr, 'H', ch) ;

Calculate new viewRect }
Assign to text record }

SetSCBarValues(GetCtlValue(ch), GetCtlValue(cv));
InValRect(vRect)

END { if }
END; { TUResize

FUNCTION TUReadText;

Read text file from volNum:fileName. Function returns TRUE if text
is loaded into memory. }

VAR

error
fileNum

BOOLEAN;
INTEGER;
LONGINT; len

hCopy Handle; { Copy of textEdit rec's hText handle }

BEGIN
error := TRUE; { Unless all of the following succeeds
IF GetTUHandle{ wPtr) THEN
IF FSOpen(fileName, volNum, fileNum) = noErr THEN
BEGIN

IF GetEOF(fileNum, len) = noErr THEN { Get file length)
IF SetFPos(fileNum, FSFromStart, 0) = noErr THEN { Reset to top}
BEGIN

hCopy := theTUHandAA.textRecHAA.hText; { Copy hText handle)
SetHandleSize(hCopy, len); { Reserve memory to hold text)
len := GetHandleSize(hCopy); { len=actual bytes reserved)
IF FSRead(fileNum, len, hCopyA) = noErr THEN

WITH theTUHandAA, textRecHAA DO

Windows, Text, and Scroll Bars 227

BEGIN
teLength := len; Save length in TERec

610:
611:
612:
613:
614:
615:
616:
617:
618:
619:
620:

TECalText(textRecH);
error := FALSE

WARNING: can compact heap!
Tell caller all is okay }

END (with }
END; (if }
IF FSClose(fileNum <> noErr

THEN error := TRUE;
IF NOT error THEN
BEGIN

(Close text file }

621: SetScBarValues(O, 0); Set text to extreme top left I
622: InvalRect(wPtr~.portRect Force display of text I
623: END (if I
624: END; (if I
625: TUReadText := NOT error (Report function result I
626: END; (TUReadText I
627:
628:
629: END. (TextUnit I

l:
2:
3:
4:
5:
6:
7:
8:
9:

10:

Listing 5.8. READER.R

--
* Reader.PAS resources -- Compile with RMaker *
--
Programs:Windows.F:Reader.RSRC ;; Send output to here

--
* About box string list
--

,, String list resource ll: TYPE STR#
12: 'l (32)
13: 6

,, Resource ID and attribute (purgeable)
,, Number of strings that follow

14: Text Reader
15: by Tom Swan
16: Version l.00
17: (C) 1987 by Swan Software
18: P. 0. Box 206, Lititz, PA 17543
19: (717)-627-1911
20:
21:

, , Program name
, • Author
, , Version number
,, Copyright notice
, , Address
, , Telephone

22: *--*
23: * The Apple Info menu *
24: *--*
25:
26: TYPE MENU
27: 'l
28: \14
29: About Reader ...
30: (-
31:
32:
33: *--*
34: * The File menu *
35: *--*
36:

(continued).

228 ==Programming with Macintosh Turbo Pascal

37: TYPE MENU
38: ,2
39: File
40: Quit /Q
41:
42:
43: *--·
44: * The Edit menu
45: *--·
46:
47: TYPE MENU
48: • 3
49: Edit
50: (Undo /Z
51: (-
52: (Cut /X
53: (Copy /C
54: (Paste /V
55: (Clear
56:
57:
58: *--·

* Window template
--

59:
60:
61:
62:
63:
64:
65:
66:
67:
68: 0
69:
70:

TYPE WIND
• l (32)

Instructions
48 10 335 502
Visible NoGoAway
8

71: * END

,, ID number and attribute (purgeable)
, , Window title
,, top, left, bottom, right coordinates
,, Visible window without close button
,, Std document window with grow and zoom boxes
,, Window reference (none)

Listing 5.9. READER.PAS

1: {$0 Programs:Windows.F: } Send compiled code to here)
Use this compiled resource file
Turn off standard library units

2: ($R Programs:Windows.F:Reader.Rsrc}
3: ($U-)
4:
5:
6: PROGRAM Reader;
7:
8: (*

9:
10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:

Read a text file. Demonstrate TextUnit tools.
Macintosh I Turbo Pascal

14: *)
15:
16:

Tom Swan

17: {$U Programs:Units.F:MacExtras }
18: ($U Programs:Units.F:TextUnit }
19:
20:

(Open these library unit files }

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

Windows, Text, and Scroll Bars

USES

Memtypes, QuickDraw, OSintf, Toolintf, Packintf,
MacExtras, TextUnit;

CONST

FileID
QuitCmd

2;
l;

FileName = 'ReadMe';

WindowID = l;

VAR

(File menu Resource ID and commands }

Must be on same volume as program)

Program's window resource IO number

229

40:
41:
42:
43:
44:
45:

wRec
wPtr
watch

WindowRecord;
WindowPtr;
CursHandle;
BOOLEAN;

Program's window data
Pointer to above wRec
Handle to wrist watch
TRUE if quitting }

record
l
cursor

46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

quitRequested

PROCEDURE DoKeypress(ch : CHAR);

Do something with an incoming character

BEGIN
END; (DoKeypress)

PROCEDURE DoMouseClick(whichWindow: WindowPtr);

Process mouse clicks inside windows

59: BEGIN
60: TUClick(whichWindow, theEvent.where)
61: END; (DoMouseClick)
62:
63:
64: PROCEDURE DoCloseRequest;
65:
66: Window go-away button was clicked or menu close command selected. l
67:
68: BEGIN
69: quitRequested := TRUE
70: END; (DoCloseRequest l
71:
72:
73: PROCEDURE DoFileMenuCommands(cmdNumber
74:
75: EKecute File menu command l
76:
77: BEGIN
78: IF crndNumber = QuitCmd
79: THEN quitRequested := TRUE
80: END; (DoFileMenuCommands l
81:
82:
83: PROCEDURE DoEditMenuCommands(cmdNumber
84:
85: (EKecute Edit menu command l
86:

INTEGER) ;

INTEGER};

(continued)

230 Programming with Macintosh Turbo Pascal

87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:

BEGIN
IF NOT SystemEdit(cmdNurnber - 1) THEN (ignore command l

END; (DoEditMenuCommands }

PROCEDURE DoCommand(command Longint);

Execute a menu command }

VAR

whichMenu
whichitem

BEGIN

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command l

whichMenu :c HiWord(command);
whichitem :c LoWord(command);

Find the menu
Find the item

CASE whichMenu OF

Apple ID
File ID
Edit ID

END; (case

HiliteMenu(0

END; (DoCommand

DoAppleMenuCommands(whichitem);
DoFileMenuCommands(whichitem);
DoEditMenuCommands(whichitem)

(Unhighlight menu title }

119: PROCEDURE DrawScrollBars(whichWindow: WindowPtr);
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:

Draw v & h scroll bars and other controls }

VAR

vBarRect
hBarRect
gbRect

Rect;
Rect;
Rect;

Vertical scroll bar }
Horizontal scroll bar
Grow box }

BEGIN
DrawGrowicon(whichWindow };
DrawControls(whichWindow);
CalcControlRects(whichWindow, hBarRect, vBarRect, gbRect };
ValidRect(hBarRect };
ValidRect(vBarRect };
ValidRect(gbRect)

END; (DrawScrollBars)

138:
139: PROCEDURE DrawContents(whichWindow
140:
141: Display window contents)
142:
143: BEGIN

WindowPtr);

144: EraseRect(whichWindow'.portRect);
145: DrawScrollBars(whichWindow);
146: TUUpdate(whichWindow)
147: END; (DrawContents }
148:
149:
150: PROCEDURE MouseDownEvents;
151:

Windows, Text, and Scroll Bars

152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:

Someone pressed the mouse button. Check its location and respond. }

VAR

part Code INTEGER; (Identifies what item was clicked. l

BEGIN

WITH theEvent DO

BEGIN

partCode := FindWindow(where, whichWindow);

CASE partCode OF

inMenuBar
: DoCommand(MenuSelect(where));

170:
171: inSysWindow
172: : SystemClick(theEvent, whichWindow);
173:
174: inContent
175: : IF whichwindow <> FrontWindow
176: THEN SelectWindow(whichWindow)
177: ELSE DoMouseClick(whichWindow);
178:
179: inDrag
180: : DragTheWindow(whichWindow, where);
181:
182: inGrow
183: IF whichWindow <> FrontWindow
184: THEN
185: Selectwindow(whichwindow)
186: ELSE
187: BEGIN
188: ResizeWindow(whichWindow, theEvent.where);
189: TUResize(whichwindow)
190: END; (else l
191:
192: inGoAway
193: : IF TrackGoAway(whichwindow, where)
194: THEN (* DoClose *);

195:
196: inZoomin, InZoomOut
197: IF TrackBox(whichWindow, where, partCode) THEN
198: BEGIN
199: ZoominOut(whichWindow, partCode);
200: TUResize(whichWindow)
201: END (if)
202:
203: END (case
204:
205: END (with)
206:
207: END; (MouseDownEvents
208:
209:
210: PROCEDURE KeyDownEvents;
211:
212: A key was pressed. Do something with incoming character.)
213:
214: VAR
215:
216:
217:

ch CHAR;

231

(continued}

232 Programming with Macintosh Turbo Pascal

218: BEGIN
219: WITH theEvent DO
220: BEGIN
221:
222: ch:= CHR(BitAnd(message, charCodeMask)); (Get character}
223:
224:
225:
226:
227:
228:
229:
230:
231:

IF BitAnd(modifiers, CmdKey) <> 0
THEN DoCommand(MenuKey(ch))
ELSE DoKeypress(ch)

END with
END; { KeyDownEvents

232: PROCEDURE UpdateEvents;
233:

If command key pressed)
then execute command)
else use character l

234: Part or all of a window requires redrawing }
235:
236: VAR
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:

oldPort GrafPtr; { For saving I restoring port }

BEGIN
GetPort{ oldPort };
whichWindow :=

WindowPtr(theEvent.message);
SetPort(whichWindow);
BeginUpdate(whichWindow);
Drawcontents(whichWindow);
EndUpdate(whichWindow);
SetPort(oldPort)

END; { UpdateEvents }

PROCEDURE ActivateEvents;

Activate or deactivate windows

BEGIN
WITH theEvent DO
BEGIN

Save current port)

Extract window pointer
Change current grafPort)
Calculate new visRgn }
Draw/redraw window contents
Reset original visRgn)
Restore old port)

whichWindow := WindowPtr(message);
SetPort(whichWindow);

Extract window pointer
Change current port }

DrawScrollBars{ whichWindow); Draw bars & grow box }
264:
265: IF BitAnd(modifiers, activeFlag) <> O THEN
266: BEGIN
267: FixEditMenu(FALSE); {Activate a window
2 68: TUActi vate (which Window, TRUE l
269: END ELSE
270: BEGIN
271: FixEditMenu(TRUE); { Deactivate a window)
272: TUActivate (whichWindow, FALSE)
273: END { else)
274:
275: END (with)
276: END; { ActivateEvents
277:
278:
279: PROCEDURE SetUpMenuBar;
280:
281: { Initialize and display menu bar }
282:

283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:

BEGIN

appleMenu
fileMenu
editMenu

InsertMenu(
InsertMenu (
InsertMenu (

AddResMenu(

DrawMenuBar

Windows, Text, and Scroll Bars

:= GetMenu(AppleID); (Read menu resources)
:= GetMenu(FileID);
:= GetMenu(EditID);

appleMenu, 0); { Insert into menu list)
fileMenu, 0);

editMenu, 0);

appleMenu, 'DRVR'); Add desk accessory names

Display the menu bar I

END; { SetUpMenuBar

PROCEDURE SetUpWindow;

Initialize this program's window record I

CONST

233

306:
307:
308:

paragraphs = TRUE;
columnlnches = 6;

Text formatted into paragraphs in window I
Width of text in inches)

309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:

BEGIN
wPtr := GetNewWindow(WindowID, @Wrec, POINTER(-1));
SetPort(wPtr);
TextFont(Geneva);
IF NOT TUAttach(wPtr, paragraphs, columninches)

THEN ExitToShell
END; { SetUpWindow)

PROCEDURE Initialize;

Program calls this routine one time at start }

BEGIN

SetUpMenuBar;
DisplayAboutBox;
SetUpWindow;

Initialize and display menus)
Identify program)
Initialize window variables I

328: watch:= GetCursor(WatchCursor);
329: quitRequested := FALSE;
330:
331: SetCursor (watch AA) ;

332: IF NOT TUReadText(wPtr, fileName, 0)
333: THEN ExitToShell;
334: InitCursor
335:
336: END; { Initialize
337:
338:
339: FUNCTION QuitConfirrned : BOOLEAN;
340:
341: The program's "deinitialization" routine.
342: Returns TRUE if it's okay to quit program
343:
344: BEGIN
345: QuitConfirmed := quitRequested
346: END; { QuitConfirmed)
347:
348:

(continued)

234 == Programming with Macintosh Turbo Pascal

349: PROCEDURE DoSystemTasks;
350:
351: Do operations at each pass through main program loop I
352:
353: BEGIN,
354:
355: SystemTask; Give DAS their fair share of time)
356:
357: IF FrontWindow NIL THEN
358:
359: BEGIN (Set up menu commands for empty desktop I
360:
361: FixEditMenu (FALSE)
362:
363: END ELSE
364:
365: IF FrontWindow <> wPtr THEN
366:
367: BEGIN (Set up menu commands for active desk accessory I
368:
369: FixEditMenu(TRUE
370:
371: END (else I if
372:
373: END; (DoSystemTasks I
374:
375:
376: BEGIN
377:
378:
379:

Initialize;

380:
381:

REPEAT

DoSystemTasks; 382:
383:
384:
385:
386:
387:

IF GetNextEvent(everyEvent, theEvent) THEN

388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:

CASE theEvent.what OF

MouseDown
Key Down
AutoKey
UpdateEvt
ActivateEvt

END (case I

UNTIL QuitConfirmed

END.

MouseDownEvents;
KeyDownEvents;
(ignored) ;
UpdateEvents;
ActivateEvents

Reader Play-by-Play

READER.PAS (Listing 5.9, 1-43)

TextUnit greatly simplifies the tedious job of displaying text in windows and
handling scroll bars. If you compare Listing 5.9 with ApShell, you'll see only a
few changes. Text Unit takes care of most details but, to make it work properly, you
need to follow several rules.

Windows, Text, and Scroll Bars== 235

The first step is to include both units MacExtras and TextUnit as in lines 17-24.
You also must add the five standard units in your program's USES declaration as
the listing shows. Similar to other simple examples that use only one window, Reader
declares its window variables permanently in the application's global memory space
(40-41). For multiple windows, follow the plan outlined in Listing 5.2 earlier in
this chapter.

DoKeypress to DoCommand {47-116}

Procedure DoKeypress (47-52) does nothing here. In your own program, you
can add whatever you need to do in response to typing. DoMouseClick (55-61)
adds a call to Text Unit tool TUClick, passing the appropriate window pointer and
the where field of the event record. TU Click processes mouse clicks in scroll bars,
paging text up and down as well as left and right. It fully implements auto scroll
ing, letting you hold the mouse down in the scroll bar arrows to move text con
tinuously in one direction or another. The rest of the procedures in this section
are similar to those in ApShell.

DrawScrollBars to MouseDownEvents (119-207}

DrawScrollBars is unchanged from ApShell. DrawContents adds a single call
to TextUnit tool TUUpdate (146), passing the window pointer as a parameter.
TUUpdate redraws text inside the window borders in response to update events.

MouseDownEvents (150-207) adds two calls to tool TUResize when the win
dow size changes. When you click and drag the window's grow box in the lower
right corner, the procedure first calls ResizeWindow to change the window's borders
(188), and then calls TUResize to adjust text and scroll borders inside the new boun
daries (189). Similarly, lines 196-201 respond to clicks in the window's zoom box,
if it has one. After zooming the window in or out (199), TUResize adjusts text and
scroll bars to match.

KeyDownEvents to END {210-398}

KeyDownEvents and UpdateEvents (210-249) are unchanged. ActivateEvents
adds calls to tool TUActivate (268,272), passing the window pointer and TRUE
if the window is becoming active or FALSE if inactive. This dims or highlight::;
the window's scroll bars.

SetUpMenuBar (279-297) is unchanged. SetUpWindow (300-315) shows how
to prepare a window for displaying text. First, it loads the resource template and
displays the window (310). It then sets the current port and text font (311-312). You
can change the text font, size, and style to anything you want-TextUnit works with
all text variations. Line 313 is most important. TUAttach prepares the window to
receive text, specifying whether to reformat paragraphs and to what size. Set con
stant paragraphs to FALSE to display program text where each line ends in a car-

236 == Programming with Macintosh Turbo Pascal

riage return. Set it TRUE to display paragraphs ending in returns. For program
listings, change the text font to Monaco, the same as the Turbo editor uses.

Adjust constant columnlnches (307) to the size you want TextUnit to limit text
lines. This size can be smaller or larger than the window width, although when
paragraphs is TRUE, the display looks best if the size is about the same. If larger,
you can scroll text horizontally; otherwise, Text Unit deactivates horizontal scroll
ing. Notice that the size is in inches, assuming that one pixel is 1/72-inch square.
For full size windows and text in paragraphs, six inches is the correct value to use.
For program listings with no paragraphs, change this value to 14 or larger.

Procedure Initialize (318-336) shows how to read a text file and attach it to
the prepared window. It also demonstrates how to change the cursor shape to a
wrist watch, telling people to be patient while the program reads from disk. Variable
watch is of type CursHandle (see line 42), a handle to a relocatable memory block
containing the bit pattern for this shape. The program loads the shape into memory
by calling GetCursor (328), passing constant WatchCursor as a parameter.

Reading text files into windows is simple with TextUnit. First, the program
changes the cursor to a watch (331) and then calls TUReadText, passing the prepared
window pointer from SetUpWindow, a file name, and a volume reference number.
If the function returns FALSE, then it was not able to read the text file and the
program ends (333). In this example, the volume number 0 specifies the same volume
from which you ran the program. In Chapter 6, you'll learn how to reference files
in other volumes. Line 334 ends the procedure by resetting the cursor back to its
standard arrow shape.

As you can see, adding text to windows requires little effort on your part. Text
Unit handles nearly every detail involving scroll bars, text formatting, and display.
The next section describes its tools in detail although you don't need to study every
line in order to use them.

TextUnit Play-by-Play

Refer to Listing 5.7 for the following notes about using TextUnit tools. The
unit declares three data types (29-39), following the methods for creating handles
described at the beginning of this chapter. When you attach text to windows, Text
Unit stores a handle to the text inside the window record. This method avoids hav
ing to maintain extra variables in your program.

TUHandle (29) is a pointer to master pointer type TUPtr, which addresses
TURec, the data object that Text Unit stores on the heap in a relocatable memory
block. Inside that record are five fields (34-38). The first, textRecH, is another han
dle, which the toolbox TextEdit routines define. This handle locates the actual
characters as stored in memory, also in relocatable blocks.

Two more handles, hBarH and vBarH, locate the scroll bar controls as stored
on the heap. These too are also in relocatable memory blocks. Finally, two
miscellaneous integers, linesPerPage and textWidth, record facts about the text that
the unit needs for some of its operations.

Windows, Text, and Scroll Bars== 237

You can see that text in memory is a complex, intertwined set of memory blocks,
all of which the program locates by using handles to relocatable areas on the heap.
To keep track of which structure goes with which window, Text Unit stores the handle
to TURec in the window's refCon field, a 32-bit WNGINT variable the toolbox
reserves for your use. By doing this, the window record itself keeps track of the
handle to its TURec, which in turn keeps track of the handles to the text in memory
and the two scroll bars associated with this window. Figure 5.9 illustrates how this
structure appears in memory. You might like to know that I drew this diagram before
writing the program. When dealing with multiple handles and structures in memory,
it helps to have a good mental image of the relationship between every part. A good
diagram helps develop that image.

Examining the diagram, you may notice a few elements that TextUnit does not
describe. For example, TERec is TextEdit's own text record object, which has yet
another handle locating the actual text in memory. Look at the window record.

WP tr TU Rec

ref Con textRecH

WindowRecord

Other controls
TE Rec

Vertical Scroll Bar hText

Horizontal Scroll Bar

Other controls Text

Figure 5.9 TextUnit (Listing 5.7) organizes objects in
memory, according to this diagram. When designing
complex, interrelated structures, a drawing like this one
is priceless.

238 == Programming with Macintosh Turbo Pascal

Its refCon field stores the handle to Text Unit's TURec, but it also points to a list
of controls that include the same ones TextUnit finds via hBarH and vBarH.

You don't need to worry about every element in all of these structures. In fact,
the diagram here has more detail than it needs to describe how TextUnit works.
But you should be aware that this and other structures have many relocatable parts
and pieces in memory, all linked in one way or another on the heap. As you can
see, it's important that you avoid fragmenting the heap and that you carefully pro
gram your own handles according to the rules at the beginning of this chapter.
Remember that the structures you invent compete for memory with other objects.

TextUnit declares four local constants you can change to affect how the unit
operates. These constants (68-71) are visible only to routines in the unit. You can
not use them in your programs. Constant overLap specifies the number of lines
that repeat when you page text up and down. If you have 12 lines in a window,
and overLap is 4, then paging up and down moves 8 lines at a time. Overlapping
lines this way gives people a reference when paging. If you want no overlapping,
set overLap to zero.

Constant blankMargin controls the amount of white space between the win
dow borders and characters. Usually the default value of 4 makes a good looking
display, but you can change this value if you want. Set colWidth to the number
of pixels you want to scroll horizontally every time you click in the horizontal scroll
bar's arrows. Small values scroll more slowly; larger values more quickly. Don't
change onelnch. It specifies the number of pixels in an inch and corresponds with
the Macintosh's 1172-inch square pixel dimensions. If a future model should change
that specification, you can adjust Text Unit to match or make onelnch variable to
handle different configurations.

Variable theTUHand (76) holds the handle to the currently active TURec. Text
Unit sets this handle to a copy of the window's refCon field to gain a little speed
and avoid repeated references to the window record.

The following describes routines internal to TextUnit. You cannot call these
routines in your own programs, but you might want to know how they operate.
After that, the chapter ends with a description of each of the TextUnit tools that
are available for using in programs.

GetTUHandle to CheckNoScroll {80-204}

Function GetrUHandle (80-90) extracts from a window record the handle to
a TURec record. Line 88 may appear confusing at first. It peeks at the window
record to get to its refCon field, where TextUnit previously stored the TURec han
dle. It then casts that value, a LONGINT data type, into a TUHandle and assigns
it to theTUHand. Finally, the function sets its value to TRUE or FALSE depend
ing on whether the handle is NIL. If it is, then this window was not properly
prepared, and the handle must not be used.

The next procedure (93-140) resizes scroll bars attached to a window. Set bar
Type to 'H' for horizontal scroll bars or to 'V' for verticals. The procedure operates

Windows, Text, and Scroll Bars == 239

by first hiding the scroll bar control (115), making it temporarily invisible. It then
calculates the bar's new dimensions (118-133), moves it to a new location (135),
and changes its size (136). Because this also draws the scroll bar in the window,
line 139 validates its enclosing rectangle, avoiding flutter during updates.

MakeNewScroll (143-170) calls ResizeScrollBar (166) after creating a new con
trol. NewControl (156-162) creates the control as a relocatable object on the heap.
The three zeros at line 160 set the minimum, maximum, and current values that
work together to position the thumb box inside the bar. When you later attach text
to the window, TextUnit calculates the actual values according to how much text
is in memory.

CheckNoScroll (173-204) helps TextUnit decide whether to allow scrolling. For
example, run the program and shrink the window. You should see the horizontal
scroll bar become active. Click the zoom box or expand the window to full size.
The scroll bar again becomes inactive because the full width of text is now visible
in the window. Notice how line 186 double dereferences two handles in a WITH
statement. This is perfectly acceptable because the following assignments cannot
cause the Memory Manager to relocate memory blocks on the heap.

Lines 196-202 check the current control value. If zero, meaning the thumb box
is at the top or far left, the procedure decides whether to disable the scroll bar by
setting its maximum value to zero. In the case of horizontal scrolls, this happens
if the text viewing width (how much you see left and right) is less than the text
destination width (the maximum width of a line). For vertical scrolls, it happens
if the total number of text lines is less than the lines per one page (lpp).

SetScBarValues to PageText {207-281}

SetScBarValues takes two parameters, horizValue and vertValue. These values
position the thumb box inside the scroll bar to a position relative to the amount
of text in memory and the lines now on display. The toolbox Control Manager
draws the thumb box and calculates where to place it. Our procedure simply sets
the control's minimum values to zero (227,236); the vertical bar maximum to the
number of lines (228); and the horizontal bar maximum to the line width (237).
While this is happening, it also hides the controls (226,235) and then reshows them
(230,239) to avoid screen flutter when the thumb box moves.

One important feature of SetScBarValues is the way it locks the relocatable
block containing TURec, which in turn contains the handles to the two scroll bars.
Hl.ock (221) temporarily prevents the Memory Manager from moving the block
associated with theTUHand. It must do this because the WITH statement at line
223 double dereferences the handle to get to the vBarH and hBarH fields in that
record and because several of the procedures called inside the WITH statement
might cause the Memory Manager to shuffle relocatable blocks. This is the only
place in TextUnit that locks the heap, by the way. If you never want it to do so,
rewrite SetScBarValues to use one of the methods described earlier for working
with relocatable memory blocks.

240 == Programming with Macintosh Turbo Pascal

SetScBarValues's final job is to call CheckNoScroll (245), testing whether the
new scroll bar values require disabling the control. It is at this time that TextUnit
deactivates a scroll bar when you expand a window, displaying the full text width
or height.

PageText (250-281) displays text in a window by scrolling to a specific loca
tion equal to the value of both the horizontal and vertical scroll bars. In this case,
there's no need to lock the heap even though the WITH statement double
dereferences two handles (263). Procedure GetCtlValue cannot cause memory
shuffling and, therefore, the program may call it without worrying about the
Memory Manager moving a relocatable block. But TEScroll (275) might cause a
reshuffling. Doesn't this break the rule? The answer is both yes and no. The previous
WITH statement is invalid after the call to TEScroll-if you refer to any field at
theTUHand"" or textRecH"" after line 275, you risk damaging the heap. But
prior to calling TEScroll, there is no danger.

PageText calls CheckNoScroll to check whether to disable a control (279). To
see why it is necessary to do this here, run the program and shrink the window
to about one quarter screen size. Scroll text horizontally until the thumb box is
approximately in the center of its travel. Now expand the window to full screen
and scroll to bring the thumb box far left. The scroll bar should disable at this
point. Take out line 279 and repeat the experiment to see the difference. After ex
panding the window and scrolling, the bar remains active even though the full text
width is visible.

ScrollText {284-347}

Text Unit never directly calls ScrollText. Instead, it passes the address of this
procedure to the Control Manager, which calls it to enable automatic scrolling while
you hold down the mouse inside one of the scroll bar arrows or in its gray region.
(See line 494.) Although it seems complicated, the procedure is not hard to
understand.

First, it copies the current settings of the control that's being scrolled (304-306).
It then calculates two values, lineColFull and pageFull, setting these to the number
of lines to scroll up or down for vertical scroll bars or the number of pixels to move
left or right for horizontal bars. Notice how line 309 tests whether the control handle
passed to this procedure equals vBarH, the field in the TURec at theTUHand" ".
When you need to find out whether a structure equals one object or another, com
pare their handles as shown here. If two handles are equal, they refer to the same
object in memory.

The CASE statement (321-339) then sets variable amount equal to the total
amount of scrolling required for the partCode passed to the procedure. The part
Code indicates in which part of the scroll bar the mouse arrow points. If the thumb
box is against the end of a bar, the partCode does not equal one of the four values
in the CASE statement (inUpButton to inPageDown), and amount will be zero,
avoiding an annoying flutter that happens in some programs when you hold the
mouse button down in a scroll bar after the thumb box bumps into one end.

Windows, Text, and Scroll Bars == 241

The actual scrolling takes place in the IF statement (341-345). The procedure
sets the control value to its current value plus amount and calls PageText to display
text at this new position.

FonnatText {350-382}

The final local procedure is FormatText, which calculates various fields
associated with a TURec attached to a window. The assignments are obvious if
you take the time to read them carefully. Notice how it sets dRect and vRect, the
two rectangles that control the way text appears in the window. Variable dRect is
the destination rectangle. It determines the widest line length. The toolbox Text
Edit routines consider the destination rectangle to be bottomless-its width is more
important than its height. Variable vRect, or view rectangle, determines the viewable
portion of the window in which text appears. Here, we set vRect's right field to
the maximum text width or to the window's width, whichever is greater.

The destination rectangle specifies the text margins, determining the widest
line. The view rectangle specifies how much text you can see at one time. If the
destination and view rectangles are equal, then you see all the text there is (left to
right). If the view rectangle is smaller than the destination, then to see an entire
line requires scrolling horizontally. If the reverse is true-the view rectangle is larger
than the destination-then text will have large white spaces in its left and right
margins.

This ends the local procedures in Text Unit. The next section describes the tools
that you can call directly in your programs. For reference, the procedure declara
tions and parameter lists are repeated.

FUNCTION TUAttachC wPtr: WindowPtr;
paragraphs: BOOLEAN; columninches
INTEGER) : BOOLEAN;

Call TUAttach (385-446) after creating a new window record, passing its pointer
in parameter wPtr. Set paragraphs TRUE if you want TextUnit to consider car
riage returns to mark the ends of paragraphs. Set it FALSE if you want carriage
returns to mark line ends, as they do in program listings. Integer parameter col
umnlnches equals the width of the widest line and can be larger or smaller than
the window width. If larger, TextUnit enables horizontal scrolling.

The procedure begins by creating a relocatable memory block on the heap to
hold a TURec record (419-420). It then stores the block's handle in the window
record's refCon field, converting it to a WNGINT type in the process. (Handles
and long integers are both 32-bits long and are therefore compatible.) To protect
against errors, the procedure tests theTUHand (421). If NIL, then NewHandle was
not able to create the memory block and the function returns FALSE.

As long as the handle was not NIL, lines 423-441 complete the initialization.
First, the procedure calculates the text width, calls a sub procedure to add scroll
bars, and formats the text as explained earlier (423-425). The sub procedure, Add-

242 == Programming with Macintosh Turbo Pascal

Controls, calls MakeNewScroll (406-407) twice and assigns the resulting handles
ch and cv to the scroll bar fields in the TextUnit record.

With scroll bars attached, line 426 allocates space for text in memory, calling
TextEdit function TENew with the destination and view rectangles that Format
Text calculated earlier. If this does not work, lines 430-431 immediately dispose
the Text Unit handle and set the window's refCon field to NIL. Dealing with errors
in multiple-handle structures such as this can be tricky. As shown here, be sure you
don't inadvertently leave partial objects on the heap. (This is a time when diagrams
like Figure 5.9 are worth their weight in pixels.)

A WITH statement (435-438) sets field crOnly according to the value of
paragraphs, telling the toolbox whether to format lines into paragraphs (0) or leave
them as they are in program listings (-1). This field is in the TextEdit's text record,
which contains various other items that don't concern us here. (See Inside Macin
tosh for the complete definition under type TERec.) Finally, the function saves the
handle to the text record in the TURec's textRecH field (439) and sets the error
flag to FALSE.

PROCEDURE TUDispose(wPtr: WindowPtr);

TUDispose (449-464) reverses what TUAttach does. Call it when you're done
using a window with an attached Text Unit record. Do this whether you created the
window record on the heap or as a local variable in your program as in Listing
5.9 (40). After disposing, you can use the window for any purpose. You can also
call TUAttach again to prepare to attach more text, perhaps from a different file.

To completely erase all structures associated with the window, the procedure
calls TEDispose (458), disposing the TERec that stores various TextEdit parameters
and the actual text in memory (see Figure 5.9). Next, KillControls disposes all con
trols associated with the window, including the two scroll bars but also any other
controls you attached via other means. Be aware of this side effect of calling
TUDispose. After that, DisposeHandle erases the TURec from the heap, leaving
only the window record behind (460). For safety, lines 461-462 set refCon and
theTUHand to NIL, guarding against accidentally using those handles in the future.

The steps in disposing a multiple-handle structure are simpler than the steps
to create one-but they are equally critical. Again, a diagram such as the one in
Figure 5.9 is invaluable for knowing exactly what to dispose and in what order.
It would be a mistake, for example, to dispose of TERec after TURec, a fact the
diagram makes clear.

PROCEDURE TUClick(wPtr: WindowPtr;
where : Point);

Call TUCiick (467-496) to process mouse down events in windows. Pass the
window pointer in parameter wPtr and the where field from the event record. See
Listing 5.9 (60) for an example. The procedure converts the global coordinate of

Windows, Text, and Scroll Bars == 243

the mouse pointer to a value local to the window (482) and then calls FindControl
to locate in exactly which part of the window the mouse pointer points.

As long as this position is inside of a control, lines 486-494 call TrackControl
in one of two ways. If you are manually moving the scroll bar's thumb box, line
491 uses NIL as the last parameter. This tells TrackControl to move the thumb box
to a new position, ending only when you release the mouse button. In this case,
PageText (492) then displays the text from this new position.

But if you hold the mouse down in either an arrow or in the gray region to
one side of the thumb box, line 494 calls TrackControl with the address of pro
cedure ScrollText, described earlier. TrackControl itself calls ScrollText to activate
automatic scrolling, which continues to the end of the text or until you release the
mouse. You might want to re-examine ScrollText and PageText at this point to be
certain you understand how TextUnit scrolls text in windows.

PROCEDURE TUUpdateC wPtr: WindowPtr);

TUUpdate (499-509) is simple. It calls the toolbox TextEdit routine TEUp
date, passing the window's portRect field and the handle to the text record, text
RecH. Call TUUpdate as part of your update event handler. (See Listing 5.9, line
146 for example.)

PROCEDURE TUAct i vate C wPt r : Wi ndowPt r;
activate: BOOLEAN>;

TUActivate (512-541) highlights or dims scroll bars depending on whether win
dow wPtr is becoming active (activate is TRUE) or not. Sub-procedure DoHilite
(518-525) does the actual highlighting and dimming. It calls HiliteControl, pass
ing the control handle and state-either 0 to activate or 255 to deactivate the con
trol. The ValidRect that follows avoids flutter for update and activate event pairs
as in other procedures that directly draw items in windows.

PROCEDURE TUResizeC wPtr: WindowPtr >;
This procedure (544-582) reforms the scroll bars after the window size changes.

Call TUResize any time you shrink or expand a window.
The procedure demonstrates another technique that avoids locking the heap.

The WITH statement (565-570) copies three handles out of TURec, saving their
values in the three local variables, cv, ch, and teH. It then uses those variables in
calls to procedures that might cause the Memory Manager to move the relocatable
block associated with the record. Copying the handles means the program always
finds the objects to which they refer-even though the original handle variables
(vBarH, for example) might move around with TURec.

Line 579 shows the correct way to force a redisplay of the window's contents.
Invalidating the view rectangle causes an update event, which eventually calls TUUp
date to draw the text in its new size.

244 = Programming with Macintosh Turbo Pascal

FUNCTION TUReadText (wPtr: WindowPtr;
fi leName: Str255; volNum: INTEGER): BOOLEAN;

The final TextUnit routine, TUReadText (585-629), does what its name im
plies. It reads a text file into memory, associating that text with the window record
that you previously prepared by calling TUAttach. If the function returns TRUE,
then reading was successful-otherwise an error occurred, usually because fileName
does not exist or because there is not enough memory to hold its text. Set parameter
volNum to zero to read the file from the current directory. Or, pass the volume
reference number of another directory to read files from there. (The next chapter
shows how to use volume numbers.)

The function cannot use standard Pascal 110 operations such as Reset and
ReadLn to read text. Instead, it reads characters as a block, inserting them as quickly
as possible into memory. This requires additional work, but the extra speed is worth
the effort.

Line 600 opens the file by calling FSOpen. If that function returns noErr, then
line 602 moves to the end of the file, setting parameter len to the number of
characters the file contains. After that, SetFPos resets the file to its beginning to
prepare to read it from disk. Use these two functions as shown here whenever you
need to determine a file's size.

Line 605 copies the text handle, the one that locates the area reserved in memory
for storing characters, to avoid locking the heap during what follows. SetHandleSize
(606) then tells the Memory Manager to expand that relocatable memory block
to a size large enough to hold len characters. If this doesn't work, the manager
reserves as much memory as it can. Because of this, line 607 assigns back to len
the actual size of the memory block at handle hCopy. This potentially chops the
ends of very large files but still lets you view at least most of their text. Because
TextUnit only reads and displays text files, this does no harm.

The actual file reading takes place at line 608 with a call to FSRead. If that
function returns noErr, the following WITH statement saves the new text length
in the TERec field teLength (611) and calls TECalText, passing the text record's
handle. TECalText calculates an internal array of pointers to the beginning of each
line to make scrolling and paging run fast. Because this action might rearrange
the heap, the preceding WITH statement dereferencing the two handles is invalid
after line 613.

Final steps close the file, return TRUE or FALSE as the function value, and
set scroll bar values initially to zero (621). Then, lnvalRect forces an update event
of the window's portRect, displaying the text just loaded into memory.

•
SIX

Computer Conversations

A special kind of window is a dialog, where programs display messages and
prompt you to provide sundry facts and figures. Through dialogs, you carry on
a conversation with programs, typing text and clicking buttons, usually in a stand
ard dialog window with the double-bordered outline in Figure 6.1. Dialog windows
rarely have title bars or grow boxes and are usually cemented in place at screen center.

Some dialogs come in a ready-to-use form-just add parameters and compile.
Others take more planning. Simple dialogs called alerts make it easy to display
messages, warn about the consequences of certain actions (throwing away changes,
for example), and display program instructions. Regular dialogs prompt for infor
mation, letting you enter numbers and strings, select program options, and even
design database entry forms much more easily than in conventional computer
systems.

Of the regular dialogs, there are two varieties: modal and modeless. A modal
dialog grabs the stage and demands all of your attention. It forces you to use only
the features it provides-you have no choice but to follow its mode of operation.
For example, the familiar window that lets you select file names is a modal dialog.
While using it, you cannot pull down menus or activate desk accessories
simultaneous actions that only modeless dialogs allow. A word-search window in
some word processors is a modeless dialog because it allows you to select other
operations during the search. We'll look at both kinds in this chapter.

To program a dialog, you type resource definitions describing its size, loca
tion, and the items it contains, such as buttons, check boxes, and text. Then, in
the program, simple procedure calls display the dialog and activate its various items.
This chapter illustrates how to program dialogs and includes examples of standard
file dialogs, buttons, alerts, data entry, error messages, radio buttons, and check
boxes. Two units contain tools for manipulating dialogs and for implementing an
error message center. A final program illustrates the design of a data entry form
for typing records as you might do in a mailing list or database system.

To save space here, examples do not follow the full ApShell design in Chapter
4. Despite that, there are a few unavoidable duplications. You can save a little typ-

245

246 == Programming with Macintosh Turbo Pascal

ing time by starting new examples with copies of previous ones. Except for the final
example, programs do not let you use desk accessories, do not have cut and paste
Edit menus, and do not display About Program boxes. Instead, a single File menu
usually contains one or two commands that demonstrate specific dialog features.
Of course, you can use the same techniques in complete Macintosh programs such
as those in Chapters 4, 5, and 7.

STANDARD FILE DIALOGS

Any program that uses disk files should let people choose file names in the
standard way that has become a Macintosh trademark. Figures 6.l and 6.2 show
the two standard file (SF) dialog windows that every Macintosh owner knows by
heart.

Figure 6.l is the dialog you normally see after choosing a program's Open com
mand. Use it to prompt for names of files to open and read. The second SF dialog
in Figure 6.2 is similar but includes at bottom left an entry area for typing file names.
Use this dialog in response to your program's Save as and Save commands.

An example demonstrates how to program the standard file dialogs in the two
figures. Before typing it in, you must type in and compile to disk Listing 6.18,
DIALOGUNIT.PAS, which contains various dialog tools that all examples in this
chapter use. The listing is near the end of this chapter on page 324. Next, type in
Listing 6.l, save as SF.R, and compile with RMaker to create the program's resource
file. Then type in Listing 6.2, save as SF.PAS, and compile with Turbo.

When you run the program, you'll see two File menu commands, Open and

Cl Buttons.R
Cl DntaEntry.PAS
Cl DataEntry.R
Cl Entry.PAS
Cl Entry.R
Cl ErrTest.PAS
Cl ErrTest.R
Cl Options.PAS

I
(g) Programs

Eject

Driue

(Open J
(Cancel]

Figure 6.1 Use the standard file dialog to prompt for existing file names.

Computer Conversations ::= 247

I a Diologs.F I
D Elu11 on~.PHS
D Duff on~.n
D Eh111on~.HSJIC
D D<11 <lfo tq4,PHS
D D<l1 <IE:n h'l_l,B
D D<11 <ffn tn.4,BSJIC

Saue document as:

(g) Programs

(Eject

(Driue

Soue

Cancel

Figure 6.2 Use this alternate standard file dialog to prompt for
new file names, displaying a warning (not shown here) if a file
of that name already exists.

Save, which demonstrate the standard dialog windows. Feel free to experiment
you cannot change or harm any files on disk, even when the program requests
whether you want to replace an existing file. The SF dialogs never open or create
files themselves-they merely prompt you for file names that programs then use
for these operations.

Listing 6.1. SF.R

1: *--*
2: * SF.PAS resources -- Compile with RMaker
3: *--*
4:
5: Programs:Dialogs.F:SF.RSRC ;; Send output to here
6:
7:
8: *--*
9: * The File menu

10: *--*
11:
12: TYPE MENU
13: , 1 , , Menu ID number to use in program
14: File ,, Menu title as shown in menu bar
15: Open
16: SaveAs
17: Quit
18:
19:
20: * END

248 = Programming with Macintosh Turbo Pascal

Listing 6.2. SF.PAS

1: ($0 Programs:Dialogs.F:)
2: ($R Programs:Dialogs.F:SF.Rsrc)
3: {$U-)
4:
5:
6: PROGRAM SF;
7:
8: (*

9:
10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:
14: *)
15:
16:

Standard File Dialogs
Macintosh I Turbo Pascal
Tom Swan

Send compiled code to here)
Use this compiled resource file
Turn off standard library units

17: {$U Programs:Units.F:DialogUnit)
18:

{ Open this library unit file)

19:
20: USES
21:
22: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, DialogUnit;
23:
24:
25:
26: CONST
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

File ID
OpenCmd
SaveAsCmd
QuitCmd

VAR

fileMenu
fileName
theEvent
whichWindow
quitRequested

PROCEDURE DoOpen;

1;
l;
2;
3;

(File menu Resource ID and commands)

MenuHandle;
Str255;
Event Record;
WindowPtr;
BOOLEAN;

Handle to program's only menu)
Current file name)
Events from operating system
Window applying to event)
TRUE if quitting)

44:
45:
46:
47:
48:
49:
50:

Demonstrate how to use standard file dialog to prompt for
"open" file names)

51:
52:

VAR

reply

53: BEGIN

SFReply; (File information)

54: IF GetFileName(reply, 'TEXT') THEN
55: BEGIN
56: SysBeep (3) ;
57: fileName : = reply. fName
58: END { if)

59: END; (DoOpen
60:
61:

Computer Conversations == 249

62: PROCEDURE DoSaveAs;
63:
64: Demonstrate how to use standard file dialog to prompt for
65: "save as" file names }
66:
67: CONST
68:
69: savePrompt 'Save document as:';
70:
71: VAR
72:
73: reply SFReply;
74:
75: BEGIN
76: IF MakeFileName(reply, savePrompt, fileName) THEN
77: BEGIN
7 8 : SysBeep (3) ;
79: fileName := reply.fName
80: END { if }
81: END; { DoSaveAs }
82:
83:
84: PROCEDURE DoCommand{ command
85:
86: Execute a menu command }
87:
88: VAR
89:

Longint);

90:
91:
92:

whichMenu
whichitem

INTEGER;
INTEGER;

Menu nwnber of selected command
Menu item number of command)

93:
94:
95:
96:
97:

BEGIN

whichMenu :=
whichitem

HiWord(command);
LoWord(command);

98: IF whichMenu = FileID THEN
99: CASE whichitem OF

100: OpenCmd DoOpen;
101: SaveAsCmd DoSaveAs;

Find the menu
Find the item

102: QuitCmd quitRequested : = TRUE
103: END; { case }
104: HiliteMenu(0) { Unhighlight menu title
105:
106: END; { DoCommand
107:
108:
109: PROCEDURE MouseDownEvents;
110:

111: Someone pressed the mouse button. Check its location and respond. }
112:
113: VAR
114:
115:
116:

part Code

117: BEGIN

INTEGER;

118: WITH theEvent DO
119: BEGIN

{ Identifies what item was clicked.)

120: partCode := FindWindow{ where, whichWindow) ;
121: CASE partCode OF
122: inMenuBar
123: : DoCommand(MenuSelect(where)
124: END (case }
125: END (with)
126: END; { MouseDownEvents
127:
128:

[continued]

250 =:Programming with Macintosh Turbo Pascal

129: PROCEDURE Initialize;
130:
131: Program calls this routine one time at start)
132:
133: BEGIN
134:
135: InitGraf(@thePort);
136: InitFonts;
137: InitWindows;
138: InitMenus;
139: TEinit;
140: InitDialogs(NIL);
141: InitCursor;
142: FlushEvents(everyEvent, 0);
143:
144: fileMenu := GetMenu(FileID);
145: InsertMenu(fileMenu, 0);
146: DrawMenuBar;
147:
148: quitRequested := FALSE;
149:
150: fileName := ''
151:
152: END; (Initialize
153:
154:
155: BEGIN
156: Initialize;
157: REPEAT
158: SystemTask;
159: IF GetNextEvent(everyEvent, theEvent) THEN
160: CASE theEvent.what OF
161: MouseDown : MouseDownEvents;
162: END (case)
163: UNTIL guitRequested
164: END.

SF Play-by-Play

Refer to Listing 6.2 for the notes that follow. Line 37 declares a global string
variable, fileName, which holds whatever name you select with either SF dialog.
Procedure Initialize sets fileName to a null string (150) when the program starts.

Procedures DoOpen (44-59) and DoSaveAs (62-81) call procedures in
DialogUnit (Listing 6.18) to display the two SF dialogs. Both procedures declare
a variable, reply, of type SFReply (see Figure 6.3), that fully describes a file on disk.
Although this example saves only the file name field fName, a program could save
the entire SFReply record for all the files it uses.

Field good is TRUE if the rest of the fields in SFReply are valid. If this field
is FALSE, then someone clicked the Cancel button and the program should take
an appropriate action-usually ignoring the Open or Save command. Field copy
has no purpose-it's a leftover from earlier designs. Even so, don't attempt to use
this or any other unused fields in toolbox records. Apple Company programmers
might reinstate such fields in the future. The same is true of fields marked "re
served." They're not reserved for you or me!

Computer Conversations== 251

TYPE

SFReply =
RECORD

good
copy
fType
vRefNum

BOOLEAN;
BOOLEAN;
OSType;
INTEGER;

version INTEGER;
fName String[63]

END; { SFReply }

I TRUE if remaining fields are valid
I unused }
{ New file names only }
{ Volume reference number
I Version number (always 0)
I File name J

Figure 6.3 The toolbox SFReply record fully describes a file on disk.

Similarly, field version is always zero and has no useful purpose. Never set it
to another value or expect the toolbox to keep track of file versions for you through
this field.

Integer vRefNum is the volume reference number, referring to the disk and
folder that contains the file. Some file commands-Reset and Rewrite, for
example-take only a file name. Others like FSOpen in the toolbox File Manager
take both a file name and volume reference. When using file-name-only routines,
you might have to set the default volume to vRefNum before referencing a file.
To do this, use a statement like the following. It sets the default volume to vRef
Num to prepare for Reset, which looks only on the current volume for the file name
you pass as the second parameter.

IF SetVol(NIL, reply.vRefNum) = NoErr
THEN Reset(f, reply.fName >;

Returning to Listing 6.2, procedure DoOpen (44-59) passes an uninitialized
reply record to GetFileName along with a four-character string indicating the file
type (54). The example specifies 'TEXT', limiting file names in the SF dialog win
dow to text files. Table 6.1 lists other file types for several popular programs. Try
replacing 'TEXT' with some of these names and rerun the example program to
see how to limit the dialog window to specific file types.

Table 6.1 File types for several popular programs.

Program File type

1st Base lSTD
FactFinder FACT
Filevision PICB
MacDraw DRWG
MacPaint PNTG
MacTerminal TEXT
MacWrite WORD
MegaFiler MFIL
Multiplan TEXT,MPBN
Think Tank TEXT
Turbo Pascal TEXT

252 ==Programming with Macintosh Turbo Pascal

If GetFileName (54) returns TRUE, DoOpen beeps (56) and sets global
fileName to the reply's fName field. (The beep just lets you know the test works.)

DoSaveAs (62-81) works similarly. MakeFileName (76) returns TRUE if the
fields in reply indicate that someone clicked the Save button (see Figure 6.2) or
pressed the Return key to select a name for a new file. If a file of the same name
already exists, the toolbox File Manager takes care of requesting permission to over
write it-you do not have to do that in your program. IfMakeFileName is TRUE,
then vRefNum and fName fields in reply are filled in, ready for use.

MakeFileName (76) takes three parameters, the SFReply record reply, a string,
and a file name. The string is the prompt you want to see above the edit box in
Figure 6.2. The file name is the current name, darkened as in the figure. If there
is no current name, pass a null string (' ') as the third parameter.

Both MakeFileName and GetFileName simplify using the two SF dialogs. The
play-by-play for DialogUnit (Listing 6.18) explains other ways to program these
dialogs but, for most programs, the method in the example is the easiest.

DIALOG ITEM LISTS

You create custom dialog designs as resources that programs load into memory.
A dialog resource is a template, a pattern for the toolbox Dialog Manager to create
various structures in memory that it uses to display and manipulate the dialog.
There are two parts to such a template: the dialog definition (DlDG) and the dialog
item list (DITL). The DLOG locates the dialog window and tells the Window
Manager how big to make it. The DITL contains a list of items such as button
controls and text associated with the dialog.

For an example of creating a simple dialog window with an item list, type in
Listing 6.3, save as BUTTONS.R, and compile with RMaker. Also type in Listing

((

nre you sure you know what you're
doing?

Yes J) (..___N_o~) (Maybe J

Figure 6.4 The dialog window of Listing 6.4, Buttons.

Computer Conversations 253

6.4 and save as BUTTONS.PAS. Figure 6.4 shows the dialog window you see when
you choose the File menu's Buttons command.

Listing 6.3. BUT1DNS.R

1: *--*
2: * Buttons.PAS resources -- Compile with RMaker
3: *--*
4:
5: Prograrns:Dialogs.F:Buttons.RSRC ;; Send output to here
6:
7:

8: *--*
9: * The File menu

10: *--*
11:
12: TYPE MENU
13: ,1
14: File
15: Buttons
16: Quit
17:
18:

,, Menu ID number to use in program
,, Menu title as shown in menu bar

19: *--*
20: * The buttons dialog *
21: *--*
22:
23: TYPE DLOG
24: '1000
25: Buttons
26: 100 100 250 400
27: Visible NoGoAway
28: 1
29: 0
30: 1000
31:
32:

,, Resource ID number
,, Title (not displayed)
,, Top, Left, Bottom, Right
,, Immediately visible, no go-away box
,, Std double-border dialog window
,, Reference value (none)
,, ID of dialog item list (following)

33: *--*
34: * The buttons dialog item list
35: *--*
36:
37: TYPE DITL
38: '1000 (32)
39:
40:
41: Btnitem Enabled
42: 100 20 127 95
43: Yes
44:
45: Btnitem Enabled
46: 100 125 127 200
47: No
48:
49: Btnitem Enabled
50: 100 215 127 290
51: Maybe
52:
53: StatText Disabled
54: 35 30 76 270

,, Resource ID, (32)=purgeable
,, Number of items following

,, 1. Yes button

, , 2. No but ton

,, 3. Maybe button

, , 4. Text

55: Are you sure you know what you're doing?
56:
57: * END

254 Programming with Macintosh Turbo Pascal

Listing 6.4. BUT1DNS.PAS

1: {$0 Programs:Dialogs.F: }
2: {$R Programs:Dialogs.F:Buttons.Rsrc}
3: {$U-}
4 :'
5:
6: PROGRAM Buttons;
7:
8: (*

9:
10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:
14: *)

15:
16:

Dialog buttons demo
Macintosh I Turbo Pascal
Tom Swan

Send compiled code to here }
Use this compiled resource file
Turn off standard library units

17: {$U Programs:Units.F:DialogUnit }
18:

(Open this library unit file }

19:
20: USES
21:
22: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, DialogUnit;
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

CONST

File!D

VAR

ButtonsCmd
QuitCmd

DialogID

fileMenu
the Event
whichWindow
quitRequested

44: PROCEDURE DoButtons;
45:

1; { File menu Resource ID and commands }
l;
2;

1000; { Resource ID of buttons dialog }

MenuHandle;
Event Record;
WindowPtr;
BOOLEAN;

Handle to program's only menu }
Events from operating system }
Window applying to event }
TRUE if quitting }

46: Demonstrate using multiple buttons in a dialog }
47:
48:
49:
50:
51:
52:
53:

CONST

Yes
No
Maybe

54: VAR
55:

1;
2;
3;

56: dp : DialogPtr;

{ Item list numbers for these buttons }

57: itemHit : INTEGER;
58:

Computer Conversations

59: BEGIN
60: dp := GetNewDialog(DialogID, NIL, POINTER(-1));
61: IF dp <> NIL THEN
62: BEGIN
63: OutlineOk(dp);
64: REPEAT
65: ModalDialog(NIL, itemHit)
66: UNTIL itemHit IN (Yes, No, Maybe];
67: IF iternHit = Yes
68: THEN SysBeep(3);
69: DisposDialog(dp)
70: END (if }
71: END; (DoButtons }
72:
73:
74: PROCEDURE DoCommand(command
75:
76: Execute a menu command }
77:
78: VAR
79:

Longint };

80:
81:

whichMenu
whichitem

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command }

82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:

BEGIN

whichMenu := HiWord(command);
whichitem := LoWord(command);

IF whichMenu = FileID THEN
CASE whichitem OF

DoButtons;

Find the menu
Find the item

ButtonsCmd
QuitCmd

END; (case }
HiliteMenu(0)

: quitRequested := TRUE

(Unhighlight menu title

95: END; (DoCommand
96:
97:
98:
99: PROCEDURE MouseDownEvents;

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:

Someone pressed the mouse button. Check its location and respond. }

VAR

part Code INTEGER;

BEGIN
WITH theEvent DO
BEGIN

(Identifies what item was clicked. }

partCode := FindWindow(where, whichWindow);
CASE partCode OF

inMenuBar
: DoCommand(MenuSelect(where)

END (case }
END (with }

END; (MouseDownEvents

119: PROCEDURE Initialize;
120:
121: (Program calls this routine one time at start }
122:

255

(continued)

256 ==Programming with Macintosh Turbo Pascal

123: BEGIN
124:
125: InitGraf(@thePort);
12 6: Ini tFonts;
127: InitWindows;
128: InitMenus;
129: TEinit;
130: InitDialogs (NIL) ;
131: InitCursor;
132: FlushEvents(everyEvent, 0);
133:
134: fileMenu := GetMenu(FileID);
135: InsertMenu(fileMenu, 0);
136: DrawMenuBar;
137:
138: quitRequested :=FALSE
139:
140: END; (Initialize)
141:
142:
143: BEGIN
144: Initialize;
145: REPEAT
146: SystemTask;
147: IF GetNextEvent(everyEvent, theEvent) THEN
148: CASE theEvent.what OF
149: MouseDown : MouseDownEvents;
150: END (case)
151: UNTIL quitRequested
152: END.

Buttons Play-by-Play

BUTTONS.R {1-58}

The resource text file (Listing 6.3) shows how to design a standard dialog win
dow with an item list containing three buttons and a line of text. Lines 23-30 declare
a resource of type DLOG and assign it the ID number 1000, which the program
then uses to load this resource into memory. You can use any positive integer value
as the ID, but values above 128 avoid conflicts with dialogs that belong to other
processes. (Most such IDs are negative so you could probably use 1, 2, 3, and so
on. Using high values like 1000 guarantees against any possible conflicts.)

Line 25 gives the dialog a title but, unlike window titles, this text never ap
pears on screen. If you're pressed for space, you could type a single character like
X or D. The four integers at line 26 list the top, left, bottom, and right coordinate
values, specifying both the size and location of the dialog window. These values
are global, meaning they refer to the Macintosh screen usually with (0,0) in the
upper left corner.

Line 28 selects the window style for the dialog's border. The value 1 specifies
the double-border window that all the examples in this chapter use. You can use
a different style if you want (the plain box 2 or alternate box 3 are good choices).
But tempting as it is to stylize programs with unusual dialog windows, remember
that many people, especially those who become nervous around computers, often
feel more comfortable. with programs that use standard designs.

Computer Conversations = 257

The value in line 29 has no meaning. Similar to the window record's refCon
field (see Chapter 5), you can store whatever you want in this 32-bit field. Line
30 contains the ID of the dialog's item list, declared elsewhere in the resource file.
It's usually best to use the same ID number for the dialog (24), its reference to the
item list (30), and for the item list itself (38). But you can use different IDs or even
the same value for two different dialogs that you want to have the same items
buttons, text, and so on. That way, two or more dialogs share the same items but
set various controls, buttons, and boxes according to one situation or another.

The item list for this example declares three buttons and a line of text. Its defini
tion begins with TYPE DITL (37) followed by the same resource ID used in the
DLOG definition-here at line 30. The value 32 in parentheses makes the item list
purgeable, meaning the Memory Manager is free to remove or purge the items from
memory to make room for other purposes. Always make dialog item lists purgeable.
When the Dialog Manager loads the item list resource, it creates a copy of it in
memory. If you do not specify the original resource to be purgeable, you cause two
copies of every item to be stored in memory although you need only one.

The third line of the dialog item list (39) tells how many items follow. Here
there are three buttons (Btnltem), each enabled. An enabled item is active. Pro
grams can detect when someone clicks the mouse pointer inside an enabled item.
They cannot detect clicks in disabled ones. Each item ha,s four coordinate values-in
top, left, bottom, right order-that are relative (local) to the dialog window. After
designing a dialog, to shift it left six pixels requires modifying only the dialog coor
dinates (line 26 in the example). Because the item locations are relative to the dialog's
own coordinates, they automatically follow the dialog window no matter where
you position it. The third line in each button (43,47,51) is the text you want to display
inside the button outlines. Match these labels with the buttons in Figure 6.4.

The fourth item is static text (Stat Text), disabled at line 53. If you enable the
text, then someone can click the mouse on it as though it were a button or a check
box. Most of the time, declare StatText items Disabled unless you want this to
happen.

BUTl'ONS.PAS {1-152}

Procedure DoButtons, (44-71) in Listing 6.4, shows how to display a dialog
along with its item list. It begins with three integer constants, Yes, No, and Maybe
(48-52) equal to the position of those buttons in the dialog's item list. To display
the dialog, the program calls function GetNewDialog (60), passing the resource
ID and two other parameters. The NIL tells GetNewDialog to place internal in
formation belonging to this dialog on the heap. The POINTER(-1) parameter
tells it to display the window in front of any others now on screen.

You can create your own dialog record as a local variable and pass its address
to GetNewDialog in place of NIL. This avoids fragmenting the heap. To do this,
add this variable between lines 57 and 58:

dRec: DialogRecord;

2 58 == Programming with Macintosh Turbo Pascal

Then, change lines 60 and 69 as follows:

60: dp := GetNewDialog(DialogID, @dRec, POINTER(-1));
69: CloseDialog(dp)

Because you create the dialog record as a local variable, pass its address to
GetNewDialog as the paramenter @dRec. When done using the dialog, close it
by calling CloseDialog. Either method works, but passing NIL and letting the
Dialog Manager create the dialog record itself is easier and saves stack space. In
the previous chapter, you learned how doing this with regular windows can frag
ment the heap. But with modal dialogs like this one when nothing much else can
happen while the dialog is visible, a temporarily fragmented heap is unlikely to
cause any problems.

Line 63 calls the DialogUnit's OutlineOK procedure, passing the pointer (dp)
returned by GetNewDialog. This draws a bold outline around the first object in
the dialog's item list, usually the button with the label you're most likely to choose,
typically Yes or Ok. The bold outline (see Figure 6.4) tells you that pressing the
Return key as well as clicking with the mouse selects this button.

The REPEAT loop (64-66) calls ModalDialog with two parameters. The NIL
tells the procedure to handle events in the usual way, returning value I in itemHit
if you press the Return (or Enter) keys. The loop ends when itemHit is one of the
three values, Yes, No, or Maybe, indicating a click in one of those buttons. Lines
67-68 sound a beep only if you click the Yes button (or press Return).

DialogPtr

DialogRecord

Copy of
item list

Original
item list

Figure 6.5 When you load a dialog, the toolbox
copies its item list, leaving the original list floating
in memory. For that reason, always make item list
resources (type DITL) purgeable so the Memory
Manager can remove them if it needs the space.

Computer Conversations== 259

DIALOGS IN l\1EMORY

A dialog record contains a full window record (which contains a GrafPort)
and is a most complex beast. For most uses, you can safely ignore its many fields
and use them as this chapter describes. The complete record definition is in the
Guide and Inside Macintosh.

More important than such details is the way the toolbox stores dialog records
in memory when you call GetNewDialog as in the previous example. Figure 6.5
illustrates the relationship between your program's DialogPtr variable (dp in Listing
6.4) and items in memory.

As the figure shows, the DialogPtr variable points to a dialog record that
GetNewDialog creates on the heap. This record in turn points to a copy of the
dialog's item list. The original copy of this list remains in memory (the floating
rounded box on the right). Because you mark it purgeable, though, if the memory
manager needs the room, it automatically removes the original list. If you don't
mark item lists purgeable, they permanently waste memory space.

In memory, item lists contain various structures, text, and controls such as but
tons and scroll bars. Calling DisposeDialog releases the memory these items oc
cupy along with the memory that the dialog record uses. But DisposeDialog does
not release the memory that the original item list uses, making it doubly impor
tant not to forget to mark DITL resources purgeable.

ALERTS

Alerts are dialogs that usually contain only text and buttons. Use an alert to
do just that-alert people to some condition or warn of the consequences of ac
tions like quitting a program without saving a file.

Figure 6.6 shows one of the most common alert boxes, the result of quitting
the program in Listing 6.6. The program assumes you made a change to a fictitious

[liJ Soue changes before quitting?

n Yes)J

(No (Cancel)

Figure 6.6 The dialog window of Listing 6.6, Save.

260 == Programming with Macintosh Turbo Pascal

CautionAlert

NoteAlert

StopAlert

Figure 6.7 Alerts use one of these icons to call
your attention to errors and notes.

file and, when you choose the Quit command, displays the alert asking you to res
pond in one of three ways: click Cancel to continue using the program, click No
to throw away changes, or click Yes to save changes before quitting.

Alerts display the cartoon figure in the upper left corner of Figure 6.6. Instead
of a question mark in the figure's speech balloon, you can display an exclamation
or an asterisk (see Figure 6.7).

The next program shows how to add alerts to programs. Type in Listing 6.5,
save as QUIT.R, and compile with RMaker. Then use Turbo to type in, compile,
and run QUIT.PAS in Listing 6.6 to test the alert box in Figure 6.6.

Listing 6.5. QUIT.R

1: *--*
2: * Quit.PAS resources -- Compile with RMaker
3: *--*
4:
5: Programs:Dialogs.F:Quit.RSRC :: Send output to here
6:
7:
8: *--*
9: * The File menu

10: *--*
11:
12: TYPE MENU
13: ,1
14: File
15: Quit
16:
17:

Computer Conversations

-- 18:
19:
20:
21:

* The Save changes? alert
--

22:
23:
24:
25:
26:
27:
28:

TYPE ALRT
'1000 (4)

73 105 198 400
1000
5555

29: TYPE DITL
30: '1000 (32)
31:
32:
33: Btnitem Enabled
34: 60 25 82 105
35: Yes
36:
37: Btnitem Enabled
38: 95 200 117 280
39: Cancel
40:
41: Btnitem Enabled
42: 95 25 117 105
43: No
44:
45: StatText Disabled
46: 14 76 34 285

,, Resource ID, (4) = preload
,, Top, Left, Bottom, Right
,, Item list ID (following)
, , Alert stages (none)

,, Item list for alert (preceding)
, , Resource ID, (32) = purgeable
,, Number of items following

,, 1. Yes button

,, 2. Cancel button

, , 3. No button

,, 4. Text with replaceable parameter (AO)

47: Save changes before AO?
48:
49:
50: * END

Listing 6.6. QUIT.PAS

l: {$0 Programs:Dialogs.F: I
2: {$R Programs:Dialogs.F:Quit.RsrcJ
3: {$U-}

Send compiled code to here I
Use this compiled resource file
Turn off standard library units

4:
5:
6: PROGRAM Quit;
7:
8: (*

9:
10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:
14: *)

15:
16:
17: USES
18:

Quit with Save Changes? dialog
Macintosh I Turbo Pascal
Tom Swan

19: Memtypes, QuickDraw, OSintf, Toolintf, Packintf;
20:
21:
22:
23: CONST
24:
25:
26:

File ID
QuitCmd

= l;
l;

{ File menu Resource ID and conunands }

261

(continued)

262 == Programming with Macintosh Turbo Pascal

27:
28:
29:

Save ID 1000; Resource ID of Save changes? alert }

30:
31:

NullStr No blanks between the two quotes ' ' }

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

VAR

fileMenu
theEvent
whichWindow
quitRequested

42: PROCEDURE SaveChanges;

Dummy procedure

BEGIN
SysBeep(3 };
SysBeep(3)

END; { SaveChanges

MenuHandle;
Event Record;
WindowPtr;
BOOLEAN;

{ Two beeps

Handle to program's only menu }
Events from operating system }
Window applying to event }
TRUE if quitting }

"changes saved 11 }

43:
44:
45:
4 6:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

PROCEDURE DoCommand(command Longint);

Execute a menu command }

VAR

whichMenu
whichitem

BEGIN

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command }

whichMenu := HiWord(command);
whichltem := LoWord(command);

Find the menu
Find the item

IF whichMenu = FileID THEN
CASE whichitem OF

QuitCmd : quitRequested := TRUE
69: END; (case }
70: HiliteMenu(0) { Unhighlight menu title
71:
72: END; { DoCommand
73:
74:
75: PROCEDURE MouseDownEvents;
76:
77: Someone pressed the mouse button. Check its location and respond. }
78:
79:
80:
81:
82:

VAR

partCode

83: BEGIN

INTEGER;

84: WITH theEvent DO
85: BEGIN

(Identifies what item was clicked. }

86: partCode := FindNindow(where, whichWindow);
87: CASE partCode OF
88: inMenuBar
89: : DoCommand(MenuSelect(where)
90: END I case }
91: END { with }
92: END; { MouseDownEvents

Computer Conversations

93:
94:
95: PROCEDURE Initialize;
96:
97: Program calls this routine one time at start }
98:
99: BEGIN

100:
101: InitGraf(@thePort);
102: InitFonts;
103: InitWindows;
104: InitMenus;
105: TEinit;
106: InitDialogs (NIL) ;
107: InitCursor;
108: FlushEvents(everyEvent, 0);
109:
110: fileMenu := GetMenu(FileID);
111: InsertMenu(fileMenu, O);
112: DrawMenuBar;
113:
114: quitRequested :=FALSE
115:
116: END; { Initialize }
117:
118:
119: FUNCTION QuitConfirmed : BOOLEAN;
120:
121: True if quitting and Yes button in Save? dialog alert clicked. }
122:
123: CONST
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:

Yes Ok; { Yes button is first }

VAR

itemHit INTEGER;

BEGIN
IF quitRequested THEN
BEGIN

ParamText('quitting', nullStr, nullStr, nullStr);
itemHit := CautionAlert{ SaveID, NIL);
IF itemHit = Yes

THEN SaveChanges
ELSE IF itemHit = Cancel

THEN quitRequested := FALSE
END; (if }
QuitConfirmed := quitRequested

END; { QuitConfirmed)

(Cancel quit command)

145: BEGIN
146:
147:
148:
149:
150:
151:
152:
153:

Initialize;
REPEAT

SystemTask;
IF GetNextEvent(everyEvent, theEvent) THEN

CASE theEvent.what OF
MouseDown

END (case }
UNTIL QuitConf irmed

: MouseDownEvents;

154: END.

263

264 == Programming with Macintosh Turbo Pascal

Quit Play-by-Play

QUIT.R {1-50}

The resource definition for an alert resembles a dialog. Line 22 starts a new
resource of type ALRT and gives it an ID of 1000. As with dialog resource IDs,
you can use any positive integer, but values greater than 128 guarantee against con
flicts with resources the system uses for its own purposes.

The 4 in parentheses after the resource ID (23) marks this resource for
preloading at the time the program runs. You don't have to preload alerts this way
but it's usually a good idea, especially to display disk error messages. You might
not be able to display the message, "Disk Directory is Unreadable," if, before show
ing it, you have to read it from the resource file on a damaged disk!

Line 24 lists the top, left, bottom, and right coordinate values describing the
alert window's size and location. Unlike dialogs, though, you do not have a choice
of window styles. Alerts always display as double-border windows (see Figure 6.6).

The 1000 in line 25 is the ID of the item list associated with this alert. An alert's
item list is identical to a dialog's. In fact, dialogs and alerts could share the same
lists. The 5555 at line 26 specifies this alert's stages, which you can use to change
the alert based on the number of times an error or condition occurs. (This chapter
does not use this feature, which some people find more confusing than helpful.
The stages value of 5555 effectively turns the feature off. Consult Inside Macin
tosh for more details.)

The alert item list (type DITL) at lines 29-47 is nearly identical to the list in
the previous example (see Listing 6.3, 37-55). Its resource ID (30) matches that in
the alert definition and is marked purgeable. Of the four items that follow, three
are enabled buttons (33-43) and one is static text (45-47).

Line 47 shows how to specify replaceable areas in strings. The A 0 at the end
of the message, "Save changes before AO?" lets the program pass a replacement
string to appear at this location in the alert. With a simple change, therefore, Figure
6.6 can display the message, "Save changes before closing?" or "Save changes before
transfer?" Any dialog or alert can have up to four such replaceable strings, AO,
A 1, A 2, and A 3. The next section explains how to use them.

QUIT.PAS (1-154)

Because this example doesn't actually write any data to disk, procedure
SaveChanges (42-49) beeps twice to let you know the program calls it at the right
time. When you quit the program, function QuitConfirmed (119-142) displays the
alert box and lets you click the Yes, No, or Cancel buttons.

Line 134 shows how to substitute text in static text items. ParamText takes four
parameters, the first corresponding to replaceable item A 0, the second to A 1, and
so on. The example passes 'quitting' as the replacement for A 0. Try other strings
here and rerun the program. Set unused parameters to zero-length null strings as
in the final three parameters at line 134.

Computer Conversations == 265

ParamText replaces strings in the next alert or dialog the program displays.
Therefore, always call ParamText to substitute strings for replaceable items before
displaying a dialog or alert-even if you display it many times during the program.
Remember that other procedures use the same technique to replace strings in their
own alerts. If you don't reinitialize replacement strings before each use, you might
display leftovers from other routines.

Line 135 displays the alert, rings the bell, and lets you click the Yes, No, or
Cancel buttons. The function CautionAlert passes back the number of the clicked
button. Clicking Yes or pressing Return sets itemHit to 1. Clicking No sets it to
2; Cancel to 3-the same numbers as the positions of these items in the alert's
resource item list. Pass the alert resource ID as CautionAlert's first parameter
(SaveID in the example). The second parameter, NIL, tells the function to return
I when you press Return or Enter, simulating the effect of clicking the first but
ton. In this and other alerts, you can replace NIL with a pointer to afilter, a custom
routine to replace the Dialog Manager's own programming for responding to
keypresses and other events. Writing filters is an advanced subject not detailed
here-consult Inside Macintosh for more information.

To see the other alert figures, replace CautionAlert in line 135 with StopAlert
or NoteAlert. The only difference among the three is the symbol in the figure's
speech balloon (Figure 6.7).

When using alerts, you do not have to create pointers, dialog records, or worry
about fragmenting the heap. As this example shows, all you need is the resource
and its ID. After using an alert, you do not have to close it or dispose the memory
it occupies. The toolbox handles such details for you.

RADIO BUTTONS

In a group of radio buttons, punching one makes the others pop out like the
buttons on a car radio or an old tape recorder. In dialogs, radio buttons make it
easy to select one of several conditions-just point and click the button you want.

On screen, a radio button is a small circle, usually with a label to indicate what
the button does. The punched-in button has a black dot inside; the others are white.
Clicking one button turns another off. To make these actions easier to control,
DialogUnit (Listing 6.18) contains routines and data types to organize radio but
tons into groups.

Listing 6.8 demonstrates how to use these features. The program displays the
dialog box in Figure 6.8 when you choose the Patterns command from the File
menu. Clicking one of the five radio buttons to the left of the large rectangle changes
its pattern. Clicking the Ok button removes the dialog window. Choosing Patterns
again proves that the program remembers the previous setting-the pattern you
most recently selected.

Type in Listing 6.7, save as RADIO.R, and compile with RMaker. Type in
Listing 6.8 and save as RADIO.PAS. Then use Turbo to compile and run the test.

266 == Programming with Macintosh Turbo Pascal

0 White

O Black

QGray

@ ltGray

0 DkGray

Please select a pattern. ([Ok

Figure 6.8 The dialog window of Listing 6.8, Radio.

Listing 6.7. RADIO.R

1: *--*
2: * Radio.PAS resources -- Compile with RMaker
3: *--*
4:
5: Prograrns:Dialogs.F:Radio.RSRC ;; Send output to here
6:
7:
8: *--*
9: * The File menu

10: *--*
11:
12: TYPE MENU
13: ,1
14: File
15: Patterns
16: Quit
17:
18:

,, Menu ID number to use in program
,, Menu title as shown in menu bar

19: *--*
20: * The radio buttons dialog
21: *--*
22:
23: type DLOG
24: ,1000
25: Patterns
26: 76 71 286 442
27: Visible NoGoAway
28: 1
29: 0
30: 1000
31:
32:

Resource ID
Title (not displayed)
Top, Left, Bottom, Right
Immediately visible, no go-away box
Std double-border dialog window
Reference value (none)
ID of dialog item list (following)

))

Computer Conversations

33: *--*
34: * The radio buttons dialog item list
35: *--*
36:
37: TYPE DITL
38: '1000 (32)
39: 7
40:
41: Btnltem Enabled
42: 170 265 202 345
43: Ok
44:
45: Radioltem Enabled
46: 25 30 41 130
47: White
48:
49: Radioitem Enabled
50: 50 30 66 130
51: Black
52:
53: Radioltem Enabled
54: 75 30 91 130
55: Gray
56:
57: Radioitem Enabled
58: 100 30 116 130
59: LtGray
60:
61: Radioitem Enabled
62: 125 30 141 130
63: DkGray
64:
65: StatText Disabled
66: 175 30 196 195
67: Please select a pattern.
68:
69:
70: * END

,, Dialog item list
,, Resource ID, (32)=purgeable
,, Number of items following

,, 1. Ok button

,, 2. Radio button #1

,, 3. Radio button #2

,, 4. Radio button #3

,, 5. Radio button #4

,, 6. Radio button #5

,, 7. Text

Listing 6.8. RADIO. PAS

267

1: {$0 Programs:Dialogs.F:
2: ($R Programs:Dialogs.F:Radio.Rsrc)
3: {$U-)

Send compiled code to here }
Use this compiled resource file
Turn off standard library units

4:
5:
6: PROGRAM Radio;
7:
8: (*

9:
Radio buttons demo 10: * PURPOSE

11: * SYSTEM
12: *AUTHOR

Macintosh I Turbo Pascal

13:
14: *)

15:
16:

Tom Swan

17: {$U Programs:Units.F:DialogUnit)
18:
19:

{ Open this library unit file)

(continued)

268 Programming with Macintosh Turbo Pascal

20: USES
21:
22: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, DialogUnit;
23:
24:
25:
26: CONST
27:
28:
29:
30:
31:

File ID
PatternsCmd
QuitCmd

1; { File menu Resource ID and commands }
1;
2;

32:
33:
34:
35:
36:
37:
38:
39:
40:

Dialog ID 1000; Resource ID of radio buttons dialog }

WhiteButton
BlackButton
GrayButton
LtGrayButton
DkGrayButton

2;
3;
4;
5:
6;

Button numbers corresponding to their
positions in the dialog's item list }

41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:

VAR

fileMenu
theEvent
which Window
quitRequested
pat
buttons

MenuHandle;
Event Record;
WindowPtr;
BOOLEAN;
Pattern;
ButtonRec;

Handle to program's only menu }
Events from operating system }
Window applying to event }
TRUE if quitting }
Fill pattern for dialog demo
Radio buttons info }

52: PROCEDURE DisplayPattern(dp : DialogPtr);
53:
54: Draw a filled box in the global pattern (pat} inside
55: the dialog box at dp. }
56:
57: VAR
58:
59: r : Rect;
60: oldPort GrafPtr;
61:
62: BEGIN
63: IF buttons.selection <> -1 THEN
64: BEGIN
65: GetPort(oldPort);
66: SetPort (dp) :
67: SetRect (r, 115, 25, 340, 147) :
68: PenSize (1, 1) :
69: PenPat(black);
70: FrameRect(r);
71: InsetRect (r, 1, 1) :
72: FillRect (r, pat) :
73: SetPort(oldPort)
74: END (if }
75: END; { DisplayPattern)
76:
77:
78: PROCEDURE ChangePattern(dp: DialogPtr; buttons : ButtonRec);
79:
80: Change demonstration fill pattern according to current
81: radio button selection }
82:

Computer Conversations

83: BEGIN
84: CASE buttons.selection OF
85: WhiteButton pat := white;
86: BlackButton pat :=black;
87: GrayButton pat :=gray;
88: LtGrayButton pat := ltGray;
89: DkGrayButton pat ·:= dkGray
90: END; { case)
91: DisplayPattern(dp)
92: END; { ChangePattern)
93:
94:
95: PROCEDURE DoPatterns;
96:
97: Demonstrate using radios buttons to select a fill pattern.
98: Also show how to display graphics inside a dialog box.)
99:

100: VAR
101:
102: dp : DialogPtr;
103: itemHit : INTEGER;
104:
105: BEGIN
106: dp := GetNewDialog(DialogID, NIL, POINTER(-1));
107: IF dp <> NIL THEN
108: BEGIN
109: OutlineOk(dp);
110: InitButtons(dp, buttons);
111: ChangePattern(dp, buttons);
112: REPEAT
113: ModalDialog(NIL, itemHit);
114: IF itemHit <>Ok THEN
115: BEGIN
116: PushButton(dp, buttons, itemHit);
117: ChangePattern(dp, buttons)
118: END (if)
119: UNTIL itemHit = Ok;
120: DisposDialog(dp)
121: END { if)
122: END; { DoPatterns)
123:
124:
125: PROCEDURE DoCommand(command
126:
127: Execute a menu command)
128:
129: VAR
130:

Longint);

131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:

whichMenu
which Item

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command }

BEGIN

whichMenu := HiWord(command);
whichitem := LoWord(command);

IF whichMenu = FileID THEN
CASE whichitem OF

DoPatterns;

Find the menu
Find the item

PatternsCmd
QuitCmd

END; { case)
HiliteMenu(O l

: quitRequested := TRUE

(Unhighlight menu title

END; (DoCommand

269

(continued)

270 Programming with Macintosh Turbo Pascal

149: PROCEDURE MouseDownEvents;
150:
151: Someone pressed the mouse button. Check its location and respond. }
152:
153:
154:
155:
156:

VAR

partCode

157: BEGIN

INTEGER;

158: WITH theEvent DO
159: BEGIN

{ Identifies what item was clicked. }

160: partCode := FindWindow(where, whichWindow };
161: CASE partCode OF
162 : inMenuBar
163: : DoCommand(MenuSelect(where }
164: END { case }
165: END { with }
166: END; { MouseDownEvents
167:
168:
169: PROCEDURE Initialize;
170:
171: Program calls this routine one time at start }
172:
173: BEGIN
174:
175: InitGraf(@thePort);
176: InitFonts;
177: InitWindows;
178: InitMenus;
179: TEinit;
180: InitDialogs{ NIL);
181: InitCursor;
182: FlushEvents{ everyEvent, 0 };
183:
184: fileMenu := GetMenu(FileID);
185: InsertMenu(fileMenu, 0);
186: DrawMenuBar;
187:
188: quitRequested := FALSE;
189:
190: WITH buttons DO
191: BEGIN
192:
193:
194:
195:
196:

firstButton
lastButton
selection

END { with }

197: END; { Initialize
198:
199:
200: BEGIN
201: Initialize;
202: REPEAT
203: SystemTask;

:= WhiteButton;
:= DkGrayButton;
:= -1 { None }

204: IF GetNextEvent(everyEvent, theEvent) THEN
205: CASE theEvent.what OF
206: MouseDown : MouseDownEvents;
207: END { case }
208: UNTIL quitRequested
209: END.

Computer Conversations == 271

Radio Play-by-Play

RADIO.R {1-70}

The resource text defines the dialog (23-30) for the test program. The item
list (37-67) for this dialog contains seven objects: an Ok Btnltem (41-43), five
Radioltem buttons (45-63) and a StatText message (65-67). Except for the word
Radioltem, the definition of a radio button is the same as a Btnltem.

The text for a radio button appears to the right of the circle (see Figure 6.8).
Many people don't realize that this text and the circle make a single object although
they appear separately. In other words, you can click on the word Gray or inside
the circle to select that button-you don't have to move the tip of the mouse pointer
inside the tiny button circumference.

RADIO.PAS {1-209}

The program declares the resource ID for the dialog (32) and five constants
(34-38). Each constant equals the position of one radio button in the dialog item
list (see the resource text, Listing 6. 7). Variable buttons (48) is a record of type But
tonRec with the structure in Figure 6.9.

Three integer fields in a ButtonRec variable hold the value of the first button
(firstButton), the last button (lastButton), and the currently punched button (selec
tion). The values of these fields are the same as the button item positions in the
resource. In this example, WhiteButton is the first button and DkGrayButton the
last. Lines 192-193 initialize the buttons record to these values. Setting the selec
tion field to -1 (194) indicates that no button is punched. As you can see when
you run the program, all buttons are white-none has a black center until you click
one. You can change this feature by assigning to selection one of the five constants
(34-38). For example, to preset the pattern to gray, change line 194 to read as follows
and rerun the program:

selection:= GrayButton;

Procedure DisplayPattern (52-75) draws a rectangle inside the dialog box and
fills it with a pattern depending on the current value of buttons.selection. This

TYPE

ButtonRec =
RECORD

firstButton : INTEGER;
lastButton : INTEGER;
selection : INTEGER

END; (ButtonRec I

(First radio button item number J
(Last item number I
(Current button (-l if none))

Figure 6.9 DialogUnit (Listing 6.18) defines this record data type to
organize radio buttons.

272 == Programming with Macintosh Turbo Pascal

demonstrates how to add features to dialog windows without defining those features
as resources. To draw items in dialog windows, for example, use QuickDraw com
mands with a dialog pointer (dp) as you do with any other grafPort or window.
(See lines 65-73.)

Procedure ChangePattern (78-92) sets global variable pat to one of
QuickDraw's predefined patterns and then calls DisplayPattern (91) to draw the
rectangle and fill it.

DoPattems {95-122}

DoPatterns runs when you choose the Patterns command from the File menu.
It first loads and displays the dialog window (106) and outlines the Ok button (109).
Line 110 calls InitButtons, passing the dialog pointer dp and buttons record as
parameters. InitButtons is a tool in DialogUnit. It sets the button controls accord
ing to the fields in the ButtonRec record, displaying any punched button with a
black center. If you have more than one group of radio buttons in the same dialog
and there's no limit to the number of groups you can define-call InitButtons for
each group.

Line 111 calls ChangePattern to display the rectangle and fill it with whatever
buttons.selection indicates is the current pattern. This also initializes the global pat
variable the first time you choose the Patterns command.

The program then repeatedly calls Moda!Dialog (113) until you click the Ok
button. In this example, Moda!Dialog senses clicks inside radio buttons. If it returns
a button value, line 116 calls DialogUnit tool PushButton, passing the dialog pointer
dp, the buttons record, and the number of the item that ModalDialog returned
in itemHit.

PushButton punches the new radio button, unpunches a previous button, and
sets buttons.selection equal to itemHit, recording the current setting. If itemHit
is not in the range of buttons fields firstButton to lastButton, PushButton does
nothing. After handling the click in a radio button, the program calls ChangePattern
again (117) to display the appropriate pattern.

SIMPLE DATA ENTRY

In conventional Pascal programming, to prompt for a name or number takes
only two or three steps. For example, to ask someone their age, you might use the
statements:

VAR age: INTEGER;

Write('What is your age?');
Readln (age);

Computer Conversations == 273

Enter something:

(Cancel) ([Ok J)

Figure 6.10 The dialog window of Listing 6.10, Entry.

On the Macintosh, you can do the same only with Turbo's textbook interface,
which gives you a simulated terminal in which to ask such questions. In fully charged
programs, you instead use a dialog with areas for typing these and other items.

The next example demonstrates how to use dialogs for simple data entry. This
method activates standard editing features, double-clicking to select words, and
backspacing to erase selected text. On newer systems with 128K ROMs, you also
can use the four arrow keys to move the cursor within the editing area. Although
the following example does not allow cutting and pasting text, it's possible to add
those features as well, as the final program in this chapter demonstrates.

Type in Listing 6.9, save as ENTRY.R, and compile with RMaker. Type in
Listing 6.10, save as ENTRY.PAS, and compile with Turbo to display the dialog
window in Figure 6.10. Type whatever you like in the single-line edit area (dark
ened in the figure). Click Ok to save what you type so that it reappears when you
again choose the File menu's Enter command. Click Cancel to throw out your typ
ing, reverting to whatever you previously entered.

Listing 6.9. ENTRY.R

1: *--*
2: * Entry.PAS resources -- Compile with RMaker
3: *--*
4:
5: Programs:Dialogs.F:Entry.RSRC
6:

;; Send output to here

7:
8: *--*
9: * The File menu

10: *--*
11:
12: TYPE MENU
13: ,1
14: File
15: Enter
16: Quit

;; Menu ID number to use in program
;; Menu title as shown in menu bar

(continued)

274 Programming with Macintosh Turbo Pascal

17:
18:
19: TYPE DLOG
20: '1000
21: Entry
22: 100 100 250 400
23: Visible NoGoAway
24: 1
25: 0
26: 1000
27:
28:
29: TYPE DITL
30: ,1000 (32)
31:
32: Btnitem Enabled
33: 105 185 132 265
34: Ok
35:
36: Btnitem Enabled
37: 105 30 132 110
38: Cancel
39:
40: Stat Text Disabled
41: 20 15 36 145
42: Enter something:
43:
44: Edit Text Enabled
45: 60 15 76 280
46:
47:
48: * END

,, Entry dialog box
,, Resource ID used in program
,, Title (not displayed)
,, Bounds rectangle top left bottom right
,, Visible on creation with no go-away box
,, Standard dialog style (dBoxProc)
,, RefCon value (none)
•• Dialog ITem List (DITL) ID

,, Alert dialog item list
,, ID used in ALRT, (32)~purgeable

,, Number of items following
,, The Okay button

,, The Cancel button

,, The prompting message

,, The entry text box

Listing 6.10. ENTRY.PAS

1: ($0 Programs:Dialogs.F:) Send compiled code to here)
Use this compiled resource file
Turn off standard library units

2: ($R Programs:Dialogs.F:Entry.Rsrc)
3: ($U-)
4:
5:
6: PROGRAM Entry;
7:
8: (*

9:
10: * PURPOSE
11: * SYSTEM
12: * AUTHOR

Simple data entry using modal dialog
Macintosh I Turbo Pascal

13:
14: *)
15:
16:

Tom Swan

17: ($U Programs:Units.F:DialogUnit)
18:
19:
20: USES
21:

(Open this library unit file)

22: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, DialogUnit;
23:
24:
25:

26: CONST
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

VAR

File ID
EnterCmd
QuitCmd

Entry ID
Edititem

1;
1;
2;

= 1000;
4:

Computer Conversations

Resource ID number for File menu
Test Alert box text entry)
Quit command menu line number

Resource ID of Entry dialog)
Position number of edit text item

275

38:
39:
40:
41:
42:
43:
44:

fileMenu
message
theEvent

MenuHandle;
Str255;
EventRecord;
WindowPtr;
BOOLEAN;

Handle to program's only menu J
Sample entry string I

45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

whichWindow
quitRequested

Events from operating system
Window applying to event I
TRUE if quitting I

PROCEDURE DoEntry(VAR message : Str255);

Demonstrate how to enter text in a dialog box)

VAR

dPtr
itemHit
itemType
itemRect
itemHandle

DialogPtr;
INTEGER;
INTEGER;
Rect;
Handle;

BEGIN

dPtr := GetNewDialog(EntryID, Resource ID I
NIL,
POINTER(-1)) ;

Create template in heap
Make f rontmost window)

IF dPtr <> NIL THEN
BEGIN

GetDitem(dPtr, Edititem, itemType, itemHandle, itemRect);
IF itemHandle <> NIL THEN
BEGIN

OutLineOk(dPtr);
SetIText(itemHandle, message);
SelIText(dPtr, Edititem, 0, maxint);
REPEAT

ModalDialog(NIL, itemHit
UNTIL (itemHit Ok) OR (itemHit =Cancel);
IF itemHit = Ok

THEN GetIText(itemHandle, message
END; (if I

77:
78:
79:
80:

DisposDialog(dPtr) { Dispose of dialog & related structures)
END { if I

END; { DoEntry)

81:
82: PROCEDURE DoFileMenuCommands(cmdNumber
83:
84: Execute command in the File menu)
85:
86: BEGIN
87: CASE cmdNumber OF
88: EnterCmd: DoEntry(message);
89: QuitCmd : quitRequested := TRUE
90 : END { case I
91: END; (DoFileMenuCommands)
92:

INTEGER);

(continued)

276 Programming with Macintosh Turbo Pascal

93:
94: PROCEDURE DoCommand(command
95:
96: Execute a menu command l
97:
98: VAR
99:

Longint);

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:

whichMenu
which Item

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command }

BEGIN

whichMenu := HiWord(command);
whichitem := LoWord(command);

CASE whichMenu OF
File ID

END; { case
DoFileMenuCommands(

Find the menu
Find the item

whichitem } ;

HiliteMenu(O I UAhighlight menu title)
113:
114: END; { DoCommand
115:
116:
117: PROCEDURE MouseDownEvents;
118:
119: Someone pressed the mouse button. Check its location and respond. }
120:
121: VAR
122:
123:
124:
125:
126:
127:

part Code INTEGER;

BEGIN
WITH theEvent DO
BEGIN

{ Identifies what item was clicked. }

128: partCode := FindWindow(where, whichWindow);
129: CASE partCode OF
130: inMenuBar
131: : DoCommand(MenuSelect(where)
132: END { case)
133: END (with }
134: END; (MouseDownEvents
135:
136:
137: PROCEDURE Initialize;
138:
139: Program calls this routine one time at start }
140:
141: BEGIN
142:
143: InitGraf(@thePort);
144: InitFonts;
145: InitWindows;
146: InitMenus;
147: TEinit;
148: InitDialogs(NIL);
149: InitCursor;
150: FlushEvents(everyEvent, 0);
151:
152: fileMenu := GetMenu(FileID);
153: InsertMenu(fileMenu, 0);
154: DrawMenuBar;
155:
156: quitRequested := FALSE;
157:
158: message := ''
159:
160: END; { Initialize

161
162
163 BEGIN
164 Initialize;
165 REPEAT
166 SystemTask;

Computer Conversations == 277

167 IF GetNextEvent(everyEvent, theEvent) THEN
168 CASE theEvent.what OF
169 MouseDown : MouseDownEvents;
170 END { case)
171 UNTIL quitRequested
172 END.

Entry Play-by-Play

ENTRY.R (1-48}

The resource text declares a single dialog with ID 1000 (19-26). Of the four
objects in the item list (29-45), two are buttons, one is the prompting message, and
the last is the editing area, of type EditText (44-45). Notice that EditText items
have only two lines instead of three as do most other objects in an item list.

As line 45 shows, the edit area is 16 pixels tall, the minimum height you can
use with the standard text font. This value exactly centers the darkened text inside
the top and bottom borders of the editing box (Figure 6.10), which the dialog draws
for you.

ENTRY.PAS {1-172}

Two constants hold the dialog's resource ID, EntrylD (32), and the position
of the Edit Text object in the dialog's item list, Editltem (33). A global variable,
message (39), holds whatever you type in the edit box after you click Ok.

Procedure DoEntry (45-79) handles the entire dialog. It loads and displays
the dialog resource in the usual way (59-61) and then calls GetDltem (65) passing
the dialog pointer (dPtr) and the appropriate item number (Editltem). GetDitem
finds this item in the dialog's item list now in memory and returns the remaining
three parameters. ItemType indicates the item kind according to the list in Table
6.2. Although this example ignores ItemType, you can use it to check whether Get-

Table 6.2 Dialog item list types.

Name ItemType Constant

Button 0 BtnCtrl
Check box 1 ChkCtrl
Radio button 2 RadCtrl
Static text 8 Stat Text
Edit box 16 Edit Text
Icon 32 Iconitem
Picture 64 QuickDraw picture

278 == Programming with Macintosh Turbo Pascal

Dltem finds the type of item you expect. ItemHandle is a handle to the item on
the heap. The final parameter, itemRect, is the item's enclosing rectangle in coor
dinates local to the dialog window.

As long as itemHandle is not NIL, the statements at lines 68-75 first outline
the Ok button and then call two procedures that you'll almost always use with edit
text items in dialogs. SetIText (Set Item Text) (69) takes two parameters: the item
handle from GetDitem and a string, message in the example. It inserts the string
into the dialog item, copying its characters for editing. Because of that, the actual
string variable (message) never changes.

In line 70, SellText (Select Item Text) takes four parameters, the dialog pointer
(dPtr), a constant representing the item's position in the dialog item list (Editltem),
and two integer values, 0 and Maxlnt in the example. These two values represent
the range of character positions you want the dialog to highlight (darken) inside
the edit box (see Figure 6.10). Setting the first integer to 0 and the second to Max
Int (Maximum Integer) selects all text in the box unless the string parameter in the
previous statement (69) was empty.

The REPEAT loop (71-73) is identical to previous examples. It calls
ModalDialog until itemHit equals Ok or Cancel, indicating a mouse click in one
of those two buttons. If it equals Ok, then line 75 calls GetIText (Get Item Text)
passing the item handle and a string variable. This copies the edited text back into
the string, ready for editing the next time you open this same dialog.

To initialize a string to a default value, assign any string to message at line 158.
Remember that editing text in dialogs does not create places to store characters
in memory. It's up to you to keep string variables like message and then pass those
variables to SetIText, retrieving them after editing with Getltext as the example
demonstrates.

PROGRAM OPTIONS

D Auto s8ue

181 Show rulers

181 Wr8p 1Jround

((Ok J)

181 Sound on

D EHpert mode

181 Color displ8!J

(C8ncel)

Figure 6.11 The dialog window of Listing 6.12, Options.

Computer Conversations == 279

CHECK BOXES

One of the most common uses for check boxes in dialogs is to select among
various program options. DialogUnit (Listing 6.18) contains data types and routines
for adding this feature to programs.

Figure 6.11 shows the dialog that the next example displays. The options are
imaginary and don't cause any changes-feel free to experiment. Type in Listing
6.11, save as OPTIONS.R and compile with RMaker to produce the program's
resource file. Next, type in Listing 6.12 and save as OPTIONS.PAS. Compile with
Turbo to run the test.

Listing 6.11. OPTIONS.R

1: *--*
2:
3:
4:

* Options.PAS resources -- Compile with RMaker *
--

5:
6:

Programs:Dialogs.F:Options.RSRC :: Send output to here

7:
8: *--*
9: * The File menu *

10: *--*
11:
12: TYPE MENU
13: '1
14: File
15: Options
16: Quit
17:
18:
19:
20:
21:
22:

--
* The options dialog *
--

23: type DLOG
24: '1000
25: Options
26: 90 110 270 395
27: Visible NoGoAway
28: 1
29: 0
30: 1000
31:
32:

, , Resource ID
,, Title (not displayed)
,, Top, Left, Bottom, Right
,, Immediately visible, no go-away box
,, Std double-border dialog window
,, Reference value (none)
,, ID of dialog item list (following)

33: *--*
34: * The options dialog item list
35: *--*
36:
37: TYPE DITL
38: ,1000 (32)
39: 9
40:
41: Btnitem Enabled
42: 135 15 162 90
43: Ok
44:

,, Dialog item list
,, Resource ID, (32)~purgeable

,, Number of items following

,, 1. Ok button

(continued)

280 == Programming with Macintosh Turbo Pascal

45: Btnitem Enabled '' 2. Cancel button
46: 135 195 162 270
47: Cancel
48:
49: Chkltem Enabled '' 3. Option #1
50: 45 15 61 100
51: Auto save
52:
53: Chkltem Enabled ,, 4. Option 412
54: 70 15 86 115
55: Show rulers
56:
57: Chkltem Enabled '' 5. Option 413
58: 95 15 111 120
59: Wrap around
60:
61: Chkltem Enabled '' 6. Option #4
62: 45 165 61 250
63: Sound on
64:
65: Chkltem Enabled '' 7. Option #5
66: 70 165 86 270
67: Expert mode
68:
69: Chkltem Enabled '' 8. Option #6
70: 95 165 111 270
71: Color display
72:
73: StatText Disabled '' 9. Text
74: 10 80 26 200
75: PROGRAM OPTIONS
76:
77:
78: * END

Listing 6.12. OPTIONS.PAS

1: {$0 Programs:Dialogs.F: }
2: {$R Programs:Dialogs.F:Options.Rsrc}
3: {$U-}
4:
5:
6: PROGRAM Options;
7:
8: (*
9:

10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:
14: *}

15:
16:

Program option selector demo
Macintosh I Turbo Pascal
Tom Swan

Send compiled code to here }
Use this compiled resource file
Turn off standard library units

17: {$U Programs:Units.F:DialogUnit }
18:

{ Open this library unit file }

19:
20: USES
21:
22: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, DialogUnit;
23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

CONST

File ID
OptionsCmd
QuitCmd

DialogID

OptAutoSave
OptShowRulers
OptWrapAround
OptSound
OptExpertMode
OptColor

42: VAR
43:

Computer Conversations

l; { File menu Resource ID and commands }
1;
2;

1000; Resource ID of radio buttons dialog

3; Check box numbers corresponding }
4; to their positions in the dialog
5; item list. }
6;
7;
8;

281

44:
45:
46:
47:
48:
49:
50:

fileMenu
the Event
whichWindow
quitRequested
programOptions

MenuHandle;
EventRecord;
WindowPtr;
BOOLEAN;
Checks Record;

Handle to program's only menu }
Events from operating system }
Window applying to event }
TRUE if quitting }
Program options information

51:
52: PROCEDURE DoOptions;
53:
54: Demonstrate how to prompt for various program options using
55: check boxes in a dialog window }
56:
57: VAR
58:
59: dp : DialogPtr;
60: itemHit : INTEGER;
61: checks : ChecksRecord;
62:
63: BEGIN
64: checks := programOptions;
65: dp := GetNewDialog(DialogID, NIL, Pointer{-!));
66: IF dp <> NIL THEN
67: BEGIN
68: OutlineOk(dp);
69: InitChecks(dp, checks);
70: REPEAT
71: ModalDialog(NIL, itemHit);
72: IF (itemHit <> Ok) AND (itemHit <> Cancel
73: THEN CheckBox{ dp, checks, itemHit)
74: UNTIL (itemHit =Ok) OR { itemHit =Cancel);
75: IF itemHit = Ok
76: THEN programOptions := checks;
77: DisposDialog(dp)
78: END { if }
79: END; (DoOptions }
80:
Bl:
82: PROCEDURE DoCommand{ command
83:
84: Execute a menu command l
85:
86: VAR
87:
88:
89:
90:

whichMenu
which Item

INTEGER;
INTEGER;

Longint);

Menu number of selected command
Menu item number of command }

(continued)

282 Programming with Macintosh Turbo Pascal

BEGIN

whichMenu := HiWord(command);
whichitem := LoWord(command);

IF whichMenu = FileIO THEN
CASE whichitem OF

Find the menu
Find the item

91:
92:
93:
94:
95:
96:
97:
98:
99:

OptionsCmd
QuitCmd

END; (case }
HiliteMenu(0)

DoOptions;
quitRequested := TRUE

100:
101:
102:
103:
104:
105:
106:

Unhighlight menu title

END; (DoCommand

PROCEDURE MouseDownEvents;
107:
108: Somevne pressed the mouse button. Check its location and respond. }
109:
llO: VAR
lll:
ll2: partCode INTEGER; (Identifies what item was clicked.)
ll3:
ll4: BEGIN
115: WITH theEvent DO
116: BEGIN
117: partCode := FindWindow(where, whichWindow);
118: CASE partCode OF
119: inMenuBar
120: : DoCommand(MenuSelect(where)
121: END (case }
122: END (with }
123: END; (MouseDownEvents
124:
125:
126: PROCEDURE Initialize;
127:
128: Program calls this routine one time at start }
129:
130: BEGIN
131:
132: InitGraf(@thePort);
133: InitFonts;
134: InitWindows;
135: InitMenus;
136: TEinit;
137: . InitDialogs (NIL) ;
138: InitCursor;
139: FlushEvents(everyEvent, 0);
140:
141: fileMenu := GetMenu(FileID);
H2: InsertMenu (fileMenu, 0) ;
143: DrawMenuBar;
144:
145: quitRequested := FALSE;
146:
147: WITH programOptions DO
148: BEGIN
149: firstCheck := OptAutoSave;
150: lastCheck := OptColor;
151:
152: Set up default options
153:
154: selections :=
155:
156:
157:
158:

ENO

[OptShowRulers, OptWrapAround, OptSound, OptColor]

with }

159: END; (Initialize

160:
161:
162: BEGIN
163: Initialize;
164: REPEAT
165: SystemTask;

Computer Conversations == 283

166: IF GetNextEvent(everyEvent, theEvent) THEN
167: CASE theEvent.what OF
168: MouseDown : MouseDownEvents;
169: END { case)
170: UNTIL quitRequested
171: END.

Options Play-by-Play

OPTIONS.R (1-78}

The resource text file resembles previous examples. The dialog's item list (37-75)
defines nine items including two Btnltem buttons (41-47), six Chkltem check boxes
(49-71), and a StatText item (73-75) for the title at the top of the window (see Figure
6.11).

Notice that you define only the check box locations and labels. You do not
specify whether a box has a check mark inside. As the next section explains, that's
the program's responsibility.

OPTIONS.PAS (1-171}

The program declares six constants (34-39) equal to the Chkltem positions
in the dialog's item list, in this example, 3 to 8. Line 48 declares record programOp
tions as type ChecksRecord, a data type from DialogUnit.

Figure 6.12 describes the fields in this record. A CheckSet is a set of any values
from zero to 255, the range you can use for check boxes. In other words, you can
have up to 255 check boxes in a single dialog. The ChecksRecord type holds two
integer fields, firstCheck and lastCheck. As in the ButtonRec type (see Figure 6.9),
these fields specify the range of item numbers in the dialog. In this example,

TYPE

CheckSet =SET OF 0 .. 255;

ChecksRecord =
RECORD

firstCheck : INTEGER;
lastCheck : INTEGER;
selections : CheckSet

END; { ChecksRecord }

{ Sets of checked boxes)

First item number in check list)
Last item number)
Set of currently checked boxes)

Figure 6.12 DialogUnit (Listing 6.18) defines these record and set data
types to organize check boxes.

284 == Programming with Macintosh Turbo Pascal

firstCheck is 3, the value of constant OptAutoSave (34), and lastCheck is 8, the
value of OptColor (39). The selections field in ChecksRecord is the set of all check
boxes currently on.

Lines 147-157 initialize a ChecksRecord variable, programOptions in this ex
ample. After setting firstCheck and lastCheck (149-150), the program assigns the
set of default options to selections (154-155). To select a different set of defaults,
change the elements in brackets at line 155 to include any of the six constants
(34-39). For example, to turn on the auto-save and sound options, change 154-155
to the single line:

selections:= [OptAutoSave, OptSound J;

Procedure DoOptions (52-79) runs when you choose the File menu's Options
command. Line 64 makes a temporary copy of the global programOptions record.
The procedure then lets you change the options in this copy, assigning it back to
the global record only if you click the Ok button. Clicking Cancel throws away
any changes you make.

Line 65 loads and displays the dialog in the usual way and line 68 outlines the
Ok button. InitChecks (69) is similar to InitButtons (see Listing 6.8, 110). Pass a
dialog pointer and ChecksRecord variable to preset check boxes to the current selec
tions set, adding visible checks to all boxes in that set.

A REPEAT loop then calls ModalDialog (71), which returns in integer itemHit
the number of the item clicked. If that item is not one of the dialog's two buttons,
line 73 calls DialogUnit tool CheckBox to toggle a check mark on or off. In your
own programs, pass the dialog pointer, ChecksRecord variable and itemHit as in
the example. CheckBox displays visible checks where necessary and updates the
selection field in the checks record.

Notice that lines 75-76 assign the temporary checks copy back to global pro
gramOptions only if you click the Ok button. After that, line 77 erases the dialog
from memory before the procedure ends.

Using Options in Programs

As you can see from Listing 6.12, the check boxes in the options dialog don't
cause any actions to occur. They merely change the settings the program stores in
its ChecksRecord variable. But the example doesn't show how to make use of those
options-something a real program would have to do.

For an example, follow these steps to activate the Sound option in the exam
ple. With Sound on, you hear a beep every time you click the mouse (except when
checking boxes in the options dialog itself.) Add these lines between lines 114 and
115 in procedure MouseDownEvents.

IF OptSound IN programOptions.selections
THEN SysBeep(3);

Computer Conversations ===: 285

Run the modified program and click the mouse anywhere in the desktop. You
should hear a beep. Choose the Options command from the File menu and turn
off the Sound option. After clicking Ok, you no longer hear beeps when you click
the mouse.

As you can see, the dialog itself does not keep track of the program options-it
merely displays a visual representation of whatever settings you tell it about. It's
your responsibility to save those settings and respond appropriately as this exam
ple shows.

To test for various options, use standard Pascal set commands. When you want
to test for a single option, use the IN operator like this:

IF optionConstant IN programOptions.selections
THEN {option-on action}
ELSE {option-off action}

To test for option groups, use other Pascal set operators. For example, to check
whether the auto-save and color options are on in Listing 6.12, you could write:

IF [OptSound, OptColor J <=
programOptions.selections

THEN Sys Beep (3) ;

In other words, only if the set of OptSound and OptColor is included (< =)
in the programOptions selections set does the program beep. Try this statement
in place of the earlier modification you made between lines 114 and 115. With this
change, you now have to check both the sound and color options to make mouse
clicks beep.

ERROR MESSAGES

Designing error messages as dialogs or alerts gives them a consistent look and
makes it easy to add new error messages to programs as you write them. The next
example develops an error message center that you can use in any program. In
cluded is a procedure for displaying Turbo's loResult error codes for use with Reset
and Rewrite (along with other procedures) when you turn off 110 error checking
with the {$i-} option. The same program can test other error messages, too.

The first part of the error system is a unit of tools that help add error alerts
to programs. Type in Listing 6.13 and save as ERRORUNIT.PAS. Compile to a
disk file in folder Units or change line 1 to compile to a different volume and folder.
ErrorUnit uses DialogUnit (Listing 6.18), which it expects to find in the volume
and folder in line 19. After compiling, don't try to run ErrorUnit-you need to
write a host program to use its routines.

286 Programming with Macintosh Turbo Pascal

Listing 6.13. ERRORUNIT.PAS

1: ($0 Programs:Units.F:
2: {$U-)

Send compiled code to here
Turn off standard library units

3:
4:
5: UNIT ErrorUnit(131);
6:
7: (*

8:
9 : * PURPOSE

10: * SYSTEM
11: * AUTHOR

Error message alert tools
Macintosh I Turbo Pascal
Tom Swan

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

*)

INTERFACE (Items visible to a host program)

($U Programs:Units.F:DialogUnit) (Open this library unit file)

USES

Memtypes, QuickDraw, OSintf, Toolintf, Packintf, DialogUnit;

CONST

Error ID 999; (Error alert box resource ID)

TYPE

ErrorType c (StopError, NoteError, CautionError);

PROCEDURE DisplayError(errNum : INTEGER; errMessage,
errHelp: Str255; errKind: ErrorType);

PROCEDURE IOError(errNum: INTEGER; helpMessage : Str255);

44: IMPLEMENTATION
45:

(Items not visible to a host program)

46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:

PROCEDURE DisplayError;

Display error number, message, and help strings.

VAR

errNumStr
itemHit

Str255;
INTEGER;

BEGIN

NumToString(errNum, errNumStr);
ParamText(errNumStr, errMessage, errHelp,);
CASE errKind OF

StopError
NoteError
CautionError

END (case)

END; (DisplayError

itemHit := StopAlert(ErrorID, NIL);
itemHit := NoteAlert(ErrorID, NIL);
itemHit := CautionAlert(ErrorID, NIL

67:
68:

Computer Conversations

69: PROCEDURE IOError;
70:
71: Display message for this standard IOResult error number I
72:
73: VAR
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:

s Str255;

BEGIN

CASE errNum OF
-33 s 'File directory full';
-34 s : = 'Volume allocation blocks full';
-35 s : = 'Volume does not exist';

s :='Disk I/O error'; -36
-37
-38
-39
-40
-41

s :=
s :=

'Bad file or volume name';
'File not open';

s := 'Unexpected end of file';
s := 'Reference before start of
s :='System heap is full';

-42 s := 'Too many open files';
-43 s := 'File not found';
-44 s := 'Write protect tab open';
-45 s := 'File is locked';
-46 s := 'Volume locked';
-47 s :='One or more files open';
-48 s :='File already exists';

file';

-49 s := 'Attempt to write to already open file';
-50 s :='No default volume';
-51 s : =
-53 s : =
-54, -61 ;
-55 s : =
-56 s :=
-57 s :=
-58 s :=
-59 s :=
-60 s

-108 s
-120 s :=

'Bad file reference number';
'Volume not on line';
s := 'Writing not permitted';
'Volume already mounted and on line';
'Bad drive number';
'Not a Macintosh format directory';
'Problem in external file system';
'Cannot rename';
'Bad master directory block';
'Heap zone full';
'Directory not found';

-121
-122

s :='Too many directories open 1 ;

'Bad HFS command'; s
s -123

-127
-128
-129

'Non HFS-directory';
s := 'Internal file system error';
s := 'Text file not open for input';
s := 'Text file not open for output';

-130 s := 'Error in number'

OTHERWISE

BEGIN
s :='Unknown error condition';
helpMessage :=

'Please notify programmer at (800) 555-1212'
123: END
124:
125: END; (case
126:
127: DisplayError(errNum, s, helpMessage, StopError)
128:
129: END; (IOError)
130:
131:
132:
133: END. (ErrorUnit)

287

288 == Programming with Macintosh Turbo Pascal

ErrorUnit Play-by-Play

Programs that use ErrorUnit must also use all the units line 24 lists. You also
need an alert dialog with resource ID 999, which the unit declares as constant Er
rorID at line 29. Following this section is an example that shows how to design
the alert.

ErrorType (34) is an enumerated data type with three elements, StopError,
NoteError, and CautionError. Pass one of these elements to procedure DisplayError
to select one of the alert icons in Figure 6. 7.

PROCEDURE Di splayError(errNum
errMessage, errHelp: Str255;
errKind: ErrorType);

INTEGER;

DisplayError (47-66) takes four parameters: an error number (errNum), a string
(errMessage), an optional help line (errHelp), and the error type (errKind).
Although the two strings errMessage and err Help are of type Str255, they can never
be as long as that. Because the Macintosh uses proportionally spaced characters,
it's impossible to give a maximum string length although 40 characters each should
be a reasonable limit. Use the program in the next section to test your messages
to make certain none is too long.

ErrNum can be any integer value from - 32768 to 32767. ErrMessage should
be a description of what that error code means. ErrHelp should offer advice and
consolation. And errKind should specify an appropriate icon from Figure 6.7 for
the upper left corner of the alert window. (Hint: reserve the stop alert's exclama
tion for serious problems. Don't overdo your exclamation points!!!)

For example, lo Result error code - 43 indicates that Reset could not find the
file name you told it to open. To display the error message in Figure 6.13, you could
write:

{$i-} Reset(f, fi LeName); {$i+}
errCode := IoResuLt;
IF errCode <>0 THEN
DispLayError(errCode, 'Fi Le not found',

'Check disk and try operation again', StopError);

Even better is to pass the file name as part of the message. Rather than display
only a note that the program failed to find a file, this tells people which file it
couldn't find, a fact that might not be obvious. To do that, call DisplayError with
a Concat statement to add the file name to a message.

DispLayError(errCode, 'Fi Le not found',
Concat('Did you remember to create ',fiLeName,'?'),
StopError);

Computer Conversations = 289

Error-43: File not found

Check disk and try operation again ([Ok J)

Figure 6.13 ErrorUnit (Listing 6.13) makes it easy to display error messages in alert
windows as this example shows.

As Figure 6.13 shows, the error number follows the word "Error" to the right
of the icon. After that comes the error message. The help message appears along
the bottom of the window. If you don't want either message to appear, pass a null
string (' ') for either errMessage or errHelp.

DisplayError converts the error code to a string (58) and passes it along with
the error and help messages to ParamText (59). It then calls one of the three alert
functions (60-64) depending on errKind's value. Because there's only one button,
it ignores itemHit, the value that alert functions return.

PROCEDURE IOError(errNum: INTEGER;
helpMessage: Str255);

The second procedure in ErrorUnit (69-129) displays a message corresponding
to the error codes that loResult returns. Instead of the previous suggestions, use
the procedure this way:

Ur-} Reset(f, fi leName >;Ur+}
errCode := IoResult;
IF errCode <>O

THEN IOError(errCode, 'Check disk drives'
ELSE {continue with program}

Of course you can pass whatever help message you want as the string parameter
to IOError. Although the procedure knows all the error codes listed in the Turbo
manual, it's possible that future revisions of the compiler will add new error
numbers. For that reason, if IO Error receives an unknown code, it displays the note:
"Please notify programmer at (800) 555-1212." You'll probably want to change line
122 to display something else here.

IOError breaks a Macintosh rule that English language strings should be in
resource files instead of directly encoded in programs. That's probably a good idea
for finished programs but, in this case, because you have the program source text,
it's just as easy to translate the strings in the procedure as it is to modify compiled

290 ===: Programming with Macintosh Turbo Pascal

Error number? IMNI

((Ok J)

Figure 6.14 Type an error number into this dialog
window from Listing 6.15, ErrTest, to test error
message alerts.

resource files. The large CASE statement (79-125) sets strings to an appropriate
error message, or to "Unknown error condition" for codes it doesn't recognize.
It then calls DisplayError to show the alert.

TESTING ERROR MESSAGES

The following program is a tool that tests error messages you plan to display
with ErrorUnit's routines. As written here, it displays only IoResult messages but
you can easily modify it to display your own errors, too. Type in Listing 6.14, save
as ERRTEST.R, and compile with RMaker. Then type in Listing 6.15, save it as
ERRTEST.PAS, compile with Turbo, and run.

ErrTest displays a small dialog box requesting an error number (Figure 6.14).
Type any number and click Ok or press Return to display the message for that code.
You should see the alert box in Figure 6.13. Click Ok or press Return again to type
in another number. Type 0 (zero) and press Return to quit.

ErrTest operates differently from most other examples in this book. There are
no pull-down menus. Instead, a line on top reminds you to type 0 to quit. When
you run the program, you'll see that you can quickly test multiple errors by typing
numbers and pressing Return twice. And, you can press Return several times to
repeat the previous test without retyping the same error code number.

Listing 6.14. ERRTEST.R

1 *--*
2 * ErrTest.PAS resources -- Compile with RMaker
3 *--*
4
5 Programs:Dialogs.F:ErrTest.RSRC ;; Send output to here
6
7

8 *--*
9 * The File menu

10 *--*
11

Computer Conversations

12: TYPE MENU ,, Dununy menu used as title
13: ,1
14: Error Test -- Type O to quit
15:
16:
17:
18:
19:
20:

--
* The error number entry dialog *
--

21: TYPE DLOG
22: ,1000
23: Test Entry
24: 125 150 232 357
25: Visible NoGoAway
26: 1
27: 0
28: 1000
29:
30:
31:
32:
33: 3
34:
35:
36:
37:
38:

TYPE DITL
'1000 (32)

Btnitem Enabled
70 63 95 142
Ok

39: EditText Enabled
40: 25 140 41 175
41: 0
42:
43: StatText Disabled
44: 25 25 41 125
45: Error number?
46:

, , Resource ID
,, Title (not displayed)
,, Top Left Bottom Right
,, Immediately visible, no go-away box
,, Standard double-border dialog window
,, Reference value (none)
,, Item list ID (following)

,, Error number dialog item list
,, Resource ID, (32)=purgeable
,, Number of items following

,, 1. Ok button

,, 2. Box to enter error number

, , 3. Prompt

--
* The error alert template

47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61: 4

*
--

62:

TYPE ALRT
'999 (4)

45 28 154 481
999
5555

TYPE DITL
'999 (32)

63: Btnitem Enabled
64: 71 360 103 440
65: Ok
66:
67: StatText Disabled
68: 25 80 41 165
69: Error AO:
70:
71: StatText Disabled
72: 25 170 41 440
73: Al
74:
75: StatText Disabled
76: 80 15 96 350
77: A2
78:
79:
80: * END

, , Resource ID, (4) = preload
,, Top Left Bottom Right
,, Item list ID (following)
, , Stages (none)

,, Error alert item list
,, Resource ID, (32)=purgeable

, , 1. Ok button

,, 2. Error number

,, 3. Error message

,, 4. Help message

291

292 Programming with Macintosh Turbo Pascal

Listing 6.15. ERRTEST. PAS

1: {$0 Programs:Dialogs.F: I
2: {$R Prograrns:Dialogs.F:ErrTest.Rsrc}
3: {$U-}
4:
5:
6: PROGRAM ErrTest;
7:
8: <*
9:

10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:
14: *}
15:
16:

Test error messages
Macintosh I Turbo Pascal
Tom Swan

Send compiled code to here }
Use this compiled resource file
Turn off standard library units

17: ($U Programs:Units.F:DialogUnit }
18: {$U Programs:Units.F:ErrorUnit }
19:

(Open these library unit files }

20:
21: USES
22:
23: Memtypes, QuickDraw, OSintf, Tool!ntf, Packintf,
24: DialogUnit, ErrorUnit;
25:
26:
27:
28: CONST
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

TitleID
NurnEntryID

VAR

titleMenu
quitRequested
errNwn

l;
1000;

Resource ID for dummy Title menu }
Error number entry dialog resource ID }

MenuHandle;
BOOLEAN;
INTEGER;

Handle to program's only menu }
TRUE if quitting)
Test error number l

42: PROCEDURE GetErrorNumber(VAR errNum: INTEGER);
43:
44: Prompt for and return an integer error number }
45:
46: CONST
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:

Edit Item

VAR

dPtr
itemHit
itemType
itemRect
itemHandle
s
temp

60: BEGIN
61:

2; { Dialog item number in NurnEntryID resource }

DialogPtr;
INTEGER;
INTEGER;
Rect;
Handle;
Str255;
LONGINT;

62: dPtr := GetNewDialog(NumEntryID, NIL, POINTER(-1) };
63:

64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:

Computer Conversations

IF dPtr <> NIL THEN
BEGIN

GetDitem(dPtr, Edititem, itemType, itemHandle, itemRect);
IF itemHandle <> NIL THEN
BEGIN

OutLineOk(dPtr);
NumToString(errNum, s);
SetIText(itemHandle, s);
SelIText(dPtr, Edititem, O, maxint);
REPEAT

ModalDialog(NIL, itemHit
UNTIL itemHit = Ok;
GetIText(itemHandle, s);
StringToNum(s, temp);
errNum := temp

END; (if)
DisposDialog(dPtr

END I if I
END; I GetErrorNumber I

PROCEDURE TestError(errNum: INTEGER);

Call IOError with appropriate help message

BEGIN
IF errNum <> 0

THEN IOError(errNum, 'Check disk and try operation again')
END; I TestError)

PROCEDURE DoTest;

Type in an error number and display error message)

BEGIN
GetErrorNumber(errNum);
TestError(errNum

END; I DoTest I

PROCEDURE Initialize;

Program calls this routine one time at start I

BEGIN

InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEinit;
InitDialogs(NIL);
InitCursor;
FlushEvents(everyEvent, 0);

titleMenu := GetMenu(TitleID);
InsertMenu(titleMenu, 0);
DrawMenuBar;

errNwn := 0

END; (Initialize

(Display dummy menu I

293

{continued)

294 == Programming with Macintosh Turbo Pascal

129: BEGIN
130: Initialize;
131: REPEAT
132: SystemTask;
133: DoTest
134: UNTIL errNum = 0
135: END.

ErrTest Play-by-Play

ERRTEST.R (1-80}

The resource text file declares a dialog template (21-28) for the error number
entry window in Figure 6.14. The item list (31-45) contains three objects: an Ok
button, an EditText box for typing in numbers, and a StatText prompt.

The error alert (52-56) has ID 999, which ErrorUnit requires. In your own pro
grams, copy this alert template exactly as listed. Its item list (59-77) has an Ok button
and three Stat Text items with replaceable parameters. Parameter " 0 is the error
number, "1 is the error message, and "2 is the help line. These symbols correspond
with the strings you pass to ParamText. (See Listing 6.13, 59.)

Most unusual is the menu declaration at lines 12-14. The program displays this
menu title as a prompt-it has no pull-down menus. Although this use of a menu
resource would be unacceptable in a commercial program, it's a useful trick to
remember when writing tests and demos like this one.

ERRTEST.PAS {1-135}

Because the test program has no pull-down menus, its main loop (129-135)
differs from other examples in this book. After initializing, a REPEAT loop calls
SystemTask and DoTest until global errNum is zero. (Calling SystemTask might not
be necessary-the program can't activate desk accessories. But in the Mac's world
of program switchers, networks, and print spoolers, it's safer to call this procedure
often rather than risk starving some poor process in memory waiting for its hand
out of time.)

Procedure DoTest (95-102) calls GetErrorNumber and TestError in succession.
GetErrorNumber (42-82) displays the dialog in Figure 6.14. After loading and
displaying the dialog window (62), it calls GetDitem (66) to set itemHandle to the
EditText item for typing error codes(the darkened box in the figure). It then con
verts the global errNum to a string (70) and calls SetIText and SelIText (71-72) to
change the number in the box to errNum's value and select it for editing.

The REPEAT loop (73-75) calls Moda!Dialog, just as in other dialog examples,
letting you type in new numbers until you click Ok. After that, the procedure con
verts the EditText item back into a LONGINT value (77) and assigns it to errNum.
(StringToNum requires a LONGINT parameter-the reason for using a temporary
variable here rather than directly passing integer errNum as a parameter.)

Computer Conversations == 295

Procedure TestError (85-92) calls Error Unit routine IOError, passing the er
ror number and string as parameters. To test your own errors, call your error pro
cedure here instead of IOError.

DATA ENTRY FORMS

The next example, one of the longest in this book, combines many features
of previous chapters with dialogs to make a data entry system that you can use
to enter records of various kinds. Figure 6.15 is a copy of the program's display,
a nine"field entry form for a name and address database.

At the same time, the example shows how to program modeless dialogs, allow
ing you to activate pull-down menus and desk accessories. In this way, the dialog
is more like a regular program window but, instead of having to design the win
dow's contents yourself, you call dialog procedures to edit text, display controls,
and use other dialog features demonstrated earlier.

As with all examples in this chapter, this one uses the programming in
DialogUnit as well a~ in ErrorUnit and MacExtras. Be sure to have all three units
on volume Programs in folder Units.F, or change lines 1, 2, 17-19 in Listing 6.17
to use different names.

To run the example, type in Listing 6.16, save as DATAENTRY.R, anC: com-

s File Edit Record

Address: I 254 South Brood Street

City: I Tronsyluonio

Telephone: I (800) 555-1212

Birth Dote: I 14-Feb-53

ST: IPA ZIP: I 12345

Poyments: ._I 4_5_7_. 9_5 __ __,

Chorges: ._I 5_5_o_.o_o __ __,

002

Figure 6.15 Modeless dialogs make good-looking data entry forms as in this sample
display from Listing 6.17, DataEntry.

296 == Programming with Macintosh Turbo Pascal

pile with RMaker, creating the program's resources. Then type in Listing 6.17 and
save as DATAENTRY.PAS. Compile with Turbo to run the program, which creates
a data file Names.DATA on the current volume.

To type in names and addresses, use the Tab key to move from field to field
or click the mouse pointer in the field you want to edit next. If you have a Mac
intosh Plus or a numeric keypad, you can use the arrow keys to move the vertical
bar cursor from one character to another within the current field. All standard
editing commands are active. To cut and paste between fields or between records,
select any field by clicking and dragging the cursor over it, type Command-C to
copy (or choose the Edit menu's Copy command), and Command-V (or Paste) to
duplicate that field in subsequent records. Undo throws away changes as long as
you do not leave the current field.

Pressing Return or Enter saves the record on screen and moves to the next one.
Clicking the Next button in the lower left corner is identical to pressing either of
those two keys. Clicking Previous also saves the current record but moves to the
preceding one. Clicking Cancel throws out all changes made to all fields in the cur
rent record, redisplaying whatever was there before.

The number in the .top right corner corresponds with the record on display
(002 in the figure). You cannot type over this number-it represents the position
of the record in the data file. In this version, you can have from I to 100 records.
If you need more, change the constant at line 65 in Listing 6.17. (Do this before
running the program the first time.) Because of the limitation that no data struc
ture can exceed 32,767 bytes, you can have at most about 250, 130-byte records before
you exceed Turbo's limit. To go beyond that limit, you would have to read and write
individual records on disk rather than read them all into memory as in this example.

Listing 6.16. DATAENTRY.R

1 *--*
2 * DataEntry.PAS resources -- Compile with RMaker *
3 *--*
4
5 Programs:Dialogs.F:DataEntry.RSRC ;; Send output to here
6
7
8 *--*
9 * About box string list

10 *--*
11
12 TYPE STRll
13 'l (32)
14 6
15 Data Entry Example
16 by Tom Swan
17 Version 1.00
18 (C) 1987 by Swan Software
19 P. 0. Box 206, Lititz, PA 17543
20 (717)-627-1911
21
22

Computer Conversations

23: *--*
24: * The Apple Info menu

25: *--*
26:
27: TYPE MENU
28: '1
29: \14
30: About DataEntry ...
31: (-
32:
33:
34: *--*
35: * The File menu *
36: *--*
37:
38: TYPE MENU
39: ,2
40: File
41: Close
42: Save /S
43: (-
44: Quit /Q
45:
46:
47: *--*
48: * The Edit menu *
49: ·--*
50:
51: TYPE MENU
52: '3
53: Edit
54: Undo /Z
55: (-
56: Cut /X
57: Copy /C
58: Paste /V
59: Clear
60:
61:
62: TYPE MENU
63: ,4
64: Record
65: Next /N
66: Previous /P
67: (-
68: Number ...
69:
70:
71:
72:
73:
74:

--
* The entry-form dialog * *--*

75: type DLOG
76: ,1000
77: Entry form
78: 40 18 316 494
79: Visible NoGoAway
80: 1
81: 0
82: 1000
83:
84:
85: type DITL
86: ,1000 (32)
87: 22
88:

,, Item list for entry form dialog

,, Number of items following

297

(continued]

298 = Programming with Macintosh Turbo Pascal

89: Btnltem Enabled
90: 250 348 266 448
91: Next
92:
93: Btnltem Enabled
94: 250 21 266 121
95: Cancel
96:
97: Btnltem Enabled
98: 250 215 266 315
99: Previous

100:
101: EditText Enabled
102: 20 105 36 445
103:
104:
105: EditText Enabled
106: 55 105 71 445
107:
108:
109: EditText Enabled
110: 90 105 106 205
111:
112:
113: EditText Enabled
114: 90 260 106 310
115:
116:
117: EditText Enabled
118: 90 360 106 445
119:
120:
121: EditText Enabled
122: 145 105 161 240
123:
124:
125: EditText Enabled
126: 180 105 196 240
127:
128:
129: EditText Enabled
130: 145 350 161 445
131:
132:
133: Edi Text Enabled
134: 180 50 196 445
135:
136:
137: StatText Disabled
138: -3 452 12 480
139: 001
140:
141: StatText Disabled
142: 20 25 36 85
143: Name:
144 :.
145: StatText Disabled
146: 55 25 71 90
147: Address:
148:
149: StatText Disabled
150: 90 25 106 90
151: City:
152:
153: StatText Disabled
154: 90 235 106 255
155: ST:
156:

,, 1. Next button

,, 2. Cancel button

,, 3. Previous button

,, 4-12. Field entry areas

,, 13. Record number in upper right corner

,, 14-22 Field names for each edit area

157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:

Computer Conversations == 299

StatText Disabled
90 325 106 355
ZII?:

StatText Disabled
145 25 161 100
Telephone:

StatText Disabled
180 25 196 100
Birth Date:

StatText Disabled
145 270 161 345
Payments:

StatText Disabled
180 270 196 345
Charges:

---------------------------------------·-----------
* The Save Changes? alert *
--
type ALRT

, 1001 (4)
73 105 198 400
1001
5555

type DITL
,1001 (32)

4

Btnitem Enabled
60 25 82 105
Yes

Btnitem Enabled
95 200 117 280
Cancel

Btnitem Enabled
95 25 117 105
No

StatText Disabled
7 86 27 295

,, Item list for alert

,, Number of items following

" l. Yes button

'' 2. Cancel button

'' 3. No button

;; 4. Message text

Save changes before quitting?

--
* The Enter record number dialog *
--
type DLOG

,1002
RecNwn
100 138 220 376
Visible NoGoAway
1
0
1002

(continued)

300 == Programming with Macintosh Turbo Pascal

225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:

type DITL
,1002 (32)

Btnitem Enabled
86 25 104 99
Ok

Btnitem Enabled
86 141 104 215
Cancel

Stat Text Disabled
17 25 35 146
Record number?

EditText Enabled
50 105 66 131
l

'' Number of items following

'' l. Ok button

'' 2. Cancel button

'' 3. Prompt

'' 4. Entry area. (Default number

246: *--*
247: * The error alert template
248: *--*
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:

TYPE ALRT
'999 (4)

45 28 154 481
999
5555

TYPE DITL
'999 (32)

Btnltem Enabled
71 360 103 440

263: Ok
264:
265: StatText Disabled
266: 25 80 41 165
267: Error AO:
268:
269: StatText Disabled
270: 25 170 41 440
271: Al
272:
273: StatText Disabled
274: 80 15 96 350
27 5: A2

276:
277:
278: * END

, , Resource ID, (4) = pre load
,, Top Left Bottom Right
,, Item list ID (following)
, , Stages (none)

,, Error alert item list
, , Resource ID , (30) =purgeable

,, 1. Ok button

,, 2. Error number

,, 3. Error message

,, 4. Help message

1).

Computer Conversations ===: 301

Listing 6.17. DATAENTRY.PAS

1: {$0 Programs:Dialogs.F:)
2: ($R Programs:Dialogs.F:DataEntry.Rsrc)
3: ($U-)

Send compiled code to here)
Use this compiled resource file
Turn off standard library units

4:
5:
6:
7:

PROGRAM DataEntry;

8: (*
9:

10:
11:
12:
13:
14:
15:
16:

* PURPOSE
* SYSTEM
* AUTHOR

*)

Data entry example using rnodeless dialog
Macintosh I Turbo Pascal
Torn Swan

17: {$U Programs:Units.F:MacExtras { Open these library unit files)
18: {$U Programs:Units.F:DialogUnit)
19: {$U Prograrns:Units.F:ErrorUnit)
20:
21:
22: USES
23:

PasinOut,
Merntypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras,
DialogUnit, ErrorUnit;

CONST

FileID 2; (Resource ID number for File menu)
CloseCrnd = l;
SaveCrnd 2;

{--------)
QuitCrnd 4;

RecordID 4;
NextCrnd = l;
PrevCrnd = 2;

{--------)
NumbCrnd 4 ;

Dialog and Alert resource IDs and item numbers

EntryID 1000; Resource ID of Entry dialog
Save ID = 1001; Resource ID of Save Changes? alert

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

RecNurnID = 1002; Resource ID of Record number? dialog

NextButton Ok; Dialog "Next" button number (same
PrevButton 3; Dialog "Previous" button number)
FirstEdititern 4; Number of first edit text item)

Keyboard scan codes -- not the same as ASCII values)

KeyReturn
KeyEnter

36;
76;

(Data file constants)

Return key code)
Enter key code)

as Ok)

[continued)

302

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
Bl:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
lOl:
102:
103:
104:
105:
106:
107:
108:
109:
llO:
lll:
ll2:
ll3:
ll4:
ll5:
ll6:
ll7:
llB:
ll9:
120:
l2l:
122:
123:
124:
125:
126:
127:
128:
129:
130:
l3l:

Programming with Macintosh Turbo Pascal

MaxRec
FileName

NameLen
AddressLen
CityLen
STLen
ZipLen
PhoneLen
DateLen
NwnLen

Name Item
Address Item
City Item
STitem
Zipitem
Phone Item
Birthdateitem
Payments Item
Charges Item

MaxField

TYPE

lOO;
'Names.DATA';

Maximum records in database
Name of disk file)

32;
32;
15;

5;
5;

14;
8;

11;

1;
2;
3;
4;
5;
6;
7;
8;
9;

9;

I DataRec string lengths }

Dialog edit text numbers for each field }
in the DataRec. }

{ The number of fields specified above }

Dollar= LONGINT; { Amounts in approx. range of +/- $21,474,836.46)

DataRec =
RECORD

Name
Address
City
ST
Zip
Phone
BirthDate
Payments
Charges

String(NameLen];
String[AddressLen];
String[CityLen };
String[STLen];
String[ZipLen];
String[PhoneLen);
String[DateLen);
Dollar;
Dollar;

END; (DataRec

DataArray =ARRAY[1 .. MaxRec J OF DataRec;
DataArrayPtr = hDataArray;

VAR

record.Menu

iBeam
watch
cross
theCursor

editArea
buttonArea

dPtr

quitRequested
dataDirty
theData
dataindex

MenuHandle;

Curs Handle;
CursHandle;
CursHandle;
Curs Handle;

Rect;
Rect;

DialogPtr;

BOOLEAN;
BOOLEAN;
DataArrayPtr;
INTEGER;

Pull-down menu handle I

I-beam text entry cursor
Watch (busy) cursor)
Cross (button selector) cursor
The current cursor. NIL=arrow.

Screen areas where cursor
shape should change.)

Entry form dialog pointer

TRUE if quitting)
TRUE if changes not saved }
Pointer to data array)
Index into theData array)

132:
133:
134:
135:
136:
137:
138:
139:
140:

Computer Conversations

The following array holds handles to each edit text item in
the dialog entry form. Copying the handles into a global array
helps cut down the number of calls·to the Dialog manager.)

ItemHandles
ARRAY[l MaxField] OF Handle;

PROCEDURE ResetCursor;

Change cursor into its standard shape (an arrow))

BEGIN
InitCursor;

303

141:
142:
143:
144:
145:
146:
147:
148:
149:
150:

theCursor := NIL
END; (ResetCursor)

{ Means 11 arrow cursor" to other procedures }

151: PROCEDURE InitNewArray;
152:
153: Create new array of blank records)
154:
155: BEGIN
156:
157: Use the following statement to quickly clear large arrays. But
158: be careful--it just fills the entire array with zero bytes with
159: no regard for the various field types in the records. J
160:
161: FillChar(theDataA, sizeof(DataArray), 0)
162:
163: END; (InitNewArray I
164:
165:
166: PROCEDURE ShowRecordNumber;
167:
168: Display current record number in dialog window I
169:
170: VAR
171:
172:
173:
174:
175:
176:
177:
178:
179:

itemNo
itemType
item
itemRect
s

BEGIN

INTEGER;
INTEGER;
Handle;
Rect;
Str255;

180: Calculate record number position in dialog item list J
181:
182: itemNo := FirstEdititem + MaxField;
183:
184: GetDitem(dPtr, itemNo, itemType, item, itemRect);
185: NumToString(dataindex, s); (Convert number to string
186: WHILE length(s) < 3 DO (Expand to three digits: J
187: insert('0', s, l); (001, 002, ... , 025, etc. J
188: SetIText(item, s) (Store strings into dialog item
189:
190: END; { ShowRecordNumber
191:
192:
193: PROCEDURE DollarToStr(d: Dollar; VAR s : Str255);
194:
195: (Convert Dollar amount ct to a string s)
196:

{continued)

304 Programming with Macintosh Turbo Pascal

197: VAR
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:

negative BOOLEAN;

BEGIN
negative := (d < 0);
d :=ABS(d) ;
NumToString(d, s);
WHILE length(s) < 3 DO

Insert ('0 1 , s, 1) ;
Insert ('. ', s, length (s
IF negative

THEN Insert(s, 1
END; (DollarToString }

Remember if value is negative
Convert value to positive J
Do raw conversion to string

(Make at least 3 digits long
- 1 }; { Insert decimal point J

Insert minus sign }

213: PROCEDURE StrToDollar(s : Str255; VAR d
214:

Dollar } ;

215: Convert string s to dollar value d }
216:
217: VAR
218:
219:
220:
221:

p INTEGER; { Position of decimal point in string }

222: PROCEDURE FindDecimal;
223:
224: Set global variable p to position of decimal point in strings
225: or set it to zero if there is no decimal }
226:
227: BEGIN
228: p := pos ('. ', s }
229: END; { FindDecimal }
230:
231: BEGIN
232:
233:
234:

FindDecimal;
WHILE p > 0 DO
BEGIN

235: Delete(s, p, 1);
236: FindDecimal
237: END; { while }
238:
239:
240:
241:

StringToNurn(s, d
END; { StrToDollar I

(Remove any decimal point I

(Convert to Dollar type }

242: PROCEDURE FieldToDialog(field : Str255; itemNum : INTEGER);
243:
244: Save this string in -the dialog edit text with this item number
245:
246: BEGIN
247: SetIText(iternHandles[itemNum], field)
248: END; (FieldToDialog I
249:
250:
251: PROCEDURE DialogToField(VAR field: Str255; len, iternNurn: INTEGER);
252:
253: Retrieve dialog iternNum EditText and return up to len chars in field
254:
255: BEGIN
256: GetIText(iternHandles[iternNum }, field);
257: IF Length(field) > len
258: THEN field := copy(field, 1, len)
259: END; { DialogToField)
260:
261:

262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:

Computer Conversations :;;;:;;;: 305

PROCEDURE RecToDialog;

Disassemble current record into dialog text items for editing I

VAR

s Str255;

BEGIN
SelIText(dPtr, FirstEdititem, O, 0 };
WITH theDataA(dataindex J DO

{ Un hilite first field I

BEGIN
FieldToDialog(name, Nameitem);
FieldToDialog(address, Addressitem);
FieldToDialog(city, Cityitem);
FieldToDialog(ST, Stitem);
FieldToDialog(Zip, Zipitem);
FieldToDialog(Phone, Phoneitem);
FieldToDialog(BirthDate, Birthdateitem
DollarToStr(Payments, s);

FieldToDialog(s, Paymentsitem);
DollarToStr(Charges, s);

FieldToDialog(s, Chargesitem)
END; (with I

);

Copy fields to dialog
edit text items. I

{ Convert fields not
{ already strings I

SelIText(dPtr, FirstEdititem, O, Maxint); {Milite first field I
ShowRecordNumber

END; (RecToDialog I

PROCEDURE DialogToRec;

Assemble dialog edit text items into the current Pascal record }

VAR

s Str255;

BEGIN
WITH theDataA[dataindex J DO
BEGIN

DialogToField(s,
name := s;

DialogToField(s,
address := s;

DialogToField(s,
city := s;

DialogToField(s,
ST := s;

DialogToField(s,
Zip := s;

DialogToField(s,

NameLen, Nameitem); I Get edited text item
I Copy to record field

AddressLen, Addressitem);

CityLen, Cityitem);

StLen, Stitem);

ZipLen, Zipitem);

PhoneLen, Phoneitem);
Phone := s;

DialogToField(s, DateLen, Birthdateitem);
BirthDate := s;

DialogToField(s, NumLen, Paymentsitem);
StrToDollar(s, Payments);

DialogToField(s, NumLen, Chargesitem);
StrToDollar(s, Charges);

END (with I
END; { DialogToRec I

PROCEDURE NewRecord(recNum: LONGINT);

I Save current record and display another

Convert dollar str
to Dollar type J

(continued]

328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:

306 = Programming with Macintosh Turbo Pascal

BEGIN
DialogToRec;
IF recNwn < l

THEN
recNwn := MaxRec

ELSE
IF recNwn > MaxRec

THEN
recNwn := l;

dataindex := RecNwn;
RecToDialog

END; I NewRecord I

PROCEDURE DoNext;

Save current record
Limit record number range
to l .. MaxRec. }

Change record number }
Disassemble record into edit fields }

Advance to next record, saving contents of the current record. }

BEGIN
NewRecord(dataindex + l)

END; (DoNext }

PROCEDURE DoPrevious;

Go back to previous record, saving contents of the current record }

BEGIN
NewRecord(dataindex - l)

END; I DoPrevious }

PROCEDURE DoSave;

Save records in a disk file)

VAR

dataFile
errCode
rn

BEGIN

FILE OF DataRec;
INTEGER;
INTEGER;

Before writing records to disk, insert the current fields now on
display into theData array. If you didn't do this, changes to the
displayed record would be lost because they normally are saved only
after you press return (or click the previous or next buttons). }

DialogToRec;

SetCursor(watchAA); I Display wrist watch while writing }

($i-I Rewrite(dataFile, FileName); ($i+I '
errCode := IoResult;
IF errCode = 0 THEN
BEGIN

rn := 1;
WHILE (errCode = 0) AND (rn <= MaxRec) DO
BEGIN .

($i-} write(dataFile, theDataA[rn)); ($i+}
errCode := IoResult;
rn := rn + 1

END (while
END; I if I

395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
418:
419:
420:
421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:
449:
450:
451:

Computer Conversations = 307

ResetCursor;

IF errCode <> 0
THEN IoError(errCode, 'Check disk and try again')
ELSE dataDirty := FALSE;

($i-) Close(dataFile); ($!+}
errCode := IoResult

END; (DoSave

PROCEDURE ReadFromDisk;

Read disk file into data array -- file already known to exist)

VAR

dataFile
errCode
rn

FILE OF DataRec;
INTEGER;
INTEGER;

BEGIN

($i-) Reset(dataFile, FileName); ($i+}
errCode := IoResult;
IF errCode <> 0 THEN InitNewArray ELSE { If no file, start one
BEGIN

SetCursor(watchAA); Display wrist watch while reading)
rn := 1;
WHILE (errCode = 0) AND (rn <= MaxRec) DO
BEGIN

{$i-) read(dataFile, theDataA[rn)); ($i+)
errCode := IoResult;
rn := rn + 1

END; (while)
ResetCursor; Make cursor an arrow again)
IF errCode <> 0

THEN IoError(errCode, '');
Close(dataFile)

END; { if)
dataindex := l;
dataDirty := FALSE;
RecToDialog

END; (ReadFromDisk

PROCEDURE DoNwnber;

{ Start new display with first record J
(Mark data "saved" }

{ Display record for editing }

Request record nwnber and advance to that record saving
current record contents J

CONST

NewNumitem = 4; (Edit text item nwnber)

452: VAR
453:
454: { Number-Dialog Pointer } ndPtr DialogPtr;
455:
456:
457:
458:
459:
460:
461:

itemType
itemHandle
itemRect
itemHit
newNum
s

INTEGER;
Handle;
Rect;
INTEGER;
LONGINT;
Str255;

(continued]

308 Programming with Macintosh Turbo Pascal

462:
463:

BEGIN

464:
465:
466:
467:

ndPtr := GetNewDialog(RecNumID, NIL, POINTER(-1));
IF ndPtr <> NIL THEN
BEGIN

OutlineOk(ndPtr); 468:
469:
470:
471:
472:
473:
474:
475:
476:
477:
478:
479:
480:

GetDitem(ndPtr, NewNumitem, itemType, itemHandle, itemRect);
SelIText(ndPtr, NewNumitem, O, Maxint);
REPEAT

ModalDialog(NIL, itemHit
UNTIL (itemHit =Ok) OR (itemHit =Cancel);
IF itemHit = Ok THEN
BEGIN

GetIText(itemHandle, s);
StringToNum(s, newNum);
NewRecord(newNum)

END; { if)

Get edited text)
Convert to number
Display the new record

481:
482:
483:
484:

DisposDialog(ndPtr) { Remove dialog from memory J

END { if}

485: END; { DoNumber
486:
487:
488: PROCEDURE DoClose;
489:
490: Respond to File menu Close command J
491:

BEGIN 492:
493:
494:
495:
496:
497:

IF FrontWindow <> dPtr
THEN CloseDAWindow

END; { DoClose }
(Close desk accessory window }

498: PROCEDURE DoFileMenuCommands(cmdNumber
499:

INTEGER) ;

500: Execute command in the File menu }
501:
502: BEGIN
503: CASE cmdNumber OF
504: CloseCmd DoClose;
505: SaveCmd IF dataDirty THEN DoSave;
506: QuitCmd quitRequested := TRUE
507: END (case
508: END; { DoFileMenuCommands }
509:
510:
511: PROCEDURE DoEditMenuCommands(cmdNumber
512:

INTEGER) ;

513: Execute command in the Edit menu }
514:
515: BEGIN
516: IF NOT SystemEdit(cmdNumber - l) THEN
517: BEGIN
518:
519:
520:
521:
522:
523:
524:
525:
526:
527:
528:

dataDirty := TRUE;

CASE cmdNumber OF
UndoCmd
CutCmd
CopyCmd
PasteCmd
ClearCmd

END (case J

529: END (if

SysBeep(4);
DlgCut(dPtr);
DlgCopy(dPtr);
DlgPaste(dPtr);
DlgDelete(dPtr)

530: END; { DoEditMenuCommands

{ Assume editing done. }

Undo doesn't. }
These procedures affect
selected text }
in the dialog edit
text fields . }

Computer Conversations

531:
532:
533:
534:
535:
536:
537:
538:
539:

PROCEDURE DoRecordMenuCommands(cmdNumber

Execute Record menu command)

BEGIN
CASE cmdNumber OF

NextCmd DoNext;
540: PrevCmd DoPrevious;
541: NumbCmd DoNumber
542: END (case
543: END; (DoRecordMenuCommands
544:
545:
546: PROCEDURE DoCommand(command: Longint);
547:

INTEGER) ;

548: Execute command returned by MenuSelect or MenuKey functions)
549:
550: VAR
551:
552:
553:
554:
555:
556:
557:
558:
559:
560:
561:
562:
563:
564:
565:
566:
567:
568:
569:
570:
57l:

whichMenu
whichitem

BEGIN

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command J

whichMenu :~ HiWord(command);
whichitem := LoWord(command);

CASE whichMenu OF
AppleID DoAppleMenuCommands(whichitem);
FileID DoFileMenuCommands(whichitem);
Edit ID
RecordID

END; { case

HiliteMenu(O

END; (DoCommand

DoEditMenuCommands(whichitem);
DoRecordMenuCommands(whichitem);

(Unhighlight menu title J

572: PROCEDURE MouseDownEvents;
573:
574: Someone pressed the mouse button. Check its location and respond.)
575:
576: VAR
577:
578:
579:
580:
581:

part Code

BEGIN

INTEGER;

582: WITH theEvent DO
583:
584: BEGIN
585:

(Identifies what item was clicked. J

586: partCode := FindWindow(where, whichWindow);
587:
588: CASE part Code OF
589:
590:
591:
592:
593:
594:
595:
596:
597:

inMenuBar
: DoCommand(MenuSelect(where));

inSysWindow
: SystemClick(theEvent, whichWindow J;

END case

598: END; (with)
599:
600: END; (MouseDownEvents

309

(continued)

310 Programming with Macintosh Turbo Pascal

601:
602:
603: PROCEDURE KeyDownEvents;
604:
605: A key was pressed. Do something with incoming character. }
606:
607: VAR
608:
609:
610:

ch

611: BEGIN

CHAR;

612: WITH theEvent DO
613: BEGIN
614: ch := CHR(BitAnd(message, charCodeMask));
615:
616:
617:
618:

IF BitAnd(modifiers, CmdKey) <> 0
THEN DoCommand(MenuKey(ch))

619: END with
620: END; { KeyDownEvents
621:
622:
623: PROCEDURE DialogEvents;
624:

{ Execute a command }

625: Handle events recognized as belonging to the data
626: entry modeless dialog. l
627:
628:
629:
630:
631:
632:
633:

VAR

itemHit
flag

INTEGER;
BOOLEAN;

634: PROCEDURE TranslateChar(message : LONGINT);
635:
636: Translate character reported by a keydown event into an
637: equivalent itemHit value. This lets people use the keyboard or
638: the mouse to click buttons in the entry form dialog. Chars that
639: are not translated are passed to DialogSelect later. }
640:
641: VAR
642:
643:
644:

keyCode LONGINT; { Not the same as an ASCII value! l

645: BEGIN
646: keyCode := BitAnd(message, keyCodeMask) DIV 256;
647: IF (keyCode = KeyReturn) OR (keyCode = KeyEnter
648: THEN itemHit := Ok { Simulate click on the Ok button
649: END; { TranslateChar }
650:
651:
652: BEGIN
653:
654:
655:
656:

itemHit := Ok - l; { Any value <> Ok is Okay }

657: If event is a keypress, check whether command key is down. If it
658: is, then ignore it -- command keys should not be passed to the
659: Dialog manager. They will be handled in the usual way. }
660:
661:
662:
663:
664:
665:
666:
667:

WITH theEvent DO
IF what = KeyDown THEN

IF BitAnd(modifiers, CmdKey) = 0
THEN TranslateChar(message)
ELSE exit; { Ignore menu command

Set itemHit
keys l

Computer Conversations 311

668: Check via DialogSelect whether an enabled item was clicked, enter
669: chars into fields, etc. But if the "next" button was clicked by
670: pressing return or enter, don't call DialogSelect. This avoids
671: passing the characters we want to process here--cr and enter--rather
672: than passing them to the dialog manager. }
673:
674: IF itemHit = NextButton
675: THEN flag := TRUE
676: ELSE flag := DialogSelect(theEvent, dPtr, itemHit };
677:
678:
679: Finish processing Dialog event by checking for clicks on the Ok or
680: Cancel buttons, and take appropriate actions. }
681:
682: IF flag THEN
683:
684:
685:
686:
687:
688:
689:

CASE itemHit OF

NextButton

PrevButton

Cancel

DoNext;

DoPrevious;

RecToDialog 690:
691:
692:
693:

OTHERWISE dataDirty := TRUE

694: END { case }
695:
696: END; { DialogEvents
697:
698:
699: PROCEDURE SetUpCursors;
700:
701: Initialize cursor patterns
702:
703:
704:
705:
706:

BEGIN
iBeam
watch
cross

:= GetCursor (
:= GetCursor(
:= GetCursor(

707: ResetCursor
708: END; { SetUpCursors I
709:
710:
711: PROCEDURE SetUpMenuBar;
712:

IBeamCursor
WatchCursor
CrossCursor

713: Initialize and display menu bar }
714:
715: BEGIN
716:
717:
718:
719:
720:
721:
722:
723:
724:
725:
726:
727:
728:
729:
730:

appleMenu
fileMenu
editMenu
recordMenu

InsertMenu (
InsertMenu (
InsertMenu (
InsertMenu(

AddResMenu (

DrawMenuBar

GetMenu(
GetMenu (
GetMenu (

::::: GetMenu (

appleMenu,
fileMenu,
editMenu,
recordMenu,

appleMenu,

731:
732:
733:

END; { SetUpMenuBar

Apple ID
FileID
Edit ID
Record ID

0);

0);

0);

0);

'DRVR');

);

);

);

);

) ;

) ;
) ;

{ Assume a change was made }

{ Read menu resources }

{ Insert into menu list }

Add desk accessory names

Display the menu bar }

(continued)

312 Programming with Macintosh Turbo Pascal

734: PROCEDURE SetUpDialog;
735:
736: Initialize the entry form dialog and cursor shape areas }
737:
738: VAR
739:
740:
741:
742:
743:
744:
745:
74 6:
747:

itemType
item
itemRect
itemNo

BEGIN

INTEGER;
Handle;
Rect;
INTEGER;

748:
749:
750:
751:
752:

dPtr := GetNewDialog(EntryID, NIL, POINTER(-1));
IF dPtr = NIL

THEN ExitToShell; { End program -- dialog not avialable }

753:
754:
755:
756:
757:
758:
759:
760:
761:
762:
763:
764:
765:

Copy handles of each edit text item in the dialog. This makes
transfering strings to and f rorn the dialog easier and avoids
calling GetDitem too often. }

FOR itemNo := 0 TO MaxField - l DO
BEGIN

GetDitem(dPtr, itemNo + FirstEdititem,
itemType, item, itemRect);

IF item = NIL
THEN ExitToShell; A field is missing!

766:

itemHandles(itemNo + l
END; { for)

:= item

767: Initialize area rectangles in which the cursor takes different
768: shapes to indicate what you can do. Assumes that all buttons are
769: the lowest objects below the same horizontal plane. This plan may
770: not work if you change the location of objects in the dialog. }
771:
772: editArea := dPtrh.portRect;
773: buttonArea := editArea;
774:
775: GetDitem(dPtr, Ok, itemType, item, itemRect); (Ok button }
776:
777: WITH itemRect DO
778: BEGIN
779: top := top - 4;
780: editArea.bottom := top;
781: buttonArea.top := top
782: END { with }
783:
784: END; (SetUpDialog
785:
786:
787: PROCEDURE SetUpArray;
788:
789: Initialize data array as non-relocatable object on heap }
790:
791: BEGIN
792: theData := DataArrayPtr(NewPtr(SizeOf(DataArray)));
793: IF MemError <> NoErr THEN
794: BEGIN
795: DisplayError(l, 'Not enough memory',
796: 'Set MaxRec to lower value', StopError) ;
797: ExitToShell
798: END; { if)
799: END; { SetUpArray
800:
801:

Computer Conversations

802: PROCEDURE Initialize;
803:
804: Program calls this routine one time at start)
805:
806:
807:
808:
809:
810:
811:
812:
813:
814:
815:
816:

BEGIN
SetUpCursors;
SetUpMenuBar;
DisplayAboutBox;
SetUpDialog;
SetUpArray;
ReadFrornDisk;
quitRequested := FALSE

END; { Initialize)

Initialize various cursor patterns
Initialize and display menus
Identify program)
Initialize data entry dialog
Initialize data array I
Read records or start new file
TRUE on selecting Quit command

817: FUNCTION QuitConfirmed : BOOLEAN;
818:
819: The program's 11 deinitialization 11 routine.
820: Returns TRUE if it's okay to quit program
821:
822: CONST
823:
824:
825:
826:

Yes
No

827: VAR
828:

Ok;
3;

829:
830:

itemHit

831: BEGIN

I Button numbers }

INTEGER;

IF QuitRequested THEN
BEGIN

Quit command chosen)

ResetCursor;
IF dataDirty THEN
BEGIN

Change cursor to standard arrow)
Need confirmation if editing was done

itemHit := CautionAlert(SaveID, NIL);
IF itemHit = Cancel

(Display alert

THEN
quitRequested := FALSE

ELSE
IF IternHit = Yes

THEN
BEGIN

DoSave;
quitRequested := NOT dataDirty

END
END (if I

ENO; (if)

(Quit not confirmed)

Try to save records
TRUE if that worked

313

832:
833:
834:
835:
836:
837:
838:
839:
840:
841:
842:
843:
844:
845:
846:
847:
848:
849:
850:
851:
852:

QuitConfirmed := quitRequested
END; (QuitConfirrned)

{ Pass result as function value)

853:
854: PROCEDURE ChangeCursor;
855:
856: Change cursor shape according to its position)
857:
858: VAR
859:
860: NewCursor : CursHandle;
861: mouseLocation : Point;
8 62: oldPort : GrafPtr;
863:
864: BEGIN
SGS:
866: If another window is frontmost, exit this procedure. This lets
867: desk accessories handle their own cursor changes. l
868:

(continued)

314 ;:;;;;;;;: Programming with Macintosh Turbo Pascal

8G9: IF FrontNindow <> dPtr THEN Exit;
870:
871:
872:
873:
874:
875:
876:
877:
878:
879:
880:
881:
882:
883:
884:
885:
886:
887:
888:
889:
890:
891:
892:
893:
894:
895:
896:
897:
898:
899:
900:
901:
902:
903:
904:
905:
9C6:
907:
908:
909:
910:
911:

All points must be in reference to the dialog window. First save the
old port for later restoring, then set the port to the dialog record
pointer.)

GetPort(oldPort); SetPort(dPtr);

Locate the mouse in local coordinates, that is, relative to the
current grafPort--the dialog window.)

GetMouse(mouseLocation);

Check whether mouse is inside one of the areas in which its shape
changes to indicate what you can do there.)

IF PtinRect(mouseLocation, editArea
THEN NewCursor := iBeam ELSE

IF PtinRect(mouseLocation, buttonArea
THEN NewCursor := cross
ELSE NewCursor := NIL;

{ I Beam for edit area)

Cross for the buttons

Arrow for other areas

If the above logic calls for a change in the cursor shape, then
set the cursor to a new shape. Otherwise, do nothing. Doing this
avoids repeated calls to SetCursor every time through this loop.)

IF NewCursor <> theCursor THEN
BEGIN

IF NewCursor = NIL
THEN InitCursor
ELSE SetCursor(NewCursorAA);

theCursor := NewCursor
END; { if)

Change to standard arrow)
Change to another shape)
Remember current shape)

Restore the original port, saved on entry to this procedure.)

912: SetPort(oldPort
913:
914: END; { ChangeCursor
915:
916:
917: FUNCTION IsProgramEvent(
918:
919:

eventMask
VAR theEvent

INTEGER;
EventRecord) : BOOLEAN;

920: Returns true if GetNextEvent returns true. Also handles dialog events. J
9Ll:
9'2: BEGIN
923:
924: Note: function IsDialogEvent must be called after GetNextEvent even
925: if that function returns false. Otherwise, null events will not be
926: send to IsDialogEvent and the cursor will not blink. J
927:
928: IsProgramEvent := GetNextEvent(eventMask, theEvent J;
929: IF IsDialogEvent{ theEvent)
930: THEN DialogEvents
931:
932: END; { IsProgramEvent)
933:

Computer Conversations

934:
935: PROCEDURE DoSystemTasks;
936:
937: Do operations at each pass through main program loop)
938:
939: BEGIN
940:
941:
942:
943:
944:
945:
946:
947:
948:
949:
950:
951:
952:
953:
954:
955:
956:
957:

ChangeCursor; Reshape cursor according to its position

SystemTask; Give DAs their fair share of time }

IF FrontWindow dPtr THEN

BEGIN { Set up menu commands for data entry window)

Disableitem(fileMenu, CloseCmd);
Enableitem(fileMenu, SaveCmd);

Disableitem(editMenu, UndoCmd);

Enableitem (
Enable Item (
Enable Item (

recordMenu, NextCmd);
record.Menu, PrevCmd);
recordMenu, NumbCmd)

958: END ELSE
959:
960: IF FrontWindow <> dPtr THEN
961:
962: BEGIN { Set up menu commands for active desk accessory)
963:
964:
9£5:
9£6:
967:
968:

Enableitem(fileMenu, CloseCmd);
Disableitem(fileMenu, SaveCmd);

Enableitem(editmenu, UndoCmd);

969: Disableitem(recordMenu, NextCmd);
970: Disableitem(recordMenu, PrevCmd);
971: Disableitem(recordMenu, NumbCmd)
972:
97 3: END { else I if
974:
975: END; (DoSystemTasks)
976:
977:
978: BEGIN
979:
9EJ: Initialize;
961:
9&2: REPEAT
9b3:
984: DoSystemTasks;
985:
986:
967:
988:
989:

IF ~sProgramEvent(everyEvent, theEvent) THEN

990:
991:
992:
993:
994:
995:
996:
997:

CASE theEvent.what OF

MouseOown
Key Down

END (case

UNTIL QuitConf irmed

END.

MouseDownEvents;
KeyDownEvents;

315

316 == Programming with Macintosh Turbo Pascal

DataEntry Play-by-Play

DATAENTRY.R {1-278}

You should have little trouble following the resource file listing. It contains
no new elements-just more of them. The dialog (71-175) is the data entry form
in Figure 6.15, a standard double-border dialog with resource ID 1000. The dialog's
item list contains three buttons (89-99), nine Edit Text items (101-134), and ten Stat
Text items (137-175).

The StatText and Edit Text items form pairs of labels and edit boxes for typ
ing record fields. For example, the EditText item at lines 101-102 is the typing area
for the Stat Text field label, Name: at lines 141-143. To design custom forms, replace
these items with your own labels and editing areas and change line 87 to the total
number of fields in the dialog's item list.

The alert dialog (178-207) displays when you attempt to quit the program after
making changes to records. At that time, the program asks whether you want to
save your changes, similar to the way Listing 6.6 does. (See also Figure 6.6.)

Another dialog (211-243) appears when you choose the Record menu's Number
command. Figure 6.16 shows this dialog in action. It lets you type numbers to locate
records at random.

The final resource definition is identical to error alert 999 in Listing 6.14 (48-77).
Figure 6.13 illustrates how this alert appears.

DATAENTRY.PAS {1-137}

The program uses nine units (24-26). PaslnOut activates Pascal's file package,
allowing the program to use Reset and Rewrite statements to open and create files
and Read and Write to save and recall records on disk.

The constants at lines 33-43 add File and Record menus to the program.
Remember that MacExtras (see Chapter 4) defines the standard Apple and Edit
menus for you. Other constants define the resource IDs for various dialogs and

Record number?

n Ok D Cancel

Figure 6.16 The record number dialog of Listing
6.17, DataEntry.

Computer Conversations == 317

alerts (48-87) along with other miscellaneous items. Lines 59-60 set KeyReturn
and KeyEnter to the key codes for these two keys. As you recall from Chapter 4,
a key's code is its position on the keyboard and is not the same as the ASCII code
that typing that key produces. Later statements show how to recognize keypresses
by their codes.

MaxRec (65) defines how many records the program processes. You can change
this value, but keep it small-under 250 probably. Whatever value you choose, the
program must be able to hold that many records in memory at once. You can also
change FileName (66) to write to a different data file on disk.

The constants at lines 68-87 correspond with the resource items that specify
labels and edit areas in the dialog. The first set of constants (68-75) limit field
lengths. In your own programs, leave enough room to display at least this many
characters in the corresponding EditText item. The other constants (77-85) iden
tify each of the fields in a database record. Always number these beginning with
l when designing your own entry forms. They do not refer to positions in dialog
item lists, as do similar constants in previous examples. Instead, they simply make
the program more readable. For example, Zipltem (81) obviously refers to the zip
code field, number 5 in the resource file (Listing 6.16, 157-159). Set Maxfield (87)
to the total number of fields in one form, 9 in this example.

Data type Dollar (93) stores dollar amounts as 32-bit long integers for typing
fields like Payments and Charges in Figure 6.14. DataRec (95-106) is a Pascal record
that holds one data record as stored on disk. Its fields must correspond with the
constants described earlier (68-85). DataArray (108) is an array of MaxRec
records-the in-memory copy of the disk data file. The next type, DataArrayPtr,
is a pointer to this array, which the program creates on the heap.

The only menu handle is recordMenu (114). (MacExtras defines handles for
the program's other three menus.) The four CursHandle (Cursor Handle) variables
(116-119) let the program change cursor styles depending on where you move the
mouse pointer. Usually, the pointer is the standard arrow. But inside the dialog
window, it changes to a vertical editing bar or to a cross hair for clicking buttons.
And, while saving records to disk, it changes to a watch, telling you to wait until
that operation completes. Variable theCursor (119) holds the handle to the cursor's
current shape. The two Rect variables, editArea and buttonArea (121-122), define
the areas on screen in which the cursor changes to different patterns.

Pointer dPtr (124) is a pointer to the modeless dialog, the entry form in Figure
6.15. Because the dialog operates simultaneously with other program features, its
pointer must be a global variable.

Boolean variable quitRequested (126) is TRUE when you choose the File menu's
Quit command. When a second Boolean, dataDirty (127), is TRUE, it indicates
that you made at least one change to a record. The program uses both flags to warn
you against quitting without first saving your changes.

Pointer theData points to the array of records in memory (128). An index into
this array, datalndex, specifies which of those records is now on display in the dialog
window. This value equals the record number in the upper right corner.

318 === Programming with Macintosh Turbo Pascal

The final variable, itemHandles (136-137), holds handles to each of the edit
items in the entry form. This avoids repeatedly calling GetDitem to pass strings
to and from each of those items and, therefore, speeds displaying many fields at
once. The array indices correspond with the constants at lines 77-85. Each con
stant is an ItemHandles array index, which the program uses to edit text for that
field.

ResetCursor to ShowRecordNumber (141-190}

ResetCursor (141-148) changes the cursor to its standard arrow shape by call
ing toolbox procedure InitCursor. It then sets global variable theCursor to NIL
an arbitrary convention that, in this program, indicates the arrow cursor is the one
now on display. Other routines check theCursor and if it is NIL, they know the
cursor is an arrow.

InitNewArray (151-163) illustrates one way to quickly initialize large variables,
the array of records in this program. Procedure FillChar fills any variable with bytes
or characters according to this design:

Fi LLChar(destination, size, value);

Destination can be any variable, even an indexed array. Size is the number of
bytes that FillChar fills with Value, which can be any byte value from 0 to 255 or
a character. Be extremely careful when using FillChar-it does not prevent you from
filling beyond the ends of variables in memory! Always use function Sizeof as in
the example to fill only as many bytes as the destination variable occupies. This
limits filling to the byte size of the data array.

Procedure ShowRecordNumber (166-190) displays the record number in the
upper right corner of the dialog window. It does this by converting global datalndex
to a string (185) and inserting that string into the dialog item with a call to SetIText
at line 188. The WHILE loop (186-187) adds leading zeros to this string to display
numbers as 002, 010, and so forth. Change the '0' to a blank (' ') if you prefer.

DollarToStr to StrToDollar (193-239}

Two useful tools convert dollar variables (of type WNGINT) to and from
strings. DollarToStr (193-210) uses NumToString (204) to convert valued to a string
of digits. The following WHILE loop ensures this string is at least three digits long,
and the Insert at line 207 adds a decimal point two characters in from the right
end of the result. Because of these actions, integer values like 4 and 56 display as
0.04 and 0.56. In other words, a Dollar's unit value is one cent. Notice how the
procedure adds a minus sign to strings. Turn lines 202-203 and 208-209 into com
ments, run the program, and type small negative values like - 5 and - 9 to see why
the procedure specially handles negative numbers this way.

StrToDollar (213-239) converts strings back into Dollar variables. Sub-

Computer Conversations == 319

procedure FindDecimal (222-229) sets integer p to the position of any decimal point
in the string. The main procedure calls FindDecimal in a WHILE loop (233-237)
to remove all periods from the string. (Never mind that there should be only one
decimal point-somebody might type more than one.) After doing that,
StringToNum (238) converts the processed string to a long integer value. The best
way to type dollar amounts with this system is never to type a decimal point-the
way you enter digits on mechanical calculators. (Remember those?)

FieldToDialog to DialogToField {242-259}

Crucial to the success of the data entry form is the ability to convert record
fields into EditText items and then, after editing, to insert changes into records.
FieldToDialog (242-248) takes a string (field) and inserts that string into the Edit
Text item of number itemNum. Notice that line 247 calls SetIText, passing the item's
handle from the itemHandles array. Without this array, the procedure would have
to waste time calling GetDitem to locate the handle to this item in memory.

Reversing this process, DialogToField (251-259) retrieves edited text, setting
string variable field to new entries by calling GetIText (256). Parameter ten specifies
the maximum length of this string. If you type more than this many characters,
the procedure cuts the result down to size in the IF statement at lines 257-258.

RecToDialog to NewRecord {262-339)

Two procedures call the previous four to convert entire records to and from
edit areas in the dialog window. RecToDialog (262-288) inserts all fields of the cur
rent record into the proper EditText items, ready for editing. It directly calls
FieldToDialog for string fields (274-280), and both DollarToStr and FieldToDialog
for dollar amounts (281-284). The procedure finishes with two miscellaneous jobs,
selecting the entire Name field (286) and displaying the record number (287). This
highlights the top field (Name) when you move from one record to another.

DialogToRec (291-321) retrieves all edited text from the entry form and insen5
that text into the appropriate record fields. For each string field, it calls
DialogToField and then assigns the result to a field in the record, for example, the
city field at line 307. It similarly handles dollar amounts, calling DialogToField
and then StrToDollar for each one (316-319).

When you move to a new record, RecToDialog transfers copies of that record's
fields into the dialog entry form, ready for editing. When you then click the Next
or Previous buttons (or move to a specific record by number), DialogToRec extracts
any changes you made and inserts them back into the record. Be sure you under
stand this process-it's much easier than designing programs to directly edit string
fields in records. And, because the editing takes place only on copies of the actual
data, it's a simple matter to program an Undo command (like the example's Cancel
button) that recovers original records. Calling DialogToRec is the only way data
in records change.

320 == Programming with Macintosh Turbo Pascal

NewRecord (324-339) illustrates how to use those two procedures. The pro
gram calls it whenever you move from one record to another. First, it saves any
changes you made to fields now on display, calling DialogToRec to copy edited text
into the current record (329). It then changes record number datalndex, limiting
it from 1 to MaxRec (330-337), and inserts that record's fields into the data entry
form for editing (338).

DoNext to ReadFromDisk {342-440}

DoNext and DoPrevious (342-357) call NewRecord to move to the next or
previous record. The program calls these procedures to respond to clicks in the Next
and Previous buttons and when you choose those commands from the Record
menu.

DoSave (360-404) writes the records in memory to disk. Notice that it first
calls DialogToRec (377) to save any changes you made to the record now on display.
Doing this ensures that all data on disk exactly matches what you see on screen.

Line 380 shows how to change the cursor to a wrist watch, telling you to wait
while the procedure writes records to disk. The statements at 382-393 write each
record from theData array and detect errors by examining function loResult, sav
ing its value in variable errCode (383,390). After the disk writes are finished, line
395 turns the cursor back into an arrow. Then, 397-399 call ErrorUnit loError
to display an error message or, if there weren't any errors, set dataDirty FALSE,
indicating that records are saved. (Presumably, the program never calls DoSave
unless dataDirty is TRUE.)

Notice that lines 401-402 close dataFile regardless of whether the previous disk
writes succeeded. Because of the compiler option { $i - } that turns off Turbo's own
110 error checking, line 402 sets errCode to loResult, even though the procedure
ignores any error here. This fulfills the requirement that programs call loResult
after every Input or Output operation when error checking is off.

ReadFromDisk (407-440) does one of two things. If a data file already exists,
it reads its records into memory. If the file does not exist, it calls InitNewArray
(421) to initialize a blank array, which DoSave saves to disk when you quit the pro
gram after typing records.

DoNumber to KeyDownEvents {443-620}

Other chapters explain much of the programming in this section. Do Number
(443-485) displays the dialog window in Figure 6.16, letting you type the number
of the next record to edit. It uses the method for entering miscellaneous items that
Listing 6.10, ENTRY.PAS, demonstrates.

DoClose (488-495) is similar to the procedure in ApShell (see Chapter 4) but
closes only desk accessories. The program does not allow you to close the data en
try dialog window.

You've seen the rest of the programming in this section (498-620) in one form

Computer Conversations == 321

or another in previous examples. These procedures direct menu commands to the
appropriate routines. Notice that line 505 checks dataDirty, allowing calls to DoSave
only if the variable is TRUE. Otherwise, it assumes you made no changes aud,
therefore, refuses to write records to disk. Some programmers insert a message here
to tell you that data is already saved. If you want to display such a message, this
is where to put it.

One other modified routine from ApShell is DoEditMenuCommands
(511-530), which adds cut and paste editing features to the entry form fields. Line
516 checks for commands that belong to desk accessories. If they don't, 519 sets
dataDirty to TRUE (assuming that any cutting and pasting changes data). The
CASE statement (521-527) calls the appropriate Dialog Manager routine (DlgCut
to DlgDelete) or just beeps (522), letting you know that Undo doesn't work here.

DialogEvents to END {623-997}

Skip to the end of the program. As you can see, the Program Engine (978-997)
is simple. After initializing (980), it calls DoSystemTasks in a REPEAT loop that
checks for events, passing them to either MouseDownEvents or KeyDownEvents.
This is different from ApShell, which calls GetNextEvent to intercept events as they
occur. In this case, to handle the modeless dialog, Function IsProgramEvent
(917-932) returns TRUE if GetNextEvent also returns TRUE, calling DialogEvents
if function lsDialogEvent is TRUE.

This action-calling GetNextEvent and then, even if the result is FALSE, check
ing with IsDialogEvent whether an event belonging to a dialog needs handling-is
essential to make the cursor blink. It also lets you type keys like Command-Q and
Command-X as well as others to simulate clicking buttons-the way the Return
key does the same thing as clicking the Next button in this example.

You can see how this works in procedure DialogEvents (623-696), called only
if IsDialogEvent returns TRUE at line 929. After initializing local variable itemHit
(654), the procedure checks theEvent record for a Command keypress (661-665).
If it finds a command key, it exits the procedure (665), causing the main program
loop to handle the keypress as it normally does. But if it finds a regular keypress,
it translates that key by calling sub-procedure TranslateChar (634-649), extracting
the key code (646) and setting itemHit to Ok if that code equals either the Return
or Enter keys. Therefore, clicking Ok and pressing Return or Enter have the iden
tical effect.

Lines 674-676 further process the dialog event by calling DialogSelect, the
workhorse that handles all operations inside the dialog, editing text items, sensing
mouse clicks, and so on. The reason this section avoids calling DialogSelect if
itemHit equals NextButton is to let the program process the Return and Enter keys
itself. (ItemHit equals NextButton at this point only if you had pressed Return or
Enter.) If the program didn't take these steps, DialogSelect would display a visible
character-usually the square box that signifies no specific character-when you
press Return.

322 == Programming with Macintosh Turbo Pascal

If flag is TRUE at line 682, then either you pressed Return (or Enter) or
DialogSelect set itemHit to an item clicked in the window. In these cases, lines
684-694 call DoNext or DoPrevious to handle clicking those buttons. If you click
Cancel, line 690 calls RecToDialog to reinsert the fields from the current Pascal
record into the dialog edit items, recovering the original fields as they were before
editing. Notice also that line 692 assumes that keypresses make changes to records,
setting dataDirty TRUE.

Changing Cursors

When you move the mouse pointer, its shape changes depending on where it
points. Add this feature to programs to help people know what the program ex
pects them to do. Display the vertical bar in areas that accept editing, the mouse
pointer in the desktop and menu bar, and a cross hair for buttons. But don't over
do it. Some programs change the cursor so often it becomes impossible to memorize
what the various shapes mean.

Procedure DoSystemTasks (941) calls ChangeCursor (854-914) one time
through every main Program Engine cycle. It first checks if the dialog window is
the frontmost window (869). If not, it immediately exits, letting desk accessories
handle their own cursor changes.

If the dialog window is frontmost, line 876 ensures that it's the current port,
saving the original GrafPort pointer in local variable oldPort. Line 882 sets Point
record mouseLocation to the mouse pointer's coordinate, local to the current win
dow. After that, two IF statements (888-893) call PtlnRect (Point in Rectangle)
to check whether this coordinate is inside one of the global rectangles, editArea
or buttonArea. The effect of this is to set NewCursor to one of the cursor handles
iBeam or cross, or to NIL, signifying the standard arrow pointer.

Then, another IF statement (901-907) checks this new setting against the cur
rent one stored in global variable theCursor. If different, it calls InitCursor to display
an arrow or SetCursor to change to another shape. Notice the double caret
dereferencing NewCursor to a Cursor data type, which SetCursor requires (905).

Initializations {699-851}

SetUpCursors (699-708) initializes the global cursor handles, iBeam, watch,
and cross. Calling GetCursor with the constants shown here returns handles to these
cursor patterns in memory. For absolute safety, you could check whether this works.
In other words, it might be better to write:

iBeam := GetCursor(IBeamCursor >;
IF iBeam =NIL THEN {error};

Although this prevents the program from accidentally using an uninitialized
shape, because NIL indicates a standard arrow, it displays that cursor if another

Computer Conversations == 323

shape is unavailable. For an example, insert this line between line 706 and 707 and
click one of the dialog buttons. Instead of a cross hair, you see an arrow.

cross:= NIL;

Procedure SetUpDialog (734-784) initializes and displays the modeless dialog
data entry form. It calls GetNewDialog (748) to set dPtr to the dialog resource in
memory and display the dialog window. If that fails, it ends the program immediate-
1 y by calling ExitToShell (750). You might want to improve this by also displaying
an error message. The FOR loop (757-764) calls GetDitem for each of the Edit
Text items in the dialog item list, ending the program here also if it detects any
errors. It assigns these handles to the itemHandles array (763) for procedures
FieldToDialog and DialogToField explained earlier.

Other miscellaneous initialization steps set the editArea and buttonArea rec
tangles (772-773) to the areas on screen where the cursor changes shape. Calling
GetDitem (775) retrieves the Ok button resource to locate that button's position
relative to the dialog window. Moving the cursor into this area then changes the
cursor to a cross hair.

SetUpArray (787-799) creates the data array as a non-relocatable object on
the heap. In previous chapters, you learned that this is rarely a good idea-that
objects on the heap should be in relocatable memory blocks. But there are two
reasons to break this rule here. First, the data array is large. Its 100 130-byte records
occupy 13,000 bytes. (Obviously, it's a mistake to create such a large object as a
local variable on the stack.) Second, the array is always in memory while the pro
gram runs. For these reasons, it's no help to allow the Memory Manager to move
it around. Because the array is always present, a better idea is to place it as low
on the heap as possible, below other objects. This avoids fragmenting the heap and
lets the program use simple pointer addressing.

The procedure sets this up. It reserves heap space for the array by calling NewPtr
(792), requesting the SizeOf the DataArray type in bytes and casting the resulting
plain pointer to a DataArrayPtr type, assigning this value to theData, the pointer
to the array. The next line, 793, checks that this worked, examining toolbox func
tion MemError. If equal to NoErr, then the program is ready to go. Otherwise,
there wasn't enough memory available for the array, and the procedure displays
an error message (795-796) before ending the program.

Function QuitConfirmed (817-851) is the program's deinitialization step. In
an earlier example, I said I would explain more fully how to use this function to
guarantee against accidentally tossing away your data with the windows. The first
job is to check the dataDirty flag to decide whether to display an alert warning
message at line 837 (see Figure 6.6). If you click the Yes button to save changes
before quitting, line 845 calls DoSave to write the records in memory to disk. Line
846 sets the quitRequested flag, indicating whether that disk operation worked.
If not, the program must not end. Closely examine QuitConfirmed and be sure
you understand how it works. Its design is appropriate in any program that writes
data to disk files.

324 :== Programming with Macintosh Turbo Pascal

DIALOG TOOLS

The examples in this chapter all make use of tools in DialogUnit. This section
details the unit's individual routines which you'll find handy when designing your
own dialogs.

Type in Listing 6.18 and save as DIALOGUNIT.PAS. Compile to a disk file.
You cannot run the unit-it requires a host program as do all units. One change
you might have to make is in line I. If your disk and folder names are different,
insert them here in place of Programs and Units.F.

Listing 6.18. DIALOGUNIT.PAS

1: ($0 Programs:Units.F:
2: ($U-}

Send compiled code to here
Turn off standard library units

3:
4:
5: UNIT DialogUnit(130);
6:
7: (*

8:
9: * PURPOSE Dialog support routines

10: * SYSTEM Macintosh I Turbo Pascal
11: * AUTHOR
12:
13: *)

14:
15:
16: INTERFACE
17:
18:
19: USES
20:

Tom Swan

(Items visible to a host program }

21: Memtypes, QuickDraw, OSintf, Toolintf, Packintf;
22:
23:
24: TYPE
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
35:
37:
38:
39:
40:
41:
42:

ButtonRec =
RECORD

firstButton INTEGER;
lastButton INTEGER;
selection INTEGER

END; (ButtonRec }

CheckSet = SET OF 0 255;

ChecksRecord =
RECORD

firstCheck : INTEGER;
lastCheck : INTEGER;
selections : CheckSet

END; (ChecksRecord I

43: PROCEDURE ToggleCheck(ch: Handle);
44:

First radio button item number
Last item number }
Curren button (-1 if none)

(Sets of checked boxes }

First item number in check list J
Last item number J
Set of currently checked boxes }

45: FUNCTION CheckOn(ch : Handle) : BOOLEAN;
46:

Computer Conversations

47: PROCEDURE OutlineOk(dPtr : DialogPtr);
48:
49: FUNCTION HCenter(width : INTEGER) : INTEGER;
50:
51: FUNCTION VCenter(height : INTEGER) : INTEGER;
52:
53: FUNCTION MakeFileName(VAR r~ply : SFReply;
54: prompt : Str255; fileName : Str255) : BOOLEAN;
55:

325

56: FUNCTION GetFileName(VAR reply : SFReply; fileKind : OSType) : BOOLEAN;
57:

PROCEDURE PushButton(dp : DialogPtr; VAR buttons
itemHit : INTEGER);

ButtonRec; 58:
59:
60:
61:
62:
63:
64:
65:

PROCEDURE InitButtons(dp : DialogPtr; VAR buttons : ButtonRec);

PROCEDURE CheckBox(dp : DialogPtr; VAR checks : ChecksRecord;
itemHit : INTEGER);

66: PROCEDURE InitChecks(dp : DialogPtr; VAR checks
67:
68:
69:

ChecksRecord) ;

70: IMPLEMENTATION (Items not visible to a host program }
71:
72:
73: FUNCTION InRange2(n, min, max: INTEGER) : BOOLEAN;
74:
75: Returns TRUE if min<= n <=max (borrowed from MacExtras.PAS).
76: Remove if you use that unit and DialogUnit together. }
77:
78: BEGIN
79: InRange2 := (min <= n) AND (n <= max)
80: END; { InRange2)
81:
82:
83: PROCEDURE ToggleCheck;
84:
85:
86:
87:
88:
89:
90:

Toggle check mark or radio button control on/off.

91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:

NOTE: ch is a plain handle but it's up to you to make certain that it
actually addresses a checkmark or radio button control.)

VAR

n INTEGER;

BEGIN
n := GetCtlValue(ControlHandle(ch)); {Get current setting)
IF n = 0

THEN n := l
ELSE n := O;

{ Toggle on (1) I off (0))

SetCtlValue(ControlHandle(ch), n)
END; (ToggleCheck)

I Change setting)

102: FUNCTION CheckOn;
103:
104: TRUE if the check mark or radio button with this handle is on. It's
105: up to you to make sure that ch really addresses a control. The control
106: is on if it has a non zero value; it's off only if it equals zero.)
107:
108: BEGIN
109: CheckOn := GetCtlValue(ControlHandle(ch)) <> 0
110: END; (CheckOn)
lll:
112:

(continued]

326 == Programming with Macintosh Turbo Pascal

113: PROCEDURE OutlineOk;
114:
115: Draw bold outline around the Ok button (or some other button) in the
116: dialog addressed by dPtr. Assumes the Ok button is the first item
117: in the dialog's item list. The dialog window does not have to be
118: the current port. Note: changes pen size. I
119:
120:
121:
122:
123:
124:
125:
126:

VAR

oldPort
itemType
itemHandle
itemRect

BEGIN

GrafPtr;
INTEGER;
Handle;
Rect;

GetPort(oldPort);
SetPort(dPtr);

127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:

GetDitem(dPtr, 1, itemType, itemHandle, itemRect);
IF itemHandle <> NIL THEN
BEGIN

PenSize(3, 3);
InsetRect(itemRect, -4, -4);
FrameRoundRect(itemRect, 16, 16

END; (if J
SetPort(oldPort

END; (OutlineOk I

141: FUNCTION HCenter;
142:
143: Return horizontal coordinate value for centering a dialog
144: window of this width between the left and right screen borders
145:
146: BEGIN
147: HCenter := (screenBits.bounds.right - width) DIV 2
148: END; { HCenter I
149:
150:
151: FUNCTION VCenter;
152:
153: Return vertical coordinate value for centering a dialog
154: window of this height between the top and bottom screen borders J
155:
156: BEGIN
157: VCenter := (screenBits.bounds.bottom - height) DIV 2
158: END; { VCenter I
159:
160:
161: FUNCTION MakeFileName;
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:

CONST

VAR

DlogWidth
DlogHeight

where

172: BEGIN

= 304;
184;

Point;

Standard file "put" dialog box width }
and height J

173: SetPt(where, HCenter(DlogWidth), VCenter(DlogHeight));
174: SFPutFile(where, prompt, fileName, NIL, reply);
175: MakeFileName :=reply.good
176: END; { MakeFileName I
177:
178:

Computer Conversations

179: FUNCTION GetFileName;
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:

TRUE if someone selects an file name of type fileKind.
holds its file name and volume information. J

If so, reply

CONST

DlogWidth
DlogHeight

348;
200;

Standard file "get" dialog box width J
and height I

VAR

typeList
where -

BEGIN

SFTypeList;
Point;

SetPt(where, HCenter(DlogWidth), VCenter(DlogHeight));
typeList[0 l := fileKind; { Allow only these files J
SFGetFile(where, '',NIL, 1, typeList, NIL, reply);
GetFileName := reply.good { True if Open clicked J

END; { GetApplName I

PROCEDURE PushButton;

Push the radio button number itemHit and save in buttons rec.
off any previously-selected button and turn on the new one. I

VAR

itemType
itemHandle
itemRect

BEGIN

INTEGER;
Handle;
Rect;

Ignored)
Handle to button control J
Ignored I

WITH buttons DO
IF InRange2(

BEGIN
itemHit, firstButton, lastButton) THEN

Turn off current button (if there is one) I

Turn

IF InRange2(selection, firstButton, lastButton) THEN
BEGIN

GetDitem(dp, selection,
itemType, itemHandle, itemRect);

SetCtlValue(ControlHandle(itemHandle), 0
END; { if)

Turn on new button I

327

229:
230:
231:

GetDitem(dp, itemHit, itemType, itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), 1);

232:
233:
234:
235:
236:
237:

selection := itemHit

END { with I if I if)
END; { PushButton l

238: PROCEDURE InitButtons;
239:

{ Remember current button

240: Initialize radio button display to match buttons record info. Call
241: this procedure after displaying the dialog window to turn on the button
242: matching the selection in the buttons record.)
243:
244: BEGIN
245: PushButton(dp, buttons, buttons.selection)
246: END; { InitButtons I

(continued]

328 == Programming with Macintosh Turbo Pascal

247:
248;
249: PROCEDURE CheckBox;
250:
251: Toggle check itemHit on or off and save current value in checks }
252:
253: VAR

itemType
itemHandle
itemRect

254:
255:
256:
257:
258:
259: BEGIN
260: WITH checks DO

INTEGER;
Handle;
Rect;

Ignored }
Handle to check box control }
Ignored }

261: IF (firstCheck <= itemHit } AND (itemHit <= lastCheck } THEN
262: BEGIN
263: GetDitem(dp, itemHit, itemType, itemHandle, itemRect };
264: ToggleCheck(itemHandle };
265: IF CheckOn(itemHandle)
266: THEN selections := selections + itemHit
267: ELSE selections := selections - itemHit
268: END (if }
269: END; (CheckBox }
270:
271:
272: PROCEDURE InitChecks;
273:
274: Set up check marks in boxes to correspond with information
275: in this checks record }
276:
277: VAR
278:
279: checkNumber INTEGER;
280:
281: BEGIN
282; WITH checks DO
283; FOR checkNumber ;= firstCheck TO lastCheck DO
284; IF checkNumber IN selections
285: THEN CheckBox(dp, checks, checkNumber)
286; END; (InitChecks }
287:
288:
289;
290; END. (DialogUnit }

DialogUnit Play-by-Play

The unit uses five others-all of which are included in the Turbo Pascal file,
ready to use. Your host program must use at least these five listed at line 21 along
with DialogUnit. Listings 6.8 (RADIO.PAS) and 6.12 (OPTIONS.PAS) show how
to use the unit's data types, ButtonRec, CheckSet, and ChecksRecord (26-40),to
organize radio buttons and check boxes in dialogs. The following notes describe
each of DialogUnit's procedures and functions.

Computer Conversations == 329

FUNCTION InRange2C n, min, max: INTEGER):
BOOLEAN;

This function is identical to InRange in the MacExtras unit (see Chapter 4).
It's included here to keep examples in this chapter simple. (Programs that use
MacExtras must have pull-down menus and respect event-driven programming
rules.) If you plan to use DialogUnit and MacExtras together, remove lines 73-80
and replace all calls to InRange2 with InRange.

PROCEDURE ToggleCheckC ch: Handle);

Pass a control handle ch to a radio button or check box to toggle its setting
on or off. You get the handle by calling GetDltem with a Handle variable as the
fourth parameter. ToggleCheck (83-99) casts your handle to type ControlHandle
in calls to GetCtlValue (94) and SetCtlValue (98), setting the button or box to 1
to turn it on or to 0 to turn it off.

FUNCTION CheckOn(ch: Handle): BOOLEAN;

Call CheckOn (102-110) with any radio or check box handle to check whether
this control is now on (TRUE) or off (FALSE).

PROCEDURE OutlineOk(dPtr: DialogPtr);

Pass a dialog pointer (dPtr) to OutlineOk (113-138) to draw a bold outline
around the first control in the dialog's item list, which should be a button. (See
Figure 6.16 for an example. The button on the left has a heavy border, drawn by
OutlineOk.) Be sure that the first item in the dialog list (DITL) is a button. If it
isn't, OutlineOk might produce a strange result or not work at all. The button can
have any title-it doesn't have to be "Ok."

One problem when outlining buttons this way is that if another window should
cover the button and then move aside, the dialog manager will redraw the outline
with a normal border. Because your program has no way to sense the situation,
it cannot redraw the outline in bold. This problem is rare, though, and not worth
spending too much time solving. It can never happen to modal dialogs.

FUNCTION HCenter(width: INTEGER): INTEGER;
FUNCTION VCenter(height: INTEGER): INTEGER;

HCenter and VCenter (141-148) work together to help center dialog windows
in the Macintosh display. Pass the width of the dialog window to HCenter and
the height to VCenter. Together, the functions return the global (HY) coordinate
where, if you place the dialog window's upper left corner, the window is exactly

330 == Programming with Macintosh Turbo Pascal

centered on screen. The next two functions call HCenter and VCenter to center
the standard file dialogs even on Macintosh models with large displays.

FUNCTION MakeFi leName(VAR reply: SFReply;
prompt: Str255; fi leName: Str255): BOOLEAN;

Call MakeFileName to choose new file names, usually in response to the File
menu's Save as command. If the function returns TRUE, then reply specifies the
file name and volume where the program should write its data. This file may or
may not exist. If it does, overwrite it-the dialog manager has already requested
permission to remove the old file.

The function calls SetPt (173) to position Point record where according to the
values that HCenter and VCenter return. Constants DlogWidth and DlogHeight
equal the standard file dialog sizes. SFPutFile (174) displays the dialog window
(see Figure 6.2), lets you eject disks, open folders, and so on, and returns the reply
record filled with the new name or with field good equal to FALSE if you click
the Cancel button. It also checks whether files already exist and gives you the chance
to change your mind about erasing them. As long as MakeFileName returns TRUE,
you can write to the disk file name in reply.

FUNCTION Get Fi leName(VAR reply: SFReply;
fi leKind: OSType): BOOLEAN;

Use GetFileName to choose existing files from disk, usually in response to the
File menu's Open command. It displays the standard dialog window in Figure 6.1
and lets you eject disks, open folders, and double-click names or click the other
dialog buttons. If it returns TRUE, open the file name in reply.

OSType parameter fileKind (196) specifies the kind of file you want to see in
the dialog directory window. Pass 'TEXT' for text files, 'APPL? for applications,
and others to limit files to specific types. See Table 6.1 for a list of other file types
you can use.

PROCEDURE PushButton(dp: DialogPtr;
VAR buttons: ButtonRec; itemHit: INTEGER);

PushButton (202-235) takes three parameters, a dialog pointer (dp), a But
tonRec record (buttons), and an integer (itemHit). Call the procedure after
ModalDialog indicates a hit in a radio button inside the dialog window. Pass the
itemHit number that ModalDialog returns and PushButton turns that button on
and the others off.

The buttons record specifies the first and last button numbers and the current
selection, the button now on. See Listing 6.8 (RADIO.PAS) for an example of how
to use PushButton.

Computer Conversations == 331

PROCEDURE InitButtons(dp: DialogPtr;
VAR buttons : ButtonRec);

Call InitButtons (238-246) after loading and displaying a dialog window, usual
ly with GetNewDialog as many examples in this chapter demonstrate. Pass the dialog
pointer (dp) that GetNewDialog returns and a ButtonRec record (buttons) with
its parameters set as explained in the play-by-play notes to Listing 6.8 (RADIO.PAS).
InitButtons darkens the currently punched button, leaving the others blank. If you
don't want to punch any buttons, set buttons.selection to -1.

PROCEDURE CheckBox(dp: DialogPtr;
VAR checks: ChecksRecord; i tern Hit: INTEGER);

CheckBox (249-269) is similar to PushButton. It adds or subtracts a check
mark from the check box that itemHit specifies. Call it after ModalDialog indicates
a click in a check box belonging to a dialog window.

Variable checks holds the first and last check item number and a set of checked
boxes in field selections, of type CheckSet. After calling CheckBox, selections holds
all the boxes that now have check marks. See the play-by-play to Listing 6.12
(OPTIONS.PAS) for more information about using this routine.

PROCEDURE InitChecks(dp: DialogPtr;
VAR checks : ChecksRecord);

Call InitChecks (272-286) after loading and displaying a dialog, usually with
GetNewDialog. Pass the dialog pointer (dp) and a checks record to add check marks
to all boxes that the checks.selections set specifies. After calling InitChecks, the
dialog display matches the parameters in the checks record. See the play-by-play
to Listing 6.12 (OPTIONS.PAS) for additional details.

seven

Units as Software Tools

Because you create them separately from the main program, units reduce com
piling time while isolating common routines and data that programs share. They
have two primary uses. In a large program, you insert tested procedures and func
tions into units to avoid recompiling those same routines over and over. Or you
can build a library of units with routines for many different kinds of programs.

This chapter presents three units of the second variety. Transfer lets one pro
gram transfer to another. lconUnit contains tools for manipulating icon images
inside windows. And lmageUnit develops tools for using the lmageWriter's native
printing abilities. At the end of the chapter is MacLister, a program lister that uses
most of the units in this book.

DEVELOPING A SOFTWARE LIBRARY

After creating a unit, there are several ways to use it. Normally, you compile
it to disk, creating a code file to which other programs refer, the method most of
the examples in this book use. If you compile units to memory instead, programs
can use them only while their text windows remain open. Although this is helpful
for testing minor changes, you normally compile units to disk code files to make
them available to other programs.

Up to now, programs expect to find their units on volume Programs in folder
Units.R To use such a unit requires placing a Unit compiler directive ahead of the
program's USES declaration. For example, many examples in this book include the
line:

{$U Programs:Units.F:MacExtras}

This opens the Unit.F folder, looking for the code file MacExtras. You need
to include this step only for the units you create and compile to disk. Others, such
as QuickDraw and Toollntf, don't require a Unit directive-they're old friends to

333

334 == Programming with Macintosh Turbo Pascal

the compiler and, in fact, are stored inside the Turbo Pascal file. It takes the com
piler less time to use such units than it does to locate and open disk files contain
ing compiled unit code.

To do this with your own units, you can install them inside the Turbo Com
piler, reshaping it to understand new commands and data types. For example, if
you install the MacExtras unit into the compiler, you can then add it to a USES
declaration without also including a Unit compiler directive to find the unit code
file on disk. In fact, then you no longer need the unit code file at all. Although
attractive for that reason, installing units in the compiler is not something to do
haphazardly. For best results, follow these suggestions.

Install only well-tested units in near final form. Remember that moving units
in and out of the compiler is itself a time-consuming operation.

Keep a list of unit numbers to avoid conflicts. The best place for this list is
in a file, perhaps named Turbo Units, on the same volume as the compiler.

• Keep a printout of at least the unit's interface section, the portion visible to
programs. If you have room, keep a reference disk copy of this same text
along with the compiler.

Installing Units in the Compiler

Installing a unit into Turbo Pascal is easy. Open the utility program UnitMover
on your Turbo disk. Your screen should resemble Figure 7.1. In the top left box
are the units now installed in the compiler. Initially, the top right box is empty.
For practice, follow these steps to install the MacExtras unit from Chapter 4, assum
ing of course that you previously compiled that unit to disk.

1. Click the Open button (labeled Close in the figure) below the top right box.
Locate and open the MacExtras code file.

2. Select MacExtras by clicking its name in the top right box. This highlights
the name and activates the Copy button. Your screen should now match
the figure.

3. Click Copy to install MacExtras.

To install another unit, close the top right box and repeat these three steps.
To remove a unit, select its name and click the Remove button. You cannot remove
all run-time units, meaning those required to run Pascal programs. And you can
not remove units that others use.

After installing MacExtras (and others), quit UnitMover and open Turbo. Edit
APSHELL.PAS (Listing 4.1) and remove the dollar sign from line 17, turning the
Unit compiler directive into a plain comment. (You could also remove the line but
would then have to retype it to go back to reading the unit from a disk code file.)
Compile ApShell. Turbo now uses the MacExtras unit you installed.

Units as Software Tools == 335

Turbo Pascal® Unit Mouer Uersion 1.00A ©1986 Borland International

Turbo
Pt:11sSystem
Pt:11slnOut
Pt:11sConsole
Pt:11sPrinter
SAHE
nemTypes
QuickOrt:11w
OSlntf
Too I Int f

Close ...

I
nacExtras (128)Size:

PASSYSTEn
nEnTYPES
QUICl::DRAU
OSIHTF
TOOLIHTF
PACl::IHTF

«Copy«

Remoue

Help

Quit

1558 Uses:

nacExtrt:11s
MncExtrns ~

Unit"
-1
-6
-7
-8
-9

-10

Close .•.
Size(in bytes)

1270
0
0

5736
132
298

I
Figure 7.1 Turbo's UnitMover utility program installs and removes compiled units from
the compiler. This copy of the program's display shows the MacExtras unit from Chapter
4 about to be copied into the compiler. The information window at bottom displays
additional facts about selected units.

When making temporary changes to installed units, you do not have to remove
them from the compiler. For example, open the MACEXTRAS.PAS text file and
turn line 391 into a comment, temporarily removing the unit's ability to display
the ''About program" box. Also open APSHELL.PAS. Compile MacExtras to
memory and then compile and run ApShell. Try using the About command-it
wor't operate, proving that Turbo uses the temporary in-memory code in place of
the installed unit. Now close the MacExtras text file (you probably do not want
to save the change you just made). Compile ApShell and run. The About com
mand should again work. Remember this trick when modifying library units
you can temporarily compile them to memory, test your changes and then later
compile to disk before installing the final version into the compiler.

The UnitMover Information Window

At the bottom of the UnitMover display (Figure 7.1) is a description of the
units you select in the top left and right windows. To see descriptions of all installed
units, click and drag the mouse pointer over their names, highlightin¥ them all.

336 == Programming with Macintosh Turbo Pascal

Then use the vertical scroll bar near the bottom right corner to scroll the informa
tion window up and down.

Text in the window tells you the unit name, its number in parentheses, and its
size in bytes. Indented below the selected unit name are the other units that this
one uses. For example, Figure 7.1 tells you that MacExtras uses the six other units
listed in the bottom window (PASSYSTEM to PACKINTF). A program that uses
MacExtras must use these units also.

The unit number column, second from the right in the bottom window, lists
unit numbers. Notice that system units, the ones that come with your Turbo system,
have negative numbers. Your own units have unique positive numbers of any value
from 1 to 32767 for all units that programs use. All units in this book have unique
numbers starting with 128. (See Listing 7.4, for example, line 5. The unit number
is 134.) You may change any of these numbers if they conflict with other units in
your library.

The final column in the UnitMover information window lists the byte size of
each unit. Some lengths are zero, a normal condition. Such units contain only
declarations for objects and routines in the Macintosh toolbox-they contain no
code. Using them adds their definitions to a program, but does not increase its com
piled size.

TRANSFER TOOLS

Most commercial programs, Turbo Pascal included, can transfer to another
program. The next example adds this same ability to your own Pascal projects. First
type in Listing 7.1, and save as TRANSFER.PAS. Compile the unit to a disk code
file. After the play-by-play description is an example program that uses Transfer
to run another application.

Listing 7.1. TRANSFER.PAS

1: ($0 Programs:Units.F:)
2: ($U-)

Send compiled code to here)
Turn off standard library units

3
4
5 UNIT Transfer(129);

7 (*

8
* PURPOSE : Transfer from one program to another

10 * SYSTEM : Macintosh I Turbo Pascal
11 * AUTHOR : Tom Swan
12
13 *)
14
15
16 INTERFACE
17
18

(Items visible to a host program)

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Units as Software Tools

USES

Memtypes, QuickDraw, OSintf, Toolintf, Packintf;

FUNCTION GetApplName(VAR reply : SFReply BOOLEAN;

PROCEDURE RunProgram(reply : SFReply);

30: IMPLEMENTATION
31:

(Items not visible to a host program)

32:
33: TYPE

TransferPtr = ATransferRec;

TransferRec
RECORD

File name I

337

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

fNamePtr : AStr255;
config : INTEGER

END; (TransferRec I
O=normal screen & sound buffers * I

44: (* Note: set config > O to allocate alternate sound buffer; set
45: it to < 0 to allocate alternate sound and alternate screen buffers.
46: But avoid doing this unless absolutely necessary--it may not work
47: on all Macintosh models. Normally set config to O. I
48:
49:
50: (The following in-line procedure executes the 68000 instructions:
51:
52:
53:
54:
55:

MOVE.L
_Launch

(SP)+, AO Move param tp to AO
Execute Launch trap

56: PROCEDURE Launch(tp : TransferPtr);
57: INLINE $205F, $A9F2;
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:

FUNCTION GetApplName;

TRUE if someone selects an application file name. If so, reply
holds its file name and volume information.

VAR

typeList
where

BEGIN

SFTypeList;
Point;

SetPt(where, 85, 100);
typeList[o I := 'APPL';
SFGetFile(where, '', NIL, l,
GetApplName := reply.good

END; (GetApplName I

PROCEDURE RunProgram;

Run program specified in reply I

VAR

tRec TransferRec;

(Standard file dialog location I
(Allow only application files I
typeList, NIL, reply); (Do dialog
(True if Open clicked I

(continued)

338 == Programming with Macintosh Turbo Pascal

86 BEGIN
87 IF SetVol(NIL, reply.vRefNum) = noErr THEN
88 BEGIN
89 WITH tRec DO
90 BEGIN
91 fNamePtr := @reply.fname; { Assign file name I
92 config := 0 { Main sound & screen buffers
93 END; { with)
94 Launch{ @tRec) { Run {launch) the program I
95 END { if)
96 END; { RunProgram I
97
98
99 END. { Transfer unit I

100

Transfer Play-by-Play

Not a large unit, Transfer contains only two routines that programs can use.
The first, GetApplName, displays the familiar file dialog, prompting for the name
of an application to run, and limiting your choices to files of type APPL. Pass
it an SFReply record. If the function returns TRUE, call the second routine, Run
Program, passing the same record as a parameter. For example, you might use this
simple IF statement:

VAR reply: SFReply;

IF GetApplNameC reply)
THEN RunProgramC reply);

In many cases, that's all you need to do to respond to a transfer command
from a pull-down menu. To run a specific program and not use the standard file
dialog window, create your own SFReply record and pass it to RunProgram. Us
ing this idea, the following runs a program MYPROG on the current volume:

VAR reply: SFReply;

reply.vRefNum := O;
reply.fname := 'MYPROG';
RunProgramC reply);

For a successful transfer, you must observe a few rules. Breaking any of these
will cause serious problems and may require you to reboot to recover.

• Never transfer from a program running directly in Turbo Pascal's editor. For
transfer to work, you must compile the program to disk and run it from the
Finder (or first transfer to it from another application).

Units as Software Tools == 339

• Close all open files before transferring. If you don't do this, other programs
may be unable to use those files until you later reboot.

• Be certain that the application to which you transfer exists before calling Run
Program. If you use GetApplName as described earlier, you'll never have
a problem. But if you create your own reply record, it's up to you to ensure
that the application is on the volume you specify.

The following notes describe how Transfer's two routines operate. For reference,
their parameter lists are repeated here.

FUNCTION GetApplName(VAR reply: SFReply):
BOOLEAN;

GetApplName (60-75) works by calling SFGetFile (73), passing the upper left
corner of the dialog window in local variable where along with several other
parameters. Change the null string to add a message such as "Select application
to run." The first NIL specifies the standard filter function, meaning here that the
single string in typeList, 'APPI..:, is the only limiting factor in the files shown. (There
isn't room here to cover adding your own filter functions-consult Inside Macin
tosh for details.) The 1 indicates that typeList holds only this single string. The
second NIL tells the system to use the standard event handlers for the dialog win
dow. And the last parameter, reply, is the result-containing the selected file
specifications.

PROCEDURE RunProgram(reply: SFReply);

RunProgram (78-96) transfers control to the file specified in reply fields vRef
Num and fname. It ignores other fields in this record. The procedure makes use
of a transfer record (type TransferRec), which contains two fields (37-41). The first
field (fNamePtr) is a pointer to a string that contains the name of the program
to run. The second field (config) is an integer, usually zero. If this value is negative,
then the operating system allocates space for alternate sound and screen memory
buffers. If positive, it allocates space for an alternate sound buffer only. A zero
value allocates no alternate buffers. Beware that these features do not operate on
all Macintosh models. A few programs use these extra memory buffers, but most
don't. You'll rarely set config to anything but zero.

Line 87 sets the default volume to the one you specify in record reply. If this
works, it then assigns the address of the file name (91) and sets config to zero. It
then calls Launch (94), passing the address of the transfer record.

Procedure Launch is an in-line machine language routine (50-57). Although
declared as a procedure, it is more of a simple definition because Turbo inserts its
code-the hex values in line 57-directly into the program wherever you place its
name. In the Pascal program, it appears as though you are calling a procedure (see

340 == Programming with Macintosh Turbo Pascal

line 94), but you are really telling Pascal to insert the in-line programming at this
point. Here, the machine language routine moves the address of the transfer record
into register AO and then executes the operating system Launch trap. (Don't be con
cerned if you are unfamiliar with these 68000-microprocessor terms-you don't
need to understand them to use Launch.)

LET'S DO LAUNCH

A simple program demonstrates how to use the Transfer unit. Type in Listing
7.2, save as LAUNCHER.R, and compile with RMaker to create the program's
resource file. Then type in Listing 7.3, save as LAUNCHER.PAS, and compile with
Turbo to a disk code file. Copy portions of APSHELL.PAS from Chapter 4 where
the listing indicates. Before running the program, observe the following caution.

Do not run Launcher from inside the Turbo editor or you may have to reboot
from the resulting system crash. You must either quit to the Finder and open
Launcher, or use Turbo's Transfer command to transfer to the program. You can
then transfer back to Turbo or to any other application.

Listing 7.2. LAUNCHER.R

1: *--*
2: * Launcher.PAS resources -- Compile with RMaker
3: *--*
4:
5: Programs:Launcher.F:Launcher.RSRC ;; Send output to here
6:
7:
8: *--*
9: * About box string list

10: *--*
11:
12: TYPE STRll
13: ,1 (32)
14: 6
15: Program Launcher
16: by Tom Swan

,, String list resource
,, ID and attribute (purgeable)
,, Number of strings that follow
, , Program name
, , Author

11: Version 1.00 ,, Version number
18: (C) 1987 by Swan Software ,, Copyright notice
19 P.O. Box 206, Lititz, PA 17543 ,, Address
20 (717)-627-1911
21
22

,, Telephone

23 *--*
24 * The Apple Info menu
25 *--*
26
27 TYPE MENU
28 '1
29 \14
30 About Launcher ...
31 (-
32
33

Menu IO number to use in program
Bitten-apple graphics symbol
The command as shown in menu
Divider line between command and DAs

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

Units as Software Tools

--
* The File menu *
--
TYPE MENU

'2
File

New /N
(Close
(-

Transfer /T
Quit /Q

,, Menu ID number to use in program
,, Menu title as shown in menu bar

--
* The Edit menu * *--*
TYPE MENU

'3
Edit

(Undo /Z
(-

(Cut /X
(Copy /C
(Paste /V
(Clear

--
* Window template
--
TYPE WIND

'1 (32)
69: Untitled

,, ID number and attribute (purgeable)
, , Window title

70: 46 7 328 502
71: Visible GoAway
72: 8
73: 0
74:
75:
76:
77: * END

,, top, left, bottom, right coordinates
,, Visible window with close button
,, Standard doc window with grow & zoom boxes
,, Window reference (none)

Listing 7.3. LAUNCHER.PAS

341

1: { !
2:
3:
4:
5:
6:
7:

WARNING : Do not use the File menu Transfer command when compiling and
running Launcher directly from Turbo Pascal. The command works properly
only if you compile the program to disk and transfer to it or run it from
the Finder.

8: ! }
9:

10:
11: {$0 Programs:Launcher.F: }
12: ($R Programs:Launcher.F:Launcher.Rsrc}
13: ($U-)
14:
15:

Send compiled code to here }
Use this compiled resource file
Turn off standard library units

(continued}

342 :;;.;;;;;;;; Programming with Macintosh Turbo Pascal

PROGRAM Launcher;

* PURPOSE
* SYSTEM
* AUTHOR

*)

Demonstrate using Transfer unit
Macintosh I Turbo Pascal
Tom Swan

16:
17:
18: (*
19:
20:
21:
22:
23:
24:
25:
26:
27: {$U Programs:Units.F:MacExtras

{$U Programs:Units.F:Transfer
I Open these library unit files }

USES

28:
29:
30:
31:
32:
33:
34:
35:

Memtypes, QuickDraw, OSintf, Toolintf, Packintf,
MacExtras, Transfer;

CONST

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

File ID
NewCmd
CloseCmd

2;
= 1;

2;

I File menu Resource ID and commands I

(--------)
TransferCmd 4;
QuitCmd = 5;

46:
47:
48:

WindowID l; { Window resource ID)

49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

VAR

wRec
wPtr

quitRequested
windowOpen

WindowRecord;
WindowPtr;

BOOLEAN;
BOOLEAN;

59:
60:
61:
62:
63:

<< INSERT LINES 61-121 FROM APSHELL.PAS >>

64:
65:
66:
67:
68:
69:
70:
71:

PROCEDURE DoTransfer;

Respond to File menu Transfer command)

VAR

reply SFReply;

72: BEGIN
73: IF GetApplName(reply l
74: THEN RunProgram (reply
75: END; { DoTransfer I
76:
77:
78: PROCEDURE DoFileMenuCommands(cmdNumber
79:
80: { Execute command in the File me~u
81:

Program's window data record
Pointer to above wRec

TRUE if quitting
TRUE only if window is open)

INTEGER } ;

Units as Software Tools == 343

82 BEGIN
83 CASE cmdNumber OF
84 NewCmd DoNew;
85 CloseCmd DoClose;
86 TransferCmd : DoTransfer;
87 QuitCmd : quitRequested := TRUE
88 END { case)
89 END; { DoFileMenuCommands)
90
91
92 << INSERT LINES 137-431 FROM APSHELL.PAS >>
93
94
95 BEGIN
96
97 Initialize;
98
99 REPEAT

100
101 DoSystemTasks;
102
103 IF GetNextEvent{ everyEvent, theEvent) THEN
104
105
106
107
108
109
110
111:
112:
113:
114:

CASE theEvent.what OF

MouseDown
Key Down
AutoKey
UpdateEvt
ActivateEvt

END { case)

MouseDownEvents;
KeyDownEvents;
{ ignored);
UpdateEvents;
ActivateEvents

115: UNTIL QuitConfirmed
116:
117: END.

Launcher Play-by-Play

LAUNCHER.R (1-77)

Except for the File menu (38-45), Launcher's resource file is identical to Ap
Shell's. Most programmers place Transfer just above the File menu's Quit com
mand as shown here, but you could put in anywhere you like.

LAUNCHER.PAS (1-117}

Launcher is nearly identical to ApShell. Procedure DoTransfer (64-75) responds
to choosing the Transfer command from the File menu. It simply calls GetAppl
Name (73) to display the standard file dialog, Jetting you choose an application
name and, if the function returns TRUE, calls RunProgram to transfer to that pro
gram. Procedure DoFileMenuCommands (78-89) adds the transfer command to
its usual list of CASE selectors (86).

When transferring from your own programs, remember to close all open files
before calling RunProgram. You could add a call in DoTransfer to your program's

344 = Programming with Macintosh Turbo Pascal

file closing routine, or set a flag and delay the transfer until the program ends. The
last example in this chapter, MacLister, uses this second approach.

ICONTOOIS

Icons, as you know, are small symbols that usually represent disk files in the
Finder. One of the first things every Macintosh owner learns is how to click and
drag icons around to rearrange files in windows, copy them from disk to disk, and
run programs. You can add icons to your own programs, too, or use them for any
purpose you can devise.

Unfortunately, the toolbox contains only a few routines for manipulating icon
images. The tools in this section correct that deficiency and demonstrate how to
add icons to windows, select them, and drag them from place to place. Type in
Listing 7.4 and save as ICONUNIT.PAS. Compile with Turbo to a disk code file.
After the play-by-play description is an example program that explains how to use
the unit.

Listing 7.4. ICONUNIT. PAS

Send compiled code to here 1: {$0 Prograrns:Units.F:
2: {$U-} Turn off standard library units
3:
4:
5: UNIT IconUnit(134);
6
7 (*

8
9 * PURPOSE Routines to display, select, and drag icons

10 * SYSTEM Macintosh I Turbo Pascal
11 * AUTHOR Torn Swan
12
13 *)

14
15
16 INTERFACE
17
18
19 USES
20

{ Items visible to a host program)

21 Merntypes, QuickOraw, OSintf, Toolintf, Packintf;
22
23
24 TYPE
25
26 The following data types define a structure (and a means of
27 accessing that structure) as it exists in an ICN# resource.
28
29
30
31
32
33
34
35
36

IconListHandle = AiconListPointer;
IconListPointer = AiconListRecord;
IconListRecord

RECORD
icon : PACKED ARRAY[0 31
mask : PACKED ARRAY[0 31

END; { IconListRecord J

OF LONGINT;
OF LONGINT

Icon image
Mask image

37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:

Units as Software Tools 345

This record defines one icon image along with its location. It
points to an icon list resource and keeps in destRect the icon's
position in a window. I

IconRecord =
RECORD

iHand IconListHandle;
destRect Rect;
selected BOOLEAN

Handle to icon structure
Enclosing rectangle I
TRUE if icon selected I

END; (IconRecord I

FUNCTION InitNewicon(INTEGER;
Rect;

icon ID
iconRect

VAR anicon IconRecord) : BOOLEAN;

PROCEDURE Showiconimage(anicon : IconRecord; transferMode : INTEGER);

PROCEDURE ShowiconMask(anicon: IconRecord; transferMode : INTEGER);

FUNCTION IconDragged(anicon
mouseLoc
wantsSlop

VAR newRect

IconRecord;
Point;
BOOLEAN;
Re ct

PROCEDURE Selecticon(VAR anicon : IconRecord };

PROCEDURE DeSelecticon(VAR anicon : IconRecord);

PROCEDURE Drawicon(VAR anicon IconRecord) ;

PROCEDURE Moveicon(VAR anicon IconRecord; newRect

BOOLEAN;

Rect);

IMPLEMENTATION (Items not visible to a host program I

FUNCTION PositionChanged(dh, dv : INTEGER) : BOOLEAN;

TRUE if dh or dv are substantial and not equal to an illegal value. I

LOCAL TO UNIT

CONST

AllowableJiggle = 3;

IllegalValue = $8000;

BEGIN

PositionChanged :=

dh <> IllegalValue

You can jiggle the mouse this much before}
it's recognized as a position change. I

Indicates dh and dv are not legal. I

) AND

((ABS(dh
(ABS(dv

> AllowableJiggle
> AllowableJiggle

OR

101: END; (PositionChanged J
102:
103:

(continued)

346 == Programming with Macintosh Turbo Pascal

104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:

FUNCTION InitNewicon;

TRUE if icon with resource ID IconID is loaded and initialized J

BEGIN
WITH anicon DO
BEGIN

iHand := IconListHandle(GetResource('ICNt', IconID J);
IF iHand = NIL

THEN
InitNewicon := FALSE

ELSE
BEGIN

InitNewicon := TRUE;
destRect := iconRect;
Selected := FALSE

END { else J
END with)

END; { InitNewicon J

PROCEDURE Showiconimage;

Display this icon's image using transferMode to copy its bits to
the current grafPort. J

VAR

iBitMap BitMap; { Icon bit map J

BEGIN
WITH anicon, iBitMap DO
BEGIN

baseAddr := @iHandAA.icon;
rowbytes := 4;
SetRect(bounds, O, O, 32, 32 };

CopyBits(

END { with }

iBitMap,
thePortA.portBits,
bounds,
destRect,
transferMode,
NIL)

END; I Showiconimage

PROCEDURE ShowiconMask;

Set pointer to icon image
Bytes in row = 32 bits J
Enclosing rect J

Copy image to grafPort

Display this icon's mask using transferMode to copy its bits to
the current grafPort.)

VAR

mBitMap BitMap; I Icon mask bit map)

BEGIN
WITH anicon, mBitMap DO
BEGIN

baseAddr := @iHandAA.mask;
rowbytes := 4;
SetRect(bounds, O, O, 32, 32);

Set pointer to mask image
Bytes in row = 32 bits J
Enclosing rect)

169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:

CopyBits(
mBitMap,
thePortA.portBits,
bounds,
destRect,
transferMode,
NIL)

Units as Software Tools 347

I Copy image to grafPort l

END I with l
END; I ShowiconMask

FUNCTION IconDragged;

Drag an outline of this icon around the display, starting at mouseLoc.
If mouse is released inside the boundaries of the current grafPort,
set newRect to where the icon should be moved and return TRUE. Else
return FALSE, in which case newRect is meaningless. This routine does
not move the icon or change its display image in any way. Normally,
before calling IconDragged, reverse the icon's image to indicate
that it's selected although this is not a requirement. J

VAR

rgn
limitRect
slopRect
axis
result
dh, dv

tlResult
brResult

RgnHandle;
Rect;
Rect;
INTEGER;
LONGINT;
INTEGER;

Point;
Point;

Region around which outline appears J
Final location stays inside this rect
Mouse allowed to slop over into rect
Value to restrict horiz/vert movement
Result of dragging I
Offsets to the new (h,v) position

Top Left and Bottom Right results
calculate limitRect to keep)
icon image inside window borders. J

BEGIN

WITH anicon DO
BEGIN

rgn := NewRgn;
RectRgn(rgn, destRect); I Region for drawing dotted outline)

IF wantsSlop THEN
BEGIN

slopRect := ScreenBits.bounds;
GlobalToLocal(slopRect.topLeft);
GlobalToLocall slopRect.botRight

Use screen boundaries
Convert to local l

window coordinates
END ELSE

slopRect := thePortA.portRect; No slop allowed I

Set tlResult to mouseLoc - destRect.topLeft

tlResult := destRect.topLeft;
SubPt(mouseLoc, tlResult);

Calculate difference from
icon top left to mouse J

Set brResult to destRect.botRight - mouseLoc I

brResult := mouseLoc;
SubPt(destRect.botRight, brResult);(

Calculate difference from)
icon bot right to mouse l

limitRect := thePortA.portRect; I Limit final location l
WITH limitRect DO
BEGIN

SubPt(tlResult, topLeft);
AddPt(brResult, botRight)

EtiD; I with l

topLeft := topLeft-tlResult l
botRight := botRight+brResult)

(continued)

348 ;;;;;;;;::;: Programming with Macintosh Turbo Pascal

238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:

axis := O; { Allow movement in all directions I

Drag the outline, passing initialized variables to DragGrayRgn.
The result is the offset to the new location. I

result :=
DragGrayRgn(rgn, mouseLoc, limitRect, slopRect, axis, NIL);

dh := LoWord(result);
dv := HiWord(result);
IF PositionChanged(dh, dv)

THEN
BEGIN

Extract horizontal offset
Extract vertical offset I

(Calculate new position I
newRect := destRect;
OffsetRect(newRect, dh, dv);
IconDragged := TRUE

END (if I
ELSE

IconDragged := FALSE;

DisposeRgn(rgn) { Dispose outline region I

END { with I

END; (IconDragged

PROCEDURE Selecticon;

Select icon image, drawing it in reversed white on black. I

BEGIN
ShowiconMask(anicon, SrcOr);
Showiconimage(anicon, SrcXor);
anicon.selected := TRUE

END; { Selecticon I

PROCEDURE DeSelecticon;

Punch out a black mask I
Display image in white I
Set the selected flag I

Deselect icon image, drawing it in normal black on white I

BEGIN
ShowiconMask(anicon, SrcBic);
Showiconimage(anicon, SrcXor);
anicon.selected := FALSE

END; (Deselecticon I

PROCEDURE Drawicon;

Punch out a white mask I
Display image in black I
Reset the selected flag I

Draw icon image in the current grafPort. This procedure just calls
Selecticon or DeSelecticon, which do the actual drawing. }

BEGIN
IF anicon.selected

THEN Selecticon(anicon)
ELSE DeSelecticon(anicon

END; (Drawicon I

PROCEDURE Moveicon;

Units as Software Tools == 349

304: (Move icon from its present position to this new location. Erases old
305: icon by filling it with the grafPort's background pattern. }
306:
307: BEGIN
308: WITH anicon DO
309: BEGIN
310:
311:
312:
313:
314:
315:
316:
317:

EraseRect(destRect);
destRect := newRect;
InvalRect(destRect)

END (with }
END; (Moveicon }

318: END. (IconUnit }
319:

(Erase the old image }
{ Assign the new position
(Force update of the new location }

IconUnit Play-by-Play

To design an icon image, type its pattern into a resource text file. For an exam
ple, look ahead to Listing 7.5 at lines 77-144 (see page 354). The hexadecimal values
represent the bit patterns for an icon image, here the familiar symbol for MacPaint
data files. Returning to Listing 7.4, lines 29-35 declare Pascal data types that let
programs reference these hexadecimal resource structures as they exist in memory.

A single icon has two parts, an image and a mask. The image is the bit pat
tern you normally see. The mask is an overlay, usually restricted to the icon's borders,
that programs use to reverse the normal image when you select the icon by click
ing the mouse inside its symbol. Physically, each of these two parts is the same
an array of 32 long-integer values, making a two-dimensional array of 32 bits on
each side. Together, one icon image and mask occupy 256 bytes in memory.

When you load an icon image from a resource file into memory, the toolbox
places it in a relocatable memory block and passes a handle to your program.
Because IconUnit uses this actual resource and not a copy, icon images must never
be purgeable.

For keeping track of icons inside windows, IconUnit declares another record
type, lconRecord (42-47). Field iHand (44) is an icon handle, locating one
lconListRecord in memory. Rectangle destRect (45) is the enclosing rectangle in
local coordinates that specify the icon's position and size. The final field, selected
(46), is TRUE after you click the mouse inside this icon to select it or FALSE after
you click somewhere else.

PositionCbanged {79-101}

Local function PositionedChanged indicates whether someone has clicked and
dragged an icon an appreciable distance. You cannot call this function from your
own programs, but you might want to modify the way it works. As programmed
here, it returns TRUE only if an icon's position changes by at least 4 pixels in one

350 == Programming with Macintosh Turbo Pascal

direction. This lets you click an icon to select it but not change its location. If you've
ever clicked a Finder icon and accidentally moved it a few pixels, you know the
problem PositionedChanged solves. Adjust constant Allowable.Jiggle (87) to the
number of pixels the mouse can travel without moving the icon.

FUNCTION InitNewiconC iconID: INTEGER;
iconRect: Rect; VAR anicon: IconRecord):
BOOLEAN;

Pass an icon resource ID number in iconlD, an enclosing 32 x 32 rectangle
in iconRect, and an icon record in anlcon to InitNewlcon (104-122) for each icon
that your program uses. If it returns TRUE, then it was able to load the icon im
age into memory and initialize the fields in anlcon.

The function calls GetResource (111) to load the icon list resource (ICN#) from
disk. It casts the resulting handle to type IconListHandle, assigning it to field iHand
in the icon record. If this value is NIL, indicating that GetResource could not load
the icon, the function returns FALSE (114). Otherwise, it continues at lines 117-119
to initialize the remaining icon record fields and return TRUE.

PROCEDURE ShowiconimageC anicon: IconRecord;
transferMode: INTEGER);

After loading an icon list resource with InitNewlcon, to display the image, pass
the resulting icon record to Showlconlmage (125-150). Set parameter transferMode
to one of the following constants:

SrcCopy NotSrcCopy SrcOr
SrcXor NotSrcXor SrcBic

NotSrcOr
NotSrcBic

These eight modes change the way QuickDraw procedure CopyBits transfers
bit images from one place to another, usually the display. (See Chapter 3 for more
details about this subject.) Showlconlmage assigns the address of your icon im
age to a local BitMap record (137), setting fields rowBytes and bounds to enclose
the image in memory (138-139). It then passes this information to CopyBits
(141-147), transferring the icon's bit image to the current GrafPort and displaying
its pattern on screen. The NIL parameter (147) tells QuickDraw not to clip the im
age in any way.

PROCEDURE ShowiconMaskC anicon: IconRecord;
transferMode: INTEGER>;

ShowlconMask (153-178) is nearly identical to Showlconlmage. It differs by
displaying the icon mask instead of the image. To display a single icon, you first
display the mask, "punching" a hole in the screen like a cookie cutter punching

Units as Software Tools == 351

out dough. You then display the icon image by dropping it into the hole created
by the mask. By doing this, instead of simply displaying the image in one step,
you create transparent icons whose background patterns match their masks. This
lets you highlight images for various effects. (For an example, see Selectlcon.)

FUNCTION IconDragged(anlcon: IconRecord;
mouseLoc: Point; wantsSlop: BOOLEAN;
VAR newRect: Rect): BOOLEAN;

Call lconDragged (181-265) after sensing a mouse click inside an icon. The
routine pulls an outline of the icon around the display, releasing control only when
you let go of the mouse button. Parameter anlcon is the icon's record, initialized
as described earlier. Point record mousel.oc is the mouse pointer's coordinate which
you obtain by calling GetMouse. The coordinate values are local to the current
window.

If wantsSlop is TRUE, you can move the mouse pointer outside the current
window while restricting the final icon location to inside the window's borders.
Set this parameter FALSE if you want to cancel icon dragging when the mouse
pointer moves outside. If you then release the mouse button, the icon's original
position is unchanged. (The next program demonstrates the difference between these
two options.)

If IconDragged returns TRUE, then rectangle newRect equals the location to
which you should move the icon image. Normally, you'll do this by calling
Movelcon. See Listing 7.6, lines 54-76 for a complete example.

Although long, the procedure is not difficult to understand. To draw the dot
ted outline requires a region, which lconDragged creates at lines 209-210, using
the destRect field from the icon record. Lines 212-218 set a slop rectangle either
to the entire screen boundaries in local coordinates (214-216) or to the window's
border (218) depending on whether you set wantsSlop to TRUE or FALSE. As long
as the mouse pointer remains inside this rectangle, the dotted outline is visible.

Lines 222-237 set up another rectangle, limitRect, restricting the final icon loca
tion to within the window's boundaries. The calls to SubPt (Subtract Points)
calculate this rectangle to fall within the window borders while taking into account
the mouse location, which might be anywhere inside the icon. This lets you move
the icon to every screen location regardless of where you click on the image. If this
is unclear, change lines 233-237 to a comment, setting limitRect to the full win
dow border. Then run the icon test program in Listing 7.6. You can now force the
icon outside the window borders, probably a poor idea although it does no harm.

Line 240 assigns zero to variable axis, allowing movement in any direction.
Set this value to toolbox constant hAxisOnly for horizontal movement only, or
set it to vAxisOnly to allow only vertical moves. If you need to do this often, you
might want to add axis to the procedure's parameter list instead of declaring it as
a local variable as it is now.

The actual dragging occurs with a call to the Window Manager's DragGrayRgn

352 ;;;;;;;;;;;: Programming with Macintosh Turbo Pascal

routine, which lets you pull the dotted outline around the display (246-247). The
final NIL parameter indicates no action procedure, an option that you could use
to call another routine while you hold down the mouse button. (See Inside Mac
intosh for details about how to do this.)

DragGrayRgn returns a single long integer result containing offsets to the new
icon position .. Lines 249-259 extract the components of this result, assigning the
horizontal and vertical offsets to dh and dv. The IF statement (251) checks whether
these values are large enough to require moving the icon image and, if so, lines
254-256 pass the new rectangle back in parameter newRect, telling the caller the
new location.

The final statement (261) is an easy one to forget. It disposes the region han
dle created at the start of this procedure. Remember, as repeated often in this book,
always dispose your handles when you're finished using them.

PROCEDURE Se le ct Icon C VAR an Icon : Icon Record) ;
PROCEDURE DeSelectlcon(VAR anlcon:

IconRecord >;
These two procedures complement each other. Selectlcon (268-276) darkens

the icon image, presumably to respond to mouse clicks. DeSelectlcon (279-287)
does the opposite, redrawing a highlighted image normally.

Both routines set field selected to TRUE or FALSE. You can use this field to
know whether an icon is selected (highlighted). To manage many icons at once,
you could put their records in an array and check for selected patterns by examin
ing selected fields in each one. Selecting an icon is a visual effect only and causes
no other actions to occur. It's up to you to decide what to do with selected icons.

Line 273 punches out a black mask in the window, using transfer mode SrcOr.
Because a logical OR sets bits to 1 if either or both of two bits are 1, the result
is to blacken the screen for every bit in the mask, usually covering the entire icon
image. After that, line 274 calls Showlconimage to drop in the icon image inside
the blackened mask. Because it uses the SrcXor transfer mode, the effect is to negate
bits only where they differ, which displays the icon image in white on the black
background.

DeSelectlcon (279-287) uses a similar method to re-reverse the highlighted icon,
displaying it normally. Transfer mode SrcBic (Source Bit Clear) also punches a mask
on the screen but this time in white (284). Line 285 then uses the same SrcXor mode
to drop the icon image into this area, displaying its pattern as black lines on a white
background.

It's instructive to turn a few of lines 273-274 and 284-285 into comments in
various combinations. (If you comment out all of these lines, though, you'll see
nothing on screen.) Also, try other transfer modes listed earlier in this chapter and
in Chapter 3. You can create a variety of effects by simply calling tools Selectlcon
Mask and Selectlconimage with various transfer mode values.

Units as Software Tools == 353

PROCEDURE Draw!con(VAR an Icon: IconRecord);

Drawlcon (290-299) simplifies your program's update event handler. Call this
routine for every icon your program uses, passing their records in parameter anlcon.
The procedure draws each icon by calling Selectlcon or DeSelectlcon according
to the value of field selected.

PROCEDURE Move!con(VAR an!con: IconRecord;
newRect : Re ct);

Use Movelcon (302-314) to move an icon image from its present location to
a new spot with coordinates in parameter newRect. The procedure first erases the
icon image (310) and then assigns the new rectangle to the icon record's destRect
field. Rather than copying the image directly into the display at this point, Movelcon
invalidates the rectangle (312), adding its area to the window's update region and
generating an update event. The actual drawing takes place in your program's event
handler (which probably calls Drawlcon).

CLICKING AND DRAGGING ICONS

For an example of how to use IconUnit, type in Listing 7.5 and save as
ICONTEST.R. Compile this file with RMaker to produce the program's resource
file. Then type in Listing 7.6 and save as !CONTEST.PAS. Copy lines from Ap
Shell where the listing indicates. Compile and run with Turbo. Inside the window,
you'll see a single icon, which you can click and drag anywhere inside the window
borders. After trying the program, experiment with the suggestions in the previous
section. For example, change the axis variable (Listing 7.4, 240) to limit movement
in one direction or another.

Listing 7.5. ICONTEST.R

1 *--*
2 * IconTest.PAS resources -- Compile with RMaker *
3 *--*
4
5 Programs:Icon.F:IconTest.RSRC
6
7

;; Send output to here

a *--*
9 * About box string list *

10
11

--
12 TYPE STR#
13 '1 (32)
14 6
15 Icon Test
16 by Tom Swan

String list resource
ID and attribute (purgeable)
Number of strings that follow
Program name
Author

{continued}

354 Programming with Macintosh Turbo Pascal

17: Version 1.00
18: (C) 1987 by Swan Software

, , Version number
,, Copyright notice
, , Address 19: P. 0. Box 206, Lititz, PA 17543

20: (717)-627-1911 , , Telephone
21:
22:
23: *--·
24: * The Apple Info menu
25: •--·
26:
27: TYPE MENU
28: ,1
29: \14
30:
31:
32:
33:

About IconTest ...
(-

34: *--*
35: * The File menu
36: *--*
37:
38: TYPE MENU
39: ,2
40: File
41: Quit /Q
42:
43:
44: *--*
45: * The Edit menu

-- 46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69: 0

TYPE MENU
'3

Edit
(Undo /Z
(-

(Cut /X
(Copy /C
(Paste /V
(Clear

--
* Window template *
--

70:
71:

TYPE WINO

'1
IconUnit Test
46 7 328 502
Visible NoGoAway
4

,, ID number to use in program
, , Window title
,, top, left, bottom, right coordinates
,, Visible window without close button
,, Document window style without size button
,, Window reference (none)

72:
73:
74:
75:
76:

--
* MacPaint Icon list * *--*

77:
78:
79: .H
80:
81:
82:
83:

Type ICNJt
'1000

OFFFFEOO
08000300
09000280
09000240

GNRL ,, General type (its structure is up to you)
, , Resource ID
,, Hex data follows
•• 32 LONGINTS (32-bits each)

Units as Software Tools== 355

84: 09000220
85: 09000210
86: 09D003F8
87: 09000008
88: 09000008
89: 09000008
90: 09000008
91: 09000008
92: 09F00008
93: 09100008
94: 09100008
95: 09100008
96: 09100008
97: 09100008
98: 08E00008
99: 09F00008

100: 09F00008
101: 09F80008
102: 09F80008
103: 09E85FE8
104: 09F80BE8
105: 08D03FE8
106: 08FOFFE8
107: 08703FE8
108: 08l9FFE8
109: 08000008
110: 08000008
lll: OFFFFFF8
112: * Mask data
113: OFFFFEOO
114: OFFFFFOO
115: 0FFFFF80
116: OFFFFFCO
117: OFFFFFEO
118: OFFFFFFO
119: OFFFFFF8
120: 0FFFFFF8
121: OFFFFFF8
122: OFFFFFF8
123: 0FFFFFF8
124: OFFFFFF8
125: 0FFFFFF8
126: OFFFFFF8
127: 0FFFFFF8
128: OFFFFFF8
129: OFFFFFF8
130: OFFFFFF8
l3l: OFFFFFF8
132: 0FFFFFF8
133: OFFFFFF8
134: 0FFFFFF8
135: OFFFFFF8
136: OFFFFFF8
137: 0FFFFFF8
138: OFFFFFF8
139: OFFFFFF8
140: 0FFFFFF8
141: OFFFFFF8
142: OFFFFFF8
143: OFFFFFF8
144: OFFFFFF8
145:
146:
147:
148: * END

356 == Programming with Macintosh Turbo Pascal

Listing 7.6. !CONTEST.PAS

1: {$0 Programs:Icon.F:)
2: {$R Programs:Icon.F:IconTest.Rsrc)
3: {$U-)

Send compiled code to here)
Use this compiled resource file
Turn off standard library units

4:
5:
6: PROGRAM IconTest;
7:
8: {*

9:
10: * PURPOSE
11: * SYSTEM
12: * AUTHOR
13:

Test the Iconunit -- display, select, and drag an icon
Macintosh I Turbo Pascal
Tom Swan

14: *)
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

{$U Programs:Units.F:MacExtras)
{$U Programs:Units.F:IconUnit)

{ Open these library unit files)

USES

Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras,
IconUnit;

CONST

File ID
QuitCmd

WindowID

Icon ID

WantsSlop

top
left

2; { File menu Resource ID and commands)
= l;

= 1; Window resource IO

1000; Icon list resource ID

= TRUE; FALSE for no mouse slop outside window

10; Initial position of icon in window }
10;

43: VAR
44:
45:
46:
4 7:
48:
49:
50:
51:
52:
53:

wRec
wPtr

quitRequested

the Icon

54: PROCEDURE DoMouseClick;
55:

WindowRecord;
WindowPtr;

BOOLEAN;

IconRecord;

Program•s window data record
Pointer to above wRec)

TRUE if quitting

Icon image and information

56: Handle mouse clicks in wPtr's contents. Select icon and drag outline
57: around screen, dropping icon off in its new position. }
58:
59: VAR
60:
61:
62:
63:

mouseLoc
newRect

Point;
Rect;

Units as Software Tools

64: BEGIN
65: GetMouse(mouseLoc);
66: WITH theicon DO
67: IF NOT PtinRect(mouseLoc, destRect) (Mouse outside icon
68: THEN

DeSelecticon(thereon)
ELSE

BEGIN
Selecticon(thereon);

Mouse inside icon I

69:
70:
71:
72:
73:
74:
75:
76:
77:

IF IconDragged(thereon, mouseLoc, WantsSlop, newRect)
THEN Moveicon(theicon, newRect)

78:
79:
80:
81:
82:
83:
84:
85:
86:
87:

END (else)
END; I DoMouseClick)

PROCEDURE DoFileMenuCornrnands(cmdNurnber INTEGER) ;

Execute command in the File menu }

BEGIN
quitRequested := (cmdNurnber

END; (DoFileMenuCornrnands I
QuitCmd)

88: << INSERT LINES 137-175 FROM APSHELL.PAS >>
89:
90:
91: PROCEDURE DrawContents(whichWindow
92:
93: Display window contents I
94:
95: BEGIN
96:
97: Drawlcon(thereon)
98:
99: END; (DrawContents }

100:
101:
102: PROCEDURE MouseDownEvents;
103:

WindowPtr);

104: Someone pressed the mouse button. Check its location and respond. I
105:
106:
107:
108:
109:
110:
111:

VAR

part Code INTEGER;

BEGIN

112: WITH theEvent DO
113:
114: BEGIN
115:

(Identifies what item was clicked. }

116: partCode := FindWindow(where, whichWindow) ;
117:
118: CASE partCode OF
119:
120: inMenuBar
121: : DoCornrnand(MenuSelect(where I);
122:
123: inSysWindow
124: : SystemClick(theEvent, whichWindow);
125:
126: inContent, inDrag
127: : IF whichWindow <> FrontWindow
128: THEN SelectWindow(whichWindow
129: ELSE IF partCode = inContent
130: THEN DoMouseClick
131:
132: END I case I

357

(continued}

358 == Programming with Macintosh Turbo Pascal

133:
134: END { with }
135:
136: END; (MouseDownEvents
137:
138:
139: PROCEDURE KeyDownEvents;
140:
141: A key was pressed. Do something with incoming character. l
142:
143: VAR
144:
145: ch CHAR;
146:
147: BEGIN
148: WITH theEvent DO
149: BEGIN
150: ch := CHR (BitAnd (message, charCodeMask) l;
151: IF BitAnd(modifiers, CmdKey) <> 0
152: THEN DoCommand(MenuKey(ch))
153: END with }
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:

END; { KeyDownEvents J

<< INSERT LINES 301-318 FROM APSHELL.PAS >>

PROCEDURE ActivateEvents;

Activate or deactivate windows

BEGIN
WITH theEvent DO
BEGIN

whichWindow := WindowPtr(message);
SetPort(whichWindow);

IF BitAnd(modifiers, activeFlag l <> 0

Extract window pointer
Change current port }

168:
169:
170:
171:
172:
173:
174:

THEN FixEditMenu(FALSE) (Activate a window l

175:
176:
177:
178:

ELSE FixEditMenu(TRUE) { Deactivate a window

END with
END; { ActivateEvents

179: << INSERT LINES 350-368 FROM APSHELL.PAS >>
180:
181:
182: PROCEDURE SetUpWindow;
183:
184: Initialize this program's window record }
185:
186: BEGIN
187: wPtr := GetNewWindow(WindowID, @Wrec, POINTER(-1));
188: SetPort(wPtr)
189: END; { SetUpWindow)
190:
191:
192: PROCEDURE SetUpicon;
193:
194: Initialize icon variable, loading image from resource file.
195: Assumes wPtr is the current port I
196:

197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:

Units as Software Tools== 359

VAR

iconRect Rect;

BEGIN
SetRect(iconRect, left, top, left + 32, top+ 32);
IF NOT InitNewicon(IconID, iconRect, theicon) THEN
BEGIN

SysBeep(3);
ExitToShell

END { if I

If you hear a beep and the program
ends, check your resource definition.

END; { SetUpicon)

PROCEDURE Initialize;

Program calls this routine one time at start J

BEGIN
SetUpMenuBar;
SetUpWindow;
SetUpicon;
quitRequested := FALSE;
DisplayAboutBox

END; { Initialize)

FUNCTION QuitConfirmed : BOOLEAN;

Initialize and display menus
Initialize program window J
Initialize icon image J
TRUE on selecting Quit command
Identify program J

The program's "deinitialization" routine. It is always okay
to quit this program.)

BEGIN
QuitConfirmed := quitRequested

END; { QuitConfirmed I

PROCEDURE DoSystemTasks;

Do operations at each pass through main program loop J

BEGIN

SystemTask; Give DAs their fair share of time J

IF FrontWindow - NIL THEN

BEGIN { Set up menu commands for empty desktop J

FixEditMenu(FALSE)

END ELSE

IF FrontWindow <> wPtr THEN

BEGIN { Set up menu commands for active desk accessory J

FixEditMenu{ TRUE

END { else I if J

END; { DoSystemTasks I

(continued)

360 == Programming with Macintosh Turbo Pascal

261: BEGIN
262:
263: Initialize;
264:
265: REPEAT
266:
267: DoSystemTasks;
268:
269: IF GetNextEvent(everyEvent, theEvent) THEN
270:
271: CASE theEvent. what OF
272:
273: MouseDown : MouseDownEvents;
274: KeyDown : KeyDownEvents;
275: UpdateEvt : UpdateEvents;
276: ActivateEvt : ActivateEvents
277:
278: END { case I
279:
280: UNTIL QuitConfirmed
281:
282: END.

IconTest Play-by-Play

ICONTEST.R {1-148}

Most of the resource types are the same as in ApShell. To simplify the test pro
gram, the window resource is immovable and does not have close and zoom boxes.
The only new element is the icon list resource (77-144).

Type ICN# (the # stands for "list") is a GNRL (general) structure, meaning
its design is up to you (see line 77). As in other resources, the resource ID is a positive
number, also of your choice, but probably best if at least 128 or higher. This number
matches the ID the program uses to load the resource into memory. The test uses
ID 1000 (78). Remember that icon lists must never be purgeable.

The .H (79) signifies that hex data follows. Here, that data consists of two blocks
of 32, 32-bit values, each having 8 hex digits (worth four bits apiece). Each bit in
the data represents one black pixel in the icon image. The first block of 32 values
(80-lll) is the image; the second (113-144) is the mask that overlays the image.
Remember that this mask should completely cover the icon outline, or highlighting
might not work properly. It is possible to design masks with holes, though, to
animate icons, changing their patterns when you select them, a popular technique.
IconTest is a good program for experimenting with such effects. Just replace lines
80-144 with a new image and mask.

!CONTEST.PAS {1-176}

Constant IconID (34) matches the ID number of the icon list resource. In a
program with several icons, you would define an ICN# resource for each one and
assign them unique IDs. Set Boolean constant WantsSlop (36) TRUE to allow slop-

Units as Software Tools ~ 361

py mouse movement, or to FALSE to erase the dragging outline if the mouse pointer
strays outside the window borders. Experiment with both values to understand their
difference. Two other constants, Top and Left (38-39) mark the upper left corner
of the icon's initial position. They can be any values, relative to the window
coordinates.

Procedure DoMouseClick (54-76) responds to mouse clicks inside windows
that contain icons. The first job is to locate the mouse, calling GetMouse (65), which
fills in the mouseLoc Point record with a coordinate relative (local) to the window
borders. Function PtlnRect then tests whether that point is inside the icon's enclos
ing rectangle (67). If not, DeSelectlcon redraws the icon normally, setting icon record
field selected to FALSE (69). (Deselecting an icon not previously selected has no
effect.) If the mouse click is inside the image, lines 72-74 select the icon and call
lconDragged pulling a dotted outline around the screen. If lconDragged returns
TRUE, Movelcon (74) completes the process by moving the image to its new loca
tion in the window.

Procedure DrawContents (91-99) is this program's entire display handler. It
calls Drawlcon to draw the icon image, highlighting it only if field selected in the
icon record is TRUE. To handle many icons, perhaps in an array of icon records,
call Drawlcon in this routine for each one.

Other procedures in this section are shortened versions of those with the same
names in ApShell. You should have little trouble understanding what they do.

SetUpWindow to END {182-282)

The test program's only window appears as a result of SetUpWindow (182-189),
which loads the window resource and sets the current GrafPort to the window
pointer. Of course you can use Icon Unit with other window types: those with resize
boxes, scroll bars, and other features.

The next procedure, SetUplcon (192-208), initializes new icon images. In line
202, it creates a 32 x 32 pixel rectangle (iconRect), which it passes along with the
icon resource ID (IconlD) and an icon record variable (thelcon) to InitNewlcon
(203). This loads the ICN# resource into memory and initializes the icon record's
fields. In this example, if that doesn't work, then something is wrong with the
resource file and the program beeps before returning to Turbo, or to the Finder
if you run it from a disk code file. Therefore, if you hear a beep and nothing else
seems to happen, check your ICN# resource against Listing 7.5.

PRINTING TOOLS

The Macintosh toolbox contains many routines for printing graphics and text.
As you probably know, you install printer drivers in your System folder to use dif
ferent printers without requiring programs to understand their specific
characteristics. To programs, all printers are the same. It's the software in the driver

362 ;;;;;;;;;;;;: Programming with Macintosh Turbo Pascal

that takes advantage of special abilities such as the fonts in a laser printer or the
graphics in an ImageWriter.

To print a picture or text in this fashion, programs draw into memory (or into
temporary disk files) similar to the way they draw onto the display. But instead
of that drawing appearing on screen, it appears on paper-the result of the interac
tion between the operating system and the printer driver. Because of that, programs
don't have to know which commands turn on graphics or underline text for one
printer or another.

Unfortunately, this ideal arrangement takes time-time to draw into memory,
time to feed that drawing to the printer driver, and time for the driver to print the
dots on paper that create the final image. Consequently, the printer runs more slowly
than it does when it uses its own native abilities to print text.

Because the standard printer methods are well covered elsewhere, I won't repeat
them here. Instead, the next section develops a set of tools to use an ImageWriter's
faster native text abilities. With these tools, you select among various printing
features such as condensed and proportional type and headlines-but you cannot
print graphics or fonts that you see on screen. With a few simple modifications,
you can use this same programming to run other printers, even the letter-quality,
daisy- and thimble-wheel models that the Macintosh normally doesn't know how
to operate.

One thing to remember is that these tools break all the Macintosh rules about
printing. If you write a program to work with the ImageWriter and then hook up
a laser printer, the program might not work properly. Despite this restriction, the
following tools greatly increase printing speed, a welcome improvement for pro
gram listings, database reports, and simple notes.

To begin adding native ImageWriter tools to your system, type in Listing 7.7
and save as IMAGEUNIT.PAS. Compile the text to a disk code file. The unit does
not use any other units in this book. Following the play-by-play description is an
example program that uses the unit to print program listings.

Listing 7.7. IMAGEUNIT.PAS

1 ($0 Programs:Units.F:)
2 {$U-)
3
4
5 UNIT ImageUnit(133);
6
7 (*
8

I Send compiled code to here I
{ Turn off standard library units)

9
10
11
12

* PURPOSE : Imagewriter "native" printing routines
* SYSTEM : Macintosh I Turbo Pascal
* AUTHOR : Tom Swan

13: *)

14:
15:
16: INTERFACE
17:
18:
19: USES
20:

Units as Software Tools 363

{ Items visible to a host program)

21: Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacPrint;
22:
23:
24: TYPE
25:
26: PrnStyles
27: (PrnNoStyle, PrnExtended, PrnPica, PrnElite,
28: PrnPicaPro, PrnElitePro, PrnSemiCond, PrnCondensed,
29: PrnUltraCond, PrnHLStart, PrnHLEnd);
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:

PrnHandle = APrnPtr;
PrnPtr = APrnSpecRec;

PrnSpecRec =
RECORD

lut
laf
cpl
lpp
ltp
lsp
tab
spn
sln

header
footer

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

Str255;
Str255;

printHeader
printFooter
hasFormFeed
lineNumbers

BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;

textStyle : PrnStyles;

END; { PrnSpecRec)

Handle to relocatable PrnSpecRec
Pointer to PrnSpecRec record)

Various printer variables as follows

Blank lines under top header
Blank lines above bottom footer
Maximum characters per line)
Total lines per page)
Lines to print on page (not headers)
Line spacing. O=single,l=double,etc.
Fixed tab stop. Usually 4 or 8.)
Starting page number (usually 1))
Starting line number (usually 1))

Header string to print at top
Footer string to print at bottom

True for headers in top margin)
True for footers in bottom margin
True if ASCII 12 does form feed)
True to print line numbers)

Printer style for text)

PROCEDURE PrnSetStyle(pStyle : PrnStyles);

PROCEDURE PrnChar(ch: CHAR);

PROCEDURE PrnString(s : Str255);

PROCEDURE PrnLine(s Str255; lastLine BOOLEAN) ;

FUNCTION PrnNew : PrnHandle;

70: PROCEDURE PrnDispose(VAR pHand : PrnHandle);
71:
72: PROCEDURE PrnStart(pHand: PrnHandle);
73:
74: PROCEDURE PrnEnd;
75:
76:
77: IMPLEMENTATION
78:

{ Items not visible to a host program)

(continued)

364 ===: Programming with Macintosh Turbo Pascal

79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:

CONST

ASCtab
ASCcr
ASClf
ASCff
ASCesc
ASCblank

#9;
= #13;
= UO;
= tl2;
= #27;
= #32;

I ASCII character constants l

VAR

MaxLNDigits
MaxPNDigits

3;
= 2;

prnSpec PrnHandle;

dtpString Str255;

pgLine
column
lineNo
pageNo
lutltp
lutltplaf
titleOverHead
lastLineDone

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;

PROCEDURE ListChar(ch: CHAR);

Maximum digits in line numbers 000-999
Maximum digits in page numbers 00-99)

Handle to printer specs

Date, time, page number string

Line number (resets at top of page)
Column number relative to left margin
Running line number l
Page number l
lut + ltp (see PrnSpecRec type)
lut + ltp + laf (")
Length of date, time, & page no string
TRUE when printing the last line)

Send character ch to list device using text streaming method.
LOCAL TO UNIT)

VAR

buffer PACKED ARRAY[0 .. 0] OF CHAR;

BEGIN
buffer[0 J := ch; I Move ch value to high order 8 bits)
PrCtlCall(iPrIOCtl, ORD(@buffer), 1, 0)

END; { ListChar l

122: PROCEDURE PrnTab;
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:

Advance printer to next fixed tab stop.
LOCAL TO UNIT)

VAR

tabWidth INTEGER;

BEGIN
tabWidth := prnSpecAA.tab; { Copy value--ListChar could compact heap l
REPEAT

ListChar(ASCblank);
column := column + 1

UNTIL column MOD tabWidth = 0
END; { PrnTab)

PROCEDURE PrnLf;

142: Advance printer to next line down. No er. Advance line counts.
143: LOCAL TO UNIT)
144:

145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:

BEGIN
ListChar(ASClf);
pgLine := pgLine +

END; I PrnLf }

PROCEDURE PrnCr;

Units as Software Tools

I Count relative line number }

Send printer to start of current line. No lf.
LOCAL TO UNIT }

BEGIN
ListChar(ASCcr };
column := O

END; { PrnCr }

162: PROCEDURE PrnAdvanceLine(n: INTEGER);
163:
164: Advance printer n lines down
165: LOCAL TO UNIT }
166:
167: BEGIN
168: PrnCr;
169: WHILE n > 0 DO
170: BEGIN
171: PrnLf;
172: n:=n-1
173: END I while }
174: END; I PrnAdvanceLine
175:
176:
177: PROCEDURE PrnFf;
178:
179: Advance printer to next page
180: LOCAL TO UNIT }
181:

BEGIN
WITH prnSpechh DO

IF hasFormFeed
THEN ListChar(ASCff

ELSE IF (pgLine <= lpp

365

182:
183:
184:
185:
186:
187:
188:
189:
190:

THEN PrnAdvanceLine(lpp - pgLine };
pgLine := O { reset relative line number l

END; { PrnFf }

I Zero does lone er }

191:
192: PROCEDURE PrnFooter;
193:
194: Print footer at bottom of page.
195: LOCAL TO UNIT }
196:

VAR 197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:

title : Str255;
blanks : INTEGER;

Temporary variable to hold footer text }
Number of blank lines or chars to print }

BEGIN
blanks := lutltplaf - pgLine + l;
IF blanks > 0

THEN PrnAdvanceLine(blanks };
IF prnSpechh.printFooter THEN
BEGIN

PrnSetStyle(PrnHLStart);
title := prnSpecAA.footer;
blanks := (prnSpechh.cpl DIV
WHILE blanks > 0 DO

Blank lines above footer

Advance to footer line }

I Turn on headline style)
I Copy title to local var }

2 l - length(title J;

(continued)

366 Programming with Macintosh Turbo Pascal

212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:

BEGIN
ListChar(ASCblank);
blanks := blanks - 1

END; (while }
prnString(title);
PrnSetStyle(PrnHLEnd);
PrnSetStyle(prnSpec''.textStyle

END; (if }
PrnFf

END; { PrnFooter

224: PROCEDURE PrnHeader;
225:
226:
227:
228:

Print header at top of page.
LOCAL TO UNIT }

229: VAR
230:
231: title : Str255;
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:

blanks : INTEGER;

BEGIN
IF prnSpec''.printHeader THEN
BEGIN

PrnSetStyle(PrnHLStart);
title := prnSpec''.header;
PrnString(title);
blanks := (prnSpec''.cpl DIV 2) -
WHILE blanks > 0 DO
BEGIN

ListChar(ASCblank);
blanks := blanks - 1

END; (while }
PrnString(dtpString);
NumToString(pageNo, title);
PrnString(title);
PrnSetStyle(PrnHLEnd);
PrnSetStyle(prnSpec''.textStyle

END; (if }
PrnAdvanceLine(prnSpec''.lut + 1)

END; (PrnHeader }

256: PROCEDURE PrnNewPage;
257:
258: Start new page.
259: LOCAL TO UNIT }
260:
261: BEGIN
262: IF NOT lastLineDone THEN
263: BEGIN
264: PrnFooter;
265: pgLine := 0;
266: pageNo := pageNo + l;
267: PrnHeader
268: END { if }
269: END; (PrnNewPage
270:
271:
272: PROCEDURE PrnNewLine;
273:
274: Start new line.
275: LOCAL TO UNIT }
276:
277: BEGIN
278: IF pgLine >= lutltp
279: THEN PrnNewPage

(Move to right border }

Print title }
Turn off headline style
Restore text style l

Advance to top of next page }

Turn on headline style }
Copy title to local var }
Print title at left border

length(title) - titleOverHead;

(Advance to date position }

Print date, time, page no. }
Reuse title string to print l
page number. l

Turn off headline style
Restore text style }

Blank lines under title

280: ELSE PrnAdvanceLine(prnSpec''.lsp + 1)
281: END; (PrnNewLine }

Units as Software Tools

282:
283:
284: PROCEDURE PrnSetStyle;
285:
286: Select one of various print styles. Modify for different
287: printer models. }
288:
289: VAR
290:

ch CHAR;

BEGIN
CASE pStyle OF

{ PrnNoStyle)
PrnExtended
PrnPica
PrnElite
PrnPicaPro
PrnElitePro
PrnSemiCond
PrnCondensed
PrnUltraCond
PrnHLStart

PrnHLEnd

ch := 'n';
ch := 'N';
ch := 'E';
ch := 'p';
ch := 'P';
ch := 'e';
ch := 'q';
ch := 'Q';

BEGIN
ListChar(•N);
ch := I! I

END;
BEGIN

END

List Char (•o) :
ch :=

Start headline mode
Start boldface)

End headline mode
End boldface mode

291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:

END; { case)
ListChar(ASCesc);
ListChar(ch)

Send lead-in character)
Send printer conunand character

END; { PrnSetStyle)

317:
318: PROCEDURE PrnChar;
319:
320: Print one character. Specially handle some control chars. J
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:

BEGIN
IF ch = ASCtab THEN PrnTab

ELSE IF
ELSE IF
ELSE IF
ELSE

BEGIN

ch = ASClf THEN
ch = ASCcr THEN
ch = ASCff THEN

ListChar(ch);

PrnLf
PrnCr
Prnff

IF ch >= ASCblank THEN column
END { else I

END; (PrnChar)

PROCEDURE PrnString;

:= column + 1

337: Print string parameter--no carriage return (similar to Write) }
338:
339: VAR
340:
341:

·342:
343:
344:
345:
346:
347:
348:

i INTEGER;

BEGIN
FOR i := l TO Length(

PrnChar(s(i] J
END; { PrnString)

s) DO

367

(continued)

368 Programming with Macintosh Turbo Pascal

349: PROCEDURE PrnLine;
350:
351:
352:
353:
354:

Print an entire line (similar to WriteLn) }

VAR

355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

numString Str255; I For printing line numbers }

371:

BEGIN
lastLineDone := lastLine;
IF prnSpec''.lineNumbers THEN
BEGIN { print line number }

NumToString(lineNo, numString);
WHILE length(numString) < MaxLNDigits DO

insert ('0', numString, 1) ;
PrnString(numString); PrnString('·);
lineNo := lineNo + l

END; { if }
PrnString (s) ;
PrnNewLine

END; I PrnLine }

372: FUNCTION PrnNew;
373:

I Add leading zeros }

374: Return handle to a new, initialized, relocatable PrnSpec record. }
375:
376: BEGIN
377: prnSpec := PrnHandle(NewHandle(SizeOf(PrnSpecRec)));
378: IF prnSpec <>NIL THEN WITH prnSpec'' DO
379: BEGIN (assign default values to record fields }
380: lut := 2;
381: laf := l;
382: cpl := 80;
383: lpp := 66;
384: ltp := 57;
385: lsp : = o;
386: tab := 8;
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:

spn := l;
sln := l;
header := ' 1 •

footer
printHeader := FALSE;
printFooter := FALSE;
hasFormFeed := TRUE;
lineNumbers := FALSE;
textStyle := PrnNoStyle

END;
PrnNew := PrnSpec

END; I PrnNew }

PROCEDURE PrnDispose;

Dispose handle to printer spec record)

BEGIN
DisposHandle(Handle(pHand));
pHand := NIL

END; I PrnDispose)

411: PROCEDURE PrnStart;
412:
413: (Initialize printer
414:

Dispose of printer specs }
Avoid dangling pointers)

Units as Software Tools == 369

415: VAR
416:
417:
418:
419:
420:
421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:

dateTime
dateString
timeString

LONGINT;
Str255;
Str255;

Encoded date and time }
Date and time as strings

BEGIN
prnSpec := pHand;
PrDrvrOpen; Open printer driver }
PrCtlCall(iPrDevCtl, lPrReset, 0, 0); Send reset command}
WITH prnSpecAA DO
BEGIN

pgLine := O;
column := 0;
lineNo := sln;
pageNo := spn;
lutltp := lut + ltp;
lutltplaf := lut + ltp + laf;
PrnSetStyle(textStyle);

Line number on page }
Column number on line
Starting line number }
Starting page number }
Avoids readding this }
ditto above comment }
Select printing style }

NOTE: prnSpecAA is invalid now due to possible heap compaction.

END; { with }
GetDateTime(dateTime);

439: IUDateString(dateTime, shortDate, dateString);
440: IUTimeString(dateTime, FALSE, timeString);
441: dtpString := concat (dateString, • •, timeString, Page-•) ;
442: titleOverHead :=length(dtpString l + MaxPNDigits;
443: lastLineDone :=FALSE;
444: PrnHeader
445: END; (PrnStart }
446:
447:
448: PROCEDURE PrnEnd;
449:
450: Deinitialize printer
451:
452: BEGIN
453:
454:
455:
456:
457:

PrnFooter;
PrDrvrClose

END; (PrnEnd }

458: BEGIN
459: prnSpec := NIL
460: END. { Unit }

Print footer on last page
Close printer driver }

{ No print spec record in memory

lmageUnit Play-by-Play

Three data type declarations specify various printing features. PrnStyles (26-29)
is an enumerated type whose elements each represent one printing style. PrnNoStyle,
the first element, causes no change to the printer's current style. If you set switches
inside your printer to select among its features, you can print with PrnNoStyle to
use those settings instead of sending software codes to the printer to change styles.
Table 7.1 lists the meaning of the other PrnStyles elements.

PrnSpecRec (34-57) is a large record that holds specifications to control print
ing style and page formatting. See the listing comments for the meaning of each
field in this record. When you call function PrnNew, it creates a record of this type

370 = Programming with Macintosh Turbo Pascal

Table 7.1 ImageWriter print styles from ImageUnit.

PrnStyles

PrnNoStyle
PrnExtended
PrnI'ica
PrnElite
PrnPicaPro
PrnElitePro
PrnSemiCond
PrnCondensed
PrnUltraCond
PrnHLStart
PrnHLEnd

Meaning

no effect
extended
pica (standard)
elite
pica proportional
elite proportional
semi condensed
condensed
ultra condensed
head line start
head line end

Characters
Per Inch

9
10
11.8
10 (approx)
12 (approx)
13.3
15
16.7

Characters per
8-inch Line

72
80
94

106
120
133

on the heap and passes you a PmHandle (31) to it. You can then use that handle
to change the record's fields. For example, to set maximum characters per line to
132, you could write:

VAR ph : PrnHand le;

ph := PrnNew;
phAA.Cpl :: 132;

Local Declarations {77-281}

ImageUnit contains many local declarations and routines not directly available
to your programs. The ASCII constants in lines 81-86 are the decimal values that
represent control characters and a blank. The # symbol tells the compiler to con
sider the number as a character with that ASCII value. Change constants Max
LNDigits and MaxPNDigits (88-89) to the maximum number of digits in line
numbers. A maximum of 2 allows numbers from 0 to 99, 3 permits up to 999, and
so on.

Variable pmSpec (94) is a handle to the current printer specification record,
with the formatting fields described earlier. String dtpString (96) holds the date,
time, and page number string that the unit prints at the top of each new page if
printer specification field printHeader is TRUE. Procedure PrnStart initializes this
string. The seven integer variables and one Boolean at lines 98-105 control line and
page numbers, and help position headers, footers, and text. These variables should
have obvious meanings-see the Listing comments for details.

Procedure ListChar (107-119) sends a single character to the printer using a
method called text streaming. This completely bypasses the printer driver logic that
normally interprets bytes as commands to draw text and images dot-by-dot. In
stead, ListChar sends bytes directly to the printer, which interprets them as ASCII
character codes, helping the printer operate more quickly by reducing the amount
of information it needs from the program.

Units as Software Tools == 371

Character Variable

15 8 7 0

(unused) ASCII code

address in memory

Figure 7.2 Because a character variable sits in the
low order eight bits of a 16-bit word, the address
of that word is one byte ahead of the character.

To accomplish this requires calling operating system routine PrCtlCall (Printer
Control Call) (118), passing a constant (iPrIOCtl) that selects text streaming. (These
toolbox identifiers are from the MacPrint unit, which lmageUnit uses at line 21.)
The procedure moves character ch into the first byte of a two-byte buffer, passing
the address of that buffer (and, therefore, the character) to PrCtlCall. It cannot
pass the character address directly because characters are normally in the second
eight bits of a 16-bit word-in other words, at the address of ch plus one byte as
Figure 7.2 illustrates. The second parameter to PrCtlCall, 1, indicates the number
of characters to print (118). The third parameter, 0, is required but meaningless.

PrnTab (122-137) correctly aligns columns with embedded tab control
characters. This lets you print listings prepared with editors (not Turbo's) that in
sert tabs to indent lines and align assembly language columns. Unless you change
it, tabs are fixed at every eight columns.

PrnLf (140-148) and PrnCr (151-159) print line feeds and carriage returns. They
also adjust variables pgLine and column to keep track of the exact print position
on the page. A line feed advances the paper by a single line, keeping the print posi
tion at the same column. A carriage return moves the print position to the extreme
left and does not advance the paper. Be sure to obey these rules when modifying
ImageUnit to run other printers.

(Note: if printing is double-spaced, make sure your lmageWriter switches are
set to not add line feeds automatically to carriage returns. Consult your printer
manual for information about changing this setting.)

ImageUnit calls PrnAdvanceLine (162-174) for every new line, executing n line
feeds, usually equal to the line spacing specification lsp (42). A zero value prints
single-spaced text. One prints double-spaced lines (one extra blank line); two prints
triple-spaced text, and so on.

PrnFf (177-189) advances paper to the top of a new page, or form. Set the
lines per page field lpp (40) to adjust pages for different paper lengths. Also set
field hasFormFeed (52) TRUE if your printer understands ASCII 12 as a command
to advance to the top of the next form. If this value is FALSE, line 187 calls PrnAd-

372 == Programming with Macintosh Turbo Pascal

vanceLine to advance the paper one line at a time, simulating form feeds on printers
that don't understand them. (Most do.) If pages advance with jerky steps, or if
headers do not print at the tops of new pages, you are probably using the wrong
settings.

PrnFooter (192-221) and PrnHeader (224-253) have obvious jobs. They use
your printer's headline style to print titles and footnotes, features you can turn on
or off by changing specifications printHeader and printFooter (50-51). You are
free to change these routines if you don't like ImageUnit's header style. If you do
that, be sure to call PrnFf as the last step in PrnFooter (220) and advance to the
first text line on a page as shown in PrnHeader (252). To print text, use PrnString
or ListChar. To advance lines, call PrnAdvanceLine. Do not use other printing
methods and don't issue your own carriage returns and line feeds, or page format
ting may not work correctly.

The final two local routines, PrnNewPage (256-269) and PrnNewLine
(272-281) cooperate to format pages into fixed numbers of lines with optional
headers and footers. You probably should not change these two in any way. Notice
that line 262 checks global lastLineDone. This avoids printing a blank page when
the number of print lines exactly fit. Later, you'll learn how to set this variable.

Next are routines you can call from programs. Before diving into your own
ImageUnit projects, though, read through the following descriptions. There are
a few rules you should know about.

PROCEDURE PrnSetStyle(pStyle: PrnStyles);

Pass a PrnStyles element (27-29) to PrnSetStyle (284-315) to select one or
another printer feature. In some cases, you can combine features to produce various
effects. For example, pass PrnCondensed followed by PrnHLStart to print con
densed headlines.

When modifying lmageUnit to run other printers, change this procedure to
send the control characters your printer understands. For letter-quality printers,
some of which have no special features, leave the procedure blank, removing lines
294-314. If you are blessed with more than one printer, you might also consider
adding a method to select one or the other.

PROCEDURE PrnChar(ch: CHAR>;

Call procedure PrnChar (318-332) to print a single character, which can have
any ASCII value. It traps the control characters shown in the listing, calling local
routines to handle tabs, carriage returns, line feeds, and form feeds. It passes other
characters directly to ListChar (329).

Don't use PrnChar to select printing styles or various options by passing con
trol codes. Instead, modify PrnSetStyle as the previous section describes and call
it to change print styles.

Units as Software Tools == 373

PROCEDURE PrnString(s: Str255 >;
PROCEDURE Prnline(s: Str255; lastline

Boolean>;

PrnString (335-346) is similar to a Pascal Write statement. It prints a line of
text, up to 255 characters at a time, starting at the current print position. It does
not add a line feed or carriage return after printing. Therefore, you can call it several
times in a row to print different items on the same line.

PrnLine (349-369) operates like a Pascal WriteLn statement. It calls PrnString
(367) and then starts a new line (368). It also adds line numbers to the left column
if IineNumbers (53) is TRUE. If you don't want leading zeros in these numbers,
change character 'O' in line 363 to a blank.

Parameter lastLine tells PrnLine if this is the last line you will print. If TRUE,
then even if this is the final line on the page, ImageUnit will not start a new page
after printing the line. Usually, set lastLine to the result of Pascal's EOF function
for the file you are printing. The next program, MacLister, explains how to do this.

FUNCTION PrnNew: PrnHandle;

Call PrnNew (372-398) as the first step in your printing procedure or in your
program's initialization section before calling any other ImageUnit routine. The
function passes back a handle to a printer specification record, which it creates
on the heap (377). Save this handle in a PrnHandle variable, which you'll then pass
to PrnStart before printing. You can call PrnNew several times to create more than
one printer specification in memory, saving the resulting handles in an array or
in multiple variables.

Each new specification record has the default settings at lines 380-395. You
may change any of these defaults now or later from inside your program. If you
have a wide carriage (14-inch) printer, for example, you might want to change
characters per line field cpl (382) to 132. That way, you won't have to reassign that
value in every program that uses ImageUnit.

PROCEDURE PrnDi spose (VAR pH and : PrnHand le);

After printing, pass your printer specification handle to PrnDispose (401-408),
which removes the PrnSpecRec variable from the heap and sets handle pHand to
NIL. Always dispose your handles when you are done with them. This frees the
space they occupy, letting the memory manager reuse the memory for other
purposes.

PROCEDURE PrnStart(pHand: PrnHandle >;
After PrnNew initializes a new specifications record, call PrnStart (411-445)

before printing the first character. This routine initializes various ImageUnit

374 = Programming with Macintosh Turbo Pascal

variables, prepares the header and footer strings, and saves pHand as the current
PrnHandle, which other routines will then use.

Lines 423-424 initialize the printer driver to prepare it to accept characters.
PrDrvrOpen also loads the driver code into memory if it is not already there.
PrtCtlCall sends a reset command to the printer, reconfiguring its settings to
whatever they normally are when you first turn it on.

Lines 427-433 assign various starting values to variables that other procedures
use. There's nothing that you can change here, but if you add any new assignments,
be aware that calling PrnSetStyle (433) could cause the Memory Manager to re
arrange relocatable objects on the heap, making the double dereference to
prnSpec"" (425) invalid afterwards.

The rest of PrnStart sets global dtpString to the title printed at the top of each
new page. Line 439 converts the system date into a string. You can alter its format
by changing the second parameter (now ShortDate) as follows:

ShortDate = 12/31/90
Long Date= Monday, December 31, 1990
AbbrevDate =Mon, Dec 31, 1990

Similarly, you can add seconds to the time string by changing parameter FALSE
in line 440 to TRUE.

PROCEDURE PrnEnd;

After printing your last character, call PrnEnd (448-455) to finish the page,
printing the final footer and advancing the paper. The procedure also closes the
printer driver (454), a necessary step before calling PrnStart for another printout.

Using ImageUnit Tools

At this point, you may understand what the ImageUnit tools do but not have
a clear picture of how to put them together. The following notes will help:

• Create a local PrnHandle variable, which I'll call pHand from now on
although any name will do. Call PrnNew and assign its result to this variable.
If its value is NIL, do not continue with the following steps.

• Initialize any printer specifications, assigning values to selected fields (see
lines 37-55). For example, to change fixed tabs to 4, use the statement:

pHand"" .tab:=4;

Also set the header and footer strings (47-48) to your report title or file name.
Skip these steps to use the default settings.

Units as Software Tools== 375

Call PrnStart, passing pHand as a parameter. This tells lmageUnit to use
your specifications, opens the printer driver, and initializes the printer.

Print your document, calling any of the four procedures at lines 60-66 to
print lines and characters and to change print styles. To advance the printer
a line at a time, print a line feed character (ASCII 10) with PrnChar. To ad
vance to the top of a new page, print a form feed character (ASCII 12). Page
numbers, headers, and footers print automatically at the correct times and
places. You don't have to call any other routines to make this happen.

After printing the last character, call PrnEnd to close the printer driver, print
the final footer, and advance the paper to the start of a new page.

· To start a new printout, call PrnStart using the same pHand. When you are
completely done printing, call PrnDispose to dispose pHand and release the
memory that the printer specification record occupies on the heap.

If your headers are too long and report titles bump into the date and time,
there's an easy way to fix the problem. Add the following statement between lines
207-208 and also between 236-237:

PrnSetStyle(PrnULtraCond);

This changes the header and footer lines to the lmageWriter's most highly con
densed style. If that solution doesn't please you, remove the time from headers to
gain a little extra room. To do this, replace line 440 with the following statement.
There are no blanks between the two single quotes.

timeString := I I•
I

PUTTING YOUR TOOLS TO WORK

As a final example, MacLister uses most of the features described in this and
in earlier chapters. The program is a source code lister that you can use to keep
track of your printouts. It operates both short and wide carriage lmageWriters (or
other printers if you modify lmageUnit), adds line numbers, and prints headers
and footers. The header contains the date and time for reference, and the footer
is in the lower right corner of the page, making it easy to find files by flipping
through pages in printout binders.

Figure 7.3 shows MacLister's File menu commands. Open brings up the stand
ard file dialog (not shown here). Choose a file to print and MacLister displays its
first 24 lines in the program window. You cannot scroll these lines or modify them
in any way-they are merely for reference, showing the file you are about to print.
Start printing by choosing the Print command. You can print additional copies
of the open file by choosing Print again.

376 == Programming with Macintosh Turbo Pascal

Open ...
Close

XO - Open teHt file to print
- Close desk accessory

Print XP - Print open file

Transfer XT - Transfer to other program
Quit XQ - Return to Finder ._ ______ _.

Figure 7.3 MacLister's File menu.

The Close command operates differently than usual. It closes an open desk
accessory-not an open text file. To print different files, just choose Open again.
This saves time by avoiding the unnecessary step of closing files to which you make
no changes.

Choose the Transfer command to run a different application, for example Turbo
Pascal. Never choose Transfer when running MacLister from the Turbo Editor. The
resulting crash will require you to reboot your computer. In my system, I install
MacLister in Turbo's own Transfer menu. This lets me transfer back and forth to
print files without having to return to the Finder.

The Edit menu illustrated in Figure 7.4 contains the usual editing commands,
which operate only for desk accessories. Choose Options to bring up the dialog
in Figure 7 .5. Click the options you want to use for subsequent printouts. Select
wide carriage printing if your printer can handle 14-inch wide paper, or when us
ing a compressed print style on 8-inch paper. You can change the dialog's default
options by revising the program. Instructions follow in the play-by-play description.

Figure 7.6 shows MacLister's final menu, from which you select a printing style.
As with the Options dialog, you can revise the program to change the default style,
normally Pica. The figure lists the number of characters per inch (cpi) that each

Undo XZ - Edit commands

Cut XH
Copy XC
Paste XU
Clear

Options ... ------

II II

II

- Select Maclister options

Figure 7.4 MacLister's Edit menu.

Units as Software Tools == 377

1:8:1 Print headers

1:8:1 Print footers

D Rdd line numbers

D Wide carriage printer

((OK)J (Cancel)

Figure 7.5 MacLister's Options dialog.

style gives. Some of these values are approximate and some do not match those
in the lmageWriter manual. All are direct measurements of test printouts on an
lmageWriter 14-inch printer. To select a different style, choose it from the menu.
You'll see nothing happen on screen, but your selection will have a checkmark the
next time you view the menu.

To compile the program, first type in Listing 7 .8 and save as MACLISTER.R.
Compile this text with RMaker to produce the program's resource file. Next, type
in Listing 7.9 and save as MACLISTER.PAS. Before compiling with Turbo, you
must have previously compiled units MacExtras, DialogUnit, ErrorUnit, ImageUnit,
and Transfer. You should probably compile MacLister to a disk code file. You can
run it from the Turbo editor but, if you do that, remember not to choose the Transfer
command, which works correctly only if you run the program from the Finder or
by transferring to it from another application.

EHtended
Y"'Pica

Elite
Pica proportional
Elite proportional
Semi-condensed
Condensed
Ultra-condensed

- 9 cpi
- 1 o cpi
- 11.8 cpi
- 1 o cpi (approH.)
- 12 cpi (approH.)
- 13.3 cpi
- 15 cpi
- 16.7 cpi

Figure 7.6 MacLister's Style menu.

378 = Programming with Macintosh Turbo Pascal

Listing 7.8. MACLISTER.R

1:
2:
3:
4:

-- * MacLister.PAS resources -- Compile with RMaker *
·--*

5:
6:
7:

Programs:MacLister.F:MacLister.RSRC ;; Send output to here

8:
9:

--
* About box string list *

10:
11:

--
12: TYPE STR#
13: '1 (32)
14: 6
15: MacLister
16: by Tom Swan
17: Version 1.00
18: (C) 1987 by Swan Software
19: P. 0. Box 206, Lititz, PA 17543
20: (717) -627-1911
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

--
* The Apple Info menu *
--
TYPE MENU

'1
\14

About MacLister ...
(-

--
* The File menu
--
TYPE MENU

39: ,2
40: File
41: Open ... /0
42: (Close
43: (-
44: (Print /P
45: (-
46: Transfer /T
47: Quit /Q
48:
49:
50: *--*
51: * The Edit menu *
52: ·--*
53:
54: TYPE MENU
55: ,3
56: Edit
57: (Undo /Z
58: (-
59: (Cut /X
60: (Copy /C
61: (Paste /V
62: (Clear
63: (-
64: Options ...
65:

Units as Software Tools

66:
67: *--*
68: * The Style menu
69: *--*
70:
71: TYPE MENU
72: '4
73: Style
74 : Extended
75: Pica
76: Elite
77: Pica proportional
78: Elite proportional
79: Semi-condensed
80: Condensed
81: Ultra-condensed
82:
83:
84: *--*
85: * The error alert template
86: *--*
87:
88: TYPE ALRT
89: '999 (4)
90: 45 2S 154 481
91: 999
92: 5555
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:

TYPE DITL
'999 (32)

Btnitem Enabled
71 360 103 440
Ok

StatText Disabled
25 80 41 165

105: Error '0:
106:
107: StatText Disabled
108: 25 170 41 440
109: Al
110:
111: StatText Disabled
112: 80 15 96 350
113: '2
114:
115:

, , Resource ID, (4) = preload
,, Top Left Bottom Right
,, Item list ID (following)
, , Stages (none)

,, Error alert item list
,, Resource ID, (32)=purgeable

,, 1. Ok button

,, 2. Error number

,, 3. Error message

,, 4. Help message

116:
117:
118:
119:

--
* Window template
--
TYPE WIND

'1000 (32)
untitled
46 7 328 502

,, ID number and attribute (purgeable)
, , Window title
,, top, left, bottom, right coordinates
,, Visible window without close button

379

120:
121:
122:
123:
124:
125:
126:
127:

Visible NoGoAway
4
0

,, Document window style without grow and zoom boxes
,, Window reference (none)

128:
129:
130:
131:
132:

--
* Options dialog template *
--

(continued]

380 == Programming with Macintosh Turbo Pascal

133: TYPE DLOG
134: , 1001
135: Options
136: 84 119 275 396
137: Visible NoGoAway
138: l
139: 0

1001

,, ID number
,, Dialog title (not displayed)
,, Global coordinates for dialog window
,, Make invisible with no close button
,, Standard dialog box style
,, Reference value (none)
,, Resource id of dialog item list 140:

141:
142:
143:
144:

--
* Options Dialog item list

145: *--*

TYPE DITL
146:
147:
148:
149: 6
150:
151:
152:
153: OK
154:

, 1001 (32)

Btnitem Enabled
151 15 175 89

155: Btnitem Enabled
156: 151 180 175 254
157: Cancel
158:
159: Chkitem Enabled
160: 25 10 45 270
161: Print headers
162:
163: Chkitem Enabled
164: 55 10 75 270
165: Print footers
166:
167: Chkitem Enabled
168: 85 10 105 270
169: Add line numbers
170:
171: Chkitem Enabled
172: 115 10 135 270
173: Wide carriage printer
174:
175:

,, Resource ID & attribute (purgeable)
,, Number of items following

,, l. OK button (must be first)

,, 2. Cancel button

,, 3. Program options

.. 4.

• ' 5.

.. 6.

176: *--*
177: *Printing in progress ... dialog
178: *--*
179:
180: TYPE DLOG
181: ,1002
182: Printing
183: 80 130 220 375
184: Visible NoGoAway
185: l
186: 0
187: 1002
188:
189:
190: TYPE DITL
191: , 1002 (32)
192: 3
193:
194: StatText Enabled
195: 33 20 56 220
196: Printing in Progress ...
197:
198: StatText Disabled
199: 71 20 88 235
200: To stop printing, hold down the
201:

,, Item list to dialog 1002

,, Number of items in list

'' 1.

'' 2.

Units as Software Tools ::= 381

202: StatText Disabled
203: 87 20 104 235
204: \11 key and type period (.).
205:
206:
207: * END

, , 3.

• • \11 conunand key symbol

Listing 7.9. MACLISTER.PAS

1: { !
2:
3: NARNING : Do not use the File menu Transfer conunand when compiling and
4: running MacLister directly from Turbo Pascal. The conunand works properly
5: only if you compile the program to disk and transfer to it or run it from
6: the Finder.
7:
8: ! }
9:

10:
11: {$0 Programs:MacLister.F: l
12: {$R Programs:MacLister.F:MacLister.RsrcJ
13: {$U-)

Send compiled code to here I
Use this compiled resource file
Turn off standard library units

14:
15:
16: PROGRAM MacLister;
17:
18: (*

19:
20: * PURPOSE
21: * SYSTEM
22: * AUTHOR
23:

Pascal program (or any text file} listing printer
Macintosh I Turbo Pascal

24: *l
25:
26:

Tom Swan

27: {$U Programs:Units.F:MacExtras
28: {$U Programs:Units.F:DialogUnit
29: {$U Programs:Units.F:ErrorUnit
30: {$U Programs:Units.F:ImageUnit
31: {$U Programs:Units.F:Transfer
32:
33:
34:
35:

USES

PasinOut,

I Open these library unit files l

36:
37:
38:
39:
40:

Memtypes, QuickDraw, OSintf, Toolintf, Packintf, MacExtras, MacPrint,
DialogUnit, ErrorUnit, ImageUnit, Transfer;

41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

CONST

FileID
OpenCmd
CloseCmd

{--------}

= 2;
1;

= 2;

PrintCmd 4;
{--------}
TransferCmd = 6;
QuitCmd 7;

{ File menu Resource ID and conunands }

(continued)

382

101:
102:

Programming with Macintosh Turbo Pascal

(*EditID
OptionsCmd

3; *)

8;
Edit menu is defined in MacExtras
Additional command in edit menu }

StyleID 4; Style menu }
ExtendedCmd = l; Printer style selections }
PicaCmd
EliteCmd

= 2;
= 3;

PicaProCmd 4;
EliteProCmd 5;
SemiCondCrnd = 6;
CondensedCmd= 7;
UltraCondCmd= 8;

DefaultStyle

Window ID

Options ID
OptPrHeads
OptPrFoots
OptLineNurn
OptWideCR

PrintingID

VAR

wRec
wPtr

fileOpen
fileName
fileVar

styleMenu
currentStyle

printOptions

quitRequested
transferring

nextApp

= PicaCmd; { Or any Style Cmd number above }

1000; Program window resource ID

1001;
= 3;

Options dialog resource ID

= 4;
5;

Option check boxes, corresponding to
their positions in the dialog item list

6;

1002; { Printing in progress dialog resource ID)

WindowRecord;
WindowPtr;

BOOLEAN;
String [64 J;
TEXT;

MenuHandle;
INTEGER;

ChecksRecord;

BOOLEAN;
BOOLEAN;

SFReply;

Program's window data record
Pointer to above wRec)

True if a file is open }
If fileOpen, this is its name
If fileOpen, this is valid

Printer styles menu)
Checked item in style menu)

Options set (see DialogUnit}

103: PROCEDURE FixStyleMenu(CheckOnOff : BOOLEAN);
104:
105: Make check mark in style menu agree with global currentStyle.
106: Add check mark if CheckOnOff is TRUE, otherwise remove it. }
107:
108: BEGIN
109: Checkitem(StyleMenu, currentStyle, CheckOnOff)
110: END; { FixStyleMenu)
111:
112:
113: FUNCTION CmdToStyle(styleNurn : INTEGER) : PrnStyles;
114:
115: { Convert a Style menu number into an ImageUnit PrnStyle value)
116:

Units as Software Tools

BEGIN
CASE styleNum OF

ExtendedCmd CmdToStyle := PrnExtended;
PicaCmd CmdToStyle := PrnPica;
EliteCmd CmdToStyle := PrnElite;
PicaProCmd CmdToStyle := PrnPicaPro;
EliteProCmd CmdToStyle := PrnElitePro;
SemiCondCmd CmdToStyle := PrnSemiCond;

117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:

CondensedCmd: CmdToStyle := PrnCondensed;
UltraCondCmd: CmdToStyle := PrnUltraCond
OTHERWISE CmdToStyle := PrnNoStyle

END { case)

END; { CmdToStyle

132: PROCEDURE CloseFile;
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:

Close the current file

BEGIN
IF fileOpen THEN
BEGIN

Close(fileVar);
fileOpen := FALSE

END (if)
END; (CloseFile)

145: PROCEDURE DoOpen;
146:

Close Pascal file
Reset global flag

147: Respond to File menu Open command. Okay to open another
148: file when one is already open.
149:
150: VAR
151:
152: reply SFReply;
153: errCode : INTEGER;
154:
155: BEGIN
156: IF GetFileName{ reply, 'TEXT' THEN
157: WITH reply DO
158: IF SetVol (NIL, vRefNum = noErr THEN
159: BEGIN
160: IF fileOpen
161: THEN CloseFile;
162: ($i-) Reset(fileVar, fName); ($i+)
163: errCode := IoResult;
164: IF errCode = 0 THEN
165: BEGIN

fileOpen := TRUE;
fileName := fName; (Save file name l

383

166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
1'77:
178:

SetWTitle(wPtr, fileName);
Enableitem(fileMenu, CloseCmd);
Enableitem(fileMenu, PrintCmd);
InvalRect(wPtrA.portRect)

(Change window title
{ Fix up menus)

Force update event
END ELSE

IoError(errCode, 'Check disk and try again')
END ELSE

IoError(-53, 'Lost disk volume'
END; (DoOpen)

(-53="Vol not on-line")

179:
180:

PROCEDURE DoClose;

181: Respond to File menu Close command. Note: it is not possible
182: to close the main program window.)
183:

(continued]

384 == Programming with Macintosh Turbo Pascal

184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224°:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:

BEGIN
IF FrontWindow <> wPtr

THEN CloseDAWindow
END; I DoClose I

PROCEDURE DoPrint;

Print text. Assume global fileVar is open. I

VAR

s
prnSpec
dp

Str255;
prnHandle;
DialogPtr;

PROCEDURE InitPrnSpec;

Initialize ImageUnit parameters. Other prnSpec fields keep
default values defined in the unit.)

VAR

cpi Real; I Characters per inch I

BEGIN
WITH prnSpecAA DO
BEGIN

header := fileName;
footer := fileName;
textStyle := CmdToStyle(CurrentStyle);

CASE CurrentStyle OF
ExtendedCmd cpi := 9; cpi = chars
PicaCmd cpi := 10; exact I
EliteCmd cpi := 11.8; Manual says
PicaProCmd cpi := 10; approx. I
EliteProCmd cpi := 12; approx.)
SemiCondCmd cpi := 13.3; Manual says
CondensedCmd cpi := 15; exact I
UltraCondCmd cpi := 16.7 Manual says

ENO; I case l

WITH printOptions DO
BEGIN

printHeader := OptPrHeads IN selections;
printFooter := OptPrFoots IN selections;
lineNumbers := OptLineNum IN selections;

per inch

12)

13.4

17)

IF OptWideCR IN selections { Assign chars per line:
THEN cpl := trunc(cpi * 13.5 I for wide carriage)

ELSE cpl := trunc(cpi * 8.0 I for standard carriage
END (with)

ENO I with I
END; { InitPrnSpec

PROCEDURE FixUp(VAR s : Str255);

Remove embedded form feeds from string s. Optional, but some
Macintosh example text files have these controls, which
conflict with MacLister's paging.)

CONST

ff = 112; I ASCII form feed control character I

253: VAR
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:

p INTEGER;

BEGIN
p := pos(ff, s);
WHILE p > 0 DO
BEGIN

Delete(s, p,
p := pos(ff,

END (while)
END; (FixUp)

);

s)

267: PROCEDURE DisplayDialog;
268:

Units as Software Tools

269: Display "Printing in progress ... " dialog box I
270:
271: VAR
272:
273: b : BOOLEAN;
274: i : INTEGER;
275: dEvent : EventRecord;
276:
277: BEGIN
278: dp := GetNewDialog(PrintingID, NIL, POINTER(-1));
279: b : = GetNextEvent (UpdateMask, dEvent) ;
280: b := DialogSelect(dEvent, dp, i)
281: END; (DisplayDialog I
282:
283:
284: PROCEDURE EraseDialog;
285:
286: Remove the "Printing ... " dialog box)
287:
288: BEGIN
289: IF dp <> NIL
290: THEN DisposDialog(dp)
291: END; { EraseDialog)
292:
293:
294: FUNCTION Finished : BOOLEAN;
295:

385

296: TRUE if end of file reached or Command-period typed to end printing.
297: Also call SystemTask to give DAs their fair share of time.)
298:
299: VAR
300:
301:
302:
303:

kbdEvent EventRecord;
ch : CHAR;

304: BEGIN
305: SystemTask;
306: IF EOF(fileVAR
307: THEN
308: Finished := TRUE
309: ELSE
310: IF GetNextEvent(KeyDownMask, kbdEvent)
311: THEN
312: WITH kbdEvent DO
313: BEGIN
314: ch:= CHR(BitAnd(message, charCodeMask));
315: Finished := (BitAnd(modifiers, CmdKey) <> O) AND
316: (ch = ' '
317: END
318: ELSE
319: Finished := FALSE
320: END; { Finished I
321:

(continued]

386 == Programming with Macintosh Turbo Pascal

322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:

BEGIN
prnSpec := PrnNew;
IF prnSpec <> NIL THEN
BEGIN

InitPrnSpec;
PrnStart(prnSpec);

DisplayDialog;
Reset(fileVar);
NHILE NOT Finished DO
BEGIN

(Allocate new PrnSpecs record)

Initialize printing parameters I
Start printing first page I
Display "printing .•. " message I
Reset to beginning of text file

Readln(fileVar,
FixUp(s I;
PrnLine(s,

s); Read one line from file I
Remove embedded form feeds

EOF(fileVar)) I Print the line)
END; I while I

PrnEnd;
PrnDispose(prnSpec);
EraseDialog

END(if}
END; I DoPrint I

PROCEDURE DoTransfer;

Tell PrintMaster we're done I
Dispose the prnSpec handle)
Remove the "printing ... " message

Respond to File menu Transfer command. Actual transfer
occurs when program ends. I

BEGIN
IF GetApplName(nextApp) THEN
BEGIN

transferring := TRUE;
quitRequested := TRUE

END I if I
END; I DoTransfer }

PROCEDURE DoOptions;

Display options dialog and change print options)

VAR

dp : DialogPtr;
itemHit : INTEGER;
checks : ChecksRecord;

BEGIN
checks := printOptions; I Copy current options I
dp := GetNewDialog(OptionsID, NIL, Pointer(-1));
IF dp <> NIL THEN
BEGIN

OutLineOK(dp);
InitChecks(dp, checks);
REPEAT

ModalDialog(NIL, itemHit);
IF (itemHit <> Ok) AND (itemHit <> Cancel

THEN CheckBox(dp, checks, itemHit)
UNTIL (itemHit =Ok) OR (itemHit =Cancel);
IF itemHit = Ok

381: THEN printOptions := checks;
382: DisposDialog(dp)
383: END I if I
384: END; (DoOptions)
385:
386:

387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:

PROCEDURE DoFileMenuCommands(cmdNurnber

Execute command in the File menu }

BEGIN
CASE cmdNurnber OF

OpenCmd
CloseCmd
PrintCmd
TransferCmd
QuitCmd

END I case)

DoOpen;
DoClose;
DoPrint;
DoTransfer;
quitRequested :=

END; (DoFileMenuCommands }

PROCEDURE DoEditMenuCommands(cmdNurnber

Execute command in the Edit menu }

BEGIN

Units as Software Tools

INTEGER);

TRUE

INTEGER) ;

407: IF NOT SystemEdit(cmdNurnber - 1) THEN
408: IF cmdNumber = OptionsCmd
409: THEN DoOptions
410: END; (DoEditMenuCommands }
411:
412:
413: PROCEDURE DoStyleMenuCommands(cmdNurnber INTEGER) ;
414:
415: Select a printing style }
416:
417:
418:
419:
420:
421:
422:
423:

BEGIN
FixStyleMenu(FALSE);
currentStyle := cmdNumber;
FixStyleMenu(TRUE)

END; (DoStyleMenuCommands l

Remove old check mark)
Change print style setting
Add new check mark)

424: PROCEDURE DoCommand(command
425:

Longint);

426: Execute a menu command l
427:
428: VAR
429:
430:
431:
432:
433:
434:
435:
436:
437:

whichMenu
which Item

BEGIN

whichMenu
whichitem

INTEGER;
INTEGER;

Menu number of selected command
Menu item number of command)

:= HiWord(command);
:= LoWord(command);

Find the menu
Find the item

438: CASE whichMenu OF
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:
449:
450:
451:

Apple ID
File ID
Edit ID
StyleID

END; (case

HiliteMenu(0

END; (DoCommand

DoAppleMenuCommands(whichitem);
DoFileMenuCommands(whichitem);
DoEditMenuCommands(whichitem);
DoStyleMenuCommands(whichitem)

(Unhighlight menu title)

387

(continued)

388 == Programming with Macintosh Turbo Pascal

452: PROCEDURE ListFile;
453:
454: Display a few lines from open file. Assume file is open and
455: wPtr is the current window. }
456:
457:
458:

VAR

s
y

BEGIN

Str255;
INTEGER;

Reset(fileVar);
y := 0;
WHILE (y < 24) AND
BEGIN

Reset to top of file

NOT EOF(fileVar)) DO

459:
460:
461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:
472:
473:
474:

ReadLn(fileVar, s);
MoveTo (10, 15 + (y * 11)) ;
Drawstring(s);
y := y + 1

END (for)
END; { ListFile }

475:
476:
477:
478:
479:
480:
481:
482:
483:
484:
485:

PROCEDURE DrawContents(whichWindow WindowPtr);

Display window contents }

BEGIN
EraseRect(whichWindowh.portRect);
IF f ileOpen AND (whichWindow = wPtr

THEN ListFile
END; (DrawContents }

486: PROCEDURE MouseDownEvents;
487:
488: Someone pressed the mouse button. Check its location and respond. }
489:
490:
491:
492:
493:

VAR

part Code

494: BEGIN
495:

INTEGER;

496: WITH theEvent DO
497:
498: BEGIN
499:

(Identifies what item was clicked. }

500: partCode : = FindWindow (where, which Window) ;
501:
502 : CASE partCode OF
503:
504: inMenuBar
505: : DoCommand(MenuSelect(where));
506:
507: inSysWindow
508: : SystemClick(theEvent, whichWindow);
509:
510: inContent, inDrag
511: : IF whichWindow <> FrontWindow
512: THEN SelectWindow(whichWindow);
513:
514: END (case
515:
516: END { with }
517:
518: END; { MouseDownEvents

519:
520:

Units as Software Tools 389

521: PROCEDURE KeyDownEvents;
522:
523: A key was pressed. Do something with incoming character.)
524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:

VAR

ch CHAR;

BEGIN
WITH theEvent DO
BEGIN

ch := CHR(BitAnd(message, charCodeMask
IF BitAnd(modifiers, CmdKey) <> 0 (

THEN DoCommand(MenuKey(ch)) {
END with)

END; { KeyDownEvents)

PROCEDURE UpdateEvents;

)) ; { Get character l
If command key pressed l
then execute command)

541: Part or all of a window requires redrawing)
542:
543: VAR
544:
545:
546:
547:
548:
549:
550:
551:
552:
553:
554:
555:
556:
557:
558:
559:
560:
561:
562:
563:
564:
565:
566:
567:
568:
569:
570:
571:
572:
573:
574:
575:
576:
577:

oldPort GrafPtr; { For saving I restoring port)

BEGIN
GetPort(oldPort);
whichWindow :=

WindowPtr(theEvent.message);
SetPort(whichWindow);
BeginUpdate(whichWindow);
DrawContents(whichWindow);
EndUpdate(whichWindow);
SetPort(oldPort)

END; (UpdateEvents)

PROCEDURE ActivateEvents;

Activate or deactivate windows

BEGIN
WITH theEvent DO
BEGIN

Save current port)

Extract window pointer
Change current grafPort)
Calculate new visRgn l
Draw/redraw window contents
Reset original visRgn l
Restore old port)

whichWindow := WindowPtr(message); Extract window pointer
Change current port) SetPort(whichWindow);

IF BitAnd(modifiers, activeFlag) <> 0
THEN FixEditMenu(FALSE) { Activate a window)
ELSE FixEditMenu(TRUE) { Deactivate a window

END with
END; { ActivateEvents

578: PROCEDURE SetUpMenuBar;
579:
580: { Initialize and display menu bar)
581:

(continued)

390 ===: Programming with Macintosh Turbo Pascal

582:
583:
584:
585:
586:
587:
588:
589:
590:
591:
592:
593:
594:
595:
596:
597:
598:
599:
600:
601:
602:
603:
604:
605:
606:
607:
608:
609:
610:
611:
612:
613:
614:
615:
616:
617:
618:
619:
620:
621:
622:
623:
624:
625:
626:
627:
628:
629:
630:
631:
632:
633:
634:
635:
636:
637:
638:
639:
640:
641:
642:
643:
644:
645:
646:
647:
648:
649:
650:

BEGIN

appleMenu
fileMenu
editMenu
styleMenu

:= GetMenu(
:= GetMenu(
:= GetMenu(
:= GetMenu(

AppleID);
FileID);
EditID);
StyleID);

I Read menu resources J

InsertMenu (
InsertMenu (
InsertMenu(
InsertMenu(

appleMenu,
fileMenu,
editMenu,
styleMenu,

0);
0);
0);
0);

I Insert into menu list J

AddResMenu(appleMenu, 'DRVR'); Add desk accessory names

DrawMenuBar Display the menu bar J

END; I SetUpMenuBar

PROCEDURE SetUpWindow;

Open program window, which remains open throughout program J

BEGIN
wPtr := GetNewWindow(WindowID, @Wrec, POINTER(-1));
IF wPtr = NIL

THEN ExitToShell;
SetPort(wPtr);
TextFont(Monaco);
TextSize(9)

END; I SetUpWindow I

PROCEDURE SetUpOptions;

Initialize printing options and other default settings.
Assumes menu is initialized. J

BEGIN
WITH printOptions DO
BEGIN

:= OptPrHeads;
:= OptWideCR;

(Assign printing options)

firstCheck
last Check
selections := [OptPrHeads, OptPrFoots J I defaults

END; (with)
currentStyle := DefaultStyle;
FixStyleMenu(TRUE)

END; { SetUpOptions)

PROCEDURE Initialize;

Assign printing style J
Add check mark to style menu J

Program calls this routine one time at start J

BEGIN
SetUpMenuBar;
SetUpWindow;
SetUpOptions;
fileOpen := FALSE;
quitRequested := FALSE;
DisplayAboutBox

END; (Initialize I

FUNCTION QuitConfirmed : BOOLEAN;

Initialize and display menus
Initialize program window J
Initialize print options J
No file open yet J
TRUE on selecting Quit command
Identify program J

The program's 11 deinitialization11 routine. In this program, it's
okay to quit at anytime. J

Units as Software Tools

651: BEGIN
652: IF quitRequested
653: THEN CloseFile; I Close file if open J
654: QuitConfirmed := quitRequested
655: END; I QuitConfirmed J
656:
657:
658: PROCEDURE DoSystemTasks;
659:
660: Do operations at each pass through main program loop J
661:
662: BEGIN
663:
664:
665:

SystemTask; I Give DAs their fair share of time J

666: IF FrontWindow <> wPtr THEN
667:
668: BEGIN I Set up menu commands for active desk accessory J
669:
670: FixEditMenu(TRUE);
671: Enableitem(fileMenu, CloseCmd);
672: Disableitem(fileMenu, OpenCmd);
673: Disableitem(fileMenu, PrintCmd);
674: Disableitem(editMenu, OptionsCmd);
675:
676: END ELSE
677:
678:
679:
680:
681:
682:
683:
684:
685:
686:
687:
688:
689:
690:
691:
692:
693:
694:
695:
696:
697:
698:
699:
700:
701:
702:
703:
704:
705:
706:
707:
708:
709:
710:
711:
712:
713:
714:
715:
716:

BEGIN (Set up menu commands for program window J

FixEditMenu(FALSE);
Enableitem(fileMenu, OpenCmd);
Disableitem(fileMenu, CloseCmd);
IF f ileOpen

THEN Enableitem(fileMenu, PrintCmd);
Enableitem(editMenu, OptionsCmd);

END { else)

END; (DoSystemTasks

BEGIN

Initialize;

REPEAT

DoSystemTasks;

IF GetNextEvent(everyEvent, theEvent) THEN

CASE theEvent.what OF

MouseDown
KeyDown
UpdateEvt
ActivateEvt

END { case)

UNTIL QuitConfirmed;

IF transferring

MouseDownEvents;
KeyDownEvents;
UpdateEvents;
ActivateEvents

THEN RunProgram(nextApp)

END.

391

392 ===: Programming with Macintosh Turbo Pascal

MacLister Play-by-Play

MACUSTER.R {1-207)

There are few new elements in the resource text file and you should have little
trouble understanding its definitions. Line 204, though, may appear strange. The
\11 stands for the ASCII character with that hexadecimal value, the Command key
symbol, which the program displays in its "Printing in Progress" dialog box (Figure
7.7). You can enter other ASCII codes in static text items this way. For example,
\OD stands for a carriage return, \14 the Apple symbol, and so on.

MACLISTER.PAS (1-100}

Assign to DefaultStyle (68) any one of the constants in lines 59-66 to change
the default printing style. Whichever constant you use, MacLister checks off that
choice in the Style menu. To print 132-column listings on 8-inch paper, set
DefaultStyle to UltraCondCmd.

Variable nextApp (100) holds the file name and volume reference number of
the next application to run if you choose the program's Transfer command. In
stead of transferring directly to another program at that time, MacLister sets variable
transferring (98) TRUE. Later (see lines 713-714), it calls RunProgram to run
another application, letting the program first close any open files and perform other
cleanup chores.

FixStyleMenu to DoClose {103-187)

FixStyleMenu (103-110) shows how to add a check mark to a menu choice.
It calls Checkltem (109), passing the menu handle (StyleMenu), the item number
(currentStyle) representing the position of the command in the pull-down menu

Printing in Progress ..•

To stop printing, hold down the
X key and type period (.).

Figure 7.7 While printing, MacLister displays the
message in this dialog.

Units as Software Tools :::::::;;: 393

window, and a Boolean value (CheckOnOff). If this value is TRUE, the routine
adds a check mark; otherwise, it removes it. When you choose a different printing
style, MacLister calls FixStyleMenu twice-once to remove the current check mark
and once to add a new one.

Function CmdToStyle (113-129) takes a style number (one of the constants at
lines 59-66) and returns the corresponding lmageUnit PrnStyles element, which
the program then assigns to the printer specification record before each new print
out. This is the way MacLister recognizes your Style menu choice.

CloseFile (132-142) and DoOpen (145-176) both respect and properly set
variable fileOpen to indicate whether a file is now open and on display. They use
standard Pascal file techniques to open and close global variable fileVar. Notice
that DoOpen closes fileVar (160-161) if it is now open. This lets you open new files
without having to close another beforehand.

Line 168 sets the window title to the name of the open file. After that, the pro
cedure invalidates the entire window (171) to force an update event, which even
tually will display sample lines from the file.

DoClose (179-187) differs from previous procedures of the same name by clos
ing only desk accessories. Although the program never calls this procedure unless
a desk accessory's window is frontmost, line 185 checks this fact just to be safe
before calling MacExtras tool CloseDAWindow.

DoPrint {190-341}

DoPrint is the workhorse procedure that prints the currently open file. It con
tains several sub procedures and a function that divide the routine into pieces. Pro
cedure InitPrnSpec (201-240) assumes that variable prnSpec (197) is initialized to
a printer specification handle. Lines 214-215 set both the header and footer titles
to the current file name, printing this text at upper left and lower right on each
page. Line 216 assigns the current printing style to field textStyle.

The CASE statement (218-227) sets a temporary variable cpi to the cb;uacters
per inch for each printing style. It does this in order to accurately calculate printer
specification field cpl (characters per line) at the later IF statement (234-236). This
correctly sets that field depending on whether you select Wide Carriage with the
Edit menu's Options command. Similarly, lines 231-233 set Boolean fields accord
ing to other options you select.

Procedure FixUp (243-264) is optional and you can remove it if you prefer.
I include it to print text files that float around in Macintosh programming circles
complete with annoying embedded form feed control characters to advance to new
pages, frequently at the start of every new procedure. FixUp removes these con
trols, letting MacLister and lmageUnit format pages as they normally do. If you
want the program to recognize embedded form feeds, remove procedure FixUp
along with line 334, which calls it.

DisplayDialog (267-281) illustrates a method to display a kind of half-modeless
dialog window. This procedure shows the "Printing in Progress" message in Figure

394 == Programming with Macintosh Turbo Pascal

7.7. Line 278 opens and displays the dialog box in the usual way. Unfortunately,
doing this does not display static text items-the messages inside the window
but only clickable buttons, check boxes, and radio buttons. The reason this occurs
is because the dialog manager displays static text by invalidating its enclosing rec
tangle, generating an update event, which is not handled until you later call
ModalDialog, as previous examples do. To display the text, lines 279-280 extract
this update event by calling GetNextEvent with UpdateMask and then passing the
resulting dEvent record to DialogSelect, which responds by drawing the text inside
the window. Boolean variable b is a throw-away-its value is unimportant. To see
why these steps are necessary, remove lines 279-280 and print a test file. You'll see
the dialog window but no text inside. The next procedure, EraseDialog (284-291),
removes the dialog window disposing pointer dp before DoPrint ends.

Function Finished (294-320) has three jobs: to call SystemTask (305), giving
desk accessories their fair share of time during printing; to test whether the pro
gram has reached the end of the text file; and to check for Command-period
keypresses that interrupt printing.

After initializing prnSpec (324), the main DoPrint statements (327-339) read
and print each line of text from the open file. Line 330 resets the file to start print
ing from the first line. Notice how line 335 both prints a line and tells ImageWriter
whether this is the last line by passing the result of Boolean function EOF. (See
the comments to procedure PrnLine in the ImageUnit play-by-play description.)

DoTransfer to DoCommand {344-349}

DoTransfer (344-355) sets global variables transferring and quitRequested to
TRUE if GetApplName returns TRUE (350). If so, record variable nextApp con
tains the file name and volume number of the program that MacLister will run
when it ends. The actual transfer occurs later (see lines 713-714).

By now you should be familiar with all of the programming in DoOptions
(358-384). Likewise, you should have no trouble understanding the four procedures
at lines 387-449, all of which respond to pull-down menu commands.

ListFile to END {452-716}

ListFile (452-472) responds to update events by way of the next procedure,
DrawContents. It displays up to 24 reference lines from the open text file, using
MoveTo and Drawstring for each line. This method is inferior to the text tools in
Chapter 5, but it works well enough for MacLister's purposes. For a different text
style or point size, change lines 610 and 611. If you modify the point size, you'll
have to adjust the expression in MoveTo (468) to separate one line from another.

To change the program's default options (see Figure 7.5), modify line 625. Put
the options you want inside the square brackets, using any combination of the four
option constants (7 4-77).

Bibliography

SOITWARE

HeapShow. BIT Computing Corporation, P.O. Box 1465, Euless, TX 76039. HeapShow is
a desk accessory that graphically displays the contents of the heap while a program
runs. It lets you peer into memory, examining your program's memory usage. Instruc
tive, especially if you're just learning about memory management techniques.

TMON. lcom Simulations, Inc., 626 S. Wheeling Road, Wheeling, IL 60090. TMON (The
Monitor) is a debugger that lists and changes memory, disassembles 68000 machine
language, and lets you examine processor registers. If you are a casual programmer,
you probably can use a less capable debugger such as MacsBug, which comes with Turbo
Pascal. But professionals will appreciate TMON's many features.

Turbo Pascal Macintosh. Borland International Inc., 4585 Scotts Valley Drive, Scotts Valley,
CA 95066. You need to have this product to type in and run all the examples in this book.

BOOKS

Apple Computer Inc. Inside Macintosh, Vols 1, 2, 3, & 4. Addison-Wesley, 1985, 1986. This
four volume set is indispensable for Macintosh programmers. At least pick up volume
I-it describes many details referred to in this book. For serious programming, though,
you'll need the entire set.

Chernicoff, Stephen. Macintosh Revealed, Vols 1 & 2. Hayden, 1985. Offers complete coverage
of the Macintosh toolbox. Many descriptions and diagrams, but few working program
ming examples, make this reference less useful than it could be. The editor in volume
2 requires some revision before it will run in Turbo Pascal. For serious programmers only.

Knaster, Scott. How to Write Macintosh Software. Hayden, 1986. A not-for-beginners
workbook of Macintosh programming. Contains many examples that should require
minimal changes to run in Turbo Pascal. The chapter on debugging makes it worthwhile
reading.

Swan, Tom. Mastering Turbo Pascal. Hayden Books-Howard W. Sams, 1986. The author's
tutorial on programming Turbo Pascal for the IBM PC and CP/M computers. Con
tains many textbook examples that run in Turbo's dumb terminal window, described
in Chapters I and 2.

395

Absolute value, 63
Activate event, 151
Alert, 245, 259, 288, 290, 323. See also

Resource, alert
icons, 260
item list, 264-265, 294
preloading, 264

ANIMATE.PAS, 101-103
Animation, 93, 95, 104, 106-109, 116
Application, 122, 128
APSHELL.PAS, 128-136, 163
APSHELL.R, 158-159

BackPat, 89
Backup file, 34
Bic mode, 93
Bit-map, 95-96, 100-101, 108

compared to bitMap record, 107
size in memory, 97

Bit-mapped display, 56
Btnltem, 271, 283
Button, 60, 116, 257, 316
BUTTONS.PAS, 254-256
BUTIONS.R, 252-253

CalcControlRects, 165, 167, 176
Carriage return, 87
CenterString, 165, 168, 177
Character set, 28
Character size, S4
CHARS.PAS, 84-86, 89
CharWidth, 84
Check box, 279, 284, 328-329, 331, 394
CheckBox, 325, 328, 331
CheckOn, 324-325, 329
Chkltem, 283
Circle, 90
ClearEol, 52
ClearScreen, 52, 62
Clipping, 117, 210

Index

Clipping region, 73, 216
ClipRect, 75
Close, 31
Close box, 147, 155, 173, 178, 201
CloseDAWindow, 165, 167, 176, 393
CloseDialog, 258
ClosePicture, 216
CloseWindow, 143
Command key, 147, 149, 161-162, 321, 392
Compiler directive, 6, 9, 28, 31, 43, 136
Concat, 38, 106, 288
Control character, 52-53, 88, 370, 393
Control key, 30
Coordinate, 65, 79, 100
Coordinate plane, 64, 69, 77, 84, 97, 108, 118,

210
centering, 117
points on grid, 66
subtracting points, 67

Coordinate system, 73, 95-96, 101
Copy mode, 93
CopyBits, 95, 350
cos, 119
CountAppFiles, 48
Cursor, 76

changing shape, 126, 236, 318, 320, 322-323
handle, 322
hot spot, 146
style, 317

Cut and paste, 296, 321

Data entry, 272, 295, 316, 319-320, 323
DATAENTRY.PAS, 301-315
DATAENTRY.R, 296-300
Date, 210, 374
Deactivate event, 151
Debugging, 4, 6, 11

397

with comments, 59
with Pause, 171
with printer, 137

398 == Programming with Macintosh Turbo Pascal

DeleteLine, 44
Destination rectangle, 241
DETAB.PAS, 35- 37
Dialog, 245, 252, 277, 321. See also Resource,

dialog; Standard file dialog
adding features to window, 272
centering window, 329
creating, 258
data entry, 273
displaying, 257
edit areas, 317
item· list, 252, 257, 259, 271, 277-278, 283,

316, 323, 329
modal, 245, 329
modeless, 245, 295, 317, 321, 323, 393
pointer, 272, 331
record, 259
resource, 323
static text, 394
template, 294
title, 256
window, 278, 294, 318-320, 322, 330-331,

339
Dialog event, 321
DialogSelect, 321
DIAWGUNIT.PAS, 246, 324-328
DisableMenu, 164-165, 173
Display

changing modes, 89, 92
clearing, 89
conventional terminal, 55
initializing for graphics, 73
memory address, 100
width and height, 101

Display Handler, 123-125, 127, 144, 152, 171,
361

DisplayAboutBox, 165, 168, 177
DisplayError, 286, 288
Dispose, 47
DisposeDialog, 259
DisposeRgn, 100
DisposeWindow, 143
DisposHandle, 194
DoAppleMenuCommands, 165, 169, 178
DragTheWindow, 165, 173
Drawlcon, 345, 348, 353
Drawing modes, 93
Dynamic variable, 185

EditText, 316, 319, 323
EnableMenu, 164-165, 172
Endpoint paranoia, 67
ENTRY.PAS, 274- 277
ENTRY.R, 273-274
EOF, 30, 372, 394
EraseOval, 90
EraseRect, 89
Error message, 245, 264, 285, 288-289, 320

ERRORUNIT.PAS, 286-287
ERRTEST.PAS, 292-294
ERRTEST.R, 290-291
Event, 127

flushing, 179
queue, 76, 129
record, 77, 242

Event Handler, 124-125, 127-128, 142,
145-147, 150-151, 154, 170, 339

Event-driven program, 121-122, 127-128, 329
EventRecord, 170
Exit, 63
ExitToShell, 323

File. See also Text file
checking for existence, 28
closing, 29
temporary, 34, 38

File name, 236, 246, 250- 252, 288, 330,
392-394

File type, 251
File variable, 49
FillChar, 318
FillOval, 90
FillRect, 90
FillRgn, I 00
FindControl, 243
FindWindow, 146
FixEditMenu, 165, 173
FlushEvents, 76
Font

base line, 86- 87
height, 86, 177
menu, 17
names, 87

Forwd, 59, 62
FRACTAL.PAS, lll-115
FrameOval, 90, 100
FrameRect, 75
Free union, 67, 69
FrontWindow, 143
FSOpen, 244
FSRead and FSWrite, 43

GetApplFiles, 48
GetApplName, 337 - 339, 343
GetCursor, 236
GetDltem, 277, 294, 318-319, 323, 329
GetEOF, 46
GetFileName, 325, 327, 330
GetFPos, 46
GetlText, 278, 319
GetMouse, 351
GetNewDialog, 257-258, 323, 331
GetNextEvent, 77, 116, 127, 154, 321, 394
GetPen, 51
GetPenState, 77 - 78
GetPixel, 119

GetPort, 76
GetPortSize, 165, 167, 17 6
GetResource, 350
GetTUHandle, 238
GetVol, 45
Global Declaration, 122, 140
Global variable, 72-73
GrafPort, 70, 72, 76, 89, JOI, 139, 145, 176
GrafPtr, 75- 76, 139, 145
GRAPHSHELL.PAS, 71
Grow box, 151-152, 173, 176, 235

shudder problem, 152

Halt, 27
Handle, 183, 186, 189, 191-192, 202, 211,

236- 238, 278
creating, 190
dereferencing, 192-194, 239-240
dialog edit items, 318-319
disposing, JOO, 194

HCenter, 325-326, 329
Heap, JI, 181, 192, 237, 323

diagram, 182
fragmenting, 72, 194, 202-203, 238,

257 - 258, 265, 323
grafPort, 72- 73
locking, 193-194, 243- 244
memory available, 19
space for objects, 191

HideCursor, 63
HiWord, 53
Home, 59
Horizontal axis, 65

1/0 error, 31, 35, 285, 320
IBM PC, 21, 41-42, 46, 49, 52

command line parameters, 48
converting inLine statements, 46
files, 50
pointer variables, 51
pseudo windows, 51

Icon, 93, 344
animating, 360
designing, 349
drawing, 361
image and mask, 349
initializing, 361
moving, 353
resource, 350, 360

IconDragged, 345, 347, 351
!CONTEST.PAS, 356-360
ICONTEST.R, 353-355
ICONUNIT.PAS, 344-349
ImageUnit tools, 374-375
IMAGEUNIT.PAS, 362-369
ImageWriter, 362, 371, 375, 377, 394. See also

Printer
In-line machine language, 339- 340
Include directive, 12-13, 18

Index== 399

InitButtons, 325, 327, 331
InitChecks, 325, 328, 331
InitCursor, 76, 318
InitGraf, 75
Initialization, 126
InitNewkon, 345-346, 350
InRange, 164-165, 171, 329
InsertLine, 46
lnsetRect, 75, 88-89
Inva!Rect, 244
InvertOval, 90
InvertRect, 89
IoError, 286-287, 289, 320
IoResult, 28-29, 31, 35, 285, 288-290, 320
IsDialogEvent, 321

Key code, 147-148, 317
Keyboard event, 172
Keypressed, 63, 99

LAUNCHER.PAS, 341- 343
LAUNCHER.R, 340- 341
LineTo, 79
LONGINT, 46, 53

ordinal value, 51
LoWord, 53

MACEXTRAS.PAS, 163-170
Machine language. See In-line machine

language
MACLISTER.PAS, 381- 391
MACLISTER.R, 378-381
MacPaint file, 77, 116
MACSTAl~PAS, 203, 205-209
MACSTAT.R, 203- 205
MakeFileName, 325- 326, 330
Master pointer, 186-189, 191-192
Memory block, 184-185, 239

non-relocatable, 185, 190
purgeable, 186
relocatable, 186-187, 216, 241, 244, 323

MemTypes, 42, 49
Menu, 172-173

handle, 170, 172, 317, 392
resource. See Resource, menu

Menu Manager, 142, 144, 161
ModalDialog, 258, 272, 278, 284, 294,

330-331, 394
Modifier key value, 149
MoreMasters, 189-190
Mouse button, 63, 119, 171
Mouse click, 109, 116

in icon, 351
in scroll bar, 235
in window, 146

Mouse event, 242
Mouse pointer, 76, 145, 243, 257, 271, 317, 322

coordinate, 351
Movekon, 345, 348, 353

I

400 = Programming with Macintosh Turbo Pascal

MoveLeft and MoveRight, 47, 53
Movero, 79
MULTIWIND.PAS, 196-200
MULTIWIND.R, 195

New, 47
NewHandle, 191
NewWindow, 201, 203
NUM.PAS, 8
NUMBER.PAS, 22, 24-26
NumToString, 50-51, 318

OffsetRect, 88-89, 108
OpenDeskAcc, 179
OpenPicture, 216
OpenPort, 73, 75- 76
Option key, 150
OPTIONS.PAS, 280-283, 328, 331
OPTIONS.R, 279-280
Or mode, 93
Ord4, 51
Origin, 117 -118
OutlineOk, 258, 325- 326

Packages, 138
PaintOval, 92
PaintRect, 74, 90, 92
ParamText, 294
PasConsole, 42, 52
PaslnOut, 42, 44, 50, 316
PasPrinter, 59
PatCopy, 90
Pattern, 73-74, 89
Pause, 108, 164-165, 171
Pen

location, 80
parameters, 78
pattern, 80, 82, 90, 92- 93
size, 79, 116-117
transfer mode, 90

PenMode, 78, 93-95
PenPat, 48, 73-75, 80
PenState, 77-78
Picture handle, 216
PICTURE.PAS, 212-216
PICTURE.R, 212-213
Pixel, 87, 110, 236, 238, 240, 257

in animation, 109
display methods, 92
examining, 119
font width, 210
in icon image, 349-350, 360
number between two points, 67, 176
number on display, 55
patterns, 7 4
pen size, 79
point size, 83
points on coordinate grid, 66

relation to bit map, 95
relation to memory bits, 56

PnSize, 78
Point, 67, 69- 70, 77, 80
Point size, 83 - 84, 86, 88, 178
Pointer, 49, 51, 139. See also Master pointer

@ (at-sign), 75
assigning address, 51
converting, 52

PortBits and PortRect, 101
Printer. See also ImageWriter

driver, 361- 362, 374
selecting features, 372
specification record, 370, 372, 375, 393
wide carriage, 372

Printing. See also lmageUnit tools
changing default style, 392
characters per inch, 376, 393
characters per line, 370
embedded form feeds, 393
letter quality, 372
line numbers, 372
lines per page, 371
simulating form feeds, 372
specifying features, 369
text, 372

PrnChar, 363, 367, 372
PrnDispose, 363, 368, 373
PrnEnd, 363, 369, 374
PrnLine, 363, 368, 372
PrnNew, 363, 368, 372
PrnSetStyle, 363, 367, 372
PrnStart, 363, 368, 373
PrnString, 363, 367, 372
Program Action, 123-125, 127, 140, 143, 171
Program Engine, 126-128, 140, 146, 153-154,

203, 321- 322
PtlnRect, 322
PushButton, 325, 327, 330

QuickDraw, 42, 44, 48, 55, 62, 64
line and pen tools, 78
oval tools, 90
round rectangle tools, 90
text, 82

QUIT.PAS, 261- 263
QUIT.R, 260- 261

Radio button, 265, 328-330, 394
RADIO.PAS, 267-270, 328, 330-331
RADIO.R, 266-267
Radioltem, 271
Random, 49, 62-63, 99
ReadChar, 27, 30, 46, 52
READER.PAS, 217, 228-234
READER.R, 217, 227-228
Rect, 67, 70, 88, 90, 97
Rectangle, 70, 89

Refresh, 56
Region, 69, 95, 97, 150, 211. See also Update

region; Visible region
compared to rectangles, 73
disposing, 352
handle, 100
limiting with CopyBits, 108
starting new, 100

REGIONS.PAS, 98-99
ResEdit, 4, 6, 13, 18
Reset, 28, 42, 50, 251, 285, 316
Resize box, 162, 173
ResizeWindow, 147, 165, 173
Resource, 4, 160, 163, 177, 187

alert, 264-265
attribute, 160
binary file, 156
comments, 162
compiler, 3, 138
compiling text, 157
definition, 159, 162
dialog, 252, 256, 271, 277, 323
file, 136, 142, 157, 200, 290, 316, 343, 349,

392
icon, 350
icon list, 360
id, 257
menu, 138, 153
number, 122, 159
strings, 289
template, 178, 235
text, 128, 156, 159, 161, 294

RETAB.PAS, 38-40
Rewrite, 29, 50, 251, 285, 316
RMaker, 3-4, 6, 13, 138, 156, 162-163, 203,

212, 252
Rolling Rock, 70
ROM version, 175, 210
Round, 52
RunProgram, 337-339, 343, 392

Scan code, 14 7
ScanEQ, 53
ScanNE, 53
ScreenBits, 79, 87, 100, 117, 173
Scroll bar, 151-152, 162, 170, 175, 210, 217,

234, 240, 242-243
avoiding flutter, 152, 171, 239
dimming and highlighting, 235, 243
reforming, 243
resizing, 238
values, 244

Scrolling, 236, 238, 241
automatic, 240, 243

Selectlcon, 345, 348, 352
SelIText, 278
Serial port, 210
SetFPos, 46

SetlText, 318-319
SetOrigin, 117
SetPenState, 77 - 78
SetPort, 76
SetRect, 69-70, 100
SetVol, 43
SF.PAS, 246, 248- 250
SF.R, 246-247
SFGetFile, 339
SFPutFile, 330

Index==: 401

SFReply, 250, 252, 338
ShowCursor, 63
Showlconlmage, 345-346, 350
ShowlconMask, 345- 346, 350
ShowWindow, 162, 201
SIN, 119
SizeOf, 191, 318
Stack, 182-183
Stack/heap collision, 183, 186
Standard file dialog, 138, 246, 250, 251, 252,

330, 338, 343, 375
limiting file types, 330

STAR.PAS, 58, 63
StartSound, 50
StatText, 257, 271, 283, 316
Stop mask, 179
StopSound, 48
STR#, 159
String

replaceable areas in, 264
size on display, 84

StringToNum, 50-51, 294, 319
StringWidth, 84
StuffHex, 106
SwapWord, 53
SysBeep, 141, 148
System font, 178
SysternEdit, 144
SystemTask, 126, 155, 172, 294, 394

Tub control character, 14, 371
TABS.INC, 31-34, 36
TEXT, 26-27, 34
Text

font, 50, 82, 86
mode, 83
record, 242
streaming, 370-371
style, 84

Text file, 26, 29, 50, 236, 244, 251
Textbook program, 1, 8, 21-22, 43-45, 49, 136

display commands, 52
keypressed function, 99
standard library units, 72

TextFont, 83
TextHeight, 165, 168, 177
TextMode, 93-94
TEXTUNIT.PAS, 217- 227

402 == Programming with Macintosh Turbo Pascal

Thumb box, 239-240, 243
Time, 210, 374
ToggleCheck, 324-325, 329
TrackControl, 243
Transfer mode, 90, 93, 95, 107
TRANSFER.PAS, 336-338
Transferring to programs, 20, 336
Trunc, 52
TUActivate, 218, 225, 243
TUAttach, 218, 223, 235, 241
TUClick, 218, 224, 235, 242
TUDispose, 218, 224, 242
TUHandle, 236
TUReadText, 218, 226, 236, 244
TURec, 236
TUResize, 218, 226, 235, 243
TurnRight, 62
Turtle graphics, 44, 55, 57- 58, 60, 62

plotting points, 48, 78
Turtle unit, 58
TUUpdate, 218, 225, 235, 243
TWIRL.PAS, 60-61
Type casting, 139, 142, 150, 176, 191

Undo, 319
Unit, 19, 179

compared to include file, 31
creating, 3 3 3
installing in compiler, 334-336
making temporary changes to, 335
number, 336
removing from compiler, 334
size, 336

UnitMover, 4, 6, 137, 334-335
UpCase function, 50-51
Update event, 150-152, 212, 235, 243-244,

353, 393- 394
Update region, 152, 353
UprString, 50
USES, 59, 163, 235

ValidRect, 152
Variant record, 69
VCenter, 325- 326, 329
Verified, 27
Vertical axis, 65
Vertical retrace interrupt, 141
VHSelect, 67
View rectangle, 241
Visible region, 73, 152
Volume number, 236, 244, 251, 392, 394

Window. See also Alert; Dialog
closing, 176
creating, 177 -178, 200- 201
displaying contents, 243
dragging, 147
drawing contents, 150
erasing, 17 4
graphics in, 211
mouse click, 146
multiple, 194
pointer, 201
record, 236, 241-242, 257, 259
resizing, 147, 173-174
system, 146
zooming, 128, 175

WindowPeek, 139-140, 176
WindowPtr, 139, 145
WindowRecord, 139

Xor mode, 93- 94

Zoom box, 128, 147, 162, 173-174, 201, 235,
239

Zooming shortcut, 16
ZoomlnOut, 165, 167, 174

Companion Disk Offer

To save time and avoid typing mistakes, you can order all of the programs in this
book on disk for only $30, postage paid. (For foreign orders, add $5 for postage
and handling.) Fill in and mail the order form below or, for faster service,
telephone today. With your order, you'll receive:

Two 3.5-inch disks suitable for any Macintosh computer

· Complete Pascal source code to all program listings

All programs compiled and ready to run

Additional instructions on disk

To order, call (717) 627-1911, 9 AM to 5 PM Eastern time, or write to:

Swan Software
Mac/Turbo Companion Disks
P.O. Box 206
Lititz, PA 17543

Name ___________________________ _

Company --------------------------
Address _________________________ _

City/St/Zip
Telephone ________________________ _

D Check or money order for $30 enclosed (PA residents add 6% sales tax). Make checks
payable to Swan Software.

D Bill my credit card D Visa D MasterCard

Card Number ______________ Exp. Date ______ _

Signature--------------------------

Price of $30 includes postage to anywhere in the United States or to an APO number.
Foreign orders add $5 for postage and handling. Pennsylvania residents must add 6 % sales
tax ($1.80). Allow 2 weeks for checks to clear.

Computers $22.95

Get more out of your Macintosh.

PROGRAMMING WITH

CINTOSHTM
TURBO PASCAL®
The Macintosh may be the easiest-to-use computer ever invented. But it's one
of the toughest to program. And most Macintosh reference books aren't much
help-you get pages and pages of what a program does before you find out how
to do it yourself. What's the solution when you want to power up your Macintosh
with added functions and features? Programming With Macintosh Turbo
Pascal-a powerful toolkit of routines and utilities that teaches you good
programming style as you put each new tool to work.

Author Tom Swan presents these tools in easy-to-use "library Qnits" you can
store on disk and continue to use long after you've mastered the basics of
Pascal programming. Each unit is accompanied by descriptions, instructions,
and numerous examples to help you master Turbo Pascal programming for
the Macintosh without getting bogged down in details. After you've run
through an application, you'll not only know what tools are available and what
they do, you'll know exactly how they work. You get tools for building program
shells and creating windows, tools for enhancing QuickDraw and Turtle
graphics, designing dialog boxes, reading and writing disk files, and powering
up the Mac's scroll bars, alerts, radio buttons and other controls.

Programming With Macintosh Turbo Pascal is an essential guide for every
serious Macintosh user-for the professional programmer who needs quick,
ready-to-run software tools on the job (it's great for tight deadlines). For the
business user who wants software tailored to his special requirements but
who can't afford to gamble time and money on a custom program. And for the
student who wants to learn the tricks, techniques, and shortcuts the pros use.

TOM SWAN is the author of several computer books and has published dozens
of articles in magazines such as PC Tech Journal, inCider, Programmer's
Journal, PC World and Turbo Technix.

JOHN WILEY & SONS
Business/Law/General Books Division
605 Third Avenue, New York, N.Y. 10158-0012
New York • Chichester • Brisbane • Toronto • Singapore

Turbo Pascal® is a registered trademark of Borland, Inc.

ISBN 0 471-62417-9

