
DISK INCLUDED

• I -.. - f
: -1-.._J

®

TM

)

SECOND EDITION
o;;;.._ ___ _____,._ - - --

Richard A. Rink • Vance B. Wisenba~er • Richard G. Vance

Programming
•
Ill

Macintosh® and THINK™
Pascal

Second Edition

Richard A. Rink
Professor of Computer Science

Eastern Kentucky University

Vance B. Wisenbaker
Dean of the College of Social and Behaviorial Sciences

Eastern Kentucky University

Richard G. Vance
Professor of Political Science and Chair, Department of Govenrment

Eastern Kentucky University

Prentice Hall, Englewood Cliffs, New Jersey 07632

Ubnry orCoogres,, Cataloging-ln-PubUcation Data

Rink, Richard A.
Programming in Macintosh and Think Pascal I Richard A. Rink, Vance

B. Wisenbaker, Richard G. Vance. - 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-093873-4
1. Macintosh (Computer)-Programming. 2. Pascal (Computer

program language) I. Wisenbaker, Vance B. Il. Vance, Richard G.
m. Title.
QA76.8.M3R54 1995
005.265--dc20 94-33685

Publisher: Marcia Horton
Production Editor: Mona Pompili
Cover Designer: Violet Lake Studios
Copy Editor: Nick Murray
Production Coordinator: Bill Scazzero
Editorial Assistant: Delores Mars

© 1995 by Prentice-Hall, Inc.
A Paramount Communications Company
Englewood Cliffs, New Jersey 07632

CIP

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The author
and publisher shall not be liable in any event for incidental or consequential damages in connection with, or
arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

Printed in the United States of America

10987654321

ISBN 0-13-093873-4

PRENTICE-HALL lNTERNATIONAL (UK) L!MITED, London
PRENTICE-HALL OF AUSTRALIA PTY. L!MITED, Sydney
PRENTICE-HALL CANADA, INc., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE L!Mm!D, New Delhi
PRENTICE-HALL OF JAPAN, INc., Tokyo
SIMON & ScHIJSTER ASIA PTE. Lm., Singapore
EDITORA PRENTICE-HALL DO BRASil., LIDA., Rio de Janeiro

Dedicated to our children:
David and Nancy
Jon and Renan
Jana and David

Contents

PREFACE ... xv

Chapter One. Introduction to Macintosh Pascal

OBJECTIVES .. 1
1.1 COMPUTERS AND COMPUTER PROGRAMMING ... I
1.2 BASIC COMPUTER ORGANIZATION AND THE MACINTOSH 2
1.3 USING THE MENUS ON YOUR MACINTOSH PASCAL DISK 5
1.4 THE PASCAL MENUS .. 9

1.4.1 The Run Menu .. 9
1.4.2 The P a U s e Menu .. 12
1.4.3 The File Menu .. 13
1.4.4 The Search and Edit Menus ... 14
1.4.5 The Windows Menu .. 16

1.5 USING THE PRINTER ... 17
SUMMARY .. 19
REVIEW QUESTIONS .. 20
PROGRAMMING EXERCISES ... 21

vii

viii

Chapter Two. Introduction to THINK Pascal

OBJECTIVES .. 30
2.1 INTRODUCTION TO THINK PASCAL AND THINK PASCAL WINDOWS 30
2.2 THE THINK PASCAL MENUS ... 37

2.2.1 The Fi I e Menus ... 37
2.2.2 The Edit Menu ... 39
2.2.3 The Se a re h Menu .. 39
2.2.4 The Project Menu ... 42
2.2.5 The Run Menus ... 43
2.2.6 The Debug Menu ... 45
2.2.7 The Windows Menu .. 46

2.3 CREATING A SOURCE PROGRAM: MORE DETAIL ... 47
2.3.1 Editing a THINK Pascal Program ... 47
2.3.2 Using the Printer ... 48
2.3.3 Creating a Generic Project: A Helpful Shortcut.. .. 49
2.3.4 Creating an Instant Project .. 50

SUMMARY .. 51
REVIEW QUESTIONS .. 52
PROGRAMMING EXERCISES ... 52

Chapter Three. Constants, Variables, and Simple Input and Output

OBJECTIVES .. 60
3.1 PROBLEM SOLVING .. 60

3.1.1 Developing an Algorithm: An Example , 62
3.2 THE FORMAT OF A PASCAL PROGRAM: ADDITIONAL DETAIL 64
3.3 THE CONCEPT OF A DATA OBJECT .. 67

3.3.1 Constants .. 67
3.3.2 Variables ... 70

3.4 INPUT AND OUTPUT ... 74
3.4.1 Output in a Pascal Program ... 74
3.4.2 Input in a Pascal Program ... 78

3.5 SIMPLE DATA TYPES IN MACINTOSH AND THINK PASCAL 83
3.5.1 Real Data Types .. 83
3.5.2 Ordinal Data Types: Standard ... 86
3.5.3 Ordinal Data Types: Nonstandard .. 91
3.5.4 String Types ... 95

3.6 TYPE DECLARATIONS .. 96
3.7 STANDARD PASCAL VERSUS THINK PASCAL.. .. 98
SUMMARY .. 99
REVIEW QUESTIONS .. 99
PROGRAMMING EXERCISES .. 102

Chapter Four. Basic Arithmetic Operations, Expressions, and

Assignment Statements

ix

OBJECTIVES ... 106
4.1 THE OPERAND AND THE OPERATOR. .. 106
4.2 OPERA TOR PRECEDENCE ... 113
4.3 EXPRESSIONS AND THE ASSIGNMENT STATEMENT 115
4.4 USING THE OBSERVE WINDOW TO TRACE A PROGRAM 119
4.5 ARITHMETIC FUNCTIONS .. 120
4.6 ST AND ARD PASCAL VERSUS THINK PASCAL. .. 127
SUMMARY ... 128
REVIEW QUESTIONS ... 128
PROGRAMMING EXERCISES .. 132

Chapter Five. Basic Control Instructions for Looping and Branching

OBJECTIVES ... 138
5.1 PROBLEM ANALYSIS AND TRACING ... 138
5.2 CONTROL STRUCTURES FOR LOOPS .. 139

5.2.1 Pretest Iteration Loops .. 140
5.2.2 Post-test Iteration Loops .. 144

5.3 CONDITIONAL EXPRESSIONS .. 145
5.4 CONTROL STRUCTURES FOR BRANCHING ... 147

5.4.1 The One-Way Selector ... 147
5.4.2 The Two-Way Selector .. 148
5.4.3 Multiway Selection .. 154

5.5 NESTED LOOPS ... 159
5.6 BOOLEAN OPERATORS AND COMPOUND CONDITIONS 160
5.7 ITERATIONS REQUIRING SIMPLE COUNTERS .. 163
5.8 PROBLEM ANALYSIS: DEVELOPING AN ALGORITHM REQUIRING

BRANCHING AND LOOPING CONSTRUCTS .. 165
5.9 STANDARD PASCAL VERSUS THINK PASCAL.171
SUMMARY ... 174
REVIEW QUESTIONS ... 175
PROGRAMMING EXERCISES 177

Chapter Six. Basic Graphic and Mouse Commands

OBJECTIVES ... 188
6.1 QUICKDRAW LIBRARY .. 188
6.2 DRAWING SIMPLE LINES ... 192
6.3 DRAWING SIMPLE GEOMETRIC PATTERNS ... 196
6.4 MOUSE CURSOR COMMANDS ... 206
6.5 SETTING THE SIZE AND DISPLAY OF TEXT AND ORA WING WINDOWS 209
6.6 SOME APPLICATIONS OF THE QUICKDRA WI LIBRARY 211
6.7 USING COLOR GRAPHICS .. 234
SUMMARY ... 237

x

REVIEW QUESTIONS ... 239
PROGRAMMING EXERCISES .. 241

Chapter Seven. Procedures and Functions

OBJECTIVES ... 250
7 .1 THE CONCEPT OF A PASCAL PROCEDURE ... 250

7 .1.1 Definition of a Pascal Procedure .. 251
7.1.2 Passing Information to Formal Parameters: Value Parameters 259
7.1.3 Passing Information with Formal Parameters: Variable Parameters 264

7.2 PASCAL FUNCTIONS ... 277
7.3 GLOBAL VERSUS LOCAL IDENTIFIERS .. 282
7.4 FORWARD DECLARATIONS ... 285
7.5 PROCEDURAL AATI FUNCTIONAL PARAMETERS .. 288
7.6 RECURSIVE FUNCTIONS AND PROCEDURES .. 294
7.7 DEVELOPING MODULAR PROGRAMS THROUGH STEP-WISE REFINEMENT ... 306

7.7.1 Abstraction 1 ... 307
7.7.2 Abstraction 2 .. .308
7.7.3 Abstraction 3 ... 309
7.7.4 Abstraction 4 .. .316

7.8 WHITE-BOX VERSUS BLACK-BOX TESTING ... 323
7.9 STANDARD PASCAL VERSUS THINK PASCAL.. ... 324
SUMMARY .. .326
REVIEW QUESTIONS ... 327
PROGRAMMING EXERCISES332

Chapter Eight. Modularity: Building Programmer-Defined Libraries

OBJECTIVES ... 338
8.1 UNITS AND LIBRARIES IN THINK PASCAL: THE USES CLAUSE 338
8.2 BUILDING A THINK PASCAL PROJECT CONTAINING A PROGRAMMER-

DEFINED UNIT ... 341
8.3 BUILDING THINK PASCAL LIBRARIES .. 349
8.4 USING THE USES CLAUSE WITHIN THE IMPLEMENTATION SECTION OF A

UNIT .. 357
8.5 PREDEFINED LIBRARIES ... 360
8.6 APPLYING ADDED MODULARIZATION TO THE TUTOR SYSTEM 362
8.7 ALLOCATING A PROJECT AS AN APPLICATION .. 368
8.8 USING THE PROFILER OPTION TO COLLECT PROGRAM STATISTICS 370
8.9 USING LIGHTSBUG FOR VIEWING THE EXECUTION OF A PROGRAM 374
8.10 STANDARD PASCAL VERSUS THINK PASCAL.. ... 379
SUMMARY .. 379
REVIEW QUESTIONS ... 380
PROGRAMMING EXERCISES , ... 383

xi

Chapter Nine. Structured Data Types

OBJECTIVES ... 391
9.1 AN ARRAY AS A HOMOGENEOUS STRUCTURE ... 391
9.2 FORMAL PARAMETERS DECLARED AS ARRAY TYPES404
9.3 MULTIDIMENSIONAL ARRAYS .. 408
9.4 CONCEPT OF AN ARRAY OF ARRAYS .. .416
9.5 APPLICATION OF ARRAYS: SORTING AND SEARCH ALGORITHMS421

9.5.1 Sorting Algorithms421
9.5.2 Search Algorithms .. 425

9.6 AN INHOMOGENEOUS STRUCTURE: THE PASCAL RECORD 427
9.7 A STRUCTURE FOR CONTAINING A RANDOM SET OF ELEMENTS: THE

PASCAL SET .. 437
9.8 PACKED ARRAY OF CHARACTERS .. .446
9.9 STANDARD PASCAL VERSUS THINK PASCAL.448
SUMMARY ... 450
REVIEW QUESTIONS ... 451
PROGRAMMING EXERCISES .. 455

Chapter Ten. Files

OBJECTIVES ... 464
10.1 ADVANTAGES OF USING FILES464
10.2 BASIC CONCEPT OF A PASCAL FILE465
10.3 ACCESSING SEQUENTIAL FILES .. .467
10.4 MERGING A RECORD INTO A SEQUENTIAL FILE OF RECORDS475
10.5 ACCESSING RANDOM FILES .. 481
10.6 APPLYING THE BINARY SEARCH ALGORITHM TO FILES483
10.7 USING THE SPECIAL FUNCTION EOF -.................. .489
10.8 MERGING TWO FILES INTO A SEQUENTIAL FILE OF RECORDS490
10.9 TEXT FILES .. 495
10.10 REFERENCING DEVICES ON THE MACINTOSH AS FILE DEVICES499
10.11 AN APPLICATION: A SIMPLE DATABASE SYSTEM 501
10.12 STANDARD PASCAL VERSUS THINK PASCAL. ... 522
SUMMARY .. .524
REVIEW QUESTIONS ... 525
PROGRAMMING EXERCISES .. 527

Chapter Eleven. Manipulation of Strings

OBJECTIVES ... 532
11.1 STRING TYPES IN MACINTOSH PASCAL532
11.2 BASIC STRING PROCEDURES AND FUNCTIONS ... 535
11.3 PATTERN MATCHING AND OBJECT STRING REPLACEMENT544
11.4 SOME MISCELLANEOUS STRING ROUTINES FOR MACINTOSH AND

THINK PASCAL ... 550
11.5 EXAMPLE: EMULATING A PRINT USING STATEMENT 552
SUMMARY .. .566

xii

REVIEW QUESTIONS .. .566
PROGRAMMIN"G EXERCISES .. 567

Chapter Twelve. Pointers

OBJECTIVES .. .573
12.1 THE CONCEPT OF AN ABSTRACT DATA TYPE .. .573
12.2 POINTERS AND DYNAMIC VARIABLES .. .575
12.3 SPECIAL DATA STRUCTURES: LINKED LISTS, STACKS, QUEUES 585
12.4 APPLICATION OF POINTERS: BINARY TREES ... 602
12.5 HEURISTICS FOR WRITING RECURSIVE ROUTINES 612
12.6 ADDITIONAL COMMENTS ON NEW AND DISPOSE 614
12.7 MACINTOSH MEMORY MANAGER AND THE CONCEPT OF HANDLES 616
12.8 THINK PASCAL VERSUS STANDARD PASCAL .. 619
SUMMARY ... 619
REVIEW QUESTIONS ... 619
PROGRAMMING EXERCISES .. 622

Chapter Thirteen. Object-Oriented Programming in THINK Pascal

OBJECTIVES ... 628
13.1 INTRODUCTION TO THE TERM OOP ... 628
13.2 THE CONCEPT AND IMPLEMENTATION OF A CLASS 629
13.3 DECLARING AND USING OBJECTS .. 637
13.4 APPLYING THE RESERVED WORD INHERITED AND USING THE SELF

PREFIX ... 642
13.5 USING TOBJECT AS THE ROOT CLASS ... 644
13.6 BUILDING A SIMPLE WINDOW SYSTEM .. 646
13.7 USING THE CLASS BROWSER AND LIGHTSBUG FOR VIEWING OBJECTS

AND CLASSES .. 656
13.8 USING OBJECT PASCAL TO IMPLEMENT AN OBJECT LIST 658
13.9 SOFTWARE ISSUES IN USING OBJECT PASCAL .. 666
SUMMARY ... 668
REVIEW QUESTIONS ... 669
PROGRAMMING EXERCISES .. 670

Chapter Fourteen. QuickDraw library

OBJECTIVES ... 674
14.1 BASIS OF THE QUICKDRA W LIBRARY .. 674
14.2 MATHEMATICAL FOUNDATION OF THE QUICKDRA W LIBRARY 675
14.3 DEFINING A PORT USING GRAFPORT ROUTINES ... 682
14.4 DRAWING WITH POINTS, LINES, AND RECTANGLES 688
14.5 DRAWING WITH ARCS AND WEDGES ... 693
14.6 TEXT DRAWING ROUTINES .. 704
14.7 DRAWING WITH REGIONS AND POLYGONS .. 707
14.8 DRAWING PICTURES .. 713

xiii

14.9 TRANSFER MODES AND BIT TRANSFER OPERATIONS 716
14.10 SPECIAL GRAPHICAL ENTITIES: CURSORS AND PATTERNS 721
14.11 MAPPING AND SCALING POINTS, RECTANGLES, REGIONS, AND

POLYGONS ... 729
SUMMARY ... 733
REVIEW QUESTIONS ... 734
PROGRAMMING EXERCISES .. 736

Appendices

APPENDIX A THINK AND MACINTOSH PASCAL RESERVED WORDS 744
APPENDIX B THE MACINTOSH CHARACTER SET ... 746
APPENDIX C INTRODUCTION TO THE SANE LIBRARY .. 748
APPENDIX D CREATING A MACINTOSH PASCAL APPLICATION 763
APPENDIX E USING LABELS AND THE PASCAL GOTO STATEMENT 767
APPENDIX F REFERENCES ... 770

Index ... 773

Preface

The primary objective of this textbook is to provide a solid introduction to the Pascal
language for individuals using a Macintosh® System. The authors believe that either
THINK Pascal® or Macintosh Pascal® can provide a stimulating environment for learning
programming. These languages provide a combination of power, unique graphics
qualities, and translators, providing easy access to the Macintosh's capabilities.

This book has been written to serve as both a useful introductory reference book and
a self-study guide. As a textbook, it is directed toward the beginning courses on Pascal for
computer science programs as well as special-interest courses on Pascal for Macintosh
users. The level is elementary for Chapters 1 through 8, but shifts to intermediate in
Chapters 9 through 14. An appendix is included for readers who want an introduction to
SANE libraries. This book includes all the usual topics of a beginning textbook on the
Pascal language, plus topics on both Macintosh and THINK Pascal that are special to the
Macintosh computer. Topics included are pointers, abstract data types (ADT), files, string
manipulation, procedures supported by both the QuickDraw and SANE libraries,
programmer-defined units and programmer-defined libraries, profiling, the LightsBug
debugger, and object-oriented programming.

This text reviews both THINK and Macintosh Pascal. For those who want to
program in THINK Pascal, this edition includes three new chapters: 2, 8, and 13. Chapter
2 reviews using the THINK Pascal environment for building a project and implementing
a Pascal program. Chapter 8 provides further applications of projects by discussing the
implementation of program units and program libraries. In Chapter 8 we discuss the
LightsBug debugger and examine the capability of THINK Pascal to profile the execution
of a THINK Pascal program. Chapter 13 introduces object-oriented programming, an
extension to standard Pascal. Chapters pertinent to readers using Macintosh Pascal are 1,
3-7, 9-12, and 14. Throughout the textbook, comments are given where Macintosh and
THINK Pascal are different. Where relevant, a section has been included in some of the
chapters comparing Standard Pascal with both THINK and Macintosh Pascal.

xv

Preface xvi

To use this book as a self-study guide, we suggest the following steps. First, read the
chapter objectives and review questions before reading the first section of any chapter.
Second, when you have completed reading a section within a chapter, return to the review
questions, and see if you can answer any of them. Third, enter the examples in each
section that are full programs, and see if they will execute. If you have any syntax or
execution errors, check the program listing and make corrections. If you are successful at
executing the example, try to modify it to perform one or more other actions, again
testing your program to see if it will execute. After completing a chapter, again read the
review questions. Once you feel that you have answered those questions correctly, choose
several programming examples from the chapter, so that you can try to improve your
ability to write THINK or Macintosh Pascal programs. Note that some of the programs
listed in this book may appear different from a listing in the program window of the
Macintosh computer. This was done so that the programs could be read more easily.

The Macintosh system is a true graphics machine. A person using either THINK or
Macintosh Pascal can write computer programs in a high-level language that is able to
interact with the ROM-based graphics capabilities of the Macintosh system. For example,
a student in computer science using the Macintosh system and either THINK or
Macintosh Pascal has a tool for understanding some of the basic graphics routines required
of a workstation. By applying the QuickDraw Library routines, you can overlay several
windows on the screen, only one of them being active at any time. In any active window,
you can draw lines, curves, regions, pictures, polygons, or text, with control limited to
actions of the mouse. Under System 7, Pascal programs written in THINK Pascal can be
transformed into separate applications and executed simultaneously.

Each chapter introduces the basic principles of Pascal by defining the syntax, and
through the presentation of complete THINK or Macintosh Pascal programs, shows the
semantic actions. Having full Pascal programs allows you to enter the programs into a
Macintosh system and observe the results of execution. You are not only able to verify
the discussion in each chapter, but you can alter the example to test your own ideas. This
reinforces learning of the material and builds self-confidence. As you enter a program, you
can immediately correct errors and observe the results. All chapters include programming
exercises in addition to the complete examples, providing practice with the material
presented. Altogether there are more than 660 review questions and more than 240
programming exercises, which range in difficulty from simple to challenging. Stepwise
refinement is applied in the development of all structured algorithms and programs.
Throughout the book, structured programming concepts are stressed, and the later chapters
employ structure charts to enable effective top-down programming design. Chapter 13
introduces a new way of thinking and programming: object-oriented programming.

We have chosen to write this book using THINK Pascal 4.0 and Macintosh Pascal
3.0, both published by THINK Technologies. While Macintosh Pascal is an interpreted
version of Pascal, THINK Pascal is a full compiler. Both translators allow the use of
windows for editing and composing programs, making either translator an excellent
teaching language. In most instances, programs written in Macintosh Pascal are upward­
compatible to THINK Pascal. While other compilers exist for writing Pascal programs,
both THINK and Macintosh Pascal provide a simpler desk-top environment for editing
and composing projects. All THINK and Macintosh Pascal programs in this text have
been executed on Macintosh machines such as SE-30, Ilcx, Ilci, and Ilsi, under either
System 6.05, 7.0, 7.01, or 7.1. When using System 7, the authors recommend that
Macintosh Pascal be executed only under 24-bit addressing with virtual memory turned
off. To redefine these options, first double click on Control Panels from the Apple
menu. This opens the Control Panels folder. Now, double click on the icon labeled

xvii Preface

Memory. This opens the following dialog window for setting options such as cache size,
virtual memory, and 32-bit addressing.

D

~
8

v7.0.1

Disk Cache
Always On

Virtual Memory

@01
Q Off

32-Bit Addressing

@01
Q Off

Memory

Cache Size

Select Hard Disk:

'CJ UW's HD ~1
Available on disk: 161 M

Available built-in memory: 20M

l40M I [ID

(Use Defaults)

To tum off Virtual Memory and 32-bit addressing, click the Off buttons shown above.

With this dialog window open, click the Virtual Memory button to Off to turn off
the virtual memory option, and click the 32-bit Addressing mode to Off to run the
Macintosh system in 24-bit mode. On closing this window and on returning to the
desktop, choose Restart from the Special menu. These changes take effect when the
Macintosh machine restarts. While Macintosh Pascal can conveniently be executed from a
floppy disk, the authors recommend that THINK Pascal be executed from a hard-disk drive
with a minimum storage capacity of 20 megabytes on a Macintosh machine with at least
2 megabytes of RAM (4 megabytes if you are using the THINK Class Library) if you are
using System 7. The complete THINK Pascal system requires 5.75 megabytes of disk
space.

To help the reader distinguish special terms, we sometimes use a different font for
them. For example, we use the Courier font for identifiers and the Chicago font for
menu items. Programs and algorithms are shown in the Courier font.

Many of the figures in the text (including the one above) present what is called a
screen dump: a printed representation of what actually appears on the screen. In screen
dumps, the fonts used by the computer appear in the figure. Often these are the Geneva
font, the Monaco font, or the Chicago font. Where special font styles occur in screen
dumps, we have attempted to preserve them. In some cases, type will appear in an inverse
mode: white type on a black background. In other cases, fonts will appear to be dimmed

Preface xviii

(gray, rather than black). In a dialog box, a dimmed font indicates that a given feature is
not available under the current conditions. In a few cases, fonts will appear in hollow
outline form. In the Edit windows of the Pascal software, this indicates a problem with
the program line. In Pascal programs, bold is used to indicate reserved words such as
begin and end. These variations are illustrated below.

Some typical style variations in screen dumps

Inverse Type Bold Type

Hollow 11yp!l I I Dimmed Type

We wish to acknowledge the help of several people who contributed to this project.
First we wish to thank Dr. Marijo Le Van and Dr. Jerry Le Van for contributing ideas for
examples as well as comments. We wish to thank Phyllis Gabbard, Suzanne Tipton, Lisa
Rains, Pauline Coleman, and Kellie Lynn for their help in the preparation of the first
edition of the manuscript. We would also like to thank the following reviewers of the
first edition of this textbook: Herman Gollwitzer of Drexel University, Barry S. Marx of
Wake Technical College, Denise Kiser of the University of California at Berkeley, Henry
Etlinger of Rochester Institute of Technology, Christine Kay of DeVry Institute of
Technology, and John Fleming, production editor with Prentice Hall, for the helpful
suggestions they made in the preparation of the first edition.

In completing the second edition, we extend our appreciation to Marcia J. Horton,
Editor-in-Chief, Prentice Hall/College Technical Division for her time and patience with
us . We also extend our appreciation to Mona Pompili, our production editor, and
Nicholas Murray, our copy editor.

Macintosh is a trademark licensed to Apple Computer, Inc. ; THINK and Macintosh
Pascal are products of Symantec Corporation (THINK Technologies, Inc.); WORD,
Excel, and Multiplan are products of Microsoft, Inc.; Jazz is a product of Lotus
Development Corporation; TML Pascal is a product of TML systems; and Turbo Pascal
is a registered trademark of Borland International, Inc. SuperPaint is copyrighted by
Silicon Beach Software, Inc. Sum II is a product of Micro Analyst, Inc. MacPaint and
Mac Write are registered trademarks of the Claris Corporation.

OBJECTIVES

Chapter 1

Introduction to Macintosh
Pascal

After completing Chapter 1, you will know the following:
1. What is meant by the terms computer and computer program.
2. The nature of the Macintosh Pascal windows and menus.
3. How a computer program is built and edited with Macintosh Pascal.
4. How to check, edit, execute, save, and print a Macintosh Pascal Program.

1.1 COMPUTERS AND COMPUTER PROGRAMMING

A computer is an automated machine that can process information and, in doing so, solve
one or more problems. What type of information can a computer process? This usually
depends on the type of problem to be solved and who is using the computer. For
example, an engineer may use a computer to solve a mathematical problem, in which
case the solution is a mathematical model of an engineering process. A business
executive may use a computer to provide information on sales, gross profits, costs, and
projected future profits and sales, with the computer providing information in both tabular
and graphic formats. A student may use a computer to link with a database located
thousands of miles away and submit questions to retrieve factual and deduced information
from some set of information. In all these examples, the information to be processed by
the computer may be numeric data (numbers) or symbolic data (characters) representing
processes taking place at a particular instant of time.

1

2 Chapter I Introduction to Macintosh Pascal

When the computer is being used to solve a problem, the format or the steps
necessary for solving the problem have previously been entered into the computer by
means of a computer program. The word processor used for composing these paragraphs
and printing each character, word, line, and paragraph of text, is a computer program. A
computer program is also information to the computer, but information of a special type.
We will define a computer program as an ordered set of instructions written in an artificial
language (such as Macintosh Pascal or THINK Pascal). The instructions composing the
computer program represent the solution to a problem. Computer languages are often
referred to as artificial languages because they are more restrictive in the application of
syntax (grammar) and semantic (meanings) rules, attempting to avoid the ambiguity
found in natural languages. Another reason for the term artificial is the origin of these
languages in a laboratory environment. Although at present Pascal may appear to be an
extensive language, you will soon see that it is much simpler to understand than any of
the natural languages such as English, German, French, or Russian. It is a highly
structured language with specific syntax rules and semantic definitions for each of its
commands. It is best if you begin by learning some of the easier syntax rules for compos­
ing data objects (nouns in Pascal), commands that provide action (sometimes referred to
as verbs), and the rules necessary to form acceptable sentences that provide semantic
meaning to the computer program.

A computer language allows an individual to communicate the solution to a problem
to a computer. Why is this so important? First, computers like the Macintosh execute at
a very primitive level, a machine level where all commands and information are binary.
This means that they are composed of sequences of 1 and 0 bits. Writing programs at the
machine level is possible, but only if the programmer has a thorough knowledge of the
machine being used, has extensive programming experience, and pays considerable
attention to the storage of information at specific locations (addresses) in the memory of
the computer. An understanding of how basic operations are to be performed is also
needed. Using a high-level language such as Pascal frees the programmer from such
concerns and allows concentration on defining the steps for solving the problem. The
binary machine instructions are generated when the Pascal program is compiled by the
computer.

1.2 BASIC COMPUTER ORGANIZATION AND THE MACINTOSH

When describing a computer, it is useful to consider its basic organization from the
viewpoint of input, output, memory, and execution. The Macintosh computer can be
viewed as a von Neumann machine, named for the mathematician John von Neumann,
who is credited with the stored-program concept of computing. As shown in Figure 1.1, a
computer has five basic units: the central processor, memory, input, output, and the bus.

In a von Neumann machine, the function of the central processing unit (CPU) is to
fetch an instruction of a computer program from main memory, decode this instruction,
and then execute it; this same process is then repeated. During the execution of an
instruction, the CPU is capable of performing basic arithmetic operations such as
addition, subtraction, multiplication, and division; basic logical operations, such as a
comparison of values; and the merging and masking of data. The CPU is also capable of
controlling the actions of other units, such as memory, input, and output. For the
Macintosh, the central processor is the MC68040 microprocessor, the MC68030
microprocessor, the MC68020 microprocessor, or the MC68000 microprocessor. In some
Macintoshes there is also a co-processor, the MC68881/882.

Introduction to Macintosh Pascal Chapter I 3

Figure 1.1 Basic organization of a computer.

Memory is divided into two distinct classes: primary, or main, memory and
secondary memory for storage. The purpose of main memory is to store programs for
performing one or more specific functions, as well as the data needed when a program is
executed. For example, the word processing program used for writing this paragraph,
Microsoft WORD, is contained in main memory along with the text as it is entered from
the keyboard. Having both the program and data in main memory provides for fast
response when entering additional words or making corrections to text previously entered.
In the Macintosh computer, main memory is divided into two basic structures: random­
access memory (RAM), and read-only memory (ROM). RAM offers flexibility, since it
can both be written to and read from as long as the Macintosh remains powered. Once the
Macintosh is turned off, any information stored in RAM is lost. ROM contains
information needed by the Macintosh to "boot," or start up, when the power is turned on
and also provides numerous instructions for interfacing with RAM memory, disk drives,
the printer, windows, and menus. ROM is different from RAM in that it can be read from
but not written to by the program being executed. ROM is also permanent; its contents
do not vanish when the Macintosh is turned off.

Main memory can be viewed as a large, one-dimensional table of cells, each cell
storing 1 byte of information. As Figures 1.2 and 1.3 show, each cell has a unique
address represented by a whole number. Figure 1.2 was created with the software SUM II
"SUM Tools," which allows the Macintosh user to map the memory of the Macintosh.
Note the location of the word processing software (which takes up 1000 K, or 20% of the
available RAM for this particular configuration).

The byte is composed of 8 individual bits, single binary digits, with each bit location
containing either a 0 or a 1. Whereas humans are accustomed to communicating in natural
languages, computers deal with a more fundamental level of information where all
characters are represented by 1 and 0 bits. An individual character shown on the keyboard
of the Macintosh can be stored in a byte location of memory.

4 Chapter 1

$500000

$001EOO

$000000

Introduction to Macintosh Pascal

Top of Memory

Applications
Software

System Zone

Bottom of Memory

Figure 1.2 Representation of main memory for a Macintosh
SE/30 computer with 5 megabytes of RAM.

By having a program that is capable of linking several bytes together, complex data
such as alphabetic characters, numbers, or structures containing several different types of
data can be stored. An example of the storage of an alphabetic character is shown in
Figure 1.3.

Since RAM will lose the information stored in it after the Macintosh is turned off,
secondary memory provides backup storage for programs and data. In the Macintosh,
secondary memory is provided by a magnetic disk medium, such as a floppy diskette or
hard disk. By inserting a properly formatted diskette into a disk drive, you can store
information or retrieve information from what is referred to as a file. A file represents a
collection of information stored on a diskette, analogous to the concept of storing a file of
papers in a file cabinet. A file can be an application program, such as the Macintosh
Pascal interpreter or the THINK Pascal compiler, a text document, a paint document, an
application such as the Finder from the System Folder, and so forth. When the
Macintosh's power is off, data that has been stored on a floppy diskette is not lost. This
is one of the major advantages of secondary memory over primary memory.

Several different types of 3 112-inch floppy disk drives are used in the Macintosh. For
the oldest Macintosh machines (128K and 512K), disk drives were limited to a maximum
storage of 400K (409,600) bytes. The next group of Macintosh machines (Macintosh
Plus and Macintosh SE) used floppy disk drives with SOOK (819,200) bytes of storage
capacity. The newer Macintoshes, beginning with the SE/30, use the "super drives" or
"FDHD" drives which store 1.44M (1440K or 1,474,560) bytes. Hard disk drives, with
the disks permanently encased, can provide 20 megabytes (the prefix mega means
"million"), 40 megabytes, 80 megabytes, or more disk space. Hard disk drives provide
faster access to the contents of files than the 3 112-inch floppy disk drives.

Introduction to Macintosh Pascal Chapter 1 5

An input unit provides a means to communicate with the computer. For the
Macintosh, both the keyboard and the mouse are input devices. The keyboard allows us to
enter information such as text in a word processing document, while by clicking the
mouse button, we can enter information such as our choice of options from a menu bar.

The output unit allows the computer to communicate with the user. In the case of
the Macintosh, the screen is an output device. Another output device is a printer, such as
a laser printer or a dot matrix printer. A disk drive can also serve as both an input and an
output device.

$500000

This memory cell
stores the character

'A', represented by the
binary pattern

01000001

$000000

Top of Memory

Bit Positions
76543210

01000001

Byte

Bottom of Memory

Figure 1.3 Representation of a single byte in the main memory
of a Macintosh computer.

The bus provides an electrical path for connecting these components. Both commands
and information can be passed along this path. In the Macintosh there are two types of
bus structures, internal and external. The internal bus links the central processor with
main memory, while the external bus provides a link between main memory and
secondary memory as well as other input and output devices.

1.3 USING THE MENUS ON YOUR MACINTOSH PASCAL DISK

We assume that you are familiar with the general operation of the Macintosh and with its
associated terminology. If you are not, read the manual that came with your Macintosh,
or its equivalent, before continuing. To increase your dexterity in using the mouse, you
may want to practice with a word processing application such as Mac Write or WORD and
a painting program such as MacPaint or Super Paint. Once you have become comfortable
with the routine operations of the Macintosh, you are ready to proceed to the Pascal
software.

6 Chapter 1 Introduction to Macintosh Pascal

To use Macintosh Pascal, follow the instructions provided with your software to load
Macintosh Pascal onto your hard disk. When this has been done, you will have a
Macintosh Pascal folder similar to the one shown in Figure 1.4. The Macintosh Pascal
software used by the authors and represented in the figure is version 3.0.

D MacPascal 0
6 items 34,181K in disk 4,871 K available

~ Im ml ~
.

Macintosh Pascal BBEdit Open Me!

ft LJ LJ
PS hell Information Demos

QJ
!QI IQ] ~

Figure 1.4 The Macintosh Pascal 3.0 folder.

To begin, double-click the Macintosh Pascal icon. After a brief delay, the three
Macintosh Pascal windows shown in Figure 1.5 are displayed. The first of these is called
the Program window, and it is here that your Pascal program is entered, edited, and
displayed. Initially the Program window is labeled Untitled. Notice that when you move
the mouse within this window, the pointer takes on the shape of an I-beam.

Edit Search Run Windows

Untitled Te Ht

Drawing

Figure 1.5 The Macintosh Pascal windows and menus.

Introduction to Macintosh Pascal Chapter 1 7

This means that you are allowed to insert text. The second window shown on the
screen is called the Text window, and it is here that text output from your program is
displayed. The Drawing window displays graphics output from your program. When you
move the mouse from the Program window to either the Text window or the Drawing
window, the pointer takes the shape of an arrow. Notice that in Figure 1.5 the Program
window has horizontal bars at the top, indicating that it is currently the active window.

The best way to introduce yourself to Macintosh Pascal software is to type a short
program and execute it. Observe that the Program window shown in Figure 1.5 contains a
dark rectangle that includes some inverse print. This template is provided to help you
begin writing your Pascal program. For example, each Pascal program must begin with a
program heading line that has the following form:

program Name;

or

program Name (input, output);

where Name represents the title of the program. The name must begin with a letter,
which can be followed by letters, digits, and/or the underscore character. A name may be
up to 255 characters long (but will usually be considerably shorter than the limit).
Uppercase and lowercase letters in a Macintosh Pascal program name are interpreted as
being equivalent, allowing you to use either or a combination. All of these name rules are
characteristic of what is known in Pascal as an identifier. An identifier serves to label
constants, types, variables, program headings, and other entities that we will encounter
later. Because of this widespread use of the identifier in Pascal, it is to your advantage to
remember these rules.

Returning to our program, first press the Backspace key to clear the Program window
of the dark rectangle. (You may want to take advantage of this pretyped material later, but
for now we will start with a blank window.) Next, type

program Example_la;

You need not worry about the bold print for the word program; it is automatically
added by Macintosh Pascal when you enter your line and press the Return key. In this
example we are using Example_la as the title for our program. This title conforms to
all of the above rules for naming an identifier. Once you have inserted this line, type a
semicolon to terminate the line of code. You may wonder what happens if a title is
improperly entered. In Figure 1.6 the program title was typed Example. la instead of
Example_la. Notice that when Macintosh Pascal detects such an error, it displays the
incorrect character and the remaining characters to the right of the error in llnoThfow
mlldi.lllle type.

To continue with our example, type the word begin, and then press the Return
key. The word begin indicates where the program is to begin execution. Next, type the
remainder of the program, as shown below:

8 Chapter 1 Introduction to Macintosh Pascal

program Exarnple_la;
begin

writeln('Sarnple text output');
end.

9 File Edit Search Run Windows

Untitled

program Example
. ~ ~

Figure 1.6 A typing error in the name is quickly noted.

Be careful to include all the single quotation marks, periods, and semicolons. In
Pascal these marks are critically important, and failure to pay careful attention to them
can cause undesirable and sometimes strange things to happen to your programs. On the
other hand, you need not be concerned with the indentation or the bold print, since
Macintosh Pascal automatically takes care of these details.

It should be apparent that the only line of this program that actually causes any
action is the third line, which results in the printed message Sample text output
being displayed in the Text window. To verify this, pull down the Run menu, and select
Go. (The Macintosh Pascal menus are shown in Figure 1.5.) The result is the immediate
execution of the program.

If you would like to observe action in the Drawing window, add the command
PaintCircle to your program as shown below:

program Exarnple_la;
begin

writeln('Sarnple text output');
PaintCircle(l00,100,10);

end.

Again, pull down the Run menu and select Go. The result is shown in Figure 1.7. The
third line of the program produces the printed message displayed in the Text window, and
the fourth line causes the circle to be painted in the Drawing window. The numbers in the
PaintCircle statement represent the coordinates of the center of the circle and the
radius of the circle. Try changing these values and the wording enclosed in the single
quotes of the wri teln statement. A little experimentation with the programs presented
throughout the text should help convince you of the generality, flexibility, and sheer fun
of the computer program.

Introduction to Macintosh Pascal Chapter 1 9

D Untitled

program Example_ 1 a;
begin

writeln('Sample text output');
PaintCircle(100, 100, 1 O);

end.

Te Ht
Sample text output

Drawing

•
Figure 1.7 The text and graphic output from Example_la.

1.4 THE PASCAL MENUS

1.4.1 The R u n Menu

Figure 1.8 shows the various Macintosh Pascal menus found on the menu bar. Initially
you will be concerned with the Run menu. Using the mouse, move your pointer to the
word Run, click (and hold) the mouse button, causing the Run menu to be displayed.
Keeping the button pressed, drag the pointer down the menu. Notice that the command
options1 listed on the menu are highlighted as they are contacted by the pointer. To select
a command option, release the button while that option is highlighted. For example, to
execute a Macintosh Pascal program listed in the Program window, pull down the menu,
and select Go. This command option initiates the execution of the program. Another
useful command option on the Run menu is the Step command. With this option you
can step through a program by executing one line at a time. This feature is useful when
debugging a program, that· is, trying to understand why a program is not properly
executing and where it may be wrong. Select Step from the menu, and then observe that
only the first line of the program is executed. Figure 1.9 shows the result of this first
step. As you can see, a small hand appears in the Program window pointing to the left of
the next executable line of code. Select Step again from the Run menu to execute this
line. Continue this process until all the lines have been executed. If you wish, you can
speed up this process by using the command option Step-Step. This causes the
program lines to be executed in sequence, with a brief delay between each pair of lines.

1 In order to avoid confusion, we generally refer to choices listed on the Macintosh and THINK
Pascal menus as command options.

10 Chapter 1 Introduction to Macintosh Pascal

About Macintosh Pascal ... New
Open •.•
Close

XN
XO Calculator

Search

Find
Replace
Euerywhere
What to find .••

Check XK
Reset

Go XG
Go-Go
Step XS
Step-Step

Stops In

XF
XR
XE
xw

Saue
Saue Rs •••
Reuert
Page Setup .•.
Print ..•
Quit XO

Windows

Cut XH Untitled
Instant
Obserue

Copy XC
Paste XU
Clear
Select Rll XR Te Ht

Drawing

Clipboard

Font Control •••
Preferences •.•

Figure 1.8 The Macintosh Pascal menus.

Another command option is Stops In. When this option has been selected, you
may insert a stop to the left of any program line, preventing that line from being
executed. To insert a stop, activate Stops In, move the pointer to the left of a line you
do not wish to be executed, and click the mouse. This causes a stop sign to appear, as
shown in Figure 1.10. By selecting the command option Go, you can execute the
program up to the chosen line. To continue execution of a program after a stop has been
encountered, select Go again. Figure 1.10 shows the screen after a stop has been inserted
to the left of line 4 in Example_la. With the stop in this position, execution of the
program will cause the third line to be executed, displaying the message in the Text
window, but leaving the PaintCircle command unexecuted. Selecting the Go option for a
second time will cause the execution of the program to continue from the point where the

Introduction to Macintosh Pascal Chapter 1 11

stop appears. In the example, line 4 will be executed, painting the circle in the Drawing
window.

Untitled

program Example_ 1 a;
begin

writeln('Sample text output');
PaintCircle{100, 100, 1 O);

end.

Figure 1.9 Stepping through a program.

program Example_ 1 a;
begin

writeln('Sample text output');
~ PaintCircle{100, 100, 1 O);

end.

Figure 1.10 Inserting stops in a program.

Stops can be disabled by selecting the Stops Out command option on the menu.
This leaves all of the stops in place but renders them inoperative and invisible on the
screen. When you select St ops In, the stops are again displayed and again become
operational.

The other command options under the Run menu are Check, Reset, and Go-Go.
The command option Check allows you to have the computer check your program for
syntax errors without actual execution. In this mode, each line is examined to determine if
it is a valid Pascal statement. For example, consider the program Example_la in
Figure 1.11. Notice that the command wri teln has been replaced by the word writing.
With this alteration in the program, selection of the command option Check results in
the appearance of a dialog box at the top of the screen, indicating that a bug has been
found in the program. This dialog box with its large bug represents the standard form in
Macintosh Pascal for reporting any error discovered while checking or executing a line of
code. Along with this error message there also appears a hand with its thumb pointing
downward, positioned to the left of the line containing the bug. In the example, the error
results from the illegal command writing. Since Macintosh Pascal will keep you from

12 Chapter 1 Introduction to Macintosh Pascal

performing any other actions until the dialog box has been closed, you must click
anywhere within the border of the dialog box to close it. Once the dialog window closes,
you are free to correct the error or to perform other command options from the menu bar.

C3 File Edit Search lilfhl Windows

~ The name "writing" has not been declared

Untitled
program Example_ 1 a; ~
begin

~ writing('Sample text output');
PaintCircle(100, 100, 1 O);

end.

Figure 1.11 Using the Check command option to locate a problem.

The Reset command option allows you to return your program to its initial state.
That is, it is returned to the state it takes prior to execution, clearing the Text and
Drawing windows. You may find the Reset command option useful in connection with
the Step command option. It allows you to return to the beginning of a program without
completing execution of all its lines. In large programs this feature can be a significant
timesaving device. Finally, the Go-Go command option is operational only when the
Stops In command option has been selected. By selecting Go-Go you can step through
a program with only a brief delay at each stop (as compared to a complete halt in
execution). This command option, along with a well-placed set of stops, will allow you
to see your program execute in slow motion.

1.4.2 The Pause Menu

Consider a second program called Example_2, shown in Figure 1.12. Enter this
program as shown, and then select Check to check for any incorrect syntax. If no errors
exist, select Go, and watch the menu bar while the program executes. During execution, a
new menu command appears: Pause. By pointing the arrow at Pause and pressing the
mouse button, you can temporarily halt execution of the program. Releasing the mouse
button while the arrow remains on Pause allows the program to continue execution.
Dragging the arrow down while the pause is in effect will activate the option Halt.
Selection of this option causes execution of the program to stop at whatever line it has
reached. Execution of the program after a halt can continue only by selection of one of the
following command options: Go, Step, or Step-Step. Some Macintosh Pascal
programs cannot or will not end their execution. If this is the case, the option Halt from

Introduction to Macintosh Pascal Chapter 1 13

the Pause menu may be the only way to stop execution (short of turning off the
Macintosh).

EHample_2

program Example_2;
var

J : integer;
begin
{Display a message 30 times.}

for J := 1 to 30 do
writeln('Macintosh Computer');

end.

Macintosh Computer
Macintosh Computer
Macintosh Computer

Figure 1.12 The program Example_2 and its output.

1.4.3 The Fi I e Menu

To save your Macintosh Pascal program, pull down the File menu, and select Saue As
A dialog box like that shown in Figure 1.13 will appear on the screen. Notice that you
are asked to assign a name to the file. Macintosh file names are extremely flexible, so
you can use almost any name you choose, as long as you can type it in the space
provided in the dialog box. (The Macintosh file system allows a maximum of 31
characters.) Illegal names will be rejected by the computer. You have the option to save
the program as a text file (file of characters as seen on the screen), as an object file (file
stored in machine code), or as an application by clicking on one of the three small
buttons within the dialog box. See Appendix D for more on creating application
programs in Macintosh Pascal.

Once your program has been saved, the name for the file will be displayed at the top
of the Program window. After this, you may use the Saue command option to update
your file whenever you make changes in the Program window. It is in your best interest
to select the Saue option fairly often when you are writing or editing a program. Once
you have saved your program, you may end your work session by closing your file (select

14 Chapter 1 Introduction to Macintosh Pascal

Close from the File menu, or click the close box) and then quitting (select Quit from
the File menu).

I a EHamples I
e>Hard Disk

(Eject)
(Driue)

Saue your program as n Saue 3
EHample_2 (Cancel)
® Rs TeHt O Rs Object O Rs Application

Figure 1.13 Saving a Macintosh Pascal program file.

The Print ... and Page Setup .•• command options of the File menu are used when
you want printed output. These options will be explained in Section 1.5. The New
command option is used to provide an untitled Program window for a new program. If
you select this option when you already have a program in the Program window, the
existing program will automatically be closed when the new untitled window is opened. If
you have changed the existing program since your last file, you will be asked if you want
to save the changes before the window is closed. Finally, Reuert allows you to discard
changes made in the Pascal program shown in the Program window and revert to the last
version of the program saved on the disk.

1.4.4 The Search and Edit Menus

Your Macintosh Pascal program can be edited in the Program window by using the Cut,
Copy, and Paste command options under the Edit menu. To insert text anywhere in
your program, move the I-beam pointer in the Program window to the point at which the
text is to be inserted, click the mouse button to position the pointer, and begin typing.
To remove text, first position the pointer either to the right or to the left of the text.
Then drag the pointer across the text while pressing down on the mouse button. Release
the button when you have highlighted in black the text to be removed. This process is
called selecting the text. Figure 1.14 shows an example of text that has been selected.

Introduction to Macintosh Pascal Chapter 1

Step 1. Highlight the text to be cut from the Program window.

Program Example_3;
var

J : integer;
begin

{Text to be cut and pasted below.}

for J := 1 to 30 do

writeln('Next number is ',J);

end.

Step 2. Move this text to the clipboard by selecting the option Cut.

Text to be cut and

Step 3. Move the pointer to where the text is to be inserted, click, and then
select the option Paste.

Program Example_3;
var

J : integer;
begin

for J := 1 to 30 do

writeln('Next number is ',J);

{Text to be cut and pasted below.}

end.

Figure 1.14 Using the command options Cut, Copy, and
Paste from the Edit menu.

15

You may remove selected text by pressing the delete key, typing new text, or by
electing the command option Clear or Cut. When the command option Cut is used, the
text that is removed is stored temporarily on the clipboard. Text on the clipboard can then
be moved to another position in the Program window by moving the I-beam pointer to
the point where the material is to be inserted. After clicking the mouse, select the Paste
command option from the Edit menu to paste text that is presently in the clipboard.

The command option Copy is similar to Cut, except that it allows you to copy
selected text to the clipboard without erasing it from the Program window. The Clear

16 Chapter 1 Introduction to Macintosh Pascal

command option allows you to erase text without having it stored in the clipboard. Be
sure you understand an Edit command option before selecting it, since Macintosh Pascal
offers no undo option to quickly correct an error.

The Search menu allows you to search for a pattern of characters and replace it with
another pattern. First select the command option What to find ... This brings up a
dialog box like the one shown in Figure 1.15. In the Search for box, type the
characters representing the search pattern. If you want to replace the string you are
hunting, type the replacement characters in the Replace with box.

s File Edit Search Run Windows

Search for

Replace with

@Separate Words O All Occurrences I DK »
@Case Is lrreleuant O Cases Must Match

(Cancel)

Figure 1.15 The Se a re h dialog box.

Select the button in the dialog box that is relevant for your search, and if you wish to
continue, click on the OK button. Now move the pointer to the beginning of the program
to indicate where the search will begin. Then choose the command option Find from the
Search menu. Once the pattern is found, searching stops, and the pattern is highlighted.
To replace the pattern with the replacement string, select the command option Replace.
To continue searching, again select the command option Find. To replace a pattern with a
replacement string automatically wherever the pattern occurs, choose the command option
Euerywhere. Be careful when using this option however, since it cannot be undone­
there is no undo operation.

1.4.5 The Windows Menu

Three of the options available under the Windows menu have already been discussed: the
Text window, the Drawing window, and the Program window. Figure 1.16 shows these
as well as the other three windows that are available to you. The first of these is the
Instant window. In this window you may enter a single Pascal statement and then execute
it immediately by clicking its Do It button. You may move statements from your
Program window to the Instant window by way of the clipboard. The Observe window
allows you to display the values of selected expressions at critical points in your program
(whenever execution ceases, whether at the end or at a stop you have inserted). This

Introduction to Macintosh Pascal Chapter I 17

feature, along with the Stops In option, allows you to carefully study the execution of
your program. The Clipboard window allows you to view the current contents of the
clipboard .

• File Edit Search Run Windows

Untitled Te Ht

program Untitled; ~D~ Clipboard ~
{Your declarations}

begin
{Your program statements}

Drawing end.

Instant

(Oo l t)
{Any statements, any time.}

Obserue

Enter an expression

Figure 1.16 The Macintosh Pascal windows.

There are two additional options on the Windows menu. The Font Control .•. op­
tion allows you to select a font and font size for either the Program window or the Text
window. Figure 1.17 shows the dialog box produced when this option is selected. The
other option under the Windows menu will be explained in Section 1.5.

1.5 USING THE PRINTER

You can use your printer to make a paper copy (hard copy) of the material displayed in
any window. For example, if you would like a hard-copy listing of a Pascal program,
activate the Program window, pull down the File menu, and select Print ••• A dialog box
similar to that shown in Figure 1.182 will offer you the option for choosing the quality
of print, the page range, the number of copies, and paper feed (continuous or cut-sheet).
After you enter this information, the printing will proceed. The Page Setup dialog box,
shown in Figure 1.19, allows you further control over your printed output. This includes
the size of paper, the orientation of the paper. reduction or enlargement, and a variety of

2 The exact nature of this dialog box will vary depending on the printer and the system
software in use.

18 Chapter 1 Introduction to Macintosh Pascal

other choices. Since both are standard Macintosh dialog boxes, it is not critical that we
discuss every alternative.

By selecting the Preferences ... option of the Windows menu, you may direct
the output of your program to the printer as well as the screen. Figure 1.20 shows the
dialog box when this command option is selected. To direct your program to your printer,
click the "Output also to the Printer" box. When the program executes, whatever is
directed to the Text window is also directed to the printer. Notice that this option allows
you to send your output to a file. We will discuss files later in the book.

Set Font and Size:

@ Program Window

Los Angeles

O TeHt Window

9
10

hPEN\.lineHeight := (HeaderHeight * 4) + 1;

l•I spaces per tab

~ spaces per indent
((OK J)
(Cancel)

Figure 1.17 The Font Control dialog box.

Remember that if you want to change the font of the text being displayed, you must
choose Font Control ... to do so.

LaserWriter "LaserWriter II NT" S.2_Jf OK]

Copies:lllll @All 0 D~0D (Cancel)

Cover Page: @N oQ First Page Q Last Page
Help J

Paper Source@) Paper Cassette 0 Manual Feed

Figure 1.18 The Print dialog box.

Introduction to Macintosh Pascal Chapter 1

=L=a=se=r=W=r=i=te=r=P=a=g=e==Se=t=u=p=============================s==.2==11[OK »
Paper: @ US Letter Q A4 Letter Q Tabloid ~ ~

Q US Legal Q 85 Letter (Cancel J
Reduce or
Enlarge

Orientation

Printer Effects:
181 Font Substitution?

181 TeHt Smoothing?

181 Graphics Smoothing?

181 Faster Bitmap Printing?

Figure 1.19 The Page Setup dialog box.

TeHt Window Output Options:

Te Ht Window saues lliliDDllllllll characters

D Output also to the Printer

(Options J

(Help)

D Output also to a File: (Cancel)

Figure 1.20 The Preferences .•. dialog box.

SUMMARY

19

In this chapter we have considered the general concept of a computer as an automated
machine. We discussed the basic elements of the computer including input, output,
memory, and the central processor.

We also introduced Macintosh Pascal, including all menus and windows. The
Macintosh Pascal system supports five major menu options: File, Edit, Search, Run,
and Windows. The menu option File supports the selections New, Open, Close,
Saue, Saue As •.. , Reuert, Page Setup ..• , Print ... , and Quit. Most of these commands
correspond to the File commands routinely found in other Macintosh applications. The
second menu option, Edit, supports selection of Cut, Copy, Paste, Clear, and
Select All. These options allow common cut-and-paste operations for editing lines of
Macintosh Pascal code entered in the Program window. The menu option Search
supports selections of Find, Replace, Euerywhere, and What to find ..•. , which are
commands for searching for a string pattern and replacing one or more characters with a
given pattern. Options are available for replacing only the first occurrence or for replacing
all occurrences. The menu option Run provides several alternatives for executing a
Macintosh Pascal program. This includes an option for checking the syntax of a program

20 Chapter 1 Introduction to Macintosh Pascal

without execution by clicking on Check, the option to Reset a program if it has been
halted and is to be executed from the beginning, and execution options such as Go, Go­
Go, Step, and Step-Step. Several options for windows exist through the menu option
Windows . These include selection of the program initially given the title Untitled, an
Instant window for executing Macintosh Pascal commands without writing a Pascal
program, the Obserue window for tracing values during execution, the TeHt window for
displaying text, the Drawing window for drawing graphics, the Clipboard for viewing
lines of code cut from the Program Window, Font Control ... for controlling the type and
style of font displayed either in the Text window or the Program window, and
Preferences ... for directing output from a program to an external file or to a printer.

REVIEW QUESTIONS

I. Write a definition of the term computer.
2. Where have you recently seen computers being used?
3. Define the term computer program.
4. Why is a computer language important in solving problems?
5. What are the five basic units of a computer, and what purpose does each serve?
6. What is meant by the term RAM?
7. What is meant by the term ROM?
8. How can main memory be viewed?
9. What does a byte represent?
10. What is meant by the term secondary memory?
11. Define the term file.
12. What are the advantages of secondary memory?
13. What characters can be used in titling a file?
14. What is the maximum number of characters for a file?
15. How do you rename a file created when using Macintosh Pascal?
16. What three windows are initially shown in Macintosh Pascal?
17. The first line of any Pascal program begins with what command?
18. What is the rule for naming an identifier?
19. What are the six menu options for Macintosh Pascal?
20. What options exist when selecting the Run menu?
21. What options exist when selecting the Edit menu?
22. What options exist when selecting the Window menu?
23. What is the purpose of the Instant window?
24. What is the purpose of the Check option?
25. What is meant by a stop?
26. How can stops be inserted and removed in a source program?
27. What is the purpose of the Obserue window?
28. What are the first steps in writing a program?
29. What is the difference between command options Saue and Saue Rs ... ?
30. How can you edit your program?
31. What is the purpose of the Clipboard?
32. What is the purpose of the Text window? the Drawing window?
33. What is the purpose of the Reset command option?
34. How can a program displayed in the Program window be printed?
35. How can output from a Macintosh Pascal program be directed to a printer?
36. Use the Instant window to see the actions for the following commands. Be

sure you click the mouse button on Do It:

Introduction to Macintosh Pascal Chapter 1

writeln(45);
writeln(' {type your own name} ');
PaintCircle(50, 45, 45);

PROGRAMMING EXERCISES

21

In the following problems you are given Macintosh Pascal programs that are listed side
by side. Please do not concern yourselves with the Pascal code, since much of what you
see will be discussed in the chapters that follow. The purpose of these programs is to
allow you to experience some of the types of syntax errors that can arise as you type
Pascal code in the Program window. Enter the program on the left. Correct each error as it
arises by looking at the corrected code to the right. Introducing your own errors beyond
those given by a program on the left is highly encouraged.

1. Begin with a new Program window, and enter the program on the left by typing
each line as it appears. If a syntax error appears, correct the error using the
corresponding line from the program on the right. Save the program after it has
been corrected, and then test the program by executing it. Select the 6 o
command to execute it.

program Problem One(input, output)
{ This program prints your name.}

var
Name : string(30);

begin Body of main program }
ShowText

{ Prompt for name. }
write('Enter your name:);
readln(Name;

{ Display your name.
writeln('Your name is Name);

end

program Problem_One(input, output);
{ This program prints your name.}

var
Name: string[30];

begin { Body of main program.}
ShowText;

{ Prompt for name. }
write('Enter your name: ');
readln(Name);

{ Display your name. }
writeln('Your name is ',Name);

end.

2. Repeat the procedure used in Exercise 1 for this Pascal program.

program Prob_Two(input, output)
{ This program displays 10 numbers. }

uses
QuickDrawl;

var
Counter ; integer :

begin
{ Hide all windows but the }
{ Text Window. }

HideAll;
ShowText

{ Display 10 numbers. }

program Prob_Two(input, output);
{ This program displays 10 numbers. }

uses
QuickDrawl;

var
Counter : integer;

begin
{ Hide all windows but the }
{ Text Window. }

Hide All;
ShowText;

{ Display 10 numbers. }

22

for Counter <-- 1 to 10
writeln(Counter);

end.

Chapter 1 Introduction to Macintosh Pascal

for Counter := 1 to 10 do
writeln(Counter);

end.

3. Repeat the steps used in Exercise 1 for the Pascal program that follows.

program Problem_Three(input, output);
{ This program keeps displaying }
{numbers. Use menu option Pause}
{ to halt execution. }

var
Number ; integer:

begin
ShowText
while true

begin

end.

Number= random;
writeln(Number' ')

end;

program Problem_Three(input, output);
{ This program keeps displaying }
{ numbers. Use menu option Pause }
{ to halt execution. }

var
Number : integer;

begin
ShowText;
while true do

begin

end.

Number := random;
writeln(Number, ' ')

end;

4. If a printer is attached to your Macintosh, what steps are needed to select the
proper menu option and dialog windows for activating printing as numbers are
displayed to the Text window. Try this with Exercise 3.

5. Repeat the steps used in Exercise 1 for this Pascal program.

progam Problem_Five(input, output);
{ This program generates 10 odd }
{ numbers and stores them in a }
{ special table called an array. }

foruse
QuickDrawl;

var

begin

Data: array[l.10] of;
Index, Count : integer;

{ Open Text window for viewing. }
HideAll;
ShowText;

{ Generate 10 odd numbers. }
Index:= 1;
for Count= 1 to 19 try

begun
if odd(Count) then

begun
Data[Index] <--Count
Index : = Index + 1

end;

program Problem_Five(input, output);
{ This program generates 10 odd }
{ numbers and stores them in a }
{ special table called an array. }

uses

var

begin

QuickDraw 1;

Data : array[1..10] of integer;
Index, Count : integer;

{ Open Text window for viewing. }
HideAll;
ShowText;

{ Generate 10 odd numbers }
Index:= 1;
for Count := 1 to 19 do

begin
if odd(Count) then

begin
Data[Index] :=Count;
Index := Index + 1

end;

Introduction to Macintosh Pascal Chapter 1

end;
{ Display the 10 odd numbers. }

for Index : 1 to 10 do
writeln(Data[lndex]);

end.

end;
{ Display the 10 odd numbers. }

for Index := 1 to 10 do
writeln(Data[lndex]);

end.

23

Exercises 6, 7, and 8 contain syntax and semantic errors that are only detected
when the program is checked or when the program is in execution. Select
Check SyntaH from menu option Aun to check for any syntax errors before
selecting Go to execute. In each exercise the program on the left contains errors,
and the program on the right is correct. Our suggestion is to correct an error,
then repeat selection of the option Check SyntaH to determine the next syntax
error.

6. Check and run the following Pascal program, correcting all syntax and semantic
errors.

program Problem_Six(input, output);
{ This program detects division }
{by zero. }

var
One, Two, Three, Four : real;

begin
ShowText;
One:= 10;
Two:= 20;
Three :=0;
Four := Two I Three + One;
writing ('Value of Four: ',Four)

end;

program Problem_Six(input, output);
{ This program detects division }
{by zero. }

var
One, Two, Three, Four : real;

begin
ShowText;
One:= 10;
Two:= 20;
Three:= O;
Four := Two I (Three + One);
writeln ('Value of Four: ', Four)

end.

7. Check and run the following Pascal program, correcting all syntax and semantic
errors.

program Problem_Seven(input, outr"t);
{ This program generates 10 odd }
{ numbers and stores them in a }
{ special table called an array. }

uses
QuickDraw;

var

begin

Data: array[l..10] of integer;
Index, Count : integer;

{ Open Text window for viewing. }
Hide_All;
Show_Text;

{ Generate 10 odd numbers. }
Number:= 1;

program Problem_Seven(input, output);
{ This program generates 10 odd }
{ numbers and stores them in a }
{ special table called an array. }

uses

var

begin

QuickDraw 1;

Data: array[l..10] of integer;
Index, Count : integer;

{ Open Text window for viewing. }
HideAll;
ShowText;

{ Generate 10 odd numbers }
Index:= 1;

24

for Counter := 1 to 19 do
begin

if odd(Count) then
begin

end;

Data(Index) := Count
Index := Index + 1

end;

{ Display the 10 odd numbers. }
for Index := 1 to 20 do

writeln(Data(Index));
end.

Chapter 1 Introduction to Macintosh Pascal

for Count := 1 to 19 do
begin

if odd(Count) then
begin

end;

Data[Index] := Count;
Index := Index + 1

end;

{ Display the 10 odd numbers. }
for Index := 1 to 10 do

writeln(Data[Index]);
end.

8. Check and run the following Pascal program, correcting all syntax and semantic
errors.

program Problem_Eight(input, output);
{ This program displays 10 }
{ random nwnbers. }

var

begin

A: array[l..100] ofreal;
Index : integer;

{ Generate 10 random numbers. }
for Index := 1 to 10 do;

A[Index] :=random;
{ Display 10 random numbers. }

for Index := 10 downto 1 do
writeit(A[Index] : 10:3 ,' ');

writeln();
end.

program Problem_Eight(input, output);
{ This program displays 10 }
{ random numbers. }
var

A: array[l..100] ofreal;
Index : integer;

begin
{ Generate 10 random numbers. }

for Index := 1 to 10 do
A[Index] := random;

{ Display 10 random numbers. }
for Index := 10 down to 1 do

write(A[Index] : 10:3 ,' ');
writeln;

end.

9. Enter the code for the program Electric_Bill (listed on page 31 in Chapter 2).
Check the program and, if no syntax error is reported, run the program. Use
reasonable data, and enter it as it is requested. Save the program on your disk for
later use.

10. When executed, the following Macintosh Pascal program will generate a random
pattern in the form of ovals, as shown in Figure 1.21. Enter this program, check
for errors, and then choose an option to run.

Introduction to Macintosh Pascal Chapter 1

Figure 1.21 Patterns generated by execution of the
program Random_Patterns.

program Random_Patterns(Input. Output);
{ Purpose: This program draws ovals randomly in the Drawing }
{ window. }

uses
QuickDrawl;

con st
Limit = 220;

var
Area : Rect;
Counter : integer;

Left, Top : integer;
begin
{ Open the Drawing window.

ShowDrawing;
Draw patterns in Drawing window.

for Counter := 1 to Limit do
begin
{ Establish coordinates for the upper left corner of the }
{ rectangle called Area.

Left := - random mod 512 + 512;
Top := - random mod 342 + 342;
{ Establish the rectangle for drawing an oval. }

25

26 Chapter 1 Introduction to Macintosh Pascal

end.

SetRect(Area, Left, Top, Left+ 150, Top+ 75);
{ Draw an oval filled with a black background. }
{ Intersection with any region of the Drawing window, }
{being black, produces white.}

InvertOval(Area);
end;

11. Try inserting stops throughout the program in Exercise 10 to observe its
execution?

12. Enter the following program, check for errors, and then choose the option to run.

program Problem_Twelve(input, output);
{ Purpose: This program provides random squares with different }
{ patterns throughout the Drawing window. }

uses
QuickDrawl;

var
Top, Left, Bottom, Right
Pat : Pattern;
Background : integer;

begin

integer;

{ Use function Random to choose the corners of the square }
{ and a background pattern. }

while true do
begin

{
{

{ Randomly select the rectangles for drawing an oval. }
Top := abs(random) mod 201;
Left := abs(random) mod 201;
Bottom := Top + 30;
Right := Left + 30;

{ Randomly select the background color. }
Background := abs(random) mod 5;
case background of

0
Pat := white;

1
Pat .- black;

2
Pat := gray;

3
Pat := ltgray;

4
Pat .- dkgray;

end;
Display the oval in a rectangle with a chosen background
pattern. }

}

Introduction to Macintosh Pascal Chapter 1

FillOval(Top, Left, Bottom, Right, Pat);
end;

end.

27

13. Enter the following program, check for errors, and then choose the option to run.

program Problem_Thirteen(input, output);
{ Purpose: This program draws a series of nested squares. }

uses
QuickDrawl;

begin
{Set PenSize for 15 wide and 15 high. }

PenSize(l5, 15);
MoveTo (5 , 2 0) ;
WriteDraw(' (25, 25) ');
MoveTo(l45, 20);
WriteDraw(' (175, 25) ');

Draw the first square. }
DrawLine(25, 25, 160, 25);
LineTo(l60, 160);
LineTo(25, 160);
LineTo (2 5 , 2 5) ;

Draw the second square. }
DrawLine(55, 55, 130, 55);
LineTo(l30, 130);
LineTo(55, 130);
LineTo (55, 55) ;

{ Draw third square.
DrawLine(85, 85, 100, 85);
DrawLine(lOO, 100, 85, 100)

end.

14. Enter the following program, check for errors, and then run. Be sure that you
have saved a copy of the program before choosing the option to run. If you
encounter errors, co .. ~ct each error and save before again choosing the option to
run.

program Problem_Fourteen(input, output);
{ Purpose: This example shows how a region of arbitrary shape }
{ can be generated using several region procedures. }

uses
QuickDrawl, QuickDraw2;

type
Port = GrafPtr;

var
Window : Port;
Rectangle : array[l . . 2] of Rect;

28 Chapter 1 Introduction to Macintosh Pascal

J : integer;
Actual_Rgn : array[l .. 3) of RgnHandle;

{ ***
procedure Open_Window (var Viewport
begin

new (Viewport) ;
OpenPort(Viewport)

end; { Open_Window }

Port) ;

procedure Dispose_of_Window (var Viewport : Port);
begin

ClosePort(Viewport);
dispose(Viewport)
end; { Dispose_of_Window

{ ***
procedure Grow_Region (var Rgn : RgnHandle;

begin
OpenRgn;

var Box : Rect;
Left, Top, Right, Bottom

SetRect(Box, Left, Top, Right, Bottom);
FrameOval (Box) ;
CloseRgn (Rgn) ;

end; { Grow_Region

integer) ;

{ ***
begin { Body of the main program. }
{ Hide all Macintosh Pascal windows. }

HideAll;
{ Establish two initial windows. }

Open_Window(Window);
for J := 1 to 3 do

Actual_Rgn[J) := NewRgn;
Generate the first region. }

Grow_Region(Actual_Rgn[l), Rectangle[l), 56, 73, 356, 271);
{ Generate the second region. }

Grow_Region(Actual_Rgn[2), Rectangle[2), 206, 103, 306, 243);
{ Generate third region. }

DiffRgn(Actual_Rgn[l), Actual_Rgn[2), Actual_Rgn[3));
{ Show the third region. }

SetPort(Window);
WindowA.clipRgn := Actual_Rgn[3);
Fil1Rgn(Actual_Rgn[3), white);

Paint border on the edges of third region. }
PenSize(2, 2);
FrameRgn(Actual_Rgn[3));

{ Draw in the third region. }

Introduction to Macintosh Pascal Chapter 1

MoveTo(lOO, 160);
TextFace([italic, underline]);
DrawString('Third Region');

Close windows and dispose of regions.
Dispose_of_Window(Window);
for J := 1 to 3 do

DisposeRgn(Actual_Rgn[J]);
end.

29

Chapter 2

Introduction to THINK
Pascal

OBJECTIVES

After completing Chapter 2, you will know the following:
1. The general nature of the windows and menus used in THINK Pascal.
2. The concept of a project and how to create one.
3. The concept of a source program and how to create and edit a THINK Pascal

source program.
4. How to add a library to a project.
5. How to Check, Execute, Save, and Print THINK Pascal Programs.

2.1 INTRODUCTION TO THINK PASCAL AND THINK PASCAL WINDOWS

30

THINK Pascal is a development environment for generating Macintosh applications. It is
different from Macintosh Pascal in that (1) it supports a fast compiler, while Macintosh
Pascal is an interpreter; (2) it has a more advanced integrated text editor for Pascal syntax
than that found in the Program window of Macintosh Pascal; (3) it has an automated
Make utility for rebuilding various files linked with the development of an application;
(4) it has advanced debugging tools not found in Macintosh Pascal; (5) it includes a class
library and class browser for developing object-oriented programs; and (6) it includes a
project manager that binds various files into a single project. Programs written in
Macintosh Pascal can be compiled and executed in THINK Pascal. The reverse is not true,
since THINK Pascal supports extensions that are not supported in Macintosh Pascal.

The present THINK Pascal system (version 4.0) comes as a four-disk set and contains
instructions for unpacking many of the files. Following the instructions given in the

Introduction to THINK Pascal Chapter 2 31

manual, the complete development environment can be transferred onto a hard disk drive.
Although it may be possible to use THINK Pascal without a hard disk, you will find that
to do so is limiting and difficult. We strongly recommend that you not attempt to use the
software without a hard disk. By carefully following the instructions, you create a
development folder similar to the one shown in Figure 2.1, with the Pascal application
program in the folder called THINK Pascal 4.0 Folder.

Deuelopment
5 items 33,545K in disk 5,507K available

LJ LJ
THINK Pascal 4.0 Folder THINK Pascal 4.0 Utilities

LJ LJ
THINK Pascal 4.0 Demos TCL 1.1 Pascal Demos

LJ
MacApp 2.0 for THINK Pascal 4.0

fQ1

Figure 2.1 The THINK Pascal Development folder.

Creating a THINK Pascal program is somewhat more complicated than creating a
Macintosh Pascal program. It begins with a step which may at first seem awkward and
unnecessary, the construction of a project. To illustrate the process, we will use an
example of a Pascal program entitled Electric Bill. The purpose of this program is to
allow you to take your electric bills for the past 12 months and, after entering the
consumption and cost figures for each month, get a monthly average for each of these
items. The listing for this program is as follows. (We will discuss the meaning of the
various lines in the program in the next chapter.)

program Electric_Bill (input, output);
{ Purpose: This program computes the total consumption and }
{ cost of electricity used over a 12-month period. }

var
Counter, Total_Consumption, Total_Cost : integer;
Consumption, Cost : integer;
Average_Consumption, Average_Cost : real;

32 Chapter 2 Introduction to 1HINK Pascal

begin
ShowText;

Initialize Counter and totals. }
Counter : = 1;
Total_Consumption := O;
Total_Cost := O;

{ Repeat entry of consumption and cost data until }
{ counter exceeds 12. }

repeat
{ Enter data from the keyboard. }

writeln('Enter consumption');
readln(Consumption);
writeln('Enter cost');
readln (Cost) ;

Compute the partial sums then modify the value of Counter. }
Total_Consumption := Total_Consumption + Consumption;
Total_Cost := Total_Cost + Cost;
Counter := Counter + l;

until (Counter> 12);
Compute the average values of consumption and cost.}

Average_Consumption := Total_Consumption I 12;
Average_Cost := Total_Cost I 12;

{ Display the results. }
writeln('Average monthly consumption: '
Average_Consumption: 7 : 2);
writeln('Average monthly cost:', Average_Cost: 6: 2)

end.

The first step in setting up a project actually occurs prior to launching the THINK
Pascal software. This step is to create an empty folder for the project and supply (make
accessible) any needed library files. For our example, we will create a folder entitled
Electric Bill Folder. We assume you have just turned on your Mac and the Finder window
is on the screen. To create this folder go to the Finder File menu and select New
Folder. Then change the name of the empty folder to Electric Bill Folder. Next move
this folder to the THINK Pascal Development folder, and open the THINK Pascal 4.0
Folder to locate the two library files you will need. Open the folder entitled Libraries, and
drag the files Runtime. Lib and Interface. Lib into the THINK Pascal 4.0
Folder. These two files are needed by almost all projects, and locating them in the same
folder as the project folder will make them accessible to the project.

The second step in creating a project is to launch the THINK Pascal application by
double clicking the THINK Pascal icon. If you loaded the THINK Pascal software
correctly, this application icon should be located in the THINK Pascal 4.0 Folder.
Opening the application results in a dialog box similar to the one shown in Figure 2.2.
Double click on the Electric Bill Folder (to keep your files neatly organized), and then
click New. A dialog box like the one shown in Figure 2.3 will appear. Do not be
concerned if the dialog boxes you see are not exactly the same as those shown in the
figures. The differences result from the different files in the folders when the dialog boxes
appear. Enter the name of the project, Electric_Bill. Project, as shown in
Figure 2.3. THINK Pascal has adopted the convention of using the symbol 1t as a suffix
to indicate a project file. If you wish to follow this convention, you can produce the
symbol 1t by typing a character p while the option key is depressed.

Introduction to THINK Pascal Chapter 2 33

la THINK Pascal 4.0 Folder I
CJ Electric Bill Folder ~ c::::::::> Hard Disk
r.~ I nterface.Ub
CJ Interfaces I

(Eject)
CJ Libraries () Driue
r.~ Runtime.lib
CJ Source Programs ~

Create the project: n Create B
I I (Cancel)

D Instant Project XI

Figure 2.2 THINK Pascal opening dialog box.

la Electric Bill Folder I
~ c::::::::> Hard Disk

(Eject)

(Driue)

~
Create the project: n Create B
I Electric_Bill.Project I (Cancel)

D Instant Project XI

Figure 2.3 Naming and creating the project.

34 Chapter 2 Introduction to THINK Pascal

To simplify and perhaps clarify matters, we have chosen to use the suffix project to
designate project files. Whichever approach you elect to take, designate the project name,
and then click Create. With this action you will create the project file.

The creation of a project results in the opening of a Project window, as illustrated in
Figure 2.4. Notice that initially the project contains only the two library files you placed
in the THINK Pascal 4.0 Folder. Specifically, they are the file Runtime . 1 ib and the
file Interface. lib. These files contain standard Pascal and Macintosh Toolbox
routines that almost all Pascal programs require in order to execute.

D Electric_Bill.Project E!]§
Options File (by build order) Size £

Runtime.lib 0
Interface.lib 0 tora.rcc,a0··si'ia················· .. ·············a

Figure 2.4 The Project window.

You are now ready for the third step in the creation of the project, the creation of the
source file. To accomplish this, select the command option New from the File menu.
This action results in the opening of an empty Edit window called Untitled-1. The Edit
window in THINK Pascal is the counterpart to the Program window in Macintosh Pascal.
Do not let this slight variation in terms confuse you. Type the program
Electric_Bill (exactly as shown on the previous page) in this window. Be aware
that punctuation can be critical. A misplaced semicolon can cause interesting results! The
Edit window has been designed to help you enter correct Pascal source code. If you enter
something incorrectly, you may see it displayed in OU.llttllli!Ille follllt If this occurs, you
will know there is an error. Test this by deliberately entering incorrect code and observing
the reaction of the Edit window.

When you have correctly typed the program, select Saue As ... from the File menu,
and name the source file Electric_Bill. To follow the THINK Pascal convention,
you would name it Electric_Bill. p. This convention uses the character p to denote
a Pascal source file and a 1t to denote the project file. 1

As a fourth step in building the project, you must add the source file to the project.
To do this, select the Add "Electric_Bill" command option from the Project menu. If
there is not an active Edit window, this option will appear on the menu as Add Window

1 We have adopted the following convention for naming source-program files. If a program
will execute only as a Macintosh Pascal file, we will give it the suffix MAC. If it will execute
only as a THINK Pascal file, we will give it the suffix THINK. If it will execute in both
translators, we will use no suffix. Thus, a program named cir c 1 e . MAC would be a
Macintosh Pascal program, and a program named circle. THINK would be a THINK Pascal
program. We hope this will be helpful in keeping the various kinds of programs separate. Be
careful to avoid confusing the Pascal program name, which appears in the first line of the
program, and the Macintosh file name. The former is an identifier and subject to the rules of
the identifier. The latter is a Macintosh file name and therefore much more flexible. This
difference accounts for the presence of the period in a file name such as circle. Mac.

Introduction to THINK Pascal Chapter 2 35

and will be inactive (dimmed). If there is an Edit window but the source file has not yet
been saved, this command option will appear as Rdd "Untitled-1 ". Selection of Rdd
"Untitled-1" will result in an intermediate step with a dialog box instructing you to
save your source file. When this step has been successfully completed, the name of the
source file should be shown in the Project window, as illustrated in the top portion of
Figure 2.5.

§0~ Electric_Bill.Project ~0§
Options Fi I e (by build order)

Runtime.lib
Interface.lib

[Ql[NJ v R Electric_Bill O ro'iai"co'de"si'ie o

§0~ Electric_Bill.Project ~0§
Options File (by build order)

Runtime.lib
Interface.lib

[Ql[NJ V R Electric_Bill 602 ro'iai"co'de .. si'ie 3·5·~r:r4

Enter consumption
100
Enter cost
20.27

Figure 2.5 The Project window after addition
of the source file and then after compiling; the
Text window after execution of the program.

The fifth and final step in building the project is to select the Go command option
under the Run menu. This causes the source file to be compiled. A dialog box indicating
that Electric_Bill is being compiled will appear for a few seconds. If all is well
with Steps 1 through 5, the program will now execute. If this is the case, the Text
window will appear, and information on your first month's electric bill will be requested.
This is also shown in Figure 2.5. Notice that after the compiling step, the size of each
file in the project is given, as shown in the middle part of Figure 2.5. To complete the
execution of Electric_Bill, enter data for 12 months as prompted, and the program

36 Chapter 2 Introduction to THINK Pascal

should provide you with summary statistics based on these entries. If for some reason you
wish to interrupt a program before execution is complete, the following applies. When a
program is in execution, a bug spray-can icon appears to the far right of the menu bar.
This icon appears only when a program is in execution and disappears once the program
has completed execution. Clicking on this icon or typing Command-Shift-Period
interrupts program execution. When a program has been interrupted, an Edit window is
opened with a finger pointing to the statement where the program stopped. Execution can
be continued by using any one of the command options-Go, Step Into, Step Duer,
Go-Go, or Step-Step-from the Run menu.

The five steps in the building of a project can be summarized as follows:

1. Create the project folder, MyProgram Folder, and be sure the files
Runtime. Lib and Interface. Lib are located in the THINK
Pascal 4.0 Folder.

2. Create the project file, MyProgram. Project. Be sure this file is in
the project folder.

3. Enter the source code for the program in the Edit window, and save as it
as your source file, MyProgram. THINK.

4. Add this source file to the project. (Select the command option Add
"MyProgram.THINK" under the Project menu.)

5. Compile and execute by selecting Go under the Run menu.

Perhaps the best way to learn to use the Pascal software is to type a short program in
the Edit window and then go through each of these five steps. If you carefully complete
each step, you should be able to successfully execute the program at the end. If you have
not already done so, enter the program Electric_Bill. Just for good measure, you
might also try the shorter and simpler program, Circle. Go through Steps 1 and 2 as
outlined above, creating a project called Circle.Project. Then enter the following
source program in the Edit window. (You should recognize this program from Chapter 1.)

program Circle(input,output);
begin

ShowText;
writeln('This is a circle.');
ShowDrawing;
PaintCircle{l00,100,10);

end.

Save this source program as Circle. THINK, and add the file to the project. Select
Go to compile and execute the program. The result is shown in Figure 2.6. Notice that
the output of the program appears in two different windows and that the program contains
commands to ensure that the necessary windows are displayed. This is an important aspect
of creating a THINK Pascal program and one of the areas where THINK Pascal and
Macintosh Pascal differ somewhat.

In order to keep this chapter brief, not all of the dialog windows we discuss are
shown. Some will appear in later chapters, and others should be explored by the reader.
We encourage you to apply each of the command options and to view and select options
from the various dialog windows in order to gain a better understanding of the command
options.

Introduction to THINK Pascal Chapter 2 37

Te Ht

This is a circle.

Drawing

•
Figure 2.6 Output from the program Circle.

2.2 THE THINK PASCAL MENUS

In this section we briefly describe the THINK Pascal menus and the commands found
under each one. Assuming that you are building on your experience from Chapter 1, our
introduction to the THINK Pascal menus will be brief. You are encouraged to further
review each menu by pulling it down and trying the various command options. Pay
particular attention to the choices provided by the dialog windows that result from
selection of some of the commands. Some of the menus have more than one set of
command options. To see these variations, press the Shift key and the Option key
(separately) while each menu is displayed. By pressing and releasing these keys several
times, you can easily see the different option sets of each menu. The Windows, Edit,
and Search menus have only one set of options. You are also encouraged to carefully
read the THINK Pascal User Manual.

2.2.1 The File Menus

Figure 2.7 shows the THINK Pascal File pull-down menu and its alternate (Option key
depressed) version. Most of the options under this menu are standard for Macintosh File
menus and need only be reviewed briefly. The New command results in a blank Edit
window. This is the command option you choose when a new source program is to be
entered. Open ... 2 allows you to open a previously saved THINK Pascal source file in the

2 The three dots following a menu command indicate that the selection of this option will
produce a dialog box. This is standard Macintosh symbolism.

38 Chapter 2 Introduction to THINK Pascal

Edit window. THINK Pascal allows several Edit windows to exist within one project.
Open ... also allows you to open additional Edit windows as needed. Close allows you to
close the active window, and Close All allows you to close all open files. Saue allows
you to save the contents of the Edit window to your disk, while Saue All allows you to
save all open files. Saue a Copy As ... allows you to make backup copies without
erasing the file currently on disk. Aeuert allows you to replace the present contents of
the Edit window with the latest version of the current file that has been saved to disk.

New
Open ...
Close

Saue
Saue Rs ...
Saue a Copy Rs ...
Reuert

Page Setup ...
Print ...

XN
XO
xw

XS

XP

New
Open ...
Close Rll

Saue Rll
Saue Rs ...
Saue a Copy Rs ...
Reuert

Page Setup ...
Print Rll Files

Delete... Delete ...

Transfer ...
Quit XO

Transfer ...
Quit

XN
XO
xw

XS

XP

XO
Figure 2.7 The THINK Pascal File menus. The menu on the right appears

when the option key is depressed.

Page Setup ... results in the standard Macintosh Page Setup dialog box with its
various options (see Figure 1.19). Print... produces a dialog box (see Figure 1.18) and
results in the printing of the contents of the active window. Print All Files results in the
printing of all source files that have been added to the Project window. Delete ... allows
you to remove a file from a folder without returning to the Finder. Transfer ... allows
you to move to another application without first returning to the Finder. Under
MultiFinder, the THINK Pascal application will remain open if you transfer to another
application. Therefore you may return from the other application to THINK Pascal via
MultiFinder. Finally, Quit closes the THINK Pascal application.

Introduction to THINK Pascal Chapter 2 39

2.2.2 The Edit Menu

The various commands included under the Edit menu are shown in Figure 2.8. The top
part of this menu includes the standard Macintosh commands Undo, Cut, Copy, Clear,
Select All, and Show Clipboard. Undo allows you to undo the last edit operation.
The way this command is displayed can change according to the last operation that can be
undone. For example, in Figure 2.8 Undo is shown as Undo Typing, which tells you
that the last recoverable operation was the typing of text. Cut, Copy, and Paste allow
you to do further editing of your source file by cutting, copying, and pasting parts of the
file, while Clear removes the selected portion of the source file without placing it on the
clipboard. Select All selects the entire file for cutting or copying. Show Clipboard
allows you to view the contents of the clipboard.

Source Options ... produces the dialog box shown in Figure 2.9 with options for
customizing the appearance of the source code. This option sets the characteristics for all
Edit windows within a single project. Through this dialog box you are able to control
four elements of the format of the display. First, you can select the font and font size in
which your source file will be displayed. Second, you may determine the way in which
keywords will be displayed (for example, lowercase bold print). Third, you may control
the indentation and tab size for your programs. Finally, you may control whether
parameter lists are displayed horizontally or vertically. Note that while Source
Options ... is helpful in controlling the way your source program is displayed, it is not
critical to either your understanding of THINK Pascal or the operation of THINK Pascal.
Experiment with these options until you settle on a format that pleases you.

The next command option under the Edit menu is Auto-Reformat. Selection of
this option causes THINK Pascal to reformat your source file each time you press the
return key or type a semicolon. You may turn this off if you would prefer to have your
file reformatted less frequently. If you turn it off, you may still cause the file to be
reformatted at any time by pressing the enter key on the numeric keypad.

The final option under the Edit menu is Projector-Aware. This command option
applies when working on a large project using MPW projector. Refer to your THINK
Pascal User Manual for further discussion.

2.2.3 The Se a re h Menu

The next menu on the THINK Pascal menu bar is Search, which is shown in Figure 2.8
along with the Edit menu. The command options in the Search menu allow you to
quickly find strings in your source files. 3 The Find .•. command results in a dialog box
where several options are allowed in searching for a string. You may look for separate
words or for strings embedded in other strings. You may specify whether or not case is
relevant in the search.

3 Strings will be discussed at some length in Chapter 11. For now, think of a string as a
collection of characters. For example, the word government is a ten-character string. A
string does not have to be a complete word, however. It can be part of a word (for example,
gove is a string embedded in the larger. string government) or several words (Good
government is hard to find is also a string) or even a number.

40

Undo Typing HZ

Cut
Copy
Paste
Clear
Select All

Show Clipboard

Source Options ••.
../Auto-Reformat

Projector-Aware

Chapter 2 Introduction to THINK Pascal

Search
Find •••
Find Again
Find in NeHt File
Enter Selection

XF
XA
XT
XE

Replace XA
Replace and Find Again XO
Replace All

Show Selection
Show Error

Find Again
Find in All Files
Enter Selection

XF
XA
XT
XE

Replace XA
Replace and Find Again XO
Replace All

Show Selection
Show Error

Figure 2.8 The Ed it and Se a re h menus of THINK Pascal. The lower
Search menu appears when the Option key is depressed.

The Find Again command allows you to search for another occurrence of the same
string. The Find in NeHt File command allows you to extend your search to more than
one Edit window. By pressing the Option key when you pull down the Search menu,
you can transform this option to Find in All Files. This option has the same effect as
repeatedly selecting Find in NeHt File. The last option in this group of commands is
Enter Selection. This option has the effect of selecting the highlighted string as the
new search string. Thus, you can start a new search sequence with this command.

Introduction to THINK Pascal Chapter 2 41

II
Source Display Settings

I ... Geneua ~ I 9 ~
case program test;
CASE var case case i, sum: integer;

Keywords begin
sum := O; {initialize to zero}

~
for i := 1 to 1 O do

sum := sum + 1 ;
writeln('sum = ', sum); d

Indentation end.

(a;b;c)

(~

f l Parameters OK (saue Settings) (Cancel)

Figure 2.9 The Source Options ... dialog box.

The next group of commands, Replace, Replace and Find Again, and Replace
Rll, allow you to determine how to replace a string that is found. The Replace command
results in the currently selected string being replaced by a new string that you provide.
The Replace and Find Rgain command does the same thing as Replace and then
extends the search to the next occurrence of the string. Finally, the Replace Rll
command results in all occurrences of the string being replaced. Warning: This is a
dangerous command and should be used with considerable caution. It cannot be undone
with the llndo command.

The last commands in the Search menu are Show Selection and Show Error.
Show Selection lets you quickly return to the last insertion point in the Edit window
that is presently active. This is useful if you have been scrolling through a long file and
you would like to return to the last place where text has been inserted. The Show Error
option allows you to quickly locate the part of your file that has resulted in a compile
error. Show Error cannot be used to locate a run-time error.

2.2.4 The Project Menu

Figure 2.10 shows the THINK Pascal Project menu. The first group of command
options on this menu (New Project .•. , Open Project ... , and Close Project) allow
you to create a new project, open an existing project, or close a project. The Rd d
"filename" command adds the source program in the current Edit window to the Project

42 Chapter 2 Introduction to THINK Pascal

window. It is assumed that you have previously saved the source file. The Edit window
must be active when this command option is selected. The Rdd File ... command allows
you to add a file to the Project window. This file may be a source file, an object file, or a
library file, If the project menu is pulled down with the option key depressed, this
command is changed to Rdd Files This command option results in a dialog box that
allows you to select multiple files from a folder and add them to the Project window in
one operation. The Remoue command lets you remove files from the Project window.
In order for this command to work, you must first go to the Project window and highlight
the file to be removed.

Projec-t
New Project .. .
Open Project .. .
Close Project

Add 11 Problem Three 11

Add File ...
Remoue

Build Library ...
Build Application ...
Remoue Objects

Set Project Type .. .
Compile Options .. .
Uiew Options ...

Get Info ...

XO
LightsBug
Instant
Obserue

Show Finger
Pull Stops

~Auto-Show Finger
~Stops In

Break at A-Traps

Use Second Screen
Quietly Auto-Reset

Monitor

Figure 2.10 The Project and Debug menus.

XL

XM

The Build Library ... command allows you to add the current project to your user
library for use with future projects. You will be asked to name the file, and the suffix
.LIB should be included to identify the resulting file as a library file. The Bui Id
Rpplication ... option allows you to save the current project as an application, a desk
accessory, a driver, or a code resource. The Remoue Objects command option removes
all the compiled code from a project. Further discussion of these commands is included in
Chapter 8.

The Set Project Type ... command option allows you to designate a project as an
application, a desk accessory, a driver, or a code resource. For details on this option, see
the THINK Pascal User Manual. The Compile Options command allows you to
determine several factors in the compiling of your code. These include options for the

Introduction to THINK Pascal Chapter 2 43

compilation of source programs particular to specific microprocessors (68020/68030,
68881/68882 or 68000) as well as extended use of the uses clause. They also include
the ability to profile (analyze) the execution characteristics of a Pascal program. This
command option is discussed in a later chapter.

The Uiew Options ... command allows the appearance of the Project window to be
altered and allows the control of run-time options during the execution of a Pascal
program. These include checking for integer arithmetic overflow errors, various debugging
techniques, and range checking. The status of these options can be determined by the
absence or presence of boxes around the options D, N, V, and R beside each file in the
Project window. A box around the letter indicates that the option is active.

Finally, the Get Info command allows you to obtain information on the size of
each file in your project. Selection of this option results in a dialog box that lists each
file in the project. Select one of the files in the list to obtain information on the size of
that file.

2.2.5 The Run Menus

Three versions of the Run menu (see Figure 2.11) can be obtained by pulling down the
menu alone and in combination with the Option and Shift keys. The Option-key version
allows the user to elect automatic options for some of the commands in the original
menu. Go becomes Go-Go and Step Into becomes Step-Step. The Shift-key version
of the menu, not shown in Figure 2.11, changes the Check SyntaH command to
Compile.

The command option Check SyntaH checks the source file in the Edit window for
proper use of Pascal grammar. It does not attempt to convert the source code to machine
code and has no effect on the Program window. The command option Compile checks
the source code in the Edit window for proper grammar and semantic meaning. If the
source code is correct in the use of grammar and in semantic meaning, this command
option also results in the generation of machine code and an update of the Project
window.

The next command option, Build, forces the system to compile all files that have
changed. The Check Link command causes all the files in the project to be linked. When
the execution of a program has been interrupted, the Reset command causes a paused
program to return to the beginning. Without Reset, a paused program will continue
execution from the point of the pause when it is resumed by the Go or Go-Go command.

The Go command results in the execution of the program in the current Edit window.
If the file(s) need to be recompiled prior to execution, you will be so informed. The Go­
G o command (in the Option-key Run menu) is the automatic counterpart to the Go
command. If you have stops inserted in your source code, the Go-Go command will
result in an execution with a pause at each stop, followed by resumption of the execution.

The Step Duer command results in the execution of the next line in your source
code. If your program includes a function or procedure, the entire routine will be executed
when the program line containing the call to the routine is reached. The Step Into
command is similar to the Step Duer command, except that when a function or
procedure is encountered, the pointer goes to the first line of the routine. This allows you
to step through the function or procedure line by line. Functions and procedures are
discussed in Chapter 7.

44 Chapter 2 Introduction to THINK Pascal

Check SyntaK XK Check SyntaK XK Compile XK
Build XB Build XB Build XB
Check Link Check Link Check Link
Reset Reset Reset

...

Go XG Go-Go XG Go XG
Step Duer XJ Step Duer XJ Step Duer XJ
Step Into XI
Step Out XU

Auto Saue
..1Confirm Saues

Don't Saue

Run Options ...

Step Step
step out

Auto Saue
..1Confirm Saues

Don't Saue

Run Options ...

XI
XU

Step Into XI
Step Out xu

Auto Saue
..1Confirm Saues

Don't Saue

Run Options ...

Figure 2.11 The THINK Pascal Run menus. The center menu appears when the Option
key is depressed, and the right menu appears when the Shift key is depressed.

The Step-Step command is an automatic version of the Step Into command. It
executes each statement in turn with a pause to update the Observe and LightsBug
windows. The Step Out command causes the program to continue execution until it
exits the current routine. If you enter a routine with Step Into, Step Out allows you
to quickly exit that routine.

The Auto-Saue option causes THINK Pascal to automatically save source files
before the program is executed. The Confirm Saues option causes THINK Pascal to
present a dialog box asking if you want to save your files when the program is executed.
The Don't Saue command causes THINK Pascal to do nothing about saving the file(s)
in the Edit window(s) when the program is executed. If you elect this option, you will
have to remember to save the file(s) with no aid from THINK Pascal.

The Run Options ... command allows you to control several run-time environment
settings. These options include selection of the resource file the program will use,4 the
number of characters that the Text window will save, echoing program output to the
printer or a file, selection of font and font size for the Text window, and the amount of

4 For the Macintosh, a resource includes pieces of code and data that support proper executions
at specific instants of time. This can include menus containing menu bars, icons and
character fonts, layout, and the content of dialog and alert boxes, as well as code within a
program. A resource file is a collection of resources stored as a unit on a disk. The THINK
Pascal Resource Utilities Manual has more information on how resource files can be created
and edited THINK Pascal supports several ResEdit resource editors as well tools for
compiling and decompiling resource description files.

Introduction to THINK Pascal Chapter 2 45

memory allocated for the project's stack and heap. This dialog box is shown in Figure
2.15 in Section 2.3.2.

2.2.6 The Debug Menu

The Debug Menu is shown along with the Project menu in Figure 2.10. This menu
allows the user access to several devices that are useful in locating program bugs. The
LightsBug command results in the opening of the LightsBug window. The Instant
command results in the opening of the Instant Window, which can be used for instant
execution of individual statements when your program is paused.5 The Obserue
command results in the opening of the Observe Window. This window allows you to
observe the values of variables and expressions during the execution of a program. The
Show Finger command makes the window that contains an execution error the active
window and shows the part of the window that contains the finger. The Pull Stops
command removes any stops previously inserted in your program. The Auto-Show
Finger command is an automatic version of the Show Finger command. The Stops
I n command allows you to place stops in your program code. To do this, move the
cursor to the left part of the Edit window until it takes the shape of a stop sign. Click the
mouse button while the stop sign icon is visible, and a stop will be located before the
current program line. Stops allow you to step through a program in stages of your own
choice. This technique can be quickly refined with a little practice.

The Break at A-Traps command allows you to halt execution of your program
prior to a call to a Macintosh Toolbox routine.6 If you have more than one monitor, the
Use Second Screen option, when active, will use the second screen to display the
source and data windows. This option is available only when the Use Source
Debugger option is on. Quietly Auto-Reset will suppress the presentation of a reset
warning dialog box, which appears when you attempt to execute a halted program after
changing the source code. Finally, the Monitor command will move you into the low­
level debugger, (Macsbug or TMON).

The Option-key version of the Debug menu changes Pull Stops to Pull All
Stops. This command results in the simultaneous removal of stops from all of the files
in the project. The Shift-key version of the Debug menu presents New LightsBug as
its first option. This option results in a new LightsBug window being opened (up to
four can be open at once). This alternative menu also shows the command Use Monitor
as a replacement for the Monitor command. This command lets you determine which
debugger you will use when the software encounters an exception. If Use Monitor is on,
the debugger will be TMON or Macsbug. If it is off, the debugger will be LightsBug.

2.2.7 The Windows Menu

Figure 2.12 shows the Windows menu. The first command option (shown as
Prob.Project in Figure 2.12) appears as the name of the project. If there is no project
when the menu is displayed, it will appear as No Project, and the command will be

5 The Instant window Do It button is only active when a program has been halted. For
example, it will work when you insert a stop in a program and then activate the Step Duer
command. Or it will work if you start execution of a program with Ii o and then halt it by
clicking the spray can.

6 Macintosh Toolbox refers to the group of ROM libraries supported by the Macintosh system.

46 Chapter 2 Introduction to THINK Pascal

unavailable (dimmed). Selection of this command option activates and displays the
Project window.

Windows

Prob.Project XO

Arrange ...
./Auto-Reopen
./ Saue Positions

Class Browser XH

Te Ht
Drawing

• Problem_Three Xl
Auailable X2

Figure 2.12 The THINK Pascal Windows menu.

The Arrange ... command allows you to arrange the Edit windows in several different
ways, including overlapping, tiled, side by side horizontally, or side by side vertically.
The Auto-Reopen command causes the same windows to open automatically when the
project is opened. The Saue Positions command allows you to save the positions of
your windows when the project is closed. When the project is reopened, all windows
appear in the same position. The Class Browser command opens the Class Browser
Window, which is useful with object-oriented programming. The TeHt and Drawing
commands open the Text and Drawing windows, respectively. Finally, there is a list of
window commands (shown in Figure 2.12 as Problem_Three and Auailable) that
allow you to activate any of the currently open Edit windows. A diamond shown by one
of these filenames (see Problem_Three in the figure), indicates that the file has been
edited but the changes have not yet been saved.

2.3 CREATING A SOURCE PROGRAM: MORE DETAIL

As described in Section 2.1, a THINK Pascal program is always represented as a part of a
larger entity called a project. The project is a collection of linked files that make up the
program. To build a program, you need to know how to create the project document, how
to create the Pascal source program and edit it, and how to compile it and link it to other
files that will serve as subroutines for it. In this section, we explore a few details that
should help you understand this overall process and get you started as a THINK Pascal

Introduction to THINK Pascal Chapter 2 47

programmer. The details of some of these processes, however, are reserved for later
chapters.

2.3.1 Editing a THINK Pascal Program

A critical part of building a project is the creation of a proper source program. This is
done in the Edit window. Earlier in this chapter we discussed a program called
Electric_Bill. You were instructed to type this program into the Edit window and
then add it to a project. If you did this assignment successfully, you now have some
experience with the Edit window. You should now broaden that experience by
experimenting with other programs and by learning how the Edit window can help you
overcome problems. For example, many minor programming errors will be identified by
THINK Pascal as you work, by the appearance of the outline font in the Edit window
where the problem occurs. This is illustrated in Figure 2.13, where the program
Electric_Bill was changed to show a minor but common error.

Electric_Bill

program Electric_Bill (input, output);
{ This program computes the total consumption and }
{ cost of electricity used over a 12 month period. }

var

begin

Counter, Totalconsumption, Totalcost : integer;
Consumption, Cost: integer;
Averageconsumption, Averagecost: real;

{ Initialize Counter and totals. }
Counter := 1;
Totalconsumption := O;
Totalcost := O;

{ Repeat entry of consumption and cost data until }
{ counter exceeds 12 }

repeat
{ Enter data from the keyboard. }

writeln(Enter ©Cll'ISl.lll1ifi!P'ftilo1T1');

fHldi~ll'l(C<Olll'ISl.lll1ifi!P'ft!c!TI);

writeln('Enter cost');
readln(Cost);

Figure 2.13 An error in the source program may be revealed in the Edit
window in the form of an outline font.

The error in this case is the omission of a single quote in the wri teln expression.
Notice that the resulting output indicates (by means of the hollow outline font) that
something is wrong, but the computer does not identify the specific problem. You will

48 Chapter 2 Introduction to THINK Pascal

have to learn through experience how to interpret a result such as this. Fortunately, it is
not difficult to develop this skill.

Another way of spotting errors as you type the program into the Edit window is
through the use of the Check SyntaH command under the Run menu. At any time, you
can check your source code by selecting this option. For example, modify the
Electric_Bill source program by removing the word Counter from the variable
declaration list. Then select the Check SyntaH command and watch the result. The error
message shown in Figure 2.14 will appear. The bug icon in the message informs you
that there is an error, or bug, in your program. The description of the bug in the error
message should give you a clue about the problem. In this example, the message is very
helpful in identifying the problem, since it tells us that the identifier Counter has not
been declared. Before going on to correct the problem, you must click on the error
message box to remove it from the screen.

~ "Counter" is not declared .
. .

{ This program computes the total consumption and }
{ cost of electricity used over a 12 month period. }

var
Totalconsumption, Totalcost : integer;
Consumption, Cost: integer;
Averageconsumption, Averagecost: real;

begin
{ Initialize Counter and totals. }

~ Counter := 1;
Totalconsumption := O;
Totalcost := O;

{ Repeat entry of consumption and cost data until }
{ counter exceeds 12 }

repeat
{ Enter data from the keyboard. }

~ writeln('Enter consumption');

• !QI 12
Figure 2.14 Using the Check SyntaH command to locate a programming error.

2.3.2 Using the Printer

You can use your printer to make a paper copy (hard copy) of the material displayed in
any window. For example, if you would like a hard-copy listing of a Pascal source
program, activate the Edit window that contains the source code, pull down the THINK
Pascal File menu, and select Print ... A print dialog box (familiar to the experienced
Macintosh user) will appear and offer you the usual print options, such as the quality of
print, the page range, the number of copies, and paper feed. The options offered will
depend upon the printer connected to your computer or the printer you have selected if you

Introduction to THINK Pascal Chapter 2 49

are working on a network with several printers available. An example of a print dialog
box is shown in Figure 1.18.

After you enter your option choices, the printing will proceed. You may print the
contents of the other windows by clicking the desired window (making it active) and then
electing the Print command on the File menu. By selecting the Run Options •••
command option of the Run menu, you may elect to have the output of your program
directed to the printer as well as to the screen. Figure 2.15 shows the dialog box when
this option is selected.

Resources

Te Ht
Window

Memory

Run-time Enuironment Settings

D Use resource file:I _______ _

for resources used by the project.

TeHt Window saues I seee I characters

181 Echo to the printer
D Echo to the file: I.....---------.

IHello world. x = 811.79

.__M_o_n_a_c_o __________ ll 9

Stack size: liml kilobytes

Zone size ~kilobytes

(OK J

(Cancel)

Figure 2.15 Directing output to the printer. The dialog box from the Run
Options ••• command under the Run menu.

2.3.3 Creating a Generic Project: A Helpful Shortcut

As you get into Chapter 3 and begin entering many short Pascal programs, testing and
exploring various points discussed in the text, you will find the process of creating a
project for each source program to be both tedious and costly in disk space. As a result,
you might want to create a generic project that you can use with any source program to
test its execution. Create a project in the usual way and name it General project. When

50 Chapter 2 Introduction to THINK Pascal

the source file has been typed into the Edit window, use the Add "filename" command
under the Project menu to add the source file to the project. Compile and execute the
program, and observe the effect. When you are done, select the source file name in the
Project window (drag the cursor over the name), and click Remoue under the Project
menu. The generic project is then ready to receive the next source file. You might also
want to keep a folder to collect the source programs as you type them. It is efficient to
collect source programs, since they do not take up very much room on disk. Having these
files available will save you time later, since some of the early programs may need to be
modified and improved as you learn additional techniques. Remember, however, that you
will have to add the source file to a project and compile it before you can execute it again.

2.3.4 Creating an Instant Project

Another shortcut you might find helpful is the instant project. When you select the New
Project ••• option from the Project menu, you will see an Instant Project box near the
bottom. Click this box, and type a name for your project in the appropriate place on the
dialog box. Do not try to include a suffix in the name (such as 1t in the name Project.n).
THINK Pascal will automatically create and name the folder, the project file, and an
outline source file (in the Edit window), naming each with the name you provided and
attaching an appropriate suffix. The outline source file is similar to the one you see in
Macintosh Pascal when the Program window is first opened. It can be used or discarded
using the Delete •.• command option from the File menu.

SUMMARY

This chapter reviews the menus and command options of THINK Pascal, a development
environment for generating Macintosh applications. It is different from Macintosh Pascal
because it supports a project manager that binds files into an entity called a project.
THINK Pascal supports a fast compiler for translating Pascal source code, an advanced
text editor for Pascal syntax, an automated make capability for rebuilding source files,
advanced debugging tools such as a debugger and profiler, and a class library for
development of object-oriented programs.

The File menu contains the command options New, Open ••• , Close, Close All,
Saue, Saue All, Saue As .•• , Saue a Copy As ••• , Reuert, Page Setup ••• , Print ••• ,
Print All Files, Delete •.• , Transfer .•• , and Quit. Where Macintosh Pascal allows only
a single window for program development, IBINK Pascal allows several Edit windows to
be opened, using either the command option New or the command option Open •••.

The Edit menu supports standard Macintosh command options such as Undo, Cut,
Copy, Paste, Clear, Select All, Show Clipboard, as well as added command
options such as Source Options ••• , Auto-Reformat, and Projector-Aware. The
Search menu supports the command options Find ••• , Find Again, Find in NeHt File,
Find in All Files, Enter Selection, Replace, Replace and Find Again, Replace
All, Show Selection, and Show Error. These command options allow more string
search and replacement options than found in Macintosh Pascal.

The Project menu has numerous command options for working with the current
project, including New Project ••. , Open Project ••• , Close Project, Add
11 filename 11 , Add File .•• , Add Files ••• , Remoue, Build Library •.• , Build
Application ••• , Remoue Objects, Set Project Type ••• , Compile Options •.• ,
Uiew Options ••• , and Get Info •••. The Run menu has command options that support

Introduction to THINK Pascal Chapter 2 51

syntax checking, the translation and building of files, as well as control over execution of
a THINK Pascal program. These commands include Check SyntaH, Compile, Build,
Check Link, Reset, 60, 60-60, Step Duer, Step Into, Step-Step, and Step
Out. Additional command options include Ruta Saue, Confirm Saues, Don't Saue,
and Run Options

The Debug menu allows for some of the same windows to be opened when
analyzing the execution of source code as in Macintosh Pascal, as well as added command
options not in Macintosh Pascal. These include LightsBug, New LightsBug,
Instant, Obserue, Show Finger, Pull Stops, Pull Rll Stops, Ruta-Show
Finger, Stops In, Break at A-Traps, Use Second Screen, Quietly Auto­
Reset, Monitor, and Use Monitor. The Windows menu allows the programmer to
work with and position many of the various THINK Pascal windows. The command
options under this menu include the Project window name, Arrange ... , Auto-Reopen,
Saue Positions, Class Browser, TeHt, Drawing, as well as a list of all file names
for current Edit windows.

Pressing the Shift or Option keys while the menu is down produces alternative
commands for the File, Search, Project, Run, and Debug menus. In addition to the
command options under these THINK Pascal menus, there are numerous dialog windows
offering options that can affect the viewing of Edit, Text, and Project windows. With the
dialog window produced by selecting the Run Options .•• command, the programmer can
direct text from the Text window to a printer as well as to a file. In addition, the type of
font, font size, and the total number of characters saved in a Text window can be changed.

REVIEW QUESTIONS

1. What is a project?
2. What are the general steps involved in the creation of a project?
3. What characters can be used in titling a THINK Pascal source file?
4. What is the maximum number of characters for a Macintosh file name?
5. How do you rename a file that has already been created when using THINK

Pascal?
6. What differences have you seen so far in Macintosh Pascal and THINK Pascal?
7. The first line of any THINK Pascal program begins with what command?
8. What are the rules for naming an identifier?
9. What are the eight menu options for THINK Pascal?

10. What command options exist when selecting the Run menu?
11. What command options exist when selecting the Edit menu?
12. What command options exist when selecting the Window menu?
13. What is the purpose of the Project window?.
14. What is the purpose of the Check SyntaH option?
15. What is meant by the term debugger?
16. How can stops be inserted and removed in a THINK Pascal source program?
17. What is the purpose of the Obserue window? How is this window used to

locate a program bug?
18. What are the first steps in writing a THINK Pascal program?
19. What is the difference between the options Print and Print All ?
20. How can you edit your program after it has been compiled?
21. What is the purpose of the Clipboard?
22. What is the purpose of the Text window? The Drawing window? The Instant

window?

52 Chapter 2 Introduction to THINK Pascal

23. What is the purpose of the Reset option??
24. How can a program displayed in the Program window be printed?
25. How can output from a program be directed to a printer?
26. How do you display alternate forms of the THINK Pascal menus?

Which menus have alternate forms?
27. How does one create an Instant Project?
28. What is the purpose of a generic project? What is the advantage of this

approach when writing many small programs?

PROGRAMMING EXERCISES

1. Create a generic project for the purpose of testing the following program
as well as the remaining programming exercises in this chapter. After
the project has been created, enter the following test program in a new
Edit window. This program simply displays a message in the Text
window:

program Exercise_One(input, output);
{ Purpose: This program will be used to test the Instant window. }
begin

writeln(' This is a sample program for testing the Instant
window.');

end.

Using the command option Check SyntaH, check the program
Exercise_One for syntax errors. Correct any errors that exist. Be
sure to use the Saue Rs and Saue options for saving the source code
to a file. To test the Instant window, place a stop at the left of the
keyword begin and then execute this program using the G o
command. The program will be halted with a finger pointing to the left
of the word begin. Open the Text and Drawing windows from the
Windows menu and then choose the Instant command from the Debug
menu. Enter the following statements into the Instant window. After
entering a source line, press the "Do It" button, and observe the
response. This exercise will require the following command options:
New Project, New, Saue Rs, Saue, Add "filename", Check
SyntaH (or Compile), Stops In, Go, TeHt, and Drawing.

2. Using the generic project from Exercise 1, remove the current program
using the Remoue command after highlighting the Pascal program in
the Project window. Then, after closing the current Edit window, apply
the command New, and enter the following Pascal program.

program Exercise_Two(input, output);
{ Purpose: This program prompts for and displays your name.}
var

Name: string[30];
begin { Body of main program.}

ShowText;

Introduction to THINK Pascal Chapter 2 S 3

{ Prompt for a name entered from the keyboard. }
write('Enter your full name and then press the return key: ');
readln (Name) ;

{ Display the name entered from the keyboard. }
wri teln ('Your name is ' , Name) ;

end.

Apply the Check SyntaH command, and correct any improper
syntax. Now apply the following options from the Source Options ...
dialog window: select font as Geneva, 10 point; select keywords
lowercase and underlined; select indentation and tabs at 8 spaces. Now
use the command option Rdd 11 filename 11 , and add the program to the
Project window. Apply the command Build to complete building the
project, and execute the program using the command Go.

3. For the program in Exercise 2, select the following options from the
Run options ... dialog box: for the Text window, select a font of type
Geneva and a font size 20; for the Text window select saving only 10
characters. If a printer is available, select the option to echo to the
printer. Then again build the project with the Build command, and
observe execution of the program, using the Go command. Observe the
execution of the program when you attempt to enter a name longer than
30 characters. Try using the commands Go, Go-Go, Step Into,
Step-Step, and Step Duer to continue execution.

4. For the program in either Exercise 2 or 3, remove the present Pascal
program from the Project window, and add the following source
program in a new Edit window:

program Exercise_Four(input, output);
{ Purpose: This program displays 10 numbers to the Text window. }
var

Counter : integer;
begin
{ Hide all windows but the Text Window. }

HideAll;
ShowText;

{ Display 10 numbers to the Text window. }
for Counter := 1 to 10 do

end.
writeln(Counter);

Apply the Compile command option, and correct any improper
syntax. Now apply the following options from the Uiew Options ...
dialog window: select the font as Courier, 10 point; set all of the other
options to your taste. Now look at the Project window and observe its
new characteristics. Using the command option Rdd "filename", add
the Pascal program to the Project window. Apply the command Build
to complete building the project, and execute the program with the
command Go. Notice that the Pascal command HideAll will hide all of

54 Chapter 2 Introduction to THINK Pascal

the windows before it opens the Text window. How can the Edit
window be opened to again view the source file after the program ends
execution?

5. Modify the program in Exercise 4 by removing the comments in the
body and modifying the comment representing the purpose. In addition,
cut the statements wri teln, HideAll, and ShowText. Your Edit
window should now have the following listing:

program Exercise_Four(input, output);
{ Purpose: This program provides a trace during execution by }
{ displaying 10 numbers in the Observe window. }
var

Counter : integer;
begin

for Counter .- 1 to 10 do

end.

Using the command option Stops In, place a stop before the line
containing the word begin. Now open the Observe window, and
enter the name Counter at the top of right column. Then apply the
command option Go and begin execution. Since the program will be
interrupted, choose the command Step-Step to observe the values of
Counter as the program executes. Be sure that the box D is set for
the Pascal program file listed in the Project window.

6. Modify the program in Exercise 5 to appear as shown below:

program Exercise_Four(input, output);
{ Purpose: This program provides a trace during execution by }
{ displaying 11 numbers in the Observe window. }
var

Counter : integer;
begin

Counter := l;
while Counter <= 10 do

Counter := succ(Counter) ;
end.

Add the expression " Counter <= 10 " below the word
Counter in the Observe window. Remove the stop before the word
begin and place a stop before the word while. Again execute the
program with the command Go. Continue to execute the program with
the command Go, and observe all the values for the two expressions in
the Observe window. Be sure that the box D is set for the Pascal
program file listed in the Project window.

Introduction to THINK Pascal Chapter 2

7. After removing the file for the present Pascal program from the Project
window, create a new Edit window, and add the following Pascal
program:

program Random_Patterns(input,output);
{ Purpose: This program draws ovals randomly in the Drawing }
{ window. }
con st

Limit 220;
var

Area : Rect;
Counter : integer;
Left, Top : integer;

begin
{ Open the Drawing window. }

ShowDrawing;
Draw patterns in Drawing window.
for Counter := 1 to Limit do

begin

end.

{ Establish coordinates for the upper left corner of the }
{ rectangle called Area. }

Left := - random mod 512 + 512;
Top := - random mod 342 + 342;

{ Establish the rectangle for drawing an oval. }
SetRect(Area, Left, Top, Left + 150, Top + 75);

{ Draw an oval filled with a black background. }
{ Intersection with any region of the Drawing window, }
{being black, produces white.}

InvertOval(Area);
end;

After you have entered the program and removed all errors, add the
program to the Project window and execute. You may need to open the
Drawing window and adjust its size before execution.

8. The following progt_n will result in an error during execution. Enter
the program in your generic project, and observe the bug's box that is
generated when Counter reaches a value of 10:

program Exercise_Eight(input, output);

55

{ Purpose: This program displays 11 numbers to the Text window. }
var

Counter: 1 .. 10;
begin
{ Hide all windows but the Text Window. }

HideAll;
ShowText;

{ Display 10 numbers to the Text window. }
Counter := l;

56

while Counter <= 10 do
begin

writeln(Counter);

Chapter 2

Counter := succ(Counter);
end;

writeln(Counter);

Introduction to THINK Pascal

end.

Be sure that the boxes D and R are set for the Pascal program file
in the Project window. What is the last value of Counter displayed in
the Text window? After you have observed the appearance of the bug's
box reporting the error, remove the option R for the Pascal program file
in the Project window, and again execute the program. What is the last
value of Counter displayed in the Text window?

9. The following program will result in an error during execution, provided
that option Vis set for the source file in the Project window. Enter the
program in your generic project, and observe the bug's box that is
generated when 1 is added to Number.

program Exercise_Nine (input, output);
{ Purpose: This program displays 11 numbers to the Text window. }
var

Number, Counter: integer;
begin
{ Hide all windows but the Text Window. }

HideAll;
ShoWText;

Display 10 numbers to the Text window. }
Number := 32767;
for Counter := 1 to 10 do

begin
writeln(Number);
Number := Number + 1;

end;
writeln(Number);

end.

Remove option V from the Project window for this file, and again
execute the program. What values appear for Number in the Text
window? What is wrong with these values?

10. Implement the following program, using your generic THINK Pascal
project:

program Exercise_Ten;
{ Purpose: This program draws a series of nested squares in the }
{ Drawing window. }
begin
{ Display the Drawing window to the screen. }

Introduction to THINK Pascal Chapter 2

ShowDrawing;
{Set PenSize for 15 wide and 15 high. }

PenSize(l5, 15);
MoveTo (5 , 2 0) ;
WriteDraw(' (25, 25) ');
MoveTo(145, 20);
WriteDraw(' (175, 25) ');

{ Draw the first square. }
DrawLine(25, 25, 160, 25);
LineTo(160, 160);
LineTo(25, 160);
LineTo(25, 25);

{ Draw the second square. }
DrawLine(55, 55, 130, 55);
LineTo(l30, 130);
LineTo(55, 130);
LineTo(55, 55);

{ Draw third square. }
DrawLine(85, 85, 100, 85);
DrawLine(lOO, 100, 85, 100)

end.

11. Implement the following program using your generic THINK Pascal
project. Selecting the command option Source Options ... , set all
options and establish indentation and tabs at 5 spaces. Your Edit
window should appear as in the listing that follows:

program Exercise_Eleven;
{ Purpose: This program draws random circles having random }
{ patterns within the Drawing window. }
var

Top, Left, Bottom, Right: integer;
Pat: Pattern;
Background_Pattern: integer;

begin
{ Show the Drawing window before painting any ovals. }

ShowDrawing;
{ Use function random to choose the corners of a square and a }
{ background pattern. }

while true do
begin
{ Randomly select a rectangle for drawing an oval. }

Top := abs(random) mod 201;
Left := abs(random) mod 201;
Bottom := Top + 30;
Right := Left + 30;

{ Randomly select the background pattern. }
Background_Pattern := abs(random) mod 5;
case Background_Pattern of

0:

57

58 Chapter 2 Introduction to THINK Pascal

Pat := white;
1:

Pat := black;
2:

Pat := gray;
3:

Pat .- ltgray;
4:

Pat .- dkgray;
end;

{ Display the oval in a rectangle with a background pattern from }
{ the above step. }

FillOval(Top, Left, Bottom, Right, Pat);
end;

end.

{

This program will continue to execute indefinitely. You can terminate
execution by clicking the spray-can icon to the far right of the menu
bar.

12. If you have a color monitor, add the following Pascal code to the body
of the program of Exercise 11. This code should follow the case
statement that assigns a value to variable Pat. When executed, the
modified program displays ovals, using random background colors as
well as random patterns:

Randomly select the background color. }
Background_Color .- abs(random) mod 8;

case Background_ Color of
0:

Color .- blackColor;
1:

Color := whiteColor;
2:

Color .- redColor;
3:

Color .- greenColor;
4:

Color .- blueColor;
5:

Color .- cyanColor;
6:

Color .- magentaColor;
7:

Color .- yellowColor;
end;

{ Display the oval in a rectangle with a background color chosen }
{ from the above step. }

BackColor(Color);

Be sure to add the following declarations under var:

Introduction to THINK Pascal Chapter 2

Background_Color
Color : longint;

integer

Replace the command BackColor (Color) with ForeColor
(Color), and observe the change in appearance for ovals drawn on the
screen.

13. Using your own programs, try the command options Saue a Copy As,
Transfer, Delete, Remoue Objects, Find, Find Again, Close
Project, Open Project, Add File ... , Quitely Auto-Reset, and
Show Finger.

59

Chapter 3

Constants, Variables, and
Simple Input and Output

OBJECTIVES

After completing Chapter 3, you will know the following:
1. An introduction to problem solving and the algorithm.
2. The general format used in both Macintosh Pascal programs and THINK Pascal

programs, including the use of the program heading, the identifier, declarations,
and the reserved words begin and end.

3. The concept of a data object, including constants and variables.
4. The use of the Macintosh Pascal and THINK Pascal input commands read and

readln and the output commands write and writeln.
5. Simple Macintosh data types, including the real data types (real, double,

extended, and computational) and the ordinal data types (integer, longint,
char, Boolean, enumerated, and subrange).

3.1 PROBLEM SOLVING

60

Programming involves the following steps: (1) identifying a problem that requires a
solution, (2) finding the solution to the problem, (3) specifying the ordered set of steps
that represent the solution, and (4) implementing these steps in a computer language. In
reaching a solution to a problem, we must be concerned with analyzing the problem,
finding the steps for a solution, and then formally defining the set of steps. A computer
language such as THINK Pascal is a tool for implementing our solution on a computer.
Although it may appear to the beginner that the computer provides an answer to a

Constants, Variables, and Simple Input and Output Chapter 3 61

problem when a program is executed, the computer itself does not directly solve
problems; it is programmed to provide an answer or answers for either one problem or a
class of problems.

The first step in obtaining a solution to a problem is problem analysis: the problem
is defined, and all the information needed for a solution is identified. Problem analysis
consists of the following steps:

1. Define the problem precisely. This implies being able to write a short description
defining the problem to be solved. If this cannot be done, more time is needed to
think about the problem.

2. Determine whether the problem has already been solved. Is it possible that
programs already exist for performing the task being studied? Is it possible to
modify an existing program to provide a solution?

3. List all the desired information required as input. What is required as input to
solve this problem? If you cannot recognize the input requirements, more
thinking is required about the problem you are trying to solve.

4. List all the desired information required for output, including a representation of
an answer to the problem being solved.

5. Begin with an initial set of steps as an approximation of a solution. Do these
initial steps identify any subproblems that need to be solved (need to be broken
down into smaller steps)?

6. Refine the steps so that they are precise and explicit. This is important because a
computer program will be based on these steps. If they are not precise and
explicit, it may not be possible to translate the solution into explicit computer
commands. Often it is necessary to repeat Steps 1 through 6, refining the
solution in stages.

7. Trace each step of the solution with known information. This allows us to
understand how intermediate values are created and changed and to detect steps
that are imprecise or not explicitly defined.

The product of this process is an algorithm. An algorithm is a procedure having a
finite number of unambiguous steps specifying a sequence of operations that provide a
solution to a problem. Consider some of the key words in this definition. First, an
algorithm is a procedure. By following the steps of an algorithm, we can obtain a
solution to a problem. Second, the steps are finite; they do not go on forever. Third, the
total number of steps is not fixed for all problems. Finally, each step is unambiguous;
that is, it is precise and <. ·:ilicit. A proper algorithm must satisfy the following
characteristics:

1. Finiteness. There must exist a finite sequence of steps leading to an answer. If this
is not true, further analysis is required.

2. Definiteness. There must be preciseness of meaning. Each step must be explicit
and precise in defining its actions. If any step fails to have this property, it
should be treated as a subproblem in itself and subjected to further analysis.

3. Input. A list of information to be entered through what we call input data objects
or input variables.

4. Output. A list of information to be reported through what we will call output data
objects or output variables.

5. Effectiveness. All steps must be able to be completed in a finite length of time by
any individual tracing the steps of the algorithm.

62 Chapter 3 Constants, Variables, and Simple Input and Output

If an algorithm fails to satisfy one or more of these five properties, it is necessary to
perform additional analysis. It is important to understand that a computer program is
simply one form for expressing an algorithm. A computer program that fails to execute
properly also fails to satisfy one or more of the characteristics of an algorithm.

The steps of an algorithm can be expressed in several forms. It is possible to express
them in a natural language such as English. The problem with this approach is that the
English language can be ambiguous and thus lead to confusion. A second approach to
expressing an algorithm is symbolic representation. Each step of the algorithm can be
represented by means of a flowchart symbol. Unfortunately, there are numerous
commands in THINK Pascal for which no standard flowchart symbols exist. In addition,
developing large algorithms with flowcharts is messy. A third approach is to use an
artificial language similar to the commands of Pascal for describing the steps. This is the
approach that we will take, and later you will be shown how Pascal itself can serve as a
vehicle for defining algorithms.

3.1.1 Developing an Algorithm: An Example

An example will help clarify the foregoing discussion. The following discussion is keyed
to the steps just presented.

1. Suppose that we want to use our computer to compute average monthly
consumption and cost for our electric bills over a 12-month period. Assume that
we will first enter 12 values each for consumption and cost and then display the
following messages

Average Monthly Consumption
Average Monthly Cost

with the computed values printed to the right of the colons. This description of
what we want to do constitutes our definition of the problem.

2. Next, determine if the problem has already been solved. While it may be possible
to purchase software for the Macintosh that will perform these calculations, we
will assume that a suitable program does not exist. Thus, we must provide our
own solution to the problem.

3. List the necessary input for a solution. Obviously, we need our electric bills for
the past 12 months, and from these we must take the figures on consumption
(the number of kilowatt-hours used) and cost (the dollar amount charged for our
electric usage for each month).

4. Then list the information required for output. In the case of our electric bill, we
need the average consumption and the average cost. Our output will also contain
labels that will identify these figures.

5. Next we must provide an initial set of steps for the solution of our problem.
These might appear as follows:

(a) Prompt the user with a message to enter the month's consumption and cost
figures.

(b) Add consumption to a partial sum for storing total consumption over 12
months. Follow the same procedure for cost.

(c) Repeat Steps (a) and (b) 11 times.

Constants, Variables, and Simple Input and Output Chapter 3 63

(d) When we have completed these 12 iterations, compute the averages by
dividing the sums for consumption and cost by 12.

(e) Report these average values to the user.

These steps represent an algorithm, but do they satisfy all the requirements of an
algorithm? First, the steps are finite even though Steps (a) and (b) are to be performed 12
times. Second, some of these steps must be more precise. For example, Step (b) should
be more specific as to what names can be used for representing the partial and total sums.
We must also be more specific on how we intend to control the iteration of Steps (a) and
(b). That is, we should introduce a counter to control these iterations. Third and fourth,
the steps for input and output will have to be more precise in expressing these two
actions. Fifth, if you trace the steps by hand (using pencil and paper), this algorithm can
be executed in a finite number of steps.

6. The sixth step in the process is to refine the Steps (a) through (e) of Step 5 so
that they are precise and explicit. Because of the need for greater precision, we
will rewrite those steps in a more formal style that resembles the style of a
Pascal program. For now, you should at least be aware that the use of the braces
{ } designates a comment, which plays no active part in the program itself.

(a){ Prompt user to enter both consumption and cost
{ values from the keyboard. }
write 'Enter Consumption'
read Consumption
write 'Enter Cost'
read Cost

(b){ Compute the partial summations. }
Total_Consumption <-- Total_Consumption +

Consumption
Total_Cost <-- Total_Cost + Cost

(c){ If we have not yet reached a count of 12, go}
{ back to Step (a} and repeat Steps (a) and (b) .
If count of 12 or less, go to Step (a)

(d){ Compute the average values of consumption and}
{ cost. }
Average_Consumption <-- Total_Consumption I 12
Average_Cost <-- Total_Cost I 12

(e){ Display the results. }
write 'Average Monthly Consumption:',

Average_Consumption
write 'Average Monthly Cost: ',Average_Cost
{ End of solution. }

These steps are finite, but there is still some ambiguity; when we retrace the steps,
we find that no initial values have been set for Total_Consumption and
Total_Cost. We might assume these values will initially be set to zero, but we have
done nothing in our algorithm to ensure this. This should be done prior to Step (a). We
also need to set up a counter that will start at 1 and increase in increments of 1 with each
iteration of the data-entry cycle. This counter will be tested to determine if it is less than
12, in which case the cycle should be continued, or if it is time to compute the averages.

64 Chapter 3 Constants, Variables, and Simple Input and Output

The following instructions incorporate solutions to these problems and refine the
algorithm for computing the average power consumption for one full year.

Algorithm Electric_Bill;
{ Initialize counter and totals. }

Counter <-- 1
Total_Consumption <-- 0
Total_Cost <-- 0

{ Repeatedly enter consumption and cost until counter
exceeds 12. }
repeat

write 'Enter Consumption'
read Consumption
write 'Enter Cost'
read Cost

{ Compute the partial summations. }
Total_Consumption <-- Total_Consumption +

Consumption
Total_Cost <-- Total_Cost + Cost
Counter <-- Counter + 1

until (Counter is greater than 12)
{ Compute the average values of consumption and cost.}

Average_Consumption <-- Total_Consumption I 12
Average_Cost <-- Total_Cost I 12

{ Display the results. }
write 'Average Monthly Consumption: ',

Average_ Consumption
write 'Average Monthly Cost: ', Average_Cost

{ End of algorithm. }

What about the algorithms for the read and write commands? For the present we
will accept these as given, just as we accept the basic operations of addition and division.
For your reference, the finished program is shown in Section 2.1 of Chapter 2.

3.2 THE FORMAT OF A PASCAL PROGRAM: ADDITIONAL DETAIL

A Macintosh Pascal or THINK Pascal program is composed of several parts, including a
program heading, a uses clause, a declaration part, and a statement part. For now, we
will refer to the statement part as the executable body of the program. Figure 3.1 shows
the typical format for a Macintosh Pascal and THINK Pascal program.

In this figure the program heading begins with the reserved word program
followed by an identifier representing the program title. We refer to program as a
reserved word because it can only be used in the context for which it is defined (in this
case defining the beginning of a Pascal program). Any attempt to use the word
program in a context other than defining the beginning of a Pascal program results in
this word being displayed in outline type, indicating that a syntax error has occurred.
Appendix A includes a complete list of reserved words for both the Macintosh Pascal
language and the THINK Pascal language.

Constants, Variables, and Simple Input and Output Chapter 3

Untitled
program Program_Name(input,
{ Uses clause }

uses
Library _Name;

{ Declaration Parts }
con st

type

var

begin

{ Executable body of the program }

end.

Figure 3.1 Format for a Macintosh Pascal or THINK Pascal
program.

65

Since the program title is an identifier, it is subject to the rules discussed in Section
1.3 of Chapter 1. Specifically, an identifier must begin with a letter of the alphabet, and
this letter can be followed by letters of the alphabet, the digits 0 through 9, and/or an
underscore (_) character. Other characters, including blanks, are illegal. In addition, an
identifier can be up to 255 characters long. Upper- and lowercase letters are not interpreted
as being different in identifiers; their use is completely at your discretion. Our convention
in naming identifiers is to begin with a capital letter followed by letters or digits, with
the underscore being used to separate full words. For example the name
Taxableincome is represented as Taxable_income or Taxable_Income. You
may prefer not using the underscore and beginning each distinct word with a capital letter.
For example, you could use the name Taxable Income. Remember that typing a blank
or hyphen (dash) to separate words, such as Taxable-income or Taxable Income,
will result in a syntax error. Finally, notice that we are using a natural name for taxable
income rather than a cryptic phrase such as TXI, Txi, or T_X_I. An important rule in
writing algorithms and in naming identifiers is to use natural names. Although they may
take longer to type, they are easier to remember than cryptic names, and they allow for
better program documentation.

The program heading can also be represented by the following statement:
program Program_Name (input, output);. The two words input and
output are referred to as program parameters. For some Pascal translators they are
required even when standard input (the keyboard) is used for entering data and when
standard output (the screen) is used for displaying data. In both Macintosh Pascal and
THINK Pascal, this form is optional when writing programs.

66 Chapter 3 Constants, Variables, and Simple Input and Output

Following the program statement is the uses clause. Uses was first introduced in
the UCSD p-System. This statement directs the Pascal interpreter to find and include the
libraries contained in the list of names that follow the reserved word uses. Although
this clause is not always required, it allows special, predeclared constants, types, and
programs to be borrowed from one or more library units and included within a Pascal
program. A library or library unit contains a collection of special, predeclared objects and
programs that a program can borrow. The uses clause is particularly important when
writing THINK Pascal programs (as compared to Macintosh Pascal). A THINK Pascal
program can borrow from more than 56 Macintosh libraries. An additional 36 libraries
can be referenced without the uses clause, since they are built into THINK Pascal. In
Macintosh Pascal, only three libraries can be referenced by the uses clause:
QuickDraw 1, QuickDraw2, and SANE.

After the program heading and the uses clause, the Pascal program may contain
constant, type, and variable declarations. These statements list any
constants, programmer-defined types, and variables to be encountered in the program.
They begin with the reserved words const, type, and var. The executable portion
of the program is enclosed between the reserved words begin and end. Notice that a
period is required to terminate the last end of a Pascal program. Statements enclosed in
special braces { } are comments and have no effect on the execution of the program. 1

However, the comments can be important to those reading the program or in documenting
the program for future reference.

In Chapter 1 we listed a program named Circle, an example of a simple Pascal
program. Its purpose is to "paint" a circle in the Drawing window by executing the code
listed in the program window. Figure 3.2 gives the Macintosh Pascal listing for the
program.

Taking the program line by line, we see the following:

1. The program heading identifies the title of the program as Circle. Since no
parameters or uses clause are necessary, that portion of the program heading is
omitted. The line ends with a semicolon as required.

2. The next line in the program is a comment line identifying the declarations
section of the program. Three constants are declared under the keyword const.
They define the circle to be painted. The center of the circle is located by its x
and y coordinates, named Width and Height and assigned the values of 40 and
50, respectively. Next the radius of the circle is set as a constant called Radius
and assigned a value of 30. Each of the constant declarations is followed by a
semicolon. These constants, Width, Height, and Radius, are three
identifiers in our program.

3. The body of the program consists of two additional comments and the command
PaintCircle, which directs the machine to draw the circle. The information
necessary for painting the circle comes from the three arguments, Width,
Height, and Radius, separated by commas and enclosed in parentheses.

4. This statement, along with comments, is bracketed between the two reserved
words begin and end. This represents the executable body of the program.

1 In THINK Pascal, compiler directives can be inserted between comment brackets. By
inserting these special strings between comment brackets the programmer may direct the
compiler to generate different machine code than it normally would.

Constants, Variables, and Simple Input and Output Chapter 3

EHample2.1

program Circle(input, output);
{ Declarations section. }

con st
Width= 40;
Height= 50;
Radius= 30;

begin
{ Working part of the program. }
{ Draw a circle in Drawing window. }

PaintCircle(width, height, radius)
end.

Figure 3.2 The Macintosh Pascal version of Circle.

3.3 THE CONCEPT OF A DATA OBJECT

67

Figure 3.3 outlines the key features of a data object. As the illustration shows, a data
object can be either a constant or a variable. It consists of an identifier associated with a
name, one or more attributes (properties), and a value. The properties or attributes of the
data object depend on its type. Variation in data types is one of the main sources of
richness in Pascal. We will discuss some of the alternative types in detail in a later
section of this chapter.

3.3.1 Constants

A constant is a data object whose value remains unchanged throughout the execution of a
Pascal program. Constants in Pascal are of two types. The first is a constant declared at
the beginning of a program, using the following syntactical format:

const
Name_l
Name_2

Name_n

value_l;
value_2;

value_n;

68 Chapter 3

/
B

Constants, Variables, and Simple Input and Output

Identifier

associated with

Property or
Attribute

{
Constant
Variable

Figure 3.3 The concept of a data object.

Here a named identifier is associated with a value on the right. This value can be a
number, a predeclared constant already known to Macintosh Pascal, or the name of a
another constant previously declared. It cannot be an expression. The equal sign in the
constant expression represents an equality between the name on the left and the value to
its right. When the Pascal program is translated from Pascal to machine code, everywhere
that the name of the constant appears, it is replaced by its equivalent value. It is a data
object at the level of the Pascal language, since it has both a name and a value. The
attribute associated with the constant is given by the attribute associated with the value of
the constant. For example, the program Circle has three constants defined as follows:

con st
Height = 50;
Width = 40;
Radius = 30;

con st

Each constant is of type integer, since each value is written as a whole number, an
integer.

Although the Macintosh Pascal syntax rules do not allow the value of a constant to
be an expression, a constant can be equated with the name of another constant. Some
examples showing values for constants as well as variations in writing the declarations
follow:

Max = 120.0;
Min - Max;

Constants, Variables, and Simple Input and Output Chapter 3

Truth = true;
Nontruth = false;
Message= 'This is a string.';
Character_Const = 'A';

69

THINK Pascal syntax rules do allow the value of a constant to be an expression. For
example, the program Test, listed below, will execute in THINK Pascal, causing the
value of the variable c to be written as 50. An attempt to execute the same program under
Macintosh Pascal will cause a syntax error, as shown in Figure 3.4.

1ff This statement or keyword doesn't belong here.
. .

Test.Mac

program Test(input,output); ~
con st

A = 5" I

f\?I
B = 10;
c A .. ~; =

begin
Show Text;
writeln('C I C); = I

end.
Q

!QI Jm!m!mmmmmmmmmmmmmmm!mmmmmmmmmIQJ ~

Figure 3.4 The program Test after attempted execution under Macintosh Pascal.

Program Test(input, output);
const

A = 5;
B = 10;
C = A * B;

begin
ShowText;
writeln('C

end.
\ I c) i

In addition to multiplication, the other standard operators (+, - , I, div, and mod) can
be included in the constant expressions of a THINK Pascal program.

70 Chapter 3 Constants, Variables, and Simple Input and Output

The reserved word const can be repeated several times when declaring constants;
for example,

const
Max 120.0;
Min = Max;

const
Truth true;
Nontruth = false;

const
Message= 'This is a string.';
Character= 'A';

The second kind of constant found in Pascal programs is an explicit value used
within an expression in an executable statement. This kind of constant is not given a
name. As an example, consider the following Pascal statement from the program
Electric_Bill:

Average_Consumption := Total_Consumption I 12;

In this statement the slash (/) represents division, while the characters : = represent the
action of assigning a value to a data object. When executed, this statement will result in
the value of Total_Consumption being divided by 12 and assigned to the object
called Average_Consumption. The 12 is a constant with no previous declaration and
has no association with an identifier. Although this constant has no name, it assumes the
properties of an integer type due to its format (12 as compared with 12.0).

Both THINK Pascal and Macintosh Pascal have a number of built-in constants for
reference. These include pi (3.141592653589793239), true, false, maxint
(32,767, or 215-1), and maxlongint (2,147,483,647, or 231-1). These constants may be
incorporated in a program without previous declaration, since they are understood by the
Pascal software.

Real constants in Pascal must be represented by at least one digit preceding the
decimal point and at least one digit following the decimal point.

3.3.2 Variables

A variable is a data object whose value can be changed during the execution of a program.
Variables are declared after constants and types by using the following syntactical form:

var
Name_l
Name_2

Name_n

data type;
data type;

data type;

Here the word var is reserved for declaring data objects to be variables. As with
declaring constants, the reserved word var can be repeated several times when writing
variable declarations. The rules for naming variables are the same as those for any
identifier. In addition, however, it is wise to select variable names that are meaningful.

Constants, Variables, and Simple Input and Output Chapter 3 71

var

Cryptic variable names can make a program difficult to read, especially if it has been left
to sit idle for several months. Following are some examples of variable declarations:

Max_Value : integer;
Interest : real;
Debt, Balance, Income real;
Months, Days : integer;

Notice that you are allowed to list several names, separated by commas, on the same
line if they are of the same data type. For example, Debt, Balance, and Income are
all declared to be real data types and are listed together.

A variable satisfies the properties of a data object; it has a name, an attribute given
by an explicit declaration of a data type, and a value that can only be assigned during the
execution of a program. Values are given to variables only through the execution of an
assignment or input statement. In memory a variable can require one or more cells to
store its value, depending on the attribute (data type) associated with the variable. This is
different from a constant, which never requires explicit memory cells for storing its value.
At this level of the machine, the name of a variable represents an address where the value
of the variable is stored. When a new value for the variable is entered from the keyboard,
or when a new value is assigned to the variable by an assignment statement, the value
that is presently stored is lost, and the new value is assigned. In other words, the new
value is written over the old value. When the value of a variable is needed for
computation, it is copied from memory and used. The value presently stored for the
variable remains unchanged by this process.

The program Sample_Program, shown in Figure 3.5, illustrates the use of a
variable. The program declares two variables named First_Variable and
Second_ Variable in the declarations. The executable portion of the program consists
of wri teln commands used for displaying messages and the values of the variables to
the Text window. The program is divided into three sections for ease of reading. In the
first section, values of each of the two variables are displayed prior to assignment of a
value by the programmer, as shown in the Text window in the first line. This raises an
important point. All numeric variables in either THINK or Macintosh Pascal have a value
of zero when execution begins. 2

In the second section of Sample_Program, a value of 10 is assigned to
First_Variable, and a value of First_Variable + 20 to Second_
Variable. Line 2 in the Text window displays these values. Finally, the value of
First_Variable is changed to 50 in order to illustrate that the number contained in
its memory cell may be changed. The third line displayed in the Text window confirms
this change. (Notice that the value of Second_ Variable still reflects the first value
assigned to First_ Variable, since nothing has been done to change the value of
Second_ Variable.)

2 It is not good programming practice to depend upon this initial value. If you want a variable
to begin with a value of zero, you should initialize it to that value as a part of your program.
This practice was illustrated in the program Electric_Bill.

72 Chapter 3 Constants, Variables, and Simple Input and Output

D Sample Program
program Sample_Program(input, output);

var
First_Variable, Second_Variable: integer;

begin
ShowText;

{1. Display values of variables before }
{ assignment is made. }

writeln('l-- ', First_Variable, Second_Variable};

{2. Assign values to variables and display. }
First_Variable := 10;
Second_Variable := First_Variable + 20;
writeln('2-- ', First_Variable, Second_Variable};

{3. Reassign the value of First_Variable and }
{ display the results. }

First_Variable := 50;
writeln('3-- ', First_Variable, Second_variable}

end.

-o Te Ht BJ~

~
1-- 0 0
2-- 10 30 ~ 3-- 50 30

IE
Figure 3.5 Sample_Program and its output.

Now that we have introduced the concepts of constants and variables, let us illustrate their
use in another program, Large_X. This program uses the PaintCircle command in
a new way. By drawing many circles, each with a different center location, the command
PaintCircle becomes a brush for drawing a large X in the Drawing window. Figure
3.6 shows both the program and its result. In order to keep this example simple, we
employ a special control construct, the for statement, which we will discuss in detail
later. For now you need only know that this statement allows us to change the value of a
variable repeatedly during the execution of a program. The change is over a range specified
in the statement. In this example we change the value of the variable Counter from 200
to 0. Thus we begin the process with the value of Counter set at 200, drawing the
circle with the following arguments of the command PaintCircle:

PaintCircle(200,200,10);

The value of Counter is then changed by the for statement to 199, so that the
arguments of the command PaintCircle are

Constants, Variables, and Simple Input and Output Chapter 3

Large_H
program Large_X(input, output);
{ Use PaintCircle to draw a large X . }
con st

Radius= 10;
var

Counter: integer;
begin

ShowDrawing;
{ Repeatedly change the center of the }
{ circle until a large X has been drawn. }

for Counter := 200 downto 0 do
{ Draw first diagonal. }

PaintCircle(Counter, Counter, Radius);
for Counter := 200 downto 0 do
{ Draw second diagonal. }

PaintCircle(200 - Counter, Counter, Radius);
end.

Drawing

Figure 3.6 The program Large_X and its output.

PaintCircle(l99,199,10);

73

This process continues until the value of counter becomes 0, and the command
PaintCircle has the following arguments:

74 Chapter 3 Constants, Variables, and Simple Input and Output

PaintCircle(O, 0,10);

At this stage of the program, the first diagonal of the large X has been drawn, and the
second for statement is encountered. This statement repeats the above process, except
that the first argument of the command PaintCircle, representing the horizontal
position, is now 200- Counter. Thus the progression becomes

PaintCircle(O, 200, 10);
PaintCircle(l, 199, 10);

PaintCircle(199, 1, 10);
PaintCircle(200, 0, 10);

Large_X illustrates the power of the variable-the ability to change the value
(contents of the memory cell) of a variable as the program is being executed. We could
have drawn the X displayed by Large_X without using a variable by typing the
PaintCircle command several hundred times, changing the arguments each time.
Obviously, using the variable Counter and the for command results in a more efficient
program.

3.4 INPUT AND OUTPUT

It is hard to imagine computer programs without the ability to input and output
information. Many programs would be useless if you could not input the specific values
that concern you. For example, a program that computes payments for a loan would be of
little use if it only allowed an interest rate of 10%. If you wanted to know the payments
required to finance a new car, with an interest rate of 8%, you would need a new program.
More new programs would be needed each time the interest rate changed in the future.
Likewise, regardless of the sophistication of the program, it would be useless if you could
not obtain its results in some form of output. To illustrate this point, try executing a
Pascal program that produces text output with the Text window closed. In Pascal, output
commands are given as write and writeln, and input commands are given as read
and readln. You have already seen examples of how to use these commands, but a
closer examination of each command is desirable. As you will see, some of the differences
between write and wri teln and read and readln are very subtle.

3.4.1 Output in a Pascal Program

Write and wri teln are standard Pascal commands for directing the output from a
program to the Text window.3 As you have seen, you can use these statements to display

3 With THINK Pascal you must always include the command ShowText as part of your program
to display the Text window. Failure to do so will make the write and wr i teln commands
useless, since you will be unable to see the result. This command is unnecessary with
Macintosh Pascal, because the Text window is automatically displayed, unless another
command is used to prevent it.

Constants, Variables, and Simple Input and Output Chapter 3 75

messages (prompts), values associated with data objects, or both.Write is an executable
statement having the following form:

write(par_l, par_2, ... , par_n);

where par_l, par_2, ... , par_n are referred to as parameters and can be constants,
variables, or expressions. When this statement is executed, the value of each parameter is
displayed in the Text window, starting with the value of the first parameter on the left and
ending with the last parameter on the right. For example, the statement

write(A, B, A+ C);

begins execution by first displaying the value for variable A, followed by the value for
variable B, followed by the value for the expression A + C. This statement could also be
written as three write statements:

write(A) ;
write(B) ;
write (A + C) ;

A write statement does not terminate a display; the next write orwriteln
statement that is executed will continue to display data along the same line. This is a
useful feature if you want a horizontal display of values.

Wri teln is also an executable statement having the following form:

writeln(par_l, par_2, ... , par_n);

This command differs from the write command in that the display line is terminated
after a wri teln is executed. Execution of the next write or wri teln statement
displays data on a new display line. For example, the statement

writeln(A, B, A+ C);

which is equivalent to

write(A);
write(B);
writeln(A+ C);

will display the values of A, B, and A+ Con one line. The following three wri teln
statements will display each of their parameters on separate display lines:

writeln (A) ;
writeln (B) ;
writeln(A+ C);

The unadorned statement

writeln;

76 Chapter 3 Constants, Variables, and Simple Input and Output

can be used to terminate a display line as well as to display a blank line. For example, the
following statements cause one blank line appear between each of the three values
displayed in the Text window:

writeln(' Value of A: ' A) ;

writeln;
writeln(' Value of B: '. B) ; I

writeln;

On the other hand, the statement

write;

is equivalent to displaying a null character, a character having no image and no length. In
brief, this statement has no effect on output. The statements wri teln() and write()
are syntactically incorrect in both Macintosh Pascal and THINK Pascal. Either statement
will cause an error message when the program is checked.

The following program, Display_Text, illustrates the use of these two
commands with emphasis on their differences. The program is divided into segments in
order to simplify the discussion. (Segments are separated by comments.)

program Display_Text(input, output);
{ Purpose: Introduction to the write and writeln statements. }

var
Declare two "typical" numeric variables. }

First_Variable : integer;
Second_Variable : real;

begin
ShowText;

Provide a heading for the display. }
writeln('Part Output');

Assign values to the variables.
First_Variable := 24;
Second_Variable:= 23.56;

{ 1. Display the values of the two variables. }
write('l', First_Variable);
writeln(Second_Variable);

2. Clean up the format of the second variable. }
write('2', First_Variable);
writeln(Second_Variable : 5 : 2);

{ 3. Separate the variables in the display.
write('3', First_Variable, ');
writeln(Second_Variable : 5 : 2);

{ 4. Displaying a message in the output.
writeln('4', ' ', 'Place your message here');

5. Displaying text and variable values together. }
write('5', First_Variable, ' or here ');
write(Second_Variable : 5 : 2);
writeln

end.

Constants, Variables, and Simple Input and Output Chapter 3 77

Consider each of these segments separately. First, the program heading consists of
the identifier, Display _Text, followed by the declaration of two numeric variables: an
integer variable called First_Variable and a real variable called
Second_ Variable. The standard ShowText command insures that the THINK Pascal
user can see the results.

Second, there is a segment that produces a heading for the display. This consists of
the command wri teln ('Part Output') . As you can see in Figure 3.7, the
material within the single quotes is printed exactly as it appears in the program. This
includes the blank spaces between the words Part and Output, which are included to
align the headings with the remainder of the display. Usually the programmer uses trial
and error to determine the exact number of blank spaces to include.

Part Output
1 24 2.4e+1
2 2423.56
3 24 23.56
4 Place your message here
5 24 or here 23.56 Q]

Figure 3.7 The output from Display_Text.

Third, there is a section in which the variables are assigned their initial values. The
assignment is achieved with the Pascal symbol :=, which we read as "becomes." For
example, "First_ Variable becomes 24."

Fourth, the assigned values of the two variables are printed. To help you follow the
discussion, the number 1 is included in the display, preceding the display of the values 24
and 2.4e+l. Notice the use of the write command rather than the wri teln command,
which we used previously. This allows the values of both variables to be printed on the
same display line.

There are two problems with the display from Section 1 of the program. First, the
value of Second_ Variable is displayed in the form of scientific notation (which is
not comfortable for many people and also loses detail, as 23.56 is reported as 2.4e+l).
Second, the two values are displayed as one stream of digits with no space between them,
making the display difficult to read.

Fifth, in Section 2 of the program, the scientific notation is removed by means of
theformat: 5 : 2inthecommandwriteln(Second_Variable : 5 : 2).
The first of these format numbers (5) gives the minimum size (minimum number of
characters including digits, sign, and decimal point) of the field to be occupied by
Second_ Variable. Since the value assigned to Second_ Variable is 23.56, the
size of the field must be at least five (four digits and a decimal point). If you specify too
few spaces, the Pascal system will produce the necessary additional space for displaying
the new value. Thus the command wri teln (Second_ Variable : 3 2),
would result in the same display. The second format number (2) indicates the number of
digits to be displayed to the right of the decimal point. The output from this segment of
Display_Text is labeled 2 in Figure 3.7.

78 Chapter 3 Constants, Variables, and Simple Input and Output

Sixth, we solve the problem of the values of the variables, 24 and 23.56, being
displayed in one stream (that is, without any separation). This is done by including a
space (a blank enclosed within single quotes) in the command

write('3', First_Variable,' ');
write(Second_Variable: 5: 2);

The space following First_ Variable will cause the two numbers to be separated, as
shown in Line 3 of the output display. The same effect can be achieved with the single
statement

write('3', First_Variable, Second_Variable : 6: 2);

where the overall length of the field for the real variable, Second_ Variable, is
enlarged to allow a preceding blank space.

Seventh, as shown in Line 4 of the display, a text message may be included in the
output. This may be a straightforward message, as shown in Line 4, or it may be
integrated with the variable output, as shown in Line 5. The entire output of Display_
Text is shown in Figure 3.7.

Remember the following guidelines when using the write and write 1 n
commands. Use the write command if you want to continue displaying output on the
current line appearing in the Text window. Use the wri teln command if you want to
display output on a new line in the Text window. To display the value of a real-type
variable, indicate the overall size of the field and the number of places desired after the
decimal point. Any messages to be included in the display should be contained in single
quotes. If more than one variable is included in a write or wr i teln statement,
commas are required to separate the list of items. Use trial and error to obtain a display
with a pleasing appearance.

3.4.2 Input in a Pascal Program

Read and readln commands are standard Pascal input commands for entering data into
a Pascal program. When executed, either command will cause the Macintosh computer to
pause and accept input from the keyboard.

The read and readln commands are executable statements having the following
forms:

read(variable_l, variable_2, .
readln(variable_l, variable_2,

, variable_n) ;
, variable_n) ;

where variable_l, variable_2, , variable_n are the names of
previously declared variables. When executed, each statement will halt execution until the
values of all variables have been typed, and the Return key has been pressed.

The relationship between read and readln is similar to the relationship
between write and wri teln. After execution of a read statement, execution of a
read, readln, write, orwriteln command will continue to display data on
the same line. A readln command terminates the display line after all variables have
been entered. A new line will be displayed when the next input or output command is
executed. Whereas the statement read; has no effect on either input or output, the

Constants, Variables, and Simple Input and Output Chapter 3 79

statement readln; can be used to terminate a display line after input has been entered.
For example, the statement

readln(A, B, C);

can be replaced by either of the following sets of commands

read(A, B, C);
readln;

or

read (A, B, C) ;
writeln;

The statements read () and readln () are not understood by either THINK Pascal
or Macintosh Pascal and will cause syntax errors. Figure 3.8 shows a program that
demonstrates the difference between read and readln. Titled Demonstrate_
Input_l, this program accepts input for two variables and then displays their values to
the Text window. In this example, the Return key must be pressed after each value is
entered. Notice that in the top portion of Figure 3.8, the data displayed in the Text
window is somewhat confusing because the input (4 and 12) and output (A = 4 and B =
12) were not well controlled by the programmer. Figure 3.9 shows the same output after
one read command has been replaced by a readln command, and one write
command has been replaced by a wri teln command. As the figure shows, the readln
and writeln commands terminate the display lines, eliminating the confusion. You
should be aware that the difference between read and readln shown here is not seen if
Demons tr at e _Input_ 1 is executed as a THINK Pascal program. (Try
Demonstrate_Input_l under both THINK and Macintosh Pascal to observe this
difference.) Thus, with THINK Pascal the programmer has less to control with a read
statement.

As an additional example, let us develop a program for computing the gas mileage
and cost of a trip. For input we have the distance traveled, the total number of gallons
used, and the cost per gallon of gas. For output we will report mileage in miles per
gallon, the total cost, and the cost per mile traveled. The initial steps in our algorithm
follow:

1. Enter the trip data for distance traveled, gallons of gas consumed, and cost per
gallon.

2. Compute the miles per gallon, total cost for the trip, and cost per mile.
3. Output the three values computed in Step 2.

Does our algorithm satisfy all of the characteristics required of a good algorithm?
First, it has a finite number of steps, none of which needs to be repeated. Second, it has
input and output. Third, it is sufficiently simple to be traced by hand. What it lacks is the
property of definiteness. The step for computing the values needed as output is not clear,
nor is it clear in Step 3 what values are to be displayed. The following is a refinement of
our initial algorithm, including comments.

80 Chapter 3 Constants, Variables, and Simple Input and Output

Demonstrate_I nput_ 1

program Demonstrate_lnput_ 1 (input, output);
{ Demonstration of the read/readln command. }

var
A,B : integer;

begin
ShowText

{ Input data on two variables A and B. }
writeln('Enter two numbers between 1 and 20: ');
read(A);
read(B);

{ Output results. }
write('A = ',A : 3);
write('B = ',B : 3);

end.

4B = 12

Figure 3.8 A comparison of read and readln, with output
produced by execution of a Macintosh Pascal Program.

Algorithm Trip_Analysis;
{ Prompt user to enter trip data. }

write 'Enter the number of miles you drove
read Distance_Traveled;

• I•
• I

write 'Enter the gallons of gasoline used: ';
read Gallons_Used;
write 'Enter the price per gallon for gasoline: ';
read Price_per_Gallon;

{ Compute the miles per gallon, total cost, and cost
per mile.}
Mileage <-- Distance_Traveled/ Gallons_Used;
Total_Cost <-- Price_per_Gallon * Gallons_Used;
Cost_per_Mile <-- Total_Cost I Price_per_Gallon;

{ Output the computed values. }
write Mileage;
write Total_Cost;
write Cost_per_Mile;

{End of algorithm.}

Constants, Variables, and Simple Input and Output Chapter 3

Demonstrate_I nput_ 1

program Demonstrate_lnput_ 1 (input, output);
{ Demonstration of the read/readln command. }

var
A,B : integer;

begin
ShowText

{ Input data on two variables A and B. }
writeln('Enter two numbers between 1 and 20: ');
read(A);
readln(B);

{ Output results. }
writeln('A = ',A : 3);
write('B = ',B : 3);

end.

Te Ht
Enter two numbers between 1 and 20:
4
12
A= 4
B = 12

Figure 3.9 An improved version ofDemonstrate_Input_l.

81

Notice that we have used the commands read and write to indicate input and
output, respectively. The distinction between read and readln, and between write
and wri teln is unimportant in the algorithm. We are more concerned with the steps in
solving the problem than with the details of displaying it on the screen. We will consider
the extra formatting needed to prompt the user and display data as we write and test the
program.

The following is the Pascal program for the algorithm Trip_Analysis. It il­
lustrates the use of both input and output commands.

program Trip_Analysis(input, output);
{ Purpose: Analysis of the cost of a trip and consumption of }
{ gasoline. }

var
Cost__per_Mile, Distance_Traveled, Gallons Used
Mileage, Price__per_Gallon, Total_Cost: real;

begin
ShowText;

{ Display output title. }

real;

82 Chapter 3 Constants, Variables, and Simple Input and Output

writeln;
writeln(' Trip Analysis');
writeln;

{ Prompt user to enter trip data. }
write('Enter the number of miles you drove : ');
readln(Distance_Traveled);
write('Enter the gallons of gasoline used: ');
readln(Gallons_Used);
write('Enter the price per gallon for gasoline : ');
readln(Price_per_Gallon);
writeln;

{ Compute the mileage, total cost, and cost per mile. }
Mileage := Distance_Traveled I Gallons_Used;
Total_Cost := Price_per_Gallon * Gallons_Used;
Cost_per_Mile := Total_Cost I Distance_Traveled;

{ Output results to the Text window. }
write('Your gas mileage was : ');
writeln(Mileage: 4 : 2, 'mpg');
write('Your total fuel cost was : $');
writeln(Total_Cost : 6 : 2);
write('Your cost per mile was : $');
writeln(Cost_per_Mile : 6 : 2)

end.

With the exception of the three lines of calculations and the comments, this program is a
series of read, readln, write, and wri teln commands. The output from the
program is shown in Figure 3.10.

Trip Analysis

Enter the number of miles you drove : 750
Enter the gallons of gasoline used : 42
Enter the price per gallon for gasoline 1.19

Your gas mileage was :
Your total fuel cost was
Your cost per mile was :

17.86 npg
$ 49.98

$ 0.07

Figure 3.10 The output from Trip_Analysis.

After the heading Trip_Analysis, three lines are displayed, each of which consists of
a prompt for input and the user's response to the prompt. The first prompt, Enter the
number of miles you drove:, results from the write command,

write('Enter the number of miles you drove : ');

Constants, Variables, and Simple Input and Output Chapter 3 83

This is followed by the readln command, readln (Distance) . This command
causes the execution of the program to pause until the user enters a response. By entering
750 and pressing the Return key, the user causes the variable Distance_Traveled to
be assigned the real value 750.0. This approach is repeated for entering values of
Gallons_Used and Price_per_Gallon.

3.5 SIMPLE DATA TYPES IN MACINTOSH AND THINK PASCAL

Macintosh and THINK Pascal support a variety of data types. In general, these can be
classified as simple (sometimes called scalar) and structured. In this chapter we concentrate
on the former kind; the latter are covered in later chapters. Figure 3.11 shows a breakdown
of simple data types available under Macintosh and THINK Pascal.

I. Real Data Types
A. Real
B. Double
C. Extended
D. Computational

II. Ordinal Data Types
A. Standard

1. Integer
2. Longint (long integer)
3. Char (character)
4. Boolean

B. Nonstandard
1. Enumerated
2. Subrange

Figure 3.11 Classification of simple data types in
Macintosh and THINK Pascal.

The broadest distinction is between real and ordinal data types. Real types
involve real numbers (as opposed to ordinal numbers). These include the types real,
double, extended, and computational. Ordinal data types involve ordinal
numbers. The standard ordinal types are integer, longint (long integer),
char (character), and Boolean. The nonstandard ordinal types are the
enumerated type and the subrange type. We will discuss each of these types in the
following sections.

3.5.1 Real Data Types

In Pascal, a number that includes a decimal point is referred to as a real number.
Examples of real numbers are 0.0093, 1.29, 43.7 and 69500.00. This last number,
69500.00, can also be written as 6.95 * 104 (this is called scientific notation). Since
Pascal cannot handle the superscript in this notation, the number is represented in a

84 Chapter 3 Constants, Variables, and Simple Input and Output

floating-point notation; that is, the number 69500.00 is written as 6.95E+4 or 6.95e+4.
In this notation the letter E or e represents a factor of 10, and the +4 represents the
exponent. In Pascal, real data types are those that accept floating-point numbers.

The distinction among the real data types real, double, and extended is in
the number of significant digits retained and in the range of values that the numbers can
represent. The approximate limits are given in Figure 3.12.

Real Data T_yE_e Significant D~ts Ran__g_e of Number

Real 7-8 1.5 * lQ-45 to
Double 15-16 5.0 * 10-324 to
Extended 19-20 1.9 * 1Q-4951 to
Com_E_utational 18-19 9.2*1018 to

Figure 3.12 A comparison of real data types in Macintosh
and THINK Pascal.

3.4*1Q38
1.7*1Q308
1.1*104932
9.2*1Q18

These numbers can be negative as well as positive. The comp (computational) type
differs from the other types in that the number involved must be an integer. (There
can be no decimal fraction and no exponent.) This type is convenient for accounting
applications where exact representation of numbers is desired. When you use this form,
you must add the decimal point to the computed result. For example, in a program
designed to compute interest earned, all of the computations would be based on measuring
the results in pennies; conversion to dollars and cents would be the responsibility of the
programmer. In both Macintosh and THINK Pascal, each of the real types is converted
to extended mode when real arithmetic operations are performed.

The program Real_Numbers illustrates the differences among these types. This
program takes advantage of the endless string of digits produced when certain fractions are
expressed as decimal numbers. Since a computer can only approximate this endless string,
the results displayed by the program show the accuracy of the approximation with each of
the different real data types. The listing for the program Real_Numbers follows.

program Real_Numbers{input, output);
{ Purpose: Demonstrate variations on real numbers. }

con st
Numerator = 1;
Denominator 3;

var
First: real;
Second: double;
Third: extended;
Fourth: computational;

begin
ShowText;

{ Write 1/3 as four different types of real numbers. }
First := Numerator I Denominator;
Second := Numerator I Denominator;
Third := Numerator I Denominator;
Fourth := Numerator I Denominator;

Constants, Variables, and Simple Input and Output Chapter 3 85

writeln;
writeln('Fraction Numerator : 2, '/', Denominator l);
writeln;
writeln('real First : 22 : 20);
writeln('double Second: 22 : 20);
writeln('extended Third: 22 : 20);
writeln('computational ' Fourth: 22 : 20);

end.

First

Four variables are declared: one real, one double, one extended, and one
computational. Each of these variables is assigned the value of 1/3 within the body
of the program, with the result being displayed. The results of the execution of this
program are given in Figure 3.13.

Fraction = 1/3

real
double
extended
computational

0.33333334326744079590
0.33333333333333331480
0.33333333333333333330
0.00000000000000000000

Figure 3.13 Output from Real_Numbers with the
fraction 1/3.

As you can see, the different data types produce distinctly different results. The real
type produces a string of seven 3s. With the double type, the length of the string is 16.
With the extended type, the string contains nineteen 3s. The computational type
produces no 3s, since this type can only represent integer numbers.

This can be more clearly demonstrated by using other fractions as values and by
making the ratio greater than 1 in order to allow the c ompu tat i ona 1 type to be
included in the comparison. We achieve the latter step by scaling each of the numerators
as follows:

:= (Numerator * Scalefactor) I Denominator;
Second := (Numerator * Scalefactor) I Denominator;
Third
Fourth

:= (Numerator * Scale factor) I Denominator;
:= (Numerator * Scale factor) I Denominator;

where Scale factor is a constant assigned a value of 10000000000000000000 or 1.0
* 1019• Figure 3.14 shows the output after these changes for two additional fractions,
23/37 and 8/17. In both cases the differences between real and double and between
double and extended are readily apparent.

When reading a value for a variable that is of type real, double, extended, or
computational, characters are scanned from left to right. Both the read and
readln statements will skip all blanks and end-of-lines (returns) that precede the digits
of a real number. On reaching a proper digit, the read statement will continue to read

86 Chapter 3 Constants, Variables, and Simple Input and Output

the sequence of digits and other characters that form a proper signed real number. The
first nondigit encountered terminates the entry of a real value. A nondigit can be a
blank, a return, or some other character such as a letter of the alphabet. Consider the
following example where A is a real type:

readln(A) ;

Fraction =
real
double
extended
computational

Fraction = 23/37

real
double
extended
computational

4705882279090585600.00
4705882352941176832.00
4705882352941176470.00
4705882352941176470.00

6216215981224624128.00
6216216216216216576.00
6216216216216216216.00
6216216216216216216.00

Figure 3.14 Output from Real_Nurnbers (modified) with the
fractions 8/17 and 23/37.

If you type the characters:

-12.345This is a real number

the variable A will become -12.345. Input terminates on seeing the character T, since
this is a nondigit in a real number. In addition, because this is a readln command
instead of a read statement, the input line is terminated. Any additional input following
this command is assumed to begin on a new line.

3.5.2 Ordinal Data Types: Standard

The term ordinal implies a specified position in a numbered series or order. Standard
ordinal data types include integer, longint, char, and Boolean. Integer
and longint data types have values within a specified set of integers. For
Macintosh and THINK Pascal, these sets have the limits given in Figure 3.15. In
Macintosh Pascal, integer values are automatically converted to longint values when
integer arithmetic operations are performed.

Constants, Variables, and Simple Input and Output Chapter 3

Data T_TI>_e
Integer
Lon~t

La~est Allowed
32767

2147483647

Smallest Allowed
-32767

-2147483647

Figure 3.15 A comparison of the limits of the two integer data types.

87

To understand why 1 ong int is important, consider the program Second_
Counter for converting the time of day as input into seconds. The program computes
and reports the number of seconds that have elapsed between midnight and the time of day
specified on input.

program Second_Counter(input, output);
{ Purpose: Program for converting hours and minutes to seconds }
{ as an integer value. }

con st
Length_of_Hour = 3600;
Length_of_Minute = 60;

var
Hours, Minutes, Seconds, Elapsed

begin
ShowText;

integer;

{ Enter a time--no traps, so use care. }
writeln('Enter the exact time as prompted--');
writeln('use international time ');
writeln;
write ('Hour ? ');
readln (Hours) ;
write('Minute ?');
readln(Minutes);
write('Second ?');
readln(Seconds);

{ Compute seconds elapsed since midnight. }
Elapsed := Hours * Length_of_Hour + Minutes * Length_of_Minute

+ Seconds;
writeln;
writeln('The number of seconds which have ');
writeln('elapsed since midnight is ', Elapsed 2 I I • I) ;

end.

The program converts hours and minutes to seconds and adds the results. An
interesting feature is that the program will execute only if the time of day is 09:06.07
AM. or earlier. Any later time will cause the program to fail due to overflow error.4 The
program is unable to continue execution because the value of the integer variable

4 The THINK Pascal version of the program will fail and report an overflow error only if you
have activated the overflow checking option for the file Second_Counter in your
project window. If this option is not active, a time of 9:06:08 or later will result in a
negative number. Although with a little mathematical manipulation you could produce a
correct result using this negative number, it is hardly an acceptable result.

88

var

var

Chapter 3 Constants, Variables, and Simple Input and Output

called Elapsed exceeds the maximum size of an integer variable (32,767). Changing
the statement

Hours, Minutes, Seconds, Elapsed integer;

to

Hours, Minutes, Seconds, Elapsed : longint;

allows the program to execute with larger integer numbers and to operate with any
legitimate time of day.

When reading a value for a variable that is of type integer or longint, char­
acters are scanned from left to right. Both the read or readln statements will skip all
blanks and end-of-lines (returns) that precede the digits of an integer number. On reaching
a proper digit, the read statement will continue to read the sequence of digits and other
characters that form a proper signed integer number. The first nondigit encountered
terminates the entry of an integer value.

The ordinal data type, char, has a set of integral values that relate to the
character set of the Macintosh. For example, the character A has an integer value of 65
(decimal). This number is also called its ASCII value and can be produced with the
function ord (X). The function ord returns the position (ordinal number) for argument
X, which must be an ordinal type such as integer, longint, char, or
Boolean. A complete list of ASCII characters is given in Appendix C. For example,
the program Keyboard, shown in Figure 3.16, makes use of a char-type variable.
This program prompts the user to type a character from the keyboard. The computer then
displays the ordinal value of the character. For the present, ignore the new commands
repeat and until; they are explained in Chapter 5. The program continues to
execute until the lowercase z key is pressed. The heart of the program is the function
ord (Key) , where Key is a variable declared to be of the ordinal type char.

An identifier having the data type Boolean has an ordinal value of false or
true. The values false and true have ordinality, just like any other ordinal data
type. Specifically, the ordinal value of false is 0 and the ordinal value of true is 1.
What makes this data type unique is the limited range of its values. For example, consider
the program Truth_ Table, where Boolean variables are used to display a truth table.
The result is a table similar to the one in Figure 3.17.

This table and the program that produces it show how Boolean variables are used
with the Boolean operations and and or. The operation One and Two results in a
value that is true if both values of variables One and Two are true. If one or both are
false, the result of One and Two is false. The operation One or Two is true if
one or both of the values of variables One and Two are true. If both values are false,
the result of One or Two is false.

Constants, Variables, and Simple Input and Output Chapter 3

Keyboard

program Keyboard(input, output);
{ A program to return the ordinal value of the various keys. }

var
Key: char;

begin
ShowText
repeat
{ Select a key and return its ordinal (ASCII) value. }

write('Press a key. ');
readln(Key);

{ Write the value of the key pressed. }
writeln('The ordinal value of this key is ', ord(Key), '.');

{ Repeat this cycle until the key "z" is pressed. }
until (ord(Key) = 22);

end.

=o Te Ht

Press a key. a
The ordinal value of this key is 97.

Press a key.

Figure 3.16 The program Keyboard and its output.

Line Variable O_p_eration
one Two or and

1 True True True True
2 Trur False True False
3 False True True False
4 False False False False

Figure 3.17 A truth table based on Boolean variables.

program Truth_Table{input, output};
{ Purpose: demonstration of a Boolean data type. }

var
{ Declare two Boolean variables. }

One, Two : Boolean;
begin
{ Display table headings. }

writeln('Line Variable Operation' } ;

89

90 Chapter 3 Constants, Variables, and Simple Input and Output

writeln(' One Two "or" "and"');
{ Assign values for line 1. }

One := true;
Two := true;

{ Display table line 1 .}
writeln('l ',One: 8, Two:

{ Assign values for line 2. }
One := true;
Two := false;

{ Display table line 2 .}
wri teln (' 2 ' , One: 8, Two:

{ Assign values for line 3 . }
One := false;
Two := true;

{ Display table line 3 .}

8, One or Two: 8, One and Two: 8);

8, One or Two: 8, One and Two: 8);

writeln('3 ',One: 8, Two: 8, One or Two: 8, One and Two: 8);
{ Assign values for line 4 . }

One := false;
Two := false;

{ Display table line 4 . }
writeln('4 ', One: 8, Two: 8, One or Two: 8, One and Two: 8);

end.

There are three important Macintosh functions that operate with any ordinal data
type:

ord (X) : This function takes as its argument an ordinal type represented by X
and returns the ordinal position of this argument.

pred (X) : This function takes as its argument an ordinal type represented by X
and returns the ordinal predecessor of the argument.

succ (X) : This function takes as its argument an ordinal type represented by X
and returns the ordinal successor of the argument.

The first value in any ordinal set has no predecessor. Using the function pred under
this circumstance will cause an error at the time of execution. Thus the expression
pred (true) with a Boolean variable returns a value of 0 (the ordinality of the value
false), while the expression pred (false) causes an error since false is the first
value in this ordinal set [false (0) , true (1)] . Likewise, the last value in this
same ordinal set has no successor. The program Ordinal_Functions, shown in
Figure 3.18, illustrates how to use these standard functions.

Three variables are declared in the program; two Boolean variables called One and
Two and an enumerated variable called Class. (Enumerated variables are
explained in Section 2.5.3.) These variables are assigned values as follows:

One := false;
Two := true;
Class := Second;

Constants, Variables, and Simple Input and Output Chapter 3 91

Ordinal_Functions
program Ordinal_Functions{input, output);
{ A brief demonstration of the functions succ, pred, and ord. }

var
One, Two: boolean; -D~ Te Kt BJ
Class: {First, Second, Third);

function variable ~ begin One Two Class
ShowText;

{ Assign values to variables. } ord 0 1 1
One := False; pred none FALSE First

~ Two:= True; succ TRUE none Third
Class := Second; ~

{ Demonstration of functions. }
writeln{'function variable');
write In{' One Two Class');
writeln;
writeln{'ord', ' ', ord{One), ord{Two), ord{Class));
writeln{'pred ','none',' ', pred{Two), ' I , pred{Class));
writeln{'succ ', succ{One), ' ','none',' ', succ{class));

end.

Figure 3.18 The program Ordinal_Functions and its output.

The three ordinal functions are then applied to each of the variables, and the results
are printed in a table. Notice that the cases that would cause a failure of the program are
omitted, with the word none substituted in the table. For example, pred (One) is not
included. Since the variable One has a value of false (with an ordinality of 0), it has
no predecessor. Likewise, succ (Two) is omitted, since Two has a value of true,
which has no successor. The variable Class produces a value for all three functions, but
only because we assigned it a value from the middle of the range (Second).

3.5.3 Ordinal Data Types: Nonstandard

var

In addition to these standard ordinal data types, there are two nonstandard types: the
enumerated data type and the subrange data type. The term enumerated means to
count off, name one by one, or list as a group. The following declaration shows some
examples of the enumerated data type:

Month : (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,,Sep, Oct,
Nov, Dec) ;

Days_of_Week : (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday) ;

First_Names : (Rose, Mary, John, Paul, Sue, Fred, Bill);
Alphabet : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P,

Q, R, S, T, U, V, W, X, Y, Z);

92 Chapter 3 Constants, Variables, and Simple Input and Output

In this example we have declared the variables Mon th, Days_o f_Week,
First_Names, and Alphabet to be of type enumerated. These declarations
indicate the possible values that each of the variables can be assigned. Through the
execution of a read, readln, or assignment statement, a value can be assigned to any
of our enumerated variables. The items in each list, such as (Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec), have ordinal values related
to their position in the enumerated list. For example, ord (Jan) is equal to 0 since
Jan is first in the declaration list, while ord (Oct) is equal to 9. The other functions of
the ordinal data type, pred and succ, also apply. For example, pred (Mar) is
equal to Feb, and succ (Mar) is equal to Apr.

The following program, called Date, was designed around an enumerated type
representing the month of the year.

program Date(input,output);
var

begin

Month : (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, Dec);

Day, Year : integer;
Slash : char;

ShowText;
{ Prompt the user for todays date. }

writeln(' Enter todays date using the following');
writeln(' format: month/day/year, where month');
writeln(' is written as three characters, day as');
writeln(' a whole number, and year as the last two');
write(' digits of the current year: ');
readln(Month, Slash, Day, Slash, Year);
writeln;

{ Display today's date in the following format: }
{ Month - Day - 19 _ _ . }

write('Todays Date ');
writeln(ord(Month) + 1 : 2, ' - ' Day 2, ' - ' '19', Year

2) ;
end.

In this program we enter a date given in the form month/day/year, where month is
represented by three characters, day is a two-digit number, and year is the last two digits
for any year in the current century. Notice that the input statement

readln(Month, Slash, Day, Slash, Year);

reads a single character after it has read the enumerated value for Month and again
reads a single character after it has read a value for Day. This simply provides a way to
dispose of the slash on input. The program then displays the same date in the form
11 Month - Day - 19 11 using the following output statement:

writeln(ord(Month) + 1 : 2, ' - ',Day: 2, ' - ', '19', Year
2) ;

Constants, Variables, and Simple Input and Output Chapter 3 93

where Mon th is now represented by 1 plus the ordinal value of the variable Mon th.
Why add 1 to this ordinal value? Remember that the ordinals of the enumerated values
Jan through Dec are 0 through 11, respectively. The addition is necessary to correct for
the proper numeric value of Month in relation to presenting the date. Figure 3.19 shows
the output from Date.

-o Te Ht

Enter todays date using the following
fonnat: month/day.year, where month
is written as three characters, day as
a whole number, and year as the last two
digits of the current year:

Jul 24 91

Todays Date 7 - 24 - 1991

Figure 3.19 Output from the program Date.

Next, we show another short program called Enumerated_Type. This program
reveals the difference between an enumerated type representing the letters of the
alphabet A through Zand the standard ordinal type, char. Here the letter H has been
entered twice. It is assigned to the variable Letter_l and a second time to the variable
Let ter_2. The result of executing Enumera ted_Type is shown in Figure 3.20.

The ordinal value of H when assigned to variable Let ter_l is 7, since it represents
the eighth character from the left in the enumerated declaration of Letter_l. Its
ordinal value when assigned to variable Letter _2 is 72, since it now represents the
73rd character in the ASCII character set supported by Macintosh and THINK Pascal.
Even though these two variables are assigned values that are letters from the alphabet,
they have completely different data types and are completely incompatible with each
other.

program Enumerated_Type(input, output);
{ Purpose: demonstration of enumerated and ordinal data types. }

var
Letter_l (A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P,

Q, R, S, T, U, V, W, X, Y, Z);
Letter_2 char;

begin
ShowText;

{ Prompt the user for a letter of the alphabet. }
write('Enter a capital letter from the alphabet: ');
readln(Letter_l);
write('Again enter the same letter from the keyboard: ');
readln(Letter_2);
writeln;

Display the ordinal values of Letter_l and Letter_2 .}

94 Chapter 3 Constants, Variables, and Simple Input and Output

writeln('Assigned value and ordinal value of first letter: ',
Letter_l, ord(Letter_l));

writeln('Assigned value and ordinal value of second letter:',
Letter_l, ord(Letter_2));

end.

the alphabet:
from the keyboard:

Assigned value and ordinal value of first letter: H 7
H 72 Assigned value and ordinal value of second letter:

var

var

Figure 3.20 Output from the program Enumerated_Type.

The subrange type is also an ordinal data type having a limited but specified
range of values. For example, after declaring the variable Mon th above, we might declare
other variables called Spring, Summer, Fall, and Winter:

Month

Spring
Summer
Fall
Winter

(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec);

Apr .. Jun;
Jul .. Sep;
Oct .. Dec;
Jan .. Mar;

The declaration for the variable Spring indicates that the range of values allowed is
Apr through Jun. Attempting to declare Winter as a subrange Dec .. Mar would
cause an error message at translation time, indicating that we are trying to create a
subrange where the lower boundary Dec is greater than its upper boundary Mar. This
of course is false, since ord (Dec) is 11, while ord (Mar) is 2.

Other ordinal data types can also be used to define subranges. Here are some
examples:

Street_Number: 100 .. 199;
Numeric_Digit : 0 .. 9;
Uppercase_Letter 'A' .. 'Z';
Lowercase_Letter 'a' .. 'z';
Character_Digit '0' .. '9';

The variable Street_Number is an integer type whose value can only be
within the range 100 to 199. During execution, an error message will appear if any
attempt is made to assign a value that is out of range. The remaining variables,
Uppercase_Letter, Lowercase_Letter, and Character_Digit, are all of
type char, with the exception that each can only be assigned an ASCII character within
its subrange. The variable Uppercase_Letter will only accept the uppercase

Constants, Variables, and Simple Input and Output Chapter 3 95

characters A through Z. All other characters such as a through z and 0 through 9 are out
of range for this variable. In tum Lowercase_Let ter will only accept the lowercase
characters a through z. The variable Numeric_Digi tis different, since it will accept
only a single-integer digit 0 through 9. All other numbers are considered out of range.

Remember to avoid using the names of any enumerated or subrange values as
the names for other variables, for example, in the following declarations.

var
Alphabet : {A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q,

R, S, T, u, v, w, x, Y, z) ;

J : integer;

The variable J will cause an error as the program is being translated, indicating that the
enurnera ted value J has already been declared at this level of the Pascal program.

3.5.4 String Types

When we want to manipulate words or phrases (rather than numbers or characters), the
appropriate data type is string. A string data type has some of the characteristics of
a simple data type and some of the characteristics of a structured data type. The proper
format for the declaration of a string variable is

identifier : string[n]

where n is an integer in the range 1-255, representing the maximum length of the
string. For example, the program called Address, listed below, with output shown
in Figure 3.21, uses the string variable to allow the user to enter and display text
material, such as a person's name and address. This program defines a series of string
variables: Name, Street, City, State, and Zip. For economy of program lines
(not memory), each of these variables is declared to have a maximum length of 80
characters, or one full line of text. The program prompts the user to enter data for each of
these variables and then displays the data in a normal address format.

program Address (input, output);
{ Purpose: examples of string data types. }

var
Name, Street, City, State, Zip: string[80];

begin
ShowText;

{ Input address data. }
writeln{'Enter the requested data');
writeln;
write{ 'Name : ');
readln(Name);
write{'Street address : ');
readln (Street) ;
write{ 'City : ');
readln (City);
write{'State : ');
readln (State) ;

96

write ('Zip : ') ;
readln(Zip);

Output the data. }
writeln;

Chapter 3

wri teln (' OUTPUT') ;
writeln;
wri teln (Name) ;
writeln(Street);
write (City, ', ');
write(State, ' ', Zip)

Constants, Variables, and Simple Input and Output

end.

Te Kt

Enter the requested data

Name :John Doe
Street address :123 Elm St.
City :Anytown
State :US
Zip :12345

OUTPUT

John Doe
123 Elm St.
Anytown, US 12345

Figure 3.21 Output from the program Address.

3.6 TYPE DECLARATIONS

type

In addition to the data types already discussed, you may declare types of your own, using
the type command. This command is included in the declarations section of the
program along with const and var. The type declaration part of the program begins
with the reserved word type followed by identifiers equated to data types. Variables
declared in the variable declaration part can now be declared with these programmer-defined
types. For example, we can create new data types for some of our previously declared
variables:

Months_of_Year = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec);

Weekdays = (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday);

Constants, Variables, and Simple Input and Output Chapter 3 97

var

Letters = (A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P,
Q, R, S, T, U, V, W, X, Y, Z);

Spring_Months = Apr .. Jun;
Range= 100 .. 199;
Deposit = real;
Age = integer;

Month Months_of_Year;
Days_of_Week : Weekdays;
Alphabet : Letters;
Spring : Spring_Months;
Street_Number : Range;
Weekly_Deposit , Monthly_Deposit Deposit;
Age_of_Adult, Age_of_Child : Age;

Notice that in defining our own data type, we begin with an identifier name followed
by an equal sign followed by a data type. The equal sign implies that the identifier on the
left is equated with the data type on the right. As you can see by this last example, the
data type can be enumerated, ordinal, or real. In our example, the variable
Month is declared to be associated with a data type called Months_of_Year, and in
the type declaration Months_of_Year is equated with an enumerated type.
Although these types may seem to be variations on an old theme, they can be used to
make a program more readable and can also save the programmer time in declaring
variables. This concept is also important because Pascal on the Macintosh has many
different data types that can be borrowed from the libraries such as QuickDrawl,
QuickDraw2, and SANE. Appendix D provides a list of these predeclared data types.

The program shown below is a revision of our previous program called Date. The
variation in the program is the addition of three new programmer-defined data types:
Months_of_Year, Days_of_Month, and Numbers_in_Year. The latter two
datatypes are declared as subrange values.

program Second_Date(input, output);
{ Purpose: demonstrate the use of enumerated and subrange user-}
{ defined types. }

type
Months_in_Year = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,

Sep, Oct, Nov, Dec);
Days_of_Month = 1 .. 31;
Numbers_in_Year = 0 .. 99;

var
Month: Months_in_Year;
Day: Days_of_Month;
Year: Numbers_in_Year;
Slash: char;

begin
ShowText;

{ Prompt the user for today's date. }
writeln(' Enter todays date using the following ');
writeln(' format: month/day/year where month');
writeln(' is written as three characters, day as');
writeln(' a whole number, and year as the last two');

98 Chapter 3 Constants, Variables, and Simple Input and Output

write(' digits of the current year: ');
readln(Month, Slash, Day, Slash, Year);
writeln;

{ Display today's date in the following format: }
{ Month - Day - 19 _ _ . }

write('Today's Date: ');
writeln(ord(Month) + 1 : 2, I Day 2, I - I '19' I Year

end.
2) i

It is important to remember that data types defined under a type declaration in Pascal
are not true data objects like constants and variables. Even though these data types are
associated with names and are equated with either a real or ordinal data type, they
are not associated with values during the time the program is being translated, nor with
the storage of values as the program is executed.

3.7 THINK PASCAL VERSUS STANDARD PASCAL

There are minor differences between THINK Pascal and standard Pascal regarding simple
data types and the naming of identifiers. Standard Pascal allows the length of identifier
names to be unlimited, while THINK and Macintosh Pascal limit the length of identifier
names to 255 characters. In standard Pascal, identifier names are limited to digits and
letters of the alphabet, while THINK and Macintosh Pascal allow the underscore as one of
the characters of an identifier. When a compiler is implemented, exceptions are allowed,
since keyboards may support character sets that are different. Some systems allow both
the underscore and dollar sign ($).

How read and readln execute depends upon the implementation of the particular
Pascal compiler. For example, when reading from standard input (keyboard), pressing the
Return key may be sufficient to terminate an input line. In other instances, the readln
must be executed to force an input line to be properly terminated. In some systems, the
physical input buffer (the area of the terminal holding the characters being read on input)
may be limited to 255 bytes (characters). Attempting to execute several read statements
without executing a readln can result in the content of the input buffer being lost.
Keep in mind that these can be hardware as well as operating-system dependencies.

Not all Pascal systems require a wri teln statement to terminate a line of output to
the screen. For THINK and Macintosh Pascal, a line of output is terminated if input is
read, and the character string representing an input value is terminated by pressing the
return key. In some systems, a writeln statement is important to terminate an output
line and prevent the output buffer of the terminal from exceeding a fixed length and losing
the characters it contains.

Standard Pascal only allows simple data types such as real, integer, and char
to be read using the Pascal commands readln or read, and it only allows the values of
real, integer, char, and Boolean variables to be written using the commands
write and writeln. Both Macintosh and THINK Pascal extend input and output by
allowing Pascal programs to read or write values of enumerated types. This includes
Boolean types as well as programmer-defined enumerated types such as those given
as examples in Section 3.5.3.

Both THINK and Macintosh Pascal support simple data types beyond real,
integer, Boolean, and char. These include the numeric types double,
extended, longint, and computational, and allow for large, precise floating-

Constants, Variables, and Simple Input and Output Chapter 3 99

point and integer arithmetic operations. In both Macintosh and THINK Pascal, real
types are converted to extended mode when real arithmetic operations are performed.
A math coprocessor can help speed execution.

Standard Pascal does not define a string type. In standard Pascal, strings are
manipulated through the use of a packed array of characters. The concept of a string
type was first introduced in UCSD Pascal and has remained a standard type among Pascal
compilers written for personal computers such as the Macintosh. The string type
differs from a packed array of characters in that it implies the dynamic storage of strings.
A packed array of characters uses a static storage structure where all array positions in
memory are assumed to be used. While Macintosh and THINK Pascal allow character
strings to be read and written for variables declared as string types, standard Pascal can
only read character strings by continuous read operations of a single character at a time.
Both allow a packed array of characters to be written by execution of a wr i t e or
wri teln command.

SUMMARY

This chapter began with a discussion of the general form of the Pascal program,
particularly the heading. We next discussed constants and variables and how we can use
them to increase the power and efficiency of the program. We then discussed the various
simple data types: four real types (real, double, extended, computational),
standard ordinal types (integer, longint, char, Boolean), and nonstandard
ordinal types (enumerated, subrange). Following the discussion of numeric data
types, we discussed the string data type, which allows the user to manipulate non­
numeric data. The final discussion was devoted to the type command, a feature of
Pascal that allows the programmer to create custom data types. Throughout the chapter,
we explored the use of the input and output commands: read, readln, write, and
writeln.

REVIEW QUESTIONS

1. What basic parts make up a Macintosh Pascal program?
2. What are the rules for naming a Macintosh Pascal program?
3. Are the following identifier names syntactically correct? Briefly explain why each

identifier name is legal or illegal.

Income Tax Program
Inventory-System
1234_Program

Circle_System
PatternMaker
Income&Taxes

4. Are the special parameters input and output required in the program heading
of a Macintosh or THINK Pascal program?

5. What is the purpose of the uses clause? How do THINK Pascal and Macintosh
Pascal differ with respect to this command?

6. What is meant by the term library ?
7. Name the three special libraries of Macintosh Pascal. Name some of the libraries

available in THINK Pascal.
8. How are comments inserted in a Pascal program?
9. What is the last statement in a Pascal program?

100 Chapter 3 Constants, Variables, and Simple Input and Output

10. Is the body of a Pascal program bracketed by begin and end; or begin
and end.?

11. Draw a diagram representing the concept of a data object.
12. Briefly explain the difference between a constant and a variable.
13. Are the following correct constant statements?

con st
Constant_Value := 123.67;
Second_Value = 34.87;
Angle_One = pi;
Angle_Two = 2 * pi;
Angle_Three = Angle_One;
Truth = true
Message= 'This is a string.;

14. Is the following code syntactically correct for a Macintosh Pascal program?

con st
Truth = true;

con st
Angle pi;

const
Maximum 9999;
Minimum = - Maximum;

15. What is the logical implication of using the equal sign alone instead of := in
establishing a value for a constant identifier?

16. List the constants known by Macintosh Pascal and their values.
17. What does the reserved word var represent?
18. Are the following declarations syntactically correct?

var
Number : integer;
Total-income ; real;
LogicalValue : Boolean
Name : string;
Number : real;
Pi : integer;

var
Person

var
Income

var

19. Is the following valid in Macintosh Pascal?

string;

real;

City_State : string;

20. Is the following program allowed in Macintosh Pascal or in THINK Pascal?

Constants, Variables, and Simple Input and Output Chapter 3

program Example(input, output);
var

Cost_of_Item : real;
Sales_Tax : real;

co:a.st
Tax = 0. 05;

begin
{ An empty example. }
e:a.d.

21. What is meant by the terms input and output?
22. Explain the difference between the statements write and wri teln.
23. Are the words write and writel:a. reserved words?
24. Use the Instant window to execute the following output commands:

write (1 I I + I I 1 I is I , 2) ;
write(2);
writeln(2);
writeln(true, false)
writeln(true, false, maxint, maxlongint);

25. Enter and test the program titled Display_Text from Section 2.4.1.
26. Explain the difference between the commands read and readln.
27. When executed, how do the following three sets of Pascal commands differ?

write(' Enter your total income: $');
readln(Income);

writeln(' Enter your total income: $');
readln(Income);

write(' Enter your total income: $');
read (Income) ;
writeln;

101

28. List the simple data types of Macintosh Pascal, and briefly explain what each
type represents.

29. What is meant by the terms floating-point number and scientific-notation?
30. What are ordinal data types?
31. List the standard ordinal data types of Macintosh Pascal.
32. What is the range of longint and integer data types in Macintosh and

THINK Pascal?
33. Enter and test the program Second_Counter with the declared data objects

being integer types. Test the same program with the declared data objects
being longint types.

34. What is meant by the term/unction ?
35. How do the functions ord, pred, and succ differ?
36. What are the nonstandard ordinal data types in Macintosh and THINK Pascal?
37. What is the difference between an enumerated type and a subrange type?
38. Show how a variable called Colors can be represented as an

102

Full_Name

Chapter 3 Constants, Variables, and Simple Input and Output

enumerated data type having the following possible values: red,
orange, blue, green, black, white, yellow, pink,
violet.

39. Declare a variable called Range_of_Income having minimum and maximum
incomes of 1000 and 9999.

40. Can a constant be an enumerated type? Can a constant be a subrange type?
Support your answers with some simple examples.

41. What is the difference between a char type and a string type?
42. Declare the following data objects as strings:

{ a string with a maximum length of 40 characters }

Street_Address { a string with a maximum length of 30 characters }
City
State
Zip_Code

{ a string with a maximum length of 15 characters }
{ a string of length 2 characters }
{ a string of length 11 characters }

43. What purpose does the type declaration serve in Macintosh Pascal?
44. Rewrite the declaration in Question 38 by introducing a programmer-defined data

type called Color_Chart and redeclaring the variable Colors as a type called
Color_Chart.

45. Enter and test the program shown in Figure 3.16.

PROGRAMMING EXERCISES

1. Write a Macintosh Pascal program that will perform the following steps:

(a) Prompt for an integer, and read that number.
(b) Prompt for a second integer, and read that number.
(c) Prompt for a third integer, and read that number.
(d) Compute the sum of these three numbers and assign it to Total.
(e) Display the result of the summation to the Text window.

2. Write a Macintosh Pascal program that will perform the following steps:

(a) Prompt the user for the radius of a circle, using a write statement.
(b) After entering a real number using the readln command, compute the

area of a circle using the formula

area = n * radius

where the character * represents multiplication.
(c) Output the following information to the Text window, using wri teln

statements:

Radius:
Area of Circle:

{ value of radius }
{ value of area }

3. Write a Macintosh Pascal program to compute the circumference of a circle,
using the formula

Constants, Variables, and Simple Input and Output Chapter 3 103

circumference = 2 * n * radius

Output the result by displaying the value of Radius and Circumference to
the Text window. This program will require write, readln, and wri teln
statements.

4. The area of a triangle is specified by the following formula:

area= (base *height)/2.0 .

Write a program that will perform the following steps:

(a) Prompt for the value of the base.
(b) Prompt for the value of the height.
(c) Compute the area using the given formula.
(d) Output the results of the computation to the Text window.

5. Write a program that will paint a circle in the Drawing window using the
procedure PaintCircle. This program requires the following steps:

(a) Prompt for the center of the circle:

read the X_Center;
read the Y_Center.

(b) Prompt for the radius of the circle, and read the radius.
(c) Paint the circle in the Drawing window.

6. In the metric system of measurement, 1 inch is equal to 0.0254 meters. Write a
program that prompts for distance measured in inches and computes the distance
in meters, using the constant 0.0254. Output your results with the following
wri teln statement:

writeln(' Distance in meters: ' Distance:l5:5);

7. In converting Fahrenheit temperature to Celsius, we can use the following
formula:

Celsius 5.0 * (Fahrenheit - 32) I 9.0

Write a program that will prompt for the temperature in Fahrenheit and display
the temperature in Celsius degrees. Use the following writeln statement to
display this result:

writeln(' Celsius temperature: ' Celsius_Temperature

Use the following checks:
212° Fis equivalent to 100° C
32° Fis equivalent to 0° C

7: 2) ;

104 Chapter 3 Constants, Variables, and Simple Input and Output

8. Write a program that will prompt for total cost of items and sales-tax rate,
compute the sales tax and the total cost (representing the sum of total cost of
items and sales tax), and display the following to the Text window:

Total cost of items: $ { value of the items
Sales tax: { value of the sales tax

Total cost of items: $ { value of the total cost }

9. Write a program to perform the following steps:

(a) Prompt the user for the month as a string, and read that input using the
readln command.

(b) Prompt the user for the day as a string, and read that input using the
readln command.

(c) Prompt the user for the year as a four-digit integer, and read that value using
readln.

(d) Display today's date to the Text window, using the format month/day/year.

10. Write a Macintosh Pascal program using three different string variables:
Last_Name, First_Name, and Middle_Name. Your program will require
the following steps during execution:

(a) Prompt for the first name of a person, and read this name.
(b) Prompt for the middle name of a person, and read this name.
(c) Prompt for the last name of a person, and read this name.
(d) Display the person's full name to the Text window, using the following

format:

Last name , First name (blank space) Middle name

11. Repeat Exercise 10 to display the person's full name as follows:

First name (blank space) Middle name (blank space) Last name

12. Write a program using write 1 n commands that will display the following
truth table:

A B Not A AandB AorB

False False True False False

True False False False True

False True True False True

True True False True True

Constants, Variables, and Simple Input and Output Chapter 3 105

13. Write a program that prompts the user for an integer, and, after reading the
number, displays the following:

pred(Number)

value of pred
of number

Number

value of
number

succ(Number)

value of succ
of number

14. Write a program that prompts for the day of the week and, after the word
Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,or
Saturday has been entered, displays the following to the Text window:

Day of the week:
Predecessor of the weekday:

display the value of weekday }
display pred of weekday }
display succ of weekday } Successor of the weekday:

Define the data type called Days_of_Week, using the following
declaration:

type
Days_of_Week= Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);

(Note : Some values will cause execution errors for either the predecessor or
successor functions.)

Chapter 4

Basic Arithmetic Operations,
Expressions, and Assignment

Statements

OBJECTIVES

After completing Chapter 4, you will know the following:
1. The distinction between an operator and an operand in a Pascal expression.
2. Pascal operators including+,-, *,/,div, and mod.
3. The nature and importance of operator precedence, including the effect of

parentheses.
4. The use of the assignment statements in a Pascal program, and the meaning of the

Pascal operator := .
5. How to trace a program with the help of the Observe window.
6. The Macintosh Pascal and THINK libraries of arithmetic functions, and the use of

these functions in Pascal programs.

4.1 THE OPERAND AND THE OPERATOR

Consider the following short program, entitled Addi ti on:

program Addition(input, output);
{ Purpose: This program demonstrates the operation of addition. }

COD St

106

x 10;
y = 5;

Basic Arithmetic Operations

var
Z : integer;

begin
ShowText;

Chapter 4

{ Add the values of the constants and display their results. }
Z := X + Y;
writeln('The sum of X and Y is: ' Z : 3);

end.

This program includes the assignment statement

z .- x + y

107

where the element to the right of the colon-equal sign, X + Y, is composed of two
operands, X and Y, and the symbol + representing the operator for addition. When
executed, the operator + instructs the Macintosh computer to sum the values of the
constants X and Y . In this context the addition operator is called a binary operator,
because it requires two operands to perform the operation. This statement also contains a
second operator represented by the combined characters := . This operator represents the
assignment of a value to a variable. It is also a binary operator, since it requires two
operands during execution: the value of the expression to the right of the assignment
operator and the variable to the left. When execution of the assignment statement is
complete, the value of the expression on the right is assigned to the variable on the left.
This results in the value of the expression being stored in memory cells addressed by
variable z. This program can be modified to do subtraction(-), multiplication(*), and
division(/) by substituting the appropriate symbol(-, *•or/) for the addition operator in
the statement z : = X + Y •

A unary operator requires only one operand. The unary arithmetic operators in Pascal
are the "unary+" and the "unary-." In the assignment statement

N.--(B+C)

the minus sign (unary -) causes the value within the parentheses (B + C) to be
negated. That is , if the value of (B + C) is positive, - (B + c) will be negative,
and if the value of (B + c) is negative, - (B + c) will be positive. The operator
unary + is referred to as an identity operation. This means that it leaves the value
unchanged when applied as a unary operator. For example, the value of the expression +
(B + C) is the same as the value of (B + C) . Both binary and unary operations for
Macintosh and THINK Pascal are listed in Figure 4.1.

Notice that expressions such as

- (+ (B + C)
+ (- (B + C
+ (+ (B + C
- (- (B + C

are syntactically valid, while expressions such as

- + B + C
+ - B + C

108

+ + B + C
B + C

- + B + C
+ - B + C
+ + B + C
- - B + C

Chapter 4 Basic Arithmetic Operations

are invalid. Combinations of operator symbols such as - - I - + I + + I + - are
not recognized as valid unary operations. In general, the best rule is to follow each unary
operator with a set of parentheses placed around the expression that the unary operator is
acting on. This helps to avoid errors whenever expressions are either typed or checked.

Although many of the Macintosh and THINK Pascal arithmetic operators are rep­
resented by single-character symbols, two special arithmetic operators require short
syllables: div and mod. The use of div and mod requires sensitivity to the use of
data types when constructing expressions, since they are "integer-only" operators: they
require operands that can only be integer data types. With some arithmetic operators,
the mixing of values for integer and real variables can produce either real or
extended results. In standard Pascal, however, div and mod produce only integer
results.

0 erator
+

0J>_erator
+
-

*
I

div
mod

Unary Operators
(si s)

0 eration
Identity

Si ne ation

Binary Operators

OE_eration
Addition

Subtraction
Multiplication

Division
Division with integers

Modulo

Integer or reaP
Integer or reaP

_2.E.erand ~es
Integer or realb
Integer or real b
Integer or realb
Integer or real

Integer
Integer

a The result is real if the operand type is real, and integer if the operand type is
integer.

b The result is real if both operand types are real or if one is real and the other is
integer.

Figure 4.1 The unary and binary arithmetic operators.

How do the three arithmetic operators I , div , and mod differ? We use the operator
div when both operands are integer types, and when the result to be computed is the
quotient of one integer value divided by another integer value. The mod operator,
a division operator, yields as a result the remainder of one integer value divided by
another integer value. For example, 5 mod 2 yields a result of 1 (5 divided by 2

Basic Arithmetic Operations Chapter 4 109

yields 2 with a remainder of 1). The division operator,/, is different: it results in a real
value whether the operands are of integer, real, or mixed data types.

As an example, look at the Text window shown in Figure 4.2 . In this example we
have selected the Instant window from the menu option Windows (Debug for
THINK Pascal),1 and typed three writeln statements to test the differences among the
three binary division operators.

s File Edit Search Run Windows

Instant

(Do It)

writeln(' Integer division
writeln(' Real division:
writeln(' Integer remainder:

Te Ht
Integer division :
Real division:
Integer remainder:

8 div 6);
1 , 8 I 6);

', 8 mod 6);

1
1.3e+O

2

Figure 4.2 Application of the Instant window in Macintosh Pascal.

lilll

Note that the Program and Drawing windows can be either opened or closed. We have
elected to close these windows. After typing all three statements, use the option Check
to check for any syntax errors. If any text exists in the Text window, choosing the option
Reset from the menu option Run will clear the window. To execute any of the
statements that are in the Instant window, click the Do It button. In this case the three
separate statements are checked and then executed, so that three separate lines of text are
displayed in the Text window. For the integer constant 8 divided by integer
constant 6, the first line of text gives the value of the quotient, the second gives the result
for real division in terms of a floating-point value representing 1.333333 ... (a
combination of the quotient as a whole number and the remainder as a fraction), and the
third line displays the remainder. Notice that both the integer division operators div
and mod give integer results.

1 If you do this exercise with THINK Pascal, you will discover that the Instant window is active
only when a program has been executed and halted. You may achieve this state by opening a
project, executing the 6 o command, and then halting execution by clicking the spray-can
icon. If your program executes too quickly to allow this, you may insert one or more stops
to halt execution. The statements you test in the Instant window need not be related to the
program whose execution you halt.

110 Chapter 4 Basic Arithmetic Operations

As a second example of using the div operator, consider an example Pascal
program designed for computing the percentage of partisan votes in an election. When
executed, this program prompts the user to enter the number of votes for Democratic
candidates and the number of votes for Republican candidates, and then it computes the
total partisan vote, the percentage of Democratic votes, and the percentage of Republican
votes. All percentages are to be stored as whole numbers. After all computations have
been performed, the total number of votes and the percentages are displayed to the Text
window.

Here is the algorithm for developing this program:

Algorithm Election;
{ This algorithm computes the percentage of Democratic and

Republican votes in a partisan election. }
{ List of data types:

Democrats, Republicans, Total_Votes : integer
Percent_Democrats, Percent_Republicans : integer

begin
{ Prompt user for Democratic and Republican votes. }

write 'Enter the number of Democratic votes:
read Democrats ;
write 'Enter the number of Republican votes:
read Republicans

{ Compute the total number of votes and the percentages. }
Total_Votes <-- Democrats + Republicans;
Percent_Democrats <-- (Democrats * 100) div Total_Votes;
Percent_Republicans <-- (Republicans * 100 div Total_Votes;

{ Display total votes and the percentages. }
write Total_Votes ;
write Percent_Democrats ;
write Percent_Republicans

end.

The Pascal program for algorithm Election follows. Here we have added
wri teln statements to help when displaying output. In addition, the constant 100 has
been replaced with an identifier called Base.

program Election(input, output);
{ Purpose: A demonstration of the operator div. This program }
{ computes and displays the percentage of Democratic }
{ and Republican votes in a partisan election.}

con st
Base = 100;

var
Democrats, Republicans, Total_Votes : integer;
Percent_Democrats, Percent_Republicans : integer;

begin
ShowText;

{ Prompt user for Democratic and Republican votes. }
write('Enter the number of Democratic votes: ');
readln(Democrats);
write('Enter the number of Republican votes: ');

Basic Arithmetic Operations Chapter 4

readln(Republicans);
{ Compute the total number of votes and the percentages. }

Total_Votes := Democrats + Republicans;

111

Percent_Democrats := (Democrats * Base) div Total_Votes;
Percent_Republicans := (Republicans * Base) div Total_Votes;

{ Display total votes and the percentages. }
write('A total of ', Total_Votes : 2);
writeln(' votes were cast in this election');
writeln;
write(' The Democrats received', Percent_Democrats 2);
writeln(' percent of the vote.');
writeln;
write(' The Republicans received' Percent_Republicans 2);
writeln(' percent of the vote.');

end.

If you want slightly greater precision, use the real division operator, /, to produce
real (decimal) results. This would require that the variables Percent_Democrats
and Percent_Republicans be declared as type real instead of integer. Why? A
syntax rule in Pascal is that a variable of type integer cannot be assigned a value of an
expression of type real.

The program Election_Revised shows the changes necessary to produce
percentages with decimal-fraction precision.

program Election_Revised(input, output);
{ Purpose: A demonstration of the operator div. This program }
{ computes and displays the percentage of Democratic }
{ and Republican votes in a partisan election.}

const
Base = 100;

var
Democrats, Republicans, Total_Votes : integer;
Percent_Democrats, Percent_Republicans : real;

begin
ShowText;

{ Prompt user for Democratic and Republican votes. }
write('Enter the number of Democratic votes: ');
readln(Democrats);
write('Enter the number of Republican votes: ');
readln(Republicans);

{ Compute the total number of votes and the percentages. }
Total_Votes := Democrats + Republicans;
Percent_Democrats := (Democrats * Base) I Total_Votes;
Percent_Republicans := (Republicans * Base) I Total_Votes;

Display total votes and the percentages. }
write('A total of ', Total_Votes : 2);
writeln('votes were cast in this election');
writeln;
write(' The Democrats received', Percent_Democrats 5 2);
writeln(' percent of the vote.');

112 Chapter 4 Basic Arithmetic Operations

writeln;
write(' Republicans received ',Percent_Republicans
writeln(' percent of the vote.');

5 2) i

end.

The only difference between Election and Election_Revised is in the way
the percentages are computed and displayed. Election displays percentages as whole
numbers, whereas Election_Revised displays percentages in a decimal format with
a field of five characters and two digits to the right of the decimal point.

Modulo, or mod, is an integer division operation that gives as a result the
remainder of an integer division process. It is important to understand that special
conditions apply when using this operator:

1. If M is not zero, N mod M is equivalent to N - (N div M) * M.
2. In THINK Pascal, N mod M results in an executable error if the value

ofM is zero.
3. In standard Pascal and in Macintosh Pascal, N mod Mis in error if M

is either zero or negative.
4. When N is negative and M is greater than 0, the mod operation in

Macintosh Pascal is not consistent with THINK Pascal. The mod
operation in Macintosh Pascal is only consistent when N is greater than
or equal to 0, and M is greater than 0.

Here N and Mare assumed to be integer types. The following program, Modulo_
Demonstration, illustrates the use of the mod operator. The statement

Remainder := Dividend mod Divisor;

is assumed to produce an integer remainder for any two integers entered from the
keyboard, one represented by the variable Dividend and the other by the variable
Di visor. This program is useful for demonstrating the results of the three conditions
just described. The modulo operator has some interesting applications, several of which
are shown in Chapters 5 and 6.

program Modulo_Demonstration(input, output);
{ Purpose: This program demonstrates the operator mod. }

var
Dividend, Divisor, Remainder : integer;

begin
ShowText;

{ Prompt user to enter two numbers. }
writeln('Enter a number as a dividend: ');
readln(Dividend);
writeln;
writeln('Enter a number as a divisor: ');
readln(Divisor);
writeln;

{ Perform the mod computation and display the result. }
Remainder := Dividend mod Divisor;
writeln(Remainder: 2, ' is the remainder of ', Dividend 2);

Basic Arithmetic Operations Chapter 4

writeln(' divided by' Divisor
end.

4.2 OPERATOR PRECEDENCE

113

2 I I • I) ;

The order in which arithmetic operations are performed is called precedence. In Chapter 3
we pointed out the need for precision and lack of ambiguity in writing an algorithm. To
achieve this, we must be able to evaluate an expression in an unambiguous manner. For
example, there must be one and only one answer to evaluating the following expression:

B + C * D.

Rules of precedence for arithmetic operators are summarized in Figure 4.3. In
Macintosh and THINK Pascal, the unary operators + and - have equal operator precedence
with addition and subtraction.

Operators a Level of
Precedence

* I I , div ,mod b (highest)

+, - c (lowest)
a Precedence rules for all operators in Macintosh and THINK Pascal are given in

Figure S.S.
b The multiplication and division operators have equal precedence among

themselves.
c The addition and subtraction operators have equal precedence among

themselves.
Figure 4.3 Precedence rules of arithmetic operators in Pascal.

Performing addition followed by multiplication could result in entirely different results
from performing multiplication followed by addition. The rules of precedence are meant to
eliminate this ambiguity. These rules require an expression to be evaluated in an order
determined by the precedence of the operators involved in the expression. Otherwise,
execution of operators of the same level of precedence and the operands to which they are
bound is from left to right. Some of these rules are demonstrated in the program
Precedence.

program Precedence(input, output);
{ Purpose: Demonstrates the order of precedence in the }
{ evaluation of an expression. }

var
A,B,C,D : integer;

begin
ShowText;

{ Assign values to the variables B, C, and D. }
B := 5;
c := 10;
D : = 2;

{ Evaluate the expression and display the results. }
A := B + C * D;

114 Chapter 4 Basic Arithmetic Operations

writeln('The expression 5 + 10 * 2 is evaluated as: ' A 1);
end.

With the operand B assigned the value 5, c assigned the value 10, and D assigned the
value 2, the value computed and assigned to A is 25 according to the rules of precedence
given in Figure 4.3. Since the multiplication operator (*) has a higher precedence than the
addition operator (+), the multiplication operator (*) is executed first.

However, if we substitute the expression

A := B I C * D;

var

for the expression given in Precedence, the results will change. The multiplication
operator (*) and the division operator (/) have the same level of precedence, so execution
is performed from left to right. In this example, the division is performed before the
multiplication. If we assign the same values to the variables B, c, and D as before, the
value of the expression B I C * D becomes 1.0. However, before we can execute this
revised program, we must make the following change:

A : real;
B, C, D : integer;

This change is required because the division operation is real rather than integer.
Without this change, the program will produce an error message informing you of an
incompatibility of types.

Parentheses can be used to alter the order in which operations are performed in an
expression. In the statement

A .- B + C * D;

the variable A becomes 25 when the constants B, c, and D are defined as 5, 10, and 2, as
in the program Precedence. We can change the order in which these operations are
performed by using parentheses as follows:

A := (B + C) * D;

Now when the expression is evaluated, the value of A becomes 30, because the operation
within parentheses is executed before operations outside the parentheses.

Expressions can be nested within parentheses as long as the parentheses are balanced,
that is, paired. For example, the statement

A:= B - (C * (D + F));

results in the addition operation (+) being executed first, the multiplication operation (*)
next, and the subtraction(-) operation last. The rule when using parentheses is that the
expression contained in the innermost pair is evaluated first. Then the expression
contained within the next level of parentheses is evaluated, and so forth, until execution is
complete. Execution of the program Parentheses demonstrates that under these
circumstances, A is evaluated as -45.

Basic Arithmetic Operations Chapter4 115

program Parentheses(input, output);
{ Purpose: This program demonstrates the effect of parentheses }
{ on operator precedence. }

var
A,B,C,D,F : integer;

begin
{ Assign values to the variables A through F. }

B := 5;
c := 10;
D := 2;
F := 3;

{ Evaluation of the expression and display of the result. }
A:= B -(C * (D + F));
wri teln ('A = ' , A : 1) ;

end.

4.3 EXPRESSIONS AND THE ASSIGNMENT STATEMENT

The construction of a valid statement is based on two primary rules:

1. Valid statements have one and only one variable on the left side of the
statement.

2. No operators may be on the left side of the statement.

For example, the statement

x + y := 12 + z

is invalid because it violates both of these rules: two variables, x and Y, and the operator
+ are found on the left side. To make this a valid statement, we must show only one
variable on the left, as in the following:

x := 12 + z

An assignment statement has the basic form of

Variable := expression ;

where expression may be any of the following:

1. A variable
2. A numeric constant
3. expression operator expression

For example, all of the following are valid assignment statements:

116 Chapter 4 Basic Arithmetic Operations

x :=
x :=
x :=

x

Y;
13;
y * 8

The := denotes that the data object on the left side of the statement, called a variable,
is assigned a value obtained from executing the expression. This allows statements such
as

x + 1;

In Pascal, the statement X = X + l, where= is read as "is equal to," is illogical.
Equality implies balance in value for both sides of an equation. The statement X : = X
+ 1 does not express balance. Rather, the value of 1 is added to the value of X when the
expression on the right side of the statement is executed. The resultant value is then
assigned to the variable X on the left side of the assignment operator (:=).

Notice that a statement such as X = 13 represents an expression of equality and is
used to establish the value of x as a constant. Such expressions are found in the constant
declarations of a Pascal program, under the const heading. The program Con­
version illustrates these points.

program Conversion(input, output);
{ Purpose: This program converts a Celsius temperature, entered }
{ by the user, into a Fahrenheit temperature. The }
{ result is displayed on the screen. }

con st
K = 32;

var
Celsius, Fahrenheit : integer;

begin
{ Prompt the user to enter the Celsius temperature. }

write('Please enter a Celsius temperature: ');
readln(Celsius);

{ Convert Celsius temperature to Fahrenheit temperature. }
Fahrenheit := ((Celsius* 9) div 5 + K);

{ Display the results.}
writeln('The Fahrenheit equivalent is: Fahrenheit 2);
writeln;

end.

const

This program illustrates the use of both = and := in assigning values to data objects.
The constant used in the conversion of a Celsius temperature to a Fahrenheit temperature
is 32. Thus the constant K is declared and its value equated with 32. This statement uses
the =, since an equality is being established.

K = 32;

Later in the program the actual conversion is accomplished in the following statement:

Basic Arithmetic Operations Chapter 4 117

Fahrenheit := {{Celsius* 9) div 5 + K);

The result is integer, since Fahrenheit is declared as an integer type, but
the program can compute real values by replacing div with I and by declaring both
Celsius and Fahrenheit to be real .

As an added example, let us develop both an algorithm and a program for reversing
the digits of an integer number. Assume that we want a program to prompt the user
for a four-digit integer number and, after this number has been entered, display the
digits in reverse order. For example, the user would enter a number such as 9753, and the
program would display the value 3579 . In writing both the program and the algorithm,
let us make some basic assumptions:

l. We assume that our initial number is represented by the digits d1d2d3d4•

The new number will be represented by the digits d4d3d2d1 •

2. Our initial number must always be positive.
3. All individual digits must be between 1 and 9; 0 is not allowed.

The following steps represent an initial solution:

l. Read a four-digit integer number entered from the keyboard.
2. Extract each of the four digits from the initial number.
3. Create a new number from the four separate digits.
4. Write the value of the new number.

The second and third steps are ambiguous and must be refined. For the second step, let us
assume that our digits will have unique names: Digit_l, Digit_2, Digit_3, and
Digit_ 4. To obtain the leftmost digit, we need only compute the following step:

Digit_l <-- Initial_Nurnber div 1000

To compute the second digit from the left, we remove the first digit on the left by using
one of two statements:

Remainder <-- Initial_Nurnber mod 1000

or

Remainder <-- Initial_Nurnber - (Digit_l * 1000)

We will choose the former and leave the latter as an exercise. The result is a
remainder representing a new number having only three digits: d2d3d4.

Next we extract the remaining digits by repeating the same steps but with
Ini tial_Number replaced by Remainder. The following is a refinement of our
initial algorithm:

Algorithm Reverse_Digits;
{ Reverse_Digits reverses the digits of a four-digit integer

number. }
{ List of variables:

118 Chapter 4 Basic Arithmetic Operations

Initial_Number, New_Number, Remainder : integer
Digit_l, Digit_2, Digit_3, Digit_4 : integer }

begin
{ Enter a four-digit integer number from the keyboard. }

write 'Type a four-digit integer number: ';
read Initial_Number;

{ Extract each of the four digits from number. }
Digit_l <-- Initial_Number div 1000;
Remainder <-- Initial_Number mod 1000;
Digit_2 <-- Remainder div 100;
Remainder <-- Remainder mod 100;
Digit_3 <-- Remainder div 10;
Digit_4 <-- Remainder mod 10;

{ Create the new four-digit number. }
New_Number <-- {Digit_4 * 1000) + {Digit_3 * 100) +

{Digit_2 * 10) + Digit_l;
{ Display the value of our new number. }

write New_Number
end.

To test our newly defined algorithm and see if it is functional, we can trace its steps by
establishing a trace table, as shown in Figure 4.4. At the top of the table is a list of
variables, and to the left is a simple counter called Step. Each time a step is evaluated,
we record the changes to any of the values of variables. (Figure 4.6 presents the Pascal
program, but without comments.)

Step

1
2
3
4
5
6
7
8

Initial_ Digit_l Digit_2 Digit_3 Digit_4 Remainder New_
Number Number

8642
8

642
6

42
4

2
2 2468

Figure 4.4 Trace table for the algorithm Reverse_Digi ts.

In writing an assignment statement, we must always consider the issue of compatibility
between the data types of an expression and a variable. In Macintosh Pascal, data-type
compatibility is checked when the program is executing, not at the time of translation.
Thus you will not find assignment-compatibility errors by choosing the option Check
from the Run menu. Figure 4.5 shows a list of rules for all of the data types discussed in
Chapter 2. The typical error message for assignment compatibility is "An incompatibility
between types has been found." Understand that Pascal does not allow an integer
variable to be assigned a real value. Any attempt to use such an assignment statement
will produce a syntax error.

Basic Arithmetic Operations Chapter 4

For an assignment statement of the form variable : =
expression, the value of the data type for expression is
assignment-compatible with the data type of variable if any
of the following is true:

1. Variable and expression are identically declared types.
2. Variable and expression are real types, and the value of

expression is within the range of possible values for variable.
3. Variable is is a real type, and expression is an integer type.
4. Variable and expression are compatible ordinal types, with

the value of expression being within the range of possible
values for variable.

5. Variable is a char type and the value of expression is a string
type having a length of 1.

6. Variable is a string type with a maximum size of n
characters, and the value of expression is a string type
having a length less than or equal to n .

7. Variable is a string !Y.E_e, and ex.E!ession is a char !Y.E_e.

Figure 4.5 Assignment compatibility rules for Macintosh and THINK
Pascal.

4.4 USING THE OBSERVE WINDOW TO TRACE A PROGRAM

119

The use of trace tables in testing an algorithm can be supplemented in Macintosh Pascal
by use of the Observe window. Figure 4.6 shows our example of Reversed_Digi ts,
which uses the Observe window to monitor the value of the variable Remainder. This
window is primarily helpful in tracing values of intermediate variables and expressions.
That is, variables such as Remainder contribute to generating the output of a program
but are not themselves displayed as output. This is particularly important with respect to
the values, variables, and expressions that affect the Drawing window.

To use the Observe window, open the Program window and select Stops In from
the Run menu. Next, place " stop to the left of the program line after the last line you
want to execute. In Figure 4.t> we placed a stop after the two statements for the variable
Remainder by moving the cursor into the zone to the left of the program line, and then
clicking the mouse button. After the stops are placed, open the Observe window from the
Windows menu.2 In Figure 4.6 we typed the word Remainder to the right of the
prompt Enter an expression. After you press the Return key, the prompt Enter
an expression appears, and the system waits for the next expression. When you
have entered all expressions, open all windows necessary for observation. As Figure 4.7
shows, we only require that the Text window be opened for observing the prompt and for
entering a four-digit integer number. Then select either the option Go or Go-Go from
the Run menu. When the program reaches a stop sign, it updates the boxes to the left of
the expressions in the Observe window. Figure 4.7 shows the value for Remainder
after the program encounters the first stop sign. The program will continue to execute if

2 The Observe window is located under the Debug menu in THINK Pascal.

120 Chapter 4 Basic Arithmetic Operations

Go-Go was selected. Otherwise, select Go or Go-Go to continue execution. By using the
Observe window, you can see a real-time display of the intermediate values for
expressions or variables that control output but are not normally visible as part of the
output. This can be an important tool for debugging.

Re u e rs e_D i git s
program Reverse_Digits(input, output);
{ Purpose: This algorithm reverses the digits of a four- }
{ digit integer number . }
{ List of variables }

var
lnitial_Number, New_Number, Remainder: integer; ..------------Digit_ 1 , Digit_2, Digit_3, Digit_ 4: integer;

begin
ShowText;

{ Enter a four-digit integer number from the keyboard.

Te Ht

Type a four digit integer n

writeln('Type a four-digit integer number: '); 4321
readln(lnitial_Number); ..-=-0___. ___ 0_b_s_e_r_u_e ___ _.,.

{ Extract each of the four digits from number. } 1-=-------------t
Digit_ 1 := lnitial_Number div 1000; 0
Remainder := lnitial_Number mod 1000; o
Digit_2 := Remainder div 100;
Remainder := Remainder mod 100;
Digit_3 := Remainder div 1 O;
Digit_ 4 := Remainder mod 1 O;

{ Create the new four-digit number. }

Enter an expression

New_Number := (Digit_ 4 * 1000) + (Digit_3 * 100) + (Digit_2 * 10) + Digit_ 1;
{ Display the value of our new number. }

writeln(New_Number)
end.

Figure 4.6 Using the Observe window to trace a program.

4.5 ARITHMETIC FUNCTIONS

Macintosh Pascal provides a set of library functions for use with arithmetic expressions.
Remember that a library is a collection of programs that a programmer can use to ease the
work of writing a program. Figure 4.8 lists the arithmetic functions available in
Macintosh and THINK Pascal. In relation to the precedence level of operators, functions
are evaluated before any other part of the arithmetic expression.

Basic Arithmetic Operations Chapter 4 121

~

• •

•

Reuerse_Digits

program Reverse_Digits(input, output);
{ Purpose: This algorithm reverses the digits of a four- }
{ digit integer number . }
{ List of variables }

var
lnitial_Number, New_Number, Remainder: integer;
Digit_ 1, Digit_2, Digit_3, Digit_ 4: integer;

begin
Te Ht

ShowText; Type a four digit integer nu
{ Enter a four-digit integer number from the keyboard.

writeln('Type a four-digit integer number: '); 4321
readln{lnitial_Number);

{ Extract each of the four digits from number. }
D~ Obserue

Digit_1 := lnitial_Number div 1000; 321 Digit_2

Remainder := lnitial_Number mod 1000; 4 Digit_3
Digit_2 := Remainder div 100; Enter an expression
Remainder := Remainder mod 100;
Digit_3 := Remainder div 1 O; IQ_[Jmmm1!1mmmmm11!mmmmmmmm1g
Digit_4 := Remainder mod 10;

{ Create the new four-digit number. }
New_Number := (Digit_4 * 1000) + (Digit_3 * 100) + (Digit_2 * 10) + Digit_1;

{ Display the value of our new number. }
writeln(New.:...Number)

end.

~ Jg
Figure 4.7 Executing the first stop in Reverse_Digits.

When using these standard arithmetic functions, one must be sensitive to data types.
In some cases, a function reauires an argument of a given type. For example, odd (X)
requires an argument of the l.•!teger type, and the trigonometric functions and natural
log functions may use either real or integer arguments. In addition, the data type of
the value returned by the function is important. The odd (X) function returns a
Boolean type, while the natural log function returns an extended type. The
argument of a function is the portion of the expression that the function operates on, and
it is enclosed in parentheses. In the statement

Y : = sin(X);

X is the argument of the function sin. The value that this function returns is the sine of
the angle X. For example, if x is 90°, then Y is assigned the value 1.

122 Chapter 4 Basic Arithmetic Operations

Function Argument Data Type Returns Data Brief Description of
~e Function

odd(X) Integer Boolean Returns true if x is
odd.

abs(X) If Xis integer Long int Returns the absolute
value of x.

If Xis real Extended
sqr(X) If Xis integer Long int Returns the square of

x.
If Xis real Extended

sqrt(X) If Xis integer Long int Returns the square
rootofx.

If Xis real Extended
ln(X) Integer or real Extended Returns the natural

l~rithm of x.
exp(X) Integer or real Extended Returns the

ex~onential of x.
sin(X)a Integer or real Extended Returns the sine of x.
cos (X) a Integer or real Extended Returns the cosine of

x.
arctan(X) Integer or real Extended Returns the

arctangent of x
(in radians).

round(X) Real Long int Converts a real
value to a longint
value (rounds to the
nearest whole
number).

trunc(X) Real Long int Converts a real
value to a longint
value (rounds down to
a whole number).

random None Integer Returns a random
integer in the range
-32768 to 32767.

a x represents an angle measured m radians.

Figure 4.8 Library of arithmetic and related functions for Macintosh and THINK Pascal.

We can include a function as part of an expression, but it must have a specific
argument. For example, using the Law of Cosines, we can compute the unknown length
of side A of a triangle, given the other two sides, B and C , and the angle opposite the
unknown side. The Law of Cosines is expressed as follows:

2 2 2
A = B + C -2BCcos(X)

Basic Arithmetic Operations Chapter 4 123

The side A is given by

A= ~(B2 + C2 -2BCcos(X))

Figure 4.9 illustrates the Law of Cosines using a triangle with sides B = 2 and c = 4
and an angle of 45° opposite side A .

C=4

A2 = B2 + C2 - 2BCcos(X)

A = 2.9472516

Figure 4.9 Using the Law of Cosines to determine the length of the
unknown side of a triangle.

Translating the last expression into a Pascal statement yields

A:= sqrt(sqr(B) + sqr(C) -2 * B * C * cos(X));

using three arithmetic functions from the Macintosh Pascal library: sqrt, sqr, and
cos. When this expression is evaluated, the functions s qr (B) , s qr (C) , and
cos (X) will be evaluated first, followed by multiplication between the integer
constant 2 and the value of B, followed by multiplication of the resulting value of 2 *
B and the value of C, followed by multiplication between the resulting values of 2 * B
* C and cos (X), followed by addition between the resulting values of sqr (B) and
sqr (C), followed by subtraction between the resulting values of sqr (B) + sqr (C)
and 2 * B * C * cos (X), followed by the square-root operation.

The program Triangle uses this equation to compute an unknown side of a
triangle, given two sides and an opposite angle. In the program Triangle, the lengths
of the known sides are entered at the keyboard, and the opposite angle is provided as a
constant. Since this angle is given in degrees, and the cosine function requires that the

124 Chapter 4 Basic Arithmetic Operations

angle be in radians, we must convert the angle from degrees to radians before executing
the cos function. This is accomplished with the statement

z .- x * (pi I 180.0);

where X is the angle given in degrees, and pi is a constant representing the value of 7t.

No declaration for pi is required, because it is represented internally in Macintosh Pascal
as a real constant with the value 3.141592653 ... When executed, the program displays
the angle, the lengths of the known sides, B and c , and the length of the unknown side,
A.

program Triangle(input, output);
{ Purpose: This program demonstrates the use of library }
{ arithmetic functions. Computes the unknown side }
{ of a triangle using the Law of Cosines. }

con st
{ The known angle opposite side A is assumed to be in degrees. }

x = 45.0;
var

{ The sides of the triangle and a temporary variable Temp. }
A, B, C, Temp : Real;

begin
{ Prompt the user to enter the length of sides B and C. }

writeln;
write('Please enter a length for side B. ');
readln (B);
writeln;
write('Please enter a length for side C. ');
readln (C);
writeln;

{ Convert the angle from degrees into radians. }
Temp := X * (pi I 180.0);

{ Compute the length of the unknown side called A. }
A := sqrt((sqr(B) + sqr(C)) - (2 * B * C * cos(Temp)

{ Display the angle and the lengths of sides A, B, and C.
wri teln ('Angle X = ' , X : 1 : 1, ' degrees ') ;
writeln;
writeln('Side A = A 1 2);
writeln('Side B B 1 2);
writeln('Side C = C 1 2);
writeln;

end.

The next example shows how two arithmetic functions, exp and ln, can be used to
raise a number to a power. Most Pascal translators have no arithmetic operator for raising

y
a value X to a power Y, when Y has a value other than 2. The expression X can also be
written as eY ln(x). In Pascal this is represented by the expression

exp (Y * ln(X)).

Basic Arithmetic Operations Chapter 4 125

We can use the ln function as long as the value of Xis greater than zero. Figure 4.10
shows a program for testing this expression. Notice that the result will always be real,
since the functions ln and exp return values that are extended (real).

program
{ Purpose
{
{

var

EHponentiation

Exponentiation (input, output);
This program demonstrates the }
steps for raising a number X }
to the power Y. }

X, Y, Result: real;
begin
{ Prompt user for X and Y. }

write('Enter base number: ');
readln(X);
write('Enter power: ');

readln(Y);
writeln;

{ Compute X raised to Power Y. }
Result := exp(Y * ln(X));

{Display results of X raised to power Y. }
write(X : 7 : 3, ' raised to power ', Y : 7 : 3);
writeln{' is equal to ', Result : 10 : 5);

end.

Enter base number: 2
Enter power: 7

Te Ht

2.000 raised to power 7.000 is equal to 128.000

Figure 4.10 EPcution of the program Exponentiation.

This programming trick is useful when approaching problems such as computing
compound interest. For example, the program Compounded_Interest computes the
accumulated value A, given the principal P, interest i, and period n, using the following
equation:

A = P (1 + i)n

program Compounded_Interest(input, output);
{ Purpose: This program computes the compounded interest given
{ principal, period, and rate of interest. }

var
Principal, Accumulated_Value : real;

126 Chapter 4 Basic Arithmetic Operations

Interest, Period : integer;
begin
{ Enter principal, interest, and saving period. }

write{' Enter principal: ');
readln{ Principal);
write{' Enter interest rate: ');
readln{ Interest);
write{' Enter years for compounding: ');
readln{ Period);

{ Compute accumulated savings. }
Accumulated_Value :=Principal* exp{Period * ln(l+Interest));

{ Display accumulated savings. }
writeln{ 'Accumulated Savings: ' Accumulated_Value);

end.

The last program in this chapter, Rounding_ Test, is designed to demonstrate
three additional functions. The first is a random-number function that returns an integer in
the range of-32768 to 32767. The other functions, trunc and round, convert a real
number to a longint number by either truncating or rounding the fractional part of the
number. In Rounding_Test we work with a real number called Selected_
Number, which is produced by executing the following statement:

Selected_Number := random I 13;

To ensure that the selected number has a reasonable fractional part, the number
generated by the function random is divided by the constant 13, using real division.

program Rounding_Test(input, output);
{ Purpose: This programcompares the round and trunc functions.}

var
Truncated_Number, Rounded_Number : longint;
Selected_Number : real;

begin
{ Select a random number. }

Selected_Number := random I 13;
{ Truncate and round the selected number.

Truncated_Number := trunc(Selected_Number);
Rounded_Number := round(Selected_Number);

{ Display the number in original, truncated, and
{ rounded form. }

then }

writeln('The random number is
writeln('The truncated form is '
writeln('The rounded form is

', Selected_Number
Truncated_Number);
Rounded_Number);

end.

4.6 STANDARD PASCAL VERSUS THINK PASCAL

14 8) i

While Standard Pascal supports scalar types such as integer, real, Boolean, and
character, THINK and Macintosh Pascal have an added set of numeric types that

Basic Arithmetic Operations Chapter 4 127

includes the real types double (double-precision real), single (single-precision
real, which with the Macintosh is equivalent to re a 1), comp (short for
computational), and extended. The type computational represents a real type
where the exponent fore is always zero. The only extended integer type in THINK
Pascal is long int, representing a double-precision integer. The range of values can
vary among personal computer Pascal systems. In Turbo Pascal real uses 6 bytes for
storage, while single precision requires only 4 bytes.

In either THINK or Macintosh Pascal, the basic arithmetic operations +, -, *•div,
and mod will always result in a long int type if one of the operands is integer and
the other is long int, or if both operands are long int. If one of the operands is a
real type, the result will always be an extended type. With respec:t to the division
operator/, the result is always extended. For the negation operation - or the identity
operation+, if the operand is a longint, the result is a long int, and if the operand is
any real type, the result is an extended type. This implies that programs compiled
in Pascal may execute arithmetic operations in longint, an integer operand being
converted to long int when necessary, or in extended mode if one or both operands
are real type and extended arithmetic is required.

THINK Pascal allows the type of an expression and its value to be cast (coerced) into
another type by execution of a type-casting expression. This is performed by applying an
expression of the form

type(expression)

where type represents the data type to which the expression is to be converted, and the
expression within the brackets is the operand that is being converted. The result of the
type-casting expression is the value associated with the casting type. The following
simple program demonstrates this concept. Here a loop is used to convert the value of a
character into an integer, add 32 to the integer variable called Character_
Value, and then convert this integer value back into a character type.

program Output_Letters (output);
{ Purpose: This program demonstrates type casting.}
var

Upper_Case_Letter: char;
Lower_Case_Letter: char;
Character_Value: integer;

begin
{Open the text window for viewing output to the screen.}

ShowText;
Display a header for uppercase and lowercase letters. }
writeln(' Uppercase Letter Lowercase Letter');
writeln(' ---');

Convert capital letters A-Z to lowercase letters a-z }
for Upper_Case_Letter := 'A' to 'Z' do

end.

begin
Character_Value := integer(Upper_Case_Letter);
Lower_Case_Letter := char(Character_Value + 32);
writeln(Upper_Case_Letter : 12, Lower_Case_Letter 23);

end;

128 Chapter 4 Basic Arithmetic Operations

Note that the ability to type-cast in Pascal is not as flexible as in the C language.
While an integer value can be cast into a Boolean type, a real value cannot be
cast into an integer type. If the type-casting is permitted for ordinal values, the
conversion may either involve the extension or truncation of the original value if the
internal storage size is changed. For nonordinal values, the internal representation of the
expression being cast must be the same as the internal representation of the cast type,
since the storage size of a nonordinal expression cannot be changed by a type-cast. Type­
casting is not supported in Macintosh Pascal.

SUMMARY

This chapter has presented the principal elements necessary for writing arithmetic
expressions in Macintosh and THINK Pascal. It introduced the concepts of operators and
operands and the rules of operator precedence. The assignment of values to variables in
Pascal expressions was discussed. Finally, we illustrated the use of library functions in a
Macintosh or THINK Pascal expression, and presented a table of the basic mathematical
functions.

REVIEW QUESTIONS

1. What is the purpose of the reserved words const and var?
2. Explain briefly the difference between a binary operator and a unary

operator.
3. What is meant by the term operand?
4. What is the result of using the binary operator div?
5. What is the result of using the binary operator mod?
6. List the other binary arithmetic operators in Macintosh and THINK

Pascal.
7. What happens in Pascal if you attempt to use real data types with the

binary operators div and mod? Try this with both Macintosh and
THINK Pascal.

8. Use the Instant window to see if there is any difference in the result from
executing the two expressions 7 div 5 and 7 I 5 .

9. After reviewing the rules for computing M mod N, use the Instant
window to show an example for each case.

10. Is the assignment operator := a binary operator?
11. What is meant by the term operator precedence?
12. For the arithmetic operators in Pascal, list the operator precedence from

highest to lowest. What operators have equal operator precedence?
13. How do parentheses change the order of operator precedence?
14. Are parentheses considered operators?
15. Which of the following expressions have correct syntax?

(a) -+(A*-B) (b) +(A-(B-C))

(c) -(--A+B) (d) -(A+(B-(C-D)))

Basic Arithmetic Operations Chapter 4

16. Why is the statement X = X + 1 illogical in algebra but acceptable as
an assignment statement, X : = X + l, in Pascal?

17. Why is the symbol= used for constant declarations instead of:= ?
18. If we had only the div operator and the mod operator did not exist,

how would you write the proper assignment statements and expressions
to compute the quotient and remainder for an integer number M
divided by another integer number N?

19. What is the difference between the Observe window and the Instant
window?

20. What is meant by the term program library?
21. What is meant by the term function?
22. Without using any of the Pascal arithmetic functions, write valid

Macintosh and THINK Pascal expressions for the following algebraic
expressions:

(a) A+B2

C-4D

(b) AX4 +BX3 +CX2 +DX +1

(c) base *height
2

(d) {[(EX+ F)X + G]X + H}X + 1

23. Write valid assignment statements for the following algebraic identities:

(a)

(b)

(c)

force= mass* acceleration

m*m'
force=G-­r2

h
wavelength=----­

mass *velocity

24. List all the arithmetic functions in Macintosh Pascal.

129

25. Write Pascal assignment statements, using the arithmetic function sqrt for the
following algebraic identities:

(a) _ l ~kl frequency - - /mass
21t

(b) velocity = ~ g * radius

(c) time= 21t~(Lcos(O)/g)

130 Chapter 4 Basic Arithmetic Operations

(d) velocity= ~(Vx 2 + v/)

whereVx is the x velocity and Vy is they velocity

26. Write an assignment statement for converting angle A in degrees into
. angle R in radians.

27. Write an assignment statement for converting angle R in radians into
angle A in degrees.

28. How can the exponentiation operation be performed in Pascal?
29. What special conditions must you consider when using the function ln?
30. Using the ln and exp functions, write assignment statements for the

following two equations:

(a)

(b)

4 3 volume =-1tr
3

. (3 volume) 113
radzus = - ---

4 1t

31. Determine values for the following functions:

(a) round(-3.6) (b) round(0.987)
(c) round(0.4498) (d) trunc(-3.6)
(e) trunc(0.987) (f) round(0.4498)
(g) trunc(54.567) (h) round(54.567)
(i) trunc(pi) (j) round(pi)
(k) 1 + trunc(pi * 100/ 3.0)
(l) 1 + round(pi * 100/ 3.0)

32. What is the range of values for the expression abs (random) ?
33. What is the range of values for the expression

- abs (random)?
34. Write an expression using the function random and the operator mod

for computing a random number between 0 and 100.
35. Write an expression for computing a random number between -1 and

-1000.
36. What are the values for the following expressions?

(a) odd(-56) (b) odd(56) (c) odd (99)
(d) odd(0) (e) odd(2)
(f) odd(l + trunc(pi* 100/ 3.0))

37. Using the functions sin and cos, write an assignment statement for
computing the tangent of an angle.

38. If A is declared as longint and Bis declared as integer, are the
following assignment statements valid?

(a) A:= B; (b) B :=A;

Basic Arithmetic Operations Chapter 4

39. If C is declared real and Dis declared integer, are the following
assignment statements valid?

(a) C := D; (b) D := C;

40. What is the order of operations when the following Pascal expressions
are evaluated?

(a) (A+B)l(AI D-E)+G

(b) (UID+F)/4.0-H

(c) A+BI Al D-E+G

41. Use the sqr function to write Pascal expressions for the following
arithmetic expressions.

(a) (b)

(c) (A+B)2-f' (d) (W2 +2WU+U2)5

(e) AX4 +BX3 +CX2 +DX +I

(t) [A2(B2 + c2 -A2)+ B2(A2 -B2 + C2)+ C2(A2 + B2 - C2)]

42. Using the Instant window, show that ord (succ (X)) is equal to
ord (X) + 1 for some value of X (X can be enumerated,
integer, or char).

43. Using the Instant window, show that ord (pred (X)) is equal to
ord (X) - 1 for some enumerated value of X.

44. Given that pi is a real constant recognized by Macintosh and THINK
Pascal, what is the difference between the execution of the statement
wri teln (pi : 15) and wri teln (pi: 15: 13)?

45. What happens if Macintosh or THINK Pascal attempts to execute the
sqrt function with an argument that is negative? Use the Instant
window to show the result.

46. If arc tan (X) represents angle Y, how can the arc tan function be
used to compute the value of arcs in (X)?

47. If arctan (X) represents angle Y, how can the arctan function be
used to compute the value of arccos (X)?

48. If the tangent of 45° is 1, use the Instant window to check if the value
of tan (arc tan (1)) represents an angle of 45°. If arc tan (1)
represents an angle of 45°, use the Instant window to verify that
arc tan (tan (X)) is equivalent to an angle of TC/ 4 radians.

49. Assuming that a Pascal expression can only be written using the binary
operators * and + , convert the following expressions into Pascal code,
and count the number of multiplications required by each expression.

131

132 Chapter 4 Basic Arithmetic Operations

Which Pascal expression requires more multiplications? How many
additions are required by each Pascal expression?

(a) AX4 +BX3 +CX2 +DX+l

(b) {[{AX+ B)X + C]X + D}X + 1

PROGRAMMING EXERCISES

The following exercises require a basic knowledge of high school algebra and
trigonometry. Since programming sometimes requires the execution of algebraic
expressions and trigonometric functions, the following exercises are introduced to
encourage the writing of short programs as well as the solution of simple problems.

1. Write a Pascal program that will perform the following steps:

(a) Prompt for the volume of a cylinder, and enter a value.
(b) Prompt for the height of a cylinder, and enter a value.
(c) From the formula

Volume_Cylinder = 2 * n * Radius2 * Height,

compute the required radius using the function sqrt.

(d) Display the following values to the Text window: volume
of the cylinder, height of the cylinder, and radius of the
cylinder.

2. The program Triangle can be modified in several ways to explore the
Law of Cosines and to apply functions in expressions. Modify the
program Triangle so that the user can change the angle X by
entering the desired angle from the keyboard.

3. Write a Pascal program that will perform the following steps:

(a) Prompt for the volume of a cone, and enter a value.
(b) Prompt for the height of a cone, and enter a value.
(c) From the formula

Volume_Cone = n * Diameter2 * Height / 12,

compute the required radius using the function sqrt.
(d) Display the following values to the Text window: volume

of the cone, height of the cone, and radius of the cone.

4. Rewrite the program Conversion for converting a Fahrenheit
temperature to Celsius.

Basic Arithmetic Operations Chapter 4

5. Write a program that will prompt the user for angle X, compute the
tangent of X using the functions sin and cos, and display the result
with appropriate headings to the Text window.

6. Write a program that will take an integer number from input and
report whether the number is odd or even.

7. Write a program that will take a real number from input represented
by the variable named X, and compute the arctangent, arcsine, and
arccosine for X. After computing all three values in terms of degrees
rather than radians, display to the Text window the results with
appropriate headings.

8. Assume that it is necessary to compute the value XY, where X is greater
than zero. Since Pascal has no operator for performing exponentiation,
rewrite the expression xY as eY ln (X) . Write a Pascal program that
will prompt for the values of X and Y, and use the functions ln and
exp to compute X raised to the power Y. Assume that X and Y are
real, and that appropriate headings are to be displayed.

9. Write a program that will select a random number greater than or equal
to 1 and then display this number and the natural logarithm of the
number. Include appropriate headings in the display.

10. The common logarithm of a number can be given by the relationship

lnm h o log m = __ w ere m > .
10 lnlO

Write a program that prompts for the value of m, computes the
common logarithm of m using the function ln, and displays the result
using appropriate headings.

11. The following approach can be used to compute the area of a triangle
when only the lengths of the sides are known. Write a Pascal program
necessary to evaluate the following equation:

I

[A2(B2 +c2 -A2)+B2(A2 -B2 +c2)+C2(A2 +B2 -c2)]Z

4

as the area of a triangle, where A , B , and C are the lengths of the sides
of the triangle.

12. The function chr (X) takes the integer value of x and returns the
ASCII character. In Macintosh Pascal the integer value used in
memory to represent the ASCII value of A is 65. The lowercase letter a
is represented by the integer value of 97. Each lowercase letter of
the alphabet is given by the relationship ord (Capi tal_Let ter)
+ 3 2 . Write a Pascal program that prompts for a capital letter A

133

134 Chapter 4 Basic Arithmetic Operations

through z and after the letter has been entered displays the following
two messages along with the appropriate letters: Uppercase
letter: and Lowercase letter:. This program will require the
use of functions chr and ord.

13. Enter the following program. (The while-do loop is discussed in
Chapter 5.) The program computes the predecessor and successor values
of Number, using the Pascal library functions pred and succ. As
you may have noticed, it has no write or wri teln statements for
displaying values. Insert stops at the proper points, and use the Observe
window to monitor the values of Number, Predecessor, and
Successor as the program is executed.

program Pred_Succ(input, output);
{ Purpose: Compute the predecessor and successor values of }
{ Number. }

var
Predecessor, Successor, Number integer;

begin
Number := O;
while true do

begin
{ Compute the predecessor and successor of Number. }

Number := Number + l;
Predecessor := pred(Number);
Successor := succ(Number);

{ Display the values of Predecessor, Number, and Successor }
{ in the Observe window rather than the Text window. }
end;

end.

The exercises that follow require you to write an algorithm and establish a trace table
for validating your algorithm. After you have eliminated all possible errors from your
algorithm, convert your algorithm into a Pascal program and execute it. If any errors
occur, be sure your algorithm is correct before making any changes to your program.

14. (a) Write an algorithm that accepts from input five temperatures
measured at 6 a.m., 9 a.m., 12 n., 3 p.m., and 6 p.m. and then
computes the mean of these five temperatures as the average
daytime temperature. The algorithm will then output mean daytime
temperature and each of the five daytime temperatures.

(b) Trace the algorithm with several examples.
(c) Write a Pascal program for this algorithm, displaying all in­

formation to the Text window.

15. (a) Write an algorithm that will take as input two values: the radius of
a circle and an angle representing a counterclockwise rotation in
degrees from the x axis shown in Figure 4.11, and compute the
point (x , y).

Basic Arithmetic Operations Chapter 4

(b) Trace the algorithm with several examples.
(c) Write a Pascal program to display the point (x, y).

y-axis

(x,y)

(0,0) x-axis

y=rsina

x=rcosa

Figure 4.11 Defining a point on the circumference of a circle in relation to the
radius and angle of rotation.

16. (a) Using the mod function, write an algorithm that prompts the user
for a seven-digit (longint) number, then separates each of the
seven digits, computes the mean of the seven digits, the product of
the seven digits, and a seven-digit (longint) number with all of
the digits reversed. The algorithm then displays the original
number, the mean as a real value, the product as a longint
value, and the number with digits reversed, using appropriate
headings.

(b) Once you have completed the algorithm, construct a trace table, and
trace your algorithm for three different numbers.

(c) Convert your algorithm into a Macintosh Pascal program and test
your program using the input values from part (b).

(d) Use the Observe window to trace the values of variables in your
Pascal program.

135

136 Chapter 4 Basic Arithmetic Operations

17. (a) Using char data types instead of integer data types, write an
algorithm that prompts the user for a seven-digit integer
number, then reads each of the seven digits by assigning each digit
as a character to a variable. The algorithm is then to display the
original number and the number with all digits reversed, using
appropriate headings.

(b) Once you have completed the algorithm, construct a trace table, and
trace your algorithm for three different numbers.

(c) Convert your algorithm into a Macintosh Pascal program, and test
your program using the input values from part (b).

(d) Use the Observe window to trace the values of variables in your
Pascal program.

18. (a) Write an algorithm that will convert a speed given in terms of miles
per hour into feet per second. Have your algorithm also provide a
list of distances traveled in feet over the following time frames: 1
second, 5 seconds, 10 seconds, 15 seconds, 30 seconds, and 1
minute.

(b) Once you have completed the algorithm, construct a trace table, and
trace your algorithm for three different speeds.

(c) Convert your algorithm into a Macintosh Pascal program, and test
your program using the input values from part (b).

(d) Use the Observe window to trace the values of variables in your
Pascal program.

19. (a) Write an algorithm that will take the speed (velocity) of a moving
car and compute the distance traveled in 15 minutes, 30 minutes,
45 minutes, 1 hour, 1 hour 30 minutes, and 2 hours. Assume that
the velocity is represented in terms of miles per hour.

(b) Once you have completed the algorithm, construct a trace table, and
trace your algorithm for three different speeds.

(c) Convert your algorithm into a Macintosh Pascal program, and test
your program using the input values from part (b).

(d) Use the Observe window to trace the values of variables in your
Pascal program.

20. The common logarithm log10 X can be approximated by using the
equation:

where t = (X - 1)/(X + 1), and X must be greater than 0.3162277
and less than 3.162277. Write an algorithm that will prompt for a value
X within the range just specified; then, using both the approximation
and the method from Exercise 10, show that the absolute difference
between these values is less than or equal to 10-7. The following are
values for constants ai. a3, a5, a1, and a9 :

Basic Arithmetic Operations Chapter 4

a 1 =0.868591718
a3 = 0.289335524
a5 = 0.177522071

a7 = 0.094376476
a9 = o .. 191337714

Translate your algorithm into a Pascal program, and execute the
program to verify the statements.

137

Chapter 5

Basic Control Instructions
for Looping and Branching

OBJECTIVES
I

After completing Chapter 5, you will know the following:
1. The Pascal pretest iteration loop command while-do.
2. The Pascal post-test iteration loop repeat-until.
3. The Pascal conditional expressions.
4. Branching in Pascal; the use of the one-way selector, if- then; the two-way

selector, if-then-else; and the multiway selector, the case statement.
5. Nesting of loops by placing loops within loops in a Pascal program.
6. The use of Boolean operators to create compound conditions for use in branching

statements.
7. The use of the for statement as an iteration statement controlled by a simple

counter.

5.1 PROBLEM ANALYSIS AND TRACING

138

Before developing an algorithm and converting it into a computer program, one should
always analyze the problem. The following briefly reviews the steps for this analysis:

1. Provide a precise definition of the problem.
2. Determine whether the problem has already been solved.
3. List all of the information required as input.
4. List all of the information required as output.
5. Begin with an initial set of steps as a first approximation of

a solution.

Basic Control Instructions Chapter 5 139

6. Refine the steps, so they are precise and explicit.
7. Trace each step of the solution with known information.

The result of this process is an algorithm defining a finite number of unambiguous
steps to the solution of a problem. Once the algorithm has been translated into a specific
Pascal program, it should always be tested to determine if it provides correct output. As
you learned in Chapter 4, specific output from a program can be checked relative to
specific input(s) through the use of a trace table, an Observe window, and the inclusion of
write statements. Every Pascal program should produce correct output for proper input
data. The algorithm and its equivalent Pascal program should also be able to identify and
reject improper input data if it occurs.

This chapter introduces the basic principles of programming with loops and branches,
the Pascal commands for implementing these principles, and how they are applied to
developing structured algorithms and programs. We emphasize the repeat-until
and while-do commands because they require thinking in terms of the properties of
loops. The branching constructs if-then, if-then-else, and case are
examined during a discussion of one-way, two-way, and multiway selection. In relation to
these loop and selection processes, conditional expressions are introduced and represented
through relational and Boolean expressions. The for command, an additional loop
statement, is presented as a command for controlling loops where simple counters are
required. We compare various loop commands in later sections of the chapter.

5.2 CONTROL STRUCTURES FOR. LOOPS

A loop represents a segment of an algorithm or program designed to be executed
repeatedly. It reduces the length of an algorithm or program by allowing statements to be
reused rather than rewriting them several times. A loop begins with the execution of an
initial statement followed by other executable statements, and eventually returns to the
initial statement. Every loop must be capable of terminating either before execution or
after execution has been completed. Termination of a loop depends on a specified
condition or test.

Applications of loops depend on the specific problem being solved and how the
algorithm is to be implemented. Loops have one important purpose: they iterate the
execution of a statement or a group of statements. Without the loop, a programmer would
have to write repetitive code-an inefficient use of time and energy.

There are three basic types of loops: pretest iteration loops (while-do), post-test
iteration loops (repeat-until), and in-test iteration loops. These types differ only
with respect to where a test is applied to terminate execution of the loop. In this chapter
we examine only the pretest and post-test iteration loops, because Pascal does not support
any control construct for an in-test iteration loop. The syntax that follows describes
pretest and post-test iteration loops:

while condition do
{ body of pretest iteration

loop }

repeat
{ body of post-test

iteration loop
until condition

Flow diagrams providing semantic meaning for both control constructs are shown in
Figure 5.1.

140

Initialize
Control Variable(s)

False

Body

Pretest Iteration

Chapter 5 Basic Control Instructions

Initialize
Control Variable(s)

Body

False

True

Post-test Iteration

Figure 5.1 Flow diagrams for the pretest iteration (while-do) and post-test iteration
(repeat-until) loops.

5.2.1 Pretest. Iteration Loops

In pretest iteration, the condition is tested first, and if the condition is true, the body of
the loop is executed. On returning to the beginning of the pretest loop, the condition is
again tested, and if it is true, the body of the loop is executed again; if the condition is
false, execution of the loop is terminated.

In Pascal the pretest iteration loop is represented by the following syntax:

while condition do
statement ;

Often referred to as the while-do control construct, both the words while and do
are reserved and must be used only within the context of writing a loop. For example,
consider the program titled Simple_Loop in Figure 5.2. As you can see, this program
begins execution by assigning an initial value of 1 to a variable called Counter. When

Basic Control Instructions Chapter 5 141

the while-do statement is executed, the condition Counter <= 10 (Counter
less than or equal to 10) is tested. Because the value of Counter is initially 1, the test
is true and the body of the loop is executed.

Simple Loop

program Simple_Loop(input, output); Te Ht
{ This program demonstrates the } 26472 162.702
{while-do loop. } 15445 124.278

var 4748 68.906
Counter, Number : integer; 9246 96.156

begin 11085 105.285
Counter:= 1;

while Counter<= 10 do I-

~
begin

Number := abs(random);
writeln(Number, sqrt(Number) 8 3);

Counter := Counter + 1;
end

~Obserue end.

6 Counter [Q
expression

~ • mmmm~mmmmmmmmmmmmmm~m~Il2J ~

Figure 5.2 A simple example of a while-do loop.

In this example the body of the loop contains three statements. The first chooses a
random number using the library function random. The library function abs forces the
value of the random number to be positive. The second statement displays the value of
the random number and the square root using the library function sqrt. Because the
variable Counter controls the number of times that the body is executed, its value is
modified by execution of the assignment statement

Counter := Counter + l;

By using the Observe window and a strategically inserted stop, you can trace the
values of the control variable as the loop is executed. Without the presence of the
assignment statement for incrementing the value of the Counter by 1, the value for
Counter would remain unchanged, and the value of the condition Condi ti on <= 10
would always be true . This would result in the loop continuing to execute forever, unless
you choose the option Pause from the menu bar (or, in the case of THINK Pascal, you
click the spray can).

142 Chapter 5 Basic Control Instructions

You should also understand that the body of the while-do loop may never be
executed if the condition is false when first evaluated. For instance, if we had typed

Counter := 11;

nothing would be displayed in the Text window, because the condition Counter<= 10
would be false, and the loop would not execute.

As a second example, let us develop an algorithm where a set of positive numbers is
to be entered from the keyboard and summed. When a negative value is entered, the
algorithm stops summing and computes the average value by dividing the sum of the
positive numbers entered by a total count. Only one input and one output are required: the
next number to be read from the keyboard and the average value of all positive numbers,
respectively. Here are the steps necessary for computing the sum and average:

Algorithm Average_Input;
begin
{ Initialize two variables: Partial_Sum and Total_Count. }

Partial_Sum <-- 0.0;
Total_Count <-- O;

{ Prompt the user to enter the first number from the keyboard. }
write ('Enter your first number: ');
read (Number) ;

{ Continue to enter numbers and compute partial sums while the
value of Number is positive. }

while { Number is positive } do
begin

Partial_Sum <-- Partial_Sum + Number;
Total Count <-- Total_Count + l;

{ Enter next number from the keyboard. }
write ('Enter your next number: ');
read (Number);

end;
{ Compute the average value. }

Average <-- Partial_Sum I Total_Count;
{ Display the average value. }

end.
write (' Average value: ' Average)

In this algorithm, Total_Count is an integer type, and the remaining variables are
real. Figure 5.3 shows a trace table for the algorithm Average_Inpu t. Each step
represents the execution of either an assignment statement or a test for the condition
Number is positive . Placing an explicit column in the table for any condition
helps us to understand when a condition succeeds or fails as the algorithm is being traced.
The next program shows the Pascal code for executing this particular algorithm.

program Average_Input(input, output);
{ Purpose: This program computes the average value of positive }
{ numbers entered from the keyboard. }

var
Number, Average, Partial_Sum real;
Total_Count integer;

Basic Control Instructions Chapter 5

begin
ShowText;

{ Initialize two special control variables: Partial_Sum and }
{ Total_Count. }

Partial_Sum := 0.0;
Total_Count := O;

Prompt the user for entering the first number from the }
keyboard. }
write('Enter your first number: ');
readln(Number);

{ Continue to enter numbers while they are positive. }
while Number >= 0 do

begin
Partial_Sum := Partial_Sum + Number;
Total_Count .- Total_Count + 1;
write('Enter your next number: ');
readln(Number);

end;
{ Compute the average value. }

Average := Partial_Sum/ Total_Count;
{ Display the average value. }

wri teln (' Average value: ' Average: 10: 3
end.

Test If
Number

Step Number Is Positive Partial_Sum Total_Count Average

-~1-----~-----~-----------0.0--------~-~--~-------------~

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

4.2

3.8

5.2

-5

True

True

True

False

0

4.2
1

8.0
2

13.2
3

4.4

Figure 5.3 Trace table for the algorithm Average_Input.

143

In Pascal the body of a while-do loop can be a simple assignment statement, a
read statement, a write statement, another while-do statement, a repeat­
until statement, a branching statement, or a compound statement. If the body of a
while-do loop is to have several statements, the following syntax is necessary:

144 Chapter 5 Basic Control Instructions

while condition do
begin

statement1;
statemE;!nt2;

statementn
end;

Any statements nested within a pair of begin-end brackets are referred to as a
compound statement. Note that in Pascal a semicolon does not have to precede an end.
Without the begin-end brackets to make a compound statement, only the first
statement in a group of statements is the body of the loop. For example, if we had
written the following code for the loop in Average_Input,

while Number >= 0 do
Partial_Sum := Partial_Sum + Number;

Total_Count := Total_Count + 1;
write('Enter your next number: ');
readln(Number);

only the first statement, Partial_Sum: = Partial_Sum + Number, would be
executed as the body of the loop. The remaining statements would not be executed,
because a new value for Number could not be entered, and the condition Number >= 0
(Number greater than or equal to zero) would always be true, because the initial value
would never change. The best advice when writing the body of a while-do loop is
always to use a compound statement. This helps to avoid any confusion when adding or
deleting statements from the body of a loop.

5.2.2 Post-test Iteration Loops

In the post-test iteration loop, the body of the loop is executed before the condition is
tested. At the end of the loop, if the condition is false, execution of the body of the loop
is repeated. In Pascal the repeat-until loop has the following syntax:

repeat
statement1;
statement2;

statementn;
until condition;

Notice that a compound statement is not required when the body of the loop has
several statements in sequence. A compound statement does not change the semantic
meaning of the program during execution. In the program Average_Input, the
following repeat-until loop can be used in place of the while-do loop:

repeat

Basic Control Instructions Chapter 5

Partial_Sum := Partial_Sum + Number;
Total_Count := Total_Count + 1;
write('Enter your next number: ');
readln(Number);

until Number < 0 ;

145

As you can see, the primary difference between while-do and repeat­
until is in the position of the condition. In the repeat-until loop, the body
of the loop is executed at least once before the condition is tested. In the while-do
loop, the condition is tested first, and if it is initially false, the body of the loop will not
be executed.

When writing loops, it is important that you remember the following basic rules:

1. What represents the body of a loop? What are the steps that require
repeated execution when the loop is employed? If you cannot answer
these questions, further problem analysis is required.

2. What test or condition will allow the loop to continue execution? Where
is the test to be performed? You must understand the condition for
terminating loop execution and where the test is to be positioned. In
some instances we may want the body of the loop to be executed at
least once; in other cases we may not want the body of the loop to be
executed at all if a condition is not met.

3. Every loop requires at least one variable for control. In some cases
several variables can control the number of times the body of a loop is
executed. In our example Average_Input, there is only one control
variable, named Number. As long as the value of Number remains
positive, the body of the loop is executed.

4. In the body of the loop, one or more statements can modify the control
variable. In our example, Simple_Loop, the control variable
Counter is modified by an assignment statement in which the value
of Counter is incremented by 1. In Average_Input, the read
statement modifies the value of the control variable Number, allowing
the user to enter a new value from the keyboard. Entry of a negative
value terminates the execution of the loop. As you can see from
Average_Input, not all loops are controlled by counters.

5. The control variable may be required to have an initial value before
entering the body of a loop. In Simple_Loop, this step is performed
by an assignment statement. In Average_Input, an initial value for
Number is necessary before the partial sum can be computed.

When writing loops, keep these rules in mind. Failure to observe them can lead to an
unsuccessful program.

5.3 CONDITIONAL EXPRESSIONS

The conditions or tests in Pascal are often referred to as conditional expressions. When
evaluated, a conditional expression will have either the Boolean value true or the
Boolean value false. Conditional expressions, like the arithmetic expressions discussed
in Chapter 4, have specific operators and operands. Two sets of operators can be used in
conditional expressions: relational and Boolean (logical).

146 Chapter 5 Basic Control Instructions

In Pascal a relational expression is represented by the following syntax:

operand relational operator operand

The values of the left and right operands must be type-compatible. If they are not, a
syntax error results in THINK Pascal, and an execution error in Macintosh Pascal.

Figure 5.4 shows the relational operators, their meanings, and the required operand
types. The result of a relational expression is always Boolean; that is, a relational
expression will always evaluate to a Boolean value that is either true or false. In
relation to the arithmetic operators, relational operators have the lowest operator
precedence and are executed last. This means that operands that are arithmetic expressions
will be evaluated before the relationship is tested. Keep in mind that a relational
expression can only have a single relational operator. For example, the expression

A + B <= C - G I H

is syntactically correct, whereas the expression

A <> B = C < D

is syntactically incorrect. Along with the relational operators, there are three Boolean
operators: not, and, and or. These three operators are discussed at length in Section
5.6.

Operator Operation Operand Types Type of Result

= Equal Compatible simple types,
pointer, set, String,

<> Not equal packed-string types

< Less than
> Greater than

<= Less than or equal Compatible simple types, Boolean
String and packed-

string types (true or false)
>= Greater than or equal

<= Subset of
>= Superset of Compatible set types

in Member of Compatible set types

Figure 5.4 The relational operators and their types.

Figure 5.5 shows all of the operators and their precedence level. The Boolean operator
not, which negates a Boolean value (changes the truth value of its argument), has the
highest operator precedence. The Boolean operator and has an operator precedence equal
to the "multiplying" operators, and the Boolean operator or has precedence equal to the

Basic Control Instructions Chapter 5 147

"adding" operators. Notice that the relational operators have the lowest operator
precedence. The @operator is used with pointers, and its use is discussed in Chapter 12.
The operator in is used only with "set" operands.

Operators Level of Precedence

@,not 1 (highest)

* I, div, mod, and 2 I

+, -, or 3

=1 <>I <, >, <=1 >=,in 4 . (lowestl_

Figure 5.5 Operator precedence for arithmetic, Boolean, and relational operators.

5.4 CONTROL STRUCTURES FOR BRANCHING

5.4.1 The One-Way Selector

When writing an algorithm, you may wish to test a condition in order to determine the
flow of execution. For example, suppose a commission of $50 will be paid to a
salesperson having gross sales above $2500, and a $100 commission will be paid for
gross sales above $5000. This situation requires that we test if gross sales are above
$2500 and then test if gross sales are above $5000. If either test fails, the salesperson
receives no commission.

There are three basic branching commands for developing an algorithm: if-then,
if-then-else, and case. The if-then statement has the following syntax
in Pascal:

if condition then
statement;

where statement can be a read, readln, wri teln, or a write statement, an
assignment statement, a compound statement, a command for looping, or even another
branching statement. This statement is often referred to as the then clause. When this
branching command is executed, the condition is tested and, if true, the Pascal system
branches to the then clause and continues execution. After completing execution of the
then clause, the Pascal system continues execution with the statement following the
then clause. If the condition fails, the Pascal system jumps to the statement following
the then clause and continues execution. This type of branching command is often
referred to as a one-way selector, because only one selection can be made ifthe condition
is true.

As an example, we can compute the salesperson's commission in the situation
described above with the following steps:

Commission := 0.0;
if Gross_Sales > 2500 then

148 Chapter 5 Basic Control Instructions

Commission := 50.0;
if Gross_Sales > 5000 then

Commission := Commission + 50.0;

As you can see, the variable Commission is initially assigned a value of zero. The
first if-then command is executed by testing the condition Gross_Sales >
2 500. If this condition is true, the value of Commission is assigned a value of 50.0;
otherwise, the value for Commission remains unchanged. Whether the first condition is
true or false, the second if - then command is executed by first testing the condition
Gross_Sales > 5000. If this condition is true, the present value of Commission
is incremented by 50.0; otherwise, the value for Commission remains unchanged.

We can save some steps during execution if we note that the second test will not be
performed if the first step fails. We can save the step of the second test (but only if the
first step fails) by nesting the second if -then command within the then clause of
the first if-then command. The following statements show these steps:

Commission := 0.0;
if Gross_Sales > 2500 then

begin
Commission := 50.0;
if Gross_Sales > 5000 then

Commission := Commission + 50.0;
end;

In these steps, the then clause of the outer if-then command is represented by
a compound statement composed of an assignment statement and another if - then
command. If the first condition fails, the then clause for the outer if -then
command is never executed. If true, the value of Commission is modified, and the
second if-then statement is executed. The latter statements are preferred when writing
a well-structured algorithm, because if Gross_Sales is less than $2500, it is only
logical that we need not test whether the value of Gross_Sales is greater than $5000.

5.4.2 The Two-Way Selector

The branching command if-then-else is referred to as a two-way selector. Here is
the Pascal syntax for this command:

if condition then
staternent1

else
staternent2 ;

where either statement can be a read, readln, write, or a wri teln statement, an
assignment statement, a compound statement, a looping command, or another branching
command. In Pascal both the if-then and if-then-else commands end with
a semicolon. It is syntactically incorrect to place a semicolon before the keyword else.
For the two-way selector just shown, staternent1 is referred to as the then clause and
staternent2 as the else clause. When executed, the condition is tested and, if true, the
Pascal system branches to stat ernen t 1 to continue execution. If the condition fails,

Basic Control Instructions Chapter 5 149

the Pascal system branches to statement 2 , the else statement, to continue
execution. After either the then clause or the else clause has been executed, the
Pascal system continues execution with the statement following the if -then­
else.

The following program applies two-way selection. In this program the Boolean
variable Test is assigned a value true ifthe random number is found to be odd andfalse
if even. If the variable Test is true , the values of the variable Index are displayed in
ascending order; otherwise, they are displayed in descending order.

program Two_Way_Selection(input, output);
{ Purpose: This program is a demonstration of using a two-way }
{ selector where the then clauses and else clauses are }
{ represented by compound statements. }

var
Test : Boolean;
Index : integer;

begin
ShowText;
writeln(' This is a test of two-way selection. ');
writeln(' Program will show option selected. ');
writeln;
writeln('First Pass.');
Test := odd(random);
if Test then { random number is odd }

begin
writeln('Test is: ',Test, ' First Option.');

{ Display values of Index starting at 1 and ascending to }
{ a value of 10. }

Index := 1;
repeat

write(index: 4);
Index := Index + l;

until Index > 10;
writeln;

end
else { random number is even }

begin
writeln('Test is: ', Test, ' Second Option.');

{ Display values of Index starting at 10 and descending }
{ to a value of 1. }

Index := 10;
repeat

write(Index: 4);
Index := Index - 1;

until Index = 0;
writeln;

end;
writeln;
writeln('Second Pass');
Test:= odd(random);

150

if

Chapter 5 Basic Control Instructions

Test then { random number is odd }
begin

writeln('Test is: ', Test, '
{ Display values of Index starting
{ to a value of 20. }

Index := 11;
repeat

write(Index: 4);
Index := Index + l;

until Index > 20;
writeln;

end

First Option.');
at 11 and ascending }

else { random number is even }
begin

writeln('Test is: ',Test, ' -- Second Option.');
{ Display values of Index starting at 20 and descending }
{ to a value of 11. }

end;

Index := 20;
repeat

write(Index: 4);
Index := Index - l;

until Index < 11;
writeln;

end.

We can perform a trace of this program with the assistance of the program output
shown in Figure 5.6 It is clear from this figure how compound statements can be used to
create blocks of statements for execution in an if-then-else construct.

This is a test of two-way selection.
Program will show option selected.

First Option
First Pass.
Test is true

1 2 3 4 5 6 7 8

Second Pass
Test is: False

20 19 18 17
Second Option.
16 15 14 13

9

12

10

11

Figure 5.6 Program output from Two_Way_Selection.

As an additional example, consider an algorithm for counting the number of partisan
votes in a group of Democrats and Republicans. When executing, this program will ask
the user to enter 1 for a Democratic vote and 2 for a Republican vote. If the number
entered is neither 1 nor 2, the algorithm will respond with the message VOTER FRAUD !
As each vote is cast, the algorithm will count the number of Democratic and Republican

Basic Control Instructions Chapter 5 151

votes as well as the total number of votes. After a vote is cast, the user will be asked if
he or she wishes to enter another vote with the prompt Press C to continue, Q
to Quit. If the response is not the character C, the algorithm stops counting votes and
displays a short report on the percentage of votes cast. If any fraudulent votes have been
cast, the algorithm will also display the percentage of fraudulent votes. Input to our
algorithm will be a vote entered from the keyboard, and output will be the percentage of
Democratic votes, percentage of Republican votes, and percentage of fraudulent votes.

Here are the initial steps in solving our problem:

1. Initialize the three counters to zero: Democratic_Votes,
Republican_ Votes, and Total_ Votes.

2. Repeat entering a vote, checking to see if the vote is Democratic,
Republican, or fraudulent, until the response to the prompt is not the
character c.

3. Compute the percentage of Democratic, Republican, and fraudulent
votes.

4. Display the percentage of Democratic, Republican, and (if any)
fraudulent votes.

Here is a refinement of our algorithm with a list of variables:

Algorithm Vote_Counter;
{ List of variables:

begin

Democratic_Votes, Republican_Votes, Total_Votes, Vote
integer

Percentage_Democrats, Percentage_Republicans,
Percentage_Fraudulents : real
Response : Char }

{ Initialize three counters: Democratic_Votes, Republican_Votes,
and Total_Votes. }

Democratic_Votes <-- O; Republican_Votes <-- O;
Total_Votes <-- O;

{ Repeat entering a vote, checking to see if the vote is
Democratic, Republican, or fraudulent, and continue this until
the response to continue voting is not the character 'C'. }

repeat
{ Prompt the user for the next vote. }

write('Please enter the next vote. ');
{ Prompt the user for either a Democratic or Republican vote

by typing 1 for Democratic, 2 for Republican.
read(Vote);

{ Count the number of Democratic and Republican votes. }
if Vote = 1 then

Democratic_Votes <-- Democratic_Votes + 1
else

if Vote = 2 then
Republican_Votes <-- Republican_Votes + 1

else
write ('VOTER FRAUD! ') ;

Modify the variable Total_Votes. }

152 Chapter 5 Basic Control Instructions

Total_Votes <-- Total_Votes + 1;
write(' Press C to continue, Q to quit: ');
read(Response);

until Response<> 'C';
{ Compute the percentage of Democratic and Republican votes

multiplied by a scaling factor of 100. }
Percentage_Democrats <-- (Democratic_Votes * 100) I

Total_Votes;
Percentage_Republicans <-- (Republican_Votes * 100) I

Total_Votes;
Percentage_Fraudulents<-- 100.0 - (Percentage_Democrats +

Percentage_Republicans);
Display the percentage of Democratic, Republican, and, if
any, fraudulent votes. }
write(Percentage_Democrats);
write(Percentage_Republicans);
If Percentage_Fraudulents > 0.0 then

write(Percentage_Fraudulents);
end.

Here is the Pascal program Vote_Counter:

program Vote_Counter(input, output);
{ Purpose: This example Illustrates the application of a }
{ one-way selection, a two-way selection process, and }
{ the application of a repeat-until loop. }

con st
Scale = 100;

var
Democratic_Votes, Republican_Votes: integer;
Total_Votes, Vote : integer;
Percentage_Democrats, Percentage_Republicans real;
Percentage_Fraudulents : real;
Response : Char;

begin
ShowText;

{ Initialize three counters: Democratic_Votes, Republican_Votes, }
{ and Total_Votes. }

Democratic_Votes := O;
Republican_Votes := O;
Total_Votes := O;

{ Repeat entering a vote, checking to see if the vote is }
{ Democratic, Republican, or fraudulent, and continue this }
{ until the response to the prompt is not the }
{ character 'C'. }

repeat
{ Prompt the user for the next vote. }

writeln;
write ('Please enter the next vote.');
writeln(' Type "l"<cr> for a Democratic vote, ');
write(' "2"<cr> for a Republican vote. ');

Basic Control Instructions Chapter 5

readln(Vote);
{ Count the number of Democratic and Republican votes. }

if Vote = 1 then
Democratic_Votes := Democratic_Votes + 1

else
if Vote = 2 then

Republican_Votes := Republican_Votes + 1
else

begin
writeln;
write ('VOTER FRAUD! ') ;
writeln

end;
{ Modify the variable Total Votes.
Total_Votes := Total_Votes + 1;
writeln;
write(' Press C to continue, Q to quit: ');
read(Response);
writeln;

until Response<> 'C';
Compute the percentage of Democratic and Republican votes.

Percentage_Democrats := (Democratic_Votes * Scale) I
Total_Votes;

Percentage_Republicans .- (Republican_Votes * Scale) I
Total_Votes;

Percentage_Fraudulents .- 100.0 - (Percentage_Democrats +
Percentage_Republicans);

{ Clear the Text window with command Page. Display percentage }
{ of Democratic, Republican, and any fraudulent votes. }

Page;
writeln(' Report on the election results: ');
writeln;

153

writeln ('Democratic Votes: ',Percentage_Democrats:4:2,' %');
writeln ('Republican Votes: ',Percentage_Republicans:4:2,' %');
if Percentage_Fraudulents > 0.0 then

end.
writeln('Fraudulent Votes: ',Percentage_Fraudulents:4:2, '%')

Before ending our discussion of this example, we should mention two minor points.
First, we used a read statement instead of a readln statement to enter a value for
Response. We then followed with a wri teln statement. This approach allows a
single character to be entered from the keyboard without having to press the Return
key. The wri teln statement terminates the print line displayed to the Text window.
Second, the special library routine Page is used to clear the Text window of any
previously displayed text before displaying any new text.

154 Chapter 5 Basic Control Instructions

5.4.3 Multiway Selection

The third type of branch command is the case command, which allows multiway
selection, beyond that allowed by the two-way selector. In Pascal the case command is
represented by the following syntax:

case expression of
label1 statement1
label2 statement2

labeln statementn
otherwise

statement
end;

Here are the special rules for using the case command.

1. The expression, sometimes referred to as a selector, can be of a standard
ordinal type, such as an integer, char, or Boolean; an
enumerated type; or a subrange type. It cannot be a longint
type or a re a 1 type, because an enumerated set of reals is
uncountable.

2. The labels, sometimes referred to as case constants, must be type­
compatible with the selector.

3. Although case labels must be distinct, they do not have to be ordered.
4. A case constant can be represented by a list of labels, separated by

commas.
5. Statements following the labels can be read, readln, write,

wr i teln, assignment, compound, branching, or loop constructs.
6. The term otherwise followed by a statement is referred to as the

otherwise clause.
7. When the case statement is executed, the selector is evaluated, and if

one of the labels has a value equal to that of the selector, the Pascal
system branches to that label and continues by executing the
corresponding statement. If no label exists with a value equal to that of
the selector, the Pascal system branches to the otherwise clause
and executes the corresponding statement.

8. With Macintosh Pascal an execution error will occur, halting the
program, if there is no label with a value equal to that of the selector
and the otherwise statement is missing.

9. A case statement must end with the reserved word end followed by
a semicolon.

The following examples illustrate some applications of the case statement:

Background := abs(random } mod 5;

Basic Control Instructions Chapter 5 155

case Background of
0
1
2
3
4

end;

Pat := white;
Pat := black;
Pat := gray;
Pat .- ltgray;
Pat .- dkgray;

The otherwise clause is not necessary in this example, because the value of the
selector, Background, will always have a remainder in the range 0 through 4 from
execution of the mod operator.

case Selector of
IS I

'c'
Value
Value

:=
:=

sin(
cos(

Angle) ;
Angle) ;

't' Value := sin(Angle)/cos(Angle);
otherwise

Value :; (exp(Angle) + exp(-Angle)) I 2
end;

In this example, the selector is a char type and, when evaluated, will cause the
case statement to branch to either label ' s ', 'c ', or 't' if equal to one of the
three, and to the otherwise clause if not.

read (Letter) ;
case Letter of

'a', 'e', 1 i 1 , 1 0 1 , 'u'
'A', 'E', 'I', '0', 'U'

otherwise
{ null statement }

end;

Vowel_Count :; Vowel_Count + 1;
Vowel_Count .- Vowel_Count + 1;

In this last example, Letter is assumed to be of type char. If the value of this
selector is neither an uppercase nor lowercase vowel, the otherwise clause is
evaluated. Not having this otherwise clause could result in an error at execution
time for Macintosh Pascal.

The case statement i~ 'Ometimes convenient for performing table lookups; for
example, consider the following problem. The Zeta-Data Merchant Company sells many
Brand X products to customers who prefer to buy Brand X. The president of Zeta-Data has
decided to use the Macintosh for computing the total cost for any customer buying a
quantity of Brand X. The unit price of Brand X appears in the table shown below.

The sales tax charged to each customer is 5% of the cost of the items, with a
shipping charge of $3 if the quantity ordered is less than 300 units. There is no shipping
charge if the quantity ordered is greater than 299.

Before defining an algorithm, let us consider how we can use a case statement to
determine the proper unit price for computing the cost. If we represent each entry in the
table by a row number, starting with 1 and ending with 6, we can define a selector that,
when given the quantity of the order, can provide a value that is 1, 2, 3, 4, 5, or greater.

156 Chapter 5 Basic Control Instructions

Quanti_!r of Brand X Unit_E._rice
1-99 0.97

100-199 0.91
200-299 0.85
300-399 0.75
400-499 0.67
500+ 0.51

One approach is to let the selector use the expression {Quantity_Ordered
div 100) + 1. Notice that if the quantity ordered is less than 100, the value of this
expression is 1, because the value ofQuantity_Ordered div 100 isO. If the
quantity ordered is between 100 and 199, the value of the expression is 2, because the
value ofQuantity_Ordered div 100 now evaluates to 1.

Here is an algorithm for this problem:

Algorithm Table_Lookup;
begin

ShowText; {Display the text window }
{ 1. Prompt the user for quantity ordered.

write{ ' Quantity ordered: ');
read{ Quantity_Ordered);

{ 2. Check that quantity ordered is greater then zero. }
while Quantity_Ordered <= 0 do

begin
{ Display message indicating improper data. }

write {' *******IMPROPER DATA -PLEASE REENTER******');
write { ' Quantity ordered: ');
read{ Quantity_Ordered)

end;
{ 3. Perform a table lookup to compute cost. }

case { Quantity_Ordered div 100) + 1 of
1 Unit_Price <-- 0.97;
2 Unit_Price <-- 0.91;
3 Unit_Price <-- 0.85;
4 Unit_Price <-- 0.75;
5 Unit_Price <-- 0.67;
otherwise Unit_Price <-- 0.51

end;
{ 4. Compute total cost of purchase. }

Cost <-- Quantity_Ordered * Unit_Price;
Sales_Tax <-- Cost * .05;
Shipping_Cost <-- 0.00;
If Quantity_Ordered < 300 then

Shipping_Cost <-- 3.00;
Total_Cost <-- Cost + Sales_Tax + Shipping_Cost;

{ 5. Report total cost for billing customer. }
write(Cost, Sales_Tax, Shipping_Cost, Total_Cost

end.

Basic Control Instructions Chapter 5 157

In this algorithm the variables Cost, Sales_Tax, Total_Cost, and
Uni t_Price are real, and Quan ti ty_Ordered is of type integer. The
program based on this algorithm follows. Added expressions are included in wri teln
statements to enhance the display of information to the Text window.

program Table_Lookup(input, output);
{ Purpose: This program computes the unit price of items sold, }
{ including sales tax and shipping cost. }

var
Quantity_Ordered, Counter : integer;
Cost,Sales_Tax,Shipping_Cost,Total_Cost,Unit_Price real;

begin
ShowText;

Prompt the user for quantity ordered.
write(' Quantity ordered: ');
readln(Quantity_Ordered);
writeln;

Check that quantity ordered is greater then zero. }
while Quantity_Ordered <= 0 do

begin
{ Display message indicating improper data. }

write(' *******IMPROPER DATA - PLEASE REENTER******');
writeln;
write(' Quantity ordered: ');
readln(Quantity_Ordered);
writeln;

end;
Perform a table lookup to compute cost. }

case (Quantity_Ordered div 100) + 1 of
1 Unit_Price .- 0.97;
2 Unit_Price .- 0.91;
3 Unit_Price .- 0.85;
4 Unit_Price .- 0.75;
5 Unit_Price .- 0.67;
otherwise

Unit_Price .- 0.51
end;

Compute total cost of purchase. }
Cost := Quantity_Ordered * Unit_Price;
Sales_Tax :=Cost * 0.05;
Shipping_Cost := 0.00;
if Quantity_Ordered < 300 then

Shipping_Cost := 3.00;
Total_Cost := Cost + Sales Tax + Shipping_Cost;

Report total cost for billing customer. }
Counter : = 1;
while Counter <= 30 do

begin
write (' - ');
Counter := Counter + 1

end;

158 Chapter 5 Basic Control Instructions

writeln;
writeln(' Cost of items Cost : 10 : 2);
writeln(' Sales tax~- Sales_Tax: 10 : 2);
writeln(' Shipping cost Shipping_Cost : 10 : 2);
writeln(' ');
writeln(' Total cost_: $', Total_Cost : 10 : 2);
writeln;
Counter := 1;
while Counter <= 30 do

begin
write (' - ');
Counter := Counter + 1

end;
end.

Could this program be written without a case statement? The answer is yes, by
using a series of nested if-then-else statements. For example, if we know that
the quantity ordered is greater than zero, we can specify that if the quantity ordered is
less than 100, the unit price is 97 cents; else if the quantity ordered is less than
200, the unit price is 91 cents; else if the quantity ordered is less than 300, the unit
price is 85 cents; else if the quantity ordered is less than 400, the unit price is 75
cents; else if the quantity ordered is less than 500, the unit price is 67 cents; else
the unit price is 51 cents, because at this point the quantity ordered must be greater than
499. The Pascal code that could replace the case statement in the program
Table_Lookup follows:

if Quantity_Ordered < 100 then
Unit_Price := 0.97

else
if Quantity_Ordered < 200 then

Unit_Price := 0.91
else

if Quantity_Ordered < 300
Unit_Price := 0.85

then

else
if Quantity_Ordered < 400

Unit_Price := 0.75
else

then

if Quantity_Ordered < 500 then
Unit_Price := 0.67

else
Unit_Price := 0.51;

Sometimes a Pascal program involving nested if-then-else statements gives
rise to syntactic ambiguity. For example, does the statement

if condition1 then
if condition2 then

statement1

else statement2 ;

Basic Control Instructions Chapter 5 159

mean that the else clause with statement 2 is attached to if condition1

then, or to if condi tion2 then? In Pascal the rule states that the last else
clause must always be attached to the closest if -then. This means that
statement 2 above serves as an else clause for if condition2 then. A
clearer way of saying this is

if condition1 then
begin

if condition2 then
statement1

else statement2

end;

The following Pascal code represents the case where the else clause is attached to
the first if-then:

if condition1 then
begin

if condition2 then
statement1

end
else statement2 ;

You should use compound statements to help you understand the nesting levels of
both branching and looping commands. In some instances, compound statements are
necessary.

5.5 NESTED LOOPS

A pretest or post-test loop can be placed within the body of another loop. Consider the
following example:

N := l;
while N <= 10 do

begin
J := l;
repeat

writeln(J, sqr(J), sqrt(J));
J := J + l;

until J > N;
N := N+ 1

end;

In this example, the variable N controls the outside loop represented by the
while-do construct. The body of this outside loop is composed of three statements:
an assignment statement initializing the control variable J to 1, a repeat-until
construct, and a second assignment statement incrementing the value of the control

160 Chapter 5 Basic Control Instructions

variable N. The inner loop represented by the repeat-until construct is executed
N times for each execution of the outside loop.

As a second example, consider the following code for trapping a vote that is neither
Democratic nor Republican:

repeat
{ Prompt the user for the next vote. }

repeat;
repeat;

writeln;
write ('Please enter the next vote.');
wri teln (' Type "1" <cr> for a Democratic vote, ') ;
write(' "2"<cr> for a Republican vote. ');
readln(Vote);

until Vote > O;
until Vote <3;

Count the number of Democratic and Republican votes. }
if Vote = 1 then

Democratic_Votes <-- Democratic_Votes + 1
else

if Vote = 2 then
Republican_Votes <-- Republican_Votes + 1;

{ Modify the variable Total_Votes. }
Total_Votes <-- Total_Votes + 1;
writeln;
write (' Press C to continue, Q to quit: ');
readln (Response);

until Response<> 'C';

Notice that the innermost nested repeat-until loop having the condition
Vote > 0 traps a fraudulent vote if the value entered is less than or equal to zero, and
the outer nested repeat-until loop having the condition Vote < 3 traps
execution if the value of Vote is greater than or equal to 3. Though we can nest loops in
a variety of ways, the structure of the loops used here can trap inappropriate input that
would otherwise disable or crash the program. Computing the percentage of fraudulent
votes and reporting these results in the program Vote_Counter is no longer necessary,
so we can remove all references to variables or statements involving fraudulent votes.

5.6 BOOLEAN OPERATORS AND COMPOUND CONDITIONS

In addition to relational operators, Pascal supports Boolean operators for constructing
complex Boolean expressions. We can often use Boolean operators to construct
compound conditionals in which we need to test two or more conditions.

Figure 5.7 shows the three Boolean operators supported in THINK and Macintosh
Pascal. Boolean operators can only be used in expressions that will return a Boolean
value, that is, a value of either true or false.

Basic Control Instructions Chapter 5 161

Operator Operation Operand Types Type of Result

or Disjunction Boolean Boolean
and Conjunction Boolean Boolean
not Negation Boolean Boolean

Figure 5.7 List of the Boolean operators in Pascal.

A table showing the results of executing a Boolean operator appears in Figure 5.8.
This table assumes that the variables A and B represent conditional expressions and that
they have been evaluated before the Boolean operation is performed. Parentheses
surround the expressions to emphasize the fact that these operators have higher operator
precedence than relational operators and are either higher than or equal to arithmetic
operators in operator precedence. The or operator says that when either one or both
operands are true, the result is true. The and operator says that the result is false unless
both of its operands are true.

Operands Expression Result

A B

False False (A or B) False
False True (A or B) True
True False (A or B) True
True True (A or B) True

False False (A and 8) False
False True (A and 8) False
True False (A and B) False
True True (A and B) True

False (not A) True
True (not A) False

Figure 5.8 Truth table for Boolean operators and, or, and
not.

The Boolean operator not negates the value of a conditional expression. That is,
if a conditional expression evaluates to a value true, then not true is false. If the
conditional expression evaluates to a value false, then not false is true. The Boolean
operators in conjunction with the relational operators allow the Pascal programmer to
specify a wide range of conditions, through conditional expressions. These expressions
can be used to control selection (one-, two-, or multiway) and the operation of the two
principle loop structures. With control structures and loops, we can develop complex
algorithms to solve nontrivial problems.

For an example where a compound conditional is used, consider the Pascal program
Package:

program Package(input, output);
{ Purpose: This program demonstrates the evaluation of a }

162 Chapter 5 Basic Control Instructions

{
{
{

var

compound conditional. The program determines if a }
package is to be shipped provided it has acceptable
characteristics. }

Weight, Perimeter : real;
begin

ShowText;
Request user to enter the package characteristics: weight }
and perimeter. }
write('Package weight? ');
readln(Weight);
write('Package size? ');
readln(Perimeter);
writeln;

{ Examine the package to determine if it is acceptable. }
{ If package exceeds either a weight of 50 pounds or a }
{ perimeter of 200 inches, then the package is too big. If
{ the weight is equal to or less than 50 pounds and the }
{ perimeter is equal to or less than 200 inches, then }
{ the package is acceptable for shipping. }

if (Weight > 50.0) or (Perimeter > 200.0) than
writeln('Package too BIG! ')

else
writeln('Package acceptable. ');

and.

Notice that the if-than-else statement uses the compound conditional
(Weight > 5 0. 0) or (Perimeter > 2 0 0. 0) . If either the weight of the
package is greater than 50 pounds or its perimeter is greater than 200 inches, or both, the
message Package too BIG! is displayed; Elsa, if both of these conditions are
false, the message Package acceptable is displayed.

We can express the same logical conditions in other ways. For example, each of the
following branch statements performs the actions discussed above:

if (Weight <= 50.0) and (Perimeter <= 200.0) than
writeln('Package acceptable. ')

else
writeln('Package too BIG! ');

or

if not((Weight <= 50.0) and (Perimeter <= 200.0)
writeln('Package too BIG! ')

else
writeln('Package acceptable. ');

or

) than

if not (Weight > 50.0) or (Perimeter > 200.0)) then
writeln('Package acceptable. ')

else
writeln('Package too BIG! ');

Basic Control Instructions Chapter 5 163

5.7 ITERATIONS REQUIRING SIMPLE COUNTERS

Pascal supports two loop commands that can employ simple counters for counting either
up or down to a limit. For counting up to a limit, there is the for-to loop, with the
following syntax:

for Control_Variable := Initial_Expr to Final_Expr do
statement ;

where statement can be any of the types of statements previously studied as well as
another for loop, and where the Control_Variable can be a standard ordinal
type such as an integer, char, or Boolean; an enumerated type; or a
subrange type. In the context of this construct, statement represents the body of the
loop. When the for loop is executed, the initial and final expressions are evaluated only
once with Control_ Variable being assigned the value of Initial_Expr. At this
point the value of Control_ Variable is compared with that of Final_Expr and,
if it is less than or equal, the body of the loop is executed. After execution of the body of
the loop, the control variable is assigned the value succ (Control_ Variable), and
the condition between Control_ Variable and Final_Expr is evaluated again to
see if the body of the loop can again be executed. Execution of the for loop ends when
the value of Control_ Variable exceeds the value of Final_Expr. Values for both
the initial and final expressions must be type-assignment-compatible with that of the
control variable.

Here is a revised example of the program Electric_Bill from Chapter 1:

program Electric_Bill_Revised(input, output);
{ Purpose: Example of a program using a for loop where the }
{ control variable is an enumerated type. }

var
Total_Consumption, Total_Cost, Consumption, Cost : integer;
Average_Consumption, Average_Cost : real;
Month (January, February, March, April, May, June, July,

August, September, October, November, December);
begin

ShowText;
Initialize the totals for consumption and cost. }

Total_Consumption := O;
Total_Cost := O;

Repeat entry of consumption and cost data for January }
through December. }
for Month := January to December do

begin
{ Enter data from the keyboard.

write('Enter consumption for month of • Month, ' ');
readln(Consumption);
write('Enter cost: ');
readln(Cost);

{ Compute the partial sums. }
Total_Consumption := Total_Consumption + Consumption;
Total_Cost .- Total_Cost + Cost;

end;

164 Chapter 5 Basic Control Instructions

{ Compute the average values of consumption and cost.}
Average_Consumption := Total_Consumption I 12;
Average_Cost := Total_Cost I 12;

{ Display the results. }
writeln;
write('Average monthly consumption: ');
writeln(Average_Consumption: 7 : 2);
writeln('Average monthly cost: ', Average_Cost 6 2)

end.

In the revised program, the repeat-until loop has been replaced with a for
loop. In this case the control variable for the for loop is a nonstandard enumerated
type called Month. The for loop is executed 12 times, with the control variable
Month being assigned an initial value of January. On reaching the end of the loop, the
control variable Month is assigned succ (Month). On executing the loop for the last
time, the value for Month is December. Notice that each time the loop is executed, the
value for Mon th is displayed as part of a message prompting the user to enter data.

The second form of the for statement is given by the following syntax:

for Control_Variable := Initial_Expr downto Final_Expr do
statement;

When the for loop is executed, the initial and final expressions are evaluated only
once, with Control_ Variable being assigned the value of Initial_Expr. Here
the loop is executed if the value of Control_ Variable is greater than or equal to the
value of Fin al_ Exp r. When the body of the loop has been executed,
Control_ Variable is assigned the value pred (Control_ Variable) .

What happens if we try to change the value of the final expression by executing an
assignment or read statement from within the body of the loop? Remember that when
the for loop is executed, the initial and final expressions are evaluated only once.
Although it may appear that the value of the final expression has been changed, such
changes have no effect on the number of iterations of the for loop. Once the for loop
has completed execution, the value of the control variable is undefined. An error can occur
at execution time if any attempt is made to change the value of the control variable from
within the body of the loop. For loops are different from the previously discussed loops
in that there is no explicit statement for changing the value of the control variable. The
control variable is either incremented or decremented by internal code generated by the
translator. In addition, there is no explicit expression for testing a condition. The code for
testing is generated by the translator when interpreting the for loop. The following
example compares code for displaying 30 dashes across the Text window by using a
while-do loop and a for loop:

Counter := l;
while Counter <= 30 do

begin
write (' - ') ;
Counter := Counter + 1

end;
writeln;

for Counter := 1 to 30 do
write (' - ');

writeln;

Basic Control Instructions Chapter 5 165

Assuming that Counter is declared an integer, the value of Counter will be
31 after the while-do loop has been executed, but the value of Counter is
unpredictable after the for loop has been executed.

The for loop has another interesting property. If the control variable is declared as a
subrange, it will successfully execute even though on completing the last iteration of
the loop, we assume that the control variable has been assigned a successor or predecessor
value that is out of range. For example, if Counter is declared as a subrange type
1 .. 3 0, execution of the above while-do statement will be halted when it attempts
to assign a value of 31 to Counter. As for the for loop, it successfully completes
execution. To convince yourself, try these two loops with the variable Counter declared
as a subrange type 1 .. 30.

5.8 PROBLEM ANALYSIS: DEVELOPING AN ALGORITHM REQUIRING
BRANCHING AND LOOPING CONSTRUCTS

To examine the application of loops and branches in problem analysis, let us consider a
game called Beanpicker. Beanpicker is an old game that had its origins before the
development of computers. It can be played with any set of discrete objects such as
stones, beans, or other small items. The game has some interesting properties that are
useful for examining the development of an algorithm and the application of loops.
Beanpicker has many variations in rules, but basically you begin with a fixed number
of objects (beans), and each player is permitted to pick up a limited but variable number
of beans. This selection process continues with the players taking turns until all of the
beans are gone. The goal of the game is to select the beans so that your opponent is left
with nothing to pick up during his or her last tum. The rules of our version allow players
to select no more than 5 beans and no fewer than 1 during each tum. The game begins
with 36 beans in the pool.

The process of problem analysis was discussed in Section 5.1. The end product of
this process is an algorithm that can be translated into specific Macintosh Pascal
instructions. Recall that every algorithm must have the following properties:

1. Finiteness
2. Definiteness
3. Input data objects
4. Output data objects
5. Effectiveness

Let us develop an algorithm for the Macintosh Pascal version of the game described
above. First, let us apply the seven steps listed in Section 5.1.

1. Define the problem. The problem is to develop a version of the game in
which the Macintosh is one player and the user the other. An explicit
set of rules is necessary for the game to be properly played. A
mathematical expression is required for defining an operational strategy
that allows either player to win. The algorithm must also be able to
determine whether the user (player) or computer (Macintosh) is the
winner.

2. Determine if the problem has already been solved. Although this
problem has been solved using other computers and languages, we will

166 Chapter 5 Basic Control Instructions

assume that the program has not been implemented using Macintosh
Pascal.

3. List the information required as input. Required input from the user is
the number of beans to pick. The user is also asked whether to continue
with another game. A random selection in the range of 1-5 (the number
of beans it will select) is required from the Macintosh.

4. List the information required as output. Required output is the number
of beans picked up by the Macintosh, the number picked up by the
player, and the number of beans remaining in the pool. At the end of
the game, the program displays the winner.

5. Determine the initial steps for defining a solution.
(a) Display the title and rules. Set the initial number of beans at 36. (b)
Mac picks 1-5 beans. (Mac will always go first.) (c) Display the
number of beans remaining. (d) The player picks 1-5 beans. (e) Display
the number of beans remaining. (f) Test if number of beans remaining =
0. If not, repeat Steps (b) to (e). (g) Report the winner. (The last
selection was made by the winner.)

6. Refine and elaborate the steps of the algorithm Beanpicker and
construct the loops necessary to complete the process.

begin
{a) Provide an introduction by displaying title

of game and rules.
{b) Accept input from user regarding whether he

or she wishes to play.
{c) Test if input from Step {b) was 'yes'. If

not, the algorithm terminates execution.
{d) While { Continuation = 'yes' } do Steps {e)

through (n) .
{e} Number_of_Beans <-- 36; { initialize bean

pool }
repeat through Step m
{f) { Let the computer pick a number of beans. }

if Number_of_Beans = 36 then
MAC_Pick <-- abs{random} mod 6

else
MAC_Pick <-- Number_of_Beans mod 6

{ The minimum number of beans picked by the
computer must be least 1. }

if MAC_Pick = 0 then MAC_Pick <-- 1
{Display number beans picked by computer.}
write MAC_Pick

{g} { Reduce number of beans in pool of beans.
Number_of_Beans <-- Number_of_Beans -

MAC_Pick
{ Display the number of remaining beans. }
write Number_of_Beans

{h} { Determine if the computer has won. }
if Number_of_Beans = 0 then {Mac wins}

write 'Mac wins!'
else {begin else clause}

Basic Control Instructions Chapter 5

(i) { The player now picks a number of beans. }
read Player_Pick

(j) { Modify the number of remaining unpicked
beans. }
Number_of_Beans <-- Number_of_Beans -

Player_Pick
(k) Display the number of remaining beans. }

write Number_of_Beans
(1) Determine if player wins. }

if Number_of_Beans = 0 then {player wins}
write 'You win!'

{ end else clause }
(rn) Game ends when number of remaining beans

is zero. }
until Number_of_Beans = O;

(n) { Check to see if player wants to play again
or quit. }
read Continuation
{ Game returns to Step (d} to see if player
wishes to continue. }
{ end while-do loop }

end. { end of program }

167

Step (e) is where the game process begins. It also introduces the steps whereby the
algorithm is made an effective player. Because there are 36 beans when the game is
initiated, and because the algorithm and the player are limited to choosing from 1-5
beans, there is only one winning strategy. If the player who picks second always chooses
a number of beans that, when added to the number of beans picked by the first player is 6,
the second player will win.

In tracing the algorithm, the number of beans in the pool for the algorithm to pick
from is 36, 30, 24, 18, 12, and 6, if the human player follows the winning strategy.
With 6 remaining beans for the algorithm to choose from, and with the algorithm picking
at least l, the human player need only pick whatever beans remain to win.

The player who picks first can win only if the second player does not know or fails
to follow the winning strategy. However, should the first player know the winning
strategy and the second player not follow the winning strategy, the first player can gain
the advantage.

If the algorithm picks second, having it use the winning strategy always makes it the
winner. In our version, however, the algorithm is instructed to pick first, randomly. If the
human player knows and follows the winning strategy, he or she will win. It is only
when the human player deviates from the winning strategy that the algorithm can win.
The statement

MAC_Pick <-- Number_of Beans mod 6

produces the winning strategy for the algorithm because it is the basis for the algorithm's
second and subsequent picks.

Let us refine Step 6 in our problem analysis by writing more precise steps. After this
refinement, the conversion from the algorithmic notation to Pascal will easily follow.
Detailed code for prompting the user and reporting results is left to the Pascal program.

168 Chapter 5 Basic Control Instructions

Our primary interest here is to understand and be able to trace the algorithm to see that it
is functional.

Algorithm Beanpicker;
{ The purpose for this algorithm is to provide a Macintosh Pascal

version of the game Beanpicker. }
begin
{ Display the title and rules of the game. }

write { title };
write { rules };

Check to see if player wants to play. }
write ('Do you wish to play? ');
read (Continuation };

Begin outer loop. }
while Continuation= 'yes' do

Number_of_Beans <-- 36;
repeat
{ Computer selects a number of beans from the pool. }

if Number_of_Beans = 36 then
MAC_Pick <-- abs{random) mod 6

else
MAC_Pick <-- Number_of_Beans mod 6;

The computer must pick at least one bean.
if MAC_Pick = 0

then MAC_Pick <-- l;
Display the number of beans picked by the computer. }
write { MAC_Pick);

{ Determine number of beans remaining in pool. }
Number_of_Beans <-- Number_of_Beans - MAC_Pick;

Display number of beans in the pool. }
write (Number_of_Beans)

{ Determine if the computer has won. }
if Number_of_Beans = 0 then

{ report that Mac wins }
else { player can choose beans from the pool }

begin
{ When reading the player's choice, check the
player's entry to exclude a value greater
than five and less than one. }

repeat
write {' Your pick: ');
read { Player_Pick);

until (Player_Pick > 0) and (Player_Pick < 6);
Reduce the number of beans chosen by the player. }

Number_of_Beans <-- Number_of_Beans - Player_Pick
Display the number beans in the pool of beans. }
write Number_of_Beans

{ Determine if the player has won. }
if Number_of_Beans = 0 then

{report that the player wins
end

Basic Control Instructions Chapter 5

until Number_of_Beans = 0 ;
{ Game ends when number of beans is zero. }
{ Check to see if player wants to play again or quit. }

write {prompt to continue the game };
read (Continuation)

end { while-do loop }
end.

169

What remains is to translate the Beanpicker algorithm into the Pascal program
Beanpicker. The final form adds further detail in such areas as the presentation of the
rules and the reporting of the winner. Where it is convenient, for loops are used for
simple repetition.

program Beanpicker(input, output);
{ Purpose: This program allows the user to play a game of skill }
{ where the player is pitted against the computer, and }
{ the computer wins most of the time. }

var
Number_of_Beans, Player_Pick, MAC_Pick, Index integer;
Continuation : string [3];

begin
ShowText;

Introduction to the rules and the title of the game. }
for Index := 1 to 5 do

writeln;
writeln('
for Index := 1 to 5 do

writeln;

***** BEANPICKER *****');

write('There are 36 black beans. You may pick up one (1) to ');
write(' five (5) beans; the object of the game is to be the

last');
write(' one to pick up beans, leaving no beans for your ');
writeln('opponent -- the Mac. Mac picks up first.');
for Index := 1 to 5 do

writeln;
{ Ask if player wants to play. If not, program will end.

write ('If you wish to play, type "yes" . ') ;
write('CAUTION ... Anything but lowercase yes will quit

BEANPICKER ! I) ;

write(' If you wish to quit, press the <Return> key. ');
readln (Continuation);

{ Continue the game as long as player wishes. If not program }
{ passes to the end. }

while Continuation 'yes' do
begin

for Index := 1 to 3 do
writeln;

{ Initialize number of beans at 36.
Number_of_Beans := 36;

Begin the game by repeating the following steps. }
repeat

170 Chapter 5 Basic Control Instructions

Computer selects a number of beans from the pool. }
writeln ('MAC'S PICK');
if Number_of_Beans = 36 then

MAC_Pick := abs(random) mod 6
else

MAC_Pick .- Number of Beans mod 6;
{ The minimum number of beans picked by the computer }
{ must be at least one. }
if MAC_Pick = 0 then

MAC_Pick : = 1;
{ Display number of beans picked by the computer. }
writeln('Mac picks up: ', MAC_Pick: l);

{ Compute the number of remaining beans. }
Number_of_Beans := Number_of_Beans - MAC_Pick;

{ Display the number of beans in the pool. }
write('The number of beans remaining is: ');
writeln(Number_of_Beans : l);

Determine if the computer has won.
if Number_of_Beans = 0 then

begin
writeln('>>>>> MAC WINS!<<<<< ');
writeln

end
else { player can choose beans from the pool }

begin
{ When reading the player's choice, check the
{ player's entry to exclude a value greater than }
{ five and less than one. }

repeat
writeln('YOUR PICK');
write('Please pick up 1 to 5 beans. ');
readln(Player_Pick);

until (Player_Pick > 0) and (Player_Pick < 6);
Compute the number of remaining beans. }

Number_of_Beans :=

Number_of Beans - Player_Pick;
{ Display the number of beans in the pool. }

write('The number of beans remaining is: ');
writeln(Number_of_Beans : l);

Determine if the player has won. }
if Number_of_Beans = 0 then

writeln('>>>>> YOU WIN! <<<<< ');
writeln;

end;
Game ends when the number of beans is zero. }

until Number_of_Beans = O;
for Index := 1 to 4 do

writeln;
Check to see if player wants to play again or quit. }
write('Do you wish to play again? Type "yes". ');
write('CAUTION ... Anything but lowercase "yes" will') ;

Basic Control Instructions Chapter 5 171

write(' quit BEANPICKER! ');
write(' If you wish to quit, press the <Return> key. ');
readln(Continuation);

end; {end while }
writeln;
writeln('Thank you for playing BEANPICKER. Have a nice

day! I);
end.

Beanpicker, based on a strategy using modular division through execution of the
mod operator, is an example that uses nested loops such as repeat-until,
while-do, and for. The outer loop represented by a while-do construct
controls the playing of the next game, based on the player entering the string yes to the
prompt asking if he or she wants to continue. The first inner loop, using a repeat­
unti l construct, continues play until the number of beans in the pool is zero. When
this occurs, the winner of the game is displayed. Once the program leaves the inner loop,
the player is prompted with a message asking if he or she wants to continue by playing
another game. If the player types the response yes, the game is repeated. A repeat­
until loop nested within the first inner loop assures that the player cannot pick a set
of beans that is either greater than 5 or less than 1. If the player chooses a value that is
out of range, the program simply repeats execution of this loop by prompting the user
and requesting an entry of beans. The player cannot leave the execution of this loop until
a proper value is entered.

5.9 THINK PASCAL VERSUS STANDARD PASCAL

case
1
2
3

THINK and Macintosh Pascal have adopted the otherwise extension for the case
statement found in some other Pascal compilers. The otherwise clause that is
supported by THINK and Macintosh Pascal is not standard for Pascal. Without the clause,
Pascal compilers have not been clear on what actions are taken if the case selector has
a value that is not one of the case labels. In some compilers the program will continue
to execute as if the case list had fallen through, as though an empty statement were
specified and executed. Other compilers will flag the situation by raising an execution
error. By setting the check option R (range checking) for any file unit that is in the
Project window, the THINK Pascal compiler will check any case selector for being out
of range and generate a bug dialog window indicating that the case selector is out of
range if the value of the selector fails to match any of the case labels.

Macintosh Pascal requires that either the otherwise clause be used, or the
case selector have a value that is one of its case labels. Not having a value raises an
execution error. Unfortunately, Macintosh Pascal has no option to remove any range­
checking generated by the translator.

THINK Pascal supports an additional feature with case labels that is not a part of
Standard Pascal, nor is it supported by Macintosh Pascal. This feature involves the use of
range labels for case labels in case statements. For example, consider the Pascal
code required for performing the table lookup that follows:

Quantity_Ordered div 100) + 1 of
Unit_Price .- 0.97
Unit_Price .- 0.91
Unit_Price .- 0.85

172

4 : Unit_Price := 0.75
5 : Unit_Price := 0.67
otherwise

Unit_Price := 0.51

Chapter 5 Basic Control Instructions

end;

case
1
100
200
300
400

This code is somewhat awkward, because it requires a case expression that will
generate an integer value ranging from 1 through 5. This same example can be written in
THINK Pascal using range labels. Rather than requiring a formula that will generate the
value 1 if Quantity _Ordered is in the range 1 through 99, the actual range can be
applied as a case label, and the case expression is now limited to the integer
variable Quantity_Ordered. The following shows the example with range labels
used as case labels:

Quantity_Ordered of
99 Unit - Price .- 0.97

199 Unit Price .- 0.91 -
299 Unit Price .- 0.85 -
399 Unit Price .- 0.75 -
499 Unit - Price .- 0.67

otherwise

end;
Unit Price .- 0.51 -

THINK Pascal also supports additional commands that are not part of either
Macintosh Pascal or Standard Pascal. These include the predefined commands cycle,
leave, and halt. The command cycle forces the next iteration of an enclosing
while, repeat, or for statement in the context of the program. The following
code demonstrates this command by generating 10 random numbers but only computes
the square root of positive numbers. The computation of the square root of a negative
value is skipped by forcing the program to execute the command cycle:

Display a header for number and square root of number. }
writeln(' Number sqrt(Number) ');

{ Display two columns of numbers.}
for Count := 1 to 10 do
begin

Number := random;
if (Number < 0) then

begin
writeln(Number : 7);
cycle;

end
else

writeln(Number 7, sqrt(Number) :20:5);
end;

The command leave allows the program to break out from an enclosing while,
repeat, or for statement and continue with execution following any one of these
statements. The following is an example of an infinite loop, in which the loop continues
to execute as long as the value of Number is positive. If Number is negative, the

Basic Control Instructions Chapter 5 173

program leaves the loop and continues execution with the statement that follows the
while statement:

while true do
begin

Number := random;
if (Number < 0) then

leave
else

writeln(Number 7, sqrt(Number) :20:5);
end;

The commands eye 1 e and 1 eave are similar in concept and execution to the
commands continue and break, respectively, found in the programming language C.

The command ha 1 t halts the execution of a THINK Pascal program. While this
command may appear useful, it can be confusing when a program is halted by executing
this command if the command itself is deeply nested within the program or within several
programmer-defined units.

In executing Boo 1 ean expressions, THINK Pascal supports the short-circuit
Boolean operators & and j. The operator & is similar to the and operator in that it
will return a Boolean value true or false. It is different from the and operator in that
if the left operand of the & operation is false, the right operand is never evaluated, because
the logical operation of false with the logical and of any other logical value is always
false. For example, in the Boolean expression

Player_Pick > 0) & (Player_Pick < 6)

if Player_Pick is not greater than 0, the second test Player_Pick < 6 is never
executed. It is only tested if the first test Player_Pick > 0 is true .

The Boolean operator I is similar to the or operation in that it also returns a
Boolean value that is either true or false . It is different from the or operator in that if
the left operand of I is true , it does not execute the right operand, because the logical
operation of true with the logical or of any other logical value is always true. Only
when the left operand of I is false will the right operand be tested. These two short­
circuit operators are useful where we want to minimize the evaluation of Boolean
expressions.

Before ending this section, we must make a few comments on using the function
random. Although random is not a standard Pascal function, both Macintosh and
THINK Pascal support it and allow random integers to be generated from -32,767 to
+32,767. There is a difference in how each of these translators generates a set of random
numbers when the function is used. For example, the program in Figure 5.2 generates a
different set of random numbers each time it is executed under Macintosh Pascal. In
THINK Pascal, this program always generates the same set of random numbers, because a
special longint global variable called randSeed (short for random seed) is initialized
to 1 each time the program begins execution. This global variable is important to
programs compiled in THINK Pascal, because it represents the seed for generating the
next random number using the function random. Given that it is assigned the same
initial value each time the program Simple_Loop begins execution, the set of random
numbers is always predictable. This side effect can be eliminated by assigning a random
value to randSeed before calling upon the function random.

174 Chapter 5 Basic Control Instructions

The following program uses a general utility procedure called Ge tDa t eT ime to
assign an initial value to randSeed. The procedure GetDateTime returns the current
date and time, but as a longint number given in the number of seconds since
midnight, January 1, 1904. It is useful for initializing randSeed with an initial value
because for any instant oftime, the procedure GetDateTime always provides a different
value for its argument. This program does not translate under Macintosh Pascal.

program Simple_Loop_Modified (input, output);
{Purpose: This program demonstrates the step needed to }
{ initialize the seed variable randSeed with a random }
{ number. This program will only execute under THINK }
{ Pascal.}
var

Counter, Number: integer;
begin
{ Initialize the global variable randSeed with a random number

GetDateTime(randSeed);
{ Generate 10 random numbers using the function random. }

Counter := 1;
while Counter <= 10 do

end.

begin
Number:= abs(random);
writeln(Number, sqrt(Number)
Counter := Counter + l;

end;

8 3) ;

SUMMARY

This chapter introduced the basic principles of loops and branching and the commands
supported by Pascal to develop and execute structured programs. In particular, we
examined the post-test iteration loop, referred to as repeat-until, and the pretest
iteration loop, referred to as while-do. They are important because they reinforce the
properties of loops by requiring the use of explicit statements for initialization and
modification of control variables, and explicit expressions for testing. The branching
constructs if-then, if-then-else, and case were also examined for the
purpose of illustrating one-way, two-way, and multiway selection. In the context of
looping and branching, relational or Boolean expressions were also introduced. These
expressions employ either relational or Boolean operators. Compound conditionals can
be defined by combining several relational expressions with Boolean operators.

The for command, an additional loop statement for simple counters, was discussed.
We also noted that although the for loop is not a post-test iteration loop, its control
variable is never out of range.

Basic Control Instructions Chapter 5

REVIEW QUESTIONS

1. List the seven steps in the analysis of a problem.
2. What is meant by the term algorithm ?
3. What properties must every successful algorithm have?
4. Define the purpose for having a loop within a programming language.
5. What are the three basic types of loops?
6. What are the basic properties that all loops should have?
7. Why is the while-do construct referred to as a pretest iteration

loop?
8. What is a compound statement?
9. Can compound statements be nested? Can you think of a test to support

your answer?
10. Why is the repeat-until construct referred to as a post-test

iteration loop?
11. Explain the difference between a while-do loop and a repeat­

until loop.
12. If a repeat-until construct did not exist, how could a while­

do loop be used to represent its actions?
13. What is the purpose of having a for loop if control constructs such as

while-do and repeat-until are available?
14. What is the purpose of having a conditional expression? What value can

a conditional expression have once it has been executed?
15. List the relational operators supported by Macintosh and THINK Pascal.
16. In relation to the arithmetic operators, what is the operator precedence

level of the relational operators?
17. Assuming all variables to be real, what is the order of operations

when the following expressions are evaluated?

(a) A - B I C >= D + E
(b)Z <= sqrt{sqr{X) + sqr{Y))
~)C * {D + E) = {F + G) I G

18. Assuming all variables to be real, which of the following expressions
are syntactically correct in Macintosh and THINK Pascal?

(a) A + B <= F - Y > H + J
(b)A - B < = U + J
(c)A < B < G < H
(d) {A + B) > R - J

19. If Flag is a Boolean variable, why is the Boolean expression
unnecessary in the following if - then statement? How could it be
written?

if Flag = true then
writeln{' The truth wins over evil. ');

20. What is the difference between the relational operator = , the use of the
symbol = in a constant declaration, and the assignment operator := ?

21. Which of the following constant declarations are syntactically correct?

175

176 Chapter 5 Basic Control Instructions

const
Truth = true;
Falsehood = false;
Max_Value = 9999;
Min_Value = -9999;
Relation = Min_Value < Max_Value;
Never_True = { Max_Value = Min_Value);

22. List the three types of control constructs supported by Macintosh Pascal
for branching.

23. What is the difference between the i f - then and if - then -
else constructs?

24. What purpose does the case statement serve in relation to one-way
and two-way selection?

25. In the syntax rules for the control constructs while-do,
repeat-until, if-then, if-then-else, for, and
case, the term statement occurs. What types of statements can
statement represent?

26. If a while-do construct did not exist, how could the conditional
construct if-then and loop construct repeat-until be used
to emulate a while-do loop?

27. What is meant by the term compound conditions ?
28. List the three Boolean (logical) operators supported by Macintosh and

THINK Pascal.
29. What is the purpose of a truth table?
30. What is meant by the term Boolean expression ?
31. Is a relational expression a Boolean expression?
32. Is a relational expression a compound condition?
33. In relation to arithmetic and relational operators, what is the operator

precedence for Boolean operators?
34. What special care should be taken when writing a compound conditional

in Pascal?
35. Assuming all variables to be real, which of the following conditional

expressions are syntactically correct?

(a) not A < B + c
(b) {A + c < L) and { {G - H < L) or {A = B))
(c) A + B < c or D
(d) not ((A < B) and (C + D > 9 9 9 . 9 9))

36. Are the following two conditional expressions logically equivalent when
executed?

(a) not ((A < B) or C = D))
(b) (A >= B) and (C <> D)

37. Replace the following two if-then statements with only one if­
then statement:

if A < B then

Basic Control Instructions Chapter 5 177

if

if B < c then

(

A

writeln(' success ');

A

.-

38. Replace the following if-then-else statement with a case
statement:

+ B) < (c - D then
A + B) I 2.0

else
c .- c + D I 2.0;

Hint: The case statement needs only two labels, true and false,
with the selector represented by a relational expression.

39. If Macintosh Pascal did not support an otherwise clause in its
case statement, what control construct along with the case
statement would be necessary to prevent the case statement from
failing?

40. What is wrong with the following Pascal program? Try it with both
Macintosh and THINK Pascal.

program Sample_One;
var

Counter: 1 .. 100;
begin

Counter := 1;
while Counter <=100 do

begin

end.

writeln(Counter);
Counter := succ(Counter

end;

41. Correct the program in Question 40, using a for loop, so that it can
complete execution without errors.

42. Leaving Counter declared as subrange 1 .. 100, and assuming that
the for loop construct did not exist in Pascal, how could the
while-do loop be written so that the program would successfully
execute?

PROGRAMMING EXERCISES

Many of following exercises require problem analysis, including the definition of a refined
algorithm, with trace tables for hand testing. Programs are easier to write when an
algorithm is developed and tested with several different examples. If you discover errors in
your program when it is being checked or executed, return to your algorithm to see if the
error lies with the syntax and/or semantic actions of the algorithm. If it does, correct the
algorithm first, test again by hand before correcting the program, and again execute the
program. These steps may at first seem to consume too much time in developing a
program, but with practice they will save many hours of guessing if a program fails to

178 Chapter 5 Basic Control Instructions

execute. Developing a refined algorithm and testing by hand will often lead to fewer
programming problems as you become more proficient. Practice is the key to successful
programming.

1. A computer program is required to compute the average of a set of
negative numbers. Here is an initial set of steps specifying an
algorithm for this problem:

(a) Initialize summation and counter to 0.
(b) Prompt and enter a first number from the keyboard.
(c) While the value of Number is negative, do the following:

(i) Add the value of the number to the summation.
(ii) Increment the value of the counter.
(iii) Prompt and enter the value of the next number.

(d) Compute the average of all negative numbers entered.
(e) Report on the total count and the average value.

First, refine the algorithm by choosing formal variable names Sum,
Number, Counter, and Average. Then establish a trace table,
and check that your algorithm functions for several sets of numbers.
What happens in your algorithm if the first number entered is negative?
Finally, write a Pascal program using the Text window to view input
and output.

2. Instead of using a while-do loop, write the algorithm and program in
Exercise 1 using a repeat-until loop.

3. A program is needed to compute the average of both positive and
negative numbers. Here are the initial steps specifying an algorithm for
the problem:

(a) Initialize summation and counter to 0.
(b) Prompt the user to see if any numbers are to be entered.
(c) While the response is yes, do the following:

(i) Prompt the user for the next number.
(ii) Add the value of the number to the summation.
(iii) Increment the counter.
(iv) Prompt the user to see if he or she wishes to

continue entering numbers.
(d) Compute the average of all numbers entered.
(e) Report on the total count and the average value.

First, refine the algorithm by choosing formal variable names Sum,
Number, Counter, Average, and Response. Then establish a
trace table, and check that your algorithm functions for several sets of
numbers. What happens in your algorithm if no numbers are entered?
Finally, write a Pascal program using the Text window to view input
and output.

Basic Control Instructions Chapter 5

4. Modify the algorithm and the program in Exercise 3 so that the response
for entering another number can only be YES or yes to continue and
NO or no to cease.

5. How could you modify Exercise 3, so that the set of numbers to be
averaged would be picked randomly rather than by having the user enter
values from the keyboard, as would the count for the number of
elements in the set?

6. The following is an algorithm for determining the largest value for a set
of numeric values entered from the keyboard:

Algorithm Largest_Value;
begin
{ Initialize the variable Largest. }

Largest <-- O;
repeat
{ Enter the next number from the keyboard. }

write(' Enter next number: ');
read (Number) ;
if Largest < Number then

Largest <-- Number;
{ Prompt user to see if another number should be entered. }

write('Are additional numbers to be checked? ');
read(Response);

until Response= 'No';

end.
{ Report on the largest number. }

(a) Refine the algorithm, and establish a trace table for testing
the algorithm.

(b) Convert your algorithm into a Pascal program, and apply
the tests from Step (a) to validate your program.

7. Modify the algorithm and program in Exercise 6 to compute both the
largest and smallest value of a set of numbers entered from the
keyboard. Name the algorithm and program Largest_and_
Smallest.

8. (a) Write an algorithm to determine if a triangle is equilateral, isosceles,
or scalene, according to the following rules:

Equilateral triangle: All sides are equal.
Isosceles triangle: Two sides are equal.
Scalene triangle: All sides are unequal.

Assume that you are given three sides. The algorithm should report the
type of triangle and the reason for its choice.

179

180 Chapter 5 Basic Control Instructions

(b) Establish a trace table for your algorithm, and test it with several
sets of data.

(c) Write a Pascal program for your algorithm.

9. A computer program is necessary for computing a letter grade from a
numeric grade. Here are the ranges of numeric grades and letter grades:

Numeric grade
90-100
80-89
70-79
60-69
00-59

Letter grade
A
B
c
D
F

(a) Write an algorithm using nested conditional branch if­
then-el s e constructs to compute a letter grade.
Remember that on input, the value of the numeric grade
can never be negative. If the value entered from the
keyboard is improper, have your algorithm provide a
message indicating this error and again prompt the user to
enter the proper value. Continue doing this until the value
entered is a positive grade.

(b) Establish a trace table, and use several different grades to
test your algorithm.

(c) Write a Pascal program using your algorithm, and apply the
test data in Part (b) to validate your program. Be sure you
test for·all grade levels.

10. Rewrite the algorithm and program in Exercise 9 using a case
statement instead of nested branching constructs. Use only one if -
then-else statement. Be sure to test your algorithm and program
for the numeric grade 100.

11. (a) Write an algorithm that performs the following steps:
(i) Select a random integer between 0 and 40.
(ii) Prompt the user by explaining that a player must guess the

number selected by the machine.
(iii) Ask the player to enter a guess.
(iv) After the player has entered a number, check that the value

entered is between 0 and 40. If not, repeat Steps (iii) and (iv).
(v) Tell the player that the value entered is too large, too small,

or proper.
(vi) If the player has failed to guess, return to Step (iii).
(vii) Once the player has guessed the proper value, display the

number of guesses.
(viii) Prompt the player for repeating the game. If response is yes,

the program returns to Step (iii). If no, the algorithm
terminates execution.

Basic Control Instructions Chapter 5

(b) Establish a trace table, and test your algorithm with several
examples.

(c) Write a Pascal program for your algorithm, and apply the examples
of Part (b) as tests.

(d) How can the algorithm and program be modified to display the
message getting warmer as the player gets closer to the correct
value, and the message getting colder as the player gets
farther from the correct value?

12. The Kilo-Watt Electric Company has set the following electric rates for
its residential customers:

$2.78
$0.05764
$0.05306
$0.04878

Residential Service:
minimum customer charge per month plus

per kwh for the first 100 kwh used per month
per kwh for the next 300 kwh used per month
per kwh for all in excess of 400 kwh used

(a) Write an algorithm that prompts the user for the following
information:

Customer name
Street address
City and State
Zip code
Present reading
Previous reading

This algorithm then computes the electric bill based on the rates,
including a 3% charge for school tax based on the total cost for the
monthly service. If the present reading is less than the previous
reading, have your program terminate with a message Improper
meter readings. Present reading less then
previous reading. If the present reading is greater than or
equal to the previous reading, the following must be displayed to
the Text window:

Customer Name:
Street Address:

City & State:
Zip code:

Present reading: Previous reading: Kwh used:

Cost for power: $
School tax (3%):

Total cost: . $

181

182 Chapter 5 Basic Control Instructions

(b) Write a Pascal program for the algorithm, using several values of
meter readings. Be sure to compare these with hand calculations. If
a printer is connected to your Macintosh, choose the option for
printing the data from the Text window to the printer.

13. A quadratic equation is represented in the following form:

ax2 +bx+c=O

where x is unknown. The roots (values for x for which the quadratic
equation is identically zero) are given by the following equations:

X1=
-b+~(b2 -4ac)

2a

provided a is nonzero. The term b 2 - 4ac is referred to as the
discriminant. The following rules exist for the number and type of
roots:

If a is zero, and b and c are not zero, then there exists only one root
given by x = -c lb. If a is not zero, then there exist two real roots if the
discriminant is positive, and two complex roots if the discriminant is
negative. If the discriminant is negative, then the value

-b/(2a)

is referred to as the real part, and

(abs(b2 -4ac))112 I (2a)

as the imaginary part.

(a) Write an algorithm for computing the roots of a quadratic equation
that accepts from input the values of a, b, and c.

(b) Write a Pascal program for the algorithm in Part (a) that can
display one of the following outputs:

(i) No solution if a and b are both zero.
(ii) One real root and its value if a is zero and b is not zero.
(iii) Two real roots if the discriminant is positive, and their values.
(iv) Two complex roots if the discriminant is negative, and their

values, using the following format:

Basic Control Instructions Chapter 5

x real part + I imaginary part
1

x = real part
2

I imaginary part

14. This problem requires both div and mod operations. Assume that a
program is needed to teach people how to count exact change. This
program will perform the following steps:

(a) Provide the user with a message that the program will choose a
value for the cost of items. This value is randomly chosen and
must be a number expressed in terms of dollars and cents (no
fractions of pennies).

(b) Ask the user to enter a payment for computing change. If the value
entered is smaller than the cost, it will continue prompting the user
until a proper value is entered. The payment cannot involve any
fractions of pennies.

(c) Compute the exact change by displaying the following output:

Cost of item(s): $
Amount paid: $

Exact change to the customer:

Number of $20 bills:
Number of $10 bills:

Number of $5 bills:
Number of $1 bills:
Number of quarters:

Number of dimes:
Number of nickels:
Number of pennies:

Write an algorithm for the problem, and then transform your algorithm
into a Pascal program. Check with several values entered by the
customer. How could this exercise be modified, so that the user would
first have to enter C ' exact change for bills and coins, then have the
program display the information with the user's values next to the
computer's computation? Whenever the user types the wrong value for
change, the program must flag this with the message WRONG VALUE.

15. Let us assume we need to show a trace of the Beanpicker program.
Modify Beanpicker, so the output displayed to the Text window is
similar to the screen dump shown in Figure 5.9. Hint: Replace the
statements

writeln('YOUR PICK');
write('Please pick up 1 to 5 beans. ');
readln(Player_Pick);

183

184 Chapter 5 Basic Control Instructions

Beans Mac_Pick Player_Pick

36 1
35 4

31 1
30 1

29 5
24 3

21 3
18 5

13 1
12 5

7 1
6 4

2 2
>>>>> MAC WINS! <<<<<

Figure 5.9

with Player_Pick : = abs (random) mod 6. Execute your
modified program several times to convince yourself that before the last
two picks, there are always 6 beans in the pool.

16. (a) Write an algorithm that will display the values of sin, cos, and
tan for angles in the range -7t/2 to +7t/2. Your algorithm must
prompt for an initial angle and a final angle. This angle must be
within the specified range. If not, prompt to reenter these two
values. The stepping (incremental) value must also be entered and
must always be positive. This implies that the initial angle is
always assumed to be greater than the final angle. Where the value
of tan cannot be displayed, have your algorithm display either the
term +INFINITY or -INFINITY. You can determine these
angles by writing a short test program displaying the angle and the
tangent of the angle. When an overflow error message appears, you
will have an estimate for the angle.

(b) Convert your algorithm into a Pascal program, and test your
program for several sets of initial and final angles.

Basic Control Instructions Chapter 5

17. (a) Write an algorithm that will count the number of vowels in a lineof
characters. Assume that the user will be prompted to enter a line of
characters. A line is assumed terminated when it ends with a period.
This algorithm must be capable of counting vowels in both
uppercase and lowercase as well as calculating the percentage of
vowels in the total number of characters. The algorithm must
display a report in the following format:

Report on number of vowels:
Total number of characters:

Vowel Number Percentage

A
E
I
0
u

(b) Test your algorithm, using several different sentences.
(c) Convert the algorithm into a Pascal program. Use the set

of tests from Part (b) to check your program.

18. The XYZ Screw and Nut Company has the following unit-price chart
for screws or nuts purchased in large quantities:

Quantity
1--65

66-105
106-229
230-399
400-499
500-799
800-999

1000 +

Unit Price ($)
0.098
0.087
0.081
0.079
0.075
0.071
0.065
0.050

The shipping charge is based on the following schedule:

Total Cost of Parts
($)
1-10

11-20
21-30
31-40
41-50
51--60
61-70
71-80
80 +

Shipping Rate
($)
1.05
1.55
1.75
1.85
1.95
2.05
2.15
2.25
2.50

185

186 Chapter 5 Basic Control Instructions

(a) Write an algorithm that will prompt for the name, street address,
city, state, zip code, and quantity ordered, and will compute the
total billing cost from the sum of the total cost of parts and the
shipping charge. Output should appear as follows:

<<<<< XYZ Screw and Nut Company >>>>>

Name:
Street Address:

City & State:
Zip code:

==

Quantity Parts Ordered:
Cost of parts: $
Shipping cost:

Total cost: $

Be sure that your algorithm does not try to compute with a negative
quantity entered for the number of parts ordered.

(b) Select several values to test your algorithm.
(c) Write a Pascal program for your algorithm. Test your program with

the test data given in Part (a).

19. The factorial of a number Nis defined as

1 * 2 * 3 * · · · * (N - 1) X N.

For example, the factorial of 6 is

1 * 2 * 3 * 4 * 5 * 6 = 720.

(a) Write an algorithm that will accept from input an integer
number and compute the factorial of this number as a real value.
Special conditions exist for computing the factorial:

(i) Factorial is always computed for an integer number.
(ii) Factorial is always computed for a positive number.
(iii) The factorial ofO is 1, and the factorial of 1 is 1.

(b) Write and test a Pascal program for Part (a).

Basic Control Instructions Chapter 5

20. A company has established a hiring policy for employing new
engineers. It has decided to enter the following qualifications into a
computer program, so that on examining an application, the program
can determine if the candidate should be invited for an interview:

Field Degree Years of experience Age

Electrical BS 1-2 21-23
Mechanical BS 3 24-27
Chemical BS 1-3 21+
Electrical MS 5 27-35

Mechanical MS 5 27-38
Electrical PhD 0-5 26+

Mechanical PhD 5-8 36+

(a) Write an algorithm for qualifying candidates on the basis of the
table. The algorithm can use both if-then-else and case
statements. You must choose a sufficient number of test cases to
show that the algorithm is functional. If a candidate does not
qualify, provide some reason for rejection.

(b) Write a Pascal program for the algorithm. Use the test cases to
show that the program is functional.

187

Chapter 6

Basic Graphic and
Mouse Commands

OBJECTIVES

After completing Chapter 6, you will know the following:
1. The purpose of the QuickDraw1 library.
2. The routines needed for drawing simple lines.
3. The routines needed for drawing geometric patterns such as circles, rectangles,

ovals, and rectangles.
4. The routines for allowing input from the mouse.
5. The commands for setting the size of Text and Drawing windows and for showing

these windows on the screen.

6.1 QUICKDRA W LIBRARY

188

The Macintosh computer is a true graphics machine. All of its screen displays are
provided by a complex graphical system embedded within the firmware of the computer
and supported by a collection of special programs referred to as routines or procedures. A
procedure is a set of commands, written in a high-level language such as Macintosh
Pascal, for performing a specific task. A collection of several such procedures is known as
a program library. For Macintosh Pascal there are two special libraries for graphics and
text: QuickDrawl and QuickDraw2. There are 75 procedures in QuickDrawl and
70 procedures in QuickDraw2. Some of them are discussed in this chapter; some of the
remaining procedures and functions are discussed later in the book. (All of these other
procedures and functions are discussed in the earlier edition of this book.)

QuickDrawl is a Macintosh Pascal library containing various constants, types,
variables, and procedures that may be borrowed by a Pascal program. They are made

Basic Graphic and Mouse Commands Chapter 6 189

available to a Macintosh Pascal program by including the library name in the uses
clause, as shown in the following program lines:

uses
QuickDrawl;

This clause follows the program statement and precedes all other declared identifiers
local to a Macintosh Pascal program. Because the QuickDrawl library is frequently
used, it is not mandatory to include this statement in Macintosh Pascal programs. We
will make a practice of including the uses clause, even when it is not required, to
emphasize the application of a library within a Pascal program.

This clause is not allowed in a THINK Pascal program, however. Inclusion of the
QuickDrawl statement under the uses command will cause an error when you
attempt to check the syntax or compile the source program. With this and two other
exceptions, the Macintosh Pascal and THINK Pascal programs discussed in this chapter
are for the most part compatible. The second exception is the need to include an explicit
command to open the appropriate window in the THINK Pascal environment. For
example, most of the programs in this chapter require the insertion of the
ShowDrawing command after the first begin if a program is to execute under
THINK Pascal. The third exception is the format of the GetMouse command, which is
handled differently by Macintosh and THINK Pascal. The difference is explained in
Section 6.4.

In this chapter we will be concerned with the procedures HideAll, ShowText,
ShowDrawing,ShowTextRect,SetDrawingRect,GetTextRect, and
GetDrawingRect. These procedures can change the content of the Drawing and Text
windows. Although these procedures are part of the the QuickDrawl library, they are
not part of the embedded firmware procedures of the Macintosh computer. The uses
clause allows us to borrow these routines from the QuickDrawl library for drawing and
displaying text.

The complete Macintosh screen consists of an array of individual points called pixels.
For a Macintosh with a nine-inch screen, this array consists of 175104 pixels. 1 The word
pixel is derived from picture element. Each pixel is displayed as either a white or black
dot. The nine-inch screen is 342 pixels high and 512 pixels wide, with a density of 72
pixels per inch in both the horizontal and vertical directions. The ability to display
graphic images enables the Macintosh computer to define and draw varying environments
called grafPorts. For the Macintosh computer, a grafPort represents a complete drawing
environment for defining wt -e graphic operations are performed and their effect on the
drawing environment. As shown in Figure 6.1, when Macintosh Pascal is first loaded,
three grafPorts, referred to as the Program window, the Text window, and the Drawing
window, are displayed. When executing a program, the Pascal system displays text only
to the Text window and graphic information only to the Drawing window. Entering and
editing a Pascal program occurs in the Program window only. By dragging the mouse,
you can cause any one of these three windows to capture the complete screen. Initially the

1 The number of pixels will vary depending on the type of monitor or machine you are using.
The early Macintoshes, the Macintosh SE and SE/30, and the Macintosh Classics all use a
nine-inch screen. The Macintosh II, Macintosh LC, and other newer machines can use a
variety of monitors of different sizes. For the RGB 13-inch monitor, the array consists of
307 ,200 pixels; 480 vertical pixels and 640 horizontal pixels. If you are using a different
screen, experiment with the program Figure6_2 to determine the height and width or your
screen.

190 Chapter 6 Basic Graphic and Mouse Commands

Drawing window is a 201-by-201 pixel square, shown in Figure 6.2. By dragging the
mouse, the Drawing window can be made to fill the screen, becoming 500 pixels wide by
300 pixels high.

Untitled

Program Untitled;
{Your declarations}

begin
{Your program statements}

end.

Figure 6.1 The Macintosh Pascal grafPorts .

Te Ht

Figure 6.2 presents the listing of a Macintosh Pascal program in the Program
Window. This program displays a bold-outlined rectangle to the Drawing window (also
shown in Figure 6.2). The coordinates at each corner are inserted for reference purposes
and are not a part of the program. To demonstrate this program in THINK Pascal, you
should insert a ShowDrawing command immediately after the begin. The command
ShowDrawing opens the Drawing window, allowing you to view the lines and/or
figures displayed to this window. This is important in a THINK Pascal program because,
unlike Macintosh Pascal, THINK Pascal does not automatically open the Drawing
window when it is needed. The program then appears as shown below:

program Figure6_2(input, output);
{ Purpose: Set dimensions of the Drawing window }

var
Top, Left, Bottom, Right

begin
ShowDrawing;

Set pen for bold lines. }
Pensize(3, 3);

Set dimensions of rectangle.
Top : = O;
Left := O;
Bottom := 200;
Right := 200;

Draw rectangle.

integer;

FrameRect(Top, Left, Bottom, Right);
end.

Basic Graphic and Mouse Commands Chapter 6

Drawing

(0,0) (200,0)

(0, 200) (200, 200)

Figure 6_2

Program Figure 6_2(input, output);
{ Dimensions of the Drawing window. }

var
Top. Left, Bottom, Right : integer;

begin
{ Set pensize for bold lines. }

Pensize(3,3);
{ Set dimensions of rectangle. }

Top:= O;
Left := O;
Bottom := 200;
Righr := 200;

{ Draw rectangle. }
FrameRect(Top, Left, Bottom, Right);

end.

Figure 6.2 Dimensions of the Drawing window in
Macintosh Pascal (initial size).

191

Figure 6.3 shows the coordinates for the Drawing window, using the complete screen
except for the space given to the menu bar and the elevator bars. Notice that the origin is
still located at the upper left corner of the window. For convenience, we consider the
horizontal axis as the x-axis and the vertical axis as the y-axis of a two-dimensional

192 Chapter 6 Basic Graphic and Mouse Commands

coordinate system. Any point within the Drawing window may be represented by an (x,y)
pair. For example, the point (40, 50) represents x as 40 and y as 50. That is, the first
number, 40, is the horizontal location, and the second number, 50, is the vertical location
for a single screen pixel. It is important to note that the geometric representation used
here is different from the standard convention of an x,y plane where the origin is at the
lower left corner.

(20,20) (497 ,20)

The bold rectangle outlines the usable part of the expanded
Drawing window (dimensions 20,20,327,497), corresponding to
the values Top, Left, Bottom, and Right, respectively. These
values relate to a Macintosh with a nine-inch monitor, such as
the SE/30 or Mac Classic. This figure is not correct to scale.

(20,327) (497,327)

Figure 6.3 The expanded Drawing window.

6.2 DRAWING SIMPLE LINES

In this section we examine three procedures for drawing lines: MoveTo, LineTo,
and DrawLine. Two other procedures, PenSize and Wri teDraw, are also considered.
To begin, assume that an imaginary pen exists in a grafPort such as the Drawing
window. Before the pen is used for drawing, we must position it on the screen. The
procedure used to accomplish this is called MoveTo, which uses the following syntax:

Move To (x, y) ;

When executed, this statement moves the point of the pen to a location in the Drawing
window given by the (x, y) pair. It does not perform any drawing.

A second procedure, called LineTo, allows you to draw a line from one point to
another. LineTo uses the following syntax:

LineTo(x, y) ;

When executed, this command draws a line from the current pen location to the
position specified by the values of x and y. After the line has been drawn, the pen has a
new current pen position given by arguments (x,y). For example, the following
Macintosh Pascal program, Diagonal_Lines, first moves the pen to the center of the

Basic Graphic and Mouse Commands Chapter 6 193

Drawing window, given as (100, 100). It then draws four diagonal lines from the center to
the following four points: (50, 50), (50, 150), (150, 50), (150, 150). After each line that
is drawn using the procedure LineTo, procedure MoveTo is used to reposition the pen
to the center point (100, 100). Figure 6.4 shows the Drawing window after execution.

Drawing

Display from the program
Diagonal_ Lines.

Drawing

Display from the program
Diagonal_Lines_Boxed.

Figure 6.4 Displays from the programs Diagonal_Lines and
Diagonal_Lines_Boxed.

program Diagonal_Lines(input, output);
{ Purpose: This Macintosh pascal program executes the library }
{ procedures MoveTo and LineTo. }

uses
QuickDrawl;

begin
{ Move the pen to the center of the Drawing window and draw a }
{ diagonal line. }

MoveTo(lOO, 100);
LineTo(50, 50);

{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line.

MoveTo(lOO, 100);
LineTo(50, 150);

{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line.

MoveTo(lOO, 100);
LineTo(150, 50);

{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line. }

194 Chapter 6 Basic Graphic and Mouse Commands

MoveTo(lOO, 100);
LineTo(150, 150);

end.

The same steps can be tested without execution of a full Pascal program by using the
Instant window.2 Figure 6.5 illustrates this for Macintosh Pascal with both the Instant
and Drawing windows opened. Eight program lines are inserted and then executed by
clicking on the Do It button. Once successfully tested, these program lines can be either
cut or copied, by using the Cut or Copy options in the Edit menu, and pasted into the
Program window. Be sure to keep the Instant window in mind when you need to
experiment with procedures or functions from the QuickDrawl library.

9 File Edit Search Run Windows

Untitled
program Untitled;

{Your declarations}
begin

{Your program statements}
end.

D Instant
(Do It)
MoveTo(100, 100)
LintTo(50,50)
MoveTo(100, 100)
LineTo(50, 150)
MoveTo(100, 100)
LineTo(150,50)MoveTo(100, 100)
Lineto(150, 150)
An statements, an time

rawing

Figure 6.5 Using the Instant window to test procedures from the QuickDrawl library.

Another procedure, called DrawLine, also allows a line to be drawn. DrawLine
uses the following syntax:

When executed, this command draws a line from a beginning point (x1 , y1) to an end
point (x2 , y2). After execution, the pen is positioned at the point (x2 , y2).

Suppose we want to modify the program Diagonal_Lines by drawing lines from
point (50, 50) to point (150, 50), then to point (150, 150), then to point (50, 150), and
finally to point (50, 50). The drawing produced by this program is shown in Figure 6.4.

2 In THINK Pascal, the Instant window is operational only when a program has been halted in
execution. This can be done either by clicking on the spray can at the right side of the menu
bar or by inserting stops and activating the Stops In command. These restrictions make
the use of the Instant window more difficult in the THINK Pascal environment.

Basic Graphic and Mouse Commands Chapter 6 195

program Diagonal_Lines_Boxed(input, output);
{ Purpose: This Macintosh Pascal program executes the library }
{ procedures MoveTo, LineTo, and DrawLine. }

uses
QuickDrawl;

begin
{ Move the pen to the center of the Drawing window and draw a }
{ diagonal line. }

MoveTo(lOO, 100);
LineTo(50, 50);

{ Move the pen to the center of the Drawing window and draw a }
{ diagonal line. }

MoveTo(lOO, 100);
LineTo(50, 150);

{ Move the pen to the center of the Drawing window and draw a }
{ diagonal line. }

MoveTo(lOO, 100);
LineTo(150, 50);

Move the pen to the center of the Drawing window and draw a }
diagonal line. }

MoveTo(lOO, 100);
LineTo(150, 150);

{ Draw a square around the two diagonal lines. }
DrawLine(50, 50, 150, 50);
DrawLine(150, 50, 150, 150);
DrawLine(150, 150, 50, 150);
DrawLine(50, 150, 50, 50);

end.

Allx and y values in MoveTo, LineTo, and DrawLine must be integers or integer
data types. If either or both of these values are declared or assigned as real values, the
program will halt when the procedure is executed and report an error.

The procedure PenSize provides the capability of changing the width, the height,
or both the width and the height of the line when it is drawn on the screen. The syntax for
calling the procedure PenSize is as follows:

PenSize(width, height);

where width and height are integers or integer data types with values greater than
zero. Using real data types will halt your program. The procedure alters only the
appearance of a line and has no effect on the display of any text within the Drawing
window. It also has no effect on the position of the drawing pen.

For example, insert the line PenSize (5, 15) just before the first DrawLine
command in Diagonal_Lines_Boxed, and execute the program. You will observe a
heavy line displayed around the two diagonal lines, a line that is 5 units wide and 15 units
high. It is important to note that if any value for width or height is equal to or less than
zero, the pen assumes zero, and no lines are displayed as they are drawn. For example, if
the command

196 Chapter 6 Basic Graphic and Mouse Commands

PenSize(-5, 15);

is used, only the horizontal lines will be drawn, with a height of 15 units. No vertical
lines will appear because the argument for width is less than zero. Change the first
parameter value to -5 in PenSize and observe the effect. The drawing pen can be hidden
by executing the command PenSi ze (0, 0) .

The last procedure we will discuss in this section is Wri teDraw. The Wri teDraw
command displays text to the Drawing window, beginning at the current location of the
drawing pen. For this reason it may be necessary to precede the Wri teDraw command
with the MoveTo command. For example, the commands for displaying the message
Di ago n al_ Lines at the top of the Drawing window in the program
Diagonal_Lines follow:

MoveTo (5 5 , 2 0) ;
WriteDraw('Diagonal_Lines');

Insert these commands and observe their effect by stepping through the entire
program. The MoveTo command centers the message over the figure, and the
Wri teDraw command draws the message Diagonal_Lines using the standard font.

Like the procedures LineTo and DrawLine, the Wri teDraw procedure leaves the
drawing pen in a new location after execution. The standard system font characters drawn
by WriteDraw are 6 or 7 pixels wide and 9 pixels high. By using the option Font
Control from the menu Windows, you can change the type and size of the font for
displaying characters in the Drawing window. Select the type of font, click the Program
window button, and then click the OK button. You can also change the type and size of
font for characters displayed in the Text window by using the same steps after clicking the
Text window button.

6.3 DRAWING SIMPLE GEOMETRIC PATTERNS

In this section we examine some of the QuickDrawl commands for drawing circles,
rectangles, and ovals within the boundaries of rectangles. We will also consider
commands for painting, inverting, and erasing these geometric patterns. Two procedures
for drawing a circle are PaintCircle and InvertCircle. The procedure
PaintCircle draws a black circle on the screen for a given radius about a given point.
The proper syntax for this command is

PaintCircle (x, y, r);

where the point (x , y) represents the center of the circle, and r is the radius from this
center. All three values, x, y, and r, must be integers or integer data types. The
procedure InvertCircle draws a black circle if the background within the Drawing
window is white and a white circle if the background is black. This procedure is different
from procedure PaintCircle, which always draws a black circle regardless of the
background color. The syntax for InvertCircle is as follows:

InvertCircle(x, y, r);

where x, y, and rare integers or integer data types, and the point (x, y) is the center
of a circle having a radius r.

Basic Graphic and Mouse Commands Chapter 6 197

You might assume that there is also a procedure named EraseCircle used to erase
from the screen any circle drawn by PaintCircle or InvertCircle. Actually there
is no such procedure, because the procedure InvertCircle can be used to erase a circle
drawn by PaintCircle. For example, consider the program Target, which uses
procedures PaintCircle and InvertCircle. The drawing produced by this program
is shown in Figure 6.6.

Drawing

Drawing Circles

Figure 6.6 The Drawing window, showing the
result of executing the program, Target.

program Target(input, output);
{ Purpose: This Macintosh Pascal program executes the
{ procedures PaintCircle and InvertCircle. }

uses
QuickDrawl; { Remove uses clause for THINK Pascal. }

begin
{ Place a title in the Drawing window.

Move To (5 0 , 18) ;
WriteDraw(' Drawing Circles');

{ Paint a circle of radius 70 with the center located at point
(100,100).}

PaintCircle(lOO, 100, 70);
Erase part of this circle using the procedure InvertCircle. }

InvertCircle(lOO, 100, 65);
Paint a new circle of radius 40. }
PaintCircle(lOO, 100, 40);

Create a ring by using InvertCircle.
InvertCircle(lOO, 100, 35);

198 Chapter 6 Basic Graphic and Mouse Commands

{ Place a small circle with a radius of 15 located in the }
{ center of the ring. }

InvertCircle(lOO, 100, 15);
end.

Neither PaintCircle nor InvertCircle has any effect on the location of the
drawing pen after execution is completed.

The next geometric pattern we will consider is the rectangle. There are several
interesting procedures for framing, painting, inverting, filling with a pattern, and erasing
a rectangle. These include FrameRect, PaintRect, InvertRect, FillRect,
and EraseRect. The procedure FrameRect draws an outline of a rectangle, given two
special points: the upper left-hand comer specified by the two parameters Top and Left,
and the lower right-hand comer given by the two parameters Bottom and Right. Figure
6. 7 shows a portion of a program that draws a framed rectangle and labels each comer
with the coordinates of a point.

9 File Edit Search Run Windows

§0 Figure 6. 7 Te Ht

program Figure 6.7(input, output);
{ Drawing a rectangle with FrameRect. }

var
Drawing

{ Declaration of variables. }
Top, Left, Bottom, Right: integer;

begin
{ Assign dimensions for rectangle. }

Top:= 20;
Left := 20;
Bottom := 180;
Right := 180;

{ Increase pen size. }
PenSize(2,2);

{ Draw rectangle. }
FrameRect(Top, Left, Bottom, Right);

{ Position pen. }
MoveTo(25,35);

{ Label corners. }
WriteDraw(20,20);

(20, 20)

(20, 180)

Figure 6.7 Drawing a rectangle with FrameRect.

The syntax required for the procedure FrameRect follows:

(180, 20)

(180, 180)

Basic Graphic and Mouse Commands Chapter 6 199

FrameRect(Top, Left, Bottom, Right);

where Top, Left, Bottom, and Right are integers or integer data types. Later in
this chapter we will show how to insert these four values into a special data type defined
in the QuickDrawl library as type Rect (short for rectangle).

The procedure PaintRect allows a rectangle specified by Top, Left, Bottom,
and Right to be painted using an existing pattern. The syntax required for the procedure
PaintRect follows:

PaintRect(Top, Left, Bottom, Right);

The procedure InvertRect allows the pixels enclosed by a rectangle specified by
Top, Left, Bottom, and Right to become black if drawn on a white background or
white if drawn on a black background. The syntax required to call the procedure
InvertRect follows:

InvertRect(Top, Left, Bottom, Right);

The procedure FillRect can be used to fill a rectangle specified by Top, Left,
Bottom, and Right with a predefined pattern: white, black, gray, ltgray, or dkgray. 3
The syntax required for calling on FillRect follows:

FillRect(Top, Left, Bottom, Right, Pat);

where Pat is a data type defined by the QuickDrawl library to be of type Pattern;
pat must have one of five possible values: white, black, gray, ltgray, or dkgray.

Finally, the procedure EraseRect paints the current background color of the
Drawing window within a rectangle specified by Top, Left, Bottom, and Right. The
syntax for calling EraseRect follows:

EraseRect(Top, Left, Bottom, Right);

The following program, titled Rectangles, executes each of these five procedures.
To allow you to observe the results, we inserted delays in the program after each
procedure. The major stages of the drawing produced by Rectangles are shown in
Figure 6.8. .

program Rectangles(input, output);
{ Purpose: Test procedures FrameRect, PaintRect, InvertRect, }
{ FillRect, and EraseRect. }

uses
QuickDrawl;

con st
Delay = 50000;

Pro_g_ram listin_g_ continues after Fi_g_ure 6.8 }

3 When using QuickDraw2, eight standard colors calledblackcolor,whitecolor, redcolor,
greencolor,bluecolor, cyancolor, magentacolor, andyellowcolor are available for color
monitors, using the procedures ForeColor and BackColor.

200 Chapter 6 Basic Graphic and Mouse Commands

Drawing §0 Drawing

Step 1. Frame is drawn. Step 2. The left side is filled.

Drawing Drawing

Steps 3 and 4. The right side is filled. Step 5. The rectangle is erased.

Figure 6.8 The actions of the program Rectangles .

Continuation of Rectangles listing.}
var

begin

Top, Left, Bottom, Right : integer;
Pat : Pattern;
I : longint;

{ Assign values to Top, Left, Bottom, and Right and draw an }
{ outline of a rectangle. }

Top := 40;
Left := 50;
Bottom := 160;
Right := 150;
FrameRect(Top, Left, Bottom, Right);

Basic Graphic and Mouse Commands Chapter 6

for I := 1 to Delay do { nothing }

Paint a rectangle in half of the Drawing window. }
Right := 100;
PaintRect(Top, Left, Bottom, Right);
for I := 1 to Delay do { nothing }

{ Fill the right part of the rectangle with light gray. }
Left := 100;
Right := 150;
Pat := ltgray;
FillRect(Top, Left, Bottom, Right, Pat);
for I := 1 to Delay do { nothing }

{ Invert the right part of the rectangle. }
InvertRect(Top, Left, Bottom, Right);
for I := 1 to Delay do { nothing }

Left := 50;
Right := 150;
EraseRect(Top, Left, Bottom, Right);

end.

201

As an additional example using FrameRect, PaintCircle, and InvertCircle,
consider the Drawing window shown in Figure 6.9. The Macintosh Pascal program
Motion draws a black circle starting at the left-hand comer of the frame. It then begins
to roll this circle along the left edge of the frame until it reaches the bottom left comer,
then rolls the circle along the bottom edge to the bottom right comer, then up the right
edge to the top right comer, and then along the top edge, leaving the circle in the upper
left-hand comer.

program Motion(input, output);
{ Purpose: This Macintosh Pascal program moves a circle around }
{ the interior of a rectangle. }

uses
QuickDrawl;

con st
Radius = 19;

var
X, Y : integer;

begin
{ Establish the frame in which the circle will move. }

FrameRect(50, 50, 220, 220);
{ Establish the circle at the upper left corner of the screen }
{ and let it drop vertically along the inside edge of the frame.

x := 70;
The proJ;I_ram listinJ;I_continues after F~ure 6.9. }

202 Chapter 6 Basic Graphic and Mouse Commands

Drawing

Figure 6.9 Direction in which the program Motion moves a circle
within a frame.

Continuation of the listing for the program Motion. }
for Y := 70 to 200 do

begin
PaintCircle(X, Y, Radius);
InvertCircle(X, Y, Radius);

end;
Move the circle from left to right along the bottom of the }
frame. }

y := 200;
x := 70;
for x := 70 to 200 do

begin
PaintCircle(X, Y, Radius);
InvertCircle(X, Y, Radius);

end;
Raise the circle vertically along the right edge of the frame. }

y := 200;
x := 200;
for Y := 200 downto 70 do

begin
PaintCircle(X, Y, Radius);

Basic Graphic and Mouse Commands Chapter 6 203

InvertCircle(X, Y, Radius);
end;

Move the circle from right to left along the top of the frame. }
y := 70;
x := 200;
for X := 200 downto 70 do

begin
PaintCircle(X, Y, Radius);
InvertCircle(X, Y, Radius);

end;
{ Leave the circle in the upper left-hand corner of the frame. }

PaintCircle(70, 70, Radius);
end.

Notice that the procedure PaintCircle is executed before InvertCircle. If
these two are reversed within each of the for loops, a black border is drawn within the
boundary of the frame.

In computer graphics, motion can be displayed by rapidly drawing one or more
points, erasing these points, and drawing new points. In our example, PaintCircle
draws all of the points for the black circle while InvertCircle erases these points.
When the program Motion is executed, the circle seems to move slowly, following the
boundary of the frame. You may wonder if it can be made to execute faster. For
Macintosh Pascal, the answer is no; not all of the Macintosh Pascal program lines may
be translated into machine code when the program is executed. Part of the Macintosh
Pascal program may be examined during execution after the program has been checked for
syntax errors. For example, the procedures PaintCircle and InvertCircle have
their arguments checked at execution time (to see if they are properly declared) before
performing their stated action. This interpretation increases the execution time, because
both procedures are placed in four separate for loops, with each loop iterated 130 times.
An alternative to using these procedures is to compute all of the points necessary to plot
each individual black circle and store all of them in main memory. Some simple
calculations, however, reveal the need to compute and store approximately 589,740
individual points before any of the 520 circles can be drawn. Each point requires 4 bytes
of storage (2 bytes per integer), so this would require 1,179,479 bytes of memory. This
of course exceeds the RAM memory capacity of some Macintosh computers, particularly
when we consider the additional memory requirements of the system and application
programs.

On the other hand, the THINK Pascal environment offers a faster execution time,
because the source code of the program is compiled into machine language prior to
execution.

The remaining procedures to be discussed in this section include FrameOval,
PaintOval, InvertOval, FillOval, and EraseOval. The procedure
FrameOval draws the boundary of an oval within a rectangle specified by Top, Left,
Bottom, and Right, and PaintOval paints an oval within a specified rectangle.
InvertOval inverts the pixels within an oval to a color opposite that of the
background. EraseOval paints an oval enclosed within a specified rectangle with the
current background color.

Ovals appear elliptic unless the specified rectangles are square, in which case the
ovals appear as circles. The syntax required for calling each of these five procedures
follows:

204 Chapter 6 Basic Graphic and Mouse Commands

FrameOval (Top, Left, Bottom, Right);
PaintOval (Top, Left, Bottom, Right) ;
InvertOval (Top, Left, Bottom, Right);
FillOval (Top, Left, Bottom, Right, pat);
EraseOval (Top, Left, Bottom, Right);

The program Random_Dots uses the procedure FillOval to place large random
dots having one of five different patterns. The program begins by computing random
values for the coordinates of the top left corner of a rectangle, then adds 30 to both Top
and Bot tom for assigning the coordinates of the bottom right corner. Even though the
function random can return a random integer value between -32768 and 32767, only
values between 0 and 32767 are required. Using the function abs (absolute) and mod
division with a divisor 201 limits the resulting values to values between 0 and 200. The
second mod division by 5 results in one of five patterns being selected for the next large
dot, while the case statement allows one of the five patterns to be chosen, depending
on the value assigned to Background. After the coordinates of both the top left and
bottom right corners and the patterns, Pat, are assigned values, the procedure
FillOval is executed to draw an oval within the specified rectangle given by Top,
Left, Bottom, and Right. In this example, the while-do command forces the
program to execute continuously because its condition always remains true. Figure 6.10
shows sample output from the program.

Figure 6.10 Sample results from the program Random_Dots.

This program can be halted by choosing the Halt option in the Pause menu. (Click
the spray can to halt the THINK Pascal version.)

Basic Graphic and Mouse Commands Chapter 6

program Random_Dots(input, output);
{ Purpose: This Macintosh Pascal program paints random dots }
{ having different patterns in the Drawing window. }

uses
QuickDrawl;

var

begin

Top, Left, Bottom, Right
Pat : Pattern;
Background : integer;

integer;

{ Use the function random to choose the corners of a square }
{ and a pattern. }

while true do

begin
{ Randomly select the rectangles for drawing an oval. }

Top := abs(random) mod 201;
Left := abs(random) mod 201;
Bottom := Top + 30;
Right := Left + 30;

Randomly select the background color. }
Background := abs(random) mod 5;
case Background of

0 Pat .- white;
1 Pat .- black;
2 Pat .- gray;
3 Pat .- ltgray;
4 Pat .- dkgray;

end; { End case }

{ Display the oval in a rectangle with a chosen background
{ pattern. }

FillOval(Top, Left, Bottom, Right, Pat);
end; { End while }

end.

205

None of the procedures discussed in this section has any effect on the location of the
drawing pen after being executed. In executing any of the procedures FrameRect,
PaintRect,FillRect,InvertRect,EraseRect,FrameOval,PaintOval,
InvertOval, and FillOval, the top left point must be above and to the left of the
bottom right point for drawing. Drawing occurs in the Drawing window if the following
condition holds true:

(Top < Bottom and Left < Right) .

If the value of this condition is false, nothing is drawn; however, no execution error
is reported.

206 Chapter 6 Basic Graphic and Mouse Commands

6.4 MOUSE CURSOR COMMANDS

In this section, we present three procedures for allowing input from the mouse. Keep in
mind that the Macintosh computer is an event-driven system. That is, it keeps track of all
present events initiated by the user and processes each as needed. These events include
pressing a key on the keyboard, clicking the mouse button, and dragging the mouse. In
Macintosh Pascal programs, commands such as But ton, Get Mou s e, and
StillDown provide control through clicking the mouse button or the moving action of
the mouse.

Two functions deal specifically with the button on the mouse. The first is called
Button, which returns a Boolean value true if the mouse button is being held down
at the time that this function is executed, and false if the button has been released.
Consider the following Macintosh Pascal program, titled Mouse_Button.

program Mouse_Button{input, output);
{ Purpose: This program performs a test of the function Button. }

uses
QuickDrawl;

var
Down : Boolean;

begin
{ Prompt the user with a message.

MoveTo { 5 , 5 0) ;
WriteDraw{' Press mouse button to continue: ');

{ Wait until the mouse button has been pressed. }
Down := false;
while not Down do

Down : = Button;
{ Prompt the user with a second message. }

MoveTo{5, 100);
WriteDraw{' Continue to keep mouse button pressed: ');

{ Wait until the user has released the mouse button. }
while Down do

Down := Button;
{ Prompt the user with a third message. }

MoveTo{5, 150);
WriteDraw{' End of execution: ');

end.

This example shows how you can display a prompt in the Drawing window.
Execution of the program continues after the mouse button has been pressed or clicked.
The second loop (the second while-do statement) continues to execute until the
mouse button is released. You will find it convenient to use both the Step-Step and the
60 options of the Run menu to test this program.

The function StillDown is different from the function Button. After a mouse
event has occurred (such as pushing the mouse button down or moving the mouse), the
function StillDown will check to see ifthe mouse button remains down; it will return
the value true if the button is currently down and no other mouse events have occurred.
Otherwise, it will return the value false. Moving the mouse while the button remains
down is interpreted to mean that another event has occurred. For example, if the mouse

Basic Graphic and Mouse Commands Chapter 6 207

button is pressed, released, and then pressed again, the function Button will return the
value true, but the function Sti l lDown returns the value false. Why? Pressing the
mouse button a second time means that a second mouse event has occurred. In order for
StillDown to return the value true, the button must remain down.

The procedure GetMouse locates the current position of the mouse in the Drawing
window and returns this point through two parameters, the first for the horizontal
coordinate and the second for the vertical coordinate.4 The syntax for calling on this
procedure is as follows:

GetMouse (p);

where pis of data type point. The following THINK Pascal program, titled Rings,
shows how to display rings in the Drawing window using the command GetMouse.

program Rings(input, output);
{ Purpose: This program tests the GetMouse procedure by drawing }
{ inverted circles of a fixed radius. }

c:onst

var
Number = 1000;

J: integer;
Screen_Point: Point;
Message: string;

begin
ShowDrawing;

{ Prompt the user with instructions. }
MoveTo(5, 15);
Message := 'Press the mouse button and move the mouse to draw

circles:';
WriteDraw(Message);
while true do

end.

begin
{ Return the mouse point. }

GetMouse(Screen_Point);
{ If mouse button is pressed, display an inverted circle.}

if Button then

end;

begin
FrarneOval(Screen_Point.v - 25, Screen_Point.h - 25,
Screen_Point.v + 25, Screen_Point.h + 25);

{ Provide a short delay while releasing mouse }
{ button. }

for J := 1 to Number do {nothing}

end;

4 The GetMouse command is handled differently in Macintosh Pascal. A single argument of
type point is used to communicate the location of the mouse. This will be explained
shortly.

208 Chapter 6 Basic Graphic and Mouse Commands

Notice that the coordinate for the center of each circle is known only.when the mouse
button is pressed. If the button is not pressed, the program remains in a simple loop
waiting for the function But ton to return a value of true. You will observe something
different if you remove the short delay from the if-then statement. This delay loop is
necessary so that you will have enough time to release the mouse button.5 A drawing
produced by this program is shown in Figure 6.11

Drawing

Press the mouse button and move the mouse to draw circles.

Figure 6.11 A drawing created with the program Rings.

The GetMouse command is different for Macintosh Pascal. To execute the above
program under Macintosh Pascal you would have to change the GetMouse statement as
follows:

GetMouse(Screen_Point.h, Screen_Point.v);

where Screen_Point. hand Screen_Point. v are integer values representing
the X,Y coordinates on the screen. Therefore you would also need to change the variable
declaration part of the program, as shown below.

var
J: integer;
Screen_Point.h, Screen Point.v: integer;
Message: string;

5 In THINK Pascal, a procedure called Delay is available for the purpose of delaying the
execution of a program. This routine will be described in more detail in Section 7. 7.

Basic Graphic and Mouse Commands Chapter 6 209

6.5 SETTING THE SIZE AND DISPLAY OF TEXT AND DRAWING
WINDOWS

Rect

As you may have seen with the desktop folder and other Macintosh software, you can
remove a window on the screen by clicking the close box. You can also expand the size
of a window by moving the cursor to the size box of the window, pressing the mouse
button, and dragging the mouse until you have adjusted the window to the desired size. By
using special Macintosh Pascal procedures from the QuickDrawl .library, you can
automate your Pascal programs to hide and set windows without the need for dragging and
clicking the mouse. The first of these procedures is HideAll. When executed, this
procedure causes windows on the screen to be hidden. Remember that all hidden Pascal
windows can be revealed by using the Windows menu. Once the windows are hidden, you
can display the Text and Drawing windows by using the following pairs of commands:
SetTextRect and ShowText or SetDrawingRect and ShowDrawing. The
procedures SetTextRect and SetDrawingRect allow you to set the size and
location of either the Text or the Drawing window, but they do not open the window for
display. Each procedure requires only one actual parameter, a variable of data type Rect.

Chapter 9 discusses record structures in greater detail, but let us at this point show
how the QuickDrawl library declares the special record structure called Rect. In Pascal
a record structure allows us to establish a type having several different properties. Rect
is a special type declared as follows:

= record case integer of
0 : (top : integer;

left: integer;
bottom: integer;
right: integer) i

1 topLeft point;
botRight : point) i

end;

For this record structure, a variable declared of type Rect can either have the properties
associated with label 0 or label 1. The choice of labels is determined by use of an
assignment statement. For example, the program Partial declares Box to be of type
Rect. The statements

Box.top := O;
Box.left := O;
Box.bottom := 342;
Box.right := 512;

assign four separate values to Box, each represented by a variable name followed by a
period followed by a unique field name such as top, left, bottom, or right. Thus
in this program the variable Box is using the record structure represented by label 0. It is
through the execution of the procedure SetDrawingRect that the boundaries of the
Drawing window are established using the four values of variable Box. In this example,
all windows are first hidden by executing the procedure HideAll. Next, the complete
screen, other than the menu bar at the top, is captured for the Drawing window.
Remember that for maximum size, the Drawing window requires an upper left corner with
the coordinate (0, 0) and a lower right comer with the coordinate (512, 342).

210 Chapter 6 Basic Graphic and Mouse Commands

program Partial(input, output);
{ Purpose: Demosntration of the procedure SetDrawingRect. }

uses
QuickDrawl;

var
Box : Rect;

begin
{ Hide all windows.

HideAll;
Set the boundary of the Drawing window as the complete screen. }
Box.top := O;
Box.left := O;
Box.bottom := 342;
Box.right := 512;
SetDrawingRect(Box);

{ Show the new Drawing window.
ShowDrawing;

{ Continue with the remainder of the program. }
end.

The procedure ShowDrawing requires no parameters and, when executed, opens the
Drawing window.

There is an easier way to establish the boundaries of a rectangle for viewing a
window. The procedure called Se tRec t allows a rectangle of type Rec t to be assigned
the top left and bottom right points of a rectangle. Syntax for using this procedure
follows:

SetRect(Rect_Window, Left, Top, Right, Bottom);

where Left, Top, Right, Bottom are integers or integer data types. Be sure you
understand that the procedure SetRect requires the top left and bottom right points to be
specified by the list Left, Top, Right, Bottom. This is different from our earlier
drawing procedures, which required top left and bottom right to be specified by the list
Top, Left, Bottom, Right. We can modify our example with the following lines:

program Partial_Revised(input, output);
{ Purpose: Demosntration of the procedure SetDrawingRect. }

uses
QuickDrawl;

var
Box : Rect;

begin
{ Hide all windows. }

HideAll;
{ Set the boundary of the Drawing window as the complete screen. }

SetRect(Box, 0 , 0, 512, 342);
SetDrawingRect(Box);

{ Show the new Drawing window. }
ShowDrawing;

{ Continue with the remainder of the J2.rOJLram. }

Basic Graphic and Mouse Commands Chapter 6 211

Suppose you want to split the screen into two parts. The left half of the screen will
be the Drawing window, and the right half will be the Text window. Adding the
following statements will result in the Text window being shown:

{ Modify only the top and left values of Box. }
SetRect(Box, 256, 18, 512, 342);
SetTextRect(Box);

{ Show the new Text window. }
ShowText;

The value Top is set at 18 rather than zero in order to prevent the menu bar from hiding
any text. Left is set to 256 because this value represents the center of the screen as you
move from left to right along a horizontal axis.

The procedures GetTextRect and GetDrawingRect return the coordinates of
the Text and Drawing windows, respectively. The procedure GetTextRect
(Window_Rectangle) returns the current size and present position of the Text
window, and GetDrawingRect (Window_Rectangle) returns the current size and
present position of the Drawing window. In either case, the variable Window_
Rectangle must be of type Rect. For example, during execution, if you move the
Text window by clicking on the the size box or by dragging on the menu bar with the
mouse, execution of

GetRectText(Text_Window

would result in the coordinates of Text_Window being changed. This applies to the
procedure GetDrawingRect as well. Remember that during the execution of a
Macintosh program, these two procedures can be useful for recording any changes to the
coordinates of Text and Drawing rectangles.

6.6 SOME APPLICATIONS OF THE QU:ICKDRAWl LIBRARY

Month
Number
Number
Number
Number
Number

Let us illustrate the application of the QuickDrawl library by writing a program that
draws a bar chart, using data entered from the keyboard. Consider the case of Hank's Auto
Distribution Center. Hank wants to employ a Macintosh computer to display a bar chart
reporting the percentage of vehicles sold and the total number sold. Figure 6.12 shows the
formats for both the Text and Drawing windows. The coordinates for displaying messages
and selecting the frame of the bar charts may need to be determined by trial and error. This
requires writing parts of the Macintosh Pascal program and then testing them by
executing only those procedures used for opening and displaying windows and messages.
You may need to repeat this until you are satisfied with the appearance of all windows.

Our algorithm requires six inputs from the person using the program:

(year can also be included)
of sedans
of convertibles
of wagons
of vans
of trucks

212 Chapter 6 Basic Graphic and Mouse Commands

Drawing

(70,30)

~1 HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT

!Month: JUNE 1988 jvolume: 25

((200,100) (350/',55)
(40,55) If

/
I Sedans . I is 30 units wide

-t­
Each bar
+

c100, 120) Convertibles

Wagons

Vans

Trucks
.l .l .l

0 25 50 75 10
J..Eercentage of Units Sold

(400,250)

HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT

Enter the month for this report:

Enter units of sedans sold:

Enter units of convertibles sold:

Enter units of wagons sold:

Enter units of vans sole:

Enter units of trucks sold:

Figure 6.12 Layout for the Drawing and Text windows in the program Bar_Chart.

Basic Graphic and Mouse Commands Chapter 6 213

Output will be a bar chart in the grid shown in Figure 6.12. When executed, the
algorithm will compute six values:

Total volume (units) sold
Percentage of sedans sold
Percentage of convertibles sold
Percentage of wagons sold
Percentage of vans sold
Percentage of trucks sold

Here are the initial steps in the algorithm for drawing the bar chart:

1. Hide all windows.
2. Establish boundaries for both the Text and Drawing windows.
3. Open the Text window.
4. Prompt the user for and accept input data.
5. Compute the total volume and all required percentages.
6. Hide the Text window, and open the Drawing window.
7. Draw the title, and then label and draw the bar chart.

The expanded algorithm follows. Some detail, such as the use of write ln,
readln, and MoveTo commands, has been left for the program listing.

Algorithm Bar_Chart;
{ This algorithm draws a horizontal bar chart for five data

items. }
begin
{ Hide all windows. }

HideAll;
{ Establish boundaries for the Text and Drawing windows. }

SetRect(Text_Window, 100, 100, 400, 300);
SetRect(Drawing_Window, 0, 40, 512, 342);
SetTextRect(Text_Window);
SetDrawingRect(Drawing_Window);

Open the Text window. }
ShowText;

{ Prompt the user for initial data. }
write(' HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT');
write(' Enter the month for the report: '); Read (Month);
write(' Enter units of sedans sold: '); Read (Sedans);
write(' Enter units of convertibles sold: '); Read

(Convertibles) ;
write(' Enter units of wagons sold: '); Read (Wagons);
write(' Enter units of vans sold: '); Read (Vans);
write(' Enter units of trucks sold: '); Read (Trucks);

Compute the total volume and all percentages. }
if (Total_Volume <> 0) then

begin
Total_Volume <-- Sedans + Convertibles + Wagons +

Vans + Trucks;

214 Chapter 6 Basic Graphic and Mouse Commands

Percentage_Sedans <--round{ Sedans/Total_Volume * 100);
Percentage_Convertibles <--
round { Convertibles/Total_Volume * 100);
Percentage_Wagons <--round{ Wagons/Total_Volume * 100);
Percentage_Vans <--round{ Vans/Total_Volume * 100);
Percentage_Trucks <--round{ Trucks/Total_Volume * 100);

end;
{ Close the Text window and open the Drawing window. }

HideAll; ShowDrawing;
{ Draw the bar chart. }
{ Display the title, month, and total volume. }

WriteDraw{' HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT;);
WriteDraw{' Month: ', Month) ;
WriteDraw{' Volume: ', Total_Volume) ;

{ Display the frame for the bar chart. }
FrarneRect{lOO, 200, 250,4 00);

{ Label the vertical axis of the bar chart. }
WriteDraw{ 'Sedans');
WriteDraw{ 'Convertibles');
WriteDraw{ 'Wagons');
WriteDraw{ 'Vans');
WriteDraw{ 'Trucks');

{ Scale the horizontal axis. }
Scale <-- O;
x <-- 170;
y <-- 265;
for Mark <-- 1 to 5 do

begin
{ Move to X,Y point }

WriteDraw{ Scale);
DrawLine{ X + 30, Y - 16, X + 30, Y - 21);
Scale <-- Scale + 25;
x <-- x + 50;

end; { for-loop }
{ Label the horizontal axis. }

WriteDraw{' Percentage of Units Sold');
{ Display each of the five percentage bars. }

FillRect{lOO, 200,1 30, 200 + Percentage_Sedans * 2, black);
Fil1Rect{130, 200, 160, 200 + Percentage_Convertibles * 2,

gray);
Fil1Rect{160, 200, 190, 200 + Percentage_Wagons * 2, black);
Fil1Rect{190, 200, 220, 200 + Percentage_Vans * 2, ltgray);
Fil1Rect{220, 200, 250, 200 + Percentage_Trucks * 2, dkgray);

end.
First, all variables other than Month are integer. Month will be declared as a

string type with a maximum length of 20 characters. Second, the percentages are
computed first as real values, scaled by a factor of 100, and then rounded up to an integer
number. To avoid division by zero, the variable Total_ Volume is tested before any
percentages are computed. We assume that all variables are initially zero before execution
begins. If not, the following conditional statement would be required:

Basic Graphic and Mouse Commands Chapter 6 215

If (Total_Volume <> 0) then
begin

Total_Volume <-- Sedans + Convertibles + Wagons +
Vans + Trucks;

Percentage_Sedans <--round(Sedans/Total_Volume * 100);
Percentage_Convertibles <--

round (Convertibles/Total_Volume * 100);
Percentage_Wagons <--round(Wagons/Total_Volume * 100);
Percentage_Vans <--round(Vans/Total_Volume * 100);
Percentage_Trucks <--round(Trucks/Total_Volume * 100);

end
else

begin
Total_Volume <-- O;
Percentage_Sedans <-- O;
Percentage_Convertibles <-- O;
Percentage_Wagons <-- O;
Percentage_Vans <-- O;
Percentage_Trucks <-- O;

end;

Third, each pixel in the bar chart represents one-half of a percentage point. Because of
this, we must multiply each of the corresponding percentages by a factor of 2 before
adding it to 200 when computing the bottom right point of the rectangle being filled by a
pattern using the procedure FillRect. Each bar is to be shown using a different
pattern.

The Macintosh Pascal program Bar_Chart is based on this algorithm. This
program includes added wri teln and MoveTo statements to show the positions of the
text cursor and drawing pen.

program Bar_Chart(input, output);
{ Purpose: This program draws a horizontal bar chart for five }
{ data items. }

uses
QuickDrawl;

var

begin

Text_Window, Drawing_Window : Rect;
Sedans, Convertibles, Wagons, Vans, Trucks : integer;
Percentage_Sedans, Percentage_Convertibles : integer;
Percentage_Wagons, Percentage_Vans :integer;
Total_Volume, Percentage_Trucks: integer;
Month: string[20];
Scale, Mark, X, Y : integer;

{ Hide all windows. }
HideAll;

{ Establish boundaries for both the Text and Drawing windows. }
SetRect(Text_Window, 100, 100, 400, 300);
SetRect(Drawing_Window, 0, 40, 512, 342);

216 Chapter 6 Basic Graphic and Mouse Commands

SetTextRect(Text_Window);
SetDrawingRect(Drawing_Window);

{ Open the Text window and prompt the user for initial data. }
ShowText;
writeln;
writeln(' HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT ');
writeln;
write(' Enter the month for this report: ');
readln (Month);
writeln;
writeln;
write(' Enter units of sedans sold: ');
readln (Sedans) ;
writeln;
write(' Enter units of convertibles sold: ');
readln(Convertibles);
writeln;
write(' Enter units of wagons sold: ');
readln (Wagons) ;
writeln;
write(' Enter units of vans sold: ');
readln (Vans) ;
writeln;
write(' Enter units of trucks sold: ');
readln(Trucks);

{ Compute the total volume and all relevant percentages. }
Total_Volume := Sedans + Convertibles + Wagons + Vans + Trucks;
if Total_Volume <> 0 then

begin
Percentage_Sedans := round(Sedans I Total_Volume * 100);
Percentage_Convertibles := round(Convertibles I

Total_Volume * 100);
Percentage_Wagons := round(Wagons I Total_Volume * 100);
Percentage_Vans := round(Vans I Total_Volume * 100);
Percentage_Trucks := round(Trucks I Total_Volume * 100);

end;

{ Close the Text window and open the Drawing window. }
HideAll;
ShowDrawing;

Display the title, month, and total volume of units sold. }
MoveTo(70, 30);
WriteDraw(' HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT');
Move To (4 0 , 5 5) ;
WriteDraw(' Month: Month);
MoveTo(350, 55);
WriteDraw(' Volume: ', Total_ Volume);

{ Display the frame for the bar chart. }
FrameRect(lOO, 200, 250, 402);

{ Labels the vertical axis of the bar chart.

Basic Graphic and Mouse Commands Chapter 6

MoveTo(lOO, 120);
WriteDraw('Sedans');
MoveTo(lOO, 150);
WriteDraw('Convertibles');
MoveTo(lOO, 180);
WriteDraw('Wagons');
MoveTo(lOO, 210);
WriteDraw('Vans');
MoveTo(lOO, 240);
WriteDraw('Trucks');

{ Scale the horizontal axis of the bar chart. }
Scale := O;
x := 170;
y := 265;
for Mark .- 1 to 5 do

begin
MoveTo (X, Y) ;
WriteDraw(Scale);
DrawLine(X + 30, Y - 16, X + 30, Y - 21);
Scale := Scale + 25;
x := x + 50;

end;

Label the horizontal axis of the bar chart. }
MoveTo(225, 280);
WriteDraw(' Percentage of Units Sold');

{ Display each of the five percentage bars. }
FillRect(lOO, 200, 130, 200 + Percentage_Sedans * 2, black);
Fil1Rect(130, 200, 160, 200 + Percentage_Convertibles * 2,

gray);

217

Fil1Rect(160, 200, 190, 200 + Percentage_Wagons * 2, black);
Fil1Rect(190, 200, 220, 200 + Percentage_Vans * 2, ltgray);
Fil1Rect(220, 200, 250, 200 + Percentage_Trucks * 2, dkgray);

end.

Figure 6.13 shows an examp~ of the output displayed by the program Bar_Chart. The
style and size of the font displayed in the Drawing window can be changed by selecting a
different font, using the option Font Control from the Windows menu.

As a second example, consider a Macintosh Program for drawing one or more directed
lines. The person using this program will be prompted to select an initial point within
the Drawing window by first moving the cursor with the mouse. Once an initial point is
selected, the mouse button is pressed and held down until a second point is selected. Once
the second point is selected and the mouse button is released, a line is drawn from the
initial point to the second point. The program continues to execute, allowing other direct
lines to be drawn, until the option Halt is chosen from the Pause menu.

218 Chapter 6 Basic Graphic and Mouse Commands

D Drawing

HANK'S AUTO DISTRIBUTION MONTHLY VOLUME REPORT

Month: AUGUST 1988 Volume: 278

Sedans

Convertibles

Wagons

Vans !l!lll!lllillll
Trucks

0 25 50 75 100
Percentage of Units Sold

Figure 6.13 Sample output from the program Bar_Chart.

Figure 6.14 shows an example of the output created by this program. When drawing
the text characters with WriteDraw, the font type selected was Venice, with a font size
of 14. Below is an algorithm for this program.

Algorithm Directed_Lines;
{ This algorithm allows one or more lines to be drawn. }
begin
{ Hide all windows . }

HideAll;
Establish boundary for the Drawing window using SetRect and }
SetDrawingRect. }

SetRect(Drawing_Window, 0, 18, 512, 342);
SetDrawingRect(Drawing_Window);

Open the Drawing window. }
ShowDrawing;

Prompt the user for selecting an initial point. }
Algorithm continues after Figure 6.14. }

Basic Graphic and Mouse Commands Chapter 6 219

Seied your initial point; tlien. press -tM mouse fiu.tton.. !Hoftf -tM 6utton. tfown. until you
fuwe sdedetf a fouU point.

~~_o ____ r_H_E_-_E_/'1=====b====-l

'Use -tM Pause mmu to fratt t;(ICUtion..

Figure 6.14 Using the procedures GetMouse and DrawLine and the function Button,
we can write a simple sketching program.

{ Continuation of algorithm for Directed_Lines }
WriteDraw('Select your initial point; then press the mouse

button.');
WriteDraw('Hold the mouse button down until you have selected a

final point. ') ;
WriteDraw('Use the Pause menu to halt execution.');

{ Repeat drawing lines between two points until option Halt is
chosen. }

repeat
Down <-- false;

{ Wait for the mouse button to be pressed. }
while { button is not down } do

Down <-- Button;
{ Get the initial point Xl, Yl.}

GetMouse(Xl, Yl);
{ Wait for the mouse button to be released. }

while { mouse button is down } do
Down <-- Button;

220 Chapter 6 Basic Graphic and Mouse Commands

{ Get the final point X2, Y2.}
GetMouse(X2, Y2);

{ Draw a line from the initial point to the final point. }
DrawLine(Xl, Yl, X2, Y2);

until { selected option Halt from Pause menu }
end.

Following is the Macintosh Pascal program Directed_Lines:

program Directed_Lines(input, output);
{ Purpose: This program allows one or more lines to be drawn. }

uses
QuickDrawl;

const
Halt = false;

var
Drawing_Window
Xl, Yl, X2, Y2
Down : Boolean;

begin
{ Hide all windows. }

HideAll;

Rect;
integer;

{ Establish boundary for the Drawing window using SetRect and }
{ SetDrawingRect. }

SetRect(Drawing_Window, 0, 18, 512, 342);
SetDrawingRect(Drawing_Window);

{ Open the Drawing window. }
ShowDrawing;

{ Prompt the user for selecting an initial point. }
MoveTo(20, 20);
WriteDraw('Select your initial point; then press the mouse

button.');
Move To (2 0 , 3 5) ;
WriteDraw('Hold the mouse button down until');
WriteDraw(' you have selected a final point.');
MoveTo(20, 300);
WriteDraw('Use the Pause menu to halt execution.');

{ Repeat drawing lines between two points until option Halt is }
{ chosen. }

repeat
Down := false;

Wait for the mouse button to be pressed. }
while not Down do

Down := Button;
{ Get the initial point Xl, Yl.}

GetMouse(Xl, Yl);
Wait for the mouse button to be released. }

while Down do
Down := Button;

{ Get the final point X2, Y2.}
GetMouse(X2, Y2);

Basic Graphic and Mouse Commands Chapter 6 221

{ Draw a line from the initial point to the final point. }
DrawLine(Xl, Yl, X2, Y2);

until Halt;
end.

A Boolean constant called Halt is used as the condition of the repeat­
until loop. This same loop can be replaced with a while-do loop having the
following form:

while not Halt do
begin

Down := false;
{ Wait for the mouse button to be pressed. }

while not Down do
Down := Button;

{Get the initial point Xl, Yl.}
GetMouse(Xl, Yl);

{ Wait for the mouse button to be released. }
while Down do

Down := Button;
Get the final point X2, Y2.}

GetMouse(X2, Y2);
{ Draw a line from the initial point to the final point. }

DrawLine(Xl, Yl, X2, Y2);
end;

con st

In using a graphics system such as Macintosh Pascal, you may want to transform a
text program into one that uses both text and graphics to produce a program that is more
effective in displaying information and has greater impact. This discussion encourages
you to think about the possibilities and the requirements of transforming a text program
to a graphics program.

As an example, we will use the Beanpicker program from Chapter 5, which used
the Text window for all of its output and had no graphics component. It is obvious,
however, that enabling the player to see a bean or beans being removed as the game is
played would improve the design of the game. Two factors should be taken into account
in this process: the addition of the program lines required to create graphics output and
the removal of program line:. ''lat support the text only presentation.

The first necessary alteration of the Beanpicker program is in the declaration of
variables. We need an integer variable called Max_Bean to keep count of the beans
displayed on the screen. Three new variables of type Rec t are required for setting the
Text and Drawing windows. Finally, two integer variables, X and Y, along with a
constant, Radius (which has a value of 14), will be needed to locate and draw the beans.
At the beginning of the execution of the revised program, both the Text window and the
Drawing window will be activated. These changes are achieved by the following program
lines:

Radius = 14;
var

Number_of_Beans, Player_Pick, MAC_Pick
X, Y, Index, Max_Bean : integer;

integer;

222

Continuation : string[BO];
Boxl, Box2, Box3 : Rect;

Chapter 6 Basic Graphic and Mouse Commands

begin
SetRect(Boxl, 1, 40, 512, 345);
SetRect(Box2, 1, 40, 512, 260);
SetRect(Box3, 1, 260, 512, 335);
SetTextRect(Boxl);
ShowText;

As shown in Figure 6.15, the introduction to the program and the rules of the game
are displayed in the Text window.

If you wish to play, type "yes." CAUTION ... Anything but lower case "yes"
will quit BEANPICKERI If you wish to quit, press <Return> key. yes

Figure 6.15 Opening screen for the Modi f ied_Beanpicker Game.

If the player chooses to continue, 36 black circles representing 36 beans will be drawn in
the Drawing window through the execution of the following program lines:

while Continuation = 'yes' do
begin
{ Set Text and Drawing windows.

SetTextRect(Box3);

Basic Graphic and Mouse Commands Chapter 6 223

SetDrawingRect(Box2);
Initialize variables. }

X := 138; {Xis the coordinate of first bean.}
Y := 16; { Y is the coordinate of first bean.}
Max_Bean : = 1;

{ Open Drawing window for viewing beans. }
ShowDrawing;
while Max_Bean <= 36 do

begin
{ Display 36 black beans. }

PaintCircle(X, Y, Radius);
if ((Max_Bean mod 6) <> 0) then
{ If not the sixth bean in the row, increment X }
{ coordinate. }

x := x + 40
else
{ If sixth bean in row, set X,Y coordinates for new}
{ row. }

end;

begin
if (Y < 176) then
{ This will not allow the setting of X,Y }
{ coordinates to begin in the seventh row. }
{ This does allow the position of bean #36 }
{ to be the initial removal position. }

end;

begin
x .- 138;
y := y + 32;

end;

Max_Bean := Max_Bean + 1;

for Index := 1 to 4800 do; { Provide for a short delay. }
Max_Bean .- 36

end;

The value of the variable Max_Bean reaches 37 during the execution of the drawing
loop, so the value must be reset to 36 if the remainder of the program is to function
properly.

Both Text and Drawing windows are shown simultaneously on the screen. Even
though the Text window will become the active window, the Drawing window will still
show the changes as beans are removed. Notice the use of delays, which were not
necessary in the text-only version. Delays give the illusion of pacing and also allow the
player to read the instructions in the Text window before action takes place in the
Drawing window. You might need to adjust these delays to get a pleasing response from
your Macintosh, because different Macs execute at different speeds.

The 36 beans are drawn beginning in the top left portion of the Drawing window and
proceeding from left to right. Six rows of 6 beans are drawn, for a total of 36. Because the
position of the 36th bean is also the beginning position to be used when the
InvertCircle command is executed to erase or "pick up" the beans, removal of the
beans is in reverse order and is achieved through the following program lines:

224 Chapter 6 Basic Graphic and Mouse Commands

{ Remove MAC_Pick of beans from display. }
repeat

begin
{ Uses position of bean #36 as the beginning removal point. }

InvertCircle(X, Y, Radius);
for Index := 1 to 600 do; { Provide for a short delay. }

x := x - 40;
Max_Bean := Max_Bean - 1;

if Max_Bean mod 6 = 0 then
begin

x := 338;
y := y - 32;

end;
MAC_Pick := MAC_Pick - 1;

end;
until MAC_Pick = O;

As Figure 6.16 shows, execution of these program lines results in the removal of the
number of beans that Mac picks. Similar steps are then executed to represent the player's
pick. The ShowText command should be used to reactivate the Text window. The player
will need to input his or her choice of the number of beans to pick, and this will be done
in the Text window. The program lines used by Mac to pick up or remove beans can then
be duplicated to have the program remove the number of beans selected by the player.
However, the line MAC_Pick . - MAC_Pick 1 must be replaced by
Player_Pick : = Player_Pick - 1, and the line until MAC_Pick = 0
must be replaced by until Player_Pick = 0.

Here is the complete listing of the modified Beanpicker program:

program Modified_Beanpicker(input, output);
{ Purpose: This program is a game of skill in which the player }
{ competes against the computer. The computer will win }
{ most of the time. It also demonstrates several }
{ different types of loops and loop-control }
{ techniques. }

con st
Radius = 14;

var

begin

Nurnber_of_Beans, Player_Pick, MAC_Pick integer;
X, Y, Index, Max_Bean : integer;
Continuation : string[3];
Boxl, Box2, Box3 : rect;

{ Hide all windows. }
HideAll;

{ Establish boundaries for several different sizes of the }
{ Drawing window. }

SetRect(Boxl, 1, 40, 512, 345);
{ ListinJLcontinues after FiJLure 6.16. }

Basic Graphic and Mouse Commands Chapter 6

Drawing

•
Te Ht

MAC'S PICK
Mac picks up: 5

YOUR PICK
Please pick up 1 to 5 beans:

Figure 6.16 Modified_Beanpicker game screens showing removal of
beans picked by Mac and request for player to pick. The Text window is active

at this moment.

Continuation of Modified_Beanpicker.
SetRect(Box2, 1, 40, 512, 260);
SetRect(Box3, 1, 260, 512, 335);

Show the Text window to the user.
SetTextRect(Boxl);
ShowText;

Introduction and game header
for Index := 1 to 5 do

225

writeln;
writeln (' ***** BEANPICKER * ****');
for Index := 1 to 5 do

writeln;
write(' There are 36 black beans. You may pick up one (1) to ');
write(' fi v e (5) beans; the object of the game is to be the

last');
write(' one to pick up 1 to 5 beans, leaving no beans for

226 Chapter 6 Basic Graphic and Mouse Commands

your ');
writeln{'opponent, the Mac. Mac picks up first. ');
for Index := 1 to 4 do

writeln;
{ Check to see if player wants to play; if not, the game is }
{ terminated. }

write{ 'If you wish to play, type "yes". ');
write{ 'CAUTION ... Anything but lowercase "yes" will quit

BEANPICKER! I);

write{' **If you wish to quit, press the <Return> key.** ');
readln{Continuation);

{ Continue the game as long as player wishes. }
while Continuation = 'yes' do

begin
Page;

{ Set Text and Drawing windows. }
SetTextRect{Box3);
SetDrawingRect{Box2);

{ Initialize variables. }
X := 138; { X coordinate is for the center of the bean. }
Y := 16; { Y coordinate is for the center of the bean. }
Max_Bean : = 1 ;

{ Activate the Drawing window. }
ShowDrawing;
while Max_Bean <= 36 do

begin
{ Display 36 black beans. }

PaintCircle(X, Y, Radius);
if (Max_Bean mod 6) <> 0 then
{ If not the sixth bean in the row, increment X }
{ coordinate. }

x := x + 40
else
{ If sixth bean in row, set X,Y coordinates for }
{ new row. }

begin
if Y < 176 then

{ This will not allow setting of X,Y }
{ coordinates to begin in the seventh row. }
{ It does allow bean #36 to be positioned for }
{ removal. }

end;

begin
x .- 138;
y := y + 32;

end;

Max_Bean := Max_Bean + l;
end;

for Index := 1 to 4800 do ;
{ Provide for a short delay. }

Max_Bean .- Max_Bean - l;

Basic Graphic and Mouse Commands Chapter 6

{Set Max_Bean value to 36, Max_Bean value was 37. }
for Index := 1 to 4 do

writeln;
Number_of_Beans .- 36;

{ Begin the game and repeat until completed. }
repeat

227

{ Computer selection of number to pick. The result is }
{ displayed. }

writeln('MAC'S PICK');
for Index := 1 to 2400 do ;
{ Provide for a short delay. }

if Number_of_Beans = 36 then
MAC_Pick .- abs(random) mod 6

else
MAC_Pick .- Number_of_Beans mod 6;

Minimum pick of one. }
if MAC_Pick = 0 then

MAC_Pick : = 1;
{ Display number picked and reduce number }
{ of beans by number picked. }

wri teln ('Mac picks up: ' , MAC_Pick : 1) i
Number_of_Beans := Number_of_Beans - MAC_Pick;

Remove MAC_Pick of beans from display. }
repeat
{ Position of bean #36 is used as the beginning of a }
{ removal point.}

InvertCircle(X, Y, Radius);
for Index := 1 to 600 do ;
{ Provide for a short delay.

x := x - 40;
Max_Bean := Max_Bean - l;

if Max_Bean mod 6 = 0 then
begin

x := 338;
y := y - 32;

end;
MAC_Pick := MAC_Pick - l;

until MAC_Pick = O;
if Number_of_Beans = 0 then

begin
writeln('>>>>> MAC WINS! <<<<< ');
writeln;

end
else

begin
for Index := 1 to 1200 do ;
{ Provide for a short delay.

ShowText;
{ Player inputs number picked. The results }
{ are displayed. Input request with error trap.}

if Number_of_Beans > 0 then

228 Chapter 6 Basic Graphic and Mouse Commands

repeat
writeln('YOUR PICK');
write('Please pick up 1 to 5 beans. ');
readln(Player_Pick);

until (Player_Pick > 0) and (Player_Pick
< 6) i

{ Reduce number of beans by number picked and display
{ new number. }

Number_of_Beans := Number_of_Beans - Player_Pick;
{ Remove Player_Pick of beans from display. }

repeat
InvertCircle(X, Y, Radius);
for Index := 1 to 600 do ;
{ Provide for a short delay. }

x := x - 40;
Max_Bean := Max_Bean - 1;
if Max_Bean mod 6 = 0 then

begin
x := 338;
y := y - 32;

end;
Player_Pick := Player_Pick - l;

until Player_Pick = O;
if Number_of_Beans = 0 then

writeln('>>>>> YOU WIN! <<<<< ');
for Index := 1 to 2400 do ;
{ Provide for a short delay. }

writeln;
end;

Game ends when the number of beans is zero. }
until Number_of_Beans = O;
for Index := 1 to 2 do

writeln;
{ Check to see if player wants to play again or quit; }
{ the game returns to the beginning if player wants to }
{ continue. If not, it passes to the end. }
write('Do you wish to play again? Type "yes". ');
write ('CAUTION ... Anything but lower case "yes" will quit') ;
write (' BEANPICKER! ');
write(' If you wish to quit, press the <Return> key. ');
readln(Continuation);

end;
{ Sign-off message. }

writeln;
writeln('Thank you for playing BEANPICKER. Have a nice

day! I) j

end.

Another consideration in modifying this program is the removal of lines that have
become unnecessary: lines in the text-only version of Beanpicker that informed the

Basic Graphic and Mouse Commands Chapter 6 229

player of the number of beans remaining. The countdown to zero beans is clearly visible
as the beans disappear from the Drawing window.

One more point before we leave Modified_Beanpicker is the modification
required for the THINK Pascal version. This is the only program in this chapter that
requires modification beyond removal of the uses clause identifying the QuickDrawl
library and the insertion of a ShowDrawing statement at the beginning of the program.
Even so, the program requires only a very minor additional modification: the insertion of
the ShowDrawing command at the beginning of the third repeat-until loop.
This is shown in the few program lines added below.

{ Reduce nµmber of beans by number picked and display }
{ new number. }
Number_of_Beans := Number of Beans - Player_Pick;
{ Remove Player_Pick of beans from display. }
repeat

ShowDrawing;
InvertCircle(X, Y, Radius);
for Index := 1 to 600 do

{ Provide for a short delay. }
x := x - 40;
Max_Bean := Max_Bean - 1;

Without this addition, the program will execute, but the changes in the Drawing window
will go unobserved, because only the original 36 beans will be drawn.

As a last example of graphics in a Macintosh Pascal program, consider writing a
program to display the orbiting of a small satellite about a planet. The user of the
program is required to enter the diameter of the planet, the diameter of the satellite, and
the distance of the satellite from the edge of the planet. Figure 6.17 shows a view of the
satellite and planet with respect to the radius of each object. It is obvious that the distance
from the center of the planet to the center of the satellite can be specified by Distance
+ (Diameter_Planet + Diameter_Satellite) /2. The program must
require that the distance between satellite and planet and the diameters of both satellite and
planet be greater than zero. In addition, the diameter of the satellite cannot exceed the
diameter of the planet. If it does, the program must clear the screen and request that new
data be entered.

In computing the area for drawipg the satellite, it is necessary to compute the center
of the satellite with respect to the center of the planet. It would seem convenient to
consider the center of the planet as the point (0, 0), but the Drawing window of the
Macintosh forces us to place the center of the planet at the point (256, 156). In Figure
6.17 we have labeled this point (XPC , YPC) . In terms of the point (XPC , YPC) , the
center of the satellite is given by the relationship

Total_Distance = Distance + (Diarneter_Planet +
Diarneter_Satellite) I 2.0

YSC - YPC = Total_Distance * sin(Angle
XSC - XPC = Total_Distance * cos(Angle

or

230 Chapter 6 Basic Graphic and Mouse Commands

YSC = YPC + Total_Distance * sin(Angle
XSC = XPC + Total_Distance * cos(Angle

(0,0)
x-axis

~Planet

XSC - XPC ___,.

y-axis

Distance between (XPC, YPC) and (XSC, YSC):

Total_Distance = Distance +
(Diameter Planet+ Diameter Satellite)

2.0

YSC - YPC

l
YSC)

Satellite

Relationship between the angle of rotation and the distance between the center of
the planet and the satellite:

XSC - XPC = Total_Distance * cos(Angle)

YSC - YPC = Total_Distance * sin(Angle)

Figure 6.17 Coordinates for calculating the center of a satellite orbiting around a
planet.

The action of this program is to begin with an initial angle of zero radians, display
the satellite for a short period of time, then erase the satellite and redraw it after
incrementing the value of Angle. Here are the steps of an algorithm describing the
actions for entering data and drawing the rotating satellite:

Basic Graphic and Mouse Commands Chapter 6

Algorithm Orbiting_Satellite;
{ The purpose of this algorithm is to show the steps for

displaying the rotation of a satellite about a planet. Two
constants exist: XPC and YPC, given by 256 and 156,
respectively. }

begin
{ Hide all windows from view. }
{ Establish a rectangle as the viewing area for both Text and }
{ Drawing windows. }
{ Set the size of the Text window. }
{ Show the Text window for input of data. }

repeat
Page;
write('Enter the diameter of the planet: '};
readln(Diameter_Planet };
write('Enter the diameter of the satellite: '};
readln(Diameter_Satellite);
write('Enter the distance between the satellite and the

planet: '};
readln(Distance);
Properties <-- (Diameter_Planet > 0 } and

231

(Diameter_Satellite > 0 } and (Distance > 0 } and
(Diameter_Satellite < Diameter_Planet };

until Properties;
{ Compute the distance between the center of the planet and that

of the satellite. }
Total_Distance <-- Distance + (Diameter_Planet

+ Diameter_Satellite } I 2.0;
{ Set the size of the Drawing window. }
{ Show the Drawing window for viewing the rotation of the

satellite. }
{ Write a title in the Drawing window. }

MoveTo(50, 50 };
WriteDraw(' ORBITING SATELLITE '};

{ Draw the planet in the center of the screen. }
Radius <-- Diameter_Planet I 2.0;
SetRect(Area, trunc(256 - Radius}, trunc(156 - Radius},

trunc(256 +Radius }, trunc(156 +Radius });
FillOval(Area, dkgray);

{ Display the satellite rotating about the planet. }
Radius <-- Diameter_Satellite I 2.0;
while true do

begin
Angle <-- 0.0;
repeat
{ Compute the center point of the satellite. }

YSC <-- YPC + Total_Distance *sin(Angle);
XSC <-- XPC + Total_Distance *cos(Angle);

{ Compute the boundary points for a rectangle where the }
{ satellite is to be drawn. }

232 Chapter 6 Basic Graphic and Mouse Commands

SetRect(Area, trunc(XSC - Radius), trunc(YSC -
Radius), trunc(XSC +Radius), trunc(YSC +
Radius)) ;

FillOval(Area, black);
{ Delay execution for a short period of time. }
{ Erase the view of the satellite.

end.

EraseOval(Area);
Angle <-- Angle + 0.025;

until Angle > 2 * pi;
end;

Here is our algorithm as a Macintosh Pascal program, Orbiting_Satellite:

program Orbiting_Satellite(input, output);
{ Purpose: To show the steps required to display
{ the rotation of a satellite about a }
{ planet. }

uses
QuickDrawl;

con st
XPC = 256;
YPC 156;

var

begin

Area : Rect;
Time : integer;
XSC, YSC, Radius, Angle : real;
Diarneter_Satellite, Diameter_Planet, Distance
Total_Distance : real;
Properties : Boolean;

{ Hide all windows from view. }
HideAll;

{ Set the size of the Text and Drawing windows. }
SetRect(Area, 0, 20, 512, 312);

Set the area for viewing the Text window. }
SetTextRect(Area};

Show the Text window for viewing. }
ShowText;
repeat

Page;
write('Enter the diameter of the planet: ');
readln(Diarneter_Planet);
write('Enter the diameter of the satellite: ');
readln(Diarneter_Satellite);

real;

write('Enter the distance between the satellite and the
planet: '};

readln(Distance);
Properties := (Diameter_Planet > 0) and (Diameter_Satellite

> 0) and (Distance > 0) and
(Diameter_Satellite < Diarneter_Planet);

Basic Graphic and Mouse Commands Chapter 6

until Properties;
{ Compute the distance between the center of the planet and }
{ that of the satellite. }

Total_Distance := Distance +

233

{ Diarneter_Planet + Diarneter_Satellite) I 2.0;
{ Show the Drawing window for viewing the satellite. }

HideAll;
{ Set the area for viewing the Drawing window. }

SetDrawingRect{Area);
{ Show the Text window for viewing. }

ShowDrawing;
{ Write a title in the Drawing window. }

MoveTo{50, 50);
WriteDraw{' Orbiting Satellite ');

{ Draw the planet in the center of the screen. }
Radius := Diarneter_Planet I 2.0;
SetRect{Area, trunc(256 - Radius), trunc{l56 - Radius),

trunc{256 +Radius), trunc{156 +Radius));
FillOval{Area, dkgray);

{ Display the satellite rotating about the planet. }
Radius := Diameter_Satellite I 2.0;
while true do

end.

begin
Angle .- 0.0;
repeat
{ Compute the center point of the satellite. }

YSC := YPC + Total_Distance * sin(Angle);
XSC := XPC + Total_Distance * cos(Angle);

{ Compute the boundary points for a rectangle where }
{ the satellite is to be drawn. }

SetRect(Area, trunc{XSC - Radius), trunc{YSC -
Radius), trunc(XSC +Radius), trunc{YSC +Radius));

FillOval{Area, black);
{ Delay execution for a short period of time. }

for Time := 1 to 100 do; { nothing }
Erase the view of the satellite. }

EraseOval{Area);
Angle :=Angle + 0.025;

until Angle > 2 * pi;
end;

If someone tells you that the satellite is orbiting in the wrong direction, you can
replace the statement

Angle :=Angle + 0.025;

with

Angle := Angle - 0.025;

234 Chapter 6 Basic Graphic and Mouse Commands

to change the direction of the orbit. Only the standard minor modifications are needed to
change the program to THINK Pascal.

6.7 USING COLOR GRAPHICS

Macintosh and THINK Pascal programs can draw on color output devices by using
QuickDraw procedures that are capable of setting both the foreground and background
colors. Eight standard colors (sometimes referred to as the old-style grafPort colors) as
constants are predefined in Macintosh Pascal and include blackColor, whiteColor,
redColor, greenColor, blueColor, cyanColor, magentaColor, and yellowColor. Included in
library QuickDraw2 are two routines ForeColor and BackColor that enable
applications to draw on color output devices such as the screen of a color monitor. A brief
discussion of these two procedures follows.

procedure ForeColor (Color: longint);

This routine sets the foreground color for all drawings in the Drawing window, using the
current value of Color. The argument Color can be one of eight standard predefined
colors.

procedure BackColor (Color: longint);

This routine sets the background color for all drawings in the Drawing window,
using the current value for Color. The argument Color can be one of eight standard
predefined colors.

The routine ForeColor allows you to draw with a color that shades the area being
drawn. In short, it fills the foreground area with the value of a color given by the
argument Color. The routine BackColor allows you to erase an area with a
background color specified by the value of the argument co 1 or. By having both
routines, the background color can be set and remain unchanged, while the foreground
color can be changed by executing the procedure Foreground with Color being
assigned a new value each time.

The following Macintosh Pascal program demonstrates both of these two procedures.
Their effect can only be seen with a color monitor, because black-and-white monitors
always produce a black pattern when any color other than white is drawn. This program
draws six differently colored rectangles by resetting the foreground color with the
procedure ForeColor. This routine is also used to display two different prompts to the
Drawing window, using the procedure Wri teDraw. The procedure BackColor is used
to set a white background color for erasing the colored rectangles as well as an area where
text is displayed:

program Foreground_And_Background_Colors (input, output);
{ Purpose: This program demonstrates the procedures ForeColor }
{ and BackColor by drawing several colored rectangles }
{ in the foreground and erasing the rectangles with }
{ a white background color. }

uses
QuickDrawl, QuickDraw2;

var

Basic Graphic and Mouse Commands Chapter 6 235

Box : Rect;
Top, Left, Bottom, Right, X_Delta, Y_Delta, Mark_Time: integer;
Angle : real;

begin
{ Establish a boundary for the Drawing window. }

Box.top := 40;
Box.left := 40;
Box.bottom := 300;
Box.right := 500;
SetDrawingRect(Box);

{ Show the Drawing window and a rectangular frame within }
{ the Drawing window. }

ShowDrawing;
FrameRect(Box.top, Box.left, Box.bottom - 91, Box.right - 91);

{ Paint nested colored rectangles in the Drawing window. The }
{ for-loops are provided for their effect when viewing the }
{ screen. }

ForeColor(cyanColor);
PaintRect(41, 41, 208, 408);
for Mark_Time := 1 to 4000 do

ForeColor(magentaColor);
PaintRect(56, 76, 194, 374);
for Mark_Time := 1 to 4000 do

ForeColor(greenColor);
PaintRect(71, 111, 179, 339);
for Mark_Time := 1 to 4000 do

ForeColor(blueColor);
PaintRect(86, 146, 164, 304);
for Mark_Time := 1 to 4000 do

ForeColor(redColor);
PaintRect(lOl, 181, 149, 269);
for Mark_Time := 1 to 4000 do

ForeColor(yellowColor);
PaintRect(lll, 206, 138, 243);
for Mark_Time := 1 to 4000 do

{ Draw in red letters a prompt to continue execution. }
ForeColor(redColor);
MoveTo(lOO, 230);
PenSize(5, 5);
WriteDraw(' Press the mouse button to continue ');
while (not Button) do

{ Now erase the area containing the prompt with a rectangle }
{ having white as its background color. }

BackColor(whiteColor);

236 Chapter 6 Basic Graphic and Mouse Commands

EraseRect(210, 100, 230, 330);
{ Now erase the areas containing colored rectangles by drawing }
{ 184 rectangles with a white background color. The for loop is }
{ used for its effect on drawing rectangles that erase the }
{colored areas of the screen.}

Angle:= (208 - 41) I (408 - 41);
for X_Delta := 1 to 183 do

begin
Y_Delta := trunc(X_Delta *Angle);
Left := 224 - X_Delta;
Right := 224 + X_Delta;
Top := 124 - Y_Delta;
Bottom := 124 + Y_Delta;
EraseRect(Top, Left, Bottom, Right);

end;
EraseRect(41, 41, 208, 408);

{ Draw in blue letters a prompt to quit execution. }
ForeColor(blueColor);
MoveTo(120, 230);
PenSize(S, 5);
WriteDraw(' Press the mouse button to quit ');
while (not Button) do

HideAll;
end.

Notice that the routines LineTo, DrawLine, Wri teDraw, PaintCircle,
FrameRect, PaintRect, FrameOval, and PaintOval draw shaded areas using
the present foreground color, while the routines FillRect, EraseRect, FillOval,
and EraseOval draw shaded areas using the present background color. While the
procedures FillRect and FillOval require a pattern of either white, black, gray,
ltgray, or dkgray, the areas being drawn will use color for the pattern that is presently
assigned to the background color. Both the routines InvertCircle and InvertRect
will draw a black shaded area if the foreground is white and a white shaded area if the
foreground is black. If the foreground is a color other than black or white, it will invert
the foreground color with some other color. Based on a test program executed by the
authors, the inverted colors are as follows:

Standard Color Inverted Color

black white
red light green
blue pink

yellow dark gray
green magenta
white black

magenta black

Basic Graphic and Mouse Commands Chapter 6 237

SUMMARY

In this chapter we discussed some of the easier procedures and functions that are available
through the QuickDrawl library. Keep in mind that when using the Drawing window,
several procedures are available for drawing and painting to this grafPort. For quick
reference, these are summarized alphabetically.

Procedure
,,

Button

DrawLine (x1, Y1, x2, Y2)

EraseOval(Top,Left,
Bottom, Right) a

EraseRect(Top,Left,
Bottom,Right)a

FillOval(Top,Left,
Bottom, Right, Pat) a,b

FillRect(Top,Left,
Bottom, Right, Pat) a,b

FrarneOval(Top,Left,
Bottom, Right) a

FrameRect(Top,Left,
Bottom, Right) a

GetDrawingRect(Box)

GetMouse(x,y)

GetMouse (P)

Parameter(s)

None

X1, Yi· X2, Y2

(all integer)

Box is of type Rect.

x, y (both integer)

P (point)

Brief description

Returns Boolean value true if
mouse button is pressed, false if
button is released.

Draws line from point (x 1 , y 1)

to point (x 2 , y 2).

Erases an oval that has been
painted within a specified
rectangle.

Erases a rectangle that has been
painted in the Drawing window.

Fills an oval within a specified
rectangle with a pattern.

Fills a rectangle with a pattern.

Draws a specified rectangular
frame about an oval.

Draws an outline of a rectangle,
given the coordinates for the
upper left and lower right comers.

Assigns the current Drawing
window coordinates to Box.

Assigns the current mouse
position to the point (x, y)
(Macintosh Pascal).

Assigns the current mouse
position to the point (x, y)
(TIIINK Pascal).

238

Procedure

GetTextRect(Box)

HideAll

InvertCircle(x,y,r)

InvertOval(Top,Left,
Bottom, Right) a

InvertRect(Top,Left,
Bottom,Right)a

LineTo(x,y)

MoveTo(x, y)

Page

PaintCircle(x,y,r)

PaintOval(Top,Left,
Bottom, Right) a

PaintRect(Top, Left,
Bottom, Right)a

PenSize(width,
height)

SetDrawingRect(Box)

Chapter 6 Basic Graphic and Mouse Commands

Parameter(s) Brief description

Box is of type Rect. Assigns the current Text window
coordinates to Box.

None Hides all windows.

x, y, r (all integer) Paints a circle ofradius r
opposite in color to the
background color within a circle?
can be used to erase a circle.

x,y
both integer

x, y
both integer

None

x, y, r
(all integer)

Width, height
both integer

Box is of type Rect

Paints the interior of an oval
within a specified rectangle a
color opposite to the background
color of the oval.

Paints a rectangle specified by the
left and right corners a color
opposite to the rectangle's present
background color.

Draws a direct line from the
current pen position to the point
(x, y).

Moves the pen to a point in the
Drawing window but does not
draw.

Clears the Text window of any
characters.

Paints a circle of radius r with a
center located at point (x, y).

Paints an oval within a rectangle
specified by the left and right
comers.

Paints the interior of a specified
rectangle a color opposite to the
background color of the rectangle.

Allows the line width in the
Drawing window to be changed.

Sets the size and location of the
Drawing window but does not
show the Drawing window.

Basic Graphic and Mouse Commands Chapter 6 239

Procedure Parameter(s) Brief description

SetRect(Box, Left,
Top, Right, Bottom}a

Box is of type Rec t. Assigns the boundary points to
the rectangle Box.

SetTextRect(Box) Box is of type Rect. Sets the size and location of the
Text window but does not show
the Text window.

ShowDrawing None Reveals the Drawing
window after it has been set.

ShowText None Reveals the Text window after it
has been set.

WriteDraw(
expl, ... , expn}

Displays text in the Drawing
window.

ForeColor(Color)

BackColor(Color)

Color is of type
longint.

Color is of type
long int.

Sets foreground color to the
current value of Color.

Sets background color to the
current value of Color.

a Top, Left, Bottom, Right are all of type integer.
b Pat is of type Pattern.

REVIEW QUESTIONS

1. Explain the meaning of the term procedure.
2. What two special libraries in Macintosh Pascal are devoted to graphics?
3. What purpose does the uses clause serve in Macintosh Pascal?
4. When writing a Macintosh Pascal program requiring procedures from the

QuickDrawl library, is it necessary to use the following declaration?
How does this differ in THINK Pascal?

uses
QuickDrawl;

5. What is meant by the term pixel?
6. How many pixels exist in the horizontal and vertical directions on the

screen of the Macintosh computer?
7. What is the density of pixels per inch on the Macintosh screen?
8. What is meant by the term grafPort?
9. What names are given to the three grafPorts when the Macintosh Pascal

desktop is initiated?
10. What is the initial size of the Drawing window in terms of pixels?
11. If a pixel in the Drawing window is represented by an (x, y) pair (x

representing the horizontal axis, and y the vertical axis), what are the x
and y values of the following points?

240 Chapter 6 Basic Graphic and Mouse Commands

(a) (45, 89)
(c) (50, 78)

(b) (212, 300)
(d) (500, 312)

12. What command is used to reposition the drawing pen?
13. What command allows you to draw a straight line?
14. Write the commands to draw a direct line from point (50, 50) to point

(300, 412).
15. How does the command DrawLine differ from the command LineTo?
16. Can either command, LineTo or DrawLine, be used to draw a dot?

Test your answer, using the Instant window.
17. What is the purpose of the procedure PenSize?
18. If N represents the line width for the drawing pen, show how the

procedure PenSize would be called ifthe vertical size were twice the
horizontal width.

19. If N represents the line width for the drawing pen, show how the
procedure PenSize would be called when the horizontal size is three
times the vertical width.

20. How can the normal line width for the drawing pen be reestablished?
21. How can the drawing pen be hidden?
22. What is the purpose of the command Wri teDraw?
23. Can executing the command PenSize affect the drawing of characters

using the command WriteDraw?
24. How can the Font Control option of the Windows menu be used to

change the type and size of font used in drawing characters in the
Drawing window?

25. What is the difference between the procedures PaintCircle and
InvertCircle?

26. What is the purpose of the procedure FrameRec t?
27. What does the special data type Rec t represent?
28. How do the commands PaintRect and InvertRect differ from

PaintCircle and InvertCircle?
29. How can a rectangle be painted with a background pattern other than

black?
30. What does the data type Pat tern represent? What possible values can

a data object of type Pat tern be assigned?
31. Using Macintosh or THINK Pascal, how can motion be simulated?
32. How do the procedures for painting an oval offer alternatives for drawing

circles in the Drawing window?
33. How can an oval-drawing procedure be used to erase a circle from the

Drawing window?
34. Define and briefly explain three mouse-control commands.
35. What code is needed to see if a mouse button is still down?
36. Write the code that randomly selects a point inside the Drawing window

and then checks to see if the user is able to locate this point while
moving the mouse with the mouse button pressed down.

37. How can the size of the Text window be set when executing a
Macintosh Pascal program?

38. How can the size of the Drawing window be set when executing a
Macintosh Pascal program?

Basic Graphic and Mouse Commands Chapter 6

39. What commands are necessary for displaying both the Text window and
the Drawing window?

40. How is the data type Rect represented at the level of Macintosh Pascal?
41. Write the necessary code for dividing the screen in half so that the right

half will show the Text window and the left half the Drawing window.
42. What is the purpose of GetTextRect and GetDrawingRect?
43. What eight standard colors are supported by Macintosh and THINK

Pascal?
44. If the eight standard colors are constants, how could you determine their

numeric values from each of their given names?
45. What is the purpose of procedure ForeColor? What is the purpose of

procedure BackColor?

PROGRAMMING EXERCISES

1. The following program draws a pyramid (see Figure 6.18), including the
hidden lines DE, EB, and EA , and the corners designated as A, B, C,
D, and E, respectively:

Drawing

Figure 6.18

program Exercise_One {input, output);
{ Purpose: This program displays a pyramid with hidden lines }
{ being shown. }
begin

ShowDrawing;
Label five points on the screen. }

MoveTo{lOO, 70);
WriteDraw('A');
MoveTo(140, 110);
WriteDraw('B');
MoveTo(125, 140);
WriteDraw('C');
MoveTo{60, 140);
WriteDraw{ 'D');

241

242 Chapter 6 Basic Graphic and Mouse Commands

MoveTo(90, 110);
WriteDraw('E');

{Draw a line from point A to point B.}
DrawLine(lOO, 70, 140, 110);

{Draw a line from point B to point C.}
LineTo(125, 140);

{Draw a line from point c to point D.}
LineTo (65, 140);

{Draw a line from point D to point E.}
LineTo (90, 110);

{Draw a line from point E to point B.}
LineTo(140, 110);

{Finish drawing the remaining lines.}
DrawLine(lOO, 70, 125, 140);
DrawLine(lOO, 70 , 65, 140);
DrawLine(lOO, 70, 90, 110);

end.

Modify this program so that the hidden lines DE, EA, and EB are
represented by short dashes, as shown in Figure 6.18.

2. Modify the program in Exercise 1 so that the labels for corners A, B,
c, D, and E are not touched by any lines connecting these points.

3. Using the procedures PenSize, DrawLine, and LineTo, write and
execute a program to form the squares shown in Figure 6.19.

Drawing

(25, 25) (175, 25)

Figure 6.19

Set the pen width and height to 15 units. Note the coordinates for the
upper left and upper right corners. Hint: To understand the effect of

Basic Graphic and Mouse Commands Chapter 6

height and width when using the procedure PenSize, try drawing two
vertical lines, one from (175, 0) to (175, 200) and another from (25, 0)
to (25, 200), and two horizontal lines, one from (0, 25) to (200, 25)
and the other from (0, 175) to (200, 175).

4. Rewrite the program in Exercise 3 so that only PaintRect and
InvertRect are used to draw the same set of squares.

5. Write a program for drawing the target shown in Figure 6.20 using the
procedures PaintCircle, InvertCircle, MoveTo, and
Wri teDraw. Radii of the circles are 100, 85, 70, 55, 40, and 25 (each
dark line being 15 units in width).

Figure 6.20

6. Modify the program titled Random_Dots to make it randomly draw
square dots of length IO units instead of circles. In addition, have the
program set the Drawing window for the complete screen. Hint: Add
the following variable to those presently declared:

Box Rect;

HideAll;

and the following statements at the beginning of the body of the
program:

SetRect(Box, 0, 18, 512, 342);
SetDrawingRect(Box);

243

244 Chapter 6 Basic Graphic and Mouse Commands

ShowDrawing;

7. The purpose of the next program is to apply the procedures GetMouse
and Button to draw a direct line between two points, one to be
displayed as point A and a second as point B. Complete this program so
that when executed, moving the mouse to a point on the screen and
clicking the button, then moving the mouse to a second point on the
screen and again clicking the button causes two labels, A and B, to be
displayed and a direct line to be drawn between the two points.

program Exercise_Seven(input, output);
{ Purpose: A program for drawing direct lines using GetMouse }
{ for input. }

con st
Number ? { Try your own value to see if your delay }

{ is working. }
var

{ Declare variables for the x, y values of the first and second }
{ points. }

J : integer;
Down : Boolean;
Screen : Rect;

begin
{ Hide all windows; then set and show the Drawing window. }
{ Continuous loop for establishing the first and second points. }

while true do
begin

Down := false;
while not Down do

begin
{ Get the first point using GetMouse and assign Down }
{ a value using the function Button. }
end;

{ Execute delay for the time needed to release button. }
for J := 1 to number do {nothing};

{ Move to the first point and display the letter A on }
{ the screen. }

Down := false;
while not Down do

begin
{ Get second point using GetMouse and assign Down }
{ a value using the function Button.}
end;

{ Execute a delay for the time needed to release the }
{ button. }
for J := 1 to number do {nothing};
{ Move to the second point and display the letter }
{ B on the screen. Use DrawLine to draw a direct }
{ line from the first point to the second point. }

Basic Graphic and Mouse Commands Chapter 6

end;
end.

8. Write a program that executes the following steps:

(a) Hide all windows.
(b) Set and show the Text window in the center of the screen.
(c) Prompt the user for the following information: last name,

first name, middle name, street address, city, state, zip
code.

(d) Hide the Text window.
(e) Set and show the Drawing window in the center of the

screen.
(f) Using Wri teDraw, display the following four lines of

data to the Drawing window:
(i) The person's complete name in the order of first,

middle, last
(ii) Street address
(iii) City followed by state
(iv) Zip code

This data should appear within a rectangle having a border that is 5
units wide.

9. Write a program that first hides all windows, then splits the screen with
the left half of the screen for the Text window and the right half for the
Drawing window. In the Text window, use the write and writeln
commands to explain how to compute the areas of a circle and a
rectangle. In the Drawing window, show shaded figures to demonstrate
your brief explanation. Use labels with your figures to demonstrate the
radius of a circle and the sides of a rectangle.

10. A supermarket wants to use the Macintosh computer to display unit
price labels in the format shown in the Figure 6.21. This problem
requires the following input from the keyboard:

Price: 0.98 I Actual Size: 12.6 oz
Item: Baked beans with bacon

Unit Price: 1.24 per 160Z

Figure 6.21

(a) Price of the item represented in dollars and cents
(b) Standard unit size (16 for ounces, 01 for pounds)
(c) Actual size of the item
(d) Description of the unit size (OZ for ounces, LB for pounds)
(e) Description of the product, limited to 25 characters

245

246 Chapter 6 Basic Graphic and Mouse Commands

After entering this information in response to prompts appearing in the
Text window, and before displaying the label to the Drawing window,
compute the unit price, using the following rule:

Unit_price <-- Price_of_item/Actual_Size * Standard_Unit_Size

For example, the sample label appearing in the figure is from the
following set of data:

Price: 0. 98
Size: 12 .6
Description of item:

Standard unit size: 16
Unit size description: OZ
Baked beans with bacon

11. Using the general concept of the algorithm and the program titled
Directed_Lines, rewrite these to draw only ovals to the Drawing
window by picking an initial point with the mouse and moving the
mouse toward the lower right while the button is down. Once the
mouse button has been released, an oval is drawn from the initial point
where the mouse button was pushed and the point where it was released
(top left corner versus bottom right corner of a rectangle). You may
experience a problem where many ovals are drawn as you move the
cursor across the screen by changing the position of the mouse. Hint:
Think about erasing an oval immediately after it has been drawn. Figure
6.22 shows an example of output for this program.

Select the top left corner; then press the mouse button.
Hold the mouse button until you have selected the bottom right point.

c::: =>

e# >

Use the Pause option to stop execution.

Figure 6.22

12. Using the concept from Exercise 11, develop an algorithm and write a
program for drawing only rectangles to the Drawing window by picking
an initial point with the mouse and moving the mouse toward the lower

Basic Graphic and Mouse Commands Chapter 6

right while the button is down. Be careful to avoid the problem
described with ovals. Figure 6.23 shows an example of output for this
program.

Select the top left corner; then press the mouse button.
Hold the mouse button until you have selected the bottom right point.

D D D
D

Use the Pause option to stop execution.

Figure 6.23

13. Develop an algorithm using the concepts learned from the algorithm
Directed_Lines and the programs written for Exercises 11 and 12
to allow the user the option of drawing directed lines, ovals, or
rectangles. Convert this algorithm into a Macintosh or THINK Pascal
program, and show •bat the program is functional.

14. Here is a program for displaying the character set of Macintosh Pascal
to the Text window:

program Displaying_Characters(input, output);
var

Counter : integer;
begin
{ Purpose: Display the character set of the Macintosh. }

HideAll;
ShowText;

{ Display characters 0 through 127.
for Counter := 0 to 127 do

write(chr(Counter));

247

248 Chapter 6 Basic Graphic and Mouse Commands

I writeln;
end.

Modify the program so that the Macintosh screen is split into two
separate windows: Text and Drawing. While executing, have each
character displayed in the Text window using the write command and
drawn in the Drawing window using the Wri teDraw command. By
using Font Control from the Windows option, change the font and
font size, and again execute your program to see if the character set has
changed.

15. Rewrite the algorithm Bar_Chart for drawing the bars of a bar chart
vertically instead of horizontally. Transfer your algorithm from its
present form into a Macintosh Pascal program to show that it is
functional.

16. Develop an algorithm for simulating the functioning of traffic lights at
an intersection. As Figure 6.24 shows, choose a black pattern to
represent red, dark gray for yellow, and light gray for green. The lights
should change periodically, with the sequence from green to yellow to
red requiring several seconds of real time. Keep the traffic lights set for
one to two minutes before changing.

@

(X)

®

I @I ® (i)
l@(X)@I

Color representations: ®
Black Red Light (X)
Dark gray Yellow Light
Light gray Green Light ©

Figure 6.24

17. Modify the algorithm and program from Exercise 16 so that the lights
are flashing red in one direction and yellow in the other. Place two

Basic Graphic and Mouse Commands Chapter 6

buttons on the screen so that if the mouse is moved to one of the
buttons while the mouse button is down, the flashing red will change
to green after the flashing yellow has changed to red. After one minute,
have the green change to yellow and then to flashing red, while the
opposing traffic light goes to flashing yellow (see Figure 6.25) .

• ©
Crossing button ® (Flashing red)

®

(Flashing yellow) I ® Gl @I
I ©®® I

(Flashing yellow)

(Flashing red ® Crossing button

Color representations: (X) • Black Red Light
© Dark gray Yellow Light

Light _gray Green Light

Figure 6.25

18. As a more difficult exercise, write an algorithm for drawing the
characters of the Macintosh Pascal character set to the Drawing window
as shown in Figure B.1 of Appendix B. Convert your algorithm into a
program, and show 'i.at it is functional by choosing several font types
and sizes from the option Font Control.

19. If you have a color monitor, rewrite either Exercise 16 or 17 so that the
traffic lights use the colors red, yellow, or green as foreground colors
and white as a background color.

20. Write a program that will conveniently show the inverse colors for each
of the eight standard colors.

249

Chapter 7

Procedures and Functions

OBJECTIVES

After completing Chapter 7, you will know the following:
1. What is meant by the terms procedure and function.
2. How to pass information between actual and formal parameters.
3. What is meant by value and variable parameters.
4. What is meant by global and local variables.
5. How to use forward declarations to ease the writing of procedures and functions.
6. How to define and write recursive procedures and functions in Pascal.
7. How to use a structure chart as a tool in the development of an application.
8. How to use procedure and function names as formal parameters.

7.1 THE CONCEPT OF A PASCAL PROCEDURE

250

In earlier chapters we have used predefined procedures and functions such as write,
wri teln, read, and readln as well as procedures and functions from the QuickDraw
library to perform special tasks. Although we have not examined any of the Pascal code
for these library routines, we know that a procedure or function is a collection of
executable statements capable of performing a specific operation. A function differs from
a procedure in that a function has a value returned through its name, whereas a procedure
results in an effect. In this chapter we consider the steps necessary to write our own
procedures and functions. Procedures and functions coded by programmers are frequently
referred to as user-defined routines.

There are several reasons why it is important for a higher level language like Pascal
to support the use of procedures and functions. First, time is saved by placing repetitive
statements within the body of a procedure, or function. Thus, we need only call upon

Procedures and Functions Chapter 7 251

(invoke) the procedure, or function, each time the repetitive code is needed. Second, a
program using procedures and functions is easier to document and read as an algorithm.
Specifically, inclusion of a procedure or function in an algorithm defers the detailed
reading of code, so that we can focus our attention on understanding the major steps in
solving a problem. We can save time in examining a program, because we are not
required to read repetitive executable code. Rather, we can direct our attention to reading
those procedures, or functions, that require our immediate attention. Third, by using
procedures and functions, we extend the definition of the language. For example, though
the QuickDraw library supports only basic drawing routines, we can create our own
procedures for drawing specific figures such as bar or pie charts. In addition, if the
computer language has the ability to group these procedures and functions into separate
file units, we can create our own libraries of programs for other applications to borrow.
Fourth, by writing procedures and functions, we divide problems into smaller units,
referred to as subprograms or program units, with each subprogram consisting of a
manageable number of executable statements. Calling a subprogram can be equated to
executing a major step of an algorithm, so each of the substeps for executing a major step
in an algorithm can in tum be represented by one or more subprograms. This allows us to
view a program as an algorithm for an intricate problem, with each step of the algorithm
partitioned into smaller portions. In short, we can practice the principles of step-wise
refinement and top-down design in the development of a software application.

7.1.1 Definition of a Pascal Procedure

As Figure 7 .1 shows, all Pascal programs in Macintosh and THINK Pascal share the
same format.

program Prograrn_Name(input, output);

uses clause }

{ list of label declarations }
{ list of constant declarations
{ list of user-defined types }
{ list of variable declarations }
{ list of procedure and function declarations

begin
{ executable body of the main Pascal program }

end.

Figure 7.1 Pascal program format.

The program statement serves as the entry point into a Pascal program. The
program parameter input directs the Pascal run-time system to accept information from
the standard input file device, that is, the keyboard, and the program parameter output
directs the Pascal run-time system to transfer information to the standard output file
device, the screen. For Macintosh and THINK Pascal, the use of either identifier, input
or output, is optional. These two parameters are used to conform to standard Pascal
code. The program statement is followed by the uses clause: a block composed of a

252 Chapter 7 Procedures and Functions

declaration part and a statement part. The declaration part can declare labels, constants,
user-defined types, and variables, as well as procedures or functions local to the program.
These procedures and functions are often referred to as internal subprogram units. These
objects are then known throughout the body of the main program. The statement part,
given by comments and executable statements between the begin and end brackets,
represents the main executable body of the Pascal program. In this chapter we will refer to
it as the body of the main program. The program begins execution by executing the
statement begin and ends with execution of the last end statement end. (end
period).

As Figure 7 .2 shows, a Pascal procedure is similar to a Pascal program in both its
form and conception. In Figure 7.2 the reserved word procedure, along with the
name of the procedure and what is called the formal parameter list, represent the entry
point into the procedure, where you would begin to read the procedure and where the
procedure would begin execution. In some instances it is referred to as the procedure­
header. Rules for naming procedures in Pascal are the same as the rules for naming any
other identifier, except that names for all procedures used in any Pascal program must be
unique and different from the program name. We do recommend that procedures and
functions be named with verb phrases. A verb phrase implies action, and that is the
purpose of a procedure or function: to make something happen in a program. The name of
a procedure or function should resemble the action performed for a step in an algorithm.

procedure Procedure_Name({ formal parameter list });

{ list of label declarations known only to this procedure }
{ list of constant declarations known only to this procedure }
{ list of user-defined types known only to this procedure }
{ list of variable declarations known only to this procedure }
{ list of procedure and/or function declarations known only }
{ to this procedure }
{ directive(s) }
{ in-line body }

begin
{ executable body of the procedure }

end;

Figure 7 .2 Pascal procedure format.

The formal parameter list is similar in concept to the program parameter list, except
that it allows us to pass information to the procedure from the point at which the
procedure is called, and can allow the procedure to pass information back to its calling
point. It implies a path of communication between where the procedure is invoked and
where the procedure is being executed. The information transferred along this path can be
values for parameters (formal and actual).

Following the procedure-header is the procedure-body, composed of a block. A block
is represented by a declaration-part followed by a statement-part. In turn, the declaration­
part can be composed of a label-declaration part, constant-declaration-part, type­
declaration-part, variable-declaration-part, and procedure-and-function-declaration-part.

THINK Pascal offers alternative declarations to those of a block. In THINK Pascal
you have the option of choosing two other declarations: directive or inline-body. A

Procedures and Functions Chapter 7 253

directive is a special designation for a procedure or function. THINK Pascal supports three
directives: external, forward, and override. For THINK Pascal, none of these three words
are reserved. External indicates that a procedure is declared external to the program unit in
which the header appears, whereas forward indicates that the body of the procedure is
defined by a later declaration. Override is special to object-types and is discussed in
Chapter 13. An in-line declaration has the reserved word inline followed by one or
more integer constants representing machine code. When compiled, the machine code
representing the body of the procedure is substituted wherever the procedure is invoked. A
non-inline procedure or function is different. Here a single machine instruction is inserted,
representing a jump to where the body of the procedure is to be executed. It is important
to remember that insertion of the actual machine code is a function of the translator and
not of the programmer.

Notice that the uses clause does not appear in the context of a Pascal procedure in
THINK or Macintosh Pascal. The uses clause can only be declared in the main Pascal
program and can then be used to borrow data types, procedures, and functions from
external Pascal libraries. Unfortunately, Macintosh Pascal has more limitations on what
can be borrowed than does THINK Pascal.

As with a the main Pascal program, begin and end bracket the executable body
of a procedure, but a semicolon terminates the definition (declaration) instead of a period.
In the main program, a period after the last end statement signifies the termination of
the complete program unit. Execution of the body of the procedure begins with the first
begin bracket and ends with the last end statement. The parameter list is represented
by a set of formal parameters acting as variables local to the procedure. This means that
the names associated with formal parameters have no relationship to the same names of
other identifiers in either the main body of the program or in other procedures or
functions. It is common to refer to them as dummy variables.

As an example of applying procedures, consider the following program, titled
Prompt_User. This program requires several steps that include setting boundaries for
the Text window, drawing the Text window, and other numerous repetitive lines of code
for displaying the characters'*' and' - 'to the Text window.

program Prompt_User(input, output);
{ Purpose: Prompts for and allows the entry of a person's full }
{ name, street address, city, and state.

var
Full_Name, Address, City_State: string[30];
Count: integer;
Border: Rect;

{ =================== Body for the main program.================ }
begin
{ Hide all of the windows. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 10, 40, 400, 250);
SetTextRect(Border);

Show the Text window for viewing output.}
ShowText;

{ Display a line representing a header.}
for Count := 1 to 50 do

write('*');

254 Chapter 7 Procedures and Functions

writeln;
{ Prompt for and enter the full name of a person.}

write{' Enter full name: ');
readln{ Full_Name);

{ Display a line of characters separating two lines of input. }
for Count := 1 to 50 do

write { ' - ');
writeln;

{ Prompt for a street address. }
write{' Enter street address: ');
readln{ Address);

{ Display a line of characters separating two lines of input. }
for Count := 1 to 50 do

write { ' - ') ;
writeln;

{ Prompt for and enter city and state. }
write{' Enter city and state: ');
readln{ City_State);

{ Display a line representing a trailer. }
for Count := 1 to 50 do

write { '*');
writeln;

end.

The body of the main program becomes easier to read if we replace the two repetitive
for statements with a call to a procedure titled Display_Character_Line that
contains the for loop necessary for displaying the string of characters across the Text
window.

procedure Display_Character_Line{ C: char; N : integer);
{ Purpose: This procedure displays the character C N times to }
{ the Text window. }

var
Count : integer;

begin
{ Repeat displaying a character represented by C to the Text }
{ window. }

for Count := 1 to N do
write { C) ;

{ Terminate the print line. }
writeln;

end; { Di~l<!Y,. Character Line }

The formal parameter list for this procedure is composed of two identifiers: C, a
char type representing the character that is to be displayed in the Text window, and N,
an integer type. Note that the formal parameter name is always followed by a data
type indicating the properties that we are associating with the formal parameters. Each
formal parameter declaration is separated by a semicolon. This format is similar to the
declaration of variables in the main program. Following the procedure-header is a

Procedures and Functions Chapter 7 255

declaration of an identifier called Count, which is local to this procedure and has no
direct connection to any other identifier named Count.

The executable body of our procedure Display_Character_Line is represented
by a for loop and writeln command enclosed within the begin-end bracket.
This procedure begins execution when the following call is executed from the body of the
main program:

Display_Character_Line ('-' , 50);

The two expressions, the character constant '-' and the integer constant 5 0, in
this statement are referred to as actual parameters. When this call statement is executed,
the main program is interrupted, and control is passed to the procedure named
Display_Character_Line. Before the body of the procedure is executed, parameter
C is given the character'-' and parameter N is given the integer value 50. The body of the
procedure is then executed, and the for loop displays N (50) dashes across the Text
window. On completion of the for loop, the line of text is terminated by a write 1 n
command. Because this is the last executable statement in the body of the procedure, it
now terminates execution, and control returns to the body of the main program and to the
statement following the call to Display_Character_Line.

An additional procedure called Set_And_Show_Text_Window is also defined.
The purpose of this procedure is to hide all windows, establish the rectangular boundary
of the Text window, and then display the Text window for viewing lines of text. Notice
that the procedure Set_And_Show_Text_Window has no formal parameters. There
are no actual parameters, so a call to this procedure is simply given by the format:

Set_And_Show_Text_Window ;

The following code shows the Pascal statements for this second procedure:

procedure Set_And_Show_Text_Window;
{ Purpose: Sets the boundary of and opens the Text window for }
{ viewing. }

var
Border: Rect;

begin
{ Hide all of the windows.

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 0, 20, 500, 300);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set and Show Text Window }

The following example shows the physical locations for both procedures in the
Pascal program, as well as the statements for calling each procedure.

program Revised_Prompt_User(input, output);
{ Purpose: Prompts for and allows the entry of a person's full }
{ name, street address, city, and state. }

256 Chapter 7 Procedures and Functions

var
Full_Name, Address, City_State: string[30];

procedure Display_Character_Line (C: char; N : integer);
{ Purpose: This procedure displays a character represented }
{ by C N times to the Text window. }

var
Count : integer;

begin
{ Repeat displaying a character represented by C to the Text }
{ window. }

for Count := 1 to N do
write(C);

Terminate the print line.
writeln;

end; { Display_Character_Line

procedure Set_And_Show_Text_Window;
{ Purpose: This procedure sets the boundary of and opens }
{ the Text window for viewing. }

var
Border: Rect;

begin
{ Hide all of the windows. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 0, 20, 500, 300);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set_and_Show_Text_Window }
{ ================ Body for the main program.=================== }

begin
{ Establish boundary of and show the Text window for viewing
{ output.}

Set_And_Show_Text_Window;
{Display a line representing a header.}

Display_Character_Line('*' , 50);
Prompt for and enter the full name of a person.}
write(' Enter full name: ');
readln(Full_Name);

{ Display a line of characters separating two lines of input. }
Display_Character_Line('-' , 50);

{ Prompt for a street address.
write(' Enter street address: ');
readln(Address);

{ Display a line of characters separating two lines of input. }
Display_Character_Line('-' , 50);

Prompt for and enter city and state. }
write(' Enter city and state: ');

Procedures and Functions Chapter 7 257

readln(City_State);
{ Display a line representing a trailer. }

Display_Character_Line('*' , 50);
end.

If we count executable lines of code such as begin, end, write, wri teln,
readln, for, calls to our new procedures Display_Character_Line and
Set_And_Show_Text_Window, and calls to library routines such as HideAll,
SetRect, SetTextRect and ShowText, we see that the number of executable lines
in the body of the main program has been reduced from 24 to 11, a savings of 54%.
Comments are not counted, because they are not executable lines; they are only used to
provide information when reading the program. The compiler omits these lines when it
translates the program from source code into machine code. Although the total number of
executable lines remains approximately the same when we include the bodies of our two
new procedures, the body of our main program follows more closely the major steps of an
algorithm, and fewer lines of code need to be read.

The advantage of writing procedures even though there is only a minimal savings in
the number lines of executable code becomes clear when we need to change the code in the
body of a procedure: we only need to do it once. Without the use of a procedure, we would
have to make the same change several times, at each place where the repetitive code
appeared. By using procedures we improve our ability to maintain the software that we
have created. Figure 7.3 shows the output from the program Revised_Prornpt_User.

Te Ht

**
Enter full name: John Q. Software

Enter street address: 435 Byte Rue.

Enter city and state: Rochester, NY 1461 O
**

Figure 7.3 Output from the program Revised_Prornpt_User.

As a second example of using procedures, consider the program Diagonal_
Lines from Chapter 6:

program Diagonal_Lines (input, output);
{Purpose: This program executes the QuickDraw library }
{ procedures MoveTo and LineTo for drawing four
{ diagonal lines from a center point.}
begin
{ Open the drawing window for viewing the actions of MoveTo }

258 Chapter 7 Procedures and Functions

{ and LineTo. }
ShowDrawing;

{ Move the pen to the center of the Drawing window and draw }
{ the first diagonal line. }

MoveTo(lOO, 100);
LineTo(50, 50);

{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line. }

MoveTo(lOO, 100);
LineTo(50, 150);

{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line. }

MoveTo(lOO, 100);
LineTo(150, 50);

{ Move the pen to the center of the Drawing window and draw }
{ the last diagonal line. }

MoveTo(lOO, 100);
LineTo(150, 150);

end.

Several lines are composed of the command MoveTo followed by LineTo, so we
can reduce the number of executable lines of code in the main body of this program by
replacing these commands with calls to a procedure named Draw_Diagonal_Line.
The body of this new procedure will contain our two commands MoveTo and LineTo,
each command having the formal parameters (arguments) X_Point and Y_Point. The
following defines our new procedure:

procedure Draw_Diagonal_Line(X_Point, Y_Point : integer);
{ Purpose: This procedure draws a diagonal line from }
{ the point (100,100) to a point represented }
{ by (X_Point, Y_Point). }
begin

MoveTo(100, 100);
LineTo(X_Point, Y_Point);

end; { Draw_Dia_g_onal Line }

Notice that the formal parameters X_Point and Y_Point receive values from
actual parameters when the procedure is invoked. A revision of Diagonal_Lines
follows.

program Revised_Diagonal_Lines(input, output);
{ Purpose: This program executes the library procedures }
{ MoveTo and LineTo. }
{ -- }

procedure Draw_Diagonal_Line (X_Point, Y_Point : integer);
{ Purpose: This procedure draws a diagonal line from }
{ the point (100,100) to a point represented }
{ by (X_Point, Y_Point). }
begin

MoveTo(100, 100);

Procedures and Functions Chapter 7 259

LineTo(X_Point, Y_Point);
end; { Draw_Diagonal_Line }

{ ------------------ Body of the main program. ----------------- }
begin
{ Open the drawing window for viewing the actions of MoveTo }
{ and LineTo. }

ShowDrawing;
{ Move the pen to the center of the Drawing window and draw }
{ the first diagonal line. }

Draw_Diagonal_Line (50, 50);
{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line. }

Draw_Diagonal_Line (50, 150);
{ Move the pen to the center of the Drawing window and draw }
{ another diagonal line. }

Draw_Diagonal_Line (150, 50);
{ Move the pen to the center of the Drawing window and draw }
{ the last diagonal line. }

Draw_Diagonal_Line (150, 150);
end.

By using the procedure Draw_Diagonal_Line, we have reduced the number of
executable statements in the body of the main program by 36%, even though the total
number of lines of code, including the new procedure, remains unchanged. Figure 7.4
shows a screen dump of the revised program, where the Stops I n option from the
Debug menu of THINK Pascal is used to trace the actions of the procedure
Draw_Diagonal_Line.

7.1.2 Passing Information to Formal Parameters: Value Parameters

Notice that the formal parameters shown in a procedure-header are given in a list of the
formal names followed by a colon, followed by a data type. For example,
Draw_Diagonal_Line has two formal parameters, X_Point and Y_Point, both
of type integer. The procedure Display_Character_Line has two formal
parameters, C and N, C being of type char, and N of type integer. In this context
each formal parameter is called a value type. That is, each formal parameter receives a
value from its corresponding actual parameter upon execution of the procedure. Where are
the actual parameters? When a procedure is called, each formal parameter is allocated
storage in memory. The value of the corresponding actual parameter is copied and
assigned to the storage location of its corresponding formal parameter.

The actual parameter must be represented as an expression, that is, either a constant,
a variable, or a combination of one or more constants and variables forming a valid
expression. Throughout the execution of a procedure, the value associated with the actual
parameter remains unchanged. For example, when executing the calling statement
Draw_Diagonal_Line(50, 150), the formal parameters X_Point and
Y_Point are allocated storage, with X_Point being given the integer value 50, and
Y_Point the integer value 150. The values of these two formal parameters remain
unchanged while the procedure Draw_Diagonal_Line is executed. Once the
procedure has ended execution, storage for all formal parameters is deallocated. Any values
assigned to the formal parameters are lost when the body of the procedure terminates.

260 Chapter 7 Procedures and Functions

Reui s ed_Di ago nal_Lines. Pascal

program Revised_Diagonal_Lines(input, output);
{ Purpose: This program executes the libra:r.y proce
{ MoveTo and LineTo. }
{ ---
procedure Draw_Diagonal_Line (X_Point, Y_Point:

integer);
{
{
{

Purpose: This procedure draws a diagonal line f
the point (100,100) to a point represe
by (X_Point, Y_Point) . }

begin
MoveTo(lOO, lOr----=, __ ~~~~~ .. ~---t
LineTo (X_Poin 50 Drawing E!]§

end; { Draw_Diag~-~~~~~~~~~~--=~~~~~---,~
{ --------------
begin
{ Open the drawin
{ of MoveTo and L'

ShowDrawing;
{ Move the pen to

., { and draw the fi
-., Draw_Diagonal

{ Program continu
{ Move the pen to

-. { and draw anothe
._, Draw_Diagonal

{ Move the pen to
{ and draw anothe

Draw_Diagonal .{
{

Move the pen to
and draw the la
Draw_Diagonal_._~~~~~~~~~~~~~~~~--+~

end.

Figure 7.4 Using stops to observe the output from
Revised_Diagonal_Lines.

As an additional example of value-type parameters, let us write a procedure for
drawing a series of rings, as shown in Figure 7.5. Each ring has equal thickness, and is
represented by the value R. When called, the formal parameters of a procedure titled
Draw_Concentric_Rings will receive three values. The first represents the x-value
of the origin, the second the y-value of the origin, and the third the radius of the first
concentric circle. This radius also represents the thickness of each ring. These three values
are represented by the formal parameter names X_Point, Y_Point, and R,
respectively. The procedure Draw_Concentric_Rings automatically draws a set of

Procedures and Functions Chapter 7 261

rings with radii R, 2 * R, 3 * R, and 4 * R. Let us consider an initial solution for
performing these steps:

Figure 7.5 The set of circles displayed by the procedure
Draw_Concentric_Circles.

1. Paint a circle having a radius 4 * R with a color inverse to the present
background color.

2. Paint a second circle having a radius 3 * R with a color inverse to the
present background color.

3. Paint a third circle having a radius 2 * R with a color inverse to the
present background color.

4. Paint the last circle having a radius R with a color inverse to the present
background color.

In Pascal , we can express these steps with a simple repeat-until loop, using
the identifier Radius as a control variable:

Initialize the control variable called Radius.}
Radius := 4 * R;
repeat
{ Draw an inverted circle centered at (X_Point , Y_Point) with }
{ value of Radius.

InvertCircle (X_Point, Y_Point, Radius);
Establish a new radius for the next concentric circle. }

262 Chapter 7 Procedures and Functions

Radius := Radius - R;
until (Radius< R);

What follows is a complete program, Draw _Rings, for this problem, along with all
of the supporting procedures.

program Draw_Rings(input, output);
{ Purpose: This program draws three concentric rings to the }
{ Drawing window. }

var
X_Center, Y_Center, Thickness : integer;

{ -- }
procedure Draw_Concentric_Rings (X_Point, Y_Point, R :

integer);
{ Purpose: Draw a series of concentric rings centered at }
{ the point (X_Point, Y_Point) .}

var
Radius integer;

begin
{ Initialize the control variable called Radius. }

Radius := 4 * R;
repeat
{ Draw an inverted circle centered at the point }
{ (X_Point, Y_Point) . }

InvertCircle(X_Point, Y_Point, Radius);
{ Establish a new radius for the next concentric circle. }

Radius := Radius - R;
until (Radius < R) ;

end; { Draw_Concentric_Rings }
-- }
procedure Set_And_Show_Text_Window;
{ Purpose: This procedure sets the boundary of and opens }
{ the Text window for viewing. }

var
Border: Rect;

begin
{ Hide all windows from being viewed. }

HideAll ;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 0, 20, 500, 300);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set_and_Show_Text_Window }
{ ================= Body of the main program.=================== }
begin ·
{ Hide all windows and then display the Text window. }

Set_And_Show_Text_Window;
Enter the origin and thickness for a set of concentric rings. }
write('Enter X coordinate for the center: ');
readln(X_Center);

Procedures and Functions Chapter 7

write('Enter Y coordinate for the center: ');
readln(Y_Center);
write('Enter thickness of each ring: ');
readln(Thickness);

{ Hide all windows and then display the Drawing window. }
HideAll ;
ShowDrawing;

{ Invoke the procedure to draw a set of concentric rings.}
Draw_Concentric_Rings(X_Center, Y_Center, Thickness);

end.

263

When writing any procedure, it is important to remember that the data types of the
actual parameters must agree with each of their corresponding formal parameters. For
example, X_Center is of type integer, so the formal parameter X_Point must also
be of type integer. In addition, the procedure-header must also have three formal
parameters to match the number of actual parameters. If the types fail to match or the
number of formal parameters fails to match the number of actual parameters, the program
will fail to compile. Figure 7.6 shows a portion of the program Draw_Rings with the
statement calling the procedure Draw_Concentric_Rings changed. The actual
parameter Y_Center is missing, which results in an error message.

~Too few parameters used in procedure or function call.

Draw Rings.Pascal

{ Enter origin and thickness for a set of concentric rings. }
{ Program continued on next page. }

write('Enter X coordinate for the center: '};
readln(X_Center);
write('Enter Y coordinate for the center: ');
readln(Y _Center);
write('Enter thickness of each ring: ');
readln(Thickness);

{ Hide all windows and then display the Drawing window. }
HideAll;
ShowDrawing;

{ Invoke the procedure to draw a set of concentric rings.}
Draw_Concentric_Rings(X_Center, Thickness);

Figure 7.6 An example of an error message for too few parameters.

When the procedure Draw_Concentric_Rings is invoked, the value of the
actual parameter x_center is transferred to its corresponding formal parameter,

264 Chapter 7 Procedures and Functions

X_Point; the value of the actual parameter Y_Center is transferred to its
corresponding formal parameter, Y_Point; and the value of the actual parameter
Thickness is transferred to its corresponding formal parameter, R. What follows is the
execution the body of the procedure. When the last end statement in the procedure
definition is executed, the Pascal run-time system returns control to the statement
following the statement that called the procedure. From this point, the Pascal program
continues to execute. In our example this happens to be the end of the program. While we
can see that formal parameters of value types can be used as constants, value type
parameters can also be used as variables local to a procedure.

When a procedure is called, a formal parameter of a value type receives its initial
value from its corresponding actual parameter. After this point, the procedure can include
statements in its body that alter the value of the formal parameter. For example, consider
the definition of the procedure Revised_Display _Character_Line:

procedure Revised_Display_Character_Line(C : char; N :

{Purpose:
{

integer);
This procedure displays the character C
across the Text window.}

N times }

begin
{ Display N characters across the Text window. }

while N > 0 do
begin

write(C);
N := N - 1

end;
{ Terminate the print line. }

writeln;
end;

As you can see, the formal (value) parameter N is used as a variable that is local to
the body of the procedure. Instead of using the local variable Count, the parameter N is
used as a control parameter for a while loop. Each time the while loop is executed,
the value of N is decremented by 1, and once the value of N reaches zero, execution of the
loop is terminated. While the value of the formal parameter changes as the loop is
executed, the value of its corresponding actual parameter remains unchanged.

7.1.3 Passing Information with Formal Parameters: Variable Parameters

Procedures can be used to produce side effects on the values of actual parameters. This
requires that the formal parameter of a corresponding actual parameter be declared a
variable type by using the keyword var preceding the formal parameter name in the
formal parameter list of the procedure-header. Within the body of the procedure, any
reference to the formal variable parameter is in reality a reference to the memory location
of its corresponding actual parameter. For any formal variable parameter, the
corresponding actual parameter can only be a variable. If the actual parameter is a
constant, or an expression other than a simple variable, an error message such as the one
shown in Figure 7.7 will appear. In this example the formal variable parameter called A
has for its corresponding actual parameter the expression 4 + X. This is improper

Procedures and Functions Chapter 7 265

syntax for any Pascal program. Notice that THINK Pascal catches this error during the
compile step and in reporting the error points to the statement where the procedure is
invoked.

Constant, eHpression, or packed-type component
was passed to a formal UAR parameter.

program Test_Error_Messages(input, output);
{ Purpose: This program demonstrates some error messages for }
{ incompatibility of types between formal and actual }
{ parameters. }

var
X: real;
Y: integer;
Z: char;

procedure Check_Compatibility(var A:real; B: integer;
C: real);

begin
C :=A+ 100;

end;
{ ============== Body for the main program ============== }
begin

r:;r Check_Compatibility(4 + X, Y, Z);
end.

Figure 7.7 The error message resulting from a formal variable parameter having an
expression as its actual parameter.

It is important to understand that the data type for any formal parameter (value or
variable) and its corresponding actual parameter be assignment-compatible. Figure 7.8
shows an example of type incompatibility between the formal parameter named C and the
actual parameter z. Again, the THINK Pascal compiler catches this error during the
compile step by reporting the error and pointing to the statement that invokes the
procedure. In Macintosh Pascal, type-checking of parameters for assignment compatibility
is performed only when the program is executing, not when the program is being checked
for proper syntax. If the data types fail to match, the program halts execution and reports
an error.

Data types for formal parameters can be standard ordinal types such as integer,
long int, Boolean, user-defined types for declared enumerated and subrange
types, real types, or string types. All of these data types were discussed in detail in
Chapter 3. Where a formal parameter is a string type, it can only be declared as a
string and not as a string having a specific size. Including the attribute for string

266 Chapter 7 Procedures and Functions

size results in a syntax error when the program is being checked. For a formal value
parameter declared as a string type, the string size defaults to 255, even though the
actual parameter has a smaller size. For a formal variable parameter declared as a string
type, the size attribute of the formal parameter is that of its corresponding actual
parameter. In addition to the requirement for assignment compatibility between
corresponding actual and formal parameters, the number of formal parameters must agree
with the number of actual parameters. In THINK Pascal this count is tested only when
the syntax of the program is being checked; in Macintosh Pascal it is confirmed only
when the program is being executed.

f91

Type incompatibility between actual and formal
ualue parameters.

program T~st_Error_Messages(input, output);
{ Purpose: This program demonstrates some error messages for }
{ incompatibility of types between formal and actual }
{ parameters. }

var
X: real;
Y: integer;
Z: char;

procedure Check_Compatibility(var A:real; B: integer;
C: real);

begin
C :=A+ 100;

end;
{ ============== Body for the main program ============== }
begin

Check_Compatibility(X, Y, Z);
end.

Figure 7.8 An error mesage resulting from type incompatibility between the actual
and formal parameters.

As an example of a procedure using variable parameters, let us consider a program
that will prompt for three pieces of information- the full name of a person, tax number,
and gross income- and write this information to an output file. Later this output file
will be opened by a spreadsheet application to perform additional operations. The main
program requires the following three steps:

Procedures and Functions Chapter 7

1. Hide all windows, and then set and open the Text window for viewing
information entered from the keyboard. This will be performed by a
separate procedure named Set_And_Show_Text_Window, a param­
eterless procedure.

2. Prompt the user for a file name. This file name should be a string that
will be passed back from a procedure called Prornpt_For_File_
Name. It will have only one parameter, the variable parameter for
returning a file name.

3. Pass the file name to a third procedure called Wri te_To_Da ta_File.
This procedure will be responsible for opening the file given by the file
name from Step 2. This procedure continues to prompt for the three
required pieces of information until the user is ready to quit. When the
entry of data ends, the output file will be closed, and the procedure will
terminate its execution and return control to the main program.

267

To make the program appear modular, the third procedure Wri te_To_Da ta_
File will invoke a fourth procedure called Prornpt_For_Data. This procedure will
read three pieces of information entered from the keyboard: a person's full name, a
person's tax number, and a person's gross income. All three pieces of information will be
passed back to procedure Wri te_To_Data_File, so that the information can be
passed on to the output file.

Figure 7 .9 presents a special diagram for showing the relationship between
procedures.

Main Program

J l
I File_Name

File_Name t
Set_and_Show _ Prompt_For_ Write - To -

Text_ Window File_Name Data_File

Name. t
Tax Number,
Gross_Income

Prompt_For_Data

Figure 7.9 A structure chart showing the relationship between procedures and the
passing of data between procedures.

This diagram is called a structure chart. The rectangle at the top represents the main
program, and the rectangles below represent procedures that the main program depends
upon. The lines connecting the rectangles represent the dependencies of the main program

268 Chapter 7 Procedures and Functions

and its supporting procedures. In Figure 7.9 the body of the main program represents a
superordinate body, and procedures Wri te_To_Data_File, Set_And_Show_
Text_Window, and Prompt_For_File_Name are subordinate to main. In tum, the
procedure Prompt_For_Data is subordinate to procedure Write_To_Data_File,
because it serves to accept data and return it to its superordinate procedure.

The directed arrows in the structure chart show the direction in which information is
sent. For example, the procedure Prompt_For_File_Name returns a copy of the file
name entered from the keyboard. In our structure chart it is labeled File_Name. The
arrow for File_Name points upward, telling us that this procedure returns information
to the main program. In turn, the structure chart shows our file name being sent to
procedure Write_To_Data_File, with nothing being returned by this procedure. The
procedure Prompt_For_Data returns three pieces of data: the name of a person, the tax
number, and the gross income. Here the arrow points upward, indicating the direction in
which information flows.

The Pascal code for procedure Prompt_For_File follows.

procedure Prompt_For_File_Name (var File_Name: string);
{Purpose: This procedure prompts for a file name and returns }
{ that name through the formal parameter Name. }
begin
{ Prompt user for a file name. }

write(' Enter a file name for storing data: ');
readln(File_Name);

end; { PromJ2_t For File Name }

The procedure prompts for and allows the user to enter a file name as a string. Notice
that the formal parameter File_Name is a formal variable parameter and is used to
return the actual file name to the body of the main program.

The procedure Write_To_Data_File requires several major steps. First, it will
be sent the file name as a string and will use the file name to open an actual physical file
by execution of the rewrite command. Second, it will write a header to the output file
containing the labels Name, Tax Number, and Gross Income. A horizontal tab must
be written between each label, because any spreadsheet reading a text file always treats a
horizontal tab as a means to separate any column. For any spreadsheet reading a text file,
an end-of-line always causes the spreadsheet to begin a new row. Third, a repeat­
until loop is executed to continue prompting the user for information, and writing
this information to the output file. Each time the loop is executed, the user is given the
opportunity to quit by typing either the character 'Q' or 'q'. If any other character is
entered, execution of the loop continues. The last step after leaving the loop is to close
the output file. The following is the Pascal code for this procedure.

procedure
{ Purpose
{

Write_To_Data_File (File_Name: string);
This procedure will open a file for writing data, }
and then write data to an output file }

{ represented by the variable parameter Output_File. }
var

Output_File: Text;
Name, Tax_Nurnber: string;
Tab, Response: char;
Gross_Income: real;

Procedures and Functions Chapter 7

begin
{ Initialize the value for a horizontal tab.

Tab:= chr(9);
{ Open the output file for writing data.

rewrite(Output_File, File_Name);
{ Write column headers to the output file. }

writeln(Output_File, 'Name', Tab, 'Tax Number', Tab, 'Gross
Income');

269

Continue to prompt for data until the user is ready to quit. }
repeat
{ Prompt for and enter name, tax number, and gross income. }

Prompt_For_Data(Name, Tax_Number, Gross_Income);
{ Write these three entries to the data file. }

write(Output_File, Name, Tab, Tax_Number, Tab);
writeln(Output_File, Gross_Income : 6 : 2);

{ Prompt the user to either continue or quit. }
write(' Press 'Q' to quit, 'c' to continue: ');
readln(Response);

until ((Response= 'Q') or (Response= 'q'));
{ Close the output file before exiting this procedure. }

close(Output_File);
end; { Write To Data File }

Notice that this procedure has only one formal variable: a value parameter named
File_Name. This procedure needs only to receive a final name and does not change the
way the name was entered, so the use of a formal variable parameter is unnecessary.

The last procedure is Prompt_For_Data, a simple procedure that only requires
sequential execution of write and readln statements. As you can see in the code that
follows, all input to this procedure comes from typing information at the keyboard. Both
the formal parameters Name and Number are strings, because a tax number might be
entered with characters other than digits. Notice that all three formal parameters are
variable types, because they return values to the procedure Wri te_To_Data_File.

procedure Prompt_For_Data(var Name, Number: string; var
Income: real);
{ Purpose: This procedure prompts for and allows the entry of a }
{ person's full name, tax number, and gross income. }
begin
{ Prompt for person's name, tax number, and gross income. }

writeln(' -- ');
write(' Enter the last name of the person: ');
readln (Name) ;
write(' Enter the person's tax number: ');
readln(Tax_Number);
write(' Enter the person' s gross income : $ ');
readln (Income) ;

end; { Prompt For Data }

270 Chapter 7 Procedures and Functions

We can write the formal parameter list in procedure Prom:pt_For_Data in a
different format from what is given above. For example, the following format is slightly
longer but still declares all formal parameters to be variable types:

procedure Prompt_For_Data(var Name: string; var Number:string;
var Income : real)

If we failed to place a var before Number and Income, as in the following header,

procedure Prompt_For_Data(var Name
Income

string ; Number : string;
real) ;

the side effects from executing Prompt_For_Data would not change the values of the
actual parameters associated with Number and Income. Why? Although Name is a
variable type, Number and Income are value-type parameters (since a var does not
precede their names) and as such cannot change the values of their actual parameters.
Simply starting the declaration with the keyword var does not make all other formal
parameters variable types. While the procedure would execute, no values for Number and
Income would be returned to their corresponding actual parameters, Tax_Number and
Gross_Income. It is important to place the keyword var in the proper position to
assure the declaration of a formal parameter as a variable type.

Why is it necessary to invoke the last procedure, Prompt_For_Data, from
Wri te_To_Da ta_File? Would it not be easier to place the steps of this procedure in
the body of Write_To_Data_File? Our purpose is to keep the procedure
Wri te_To_Data_File highly functional (strongly cohesive). Its major function is to
open a file for writing, and to write information to that file. Having a separate procedure
to prompt and read data from the keyboard keeps the procedure Write_To_Data_File
dedicated to its major purpose. Having a separate procedure such as Prompt_For_Da ta
makes changing the body of this procedure easier, because the procedure is short and
readable, and because it satisfies one major function: it prompts a user and accepts data
entered from the keyboard.

A complete listing of this program follows. Figure 7.10 shows two windows: a Text
window containing data from the keyboard, and a window representing a window in Excel,
where our output file has been opened and displayed. The execution of the spreadsheet
application is not a requirement of our program.

program Text_File_Program(input, output);
{Purpose This program creates a text file with three columns }
{ and several rows of information. The first column }
{ lists names, the second tax numbers, and the third,
{ gross income. Once the file is closed, it can be }
{ opened by a spreadsheet application such as Excel. }

var
File_Name: string;

{ -- }
procedure Prompt_For_File_Name (var File_Name: string);
{ Purpose: This procedure prompts for file name and returns }
{ that name through the formal parameter Name.}

{ Pro_g_ram listin_g_ continues after Figure 7.10 }

Procedures and Functions Chapter 7

Te Ht

Enter a file name for storing data: Spreadsheet File

Enter the person's last name: Smith
Enter the person's tax number: 123-09-99
Enter the person's gross income: $ 2345.98
Press 'Q' to quit, 'C' to continue: C

Enter the person's last name: Jones
Enter the person's tax number: 654-98-12
Enter the person's gross income: $ 98765.09
Press 'Q' to quit, 'C' to continue: Q

D Spreadsheet File BJ

1 Name A f Tax N~mber tGross l~come f ~

271

__, , ... ,
....__.f"'""'"':2:---i.§.rr.!!.m lJ .. ?.}.~ .. Q .. ~ .. :.~.~- ... L.. ?..~:1.~ ~.~L m1-1--1

3 Jones i 6 5 4 - 9 8 - 1 2 i 9 8 7 6 5 . O 9 i !lii!i 4 r- 1 T IQJ
IQL 1mmmmmmmmmmmmmmmmmmmm1m1mmmmmmmmmmmmm1mm111Q '2l

Figure 7.10 A display of the data generated by Text_File_Program. A
spreadsheet file has been opened by Excel and is shown in the active window.

{ Continuation of listing of Text_File_Program }
begin
{ Prompt user for a file name. }

write(' Enter a file name for storing data: ');
readln(File_Name);

end; { Prompt_For_File_Narne }
{ -- }

procedure Prompt_For_Data (var Name, Number: string; var
Income : real) ;

Purpose: This procedure prompts for and allows the entry }
of a person's full name, tax number, and gross }
income. }

begin
{ Prompt for person's name, tax number, and gross income. }

writeln(' -- ');
write(' Enter the last name of the person: ');
readln (Name) ;
write(' Enter the person's tax number: ');
readln {Number) ;
write{' Enter the person' s gross income : $ ');
readln (Income) ;

272 Chapter 7 Procedures and Functions

end; { Prompt_For_Data }

{ -- }
procedure
{ Purpose :
{

Write_To_Data_File (File_Name: string);
This procedure will open a file for writing }
data, and then write data to an output }

{
{

file represented by the variable parameter }
Output_File. }

var

begin

Output_File: Text;
Name, Tax_Number: string;
Tab, Response: char;
Gross_Income: real;

{ Initialize the value of Tab for a horizontal tab. }
Tab:= chr(9);

{ Open the output file for writing data. }
rewrite(Output_File, File_Name);

Write column headers to the output file.}
writeln(Output_File, 'Name', Tab, 'Tax Number', Tab, 'Gross

Income');
{ Continue to prompt for data until the user is ready }
{ to quit. }

repeat
{ Prompt for and enter name, tax number, and gross income.

Prompt_For_Data(Name, Tax_Number, Gross_Income);
{ Write these three entries to the data file. }

write(Output_File, Name, Tab, Tax_Number, Tab);
writeln(Output_File, Gross_Income: 6 : 2);

{ Prompt the user to either continue or quit. }
write(' Press 'Q' to quit, 'c' to continue: ');
readln(Response);

until ((Response= 'Q') or (Response= 'q'));
{ Close the output file before exiting this program. }

close(Output_File);
end; { Write_To_Data_File }

{ --- }
procedure Set_And_Show_Text_Window;
{ Purpose: This procedure sets the boundary of and opens }
{ the Text window for viewing. }

var
Border: Rect;

begin
{ Hide all windows before establishing and showing the Text }
{ window. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 10, 40, 400, 250);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

Procedures and Functions Chapter 7 273

end; { Set_And_Show_Text_Window }
================== Body for the main program. ================ }

begin
{ Hide all windows and then open the Text window for viewing }
{ prompts and responses. }

Set_And_Show_Text_Window;
{ Prompt user for a file name. }

Prompt_For_File_Name(File_Name);
{Now write data to the output file represented by file name.}

Write_To_Data_File(File_Name);
end.

Before ending this section, we must make one additional comment. The way the
Text_File_Program has been written makes it important to declare the procedure
Prompt_For_Data before Write_To_Data_File. Procedure Write_To_Data_
File invokes Prompt_For_Data, so declaring procedure Prompt_For_Data after
Write_To_Data_File results in a compile-error message indicating that the name
"Prompt_For_Data" has not been declared. The error occurs in the body of
Wri te_To_Data_File where Prompt_For_Data is invoked.

An additional example, where values of actual parameters are affected by actions on
corresponding formal parameters, is Utility_Program, which features three pro­
cedures: Computation_On_Average_Cost, Report_On_Cost, and Prompt_
User_To_Continue.

program Utility_Program(input, output);
{ Purpose: This program computes the average cost and }
{ consumption for 12 utility bills and reports the }
{ average values of consumption and cost in the Text }
{ window. }

var
AverageCost, AverageConsumption : real;
Answer : char;

{ -- }
procedure Set_And_Show_Text_Window;
{ Purpose: This procedure sets the boundary of and opens }
{ the Text window for viewing. }

var
Border: Rect;

begin
{ Hide all windows before establishing and showing the Text }
{ window. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 10, 40, 400, 250);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set_And_Show_Text_Window }
{ --- }

procedure Computation_Of_Average_Cost(var Average_Cost,

274 Chapter 7 Procedures and Functions

Average_Consumption: real);
{ Purpose:
{

Enter 12 months of cost and consumption values }
from the keyboard. Then compute the average cost }
and average consumption. } {

var
Counter, Total_Consumption, Total_Cost integer;
Consumption, Cost : integer;

begin
{ Initialize the totals and control variable Counter. }

Counter := l;
Total_Consumption := O;
Total_Cost := O;

{ Repeat entry of consumption and cost data until counter }
{ exceeds 12.}

repeat
{ Prompt for and accept data monthly consumption and cost }
{ from the keyboard. }

writeln;
write('Enter consumption: ');
readln(Consumption);
write('Enter cost: $ ');
readln (Cost) ;

{ Compute partial sums for consumption and cost. }
Total_Consumption := Total_Consumption + Consumption;
Total_Cost := Total_Cost + Cost;
Counter := Counter + l;

until (Counter> 12);
{ Compute the average values for consumption and cost. }

Average_Consumption := Total_Consumption I 12;
Average_Cost := Total_Cost I 12;

end; { Computation_Of_Average_Cost }
-- }

procedure Report_On_Cost(Average_Cost, Average_Consumption

{ Purpose:
{

begin

: real);
This procedure reports on the average cost and }
consumption. }

{ Display the average values, cost and consumption, to the }
{ screen.}

writeln;
writeln('Average monthly consumption: ', Average_Consumption

: 7 : 2) ;
writeln('Average monthly cost: $', Average_Cost : 6 : 2);

end; { Report_On_Cost }
{ --- }

procedure Prompt_User_To_Continue(var Response : char);
{ Purpose: This procedure prompts the user to see if he/she }
{ wishes to enter an additional set of values. }
begin

{ Prompt the user to repeat the entry of data or to quit.}

Procedures and Functions Chapter 7

writeln;
writeln('Do you wish to enter another set of data?');
write ('Enter "Y" for yes, "N" for no, and then press the

Return key:');
readln(Response);

end; { Prompt_User_To_Continue }

275

{ ================= Body of the main program. ==================
begin
{ Hide all windows and then open the Text window for viewing }
{ prompts and responses. }

Set_And_Show_Text_Window;
{ Repeat entering sets of data until user decides to quit. }

repeat
{ Enter set of cost and consumption values. }

Computation_Of_Average_Cost(AverageCost,AverageConsumption);
{ Report average cost and consumption and prompt user to }
{ continue. }

Report_On_Cost(AverageCost, AverageConsumption);
{ Prompt user to either quit or enter another set of data. }

Prompt_User_To_Continue(Answer);
until(Answer = 'N');

end.

Figure 7 .11 shows a structure chart for this example. This program is based on an
early program called Electric_Bill, but with the instructions in the body of the

Main Program

i
Average_Cost, t

Answer I Average_
Consumption

Set_And_ Computation_ Report_ On_ Prompt_ User_
Show_Text Of_A verage_ Cost To_ Continue
Window Cost

Figure 7.11 A structure chart for Ut i 1 i ty _Program, showing the relationships
between procedures and the passing of parameters between main program and procedures.

276 Chapter 7 Procedures and Functions

main program divided among three procedures: Computation_Of_Average_Cost,
Report_On_Cost, and Prompt_User_To_Continue. Notice that the formal
parameters Average_Cost and Average_Consumption of procedure
Computation_Of_Average_Cost have a one-to-one correspondence with their
actual parameters AverageCost and AverageConsumption, respectively. Both
formal parameters are variable types. When either of the formal parameters
AverageCost or AverageConsumption is assigned a new value by an assignment
statement, the value of the corresponding actual parameter is also changed. If we had
forgotten to place var before the formal parameters, they would be value types, and
there would be no side effects on the corresponding actual parameters. Whatever values the
actual parameters had before execution of the procedure Co mp u tat ion_
Of_Average_Cost would remain. The second procedure, Report_On_Cost, has
two formal parameters, Average_Cos t and Average_Consumption, both being
value types. Why? Because we are only interested in passing the values of the actual
parameters Average_Cost and Average_Consumption to procedure Report_
On_Cost, there is no need to change these values during the execution of this procedure.

The third procedure, Prompt_User_To_Continue, prompts the user to either
repeat the actions of the program or quit. The readln statement in this procedure
assigns a value to the formal parameter Response. Because Response is a formal
variable parameter, it passes this value back to the actual parameter called Answer. If we
had not placed var before Response, this formal parameter would be a value type, and
the value of the actual parameter Answer would remain unchanged. Unfortunately, the
program would never terminate execution, because the proper response for quitting could
never be returned.

Following is a brief review of some of the concepts we have discussed in relation to
procedures and parameters.

1. Procedures are used for their effects. In some instances these may include
changing the values of actual parameters while the procedure is
executing; in other instances they simply report information.

2. The link binding the actual parameter list and the formal parameter list
provides a path by which information can pass between where the
procedure is called and where the procedure is executed. This link is
broken once the procedure ends execution.

3. The data type of any formal parameter must agree with its corresponding
actual parameter, and the number of formal parameters must agree with
the number of actual parameters.

4. A value for an actual parameter can be returned from its corresponding
formal parameter only if the formal parameter has been declared a
variable type in the formal parameter list.

5. An actual parameter that passes a value to its corresponding formal
parameter can be either a simple variable or an expression.

6. An actual parameter that can both pass and receive a value from its
corresponding formal parameter can only be a simple variable. It cannot
be an expression. If it is, it results in a compilation error.

7. Formal parameters are always represented by simple variables and can
never be represented as expressions.

8. When a procedure is called, the present executable environment is
interrupted, the link between actual and formal parameters is created, and
the body of the procedure is executed.

Procedures and Functions Chapter 7

9. When the last end of the procedure is executed, the link between the
actual and formal parameters is broken, and execution resumes at the
statement following the statement that called the procedure.

10. Procedures can also be defined without a formal parameter list. In this
case the procedure-header must have the form

procedure Procedure_name;

Declaring a header in the form

procedure Procedure_name();

results in an error message indicating an invalid formal parameter list.
11. With procedures, a Pascal program becomes a series of highly functional

steps, because each procedure is written to serve one or two major
activities. The body of the main program becomes an excellent
description of the solution to a problem, with the detail of each step left
to the body of the procedure executing the step.

12. It is important to write a procedure as a highly cohesive unit. Its level
of cohesion must be chosen in terms of the solution to the problem and
of the purpose of the procedure.

7.2 PASCAL FUNCTIONS

277

A Pascal function is similar in concept and format to a Pascal procedure.
Syntactically, the format for declaring a function is shown in Figure 7.12.

function Function_Name ({formal parameter list}): result-type;

{ list of label declarations known only to this function }
{ list of constant declarations known only to this function }
{ list of user-defined types known only to this function }
{ list of variable declarations known only to this function }
{ list of procedure and/or function declarations known only }
{ to this function }
{ directive }
{ in-line body }

:begin
{ executable body of the function }
end;

Figure 7.12 Pascal function format.

There are four major differences between a Pascal function and a Pascal procedure. First, a
value having a data type is returned through the name of the function. This implies that
the name of the function has data associated with the result-type specified in the header.

278 Chapter 7 Procedures and Functions

Second, the name of the function can receive a value only if the function name is assigned
a value in the executable body of the function itself and before the function terminates
execution. Rules for naming a function are the same as for any other identifier in Pascal.
Third, a function can be used both for its effect and for returning a value, because the
formal parameter list of the function-header can contain both value and variable-type
parameters. Fourth, a function can only be called from within an expression; it cannot be
invoked like a procedure.

As an example of writing a function, consider the following problem. Standard
Pascal does not support an exponentiation operator, that is, an operator for raising a value
x to a power y. To provide this capability, we will develop a function called
Exponentiation for taking an integervalue x and raising it to an integer
value y. Here we assume that y must be positive. First, let us consider some special cases
for values of x and y, and if the conditions are proper, the basic steps for computing xY :

1. If y is negative, or if both x and y are zero, then no result exists. For
convenience we will define the result to be zero. The need to report an
error message is a matter of judgment.

2. If y is zero, the result is 1, because x at this step must be nonzero.
3. Otherwise, the result is the product of x multiplied y times.

Here is a more detailed algorithm for this function:

function Exponentiation { returns an integer value };
{ Comment on variables:

X, Y are formal parameters whose values are passed into this
function. Product and Counter are integer variables local to
the executable body of this function. }

begin
{ First, check for special conditions on X and Y. }

if (Y < 0) or ((X=O) and (Y=O)) then
begin

If important display a message that no result can exist.}
Exponentiation <-- 0

end
else { Y must be greater than or equal to zero. }

if (Y = 0) then { X must be nonzero }
Exponentiation <-- 1

else
{ Initialize control variable Counter and the partial

product Product, and compute X raised to power Y.
begin

Counter <-- 1
Product <-- 1;
repeat

Product <-- Product * X;
Counter <-- Counter + l;

until (Counter> Y);
Exponentiation <-- Product

end;
end; Exponentiation }

Procedures and Functions Chapter 7 279

The program Testing_Exponentiation shows our algorithm as a Pascal
function. Note that the function Exponentiation is invoked from an expression in
the body of the main program, and that the value returned from function
Exponentiation is assigned to a variable called Result.

program Testing_Exponentiation(input, output);
{ Purpose: This program allows the testing of the function }
{ Exponentiation. }

var
X, Y, Result : integer;
Response : char;

{ --
procedure Set_And_Show_Text_Window;
{ Purpose: This procedure sets the boundary of and opens }
{ the Text window for viewing. }

var
Border: Rect;

begin
{ Hide all windows before establishing and showing the Text }
{ window. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 10, 40, 400, 250);
SetTextRect(Border);

Show the Text window for viewing output.}
ShowText;

end; { Set_And_Show_Text_Window }
-- }
function Exponentiation (X, Y : integer) : integer;
{ Purpose: This function raises the value of X to the }
{ power Y. }

var
Counter, Product : Integer;

begin
{ First, check for special conditions on X and Y. }

if (Y < 0) or ((X = 0) and (Y = 0)) then
begin

writeln;
write(' No result exists, since either Y < 0 or');
writeln(' both X and Y are 0. ');
Exponentiation := 0

end
else if (Y = 0) then { X must be nonzero }

Exponentiation := 1
else
{ Initialize control variable Counter and temporary }
{ variable Product, and compute X raised to the power Y. }

begin
Counter := l;
Product := l;
repeat

280

Product := Product * X;
Counter := Counter + l;
until (Counter> Y);

Exponentiation := Product
end

end; { Exponentiation }

Chapter 7 Procedures and Functions

{ ================== Body of the main program. ================= }
begin { Body of the main program. }
{ HideAll windows and then set and show the Text window for }
{ viewing test data.}

Set_And_Show_Text_Window;
{ Continue to execute the function Exponentiation until the }
{ person testing this function is ready to quit. }

repeat
{ Prompt for the base and the exponent. }

writeln;
write('Enter a value for X followed by a value for Y: ');
readln (X, Y);

{ Compute X raised to power Y using the function }
{ Exponentiation. }

Result := Exponentiation(X, Y);
{ Display the results from execution of Exponentiation. }

writeln;
write('Value of ', X:l, ' raised to the power ');
writeln(Y:l,' is ',Result :1);

{ Prompt the person testing the function Exponentiation to }
{ either stop or continue.}

write('Enter "S" , and press RETURN key to stop testing: ');
readln(Response);

until (Response= 'S')
end.

Why not eliminate the local variable Product in the executable body of the
function Exponentiation and replace the sentence Product : = Product * X
with Exponentiation : = Exponentiation * x? Doing this would result in an
error message during the compile step, because THINK Pascal treats the name of the
function on the right side of an assignment operation as a direct call on itself. In this
particular case, the THINK Pascal compiler responds with a dialog window having a
message that too few parameters are used in a procedure or function call. For the body of
any Pascal function, the function name appearing on the left side of an assignment
operator is always treated as a simple variable, whereas on the right side it acts as a call
upon itself.

How could the exponentiation operation be performed by a procedure instead of a
function? Below is a procedure called Exponentiation_Revised for raising an
integer x to a power y. As you can see, a third formal parameter called Product is
necessary for returning the value of the exponentiation operation. The algorithm for
computing exponentiation is basically the same.

procedure Exponentiation_Revised (X, Y integer; var Product:

Procedures and Functions Chapter 7 281

integer);
{ Purpose: This procedure raises the value of X to the power Y. }

var
Counter : integer;

begin
{ First check for special conditions on X and Y. }

if (Y < 0) or ((X = O) and (Y = 0)) then
begin

writeln;
write(' No result exists, since either Y < 0 or');
writeln(' both X and Y are 0. ');
Product := 0

end
else if (Y = 0) then { X must be nonzero }

Product := 1
else
{ Initialize control variable Counter and temporary variable }
{ Product, and compute X raised to the power Y. }

begin
Counter := l;
Product : = 1;
repeat

Product .- Product * X;
Counter := Counter + l;

until (Counter> Y);
end

end; { Exponentiation_Revised }

If we use the procedure Exponentia tion_Revised in place of its corresponding
function, the assignment statement in the body of the main program Testing_
Exponentiation,

Result := Exponentiation(X, Y);

must be replaced by the proc ... _'•rre call

Exponentiation_Revised (X, Y, Result);

Whether to use a procedure or function can be a matter of preference by the author of
the algorithm. Some people are comfortable with defining subprogram units in terms of
procedures, and others prefer functions. In the programming language C, all subprogram
units are functions, and although C does not support a subprogram unit called a
procedure, it is possible in C to write a function and have it take on the characteristics of
a procedure.

282 Chapter 7 Procedures and Functions

7.3 GLOBAL VERSUS LOCAL IDENTIFIERS

In standard Pascal a program unit is represented by a declaration section followed by an
executable section. The declaration section allows labels, constants, user-defined types,
variables, procedures, and functions to be declared. What is important is the scope or
extent of these declared identifiers in relation to other internal procedures and functions.
The scope for an identifier is important because it defines the valid limits of an identifier's
accessibility within the boundary of any Pascal program. Basically, the scope of an
identifier extends from where the identifier is initially declared to the end of the program
unit, with the exception of those nested program units that redeclare the identifier. In this
situation the identifier acts as a local identifier to the program unit in which it is declared.
If a nested program unit uses an identifier without redeclaring it, the identifier is
considered global to the borders of the nested program unit. The rules of scope help limit
the declaration of an identifier to that part of the Pascal program where the identifier is
employed. They can also result in an identifier being used in several different parts of a
program and having a different meaning in each part. In turn, they allow the value of an
identifier to be shared among several nested program units. As an example, consider the
following program called Scoping.

program Scoping (input, output);
var A, B, C : real; D, E, F : integer;

{ -- }
procedure One (X, Y : integer);

var A, E : Boolean;
begin { Body of outer procedure One }
{ Identifiers A and E have been redeclared and act as local }
{ identifiers to this block. The real identifiers, B, C, and }
{ integer identifiers, D, F, in the main program are global }
{ to this block. Only this outer procedure One is known to }
{ this block, since it was declared before procedure Two.}
end; { One }

{ -- }

procedure Two (var A: integer; F : Boolean);
var B, C : integer;

{ +++ }
procedure One;

begin { Body of Inner procedure One }
{ Parameters A and F in procedure header Two as well }
{ as the integer identifiers B and C are global to }
{ this block. Both variables B and C are associated }
{ with the two variables declared at the beginning }
{ of procedure Two and not with the identifiers B and C }
{ declared at the beginning of the program. The real }
{ identifiers D and E declared at the beginning of the }
{ main program are global to this block. The outer }
{ procedure Two and the inner procedure One are both }
{ known to this block. The declaration of outer }
{ procedure One is redefined by the present declaration }
{ of One. }
end; { One }

Procedures and Functions Chapter 7 283

{ +++ }
begin { Body of procedure Two }
{ Parameters A and F as well as the integer identifiers B }
{ and C are local to this block, while the identifiers D and
{ E declared in the main program are global to this block. }
{ The outer procedure Two and the inner procedure One nested
{ within procedure Two are known to this body.}
end; { Two }

{ =================== Body of the main program. ================ }
begin
{ The identifiers A, B, C, D, E, and F declared at the beginning }
{ of the program are local to this block. Only the outer two }
{ procedures, One and Two, can be called from this block. }
end.

Figure 7.13 is a contour diagram showing the boundaries of program Scoping and
subprograms One and Two.

Scoping;
var A,B,C real;

D,E,F : integer;

One(X,Y: integer);
var A,E : Boolean;

Two(A: integer; F:Boolean);
var B,C : integer;

One;

Figure 7 .13 Contour diagram showing the boundaries for the main
program Scoping and subprograms One and Two.

284 Chapter 7 Procedures and Functions

The identifiers defined in the block Scoping are accessible in blocks One and Two,
and within the nested block One declared in block Two if those identifiers have not been
redeclared. For example, the variables B, c, D, and F are global to block One, and
variables D, E, and F are global to block Two as well as block One nested within block
Two. In turn, block One nested within block Two is accessible to identifiers D, E, and F
from block Scoping, and identifiers A, B, and c from block Two. For block One,
nested within block Two, the parameter A and variables B and c are global within the
contour of One. Note that for block Two, nested block One is the only procedure
accessible by block Two, not procedure One nested in block Scoping. If procedure One
is invoked from within the body of Two, it is the procedure One nested within Two that
is executed, not One nested within Scoping. Identifiers D and F have scope throughout
the entire block Scoping as well as blocks One and Two.

Using global identifiers can sometimes lead to bad side effects not predicted at the
time of writing a program. Consider the following example, titled Bad_Habi ts:

program Bad_Habits(input, output);
{ Purpose: This program demonstrates a basic problem in using }
{ global identifiers.}

var
N integer;
Sum : longint;

{ -- }
function Total (X : integer) : integer;
{ Purpose: This function computes the sum of }
{ 1 + 2 + 3 + . . . + x. }
begin

N := X;
Sum := O;
repeat

Sum := Sum + N;
N := N - 1;

until (N = 0);
Total := Sum

end; { Total }
{ ================== Body of the main program. ================= }
begin

N := l;
Sum := O;
repeat

Sum:= Sum+ Total(N);
writeln(N, Sum);
N := N + l;

until N > 100;
end.

This program never ends execution. Although the function Total is defined to
compute the sum of (1 + 2 + ... + x) for a given value of x, and the body of the main
program is defined to compute the summations of 1 + (1 + 2) + (1 + 2 + 3) + ... + (1 +
2 + 3 + . . . + 100), this program never seems to reach an end to its summations.
Unfortunately, the person who wrote the program failed to declare N and Sum as local

Procedures and Functions Chapter 7 285

variables in the body of the function Total. These errors result in the function Total
assigning N the value 0 each time it is executed. In the body of the main program, N
becomes incremented by 1, with the value of N returning to the value 1. N never exceeds
the value of 100 (it will always be 1 when the condition N > 100 is tested), so the
program continues to loop forever. As for the value of Sum, it will always be 2 when the
wri teln statement is executed, because Sum is a global variable in the function
Total. Its value is returned to 0 each time the function Total is executed.

If Pascal supports procedures defined only within the boundary of the main program
unit, should we use global identifiers for procedures, rather than linking values through an
actual parameter, formal parameter list? No definite answer favors global variables over a
formal parameter list. One rule of thumb to follow when defining procedures or functions
is to use only local variables and formal parameters within the executable body. Use
formal parameters for passing a value to a formal parameter or for causing a side effect on
an actual parameter. Let global identifiers be limited to constants and types, but never
variables.

If you follow this rule, you will be enforcing the principle of loose coupling, or data
coupling. With loose coupling, only the required amount of information is passed
between the body of the main program and the subprogram unit. It is the most desirable
kind of coupling since we are assured of knowing what information is being passed and
what is required in return from the subprogram unit. No attempt is made to change the
values of any other identifiers beyond the boundary of a subprogram unit. The opposite
extreme is common coupling. Common coupling occurs when a subprogram unit makes
direct references to an identifier outside its boundaries, such as a global identifier. This is
the case for variables N and Sum in function Total. Once this occurs, the subprogram
independence that we are attempting to achieve is lost. Applying the rule of loose
coupling would keep our unknown programmer from creating the problems shown in
Bad_Habi ts.

7.4 FORWARD DECLARATIONS

Both THINK Pascal and Macintosh Pascal are one-pass translators. This means that as a
Pascal program is being translated, names of declared identifiers are added to an internal
data object called a symbol table. If the translator encounters a reference to an identifier
not in the symbol table, a translation error specifying that an identifier is undefined is
raised. This often happens when a procedure is referenced before being defined. Consider
the example given in the foll ·ving program called Forward_Example.

program Forward_Example(input, output);
{ Purpose: This program demonstrates the problem of }
{ unreferenced procedures and functions. }

var
A, B, C : integer
D : real ;

{ -- }
procedure One(X : integer);
{ Purpose: To reference procedure Two and function Three.}

var
F : real;

286

begin
Two(X);
F := Three(X);

end;

Chapter 7 Procedures and Functions

{ -- }
procedure Two (X : integer);
{ Purpose: To reference procedure One and function Three.}

var
F : real;

begin
One (X);
F := Three(X)

end; { Two }

{ -- }
function Three(Z : integer) : real;
{ Purpose: To reference procedures One and Two.}
begin

One(Z);
Two (Z);
Three := Z

end; { Three }

{ ================= Body for the main program. ================ }
begin
{ No executable statements.}
end.

In the body of procedure One, procedure Two and function Three are referenced; in
the body of procedure Two, procedure One and function Three are referenced; and in the
body of function Three, both procedures One and Two are referenced. Although the
program appears to be correct, translating it with the THINK Pascal compiler (as well as
the Macintosh Pascal translator) results in a dialog box like the one shown in Figure
7.14.

This error is generated because identifier Two (as well as Three), referenced from
within the body of procedure One, appears to be an undefined identifier to the translator.
Standard Pascal requires all identifiers be declared before being referenced by other
declarations or executable statements. Placing procedure One before procedure Two
produces this error. The definition of procedure One could be placed below Two and
Three, but this would not rectify the problem, because now identifiers One and Three
would appear as undefined references within the body of procedure Two.

Standard Pascal allows us to solve this problem by using a forward declaration.
Sometimes referred to as a directive, the forward declaration allows a procedure-header or
function-header to be declared, leaving the remainder of the body for later definition. This
allows other procedures and functions to be declared between them, in particular those that
reference the forwarded procedures and functions. The following shows the application of
forward declarations to our previous program. The subprogram units have been listed in
alphabetical order by name.

Procedures and Functions Chapter 7

I~ ;:·:=.
"Two" is not declared •

.. .. · ..

{Purpose:
{

var

This program demonstrates the problem of }
unreferenced procedures and functions. }

A,B,C: integer;
D: real;

{ ------ ------ --- -- ----- -------- -- -- --- --- -- -
procedure One(X: integer);
{ Purpose: To reference procedure Two and function Three. }

var
F: real;

begin
f9. Two(X);

F := Three(X);
end.

Figure 7.14 An example of the error message resulting from an identifier
that cannot be referenced.

program Forward_Example_Revised(input, output);
{ Purpose: This program demonstrates the use of forward }
{ directives.}

var
A, B, C : integer;
D : real;

287

{ ----------------- List of forward directives. --------------- }
procedure One (X : integer);

forward ;
function Three(Z : integer): real;

forward;
procedure Two {X : integer);

forward;
---------- Definitions of procedures and functions. --------- }
procedure One; { X : integer }
{ Purpose: This procedure references procedure Two and }
{ function Three.}

var
F

begin
Two (X);

real;

F := Three(X);
end; { One }

-- }

288

function Three;
{ Purpose: This
begin

One (Z);
Two(Z);
Three := Z;

and; { Three }

Chapter 7 Procedures and Functions

{ Z : integer; returns real }
function references procedures One and Two. }

{ -- }
procedure Two; { X : integer }
{ Purpose: This procedure references procedure One and }
{ function Three.}

var
F real;

begin
One (X);
F := Three(X)

and; { Two }
{ ================== Body of the main program. ================ }
begin
{No executable statements.}
end.

With the forward directives appearing before the body of any procedure or function,
program Forward_Example_Revised successfully compiles. With these three
forward declarations, the names of identifiers One, Two, and Three are added to the
symbol table before the translator examines the body of any procedure or function. Now
when procedure body One is examined, the identifiers Two and Three are accessible and
can be referenced. The body of the main program makes no calls upon any of the
subprograms, so the program successfully executes. Understand that when a forward
declaration is given, only the reserved word procedure or function followed by
the identifier name is defined prior to the definition of the body. Repeating a complete
procedure or function heading can result in a translation error. One method for
remembering the formal parameters is to insert a copy of the parameter list as a comment
before defining the remainder of the procedure or function.

7.5 PROCEDURAL AND FUNCTIONAL PARAMETERS

In Pascal the name of a procedure or function can be passed as an actual parameter to the
name of a corresponding formal parameter. This implies that a formal parameter in a
subprogram can represent the name of the actual procedure or function during execution of
the subprogram itself. This allows a subprogram to serve as a host for several different
operations. A particular operation being performed when the subprogram is in execution
and the name of a procedure or function that is passed to a formal parameter is called upon
by invoking the formal parameter within the body of the subprogram.

This requires that the actual and formal parameter lists be compatible. This means
that the corresponding formal parameter (the formal parameter receiving the name of a
procedure or function) in the formal parameter list must have a declaration that is identical
in form with the procedure or function heading of its corresponding actual parameter. As
an example, consider the following sample program, where three new procedures are
defined: Sine, Cosine, and Tangent:

Procedures and Functions Chapter 7 289

program Passing_Names (input, output);
{ Purpose: This program serves to test the passing of the names }
{ of procedures as values to formal parameters. }

var
Answer, Radian_Angle: real;
Degree_Angle: integer;

{ -- }
procedure Sine (X: real; var S: real);
{ Purpose: This procedure computes the sine of an angle, }
{ using the standard Pascal function sin. }
begin

S .- sin(X)
end; { Sine }

-- }
procedure Cosine (X: real; var C: real);
{ Purpose: This procedure computes the cosine of an angle, }
{ using the standard Pascal function cos. }
begin

C := cos(X)
end; { Cosine }

procedure Tangent (A: real; procedure F (Y: real; var V:
real);

procedure G (Y: real; var V: real);
var T: real);

{ Purpose: This procedure computes the tangent of an }
{ angle A, using the newly defined procedures }
{ represented by the formal parameters }
{ F and G. }

var
s, C: real;

begin
{ Compute the sine of angle A by calling on procedure Sine, }
{ using the formal parameter F. Variable S receives the sine }
{ of A. }

F(A, S);
Compute the cosine of angle A by calling on procedure }
Cosine, using the formal parameter G. Variable C receives }
the cosine of A. }

G(A, C);
Compute the tangent of angle A, using values of S and C. }

T := S I c
end; { Tangent }

procedure Set_And_Show_Text_Window;
{ Purpose: Sets the boundary of and opens the Text window }

290

{ for viewing.
var

Border: Rect;
begin
{ Hide all windows.

HideAll;

Chapter 7 Procedures and Functions

Establish the boundaries for displaying the Text window. }
SetRect(Border, 0, 20, 500, 300);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set_and_Show_Text_Window }

{ =================== Body of the main program. ================
begin
{ After hiding windows, establish the boundary of and show the }
{ Text window for viewing output. }

Set_And_Show_Text_Window;
{ Display a header for angle in degrees and the tangent of }
{ the angle. }

writeln(' Angle (Degrees) II Tangent(Angle)');
writeln(' ---');

{ Compute the tangent for angles from 0 degrees to 45 degrees. }
for Degree_Angle := 0 to 45 do

end.

begin
Radian_Angle := Pi * Degree_Angle I 180.0;
Tangent(Radian_Angle, Sine, Cosine, Answer);
writeln(Degree_Angle : 10, Answer : 35 : 7)

end

The purpose of this program is to compute the tangent of an angle the hard way.
Notice that each of the procedures Sine and Cosine have one value parameter and one
variable parameter. The procedure Tangent is different, because its first formal
parameter on the left receives a value from the actual parameter Angle, and the second
and third formal parameters are declared as procedures. They are also value-type parameters
because they receive the name Sine for F and Cosine for G. Full procedure-header
declarations are required for the two formal parameters F and G, because they must be
identical with the procedure-headers for the procedure names being passed to Tangent,
that is, Sine and Cosine, respectively. If not, THINK Pascal reports that a type
incompatibility exists between an actual and formal value parameter; Macintosh Pascal
reports that an erroneous Procedural or Functional parameter has been encountered where
Tangent is invoked.

For procedure Tangent, execution of the statement F (A, S) causes the procedure
to be interrupted, with execution now being controlled by the name of the procedure
passed to F, which is Sine. When procedure Sine has completed its execution,
execution of procedure Tangent continues, with procedure Cosine being called
through execution of the statement G (A, C). When the procedure Cosine has completed
its execution, execution of procedure Tangent continues with the assignment statement
T : = S I C computing the value of Tangent. Passing_Names_Revised
shows the same basic example, except that functions replace procedures.

Procedures and Functions Chapter 7 291

program Passing_Names_Revised (input, output);
{ Purpose: This program serves to test the passing of the names }
{ of functions as values to formal parameters. }

var
Answer, Radian_Angle: real;
Degree_Angle: integer;

{ -- }
function Sine (X: real): real;
{ Purpose: This function computes the sine of an angle, }
{ using the standard Pascal function sin. }
begin

Sine .- sin(X)
end; { Sine }

{ -- }
function Cosine (X: real): real;
{ Purpose: This function computes the cosine of an angle, }
{ using the standard Pascal function cos. }
begin

Cosine := cos(X)
end; { Cosine }

{ -- }
function Tangent (A: real; function F (Y: real): real;

function G (Y: real): real): real;
{ Purpose: This function computes the tangent of an angle }
{ A, using the newly defined functions represented
{ by the formal parameters F and G. }
begin

Tangent := F(A) I G(A)
end; { Tangent }

-- }
procedure Set_And_Show_Text_Window;
{ Purpose: Sets the boundary of and opens the Text window }
{ for viewing. }

var
Border: Rect;

begin
{ Hide all windows. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 0, 20, 500, 300);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set_And_Show_Text_Window }
{ ===================== Body of the main program. ============== }
begin
{ After hiding windows, establish the boundary of and show the }
{ Text window for viewing output. }

Set_And_Show_Text_Window;
Display a header for angle in degrees and tangent of the angle }

292 Chapter 7 Procedures and Functions

writeln(' Angle (Degrees) I I Tangent(Angle) ');
writeln(' ---');

{ Compute the tangent for angles from 0 degrees to 45 degrees. }
for Degree_Angle := 0 to 45 do

begin
Radian_Angle := Pi * Degree_Angle I 180.0;
Answer:= Tangent(Radian_Angle, Sine, Cosine);
writeln(Degree_Angle : 10, Answer : 35 : 7)

end;
end.

Rules for formal parameters taking on the names of functions are similar to those for
procedures. As a second example, consider writing a Pascal function for computing the
sum of discrete values for a general function specified as f (k). The summation is
represented as follows:

Upper_Limit

L/<k)
k = Lower_Limit

In Pascal this summation is given by the following function:

function Summation (function f(K: Datatype) : real;

{ Purpose:
{

Lower_Limit, Upper_Limit : Datatype) : real;
This function computes the summation of f(K) for }
values of K starting at a lower limit and ending at }
an upper limit. } {

var
K Datatype;
Total_Sum : real;

begin
{ Initialize Total_Sum to zero. }

Total_Sum := 0.0;
{ Compute the summation of f(i) from Lower_Limit to Upper_Limit. }

K = Lower_Limit;
while K <= Upper_Limit do

begin
Total_Sum := Total_Sum + f{K);
K = K + 1;

end;
Summation := Total_Sum

end;

We can now apply the function Summation to compute the following:

Procedures and Functions Chapter 7

N

L<2k-3f

k=l

where/ (k) = (2 k- 3)2• The Pascal definition for function/ (k) follows:

function
{ Purpose:
{
begin

F_of_K(K : Datatype) : real;
This function represents an exact definition for }
f (k). }

F_of_K .- sqr(2 * K - 3);
end;

293

Here is a program for computing the summation off (k) for values of k starting at a
lower limit and ending at an upper limit.

program Testing_Function_F(input, output);
{ Purpose: This example illustrates the concept of passing the }
{ name of a function as a value to a formal parameter. }

type
Datatype = integer;

var
Lower_Bound, Upper_Bound: Datatype;

{ -- }
function Summation(function f(K: Datatype): real;

Lower_Limit, Upper_Limit: Datatype): real;
{ Purpose: This function computes the summation of f(K) for }
{ values of K starting at a lower limit and ending }
{ at an upper limit. }

var
K: Datatype;
Total_Surn: real;

begin
{ Initialize Total_Surn before computing the value for }
{ Summation.}

Total_Surn := 0.0;
Compute the summation of f(k) from Lower_Limit to }
Upper_Limit. }

K := Lower_Limit;
while K <= Upper_Limit do

begin
Total_Surn := Total_Surn + f(K);
K := K + l;

end;
Summation := Total_Surn

end; { Summation }
{ -- }

function F_of_K(K: Datatype): real;
{ Purpose: This represents the function f(K) .}

294

begin
F_of_K := sqr(2 * K - 3);

end; { F_of_K }

Chapter 7 Procedures and Functions

{ ===================== Body of the main program. ============== }
begin { Body of the main program. }

ShowText;
write(' Enter lower bound: ');
readln(Lower_Bound);
write(' Enter upper bound: ');
readln(Upper_Bound);
writeln(Summation(F_of_K, Lower_Bound, Upper_Bound) 10 1);

end.

When the w r i t e 1 n statement in the main program is executed, the function
Summation is called, with the formal parameter F receiving a copy of the function
name F _of_K, the formal parameter Lower_Limi t receiving a copy of the value
Lower_Bound, and the formal parameter Upper_Limi t receiving a copy of the value
Upper_Bound. While executing the function Summation, the statement

Total_Sum := Total_Sum + f(K);

calls the function F _o f_K, with the actual parameter having a value that is presently
assigned to the local variable K. The parameter K listed in the function-header of
Summation is simply a dummy argument for the purpose of proper syntax and could
therefore use any identifier name other than K.

7.6 RECURSIVE FUNCTIONS AND PROCEDURES

Recursion is an important aspect of both mathematics and computer science. The
American Heritage Dictionary of the English Language defines the term recursion as
"pertaining to, or designating (a) a mathematical expression, each term of which is
determined by application of a formula to preceding terms, (b) a formula that generates the
successive terms of such an expression." In brief, a recursive definition is one that is
circular by being defined in terms of itself.

For example, consider the factorial of a positive integer number n. In general, it is
usually defined as

n! = 1 * 2 * 3 * 4 * 5 * (n -1) * n for n > 0

where O! is understood to be 1. If we write separately each of the factorials for the integer
numbers 0 through n , we see a pattern emerge that can define the factorial recursively:

O! = 1
l! 1 * 1 1 * O!
2! = 2 * 1 = 2 * l!
3! = 3 * 2 * 1 = 3 * (2 * 1) = 3 * 2!
4! = 4 * 3 * 2 * 1 4 * (3 * 2 * 1) = 4 * 3 !
5! = 5 * 4 * 3 * 2 * 1 = 5 * (4 * 3 * 2 * 1) = 5 * 4!

Procedures and Functions Chapter 7 295

n! n * [n 1) * (n - 2) * (n - 3) * ... * 2 * 1]
n *(n-l)!

In short, we can express the recursive definition for the factorial of a positive integer in
two lines:

(a) 0 ! 1
(b) n! = n * (n - 1) ! for n > 0.

O!
1!
2!
3 !
4!
5!

It is recursive because the factorial of n has been defined in terms of the factorial of n
-1, that is, in terms of itself. As an example of applying this definition, consider the
following steps for showing the levels of recursion in computing the value of 5 ! :

5 ! 5 * 4! level 1
4! 4 * 3 ! level 2
3 ! 3 * 2! level 3
2! 2 * l! level 4
l! 1 * O! level 5
0 ! 1 level 6

Although the step of computing O! has halted the recursion, it has not provided an answer
to the value of 5 !. To determine this value, we must now unravel the levels of recursion
by computing each of the recursive steps starting with O!. We obtain the following:

1 level 6
1 * 0 ! = 1 level 5
2 * 1 ! = 2 * 1 2 level 4
3 * 2 ! 3 * 2 6 level 3

= 4 * 3 ! = 4 * 6 = 24 level 2
5 * 4! 5 * 24 120 level 1

Although we have not discussed the programming aspects of recursion, we can see
some important points in the concept of recursion. First, it allows us to divide the
computation of a function into smaller steps, so that we can build on the computation
with simple answers. Second, we need one or more trivial cases to end the recursion. It is
important to reach a point at which the recursion stops, and we can begin the process of
unraveling the recursion. With factorial, computing O! provides the necessary step for
ending the recursion. Third, we need to unravel the recursion to arrive at a final answer.
This unraveling is a backward trace through the recursive steps, substituting the computed
results from the levels of recursion that have followed. Eventually our backward tracing
reaches the initial level of recursion, ending our computation. Fourth, each level of our
backward tracing requires saving the result from a computation of a recursion that has
followed. In the factorial example, we have written these intermediate values on paper.
When programming, the computer software and hardware perform this action for us.
Fifth, writing recursive functions requires a different way of thinking, one that forces us
to forget defining functions by iteration and to think recursively.

As a second example, consider computing the sum in the following equation:

Sum(n) = 1 + 2 + 3 + 4 + 5 + + (n - 1) + n

We can derive a recursive definition by writing the following steps:

296 Chapter 7 Procedures and Functions

Sum(l) 1
Sum(2) 2 + 1 2 + Sum(l)
Sum(3) 3 + 2 + 1 = 3 + (2 + 1 3 + Sum(2)
Sum(4) 4 + 3 + 2 + 1 = 4 + 3 + 2 + 1) = 4 + Sum(3)

Sum(n) n + n - 1) + (n - 2) + + 2 + 1 l
= n + Sum(n -1)

In short, we can express the recursive definition for Sum(n) in two lines:

(a) Sum (1) = 1
(b) Sum(n) n + Sum(n -1) for n > 1.

Sum(5)
Sum(4)
Sum(3)
Sum(2)
Sum(l)

Sum(l)
Sum(2)
Sum(3)
Sum(4)
Sum(5)

The initial steps for computing Sum(5) recursively follow:

= 5 + Sum(4)
= 4 + Sum(3)
= 3 + Sum(2)

2 + Sum(l)
= 1

In unraveling the recursion, the following steps complete the computation of Sum(5):

1
= 2 + Sum(l) = 2 + 1 = 3

3 + Sum(2) 3 + 3 6
= 4 + Sum(3) = 4 + 6 = 10
= 5 + Sum(4) 5 + 10 = 15

These trivial examples clearly show how easy it is to define recursive functions.
In Pascal a function or procedure is said to be directly recursive if the function or

procedure calls directly on itself from within the body of the function or procedure. For
the factorial function, the Pascal definition follows:

function Factorial(N : integer) : longint;
{ Purpose: Computes the factorial of a positive integer value. }
begin
{ Test if a trivial case exists. }

if N = O then
Factorial := 1

else { compute (n-1) !
Factorial := N *Factorial(N - 1);

end; { Factorial }

The formal parameter N needs only to receive a value and never causes any side effect
on its corresponding actual parameter, so it is declared as a value parameter in the
parameter list. In addition, the function is declared as a longint value, because we must
accommodate very large integer results.

Procedures and Functions Chapter 7 297

When executing a recursive function, we need temporary storage for each recursion
that is performed. In both THINK and Macintosh Pascal, this is provided by a special data
structure called a system stack. A system stack is a unique data object: information is
pushed onto the stack at only one end, and at this same end information is removed by
popping it off the stack. The push and pop operations are performed in a first-in, last-out
manner. The first object pushed onto the top of the system stack is the last object popped
off the stack. Figure 7.15 shows an example of a stack.

Push onto Pop from
the stack the stack

~ /
------1 ~ Top of stack

<E-Top

Function_Name

-----~ Bottom of stack
Calling the function

Top ~ 12:z:z:z:::::;i:::::z::z::z=1

Local variables

Formal parameters

Function_Name ~Top

zzzzz~z

Completing the execution of the
call and performing the execution

of the function

Deallocation of storage after
the function has completed

execution

Note: Assume that the pointer called Top is pointing to the last object pushed onto the
stack and the next object ready to be popped from the stack.

Figure 7.15 Representation of the system stack as it applies to the computation
of a function.

29.8 Chapter 7 Procedures and Functions

When a function is called in Pascal, a memory-cell address is pushed onto the top of the
system stack, representing the location where the value of the function will be stored.
This is now followed by the allocation of cells for formal parameters, followed by local
variables. When the function has completed execution, memory allocations for both local
variables and formal parameters are popped, leaving at the top of the stack the location of
the cell containing the value of the function. When the value of the function is accessed
to complete the evaluation of an expression, the value contained in the memory cell is
copied and applied to the name of the function in the expression. The memory cell
associated with the function presently at the top of the stack is now popped.

As an example, let us consider the computation of 5 ! using the Pascal function
Factorial defined earlier. Figure 7.16 provides a brief pictorial view of instances of
execution of Factorial at six different levels of recursion. Two views are presented at
each level: on the left we represent the body of the function at the point that the function
Factorial is to be executed recursively, and on the right we present the contents of the
stack. The first time Factorial is executed, a memory-cell address is pushed onto the
top of the stack for storing the value of Factorial (5). On top of this is pushed an
address for storing the formal value parameter N. N is greater than zero, so the expression
5 * Factorial (4) is executed. Before we can complete execution of this expression,
it is called recursively by executing Factorial with N having the value 4. Notice that
another address is now pushed onto the stack for storing the value of Factorial (4),
and an address is pushed on the stack for storing the formal value parameter N. N is again
greater than zero, so these steps are repeated, with addresses being pushed on the stack for
storing the intermediate values of Factorial (3), Factorial (2), and
Factorial (1).

On the last recursive execution of the function Factorial, the formal value
parameter N is zero. This ends the recursion by assigning a value of 1 to the memory cell
of Factorial (0). The recursion is now unraveled by backtracking through the
preceding levels. Figure 7 .17 shows the results as execution of the expression N *
Factorial (N - 1) is completed. On completing execution of Factorial (0),
the address for the formal value parameter N is popped from the stack. Control now
returns to the body of the function Factorial for computing Factorial (1). At
this point the value of Factorial (0) is copied, and then its address is popped from
the stack. The value for Factorial (0) is now used in evaluating the expression 1 *
Factorial (0), and the result is assigned to Factorial (1). As you can see from
Figure 7 .17, these steps are repeated for the preceding levels of recursion:
Factorial (2), Factorial (3), and Factorial (4). After execution of the body
of Factorial for computing Factorial (4), we have reached the point from which
the function Factor i a 1 was first called. At the top of the stack is the address
containing the value of Factorial (5).

As you can see, the system stack is a useful object for describing the dynamic
execution of a recursive routine. By using a system stack, we can show the dynamic paths
of execution between procedures and functions. This is different from reading a program
listing, which is a static object indicating the semantic actions in the body of the routine.
It does not adequately display the dynamic actions among several bodies.

Procedures and Functions Chapter 7

Factorial (5)

5 * Factorial (4)

Execution of Factorial (5)

Factorial (5)

Factorial (4)

4 * Factorial (3)

Execution of Factorial (4)

Factorial (5)
Factorial (4)

Factorial (3)

3 * Factorial (2)

Execution of Factorial (3)

Factorial (5)
Factorial (4)

Factorial (3)
Factorial (2)

2 * Factorial (1)

Execution of Factorial (2)

299

Top -+...._ __ .-5 __ __.N

Top-+

Top-+

Factorial (5)
l:.L.:z:ii.L.!::.L.Z.L.:z:ii.L.!::.L.Z:::Z::Z::.L.Z.L.:z:I

4 N
Factorial (4)

z zzzz
5 N

Factorial (5)
z=

3 N
Factorial (3)

z=z
4 N

Factorial (4)
~

5 N
Factorial (5)

z==z

2 N
Factorial (2)

.L..L..L. .L...L..L..L....L.

3 N
Factorial (3)

4 N
Factorial (4)

5 N
Factorial (5)

z

Figure 7.16 Execution of a recursive function, Factorial.

300 Chapter 7 Procedures and Functions

J Factorial (5) l Top~ 1 N

l Factorial (4) Factorial (1)
.L L.L.L.LL.L.LL.L

j Factorial (3) l 2 N

l Factorial (2) l Factorial (2)

l
zzzzzzzzzz

Factorial (1) 3 N

I---" Factorial (3)
.LL LZ::Z.LLZ::Z::Z.

t-- 4 N
1 * Factorial (0) 1-- Factorial (4)

!---' ZLZLL.LZL.LL

5 N
Factorial (5)

Execution of Factorial (1) .LL.L.LL.L.LLL.L

Top~ 0 N
J Factorial (5) l Factorial (0)

J Factorial l .LLL.LLL.LLL.L
(4) 1 N

l Factorial (3) l Factorial (1)

J Factorial (2) l zzzzzzzzzz
2 N j Factorial (1) 1 Factorial (2)

Factorial (0) l f-- LLZZZLZL.LL

3 N
I---' Factorial (3)

t-- ZZZZ:Z::Z.ZZZ7

4 N
f--

Factorial (4)
Factorial <-- 1 !----" .LLL.LLL.LLL.L

5 N

Execution of Factorial (0) Factorial (5)
zzzzzzzzzz

Figure 7.16 (continued)

The following is an example of a procedure that is directly recursive. As you can see,
it computes the factorial of a positive integer.

procedure Factorial{ N : integer; var Fact : longint);
{ Purpose: This procedure computes the factorial of a positive }
{ integer value. }
begin
{ Test if the trivial case exists. }

if N = 0 then
Fact .- 1

else

Procedures and Functions Chapter 7

end;

begin
Factorial(N-1, Fact);
Fact .- N * Fact

end;

1Factorial (5)

J Factorial (4) 1
jFactorial (3) 1 J Factorial (2) l

Factorial (1) l

Top-+

l

1--

I--

I---'

1--

Returning from Factorial (0)

Top-+

J Factorial (5)
l Factorial (4)

l Factorial _(_3) l
J Factorial (2) 1

Factorial (1) l
I---'

r-
I--'

1 * Factorial (0) I---'

Completing the execution of
Factorial := 1 * Factorial (0)

0 N
1 Factorial

LLLLLLLLLL
1 N

Factorial
Z7ZZZZZZZZ

2 N
Factorial

LLLLLLLLLL

3 N
Factorial

ZZZZ7ZZ.77Z

4 N
Factorial

LLLLLLLLLL

5 N
Factorial

LZZZZZZZZZ

1 N
1 Factorial

LLLLLLLLLL
2 N

Factorial
zzzzzzzzzz

3 N
Factorial

zzzzzzzzzz
4 N

Factorial
LLLLLLLLLL

5 N
Factorial

LLZLZZLZZZ

Figure 7.17 Unraveling the recursive function Factorial.

301

(0)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

302

-----l Factorial (5)

l Factorial (4) 1
'-----.

lFactorial (3) l ----.
Factorial (2) 1 ---...

2 * Factorial (1)

1--

1---'

1--

Completing the execution of
Factorial := 2 * Factorial (1)

J Factorial (5) 1 -----1 Factorial (4) 1 '----...
Factorial (3) l ----.

3 * Factorial (2)

Completing the execution of
Factorial := 3 * Factorial (2)

J. Factorial (5) 1 ----.
Factorial (4) 1 ---....

4 * Factorial (3) 1--

Completing the execution of
Factorial := 4 * Factorial (3)

Factorial (5) l.__ __ "'

5 * Factorial (4)

Completing the execution of
Factorial := 5 * Factorial (4)

Chapter 7 Procedures and Functions

Top--.+- 2 N
2 Factorial (2)

.LZ.LZLZ.LL.ZZ

3 N
Factorial (3)

zzzzzzzzzz
4 N

Factorial (4)
.L.L.L..L.LL.L...L.ZZ

5 N
Factorial (5)

.L. .L...L. .L. .L. .L. .L. .L. .L. .L.

Top~ 3 N
6 Factorial (3

.L..L...L.ZL.L..ZZZZ

4 N
Factorial (4)

z::L.L. .L. .L. .L...L. .L. .L. .L.

5 N
Factorial (5)

zzzzzzzzzz

Top~ 4 N --------11
24 Factorial (4)

ZZZZ .L.Z.Z .L.

5 N
Factorial (5)

L.L..L.LLZLZZZ

Top~ 5 N
1----------11

1 2.0 Factorial (5)
.. z-z-z-z"""z-z-z-z-z"""z

Figure 7.17 (continued)

Procedures and Functions Chapter 7 303

This particular example requires two formal parameters: one for storing the value of N and
a second variable parameter, Fact, for returning the computed value of Factorial.
When using a stack to trace the dynamic paths of execution, the formal value parameter N
will have a memory-cell address for storing the value of its corresponding actual
parameter. The formal variable parameter Fact will have an address for storing the
memory location of its corresponding actual parameter. In the case of our recursive
procedure listed earlier, the formal parameter Fact will contain the memory location of
the corresponding actual parameter when Factorial is first called. Below are some
useful heuristics for defining a recursive function or procedure:

1. Always start with a trivial case or a terminal case in which the final
solution is known, for example, results that terminate execution for a
value of a data object becoming 1 or 0.

2. For the nontrivial case, try to define the steps needed to reduce the value
nearer to the trivial case.

3. Combine the trivial case with one or more other nontrivial cases by
preceding the nontrivial cases with a conditional statement employing
the trivial case.

4. Check your definition with several nontrivial examples.

To understand these steps, consider a recursive function for computing the nth term
of a Fibonacci series. A Fibonacci series is a sequence of integers, the first two terms of
which are 1 and 1, respectively. Each of the remaining terms of the series is the sum of
the preceding two terms. Thus the initial terms of a Fibonacci series are 1, 1, 2, 3, 5, 8,
13, 21, First, what are the trivial cases with respect to a Fibonacci series? If n is 1,
then the n th term is 1. If n is 2, the nth term is again 1. For the nontrivial cases, we
need to add the values of the (n - l)th and (n - 2)th terms to obtain the value of the nth
term.

Consider now a more formal definition for performing these steps:

Function Fibonacci;
{ This function computes the Nth term of the Fibonacci series,

requires one formal parameter, N, and will return one value. }

begin
{ Consider the trivial cases where N is 1 or 2. }

if (N = 1) or (N = 2) then
Fibonacci <-- 1;

else { Compute the sum of the N-lth and N-2th terms.
Fibonacci <-- Fibonacci(N-1) + Fibonacci(N-2)

end; { Fibonacci }

As you can see, defining the step in the nontrivial case is almost instantaneous. For
the trivial cases where N is equal to 1 or 2, the value for function Fibonacci is
obvious. For N equal to 3, the following steps are executed:

1. Fibonacci is called, with N having the value 3.
2. Because N does not equal 1 or 2, the expression Fibonacci (N-1) is

called recursively, with the formal parameter N having the value 2.

304 Chapter 7 Procedures and Functions

3. Because the function Fibonacci is invoked recursively with the
formal parameter N having a value 2, the function is assigned the value
l, with execution returning to the expression Fibonacci (N-1) +
Fibonacci (N-2).

4. Before addition can be performed, the function Fibonacci is called,
the value 1 being passed to the formal parameter N.

5. Because the function Fibonacci is invoked recursively with the
formal parameter N having a value 1, the function is assigned the value
1, with execution again returning to the expression Fibonacci (N-
1) + Fibonacci(N-2).

6.ThesumofFibonacci(N-1) + Fibonacci(N-2) is computed
and assigned to the name of the function.

7. Execution of the function Fibonacci terminates.

It is important to note that the parameter N must be a value type. It cannot be a
variable type, because the actual parameter involves an expression. In addition, we called
the function Fibonacci with N being fixed. No side effect was defined on the original
value ofN. Here is the test program for the function Fibonacci:

program Computing_Nth_Fibonacci(input, output);
{ Purpose: This program provides a short demonstration of a }
{ recursive function. }

var
N: integer;

{ -- }
function Fibonacci(N: integer): integer;
{ Purpose: This function will compute the Nth term of the }
{ Fibonacci series. It requires one formal }
{ parameter, N, and will return one value.}
begin
{ Consider the trivial cases where N is 1 or 2. }

if (N = 1) or (N = 2) then
Fibonacci := 1

else { add the N-lth and N-2th terms }
Fibonacci := Fibonacci(N - 1) + Fibonacci(N - 2);

end; { Fibonacci }

{ -- }
procedure Set_And_Show_Text_Window;
{ Purpose: Sets the boundary of and opens the Text window }
{ for viewing. }

var
Border: Rect;

begin
{ Hide all windows. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 0, 20, 500, 300);
SetTextRect(Border);

{ Show the Text window for viewing output.}

Procedures and Functions Chapter 7 305

ShowText;
end; { Set_And_Show_Text_Window }

================= Body of the main program ================== }
begin
{ Hide all windows and then establish the Text window for }
{ viewing output. }

Set_And_Show_Text_Window;
{ Establish a header for viewing values of N and Fibonacci
{ numbers. }

wri teln (' Value of N 11 Fibonacci (N) ') ;
writeln(' -------------------------------');
for N := 1 to 21 do

end.
writeln(N: 9, Fibonacci(N) : 30);

Unfortunately, the execution time of Fibonacci (N) is slow when N becomes
large because of the way the function has been defined. First, the function makes no
attempt to save the last two terms of the series. Rather it requires the complete series to
be recomputed for each value of the formal parameter N as the function executes
recursively. Second, the expression Fibonacci (N-1) + Fibonacci (N-2) first
requires n -1 terms of the series to be recomputed, followed by n -2 terms. This is not to
say that all recursive definitions require excessive execution time. A recursive definition
may be more elegant in terms of understanding a solution, but it may not guarantee fast
execution time. Further analysis may be required to reduce execution time.

A second form of recursion that Pascal functions and procedures can take is called
indirect recursion. A procedure or function is said to be indirectly recursive if it calls on
some other procedure or function, which in tum calls directly or indirectly on the original
procedure or function. Indirect recursion requires one or more forward declarations with
one or more procedure-headers or function-headers. This is so because within the body of
an indirectly recursive routine, a call is made to a routine that has not yet been declared,
and at this point, as the translator is checking, the syntax and names of identifiers are still
unknown. The name of this unknown routine is made available through the use of the
forward attribute.

For example, consider the program titled Indirect_Recursion.

program Indirect_Recursion(input, output);
{ Purpose: This program provides a short example of indirect }
{ recursion. }

var
Answer
Number

longint;
integer;

procedure Compute_Expression (N : integer; var Fact :
longint); forward;

{ -- }
function Factorial(N : integer) : longint;
{ Purpose: Computes the factorial of a positive integer N. }

var

306

Fact : longint;
begin
{ Test if a trivial case exists. }

if N = 0 then
Factorial := 1

else
begin { compute (N-1) ! }

Compute_Expression(N, Fact);
Factorial := Fact;

end
end; { Factorial }

Chapter 7 Procedures and Functions

{ -- }
procedure Compute_Expression; { N : integer; var Fact : }

{ longint }
{Purpose: This procedure computes the expression N * (N-1) !. }
begin

Fact := N * Factorial(N - 1);
end; { Compute_Expression }

{ ==================== Body of the main program. =============== }
begin { Body of the main program. }

ShowText;
{ Prompt user for a nonnegative integer number. }

write('Enter a positive whole number: ');
readln (Number) ;
if Number > 0 then

begin

end.

Answer:= Factorial(Number);
writeln(Answer : 11)

end;

This is not the best approach to defining Factorial recursively, but it does
provide a simple example of indirect recursion. In the body of the function Factorial,
a call is made to the procedure Compute_Expression. This procedure has only one
executable statement in its body, which computes the expression N * Factorial (N-
1) . The value for this expression is passed back through the formal variable parameter
Fa c t. This procedure provides indirect recursion by calling on the function
Factorial. As you can see, a forward declaration is needed for Compute_
Expression, because its body is declared after the function Factorial.

7.7 DEVELOPING MODULAR PROGRAMS THROUGH STEPWISE
REFINEMENT

The purpose of procedures and functions is to allow the development of modular
programs, in which parts of a larger program are broken into separate units called
modules. These modules are developed, assembled, and tested as separate units and then
integrated into the framework of a larger program. In relation to developing an algorithm,
calling on a module is equivalent to stating a major step in the solution of a problem

Procedures and Functions Chapter 7 307

without having to express the detailed steps. The definition of the module provides the
detail for a major step, because it becomes the vehicle for specifying the supporting
substeps. Our approach to problem solving has been based on the concept of stepwise
refinement. Basically, this represents a problem-solving abstraction that can contain
several levels. At the top level of the abstraction we are concerned with defining the
specifications and requirements of a problem. This approach allows us to practice the
principle of top-down design.

With top-down design, we develop an application from general to specific steps. It is
a hierarchical approach in which requirements are first specified, then followed by the
definition of major functions, the development of modules supporting the design, and
finally coding and testing. The alternative to top-down design is bottom-up design, which
begins with the lowest level of software components of development and proceeds
through progressively higher levels to the top level of the design. In bottom-up design we
often press ourselves to develop the support modules before the top level of the design is
completed. In real programing environments, a combination of top-down and bottom-up
design is often practiced. As an example of top-down design, consider the following
example.

7.7.1 Abstraction 1

The program to be developed is a simple tutorial system for teaching multiplication
tables. The student is given a menu having the options (1) for reviewing a multiplication
table, (2) practicing with a set of multipliers, or (3) terminating the application. Once the
option for either reviewing or practicing is selected, the student is asked to provide a value
for the multiplicand, which must be in the range 1 to 100. At the end of a practice
session, the student is given a short report on the number of questions answered correctly
and a performance rating. The program must select multipliers in the range 1 through 12.
Input is either from the keyboard or by clicking the mouse button. Output is only the
text drawn in the Drawing window rather than the Text window. Figure 7.18 shows two
of five window formats used by this application: at the top is an example of the Drawing
window for selecting an option, and at the bottom is the format displaying a table of
multipliers.

At the first level of abstraction we define a solution in terms of the problem
environment but without any details of the actual design. At this point we understand
who interacts with the application, what is expected for input, and what is expected for
output. We understand that only Drawing windows display information and that the
student enters data either by pressing keys at the keyboard or by clicking the mouse
button. If necessary we might test these requirements by thinking of one or more
scenarios for interacting with the application, even though it has not been programmed.

The second level of the abstraction moves away from the problem environment and
employs a natural language to describe the major processes associated with the
application.

308 Chapter 7 Procedures and Functions

CHOOSE ONE OF THE FOLLOWING OPTIONS BY
CLICKING ONE OF THE BOXES

D STUDYAMULTIPLICATIONTABLE

D PRACTICE MULTIPLICATION

D QUIT

MULTIPLICATION TABLE

1 * 12 = 12 7 * 12 = 84

2 * 12 = 24 8 * 12 = 96

3 * 12 = 36 9 * 12 = 108

4 * 12 = 48 10 * 12 = 120

5 * 12 = 60 11 * 12 = 132

6 * 12 = 72 12 * 12 = 144

PRESS THE MOUSE BUTTON TO CONTINUE.

Figure 7.18 Screen formats for Tutor_System.

7. 7.2 Abstraction 2

Here is a general algorithm for Tutor_System:

Algorithm Tutor_System;
begin

Initialize the Drawing window for displaying a choice;
repeat the following steps until the student is ready to quit:
Select a choice from a menu having three options;

case of Choice
Tutor
Practice
Quit

Study a multiplication table;
Practice with multipliers;
Choose the option to stop;

Procedures and Functions Chapter 7 309

end. { Tutor_Systern }

As you have seen, structure charts are simple block diagrams showing the
hierarchical relationship between blocks (procedures and functions) in an application. The
term module, commonly applied in the field of software engineering, refers to a block.
Figure 7.19 shows an initial structure chart for Tutor_Systern in which complete
control is represented by the main module at the top of the diagram.

Initialize
Drawing_
Window

Tutor_System

Present
Menu_ To
Student

Tutor
The
Student

Practice
With
Table

Figure 7.19 The hierarchial organization of Tutor_Systern.

Each module at the second level of the structure chart represents a major step in the
solution to the problem. The topmost module acts as.a supervisor (superordinate module)
for the modules below it. The purpose of the main module is to make major decisions in
solving a problem by performing the major steps while delegating the details of execution
to subordinate modules. You can compare the main module to a supervisor in a company
who delegates authority and procedures to employees working under his or her control. In
relation to Tutor_Systern, the top module represents the main program, and modules
at lower levels of the structure chart represent procedures and/or functions. Even at this
level, testing can be conducted, but only in a broad sense. For example, assuming a value
is picked for Choice by executing the menu, we can trace the algorithm to its next
executable step (assuming that all major steps are executed).

At the next level of abstraction, we employ more structured terminology and
procedural representation to describe the steps of the solution in greater detail.

7.7.3 Abstraction 3

Now that we have defined our initial algorithm and traced it to see that it is correct, we are
ready to define the detailed algorithm for Tutor_Systern. The following shows the
main module with comments and the names of modules representing major steps in our
algorithm.

310 Chapter 7 Procedures and Functions

Algorithm Tutor_System;
{ Purpose: Provide the student with the options of studying or

practicing with a multiplication table. This module
has only two variables: Choice and Screen. }

begin
{ Initialize the Drawing window for displaying a choice. }

Initialize_Drawing_Window {Screen);
{ Continue with the following steps until the student is ready

to quit. }
repeat
{ Prompt the student for a choice. }

Present_Menu_To_Student{Screen, Choice);
{ Choose the option to Tutor, Practice, or quit.}

case Choice of
Tutor
Practice
Quit

Tutor_The_Student {Screen);
Practice_With_Table {Screen);
HideAll;

end;
until Choice = Quit

end. { Tutor_System }

The modules Present_Menu_To_Student, Tutor_The_Student, and
Practice_Wi th_Table require the Drawing window for displaying information, so
we use the variable Screen for passing the boundary information of the Drawing
window between modules. This is necessary because the background of the drawing
window will alternate between light-gray and white. Also note that while the comments
added to the algorithm appear to be redundant, they are important for understanding the
steps of the algorithm if the major controlling constructs are removed.

We can apply the principle of prototyping by writing Pascal code for the main
program along with dummy procedures, referred to as stubs. As our understanding of the
problem progresses, we will add more Pascal code to test our concepts and if necessary
redefine the requirements and alter the design. We begin by testing the main module of
Tu tor _Sys tern to see if it is functional. The following provides an example of Pascal
code for testing these stubs.

program Tutor_System{input, output);
{ Purpose: Provide the student with the options of studying or }
{ practicing with a multiplication table. }

type
Option= {Tutor, Practice, Quit);

var
Choice Option;
Screen Rect;

{ ------------------- Forward Directives ----------------------- }
procedure Initialize_Drawing_Window{ var Drawing_Box: Rect);

forward;
procedure Practice_With_Table{ Drawing_Box : Rect);

forward;
procedure Present_Menu_To_Student{ Drawing_Box: Rect;

var Choice: Option);

Procedures and Functions Chapter 7

forward;
procedure Tutor_The_Student(Drawing_Box: Rect);

forward;

311

{ ---------------------- Module Definitions -------------------- }
procedure

{ Purpose:
{

Initialize_Drawing_Window; { var Drawing_Box:Rect
This procedure sets the boundaries for both the }
Drawing window and the Text window. The Drawing }
window will be located directly below the title }
bar; the remainder of the screen shows only the }
Drawing window. }

{
{
{

begin
Writeln(' Procedure Initialize_Drawing_Table has been

executed.');
end; {Initialize_Drawing_Window}

procedure Practice_With_Table; { Drawing_Box : Rect }
{ Purpose: This procedure lets the student practice with }
{ his or her own multiplication table. }

begin
writeln(' Procedure Practice_With_Table has been

executed.');
end; {Practice_With_Table}

}

{ -- }
procedure Present_Menu_To_Student; { Drawing_Box: Rect;

var Choice: Option }
begin

Purpose: This procedure returns a choice for an option.}
writeln(' Procedure Present_Menu_To_Student has been

executed. ');
Choice := Quit;

end;{ Present_Menu_To_Student }
{ -- }

procedure Tutor_The_Student; { Drawing_Box: Rect }
{ Purpose: This procedure presents a multiplication table }
{ for the student to review. }

begin
Writeln(' Proced ~e Tutor_The_Student has been

executed.');
end; {Tutor_The_Student}

{ ================== Body of the main program. ================= }
begin
{ Establish the Drawing window for prompts and responses. }

Initialize_Drawing_Window(Screen);
{ Use writeln statements in procedure stubs to display messages
{ that the the procedures have been executed. }

repeat
Present_Menu_To_Student(Screen, Choice);

case Choice of
Tutor:

Tutor_The_Student(Screen);
Practice:

312 Chapter 7 Procedures and Functions

Practice_With_Table{ Screen);
Quit:

HideAll;
end;

until Choice = Quit;
end.

The forward directives as well as the module definitions have been listed
alphabetically to make the names and the module definitions easier to locate when reading
code. At this level of abstraction, calls to procedures are tested as well as side effects on
actual parameters. This approach has the advantage of discovering linkage problems
between actual and formal parameters before dealing with the detailed steps for the
complete algorithm. For example, failing to place a var before a variable parameter,
failing to match the data types of actual and formal parameters, or a mismatch in the
number of actual and formal parameters is easier to notice when the detailed steps of a
module have not been defined.

Once this initial testing is completed, we can complete the definitions of the
supporting modules at the second level of our structure chart. The first module,
Ini tialize_Drawing_Window, requires three major steps:

1. Hide all windows.
2. Establish boundaries for both Text and Drawing windows.
3. Set and show the Text and Drawing windows.

Why do the boundaries of Text window need to be set? THINK Pascal activates the
Text window when executing the command read or readln from standard input. While
the command HideAll conceals all windows that are on the screen, it does not prevent the
Text window from being opened on execution of any read command. Establishing a
boundary for the Text window that is off the screen keeps it from appearing in the active
viewing region of the screen. This problem does not occur with Macintosh Pascal.

Procedure Initialize_Drawing_Window;
{ Purpose: Set the boundaries for both the Drawing window and the

Text window. The Drawing window is located

begin

directly below the title bar; the remainder of the
screen shows only the Drawing window. }

{ Hide all windows. }
HideAll;

{ From experimentation, the following values are used to set the
boundaries for the Text and Drawing windows. }

Text_Box.Top <-- O;
Text_Box.Left <-- O;
Text_Box.Bottom <-- -10;
Text_Box.Right <-- -10;
SetTextRect{Text_Box);
Drawing_Box.Top <-- O;
Drawing_Box.Left <-- O;
Drawing_Box.Bottom <-- 342;
Drawing_Box.Right <-- 512;

Procedures and Functions Chapter 7

{ Set the area for the Drawing window and display the Drawing
window. }
SetDrawingRect(Drawing_Box);
ShowDrawing;

end; { Initialize_Drawing_Window }

313

This module employs predefined window-manipulation procedures for both the Text
and Drawing windows. SetTextRect and SetDrawingRect establish the
boundaries of the Text and Drawing windows, while ShowDrawing displays the
Drawing window to the screen. Now we can convert the definition of this module into
Pascal code, replacing the present procedure code of Ini tialize_Drawing_Window
and retesting Tutor_System.

The next module, called Present_Menu_To_Student, displays three choices:
study a multiplication table, practice multiplication, or quit. As is shown in the top
window of Figure 7.18, each option is preceded by a small box. The student chooses an
option by clicking the mouse button when the pointer is in one of the three boxes. No
input from the keyboard is required. The major steps of this module follow:

1. Fill background with a light-gray pattern, and then draw a rectangle in
the center of the Drawing window ..

2. Display three options to the student.
3. Continue to check coordinates of the cursor and mouse button until the

proper choice has been made.

Procedure Present_Menu_To_Student;
{ Purpose: This module results one of three choices: Tutor,

Practice, or Quit. It requires three local
variables; X and Y representing the coordinates of the
mouse, and Continue_To_Check. The latter local
variable is true while the mouse button has not been
clicked within one of the three small rectangles. }

begin
{ Fill the background of the Drawing window with light-gray

pattern and then display a rectangle in the center of the
Drawing window. }
FillRect (Box, Ltgray);
Center_Options_Area;

{ Display three options within this new rectangle. }
PenSize (2,2);
MoveTo(85,100);
WriteDraw(' CHOOSE ONE OF THE FOLLOWING OPTIONS');
MoveTo (95, 115);
WriteDraw(' BY CLICKING ON ONE OF THE BOXES.');
FrameRect(138, 120, 153,135);
MoveTo(140,150);
WriteDraw(' Study a multiplication table');
FrameRect(178,120,193,135);
MoveTo(140,190);
WriteDraw(' Practice Multiplication');
FrameRect(218, 120, 233, 135);
MoveTo(140,230);

314 Chapter 7 Procedures and Functions

WriteDraw(' Quit');
{ Now check to see if the mouse button has been clicked. }

Continue_To_Check <-- true;
while Continue_To_Check do

begin {while-do loop}
{ Locate the coordinates of the mouse. }

GetMouse (X, Y);
{ Check if mouse button has been pressed in the square

for the option 'Study a multiplication table.' }
if ((X >= 120) and (Y >= 138)) and

((X <= 135) and (Y <= 153)) and Button then
begin

Choice <-- Tutor;
Continue_To_Check <-- false

end
else
{ Check if the mouse button has been pressed in the

square for the option 'Practice multiplication.' }
if ((X >=120) and (Y >= 178)) and

end ;

((X <= 135) and (Y <= 193)) and Button then
begin

Choice <-- Practice;
Continue_To_Check <-- false

end
else
{ Check if the mouse button has been pressed in the

square for the option 'Quit'. }
if ((X >= 120) and (Y >= 218)) and

((X<=135) and (Y<=223)) and Button then
begin

Choice <-- Quit;
Continue_To_Check <-- false

end;

end; { Present_Menu_To_Student }

This module calls on the supporting module Center_Options_Area. This
supporting module displays the outline of a center rectangle where messages can later be
exhibited. When initially testing this module, we must substitute the steps necessary for
performing the equivalent action of Center _Options_Area if the body of this
module has not been defined. It is important to include the steps for centering the options
area in a separate module, because the actions of this module are called upon later by other
superordinate modules.

The module Present_Menu_To_Student employs the procedure GetMouse
from the Macintosh Operating System Event Manager for locating the position of the
cursor on the screen, and the library function Button for testing ifthe mouse button is
pressed. The module continues to execute the while-do loop until the the values of X
and Y lie within a region of one of the three small squares. Testing can be done by
converting the definition into Pascal code and integrating the code into a modified version
ofTutor_System.

The next module, Tutor_The_Student, requires three major steps:

Procedures and Functions Chapter 7 315

1. Choose a value for the multiplicand.
2. Draw the outline of the multiplication table.
3. Fill the table with values for multipliers, multiplicands, and products.

Procedure Tutor_The_Student;
{ Purpose: This module presents a multiplication table for any

student to review. It requires only one value
parameter, Drawing_Box, representing the screen
boundary. The only local variable is Multiplicand. }

begin
{ Choose a value for Multiplicand. }

Choose_Multiplicand (Drawing_Box, Multiplicand);
{ Draw the outline of the multiplication table. }

Draw_Mutiplication_Table(Drawing_Box);
{ Fill the multiplication table with multiplication rules. }

Fill_Multiplication_Table(Multiplicand);
end; { Tutor_The_Student }

It is clear from the beginning that each of the major steps will require a significant
amount of coding, so our approach is to express each step as a call to a subordinate
module and define the detail later. In testing this module, the definitions of supporting
modules as stubs are used to test the linkages between actual and formal parameters.
Pascal does require that each of the procedures Choose_Multiplicand,
Draw_Multiplication_Table, and Fill_Multiplication_Table be de­
clared ahead of the procedure Tutor_The_Student in the program Tutor_
System. We can avoid this by adding forward directives for each of these supporting
modules to our initial list of directives in program Tutor_System.

The next module, Practice_Wi th_ Table, requires four major steps:

1. Choose a value for the multiplicand.
2. Fill the background of the screen with a white pattern, and display a

center rectangle for viewing information.
3. Test the student's skill over the multipliers 1 through 12, returning the

number of correct answers.
4. Report on the progress of the student's skill.

Procedure
{ Purpose:

Practice_With_Table;
This module lets the student practice with his or her
own multiplication table. It has only one value
parameter, Drawing_Box, and two local variables:
Multiplicand and Number_Correct_Answers. }

begin
{ Prompt student for a value of Multiplicand. }

Choose_Multiplicand(Drawing_Box, Multiplicand);
Test student's multiplication skills. }
Test_Students_Skills (Drawing_Box, Multiplicand,

Number_Correct_Answers);
{ Report on the student's progress. }

Report_On_Students_Progress (Number_Correct_Answers);
end; { Practice_With_Table }

316 Chapter 7 Procedures and Functions

When writing the detailed steps for the module Practice_With_Table, we realize
that choosing a value for the multiplicand is the same action required in module
Tutor_The_Student. Rather than repeating this code, we invoke the module
Choose_Mul ti pl icand for both steps in modules Practice_Wi th_ Table and
Tutor_The_Student, leaving Choose_Multiplicand as a supporting module
for later definition. Figure 7 .20 shows the structure chart with the added subordinate
modules. Lines with arrowheads indicate the direction in which the values of parameters
are being passed.

Tutor_System

J [

Screen Screen

I l I l Screen

Screen Choice

Initialize - Present_ Tutor_The - Practice -
Drawing_ Menu_ To_ Student With_ Table
Window Student

Figure 7.20 Structure chart for Tutor_System.

7.7.4 Abstraction 4

At the next level of abstraction, definitions of the supporting modules
Center_Options_Area,Choose_Multiplicand,Draw_Multiplication
_Table, Fill_Mul tiplication_Table, Test_ Students_Skills, and
Report_On_Students_Progress are given. The first, Center_Options
_Area, draws the center rectangle for displaying prompts:

Procedure Center_Options_Area;
{ Purpose: Establish a rectangular area for viewing various

options. }
begin
{ Draw a rectangle in the center of the Drawing window, composed

of a white background. }
FillRect(75, 50, 250, 370, White);

Draw a black border about this new rectangle. }

Procedures and Functions Chapter 7 31 7

PenSize (5, 5);
FrameRect(75, 50, 250, 370);

{ Set the font type and size for characters written to this new
rectangle. }
TextFont(3);
TextSize(12);

end; { Center_Options_Area }

The next module, Choose_Mul tiplicand, fills the background with a light-gray
pattern, draws a center rectangle, and then prompts the student for the value of the
multiplicand. If the value for the multiplicand is out of range, this module causes the
computer to beep (emit a short sound from the speaker), erase the prompt and the
improper value from the screen, and then repeat the step of requesting a value for a
multiplicand.

Procedure Choose_Multiplicand;
{ Purpose: This module returns a value representing the

multiplicand. It has an additional value parameter Drawing_Box.
It will require a delay for viewing the screen. }

begin
{ Fill the background of the Drawing window with a gray pattern

and then draw the center rectangle. }
FillRect(Drawing_Box, Gray);
Center_Options_Area;

{ Prompt the student for a multiplicand. }
MoveTo(llO, 160);
WriteDraw(' Enter a multiplicand: ');
readln(Multiplicand);
WriteDraw(Multiplicand);

{ Provide a delay of one second. }
{ Check if the value of the multiplicand is within range. }

while (Multiplicand < 1) or (Multiplicand >12) do
begin
{ Provide short beep. }

SysBeep (12) ;
{ Erase the region containing the prompt. }

EraseRect(150, 1·~, 160, 350);
{ Prompt the student for another value. }

WriteDraw(' Enter multiplicand: ');
readln(Multiplicand);
WriteDraw(Multiplicand);

{ Provide a delay of approximately one second. }
end;

end; { Choose_Multiplicand }

For the beep, we use the procedure SysBeep. This procedure provides a multiple of
12 short (0.022-second) tones to the speaker. For establishing a delay of one second, one
of two options is available. If you are using THINK Pascal, execution of the Operating
System Utilities Library procedure Delay can result in multiples of sixtieths-of-a-second
time delays. This procedure has the following header information:

318 Chapter 7 Procedures and Functions

procedure Delay(Number_Ticks:longint; var Final_Time:longint);

The parameter Number_Ticks represents the delay, and Final_Time is system-clock
time from when the Macintosh system began execution until the end of the delay. For a
one-second delay, this procedure is invoked by the command

Delay(60, Time);

In Macintosh Pascal we must define our own procedure for delaying execution,
because Macintosh Pascal has no access to the routines in the Operating System Utilities
Library. The following procedure is suggested as a replacement for procedure Delay:

procedure Delay_Execution (Time: integer);
{ Purpose: This procedure delays execution of an application. }

var
I, Result : integer;

begin
for I := 1 to Time do

Result := BitShift(I, 1000);
end; { Dela_y, Execution }

The for-loop and the Bi tShi ft operation are used to delay the execution of an
application using this procedure. Depending upon the speed of the microprocessor, the
execution of the command Delay _Exe cu ti on (2 4 0) should provide a 3-4 second
delay.

For module Choose_Multiplicand, why not use the writeln command
instead of invoking the Wri teDraw procedure? The wri teln procedure writes only to
the Text window, not the Drawing window. We need the WriteDraw procedure to
display the value of expressions within the Drawing window. In addition, we can use the
subordinate module Center_Options_Area to draw the center rectangle in the
Drawing window. Values for the actual parameters of FillRect and FrameRect were
picked by trial and error.

Procedure Draw_Mutiplication_Table;
{ Purpose: This module draws a multiplication table under the

option to tutor a student. It requires a single value
parameter called Drawing_Box and uses only a single
local variable, Y. The variable Y represents a
vertical position for displaying horizontal lines to
the Drawing window. }

begin
{ Fill the Drawing window with a white background, and display

a title at the top of the table. }
FillRect(Drawing_Box, White);
PenSize(l, 1);
MoveTo(180, 45);
WriteDraw('MULTIPLICATION TABLE');

{ Display the border of the table. }
FrameRect(50, 50, 230, 450);

{ Draw five horizontal lines across the rectangle. }

Procedures and Functions Chapter 7

y <-- 80;
repeat

DrawLine (50, Y, 450, Y);
y <-- y + 30;

until Y = 230;
{ Draw a single vertical line through the middle of this

rectangle. }
DrawLine (250, 50, 250, 230)

end; { Draw_Mutiplication_Table }

Procedure Fill_Multiplication_Table;

319

{ Purpose: This module fills the contents of smaller rectangles
in the multiplication table with strings composed of a
multiplier, multiplicand, and product. }

begin
{ Initialize Multiplier and the X coordinate. }

Multiplier <-- l;
x <-- 70;

{ Fill the subtable on the left and then on the subtable on the
right with basic multiplication rules.

for Outer_Count <-- 1 to 2 do
begin
{ Initialize the Y coordinate. }

y <-- 70;
for Inner_Count <-- 1 to 6 do

begin
{ Fill a subtable with six multipliers. }

MoveTo (X, Y);
WriteDraw(Multiplier:3, ' X' , Multiplicand,

'=',Multiplier * Multiplicand:3);
Increment Multiplier and the Y coordinate. }
Multiplier <-- Multiplier + l;
y <-- y + 30

end;
{ Modify the X coordinate to fill the right subtable. }

x <-- x + 200
end;

{ Prompt the student to continue execution. }
Prompt_Student_To_Continue;

end; { Fill_Multiplication_Table }

The coordinates for filling the small rectangles were chosen by trial and error, using a
simple test program.

Procedure Prompt_Student_To_Continue;
{ Purpose: This module prompts the student to continue

execution by clicking the mouse button. }
begin
{ Display prompt for continuing execution.)

MoveTo(llO, 270);

320 Chapter 7 Procedures and Functions

WriteDraw(' Press the mouse button to continue : ');
while not(Button) do { wait for button to be pressed };

{ Provide a time delay for the mouse button to be released. }
end; { Prompt_Student_To_Continue }

Procedure Test_Students_Skills;
{ Purpose: This module checks the multiplication skill of the

student. It requires two value parameters; Drawing_Box
and Multiplicand, and one variable parameter called
Number_Correct_Answers. Local variables include
Multiplier, Product, and Student_Answer. }

begin
{ Display a background color of white to the Drawing window, and

then draw the center rectangle. }
FillRect(Drawing_Box, White);
Center_Options_Area;

{ Prompt the student with 12 questions. }
for Multiplier <-- 1 to 12 do

begin
{ Prompt the student with a question. }

MoveTo(90, 130);
WriteDraw(Multiplier, ' X', Multiplicand, ' = ?');
readln(Student_Answer);

{ Delay execution for approximately one second. }
{ Erase the prompt and replace it with the student's

response. }
EraseRect(120, 60, 130, 350);
MoveTo(110, 130);
WriteDraw(Multiplier. ' X' , Multiplicand. ' =');
WriteDraw(Student_Answer);
Product <-- Multiplier * Multiplicand;

{ Check if the student's answer is correct. }
MoveTo (170, 185);
if Student_Answer = Product then

begin
Number_Correct_Answers
<-- Number_Correct_Answers + 1;
WriteDraw('CORRECT')

end
else

begin
SysBeep(12);
WriteDraw('WRONG'

end;
Prompt_Student_To_Continue;

{ Erase center rectangle. }
Center_Options_Area

end;
end; { Test_Students_Skills }

Procedures and Functions Chapter 7 321

Procedure Report_On_Students_Progress;
{ Purpose: This module provides a short report on the student's

progress. It requires one value parameter,
Number_Correct_Answers. No local variables are
necessary. }

begin
{ Display the number of correct answers. }

MoveTo(llO, 140);
WriteDraw(' Number of correct answers: '

Number_Correct_Answers);
{ Determine and display the progress of the student. }

MoveTo(175,190);
if Number_Correct_Answers > 10 then

WriteDraw('EXCELLENT'
else

if Number_Correct_Answers > 7 then
WriteDraw('GOOD')

else
WriteDraw('POOR');

{ Delay execution while the student reads his or her score. }
{ Prompt the student to continue execution.

Prompt_Student_To_Continue;
end; { Report_On_Students_Progress }

Figure 7.21 shows the complete structure chart for Tutor_System. Some of the
module names have been duplicated to make the chart easier to read. Lines with arrows are
provided to show the direction in which the values of parameters are being passed. Keep
in mind that developing, coding, and testing software is a process based on experience as
well as trial and error, motivated by a desire to improve the design. In this example, the
values of actual parameters for library procedures MoveTo, FillRect, FrameRect,
were changed to determine the best effects on the screen. This at times required
modification of steps in module definitions as well as in the main module. For example,
the call to the module Prompt_Student_To_Continue was removed from
Tutor_The_Student and Practice_With_Table and then embedded in the
supporting modules Fill_Multiplication_Table andReport_On_
Students_Progress to allow these modules to act as supporting utility modules.
The need for accurate requirements helps us to understand the problem, and the
implementation of a proper design directs us in writing the proper code. Before ending
this discussion, let us consider a few additional issues related to writing modules. First, a
module should be written to be functionally cohesive. In theory this is the most desirable
form for a module. It implies that the parts of the module perform a single, elementary
function. In practice, this may lead to applications with an unreasonable number of
modules. Often, we may compromise on functional cohesion by practicing the principle
of sequential cohesion, by which a module is designed to perform several functions of a
supportive and related nature. For example, module Choose_Mul tiplicand is
responsible for returning the value of a multiplicand, but it performs several actions that
support its major purpose: prompting for a value for the multiplicand, reading a value
from the keyboard, and checking that the value of the multiplicand is within the range 1
through 12.

322 Chapter 7 Procedures and Functions

Tutor_ J
System

Screen
J1

t
Screen Screen

t I
Screen

i
Choice

Initialize_
Drawing_
Window

Present_
Menu_ To_
Student

Tutor_
The_Student

Practice_
With_ Table

Notes:

Box

t Mui

Choose_
Multi­
plicand

Center_
Options_
Area

1

J
Box

~
Draw_
Multiplication_
Table

Mui Ans

~ i
Fill_Mul- Report_
tiplication_ Students_
Table Progress

Prompt_
Student_
To_
Continue

The parameter Box is an abbreviation for Drawing_Box
The parameter MUl is an abbreviation for Multiplicand

Test_
Students_
Skill

J

The parameter Ans is an abbreviation for Number_Correct_Answers

Choose_
Multi-
plicand

l ~
Center_
Options_
Area

Figure 7.21 A detailed structure chart for the program Tutor_System.

Although each action could be written as a separate module, the combined steps in
one module are easily understood. The size of the module depends more on the functions
that it supports than on the number lines of code that are written. Some programmers
define a module to be a body containing no more than 50 or 100 lines of executable code,
but this definition does not take into account the principles of functional and sequential
cohesion. If you feel the need to limit the size of a module, never exceed nine major steps
when defining the algorithm for the module. This is in keeping with the concept that a
person manages well when he or she is limited to supervising no more then seven to nine
individuals.

A second major point in the development of modules is to practice the principle of
loose coupling (also called data coupling). With loose coupling, only the information that
is needed is passed between modules; no more and no less. For example, while module
Ini tialize_Drawing_Window modifies the dimensions of Text window, these
dimensions are not returned, because there is no need to share them with other modules.
Returning the dimensions of the Drawing window is necessary, because these are shared
with other modules. Common coupling can be practiced by assigning the dimensions of
Text and Drawing windows to global variables, but this could limit our modular
independence if we decide later to reassign dimensions of our windows during the
execution of several different modules.

Procedures and Functions Chapter 7 323

Implementation of the complete Tutor_System program is left as an exercise.
Enhancements to this application can include several options for tutoring students on
addition, subtraction, and division. We can select the next pixel location in the Drawing
window where the value of an integer is to appear, so we can extend our application for
tutoring students on the use of fractions.

7.8 WHITE-BOX VERSUS BLACK-BOX TESTING

Testing is an important aspect of software design and is not limited to the stage of coding
the program. When the body of a module is being written, it is important to establish test
cases for exploring the correctness of the solution. When defining the algorithmic steps of
a module, we can select test cases for checking the executability of the module itself. By
hand-tracing the algorithm, we better understand its function as well as what is expected
for the values of identifiers at intermediate steps. In addition, we are examining the logical
structure of the program for correctness. This method of testing is referred to as white-box
(glass-box) testing, because we can see the actual code that we are testing through the
module's executable paths. Grouped as a set, the test cases must be able to show that all
paths are executable for the method to be successful. Although this method of testing
cannot guarantee that the algorithm for the module is correct in relation to its function, it
does guarantee that each path of the algorithm is executable.

As an example of white-box testing, consider the module choose_
Multiplicand that appeared earlier in this chapter. The conditions for testing the
while-loop within the body of the module come from entering values at the keyboard
beyond the range 1 through 12. In particular, three types of tests are required: (1) where
the value of the multiplicand is less than 1, (2) where the value of the multiplicand is
greater than 12, and (3) where the value of the multiplicand is between 1 and 12. Together
these tests result in all statements of the module being tested for executability. By using
this set of tests, we are checking both valid as well as nonvalid values of the
multiplicand.

A second approach for testing modules is referred to as black-box testing. Here a
module is tested solely on the basis of its documentation, that is, the definition of its
function(s) and a list of its parameters. It is the responsibility of the programmer to
consider test cases for verifying the accuracy of the documentation by writing one or more
test programs that can invoke the module and observe its effect. We refer to this as black­
box testing because the internal code of the module is hidden from view; only the
interface is available for interaction with the body of the module. One way to choose
values for actual parameters is to try trivial values, typical but realistic values, extreme
values, as well as illegal values. Trivial values test for simple cases, whereas typical
values allow us to test for values within a range of acceptable values. For extreme values,
we can view the actions of a module given excessive limits, whereas illegal values allow
us to observe the actions of a module when handling improper data. Not every module
that we are testing requires all four categories of test data to be defined. The choice
depends upon the definition of the module and upon the integration of the module within
the framework of a larger application.

For example, the procedure Fi 11 Rec t is specified by the following procedure
header and definition:

procedure FillRect(R: Rect; Pat : Pattern);
{ Purpose: This procedure fills the specified rectangle R with a

pattern given by the value of Pat. The QuickDraw

324 Chapter 7 Procedures and Functions

library has five predefined patterns limited to White,
Black, Gray, LtGray, and DkGray. }

For testing FillRect, we can invoke this procedure from a loop iterating over the
range of a variable representing values from white to dkGray for a fixed specified
rectangle. Such a loop would offer us a better impression for a background pattern when
viewing the Drawing window. For trivial data we might establish a rectangle with both
the top-left and bottom-right points of R being (0,0). A realistic value for rectangle R
might be the points (75,50) and (250,370), whereas an extreme value, depending upon the
size of screen, would be the points (0,0) and (512,342). We might try choosing illegal
values that are either less than -32767 or greater than 32767, but this would only result
in a translation error, because the elements of type Rec t (Left, Top, Right,
Bottom) are all defined as integer types.

A third approach to testing is known as the ticking-bomb method. This method
assumes that little or no testing is necessary once the application has been coded and
appears to be operational. It assumes that the customer, by using the application, can
discover all further errors. Unfortunately, this approach to testing is a time bomb waiting
to detonate. It can leave the user with little or no confidence in the program.

7.9 STANDARD PASCAL VERSUS THINK PASCAL

For procedures and functions, how does THINK Pascal differ from ANS (American
National Standards) Pascal? In ANS Pascal, the body of a function must contain at least
one assignment statement that assigns a value to the name of the function. In THINK
Pascal, this requirement is not enforced. In THINK Pascal a function can be written to act
like a procedure; that is, the body of a function can be used to cause side effects upon
actual parameters associated with formal parameters. The function still must be invoked
from an expression and will still return a value (random) through the name of the
function.

THINK Pascal does support extensions for procedures and functions not specified by
ANS Pascal. First, THINK Pascal relaxes the restrictions on the ordering of declarations.
Functions and procedures can be declared before variables, and variables before types and
constants. The only requirement is that an identifier must be declared before being
referenced in any further declaration.

Second, THINK Pascal supports the definition of inline routines (procedures or
functions) for directly embedding machine code within a Pascal program. The machine
code that is listed following the header of an inline routine is placed directly within the
translated code of the program in which it is invoked. Inline routines are common in the
languages FORTRAN and C, as well as in assembly language. In some instances they are
called macro definitions.

Third, THINK Pascal supports a predefined command called exit, which allows a
program to exit from an enclosing procedure. Syntax for using this command is

Exit(Procedure_Name)

where Procedure_Name is the name of the enclosing procedure from which the
program can exit. When executed, the program returns to the statement following the
point where the procedure was invoked. An exit statement may also be placed within a
nested procedure that is enclosed by Procedure_Name. Figure 7.22 shows a simple
program that tests the Exit command.

Procedures and Functions Chapter 7

program Testing_Exit_Statement(input, output);
{ Purpose: This program shows a simple test of the
{ command Exit. }

var
Test_Path: boolean;

procedure Test_Exit(var Check: boolean);
procedure Nested_Procedure;
begin

Exit(Test_Exit);
end; { Nested_Procedure

begin
Check := true;

Nested_Procedure;
Check := false;

end; {Test_Exit }

begin
ShowText; writeln('Ready to execute procedure Test_Exit.');
Test_Exit(Test_Path);

if Test_Path then
writeln(' Exit has executed. ')

else

end.
writeln(' Exit has failed to execute. ');

Ready to execute procedure Test_Exit.
Exit has executed.

Figure 7.22 A simple program for testing the command Exit.

325

The Exit command offers the programmer an equivalent to the concept of the
return statement found in other computer languages like FORTRAN, C, and Ada. In
short, when within the body of a procedure we may find ourselves ready to return (exit)
from the procedure for a condition that is true. Having to assign a value to a sentinel and
test for the condition of a sentinel may be awkward and confusing to a person reading the
body of the procedure.

Executing a statement such as

if condition then
Exit(Procedure_Name };

326 Chapter 7 Procedures and Functions

seems more natural to the solution of a problem and indicates where the procedure will be
exited. It does violate structured programming, because there is more than one place where
the procedure ends execution. Which is better depends on the physical length of the
procedure body and on the person writing the code.

Fourth, THINK Pascal allows the use of the qualifier univ for disabling type­
checking of a routine's parameter. When a formal parameter is qualified with the reserve
word univ, the type for the actual parameter is not required to match that of its
corresponding formal parameter. What is required is that both the qualified formal
parameter and actual parameter be types with the same memory size. For example, the
following program Testing_Univ_Qualifier shows the value of a 32-bit
longint type parameter being used to initialize the value of a 32-bit real type.
Although both the formal and actual parameter types are different, they do have the same
memory size.

program Testing_Univ_Qualifier(input, output);
{ Purpose: This programs shows a simple test for the univ }
{ qualifier.}

var
N: real;

procedure Test_Univ (var Number: univ longint);
begin

Number := O;
end; { Testing_Univ }

begin
ShowText;
N := 3.333;
writeln('Value of N before execution of Test_Univ: ' N: 7: 5);
Test_Univ(N);
writeln('Value of N after execution of Test_Univ N: 7: 5);

end.

It is important to avoid the use of extensions in THINK Pascal if your code will be
used with other types of Pascal translators. Not all Pascal translators apply the same set
of extensions.

SUMMARY

There are several important points to remember about procedures and functions. First,
they can reduce the need to write repetitive code. For example, if your program requires
several different types of tables, you can write one procedure containing nested for
loops, with the maximum number of iterations representing the maximum number of
rows and columns. These for loops need only be written once, because we can control
the number of rows and columns being displayed through the parameter list.

Second, procedures and functions allow us to develop and test large programs in a
modular fashion. Each program can be developed with basic building blocks, each block
representing a major step in the solution of a problem and evolving into a refined module,
and each module being tested and integrated into the whole program. This allows the main

Procedures and Functions Chapter 7 327

body of the Pascal program to act as a supervisor over subordinate procedures and
functions.

Third, the actual parameter list and the formal parameter list provide the means for
transferring information between the environment that has called on the subprogram and
the environment of the subprogram itself. Formal parameters can use names that reflect
the nature of the data objects described in our algorithms and act as variables local to the
programming environment represented by the procedure or function. The environment for
the subprogram becomes active when it is the called on from some other local
programming environment (subprogram or main program) and becomes deactivated when
the subprogram ends execution. Pascal procedures or functions can have constants, user­
defined types, and variables that are local to the body of the subprogram. In tum, a
procedure or function can also share global constants, types, and variables declared outside
of its own environment.

Fourth, procedures and functions provide a mechanism for extending the definitions
and capabilities of a programming language. With subprograms we can create our own
library of utilities that goes beyond the given set of Pascal library procedures and
functions.

What are the differences between a procedure and a function in Pascal? A procedure is
used for its side effects. This can be the execution of a process: drawing to the screen,
displaying of text, or the modification of the value of an actual parameter. Procedures can
affect the value of an actual parameter only if its corresponding formal parameter is a
variable type. In addition, an actual parameter can be represented by an expression if its
corresponding formal parameter is a value type; otherwise, the actual parameter must be a
variable. A function can be used to return a value through its own name, in addition to
using it for its side effect. A procedure is called by executing a calling statement, whereas
a function can only be executed when called from within an expression.

Pascal procedures and functions can be written recursively; that is, they can either be
written to call directly on themselves or, to do so indirectly, by calls from other
procedures or functions. When writing directly recursive procedures or functions, keep in
mind the heuristic steps discussed earlier. Be sure that you understand the trivial and
nontrivial cases, using the trivial cases to terminate the recursion. Use recursive steps to
reduce values closer to the trivial cases, and employ several nontrivial cases to test the
recursive definition.

Pascal allows the names of procedures and functions to be passed as arguments,
allowing us to write general subprograms in terms of formal parameters. On execution,
the names of previously defined procedures or functions can be substituted and called on.

REVIEW QUESTIONS

1. Define the terms procedure and function.
2. What is meant by the expressions user-defined procedure anduser-defined

function?
3. Why is it important for a higher level language to support the concept

of procedures and functions?
4. What is meant by the term subprogram?
5. List and briefly define each of the library procedures that we have

already used in Pascal.
6. List and briefly define each of the library functions that we have already

used in Pascal.
7. Describe the structure of a Pascal program.

328 Chapter 7 Procedures and Functions

8. Describe the structure of a user-defined Pascal procedure.
9. Why is the structure of a Pascal procedure similar to the structure of a

Pascal program?
10. What is the purpose of the formal parameter list?
11. Can a uses clause follow a procedure-header?
12. How are constants, user-defined types, and variables declared in a

procedure?
13. What is meant by the term compound statement?
14. What is the difference between an actual parameter and a formal

parameter?
15. Why is the complete structure of a procedure considered a declaration?
16. Why does the declaration of a procedure end with a semicolon, while a

Pascal program ends with a period?
17. What are the rules for naming a procedure?
18. For the following short program, what represents the formal parameters

and what represents the actual parameters?

program Sample;
con st

A 3;
B = 4;

var
Total : integer;

procedure X(N, M, T : integer);
begin

writeln('The sum of ', N:2, ' and' M:2, ' is
end;

begin
Total := A + B;
X(A, B, Total)

end.

T:3)

19. For Question 18, what is the purpose of the procedure X? Can you think
of a better name than just plain x?

20. In some Pascal systems, a procedure cannot have the same name as the
program. Is this true in Macintosh Pascal?

21. Modify the program Diagonal_Lines_Revi sed, so that a
procedure called In i ti a 1 i z e is executed, hiding all the windows,
setting the Drawing window size, and then opening the Drawing
window before the diagonal lines are drawn. The procedure
In it i a 1 i z e must be called from within the body of the main
program.

22. Will the following Pascal program execute? Why or why not?

program Sample;
procedure Output(N, M, T : integer);
begin

writeln('The sum of ', N:2, ' and ', M:2, ' is ' T:3)
end;
var

Procedures and Functions Chapter 7

Total : integer;
con st

begin

A = 3;
B = 4;

Total := A + B;
Output(A, B, Total);

end.

23. What is meant by the term value parameter?
24. In the following program, what effect does the procedure Double have

on the three actual parameters X, Y, and Z?

program Example;
var

Z : integer;
X, Y : real;

procedure Double(C integer; A, B
begin

A .- 2 * A;
B .- 2 * B;
C := trunc(A+ B);

end;
begin

write(' Enter two numbers: ');
readln (X, Y) ;
Double(Z, X, Y);
writeln(X, Y, Z)

end.

real);

25. What is the effect on X, Y, z when the following program is
executed?

program Try _Again;
var

Z : integer;
X, Y : real;

procedure Double(C : integer; A, B
begin

C .- trunc(A+ B);
end;

begin
write(' Enter two numbers: ');
readln (X, Y) ;
Double(Z, 2 * X, 2 * Y);
writeln(X, Y, Z)

end.

26. What is meant by the term variable parameter ?

real);

329

330 Chapter 7 Procedures and Functions

27. Modify the short program Example in Question 24 so that all formal
parameters are variable parameters.

28. Consider the following program, titled Try_Over_Again:

program Try_Over_Again;
var

Z : integer;
X, Y : real;

procedure Double(C : integer; var A, B
begin

real) ;

C := trunc(A+ B);
end;

begin
write(' Enter two numbers: ');
readln(X, Y) ;
Double(Z, 2 * X, 2 * Y);
writeln(X, Y, z)

end.

What syntactic and semantic errors keep the variable z from receiving
a computed value?

29. How can the program in Question 28 be modified so that when the
procedure Double is executed, the values of both X and Y will be
doubled before z <-- trunc (X + Y) ?

30. Modify your program in Question 28 by defining an additional procedure
called Input_Data. When executed, this procedure should display the
message Enter two numbers: and read two real numbers typed
from the keyboard.

31. Describe the structure of a user-defined Pascal function.
32. How is a function called during the execution of a Pascal program?
33. What are the major differences between a Pascal function and a Pascal

procedure?
34. In the body of a function, how does the name of the function obtain a

value?
35. The following program uses a function called Sum and was written for

the purpose of computing the summation of a set of integer numbers
from 1 to n. Correct the syntactic and semantic errors so that it will
execute correctly.

program Sum:
var

I : integer;
function Sum (Limit

var
Counter real;

begin

real)

for Counter := 1 to Limit do;
Total := Total + Counter;

Sum .- Total
end;

integer;

Procedures and Functions Chapter 7

lbegiD
Sum(

end.
I) ;

36. The following is a procedure for computing the product of integers from
1 ton. Rewrite this procedure as a function.

procedure Product(N : integer; var Result
begin

real) ;

Result := 1.0;
while N > 0 do

begin

end;

Result := Result * N;
N .- pred(N)

end;

37. Would the condition N > 1 in the while-do loop of the procedure
Product provide the same answer?

38. What is the value returned for Result if the value of N is negative?
39. What is meant by the terms global and local variables?
40. Can constants and user-defined types be global as well as local data

objects? Explain your answer through some short examples.
41. What is the advantage of having a global data object? What can be a

disadvantage of having a global object?
42. Trace the program Bad_Habi ts both by hand and by using the

Observe window during execution to convince yourself that it will
never end execution unless you select the option Halt from the menu
Pause.

43. Correct the program Bad_Habi ts so that it will execute to
completion.

44. Why are forward declarations necessary?
45. Use forward declarations to keep the following procedures in the order in

which they are declared. Check your code by using the Check mode of
the Run menu.

procedure Total(N
begin

integer var Value integer) ;

Value := O;
while N > 0 do

end;

begin
Add_and_Decrement(Value, N);

end;

procedure Add_and_Decrement(var R, M
begin

R : = R + M;
Decrement (M) ;

integer) ;

331

332 Chapter 7 Procedures and Functions

end;

procedure Decrement(var X
begin

integer) ;

X .- pred(X)
end;

46. Rewrite the procedures Total and Decrement in Question 45 as
functions, while keeping the order in which they are declared.

47. What is the concept of modular programs?
48. What do structure charts represent?
49. How do abstractions help in defining a solution to a problem and in

developing algorithms specifying a solution?
50. What is meant by the term stub?
51. How should testing be introduced as a large program is being developed?

What advantages do you see in this approach for testing? What
disadvantages do you see?

52. How can the names of procedures and functions be used as values of
actual parameters in Pascal? How must the corresponding formal
parameters be declared?

53. What are the advantages of being able to pass the names of routines to
formal parameters?

54. What is meant by the term recursion ?
55. In the discussion of the concept of recursion, trace the steps necessary to

compute the factorial of 10. Then trace the necessary steps to compute
Sum(lO).

56. What is meant by recursive function or recursive procedure?
57. What is meant by the statement that a procedure or function is directly

recursive?
58. What is meant by the statement that a procedure or function is

indirectly recursive?
59. What is the purpose of the stack when executing a recursive routine in

Pascal?
60. Using the function Factorial, draw the stack for computing

Factorial (10).
61. List the four useful heuristics for defining a recursive procedure or

function.
62. Write a recursive function for Sum.
63. Can user-defined procedures and functions be parameterless? If you are

not sure, think of a simple example to test your answer.
64. Can a user-defined function have var parameters? If you are not sure,

think of a simple example to test your answer.

PROGRAMMING EXERCISES

Although not all programming exercises require you to write an algorithm, you may
better understand the problem and what is required by first writing an algorithm and
tracing it by hand with several examples before writing a Pascal program.

Procedures and Functions Chapter 7

1. Write a procedure called Minimum that has three formal parameters.
This procedure must compute the minimum for two of the formal
parameters, and return the smallest value through the third formal
argument.

2. Using only two formal parameters, write a function for the problem in
Exercise 1.

3. Write a procedure called Response that has only one variable
parameter, called Answer. Answer must also be declared as type
string. When executed, this procedure will prompt the user with the
following message: Type "YES" to continue, "NO" to
quit : After the user has typed a response, this procedure will check
Answer to see if the user has typed YES, YEs, Yes, Yes, yES,
yEs, yes, yes, NO, No, no, or no. If none of these has been typed,
the procedure must produce a short tone using the routine SysBeep,
display the message IMPROPER RESPONSE, and then prompt the
user to re-enter an answer.

4. Write a procedure that can determine the largest and smallest of a set of
numbers entered from the keyboard. This procedure must prompt the
user, read the next number, and report the largest and smallest values.

5. Some Pascal systems support a remainder operator that is different from
the mod operator. Write a procedure called Quotient_Remainder
for computing both the quotient and the remainder of two integers, M
and N, where M is divided by N. Assume two value parameters M and
N and two variable remainders Q and R. Hint: Remember that N/M =
Q + RIM where Q represents a quotient and R the remainder.

6. Write a function called Rem that has two value parameters, Mand N.
This function returns the integer remainder of two integers Mand N,
where M is divided by N. How does this function compare with the
mod operator?

7. Write a nonrecursive function for the function Fibonacci in the
program Computing_Nth_Fibonacci. Compare the times re­
quired for computing the nth term of the Fibonacci series using both
recursive and nonrecursive functions with n equal to 32.

8. Write a procedure for computing the mean or average of a set of numbers
entered from the keyboard. This procedure prompts for the first and next
numbers and continues prompting and reading numbers until the user
wants to end input. Once the mean has been computed, this procedure
displays the mean and quantity of numbers entered from the keyboard.
The numbers entered from the keyboard can be either positive or
negative.

9. Write a function titled Floor. This function will have only one formal
parameter declared as real. It will return the largest integer that is less
than or equal to the value of the actual argument. For example,

333

334 Chapter 7 Procedures and Functions

Floor (4. 89) is 4 and Floor (5) is 5. In the case of negative
numbers, Floor (-4. 89) is -5 and Floor (-4. 005) is also -5.

10. Using the Pascal library function random, write a function called
Roll_of_Dice for returning a random number 1 through 6. This is
to represent the roll of a single die. Add this function to a short
program. By executing a loop 1000 times, count the number of times
that sides 1, 2, 3, 4, 5, and 6 appear, and see for yourself if each side is
equally likely to appear; that is, see if the total count for any side
divided by 1000 is close to the ratio 1/6.

11. Write a procedure called Samp 1 e_Da ta for displaying to the Drawing
window a bar chart for the six total die counts.

12. Write a function for computing the common logarithm given by the
relationship

log10 m = ln(m) I ln (10) where m > 0.

If m <= 0, have your function return the value zero and report the
message

Value undefined for zero or negative argument.

13. Write a function that computes xY using the expression eY ln<x>. In
executing this function, return a value for the following conditions:

(a) X is zero and Y is nonzero.
(b) X and Y are both zero.
(c) Xis negative and Y is less than 1.

For cases (b) and (c), report the message Improper arguments
for computing a number raised to a power.

14. Write a recursive function for Exponentiation. Remember that the
value for Exponentiation (X, 0) is 1 and Exponentiation
(X, N) is X * Exponentiation (X, N-1) , where N is
greater than zero.

15. The greatest common divisor of two integers can be computed
recursively from the following definition:

Great_Common_Div(M, 0) = M
Great_Common_Div(M, N) = Great_Common_Div(M, M mod N),

where N is greater than zero. Write a recursive function called
Great_Common_Div for computing the greatest common divisor of
two integers, Mand N.

16. Write a program that will display a table of Fahrenheit versus Celsius
temperatures to the Text window, given an initial temperature, final
temperature, and incremential value. In this program the initial
temperature can exceed the final temperature if the incremental value is

Procedures and Functions Chapter 7

negative. Use procedures for setting and opening the Text window,
entering initial data from the keyboard, and checking that this data is
correct; use a function for computing a temperature, a procedure for
displaying the header for the beginning of a table, and a procedure for
displaying the table of temperatures.

17. Write an algorithm for counting the number of vowels in a sentence
entered from the keyboard. After testing this algorithm by hand, convert
it into a procedure and retest it. This procedure is required to prompt for
a line of text. As each character is being typed and read, it is checked to
see if it is a vowel. This continues until a period is read. After all
characters have been read and checked, a report is given on the number
of vowels read from input. This procedure must be able to recognize
both uppercase and lowercase letters.

18. Consider the table shown in the Figure 7.23:

Quantity Ordered

1-99
100-199
200-299
300-399
400-499
500 and above

Figure 7.23

Price Per Piece

1.01
0.98
0.95
0.90
0.85
0.75

Write a program that executes each of the following steps by calling a
separate procedure:

(a) Hide all the windows, and then set and open the Text
window in the middle of the screen.

(b) Prompt the user for quantity ordered. If the quantity is less
than 1, provide a short tone, clear the Text window
executing the routine Page, and again prompt the user for
input.

(c) Compute the total cost by performing a simulated table
lookup.

(d) Compute the sales tax and total cost.
(e) Hide all windows, and then set and open the Drawing

window.
(f) Report the following to the Drawing window:

335

336 Chapter 7 Procedures and Functions

Quantity ordered: dddd
Cost for quantity ordered: $ dddddddddd.dd
Sales Tax: dddddddddd.dd

Total costs: $ dddddddddd.dd

Each small d represents a digit position.

19. Write a program that draws in the Drawing window either a cosine
function or a sine function, given the following information:
(a) An initial angle greater than or equal to 180 degrees.
(b) A final angle less than or equal to 180 degrees.
(c) The option to draw either a cosine or sine function.
(d) Periodicity factor M for drawing sin (M * Angle) or

cos (M * Angle).
This program requires procedures for each of the following

steps:
(a) Hide all windows; then set and open the Text window.
(b) Enter initial and final angles. Test these values to be sure

they are within range.
(c) Option to choose a sine or cosine function and the

periodicity factor.
(d) Hide all windows; then set and open the Drawing window.
(e) Draw the proper function with x and y axis in the center

of the Drawing window.

20. A program is needed for computing the balance and cumulative interest
earned for a simple Individual Retirement Account for which the interest
rate and yearly deposit are fixed. When executed, this program must
enter from prompts in the Text window the amount of the deposit, the
interest, and the age of the person holding the account. Assume that
deposits to the IRA cannot be made beyond the age of 65, nor can a
deposit be greater than $2000. If this information is correct, the
program will then display a table in the Drawing window containing a
column for the present year of the IRA, the total balance in the IRA,
and the cumulative interest earned, ten entries at a time. If additional
entries can be placed in the table, the user is prompted either to
continue or to exit by clicking the mouse for the appropriate message.
Once all entries have been displayed, the user is prompted to begin a
new table or to quit the program by again clicking the mouse button for
the appropriate message. First design the system, assuming modules for
setting and opening windows, prompting for information, drawing the
table outline, and displaying table entries.

21. Complete the program called Tutor_Systern. When adding a
procedure, test the system to see that it is executing properly according
to the given specifications.

22. Redesign Tutor_System so that a student can practice with addition,
subtraction, multiplication, and integer division, providing both a

Procedures and Functions Chapter 7

quotient and remainder. Consider using an additional dialog window for
selecting one of four options.

23. Write a program that prompts the user to choose the display of one of
the following functions to the Drawing window in the range -180
degrees to 180 degrees :

sin(X)
cos(X)

tan(X)
sec(X)

cot(X)
csc(X)

where sec (X) = 1/cos (X), csc (X) = 1/sin (X), and
cot (X) = 1/tan (X). Keep in mind that some of these functions
may have undefined values at angles such as -180, -90, 0, 90, or 180
degrees. Figure 7.24 shows an example of such output.

Figure 7.24

337

Chapter 8

Modularity: Building
Programmer-Defined Libraries

OBJECTIVES

After completing Chapter 8, you will know the following:
1. How to apply the uses clause within a program unit.
2. How to build programmer-defined units.
3. How to build programmer-defined libraries.
4. What predefined libraries are available in THINK Pascal and how to use them.
5. How to allocate a project as an application.
6. How to use the profiler to study execution characteristics.
7. The basic steps involved in applying the LightsBug debugger.

8.1 UNITS AND LIBRARIES IN THINK PASCAL: THE O'SBS CLAUSE

338

THINK Pascal allows us to write modular programs by applying units and libraries.
When used within a project, a unit is a program component that is a part of a larger
application. In the context of a THINK Pascal Project, a unit, as well as a library, is
referred to as afile. By itself, a unit can be a collection of constants, data types, variables,
procedures, and functions. When integrated into a project, a unit can share the definitions
of constants, data types, procedures, and functions with other units as well as with a main
Pascal program through the uses clause. By employing a uses clause and having the
main program interface with a unit, all the declarations that are in the public part of the
unit become accessible to the program. Although a unit's definitions are hidden from

Modularity: Building Programmer-Defined Libraries Chapter 8 339

view, they can be included within the program itself. By itself a unit allows the
programmer to hide information as a project is built, and later save it as part of a library.

In THINK Pascal a unit is composed of a unit-header, followed by an interface-part,
followed by an implementation-part, and ending with an end statement followed by a
period. Figure 8.1 shows the format for a unit.

unit Unit_Name;

interface

uses
{ list of units interfacing with Unit_Narne }
{ list of constants for public sharing }
{ list of user-defined types for public sharing }
{ list of variables for public sharing }
{ list of procedure and function headings for public }
{ sharing }
{ in-line body }

implementation

{ list of constant declarations local to this unit }
{ list of user-defined types local to this unit }
{ list of variable declarations local to this unit }
{ list of procedure and function declarations local }
{ to this unit }
{ list of procedure and function blocks defined in the }
{ interface-part }

end.

Figure 8.1 Format for a THINK Pascal Unit.

The unit-header contains the logical name of the unit. This name must be unique and
can never be used as the name of any other identifier in the unit's definition, nor can other
files in the Project window define units with the same name. Although it may be
convenient for the physical file storing the source code of a unit to have the same name as
the unit, THINK Pascal does not require the physical file name to match the unit name.
Rules for naming a unit are the same as for any other THINK Pascal identifier.

The interface-part of a unit is composed of the reserved word interface,
followed by a uses clause, a constant-declaration-part, a type-declaration-part, a
variable-declaration-part, and a procedure-and-function-header-part. The procedure-and­
function-header-part can contain an inline-body declaration for defining routines local to
the unit. The uses clause allows a unit to borrow from any previously defined unit or
units. All of the bodies of procedures and functions are defined within the
implementation-part of a unit. As you will see, the interface-part represents the public
part of a unit's interface because it defines constants, types, variables, procedures, and
functions that can be borrowed from the unit.

340 Chapter 8 Modularity: Building Programmer-Defined Libraries

Following the interface-part of a unit is its implementation-part. The
implementation-part is preceded by the reserved word implementation, optionally
followed by a uses clause that can allow only this part of the unit to borrow from
previously defined units. Next follows a constant-declaration-part, a type-declaration-part,
a variable-declaration-part, and a procedure-and-function-declaration-part. The im­
plementation-part contains procedure and function blocks for the headers of routines
defined in the interface-part of a unit. It can also include the full declaration of routines
that are local to the unit being defined. The redeclaration of formal parameters given in the
headers for public procedures and functions can be omitted in the implementation-part of a
unit. The implementation-part is referred to as the private part of a unit, because it
contains constants, types, variables, procedures, and functions that are local to the unit
and cannot be shared with any other programming units. Directives such as forward and
external can only appear within the implementation-part, provided that public procedures
and functions defined there are not being referenced. Keep in mind that the scope of the
declarations given in the interface-part of a unit includes the interface-part as well as the
implementation-part. Constants, types, variables, procedures, and functions defined in the
interface-part act as global identifiers to the implementation-part of a unit. Remember that
the reserved words interface and implementation are required for separating
the interface and implementation parts. Omitting one or both of these reserved words
raises the bugs dialog window when the unit is compiled. Like the body of the main
Pascal program, a unit ends its definition with the reserved word end, followed by a
period, not a semicolon.

How can a unit be borrowed from a Pascal program or from another unit? Figure 8.2
shows the syntax for borrowing the public definitions defined in the interface-part of a
unit. It simply requires the uses clause, followed by a list of one or more unit names.
These unit names are the logical unit names and not the names of files listed in the
Project window or in within folders.

program Program_Name {Input, Output};

uses
Unit_Name;

{ list of label declarations }
{ list of constant declarations
{ list of user-defined types }
{ list of variable declarations

}

}
{ list of procedure and function declarations

begin
{ executable body of the main Pascal program }
end.

}

Figure 8.2 Pascal program using a predefined unit.

It is important to understand that identifiers defined within the public parts of units,
and borrowed by either another unit or a Pascal program, cannot be redeclared. Identifiers
defined in the interface-part are global to the unit itself and act as external identifiers to

Modularity: Building Programmer-Defined Libraries Chapter 8 341

any unit or program that borrows from a unit. Any attempt to redeclare identifiers defined
in the interface of a unit raises the bugs dialog window, indicating that the declaration of
an identifier is being repeated. Identifiers declared in the private parts (implementation­
parts) of units are local to the units in which they appear and can be redeclared by other
units as well as by the main Pascal program. Declarations for these identifiers are never
seen by the Pascal program or unit that is borrowing the unit. Remember that only
program units can borrow other units. In THINK Pascal, no syntax rules exist for
applying the uses clause within the declarations of procedures and functions.

By choosing the option Build Library ... under the Project menu, a programmer
can store a unit, or possibly several units, as a collection of precompiled functions and
procedures. In short, this option allows the programmer to build a library. In THINK
Pascal, a library is defined as a collection of one or more compiled units stored as a file.
A library has a definite advantage over a single unit in that copies of its compiled code
can be shared among several different projects. The option Build from the Run menu
does not cause routines within a library to be recompiled (since they have already been
compiled).

8.2 BUILDING A THINK PASCAL PROJECT CONTAINING A
PROGRAMMER-DEFINED UNIT

As an example of a programmer-defined unit, consider the Text_File_Program listed
in Chapter 7. This program requires four procedures. Three of these are interfaced with the
the main Pascal program, and the fourth is a subordinate procedure called
Prompt_For_Data, which interfaces only with the superordinate procedure
Wri te_To_Data_File. This last procedure is treated as a routine local to the program
unit in which it is defined.

In modularizing Text_File_Program, we define a unit called Interface_
File_Routines, which has the following public definitions: a variable called
File_Name and three procedures called Prompt_For_File_Name, Set_And_
Show_Text_Window, and Wri te_To_Data_File. The private part of our unit
defines a fourth procedure called Prompt_For_Data. This last procedure is only needed
as a supporting procedure and is not invoked by the body of the main Pascal program.
The following shows the THINK Pascal code for this new unit:

unit Interface_File_Routines;
{Purpose This unit defines several interface routines that }
{ request a file name from standard input (keyboard); }
{ prompt for the name, tax number, and income of an }
{ individual; and output all of the collected }
{ information to a text file. }

interface
var

File_Name: string;
procedure Prompt_For_File_Name (var File_Name: string);
procedure Set_And_Show_Text_Window;
procedure Write_To_Data_File (File_Name: string);

implementation
{ -- }

342 Chapter 8 Modularity: Building Programmer-Defined Libraries

procedure Prompt_For_Data (var Name, Number: string; var
Income: real) ;

{ Purpose: This procedure prompts for and allows the entry }
{ of a person's full name, tax number, and gross }
{ income. This procedure is local only to this unit }
{ and is not shared through the interface }
begin
{ Prompt for person's name, tax number, and gross income.

writeln(' -- ');
write(' Enter the last name of the person: ');
readln (Name) ;
write(' Enter the person's tax number: ');
readln(Number);
write(' Enter the person' s gross income : $ ');
readln (Income) ;

end; { Prompt_For_Data }
-- }
procedure
{ Purpose:
{
{

begin

Prompt_For_File_Name;
This procedure prompts for a file name and }
returns that name through the formal parameter
Name.

{ Prompt user for a file name. }
write(' Enter a file name for storing the data: ');
readln(File_Name);

end; { Prompt_For_File_Name }
{ --- }

procedure Set_And_Show_Text_Window;
{ Purpose: This procedure sets the boundary of and opens the }
{ Text window for viewing. }

var
Border: Rect;

begin
{ Hide all windows before establishing and showing the Text }
{ window. }

HideAll;
{ Establish the boundaries for displaying the Text window. }

SetRect(Border, 10, 40, 400, 250);
SetTextRect(Border);

{ Show the Text window for viewing output.}
ShowText;

end; { Set_And_Show_Text_Window }
-- }
procedure
{ Purpose:
{
{

var

Write_To_Data_File;
This procedure opens a file for writing data, }
and then writes data to an output file }
represented by the variable parameter Output_File.}

Output_File: Text;
Name, Tax_Number: string;
Tab, Response: char;

Modularity: Building Programmer-Defined Libraries Chapter 8

Gross_Income: real;
begin
{ Initialize the value for a horizontal tab. }

Tab:= chr(9);
{ Open the output file for writing data. }

rewrite(Output_File, File_Name);

343

{Write column headers to the output file.}
writeln(Output_File, 'Name', Tab, 'Tax Number', Tab, 'Gross

Income');
{Continue to prompt for data until the user is ready to quit.}

repeat
{ Prompt for and enter name, tax number and gross income. }

Prompt_For_Data(Name, Tax_Number, Gross_Income);
{ Write these three entries to the data file. }

write(Output_File, Name, Tab, Tax_Number, Tab);
writeln(Output_File, Gross_Income: 6 : 2);

{ Prompt the user to either continue or quit. }
write(' Press 'Q' to quit, 'C' to continue: ');
readln(Response);

until ((Response= 'Q') or (Response= 'q'));
{ Close the output file before exiting this program. }

close(Output_File);
end; { Write_To_Data_File }

end.

The modified main Pascal program now requires only a uses clause and its own
executable body. No other declarations are required, because all variables and procedures
are borrowed through the interface with the unit Interface_File_Routines.
Following is the code for the main Pascal program, Text_File_Program:

program Text_File_Program (Input, Output);
{Purpose This program creates a text file with three columns }
{ and several rows of information. The first column }
{ lists names, the second, tax numbers, and the third, }
{ gross income. Once the file is closed, it can }
{ be opened by a spreadsheet application such as Excel.}

uses
Interface_File_Routines;

{ ================= Body of the main program. ================= }
begin
{ Hide all windows and then open the Text window for viewing }
{ prompts and responses. }

Set_And_Show_Text_Window;
{ Prompt user for a file name. }

Prompt_For_File_Name(File_Name);
{Now write data to the output file represented by File_Name.}

Write_To_Data_File(File_Name);
end.

344 Chapter 8 Modularity: Building Programmer-Defined Libraries

The steps for building a project having one or more programmer-defined units and a
main Pascal program are outlined below.

1. Assuming that THINK Pascal is presently the active desktop ap­
plication, follow the steps for creating a new project or for opening an
existing project. If the existing project has units and libraries that are
not needed, highlight the name of the unneeded file in the Project
window and choose the command option Remoue from the Project
menu. You may have to repeat this step if several such files require
removal from the current Project window. For now, however, assume
that we are building a new project.

When building a new project, choosing the command option New
Project. .. from the Project menu allows you to specify a new
project name. Clicking New Project ... opens the dialog window
shown in Figure 8.3. Notice that you have a choice of two methods for
the creation of a project.

le THINK Pascal 4.8 Folder I
[.) DR Shell ~ G:::::J Hard Disk
[) Electric_Bill Project

[) r.J General Purpose I
Eject

[) Interface.lib [Driue)
CJ Interfaces
CJ Libraries ~

Create the project: (Create)
II I (Cancel)

D Instant Project XI

Figure 8.3 The dialog box for creating a new project.

The first method is to enter a project name in the field provided and
then click the Create button. This sequence results in the creation of a
new project with the name you entered. Then the dialog window is
closed, and a Project window is displayed. Figure 8.4 illustrates this
outcome with the Project window for the present example. The second
method is to click the Instant Project button, enter the name of the
project as requested, and then click the Create button. Then an Edit
window is displayed that has a program header and a basic shell
representing a Pascal program. This shell is similar to the outline

Modularity: Building Programmer-Defined Libraries Chapter 8

displayed by Macintosh Pascal when the option to create a new program
is selected. The Instant Project approach creates three new files: a
source file having the extension .p, a project file having the extension
.1t, and a folder holding both the source and project files.

§0§ TeHt_File_Program.Projec ~E!I§
Options File (by build order) Size A

Runtime.lib O
Interface.lib 0 rorai""co"de··size o

Figure 8.4 The Project window for the file
Text_File_Program.Project.

Notice that in the present example the project is named
Text_File_Program with the extension .Project appended to
distinguish this file as a project file. Although the THINK Pascal User
Manual suggests the use of the extension . p for Pascal source files and
the extension .1t for project files, the choice of extensions for files is
left to the programmer. THINK Pascal understands various types of
files from the properties that each file has when it is created.

When a new project is created, the Project window includes two
special libraries, Runtime. lib and Interface. lib. Both of
these have an initial size of zero. The file Runtime. lib contains
standard predefined routines for input and output, and the file
Interface. lib contains code for borrowing many of the units in
the Macintosh Toolbox. These two libraries can be compiled at this
time by selecting the command option Build from the Run menu.

2. You are now ready to insert a new program unit into an empty Edit
window. To begin, select the command option New from the File
menu to open a new Edit window. When convenient, you can choose
the option Check .'.)::.ntaH, located under the the Run menu, to check
the syntax of the Pascal code in the newly defined unit. At this stage
you must remove all syntax errors before the unit can be either built or
compiled. Note that pressing the shift key when selecting from the Run
menu gives you the option to compile what is in an Edit window rather
than simply checking for syntax errors.

When you have corrected all of the syntax errors in the source code
of a unit, use the command option Saue As ... (or Saue) from the File
menu to save the program unit to disk as a Pascal source file. In our
example a copy of the source file for our newly defined unit
Interface_File_Routines is saved as Interface
Fi 1 es . Unit. The extension ".Unit" is used to distinguish this
Pascal source file from an ordinary Pascal program file or from a project
file.

345

346 Chapter 8 Modularity: Building Programmer-Defined Libraries

3. Once all syntax errors have been removed and the source file has been
saved, you are free to add the desktop file of the current Edit window to
the Project window. This is done by choosing the option A d d
"Filename" from the Project menu. The actual name you assigned
the source file for the unit will appear in the menu in place of
"Filename". Figure 8.5 shows the Project window with the new unit
I n t e r f a c e _ F i 1 e _ R o u t i n e s , stored as the file
Interface_Files. Unit, added to the Program window.

I nterface_Files.Unit

unit Interface_File_Ro ~D~ TeHt_File_Program.Projec =:B]§
{Purpose : This unit d~ Oetions Fi I e {b:l build order} Size

~ { request a f i
Runtime.lib 22820

{ prompt for tj
Interface.lib 12812 t--

{ individual; [Qlrn! V R lnterface_Files.Unit O { information fotai"coCie .. si:Ze ss'tr:rn
~ interface

var ~ Jg 121
File_Name: St.L.1.uy;

procedure Prompt_For_File_Name (var File_Name: string);
procedure Set_And_Show_Text_Window;
procedure Write_To_Data_File (File_Name: string) ;

implementation

Figure 8.5 The Project window, showing the insertion of file
Interface_Files.Unit.

4. Notice that the program unit has zero size when it is first added to the
Project window. The program unit can now be compiled. Select the
option Build (or Compile) from the Aun menu, and the source code
for this new unit will be built (compiled) and stored within the file for
the project. Figure 8.6 shows the Project window after the program unit
and the libraries have been built.

An alternative step in adding a new unit to the Project window is
to use the option Add File ••• from the Project menu. This command
option displays a dialog window where a file name is selected prior to
clicking the Add button. A copy of the source code of the selected file
is then added to the Project window. The dialog window can only be
closed by clicking the Done button.

5. Select the command option New from the File menu. It is now time
to insert the main Pascal program into an empty Edit window.
Remember to periodically select the option Check: SyntaH from the
Run menu to check the syntax of the Pascal code in the newly defined
Pascal program. Once you have entered the main program and corrected
all syntax errors, use the option Saue As •.• from the File menu to save

Modularity: Building Programmer-Defined Libraries Chapter 8

{

a copy of the Pascal source program. Figure 8.6 shows a portion of the
Edit window with another inactive Edit window in the background. The
active window shown is the Project window. As you can see from the
list of files in the Project window, the program source file
Text_File_Program has not yet been added to the project.

I nterface_Files.Unit

rewrite(Output_File, File_Name);
Write column headers to the output file. }

TeHt_File_Program

347

program Text_File_Progr §0§ TeHt_File_Program.Projec §E!J§
{Purpose : This program

Oetions File {b~ build order} Size ~ { and several
Runtime.lib 22820 ~ list { names,

{ gross income Interface.lib 12812 !-=-

{ be opened by [Ql[NJ V R lnterface_Files.Unit 1144

{ Microsoft Ex
............................. rorarc0Cie··siza··········· .. ·······3·a'7"fa

Q uses
Interface_File_R !QI IQ 121

{ ================ Body for the main program. ================ }

begin
{ Hide all windows and then open the Text window for viewing }

{ prompts and responses. }

Set_And_Show_Text_Window;
{ Prompt user for a file name. }

Prompt_For_File_Name(File_Name);
{ Now write data to the output file represented by file name.}

Write_To_Data_File(File_Name);
end.
!QI
Figure 8.6 The Project window w1u1 two inactive Edit windows in the background. The file

Interface_Files. Unit has now been built.

Remember that when the syntax of either a Pascal program or a
program unit is checked, any program units being borrowed must have
already been built (or compiled). If this is not the case, a bugs window
will appear, indicating that the unit referenced by the program unit
being checked either has no file in the Project window or the file in the
Project window has not yet been compiled. All units upon which a
Pascal program or program unit depends must be built before further
units are defined.

It is also important that units in the Project window be listed in
order of dependency. For example, if unit Z is a primary unit having no
dependency upon other programmer-defined units, it must be built first.

348 Chapter 8 Modularity: Building Programmer-Defined Libraries

If unit X uses only unit Z, it can be built second. A Pascal program
using unit X can then be defined and, since the previous dependent units
have already been built, it can be compiled or built. In the Project
window, the names of files for the two program units appear first,
followed by the file for the Pascal program. Toward the top of the list
is the file for unit Z, followed by the file for unit X, and at the bottom
is the file for the Pascal program. Note that you can change the
position of a file name in the Project window by highlighting the file
that is to be moved and using the mouse cursor, represented by a small
hand, to move the file to another position. A file can be moved upward
or downward.

6. You are now ready to add the main Pascal program to the Project
window. Make the Edit window containing the Pascal program active
(click somewhere within the Edit window), and then choose the option
Add "Filename" from the Project menu. This adds the file name for
the Pascal program to the Project window, but the compile size shows
as zero. Select the command option Build (or Compile) from the Run
menu to compile the program. The compiled code for the Pascal
program will reside within the project file. Figure 8.7 shows the
Project window after all of the files have been built.

§0§ TeHt_File_Program.Projec §BJ§
Options

NVR
D NVR

Fi I e (by build order)
Runtime.lib
Interface.lib
lnterface_Files.Unit
Test_File_Program

Figure 8. 7 The Project window after all of the
required files have been built.

£

Note that THINK Pascal has the ability to "remake" files that
depend on units where syntax changes are made. For example, if some
lines of code in unit Z are changed, selecting option Build from menu
Run for unit Z causes both unit Zand unit X to be rebuilt, because
unit X depends upon unit Z. This effect does not occur if the option
Compile is selected.

7. At this point you can execute the Pascal program by choosing the
option Go from the Run menu.

Choosing the option Uiews Options ••• in the Project menu displays additional
choices for observing information on files listed in the Project window. This can include
the file name storing the source; special run-time options for debugging, as well as
integer arithmetic and range-checking; the size of the unit or program; the unit name as it
relates to the identifier given in the program or unit header, but only after a file has been

Modularity: Building Programmer-Defined Libraries Chapter 8 349

compiled; the volume name of the folder where the source file is stored; and the date and
time when the source file within project was last saved.

When working with the Edit window of a program unit containing several routines,
you can locate the beginning of the source code of any routine by holding down the Apple
(command) key, clicking the title bar of the program unit, and after the pop-up window
appears, selecting the name of the routine to be viewed. Figure 8.8 shows what occurs for
the Edit window containing the file Interface_Files. Unit. The beginning of
procedure Prompt_For_File_Name is displayed if you highlight the procedure name
and release the mouse button.

I nterface_Files.Unit
unit Interface_File_
{Purpose This unit
{ request a
{ prompt for
{ individual

interface
var

informatio

I nterface_File_Routines
Prompt_For _Data
Prompt_For _File_Name
Set_And_Show_TeHt_Window
Write_To_Data_File

File_Name: string;
procedure Prompt_For_File_Name (var File_Name: string);
procedure Set_And_Show_Text_Window;
procedure Write_To_Data_File (File_Name: string);

Figure 8.8 Viewing a list of routines within a program unit after pressing the
Apple Key and clicking the title bar.

There is one additional point to consider before ending this section. If you need to
examine the source file of any program unit listed in the Project window, just highlight
the name of the file containing the unit while in the Project window, and double-click the
mouse button. This will open the Edit window if the file is closed, or make the Edit
window of the source file the active window if the file is open. An alternative for opening
the source file of any unit '. to choose the option Open ... from the File menu. Use
whichever approach you feel is convenient.

8.3 BUILDING THINK PASCAL LIBRARIES

A library can be either a single compiled unit or a collection of compiled units stored as a
special file and built by choosing the option Build Library ... from the Project menu.
A library can be added to a project by choosing the command option Add File ... from the
Project menu before any of the units in the Project window are built. In building a
library it is important that you also define an interface file that is separate from the library
file. An interface file allows the specification of constants, types, variables, as well as
function- and procedure-headers that can be borrowed by other units. It is important to
understand that while the interface unit allows another unit to see what can be borrowed,
the library contains the compiled code for borrowed functions and procedures.

350 Chapter 8 Modularity: Building Programmer-Defined Libraries

As an example, we will build a library for performing four basic complex arithmetic
operations: addition, subtraction, multiplication, and division. As a brief introduction, we
can represent a complex number R in rectangular form by the definition

R A + j B

where A represents the real part of the complex number R, B the imaginary part of the
complex number R, and j the square root of the value (-1). For two complex numbers
defined as

R A + j B

S = C + j D

the following is a list of rules for performing four complex arithmetic operations:

R + S
R - S =
R * S

(A+C)+j
(A C) + j
[(A * C
[(A+jB

B + D
B - D
B*D +j[(B*C)+(A*D)]

R I S

type

* (C - j D)] I (C2 + D2)

When storing complex values, we will define a Pascal record structure for
representing a complex number. Pascal record types are discussed in detail in Chapter 9.
The structure representing a complex number as a type is composed of two parts: a field
labeled Real_Part representing the real part of a complex number, and a field labeled
Imag_Part representing the imaginary part of the number. The following defines our
complex number as a record type called Complex_Rect:

Complex_Rect = record
Real_Part
Imag_Part

end;

real;
real;

The following unit is an interface unit specifying our record type Complex_Rect
as well as the definition of four functions for performing basic complex arithmetic:

unit Complex_Data_Interface;
{ Purpose: This unit defines the structure of a complex number
{ stored in rectangular form and lists four }
{ functions for performing complex arithmetic. }

interface
type

Complex_Rect record
Real_Part: real;
Imag_Part: real;

end;
function Complex_Add(R, S : Complex_Rect : Complex_Rect;
function Complex_Subtract(R, S Complex_Rect) Complex_Rect;
function Complex_Multiply(R, S : Complex_Rect) : Complex_Rect;

Modularity: Building Programmer-Defined Libraries Chapter 8 351

function Cornplex_Divide(R, S Cornplex_Rect) Cornplex_Rect;

implementation
{ The declarations that follow are optional. They are given to }
{ show that the body for each function is externally defined in }
{ another unit. }
function Cornplex_Add(R, S : Cornplex_Rect) : Cornplex_Rect;

external;
function Cornplex_Subtract(R, S Cornplex_Rect) Cornplex_Rect;

external;
function Cornplex_Multiply(R, S Cornplex_Rect) Cornplex_Rect;

external;
function Cornplex_Divide(R, S Cornplex_Rect) Cornplex_Rect;

external;
end.

This interface unit is important because it discloses the type that represents a
complex number and the functions that can be borrowed from this unit. Notice that all
four functions are declared as being external. This means that the executable bodies for the
four functions (Cornplex_Add, Cornplex_Subtract, Cornplex_Mul tiply, and
Cornplex_Divide) are stored in a separate file created as a library. The interface file is
created first. Open a new Edit window, and enter the text of the interface unit. Check the
syntax of the unit, and eliminate any syntax errors. Then you can save the source file
using the Saue or Saue Rs ... option from the File menu. At this point it is not
necessary to add this file to the Project window, because we are concerned with building a
library unit. You must remember that the interface file is never a part of the library. The
purpose of the interface unit is to specify identifiers that can be borrowed by other units
using the library. For now, the source file for our interface unit, called
Cornplex_Data_Interface, will be referred to as Cornplex_Interface. Unit.

The next step is to define the unit (or units) representing the source code for the
library. This file repeats the declarations of constants, types, variables, functions, and
procedures defined in the interface file but with the bodies of all routines defined in the
implementation-part of the unit. For our example, the unit called
Cornplex_Ari thrnetic defines each of the four functions. Notice that the declaration
for type co mp 1 e x_R e ct is repeated. This is necessary because the type
Cornplex_Rect is being used in this unit as well as in the interface unit.

unit Cornplex_Arithrnetic;
{ Purpose: This unit represents the source code for the library }
{ Cornplex_Math.lib. }

interface
type

Cornplex_Rect record
Real_Part: real;
Irnag_Part: real;

end;

function Cornplex_Add (R, S: Cornplex_Rect): Cornplex_Rect;
function Cornplex_Subtract (R, S: Cornplex_Rect): Cornplex_Rect;

352 Chapter 8 Modularity: Building Programmer-Defined Libraries

function Complex_Multiply (R, S: Complex_Rect): Complex_Rect;
function Complex_Divide (R, S: Complex_Rect): Complex_Rect;

implementation
{ -- }

function Complex_Add (R, S: Complex_Rect): Complex_Rect;
{ Purpose: This function computes the sum of two complex }
{ numbers represented by R and S. }

var
A, B, C, D: real;
Result: Complex_Rect;

begin
{ Initialize the values of variables A, B, C, and D. }

A := R.Real_Part;
B := R.Imag_Part;
C := S.Real_Part;
D := S.Imag_Part;

{ Compute the complex sum of R and S. }
Result.Real_Part := (A+ C);
Result.Imag_Part := (B + D);

{ Return the value of Result through the function name. }
Complex_Add := Result;

end; { Complex_Add }
{ -- }

function Complex_Subtract (R, S: Complex_Rect): Complex_Rect;
{ Purpose: This function computes the difference of two complex }
{ numbers represented by R and S. }

var
A, B, C, D: real;
Result: Complex_Rect;

begin
{ Initialize the values of variables A, B, C, and D. }

A := R.Real_Part;
B := R.Imag_Part;
C := S.Real_Part;
D := S.Imag_Part;

{ Compute the complex difference of R and S. }
Result.Real_Part := (A - C);
Result.Imag_Part := (B - D);

{ Return the value of Result through the function name. }
Complex_Subtract := Result;

end; { Complex_Subtract }
{ -- }

function Complex_Multiply (R, S: Complex_Rect): Complex_Rect;
{ Purpose: This function computes the product of two complex }
{ numbers represented by R and S. }

var
A, B, C, D: real;

Modularity: Building Programmer-Defined Libraries Chapter 8

Result: Complex_Rect;
begin
{ Initialize the values of variables A, B, C, and D. }

A := R.Real_Part;
B := R.Imag_Part;
C .- S.Real_Part;
D := S.Imag_Part;

{ Compute the complex product of R and S.
Result.Real_Part := (A* C) - (B * D);
Result.Imag_Part := (A* D) + (C * B);

{ Return the value of Result through the function name. }
Complex_Multiply := Result;

end; { Complex_Multiply }

353

{ --
function Complex_Divide {R, S: Complex_Rect): Complex_Rect;
{ Purpose: This function computes the quotient of two complex }
{ numbers represented by R and S. }

var
A, B, C, D, Temp: real;
Result: Complex_Rect;

begin
{ Initialize the values of variables A, B, C, and D. }

A := R.Real_Part;
B := R.Imag_Part;
C := S.Real_Part;
D := S.Imag_Part;

{ Compute the complex quotient of R divided by S. }
Temp := sqr(C) + sqr(D);
Result.Real_Part := ((A* C) + (B * D)) I Temp;
Result.Imag_Part := ((C * B) - (A* D)) I Temp;

{ Return the value of Result through the function name. }
Complex_Divide := Result;

end; { Complex_Divide }
end.

At this point you should insert the above code into an Edit window and, after
checking the syntax to remove all syntax errors, add the file to the Project window. Be
sure that a copy of the source is kept, because you may later need to edit the library if
functions need to be added or changed. In our example, the source for our library is stored
in a file called Complex_Ari thmetic. Unit. After adding this file to the Project
window, apply the command option Build from the Run menu in order to build the
compiled code. Figure 8.9 shows the Project window, from which the files
Runtime. lib and Interface. lib have been removed. These files will be added to
the Project window when the main Pascal program is built.

354 Chapter 8 Modularity: Building Programmer-Defined Libraries

C ompl eH_Rrit hm et i c. Un it

=BJ= -- --- --- -=o= CompleH_Math.Project a == unit Complex_Arithme
Ol!tions Fi le {b~ build order} Size ~ interface
[Ql[NI V R Complex_Arithmeti.. 790 type

Complex_Rect = :i:

............................. "foiatcoclitsize :nfo
Real_Part: re

~ Imag_Part: re
end; IQl jg

function Complex_Add (R, S: Complex_Rect): Complex_Rect;
function Complex_Subtract (R, S: Complex_Rect): Complex_Rect;
function Complex_Multiply (R, S: Complex_Rect) : Complex_Rect;
function Complex_Divide (R, S: Complex_Rect): Complex_Rect;

implementation
{

{

{

function Complex_Add (R, S: Complex_Rect): Complex_Rect;
Purpose: This function computes the sum of two complex }

numbers represented by R and s. }

var
A, B, C, D: real;
Result: Complex_Rect;

Figure 8.9 The Project window Complex_Math. Project without the libraries
Runtime. lib and Interface. lib.

}

In the next step we will build the library unit, using the command option Build
Library ... from the Project menu. Figure 8.10 shows the dialog window that appears
when you choose this option. Note that we have used the name Complex_ Math. lib
for storing the compiled machine code of this unit. 1 Click the Saue button in the dialog
window to create this library file.

In the next step we add our library to a new project. Figure 8.11 shows a Project
window w.1ere the source file titled Complex_Interface. Unit and the library file
titled Complex_Math. lib have been added to a project by using the option Rdd
Files ... from the Project menu. This is done by highlighting the file Complex_
Interfaces. Unit and clicking the Rdd button, and then repeating this step for the
file Complex_Ma th. lib. Once all the files are included in the Project window, it
must be built (or rebuilt), using the command option Build from the Run menu.

1 The extension .lib is used to distinguish a library from a project or a unit. This extension,
like others, is optional, because THINK Pascal automatically stores information on the type
of file it has created.

Modularity: Building Programmer-Defined Libraries Chapter 8 355

I a Building Library I
,.,
t.: com pl e H_M at h. Pro ••• ~ <:::::::> EHtHDSc

(Eject)

(Driue)

~
€) Saue Library as Saue

I CompleH_Math.lib I () Cancel

Figure 8.10 The dialog window for building or replacing a library.

Figure 8.11 shows a portion of the main Pascal program for testing the routines in

Tes t_C om pl eH_Rri t hm et i c
program Test_Complex_Arithmetic(input, output);

uses
Complex_Data_Interface

var ; ~D Test_CompleH.Project ~
A, B, C: Complex_R File Size Oetions {b~ build order)

begin Runtime.lib 22820
{ executable body of the mai Interface.lib 12812

ShowText; lQUNI v R Complex_ Interface 0
A.Real - Part := 1. O; Complex_Math.lib 544
A.Imag_Part := 1. 0 i [Ql[NI V R Test_Complex_Ari... 1136
B.Real Part - .- 2.0; ························r'oiaTccii:li:i"size 37·3'1'"2
B.Imag_Part .- 2 .O;
c := Complex_Add(A, B); IQl
writeln(C.Real_Part, C. Imag_Part) ;
c .- Complex_Subtract(A, B);
writeln(C.Real_Part, C. Imag_Part) ;
c := Complex_Multiply(A, B);

Figure 8.11 The Project window with the complex mathematical library
Complex_Math. lib added to the project Test_Complex. Project.

1

the complex math library. Here the uses clause has the argument Complex_Data_
Interface. Through this statement the Pascal program understands the type

356 Chapter 8 Modularity: Building Programmer-Defined Libraries

Complex_Rect and external functions that it needs to borrow from Complex_
Data_Interface. The routines in the library Complex_Math. lib contain the
actual machine code for execution.

Is it necessary to use an interface unit such as Complex_Data_Interface in
our main Pascal program? Actually no, because we can explicitly declare the functions
required by our test program by using the directive external. Figure 8.12 shows the
declaration of function-headers for our complex mathematics library with the interface unit
excluded. Notice that we must include the declaration for the type Complex_Rect,
because this information is not kept by the compiled file Complex_Math. lib when
the file is linked with our Pascal program. In our previous example we borrowed this type
from unit Complex_Data_Interface by applying the uses clause. The
external directive informs the compiler that the executable body of a routine is not
within the program unit that is being compiled. Rather, the executable code will be found
when a special program called the linker attempts to bind the call of a routine (where each
complex function is invoked in our program) with the location in a library where the
routine begins execution.

Tes t_Com p le H_R rit hm et i c_Reu ised

~D Test_CompleH.Project ~
program Test_Complex_Arithmet O~tions Fi le {b~ build orderl Size

type Runtime.lib 22820
Complex_Rect = Reco:i:: Interface.lib 12812

Real_Part; Complex_Math.lib 544
Imag_Part; [QJ[NJ V R Test_Complex_Ari... 1136

end;
............................. 'foiaTco'de.size 37·3-r2

var
A, B, C: Complex_Rect IQJ_

function Complex_Add (X, Y: Complex_Rect) : Complex_Rect;
external;
function Complex_Subtract (X, Y: Complex_Rect) : Complex_Rect
external;
function Complex_Multiply (X, Y: Complex_Rect) : Complex_Rect
external;
function Complex_Divide (X, Y: Complex_Rect) : Complex_Rect;
external;

begin
{ executable body of the main Pascal program }

Figure 8.12 Without the interface file included in the Project window, the external directive is
required in declaring the four complex functions to be external routines.

Another issue arises with multiple declarations. It is important to avoid having the
compiler generate multiple storage space when writing interface files that declare
constants and variables within the interface part of a unit. This requires using an external

Modularity: Building Programmer-Defined Libraries Chapter 8 357

variable directive of the form { $J+} to turn on the option not to allocate storage for
constants and variables, and the directive { $J-} to turn off the option when storage is to be
allocated. Understand that explicit programmer-defined types do not take up storage during
the execution of a Pascal program. Programmer-defined types only allow the compiler to
understand the properties of identifiers that represent a data type. Following is an example
that uses this compile directive.

unit Sample_Interface;
interface
con st

{$J+}
Local_Tax Rate = 0.02;
State_Tax_Rate = 0.04;

var
Local_ Tax
State_Tax
Total_ Tax
{$J-}

implementation

real;
real;
real;

8.4 USING THE USES CLAUSE WITHIN THE IMPLEMENTATION SECTION
OF A UNIT

As the previous sections have shown, the uses clause defines the dependencies that a
program or unit can have on other files that compose a part of the entire project. A
uses clause can appear within the interface portion as well as within the
implementation portion of a unit. If the uses clause is within the interface portion of a
particular unit, definitions in other units can be propagated to another unit or program
that borrows from this particular unit. Everything that a particular unit sees can be seen
by any program or unit that borrows from the unit. In turn, if the uses clause is within
the implementation section of a unit, then the interface-part cannot see the units that are
listed, and those units cannot be propagated.

If you choose the command option Compiler Options ••• in the Project menu and
click on the USES EKtensions box in the resulting dialog window, THINK Pascal
allows you to apply the uses clause in two different ways. First, it allows units listed
in the uses clause of the interface-part of a unit to be propagated. For example,
consider the followed unit, titled Propagate_Test:

unit Propagate_Test;
interface
uses

Unit_A, Unit_B, Unit_C, Unit_D;
implementation
end.

358 Chapter 8 Modularity: Building Programmer-Defined Libraries

Propaga te_Tes t depends upon four units, given as Uni t_A, Uni t_B,
Uni t_c, and Uni t_D. A type called Test_Type is defined within Uni t_D's interface
part and is used to define a new type in the unit that follows:

unit Check_Propagation;
interface
uses

Propagate_Test;
type

New_Data_Type = Test_Type;
implementation
end.

Although the uses clause of Check_Propaga t ion does not list Uni t_A,
Uni t_B, Uni t_C, and Uni t_D, the public parts defined in these units are propagated
to this unit through Propagate_ Test. Any unit that Propagate_Test can borrow
can be borrowed by Check_Propagation. Any program or unit that uses
Check_Propagation also borrows all the information defined in the public part of
check_ Prop a g at i on as well information defined in the public parts of
Propagate_Test, Unit_A, Unit_B, Unit_C, and Unit_D.

Second, setting the USES EHtensions option allows the uses clause to appear in
the implementation portion of a unit. This allows a unit to borrow only the information
that it needs and to hide information that it has borrowed from the interface portion of the
unit. It prevents a unit from propagating information that it borrows as well as new
information that it creates from definitions and declarations within the implementation
part of a unit. The following shows the modification of the content of
Propagate_Test and Check_Propagation. Notice that the information from
Uni t_D is only used in the implementation part of Check_Propagation and is not
promulgated by Propagate_Test:

unit Propagate_Test;
interface
uses

Unit_A, Unit_B, Unit_C;
implementation
end.

unit Check_Propagation;
interface
uses

Propagate_Test;
implementation
uses

Unit_D;
type

New_Data_Type = Test_Type;
end.

By including a uses clause in the implementation portion of check
Propagation, information such as New_Data_Type is hidden from any unit that

Modularity: Building Programmer-Defined Libraries Chapter 8 359

uses Check_Propagation. Remember that the propagation of units and the
application of a uses clause in the implementation portion of a unit are possible only
when the USES EHtension is turned on.

Without USES EHtension turned on, the following Pascal program will fail to
compile:

program Main (Input, Output);
uses

Unit_A;
begin

writeln(X, Z);
end.

unit Uni t_A;
interface

uses
Unit_B;

con st
x = z ;

implementation
end.

unit Uni t_B;
interface

con st
z = 345;

implementation
end.

The program Main fails to compile even though Uni t_A and Uni t_B are built
because constant X in Uni t_A is equated with constant Z in Uni t_B. Uni t_A sees
constant z because Uni t_A borrows from Uni t_B, but the program Main borrows
only from Uni t_A and understands only the declaration for constant X. It does not
understand that Xis equated with Z, because it cannot see the declaration for Z. How can
this problem be rectified? First, the main program must include a reference to Uni t_B in
the uses clause. This reference must precede Uni t_A, because constant xis being
replaced with constant Z. Otherwise the same compile error appears, because the translator
needs to know where identifier z is located. The translator is looking at the symbol table
in Uni t_A and at this point would not see a proper reference to z as it builds a symbol
table for program Main. Even if constants X and z are not accessed by the body of
program Main, this problem still exists if program Main borrows from Uni t_A. The
uses clause in program Main requires Uni t_B to precede Uni t_A, so that the symbol
table being created for program Main will understand the public part of Uni t_B before
seeing any reference to constant z. This is not the case if Uses EHtension is set. When
this option is set, Uni t_B is propagated to program Main through Uni t_A, and only
Uni t_A needs to be declared in the uses clause of Main. Program Main will properly
see all the symbol tables from all units that are propagated to it.

360 Chapter 8 Modularity: Building Programmer-Defined Libraries

8.5 PREDEFINED LIBRARIES

THINK Pascal supports all of the standard Pascal procedures and functions as well as
most of the routines from the common Macintosh Toolbox libraries. When a project
window is created, standard predefined procedures and functions from the library file
Runtime. lib are inserted. Runtime. lib includes standard IO routines such as
read, readln, write, wri teln, other routines required by the compiler when
interacting with special data types, such as sets and 32-bit multiples. This library also
contains routines that make Macintosh Pascal compatible with THINK Pascal. In fact,
you could consider most of Macintosh Pascal as a subset of THINK Pascal, because many
Macintosh Pascal programs can be compiled and executed in THINK Pascal.

THINK Pascal supports all Macintosh Toolbox libraries referenced in Inside
Macintosh, Volumes 1-V, both ROM- and RAM-based. ROM-based routines are stored in
programmable ROM chips in the Macintosh machine. RAM-based routines are allocated
to main memory by the operating system. Macintosh Toolbox routines are further
classified as either stack-based or register-based routines. Stack-based routines follow
standard run-time conventions by pushing the values and addresses of actual parameters
onto a system runtime stack. This means that values and address references of parameters
are referenced in main memory-increasing the execution time of a routine. Register-based
routines access the values and addresses of their parameters through registers. A register is
a hardware device for the temporary storage of information such as data or the address of a
RAM location. For register-based routines that are functions, results are returned through
the use of one or more registers. Register-based routines can access the values and
addresses of their actual parameters faster than stack-based routines. The trade-off for using
register-based routines is that fewer general-purpose registers are available for use during
the execution of a routine. Its major advantage is in speed of execution, because access to
registers is faster than access to the contents of addresses in random memory. On the other
hand, stack-based routines can allow for a lengthy list of formal parameters, because only
the run-time stack is needed for storage of parameter values. At the same time more
registers are available during execution.

The THINK Pascal interface files hide the distinction between stack-based and
register-based routines. These interface files provide information that is necessary for
interaction with a Pascal program. The burden of properly interfacing and branching to the
appropriate machine-code routine is left to the compiler and the linking program. The
THINK Pascal compiler generates the appropriate inline calls to all register-based routines
that are trapped by the system during execution. For most of the register-based Toolbox
routines that are both RAM- and ROM-based, THINK Pascal uses the file
Interface. lib for "gluing" the appropriate code where a Pascal program invokes a
Toolbox routine. Following is a list of interface files that are incorporated in the file
Interface. lib. The names of these files should not be included in any uses clause
in a THINK Pascal program. (Recall the number of times you have been told to remove
the

uses
QuickDrawl;

clause from a Macintosh Pascal program in order to make a program execute under
THINK Pascal.)

Controls.p
Diskinit.p

Desk.p
Errors.p

Devices.p
Events.p

Dialogs.p
Files .p

Modularity: Building Programmer-Defined Libraries Chapter 8

Fonts.p
Mernory.p
OSintf.p
PaletteMgr.p
Resources.p
Sound.p
ToolUtils.

GestaltEqu.p
MernTypes.p
OSUtils.p
Pickerintf.p
Scrap.p
StandardFile.p

Lists.p
Menus.p
Packages.p
QDOffscreen.p
SCSIIntf.p
TextEdit.p
Videointf.

MacPrint.p
OSEvents.p
Packintf.p
QuickDraw.p
SegLoad.p
Toolintf.p
Windows.

361

For each of these built-in interfaces, THINK Pascal provides a dummy interface file
containing no definitions. These files are provided to ease the difficulty of porting Pascal
programs from other development systems into THINK Pascal. When one of the dummy
interface files is added and built in a Project window, it is unnecessary to modify a unit
that includes one of these interfaces in its uses clause.

Not all available interface files are incorporated in Interface. lib. Following is
a list of interface files excluded from Interface. lib:

ADSP.p
AppleEvents.p
ComrnResources.p
CRMSerialDevices.p
DeskBus.p
ENET.p
FileTransferTools.p
Folders.p
Icons.p
Notification.p
PasLibintf.p
Power.p
PrintTraps.p
ROMDefs.p
SCSI.p
Slots.p
Start.p
Terrninals.p
Tr~S.J2.

AIFF.p
AppleTalk.p
Connections.p
CTBUtilities.p
Disks.p
EPPC.p
Finder.p
Graf3D.p
Language.p
Objintf .p
Picker.p
PPCToolBox.p
Processes.p
SANE.p
Serial.p
Sound.p
Strings.p
TerrninalTools.p
Video'..12.

Aliases.p
Balloons.p
ConnectionTools.p
DatabaseAccess.p
Editions .p
FileTransfers.p
FixMath.p
HyperXCrnd.p
MIDI.p
Palettes.p
PictUtil.p
Printing.p
Retrace.p
Script.p
ShutDown.p
Soundinput.p
SysEqu.p
Tirner.p

If these interface files are used, they must be explicitly included in a Project window as
well as in a unit's uses clause. In some cases, both the interface file and and its
associated library file must be included if the program and/or unit is to be successfully
compiled or built. The following list includes those interface files that require an affiliated
library file along with an interface file. In some circumstances, we must choose between
two possible library files:

AppleTalk.p
FixMath.p
Graf3D.p
HyperXCrnd.p
Printing.p
SANE.J2.

ABPackage.Lib, nAppleTalk.Lib
FixMath.lib
Graf3D.Lib
HyperXLib.Lib
PrintCalls.Lib
SANELib.lib, SANELib881.lib

362 Chapter 8 Modularity: Building Programmer-Defined Libraries

8.6 APPLYING ADDED MODULARIZATION TO THE TUTOR SYSTEM

While it is common in software engineering to refer to a procedure or function as a
module, the idea of modularization is furthered by packaging the definitions of constants,
types, variables, and routines within units. Consider the hierarchical diagram of
Tutor_System given in Figure 8.13.

Tutor-System

i
Screen

Screen __ t ____ _,S,...c'"'re""'en.,....-:====:'.'__,

i Choice i
r- Tutor
t Unit

Screen Practice
Unit

/
---- ---------------·--------- r········ ··················· •·············------- ···--·········

l.--,n-i~tia-li-ze ___, .---~--.......:
Present_Menu_ :

Drawing_
Window

To_Student

-----------------------------·
Box

il I i
Window

MuL:

Tutor_ The
Student

Box

J,

Practice_ With_
Table t

Mui
Ans Box i t Box

J, Mui

i Ans

Mui

w
Unit

. Draw_Multipli- Fill_Multipli-
cation_ Table

Report_Students_ Test_Students_
cation_ Table Progress Skill

~-~ ---------------------~-. ---. --. --. ---
-----------------········-------------·-

Utility
Un it

Choose_Multiplicand*

I)

Center_Options
Area•

Prompt_Student_
To_Continue

Center_Options_
Area•

Notes:
The parameter "Box" is an abbreviation for Drawing_Box
The parameter "Mul" is an abbreviation for Multiplicand.
The parameter "Ans" is an abbreviation for Nwnber_Of_Correct_Answers.
The* indicates that a module a ears more than once.

Figure 8.13 The hierarchical diagram of the tutor system given in Chapter 7, with modules
divided among four units.

Four zones appear in this figure, representing distinct program units. Each unit is
chosen to provide a basic area of relevance to the hierarchical structure of the tutoring
system. For example, at the second level of the hierarchical diagram, there are three
unique units. Window Unit defines routines for initializing the Drawing window as
well as presenting a menu to the student. Tu tor Unit provides the routines that drill
the student, and Practice Unit serves to test the student's skills. These three units
borrow routines from Utility Unit, and the main executive program borrows routines
from Window Unit, Tutor Unit, and Practice Unit. A fifth unit, called Data
Unit (not seen in Figure 8.13), is used to store a single data type called Options.
Within Tutor Unit are three modules called Tutor_The_Student, Draw_
Multiplication_Table, and Fill_Multiplication_Table. The latter two

Modularity: Building Programmer-Defined Libraries Chapter 8 363

modules are subordinate to Tutor_The_Student. Each subordinate module is defined
as a local routine within the implementation portion of Tutor Unit. This same
argument applies to the routines Report_Students_Progress, and Test_
Students_Skill in Practice Unit. The module Choose_Multiplicand is
moved into the Utility Unit, because it serves both Tutor Unit and Practice
Unit.

Below are the listings of the units. Code for the bodies of the routines is not
included. The units are built in the order in which they are listed.

unit Data_Unit;
interface

type
Option= (Tutor, Practice, Quit);

implementation
end.

unit Utility_Unit;
interface

procedure Center_Options_Area;
procedure Choose_Multiplicand (Drawing_Box: Rect;

var Multiplicand: integer);
procedure Prompt_Student_To_Continue;

implementation
{ ----------------- List of module definitions. ---------------- }

procedure Center_Options_Area;
{ Purpose: This procedure establishes the rectangle area in }
{ the Drawing window for viewing various options. }
begin

end; Center_Options_Area }
-- }
procedure Choose_Multiplicand;
{ (Drawing_Box:Rect; var Multiplicand: integer) }
{ Purpose: This module returns a value representing the }
{ multiplicand.}

var
Time: longint;

begin

end; { Choose_Multiplicand }
-- }
procedure
{ Purpose:
{
{

var

Prompt_Student_To_Continue;
This procedure prompts the student to continue }
execution by having the student click the mouse }
button. }

Time: longint;
begin

end; { Prompt_Student_To_Continue }

364 Chapter 8 Modularity: Building Programmer-Defined Libraries

l!n;:.~-- JI

unit Window_Unit;
interface

uses
Utility_Unit, Data_Unit;

procedure Initialize_Drawing_Window (var Drawing_Box: Rect);
procedure Present_Menu_To_Student (Drawing_Box: Rect; var

Choice: Option) ;
implementation
{ ---------------- List of module definitions. ----------------- }

procedure Initialize_Drawing_Window; { var Drawing_Box: }
{ Rect)}
{ Purpose: This procedure sets the boundaries for both the }
{ Drawing window and the Text window. The Drawing }
{ window will be located directly below the title }
{ bar; the remainder of the screen shows only the }
{ Drawing window. }

var
Text_Box: Rect;

begin

end; { Initialize_Drawing_Window }
{ -- }

procedure Present_Menu_To_Student;
{ (Drawing_Box:Rect; var Choice: Option) }
{ Purpose: This procedure returns a value as a choice for an }
{ option. }

var
X, Y: integer;
Screen_Point: Point;

begin

end; { Present_Menu_To_Student }
{ -- }
end.

unit Tutor_Unit;
interface

uses
Utility_Unit;

procedure Tutor_The_Student (Drawing_Box: Rect);
implementation
{ ----------------- List of forward directives. ---------------- }

procedure Draw_Mutiplication_Table (Drawing_Box: Rect);
forward;
procedure Fill_Mutiplication_Table (Multiplicand: integer);
forward;

Modularity: Building Programmer-Defined Libraries Chapter 8 365

{ ---------------- List of module definitions. ----------------- }
procedure Draw_Mutiplication_Table; { (Drawing_Box: Rect) }
{ Purpose: This procedure draws a multiplication table under }
{ the option to tutor the student. }
var

Y: integer;
begin

end; { Draw_Multiplication_Table }
{ -- }

procedure Fill_Mutiplication_Table; {(Multiplicand: integer)}
{ Purpose: This module fills the contents of smaller }
{ rectangles in the multiplication table with }
{ strings composed of a multiplier, multiplicand,
{ and product. }

var
Multiplier, Inner_Count, Outer_Count, X, Y: integer;

begin

end; { Fill_Mutiplication_Table }
{ -- }

procedure Tutor_The_Student; { (Drawing_Box: Rect) }
{ Purpose: This procedure presents a multiplication table }
{ for the student to review. }

var
Multiplicand: integer;

begin

end; { Tutor_The_Student }
{ -- }
end.

unit Practice_Unit;
interface

uses
Utility_Unit;

procedure Practice_With_Table (Drawing_Box: Rect);
implementation
{ ----------------- List of forward directives. ---------------­

procedure Report_On_Students_Progress
(Nurnber_Correct_Answers: integer);
forward;
procedure Test_Students_Skill (Drawing_Box: Rect;

Multiplicand: integer;
var Nurnber_Correct_Answers: integer);

forward;
{ ---------------- List of module definitions. ----------------- }

procedure Report_On_Students_Progress;
{ (Nurnber_Correct_Answers: integer) }
{ Purpose: This procedure provides a short report of the }

366 Chapter 8 Modularity: Building Programmer-Defined Libraries

{ student's progress.
var

Time: longint;
begin

end; { Report_On_Students_Progress }
{ -- }

procedure Test_Students_Skill;
{ (Drawing_Box : Rect; Multiplicand: integer;
{ var Nurnber_Correct_Answers: integer) }
{ Purpose: This procedure checks the multiplication skill of }
{ the student. }

var
Multiplier, Product, Student_Answer: integer;
Time: longint;

begin

end; { Test_Students_Skill }
-- }
procedure Practice_With_Table; (Drawing_Box: Rect) }
{ Purpose: This procedure lets the student practice with his }
{ or her own multiplication table. }

var
Multiplicand, Nurnber_Correct_Answers: integer;

begin

end; { Practice_With_Table }
{ -- }
end.

program Tutor_System (Input, Output);
{ Purpose: This program provides a student with the option to }
{ study and practice with his or her own }
{ multiplication tables. }

uses
Data_Unit, Window_Unit, Tutor_Unit, Practice_Unit;

var
Choice: Option;
Screen: Rect;

{ ================ Body of the main program. ===================
begin

Initialize_Drawing_Window(Screen);
repeat
{Prompt the student for a choice. }

Present_Menu_To_Student(Screen, Choice);
case Choice of

Tutor:
Tutor_The_Student(Screen);

Practice:
Practice_With_Table(Screen);

Modularity: Building Programmer-Defined Libraries Chapter 8 367

Quit:
HideAll;

e:nd;
until Choice = Quit;

e:nd.

i

Figure 8.14 shows a second approach for enclosing the modules ofTutor_System in
units. Here the units are based upon the levels of the hierarchical chart rather than on their
functional capabilities. Notice that only three units are necessary; a fourth unit stores the
data type called Options. Which approach is better? There is no clear answer, because
this can depend upon the software maintenance aspect of the present application. The
units in Figure 8.13 are based upon specific functionality, whereas Figure 8.14 shows no
functional relationships between units. In Figure 8.13 if Practice Unit required
changes to the code of the module Choose_Mul tiplicand, which is not needed by
Tutor_Uni t, then a copy with the changes could be placed into Practice Unit,
and the older copy of Choose_Mul tiplicand placed into Tutor_Uni t. Each
module would be placed in the private portion of the proper unit, with each module acting
as a procedure local to the unit.

Tutor-System

Screen------'
Screen Level-One Unit

Screen

r- Tutor Unit

...
Initialize_
Drawing_
Window

To_Student
Tutor_The
_Student

Practice_ With_
Table

--------------------~ --"i:,: >i: : : : : : _-_-_£ ·_-_-_-_-_-_-_-_-_-_-_i_-:::::::: ~~: l i:::: ~~:: i :,
: Draw_Multipli- Fill_Multipli- Report_Stu- Test_Students_ '

Level· Two
Unit

' cation_Table cation_Table dents_Progress Skill

Level-Three -----· -------- -------------············· --------------- -----------

"L
Notes:

Choose_Mul
tiplicand*

Center_ Options
_ Area•

Prompt_Student _
to_Continue

The parameter "Box" is an abbreviation for Drawing_Box
The parameter "Mul" is an abbreviation for Multiplicand.
The parameter "Ans" is an abbreviation for Numoer_Of_Correct_Answers.
The indicates that a module appears more than once.

.................. -----
Choose_Mul­

tiplicand*

Figure 8.14 The hierarchical diagram of the tutor system, with units based on levels.

368 Chapter 8 Modularity: Building Programmer-Defined Libraries

With the plan shown in Figure 8.14, modifying the module Choose_
Multiplicand would be more difficult, because it is shared with modules in Level­
One Unit. Here two distinct Choose_Mul tiplicand modules would be required and
would be kept in Level-Two Unit.

When developing complex applications, planning for proper software maintenance is
important. Good software applications will grow as enhancements are suggested.
Planning for this growth during the early phases of development and implementation
provides benefits in later stages of maintenance. Effective use of program units can help
in establishing libraries that can be shared among several applications, as well as in
building applications that are error-free.

8.7 ALLOCATING A PROJECT AS AN APPLICATION

In the previous sections we examined the steps for building projects and establishing
programmer-defined libraries. THINK Pascal allows the programmer to establish a project
as an application by applying the options Select Project Type ... and Build
Application ... from the Project menu. When working on a project, a programmer can
set the project type by selecting the command option Select Project Type ... from the
Project menu. Figure 8.15 shows the dialog window for setting the type of project.

• Application

r-File Information

Type: APPL I Creator: j ????
~Bundle Bit

D Far Code

l""" Res o u re e Info rm at ion ... ,

o.JILJ Name: !~~;;~;;;~~:;~:=::~;~;::.=:.=:.=::=:.=:·=-=:=.:;:~;;~
Type: '.: ,! • ! inttributes: e·~:·~:·i ! i

lfi]
~
Driver

rn
~

;.: ! ;

i""! Multi-Segment
'1111 :

t°.'.Jtustom Header

segment Type: [""""""~]
... D ri u er Info rma ti o 0 ... ,

·:;::;l f , ,.I(!!!!!!!!!!!!!!!!!!!!!llt.I
Flags: b !..J Delay: 1...1 ,· OK)1

Code Resource Mask: ~:3 !" !
: L J (cancel K.)

'•

Figure 8.15 The dialog window for establishing an application
from a project.

Modularity: Building Programmer-Defined Libraries Chapter 8 369

Notice that it offers four project types; application, desk accessory, driver, or code
resource. This section deals only with establishing a project as an application. References
on establishing desk accessories, drivers, and code resource can be found in the THINK
Pascal User Manual, Chapter 12, "Building Projects" (Symantec Corporation) and in
various chapters of Inside Macintosh Volume I, Inside Macintosh Volume II, Inside
Macintosh Volume IV, and Inside Macintosh Volume V.

By default, you can choose project type APPL (short for application). The creator
field, a unique four-character signature, identifies the application that has created the file.
Having the Bundle Bit set lets the Finder know that the application being created has a
resource type BNDL with its own icon. No other information is required for setting the
project as an application type. On clicking the OK button, the Finder will learn the kind
of file that is being created as well as how to display it on the desktop.

With the Far Code option set, THINK Pascal allows large applications to be
written that include jump tables as large as 256K bytes. A jump table contains the entry
of any routine that a program must invoke across boundary segments of RAM memory.
When the option is off, a jump table can only support jumps with a maximum of 32K
bytes.

The dialog window in Figure 8.15 sets the project type, andthe option Build
Application ... allows you to select a file name for an application. As shown in the
dialog window of Figure 8.16, the name Tutor System for the program called
Tutor_System. THINK is entered as the application name. When the Smart link
option is set, only referenced object code of sources and libraries by units and the main
Pascal program are used to create the resulting application file. Functions and procedures
that are not referenced are not included. Choosing the Smart link option increases the
time for building an application, but the resulting object file for the application is in
general smaller than if the option was not set.

I a Test Programs I
CJ Building Library
,., Ch K u ec .p
D Chee K.unit
D Chee Z.unit
D format_for _Unit.Unit
D I nterface_Files.Unit

Saue Application as

I Tutor System

181 Smart Link XS

c:> EHtHDSc

(

!~~I
Eject

(Driue

¢ Saue

(Cancel

Figure 8.16 The dialog window for naming and saving
an application.

)

)

D
)

370 Chapter 8 Modularity: Building Programmer-Defined Libraries

We recommend that you leave the Smart link unset if you repeat the building of an
application for frequent testing. On leaving this last dialog window and then leaving the
project, your application is ready for execution. Double-clicking on the name or on the
application icon opens the application for execution. It is important to understand that the
Drawing and Text windows will be closed once the application ends execution. You must
provide a prompt for the user if the windows are to remain open for examination before
execution of the application terminates. Once execution ends, all information shown in
the Text and Drawing windows will be lost, because applications are always executed
from outside the THINK Pascal environment. In addition, applications cannot be executed
by entering THINK Pascal, opening a project, and building a Project window.

8.8 USING THE PROFILER TO COLLECT PROGRAM STATISTICS

THINK Pascal offers a profiler that collects statistics on any program executed from
within a project. THINK Pascal's code profiler provides a summary on execution time for
each routine. The actions of the profiler are set by turning on the Profile option in the
dialog window of Compile Options ••• in the Project menu. The option Long Names
should be set if the routines being examined have names longer than eight characters. The
Debug and Names options in the Project window must be turned on for any unit
containing routines that are being measured (profiled). No statistics are collected on
routines in a program unit if the unit's Debug option is turned off. If the Debug option
is on but the Names option is turned off, the profiler will not list the name of any
routine that is being measured; instead it lists routine names as ? ? ? ? ? ? ? ? . When a
program ends or halts execution, the profiler writes a report to the Text window. By
choosing options such as echoing to the printer or to a file, you can direct what is
displayed in the Text window to an output file.

As a tool for examining the execution characteristics of a program, the profiler
records information on every procedure or function that is invoked. The code profiler
examines only those routines that are defined within a program unit but does not report
on the routines from the Macintosh Toolbox. Figure 8.17 shows a report on routines
from Tutor_System. Notice that all time is measured in milliseconds (10-3 seconds).

This profile report has six columns: the name of each routine that has been executed;
the minimum, maximum, and average time spent when executing each routine; the total
time spent in execution of each routine; the percentage of the program's time spent on
execution of each routine; and the number times that each routine was invoked. Routines
are listed in the order of their invocation as the program is being executed. For Tutor
System most of the execution time is spent in Prompt_Student_To_Continue
and in Test_Students_Skill. As the table shows, the routines toward the top of
the hierarchical structure like Tutor_System, Present_Menu_To_Student,
Tutor_The_Student, and Practice_With_Table take little time in execution,
because their primary function is to make decisions. For each of these superordinate
modules, most of the work is performed by the subordinate modules. Adding the interface
file Profile. p to your Project window and adding the unit name Profiler to the
uses clause of any unit that directly calls upon profiler routines, gives you additional
control over capturing profiled information from within the program.

Modularity: Building Programmer-Defined Libraries Chapter 8 371

THINK Pascal Procedure Profile

All time is measured in milliseconds.
rounded down to the nearest millisecond.

Elapsed Time = 77329
Measured Time = 77327
Total cans = 45

Routine Min Max Avg Total % Times
Name Time Time Time Time Time caned

CENTER_OPI'IONS_ARFA 25 27 25 462 0.60 18
CHOOSEJruLTIPLICAND 3365 3504 3434 6869 8.88 2
DRAW_MULTIPLICATION_TABLE 64 64 64 64 0.08 1
FILL_MULTIPLICATION_TABLE 77 77 77 77 0.10 1
INITIALIZE_DRAWING_WINOCIW 272 272 272 272 0.35 1
PRACTICE;_WTI'H_TABLE 4 4 4 4 0.01 1
PRFSENT_MENU_'ro_STUDENI' 1435 2871 1989 5967 7.72 3
PROMPI'__$TUDENT_'ro_CONTINUE 1084 3301 1668 23360 30.21 14
REPORT_CN_S'I'UDENTS_PROGRESS 3751 3751 3751 3751 4.85 1
TEST_S'I'UDENTS_SKILL 36348 36348 36348 36348 47.01 1
TU'IOR__$YSTEM 151 151 151 151 0.20 1
TU'IOR THE STUDENT 2 2 2 2 0.00 1

Figure 8.17 THINK Pascal profile report on execution of Tutor_System.

The following briefly reviews the procedures, function, and the profile variable that
allow control of profiler:

var %_PTrace : Boolean

When set to the Boolean value false, the profiler turns off the collection of statistics.
Reestablishing the collection of information is accomplished by resetting its value to
true.

procedure DumpProfile;

This procedure will dump (display) current statistics on the program in execution to the
Text window.

procedure DumpProfileToFile(File_Name : Str255);

This procedure dumps (writes) the current statistics of the program in execution to a
physical file in the default volume represented by the formal parameter File_Name. If
the file exists, it is initially treated as an empty file and then written into, with all
previous d~ta being lost. If the file does not exist, it is created and written into as an
empty file. The default volume is assumed to be the folder where the project is currently
located.

372 Chapter 8 Modularity: Building Programmer-Defined Libraries

procedure ResetProfile;

This routine reinitializes the profiler and its statistics. It allows the collection of multiple
sets of statistics on portions of a program that repeat execution of an application.

procedure TerminateProfile;

This routine halts the collection of statistics by the profiler.

function InitProfiler(Number_Procedures, Number_Activations
integer) : Boolean;

The formal parameter Number_Procedures represents the maximum number of
routines that can be tracked by profiler. The formal parameter Number_Ac ti vat ions
represents the maximum number of activations for any recursive routine. With the
Profile option set, the profiler is automatically initialized and reserves memory space
for tracking a maximum of 200 routines. The maximum number of routines to be tracked
can be changed by invoking this function as the first executable statement in a program
and passing to it values for Number_Procedures and Number_Activations.
The maximum value for the formal parameter Number_Procedures is 32,768. The
value passed to Number _Act i vat i ens is 1 unless one or several recursive routines
are present requiring a maximum number of activations. This function returns the
Boolean value true if profiler can be initialized; otherwise, it returns false.

Following is a listing of the main program for the tutor system that uses the profiler
to collect statistics. Profiler functions are invoked to collect data only on the
superordinate module Practice_With_Table and its corresponding subordinate
modules. Notice that the unit name Profiler has been added to the uses clause
along with the list of other units being borrowed. This is necessary, because the program
is using the variable %_PTrace as well as several profiler routines. In the initial steps,
the profiler is turned off by assigning the value false to %_PTrace. When the program
executes the case option Practice, the profiler is made active, and before it begins
collecting information, it executes the routine ResetProfile to reinitialize all data to
zero. When the practice session ends, the routine DumpProfile writes the current
collection of information to the Text window. The profiler is then disabled by assigning
the value false to %_PTrace.

program Tutor_System (Input, Output);
{ Purpose: This program provides a student with the option to }
{ study and practice with his or her own }
{ multiplication tables. }

uses
Profiler, Data_Unit, Window_Unit, Tutor_Unit, Practice_Unit;

var
Choice: Option;
Screen: Rect;

{ ================ Body of the main program. =================== }
begin
{ Turn off the collection of statistics by the profiler. }

%_PTrace := false;
{ Continue to execute the program with the collection of }
{ statistics being activated at a later point within the program.}

Modularity: Building Programmer-Defined Libraries Chapter 8

Initialize_Drawing_Window(Screen);
repeat
{Prompt the student for a choice. }

Present_Menu_To_Student(Screen, Choice);
case Choice of

end;

Tutor:
Tutor_The_Student(Screen);

Practice:
begin

{ Reestablish the collection of statistics by the }
{ profiler. }

%_PTrace .- true;
{ Reinitialize the profiler and its statistical }
{ information. }

ResetProfile;
{ Provide a practice session with Practice Unit. }

Practice_With_Table(Screen);
Write the current statistics to the Text window }
and then turn off the collection of information }
by the profiler. }

DumpProfile;
%_PTrace .- false;

end;
Quit:

HideAll;

until Choice = Quit;
end.

373

The following shows the contents of the Text window for one practice session of the
tutor system:

THINK Pascal Procedure Profile

All time is measured in milliseconds.
rounded down to the nearest millisecond.

Elapsed Time =
Measured Time
Total Calls =

Routine
Name

71616
68501

31

PRACTICE_WITH_TABLE
CHOOSE_MULTil?LICAND
CENTER_OPTIONS_AREA
TEST_STIJDENTS_SKILL
PRCMPT_STUDENT_TO_CONTINUE
REroRT ON STIJDENTS PROSRESS

Min Max
Time Time

3 3
4081 4081

25 26
37140 37140

944 5759
3755 3755

Avg Total % Times
Time Time Time Called

3 3 0.00 1
4081 4081 5.96 1

25 358 0.52 14
37140 37140 54.22 1

1781 23164 33 .82 13
3755 3755 5.48 1

374 Chapter 8 Modularity: Building Programmer-Defined Libraries

Be sure that you disable the option for profiling before leaving the project and before
building a final application. If you forget, the profiler will be included and will add extra
overhead in executing your application and will report useless information to the
application user. Understand that the profile option only allows us to examine the
execution time of routines. It does not trace the values of variables, nor the execution
time taken by individual control statements.

8.9 USING LIGHTSBUG FOR VIEWING THE EXECUTION OF A PROGRAM

LightsBug is a sophisticated programming tool for examining the execution of a
program. It is different from a profiler, because it allows us to examine the values of
variables and routine parameters as the program executes, and also allows us to change the
content of memory. It does not provide statistical information on the execution of a
program.

As a programming tool, a debugger is an application that can trace the execution of a
program and allow us to interrupt its execution by inserting break points (modifying one
or more source code statements). If the program fails to execute, the debugger allows us
to jump around error-prone statements and continue execution by testing the remainder of
a program. A debugger examines the code during execution of a program, but it does not
examine the correctness of the program as an algorithm.

LightsBug allows us to view the order in which all procedures and functions are
invoked. By inserting stops (break points) in a THINK Pascal program, we can observe
the values of local and global variables before continuing execution. Programmers who
are knowledgeable about the Macintosh at the machine level can choose to view the
hexadecimal content of CPU registers and memory allocations within blocks and heaps of
the software application and within the system heap directly on the screen.
The THINK Pascal debugger is made active by choosing the command option
LightsBug from the Debug menu. For all units being examined, LightsBug works
better when both the Debug and Names options are set within the Project window.
Figure 8.18 shows the LightsBug window when LightsBug is first activated. Notice that
the LightsBug window is divided into four subwindows called panes. Each pane provides a
separate view of the program during execution, and each has its own vertical elevator bar.
For example, the upper left pane allows us to view the chain of routines that are called as
the program is being executed. This window is useful in observing routines that are either
directly or indirectly recursive. The upper right pane displays the values of global, local,
and parameter values as the program executes. It allows us to observe the content of
various objects when the program in execution is interrupted. The center pane allows for
expanded views of data. In particular, we can observe the expanded values of variables
such as arrays and records. The bottom pane shows the contents of Macintosh memory as
it relates to the execution of the program. Each pane can be made larger or smaller by
dragging the double line that separates the panes. Panes can be adjusted to cover the
complete screen or only a portion of the screen.

The four groups of icons to the left of the windows provide various options when
viewing the execution of a program. The icon referred to as Variable Display allows the
left and right panes at the top of LightsBug window to show all values of variables
visible in one of the routines selected in the chain of calls. Selecting the content of one of
the routines is done by highlighting one of the names listed in Pane 1; the values of all
variables associated with the routine are displayed in Pane 2. The values of constants are

Modularity: Building Programmer-Defined Libraries Chapter 8

Vari,,able Display.

Register Display

Heap Display~

~D ~1

1

~ Drag a variable
~Expanded View

~ +-Collections

00 +-Watchpoints

LightsBug-1
is not running

to this Magnifying Glass icon

375

2

t ~ e: I 00000000 I (±) Offset I 0000 I (Edi tl
~ ~IO: 0081 0000 4080 2A14 0038 07A8 0038 07AA
..] : 0038 07AC 0038 07AE 0038 07BO 0038 07B2

• A •• @A* •• 8 . ® . !Hi!~
8 .. 8 8 00 ::::::

.@ii :@i :@iaJ: : 4080 2106 4080 2108 4080 64BA 0038 07~
urn (Uf ~0~0 210E 4080 210E 4080 210E 4080 210E @A! • @A! • @A! • @ l2J

LL Edit View

LType-cast View Pane 4
Trash Can Pane 3

Pane 1: This subwindow displays the chain of function and procedure calls.
Pane 2: This subwindow displays the values of global and routine variables.
Pane 3: This subwindow dfsplays expanded views of variables.
Pane 4: This subwindow displays the content of Macintosh memory.

Figure 8.18 Format of the LightsBug window.

never displayed, because they 11ever change. Although the contents of both Panes 1 and 2
can be highlighted, they cannot be cut or copied while the Project is active.

Figure 8.19 shows the contents of Panes 1, 2, and 3 for the program Draw_Rings
and procedure Draw_Concentric_Rings. In the LightsBug window shown a stop is
inserted at the beginning of procedure Draw_Concentric_Rings, using the option
Stops In from the Debug menu.

This is necessary to stop the program before the body of the procedure is executed, so
that we can examine the values of parameters and variables. All stops from the current
Program window can be removed by selecting the Pull Stops option from the same
menu. Pressing the option key makes the option Pull All Stops available for pulling all
stops from all files in the project. When the program stops for the first time, the
LightsBug window is opened by selecting the LightsBug option from Debug menu.

376 Chapter 8 Modularity: Building Programmer-Defined Libraries

I Draw_Concentric_Rings
10 R

~
g/)

40 Radius
34 X_Point

... 56 Y ... Eaint
Global variables -

(") Radius = Integer
'-'\ 40
f.i1'I X_Point = Integer
~ 34

~ Draw_Concentric_Ring

~ Draw_Concentric_Ring

..._ Y_Point = Integer ~ Draw_Concentric_Ring

.... 56 s

~ Base I 003412FC I G) Offset I 0000 I (Edit)
tQOI 000: 0038 0022 0034 190A 0200 0010 0033 D266

It.- 010: 0034 1300 0034 190A A031 6DA4 0034 lEEC
020: 0034 1F24 0000 0000 0000 0000 0000 0000

1IDJ 030: 0000 OOlA 0000 0000 0000 0000 0000 0001

~ Draw_Rings

~ Draw_Rings

~ Draw_Rings

.8. II .4. • • • •
.4 ... 4 .. tl
.4.$

Figure 8.19 The LightsBug window, where the values of variables for procedure
Draw_Concentric_Rings are being tracked as their values change during

execution of the program. In this example the Watchpoints icon is active.

In Figure 8.19 each of the variables, Radius, X_Point, and Y_Point has been
highlighted and dragged to the Watchpoints icon for further observation of its values.
Each time the value of one of these variables changes, the program is interrupted, and the
LightsBug window is opened with the values of all of the variables displayed in Panes 2
and 3. Execution can be continued by using the option Go from the Run menu. In the
context of debuggers, inserting a stop in a THINK Pascal Program window is the same as
setting a break point for a debugger. A break point stops execution while a debugger is
executing a program. The option Stops In and the use of the LightsBug window work
as partners in helping the programmer observe the actions of break points as a THINK
Pascal program executes.

By first making the Expanded View icon active and then dragging the name of a
variable from Pane 2 into this icon, Lightsbug allows the value of a simple variable or
the values of all the elements of a structured variable such as an array, record, or set to be
displayed. The Expanded View icon can hold only a single value at any one time. The
Collections icon can display the values of several variables when the LightsBug window
is active. When using either the Expanded View or Collections icons, we must insert the
proper stops for breaking execution of the program; otherwise we will fail to observe the
changes in variables being analyzed as the program executes.

The Watchpoints icon allows the values of several variables to be held, and whenever
the value of one of these variables changes, the THINK Pascal program stops execution
and displays the window for this icon. When using the Watchpoints icon, we do not need
to apply a stop to a line of code that follows the statement that changes the value of a
variable.

The icon register display allows us the option of viewing the contents of CPU
registers as hexadecimal numbers. If the 68881/68882 option is set, Pane 2 also displays

Modularity: Building Programmer-Defined Libraries Chapter 8 377

the contents of all eight floating-point registers. The Heap Display icon displays the
application's heap zone or system heap zone.

Dragging a variable into the Edit Value icon displays a dialog box that allows us to
change the value of a variable. By using this option, we can observe the program's
characteristics when a different value is applied to a variable. The Type-cast view icon
displays a dialog window where the type for a value can be recast (changed) without
adding or changing the source code of the program. The dialog windows for both Edit and
Type-cast icons is shown in Figure 8.20. The Trash Can icon allows variables from Pane
3 to be dragged and thrown away. This trash can is not the same as the Finder's trash can,
in that you cannot drag things out of the LightsBug trash once they have been thrown
away.

Additional options from the Run menu can be used to control the flow of execution.
The command option Step Duer allows us to execute a program one statement at a
time. When this option is selected, one statement of the program is executed, and the
execution finger points to the next statement ready for execution. By again choosing this
option, we can execute the next statement in the body of the program unit. If this next
statement is a procedure or function call, the command executes the routine without
moving the execution finger into the routine. If we want to trace the individual statements
of a routine, we must choose the option Step Into to move into the routine, and then
use the option Step Duer to execute each statement of the routine. While using these
options, we are free to open the LightsBug window to observe changes to variables. If we
decide to complete execution of a routine and halt any further tracing by the execution
finger, we can choose the option Step Out.
The option Break at A-Traps in the Debug menu allows us to stop the program
before calling a Macintosh Toolbox routine. By stopping the program at this point, we
can examine the values of actual parameters by using the LightsBug window. The
program can be made to continue execution by using either GO or Step Duer from the
Run menu. While the Break at A-Traps is set, you may have to apply the options GO
or Step Duer several times to complete execution of a toolbox routine, because the
routine may itself call on several other toolbox routines. The following steps describe the
setting and use of this option:

1. First, establish a break point (stop) to interrupt the program before the
parameters of a toolbox routine are to be examined.

2. Be sure to establish a stop at the end of the main program, so that you
can remove the A-traps setting before the program ends execution.
Failure to remove t.' " setting will cause the Macintosh system to crash,
and all desktop files will be lost.

3. After reaching the first stop, set the Break at A-Traps in the Debug
menu. Setting the Auto-Show Finger option may also be useful,
showing where a toolbox routine is being invoked. You must click on
the routine name in Pane 1 to observe the values of actual parameters of
any toolbox routine.

4. When you decide to stop examining the memory content in the
LightsBug window, be sure to remove the Break at A-Traps setting.

Recall that the Instant window will only execute a command if a program has been
interrupted. For example, you may insert a stop to interrupt execution when the program
reaches the statement with the stop. This interruption allows us to open the Instant

Modularity: Building Programmer-Defined Libraries Chapter 8 379

window from the Debug menu. Once it is opened, we can enter one or more commands
and execute them by clicking the Do It button. Under normal execution using the 60
option, the Instant window is not available for executing commands.

8.10 STANDARD PASCAL VERSUS THINK PASCAL

ANSI/IEEE standard Pascal neither recognizes nor supports the concept of units. By use
of the reserved words uses, interface, and implementation, a
programmer can extend the original definition of the Pascal language beyond the basic
concept of internal and nested routines. Units allow programmers to define constants,
types, variables, and routines that are external to a Pascal program. This concept goes
beyond the basic scoping rule of global versus local identifiers, because the environment
of routines lies beyond the contour of the main Pascal program. In addition, it allows
information to be hidden and libraries, from which compiled routines are executed, to be
built.

The concept of a unit and the application of the uses clause is not new to Pascal.
This concept was first introduced in UCSD (University of California San Diego) Pascal
for smaller machines such as Apple II and Radio Shack. Since that time it has become
popular with most Pascal compilers implemented on personal computers and is also
defined in Turbo Pascal. There is one basic difference between the THINK Pascal unit and
the UCSD Pascal unit. The THINK Pascal unit does not support a begin-end
statement at the end of its definition. Thus THINK Pascal cannot initialize variables in
the interface-part of a unit through the execution of code in its implementation-part. Nor
does THINK Pascal automatically execute code in its supporting units before the main
Pascal program begins execution. While this may seem to be a limitation, initialization
routines can always be written and called from the main program to initialize public
variables that are being shared with other program units.

Standard Pascal does not define tools for analyzing the execution of any Pascal
program. As a development system, THINK Pascal supports two basic tools: one that can
analyze the run-time performance of an application and another for viewing step-by-step
execution. The concept of a profiler is not new to computing; other larger systems such
as UNIX and VAX VMS provide tools to examine run-time execution. Debuggers are
common among computer systems that allow the development of software applications.
Often called symbolic debuggers, they allow break points to be set, jumps to be defined,
and often have the capability of examining and changing the values of variables.

SUMMARY

THINK Pascal allows programmers to build their own units and libraries. In turn, units
can be borrowed by other units as well as by a Pascal program. This allows constants,
types, variables, and routines to be hidden from view when reading other units or a Pascal
program. It also allows using the resources that have been established by other
programmers. Thus, programs can act as true executives, where subordinate routines are
defined within units, and the main program acts only to make decisions. Compiling units
and building libraries allows units to be shared among several other units and Pascal
programs, as well as among several different projects.

The option to apply a uses clause is left to the programmer. If a uses clause is
not declared, the programmer is required to state explicitly the constants, types, and
variables hidden within a library or unit. This can force the application of special compile

380 Chapter 8 Modularity: Building Programmer-Defined Libraries

directives { $J+} and { $J-} to avoid duplication of memory storage. In addition, if the
main Pascal program is borrowing routines from a library and a uses clause is not
employed, the programmer must declare proper routine headers along with stating the
external directive.

THINK Pascal supports two programming tools for examining the execution of a
program. The profiler provides a report in the form of statistical information on any
program executed from within a project. The information reported includes the minimum,
average, and maximum times spent in executing each routine; the total time spent in
execution of each routine; the percentage of the program's time spent on execution of each
routine; and the number times that each routine has been invoked. Thus, a programmer
can determine which routine is more heavily processor-bound. These statistics do not tell
what the execution time is for individual control constructs such as conditional and
iteration statements. However, the profiler can tell the programmer if the routines at the
bottom of the hierarchical diagram perform more of the work, and the routines at the top,
acting as supervisors, perform less. By borrowing from the unit Profile.p, the
programmer can apply several routines and use the profile variable %_PTrace for
capturing profiled information from within portions of a program.

The THINK Pascal debugger called LightsBug allows a programmer to examine the
detailed execution of a program, statement by statement, through inserting stops and
examining the LightsBug window at break points. Within this window the programmer
can examine the value of a single variable, the values of a structured variable, or the
values of several yariables by making one of several icons active and by dragging the
name of one or more variables into the active icon. The Instant window can be used to
execute actions typed within it only when a THINK Pascal program has been interrupted.
One of the subwindows (referred to as a pane) displays the chain of function and procedure
calls up to the point where the program has been stopped. This data is useful for viewing
the execution chain of direct and indirect recursive routines.

Both of these tools help in examining the execution of a program. However, while
the programmer can observe the execution characteristics by measuring execution time
and can examine the intermediate values of variables, neither of these tools can define the
semantic errors of an algorithm. Their purpose is to analyze and debug a program in
execution. They cannot help in detecting a logical error in an algorithm implemented as a
program.

REVIEW QUESTIONS

1. How does THINK Pascal allow programs to be modularized?
2. In THINK Pascal, what is a unit?
3. How can other program units in THINK Pascal borrow from a unit?
4. What parts of a unit are accessible by either a Pascal program or another

unit?
5. There are two basic sections to a unit: the interface-part and the im­

plementation-part. Explain the purpose of each of these parts.
6. What is meant by the terms public-part and private-part as they apply to

a unit?
7. Define the basic structure of a THINK Pascal unit. How is it similar to

and different from a Pascal program?
8. Explain the steps for building a programmer-defined unit in THINK

Pascal.
9. Which menu option in THINK Pascal is important to creating a unit?

Modularity: Building Programmer-Defined Libraries Chapter 8

10. How is the option Build different from the option Check SyntaH or
Compile in the Run menu of THINK Pascal?

11. What is the difference between the options Rd d Window and A d d
File ... in the Project menu of THINK Pascal?

12. How can a unit be removed from the Project window?
13. What are the differences between a THINK Pascal library and a unit?
14. Explain the steps for building a programmer-defined library in THINK

Pascal.
15. What purpose is served in having an interface file when building a

programmer-defined library?
16. How can an external variable directive be used to avoid multiple

declarations?
17. How can the uses clause be applied within the implementation

section of a THINK Pascal unit?
18. What value is there in having the implementation section of a unit

allow the uses clause?
19. How can uses clauses be propagated through several units? What

advantages exist in allowing units to be propagated through the
interface-part of a unit? What disadvantages exist in such a concept?

20. What is meant by the term information hiding? How do THINK Pascal
units support this concept?

21. What is meant by the term predefined libraries?
22. What is the purpose of the library file Runtime . lib?
23. What is the purpose of the library file Interface. lib?
24. List the names of files that are included in the file Interface. lib.
25. If SANE. p is not one of the toolbox files incorporated in

Interface. lib, how can this unit be borrowed from the Macintosh
Toolbox when routines from the SANE Toolbox are utilized?

26. In the Macintosh system what is the difference between stack-based and
register-based routines?

27. Describe how a THINK Pascal program can be established as an
application.

28. How does THINK Pascal allow large applications, in which jump tables
as large as 256K bytes are present?

29. What purpose is served by setting the Smart Link option in the dialog
window for building an application?

30. What is the advantl.', ·~ in converting a THINK Pascal program into an
application?

31. What purpose is served by having a profiler?
32. In THINK Pascal, how is the profiler implemented?
33. What purpose is served in declaring the unit Profiler using a uses

clause?
34. Explain the purpose of the profiler variable %_PTrace.
35. Define the purpose of the following profiler procedures and function:

DumpProfile,DumpProfileToFile,ResetProfile,
TerminateProfile,andinitProfile?

36. What purpose is served by having a debugger?
37. How is the LightsBug window established in THINK Pascal?
38. Explain the purpose of the four window panes and the nine icons in the

LightsBug window.

381

382 Chapter 8 Modularity: Building Programmer-Defined Libraries

39. How can the Stops In option from the Debug menu be used to
examine the execution of a program unit?

40. What purpose is served by the Step Duer and Step Into options in
the Run menu?

41. How can a THINK Pascal program be halted so that a programmer can
examine the values of actual parameters for any Macintosh Toolbox
routine being invoked?

42. How can the routines from unit Profiler be used to measure the
time for invoking, but not executing, the body of a programmer-defined
routine?

43. How can the routines from unit Profiler be used to measure the
execution time of Macintosh Toolbox routines?

44. Is the following unit syntactically as well as semantically correct?
Explain your answer.

unit Test_Ideas;
interface
var

Exponent : integer;
implementation

function Power(X, Y : integer) : integer;
begin

if (X = 0) and (Y = 0) then
Power := -1

else
if (Y < O) then

Power .- -2
else

begin
Exponent : = 1 ;
while (Y > 0) do

begin
Exponent := Exponent * X
y : = succ (y) ;

end;
Power .- O;

end; { Power }
end.

45. How would the following unit be used to initialize the variables defined
within its interface-part?

unit Major_Cornponents;
interface
var

Major_Capacity : real;
Flow_Level : real;
Ternperature_Level : real

implementation
procedure Initialize_Major_Cornponents;

Modularity: Building Programmer-Defined Libraries Chapter 8

begin
Major_Capacity := 2000.00;
Flow_Level := 150.00;
Temperature_Level := 199.99;

end; { Initialize_Major_Components }
end.

46. With the USES EHtension off, what happens when the following
program and units are built within the same project? How can the
program and/or unit(s) be corrected to display the values of X and Y?

program Main(Input, Output);
uses

Unit_A;
begin

writeln(X, Z) ;
end.
unit Uni t_A;

interface
uses

Unit_B;
implementation

con st
x = z i

end.

unit Uni t_B;
interface

con st
z = 345;

implementation
end.

PROGRAMMING EXERCISES

1. Build and test a programmer-defined unit that will compute the
following logarithmic and exponentiation functions:

function Log_lO(M: real; var Log_Value : real):
integer;
This function computes the common logarithm for real number M
greater than zero and returns this value through Log_Value. If the
value of M is less than or equal to zero, this function returns -1 through
the function name; otherwise it returns a value of zero.

function Integer_Power(X, Y integer; var Power :
integer) : integer;
This function will compute X raised to power Y for two integer
numbers and will return the exponentiated value through Power under

383

384 Chapter 8 Modularity: Building Programmer-Defined Libraries

the condition that Y is zero or positive. For the following conditions,
the values that are indicated will be returned through the name of the
function Integer_Power:

(a) If x and Y are both zero, return a value of -1 for the
function.

(b) If Y is negative, return a value of -2 for the function.
Otherwise, return a value of zero.

function Real_Power(X,Y real; var Power : real):
integer;
This function will compute X raised to power Y for two real numbers
and return a real exponentiated value through Power. For the following
conditions, the values indicated will be returned through the name of the
function Real_Power:

(a) If X and Y are both zero, return a value of -1 for the
function.

(b) If Xis zero and Y is nonzero, return a value of -2 for the
function.

(c) If X is negative and Y is less than 1, return a value of -3
for the function. Otherwise, return a value of zero.

2. Build and test a programmer-defined unit that computes the following
trigonometric functions:

tan(X), cot(X), csc(X), sec(X),
where cot (X) = 1/tan (X), sec (X) = 1/cos (X), and
csc(X) = 1/sin(X).

3. Build and test a programmer-defined unit for performing the following
complex operations:

(a) procedure Add_Complex (var X
Complex_Rect; Y, Z : Complex_Rect);
This procedure will add the complex number Y to the
complex number z and return the the result through x.

(b) procedure Sub_Complex (var X
Complex_Rect; Y, Z : Complex_Rect);
This procedure will subtract the complex number z from
the complex number Y and return the the result through
x.

(c) procedure Mul t_Complex (var X
Complex_Rect; Y, Z : Complex_Rect);
This procedure will multiply the complex number Y by
the complex number z and return the the result through
x.

(d) procedure Di v_Complex (var X
Complex_Rect; Y, Z: Complex_Rect);
This procedure will divide the complex number Y by the
complex number z and return the the result through x.

Modularity: Building Programmer-Defined Libraries Chapter 8

(e) procedure Conjugate (var X : Complex_
Rect, Y: Complex_Rect);
This procedure will take the conjugate of the complex
number Y and return the the result through x .

(f) procedure Modulus (var R : real; Y :
Complex_Rect) ;
This procedure will take the modulus of the complex
number Y and return the the result through R.

(g) procedure Wri te_Complex (X : Complex_
Rect) ;
This procedure will display to the Text window a complex
number, given by X, in the form
a + j b.

(h) procedure Read_Complex (var X
Complex _Rect) ;
This procedure will read a complex number typed at the
keyboard in the form a+ j b and assign this to X. The
conjugate of

a+jb=a-jb,

while the modulus

4. Finish building the units given in either Figure 8.13 or Figure 8.14 by
first using stubs and then replacing each stub one routine at a time.
Each time a stub is replaced, test it to see that it works properly and
that the program is satisfying its requirements.

5. Convert the unit in Exercise 3 into a library, and use your test program
from Exercise 3 to test your library. In defining a library, you will be
required to define an interface file.

6. Convert the unit in Exercise 2 into a library, and use your test program
from Exercise 2 to test your library.

7. Convert Exercise 18 of Chapter 7 into an application.

8. Convert Exercise 20 of Chapter 7 into an application.

9. For analyzing Tutor_System in Section 8.8, implement the test
program to verify the results of the profiler.

10. Extend the example in Section 8.8 by showing how the routines
InitProfiler,DumpProfileToFile,andTerminate­
Profile can be used.

11. Combine the routines from the following program, Direct_
Recursion, and Indirect_Recursion in Chapter 7. Add a new

385

386 Chapter 8 Modularity: Building Programmer-Defined Libraries

function for computing the factorial of an integer number iteritively.
You may find it convenient to name the three factorial functions
Factorial_l, Factorial_2, and Factorial_3, respectively.
Now apply the variable %_PTrace, and select the appropriate routines
from unit Profiler for reporting on the total execution time of each
factorial function. Compare the execution times for these three factorial
functions by selecting various integer numbers entered from the
keyboard. You might try modifying your program and collecting data
for plotting the total execution times versus the value of the number for
integers in the range 1 through 20. From what you observe, which
function is most efficient in terms of execution time? Can you interpret
what your test results are telling you?

program Direct_Recursion (Input, Output);
Purpose: This program is an example of direct recursion.
var

Answer: longint;
Number: integer;

-- }
function Factorial (N: integer): longint;

{ Purpose: Computes the factorial of a positive integer N. }
var

Fact: longint;
begin
{ Test if a trivial case exists. }

if N = O then
Factorial := 1

else
begin { compute (N-1) ! }

Factorial := N * Factorial(N - l);
end

end; { Factorial }
{ ================== Body of the main program. ================= }
begin { Body of the main program. }

ShowText;
Prompt user for a nonnegative integer number. }
write('Enter a positive whole number: ');
readln (Number) ;
if Number >= 0 then

begin

end.

Answer.- Factorial(Number);
writeln(Answer : 11)

end;

Modularity: Building Programmer-Defined Libraries Chapter 8 387

12. Using LightsBug, duplicate the snapshot in Figure 8.21 by inserting the
appropriate stops in sample program Direct_Recursion, given in
Exercise 11. Use the value 10 for Number.

D LightsBug-1
i--....------.....1 Factorial IQ: Function Factorial

Factorial t-=- 4493362 Facto
program Di-=- Factorial -2045108224 Fact
{ p e /!J}) Factorial 7 N

urpos : ~ Direct_Recursion tn:' "G'.[o:ba'.Cvar:Caf>Ies"·················· .. va
r £. ~ 0 Answe

An::t===::::::====================:::;::::;===::::!.!::==:::::;:::===;====::::::;::::====;=======t
NUI"l~ Drag a variable to this Magnifying Glass icon to

~u~-c-;~::- 1@1
I--

{ Purpose: 00
vai--~====:::::;:;;;;:;::;;;;:;::;;;;:;::;;;;;;;;;F"'::~=======;;;;;;;;;:;::;;;;;;;=====:::=::::=========~
r ti Base:I 000000001 G Offset:! ooool (Edit)
be I IQo) I 000: 0081 0000 4080 2Al4 0041 DC44 0041

. .. OOE: DC46 0041 DC48 0041 DC4A 0041 DC4C
{ Test ~mu OlC: 0041 DC4E 4080 2106 4080 2108 4080

iillJ 02A: 64BA 0041 DC56 4080 210E 4080 210E

else
begin {compute (N-1)! }

.A .. @A.*
,F.A,H.~
.~.N@A!
aJ.A.V@J

Factorial := N * Factorial(
end

end; { Factorial }

Figure 8.21
LightsBug window for examining execution of sample program Direct_Recursion.

388 Chapter 8 Modularity: Building Programmer-Defined Libraries

13. Using LightsBug, duplicate the snapshot in Figure 8.22 by inserting the
appropriate stops in sample program Indirect_Recursion given
in Chapter 7. Use the value 10 for Number.

I Factorial Function Factorial
.....-----• Compute_Expression 3428408 Factoria

J§Jl Factorial 523829247 Fact
i--.....-----•liiil) Compute_Expression ,,,,,, 7 N

progr Factorial •l•l•! ·G1o:baT"'varia.b1es
{ Puri A. Compute_Expression 0 Answer
Tar ~ Drag a variable to this Magnifying Glass icon to see

~
proc 00
forwa.1r-=-t======;::::==:==:==:~~=======;::==:==:;:===::::=:::===============1 { ---- f Base: I 003490B6I (±) Offset:I ooool (Edit)
.funct IQo) 000: 0007 0034 5038 0034 90EE 0200 008A

ltt.- OOE: 0034 5038 0034 90BC 0034 90EE 0034
OlC: 4FFE 0034 90DA 0008 1F38 FFFF 0034

1IDf 02A: 910C 0200 OOF8 0034 4FF2 0034 90DA

begin
{ Test if a trivial case exists. }

i.f B = 0 then.
Factorial := 1

e1se

... 4P8.4e, .

.4P8.4e 11 .4e
o .. 49 8.
e 40 ..

begin { compute (B-1) ! }
Compute_Expression(B, Fact)
Factorial := Fact;

end
end ; { Factorial }

Figure 8.22 LightsBug window for examining the execution of sample program
Indirect_Recursion.

Modularity: Building Programmer-Defined Libraries Chapter 8 389

14. Using LightsBug, duplicate the snapshot in Figure 8.23 by inserting the appropriate stop(s) as
well as setting the option Break at A-Traps from the Debug menu for the sample program

Motion given in Chapter 6.

progra I ···~;·fl~~···b.$.~
{ This /J!!})

Global variables
70 x

.. .7.1? ¥.
{ uses
const A 1==::::::::======================::;:::==!.!::::::::;:::::::::::::;:=========:=;::=========I

~ Drag a variable to this Magnifying Glass icon to se
var

@)
•begin OO

{ Estabt--~=====;=;;:;::::;;:;::::;;:;::::=:;==;:I
(l Base:I0044D162I

Estab IQo) 000: 0044 D166 0
it dr • OOE: D194 0044 9

OlC: 0032 OODC 0
Tiill 02A: 0044 9014 0

begin

end;

Pai
Inve

{ Move the circle from left
y := 200;
x := 70;
for X := 70 to 200

begin

Drawing

Pai~~~~~--''--~~~~~~~~~~~~--t

Invei.------------------------------------1
end;

Figure 8.23 A snapshot of the Macintosh screen for program Motion, where stops are
inserted and Break at A-Traps is set.

390 Chapter 8 Modularity: Building Programmer-Defined Libraries

15. Using LightsBug, duplicate the snapshot in Figure 8.24 by inserting the
appropriate stop(s) as well as setting the option Break at A-Traps
from the Debug menu for the sample program Draw_Rings given in
Chapter 7.

LightsBug-1
Break: ABBA

program

{ Purpose
{

I
~

liifl)

... or·a:w~c-0nc:·en."trIC:=:,1fing·5·
Draw_Rings

Procedure Draw_Concentric_
20 R
20 Radius

100 X_Point
.. 19.9 Y_f'.QJ.nt

var A
~

X ~ Drag a variable to this Magnifying Glass icon to see
{ -------

procedur@

~ 00 Drawing
v f Base: I 0044Dl4A I (±) Off

000: 0044 Dl4E 0050 0
b ~ OOE: Dl76 0044 8F36 0

Init mu OlC: 0044 Dl94 0200 0
iillJ 02A: Dl64 0044 Dl94 0

repeat
Draw an inverted circle c

InvertCircl
Establish the radius for

Radius := R
until (Radius < R)

end; { Draw_Concentric_Rin

procedure Set_and_Show_Text_Windo
{ Purpose: This procedure st-~~~~~~~~~~~~~~--1
{ window f o,--~~~~~~~~~~~~~~--1

var
Border: Rect;

Figure 8.24 A snapshot of the Macintosh screen for program Draw_Rings , where stops are
inserted and the Break at A-Traps is set.

Chapter 9

Structured Data Types

OBJECTIVES

After completing Chapter 9, you will know the following:
1. The characteristics and use of the array as a data structure. This includes one­

dimensional arrays as well as multidimensional arrays.
2. The applications of arrays, particularly in sorting and searching routines. Sorting

algorithms discussed include the bubble sort, insertion sort, Shellsort, and
quicksort. Search algorithms include linear and binary search.

3. The record as a nonhomogeneous data structure, including the creation and
access of records and their fields. This study is extended to consider variant
records having both fixed and variant fields.

4. The creation of and use of the Pascal set. The set operations and set
comparisons are discussed.

5. The use of the data entry technique called lazy input.
6. The use of the packed array of characters. This data structure is compared to the

string type.

9.1 CONCEPT OF AN ARRAY AS A HOMOGENEOUS STRUCTURE

When solving problems, we often need to go beyond the use of simple variables and
consider ways to structure ordinal data types. When developing a program, it is a
common practice to use a variable to represent a block of information. Figure 9.1 shows
a one-dimensional array called Table, consisting of a single column with several rows
of data, each row represented by a unique index number. It can also be viewed as a single
row consisting of several columns of data. In Pascal declaring an identifier as a one­
dimensional array requires the following syntax:

391

392 Chapter 9 Structured Data Types

var
Variable_Name array [Low_Index .. High_Index] of data_type;

1 (Low_Index)

2

3

4

5

Table .. 6

7

8

9

10 (High_Index)

Example of a column vector

1 2 3 4 5 6 7 8 9 10

Tabl~iilllllllll
(Low_Index) (High_Index)

Example of a row vector

Figure 9.1 A one-dimensional array represented first as a column vector and
then as a row vector.

The bounds of the array are expressed by the subrange Low_Index ..
High_Index; the constant Low_Index is the lowest index value for the array
variable, and the constant High_Index is the highest index value. Data_ type can be
an ordinal type, string, real, or even another structure type, such as an array. In
Section 9.4 we will consider the case of the data type being an array. The following

Structured Data Types Chapter 9 393

var

Pascal statements show two different approaches to declaring the one-dimensional array of
Figure 9.1:

Table array[l . . 100] of real;

or

con st

var

Low_Index = 1;
High_Index = 100;

Table : array[Low_Index •• High_Index] of real;

The number of elements within a one-dimensional array is given by the value of the
expression

High_Index - Low_Index + 1

In addition, an array is homogeneous; that is, each element of the array has the same
data type. Pascal requires that the values of the constants Low_Index and
High_Index be known when the declaration statement is translated. Otherwise, a
translation error is reported specifying that there is an undeclared identifier or an improper
constant.

Although it is convenient at times to reference the complete array by using its
declared name, an element within a one-dimensional array is referenced or accessed by
using a subscripted variable. A subscripted variable is composed of the array variable
name followed by a subscript (an integer expression) contained within square brackets.
For example, we reference the ith element of our array Table by the subscripted variable
Table [i] (read "Table sub i"). Keep in mind that the subscript itself must have a value
within the subrange Low_Index .. High_Index. If during execution a subscripted
variable is found to be out of range, the program is interrupted, and an error message is
displayed indicating that the value of a subscript is out of range. Although this error will
occur at execution time, the fault generally lies with the design of the algorithm, not the
program code.

Subscripted variables are like other simple variables. For instance, a subscripted
variable can be assigned a value through execution of a read or readln command or
through an assignment statement. A subscripted variable can be part of an expression, an
expression by itself, or an argument within an actual parameter list. For example,
consider the following Pascal program for adding a set of positive numbers after they have
been entered from the keyboard and stored in a one-dimensional array called Storage.
The total set of numbers read from the keyboard may never exceed 100.

program Sum_Nurnbers(input, output);
{ Purpose: This program will sum N positive numbers entered }
{ from the keyboard. The value of N can never exceed
{ 100. }

var
Storage array[l . . 100] of real;

Counter, N : integer;

394 Chapter 9 Structured Data Types

Sum : real;
begin
{ Prompt the user for the total count of positive numbers to }
{ be added. }

repeat
HideAll;
ShowText;
Page;
writeln(' How many positive numbers will you be adding? ');
write(' Number entered must be in the range of 1 to 100: ');
readln (N) ;

until(N > 0) and (N <= 100);
writeln;

Enter N positive numbers from the keyboard. }
for Counter := 1 to N do

begin
write(' Enter your next positive number: ');
readln(Storage[Counter]);

end;
writeln;

Compute the sum of all N positive numbers. }
Sum := 0.0;
for Counter := 1 to N do

Sum:= Sum+ Storage[Counter];
Report the sum of all N positive numbers. }
writeln(' Sum of ', N:3 , 'positive numbers is ' Sum:8:3)

end.

This program is not to be admired for its brevity, but it does provide a simple example of
the use of a subscripted variable. Sum_Numbers will execute under both Macintosh and
THINK Pascal.

As an additional example of a one-dimensional array, assume that we need to record
the noontime temperatures for each day of the week, Sunday through Saturday. The
noontime temperatures are to be stored in a one-dimensional real array called
Temperature, with each day of the week represented by an index number. The array
Temperature will be a seven-element array having a subscript range from 1 through 7.
Therefore, the noontime temperature for Sunday is represented by the subscripted variable
Temperature [l], and the noontime temperature for Saturday is represented by
Temperature [7]. Assume that our algorithm calls for computing and reporting the
mean noontime temperature, the days of the week with temperatures greater than the
computed mean, and the days of the week with temperatures less than the computed mean.
Further, if the noontime temperature never differed from the mean, the algorithm is
required to report a message indicating this fact. All inputs and outputs involved in
referencing a day of the week will use the actual name instead of an index value.

Initially the algorithm is developed by dividing it into three basic parts: input,
computation, and output. The following represents the initial steps for our algorithm:

Input information

1. Enter the noontime temperatures for the days Sunday through Saturday.

Structured Data Types Chapter 9 395

Perform Computations

2. Compute the mean noontime temperature.
3. Determine the days of the week having noontime temperatures above the mean.
4. Determine the days of the week having noontime temperatures below the mean.

Output information

5. Report the mean noontime temperature.
6. If any days were above the mean, report those days; else report a message that

there were no days above the mean.
7. If any days were below the mean, report those days; else report a message that

there were no days below the mean.

For input we need only the variable called Temperature, while for output we will need
three variables: Mean_Temperature and two additional tables called Days_Above
and Days_Below. Figure 9.2 shows the structure representing all three tables. Notice
that the two additional tables for storing the weekdays as strings have only six elements.
Why? Because the maximum number of days having either temperatures above or below
the mean is six, no more than six elements are necessary. Three counters will be required:
Index, to provide the index position within an array; Number_Days_Above, for
counting the number of days above the mean; and Number_Days_Below, for counting
the number of days below the mean.

T-erature~1 I I I I I I I
1 2 3 4 5 6 7

Days_Above ~ I I I I I I I
1 2 3 4 5 6

Days_Below ~ I I I I I I I
1 2 3 4 5 6

Figure 9.2 Representation of three arrays: Temperature,
Days_Above, and Days_Below.

396 Chapter 9 Structured Data Types

Let us now move to the next level of abstraction for our problem by refining the
steps of our algorithm. In writing this algorithm, we treated all arrays as global variables.
Although this may contradict our use of parameters discussed in Section 7 .3, we say more
in Section 9.2 about the passing of arrays to formal parameters. Each step is represented
by a call to a procedure:

Algorithm Days_of_Week;
{ Purpose: This algorithm computes the number of days above and

the number of days below the mean noontime temperature for the
days from Sunday through Saturday and reports the day of each
occurrence.}

begin
{ Enter noontime temperatures for Sunday through Saturday. }

Input_Temperatures;
{ Compute the mean noontime temperature. }

Compute_Mean_Temperature(Mean_Temperature);
{ Determine the days of the week having noontime temperatures

above the mean temperature. }
Days_Above_Mean(Mean_Temperature, Number_Days_Above);

{ Determine the days of the week having noontime temperatures
below the mean temperature. }
Days_Below_Mean(Mean_Temperature, Number_Days_Below);

{ Report the mean noontime temperature. }
Report_Mean_Temperature(Mean_Temperature);

{ Report the days of the week having temperatures above the mean
temperature. }
Report_Days_Above(Number_Days_Above);

{ Report the days of the week having temperatures below the mean
temperature. }
Report_Days_Below(Number_Days_Below);

end. { Days_of_Week }

Let us increase our level of abstraction by writing procedures for each of the steps in
the algorithm.

procedure Input_Temperatures;
{ Purpose: This procedure reads a temperature typed from the

keyboard and stores it in an array called Temperature. The
array Temperature is global to this procedure. This procedure
requires a function called Name_of_Day for returning a string
value representing the day of the week. }

begin
{ Enter noon temperatures for Sunday through Saturday. }

for Index <-- 1 to 7 do
begin
{ Prompt the user for the next day's noon temperature. }

write('Enter temperature for ',Name_of_Day(Index),':');
readln(Temperature[Index])

end;
end; { Input_Temperatures }

Structured Data Types Chapter 9 397

procedure Compute_Mean_Temperature;
{ Purpose: This procedure computes the mean temperature from the

array Temperature. The identifier Mean_Temp is a parameter for
returning the value for the mean temperature. The array
Temperature is global to this procedure. }

begin
{ Compute the total of all noontime temperatures. }

Partial_Sum <-- 0.0;
for Index <-- 1 to 7 do

Partial_Sum <-- Partial_Sum + Temperature[Index]
Compute the mean temperature.

Mean_Temp <-- Partial_Sum/7;
end; { Compute_Mean_Temperature

procedure Days_Above_Mean;
{ Purpose: This procedure determines the days when the noontime

temperature is above the mean temperature. It requires one
value parameter, Mean_Temp, representing the mean temperature,
and one variable parameter, called Count_Above, representing
Number_Days_Above. Two global arrays used by this procedure are
Temperature and Days_Above. This procedure requires a function
called Name_of_Day for returning a string value representing
the day of the week. }

begin
{ Determine the days of the week having noon temperatures above

the mean temperature. }
Count_Above <-- O;
for Index <-- 1 to 7 do

begin
if Temperature[Index] > Mean_Temp then

begin

end;

Count_Above <-- succ(Count_Above);
Days_Above[Count_Above] <-- Name_of_Day(Index)

end;

end; { Days_Above_Mean

procedure Days_Below_Mean;
{ Purpose: This procedure determines the days when the noontime

temperature is below the mean temperature. It requires one
value parameter, Mean_Temp, representing the mean temperature,
and one variable parameter, called Count_Below, representing
Number_Days_Below. Two global arrays used by this procedure are
Temperature and Days_Below. This procedure requires a function
called Name_of_Day for returning a string value representing
the day of the week. }

begin
{ Determine the days of the week having noon temperatures below

the mean temperature. }
Count_Below <-- O;
for Index <-- 1 to 7 do

398 Chapter 9 Structured Data Types

begin
if Temperature[Index] < Mean_Temp then

begin

end;

Count_Below <-- succ(Count_Below);
Days_Below[Count_Below] <-- Name_of_Day(Index)

end;

end; { Days_Below_Mean

procedure Report_Mean_Temperature;
{ Purpose: This procedure displays the value of the mean

temperature to the Text window. It requires only a value
parameter, Mean_Temp, representing the mean temperature. }

begin
{ Report the mean temperature. }

writeln('Mean noon temperature: Mean_Temp);
end; { Report_Mean_Temperature };

procedure Report_Days_Above;
{ Purpose: This procedure will report the days of the week when

the noon temperature is above the mean. It requires only a
value parameter, Count_Above, representing the value for
Number_Days_Above. This procedure also requires a global array
called Days_Above. }

begin
{ Report the days of the week having temperatures above the mean }

temperature. }
if Number > 0 then

begin
write(' Days with temperatures above the mean');
write(' temperature: ');

end

for Index <-- 1 to Count_Above do
writeln(Days_Above[Index])

else write(' No noon temperature above the mean. ');
end; { Report_Days_Above }

procedure Report_Days_Below;
{ Purpose: This procedure will report the days of the week when

the noon temperature is below the mean. It requires only a
value parameter, Count_Below, representing the value for
Number_Days_Below. This procedure also requires a global array
called Days_Below. }

begin
{ Report the days of the week having temperatures below the mean

temperature. }
if Count_Below > 0 then

begl.n
write('Days with temperatures below the mean');
write('temperature:');
for Index <-- 1 to Count_Below do

Structured Data Types Chapter 9

writeln(Days_Below[Index])
epd

else write('No noon temperatures below the mean. ');
end; { Report_Days_Below }

399

As stated in the comments, our example requires the use of a special function called
Name_of_Day for returning a string value representing the day of the week. The
definition of the function Name_of_Day is as follows:

function Name_of_Day;
{ Purpose: This function computes the day of week and returns this

as a string value. It requires only a value parameter called
Number. Number represents the value of Index in the procedures
Days_Above_Mean and Days_Below_Mean. }

begin
case Number of

1 Name - of _Day <-- 'Sunday';
2 Name - of _Day <-- 'Monday';
3 Name - of _Day <-- 'Tuesday';
4 Name - of _Day <-- 'Wednesday' ;
5 Name - of _Day <-- ' Thursday' ;
6 Name - of _Day <-- 'Friday';
7 Name_ of _Day <-- 'Saturday'

end { case }

end; { Name - of _Day }

The program Days_of_Week follows. An additional procedure has been added for
hiding all of the Macintosh windows, setting the boundaries of the Text window, and then
opening the Text window. This Macintosh Pascal program will execute under THINK
Pascal with no change other than removal of the uses clause.

program Days_of_Week(input, output);
{ Purpose: This program computes the number of days above and }
{ the number of days below the mean noontime }
{ temperature for the days from Sunday through }
{ Saturday and reports the day of each occurrence. }

uses
QuickDrawl;

var
Temperature : array[l .. 7] of real;
Number_Days_Above, Number_Days_Below integer;
Mean_Temperature : real;
Days_Above, Days_Below : array[l .. 6] of string;

*** }
procedure
{ Purpose:
{

var

Set_Text_Window;
This procedure sets the boundaries for the Text
window. }

Window : Rect;
begin
{ Hide all Macintosh Pascal windows and then open the Text }

400

{ window. }
HideAll;
SetRect(Window, 0, 50, 500, 300);
SetTextRect(Window);
ShowText;

end;

Chapter 9 Structured Data Types

{ *** }
function Name_of_Day (Number : integer) : string;
{ Purpose: This function returns the day of the week as a }
{ string value. It requires only a value parameter }
{ called Number. Number represents the va~ue of }
{ Index in the procedures Days_Above_Mean and }
{ Days_Below_Mean. }
begin

case Number of
1 Name_of_Day := 'Sunday';
2 Name_of_Day := 'Monday';
3 Name_of_Day := 'Tuesday';
4 Name_of_Day := 'Wednesday';
5 Name_of_Day := 'Thursday';
6 Name_of_Day := 'Friday';
7 Name_of_Day := 'Saturday'

end { case }
end;

{ *** }
procedure
{ Purpose:
{
{
{
{
{

var

Input_Temperatures;
This procedure reads a temperature typed from }
the keyboard and stores it in an array called }
Temperature. The array Temperature is global to }
this procedure. This procedure requires a }
function called Name_of_Day for returning a }
string value representing the day of the week. }

Index : integer;
begin
{ Enter noon temperatures for Sunday through Saturday. }

for Index := 1 to 7 do
begin
{ Prompt the user for the next day's noon temperature. }

write('Enter temperature for', Name_of_Day(Index),
I ! I) i

readln(Temperature[Index])
end;

writeln;
end;

{ *** }
procedure
{ Purpose:
{
{
{

Compute_Mean_Temperature (var Mean_Temp : real);
This procedure computes the mean temperature }
from the array Temperature. The identifier }
Mean_Temp is a parameter for returning the value }
for mean temperature. The array Temperature is }

Structured Data Types Chapter 9

global to this procedure. }
var

Partial_Sum : real;
Index : integer;

begin
{ Compute the total of all noontime temperatures. }

Partial_Sum := 0.0;
for Index := 1 to 7 do

Partial_Sum := Partial_Sum + Temperature[Index];
Compute the mean temperature. }

Mean_Temp := Partial_Sum I 7;
end;

{ *** }
procedure Days_Above_Mean (Mean_Temp : real;

var Count_Above : integer);
{ Purpose: This procedure determines the days when the }
{ noontime temperature is above the mean }
{ temperature. It requires one.value parameter, }
{ Mean_Temp, representing the mean temperature, }

401

{ and one variable parameter, called Count_Above, }
{ representing Number_Days_Above. Two global arrays }
{ used by this procedure are Temperature and }
{ Days_Above. This procedure requires a function }
{ called Name_of_Day for returning a string value }
{ representing the day of the week. }

var
Index : integer;

begin
{ Determine the days of the week having noon temperatures }
{ above the mean temperature. }

Count_Above := O;
for Index := 1 to 7 do

begin

end;

if Temperature[Index] > Mean_Temp then
begin

end;

Count_Above := succ(Count_Above);
Days_Above[Count_Above] := Name_of_Day(Index)

end;

{ ***
procedure Days_Below_Mean (Mean_Temp : real;

var Count_Below: integer);
{ Purpose: This procedure determines the days when the }
{ noontime temperature is below the mean }
{ temperature. It requires one value parameter, }
{ Mean_Temp, representing the mean temperature, }
{ and one variable parameter, called Count_Below, }
{ representing Number_Days_Below. Two global arrays }
{ used by this procedure are Temperature and }
{ Days_Below. This procedure requires a function }

402

var

Chapter 9 Structured Data Types

called Name_of_Day for returning a string value }
representing the day of the week. }

Index : integer;
begin
{ Determine the days of the week having noon temperatures }
{ below the mean temperature. }

Count_Below := O;
for Index := 1 to 7 do

begin

end;

if Temperature[Index] < Mean_Temp then
begin

end;

Count_Below := succ(Count_Below);
Days_Below[Count_Below] .- Name_of_Day(Index)

end;

{ ***
procedure Report_Mean_Temperature (Mean_Temp : real);
{ Purpose: This procedure displays the value of the mean }
{ temperature to the Text window. It requires only
{ a value parameter, Mean_Temp, representing }
{ the mean temperature. }
begin
{ Report the mean temperature. }

writeln('Mean noon temperature:
writeln;

end;

Mean_ Temp 5 1) i

{ ***
procedure Report_Days_Above (Count_Above : integer);
{ Purpose: This procedure will report the days of the week
{ when the noontime temperature is above the mean. }
{ It requires only a value parameter, }
{ Count_Above, representing the value for }
{ Number_Days_Above. This procedure also requires }
{ a global array called Days_Above. }

var
Index integer;

begin
{ Report the days of the week having temperatures above the }
{ mean temperature. }

if Count_Above > 0 then
begin

write(' Days with temperatures above the mean ');
writeln('temperature: ');
for Index := 1 to Count_Above do

writeln(Days_Above[Index])
end

else
write(' No noon temperature above the mean. ');
writeln;

Structured Data Types Chapter 9

end;
{ *** }

procedure Report_Days_Below (Count_Below : integer);

403

{ Purpose: This procedure will report the days of the week }
{ when the noontime temperature is below the mean. }
{ It requires only a value parameter, Count_Below, }
{ representing the value for Number_Days_Below. }
{ This procedure also requires a global array }
{ called Days_Below. }

var
Index : integer;

begin
{ Report the days of the week having temperatures below the }
{ mean temperature. }

if Count_Below > 0 then
begin

write('Days with temperatures below the mean');
writeln('temperature: ');
for Index := 1 to Count_Below do

writeln(Days_Below[Index])
end

else
write('No noon temperatures below the mean. ');
writeln;

end;
{ *** }
begin { Body of the main program. }
{ Open the Text window for viewing data. }

Set_Text_Window;
{ Enter noontime temperatures for Sunday through Saturday. }

Input_Temperatures;
{ Compute the mean noontime temperature. }

Compute_Mean_Temperature(Mean_Temperature);
{ Determine the days of the week having noontime temperatures }
{ above the mean temperature. }

Days_Above_Mean(Mean_Temperature, Number_Days_Above);
{ Determine the days of the week having noontime temperatures }
{ below the mean temperature. }

Days_Below_Mean(Mean_Temperature, Number_Days_Below);
{ Report the mean noontime temperature. }

Report_Mean_Temperature(Mean_Temperature);
{ Report the days of the week having temperatures above the mean }
{ temperature. }

Report_Days_Above(Number_Days_Above);
{ Report the days of the week having temperatures below the mean }
{ temperature. }

Report_Days_Below(Number_Days_Below);
end.

Notice that in our Pascal program Days_o f_Week, square brackets, rather than
curved brackets, surround the subscript for a subscripted variable. Curved brackets would

404 Chapter 9 Structured Data Types

create an ambiguity in the language between referencing a subscripted variable and calling
on a procedure or function.

9.2 FORMAL PARAMETERS DECLARED AS ARRAY TYPES

As you may have noticed, the program Days_of_Week fails to take advantage of
formal parameters declared as array types. For example, you can use the following to
replace the procedure Input_ Temperatures in the program Days_of_Week:

procedure Input_Temperatures(var Temperature_Array :
array[l .. 7] of real);

var
Index integer;

begin
for Index := 1 to 7 do

begin
write('Enter temperature for ',Name_of_Day(Index),': ');
readln(Temperature_Array[Index])

end;
end;

Entering this and applying the Check mode of the Aun menu results in the dialog box
shown in Figure 9.3 .

. ~ This formal parameter type or result type should be
'KL(named a type or "string", but is not.

{ *** }
procedure Input_ Temperatures (var Temperature_Array : array[1 .. 7] of r

Index : integer;
begin

for Index := 1 to 7 do
begin

end;

end;
writeln;

write('Enter temperature for ', Name_ot_Day(lndex), ': ');
readln(Temperature_Array[lndex])

{ ***

Figure 9.3 The result of an attempt to use an array declaration for a formal parameter.

The error message indicates that the formal parameter Temperature_Array is
improperly declared and that it must be declared with a type other than an array. This
means that we must define a user-defined data type equivalent to the array [1 .. 7]

Structured Data Types Chapter 9 405

of real in the type-declaration part of the main program. As explained in Section 2.5,
the type-declaration part is composed of the reserved word type followed by a type
declaration, which consists of an identifier, followed by = , followed by a data type,
followed by a semicolon. For the program Days_of_Week, we require that the
identifier Te mp er at u re be declared as a predefined data type called
Table_of_Temperatures, and that this new data type be equated to an
array [1 .. 7] of real. The following Pascal code demonstrates this concept,

type
Table_of_Temperatures = array[l . . 7] of real;

var
Temperature : Table_of_Temperatures;

For the procedure-header of Input_Temperatures, the formal parameter
Temperature_Array is now declared to be of type Table_of_Temperatures.
The following statement corrects the syntax error in Figure 9.3.

procedure
Input_Temperatures(var Temperature_Array :

Table_of_Temperatures);

The program Days_of_Week_Revised demonstrates the concept, showing how
arrays can be passed between the calling point of the procedure and the procedure-header,
using the name of an array as an actual parameter. Program comments have been removed
to reduced the length of the listing. Days_of_Week_Revised will execute under both
Macintosh and THINK Pascal.

program Days_of_Week_Revised(input, output);
{ Purpose: This program demonstrates the use of user-defined }
{ types for the purpose of passing arrays between }
{ actual and formal parameters. }

type
Table_of_Temperatures = array[l .. 7] of real;
Table_of_Days = array[l .. 6] of string;

var
Temperature : Table_of_Temperatures;
Days_Above, Days_Below : Table_of_Days;
Number_Days_Above, Number_Days_Below: integer;
Mean_Temperature : real;

{ ***
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 50, 500, 300);
SetTextRect(Window);
ShowText;

end;
{ *** }

function Name_of_Day (Number : integer) : string;

406 Chapter 9 Structured Data Types

begin
case Number of

1 Name_of_Day .- 'Sunday';
2 Name_of_Day := 'Monday';
3 Name_of_Day := 'Tuesday';
4 Name_of_Day := 'Wednesday';
5 Name_of_Day := 'Thursday';
6 Name_of_Day := 'Friday';
7 Name_of_Day := 'Saturday'

end {case }
end;

{ *** }
procedure Input_Temperatures (var Temperature_Array :

Table_of_Temperatures);
var

Index integer;
begin

for Index := 1 to 7 do
begin

write('Enter temperature for ', Name_of_Day(Index),
I • I) j

readln(Temperature_Array[Index])
end;

writeln;
end;

{ *** }
procedure Compute_Mean_Temperature (Temperature_Array :

Table_of_Temperatures; var Mean_Temp : real);
var

Partial_Sum : real;
Index : integer;

begin
Partial_Sum := 0.0;
for Index := 1 to 7 do

Partial_Sum := Partial_Sum + Temperature_Array[Index]
Mean_Temp := Partial_Sum I 7;

end;
{ *** }

procedure Days_Above_Mean (Temperature_Array :

var
Index

begin

Table_of_Temperatures;
Mean_Temp : real; var Count_Above
var Day_Array : Table_of_Days);

integer;

Count_Above := O;
for Index := 1 to 7 do

begin

integer;

if Temperature_Array[Index] > Mean_Temp then
begin

Count_Above .- succ(Count_Above);

Structured Data Types Chapter 9

Day_Array[Count_Above] := Name_of_Day(Index)
end;

end;
end;

{ *** }
procedure Days_Below_Mean (Temperature_Array

Table_of_Temperatures; Mean_Temp : real; var Count_Below
integer; var Day_Array: Table_of_Days);
var

Index : integer;
begin

Count_Below := O;
for Index := 1 to 7 do

begin
if Temperature_Array[Index] < Mean_Temp then

begin
Count_Below := succ(Count_Below);
Day_Array[Count_Below] := Name_of_Day(Index)

end;
end;

end;
{ *** }

procedure Report_Mean_Temperature (Mean_Temp : real);
begin

writeln('Mean noon temperature: ', Mean_Temp: 5 : l);
writeln;

end;
{ *** }

procedure Report_Days_Above (Day_Array : Table_of_Days;
Count_Above: integer);

var
Index : integer;

begin
if Count_Above > 0 then

begin

407

writeln(' Days with temperatures above the mean: ');
for Index := - to Count_Above do

writeln(Day_Array[Index])
end

else
writeln('No noon temperature above the mean. ');

writeln;
end;

{ *** }
procedure Report_Days_Below (Day_Array : Table_of_Days;

Count_Below: integer);
var

Index : integer;
begin

if Count_Below > 0 then
begin

408 Chapter 9 Structured Data Types

writeln(' Days with temperatures below the mean: ');
for Index := 1 to Count_Below do

writeln(Day_Array[Index])
end

else
writeln('No noon temperatures below the mean. ');

writeln;
end;

{ *** }
begin { Body of the main program. }
{ Open the Text window for viewing data. }

Set_Text_Window;
{ Enter noontime temperatures for Sunday through Saturday. }

Input_Temperatures(Temperature);
{ Compute the mean noontime temperature. }

Compute_Mean_Temperature(Temperature, Mean_Temperature);
{ Determine the days of the week having noontime temperatures }
{ above the mean temperature. }

Days_Above_Mean(Temperature, Mean_Temperature,
Nurnber_Days_Above, Days_Above);

{ Determine the days of the week having noontime temperatures }
{ below the mean temperature. }

Days_Below_Mean(Temperature, Mean_Temperature,
Nurnber_Days_Below, Days_Below);

{ Report the mean noontime temperature. }
Report_Mean_Temperature(Mean_Temperature);

{ Report the days of the week having temperatures above the mean }
{ temperature. }

Report_Days_Above(Days_Above, Nurnber_Days_Above);
{ Report the days of the week having temperatures below the mean }
{ temperature. }

Report_Days_Below(Days_Below, Nurnber_Days_Below);
end.

This program includes a second user-defined type called Table_of_Days. This
type is needed for the arrays Days_Above and Days_Below when values for these
arrays are passed between the calling points in the main program and the procedures
Days_Above_Mean and Days_Below_Mean, respectively. By using this approach,
we can write the body of the main program as a sequential set of statements, with each
statement representing a call to a procedure. No loops and no conditional statements are
required within the body of the the main program. We have eliminated three global arrays,
and we have declared two user-defined data types that are global to the procedures in which
they are used. This demonstrates that, like variables and constants, user-defined types can
be local to the modules in which they are declared as well as global to others.

9.3 MULTIDIMENSIONAL ARRAYS

Pascal supports arrays having more than one dimension. Figure 9.4 shows a two­
dimensional array, called a matrix. As you can see, a matrix is different from a one-

Structured Data Types Chapter 9 409

dimensional array in that it is composed of multiple rows and columns. In Pascal we can
declare a matrix using the following syntax:

var
Variable_Name array [Low_Row .. High_Row,

Low_Col .. High_Col] of data_type;

1

2

3

i

N-1

N

1 2 3 4 M-1 M

Figure 9.4 A two-dimensional array, called a matrix, composed of N
rows and M columns.

A list of subrange types appears between the square brackets. The first pair represents
the bounds for the row indices, and the second pair represents the bounds for the column
indices. An element within a matrix is referenced through a subscripted variable having
two indices, the first specify'"g the row position, and the second specifying the column
position. In the matrix representation in Figure 9.4, the intersection of a row and column
designates an element of the matrix. We reference an element of the array at the ith row
andjth column by the subscripted variable Variable_Name[i,j] or
Variable_Name[i] [j].

The number of elements in the matrix is given by the product

High_Row - Low_Row + 1) * (High_Col - Low_Col + 1) .

As with a one-dimensional array, when we need to pass the information in a matrix
using the actual parameter/formal parameter list, we must declare the formal parameter
representing the matrix as a user-defined type, not directly as a two-dimensional
array.

410 Chapter 9 Structured Data Types

For example, consider the matrix shown in Figure 9.5, which is used for storing a
person's full name, street address, city, state, and zip code. It is composed of N entries, N
being in the range 2 through 100, with each row storing information for one person.

Initially, the user is asked to enter a value for N, representing the total number of
names with corresponding addresses for entry from the keyboard. Following this step, N
names with addresses are entered, sorted alphabetically by name, and then displayed to the
Text window.

1

2

3

99

100

1 2

Full Name Street

3 4 5

City State Zip Code

Figure 9.5 A matrix where each element is of type string [3 O] •

Initial steps for an algorithm follow:

1. Prompt the user for the number of names, and then read this value.
2. Enter N names with addresses from the keyboard.
3. Sort the names alphabetically from A to z.
4. Report the names and addresses to the screen.

Each step is refined in a separate module, with the main module being a sequential set of
statements calling on the subordinate modules.

At the main level we need only two variables. The first, called N, represents the total
number of names with addresses; the second, a matrix called Names, represents our table
of addresses.

Let us increase our level of abstraction by defining the modules for each of the major
steps. Our first module, called Enter_Nurnber_of_Narnes, prompts the user for the
value of N and then tests to see if this value is within the allowable range. If N is out of
range, the user is informed that an error has been made and is again prompted for the same
information. This protects the program against a "subscript-out-of-range" error during

Structured Data Types Chapter 9 411

execution, in accord with the principle that critical input data should always be checked.
The following steps define this module.

procedure Enter_Number_of_Names;
{ Purpose: This modules prompts the user for the number of names

with addresses to be entered from the keyboard. It requires
only one formal variable parameter, called N. }

begin
{ Prompt the user for number of names.

writeln('Type the number of names for entry from keyboard. ');
write('This value must be greater than 1 and less than 101: ');
readln(N) ;
while (N < 2) or (N > 100) do

{ Check if this value is out of range. }
begin

writeln(' ***Sorry, this value is out of range.***');
write('Type the number of names for entry');
writeln(' from the keyboard. ');
write('This value must be greater than 1 and less ');
write('than 101: ');
readln(N)

end;
end; { Enter_Number_of_Names }

The second module prompts the user for N names with related addresses. Checking
input data is not required at this stage. The following steps define this module.

procedure Enter_Names;
{ Purpose: This module accepts N names with addresses from the

keyboard. It requires two formal parameters: a variable
parameter called T, representing a matrix, and a value
parameter N, representing the number of names to be read from
the keyboard. This procedure uses a local string array called
Prompt. }

begin
{ Initialize a temporary array Prompt with prompting messages. }

Prompt[l] <-- 'Enter f'. 1 1 name: ';
Prompt[2] <-- 'Street address: ';
Prompt[3] <-- 'City: ';
Prompt[4] <-- 'State: ';
Prompt[5] <-- 'Zip code: ';

{ Enter names with addresses. }
for Row_Index <-- 1 to N do

begin
for Col_Index <-- 1 to 5 do

begin
write(Prompt[Col_Index]);
readln(T[Row_Index, Col_Index])

end;
writeln

end;

412 Chapter 9 Structured Data Types

end; { Enter_Names }

Notice that we are using a read statement to assign a value to an array element; the
array element is referenced by index Row_Index for row and Column_Index for
column. For each value of Row_Index the inner loop executes five times, during which
it prompts the user and reads the full name, street address, city, state, and zip code.

The third module requires the sorting of names alphabetically from A through z. For
simplicity we will use the bubble sort algorithm shown in Figure 9.6.

procedure Bubble_Sort (var A: Table; N: integer);
{ Purpose: This algorithm sorts elements of table A from

smallest to largest value. Table A is a
variable type, since its elements may need to
be exchanged. }

var
Pass, Row : integer;

begin
{ Perform N-1 passes through table A. }

Pass <-- 1;
repeat { passing through table A until Pass > N-1 }

Row <-- N;
repeat
{ comparing elements of table A until Row < Pass + 1 }

if A[Row] < A[Row-1]
then Swap(A[Row] , A[Row-1]);

Row <-- Row - 1;
until Row< (Pass+ 1);
Pass <-- Pass + l;

until Pass > N-1
end; { Bubble_Sort }

procedure Swap(var X, Y : data_type);
{ This short algorithm interchanges the values of X and Y. }

var
Temporary : data_type;

begin
Temporary <-- X ; X <-- Y

end; { Sw~ }
Y <-- Temporary

Figure 9.6 The bubble sort algorithm.

This is called a bubble sort algorithm because the smallest values are bubbled to the
top. We assume that the table called A is composed of N elements and that each element
is of the same type.

1. The bubble sort algorithm begins by comparing A [N] with A [N -1] . If the
value of A [N] is smaller than A [N -1] , the two values are interchanged;
otherwise, they are left unchanged. This process continues with the comparison
of A [N-1] and A [N-2]. If the value of A [N-1] is smaller than the value of
A [N- 2 J , the two values are interchanged; otherwise, they are left unchanged.

Structured Data Types Chapter 9 413

This process continues until the last two values A [2] and A [1] are compared
and, if the value of A [2] is less than A [1] , they are interchanged. This
completes the first pass through table A with N-1 comparisons being performed.
What has occurred at the completion of this first pass? The smallest value has
been "bubbled" to the top of the table, and placed in its proper sorted position.
Unfortunately, the remaining elements in table A may still be unsorted, and the
process must continue.

2. A second pass is performed by comparing the elements A [N] and A [N-1] and
interchanging their values, if necessary, and continuing, until we have reached
the second row of A by comparing A [3] and A [2] . At this point element
A [2] will contain the second-smallest value of table A. No further comparisons
are necessary in this pass through table A. Why not compare A [2] and A [1] ?
When performing this second pass, element A [1 l already has the smallest value
for the initial table A, and the value at A [1] has been placed in its proper sorted
position. Comparing A [2 l and A [1] would not change this fact. Notice that
this second pass requires only N-2 comparisons.

3. As shown in the algorithm in Figure 9.6, we continue making passes through
table A until the pass count exceeds N-1. Each time we perform a pass through
table A, we begin at row N and perform comparisons on elements of A until the
row index becomes less than the value of (Pass + 1) . When necessary,
the swap algorithm is called on for interchanging (swapping) two elements. How
can the bubble sort algorithm be modified to sort in the reverse order, that is,
from largest to smallest? The key is in the conditional statement that compares
the values of adjacent elements.

Figure 9.7 shows an example of the actions of the bubble sort algorithm. The areas
filled with black indicate where elements have been exchanged, and gray-shaded areas
indicate where elements have been tested but not exchanged. The lightly shaded areas
show where elements have been properly sorted.

The bubble sort and swap algorithms in Figure 9.6 require only minor changes for
inclusion in our program for storing names and addresses. For the bubble sort algorithm
the formal parameter A will be of type Matrix. In addition, the statement A [Row] <
A [Row-1] is replaced with A [Row, 1] < A [Row-1 , 1] , because we sort the matrix
A by comparing names from the first column elements of each row.

When any two names n: ·11ire swapping, all five column elements are interchanged,
because the remaining four column elements of any particular row have information that
is directly related to the name stored in the first column. The following module uses the
bubble sort algorithm to sort the names into alphabetical order.

procedure Sort_Names (var A: Matrix; N: integer);
{ Purpose: This algorithm sorts the elements of table A from

smallest value to largest. This procedure requires two formal
parameters: a variable parameter called A, representing a
matrix, and a value parameter called N. Parameter A is a
variable type, since its elements may need to be exchanged. N
represents the total number of elements to be sorted. }

begin
{ Perform N-1 passes through table A. }

Pass <-- 1;

414

A

68

58

7

46

A5 ----
Al

A2 68
1------1

A3 58

7

A 5 __ 4_6 __

58

68

58 As ----

Chapter 9 Structured Data Types

First Pass

68 68 68

58 58 --

7 -- 58

- 7 7

- 46 46 46

Second Pass

Third Pass

Fourth Pass

-

Key

Elements properly
sorted.

Elements requiring
exchanges.

No exchanges required .•

Figure 9.7 Using the bubble sort algorithm to sort an array
having five elements.

Structured Data Types Chapter 9

repeat { passing through table A until Pass > N-1. }
Row_Index <-- N;

415

repeat{ comparing elements of table A until Row < Pass + 1 }
if A[Row_Index,l] <A[Row_Index -1, 1 then

begin
for Col_Index <-- 1 to 5 do

Swap(A[Row_Index, Col_Index] ,
A[Row_Index -1, Col_Index]);

end;
Row_Index <-- Row_Index - l;

until Row_Index < (Pass+ 1);
Pass <-- Pass + 1;

until Pass > N-1
end; { Sort_Names }

In the module Swap we must make only two minor changes by replacing each
occurrence of the word data_type with string. Why? In Bubble_Sort the
formal parameter A is a user-defined type called Matrix. In turn Matrix is equated with
an array [1. .100, 1.. 5] of string; that is, A represents a two­
dimensional array composed of 100 rows and 5 columns, with each element of the matrix
being a string type.

The last module is for reporting the alphabetically sorted list of names and the
associated addresses. It requires two loops: an outer loop for each row position and an
inner loop for displaying each column item. The steps for displaying this information are
as follows:

procedure Report_Names;
{ Purpose: This module reports the names and related information

for each person stored in matrix A. It requires two formal
value parameters: A, representing a matrix, and N, representing
the number of rows in matrix A. This procedure requires a local
string array called Message. }

begin
{ Initialize message array. }

Message[!] <-- 'Full name: ';
Message[2] <-- 'Street address: ';
Message[3] <-- 'City: ';
Message[4] <-- 'State: ';
Message[5] <-- 'Zip code: ';

{ Display N names with addresses from table A. }
for Row_Index <-- 1 to N do

begin
for Col_Index <-- 1 to 5 do

writeln(Message[Col_Index] , A[Row_Index,
Col_Index l) ;

writeln;
end;

end; { Report_Names }

416 Chapter 9 Structured Data Types

We can declare an n-dimensional array by using either a user-defined type or through
var declaration. The following shows these steps:

type
Large_Array array[Low_l .. High_l, Low_2 .. High_2, ...

Low_N .. High_N] of type;
var

Variable_Name Large_Array;

or

var
Variable_Name array[Low_l .. High_l, Low_2 .. High_2,

Low_N .. High_N] of type;

Notice that there is a list of N subrange types for the array declaration with the
index range for the first dimension on the left, followed by the second dimension, and so
forth, and the highest index range on the right. The identifiers Low_l, High_l,
Low_2, High_2, ... , Low_N, High_N must have actual values when the array is
translated by the Pascal system. These can be either explicit unsigned integer
constants or values defined through const statements.

A subscripted variable for referencing an element in an n-dimensional array has the
format

Variable_Name[jl, j2, j3, ... ,jN-1, jN]

or

Variable_Name[jl] [j2] [j3] ... [jN-1] [jN]

with each subscript representing the index position of each dimension.

9.4 AN ARRAY OF ARRAYS

type

By declaring a user-defined type as an array type, it becomes possible to have a variable
declared as an array where each element of the array is itself and array. For example,
consider the following statements for representing the matrix discussed in Section 9.3.

Row_Vector = array[l .. 5] of string;
Matrix= array[l .. 100] of Row_Vector;

var
Name Matrix;

Figure 9.8 illustrates this concept by using a column and row vector. This shows
that the variable called Name is declared as a user-defined type called Matrix, where
Matrix is defined as a 100-element column array, with each element being of type
Row_ Vector. This demonstrates how a variable declared as an array may have elements
that are themselves declared as array types. In turn, the type Row_ Vector represents a

Structured Data Types Chapter 9 417

one-dimensional array composed of five elements, each element being of type
string[30].

1

2

3

99

100

Name 1 2 3 4 5

y
y

T

Row vector where each element is
of type string[30].

~ Column vector where each element IB of
type Row_ Vector.

Figure 9.8 An example of an array of arrays.

How can we reference elements within the array, such as Name? The subscripted
variable Name [i J references the ith element (ith row) of the array Name; its value is a
five-element array of strings. The subscripted variable Name [i, j J or Name [i J [j J
references the ith row of the array Name and, within the ith row, the jth element of a five­
element array.

For example, consider the following statement taken from the module
Sort_Names:

if A[Row_Index,l) <A[Row_Index -1, 1) then
for Col_Index <-- 1 to 5 do

Swap(A[Row_Index, Col_Index], A[Row_Index -1, Col_Index));

Rather than interchanging each column element of A one at a time, we can now
interchange two complete row vectors. Simply replace the code with the following
statement:

if A[Row_Index,l] <A[Row_Index -1, 1] then
Swap (A [Row_Index] ·, A [Row_Index -1)) ;

The module Swap now interchanges a complete row vector in one step, making it
unnecessary to call on this module from the body of a for loop. For the module Swap
two minor changes are required: the data types associated with the identifier Temporary
and the formal parameters X and Y are changed from type string to the user-defined
type called Row_ Vector. The following shows these changes.

418 Chapter 9 Structured Data Types

procedure Swap{ var X, Y : Row_Vector);
{ Interchanges the values of the two row vectors X and Y. }

var
Temporary : Row_Vector;

begin
Temporary := X; X := Y; Y := Temporary

end; { Swap }

The complete Pascal program for the sorting problem discussed in Section 9.3, titled
Sorting_Table_of_Names, follows. It declares the matrix Name to be an array of
row vectors. This is a Macintosh Pascal program, but it will execute under THINK Pascal
with minor modifications. First, the uses clause must be removed. Second, we must
increase the stack size under the Run Options ... command option from the THINK
Pascal Run menu. Try increasing the stack size from 16K to 32K.

program Sorting_Table_of_Names{input, output);
{ Purpose: This program enters names and addresses and sorts }
{ the names alphabetically from A to Z. }

uses
QuickDrawl;

type
Row_Vector = array[l .. 5] of string[30];
Matrix= array[l .. 100] of Row_Vector;

var
Name : Matrix;
Number_of_Names : integer;

{ *** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect{Window, 0, 20, 512, 300);
SetTextRect{Window);
ShowText
end;

{ *** }
procedure
{ Purpose:
{

Enter Number of Names {var N : integer);
This module prompts the user for the number }
of names with addresses to be entered from the }
keyboard. } {

begin
{ Prompt user for number of names. }

write {'Type the number of names for entry from the ');
writeln {'keyboard. ');
write{'This value must be greater than 0 and less ');
write{'than 101: ');
readln{N);
while {N < 2) or {N > 100) do
{ Check if this value is out of range. }

begin

Structured Data Types Chapter 9 419

writeln;
writeln(' ***Sorry, this value is out of range.***');
write('Type the number of names for entry');
writeln(' from the keyboard. ');
write('This value must be greater than 1 and less ');
write('than 101: ');
readln(N);

end;
writeln

end;
{ *** }

procedure
{ Purpose:
{

Enter_Names (var A: Matrix; N : integer);
This module enters N names with addresses from }
the keyboard. }

var
Row_Index, Col_Index : integer;
Prompt array[l .. 5] of string;

begin
{ Initialize temporary array Prompt with prompting messages. }

Prompt[l] .- 'Enter full name: ';
Prompt[2] := 'Street address: ';
Prompt [3] . - 'City: ' ;
Prompt[4] := 'State: ';
Prompt[S] := 'Zip code: ';

{ Enter names with addresses. }
for Row_Index := 1 to N do

begin
for Col_Index := 1 to 5 do

begin
write(Prompt[Col_Index]);
readln(A[Row_Index, Col_Index])

end;
writeln

end;
and;

{ *** }
procedure Swap (var X, Y : Row_Vector);

var
Temporary : Row_Vector;

begin
Temporary := X;
X := Y;
Y : = Temporary

end;
{ *** }

procedure
{ Purpose:
{
{

var

Sort~Names (var A : Matrix; N : integer);
This algorithm sorts elements of table A from }
smallest value to largest. Table A is a variable }
type, since its elements may require exchange. }

Pass, Row_Index, Col_Index : integer;

420 Chapter 9 Structured Data Types

begin
{ Perform N-1 passes through table A. }

Pass := 1;
repeat { passing through table A until Pass > N-1 }

Row_Index := N;
repeat
{ Compare elements of table A until Row < Pass + 1.

if A[Row_Index, 1) < A[Row_Index - 1, 1) then
for Col_Index := 1 to 5 do

Swap(A[Row_Index] , A[Row_Index - 1]);
Row_Index := Row_Index - 1;

until Row_Index < (Pass+ 1);
Pass := Pass + 1;

until Pass > N - 1
end;

{ ***
procedure Display_Title;

var
J integer;

begin
for J := 1 to 60 do

write('-');
writeln;
writeln(' LIST OF PERSONS: ');
writeln

end;
{ *** }

procedure Report_Names (A : Matrix; N : integer);
{ Purpose: This module reports the names and related }
{ information for each person stored in matrix A. }

var
Row_Index, Col_Index : integer;
Message : array[l .. 5] of string;

begin
{ Initialize message array. }

Message[l] := 'Full name: ';
Message[2] := 'Street address: ';
Message[3] .- 'City: ';
Message[4] := 'State: ';
Message[5] .- 'Zip code: ';

{ Display title before displaying names.}
Display_Title;

{ Display N names with addresses from table A. }
for Row_Index := 1 to N do

end;

begin
for Col Index := 1 to 5 do

writeln(Message[Col_Index] , A[Row_Index,
Col_Index]);

writeln;
end;

Structured Data Types Chapter 9 421

{ *** }
begin
{ Set the Text window and show it for viewing. }

Set_Text_Window;
{ Prompt the user for the number of names and read this value. }

Enter_Number_of_Names(Number_of_Names};
{ Enter N names with addresses from the terminal. }

Enter_Names(Name, Number_of_Names};
{ Sort the names alphabetically from A to z. }

Sort_Names(Name, Number_of_Names};
{ Report the names with addresses to the screen. }

Report_Names(Name, Number_of_Names}
end.

Notice that the data type for Row_Vector is an array of type string with each
element allocated a maximum length of 30 characters. Allowing the default of 255
characters causes the declaration for Ma tr ix to be pointed to by the hand symbol,
indicating that insufficient memory exists for creating an object of this size. This occurs
because, while string types are dynamically stored internally in memory, the estimated
storage for an array having string types at translation time is based on the maximum
string length of each array element.

9.5 APPLICATION OF ARRAYS: SORTING AND SEARCH ALGORITHMS

9.5.1 Sorting Algorithms

Numerous algorithms exist for sorting data stored in arrays. We will consider three sort
algorithms: straight insertion sort, Shellsort, and quicksort. Figure 9.9 shows the steps
for the straight insertion sort algorithm.

Like the bubble sort, the straight insertion sort algorithm sorts N elements stored in
a table. During the process of sorting array elements, A [0] is used for storing values
temporarily. The algorithm begins by picking the second element of A, assigning it to X
and A [0] . It then sifts through the array elements, starting with the ith -1 position and
continuing until an element in A is found having a value greater than or equal to the
value of x. When x is less than the jth value of A, the jth element of A is moved to the
jth + 1 position of A, with J then being decremented. After leaving the inner loop, the
value of X is inserted in its proper sorted position among the elements of A that have
presently been sorted. These steps are repeated while I remains less than or equal to N .

procedure Straight_Insertion_Sort (var A: Table; N: integer };
{Purpose: Table A represents an array[O .. N] of item, where}
{ A[O] is used to store the temporary value. }

var

begin

I, J : integer;
X : item;

I := 2;
while (I <= N } do

begin

422

X:=A[I];
A[O] := X;
J := I - 1;
while (X < A[J] do

begin
A[J+l] := A[J];
J := J - 1

end { inside while-do loop}
A[J+l] := X;
I := I + l;

Chapter 9 Structured Data Types

end; { outside while-do loop}
end; { Strai ht Insertion Sort }

Figure 9.9 The straight insertion sort algorithm for sorting elements from smallest to largest.

The following table shows a trace of the algorithm for an array A having four
elements:

AU] 0 1 2 3 4

original A -> 12 9 11 8

I =2 9 9 12 11 8

I =3 11 9 11 12 8

I =4 8 8 9 11 12 <-sorted A

This algorithm uses a sifting-down technique by comparing the value of X with
A [J] and either inserting X to the right of A [J] if X is greater than or equal to A [J]
or proceeding to the left in search of a larger value. As the trace table shows, our array A
becomes sorted with the smaller values being positioned toward the top (left) and the
larger values toward the bottom (right).

Unfortunately, both the bubble sort and the straight insertion sort algorithms are not
fast sorting techniques for large values of N. For these algorithms the maximum number
of comparisons, like the maximum number of assignments, is directly proportional to
N2.

In 1959 D. L. Shell proposed a refinement to the straight insertion sort. Figure 9.10
shows the steps for this sorting algorithm, Shellsort.

procedure Shellsort (var A : Table ; N integer) ;
var

begin

H, I, J, Temp : integer;
Flag : Boolean;

{ Compute the smallest value of H for which H > N. }
H := 1
repeat

H := 2 * H + l;
until (H > N);

Structured Data Types Chapter 9 4 2 3

{ Sort elements in table A spaced a distance H apart, using the }
{ concept of the straight insertion sort. }

repeat
H := H div 2;
I := H + l;
while (I <= N) do

begin
A[O] .- A[I];
J := I - H;
Flag := true;
while (A[O] < A[J]) and Flag do

begin
A[J + H] := A[J];
J := J - H;
if J < H then { Exit this inside loop. }

begin
Temp .- J;
J := J + H;
Flag .- false

end; { if-then }
end; { inside while-do loop }

J := Temp;
A[J + H] := A[O];
I := I + 1

end; { outside while-do loop }
until (H = 1) ;

end; { Shellsort }

Figure 9.10 The Shellsort algorithm.

Shell suggested that elements located a distance H apart be sorted by first repeating
the steps of the straight insertion sort, as the value of H is decreased. In the last step H
will finally be 1, with all the elements now being sorted as a straight insertion sort over
N elements. This seems strange because we are using the steps of the straight insertion
sort several times over. Why should this algorithm be an improvement? First, the
algorithm sorts fewer elements of the array when H is greater than 1, and when H does
become 1 most of the elements have already been sorted. It has been observed that when H
is 1 and N is large, the total number of comparisons is directly proportional to N, with
the total number of assignments being directly proportional to 2N.

Second, we choose values for H from the sequence of numbers 1, 3, 7, 15, 31,
When the value of N is large, the number of comparisons is directly proportional to N1 · 5 .

This means that when an array has a large number of elements (for example, N = 1000),
and the initial elements of the array are randomly assigned, the Shellsort will execute
faster than either the bubble sort or the straight insertion sort.

A third algorithm using the principle of exchanging elements is the quicksort
algorithm, which has two basic steps. First, the algorithm requires the array to be
subdivided into left and right partitions. These partitions are then sorted recursively by
repeating the same two steps. Figure 9.11 shows the procedure for the quicksort
algorithm.

I

424 Chapter 9 Structured Data Types

procedure Quicksort (var A
begin

Table; N integer)

Sort(A, 1, N)
end; { Quicksort }
{ ***
procedure Sort(var A : Table; L, R : integer);

var
I, J : integer;
X, Temp : item;

begin
{ Initialize local indices and select a pivot point represented }
{ by x. }

I .- L;
J := R;
X : = A [(L + R) div 2] ;

Partition array A into two subarrays.
repeat

while (A[I] < x do
I := I + l;

while (A[J] > X do
J := J - 1;

{ Swap the values A[J] and A[I]. }
if I <= J then

begin
Temp : = A [I] A [I] . - A [J] A [J] : = Temp;
I := I + l; J := J - 1

end; if-then }
until I > J;

{ Sort the left partition of the array or subarray. }
if L < J then Sort(A, L, J);

{ Sort the right partition of the array or subarray. }
if R >I then Sort(A, I, R);

end; { Sort }

Figure 9.11 The quicksort algorithm.

Notice that it contains the steps necessary for partitioning array A into two smaller
arrays. This is accomplished by first selecting an element from A represented by X,
scanning the array A from the left until an element A [I] is found where A [I] > X,
then scanning the array from the right until an element A [J] is found where A [J] <
X. At this point we have found an element of A larger than X and a second element
smaller than X. If the left index I is less than or equal to the right index J, the values
A [J] and A [I] are exchanged (swapped). The left index is then incremented and the right
index decremented, with the steps for scanning and exchanging being repeated. Once the
value of the left index exceeds the value of the right index, array A is divided into two
subarrays: a left partition containing elements of A less than x, and a right partition
containing elements of A greater than X. When the left and right indices are equal, the
value of x has been sorted to its proper position, with the subarrays to the right and left
needing to be sorted.

Structured Data Types Chapter 9 425

Quicksort is now executed recursively by first sorting the left partition for as long as
the right index J remains greater than the low index bound of the left partition. This is
followed by sorting the right partition for as long as the left index remains less than the
high bound of the right partition.

The quicksort algorithm saves time when sorting a table of random elements. When
N is large, both the number of comparisons and the number of exchanges are directly
proportional to N log2 N. This is much faster than the factor N2 required by the bubble
sort and straight insertion sort algorithms. Unfortunately, if most of the elements of table
A are sorted, execution time for the quicksort algorithm is directly proportional to N2•

Trace by hand each of the sorting algorithms, using tables of unsorted numbers
having from 5 to 10 elements. By tracing each of the sort algorithms and establishing a
trace table, you will better understand each step in the sorting algorithm. In addition, it
reinforces your skill in reading and understanding the steps of an algorithm.

9.5.2 Search Algorithms

In addition to sorting data, an algorithm may require a search for one or more elements
stored within a table, using an object called a key. For example, let us assume that a
telephone directory exists in RAM when our program is executing. Given a person's full
name as the key, we need a fast search procedure for finding the name and reporting the
associated phone number. One method is to use a simple procedure known as the linear
search algorithm shown in Figure 9.12.

procedure Linear_Search(A : Table; Key : item; N : integer;
var Position : integer);

{ Element A[O] will store the value of Key during execution. }
var

I integer;
begin

I := N;
A[O] := Key;
while (A[I] <> Key) do

I := I - l;
Position := I

end; { Linear Search }

Figure 9.12 The linear search algorithm.

First, this algorithm does not require that table A be sorted. It begins execution by
assigning the value of the key to A [0] ; it then points to one end of the table and
continues to search for the location having the key. The search is performed by comparing
the value of Key with each successive element of table A. For the algorithm shown in
Figure 9.12, the value returned is either the position where the key is found or zero if the
key is not found.

Although this algorithm is simple, its average search time (the average time to find a
key) is directly proportional to the factor NI 2. This means that if we perform numerous
searches using this algorithm, on the average we will need to search almost half the table
before finding the key. The average search time seems smaller when compared to the
execution time needed in our other sorting algorithms, but execution time for searching

426 Chapter 9 Structured Data Types

becomes costly as N becomes larger. Using this algorithm to search a table with 20
names is simple, but using it to search the New York City phone directory would be
incredibly slow.

A second algorithm for searching that is more efficient with respect to execution time
is the binary search algorithm shown in Figure 9.13.

procedure Binary_Search(A : Table; Key : integer; N : integer;
var Position : integer);

var

begin

Low_Bound, High_Bound, Middle : integer;
Found : Boolean;

{ Initialize the low- and high-bound indices. }
Low_Bound : = 1;
High_Bound : = N;
repeat
{ Compute the center position of table A or subtable. }

Middle := (Low_Bound + High_Bound) div 2;
Check if the item is at A[Middle]. }
if A[Middle] = Key then

begin
Position := Middle;
Found .- true

end
else
{ Continue searching either lower or upper table or }
{ subtable. }

if A[Middle) < Key then
High_Bound := Middle - 1

else
Low_Bound := Middle + 1;

until Found or (Low_Bound > High_Bound);
end; Binar_y, Search }

Figure 9.13 The binary search algorithm.

Table A must be ordered when using this algorithm. The basis for the algorithm is
similar to searching the telephone directory for a phone listing given the person's name as
a key. For example, if we were searching for a phone number, we might turn to the
middle of the phone book to see if the person's name is at the top of the left page. If not,
knowing that the book is arranged in alphabetical order, we would ask ourselves if the
name should be listed in the first half or the second half of the directory. Selecting the
appropriate half, we continue the search by dividing that portion of the telephone directory
in half. We again check to see if the person's name is at the top of the left page and if
not, ask if the key comes before or after this page. We then divide the selected portion of
the telephone directory into halves, continuing these steps until we eventually locate the
person or find that the person is not listed.

The binary search algorithm has three basic steps. First, initialize the indices
Low_Bound and High_Bound and determine the middle of the table. Then compare
the key with A [Middle J and, if the key is not found, check to see if it is ordered less

Structured Data Types Chapter 9 427

than A [Middle]. If it is, modify High_Bound, because the key may exist between
Low_Bound and the position Middle - 1. Otherwise, modify Low_Bound, because
the key may exist between Middle + 1 and High_Bound. These steps are repeated
by computing a new middle index and again checking the key with A [Middle J , until
either Low_Bound exceeds the value of High_Bound, or the key has been found.

The binary search algorithm has a major advantage over the linear search algorithm,
because it subdivides a table into two parts, searching only the subtable that may contain
the key and excluding a second subtable that is no longer relevant. With this approach,
the average search time is directly proportional to 1og2 (N + 1) / 2. For example, if
table A has 1024 (210) elements, the average search time for the linear search algorithm is
directly proportional to 512, whereas for the binary search algorithm this factor is only 5.
For numerous searches, therefore, we would need to examine almost half the elements in
table A using the linear search approach before finding the key, compared with only five
elements using the binary search algorithm. This implies a substantial saving in
execution time for a table having a large number of elements.

9.6 AN INHOMOGENEOUS STRUCTURE: THE PASCAL RECORD

In an array structure, all elements are of the same type; the Pascal record allows the
creation of a structure having several different fields, with each field representing a
different data type. Here is a format for declaring an object as a record type:

record
fieldl data type;
field2 data type;

fieldn data type
end;

Note that the declaration begins with the reserved word record, followed by a
field list composed of a label representing an identifier name, followed by a colon,
followed by a data type, followed by the reserved word end. The fields can be viewed as
having actions similar to the subscript of an array.

For example, consider a record that will be used for storing a date composed of the
month as a string, day of the week as both a string and an unsigned number, time
of the day as a long integer, and year as an integer. Here is the structure for our
record type, called Date, along with an identifier of type Date:

type
Date record

Month: string[8];
Daynarne: string[9];
Day: 1.. 31;
Year: integer;
Time: longint

end;
var

Access_Date Date

428 Chapter 9 Structured Data Types

The identifier Access_Date is declared to be a record structure of type Date,
which has five different fields with names Month, Dayname, Day, Year, and Time.
The concept of a record as an inhomogeneous structure derives from the fact that each field
of the structure is declared as a different data type. How does one reference a field of the
variable Access_Date? This is done using the syntax Variable_Name. field
(variable name, period, field name). For example, we may want to display the present date
using only three fields and the statement

writeln(Access_Date.Month, Access_Date.Day,
Access_Date.Year:4);

We can extend this example by using our variable Access_Date for first storing
the present date and time, then displaying all the fields of Access_Date to the Text
window. To extract the date and time, we will use the Macintosh Pascal library procedure
GetTime. This procedure gets the current date and time, generated by the Macintosh
system clock, and returns it through a formal variable having a Pascal system type called
DateTimeRec, which has the following record structure:

DateTimeRec = record
Year, Month, Day, Hour, Minute, Second,

DayOfWeek : integer
end;

This record does not need to be explicitly declared, because it is known to the Pascal
system when a program is translated. We now consider the major steps for displaying the
time of day.

1. Close all windows, and then establish the Text window for viewing.
2. Fetch the date and time using the procedure GetTime by assigning this

information to a temporary variable called Teni.p_Date.
3. Convert the date and time from the format in DateTimeRec to the format

of Date.
4. Display the date and time to the Text window.

The main module requires only two variables: Access_Date of record type Date,
and Temp_Date of record type DateTimeRec. The first two steps are
straightforward; let us expand Step 3 by developing a module called Convert_Date.
This module will take values from Temp_Da te and transform them to a form acceptable
for Access_Date.

procedure Convert_Date (var Out_Date : Date; In_Date
DateTimeRec) ;

{ Purpose: This module takes the temporary date given by In_Date
and converts values in its fields to a form understood by
Out_Date. This procedure requires two formal parameters:
Out_Date, a variable parameter of type Date, and In_Date, a
value parameter of type DateTimeRec. Two functions are called
from this procedure: Present_Month for returning a string value
representing one of the 12 months of the year and
Present_Dayname for returning a string value representing one
of the seven days of the week. }

Structured Data Types Chapter 9

begin
{ Convert numeric month to a string representation. }

Out_Date.Month <-- Present_Month(In_Date.Month);
{ Convert numeric day of the week to a string representation.

Out_Date.Dayname <-- Present_Dayname(In_Date.DayOfWeek);
Copy numeric day to Out_Date. }

Out_Date.Day <-- In_Date.Day;
Copy numeric year to Out_Date. }

Out_Date.Year <-- In_Date.Year;
{ Copy time of day to Out_Date. }

Out_Date.Time := In_Date.Hour * 10000 +
In_Date.Minute * 100 + In_Date.Second;

end; Convert_Date }

429

Although the time in hours, minutes, and seconds is stored in separate fields for the
record DateTimeRec, these three values are combined into a long integer and
stored in the field Time of the record Date. Keep in mind that the Macintosh system
clock is a 24-hour clock. The identifier Hour will have a range of 0 through 23 (0 for
midnight, 23 for the twenty-third hour of the day). When displaying time, we must
extract the hours, minutes, and seconds and determine whether or not we have passed
noon. The program titled Computing_the_Date provides a detailed listing for all
procedures and functions. This Macintosh Pascal program will execute under THINK
Pascal if the uses clause is removed.

program Computing_the_Date(input, output);
{ Purpose: This program shows a simple application of a record. }

uses
QuickDrawl;

type { Declare user-defined type called Date. }
Date = record

var

Month : string[8];
Dayname : string[9];
Day : 1 .. 31;
Year integer;
Time : longint

end;

Access Date : Date;
Temp_Date : DateTimeRec;
{ DateTimeRec is a record type known to Macintosh Pascal. }

{ *** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 150, 100, 350, 160);
SetTextRect(Window);
ShowText

end;

430 Chapter 9 Structured Data Types

{ ***
function Present_Month (Number : integer) : string;
begin
{ Purpose: Assign string equivalents for numeric months.

case Number of
1
2
3
4
5
6
7
8
9
10
11
12

end;
end;

Present _Month
Present_Month
Present _Month
Present_Month
Present_Month
Present_Month
Present _Month
Present _Month
Present _Month
Present _Month
Present _Month
Present _Month

:= 'January';
:= ' February' ;
:= 'March';
:= 'April';
:= 'May';
:= 'June';
.- 'July';
:= 'August';
.- ' September' ;
:= 'October';
:= ' November ' ;
.- 'December';

{ ***
function Present_Dayname (Number : integer) : string;
begin
{ Purpose:
{

Look up a string day of the week matching the }
numeric day of the week. }

case Number of
1 Present_Dayname .-
2 Present_Dayname .-
3 Present_Daynarne .-
4 Present_Daynarne .-
5 Present_Dayname .-
6 Present_Dayname :=
7 Present_Dayname .-

end;
end;

'Sunday';
'Monday ';
'Tuesday';
'Wednesday' ;
' Thursday' ;
'Friday';
'Saturday' ;

{ *** }
procedure Convert_Date (var Out_Date : Date; In_Date

DateTimeRec) ;
{ Purpose: This module takes the temporary date given by }
{ In_Date and converts values in its fields to a }
{ form understood by Out_Date. }
begin
{ Convert numeric month to a string representation.

Out_Date.Month := Present_Month(In_Date.Month);
{ Convert numeric day of the week to a string representation. }

Out_Date.Daynarne := Present_Daynarne(In_Date.DayOfWeek);
{ Copy numeric day to Out_Date. }

Out_Date.Day := In_Date.Day;
{ Copy year to Out_Date. }

Out_Date.Year := In_Date.Year;
{ Copy time of day to Out_Date. }

Out_Date.Time := In_Date.Hour * 10000 +

Structured Data Types Chapter 9

In_Date.Minute * 100 + In_Date.Second;
end;

*** }
procedure Report_Date_Time (In_Date : Date);

var
Hour, Minute, Second : integer;

begin
{ Display the date.

writeln;
write(In_Date.Dayname, In_Date.Month);
writeln(In_Date.Day: 3, ', ', In_Date.Year 5);
Hour := In_Date.Time div 10000;
Minute := (In_Date.Time - Hour * 10000) div 100;
Second:= In_Date.Time - (Hour* 10000 +Minute* 100);

{ Display the time in either A.M. or P.M. }
writeln;
if Hour < 12 then

431

writeln(Hour: 2, ': ', Minute: 2,
else

I• I . , Second: 2, I A.M. I)

begin
if Hour > 12 then

Hour := Hour mod 12;
write(Hour: 2, ':',Minute: 2,

end
I• I . , Second: 2, 'P.M. I)

end;
{ ***
begin { Body of the main program. }
{ Establish Text window for viewing screen. }

Set_Text_Window;
{ Access system date and time. }

GetTime(Temp_Date);
{ Convert fields in Temp_Date for Access_Date. }

Convert_Date(Access_Date, Temp_Date);
{ Display present date and time to Text window. }

Report_Date_Time(Access_Date)
end.

Notice that we use two functions for simulating a table lookup: one for returning a
string representation of the month and one for returning a string representation of the day
of the week.

In the procedure Report_Date_Time, we use three local variables for storing
hours, minutes, and seconds. Although the Macintosh has a 24-hour clock, we are
reporting time using a 12-hour clock. If the value of Hour is less than 12, it is morning,
and the string A . M. is attached at the end of the displayed time. From the twelfth to the
thirteenth hour, the value of Hour must be 12. Beyond the twelfth hour we modify the
value of Hour by executing the statement Hour : = Hour mod 12. Notice that the
write statements have minimum-width fields for enhancing the appearance of both the
date and time.

Pascal supports a statement that can reduce the need to explicitly reference the name
of a record variable. It is referred to as the with statement and has the following format:

432 Chapter 9 Structured Data Types

with record variable list do statement;

For example, the following can replace all of the statements in the body of the
procedure Report_Date_Time of the program Computing_the_Date:

with In_Date do
begin { Display the date. }

writeln;
writeln(Dayname, ', ',Month, Day: 3, , , Year 5);
Hour := Time div 10000;
Minute := (Time - Hour * 10000) div 100;
Second:= Time - (Hour* 10000 +Minute* 100);
{ Display the time in either A.M. or P.M. }
writeln;
if Hour < 12 then

end;

write(Hour: 2, ':', Minute: 2, ':', Second: 2, ' A.M. ')
else

begin
if Hour > 12 then

Hour := Hour mod 12;
write(Hour: 2, ':',Minute: 2, ':', Second: 2,

'P.M. I)
end

As you can see, we apply the with statement to reduce the need to reference the
record variable In_Da te. The body of the procedure Convert_Da te can also be
modified to reduce references to both In_Date and Out_Date. The following, for
example, can replace the body of procedure Convert_Da te:

with Out_Date, In_Date do
begin
{ Convert numeric month to a string representation. }

Out_Date.Month := Present_Month(In_Date.Month);
{ Convert numeric day of the week into a string }
{ representation. }

Dayname := Present_Dayname(DayOfWeek);
{ Copy numeric day to Out_Date. }

Out_Date.Day := In_Date.Day;
{ Copy year to Out_Date. }

Out_Date.Year := In_Date.Year;
{ Copy time of day to Out_Date. }

Time := Hour * 10000 + Minute * 100 + Second;
end;

It is not always possible to remove the referencing of a record variable from the body
of the with statement when two or more record variables have similar field identifiers.
For example, replacing the statement

Out_Date.Month := Present_Month(In_Date.Month);

Structured Data Types Chapter 9 433

with

Month:= Present_Month(Month);

will produce neither a syntax error nor a semantic error for Macintosh Pascal. However,
though executable, it has no semantic meaning, because it is impossible to relate the field
identifier Month with either record variable Out_Date or In_Date. In some instances
there are expressions and statements in the body of the with statement so that explicit
referencing of record variables is unnecessary.

Pascal supports an extension to declaring a record. The following format shows how
a record type can be composed of a fixed part followed by a variant part.

record
fixed part;
variant part;

end;

type

Up to this point, we have seen only examples of record declarations composed of
fixed parts. A record declaration having a variant part allows the selection of one or more
fields based on the value of a variable field. For example, consider the user-defined record
type:

Geornetric_Shape = (Rectangle, Circle, Triangle,
Point_to_Point);

Geornetric_Object =
record

case Figure : Geornetric_Shape of
Rectangle Boundary: Rect);
Circle Center : Point;

Radius : integer);
Triangle Corner_l, Corner_2,

Corner_3: Point);
Point_to_Point (Point_l, Point_2

: Point)
end; { end case }

var
Object Geornetric_Object;

The field variable called Figure serves as a variant selector for defining the
properties of the declared variable Object. It is only during execution that one of four
fields of the variant record, Rec t an g 1 e , C i r c 1 e, Tr i an g 1 e , or
Point_to_Point, can be selected, depending on the value assigned to Figure. Once
a field in a variant record is active, only that field and no other variant-record field can be
referenced. This is different from the fixed-record fields, where all fields are considered
active during execution. The short program titled Choosing_Geornetric_Shapes
allows the user to select the drawing of a geometric shape. This Macintosh Pascal
program needs several modifications before it will execute under THINK Pascal. First, the
uses clause must be removed. Next we must change the identifier Object, because
Obj act is a reserved word in THINK Pascal. We can do this quickly with the Find and
Replace command options under the THINK Pascal Search menu. For example, you

434 Chapter 9 Structured Data Types

might change each occurrence of Obj e c t in the program to Obj e c t 1 or
Data_Object.

program Choosing_Geometric_Shapes(input, output);
{ Purpose: This program allows the user to choose one of }
{ several geometric shapes. }

uses
QuickDrawl;

type
Geometric_Shape = (Rectangle, Circle, Triangle,

Point_to_Point);
Geometric_Object = record

var

case Figure : Geometric_Shape of
Rectangle: (Boundary: Rect);
Circle: (Center: Point; Radius : integer);
Triangle: (Corner_l, Corner_2, Corner_3 : Point);
Point_to_Point (Point_l, Point_2 : Point)

end;

Object : Geometric_Object;
Choice : char;

{ *** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 100, 100, 400, 300);
SetTextRect(Window);
ShowText

end;
{ *** }

procedure Choose_Figure (var Response : Char);
var

Condition : Boolean;
begin

repeat
writeln;
writeln(' Select a geometric object for display: ');
writeln(' [R] Rectangle ');
writeln (' [C] Circle');
wri teln (' [T] Triangle') ;
wri teln (' [P J Point to point ') ;
write(' Enter letter R, C, T, or P: ');
read (Response) ;
writeln;
Condition := (Response= 'R') or (Response= 'C') or

(Response= 'T') or (Response= 'P');
until Condition

end;
{ *** }

Structured Data Types Chapter 9

procedure Assign_Figure (Choice
Geometric_Object);

char; var Object

begin
with Object do

case Choice of

end;

'R' begin
Figure := Rectangle;
SetRect(Boundary, 100, 50, 300, 200);

end;
'C' begin

'T'

Figure := Circle;
Center.v := 250;
Center.h := 150;
Radius := 80;

end;
begin

Figure .- Triangle;
Corner_ 1.v .- 50;
Corner_ 1.h .- 50;
Corner_2.v := 100;
Corner - 2.h .- 200;
Corner_ 3.v .- 300;
Corner_3.h .- 300

end;
'P' begin

end;

Figure .- Point_to_Point;
Point_l.v := 50;
Point_l.h := 50;
Point_2.v := 250;
Point_2.h := 250

end

{ *** }
procedure Draw_Figure (Choice : char; Object :

Geometric_Object);
var

Window : Rect;
begin

HideAll;
SetRect(Window, 0, 20, 512, 342);
SetDrawingRect(Window);
ShowDrawing;
PenSize(2, 2);

with Object do
case Choice of

'R' begin
FillRect(Boundary, gray);
FrameRect(Boundary);

end;
'C' PaintCircle(Center.v, Center.h, Radius);

435

436 Chapter 9 Structured Data Types

'T' begin
DrawLine(Corner_l.v, Corner_l.h,

Corner_2.v, Corner_2.h);
DrawLine(Corner_2.v, Corner_2.h,

Corner_3.v, Corner_3.h);
DrawLine(Corner_3.v, Corner_3.h,

Corner_l.v, Corner_l.h)
end;

'P' DrawLine(Point_l.v, Point_l.h, Point_2.v,
Point_2. h);

end;
end;

*** }
begin { Body of the main program. }

Set_Text_Window;
Prompt user to choose one of four figures.
Choose_Figure(Choice);

{ Select the field variant for the figure chosen.}
Assign_Figure(Choice, Object);

{ Draw the figure chosen by the user. }
Draw_Figure(Choice, Object);

end.

Rect =

Though procedure Choose_Figure allows the user to choose one of four figures,
procedure Assign_Figure uses the value of Choice represented by a single character
to dynamically select one of the four parts of the variant a record. Notice that in defining
the user-defined record Geometric_Object, two special Macintosh Pascal types are
employed: Rect and Point. Although we do not need to declare Rect and Point
explicitly, internally they are of themselves variant records having the following
structures :

record
case integer of

end;

0 (top : integer; left : integer;
bottom: integer; right :integer);

1 topleft : Point; botright : Point);

Point = record
case integer of

0 (v: integer; h: integer);
1 : (vh : array[VHSelect] of integer);

end;

There are numerous rules for using the variant record. First, all of the field identifiers
must have unique names within the record being declared, regardless of the variant. This is
why the field Triangle uses the identifiers Corner_l, Corner_2, and Corner_3
rather than Point_l and Point_2 (since the former three identifier names have already
been chosen). Duplication is not allowed, even though the variant field is selected
dynamically during execution. The exception is for a record declaration containing one or

Structured Data Types Chapter 9 437

more nested records. Second, at least one of the values of the variant selector must be
labeled in the case statement and cannot share constants of any other type. Third, a
syntax error occurs if no labels exist within the case statement of the variant record.
Fourth, a nonactive variant record has all of its fields undefined. Referencing any field will
result in an execution error. Fifth, the identifier of the variant selector cannot be used as
an actual parameter for a corresponding formal parameter.

9.7 A STRUCTURE FOR CONTAINING A RANDOM SET OF ELEMENTS:
THE PASCAL SET

type

Pascal also supports a special structure called a set. As an abstract structure, a set
represents an object where elements of the same type are stored randomly. In Pascal a set
can be declared as a user type in terms of an ordinal type. The format for declaring a
set follows:

Set_Name = set of ordinal_type;

type

For example, consider an ordinal type called Names_o f_Days composed of the
days Sunday through Saturday. We wish to establish a special set called Days and a
variable called Workweek of type Days. Here are these declarations:

Names_of_Days = { Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday);

Days = set of Name_of_Days;
var

Workweek : Days;
Weekend, Midweek : Days;

First, Names_of_Days represents an ordinal type where the days of the week
are ordered from the smallest (Sunday) to the largest (Saturday). Second, Days is declared
as a set of Names_of_Days. This means that the variables Workweek, Weekend,
and Midweek, although of type Days, are each themselves a set. During execution each
set can contain either no elements (an empty set) or one or more of the ordinal values of
Names_of_Days. The variables Workweek and Weekend are initially assigned as
empty sets at the beginning of program execution.

Only by executing an assignment statement can we add elements to a set. The
following statements provide some examples of initializing sets with elements.

{Initialize the set Workweek with elements Monday .. Friday.}
Workweek:= [Monday .. Friday];

{ Initialize the set Weekend with elements Sunday, Saturday. }
Weekend := [Saturday, Sunday];

{ Initialize Midweek as an empty set. }
Midweek := [];

An expression of type set is represented by a list of ordinal values within a pair of
square brackets. For compatibility, the variable on the left side of an assignment
statement must also be a set type, with the ordinal values contained within the expression

438 Chapter 9 Structured Data Types

also declared within the set type. During execution the value of the set type variable is
replaced by the value of the expression on the right. For instance, if the variable
Workweek contained the set [Sunday, Friday, Saturday] , execution of our
sample assignment statement would create the set [Monday, Tuesday,
Wednesday, Thursday, Friday].

How then can elements be added to or removed from a set without destroying the
value of a set variable? We do this by using one or more of the three set operators shown
in Figure 9.14.

O_perator Name Action .. Set intersection Results in a set composed of elements
common only to the two intersecting
sets.

+ Set union Results in a set composed of elements
from the union of both sets.

- Set difference Results in a set composed of members of
the first set and not members of the
second set.

Figure 9.14 Set operators in Macintosh and THINK Pascal.

Consider the following Pascal statements as examples of these operations:

Workweek : = [Monday .. Friday] ;
Weekend := [Saturday, Sunday];

{ Compute the intersection of Workweek and Weekend. }
Midweek := Workweek * Weekend;

{ Compute the union of Workweek and Weekend. }
Workweek := Workweek + Weekend;

{ Compute a new value for Midweek. }
Midweek := Workweek * Weekend;

{ Decrease the number of days in Workweek. }
Workweek:= Workweek - [Friday, Saturday, Sunday];

The first two statements initialize Workweek and Weekend. The third statement
results in Midweek being assigned as an empty set, because the sets Workweek and
Weekend contain no common elements. The fourth statement results in the union of the
elements Monday .. Friday with Saturday and Sunday, the result being assigned
as the set [Sunday .. Saturday] to Workweek. The fifth statement takes the
intersection of the sets Workweek and Weekend. The common elements are
Saturday and Sunday, so Midweek now becomes the set [Sunday, Saturday].
The last statement subtracts the elements Friday, Saturday, and Sunday from the
set Workweek, yielding a smaller set [Monday .. Thursday].

There are also several relational operators for comparing sets, shown in Figure 9.15.
Syntactically the sets being compared must be type-compatible for the expression to be
translated a:nd executed. In the case of testing for membership, the element must be an
ordinal type, and its value must be compatible with the ordinal types for members
of the set being tested.

Structured Data Types Chapter 9 439

O_e_erator Name Action
= Set equality A = B returns true if every member of A is

in B and eve~ member of B is in A.
<> Set inequality A <> B returns true if members of A are not

members of B and members of B are not
members of A.

<= Is contained by A <= B is true if all elements of A are also
elements in B.

>= Contains A >= B is true if all elements of B are also
elements in A.

in Member of Element in A is true if the element is a
member of A.

Figure 9.15 Boolean operators in Pascal that apply to sets.

For example, consider the steps of a program that allows you to enter several lines of
text from the keyboard, count the characters a through z , both for upper- and lowercase,
and, as shown in Figure 9.16, display in the Drawing window a distribution chart of the
character count.

100

75

50

25

0
A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

Letters of the alphabet

Figure 9.16 Distribution chart of letters of the alphabet read from text entered from
the keyboard.

The main module has the following four steps:

1. Set the Text window for viewing.
2. Initialize two arrays, one that stores uppercase letters and one that stores

lowercase letters.

440 Chapter 9 Structured Data Types

3. Prompt the user to enter a message and then, reading one character at a time,
count the alphabetic letters.

4. Report the total counts from Step 3 by drawing a distribution chart.

The modules for the first two steps are simple; you can examine them in the program
Distribution_Chart. The third step uses lazy input from the keyboard for reading
and counting alphabetic characters. The algorithm for this module follows.

begin
{ Prompt user for a message indicating that the character ' # '

will terminate counting characters. }
repeat
{ reading the next line }

repeat
{ Read the next character, test, and adjust counter. }

read(Character);
Test if Character is in the set of uppercase letters and,
if so, increment the total count for that letter by l;
if not, test if Character is in the set of lowercase
letters and, if so, increment the total count for that
letter by 1. }

until { reached the end of line or Character = '#' } ;
{ Terminate the present input line. }

readln;
until (Character= '#');

end;

Why is this referred to as lazy input? Although a Pascal system can recognize when
it has reached the end of a line (the user has pressed the Return key), it cannot detect if the
user has typed additional lines of text. In this type of input mode, the Pascal system
cannot look ahead to see if it has reached an end-of-file from the keyboard. In our
example, the character # is used as a marker to indicate an end to input. The procedure
Read_and_Count from the program Distribution_Chart shows these steps for
counting the alphabetic characters. In this module the formal parameter Table_A
represents the table Uppercoun t, storing the counts of uppercase letters of the
alphabet, and the formal parameter Table_B represents the table Lowercount, storing
the counts of lowercase letters of the alphabet. Both parameters Table_A and
Uppercount are of the type Uppercase_Count (array ['A' .. 'z'] of
i n t e g e r) , and both T ab 1 e _ B and L owe r c o u n t are of the type
Lowercase_Count (array ['a' .. ' z'] of integer). As you can see
with both sets of parameters, the ordinal values 'A ' .• ' z ' and ' a ' .. ' z ' are used as
subscript values for arrays rather than integer values. This is more in line with defining a
soh,Jtion to our problem.

For reporting the total counts to the Drawing window, we use the following steps:

1. Set the Drawing window for viewing, and open this window.
2. Draw and label the vertical boundary of the distribution chart.
3. Draw and label the horizontal boundary of the distribution chart.
4. Compute the total count for each letter of the alphabet.
5. Draw the bars for each total count.

Structured Data Types Chapter 9 441

The first step is similar to procedure Set_Text_Window. In the remaining steps
the Drawing window is assumed to be approximately 500 pixels wide by 300 pixels high,
each pixel representing a point. Initially a vertical line is drawn from the point (70, 10) to
the point (70, 220). The drawing pen is moved to point (13, 224), and the vertical axis of
the chart is labeled with constants 0, 25, 50, 75, and 100. Each time a new label is
drawn, the y-coordinate of the drawing point is decremented by 50, and the pen is moved
to a new vertical position. Except for the label 0, all labels are drawn with a short dash
intersecting the horizontal axis. Here are the necessary program lines:

DrawLine(70, 10, 70, 220);
Number := O;
x := 13;
y := 224;
for J := 1 to 5 do

begin
MoveTo (X, Y);
WriteDraw(Number);
if J > 1 then

WriteDraw(' -');
y := y - 50;
Number := Number + 25;

end;

While drawing the horizontal axis, Y remains constant, and x changes. Initially a
line is drawn from the point (70, 220) to the point (470, 220). The length of this line is
based on the assumption that each count to be drawn will have a bar 8 pixels wide with a
7-pixel gap before drawing the next bar. At the initial point (77, 230) the first letter A is
drawn, and at each horizontal point 15 pixels to the right, the successor of the previous
alphabetic letter is drawn. The following shows these steps:

DrawLine(70, 220, 470, 220);
x := 77;
y := 230;
for Letter := 'A' to 'Z' do

begin
MoveTo (X, Y);
WriteDraw(Letter);
x := x + 15

end;
MoveTo(200, 250);
WriteDraw('Letters of the Alphabet');

The last step involves drawing each of the individual bars. This first involves
moving to an initial point (79, 220) represented by X and Y, respectively. For each letter
count, we use the routine SetRect to establish a rectangle with the left top point of
the rectangle defined as (X-4, Y-2 * Total_Count [Letter]) and the
bottom right point defined as (X + 4, Y) . Notice that the factor 2 is used in
computing the top of the left top point. We have assumed a scaling factor of 2, so for
every pixel to be drawn, we will multiply by 2. This limits us to an approximate range 0
through 100. Removing this factor would double the vertical scale. This would also

442 Chapter 9 Structured Data Types

require adjustment in labeling our vertical axis. At this point the rectangle is drawn and
filled with a background pattern using Fi 11 Rec t , and then framed using
FrameRect. Next the drawing point is moved to the right by 15 pixels for drawing
the next bar. The following program lines implement these steps:

x .- 79;
y := 220;

for Letter := 'A' to 'Z' do
begin

SetRect(Bar,X - 4,Y - 2 * Total_Count[Letter],X + 4, Y);
FillRect (Bar) ;
FrameRect(Bar);
x := x + 15

end;

The program Distribution_Chart contains the complete listing for executing
the foregoing steps. This Macintosh Pascal program will execute under THINK Pascal if
the uses clause is removed.

program Distribution_Chart(input, output);
{ Purpose: To count the alphabetic letters contained }
{ in a message and then to draw a distribution chart }
{ of the characters counted. }

uses
QuickDrawl;

type
Letters_of_Alphabet = set of char;
Uppercase_Count = array['A' .. 'Z'] of integer;
Lowercase_Count = array['a' .. 'z'] of integer;
Table = array ['A' .. 'z') of integer;

var
Uppercount : Uppercase_Count;
Lowercount : Lowercase_Count;
Uppercase_Set, Lowercase_Set : Letters_of_Alphabet;
Index_l, Index_2 : char;

{ *** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 512, 342);
SetTextRect(Window);
ShowText

end;
{ *** }

procedure Initialize_Sets (var Set_A, Set_B :

begin
Set_A . - [•A' .. ' z ' J ;
Set_B . - [• a' .. ' z ']

Letters_of_Alphabet);

Structured Data Types Chapter 9

end;
*** }
procedure Read_and_Count (var Table_A : Uppercase_Count;

443

var Table_B : Lowercase_Count;
Set_A, Set_B: Letters_of_Alphabet};

var
Character

begin
char;

{ Prompt the user for a message. }
write('Enter the message for character counting.'};
writeln(' Terminate by typing the character# : ');
repeat
{ reading from the next line }

repeat
{ reading one character at a time until reaching an }
{ end of line }

read(Character};
if Character in Set A then

Table_A[Character] := Table_A[Character] + 1
else

if Character in Set_B then
Table_B[Character] := Table_B[Character] + l;

until eoln or (Character= '#'};
{ Terminate read line and begin reading the next line }
{unless the termination character has been read.}

readln;
until (Character
writeln;

end;

1 # 1) ;

{ *** }
procedure Set_Drawing_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 512, 342);
SetDrawingRect (Wind~ ·1 };
ShowDrawing

end;
{ *** }

procedure Draw_Vertical_Axis;
var

X, Y, Number, J : integer;
begin

DrawLine(70, 10, 70, 220};
Number := O;
x := 13;
y := 224;
for J := 1 to 5 do

begin
MoveTo (X, Y};

444

end;

WriteDraw{Nwnber);
if {J > 1) then

WriteDraw{' -');
y := y - 50;
Nwnber .- Nwnber + 25

end;

Chapter 9 Structured Data Types

{ *** }
procedure Draw_Horizontal_Axis;

var

begin

X, Y integer;
Letter : char;

DrawLine{70, 220, 470, 220);
x := 77;
y := 230;
for Letter := 'A' to 'Z' do

begin
MoveTo {X, Y);
WriteDraw(Letter);
x := x + 15

end;
MoveTo(200, 250);
WriteDraw{'Letters of the Alphabet');

end;
{ *** }

function Compute_Total_Counts {A : Uppercase_Count;
B : Lowercase_Count) : Table;

var

begin

Index_l, Index_2 : char;
Temp_Array : Table;

Index_l : = ' A ' ;
Index_2 : = ' a ' ;
while Index_l <= 'Z' do

begin
Temp_Array[Index_l] .-

end;

Uppercount [Index_l] +Lowercount [Index_2]
Index_l .- succ(Index_l);
Index_2 .- succ(Index_2);

end;
Compute_Total_Counts := Temp_Array

*** }
procedure Draw_Bars {Total_Count : Table);

var

begin

X, Y : integer;
Letter : char;
Bar : Rect;

x := 79;

Structured Data Types Chapter 9

y := 220;
for Letter := 'A' to 'Z' do

begin

445

SetRect(Bar, X - 4, Y - 2 * Total_Count[Letter], X +
4, Y);

FillRect(Bar, gray);
FrameRect(Bar);
x := x + 15

end;
end;

{ *** }
procedure Report_Counts (A Uppercase_Count;

B: Lowercase_Count);
var

Total_Count : Table;
begin
{ Set Drawing window and open window for viewing. }

Set_Drawing_Window;
{ Draw and label the vertical boundary of the distribution }
{ chart. }

Draw_Vertical_AXis;
{ Draw and label the horizontal boundary of the distribution }
{ chart. }

Draw_Horizontal_Axis;
{ Compute the total count for the alphabetic letters A }
{ through Z. }

Total_Count := Compute_Total_Counts(A, B);
{ Draw the bars representing the counts for the letters A }
{ through z. }

Draw_Bars(Total_Count)
end;

{ *** }
begin { Body of the main program. }
{ Set Text window for viewing and display Text window. }

Set_Text_Window;
{ Initialize character sets Uppercase and Lowercase. }

Initialize_Sets(Upperc ~e_Set, Lowercase_Set);
{ Prompt user for paragraph, then read and count letters of }
{ the alphabet. }

Read_and_Count(Uppercount, Lowercount,
Uppercase_Set, Lowercase_Set);

{ Report the character count to the user. }
Report_Counts(Uppercount, Lowercount);

end.

As you can see, each step of the procedure Report_Counts calls on a module for
executing the details. This approach allows for easier maintenance if we need to modify
the algorithm for labeling either the horizontal or vertical axis, or both, or for modifying
the steps in drawing bars.

446 Chapter 9 Structured Data Types

9.8 PACKED ARRAY OF CHARACTERS

type

Standard Pascal supports the word packed in its declaration of structured types such as
arrays, sets, and records. For example, the following packed types can be declared:

Names_of_Days = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
Matrix= packed array[l .. 10] of integer;
Table = packed set of Names_of_Days;
Personnel =packed array[l .. 100] of

var

var

record
Name : packed array [1 .. 8 0] of char;
ID_Number : longint;
Wage : real

end;

Packed types economize on storage by allowing the storage of values to be
compressed at the expense of accessing a value. Pascal has two special procedures for
packing and unpacking structure types. The procedure pack (A, J, s) copies all of
the elements of the unpacked array A to packed array s, starting at the jth position of
array A. The second procedure, unpack (S, A, J) , copies all of the elements of
the packed array s to the unpacked array A starting with the jth position of array A.
Neither of these procedures offers any advantages for a packed array of characters in
Macintosh Pascal, because each character of a packed array is stored within a single byte
of memory.

Like many other implementations of Pascal on personal computers, in Macintosh
Pascal the attribute packed will result in the packing of only one structure type:
packed array of char. Though other structures can be declared as packed,
only the packed array of characters is acted on by the translator. A packed array of
characters is an alternative to declaring a string of a fixed length. For example, the
declaration

String_l = string[80]

represents a string variable capable of storing a maximum of 80 characters. Initially
the variable String_l has a zero length; that is, String_l is initially assigned a
null string. An alternative to this declaration is that of a packed array of characters:

String_2 =packed array[l .. 80] of char;

This also represents a string but in the context of an array, and with each array
element being a char type. Initially all elements of the packed array of characters have a
null character. What is the difference between the variables String_l and String_2?
This can be seen by extracting individual characters from the string. As the program
Packing_Characters shows, individual characters from String_l and
String_2 are accessed by using subscripted variables. This program will execute under
both Macintosh Pascal and THINK Pascal.

Structured Data Types Chapter 9

program Packing_Characters(input, output);
{ Purpose: This program compares the concept of the string }
{ type and packed array of characters. }

var

begin

String_l : string[80];
String_2 packed array[l . . 80] of char;
J integer;

{ Enter a first string from the keyboard. }
writeln(' Enter a sentence for the first string: ');
readln(String_l);
writeln;

{ Enter a second string from the keyboard. }
writeln('Enter a sentence for the second string: ');
J := l;
while not eoln and (J <= 80) do

begin
read(String_2[J]);
J := succ(J)

end;
readln;

Display the first string one character at a time. }
writeln;
writeln('String_l: ');
for J := 1 to Length(String_l) do

write(String_l[J]);
writeln;

Display the second string one character at a time. }
writeln;
writeln('String_2: ');
for J := 1 to 80 do

write(String_2[J]);
writeln;

end.

447

Whereas String_2 is stored as a static structure, String_l is stored dynamically
in a format composed of its length and the actual characters. It is impossible to access any
characters in String_l beyond its actual length. Another difference between the two
types of strings is the maximum string size. String types are limited to a maximum of
255 characters, whereas a packed array of characters is limited only by the memory
allowed during execution. A packed array of characters can thus be declared beyond the
limit of 255.

A third difference is found in compatibility problems with a packed array of
characters. For example, the statement

if String_l = 'A' then statement;

is executable, independent of the actual string length of String_l. In this context, both
String_l and 'A' take on the appearance of string types, with 'A' being
represented as a string type of length 1. Unfortunately, the statement

448 Chapter 9 Structured Data Types

if String_2 = 'A' then statement;

causes a compatibility error when executed, because String_2 in this context is an
array structure, whereas 'A' is a simple char type. In general, string types, characters,
and packed arrays of characters can be compared with string types. For the statement

if String_l = String_2 then statement;

the value of String_2 having N non-null characters is converted into a string type
value of length N. In order to compare two packed arrays of characters, both must have
values with an equal number of non-null characters for compatibility. For an assignment
statement, a string type can take on the value of an expression if the expression is a
string type, a packed arrays of characters, or a char type. If both the left and right
parts are packed arrays of characters with the same number of non-null characters, the
assignment statement is compatible.

String types offer ease ofreading for characters entered from the keyboard. In the
program Packing_Characters, we only need to execute the statement readln (
String_l) to enter the complete string from the keyboard. With packed arrays of
characters, we must use lazy input for assigning characters to String_2. Any attempt to
execute the command read (String_2) or readln (String_2) causes
Macintosh Pascal to report an error indicating that the argument String_2 must be an
ordinal type or a string type; it cannot be a packed array of characters. Fortunately,
no difficulty exists for displaying a packed array of characters using the commands
write orwriteln.

What then is the difference between a packed array of characters and an array of
characters? In Macintosh Pascal each character within a packed array is allocated a single
byte of memory, whereas each character within an array of characters is allocated two
bytes of memory. This is somewhat puzzling because a char type in Macintosh Pascal
requires only a single byte of allocation. It is obvious that when programming in
Macintosh Pascal, using a packed array of characters or a string type saves memory
compared to using an array of characters.

9.10 STANDARD PASCAL VERSUS THINK PASCAL

In Standard Pascal, a function can only return a simple type or a pointer type. For both
THINK and Macintosh Pascal, functions can return structure types, such as an array or
record. This allows us to write functions that can perform basic array operations such as
addition, subtraction, and matrix multiplication, and return values that are structures. The
following function is a simple example defining the addition of two vectors A and B, both
of length N:

function Add_Vectors(A, B:Vector; N:integer) :Vector;
var

c
I

begin

Vector;
integer;

for I := 1 to N do
C[I) := A[I] + B[I];

Structured Data Types Chapter 9

Add_Vectors .- C;
end;

449

Standard Pascal treats all strings as packed arrays of characters. While a packed array
of characters can be written to standard output using either a write or wri teln
statement, a packed array can only be read character by character. In Standard Pascal
attempting to directly read a string declared as a packed array using a read or readln
statement is either syntactically or semantically illegal. For example, the following
readln statement in THINK Pascal can be used to read several characters into a packed
array of characters:

write('Please type a single word: '):
readln (Str) ;

where St r is assumed to be declared as a packed array [1 . . 4 0] o f
char. In Standard Pascal (as well as Macintosh Pascal) a string such as Str can only
be read by using a loop, character by character. Here an index variable is needed for
assigning each character that is read its proper index position within a packed array of
characters. A special function called eoln (short for end-of-line) determines when the
Return key has been pressed. As long as the Return key is not pressed, it will continue to
be false, and the loop continues to read characters and assign them to the packed array.
The following demonstrates how Standard Pascal (as well as Macintosh Pascal) reads a
string stored as a packed array of characters:

I : = 1;
while not eoln (input) do

begin
read(Str[I]);
I . - succ (I) ;

end;
readln;

In both examples we assume that we never exceed the limit of 40 characters.
Although a string type may appear to have the same structure as a packed array of

characters, they are actually different structures. A packed array of characters has a static
storage structure and is assumed to use all of the index positions that are given within its
declaration. This means that whether you assign 4 characters or 40 characters to a packed
array of 40 characters, it uses all 40 character positions when storing and displaying the
value of a string. In some instances a Pascal compiler might initially pack the array
positions with either null characters or blank characters. Standard Pascal has no definite
rules. In many instances, if the string variable declared as a packed array of characters
is reassigned a string, older characters not overwritten by the new string may remain in
the array as garbage. The rule in working with packed array of characters is to allow the
last character position as a string terminator. Often the null character is convenient,
because it cannot be seen when it is displayed. This requires special write routines for
displaying the characters in a string one character at a time until the null character is
accessed.

A string type is assumed to have an implied record structure composed of three
elements: the actual length of the string, the maximum length that is allowed, and a
packed array of characters for storing the string. The following demonstrates the structure
for the the type string [Ml:

450 Chapter 9 Structured Data Types

String_M = record
Actual_Length:integer;
Maximum_Size:M;

type

String_Array:packed array[l .. M] of char;
end;

For variant records, TIIINK Pascal does not enforce all of the requirements of
Standard Pascal. First, TIIINK Pascal does not require that every variant of the tag-field be
in the case-constant-list. For example, the following variant record would require all four
tag-field values to appear in a Standard Pascal declaration, whereas in TIIINK Pascal we
can delete the case constant Vanilla.

Flavor= (Vanilla, Cherry, Chocolate, Banana);
Ice_Cream_Cone record

case Flavor of
Chocolate: (Height:integer);
Cherry:(Number:integer);
Banana:(Peels:integer);
Vanilla: ()

end;

Although Standard Pascal does not allow for the tag-field of a variant-part as an
argument of a variable-parameter, THINK Pascal does not enforce this rule. Thus,
procedure Choose_Figure in Section 9.6 might be rewritten so that the formal
parameter Response remains a variable parameter, but its type is now
Geometric_Shape rather than character, and so that in the body of the procedure one
of the enumerated values can be assigned directly to the formal parameter. A call to
procedure Choose_Figure would then have as an actual parameter the subscripted
variable Object. Figure.

SUMMARY

Pascal allows several different structures for organizing information. The array is a
structure in which all elements are homogeneous. Accessing an array element is
performed through a subscripted variable, with the subscripts being ordinal types. The
ordinal type can go beyond simple integer types and can include subrange values,
char types, and values of user-defined ordinal types.

The record presents us with a second type of structure, one that allows in­
homogeneous elements. Through the specification of fields, the record provides a structure
for storing several different pieces of information. To access a field of a record, list the
record name, followed by a period, followed by the field identifier. This acts as the
equivalent of a subscripted variable. The record as a structure provides a more natural
object for defining a solution to a problem and for presenting a solution to the computer.
The structure of a record can be extended to include a variant-record part. The variant-record
part allows a portion of a record to become active during execution. Although several
variables can be declared to have the same record type, it is at execution time that different
fields can be made active, depending on the value of a variant selector.

Structured Data Types Chapter 9 451

A set is a structure in which elements are assumed to be stored in random order.
Pascal supports the concept of a set, but in reality the values allowed to be stored in sets
are defined through ordinal types. This forces all sets in Pascal to have a specific
ordering that is not random. The power of sets can be expanded through the use of
operators for intersection, union, and set difference, and through relational operators. Keep
in mind that declaring a set of records or a set of arrays is not allowed in Pascal.

The packed array of characters is a special structure for the representation of a string.
Macintosh Pascal supports an explicit string type, but in many Pascal translators
character strings are represented by packed arrays. In Macintosh Pascal, the string type
is a dynamic structure that can increase or decrease in size as the program is executed.
Unfortunately, Macintosh Pascal limits a string type to a maximum of255 characters.
A packed array of characters allows you to go beyond that limit, using a static string
structure.

Applications often include various sort and search routines. The quicksort algorithm
provides one of the fastest techniques for sorting data stored internally in RAM. The
binary search algorithm is one of the most popular techniques for searching a presorted
table by using a key.

REVIEW QUESTIONS

type

1. What is the purpose of having an array in a computing language?
2. What are the two ways in which a one-dimensional array can be viewed?
3. What is the form for declaring a one-dimensional array?
4. How can a subrange type be used to declare a one-dimensional array?
5. How many elements (array positions) exist for the following array declarations?

(a) var
T: array[-10 .. 20] of real;

(b) var
X: array[l0 .. 25] of integer;

(c) var
S : array[-20 .. -6] of char;

6. What is meant by the term subscripted variable?
7. For the declarations given in Question 5, which of the following represent valid

subscripted variables?

T(-6) X(i) X[i+j) T[k] S[O] T[S-i]

8. Why does Pascal use square brackets instead of parentheses to surround an index?
9. What types of indices other than integers can be used in declaring an array and in

specifying the index of a subscripted variable?

10. Are the following declarations syntactically correct?

Months_of_Year = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec) ;

Range_of_Months = (Jan .. Dec);

452 Chapter 9 Structured Data Types

var
Table_of_Dates : array[Range_of_Months] of string;

11. Is the following procedure-header syntactically correct?

procedure Experiment_Four(var Table: array[l .. 7] of real);

var
A

type

Explain your answer. How can you check your answer to support your position?
12. If the procedure-header in Question 11 is wrong, what must be added to correct

the problem?
13. What is meant by the term multidimensional array?
14. What is the special name given to a two-dimensional array?
15. Write the format for declaring a two-dimensional array.
16. Consider the following declaration of a two-dimensional array:

array[-10 .. 10, 5 .. 15] of integer;

How many rows are there? What is the range of row indices? How many
columns are there? What is the range of column indices? How many integer
numbers does array A store in memory?

17. Are the following declarations syntactically correct?

Row_Range = 10 .. 100;
Column_Range = 5 .. 50;

var
A : array[Row_Range, Column_Range] of integer;

18. Are the following declarations syntactically correct?

type
Months_of_Year = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,

Oct, Nov, Dec) ;
Range_of_Months = (Jan .. Dec);
Range_of_Days = 1 .. 31;

var
Message_Dates:array[Range_of_Days,Range_of_Months] of

string;

var
x

19. How can the declaration for Message_Dates in Question 18 be modified to
handle the years 1987 through 1999 as well as months and days of the month?

20. For the declaration

array[l .. 10, 9 .. 25] of real;

are the following subscripted variables syntactically correct?

X[i] I [j] X[5, k] X[k] [p] X(j It)

Structured Data Types Chapter 9 453

var
A

var
A

21. What is meant by the concept of an array of arrays?
22. Why is it important that data stored within an array be sorted?
23. What advantage is there in using the bubble sort algorithm?
24. Show the steps for swapping two array elements in a one-dimensional array.
25. Write a procedure for swapping two rows of a two-dimensional array.
26. What is the basic difference between the bubble sort algorithm and the straight

insertion sort?
27. Why does Shell sort offer an advantage over the bubble sort and the straight

insertion sort?
28. Why is the quicksort one of the best internal sort algorithms?
29. What is the primary difference between the linear search algorithm and the binary

search algorithm?
30. Why is a searching algorithm like the binary search algorithm important for

finding data within an array?
31. Why can the binary search algorithm fail if the array being searched has not been

sorted?
32. What is meant by the terms homogeneous arrays and inhomogeneous arrays?
33. In Pascal, how can an inhomogeneous array be represented?
34. Define the format for declaring a user-defined type called a record.
35. Define the structure for the internal record type DateTimeRec.
36. For the declaration

record
Name : string[30]
Age : integer;
SSnumber : string[lO]

end;

how is the field Name referenced? How is the field Age referenced? How is the
field SSnurnber referenced?

37. For the declaration

array [1 .. 100] of record
Name : string[30]
Age : integer;
SSnurnber : string[lO]

end;

how is the j th element of array A referenced? How is the field Age of the ith
element of array A referenced? Are the references A. SSnumber [i] and
A [i] . SSnurnber equivalent?

38. What statement in Pascal can be used to reduce the explicit referencing of a record
name when accessing the fields of a record?

39. When is it not possible to remove the referencing of a record variable from the
body of the with statement?

40. What extension does Pascal support for declaring a record?
41. What rules must we follow when writing a record having a fixed part and a

variant part?

454

type
Months

var

Chapter 9 Structured Data Types

42. How can the case construct be used with the declaration of a record?
43. Define the QuickDrawl types Rect and Point using the case

construct.
44. How does a set differ from an array and a record structure?
45. How is an empty set assigned to a variable declared as a set of a data type?
46. For the declarations

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, Dec) ;

Dates Months;
Summer_Months : Months;

is it true that the variable Dates has the elements Jan .. Dec?
47. Show how Sununer_Months in Question 46 can be assigned the values Jun,

Jul, Aug, Sept.
48. List the set operators and the relational operators that can be applied to sets.
49. Can read and readln commands be used to enter sets from the keyboard?
50. Can write and wri teln commands be used to output sets to the Text

window?
51. Do the three set operators union, intersection, and difference have operator

precedence among themselves? with arithmetic and Boolean operators?
52. What is important about the data type packed array of characters?
53. Is the data type packed array [1 .. 3 0] of char equivalent to the

data type string [3 0]? Explain your answer.
54. What is the purpose of the procedures Pack and Unpack?
55. Is there any benefit in Macintosh Pascal in declaring a packed array of integers, a

packed array ofreals, or a packed array of Booleans?
56. What is meant by the statement that a subscript is out of range?
57. Consider the following declarations:

type
Matrix
Table

var

array[l .. 100, 1 .. 10) of integer;
array[l . . 10] of Matrix;

T : Table;

What is the data type for the variable T? What data type is associated with each
element of table T? How many elements exist in table T? How many integer
numbers can be accessed through table T?

58. Consider the following declarations:

type
School_Months = (Jan, Feb, Mar, Apr);

var
Student : record

ID : string [11];
Name string[20];
Year : integer;

Structured Data Types Chapter 9 455

case Month: School_Months of
Jan (Jan_Grade : char);
Feb (Midterm : char;

end;

Mar
Apr

Average : integer);
Mar_Grade: char);
Final_Grade : char;

Final_Average : real

What represents the fixed part and variant part of a variant-record type?
59. How is one of the four fields Jan, Feb, Mar, Apr made active?
60. Can an inactive field of a variant record be referenced during execution?

PROGRAMMING EXERCISES

Although not all programming exercises require you to write an algorithm, you may
better understand the problem and what is required by first writing an algorithm and
tracing it by hand with several examples before writing a Pascal program.

1. Consider that daily temperatures are measured at midnight, 6 A.M., noon, and 6
P.M. Develop an algorithm that will prompt for all four of these temperatures
for each of the seven days of the week and compute the mean midnight, mean 6
A.M., mean noon, and mean 6 P.M. temperatures for the week. Test your
algorithm by writing a program and submitting your own data. Hint : Use a
two-dimensional array for storing the temperature values.

2. Suppose that table A has N random elements. The following algorithm computes
the maximum value of N elements.

procedure Max_Value(A: Table, N: integer; var Maximum: item);
{ The purpose of this module is to compute the maximum value of

array A, representing a table of N unsorted elements of type
item. Parameter Maximum will serve as a variable for returning
the maximum value to where the module is called. }
var

Index : integer;
begin
{ Let Maximum be assigned the first value of array A. }

Maximum<-- A[l];
Index <-- 2;
while Index <= N do

begin
{ Check if the next array element is larger than Maximum. }

if A[Index] > Maximum then
Maximum<-- A[Index];

{ endif }
Index <-- succ(Index)

end {while-do};
end { Max_Value };

456

type

Chapter 9 Structured Data Types

Write a program using procedures that perform the following steps:

(a) Assign 30 random integers to array A.
(b) Determine the maximum value of these from array A.
(c) Display the values of array A across the Text window and

the maximum value.

3. Based on the concepts of Exercise 2, write a new algorithm called
Max_and_Min to determine the index positions of maximum and minimum
values in an array called A. This new module requires four formal parameters:
array A, integer N, Max_Index representing the index position of the
maximum value, and Min_Index representing the index position of the
minimum value. Modify the program in Exercise 2 for testing this new
algorithm by displaying the values of array A as well as the maximum and
minimum values, using the relevant index values.

4. Modify the program in Exercise 1 to determine the maximum and minimum
temperatures for each day of the week and the maximum and minimum
temperatures for the entire week from all temperatures entered upon input.

5. Assume that a one-dimensional array A stores N real numbers. This array is
indexed from 1 to N, with N less than or eq-ual to 50. Write a function called
Largest_Difference for computing the largest difference between two
consecutive elements of A and the index position within matrix A.

6. Consider the following declaration:

Matrix= array[l .. 100, 1 .. 50] of integer;
var

T : Matrix;

Write a procedure called Ini tial_Elements having three formal parameters:
A representing a two-dimensional array, M representing the number of rows, and
N representing the number columns. This procedure is required to initialize to 1
all elements in the first M rows and N columns of array A.

7. Write a procedure called Transpose_Array that has three formal parameters:
A representing a two-dimensional array, M representing the number of rows, and
N representing the number columns. This procedure is required to interchange the
rows and columns of array A. After execution of Transpose_Array (B, I,
J) , the first row of array B has now become the first column, the second row of
B has now become the second column, and so on.

8. Assume that a data pair is to be entered from the keyboard. The first part is a
student's full name, represented by a string, and the second is an integer number
representing an examination score. It is assumed that all examination grades are
positive, and input is terminated by entering the string STOP. Student names are
to be stored in a one-dimensional array of type string [2 0], and ex­
amination names are to be stored in a one-dimensional array of type integer.

Structured Data Types Chapter 9 457

type
Person

Assume that the number of students is limited to a maximum 50. Write an
algorithm that will perform the following steps, using procedures:

(a) After hiding all windows, set and open the Text window.
(b) Enter student names and examination scores.
(c) Compute the average of the examination scores.
(d) Using the straight insertion sort, sort the grades from

highest to lowest.
(e) Clear the Text window by executing Page.
(f) Report the average examination score and the grades and

student names to the Text window.

After testing your algorithm, convert it to a Macintosh program, and test to see
if it is functional. What happens if the first input is STOP? No global variables
are allowed.

9. Instead of using two arrays in Exercise 8, replace these with a one-dimensional
array of records having the following declarations:

record
Name : string[20];
Score : integer

end;
Table = array[l . . 50] of Person;

var
Student : Table;

Rewrite the algorithm and program for Exercise 8 to perform the following steps:

(a) After hiding all windows, set and open the Text window.
(b) Enter student names and examination scores.
(c) Compute the average of the examination scores.
(d) Using the straight insertion sort, sort the grades from

highest to lowest.
(e) Clear the Text window by executing Page.
(f) Report the average examination score and the grades and

student names to the Text window.
(g) Using the straight insertion sort, sort the names of students

in alphabetical order.
(h) Clear the Text window by executing Page.
(i) Report the student names and grades to the Text window.

No global variables are allowed.

10. Develop a special Pascal function called Clock. This function is to return a
longint representing the time of the day from midnight, measured in seconds. In
defining the function C 1 o ck, use the procedure Get Time to return the
current date. Then compute the total seconds after midnight by adding the total
number of seconds from fields in data type DateTimeRec.

458 Chapter 9 Structured Data Types

11. Test the algorithms Straight_Insertion_Sort, Shellsort, and
Quicksort by having a program sort 100 random integers. In each case use
the function Clock from Exercise 10 to compare the sorting times of these
three algorithms. Before beginning a sort, measure the clock time, and repeat
this step when execution of a sort has been completed. The sorting time is
simply the difference between these two times.

12. Repeat Exercise 11 for an array containing 1000 random integers. Note : If you
are interested in checking to see if the sorting times are proportional to N2 for
Straight_Insertion_Sort, Nl. 5 for the Shellsort, and less than Nl. 5 for
Quicksort, repeat Exercise 11 for an array containing 10,000 random
integers. After collecting these data, use a sheet of logarithmic paper with the
horizontal axis representing the values of N and the vertical axis representing the
sorting times. Check the slopes to see if they are close to 2, 1.5, or less.

13. Rewrite the binary search algorithm so that it can be executed recursively. Name
this new procedure Recurs i ve_Binary _Search. This procedure should
have five formal parameters: A, Low, High, Key, and Position. The
parameter A is a table being searched from index position Low to index position
High. If the key is not located, return a value less than the value of the index
Low. Assume that the indices of A need not be from 1 to N but in general can be
in the range M to N.

14. A company has employee records stored in the memory of the computer. Each
record contains the following information: employee name, address of residence,
residence phone number, birth date, and annual salary. Write a program using
several procedures for entering employee records (maximum 10 records) from the
keyboard, then sorting these records with several tables: an array containing
records sorted alphabetically by name, an array containing records sorted by age,
and an array containing records sorted by annual salary. How could the binary
search algorithm be used to search for all employees having either a particular
age or a particular salary? Hint : Be concerned with how you structure the storage
of an employee's birth date, because your program must be able to compute an
employee's age as a whole number from this data.

15. Write a program that counts the total individual vowels as well as the total
number of alphabetical letters entered from the keyboard. Assume that one or
more lines of text can be typed from the keyboard. After the input has been
completed, have this program plot a bar chart giving the percentage of vowels
found in the input text string, as shown in Figure 9 .17.

Structured Data Types Chapter 9

Vowels

A

E

I

0

u

0 5

459

10 15 20 25 30 35 40 45 50

Percentage of all alphabetic characters.

Figure 9.17

You may want to consider how to scale the horizontal axis so that the individual
bars can be better displayed in the Drawing window:

16. The ABC Trucking Company keeps its dispatch record for the day on a sheet like
the one shown in Figure 9.18. Write a small system having two record arrays,
Inbound and Outbound. This program must be able to use a menu so that
the dispatcher can choose from one of the following options:

(a) Enter incoming truck into INBOUND TRAFFIC.
(b) Enter outgoing truck into OUTBOUND TRAFFIC.
(c) Search for driver in INBOUND TRAFFIC.
(d) Search for driver in OUTBOUND TRAFFIC.
(e) Display INBOUND TRAFFIC.
(f) Display OUTBOUND TRAFFIC.
(g) Display trailer information for INBOUND and

OUTBOUND TRAFFIC.
(h) Exit program.

Trailer information must be displayed in alphabetical order with trailer number
and status (whether the trailer remains inbound or outbound). If inbound, report
the city where the trailer's load originated; if outbound, report the city of
destination.

460 Chapter 9 Structured Data Types

INBOUND TRAFFIC

Tractor Trailer Trailer Arrival From Driver
Number Name Number Time

Tractor
Number

OUTBOUND TRAFFIC

Trailer Trailer Leaving To Driver
Name Number Time

FIGURE 9.18

17. A complex number is represented by the notation a+ j b. In this notation the
number a represents the real part, and the number b represents the imaginary
part. The special constant j represents the square root of -1. In Pascal we can
represent a complex number by the following record format:

Complex = record
Real_Part : real;
Irnaginary_Part : real

end;

Consider the following rules for complex algebra:

(a+ jb)+(c+ jd) =(a+c)+ j(b+d)

(a+ jb)-(c+ jd)= (a-c)+ j(b-d)

(a+ jb)(c+ jd) = (ac-bd)+ j(ad +be)

The conjugate of a+ jb =a- jb

The modulus a+ jb = (a2 + b 2) 112

Structured Data Types Chapter 9

a+jb (a+jb)*conjugateofc+jd

c+ jd = (modulus of c+ jd)2

Write the following set of procedures for performing complex algebra:

(a) procedure Add_Complex (var X: Complex;
Y, Z: Complex); This procedure will add the complex
number Y to the complex number z and return the the
result through X.

(b) procedureSub_Complex(var X: Complex;
Y, z: Complex); This procedure will subtract the
complex number Z from the complex number Y and return
the the result through X.

(c) procedure Mul t_Complex (var X: Complex;
Y, Z: Complex); This procedure will multiply the
complex number Y by the complex number a and return the
the result through x.

(d) procedureDiv_Complex(var X: Complex;
Y, z: Complex) ; This procedure will divide the
complex number Y by the complex number z and return
the the result through X.

(e) procedure Conjugate (var X: Complex, Y:
Complex); This procedure will take the conjugate of the
complex number Y and return the the result through X.

(t) procedure Modulus (var R: real; Y
Complex); This procedure will take the modulus of the
complex number Y and return the the result through R.

(g) procedure Write_Complex (X : Complex) ;
This procedure will display to the Text window a complex
number, given by X, in the form a + j b.

(h) procedure Re ad_ C om p 1 ex (var X
Complex); This procedure will read a complex number
typed at the keyboard in the form a + j b and assign this to
x.

Test your procedures by using several sets of complex
numbers.

18. A cubic equation is given by the following identity:

Let
2

Q=5.._1
3 9 '

and

461

If Q3 + R2 > 0, the cubic equation has one real root and two complex conjugate
roots.

462 Chapter 9 Structured Data Types

If Q3 + R2 = 0, all three roots are real, and at least two are equal.

If Q3 + R2 < 0, all roots are real.

the roots for the cubic equation are defined as follows:

a2
Xi= (S1 + S2) - -

3

X2 = (S1 + S2) - a2 + j.fj (Si+ S2)
2 3 2

X3 = (S1 + S2) - a2 - j.fj (Si+ S2)
2 3 2

Using the procedures from Exercise 17, and the function from Exercise 13 of
Chapter 7, write a new procedure called Cube_Roots for computing the roots

of a cubic equation when Q3 + R2 > 0, and when Q3 + R2 = 0, given the
values for the coefficients a2, ai, and a0 .

The third case, where Q3 + R2 < 0, requires more thought and analysis. If you
want an added challenge, try to determine how procedure Cube_Roots can be

extended for computing the roots when Q3 + R2 < 0.

19. For a better understanding of the basics of character manipulation, assume that all
strings will be represented by a packed array [1 .. M] of char.
Develop algorithms for the following set of procedures and functions:

N <-- Length_S (X) This function measures the length of string X. A
string X is empty if the first character in the string is a null character.
The length of X is found by counting characters up to the first null
character.

z < - - Conca t_S (X, Y) Concatenate a copy of string Y to the right of a
copy of string X . The sum of lengths X and Y cannot exceed the
maximum length allowed for z.

Z <-- Subs tr (X, I, J) Copy the Ith through the Jth characters of
X to z . If J = 0 , I < 0, or J <= I string z remains
unchanged.

P < - - Index_S (X, Y Search string X with pattern Y for the first
occurrence of string Y, setting P to this position; otherwise, P is set to
zero.

Structured Data Types Chapter 9 463

Z <-- Insert_S (X, Y, S) For pattern Y in X, replace the first
occurrence of Y withs. If the pattern does not exist, leave z as a null
string. What happens if pattern Y is a null string? What if X is a null
string? Delete_S (X, I, N) Starting at position I in string X,
delete N characters.

When convenient, use one or more of these functions or procedures to define one
of the other functions. After testing your functions and procedures, convert your
algorithms into Macintosh or THINK Pascal programs and show that they are
functional.

Chapter 10

Files

OBJECTIVES

After completing Chapter 1 O, you will know the following:
1. The basic elements of Pascal files: the file pointer, the file buffer, and file

components.
2. The differences between nontext and text files.
3. The differences between sequential-access and random-access files.
4. Commands for opening and closing files: open, close, rewrite, and reset.
5. Commands for reading and writing to Pascal files: read, readln, get, write,

wri teln, and put.
6. The miscellaneous commands seek and filepos.
7. Steps for using a printer as a file device for printing text files.

10.1 ADVANTAGES OF USING FILES

464

In Chapter 9 we saw how data can be structured and made available during the execution
of a program. But how can the information in a structure such as an array be kept when
the program ends execution? An approach that requires the user to enter information from
the keyboard each time the program is executed is not convenient, nor does it make full
use of the computer's capabilities. This becomes more evident when the array has
hundreds of elements.

Files can provide a useful medium for output during the execution of a program by
allowing you to save the values associated with simple and structured variables. When
files are employed, information associated with variables is not lost when the program

Files Chapter 10 465

terminates execution. Upon reexecution of the program, files can serve as an input
medium for entering the values associated with variables. If RAM (main memory)
becomes limited due to the storage of structures involving a large number of elements,
files provide temporary storage while the program is in execution. When using an array in
Pascal, you must explicitly declare what the maximum size of the array will be when the
program is executed. RAM storage can thus be wasted if not all of the array is required. It
also means that an execution error will occur if we attempt to store data beyond the
bounds of the array. Using a file to store the data rather than an array relieves us of such
problems. Files serve as an efficient and compact form for storage, both during the
execution of a program and after execution has terminated.

In this chapter we introduce the concepts of sequential and random-access files and
explain how they relate to MacintoshfTHINK Pascal files. We first discuss sequential
files, opening and closing such files, reading from and writing to such files, and the steps
needed to test for an end-of-file marker. In the context of sequential files, a special file
type called text is examined and compared with the concept of a file of characters. In
addition, we review the concept of random-access files, opening and closing such files,
reading from and writing to such files, and the steps needed to test for an end-of-file
marker. The command seek is discussed as an important mechanism for accessing a
component of a random-access file.

Finally, we should stress that there is little practical difference between Macintosh
Pascal and THINK Pascal when it comes to the handling of files. All of the programs in
this chapter will execute under either of these versions of Pascal.

10.2 BASIC CONCEPT OF A PASCAL FILE

In Chapter 1 we saw how to create a simple Macintosh Pascal program and then save it as
a program file on a diskette or hard disk. It is also possible, when executing a Pascal
program, to use commands in the source code of the program for creating, writing to, or
reading from one or more data files. Rather than storing programs, these files store data
such as integers, reals, characters, strings, arrays, sets, or records. How can a file be
understood by an individual who knows little about the organization and architecture of a
Macintosh computer? A simple model of a file can be represented as an organized
collection of related data objects stored on an accessible storage medium such as a
diskette. Each related data object is called afile component. In relation to Pascal, a file is
similar to an array of records, with the array subscript having a range from O through N.
Figure 10.1 illustrates this concept. A file is different from an array, because it can
increase or decrease in size during the execution of a program. Arrays in Pascal are always
a fixed size determined at the time the program is translated.

As Figure 10. l indicates, each file component is associated with a unique index
number, the first file component having an index value of zero. Each file is terminated
with a special file component called an end-of-file marker (eof}. When a file is first
created, it contains only the end-of-file marker and no file components. Pascal files can be
divided into two broad categories: text files and nontext files (machine-language files).
When a file is used to store an ordinal type, a real type, an array, a packed
array, a set, a string type, or a record type, each file component will have a
size equivalent to the data type that is being stored. In addition, each file component will
store the data type in its machine format. For example, a file storing real numbers has
each file component fixed at 4 bytes, because a real number in Macintosh Pascal requires
only 4 bytes for representing its value at the machine level. File components for any
nontext files are always of a fixed size relative to the data type that is being stored. Text

466 Chapter 10 Files

files are different, because they can store character data of varying string lengths, that is,
lines of text. Text files are always written to by executing the. command wri teln and
are always read from by executing the command readln. File components of text files
can vary in length simply because lines of text produced from executing a wri teln
command can vary in length. Section 10.8 provides further discussion on the use of text
files in Pascal.

0 1 N-1 N

file file file file
component component component component eof

.,.
file pointer

l
file buffer

T
File_Buffer"

The file buffer represents a physical link between the Pascal file represented by the pointer
File_Buffer and the physical file represented by file components.

Figure 10.1 A simple model of a file.

During the execution of a Pascal program, a file component is accessible through an
object hidden from the programmer, called a.file pointer. When a nonempty file is opened,
the file pointer is initially positioned so that it points to file component zero, that is, the
beginning of the file. During the execution of a Pascal program that is reading from a
file, the file pointer will always point to the next file component to be read. While
executing a Pascal program that is writing to a file, the file pointer will always be
positioned where the next file component is to be written. A file pointer can be
repositioned in Macintosh Pascal by executing one of three commands: reset,
rewrite, or seek.

In Pascal a nontext file is declared by using the syntax file of data type.
For example, the following code declares an identifier called Table to be a file of
integers:

var
Table : file of integer;

Rules for naming a Pascal file are the same as those for any other Pascal identifier. In
our example, Table represents a logical file in the Pascal program containing this
declaration. This declaration does not create the actual or physical file for storage on the
diskette. Rather, it only implies that in the logic of the Pascal program, a file by the
name Table is to be employed as a Pascal variable. The actual physical file is created
and linked to the logical file through the execution of one of three commands: open,

Files Chapter 10 467

reset, or rewrite. The name of the physical file can be seen when we examine the
desktop and folders within the desktop. A special object called the file buffer links the
contents of the physical file with those of the logical file within a Pascal program. As
Figure 10.1 shows, the file buffer serves as an intermediate storage area between the
physical file, represented by the collection of file components, and the logical file,
represented by the Pascal file variable. The file buffer is accessed by using a pointer
variable having the format Pascal_File_Name" (the concept of a pointer as a data
type is discussed in Chapter 12). For example, the Pascal file Table would have a file
buffer represented by Table". The file buffer, along with the file pointer, is assumed to
be pointing to the next file component. This link remains in effect either until the
program terminates execution or until a command is executed closing the file. Execution
of the command close breaks this link. Information from a file component is accessed
through the execution of an assignment statement involving either the file buffer or
through input commands such as read or readln. Recording information to a file
component is done either by an assignment statement involving the file buffer, or by
output commands such as write or wri teln.

Macintosh and THINK Pascal support two general types of files: sequential and
random. A sequential file is similar in concept to recording information on a cassette tape.
For example, consider a cassette tape that contains a recording of a debate between two
candidates for elective office. If we want to listen to the later part of the debate, we have
to start at the beginning and wind the tape until we reach the desired portion. In Pascal a
sequential file represents a data object storing information in a linear order. That is, initial
information is written at the beginning of the file and later information is written toward
the end of the file. If we need to access an item stored in a file component of a sequential
file, we must begin reading the first file component and continue by reading succeeding
file components until either the item is found or an end-of-file marker is encountered.

A random file represents a data object with each file component represented by a
component number. This number can be specified as an actual argument to a procedure
called seek. Thus, with a random file the file buffer can be directed to point to a file
component without following a linear sequence. Once the file pointer has been
positioned, we are able to read from or write to the file component. This is the major
advantage of a random-access file.

10.3 ACCESSING SEQUENTIAL FILES

open

Before we can read from or write to a sequential file, we must open it by using one of
three commands: open, rewrite, or reset. We first consider the command open.

The command open opens a file having a name and links the Pascal file with the
physical file. The format for using this command is

Pascal_File, Physical_File);

Pascal_File represents an identifier declared as a Pascal file type, and
Physical_File is a string type representing the name of the physical file. In both
Macintosh and THINK Pascal, names of physical files are limited to a maximum of 31
characters and can use any of the characters on the keyboard except for the colon (:). ' If no

I An attempt to use a file name longer than 31 characters causes the error message "Macintosh
System Error -37: Bad name" in THINK Pascal. The message raised in Macintosh Pascal is
"The File Manager has detected an invalid file or volume name (possibly a zero-length

468 Chapter 10 Files

file exists with the name given by Physical_File, an empty file is created and then
opened. If a physical file by that name already exists, that file is opened. Whenever a file
is opened, the file buffer points to the first file component.

It is important that a file be closed prior to ending program execution. The command
close breaks the connection between a Pascal file and its corresponding physical file.
The format for calling this procedure is

close(Pascal_File);

Once this command is executed, any further references to the physical file linked to
the Pascal file are invalid unless the physical file is again opened. It is a good
programming practice to keep a file open only as long as it is needed. For this reason use
of the command close is encouraged. However, all files are automatically closed when a
Macintosh or THINK Pascal program terminates normal execution. There is no guarantee
that files will be closed by any abnormal program termination.

Before writing to a sequential file, it is necessary that the file pointer be positioned to
point to the beginning of the file. In this regard the command rewrite can be useful.
The syntax for the rewrite command is

rewrite(Pascal_File, Physical_File);

Rewrite creates an empty file with the name given by Physical_File, links
Pascal_File with Physical_File, and positions the file buffer at the beginning
of the file. If the physical file already exists when this command is executed, it is deleted
and an empty file having the same name is created. If the rewrite command is executed and
no physical file name is associated with the Pascal file, an empty unnamed file is created
for use during the lifetime that the Pascal file is in existence. Understand that close
command cannot be executed on a Pascal file that is linked with an unnamed file.

When the command

rewrite(Pascal_File);

is executed, it positions the file buffer at the beginning of the file and any file
components previously associated with the file are lost. Notice that the two commands

open(Pascal_File, Physical_File);
rewrite(Pascal_File);

and the command

rewrite(Pascal_File, Physical_File);

are equivalent in their effects.
Writing to a file requires execution of either the command write or the command

put. The command write will copy a value of an expression to a file given by the
Pascal file name. The format for using this command is

write(Pascal_File, expression

name)". An attempt to use a physical file name that includes a colon causes an error message
saying that no such disk or volume can be found.

Files Chapter 10 469

The first argument is the Pascal file name, and the second is an expression. Here the
data type of the expression must be type-compatible with the component type of the
Pascal file. When executed, the value of the expression is written to the current file
component, and the file pointer is advanced to the next file component, where it is ready
to write. Although this appears to be the same write statement discussed in Chapter 3,
there is a difference. With Pascal_File replaced with the standard output file name
Output, the command write displays the value of the expression as characters to the
standard output file, the Text window. Where Pascal_File is the file variable, data is
written to an external data file but in machine format.

For example, consider a program titled Storing_Random_Numbers. The
program assigns 10 random numbers to an array called A. After completing this step, a
new file is opened by executing the command open, and the file pointer is positioned at
the beginning of the file by executing the command rewrite. Each real number in array
A is then copied and written (stored) in a physical file called Test File, not as
characters to the screen but in a machine form represented by binary data.

program Storing_Random_Numbers(input, output);
{ Purpose: This is a simple program for testing the cormnands }
{ open, rewrite, and close. }

type
Number_File = file of real;

var
Data_Block : Number_File;
Counter : integer;
A: array[l .. 10] of real;

begin
{ Generate 10 random numbers for array A. }

for Counter := 1 to 10 do
A[Counter] := random;

{ Open the test file and position the file pointer at the front }
{ of the file. }

open(Data_Block, 'Test File');
rewrite(Data_Block);

{ Write 10 real numbers to the test file.
for Counter := 1 to 10 do

write(Data_Block, A[Counter]);
{ Close the test file. }

close(Data_Block);
end.

An alternative to the command write is the command put. When using this
command, the Pascal file buffer must be assigned the value of the expression before
execution of put. To compare the commands write and put, note that

write(Pascal_File, expression);

is equivalent to

Pascal_File" := expression;

470 Chapter 10 Files

put(Pascal_File);

Notice that the file buffer represented by Pascal_File" is assigned the value of
expression. The put command copies the contents of the file buffer and writes this
data to the current file component, and the file pointer advances to where the next file
component will be located. In our program Storing_Random_Numbers, the for
loop using a write command to store 10 numbers can be replaced with the following
code:

for Counter := 1 to 10 do
begin

Data_Block" := A[Counter];
put(Data_Block)

end;

An additional example employing a sequential file is the following program, titled
Saving_Name_Age. This program allows four records, each containing a name and
age, to be entered from the keyboard and written to a physical file called Name & Age.

program Saving_Name_Age(input, output);
{ Purpose: This program enters four names and ages from the }
{ keyboard and stores this data in four records of a }
{ physical file. }

uses
QuickDrawl;

type
Person = record

Name : string[30];
Age : integer

end;
Output_File = file of Person;

var
Pascal_File : Output_File;

{ *** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 512, 342);
SetTextRect(Window);
ShowText

end;
{ *** }

procedure Open_File (var Pasf : Output_File);
var

Phf : string;
begin

Phf := 'Name & Age';
rewrite(Pasf, Phf);

end;

Files Chapter 10 471

{ *** }
procedure Enter_Records (var Pasf : Output_File);

var
Index : integer;
Individual : Person;

begin
writeln;
for Index := 1 to 4 do

begin
write(' Enter person's name ');
readln(Individual.Name);
write(' Enter person's age: ');
readln(Individual.Age);
write(Pasf, Individual);
writeln;

end;
end;

*** }
begin { Body of the main program.}
{ Set Text window for viewing. }

Set_Text_Window;
Open physical file for output.

Open_File(Pascal_File);
Prompt user for the number of names and the names themselves. }
Enter_Records(Pascal_File);

{ Close the Pascal file. }
close(Pascal_File);

end.

As you can see, the major steps for opening a file and entering data into the file
components are performed by two separate procedures. The procedure Open_File uses
the command rewrite rather than open, because we are creating a new file. The
procedure Enter_Records prompts the user for name and address and, as they are read,
assigns the values of Name and Age to the local variable called Individual. It is the
record variable called Individual that is written to the current file component. In both
cases, the formal parameter called Pasf, short for Pascal file, is a variable type. Pascal
requires that all formal parameters of type file be declared in the formal-parameter list as
variable types.

When reading from an existing file, the command reset can be executed for
opening that file. There are two possible formats when using reset. The first is

reset(Pascal_File, Physical_File);

This invokes a search for the physical file having a name given by
Physical_File and, when found, links the Pascal file name with the physical file.
After the link has been made, the file pointer is positioned at the beginning of the file.
An error occurs if no file exists with the name given by Physical_File. This
command can be executed on an unnamed file only if the rewrite command has
previously been executed for the purpose of establishing an anonymous file.

The second format assumes that the Pascal file has already been opened:

472 Chapter 10 Files

reset(Pascal_File };

This command positions the file pointer at the beginning of the file. If the file had
been opened by rewrite, it now can only be read. Notice that the two commands

open(Pascal_File, Physical_File };
reset(Pascal_File };

and the command

reset(Pascal_File, Physical_File };

are equivalent in their effects.
We can read from a sequential file by executing either of the commands read or

get. The read command copies a value from the Pascal file and assigns it to a variable.
The format for this command is

read(Pascal_File, Variable};

The first argument is the Pascal file name, and the second is the name of an identifier.
Other than for text files, the data type for the variable must be type-compatible with the
component type of the Pascal file. When executed, the current value of the file buffer is
copied and assigned to the variable, and the file pointer is advanced to the next file
component. While this appears to be the same read statement discussed in Chapter 3,
there is a difference. With Pascal_File replaced with the standard input file name
Input, the read command enters its value as text lines from the keyboard. Where
Pascal_File is the file variable, data is read from an external data file but in machine
format.

To illustrate reading from a file, consider the following program, titled
Reporting_Random_Numbers. This program performs the reverse actions of
Storing_Random_Numbers, in that it opens a physical file called Test File, and
then resets the file position so that the file pointer is pointing to the beginning of the
file. It then reads 10 real numbers from the physical file and, after each number is read,
displays the value of the number to the standard output file, the Text window.

program. Reporting_Random_Numbers(input, output);
{ Purpose: This is a simple program for testing the routines }
{ open, reset, and close. }

type
Number_File = file of real;

var

begin

Data_Block : Number_File;
Counter : integer;
Number : real;

{ Open test file and position the pointer at the front of file. }
open(Data_Block, 'Test File');
reset(Data_Block);

{ Read all 10 numbers from the test file. }
for Counter .- 1 to 10 do

begin

Files Chapter 10

{ Read the next number from the test file. }
read{Data_Block, Number);

473

{ Display the number just read from the test file and display }
{ its value in the Text window. }

write{Output, Number : 10 : 4, ' ');
end;

writeln;
{ Close the test file. }

close{Data_Block);
end.

An alternative to the command read is the get command. A file component is read
by assigning a variable the value of the file buffer, followed by execution of the command
get. The command

read(Pascal_File, Variable);

is equivalent to

Variable := Pascal_FileA;
get{ Pascal_File);

Notice that the variable is assigned the value of the Pascal file buffer, because this
buffer contains a copy of the current file component. The variable's type must be type­
compatible with the Pascal file type. Execution of the get command advances the file
pointer to the next file component, so that the file buffer contains a copy of the contents
of what is now the current file component. In our program Reporting_Random_
Numbers, the for loop for reading each random number and displaying it to the Text
window can be written as follows:

for Counter := 1 to 10 do
begin
{ Read the next number from the test file. }

Number := Data_BlockA;
get {Data_Block) ;

{ Display the number just read from the test file and }
{ display its value in the Text window. }

write{Output, Number: 10 : 4, ' ');
end;

The program titled Reporting_Name_Age shows the reverse process of the
program Saving_Name_Age. In this program the four records stored in the physical
file called Name & Age are read and displayed to the Text window. The procedure
Read_File_Records reads each record from the physical file.

program Reporting_Name_Age{input, output);
{ Purpose: This program reads four records from a physical file }
{ and displays the contents of these records to the }
{ Text window. }
{ Insert the following uses clause for Macintosh Pascal. }

474

{ uses }
{ QuickDrawl; }

type
Person = record

Name string [3 0 l ;
Age : integer

end;
Input_File = file of Person;

var
Pascal_File : Input_File;

Chapter 10 Files

{ *** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 512, 342);
SetTextRect(Window);
ShowText

end;
{ *** }

procedure Open_File (var Pasf : Input_File);
var
Phf string;

begin
Phf := 'Name & Age';
reset(Pasf, Phf);

end;
{ *** }

procedure Read_File_Records (var Pasf : Input_File);
var

Index : integer;
Individual : Person;

begin
writeln;
for Index := 1 to 4 do

end;

begin
read(Pasf, Individual);
writeln(' Name ', Individual.Name);
writeln(' Age: ', Individual.Age);
writeln;

end;

{ *** }
begin { Body of the main program. }
{ Set Text window for viewing. }

Set_Text_Window;
{ Open physical file for output. }

Open_File(Pascal_File);
{ Prompt user for the number of names and the names themselves. }

Read_File_Records(Pascal_File);

Files Chapter 10

{ Close the Pascal file.
close(Pascal_File);

end.

475

What about using the commands wri teln and readln? These commands pertain
only to special file types called text files. Commands such as read, write, get, and
put deal with information stored in a machine-language format. Text files store all
information in a character format and are discussed in Section 10.9.

10.4 MERGING A RECORD INTO A SEQUENTIAL FILE OF RECORDS

Suppose that we have a sequential file of N records, with each record containing two
fields: full name and telephone number. We will assume that the records are stored
alphabetically by name. Our purpose is to develop an algorithm that prompts the user for
a new record and, after the required information has been entered from the keyboard,
merges this new record into the sequential file of names while keeping the file
alphabetically ordered.

The following steps might be considered as an initial solution.

1. Open the sequential file by resetting the file pointer.
2. Read N records from the sequential file into an array capable of storing N + 1

records.
3. Add a new record to the N + 1 position of the array.
4. Sort the N + 1 records in the array.
5. Reset the file pointer for writing to the sequential file.
6. Write N + 1 records to the sequential file.
7. Close the sequential file.

The solution seems simple, but what is the maximum size for the internal array?
There is no definite answer to this question, unless we fix the maximum number of
records for the sequential file, that is, unless we establish an upper limit to the number of
array elements exceeding or equal to the value of N + 1 . Setting such a limit makes it
impossible to add more records if the limit is exceeded, unless we return to the Pascal
program and make an explicit change in the bounds of the array declaration. An alternative
is to make the bounds large enough so that our internal array will always be able to
handle the desired number of ·~cords. But the user may still need to add one more record,
exceeding the bounds of the array. It is also possible that by having such a large internal
array, the program may exceed available free memory during translation and not be able to
be executed.

Obviously, we should abandon using an internal array and consider an alternative
method of merging a single record into the sequential file of records. One such approach is
to read each record from the sequential file, compare its full-name field with that of the
new record, and, if ordered less alphabetically, write the old record to a temporary file.
Once an old record is found where its full-name field is greater alphabetically than that of
the new record, the new record is written to the temporary file followed by writing the old
record. All remaining records of the sequential file are then read and written to the
temporary file. Once this has been completed, the temporary file now contains the N +
1 records in alphabetical order. By resetting the file pointers of both files (reset for the
temporary file, rewrite for the sequential file), each record in the temporary file is read
and then written to the sequential file.

476 Chapter 10 Files

Let us refine our abstraction, using the following steps:

procedure Merge_Sort;

{ Purpose: This module will require three Pascal files: one
called Directory, a second called Temporary, and a third called
Total Count. The Pascal file called Directory will be linked with
the physical file called Telephone Directory. The Pascal file
called Temporary will only exist for the length of execution of
the module Merge_Sort. Total_Count will be linked with a physical
file called Total Number of Records. This file contains only one
file component, the value of the number of records in file
Directory. Two local variables called New_Record and Old_Record
will be used for keeping a single record of information. }

begin
{ Prompt user for a new record. }

Prompt_New_Record(New_Record };
{ Open three files for accessing information. }

Open_Files(Directory, Temporary, Total_Count };
{ Assign new record to the file Temporary. }

read(Total_Count, Number_Records);
{ Check if Directory is an empty file. }

if Number_Records = 0 then
{ Write a new record to Directory and update the file }
{ Total_Count. }

begin
rewrite(Directory);
write(Directory, New_Record };
rewrite(Total_Count);
write(Total_Count, Number_Records + 1 }

end
else

begin
Counter <-- 1;
read(Directory, Old_Record);
while (Old_Record.Full_Name < New_Record.Full_Name

and (Counter <= Number_Records) do
begin
{ Write old record to Temporary. }

write(Temporary, Old_Record);
Read next record in Directory if Counter does }
not exceed number of records. }

Counter <-- Counter + l;
if Counter <= Number_Records then

read(Directory, Old_Record);
end;

{ Now write new record to temporary file. }
write(Temporary, New_Record };

{ Read the remaining records from Directory and write }
{ to Temporary. }

Files Chapter 10

while (Counter <= Number_Records) do
begin

write(Temporary, Old_Record);
Counter <-- Counter + 1;
if Counter <= Number_Records then

read(Directory, Old_Record);
end;

Update file Directory and Total_Count. }
rewrite(Total_Count);
write(Total_Count, Number_Records + 1);
rewrite(Directory);
reset(Temporary);
for Counter <-- 1 to Number_Records + 1 do

begin

end;

read(Temporary, Old_Record);
write(Directory, Old_Record)

end

{ Close the nontemporary Pascal file. }
Close_Files(Directory

end; { Merge_Sort }

477

Following is a complete listing of a THINK Pascal program called
Merging_Record. The program includes the procedure Merge_Sort along with
three internal files: Prompt_New_Record, Open_Files, and Close_Files.
Notice that several internal files are used in both the procedures Merge_Sort and
Display_Records.

program Merging_Record(input, output);
{ Purpose: This program demonstrates how a record can be merged }
{ into a file of records. }
{ *** }

procedure Set_Text_Window;
var

Window : Rect;
begin

HideAll;
SetRect(Window, 0, 40, 512, 342);
SetTextRect(Window);
ShowText

end;
{ ***

procedure Merge_Sort;
type

Listing = record
Full_Name : string[30]
Phone_Number : string[12]

end;
Phone_Directory = file of Listing;
Record_Count = file of integer;

var

478 Chapter 10 Files

Directory, Temporary : Phone_Directory;
New_Record, Old_Record : Listing;
Total_Count : Record_Count;
Counter, Nwnber_Records : integer;

{ - }

{

procedure Prompt_New_Record (var Item: Listing);
begin
write(' Enter person's full name: ');
readln(Item.Full_Name);
write(' Enter telephone nwnber: ');
readln(Item.Phone_Nwnber);

end;
- - - - - - - - - - - - - - }

procedure Open_Files (var Fl, F2 : Phone_Directory;
var F3 : Record_Count);

begin
open(Fl), 'Telephone Directory');
reset(Fl);
rewrite(F2);
reset(F3, 'Total Nwnber of Records')

end;
{ - }

procedure Close_Files (var Fl

begin
close(Fl);
close(F2)

end;

Phone_Directory;
var F2 : Record_Count);

{ - }
begin { Body of procedure Merge_Sort. }
{ Prompt user for a new record. }

Prompt_New_Record(New_Record);
{ Open three files for accessing information. }

Open_Files(Directory, Temporary, Total_Count);
{ Assign new record to the file Temporary. }

read(Total_Count, Nwnber_Records);
{ Check if Directory is an empty file. }

if Nurnber_Records = 0 then
{ Write new record to Directory and update the file }
{ Total_Count. }

begin
rewrite(Directory);
write(Directory, New_Record);
rewrite(Total_Count);
write(Total_Count, Nurnber_Records + 1)

end
else

begin
Counter := l;
read(Directory, Old_Record);
while(Old_Record.Full_Name < New_Record.Full_Name)

Files Chapter 10

and (Counter <= Number_Records) do
begin
{ Write old record to Temporary. }

write(Temporary, Old_Record);
{ Read next record in Directory if Counter }
{ does not exceed number of records. }

Counter := Counter + 1;
if Counter <= Number_Records then

read(Directory, Old_Record);
end;

{ Now write new record to temporary file.
write(Temporary, New_Record);

Read the remaining records from Directory and }
write to Temporary.}
while (Counter <= Number_Records) do

begin
write(Temporary, Old_Record);
Counter := Counter + 1;
if Counter <= Number_Records then

read(Directory, Old_Record);
end;

Update the files Directory and Total_Count. }
rewrite(Total_Count);
write(Total_Count, Number_Records + 1);
rewrite(Directory);
reset(Temporary);
for Counter := 1 to Number_Records + 1 do

begin

end;

read(Temporary, Old_Record);
write(Directory, Old_Record)

end

{ Close the nontemporary Pascal files. }
Close_Files(Directory, Total_Count)

end;
{ *** }

procedure Display_Records;
type

Listing = record
Full_Name : string[30];
Phone_Number : string[12]

end;
Phone_Directory = file of Listing;
Record_Count = file of integer;

var
Directory : Phone_Directory;
Old_Record : Listing;
Total_Count : Record_Count;
Counter, Number_Records : integer;

479

{ - - - - - - - - - - - - - - }
procedure Open_Files (var Fl : Phone_Directory;

480 Chapter 10 Files

{

var F2
begin

reset(Fl, 'Telephone Directory');
reset(F2, 'Total Number of Records')

end;

Record_Count) ;

- - - - - - - - - }
begin { Body of procedure Display_Records. }

Open_Files(Directory, Total_Count);
read(Total_Count, Nurnber_Records);
writeln;
for Counter := 1 to Nurnber_Records do

begin
read(Directory, Old_Record);
write(Old_Record.Full_Name, '

Old_Record.Phone_Nurnber, '/')
end;

writeln;
close(Directory);
close(Total_Count);

end;
{ *** }
begin { Body of the main program. }
{ Set Text window for viewing. }

Set_Text_Window;
{ Merge a record with a file. }

Merge_Sort;
{ Display all records of the sequential file. }

Display_Records;
end.

As you can see, Temporary serves as a temporary file only for the length of time
that the module is in execution. Whereas the procedure Open_Files opens all three
files, the procedure Close_Files closes only the two Pascal files Directory and
Total_Count. Why? Remember that the purpose of the command close is to close a
file by breaking the link of a Pascal file with its corresponding physical file. The Pascal
file Temporary has no true association with any physical file and is automatically
closed when the procedure Merge_Sort terminates execution. Attempting to close
Temporary by executing the command close (Temporary) results in an execution
error.

Although the algorithm for inserting a new record seems practical, it is not an
efficient algorithm in the worst case. For example, what if a file contains n records and in
the worst case the record to be inserted is appended at the end of the file. This requires n
records to be read from the present data file and written to the temporary file. After the
new record is written to the temporary, n + 1 records from the temporary file are now
written to the Directory. This requires an order of 2n + 1 records to be read, not always an
efficient algorithm. Section 10.8 discusses a natural merge algorithm for sorting a random
access file where execution is in the order of n [log2 n].

Files Chapter 10 481

10.5 ACCESSING RANDOM FILES

As stated earlier, a random-access file in Macintosh Pascal is distinguished by the ability
to reference a file component directly without the necessity of performing a linear search
sequence from the beginning of the file. Although the model given in Figure 10.1 serves
as a representation for a random-access file, only the command open can open a random­
access file for direct access. The commands reset and rewrite are special to
Macintosh and THINK Pascal, because they can only be applied to sequential files. In
addition, we can use the commands read and get to read information from a file
component, and the commands write and put to write information to a file
component.

Two additional routines exist for accessing file components. The first, called seek,
allows access to a file component by referencing the component number. The format for
calling this command is

seek(Pascal_File, Component_Number);

To access any Pascal file with this command, we must first open the file by
executing the command open. The actual parameter Component_Number must be an
integer type expression and is used to specify the file component. When seek is
executed, the file pointer is directed to point to the file component given by the value of
Component_Number. This file component is now the current component, so the file
buffer contains a copy of the contents of the current component. It is possible to write to
a file component by executing seek followed by an assignment operation involving a
file buffer and the command put, or by executing the command write. In the program
Seeking_File_Component, the command seek is used to find a file component in
a file of 10 integers, replacing each file component with a random number.

program Seeking_File_Component(input, output);
type

Test_File = file of integer;
Table= array[l .. 10] of integer;

var
Data_Block : Test_File;
Index, Number : integer;
Component_Number : integer;
A : Table;

{ ***
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 512, 342);
SetTextRect(Window);
ShowText

end;
{ *** }

procedure Display_File (var F : Test_File);
var

Index, Number : integer;

482

begin
for Index := 0 to 9 do

begin
seek (F, Index);
read (F, Number) ;
write(Number: 6, ');

end;
writeln;

end;

Chapter 10 Files

*** }
procedure Select_Components (var A : Table);
begin

A[l] .- 1;
A[2] := 6;
A[3] .- 4;
A[4] := O;
A[5] := 7;
A[6] := 3;
A[7] := 8;
A[8] := 2;
A[9] := 5;
A[10] := 9

end;
{ ***
begin { Body of the main program. }

Set Text window for viewing. }
Set_Text_Window;

{ Open the Pascal file Data_Block and link with a physical file. }
open(Data_Block, 'File of Integer Numbers');

{ Write 10 numbers to the Pascal file Data_Block.
for Index := 1 to 10 do

write(Data_Block, Index);
{ Reset the file pointer and display the values of the file }
{ components. }

Display_File(Data_Block);
{ Select a set of 10 file components. }

Select_Components(A);
{ Replace the file components with random values. }

for Index := 1 to 10 do
begin

Component_Number := A[Index];
seek(Data_Block, Component_Number);
write(Data_Block, random);
Display_File(Data_Block);

end;
Close the Pascal file Data_Block.}

close(Data_Block);
end.

Notice that only the command open is executed for opening and setting the file
pointer to the beginning of the file. For displaying the values of the file components, the

Files Chapter 10 483

command seek is used for positioning the file pointer, then displaying the value of the
file component. In the body of the main program, we use the command seek to set the
file position. Either the command write or assignment of a value to the file buffer
along with put is required for writing a value to the file component.

A second method for accessing a file component is to use the function filepos.
This function returns the component number for the current file position. The format for
calling this function is

filepos(Pascal_File)

Provided that the file is opened, filepos returns a longint value representing
the value of the current file component. This function may be useful when the component
number of a particular file is to be assigned to an integer variable.

Unfortunately, Macintosh Pascal does not support the ability to remove file
components from within a file without deleting the complete file. If one or more file
components are to be deleted or inserted, the programmer must develop a scheme for
managing the allocation of file components. There are no specific commands for the
deletion or insertion of file components within an established Pascal file. This is one
reason why the present versions of Macintosh and THINK Pascal do not actually support
the management of random files.

10.6 APPLYING THE BINARY SEARCH ALGORITHM TO FILES

Let us consider applying the seek command to searching for a record stored in a file
of records. First, assume that in our file, records are ordered alphabetically by name. With
this in mind, consider a Macintosh Pascal file as a linear table of file components, with
the lowest file component represented by component number zero and the highest file
component represented by component number N - 1. Figure 10.2 shows a simple
model for this concept.

file file file
componentO componentj component N-1

i i
Low_File _ component High _ File _Componen t

Mid_File_Component

Figure 10.2 A simple model of ordered records.

In Chapter 9 we discussed the binary search algorithm as an efficient algorithm for
searching a table with N elements. Our Pascal file represents a table stored externally. By
storing the total number of file components in a second file, we can establish what
represents the low and high indices with respect to component numbers. The middle of
our table is determined by the integer result of the sum of these two indices divided by

484 Chapter 10 Files

2. Assuming that the file has been opened, the middle index is used as the component
number for the center of the file. At this point the key is compared with a field of a record
in the file buffer, and if the item is not a match, the search is continued by examining
either the lower or the upper portion of the file.

We will now apply this algorithm to the telephone directory problem. We need an
algorithm that can either retrieve a person's phone number or report that the party has no
phone number listed. The steps for refining our solution follow:

procedure Binary_Search;
{ This algorithm uses two files local to this module: Directory
and Total_Counts. File Directory contains the telephone listing,
and Total_Counts contains the total number of listings. Local
variables include the indices Low_File_Component,
High_File_Component, Mid_File_Component, and Record_Position.
Found is used as a Boolean type to end the binary search, and
Person represents a record containing two fields: Full_Name and
Phone_Number. The key for searching records is the person's full
name. Internal procedures are Open_Files, Prompt_for_Key, and
Close_Files.}

begin
{ Open the files for the telephone directory and total number of
records. }

Open_Files(Directory, Total_Counts };
{ Read the total number of records. }

read(Total_Count, Number_Records };
{ Enter the key for searching. }

Prompt_for_Key(Key};
{ Initialize the low and high bounds of the index variables. }

Low_File_Component <-- O;
High_File_Component <-- Number_Records - 1;
Record_Position <-- -1;
Found <-- false;

{ Repeat searching for the record until the key is found or no
records remain to be searched. }

repeat
{ Compute the center of the file or subfile. }

Mid_File_Component <-- (Low_File_Component +
High_File_Component } div 2;

Adjust the file pointer to center of the file or subfile. }
seek(Directory, Mid_File_Component };

{ Assign the value of the current file component to Person. }
Person<-- DirectoryA;

Check if this person is in our listing. }
if Person.Full_Narne = Key then

begin
{ Record the value of file position and end searching. }

Record_Position <-- Mid_File_Component;

end
else

Found <-- true

Files Chapter 10 485

{ Continue searching in either the lower or upper subfile. }
if Key < Person.Full_Name then

High_File_Component <-- Mid_File_Component - 1
else

Low_File_Component <-- Mid_File_Component + l;
until Found or (Low_File_Component > High_File_Component);

{ Report the phone listing. }
if Record_Position >= 0 then

begin
{ Report phone number. }

writeln(' Person: Key) ;
writeln(' Phone number: Person.Phone_Number

end
else
{ Report message of an unlisted number. }

begin
SysBeep(lO);
writeln(' Sorry, your party has no phone listing.')

end;
Close all files. }
Close_Files(Directory, Total_Count

end; { Binary_Search }

The Pascal program for this algorithm includes three internal procedures:
Open_Files, Prompt_for_Key, and Close_Files.

program Search_Algorithrn(input, output);
{ Purpose: This program applies the binary search algorithm,
{ using the procedure seek to locate a key stored }
{ within a file component. }

uses
QuickDrawl;

{ ** }
procedure Set_Text_Window;

var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 512, 342);
SetTextRect(Window);
ShowText

end;
{ **

procedure Binary_Search;
type

Listing record
Full_Name : string[30];
Phone_Nurnber : string[12]

end;
Phone_Directory = file of Listing;
Record_Count = file of integer;

486

{

Chapter 10 Files

var
Directory : Phone_Directory;
Person : Listing;
Key : string[30];
Total_Count : Record_Count;
Low_File_Component, High_File_Component : integer;
Record_Position, Mid_File_Component, Number_Records

integer;
Found : Boolean;

procedure Open_Files (var Fl : Phone_Directory;
var F2 : Record_Count);

begin
open(Fl, 'Telephone Directory');
reset(F2, 'Total Number of Records')

end;

}

{ - - - - - ~ - }
procedure Prompt_for_Key (var Key : string) ;
begin

write(' Enter person's full name: ');
readln(Key)

end;
{ -

procedure Close_Files (var Fl

begin
close(Fl);
close(F2)

end;

Phone_Directory;
var F2 : Record_Count);

begin { Body of procedure Binary_Search. }
}

{ Open the files for the telephone directory and total number }
{ of records. }

Open_Files(Directory, Total_Count);
Read the total number of records. }

read(Total_Count, Number_Records);
{ Enter the key for searching. }

Prompt_for_Key(Key);
{ Initialize the low and high bounds of the index variables. }

Low_File_Component := O;
High_File_Component := Number_Records - l;
Record_Position := -1;
Found := false;

{ Repeat searching for the record until the key is found or }
{ no records remain. }

repeat
{ Compute the center of the file or subfile. }

Mid_File_Component := (Low_File_Component +
High_File_Component) div 2;

{ Adjust the file pointer to the center of the file or
{ subfile. }

Files Chapter 10

seek(Directory, Mid_File_Component);
{ Assign the value of current file component to Person. }

Person := DirectoryA;
{ Check if this person is in our listing. }

if Person.Full_Name = Key then
begin
{ Record the value of the file position and end }
{ searching. }

Record_Position .- Mid_File_Component;
Found .- true

end
else

487

{ Continue searching in either the lower or upper file }
{ or subfile. }

if Key < Person.Full_Name then
High_File_Component := Mid_File_Component - 1

else
Low_File_Component := Mid_File_Component + l;

until Found or (Low_File_Component > High_File_Component);
Report the phone listing. }
if Record_Position >= 0 then

begin
{ Report phone number. }

writeln(' Person: ',Key);
writeln(' Phone number: Person.Phone_Nurnber)

end
else

begin
{ Report message of unlisted number. }

SysBeep(lO);
writeln(' Sorry, your party has no phone listing.')

end;
{ Close all files. }

Close_Fi~es(Directory, Total_Count);
end;

{ *** }
procedure Display_Records;

type
Listing record

Full_Name : string[30];
Phone_Nurnber : string[12]

end;
Phone_Directory = file of Listing;
Record_Count = file of integer;

var
Directory : Phone_Directory;
Old_Record : Listing;
Total_Count : Record_Count;
Counter, Number_Records : integer;

procedure Open_Files (var Fl : Phone_Directory;

488 Chapter 10 Files

var F2 Record_Count);
begin

reset(Fl, 'Telephone Directory');
reset(F2, 'Total Number of Records')

end;
{ -

begin { Body of procedure Display_Records. }
Open_Files(Directory, Total_Count);
read(Total_Count, Number_Records);
writeln;
for Counter := 1 to Number_Records do

begin
read(Directory, Old_Record);
write(Old_Record.Full_Name, ' '

Old_Record.Phone_Number, '/')
end;

writeln;
close(Directory);
close(Total_Count);

end;

- - - - - - - }

{ *** }
begin { Body of the main program. }
{ Set Text window for viewing. }

Set_Text_Window;
{ Search for the record in the phone directory. }

Binary_Search;
{ Display all records in the phone directory. }

Display_Records;
end.

Notice that when using the seek command, we must open the file only by
execution of the open command. If a file is opened by executing either reset or
rewrite, seek will fail to execute if it is applied to that file.

In order to execute Search_Algori thm you will need a an initial file, Total
Number of Records. An attempt to execute the program without this initial file
will result in the problem shown in Figure 10.3.

The following short program establishes this file if it does not already exist.

program Establish_Initial_File(input, output);
{ Purpose: This program must be executed before the }
{ program titled Merging_Record, so that an initial }
{ file can be generated storing a value of zero. }
{ This number represents the total number of records }
{ in the Telephone Directory and will be updated as }
{ records are added .. }

var
F3: file of integer;

begin
rewrite(F3, 'Total Number of Records');
write(F3, 0);

Files Chapter 10

I close{F3);
end.

489

ti File Edit Search Project Debug Wind

~ Macintosh System Error -43: File not found.

Key: string[30];
Total_Count: Record_Count;
Low_File_Component, High_File_Component: integer;
Record_Position, Mid_File_Component, Number_Records: inte

Found: boolean;
{ - }

procedure Open_Files (var F1: Phone_Directory; var F2: Record
begin

end;

open(F1, 'Telephone Directory');
reset(F2, 'Total Number of Records')

Figure 10.3 The error message resulting from a missing file.

10.7 USING THE SPECIAL FUNCTION EOF

begin

Pascal supports a special Boolean function called eof. When called, this function will
test to see if the file pointer for a Pascal file is pointing to the end-of-file marker and, if
so, will return the Boolean value true. Otherwise, the value returned is false. The
format for using this function is eof (Pascal_File). For example, consider the
following steps for performing a linear search of the Pascal file Directory:

{ Open the file for the telephone directory.
reset(Directory, 'Telephone Directory');

{ Enter the Key for searching. }
Prompt_for_Key(Key);

{ Search for a person in the file Directory. }
repeat

read(Directory, Person);
until { Person.Full_Name =Key or eof(Directory);
{ Report the phone listing. }

if (Person.Full_Name = Key then
begin

writeln (' Person: ', Key) ;
writeln(' Phone number: ' Person.Phone_Number);

end

490

else
begin

SysBeep (10) ;

Chapter 10 Files

writeln(' Sorry, your party has no phone listing. ')
end;

{ Close the file Directory.
close(Directory);

end;

begin

Using the function eof makes it easy to write the steps for displaying all of the records
in the telephone directory:

{ Open Directory for displaying all records. }
reset(Directory, 'Telephone Directory');

Continue to display the records until end of file is reached. }
repeat

read(Directory, Person);
writeln(' Person:
writeln(' Phone number: '

Person.Full_Narne);
Person.Phone_Nurnber) ;

until eof(Directory);
end;

Remember that the commands seek, read, get, put, and write advance the file
pointer when executed. If you attempt to execute either get or read when the next file
component does not exist, eof (Pascal_File) becomes true, and the value of the
file buffer is undefined. If you attempt to execute put or write when the file pointer is
positioned beyond the end of the last file component, eof (Pascal_File) becomes
true; the file buffer is now undefined. In the case of executing the command
seek (Pascal_File, N) where N exceeds the component number of the last file
component, eof (Pascal_File) becomes true, and the file buffer is now undefined.

10.8 MERGING TWO FILES INTO A SEQUENTIAL FILE OF RECORDS

Often it is important to merge one or more records with an existing file of records, with
the merged file having the unique property of having been sorted. Often referred to as the
process of merging and sorting, this process is a procedure for merging rn records of one
file with n records of a second file and creating a sorted file of rn + n records. It requires
no explicit arrays, because using them would make the maximum size of the sorted file
dependent upon the maximum size of any of the arrays.

This presentation is based upon the concept of natural merging described by Niklaus
Wirth.2 To understand natural merging, assume the existence of two sequential files that
are to be merged as well as sorted. These two files need not have the same length, and
they are not assumed to be sorted. Initially, one file, called A, is appended to the end of a
second file, called B, by using a third file, c, as temporary storage. File c is then sorted
and, for convenience, uses two temporary files as backup storage during the sorting

2 Niklaus Wirth, Algorithms + Data Structures = Programs, (Englewood Cliffs, N.J.: Prentice
Hall, 1976).

Files Chapter 10 491

process. No internal arrays are required. Procedure Append_Files provides the steps for
appending file B to file A with the appended files stored in file C:

procedure Append_Files(var File_A, File_B, File_C: File_Type);
{ Purpose: This procedure appends records from file B to file }
{ A, and the complete appended file is stored in }
{ file C.}
var

Item Data_Type_of_File_Component;
begin
{ Establish files A and B for reading and file C for writing.}

reset (File_A);
reset (File_B);
rewrite(File_C);

{ Copy records from file A and file B to File_C.}
while not eof (File_A) do
begin

read(File_A, Item);
write(File_C, Item);

end;
while not eof (File_B) do
begin

read(File_B, Item);
write(File_C, Item);

end;
end; { Append Files

The concept of natural merging is based on an algorithm that can recognize what is
called a run (an ordered sequence of file components), distribute runs equally from file C
over two temporary files, and merge runs from the temporary files into file C.

The term run refers to an ordered subsequence of file components C; .. Cj where

Ck <= Ck+l for k = i . . j -1

and where

Both C; and Cj represent end points where new subsequences (runs) begin. As an
example consider the following sequence of items in file C:

117 131 4 59 310 41 43 77 10 22 28 45 8 3 9 15 570 34 63

Here the numbers { 117 131 } represent a run, since they satisfy the property that Ck
<= Ck+I where k = 1 .. 2. It is here that for i = 3, C;_1 , which is 131, is greater than C;,
which is 4. A second run is the sequence { 4 59 310 }, which satisfies the properties
that Ck<= Ck+I fork= 3 .. 5, C;_1> C; for i = 3, and Cj > Cj+I for j = 5. For file C there
are seven runs consisting of { 117 131 }, { 4 59 310 }, { 41 43 77 }, { 10 22 28 45 }, {
8 }, { 3 9 15 570 }, and { 34 63 }. Notice from this example that a run can consist of a
single item as well as several items.

492 Chapter 10 Files

The basic algorithm for natural merging requires two major steps; a distribution
phase, where a run from file C is written to file A and the next run from file C is written
to file B; and a merge phase that merges corresponding runs from files A and B into file
c. These two steps represent a pass through file C.

The following shows these basic steps for given sequences of numbers in file C. The
combination of distribution and merging is represented as a phase, and distributed runs are
separated by a backslash:

Pass 1:

Distribution
File C: 117

22
63

File A: 117
File B: 4

15
Merge Phase:
File C: 4

43
63

Pass 2:

Distribution
File C: 4

43
63

File A: 4
570

File B: 10
Merge Phase:
File C: 4

117
570

Pass 3:

Distribution
File C: 4

117
570

File A: 4
117

File B: 3
Merge Phase:
File C: 3

41
570

Phase:
131

28

131
59

570

59
45

Phase:
59
45

59

22

10
131

Phase:
10

131

10
131

8

4
43

4
45

\ 41
310

117
77

117
77

117

28

22
310

22
310

22
310

9

8
45

59
8

43
\ 10

131
3

131
3

131

41

28
3

28
3

28

15

9
59

310
3

77
22

310
8

310
8

310

43

41
8

41
8

41

34

10
63

\

\

41
9

8
28

10
9

10
9

3

45

43
9

43
9

43

63

15
77

43
15

\ 34
45

22
15

22
15

8

77

45
15

45
15

45

570

22
117

77
570

63
\ 3

28
570

28
570

9

\ 34

59
34

59
34

59

28
131

10
34

9

41
34

41
34

15

63

77
63

77
63

77

34
310

How many more passes are required before the file is sorted? If you examine the
result of file C from the last pass, no additional passes are required. Why? Note that file c

Files Chapter 10 493

has only one run; that is, it is now completely sorted. We can conclude that in sorting
file C, the phases of distribution and merging are repeated until file C has only one run.

This approach to sorting a file has an interesting property. If each of two files has
been distributed N runs, merging these files will result in exactly N runs. This means
that on each pass the total number of runs is divided in half, with the required number of
moves of items being at worst N [log2 N]. Wirth reports that on the average the sorting
time based on counting moves is even less. The expected number of comparisons is much
larger, because comparisons are necessary for selecting items of a run as well as between
consecutive items of a run in determining where runs terminate.

The algorithm for natural merging is written as a series of procedures in Pascal. Each
procedure is listed as needed when explaining the distribution and merging phases:

procedure Natural_Merge(var File_C : File_Type);
{ Purpose: This is the basic natural merge sort algorithm for }
{ sorting file C. }
var

File_A, File_B
Nurnber_of_Runs

begin

File_Type;
integer;

{ Continue to execute passes over file C until file C has one }
{ run.}

repeat
{ Distribute runs from file C over temporary files A and B. }

Distribute_Runs(File_C, File_A, File_B);
{ Merge runs from temporary files A and B into file C. }

Merge_Runs(File_A, File_B, File_C, Nurnber_of_Runs);
until Nurnber_of_Runs = 1 ;

end;

In this algorithm files A and B are local to this procedure and those procedures
through which they are linked with a formal parameter. Therefore, in executing any
rewrite or reset statements, these temporary files are never associated with any physical
file names.

The following algorithm distributes runs from file C over each of the temporary files
A and B. It begins by establishing the temporary files for writing and file C for reading,
and then copies runs from file c until it reaches the end of file C.

procedure Distribute_Runs(var File_C,File_A,File_B: File_Type);
{ Purpose: This procedure distributes runs from file C among }
{ files A and B.}
begin
{ Establish files A and B for writing and file C for reading. }

rewrite(File_A);
rewrite(File_B);
reset(File_C);

{ Continue to copy runs from file C until the end of file C is }
{ found. }

repeat
{ Copy a run from file C to file A.)

Copy_Run(File_C, File_A);

494 Chapter 10 Files

{ If end of file C is not found, copy a run from file C to }
{ file B.}

if not eof(File_C) then
Copy_Run(File_C, File_B);

until eof (File_C);
end;

The algorithm for copying a single run is simple. It will continue to read an element
from one file and write it to a temporary file until either it reaches the end of the file
being read or encounters an end of a run. The following represents the algorithm for
copying a single run:

procedure Copy_Run(var File_X, File_Y : File_Type);
{ Purpose: This routine copies a single run from file X to }
{ file Y.}
var

Temp_ Value
End_of_Run

Data_Type_File_Component;
Boolean;

begin
{ Initialize the control variable End_of_Run.}

End_of_Run := false;
{ Continue to read items from file X and write to file Y until }
{ an of run is encountered. }

repeat
{ Read the next item in a run.}

read(File_X, Temp_Value);
write(File_Y, Temp_Value);

{ Check if a run has been completed. }
if eof(File_X) then

End_of_Run .- true
else

End_of_Run .- (Temp_Value > File_XA);
until End_of_Run;

end;

Notice that the else clause of the if-then-else statement uses the
Boolean expression (Temp_ Value > File_XA) to test if the end of a run has
been reached. This expression is evaluated because File_X is in a read mode, and after
reading the content of a file component, the file pointer is moved to the next file
component, whose content is now in the file buffer represented by File_XA.

The algorithm for Merge_Run relies on using Copy _Run and a procedure for
merging a single run from each of the temporary files. A counter is kept for counting
each single run that is merged. When the end of either temporary file is reached, the
remaining runs from the other temporary file are copied, and the count is incremented.
The algorithm ends after all of the runs have been merged and/or copied.

procedure Merge_Runs(var File_A, File_B, File_C : File_Type;
var Nurnber_of_Runs : integer);

{Purpose:
{

This routine merges runs from the temporary files
A and B into file C. It returns a count of the }

Files Chapter 10

{ total number of runs in file C.
begin
{ Establish the temporary files A and B for reading and file }
{ C for writing. }

reset (File_A);
reset(File_B);
rewrite(File_C);

{ Initialize the counter Nurnber_of_Runs. }
Nurnber_of_Runs := O;

{ While both ends of temporary files A and B have not been }

495

{ reached, merge runs from temporary files A and B into file C. }
while (not eof(File_A)) and (not eof(File_B)) do
begin

Merge_Single_Run(File_A, File_B, File_C);
Nurnber_of_Runs .- succ(Nurnber_of_Runs);

end;
{ If the end of file B is reached and not file A, copy the }
{ remaining runs in file A into file C.}

while not eof (File_A) do
begin

Copy_Run(File_A, File_C);
Nurnber_of_Runs := succ(Nurnber_of_Runs);

end;
{ If the end of file A is reached and not file B, copy the }
{ remaining runs in file B into file C.}

while not eof (File_B) do
begin

Copy_Run(File_B, File_C);
Nurnber_of_Runs .- succ(Nurnber_of_Runs);

end;
end;

The last procedure that supports this sequence of routines is for merging a single run
between two temporary files, A and B. This algorithm reads file components until a
single run has been completed. If the next element of file A is less than or equal to the
next element in File B, then the next component of file A is copied into file C . If, after
copying the next file component of file A to C, the end of the run is encountered in file A,
then the run that remains in file B is copied to file C, after which the algorithm is
terminated. If the next component of file A is greater than the next component of file B,
the next component in file Bis copied to file c. If, after copying the next file component
of file B to c, the end of the run is encountered in file B, then the run that remains in file
A is copied to file C, after which the algorithm is terminated. This algorithm continues to
execute until it finds an end-of-run.

procedure
File_Type
{Purpose:
{

Merge_Single_Run(var File_A, File_B, File_C :
) ;

This routine will copy and merge the elements of }
corresponding runs from files A and B until an end­
of-run occurs in either file A or B. The elements }
that are merged and copied to C are sorted in a }

{
{

496 Chapter 10 Files

{ proper order.}
var

Temp_ Value
End_of_Run

begin

Data_Type_File_Component;
Boolean;

{ Continue to read file components
{ end-of-run is encountered. }

repeat

from files A and B until an }

{ Check if the run to be copied begins in file A or file B. }
if (File_AA <= File_BA) then

begin
{ Copy a single file component from file A to file C. }

read(File_A, Temp_Value);
write(File_C, Temp_Value);
if eof(File_A) then

End_of_Run := true
else

End_of_Run := (Temp_Value > File_AA);
{ If an end-of-run is reached in file A, copy the }
{ remainder of the run in file B to file C. }

if End_of_Run then

end
else

begin

Copy_Run(File_B, File_C);

{ Copy a single file component from file B to file C. }
read(File_B, Temp_Value);
write(File_C, Temp_Value);
if eof(File_B) then

End_of_Run := true
else

End_of_Run := (Temp_Value > File_BA);
{ If an end-of-run is reached in file B, copy the }
{ remainder of the run in file A to file C. }

if End_of_Run then
Copy_Run(File_A, File_C);

end;
until End_of_Run;

end;

The combination of these routines into a Pascal program and the testing of the
natural merge algorithm is left to the reader as an exercise.

10.9 TEXT FILES

Pascal supports a predefined file type called text. Text files are different from other types
of fiJes, in that each file component is a series of zero or more Macintosh characters
terminated by an end-of-line marker. In addition, file components of a text file have

Files Chapter 10 497

varying lengths; they are not of a fixed size. In a more general sense we can consider a
text file as a file containing a sequence of text lines.

This is not the case for other file types. Although it is common to think of a text
file as a file of characters, in Pascal the type file of char is not equivalent to the
type text. Why? In a file of char each file component can contain one and only
one character, so that each file component has a fixed size. In a text file, a file component
can contain several characters and is always terminated by an end-of-line marker.

For text files we can use the commands read, readln, write, and wri teln to
read from or write to a Pascal file. If our Pascal file is of type text, the command

write(Pascal_File, el, e2, e3, ... , en);

or

writeln(Pascal_File, el, e2, e3, ... , en);

converts the internal forms of each expression el, e2 , , en into an equivalent
character-string representation, directing these character representations to a file
component of the Pascal file. Although the commands write and wri teln are similar
in the actions that they perform, the wri teln command terminates the file component
of a text file with an end-of-line marker. The following program lines represent several
equivalent statements for writing values of expressions to a file component of type text.

writeln(Pascal_File, el, e2, ... , en);

is equivalent to

begin
write(Pascal_File, el, e2, ... , en);
writeln(Pascal_File

end;

which is also equivalent to

begin
write(Pascal_File, el);
write(Pascal_File, e2);

write(Pascal_File, en);
writeln(Pascal_File)

end;

Failing to terminate the output of a file component by not executing a wri teln
command can result in later execution of a write or wri teln command recording
information to the same file component. For nontext files the wri teln command
cannot be employed for writin.g information to a Pascal file. The command write
executes differently for a nontext file; it records values in direct machine form, not as
character strings.

If our Pascal file is of type text, the command

read(Pascal_File, vl, v2, ... , vn);

498 Chapter 10 Files

or

readln(Pascal_File, vl, v2, ... , vn);

reads values for each variable in the variable list. Execution of this statement is different
from reading values for variables from a nontext file. First, for a Pascal file of type text
the read statement enters a string of characters representing the value of a variable. The
Pascal system then converts this string representation of the variable into internal
machine form. This differs from nontext files, in which the values for variables are
always stored in machine form. Second, several different values can be read from a single
file component of a text file, separated by one or more blanks. For nontext files we can
only do this by using a file of records. Third, the command readln can only be
employed with text files. When executed, it terminates the entry of values from a file
component. Further execution of read or readln commands will read values from the
next file component of the text file.

There are two special functions exclusively for use with text files, eoln and Page.
The Boolean function eoln (Pascal_File) returns the value true if the end-of-line
pointer is pointing to the end-of-line marker. If not, the value returned is false. The
second function is Page (Pascal_File), for paging an output file. Execution of this
procedure causes the output file to skip to the top of a new page when the output file is
displayed or printed.

The program titled End_of_Line reads several lines of text from the keyboard,
character by character. Pressing the Return key allows a new line of text to be entered. It
also results in the program writing to a new file component of the output file, provided
that the next character pressed is not-. This example uses the function eoln to test for
an end-of-line marker from the standard input file. Although it is not possible on input
from the keyboard to apply the function eof, this function is used to test for the end-of­
file of the text file called Input_File.

program End_of_Line(input, output);
{ Purpose: This program shows a simple example of a Pascal file }
{ of type text. Both the functions eoln and eof are }
{ used for detecting end-of-line or end-of-file. }

const
Endrnarker = ,_,.

I

var
Input_File, Output_File text;
A char;
S : string;

begin
{ Open text file for output. }

rewrite(Output_File, ' Text File');
{ Establish header for output file. }

writeln(' Enter message: ');
writeln(Output_File, 'Your message: ');
writeln(Output_File);
write(Output_File, ' ');

{ Adjust the first file component for aligning the left margin }
{ in the display of lines. }

repeat

Files Chapter 10

repeat
{ Read the next character. }

read(A);
Check for an end marker. }
if A <> Endmarker then
{ Write a character to file component. }

write(Output_File, A);
until (eoln(Input)) or (A= Endmarker);
{ Terminate line to file component. }

writeln(Output_File);
until A = Endmarker;

{ Terminate input line from the terminal. }
readln;

{ Close text file for output.
close(Output_File);

Open text file for reading.
reset(Input_File, ' Text File');
repeat
{ Displaying text lines.

readln(Input_File, S);
writeln(S);

until eof(Input_File);
close(Input_File);

end.

499

Note that the first part of this program (where a nested repeat-until
statement exists) deals with what we referred to in Chapter 9 as the lazy-input problem for
entering data from the keyboard. Although we can detect that an end-of-line marker has
been entered by employing the function eoln, this requires at least one character to have
been entered from the keyboard. For standard input there can always be another read or
readln command that can find its data from the same input line, so it is impossible for
the Pascal system to adjust the current file pointer and check if there is a next file
component or to test if it has reached the end of the file.

Before leaving this section, recall that text files can be interchanged between a word
processor (such as WORD or MacWrite) and Macintosh Pascal. Therefore, it is possible
to create Mac Write or WORD files that can be read as text files by Macintosh and THINK
Pascal. It is also possible to create text files with Pascal that can be read as character files
by WORD or MacWrite.

10.10 REFERENCING DEVICES ON THE MACINTOSH AS FILE DEVICES

On the Macintosh computer there are basically four devices that can be referenced through
the commands open, reset, and rewrite. These include one or two of the disk
drives, a printer, and a modem. When referencing disk drives, the proper disk title must be
used along with the physical file name if the file we are referencing is not stored on the
Macintosh Pascal System diskette. The disk title is given by the volume name followed
by the folder name followed by the file name. The syntax for referencing a file follows:

Volume_Name Folder_Name : Physical_File_Name

500 Chapter 10 Files

The proper title when referencing the printer as an output file device is

printer:

modern:

Because the printer is a write-only device, the title printer: can only be used as a
physical file name with the command rewrite. A syntax error occurs if it used with
the commands open or reset.

A modem can act as both an input and output file device. When using a modem, the
title associated with the physical file name is

Macintosh and THINK Pascal set the baud rate at 300 whenever the modem is being
treated as a file device. Pascal files being linked with the physical files printer: or
modern: must be text files. Using any other file types will result in an error. For both
printer: and modern:, file names appearing after the colon are ignored.

The following is a short program titled Using_Printer_As_File. As you see
from the program listing, the printer is treated as a text file. In this mode of operation,
the characters printed are in a standard font, with the program having no control over the
size and type of font. The option Font Control from the menu option Windows has
no effect on the characters that are printed.

program Using_Printer_As_File(input, output);
{ Purpose: This program uses the printer as an output text }
{ file. }

var

begin

Input_File : text;
Output_File : text;
Line_of_Text : string;

{ Open a test file for storing text lines. }
rewrite(Input_File, ' Test Text File');

Store the following lines of text. }
begin

writeln(Input_File, ' ******MESSAGE TO USER******');
writeln(Input_File);
writeln(Input_File, ' This is a test using the printer as');
writeln(Input_File, ' an output file. The text that you ');
writeln(Input_File, 'presently see has initially been');
writeln(Input_File, ' stored in a text file called "Test');
writeln(Input_File, ' Text File." After it is stored, the');
writeln(Input_File, ' file pointer is reset and the ');
writeln(Input_File, ' printer opened as an output file.');
writeln(Input_File, ' Each line of text is read from the ');
writeln(Input_File, ' physical file "Test Text File" and');
writeln(Input_File, 'written to the printer until the ');
writeln(Input_File, ' program has reached the end-of-');
writeln(Input_File, ' file.');
writeln(Input_File);
writeln(Input_File, '********END OF MESSAGE*********');

end;

Files Chapter 10 501

{ Reset the the file pointer for Input_File and open the file }
{ Output_File. }

reset(Input_File};
rewrite(Output_File, 'printer:'};

{ Print the contents of Input_File to the printer. }
Page(Output_File);
while not eof(Input_File} do

begin
readln(Input_File, Line_of_Text);
writeln(Output_File, Line_of_Text};

end;
{ Close both the input and output files. }

close(Input_File};
close(Output_File};

end.

For both Macintosh and THINK Pascal the Text window is treated as a write-only
file having the physical file name TextWindow; its predefined logical file name is
Output. The keyboard is treated as a read-only file having the physical file name
Keyboard; its predefined logical file name is Input.

10.11 AN APPLICATION: A SIMPLE DATABASE SYSTEM

In this section we discuss the development and implementation of a simple database
system. The purpose of this system is to store names and addresses, using the file and
window techniques of Macintosh Pascal. Let us assume that this system will have the
following options:

1. Create a new file.
2. Open an existing file.
3. Insert a new record of information.
4. Delete an old record of information.
5. Correct a record of information.
6. Display a record of information.
7. Display all records of information.
8. Clear the screen and exit from the program.

All files are assumed to be composed of unsorted records stored sequentially, with
each record containing five fields: full name, street address, city, state, and zip code. For
the first two options, we use two special Macintosh Pascal functions: NewFileNarne
and OldFileNarne. When executed, both NewFileNarne (Prt_Message) and
OldFileNarne (Prt_Message) display a dialog box containing the Prt_
Message. Figure 10.4 shows examples of both dialog boxes.

In the execution ofNewFileNarne, entering a name from the keyboard results in
the function returning this string as a value for the function. For OldFileNarne the
dialog box allows the user to choose an existing file by using the mouse. In this case the
value returned is the name of the file chosen from within a window in the dialog box.
Though both functions return string-type values, neither has any effect on opening,
resetting, or rewriting a file. It is the programmer's responsibility to code for opening a
physical file.

502 Chapter 10 Files

For the third option, information is to be entered from the keyboard and then
appended, as a new record, to the end of an existing sequential file. At this point we
assume that commands such as seek and eof are sufficient for reaching the end of the
file. The fourth option requires a temporary file for storing records while a search is
performed to find the record to be deleted. This procedure borrows some of its concepts
from the merge-sort algorithm discussed in Section 10.4. For the fifth and sixth options,
we apply the concepts of the linear search algorithm for locating a record for updating and
displaying. By again using the commands open and seek, we can apply a simple set of
steps to update a record in a sequential file. The seventh option requires that the user be
given a choice for listing all of the records to the Drawing window or to the printer.

We will require that Options 3 through 7 be executed only if a new file has been
created using Option 1 or if an existing physical file has been found by using Option 2.

Dialog box for saving a file

la EHamples.Nine I
:·, Binary Search {QJ t.:
D [Hample 1 0.1

I [J [Hample 10.2
:·, EHample 1 0.3
[) EHam.D.le 1 0.4 IQ]

Enter new file name: (g) Chapter ...
[] (Eject)

(Saue) (Cancel) (Driue)

Figure 10.4 Examples of dialog boxes using the routines OldFileName and
NewFileName.

Files Chapter 10 503

begin

Dialog box for opening a file

Select file by using the mouse:

I OIEHamples.Eight]

Cl File of I nte .. .
Cl Initialize f .. .
Cl Merge_sort

Ill
(Open) (g)Chapter ...

(Eject)

(() Cancel) Driue

D Name G· A e
[)Show Menu
Cl Telephone .. .
Cl Total Numb .. .

Figure 10.4 (Continued)

Figure 10.5 is an initial view of the module hierarchy. Notice that separate modules
exist for initializing data, presenting the menu, creating a new file name, finding an
existing file, appending a new record, deleting an old record, updating an existing record,
displaying a single record, and displaying all the records. The module
Ini tiali za ti on initializes several variables: a file flag indicating if a file has been
created or located, a table called Mes sage used for storing a list of 11 prompts for
display by the module Menu, a list of records, and a table defining the boundaries of 11
different rectangles.

The steps in the main module are as follows:

1. Initialize a table of messages with prompts and a table of regions defining the
boundaries of rectangles.

2. Present the menu to the user for selecting a choice.
3. From the choice made in Step 2, select one of the eight options to be executed.
4. Repeat Steps 2 through 4 until the choice is to exit from the system.

The following is a refinement of our solution, with Steps 2 through 4 represented by
a repeat-until construct, and with Step 3 replaced by a case statement :

{ Initialize the variable File_Flag. }
Initialize(File_Flag, Message, Box);
repeat
{ Show menu and return choice. }

Menu(Choice, Message, Box);
case Choice of

1: Create_Newfile(File_Name, File_Flag);
2 : Select_Oldfile(File_Name, File_Flag);

504 Chapter 10 Files

3: Append_Record(File_Name, File_Flag);
4: Delete_Record(File_Name, File_Flag);
5: Update_Record(File_Name, File_Flag);
6: Display_Record(File_Name, File_Flag);
7: List_Records(File_Name, File_Flag, Message, Box);
8: {Clear the screen. }

end; { case }
until Choice = 8;

end.

1,5

Menu Create ~
newfile D

1 Flag_File
2Message
3 Box
4Choice
SFile_Name

Main Module

Append
new

record

Delete
old

record

Uedate
eXJSting
record

Display
sirigle
record

,----------1
I I
I I

I Clear I
I Sc I : reen :
I I
I I

List all
records

Figure 10.5 Initial view of the module hierarchy ofName_Address_System.

type

As you can see, our main module requires only five variables: File_Name,
representing the physical file; File_Flag, of type Boolean; Choice, of type
integer; Message, containing an array of prompts; and Box, an array of predefined
rectangles. In addition to these variables there are also four global user-defined types called
Person, Table, Squares, and List. These user-defined types have the following
definitions:

Person = record
Full_Name: string[40];
Address: string[30];
City: string[20];
State: string[15];
Zip: string[12]

end;

Files Chapter 10

Table= array[l .. 11] of string;
Squares= array[l .. 11] of Rect;
List = file of Person;

505

When entering Options 3 through 7, the physical file being accessed will be opened
and remain open only for the length of the particular option. This is in keeping with the
philosophy that a file should remain open only as long as it is needed.

At this point the main module, along with dummy modules representing the nine
modules at the second level of Figure 10.4, are written in Macintosh Pascal and tested.
Because the module Menu must return a value for the variable Choice, this procedure
can initially be written either to prompt for a value using the Text window or to assign a
value with a simple assignment statement. As the modules are developed and refined, we
can integrate them into the present system and test them. This is a simple top-down
approach for both the integration and the testing of modules. Module definitions for
Initialize, Create_Newfile, and Select_Oldfile follow:

procedure Initialize;
{ Purpose: This procedure requires three formal variable }
{ parameters: Fileopen, a Boolean type; Message, of }
{ user-type Table; and Box, of user-type Squares. }
begin

Fileopen <-- false;
{ Assign messages to the array Message. }
{ Define rectangles for options in Menu and Listing records. }
end; { Initialize }

procedure Create_Newfile;
{ Purpose: This procedure requires two formal variable }
{ parameters: Physical_File, of type string, and
{ Fileopen, of type Boolean. }

var
Pascal_File : List;

begin
{ Prompt user for creating new file. }

Physical_File <-- NewFileName(' Enter new file name: ');
{ Check if the user has typed a file name in the dialog box. }

if Physical_File <> ' ' then
begin

Fileopen <-- true
{ Establish the file on the diskette. }

open(Pascal_File, Physical_File);
close(Pascal_File)

end
else

Fileopen <-- false
end; { Create_Newf ile }

506 Chapter 10 Files

procedure Select_Oldfile;
{ Purpose: This procedure requires two formal variable }
{ parameters: Physical_File, of type string, and }
{ Fileopen, of type Boolean. }
begin
{ Prompt user for opening an existing file. }

Physical_File <-- OldFileName(' Select file by using mouse: ');
{ Check if user has selected a file name from the dialog box. }

if Physical_File <> ' ' then
Fileopen <-- true

else
Fileopen <-- false

end; { Select_Oldf ile }

The Menu module presents the eight options to the user by displaying them to the
Drawing window. Figure 10.6 shows the format of the display. The user chooses an
option by moving the cursor to one of the small squares and pressing the mouse button.

SELECT OPTION BY MOVING MOUSE
AND CLICKING ON BOX

D Choose a new file
D Select an existing file
D Add a new record
D Delete an old record
D Update an existing record
D List an existing record
D Display all records
D auit

Figure 10.6 Window displaying the menu of Name_Address_System.

The steps for achieving these results are as follows:

1. Initialize the Drawing window, and then display the center window for options.
2. Title the top of the window.

Files Chapter 10 507

3. Set PenSize, and present the eight options to the user.
4. Continue checking if the mouse lies within one of the boxes and if the mouse

button has been pressed.

The following is a refinement of our solution for the module Menu:

procedure Menu;
{ This procedure requires three formal parameters: Choice, an
integer variable for returning the menu choice; Message, a value
parameter of user-type Table; and Box, a value parameter of user­
type Squares. Local variables for this module include X, Y, J,
Continue_Check, and a mouse point. }

begin
{ Initialize the Drawing window.

Show_Drawing_Window;
Draw center rectangle. }

Draw_Centerbox;
{ Present options to user.

MoveTo(110, 70);
Display message shown in the window for menu. }

PenSize(2, 2); X <-- 130; Y <-- 120;
for J <-- 1 to 8 do

begin
MoveTo (X, Y) ;

{ Draw the small rectangular Box[J]. }
MoveTo(X + 20, Y);

{ Draw Message[J]. }
y <-- y + 20

end; {for-loop}
{ Check if mouse button has been pressed and cursor is within one

of the eight boxes. }
Continue_Check <-- true;
while Continue_Check do

begin
y <-- 120;

Determine the coordinates from the procedure GetMouse. }
for J <-- to 8 do

begin
if {Point is in Box[J]} and {mouse button is

pressed }
begin

Continue_Check <-- false;
Choice <-- J

end; { if-then }
end; {for-loop}

end; { while-do }
end; { Menu }

To test if the mouse is located in one of the eight squares, we can conveniently apply
the Boolean function PtinRect. (See Chapter 14 for more information on this
function.) This function takes as input a point and checks to see if it lies within the

508 Chapter 10 Files

boundary of a defined rectangle. As you see, the module Menu requires the support of two
additional modules, Show_Drawing_Window, for hiding all windows and for showing
the Drawing window, and Draw_Centerbox, for displaying the center window. Each
of the eight squares has been predefined during the execution of the module
Initialization and is passed to this module, by means of an array, along with the
table of prompts.

The fifth module, called Append_Record, prompts for a new record. After
receiving this information, it also appends the new record to the end of a physical file.
The major steps in performing this function follow:

1. Check if a physical file has been found or created.
2. If the physical file does not exist, report a "no file" message to the user.
3. If the physical file does exist, prompt the user for name and address.
4. Open the physical file, and set the file pointer to the end-of-file.
5. Assign the new record to the file buffer, and put the new record to the physical

file .
6. Close the physical file.

Step 1 checks to see if either Option 1 or 2 has been successfully executed and, if
not, displays the message shown in Figure 10.7. If the physical file does exist, Step 3
prompts the user, employing the window format shown in Figure 10.8.

SORRY, NO FILE HAS

BEEN CREATED OR OPENED.

Press mouse button to continue.

Figure 10.7 Window for creating a "no file" message.

Files Chapter 10 509

OPTION FOR ENTERING A NEW RECORD

Enter full name:

Enter street address:

Enter city:

Enter state:

Enter zip code:

Figure 10.8 Window showing the name-address prompt.

The following is a refinement to the foregoing abstract solution:

procedure Append_Record; (Physical_File: string; Flag: Boolean);
{ Purpose: This procedure uses two formal value parameters: }
{ Physical_File, of type string, and Flag, of type }
{ Boolean. Local variables include Pascal_File, Name, }
{ and Counter. }
begin

if Flag then
{ Check if a file has been opened. }

begin
{ Prompt user for name and address. }

Enter_Name_Address(Name);
{ Open physical file for appending record. }

open(Pascal_File, Physical_File);
{ Continue to search for the end-of-file. }

Counter <-- O;
while not eof(Pascal_File) do

begin
seek(Pascal_File, Counter);
Counter <-- Counter + 1

end;

510

Pascal_FileA <-- Name;
put(Pascal_File);
close(Pascal_File);

end
else

Chapter 10 Files

{ Report that no file has been created or opened. }
Display_Nofile_Message;

end; { Append_Record }

This module requires two supporting modules: Enter_Narne_Address, for
entering a new record from the keyboard, and Display_Nofile_Message, for
displaying a message that the requested file does not exist. At this point dummy
procedures are coded for Display _Nof ile_Message and Enter_Narne_Address.
In the case of the module Enter_Narne_Address, one or more assignment statements
are sufficient for establishing a new record without explicitly prompting the user. For
now, the procedure Display_Nofile_Message can only print a message to the Text
window. Later these two procedures will be given formal definitions, integrated into the
existing system, and tested.

The sixth module, Delete_Record, prompts the user for a person's name, and
uses it as a key to search for an existing record; if found, this record is deleted from a
physical file. Step 4 displays the message shown in Figure 10.9, and Step 5 displays the
window format shown in Figure 10.10.

SORRY, EMPTY FILE.

NO RECORDS EH I ST IN TH IS FILE.

Press mouse button to continue.

Figure 10.9 Window showing the "empty file" message.

Files Chapter 10 511

Option for displaying a single record:

Enter full name:

Figure 10.10 Window showing the prompt for displaying a single record.

The major steps for performing this function follow:

1. Check if a physical file has been found or created.
2. If the physical file does not exist, report a "no file" message to the user.
3. Open the physical file, and check if it is empty.
4. If the physical file is empty, report an "empty file" message to the user.
5. If the physical file is a nonempty file, display the center window, and prompt the

user with a title and a request for a person's full name.
6. Open the temporary file for output.
7. Read a record from the physical file, and compare it with the search key.
8. Write this record to the temporary file if it does not contain the search key.
9. Repeat Steps 7 through 9 until the end of the physical file is reached, or the

record to be deleted has been located.
10. If the record is found, read the next record, and write this and any of the remaining

records of the physical file to the temporary file.
11. Reset the file pointers for both files; then continue to read each record from the

temporary file and write the record to the physical file.
12. Close the physical file.

The following algorithm represents a refined definition of the solution just given.

procedure Delete_Record;
{ Purpose: This procedure requires two formal value parameters: }
{ Physical_File, of type string and Flag, of type }
{ Boolean. Local variables include Pascal_File, Name, }
{ Data, and Not_Found. }
begin
{ Check if the file has been opened or created. }

if Flag then
begin
{ Open the physical file and check if it is empty. }

reset(Pascal_File, Physical_File);

512

end

if eof(Pascal_File) then
begin

Report_Empty_File;
close(Pascal_File);

end
else

Chapter 10 Files

{ Prompt user for the name of the person to search }
{ the records. }

begin
{ Draw the center box and title top of the window. }
{ Open the temporary file. }

end

rewrite(Temporary_File);
Prompt_for_Name (Name) ;
Not_Found <-- true;
while (not eof(Pascal_File)) and Not_Found do

begin
read(Pascal_File, Data);
{ Check if Name is equal to the Full_Name

field of Data }

end;

if Name = Data.Full_Name then
Not_Found <-- false

else
write(Temporary_File, Data

{ Read remaining records from the physical file and }
{ write to temporary file. }

while not eof(Pascal_File) do
begin

read(Pascal_File, Data);
write(Temporary_File, Data

end;
{ Copy records from temporary file to Pascal file. }

rewrite(Pascal_File);
reset(Temporary_File);
while not eof(Temporary_File) do

begin
read(Temporary_File, Data);
write(Pascal_File, Data)

end;
{ Close physical file. }

close(Pascal_File)
end

else
Display_Nofile_Message

end; { Delete_Record }

This module requires two supporting modules: Prompt_for_Name, for entering
the search key and the person's full name; and Display_Nofile_Message. When
testing the module Delete_Record, we write a dummy module for Prompt_

Files Chapter 10 513

for_Name that gives a person's name by means of an assignment statement.
Prompt_for_Name can be refined later, integrated, and tested with the present system.
Notice that even though we explicitly close the physical file represented by
Pascal_File, any attempt to close the temporary file causes an execution error.
Because the temporary file is opened with no physical file link, explicit closing of the file
is unnecessary.

The module called Update_Record will prompt the user for a person's name,
search for a record containing this person's name, prompt the user to correct any of the
fields, and then update the existing record. The steps in updating a record follow:

1. Check if a physical file has been found or created.
2. If the physical file does not exist, report a "no file" message to the user.
3. Open the physical file, and check if it is empty.
4. If the physical file is empty, report an "empty file" message to the user.
5. If the physical file is a nonempty file, display the center window, and prompt the

user with a title and a request for the person's full name.
6. Read a record from the physical file, and compare it with the search key.
7. Repeat Steps 6 and 7 until the end of the physical file is reached, or the record has

been located.
8. If the record is not found, report that the person is not in the file.
9. If the person is found, display the information in the existing record.

10. Prompt the user for corrections.
11. Write the updated record to the physical file.
12. Close the physical file.

Step 8 displays the window shown in Figure 10.11; Step 9 displays the window of
Figure 10.12. Updating the record is requested by the window format shown in Figure
10.13.

SORRY, PERSON IS NOT FOUND.

Press mouse button to continue.

Figure 10.11 Window showing the "person not found" message.

514 Chapter 10 Files

OPTION FOR DISPLAYING A SINGLE RECORD:

Full name:
Street address:
City:
State:
Zip Code:

Press mouse button to continue.

Figure 10.12 Window for displaying a single record.

PRESS RETURN KEY IF NO CHANGES ARE REQUIRED:

Change full name?

Change street address?

Change city?

Change state?

Change zip code?

Press mouse button to continue.

Figure 10.13 Window prompting the user to enter changes for a single
record.

Files Chapter 10 515

A refined solution follows:

procedure Update_Record ;
{ Program: This procedure requires two formal value parameters: }
{ Physical_File, of type string, and Flag, of type }
{ Boolean. Local variables include Pascal_File, Name, }
{ Data, Counter, and Not_Found. }
begin
{ Check if a file exists or has been created. }

if Flag then
begin
{ Open the physical file, using the open command.

open(Pascal_File, Physical_File);
Check if the physical file is an empty file. }
if eof(Pascal_File) then
{ Report empty file and close physical file. }

begin
Report_Empty_File;
close(Pascal_File

end
else

begin
{ Draw the window in the center of the screen using

Draw_Centerbox; then present a prompt at the top. }
Prompt user for name of person. }

Prompt_for_Name(Name);
Initialize two local variables. }
Not_Found <-- true;
Counter <-- O;
while (not eof(Pascal_File)) and Not_Found do

begin
{ Read record from the file buffer and test if

Full_Name field is equal to the search key. }
Data <-- Pascal_FileA;
if Name = Data.Full_Name then

Not_Found <-- true
else

begin
{ Seek the next record for matching with }
{ the search key. }

seek(Pascal_File, Counter);
Counter <-- Counter + 1

end;
Prompt for further information from user if }
the record has been found. }
if Not_Found then
{ Report the record has not been found. }

Report_Not_Found
else

begin
{Display present record.}

516

end

Chapter 10 Files

Display_Name_Address(Data);
{ Prompt user for corrected information. }

Prompt_for_Changes(Data);
{ Put updated information of record in }
{ the physical file. }

.Pascal_File" <-- Data;
put(Pascal_File);

end

close(Pascal_File
end

else
Display_Nofile_Message

end; { Update_Record }

In this module we need the open command for opening the physical file, because the
seek command is used to adjust the file pointer. The write command is used to update
the existing record. This module requires seven supporting modules: Report_Empty _
File,Draw_Centerbox,Prompt_for_Name,Report_Not_Found,
Display_Name_Address,Prompt_for_Changes,andDisplay_Nofile_
Message. As before, dummy modules are written and integrated for testing the module
Update_Record. These are refined, integrated, and tested at a later time with the
present system.

The eighth module, called Display_Record, prompts the user for a person's full
name, searches for a record containing that name, and displays the complete record. The
major steps in this procedure follow:

1. Check if a physical file has been found or created.
2. If the physical file does not exist, report a "no file" message to the user.
3. Open the physical file, and check if it is empty.
4. If the physical file is empty, report an "empty file"'message to the user.
5. If the physical file is a nonempty file, display the center window, and prompt the

user with a title and a request for the person's full name.
6. Read a record from the physical file, and compare it with the search key.
7. Repeat Steps 6 and 7 until the end of the physical file is reached, or the record has

been located.
8. If the record is not found, report that person is not in the file.
9. If the person is found, display the information in the existing record.

10. Close the physical file.

Refined steps for displaying a single record of information follow:

procedure Display_Record;
{ Purpose: This procedure requires two formal value parameters: }
{ Physical_File, of type string, and Flag, of type }
{ Boolean. Local variables include Pascal_File, Name, }
{ Data, and Not_Found. }
begin
{ Check if the file exists or has been created. }

if Flag then
begin

Files Chapter 10

Open the physical file for reading records. }
reset(Pascal_File, Physical_File);
if eof(Pascal_File) then

begin
{ Report empty file. }

Report_Empty_File;
close(Pascal_File

end
else

begin
{ Draw the center window using Draw Centerbox and

display a message at the top of the window.}
{ Prompt user for person's name. }

Prompt_for_Name(Name);

517

Continue to read records until the file is empty }
or the record is found. }

end;

Not_Found <-- true;
while (not(eof(Pascal_File)) and Not_Found do

begin
{ Continue to read records and check if key }
{ matches Full_Name field. }

read(Pascal_File, Data);
if Name = Data.Full_Name then
Not_Found <-- false

end; { while-do }
If the record is not found, report an appropriate -}
message; otherwise, report the record to the user. }
if Not_Found then

Report_Not_Found
else

Display_Name_Address(Data);
{ Close the physical file. }

close(Pascal_File)

else
Display_Nofile_Message

end; { Display_Record }

Supporting modules required by Display_Record are Report_Empty_File,
Draw_Centerbox,Prompt_for_Name,Report_Not_Found,
Display _Name_Addres s, and Display _No f i le_Message.

The last module, called List_Records, provides the user with three options: List
all the records to the screen, list all the records to the printer, or exit from the option.
The steps for listing all records follow:

1. Check if a physical file has been found or created.
2. If the physical file does not exist, report a "no file" message to the user.
3. Open the physical file, and check if it is empty.
4. If the physical file is empty, report an "empty file" message to the user.
5. If the physical file is a nonempty file, prompt the user for a selection of display

options.

518 Chapter 10 Files

6. If the option is to display to the screen, continue to read each record from the
physical file, displaying the record, until an end-of-file is reached.

7. If the option is to list all records to the printer, open the printer as a text file, and
then continue to read records from the physical file while writing the records to
the printer until an end-of-file is reached.

8. Close the physical file and, if opened by Step 7, the printer file.

Step 5 provides a window format, shown in Figure 10.14, for choosing the option to
display all records. Moving the mouse to one of the three squares and pressing the mouse
button selects one of three options.

OPTION FOR LISTING ALL RECORDS:

D List each record to the screen.

D List records to the printer.

D Exit from this option.

Figure 10.14 Window prompting the user for the option of listing all
records.

The following is a refinement of the steps for this module.

procedure List_Records;
{ Purpose: This procedure requires four formal value parameters:}
{ Physical_File, of type string; Flag, of type Boolean;}
{ Message, of user-type Table; and Box, of user-type }
{ Squares. Local variables include Pascal_File, }
{ Output_File, Data, and Selection. }
begin
{ Check if the file exists or has been created. }

if Flag then
begin
{ Open the physical file and test if it is empty. }

reset(Pascal_File, Physical_File);
if eof(Pascal_File) then

begin
{ Report an empty file and close the physical file. }

Files Chapter 10 519

end
else

Report_Ernpty_File;
close(Pascal_File

end
else

begin
{ Prompt user for type of listing. }

Prornpt_for_Listing(Selection, Message, Box);
{ Display records to the window or to the printer. }

case Selection of
1: { Display all records to the window. }

while not(eof(Pascal_File) do
{ Read a record from the Pascal file and
{ display to a window using }
{ Display_Narne_Address. };

2: { Display all records to the printer.
begin
{ Open the printer as an output file.

rewrite(Output_File, 'Printer:')
while not(eof(Pascal_File) do
{ Read a record from the Pascal file }
{ and write this record to the printer. }
{ Page and close Output_File. }
end;

otherwise { exit from this option }
end { case }

close(Pascal_File

Display_Nofile_Message
end; { List_Records }

This module requires four supporting modules: Report_Ernpty_File,
Prornpt_for_Listing,Display_Narne_Address,andDisplay_Nofile_
Message.

Figures 10.15a to 10.15e show the relationships of all the major modules with their
supporting modules. Some of the modules have common steps, and further refinement of
this design is left as a problem. The complete Pascal source code for Na rn e _
Addres s_Sys tern is included in the Program Diskette which is provided with this
text. Initially all supporting modules, referred to as utilities, are declared with forward
declarations followed by the definition of all nine major modules. Following this, all
supporting modules, in alphabetic order by procedure name, are defined.

520

Show_
Drawing_
Window

1 Data

Menu

Draw_
Centerbox

Chapter 10 Files

Append_Record

Enter_
Name_
Address

Display_
Nofile_
Message

Draw_Centerbox I

Figure 10.15a. Relationship of major and supporting modules in
Name_Address_Systern.

Report_
Empty_

File

1 Name

Prompt_
for_

Name

Report_
Not_
Found

Display_
Nofile_
Message

Figure 10.15b. Relationship of major and supporting modules in
Narne_Address_Systern.

Files Chapter 10

Report_
Empty_

File

1 Name
2 Data
3X

Prompt_
for_

Name

4Y
5 Field
6 Prompt

Report_
Not_
Found

Display_
Name_
Address

Prompt_
for_

Changes

521

Display_
Nofile_
Message

Request_ Corrections

Figure 10.lSc. Relationship of major and supporting modules in
Name_Address_System.

Report_
Empty_

File

1 Name
2 Data

Prompt_
for_

Name

Report_
Not_
Found

Display_
Name_
Address

Display_
Nofile_
Message

Figure 10.lSd. Relationship of major and supporting modules in
Name_Address_System.

522

Report_
Empty_

File

1 Selection
2 Message
3 Box
4 Data

Prompt_
for_

Listing

List_Records

Display_
Name_
Address

Chapter 10 Files

Display_
Nofile
Message

Figure 10.15e. Relationship of major and supporting modules in
Name_Address_System.

10.12 STANDARD PASCAL VERSUS THINK PASCAL

With respect to files, what makes THINK and Macintosh Pascal different from standard
Pascal? First, Macintosh and THINK Pascal allow the procedures rewrite and reset
to have a second parameter for the purpose of associating a physical file name with a
Pascal file variable.

In ANSI Pascal, the physical file name takes on the name of the Pascal file variable.
The procedures rewrite and reset can be used to create and open a file, but they have
only a single parameter, a Pascal file variable. The names of the Pascal file variables
must be explicitly given in the program header where the program parameters input and
output appear.

Second, the procedures open and close are not supported by standard Pascal. For
any Pascal system, the scope of a file and how long it will exist are defined for the length
of the program block in which the file is declared. If the file is declared local to a
procedure or function, its scope is only the length of the body of the routine and no
longer. A file becomes closed once the program ends execution of the program block for
which a Pascal file variable has been declared. While these rules apply to THINK and
Macintosh Pascal as well as standard Pascal, the procedure c 1 o s e gives us the
opportunity to close a file if we no longer need it, even though the program has not
finished executing the block in which a file has its scope.

The following code for the earlier program called Reporting_Random_Numbers
is a standard Pascal program, where the name of the physical file Data_Block is the
same as that of the Pascal file variable. If the physical file exists, it is opened by
execution of the reset command and remains open for the length of time that the
program is in execution. If it does not exist, the program halts execution when it
attempts to execute reset.

Files Chapter 10 523

program Reporting_Random_Numbers{input, output, Data_Block);
{ Purpose: This is a standard Pascal program for testing the }
{ opening and reading of a file of real numbers. }

type
Number_File = file of real;

var

begin

Data_Block : Number_File;
Counter : integer;
Number : real;

{ Open the test file and position the pointer at the front of }
{ the file. }

reset{Data_Block);
{ Read all numbers from the test file. }

while not eof{Data_Block) do
begin
{ Read the next number from the test file. }

read{Data_Block, Number);
{ Display the number just read from the test file and }
{ display its value in the Text window. }

write{output, Number: 10 : 4, ' ');
end;

writeln;
{ Close the test file by terminating execution of this block. }
end.

Both Macintosh and THINK Pascal depart from standard Pascal in allowing the name
of the Pascal file variable to be listed within the parameter list of the program header.
Macintosh Pascal raises a bugs window stating that an "invalid program parameter list
has been found" when checking the syntax of the program. THINK Pascal compiles the
program but later halts execution when an attempt is made to execute the reset
command and reports that the "file is not open."

Third, standard Pascal does not define the concept of a random-access file. When such
files are allowed, a command such as seek can direct a program to a file component
without reading the file sequentially. By using an index number, a Pascal program can
move either forward or backward through a file without resetting the file pointer with the
command reset.

Fourth, standard Pascal does not allow string-type and enumerated-type values to
be read from text files using read and readln procedures, nor does it allow such values
to be written to text files using write and write ln procedures. While many Pascal
compilers allow this extension, it is not defined as part of standard Pascal.

Last, the actual internal representation of a text file in Pascal is implementation­
dependent. Although we have viewed a text file as a series of lines composed of
characters, with each line terminated by an end-of-line marker, the actual internal
representation varies among Pascal translators. For example, Macintosh Pascal treats a
text file as a collection of lines, with each line being a series of characters terminated by
the carriage-return character as an end-of-line marker. In THINK Pascal a text file is a
series of file components, and each component is a structure composed of a count
specifying the length of the line followed by a character string for the line. No explicit
end-of-line character is stored.

524 Chapter 10 Files

What standard Pascal requires and what Macintosh and THINK Pascal follow is that
an end-of-line marker in a text file must always be read as a blank space independent of
the existence of the marker. This is why a Pascal program written to explicitly test for
reading a return character from standard input (the keyboard acts as an input device for a
text file) is never successful. If a Pascal program could read the end-of-line marker from a
text file, we would not need the Boolean function eoln, and, in tum, the concept of a
text file would not exist, because it would be nothing more than a file of characters.
Thus, the concept of a text file as lines of text, with each line composed of its length
followed by its character string and with no end-of-line marker stored is a proper model of
a text file. Also, note that if a text file for any Pascal translator uses an explicit end-of­
line marker, the end-of-line marker can be read by opening and reading the text file as a
file of characters.

SUMMARY

Files provide the means for storing data generated during the execution of a program.
Although in principle we can discuss the concept of two fundamental types of files,
sequential and random, in reality MacintoshffHINK Pascal supports only sequential files.
In Pascal, files are represented by a series of file components, each of which is represented
by a unique component number. A special object called a file buffer serves as a
mechanism both for pointing to a current file component and for reading from or writing
to a file component. With the seek command, we can treat sequential files as if they
were random-access files by referencing each file component with a number. The only
restriction is that when a Macintosh or THINK Pascal file is being used as a random­
access file, the commands reset and rewrite will not execute. Only open and seek
are allowed as commands to open a file and to locate the position of the next file
component. Commands such as read, get, write, and put can access the file
component for either reading from or writing to the file.

Pascal files are declared through the syntax file of data type. File data
types can include integer, real, double, longint, extended,
computational, Boolean, or char, as well as structured types such as array,
record, string, packed array of char, and set. All of these result in file
components having a fixed size. Text files differ in that the file components may vary in
length.

By using the commands open, rewrite, or reset, we can link a Pascal file with
a physical file. The commands open and rewrite can create a new physical file if the
file does not exist; if the physical file exists, it is opened. In either case the file pointer is
directed to the beginning of the file. The command reset can open and link a Pascal file
to an existing physical file; if the physical file does not exist, the command fails. For an
existing file, the command reset places the file pointer at the beginning of the physical
file for input to a program in execution. For an existing file, execution of the command
rewrite erases all file components and positions the file pointer to the beginning of an
empty file.

The open command can open either a new file or an existing file; file components
can be either read from or written to during the execution of a program, but neither the
command reset nor rewrite is necessary. By using commands such as write,
read, put, or get, a Pascal file can be either written to or read from during the
execution of a program. The commands readln and wri teln apply only to text files.
Text files are different from files of characters. They can contain file components of

Files Chapter 10 525

variable length that end with an end-of-line marker. This is different from a file of char,
where each file component is of a fixed size, one character.

Two Boolean functions exist for testing the position within a file. One, eof, will
test any type of file for an end-of-file marker. If the file pointer is not pointing to the end­
of-file, eof (Pascal_File) returns a value of false. Once the file pointer is pointing
to the end of the file, eof (Pascal_File) returns a value of true. When the value is
true, the file buffer becomes undefined. The Boolean function eoln applies only to
text files. When executed, it tests to see if the last-executed read has entered the last
characters of an input line. If the file has reached an end-of-file marker, execution of eo ln
will fail.

REVIEW QUESTIONS

1. Define the termfile.
2. What are the advantages of using files?
3. What three file types exist in Macintosh Pascal?
4. Briefly explain the abstract model representing the concept of a file.
5. What is the purpose of the file variable and file buffer?
6. Although a file may seem to be a one-dimensional array, how does a file

component differ from an element of an array?
7. What is the special marker that terminates a file?
8. What is the only item in an empty file?
9. What three commands can be used to reposition the file pointer?

10. How is a file declared in Pascal?
11. What is meant by the term sequential file?
12. What is the purpose of the open command?
13. What is the purpose of the close command?
14. What is the difference between the rewrite and reset commands?
15. Are the following two sets of commands equivalent? Explain your answer.

open(Outfile, 'Inventory');
rewrite(Outfile);

and

rewrite(Outfile, 'Inventory');

16. What two commands allow data to be written to a file?
17. What is the action of the put command? How does it differ from a write

command?
18. Why must a formal parameter representing an actual parameter as a file type be a

variable formal parameter?
19. Is it true that execution of the reset command places the physical file in a read

mode?
20. What two commands allow data to be read from a file?
21. What name is given to the keyboard as a standard input file?
22. What name is given to the Text window as a standard output file?
23. What is the action of the get command? How does it differ from a read

command?
24. Is the following declaration allowed in Macintosh Pascal?

526 Chapter 10 Files

var
Pasfile : file of file of integer;

var

25. How can we create a temporary file that is used only during the execution of a
program and has no link with any physical file?

26. What happens if you attempt to close a temporary file?
27. What is meant by the term random file?
28. In a Macintosh Pascal program, can a sequential file be accessed like a random

file? Explain your answer.
29. What file commands can be used with random files?
30. What is the purpose of the seek command? What actions occur when the seek

command is executed?
31. What command must be executed before executing a seek command?
32. What is the purpose of the filepos command?
33. How can the seek and put commands be used to update a file component?
34. How can the special function eof be used when accessing a file?
35. What is meant by a text file?
36. What is meant by the terrnfixed-sizedfile components versus variable-sized file

components ?
37. Why is a text file not equivalent to a file of char ?
38. Whereas writeln and readln only apply to text files, can we use the

commands read and write to access text files? Can you think of any
examples to verify your answer?

39. Is a text file equivalent to a file of string? Can you think of a test that might
verify your answer?

40. How can the eoln function be used with text files?
41. Can the eof function be used with all types of files?
42. Can the eoln function be used with nontext files?
43. How should a file stored on a particular diskette and within a folder be referenced?
44. What command can be used to reference the printer as an output file?
45. The logical file name for displaying to the text window is Output. What is the

corresponding physical file name?
46. The logical file name for entering data from the keyboard is Input. What is the

corresponding physical file name?
47. What is the purpose of the function NewFileNarne?
48. What is the purpose of the function OldFileNarne?
49. Is the following declaration correct?

Pas file file of text;

50. What data types can be associated with the following declaration?

var
Pasfile : file of data type;

51. What is wrong with the following code?

rewrite(Pasfile);
while not eof (Pas file) do

Files Chapter 10 527

begin
read(Pasfile, Nwnber);

end;

52. What is wrong with the following code?

reset (Pasfile);
while not eof (Pas file) do

begin
write(Pasfile, Nwnber);

end;

53. What is the effect of executing the following code?

PasfileA := Value;
put (Pasfile);
seek(filepos(Pasfile) - l);
Value := PasfileA;

54. Execution of the statement Page (Output) or Page clears the Text window.
If Pas file is a text file, what occurs when the statement Page (Pasfile)
is executed?

55. Can the commands get and put be used to input from and output to a text file
instead of the commands read, readln, write, and wri teln? Write a
short program to test your ideas.

PROGRAMMING EXERCISES

Although not all programming exercises require you to write an algorithm, you may
better understand the problem and what is required if you first write an algorithm and trace
it by hand with several examples before attempting to write a Pascal program.

1. Write a program that will take a two-dimensional array of real numbers and store
them in a sequential file called Real Nwnbers. Once the file has been closed,
reopen it and have your program read the real numbers to verify if they have been
stored properly.

2. Write a program that will create real numbers randomly and store them in a two­
dimensional array called A. Then have your program write the numbers in array
A to a file named Row Vectors, one row at a time. You will have to declare
the Pascal file as a one-dimensional array, that is, as an array of real.

3. Write a program that will read one-dimensional arrays of real numbers stored in
the file called Row Vectors into a two-dimensional real array called Bone
row at a time. Display the values of array B, and see if they match the random
numbers generated in Exercise 2, both for value and position.

4. Using the seek command, write an algorithm employing the bubble sort
algorithm to sort directly the file components of a sequential file without reading
any file components to internal storage. Hint : As you saw in this chapter, you

528 Chapter 10 Files

can treat each file component as an element in a table. Test your algorithm by
creating at random a file of integer numbers, sorting them, and then displaying
the contents of the file.

5. Repeat Exercise 4 using the Shellsort algorithm.

6. Repeat Exercise 4 using the quicksort algorithm.

7. Write a function called Fi 1 e_ Size that will count the number of file
components in a sequential file. Assume that the sequential file is a nontext file.

8. Write a function called Verify_Files. This function takes two sequential
files and checks if the corresponding file components have identical values. The
value returned by this function is the Boolean value true if the files are
identical, and false if the function fails. Assume that both files are nontext files.

9. Complete the following procedure for appending one file to another:

procedure Append{ var Filel, File2 : file-type ; var Flag
Boolean};

This procedure will append a physical file linked with File2 to a physical file
linked with Filel; in short, Filel<-- Filel + File2. Assume that
both Fil el and File2 have been opened and are not text files. The formal
parameter Flag is set to true if Append successfully completes execution. The
following steps are required for this routine:

(a) Establish Fil el for a read mode. Report an error if this
fails, and terminate execution of this routine.

(b) Establish File2 for a read mode. Report an error if this
fails, and terminate execution of this routine.

(c) Open a dummy file for temporary file storage. The dummy
file must be established in a write mode.

(d) Read each file component from Filel, and write each to
the dummy file.

(e) Read each file component from File2, and write each to
the dummy file.

(f) Establish Filel for a write mode.
(g) Establish the dummy file for a read mode.
(h) Read each file component from the dummy file, and write

each to Filel.
(i) Close the dummy filt: if it is linked with an explicit

physical file.

This procedure must be able to append an empty file to a nonempty file and a
nonempty file to an empty file.

10. Write a procedure called Append_Text_Files for appending two text files.
Follow the steps defined in Exercise 9.

11. Complete the following procedure for truncating a nontext file:

Files Chapter 10

procedure Truncate(var Filevar : file-type;
Current_Component_Position: integer; var Flag : Boolean);

529

The purpose of this routine is to truncate the physical file linked with the file
variable from the current file component given by Current_
Component_Pos i ti on to the end of the file. Assume that the file variable
has been opened. Normal termination of this routine leaves the file variable in a
write mode. The formal parameter Flag is set to true if Truncate
successfully completes execution.The following steps are required for this
routine:

(a) Establish the file variable for a read mode. Report an error if
this step fails, and terminate execution of this routine.

(b) Check if Current_Component_Posi ti on is less
than or equal to zero. If so, report an error, and terminate
execution of this routine.

(c) Open the dummy file for temporary file storage. The
dummy file must be established in a write mode.

(d) Read each file component from the file variable, and write
each to the dummy file until Current_Component_
Position has been reached. If Current_Component_
Position exceeds the end-of-file position, close the
dummy file if necessary, report an error, and terminate

execution of this routine.
(e) Establish the file variable for a write mode.
(f) Establish the dummy file for a read mode.
(g) Read each file component from the dummy file, and write

each to the file variable.
(h) Close the dummy file if it is linked with an explicit

physical file.

12. Write a program that allows the user to enter several paragraphs, storing each line
of a paragraph as a line of text in a Pascal file of type text. Then verify that
the lines have been stored by having the program read them from the text file and
display them to the Text window. Be sure to use the Boolean functions eoln
and eof.

13. Write a program that counts the number of individual characters, words, and lines
of text from the text files created in Exercise 12. Have the program write this
information to the Text window.

14. Write a program that can compare two text files and report if they are equivalent
or nonequivalent.

15. Modify the name and address system so that all records are stored in alphabetic
order by full name. This means that as a new record is added to a file, it must be
merged alphabetically with the remaining records. It also requires that if a
person's name is changed in an existing record, the old record must be deleted and
the updated record merged with the remaining records.

530

Reference

Chapter 10 Files

16. Modify the name and address system so that several reports can be displayed to
the Text window or printer. These reports should allow the following options:

(a) Display all records having zip codes within a particular range.
(b) Display all records having a particular city and state.
(c) Display all records having a particular last name.

17. Professor Smith has decided to keep a small research file on his Macintosh
computer. He has decided that each record entry representing a reference will have
the following record format:

record
Primary_Keyword: string[20];
Secondary_Keyword: string[20];
Third_Keyword: string[20];
Title : string[50];
Author: string[50];
Publisher: string[50];
Publication_Date: string[lO];
Abstract: string;

end;

Develop a system for Professor Smith with the following options:

(a) Create a new research file.
(b) Open an existing research file.
(c) Close an existing research file.
(d) Enter new records.
(e) Update existing records.
(t) Search a research file with a keyword.
(g) Search a research file with an author's name.
(h) Search a research file with a title.
(i) Display one or more records of information.
(j) Exit from the system.

18. Develop a way to accept logical search equations from input over the three
keywords from Exercise 17. For example, is there a way to accept logical search
equations having the following search expressions?

(Primary keyword) and/or (Secondary keyword) and/or (Third
keyword)

Part =

19. The XYZ Warehouse Association has decided to computerize its record-keeping
system by using a Pascal program on the Macintosh. You have been asked by
the company president to develop and implement an inventory system for
keeping records on parts. Each part is required to have the following record
format:

record
Part_ID : string[18];
Description: string[50];

Files Chapter 10

Entry_Record_Date: DateTimeRec;
Quantity_in_Stock: longint;
Last_Access_Date: DateTimeRec;
Back_Order_Date: DateTimeRec;
Price_per_Part: real

end;

531

Part_ID must have the format Pddd-ccc-ddcc/19dd, where d represents
a digit 0 through 9, and c represents an alphabetic letter. The sequential file
must be declared as a file of Part, with each record being stored alphabetically
by Part_ID. The system must have the following capabilities:

(a) Open an existing inventory file for purposes of access.
(b) Create a new inventory file.
(c) Close an existing inventory file.
(d) Add one or more records to an existing inventory file.
(e) Remove a record from an existing inventory file.
(t) Update a record from an existing inventory file.
(g) Display one or more records from an existing inventory file.
(h) Exit from the system.

20. Write a program that will read text lines entered from the keyboard and direct each
line to both the Text window and the printer. Be sure to establish the printer as
an output file. Your program must ask if the user wants to view lines of text as
they are being printed. Pick a special character from the keyboard to terminate
input when you have entered the last line of text.

21. For the file system discussed in Section 10.11, modify the design for merging a
single record into the name and address file using the natural merging algorithm
from Section 10.8.

22. Write a program for the Macintosh Pascal translator that can determine the type
of character used as an end-of-line marker in text files. If you have access to
THINK Pascal as well, see what occurs when you compile and execute this
program.

Chapter 11

Manipulation of Strings

OBJECTIVES

After completing Chapter 11, you will know the following:
1. The characteristics of the string data type in Macintosh and THINK Pascal.
2. Standard character-string functions and procedures available in Macintosh and

THINK Pascal.
3. Pattern matching and object-string replacement and how to implement these

actions in a Macintosh Pascal or THINK Pascal program.
4. How to convert numeric data into character strings and character strings into

numeric data.
5. How to use string functions and user-developed procedures to create a Pascal

Print using procedure.

11.1 S'l'RJ:NG TYPES IN MACINTOSH PASCAL

532

Computers were originally designed to handle numeric computations. Over time,
however, there has been an increasing demand on computers to manipulate and store non­
numeric data. For example, word processing, one of the major applications of the
microcomputer, is based on the manipulation of nonnumeric data. The purpose of this
chapter is to demonstrate how to apply Macintosh Pascal and THINK Pascal string
procedures and functions for the purpose of pattern matching and object-string
replacement. We will review the string data type as well as some basic concepts
involving character manipulation.

As we saw in Chapter 3, both Macintosh Pascal and THINK Pascal support a special
data type called string. Identifiers declared as type string are capable of storing a
sequence of characters representing the physical characteristics of a character string. As

Manipulation of Strings Chapter 11 533

stated in Section 3.5.4, an identifier is declared to be of type string by the following
syntactical fonn:

identifier : string[size-attribute] ;

var

Two attributes are associated with a string type: a dynamic length specifying the
actual length of a sequence of characters assigned during execution, and a static size
attribute specifying the maximum limit on the length of a string. The static size attribute
is an integer in the range 1 to 255. If not explicitly declared, it assumes a default value of
255. Do not confuse string size with string leJl.gth. During program execution, the Pascal
software allocates for a string type based on the following fonnat: 1 byte for the
current value of the string length followed by a consecutive set of byte locations equal to
the static size attribute. For example, the declaration

Name : string [29];

allocates 30 bytes of storage. The first byte stores the value of the current string length,
(29) and the remaining 29 bytes are for the storage of characters. Only the current value of
the string length is stored, not the value of the static size attribute.

A character string can be viewed as a data object composed of a sequence of characters
packed into a one-dimensional structure called an array. Each character occupies a byte of
storage space; each byte is viewed as ordered by number from left to right. In the diagram
shown in Figure 11.1, you see the declaration of a variable called Strand the assignment
statement

Str := 'This is a string.';

Using the model of a one-dimensional array to represent the storage of a string shows
that individual bytes are ordered and can be addressed individually. For example,

Str[4] = 's' while Str[14] = 'i'.

Because the current length of the string is 17, the value of St r [19] cannot be
specified because its index value, 19, is out of bounds. Strings longer than 17, however,
can be assigned to S tr, provided they do not exceed the static size limit of 24. In
Macintosh Pascal, only the Boolean operators=,<>,<,>,<=, and>= can be used in
writing string expressions. No other operators are allowed. When these Boolean
operators are applied to string expressions, the results are a lexicographic ordering,
according to the Macintosh character set. Any two string types can be compared,
because all string values are type-compatible, independent of their current length. A char
type can also be compared with a string type; the char type is treated like a string
having a current length of 1. Whenever a relational expression involving two string
expressions is evaluated, the result is based on the ordering relationship between the
character values in corresponding positions of each of the two strings. If two strings have
unequal lengths but similar leading characters, each character of the longer string that fails
to correspond to a character in the shorter string is said to be ordered lexically higher. For
example, the two strings ' adding' and 'addition' have four leading characters that
are the same; 'addi '.The string 'addition' is ordered greater than 'adding'
because the fifth character from the left in 'adding' is ordered less than the fifth
character in 'addition'. Two strings are lexically equal if (1) they are equal in current

534 Chapter 11 Manipulation of Strings

string length and (2) each contains identical characters in corresponding character
positions. For example, the two strings 'A' and 'A ' are unequal, because the first is of
length 1, and the second is of length 2. The second string is the character A followed by a
single space.

{ Following is a small segment of a Pascal Program. }

program ExampleOfaString;
var

Str: string[24];
begin

Str := 'This is a String.';
{ Below is a model representing the storage of the }
{ string variable called Str. }

An array of 24 characters

Gl+l+l l+I H 1+1+1+1·11111111
Current
length

111111111122222
123456789 012345678901234

Byte locations

{ Following are some facts about the string Str: }
Str[4] = 's'
Str[lO] = '' { blank
Str[14] = 'i'
Length{Str) = 17
Str[19] = {Unspecified; the index 19 is out }

{ of bounds because the current length }
{ of Str is 17. }

Static size of Str = 24 bytes
{ 25 if you include the byte location}
{ for the current length. }

Figure 11.1 Representation of a character string as a data object in Pascal.

A space is different from a special string called a null string. A space represents a
blank character and, when displayed, has a length of 1. A null string is a string having no
length; that is, its current string length is always zero. Null strings are often useful in
writing functions and procedures because it is easy to test for a null string. A null string

Manipulation of Strings Chapter 11 535

is always equal to another null string and is always lexically lower than any non-null
string.

Unfortunately, the string type in Macintosh and THINK Pascal lives in a state of
limbo. At times it takes on the appearance of a structured type; in other instances we can
treat it as a simple data type. In Macintosh and THINK Pascal it is neither a structured
type nor a simple data type. In Chapter 9 we saw how to use a packed array of characters
to represent a character string.

11.2 BASIC STRING PROCEDURES AND FUNCTIONS

Macintosh and THINK Pascal share a rich set of string procedures and functions, listed in
Figure 11.2. Except for two of the routines, Delete and Insert, all are functions and
return either longint (or integer) values or strings. Applications using many of
these string procedures and functions are given in this section and in Sections 11.3 and
11.5.

Result
Name Format Type Purpose

Length Length(Str) long int A function that returns the
current length of the string

integera Str.

Pos Pos(SubStr, Str) long int A function that returns the
position of substring

integera SubStrin of string Str. A
zero is returned if the
substring is not located.

Con cat Concat(Strv Str2, ... , Strn) string A function that
concatenates the string
variables Str1 through Strn
contained within the
parameter list. The
resultant string may not be
greater than 255.

536 Chapter 11 Manipulation of Strings

Result
Name Format Type Purpose

Copy Copy(Str, Index, Count) string A function that returns a
substring from string Str
beginning at the position
specified by Index and
extending for a specified
number characters given by
Count.

Delete Delete(Str, Index, Count) A procedure that changes
the variable Str by deleting
characters beginning at the
position specified by Index
and continuing until the
specified number of
characters given by Count
have been deleted.

Omit Omit(Str, Index, Count) string A function that returns a
substring obtained by
deleting the copy of the
characters in Str beginning
at the position specified by
Index and extending over a
specified number of
characters given by Count.
The value of the original
string Str is not changed.

Insert Insert(Pat, Source, Index) A procedure that changes
the value of the string
Source by inserting another
string Pat beginning at the
specified position Index.
The resultant string may not
be greater than 255.

Manipulation of Strings Chapter 11 537

Result
Name Format Type Pwpose

Include Include(Pat, Source, Index) string A function that returns a
string after inserting the
string Pat in a copy of
Source beginning at the
position specified by Index.
The resultant string may not
be greater than 255. The
values of Pat and Source are
unaffected.

a THINK Pascal
Note: Str, Source, SubStr, and Pat are string type; Index and Count are of integer type.

Figure 11.2 Macintosh and THINK Pascal string procedures and functions.

The function Length returns a longint (or integer in THINK Pascal) value
for the current length of the string Str. For example, the following Pascal program,
called Reverse_Characters, displays a character string, reversing the order in
which it was originally typed:

program Reverse_Characters;
{ This program displays the characters of an input string }
{ in reverse order. }

var
String_Length, Counter : integer;
Input_String : string;

begin
ShowText;

{ Prompt user to type a short string of characters. }
write(' Type a short string of characters: ');
readln(Input_String);

{ Compute current string length of the input string. }
String_Length := Length(Input_String);

{ Show the characters of the input string in reverse order. }
for Counter := String_Length downto 1 do

write(Input_String[Counter]);
writeln;

end.

The function Pos (for position) searches for a substring given by SubStr, starting
at the left of a source string, Str. The type of value returned is a longint (integer
in THINK Pascal) indicating, from the left, the position where the substring is located

538 Chapter 11 Manipulation of Strings

within the source string, Str. For example, the value of Position after execution of
the following three statements will be 4, since the substring ' s i ' begins at the fourth
position from the left in the source string 'Mississippi':

Source:= 'Mississippi';
Substring:= 'si';
Position := Pos(Substring, Source);

If the substring is not contained within the source, the value returned is zero.
The function Conca t provides the only means in Macintosh Pascal for joining

(concatenating) one or more substrings. It returns as a value as tring type having a size
attribute of 255. The strings are concatenated from left to right in the order in which they
are given. For example, the following statements, when executed, yield the string
'THINK Pascal is ideal for string manipulation '·

Stringl .- 'THINK Pascal ';
String2 .- 'is ideal for ';
String3 := 'string manipulation';
Result := Concat(Stringl, String2, String3);

Notice that the strings can be concatenated from right to left by reversing the order of
the parameter list when calling on the function Concat. The following statement yields
the result' string manipulation is ideal for THINK Pascal '·

Result := Concat(String3, String2, Stringl);

The function Concat will fail if the string returned by joining the substrings exceeds
255 characters.

The function Copy copies a fixed number of characters from a source string, starting
at a position given by Index and extending for a fixed number of characters given by
Count. For example, the following procedure, Balance_String, will add to the
right of Input_String a sequence of zero or more asterisks. Output_String will
always be 15 characters in length.

procedure Balance_String(Input_String
var Output_String : string);

string;

{ Purpose:
{
{
{

This procedure balances the right side of an input }
string with asterisks. The formal parameter }
Input_String is truncated to 15 characters from the }
left. }

con st
Asterisks _ I*************** I• - I

var
Appended_Asterisks : string[15];

begin
{ Copy only the first 15 characters of Input_String. }

Input_String .- Copy(Input_String,1,15);
{ Form a string of zero or more asterisks. }

Manipulation of Strings Chapter 11

Appended_Asterisks .- Copy(Asterisks, 1,15 -
Length(Input_String));

539

{ Append to the right of Input_String zero or more asterisks. }
Output_String .- Concat(Input_String, Appended_Asterisks);

end;

Special conditions for the values of parameters Index and Count can affect the
value returned by the function Copy:

1. If Count is negative, the value returned by Copy is a null string.
2. If Index is less than 1, or if (Index + Count) > Length

(Source), or both, character positions outside the range from 1 to
Length (Source) are referenced and copied as null characters along
with those characters that lie within range.

As an example of null characters being copied, execution of the expression
Copy ('Mississippi' , -4, 7) will return a string value of 'Mi'. As Figure
11.3 illustrates, this comes from the function Copy using an initial index position -4
with the seven characters to the right being copied from that position. Five of these are
null characters located at character positions -4, -3, -2, -1, and 0. The remaining two
character positions to be copied are from the beginning of the word Mississippi.

Copy('Mississippi' ,-4,7) = 'Mi'

Count equal to 7

Five null characters

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

t
Index

Figure 11.3 Why the value of Copy ('Mississippi', -4, 7) is 'Mi'.

As an additional example of the use of the function Copy, consider defining a new
function called copy _Right. Its purpose is to copy a substring from a source string
starting at an index position referenced froin the right end rather than the left end of the
source string. Rather than copying the characters to the right of the index position, this
new function must copy the characters to the left of the index position. As a further
illustration of this function, consider the relationship between the left and right index
positions shown in Figure 11.4. To write the steps necessary to complete
Copy_Right,we need only two functions: Length and Copy. Length is used in an
expression for converting the value of the right index into a left index position for the

540 Chapter 11 Manipulation of Strings

function copy. copy is used to copy a sequence of characters starting at
Position_ Index and extending for a specified number of positions to the right.

Here is a listing for this function:

function Copy_Right(Source : string; Right_Index, Count
integer) : string;

{ Purpose:
{

This function copies characters, starting at a }
position from the right given by Right_Index, and }
copies an extended number of characters to the left
given by Count.}

{
{

var
Position_Index : integer;

begin
Position_Index := Length(Source)-(Right_Index +Count - 1) + l;
Copy_Right .- Copy(Source, Position_Index, Count);

end;

This function has properties similar to Copy. For example, if Count is negative,
the function Copy_Right returns a null string. If the value of Index is less than 1,
character positions outside the range of

Length(Source) - Right_Index + 1 to Length(Source)

are copied as null characters in addition to those characters that do lie within the range.
The procedure Delete deletes characters, starting at a position given by Index and

continues to character position Index + Count. For example, the following list of
statements removes from the source string all patterns of ' s i ' :

Source := 'Mississippi';
Pattern := 'si';
Position:= Pos(Pattern, Source);
while Position > O do

begin
Delete(Source, Position, 2);
Position .- Pos(Pattern, Source)

end;

Manipulation of Strings Chapter 11 541

1 2 3 4 5 6 i n-1 n Left_Index

,..-----.,.-1 I ~I I 1 I-1 ----.--I---I -----,.1--.---.1 1----r--.I 1---.---.1 I
n n-1 ... j 6 5 4 3 2 1 Right_Index

Left_Index <-- Length(Source) - Right_Index + 1

Position_Index <-- Length(Source) - (Right_Index + Count - 1) + 1

Copy_Right('ABCDEFGHI',3,4) ==> 'DEFG'

Count equal to 4

2 3 4 5 6 7 8 9 Left_Index

I A I B I c I D I E I F I G I H I I I

9 8 7 6 5 4 3 2 1 Right_Index

1 L Position of the Right Index

Position_Index

Figure 11.4 Character positions with reference to the right of a character string.

If the source string is to be left unchanged during the action of deleting characters, we
can use the function Orni t to perform the same steps as the procedure Delete. The
following is a modification of the earlier statements that leaves the source string
unchanged:

Source := 'Mississippi';
Pattern := 'si';
Substring := Source;
Position:= Pos(Pattern, Substring);
while Position > 0 do

begin
Substring:= Ornit(Substring, Position, 2);
Position .- Pos(Pattern, Substring)

end;

Special conditions for the values of the parameters Index and Count can affect the
values returned by the procedure Delete and the function Omit:

542 Chapter 11 Manipulation of Strings

If I n d e x is less than 1, or if (I n d e x + C o u n t) >
Length (Source) , or both, character positions outside the range of
I to Length (Source) are referenced. Only those characters that lie
within range are deleted.

The procedure Insert performs the opposite steps of Delete and Omit. In
executing the procedure Insert, the source string is changed by inserting the substring
of Pat at the position Index of Source. The following statements provide an
example of Insert that replaces each occurrence of the pattern 'si' with ' -- ' in the
source string:

Source := 'Mississippi';
Pattern := 'si';
Dashes := '--';
Position:= Pos(Pattern, Source);
while Position > 0 do

begin
Delete(Source, Position, 2);
Insert(Dashes, Source, Position);
Position.- Pos(Pattern, Source);

end;

The function Include performs the same steps as Insert, except that it leaves
the source unchanged. Special conditions for values of the parameter Index can affect the
values returned by the procedure Insert or the function Include:

1. If Index is less than 1, the string Pat is appended to the left of the
source.

2. If Index> Length (Source) , the string Pat is appended to the
right of the source.

In either case Insert and Include will successfully execute only if the resulting
string has a string length less than or equal to 255. Consider an example that applies
several of these string functions, using a new procedure designed to replace all occurrences
of double dashes in a string with a single dash. Any double dashes that occur while a
double dash is being replaced must also be replaced with a single dash. The steps for
executing this new procedure are quite simple:

I. Locate the first set of double dashes, using the function Pos.
2. If double dashes exist, perform the following steps:

(a) Delete the first set of double dashes from the left.
(b) Insert a single dash where the double dashes were deleted.
(c) Locate the next set of double dashes from the left and return

to step(a) to repeat this process.

The procedure for executing these steps is as follows:

procedure Replace_Double_Dashes(var Source : string);
{ Purpose: This procedure replaces double dashes in the source }
{ string with single dashes. }

con st

Manipulation of Strings Chapter 11

Dashes
Dash =

var

= I -- Ii
, _ .. ,

Position_Double_Dashes : integer;
begin
{ Locate the first set of double dashes.

Position_Double_Dashes := Pos(Dashes, Source);
while Position_Double_Dashes > 0 do

begin
{ Delete the first set of double dashes from the left. }

Delete(Source, Position_Double_Dashes,2);

543

Insert single dash where the double dashes were deleted.

end;

Insert(Dash, Source, Position_Double_Dashes);
Determine the next position of double dashes. }

Position_Double_Dashes := Pos(Dashes, Source);
end;

To avoid iterative executions with a loop, this procedure can be written recursively.
In writing a recursive procedure one must first consider the trivial case; that is, the action
that stops us from having to replace double dashes with a single dash when the source
string has no double dashes. If it does have double dashes, the following steps are
performed:

1. Delete the first set of double dashes from the left of the source string.
2. Insert a single dash in the source string where the double dashes were

deleted.
3. Copy the sequence of characters from the left of the source string up to

but not including the position from where the double dashes were
deleted, and assign this to a string called Front. Front has no double
dashes and therefore requires no further examination.

4. Copy the sequence of characters from where the double dashes were
replaced to the end of the source string, and assign this to Rear.

5. Execute these steps recursively on the string called Rear.
6. After removing the double dashes from Rear, concatenate Front with

Rear, and assign to Source.

Here is our revised procedure:

procedure Replace_Double_Dashes_Revised(var Source : string);
{ Purpose: This procedure replaces double dashes in the source }
{ string with single dashes. }

const
Dashes
Dash =

var

= I -- I;

I_ I•
I

Front, Rear : string;
Position_Double_Dashes

begin
integer;

544 Chapter 11 Manipulation of Strings

Locate the first set of double dashes. }
Position_Double_Dashes := Pos(Dashes, Source);
if Position_Double_Dashes > 0 then

end;

begin
{ Delete the first set of double dashes.

Delete(Source, Position_Double_Dashes,2);
Insert a single dash where the double dashes }
were deleted. }
Insert(Dash, Source, Position_Double_Dashes);

{ Copy front substring having no double dashes. }
Front := Copy(Source, 1, Position_Double_Dashes - 1);

{ Copy rear substring, which may still contain double }
{ dashes. }

Rear := Copy(Source, Position_Double_Dashes,
Length(Source) - Position_Double_Dashes + 1);

{ Replace double dashes in the rear substring. }
Replace_Double_Dashes_Revised(Rear);

Concatenate the two substrings Front and Rear.
Source .- Concat(Front, Rear)

end;

Notice that the formal parameter Source is of variable type, because the value of
Source must change when either the procedure Replace_Double_Dashes or
Replace_Double_Dashes_Revised is executed. If Source were a value
parameter, it would leave the original string unchanged.

11.3 PATTERN MATCHING AND OBJECT-STRING REPLACEMENT

This section introduces the concept of pattern matching and replacement. For simplicity,
we discuss only three basic string functions: Length, Copy, and Conca t. (With
these, all other string procedures and functions can be defined.) Assume that we are given
a string represented by an identifier called First_String and another string called
Second_String. How can we take the value of Second_String as a pattern and
search through the value of First_String as an object to see if the pattern is
contained within the object? For example, suppose you have declared and defined two
strings as follows:

First_String, Second_String : string[BO];

First_String := 'These are the times that try mens souls';
{ Note: The correct possessive, men's, was avoided to prevent
{ a syntax error caused by a single quote. }
Second_String .- 'times';

Manipulation of Strings Chapter 11 545

The problem we are considering is how to determine if the pattern given by
' times' is contained in the object, 'These are the times that try mens
souls'. The following steps provide a solution:

1. Assume there exists a pointer P that initially points to the leftmost
character of the string First_String. That is, Pis initially assigned
to byte 1. In the example, P points to the character T in
First_String. In addition, we create a variable called Remainder,
which is initially given the value of Length (First_String).

2. Compare Length (First_String), or whatever portion of it re­
mains, with Length (Second_String). If Length (Second_
String) >Remainder, it is impossible to have a match, and
execution of the algorithm must end. If (Remainder ~ Length
(Second_String)) is true, continue execution of Steps 3 through
5.

3. Starting at position P, use the function Copy to extract the first
Length (Second_String) characters from First_String.
Assign this substring to the variable Dummy. Note that the function
Copy leaves the value of First_String unchanged.

4. Compare Dummy and Second_String to see if they are equal. If so,
the value of the pointer P indicates the position at which the matching
string begins, and execution can end. Otherwise, continue the search by
executing the following step.

5. Increment P, and decrement Remainder by 1. Continue searching
First_String by returning to Step 2.

Let us refine these steps in the following procedure, String_Match. In this
procedure, Object and Pat tern represent two formal parameters of value type, and
Position is of variable type. If the pattern is contained within the object, the value
returned through Position represents where the pattern begins in the object string. The
remaining variables Dummy, Remainder, P, and Continue_Search are local.

procedure String_Match ;
begin
{ Initialize special variables before beginning search

of the pattern. }
Continue_Search <-- true;
p <-- 1;
Position <-- O;
Remainder<-- Length(Object);
repeat {searching for pattern
{ Check if the length of the pattern exceeds the

remaining length of the object.}
if Length(Pattern) > Remainder then

Continue_Search <-- false
else

begin

546 Chapter 11 Manipulation of Strings

Dumrny<--Copy(Object,P,Length(Pattern));
{ Check if the substring Dummy is equal to

the pattern. }
if Dummy = Pattern then

begin
Position <-- P;
Continue_Search <-- false

end
else

begin
p <-- p + l;
Remainder <-- Remainder - 1

end
end;

until not Continue_Search
end; { String_Match }

The Macintosh Pascal program Match_Strings demonstrates this basic concept
of pattern matching.

program Match_Strings;
{ Purpose: This program accepts an object string and a pattern }
{ string from the keyboard and determines if the
{ pattern is within the object string. }

uses {Remove the uses clause for THINK Pascal }
QuickDrawl;

type
Str = string[80];

var
First_String, Second_String
Answer : string [1 J ;
Position_Pattern : integer;

Str;

{ *** }

procedure Text_Window;
{ This procedure sets the boundaries for the Text window. }

·Var
Window : Rect;

begin
HideAll;
SetRect(Window, 0, 40, 510, 340);
SetTextRect(Window);
ShowText;

end;
{ *** }

procedure Prompt_and_Enter(Message : string;
var Input_String : string) ;

{ This procedure prompts the user with a message and accepts
{ an input string typed at the keyboard. }
begin

Manipulation of Strings Chapter 11

writeln(Message);
readln(Input_String);
writeln

end;
{ ***

procedure String_Match (Object, Pattern : Str;
var Position : integer);

547

{ This procedure locates the position of a pattern within an }
{ object string. }

var

begin

Remainder, P : integer;
Dummy : Str;
Continue_Search : Boolean;

{ Initialize special variables before beginning search of }
{ the pattern. }

Continue_Search := true;
p := l;
Position := O;
Remainder:= Length(Object);
repeat {searching for the pattern }
{ Check if the length of the pattern exceeds the }
{ remaining length of the object.}

if Length(Pattern) > Remainder then
Continue_Search .- false

else
begin

Dummy:= Copy(Object, P, Length(Pattern));
{ Check if substring Dummy is equal to pattern. }

if Dummy = Pattern then

end;

begin
Position := P;
Continue_Search := false

end
else

begin
p := p + l;
Remainder .- Remainder - 1

end

until not Continue_Search
end;

begin { Body of the main program. }
{ Hide all windows and open the Text window. }

Text_Window;
repeat
{ Enter the object and pattern from the keyboard. }

Page;

548 Chapter 11 Manipulation of Strings

Prompt_and_Enter(' Enter the object string: ',
First_String) ;

Prompt_and_Enter(' Enter the pattern string: ',
Second_String) ;

{ Search First_String for the pattern given by Second_String. }
String_Match(First_String, Second_String, Position_Pattern);

Report on the success of the search for the object string. }
writeln(' Pattern: Second_String);
writeln(' Object: ', First_String);
if Position_Pattern > 0 then

writeln(' Pattern begins at position '
Position_Pattern : 2)

else
writeln(' Pattern does not exist in object string. ');

writeln;
Prompt user to continue. }

Prompt_and_Enter(' Compare other strings (YIN) ? '
Answer);

until (Answer= 'N') or (Answer= 'n')
end.

To execute this program under THINK Pascal, you must make two changes. First,
you must remove the uses clause. Second, you must use a different identifier for
0 b j e ct. The reason for the latter change is simple: Obj e ct is a reserved word in
THINK Pascal. Try changing all occurrences of the identifier to Obj ectStr. How can
we use the procedure String_Ma tch to perform the basic operation of pattern
matching and replacement? The following Macintosh Pascal procedure, called
Replacement, demonstrates this concept.

procedure Replacement (var Object : Str; Pattern, Substring
Str);

{ Purpose: This procedure replaces the pattern in the object }
{ string with a substring. }

var

begin

Left_String, Remaining_String : Str;
Position : integer;

{ Determine if the pattern is within the object string. }
String_Match(Object, Pattern, Position);
if Position > 0 then

begin
{ Remove the left substring in Object just before }
{ the pattern. }

Left_String := Copy(Object, 1, Position - l);
Concatenate Substring to the right of Left_String. }
Left_String := Concat(Left_String, Substring);

{ Determine the position of the remaining right substring }
{ in Object. }

Position:= Position+ Length(Pattern);

Manipulation of Strings Chapter 11 549

end;

{ Copy the rema1n1ng string in Object. }
Remaining_String := Copy(Object, Position,

Length(Object) - Position+ l);
{ Assign to Object Left_String concatenated on the right }
{ with Remaining_String. }

Object .- Concat(Left_String, Remaining_String)
end

This procedure first calls on String_Match to see if the pattern exists in the
object string. If so, the value of Position is greater than zero, and the procedure
Replacement proceeds to extract the substring left of the pattern in the object. Next, it
concatenates this part with the string being substituted, called Substring. The
remainder of the substring to the right of the pattern is then copied from the object and
concatenated on the right of the variable Left_String. To execute this procedure under
THINK Pascal, you must change the identifier Object.

Through the application of only the three string functions Length, Copy, and
Concat, the actions of procedures String_Match and Replacement represent the
definitions of the function Pos and the procedures Delete and Insert. Using these
added routines reduces the executable steps in the procedures String_Match and
Rep 1 a cement. As the following listings show, the body of the procedure
String _Match is reduced to one executable statement, and the body of
Replacement requires only three executable statements.

procedure String_Match(Object, Pattern : Str; var Position
integer) ;

{ Purpose:
{

begin

This procedure locates the position of a pattern }
within an object string. }

Position := Pos(Pattern, Object)
end;

procedure Replacement(var Object : Str; Pattern, Substring :

{ Purpose:
{

var

Str);
This procedure replaces the pattern in the object }
string with a substring. }

Position : integer;

begin
{ Determine if the pattern is within the object string. }

String_Match(Object, Pattern, Position);
{ Delete the pattern from the object string. }

Delete(Object, Posit:iiovn, Length(Pattern));
{ Insert the replacement string. }

Insert(Substring, Object, Position)
end;

550 Chapter 11 Manipulation of Strings

11.4 SOME MISCELLANEOUS STRING ROUTINES FOR MACINTOSH AND
THINK PASCAL

Macintosh Pascal supports two miscellaneous string routines for converting numeric data
into strings and string data into numeric values. The first, called StringOf .. is a
function that can convert a sequence of numeric and nonnumeric data into a single string
of characters. It takes as actual parameters a list of expressions that are equivalent to the
parameters used in a write or wri teln statement. The value returned is a string
type containing the string representations for the values of the parameters. Here is the
syntax required to call the function StringOf:

identifier:= StringOf(parm1 , parm2 , parm3 , ... , par~);

The expressions parm1 , . . . , par~ can contain the specifications of field

width as well as a specification for the number of decimal places. Each expression must
either be a char type, integer type (integer, subrange of an integer, or
longint), real type (real, double, extended, or computational),
string type, enumerated type (Boolean or a subrange of an enumerated
type), or of type packed array of char (discussed in Chapter 9).

The procedure ReadString reverses the action of StringOf. This procedure,
which is similar to read, accepts its text from a string parameter instead of from the
keyboard. Use the following syntax to call the procedure ReadString:

ReadString(Source_String, var1 , var2 , ... , varn);

Here Source_String is a string type, while the variables var1 , var2 ,

. . , varn must be declared as one of the following: char type, integer type

(integer, subrange of an integer, or long int), real type (real, double,
extended, or computational), enumerated type (Boolean or a subrange
of an enumerated type), or string type. When executed, the procedure
ReadString reads text from Source_String in the same way as a read statement.
The substrings read from Source_String are converted into their proper internal
machine formats and assigned to their corresponding variables. An execution error occurs
if ReadString tries to read characters beyond the end of the source string. The
following short program shows the results of executing StringOf and ReadString.

program Miscellaneous_Routines;
uses {Remove the uses clause for THINK Pascal }

QuickDrawl;
type

Days= (Monday, Tuesday, Wednesday);
var

Receiving_String : string;
Source_Str : string[20];
Number : integer;
Value : real;
Character : char;
WeekDay : Days;

Manipulation of Strings Chapter 11

begin
{ Show only the Text window. }

HideAll;
ShowText;

{ Initialize the variables declared above.
Source_Str := ' Test of StringOf ';
Number := 12345;
Value := 3.142356;
Character:= '@';
WeekDay := Monday;

{ Assign a value using StringOf to Receiving_String. }
Receiving_String .- String0f(Number:5, Value :10:5,

551

Character, WeekDay, Source_Str);
writeln;
writeln(' Characters in Receiving_String: ');
writeln(Receiving_String);
writeln;

{ Reverse the process of StringOf by using ReadString. }
ReadString(Receiving_String, Number, Value, Character,

WeekDay, Source_Str);
{ Display each of the five different values. }

writeln(' Results from executing procedure ReadString: ');
writeln(' Number: ', Number);
writeln(' Value: ',Value: 10 : 5);
writeln(' Character: ', Character);
writeln(' WeekDay: ', WeekDay);
writeln(' Source_Str: ', Source_Str);

end.

Figure 11.5 shows the output from the program Miscellaneous_Routines. Be
careful when using string types with ReadString. Although the expression

Receiving_String .- StringOf(Source_Str, Number:5, Value :10:5,
Character, WeekDay);

will execute successfully, the statement

ReadString(Receiving_String, Source_Str, Number, Value,
Character, WeekDay);

will cause an error during execution, indicating that we are attempting to read a sequence
of characters for Source_Str that is larger than the static limit of 20. Simply said,
ReadString attempts to read all of the characters of Receiving_String for
Source_String.

552 Chapter 11 Manipulation of Strings

Characters in Receiving_String:
12345 3.14236@Monday Test of StringOf

Results from executing procedure ReadString:
Number: 12345
Value: 3.14236
Character: @
WeekDay: Monday
Source_Str: Test of StringOf

Figure 11.5 Sample output from a program using the function
StringOf and the procedure ReadString.

11.5 EXAMPLE: EMULATING A PllIN'l' O'SING STATEMENT

The Print Using statement allows control over the appearance and location of
numeric information as it is displayed to the Text window. This is important if we need
to display the information in a right-justified format, that is, if the information needs to
appear on the right side of a print field rather than on the left side. Another situation that
calls for a Print Using statement is aligning a column of numbers. This is especially
important in assuring that the decimal points in a column of numbers will align properly
when the numbers are displayed.

The Print Using statement relies on a user format specified by placing symbols
in what is called an edit field. For example, if the format ##, ###. ## is placed in the
edit field and the number to be formatted is 56123.456, the result should be
5 6, 12 3 . 4 6. If the number to be formatted is 234122, the result should be
234, 122. 00.

Macintosh Pascal does not provide a Print Using command, but the following
pages demonstrate how to write such a procedure. The procedure, called Print_Using,
allows the user the option of displaying data using the following formats:

1. A fixed number of digits, where the symbol # is used to specify a digit
position. For example, the format #### will result in the string 34.3
being displayed as ' 34'.

2. Fixing the location of the decimal point by inserting a period in the edit
field. For example, ###.# will result in the string -67.83 being
displayed as'- 67.8'.

3. Inclusion of the dollar sign in the display. For example, the format
$###.##will cause the string 204.576 to be displayed as '$204.58'.

4. Inclusion of commas in the displayed number. For example, the format
##,###.##will cause the string 1234.56 to be displayed as ' 1,234.56',
and the string 12.3 will be displayed as' 12.30'.

Manipulation of Strings Chapter 11 553

This Print_ Using procedure assumes the following rules regarding the
specification of the edit field:

1. The number of spaces reserved for digits in the edit field will be specified
by the amount symbol, #.

2. The number of digits on each side of the decimal point will be
determined by the placement of a period between two amount symbols
in the edit field. The appearance of more than one period in the edit field
will produce the error message ''Too many periods."

3. Any edit field beginning with the symbol$ will cause the dollar sign to
be displayed before the first digit in the number. A dollar sign in any
other position in the edit field will result in the error message
"Improper use of the dollar sign."

4. A comma placed in the edit field will result in the digits being displayed
with a comma located before every third digit to the left of the decimal.
If there is no digit to the left of the comma, the comma will not be
displayed.

5. Any other characters showing in the edit field will produce the error
message "Illegal character in the edit field."

6. If the number to be displayed is larger than the edit field, the error
message "The number exceeds the edit field" will be displayed.

The key elements in the algorithm for the Print_Using procedure follow:

Algorithm Print_Using;
{ This algorithm will begin by measuring the length of the edit

field. If this length is greater than zero, the algorithm
checks for any improper characters within the edit field. As
the edit field is being examined character by character, two
counters are employed: Leftcount and Rightcount. Leftcount
represents the number of left digit positions and Rightcount
represents the number of right digit positions. Additional
markers such as Markcomma, Markdollar, and Periodcount are
employed to determine when a comma, dollar sign, or period is
encountered. If any error should appear, the variable Error is
set to true. }

{ Initialize the flags, counters, and a temporary variable called
Num. }

Error <-- false;
Markcomma <-- false;
Negative <-- false;
Markdollar <-- false
Leftcount <-- O;
Rightcount <-- O;

554 Chapter 11 Manipulation of Strings

Periodcount <-- 0
Nurn <-- Number

Check if Number is negative; if so, set flag Negative and
initialize Nurn as the absolute value of Number. }

if (Number < 0) then
begin

Negative <-- true;
Nurn <-- abs(Number);

end; {if}

{ Measure the length of the edit field and check if the length is
greater than zero. }

Len<-- Length(Edit);
if (Len > 0) then

begin
{ Initialize two additional counters.

Count <-- O;
Pointer <-- l;

{ Examine each character of the edit field for commas, dollar
signs, and periods, and count each decimal place as the edit
field is scanned. }

while (Pointer <= Len) do
begin

Character<-- Copy(Edit, Pointer, 1);
{ Check the character picked from the edit field. }

case (Character) of
"$" { If this is the leftmost character, then

set Markdollar flag; else set the Error
flag, since the character is not in its
proper place, and display error message
1. }

if (Pointer 1) then
Markdollar <-- true;

else
begin

Error <-- true;
write ({ error message 1})

end {if};

"#" Count this digit position. }
Count <-- Count + l;

: { Increment the current value of Count and
reset Count to keep track of digit
positions to the right of the decimal
point. }

Manipulation of Strings Chapter 11

II II ,

Periodcount <-- Periodcount + 1;
if (Periodcount > 1) then

begin
Error <-- true;
write({ error message 2 }}

end
else

begin
Leftcount <-- Count;
Count <-- 0

end; { endif }

{ Set the comma flag. }
Markcomma <-- true;

otherwise There is an illegal character in
the edit field. Set error flag
and report error message 3. }

begin
Error <-- true;
write({error message 3 } }

end
end { case };

{ Increment character pointer for the next character in
the edit field. }

Pointer <-- Pointer + l;
end { while } ;

SSS

{ If Periodcount is nonzero, then Count represents only right
digit positions; else this counter represents only left
digit positions. }
if (Periodcount > 0} then

Rightcount <-- Count;
else

Leftcount <-- Count
{ endif }

end { then clause for Len > 0

else { Edit field is empty. Set error flag and report error
message 4. }

begin
Error <-- true;
write ({ error message 4 } }

end;
{ endif }

{ Next convert the number to a string and check to see if it is
larger than the edit field; if so, set the error flag and
display error message 5. With the digits to the right of the
decimal point being shifted to the left of the decimal point,

556 Chapter 11 Manipulation of Strings

convert the number from a real to an integer. In the program a
function called Power is used to raise 10 to the appropriate
power. }

Num2 < - - trunc ((Num * 1 QRightcount) + 0 . 5))

{ Now convert the integer Num2 to a string; the function
Remove_Blanks removes leading blanks from the string. }
Numstring <-- Remove_Blanks(Num2);

{ Check if the number of digits to the left of the decimal point,
including space for a negative sign, exceeds the number of
digits allowed in the edit field. }
Lenl <-- Length(Numstring);

{ Lenl represents the number of digits in Numstring. }
Len2 <-- Lenl + ord(Negative);

Len2 is the value of Lenl plus one for the digit
position of a minus sign. }
if (Len2 > Rightcount + Leftcount) then

begin
Error <-- true;
write({ error message 5 })

end; { endif }

If an error exists at this point, display % followed by the
value of the number; else complete the remainder of the steps
in this algorithm. }
if (Error) then

write('%',Number
else { continue with this algorithm }

begin
{ If no error exists in the edit field, the steps

necessary to produce the format representation of
Number can now be executed. The string Numstring is
divided into two substrings: Leftfield represents
the digits to the left of the decimal point and, if
necessary, a dollar sign contains the digits to the
right of the decimal point. If a decimal point is
required, it will be inserted between these two
fields. }

Extract from the number called Num2 the leftmost and
rightmost digits adjacent to the decimal point.
Compose the field to the right of the decimal point if
Rightcount > 0. }

Leftvalue <-- trunc(Num2 I
Rightvalue <-- trunc(Num2 -

1 QRightcount)) ;

(Leftvalue *
1 QRightcount) + 0 . 5) i

Compose the string Rightfield and check if it needs
be padded with zeros to the left of this string. }

to

Manipulation of Strings Chapter 11

if (Rightcount > 0) then
begin

Rightfield <-- Remove_Blanks(Rightvalue);
Number_Rightdigits <-- Length(Rightfield);
if (Rightcount > Number_Rightdigits) then

for Pointer := 1 to (Rightcount -
Number_Rightdigits) do

Rightfield <-- Concat('O', Rightfield);
{ endif }

end { then clause }

557

else { None of the edit field is reserved for the right
of the decimal. Set Rightfield equal to a null
string. }

Rightfield <-- '';
{ endif }

{ Initialize Leftfield as a null string and the number of digits
in the left field as 0. }
Leftfield <-- '';
Number_Leftdigits <-- O;

{ If Leftcount is positive, then check if commas are required to
the left of the decimal point. Two temporary strings store
the string representation of Leftvalue and the length of the
temporary string variable. }
if (Leftcount > O) then

begin
Tempfield <-- Remove_Blanks(Leftvalue);
Tempvalue <-- Tempfield;
Number_Leftdigits <-- Length(Tempfield);

end { endif }

{ Check if commas are required and, if so, insert them. }
if (Markcomma) then

begin
Y <-- Number_Leftdigits;
while Y < 3 do

begin
{ Extract the three rightmost digits in Tempfield. }

Threechar <-- Copy(Tempfield, Y-2, 3);
{ Compose Leftfield by inserting a comma before

Threechar. }
Leftfield <-- Concat(', ', Threechar, Leftfield);
y <-- y - 3

{ Extract the remaining left digits from Tempstring. }
Tempfield <-- Copy{Tempstring,1,Y);

end; { while }

{ Compose the remainder of the string. }
Leftfield <-- Concat(Tempfield, Leftfield)

end

558

else { the comma flag is not set }
Leftfield <-- Tempfield;

{ endif }

Chapter 11 Manipulation of Strings

{ Check if a decimal point is required and, if so, insert a
period and compose the entire string, including Leftfield and
Right field. }

Finalstring <-- Leftf ield;
if (Periodcount > 0) then

Finalstring <-- Concat(Finalstring,
endif }

I
• I Rightfield) ;

Check if a negative sign is required and, if so, insert the
character '-' to the left of Finalstring. }
if (Negative) then

Finalstring <-- Concat('-', Finalstring);
{ endif }

{ A special case occurs if the value of Number is zero. In this
case check if a decimal point is required and, if so,
initialize Finalstring as '0.' Then determine the number of
zeros required to the right of the decimal point. If no decimal
point is required, initialize Finalstring as '0.'. }
if (Number = 0) then

if (Periodcount > 0) then
begin

Finalstring <-- '0. ';
for Y := 1 to Rightcount do

Finalstring <-- Concat(Finalstring, '0');
end

else { the edit field does not contain a decimal point }
Finalstring <-- '0';

{ endif }
{ endif }

{ Check if a dollar sign is required and, if so, insert '$'
to left of Finalstring. }
if (Markdollar) then

Finalstring <-- Concat('$', Finalstring);
{ endif }

{ Determine the difference between the size of the left side of
the edit field and the left side of Finalstring, and insert any
necessary blank spaces to the left of Finalstring. }
Y <-- (Leftcount - Number_Leftdigits) - ord(Negative)
while Y > 0 do

begin
Finalstring <-- Concat(' ',Finalstring);
y <-- y - 1

end; { while }

Manipulation of Strings Chapter 11

{ Display the formatted number. }
write('The formatted number is ' Finalstring);

end; { else clause if Error is false }
end. { algorithm }

559

The procedure Print_ Using is given here in a program called
Print_Using_Emulation. This program allows you to observe the effects of the
Print_Using procedure with different edit fields and different numbers.

This program requires a special function called Remove_Blanks for removing the
blanks when the value of Number is converted into a string by the Macintosh Pascal
function StringOf.

program Print_Using_Emulation;
{ Purpose: Emulation of a Print Using command. }
{ Note: The SANE library is used, since we are using
{ the variable Number as an extended type. }

uses
QuickDrawl, SANE;

type
Str = string[80];

var
Edit, Answer : Str;
Number : extended;

{ **
procedure Text_Window;
{ Set the boundaries and show the Text window. }

var
Window_Rect : Rect;

begin
HideAll;

end;

SetRect(Window_Rect, 0,40,510,340);
SetTextRect(Window_Rect);
ShowText;

** }
procedure Print_Using (Edit : Str; Number : extended);
{ Purpose: Formats a number according to the style entered }
{ into the edit field. }

var
Num, X : extended;
Error, Markcomma, Markdollar, Negative : Boolean;
Count, Leftcount, Len, Number_Leftdigits,

Number_Rightdigits, Periodcount : integer;
Pointer, Rightcount, Y : integer;
Character : char;
Leftvalue, Lenl, Len2, Num2, Rightvalue : longint;
Leftfield, Finalstring, Numstring, Rightfield,

Tempfield, Tempstring, Threechar : Str;

560 Chapter 11 Manipulation of Strings

{Two internal functions are declared:Power and Remove_Blanks.}
{ - }

function Power (X : extended; Y : integer) : extended;
{ Purpose: This function raises X to a power Y. }

var
Product : extended;
J : integer;

begin {Power}
Product := 1.0;
for J := 1 to Y do

Product := Product * X;
Power := Product

end; { Power}
{ - }

function Remove_Blanks (Number : longint) : Str;
{ Purpose: A custom string function that eliminates }
{ leading blanks in a string. These blanks are }
{ inserted when an integer value is }
{ converted into a string using the library }
{ function StringOf. }

var

begin

Counter, Len
Tempstring

integer;
Str;

Tempstring := StringOf(Number);
Len:= Length(Tempstring);
Counter : = 1;
while (Tempstring[Counter]=' ') and (Counter< Len) do

Counter := Counter + l;

end;

Remove_Blanks .- Copy(Tempstring, Counter, Len -
Counter + 1)

{- - - - - - - - }

begin { Body of procedure Print_Using. }
{ Initialize flags }

{ Error flag. }
{ Comma flag. }

Error := false;
Markcomma := false;
Negative := false;
Markdollar := false;

{ Negative number flag. }
{ Dollar flag. }

{ Initialize counters
Lef tcount .- O; { Count characters
Rightcount .- O; { Count characters
Periodcount .- O; { Count of periods

{ Initialize temporary number variable. }
Num := Number;

left of decimal.
right of decimal.
encountered. }

{ Check if number is negative. If so, set the sign flag }
{ and set the temporary variable Num to the absolute value }

}
}

Manipulation of Strings Chapter 11

{ of the number. }
if Number < O then

begin
Negative := True; { set negative flag }
Num := abs(Number);

end; {if}

{ Check if length of edit field is greater than zero. }
Len:= Length(Edit);
if Len > 0 then

begin
{ Initialize additional counters. }

Count := O; { count digit positions }

561

Pointer := l; { point to the current character
{ in the string }

{ Examine edit field for commas, dollar signs, periods }
{ and count places. If other characters are }
{ encountered or if the period or dollar sign }
{ is used improperly, set the error flag. }

while Pointer <= Len do
begin

Character := copy(Edit, Pointer, 1);
{ select next character }

case Character of
'$' : { If $ is the leftmost character, }

{ set the dollar flag; else }

I# I

I I

{ there is an error, since the }
{ character is out of place. }
if Pointer = 1 then

Markdollar := true
else

begin
Error := true;
writeln('Errorl: Improper use

of dollar sign.')
end; {else clause}

Count the digit positions. }
Count := Count + l;
{ Check if the period has already }
{ been encountered. }
begin {period check}

Periodcount := Periodcount + l;
if Periodcount > 1 then

begin
Error := true;
writeln('Error2: Too many

periods. ') ;
end {then clause}

else
begin

562

else

I I
I

Chapter 11 Manipulation of Strings

Leftcount := Count;
{Count of digits left of period. }

Count := 0
{ Reset Count to keep track of }
{ digits to right of period. }

end; {else clause}
end; {period check}

{ Check for commas. }
Markcomma := true;
otherwise
{ illegal character in edit field }

begin
Error := true;
writeln('Error3: Illegal

character in edit field.');
end { otherwise clause }

end; { endcase }
Pointer := Pointer + 1;
{ Move pointer to next character. }

end; {while loop}
if Periodcount > 0 then
{ If a period was encountered, Rightcount = Count. }

Rightcount := Count
else
{ No period was encountered, so Leftcount = Count. }

Leftcount := Count;
end { then clause }

{ The edit field is empty, since Len < 0, so set error flag. }

begin
Error := true;
writeln('Error4 : The edit field is empty.');

end; { else clause }

{ Compose the number string and check its length against }
{ that allowed in the edit field. }

{ Convert the number to an integer, including the digits to }
{ the right of the decimal point. }

Num2 := trunc((Num * Power(lO, Rightcount)) + 0.5);

{ Convert the integer to a string called Numstring. }
Numstring := Remove_Blanks(Num2);

{ Check if the number of digits to the left of the decimal }
{ point, including space for a negative sign, exceeds the number }
{ of digits allowed in the edit field. }

Lenl := Length(Numstring);
{ Lenl represents the number of digits in Numstring. }

Len2 := Length(Numstring) + ord(Negative);

Manipulation of Strings Chapter 11 563

{ Len2 is
{ a minus

if

the value of Lenl plus one for
sign. }

the digit position of }

Len2 > Rightcount + Lef tcount
begin

then

Error := true; { set error flag }
writeln('Error5 : The number exceeds the edit

field. I) j

end;

{ If an error exists at this point, print % + the number and }
{ skip the remainder of this procedure. The error message }
{ will already have been printed. }

if Error then
begin
{ The error flag has been set. }

writeln;
writeln('%', Number : 1 : 5);
writeln;

end {then clause}
else { There is no error, so continue.

begin
{ Compose the entire number string, which will consist of the }
{ digits to the left of the decimal point, the dollar sign if }
{ needed, any necessary commas, the decimal point if required, }
{ and any digits to the right of the decimal point. }

{ Extract from Nurn2 the leftmost and rightmost digits adjacent }
{ to the decimal point.}

Leftvalue := trunc(Nurn2 I Power(lO, Rightcount));
Rightvalue := trunc(Nurn2 - Leftvalue * (Power(lO,

Rightcount)) + 0.5);

{ Determine Rightfield and check if it needs to be padded }
{ with zero on the left of the string. }

if Rightcount > 0 then

begin

Rightcount
than 0. }

greater }

Rightfield .- Remove_Blanks(Rightvalue);
Number_Rightdigits := Length(Rightfield);
if Rightcount > Number_Rightdigits then

begin
for Pointer := 1 to (Rightcount -

Number_Rightdigits) do
Rightfield := Concat('O', Rightfield);

end; {if}
end {then clause}

else { Rightcount not greater than 0 }
Rightfield := '';

Initialize Leftfield and Number_Leftdigits. }

564

Leftfield := '';
Number_Leftdigits := O;

Chapter 11 Manipulation of Strings

{ If Leftcount > 0, create temporary variables Tempfield and }
{ Tempstring; determine the number of digits left of decimal. }

if Leftcount > 0 then
begin

{ Take the actual number of digits to the left of the decimal }
{ and assign to Tempfield. }

Tempfield := Remove_Blanks(Leftvalue);
Tempstring := Tempfield;
Number_Leftdigits .- Length(Tempfield);

end; { then clause }

{ If commas are required, insert them in the left field. }
if Markcomma then

begin
Y := Number_Leftdigits;

{ Create a counter equal to the number of left digits. }
while Y > 3 do

begin
{ Extract the three rightmost digits in Tempfield. }

Threechar .- Copy(Tempfield, Y - 2, 3);
Leftfield := Concat(', ', Threechar,

Leftfield) ;
y := y - 3;

{ Extract remaining leftmost digits from Tempstring. }
Tempfield .- Copy(Tempstring, 1, Y);

end;

{ Concatenate remaining digits with Leftfield. }
Leftfield := Concat(Tempfield, Leftfield);

end { then clause }
else { Comma flag is not set. }

Leftfield := Tempfield;

{ Insert a period if required and put fields together. }
Finalstring := Leftfield;
if Periodcount > 0 then

Finalstring .- Concat(Finalstring, . ,
Rightfield) ;

{endif}
{ If number is negative, insert a minus sign. }

if Negative then
Finalstring := Concat('-', Finalstring);

{ endif }
{ Now consider the special case of Number = 0. }

if Number = 0 then
if Periodcount > 0 then
{ If there is a decimal point, initialize }
{ Finalstring. }

Manipulation of Strings Chapter 11 565

begin
Finalstring := '0. ';
for Y := 1 to Rightcount do

Finalstring .- Concat(Finalstring, '0');
end { then clause }

endif }
else { If there is no decimal point. }

Finalstring := '0';

{ Insert the dollar sign if required. }
if Markdollar then

Finalstring := Concat('$', Finalstring);
endif }

{ Insert the necessary number of blank spaces to the left of }
{ Finalstring. Include a space for the sign if it is needed. }

Y := (Leftcount - Number_Leftdigits) - ord(Negative);
while Y > 0 do

begin
Finalstring := Concat(' Finalstring);
y := y - 1;

end;

{ Display the formatted number. }
writeln('The formatted number is
{ else clause if Error is false end;

end;

Finalstring) ;

{ **
begin { Body of the main program. }
{ Open Text window. }

Text_Window;
{ Enter edit field from keyboard. }

writeln('Enter edit field');
readln(Edit);

Enter a number to be formatted. }
repeat

writeln('Enter number: ');
readln (Number) ;
Print_Using(Edit, Number);
writeln;
write('Do you wish to enter another number?');
readln('Type YES or NO: ');
readln(Answer);

until (Answer= 'No') or (Answer= 'no') or (Answer= 'NO');
end.

566 Chapter 11 Manipulation of Strings

SUMMARY

In this chapter we discussed the Macintosh Pascal string routines Length, Pas,
Concat, Copy, Delete, Omit, Insert, and Include, and considered sample
programs that implemented many of these procedures and functions. The procedure called
String_Match illustrated the basic concept of pattern matching, given a source string
and a pattern. A procedure called Replacement showed how a substring can be
substituted for a pattern located within a source string. Finally, the program called
Print_Using_Emulation, using a procedure called Print_Using, showed how
to use strings representing numeric values to format numbers for display.

This chapter also considered two miscellaneous but important string routines for
Macintosh Pascal. The function called StringOf can convert the values of variables
represented in internal machine form to characters concatenated into a single string
function. The second procedure, called ReadString, can reverse the process of the
function StringOf.

REVIEW QUESTIONS

1. Define the declaration of a string called Sentence having at most 80
characters.

2. What are the two attributes associated with a string type?
3. How much storage does the following string declaration require?

Line_of_Text : string[47] ?

4. If Line_of_Text is assigned the string 'having to program in Pascal',
what Pascal code will display each individual character?

5. Can the string

' THIS IS ANOTHER EXAMPLE OF A LINE OF TEXT TO BE ASSIGNED TO A
STRING VARIABLE. '

be assigned to Line_of_Text? Explain your answer.
6. What operators are allowed with string variables?
7. Which of the two following strings are ordered greater: 'drawing' or

'drawn'?
8. What action is taken by the following conditional statement?

Name := 'Jones';
Match := ' Jones ';
if Name = Match then

wri teln (' Dear Mr. /Mrs. /Ms. ' Name) ;

9. What actions are taken by the following conditional statement?

First_Name := 'Jones';
Second_Name := 'Jonies';

if First_Name > Second_Name then
List_Name := First_Name

Manipulation of Strings Chapter 11 567

else
List_Name := Second_Narne;

A
B
c
D
E
F
G

10. What other types of data can be compared with a string type?
11. Is a blank space equivalent to a null string?
12. How can a null string be explicitly represented in Pascal?
13. List the string procedures supported by Macintosh Pascal.
14. List the string functions supported by Macintosh Pascal.
15. What is the purpose of the string function Pos?
16. What is the purpose of the procedure Delete?
17. What is the purpose of the procedure Insert?
18. Write the necessary code, using the function Pos and the procedures

Delete and Insert, to remove a substting from a source and replace
it with another substring.

19. What limitations exist when using the procedure Insert?
20. What are the differences between the procedure Insert and the function

Include?
21. What is the purpose of the function Copy?
22. What is the purpose of the function Orni t?
23. Can the function Copy be used to concatenate strings?
24. Assume that A, B, C, D, E, F, and G are all declared as type

string. Given the following assignments, what is the result of
executing the Concat function?

.- I
i

.- 'is I
i

:= 'beginning' ;
.- 'This I

i

.- 'only I
i

.- 'the I
i

.- Concat(D, B, E, F, c, A) ;

25. Can the procedure String_Match in Section 11.3 be used to find the
position of a null string?

26. Can the procedure Replacement in Section 11.3 be used to replace a
null string with a nonnull string?

27. What is the purpose of the Macintosh Pascal string function
StringOf?

28. What is the purpose of the Macintosh Pascal string procedure
ReadString?

29. What are the advantages of having the two routines StringOf and
ReadString?

PROGRAMMING EXERCISES

Not all programming exercises require you to write an algorithm, but you may better
understand the problem and what is required if you first write an algorithm and trace it by
hand with several examples before writing the Pascal program.

568 Chapter 11 Manipulation of Strings

1. Write a program for testing the two procedures String_Match and
Replacement.

2. Write a procedure called Abbreviate_Narne that takes a string
representing a person's full name in the format last name, first name
middle name and returns the following string: first character of first
name. first character of middle name. last name. For example, consider
Source_Narne to have the value 'Macintoshes, John
Abner'. The procedure Abbreviate_Narne (Source_Narne,
New_Narne) would return for New_Narne the value

'J. A. Macintoshes'.

3. The cost of sending a telegram from Macinville to Apple Village is
$2.15 for the first 20 words or less, plus 15 cents for each additional
word beyond 20. Develop an algorithm that accepts a line of text,
counts the individual words, and computes the total cost based upon the
number of words. A word is any string of characters having a leading
blank and ending with either a blank or a punctuation mark. After you
have tested this algorithm, convert your algorithm into a Macintosh
Pascal program, and execute it.

4. Write a program that prompts the user for a single line of text. This
program is required to take the characters from the string and display
full words to the Text window. A word is defined as any group of
characters starting with an alphabetic letter that continues over all
characters, ending when a punctuation character is encountered. A
punctuation character is defined as one of the following:!,@,#,$,"·
&, *, (,), =, +, {, }. [,], :, :, ", ', <, >. ?, /, I,\, -, ',comma, period,
blank.

5. Modify the program in Exercise 4 so that it can count each of the
individual punctuation marks, with the option of reporting these total
counts after the full words have been reported.

6. Assume that a cipher is to be used for coding words stored within a
database. This will require two procedures: Plaintext_to_Code
and Code_to_Plaintext. Here is a list of the plaintext alphabet
versus the cipher alphabet:

Plaintext: A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
Cipher Z V G I N J H R S U 0 Q B K X L P W T M E A Y C D F

For example, plaintext A would be replaced by Z, plaintext B by V,
and so on. Develop and implement a program that offers the user two
options:

(a) Enter plaintext from the keyboard, encipher this text, and
display the enciphered code to the Text window (provide
encoding).

Manipulation of Strings Chapter 11

(b) Enter ciphertext from a file, and display the deciphered code
to the Text window (provide decoding).

7. Write a function called Pad that requires three formal parameters: Str,
representing a string; Fill, representing one or more filler characters
to pad onto the right of parameter Str; and Size, representing the
number of times the string is to be extended with fill characters. This
function will return a string not exceeding 255 characters. For example,

Source:= 'This is a string';
New_String :=Pad(Source, '*/', 4);

would result in New_String having the value 'This is a
string*/*/*/* I'.

8. Write a program that will search an object string with a pattern and
produce a list of positions where the pattern begins in the object string.
Extend this program with a procedure that replaces all instances of the
pattern in the object string with a replacement string.

9. Write a function called Reverse_Characters that will completely
reverse the characters of a string. For example, the string 'A line
of text as a test. ' would have the value ' . tset a sa
txet fo enil A'.

10. Write a function called Reverse_Words that will reverse the order of
the words within a string. For example, the string 'This is
another line of text.' would have the value 'text. of
line another is This'.

11. Write individual functions for each of the following operations:

Convert_Integer_String(Integer_Number
Convert_Real_String(Real_Number)
Convert_String_Integer(Numeric_String
Convert_String_Real(Numeric_String)

12. Modify the Print_Using procedure so that when a dollar sign is
required, it will be printed on the leftmost side of the edit field, with
blanks inserted as needed between it and the number.

13. Assume that a line of text to be entered from the keyboard is limited to
a maximum of 80 characters. Develop and implement a program that
will display a line of text to the Text window having one the following
options:

(a) Line of text is to be displayed right-justified. (Line is
positioned to the far right with leading blanks to the left.)

(b) Line of text is to be displayed center-justified. (Line is
positioned in the center with equal blanks to the left and
right of the text line .)

569

570 Chapter 11 Manipulation of Strings

(c) Line of text is to be displayed left-justified. (Line of text is
positioned to the left of the display line.)

14. The Zeta-Data Flea Company uses a string as an inventory number.
This number is represented by the format

dddddddddccccccccccccdd/dd/dd$dddd.dd#ddddd

The first 9 digits represent an item number, the next 12 characters
represent a brief description of the item, followed by the date of entry
into the company's catalog, followed by the unit price, followed by the
number of these items remaining in inventory. For example, consider
the following coded inventory number:

543098766Steel Hammer12/28/87$0015.99#00123

Develop and implement a program that will accept the inventory
number as a string, assign the first 9 digits of the inventory number to
a string variable representing a shorter inventory number, the next
12 characters as a string to a variable storing the description, the date as
a string to a variable for storing the date of catalog entry, a re a 1
variable for storing the unit price, and the last 5 digits to an integer
number for storing the quantity of items in stock. Have your program
report the item to the Text window, using the following format:

Inventory Number Description Date of Catalog unit Price Quantity
in Stock

543098766 Steel Hammer 12/28/87 $ 15.99 123

15. The Alpha-Beta Disk Company has decided to use its Macintosh to print
checks. Each check is to be drawn in the Drawing window, as shown in
Figure 11.6. The following input is required from the keyboard in
response to prompts appearing in the Text window:

(a) Next check number
(b) Date
(c) Person or company to whom the check is to be issued
(d) Amount of the check (entered as a real number)
(e) Person authorized to issue the check

The check-writing program must be able to convert the amount as a real
number into an equivalent set of words. For example, if the amount is
entered as $125.87, the equivalent words printed on the check must read
ONE HUNDRED TWENTY-FIVE AND 87 /100. The maximum
limit on any check is $1000. Develop an algorithm for this problem,
and after you have tested it with several examples, implement it as a
Macintosh Pascal program. Use your examples to see if the program
(algorithm) is functional. Use procedures at various steps to implement
the algorithm.

Manipulation of Strings Chapter 11

Date: Alpha-Beta Company
Macville, California Check No: ____ _

Pay to the
order of

Memo

~---------- $

dollars

Authorized:

Figure 11.6

16. A palindrome is a sequence of letters that reads the same forward and
backward. For example, the line Never odd or even. reads the same from
left to right or from right to left if you ignore spaces, capital letters,
and punctuation. Develop an algorithm that can test if a line of text is a
palindrome. This algorithm will have the following major set of steps:

(a) Prompt the user, and accept a line of text from the
keyboard.

(b) Convert all uppercase alphabetic letters to lowercase.
(c) Compress the line of text by removing all blanks and

punctuation characters.
(d) Reverse the characters in the text line, and compare with the

compressed text line.
(e) Test if both the given text line and the reversed text are

palindromes.

Each step must be implemented by a call to a procedure. Once you have
tested your algorithm, transform it into a Macintosh Pascal program,
and test it. Try some of the following palindromes as test cases:

Evil I did I live.
Able was I ere I saw Elba.
12345 54321
abcdef f edcba
A man, a plan, a canal Panama!

17. Suppose you need to display a fixed decimal or floating-point number in
a floating-point format, where the precision of the integer and fractional
parts can be specified using a series of # characters, and where the
explicit letter Eis given. Using the concepts of the algorithm titled
Print_Using, develop a new algorithm called Print_Using_
F 1 oat that can display a real number, given a string of characters as
the format for displaying a new value in a string representation. In
specifying the format, use the the character " to reserve space for the

571

572 Chapter 11 Manipulation of Strings

letter E, followed by a plus sign if the exponent is positive or a minus
sign if negative. If fewer than four carets (") are used, the number is not
printed in E format; instead, carets are printed as a literal. If more than
four carets are used in the format, the number is displayed in E format
but with extra carets trailing the resulting string. Here are some
examples of using the Print_Using_Float procedure:

Initial Value Format Result of Print_Using_l'loat

3 ###.##"""" 300.00E-02

1234 ###,##"l\1\1\ 123.40E+Ol

234 ###.##"" 234.00""

-6787.65 ####.##""""" -678.77E+01"

Whenever possible, the resulting number should be rounded up. If a
value cannot fit the format, the algorithm must default to the standard
format. When you have written and successfully tested your algorithm,
transform your algorithm into a Pascal program, and test to see that it
works.

Chapter 12

Pointers

OBJECTIVES

After completing Chapter 12, you will know the following:
1. The concept of an abstract data type (ADT).
2. The concept of the pointer as a dynamic variable.
3. How to create an object as an abstract data type, using the command new

and deallocated using the command dispose.
4. How to use the pointer to define special data objects: stacks and queues.
5. Application of pointers to the growing and pruning of binary trees.
6. The Macintosh memory routines and the concept of handles.

12.1 THE CONCEPT OF AN ABSTRACT DATA TYPE

We often need to abstract objects representing data as well as the operations associated
with those objects when we define the algorithms of an application. This implies defining
a data type as conjectural information along with the operations that support the
abstraction. The detail of how the data type is to be implemented is not relevant when we
are defining the abstract type. What is important is the concept that the data object
represents and the operations that it can perform.

For example, we have accepted the string type as a useful structure for storing
character strings of varying lengths. We have accepted basic operations of reading,
writing, concatenating, and decomposing objects of type string. We accept these
operations even though we do not understand the internal structure of a string type.
Although we may have some preconceived ideas on how a string type may be
implemented, it is for the most part accepted as an abstract data type when programming

573

574 Chapter 12 Pointers

in Pascal. Our ability to apply a string type is purely as an abstract data type. In
computer science, it is common for data structures to be classified into categories such as
linear, hierarchical, and network. If we understand the basic operations on these types of
classifications, we can define and implement abstract data objects. Initially, the detail of
how an abstract data type is to be implemented is secondary to understanding its definition
and basic operations.

In the context of this discussion an abstract data type (ADT) represents a special data
type composed of two parts. First, it is composed of a statement describing the
relationships of its own components and its base type. Second, it is composed of a
statement describing the actions (operations) that can be performed on elements of this
type. Initially, the base type of its components is often treated as some vague basic type,
and the operations are generally classified as constructors, destructors, modifiers, selectors,
and iterators.

A constructor is an operation for creating an object and, if necessary, initializing its
state. For example, giving a data object an initial value is an example of a constructor. A
state represents the condition in which an object exists, characterized by values associated
with the properties of the object. A destructor is an operation that frees the state of an
object by either nulling the value of the object by destroying it. A modifier is an operator
that alters the state of an object, amd a selector is an operation that can access the state of
an object. For example, reassigning a value to part of a data object is a modifier, whereas
simply reading this value is a selector. A selector is not allowed to alter the state of an
object. Last, an iterator allows all or part of an object to be accessed in some defined
order. We may also need to consider whether to view an abstract data type as being
bounded or unbounded. Is it limited in size, or can it continue to grow without any
bound? Are there exceptions (problems) that may emerge during the lifetime of the
object?

As an example consider the definition of an abstract data type called a list. A list is a
finite sequence of elements of an arbitrary type T together with a collection of operations.
These operators are listed according to the following five categories:

Constructor:
Create the structure representing a list.
Initialize a list as being empty.

Destructor:
Destroy the structure representing a list.

Modifier:

Selector:

Iterator:

Insert a new element of type T at some position within a list.
Replace an element of type T within a list with that of another
element of type T.
Delete an element of type T from a list.

Determine the length of a list.
Determine if a list is full.
Determine if a list is empty.

View all elements of a list.
Search a list for an element that has a state associated with that of
type T.

Notice that each operation in the definition is highly cohesive (highly functional);
that is, each operation performs a unique action. Although it might be convenient to

Pointers Chapter 12 575

combine one or more operations, this can make the definition of an abstract data type less
exact and can lead to an ambiguous implementation. In addition, two exceptions are
implied by two of the selector operations. One exception is when the list is empty and
the other is when the list is full. Is the list a bounded or unbounded structure? The
definition is clear: the list is bounded. Why? First, it is defined as a finite sequence of
elements. Second, being finite and having a selector to test if the list is full, it must be
implemented as a bounded structure to satisfy its own definition.

In the sections that follow, you will see how to use Macintosh and THINK Pascal to
implement both bounded and unbounded abstract data types. By encapsulating the
definition of an abstract data type within a program unit, the information of the
abstract type is hidden. Only the programmer need see documentation on the definition of
an abstract data type, including the rules for implementing its operators.

12.2 POINTERS AND DYNAMIC VARIABLES

var

Pointers allow us to write Pascal programs in which structures for data objects can be
dynamically allocated and deallocated during execution. In actuality, pointers reference
physical memory locations during the execution of a program. Through the execution of
the command new, storage is allocated, and an identifier is made to point to the object.
This same object can be deallocated storage through the execution of the command
dispose. We define a pointer as a simple data object capable of pointing to a physical
location in memory that contains storage for another data object. As an example, consider
the following two declarations:

First_Number : Ainteger;
Second_Number : Areal;

type

When declaring a pointer type, the character A precedes the base type. In the example,
the variable First_Nurnber is a pointer to an integer type, and the variable
Second_Nurnber is a pointer to a real type. It is convenient at times to declare
pointers through a programmer-defined type. For example, the following statements
declare the variables First_Nurnber and Second_Nurnber in terms of the
programmer-defined types Integer_Nurnber and Real_Nurnber, respectively.
Integer_Nurnber is associated with a pointer to an integer type, and
Real_Nurnber is associated with a pointer to a real type. Through this indirect level
of reference, both variables remain pointer types.

Integer_Number = Ainteger;
Real_Number = Areal;

var
First_Number : Integer_Number;
Second_Number : Real_Nurnber;

Pointer types are different from the other types discussed in Chapter 3. First, a
pointer variable can directly reference a memory location storing an object. When dealing
directly with the memory address, only the name of the pointer variable is used. A pointer
variable has the value nil when a program begins execution. From the level of Pascal
ni 1 represents an address in memory compatible with all pointer types. It also is a

576 Chapter 12 Pointers

memory location containing no value of any data type. Second, storage is only allocated
for the object being pointed to by the pointer variable when the command new is
executed. For example, attempts to reference the variables First_Number or
Second_Number produce an error message at the time of execution unless storage has
been explicitly allocated. Although each pointer variable exists when the program begins
execution, objects pointed to by the variables do not exist until the command new is
executed. As a procedure, the command new uses the following format:

new(Pointer_Variable);

Each time the command new is executed, storage is allocated for a new dynamic variable
by creating an object having a base type associated with the pointer variable, and setting
the pointer variable to point to this new object. For example, the command
new (Firs t_Number) allocates storage for an object capable of storing an integer
number with First_Number pointing to this object. Figure 12.1 shows a graphic
representation of the execution of the command new, involving the pointer variables
First_Number and Second_Number.

a. Initial values for the pointers First_Number and
Second_Number:

First_Number ~- .
nil

Second_Number ~·

b. Results of execution of new (Firs t_Number); and
new(Second_Number);

new(First_Number);

First_Number ----...;;.~9

Storage allocated for an integer

new(Second_Number);

Second_Number~~~~~?-~LI~~~~---'

i
Storage allocated for a real

Figure 12.1 A graphic view of the execution of the procedure new.

A third difference characterizing a pointer type involves referencing the value of the
object pointed to by the pointer variable. To reference a value associated with a pointer

Pointers Chapter 12 577

variable, use the pointer variable name followed by the character ". For example, after
executing the command new{First_Number), the statement read(First_
Number") reads an integer value from the keyboard and then assigns this to the allocated
storage area pointed to by Firs t_Numbe r. Keep in mind that the variable
First_Number represents the pointer, which points to an address in memory capable
of storing an integer value. The object Firs t_Number" accesses the integer value
referenced by the pointer First_Number.

Before terminating execution, the program frees memory used for the storage of the
dynamic variable by executing the command dispose. The purpose of this command is
to free the storage pointed to by the pointer variable, but not to destroy the pointer
variable itself. The following represents the syntax for this command:

dispose(Pointer_Variable);

Any attempt to dispose of an object that has no defined storage or of a pointer
variable that has a value of :nil causes an error to be reported at the time of execution.
The following short program, Pointers, demonstrates the concepts new and
dispose.

program Pointers{input, output);
{ Purpose: This program demonstrates the use of the commands }
{ new and dispose. }

type
Integer_Number = "integer;
Real_Number = "real;

var

begin

First_Number : Integer_Number;
Second_Number, Third_Number : Real_Number;

{ Allocate storage for the first and second numbers. }
new(First_Number);
new{Second_Number);

{ Enter values for the first and second numbers. }
write{' Enter an integer number: ');
readln{First_Number");
write{' Enter a real number: ');
readln{Second_Number");

{ Allocate storage for the third number. }
new{Third_Number);

{ Assign to the third number the sum of the values of the first }
{ and second numbers. }

Third_Number" := First_Number" + Second_Number"
{ Display the value of each number. }

writeln{' First number: ', First_Number");
writeln(' Second number: ', Second_Number": 9: 3) ;
writeln{' Third number: ', Third_Number": 9: 3);

{ Deallocate storage for each number. }
dispose{First_Number);
dispose{Second_Number);

578

I dispose(Third_Nurnber);
end.

Chapter 12 Pointers

It will be common in this chapter, when referring to an expression such as
First_Number", to allude to it as the "value of the object to which First_Nurnber
is pointing."

As a second example, consider the following program, titled
Pointer_to_Employee. This short program allocates storage to a dynamic record
structure represented by the pointer variable Employee. During execution of this
program, values are assigned to a field of the record pointed to by Employee. Before
disposing of storage for the object Emp 1 oye e, the program displays the same
information to the Text window.

program Pointer_to_Employee(input, output);
{ Purpose: This program reads data from the keyboard and stores }
{ this information in a record being pointed to by the }
{ variable Employee. }

type
Profile = record

ID_Nurnber : string;
Name string;
Wage : real

end;
Folder = "Profile;

var
Employee Folder;

begin
{ Create storage for an employee record. }

new(Ernployee);
{ Enter employee data from the keyboard. }

with Employee" do
begin

write('Enter full name: ');
readln (Name) ;
write(' Enter identification number: ');
readln(ID_Nurnber);
write('Enter hourly wage: ');
readln(Wage)

end;
writeln;

{ Display employee data to the Text window. }
with Employee" do

begin
writeln(Name);
writeln(ID_Nurnber);
wri teln (' $ ' , Wage : 5 2)

end;
dispose(Ernployee);

end.

Pointers Chapter 12 579

The variable Employee is represented by a programmer-defined type called
Folder. Folder is in turn represented by a pointer type pointing to a record called
Profile. Although Employee is a programmer-defined type, Folder, it is, by
definition, a pointer type of type Folder. This example makes use of the with clause
for accessing fields of the record object pointed to by the pointer Employee. Individual

fields of the record could be accessed through references such as Employee" .Name,

Employee" .ID_Number, and Employee" .Wage. It will be common in this chapter,
when referencing an expression such as Employee" .Name, to refer to this as the "name
field" of the object to which Employee is pointing.

A fourth difference of the pointer type is in the location where objects pointed to are
stored in RAM. During execution of a Pascal program, storage for all static objects is
physically placed on a system stack referred to as a run-time stack. A stack is itself a
special data structure in which data is stored in last-in, first-out order. That is, the last
object pushed onto the top of the stack is the first object to be "popped off." The area
allocated to the stack must be contiguous, with space being allocated or deallocated at the
top, never at the middle or end. When a procedure or function is called, and before the
routine begins execution, the environment of the routine, represented by all formal
parameters, local constants, and local variables, is pushed onto the top of the run-time
stack. Thus the environment at the top of the run-time stack always represents the routine
presently in execution. During execution access to all variables is through references to
memory locations on the run-time stack. Once a routine has completed execution, the
environment at the top of the stack is popped off, leaving the the current executing
environment as the environment now at the top of the stack. Whereas pointer variables
are stored on a stack, dynamic objects created by executing the command new are stored
in an auxiliary storage area called a heap.

Heap storage is different from stack storage in that it allows dynamic objects to be
allocated and deallocated storage from a free storage pool as requested by the program.
Whereas the memory size of an environment is estimated at translation time, memory
needed for dynamic objects is not known until the program is executed. Pushing dynamic
objects onto the run-time stack instead of allocating storage in a heap could make
management of the stack difficult. For example, though it may be necessary to pop the
current environment, allocation of a dynamic object pointed to by an actual parameter
would need to remain. This would lead to holes in the stack and violate the concept of
contiguous storage allocation.

Pointer variables must be type-compatible. Let us examine the screen dump of the
program Pointer_Compatibili ty, shown in Figure 12.2. Note that both A and B
are declared as pointers that can point to a real number. In this program an object of type
Real_Number is created and pointed to by A by executing new (A) . By means of the
assignment statement B : = A, pointer B takes on the value of pointer A. That is,
pointer B does not make a copy of this object; it points to the same object as pointer A.
If the value to which A points is changed, the value of the object to which B points will
change as well, because it is the same as that for pointer A. Changing the value of the
object to which B points changes the value of the object to which A points because both
A and B now point to the same object. Notice that the statement A":= C" takes a copy
of the value to which C is pointing and assigns this to the object to which A is pointing.
This is different from the assignment statement A : = c. This latter statement fails to
execute because pointers A and c are not type-compatible.

580 Chapter 12 Pointers

program Pointer_Compatibility;
type ~V~a~l~u-e~i-n-o~b~je_c_t~A-:--------.,.----.,..-:-i

Real_Number = Areal; Value in object B:
lnteger_Number = Ainteger; Value in object A:

var
A, B : Real_Number;
C : lnteger_Number;

begin

Value in object B:
Value in object A:

3.5e+1
1.2e+1
1.2e+1
1.9e+2

{ Create the object Real_Number and let A point to this object. }
new(A);
AA := 34.56;

{ Let pointer B point to the same object as A. }
B :=A;
writeln('Value in object A: ', AA, ' Value in object B: ', BA);

{Modify the value pointed to by pointer B. }
BA := 12.34;
writeln('Value in object A: ', AA, ' Value in object B: ', BA);

{ Create the object lnteger_Number and let C point to this object. }
new(C);
CA:= 190;

{ Let the value that C points to be assigned to the object that A points to . }
AA:= CA;
writeln('Value in object A: ', AA);

{ Can A be assigned to the pointer C? }
A:= C;

end.

Figure 12.2 Example of pointer-compatibility problems in Pascal.

Consider the following statements, where it is assumed that the variables A, B, c are
pointers of the same compatible type:

new(A);
A" := 120;
B := A;
C := A;
dispose (A) ;

In some Pascal systems you may encounter the problem of dangling pointers
(dangling references). A dangling pointer occurs when several pointers are pointing to a
single object, and that object is deallocated by execution of the command dispose. The
remaining pointers are left dangling, because the object being pointed to no longer exists.
In the example just given, Band C would be dangling after execution of dispose (A) ,
because the object they had been pointing to has been deallocated from the heap.

Pointers Chapter 12 581

Macintosh Pascal avoids this problem by using a reference count technique for all objects
stored in the heap. A reference counter is an internal counter associated with each object
that counts the number of pointers pointing to the object stored in the storage heap. For
example, if A, B, and c are compatible pointers, the following statements would lead to a
count of 3 after execution of the statement c : = A

new(A); { reference count of 1 for the created object A }
B := A; { reference count of 2 for the created object A }
c := A; { reference count of 3 for the created object A }
dispose (A) ; { reference count of 2 for the created object A }
dispose (B); { reference count of 1 for the created object A }

dispose (C); { reference count of 0 for the created object A }

Figure 12.3 shows another example of the problem of dangling pointers in
Macintosh Pascal. Storage is first allocated for the object pointed to by A . After
assigning a value to A", the remaining two pointers, Band c, are assigned to point to
what A is referencing. Even after disposing of A, we can still access the values of B" and
C", because the object that A was pointing to still exists. Simply put, its reference count
has decreased by 1 but remains greater than zero. Only when the reference count for an
object becomes zero is storage for the object deallocated from the storage heap. THINK
Pascal does not follow this convention. An attempt to execute the program
Dangling_Pointers under THINK Pascal will fail. Thus, the THINK Pascal
programmer needs to be more careful to avoid creating dangling references when using the
dispose procedure.

In some Pascal systems you may encounter a problem of excess garbage being
created in heap storage by a program. For example, the following statements result in the
modification of pointer A, leaving the initial object generated by the execution of
new (A) still in existence. It becomes garbage when the statement A . - Bis executed,
because pointers to this object no longer exist.

new(A);
A" := 120;
new(B);
A := B; { A now points to where B is pointing, leaving the }

{ initial object of A unreferenced but still in heap }
{ storage. }

Macintosh Pascal protects itself from generating garbage in heap storage by using
reference counters. Whenever the reference count for an object becomes zero, the storage
for that object in the heap is deallocated. For example, execution of the statement A : =
B above results in the reference count for the initial object pointed to by A becoming
zero, and the object is deallocated from memory.

Both THINK and Macintosh Pascal support a special unary operator represented by
the character @. This operator can take as an operand a single variable reference, a formal
parameter, a procedure identifier, or a function identifier and then compute the address of
this operand as its value.

582 Chapter 12 Pointers

Dangling_Pointers
program Dangling_Pointers (input, output §0 TeHt
var
A, B, C : Ainteger; 12 12

begin 67 67
ShowText; 234 234

{ Create storage for pointer A. } 234
new(A);

{ Assign a value to the object pointed to by A. }
AA:= 12;

{ Let B and C point to the object A is referencing. }
B :=A;
C :=A;
writeln(AA, BA, CA);
AA:= 67;
writeln(AA, BA, CA);

{ Deallocate the object pointed to by A. }
dispose(A);
CA:= 234;
writeln(BA, CA);

{ Deallocate the object pointed to by C. }
dispose(C);
writeln(BA);

end.

Figure 12.3 A simple example showing that Macintosh Pascal does not suffer from the
problem of dangling pointers.

Consider the example shown in the screen dump of Pointer_Operator and its
output, as shown in Figure 12.4. Here the identifier called Pointer is a pointer of type
Strg. Notice that the assignment statement

Pointer := @Int_Number;

assigns the address of the location of the variable Int_Number to Pointer.
Pointer treats the location of Int_Number as a two-character string. The loop
displays both the ASCII integer value and the equivalent character to the Text window for
each value stored in In t_Number.

Pointers Chapter 12

Pointer _Operator
program Pointer_Operator (input, output);

type
Strg = packed array[1 .. 2] of char;

var
lnt_Number : integer;
Pointer : AStrg;

begin
ShowText;

for lnt_Number := O to 255 do
begin

{ Let Pointer point to the address on lnt_Number. }
Pointer := @lnt_Number;

{ Display the ASCII value and character representation given }
{ by the value pointed to by Pointer. }

end;
end.

32
38 &
44 I

50 2
56 8
62 >

write(lnt_Number : 3, ' ', PointerA, ' I ');

Figure 12.4 Screen dump for the program Pointer_Operator and the
results of its output to the Text window.

583

The operator @ can also be applied to value and variable parameters. The Text
window for Pointer_Operator_Revised in Figure 12.5 shows examples that
apply the operator@ to two formal parameters. Notice that the assignment statement

Pointerl : = @Parml;

assigns the stack location in memory where the value of the actual parameter Argl has
been passed. This location is only in effect as long as the procedure is executing.
Assigning a new value to Pointerl" changes only the value pointed to by Pointer;
it has no effect on the value of Argl. This is different for Parm2. Here the assignment
statement

Pointer2 : = @Parm2

assigns the memory location of Arg2 rather than the memory location of Parm2 on the
stack. In this case a new value assigned to Pointer2" has an additional effect on
Parm2: It changes the value of the actual parameter Arg2. This example reinforces the
concept that a value parameter acts like a local variable with an initial value passed to it

584 Chapter 12 Pointers

by a corresponding actual parameter, whereas a formal variable parameter has the memory
address of a corresponding actual parameter.

Pointer _Operator _Reuised

program Pointer_Operator_Revised (input, output);
var

Arg1 : integer;
Arg2 : real;

procedure Test_Operator (Parm1 : integer;
var Parm2 : real);

var
Pointer1 : Ainteger;
Pointer2 : Areal;

begin
{ Point to a value parameter.}

Pointer1 := @Parm1;

Value of first parameter: 123

Value of second parameter: 9.87

Arg1: 123 Arg2: 4.97

writeln('Value of first parameter: ', Pointer1A : 3);
{ Change value of the first parameter. }

Pointer1A := 567;
{ Point to a variable parameter. }

Pointer2 := @ Parm2;
writeln('Value of second parameter: ', Pointer2A : 4 : 2);

{ Change value of formal variable Parm2. }
Pointer2A := 4.97;

end;
begin

ShowText;
Arg1 := 123;
Arg2 := 9.87;
Test_Operator(Arg1, Arg2);
writeln('Arg1: ', Arg1 : 3, ' Arg2: ' Arg2 4 2);

end.

Figure 12.5 Screen dump for the program Pointer_Operator_Revised
and its output to the Text window.

Although we can apply the @ operator to procedure and function names, Macintosh
Pascal provides no mechanisms for using such pointers, except for passing them to a
library procedure.

Both new and dispose are important to the implementation of abstract data types.
New acts as a natural constructor operator, because it creates an object having the
properties of an abstract data type; dispose acts as a natural destructor by eliminating
an object.

Pointers Chapter 12 585

12.3 SPECIAL DATA STRUCTURES: LINKED LISTS, STACKS, AND
QUEUES

type

Let us consider a modification of the program Pointer_to_Employee. The core of
the modification is an abstract data type called a list for the purpose of accepting and
holding employee information as it is typed at the keyboard. This action requires a
constructor for creating a new element for the list, a modifier for adding a new element
representing information on an employee to the front of the list, and an iterator for
viewing information on all of the employees contained within the list.

One solution to this problem is to implement the list as an array of employee
records. Although this solution seems simple, it can waste memory if we only need a few
records and we choose a large upper bound for the size of the array. In addition, how can
we eliminate an employee record from the array when a particular person is no longer
employed? To resolve this problem, we could use a second list to hold index positions of
all array elements representing persons no longer employed. When we need to add a new
employee to the list, the second list would be checked to determine the next free array
element. This seems to solve this minor problem, but we must now store two arrays,
both having the same number of elements. Another problem occurs if the employee list
is filled and we need to add another employee. This would require re-editing the source
program and retranslation to have a larger array for storing employees.

A second solution is to write the contents of each employee record directly to a
sequential file. This could be viewed as an unbounded array, where an employee could
always be merged into the file. Searching for an employee record, however, can require
prolonged execution times when appending an employee record either to the beginning or
end of a lengthy sequential file. Again, if a person is no longer employed, can we write an
efficient algorithm to remove employee information from the sequential file?

A third solution is to keep the list of employees in RAM by linking each employee
record by using pointers. With this approach, searching the employee list is generally
faster than searching through a sequential file stored on a diskette, and keeping the
employee list as a linked list of records reduces execution time for adding and deleting
employee records. In practice we would still need a file for backup storage of the
employee list.

To build a linked list of employees, consider the following modification to the record
type called Profile:

Node
Profile

"Profile;
record

var

Name : string;
ID_Number : string;
Wage real;
Link : Node

end;

Employee Node;
List_Head : Node;

The definitions are recursive, because the type called Node represents a pointer to an
object called Profile, with the field Link of type Profile itself being of type
Node, that is, a pointer to an object called Profile. Employee is now a pointer type
declared as type Node. A new variable called List_Head is added. This special pointer

586 Chapter 12 Pointers

variable is used to point to the beginning of our employee list. Within this special node
called List_Head is a link field containing the value ni1 if the employee list is
empty. If the employee list is not empty, the link field will contain a pointer pointing to
an employee node at the front of the linked list. Figure 12.6 shows an abstraction of the
concepts of Node and List_Head.

Name ID_Number Wage

Link

A node representing a record called Profile.

'Employee list' '00000000'

nil or pointer to the node at the front of the employee list

Header node for a linked list

Figure 12.6 Abstraction representing the concepts of Node and List_Head.

Assuming that a header node exists, Figure 12.7 shows the steps for modifying the
state of a linked list by adding a new node to the beginning of the list. To accomplish
this task, a new node is created, with the pointer Employee pointing to this node.

The link field of the new node pointed to by Employee is then assigned the link
field of the header node, so that the link field of our new node points to the remainder of
the linked list, ensuring that a pointer to the front node of the present employee list is not
lost. The link field of the header node referred to as List_Head is now assigned the
pointer of Employee, so that the link field of the header node points to the new node
Employee. The result is that the new node has been inserted at the beginning of a linked
list with the header node pointing to the new node and the link field of Employee
pointing to the remainder of the linked list. If the linked list is initially empty, the link
field of the header node is initially nil. On adding the first node to the linked list, the
link field of Employee is assigned the value nil. As other nodes are added, the last
node of the linked list will always have a link field value that is nil, and the link field
of the header is always pointing to the front of the linked list. By having the link field of
the last node nil, we can see where the list terminates. The steps needed for entering
employee records from the keyboard and adding them to the linked list ofrecords follow.

Pointers Chapter 12 587

~1 Header

I ~ Front node

I ~ I
List_Head

nil

Employee ~g 1. Create a new node.

2. Adjust the link field of Employee to point to the front node.

EmployeeA.Link <-- List_HeadA.Link

List_Jlea~I Header

I cl Front node lrB
Employee~

3. Adjust the link field of the header to point to the new Employee node.

List_HeadA.Link <-- Employee

Header 1 Front node

I r~ List_Head __,,

l

J

L1

Figure 12. 7 Adding a new node to the beginning of a linked list.

begin
{ Initialize the pointer List_Head. }

Initialize_Header(List_Head);
{ Enter employee records from the keyboard. }

write(' Enter another employee? Type Y for yes, N for no: ');
readln(Response);
while Response = 'Y' do

588

begin
{ Create new employee record. }

new (Employee) ;

Chapter 12

{ Enter information into new employee record. }
Enter_Data(Employee);

Pointers

{ Link this new node to beginning of the employee list. }
EmployeeA.Link := List_HeadA.Link;
List_HeadA.Link := Employee;

Prompt user for another record.
write('Enter another employee? Type Y for yes, N for

no:');
readln(Response);

end; { while-do }
{ Report records to the Text window. }

Report_Records(List_Head);
end.

The linked list shown in Figure 12.7 is often referred to as a singularly linked list,
because the link field of each node points only to its successor node and never to any of
its predecessor nodes. For reporting the employee records as an iterative operation, the
following steps are required:

1. First, test if the employee list is empty.
2. If empty, report that there are no records to be displayed.
3. If not empty, initialize a temporary pointer by pointing to the front node of the

employee list.
4. Report the fields of the present node.
5. Now assign to the temporary pointer the link field of the present node that it is

pointing to, and if this value is not nil, repeat Steps 4 and 5.

Here is the complete THINK Pascal program.

program Employee_List(input, output);
{ Purpose: This program creates a linked
{ Add the following uses clause
{ uses
{ QuickDrawl;

type
Node = AProfile;
Profile = record

var

Name : string;
ID_Number : string;
Wage real;
Link : Node

end;

List_Head, Employee : Node;
Response : char;

list of records. }
for Macintosh Pascal:}

}
}

{ ***
procedure Initialize_Header (var Header : Node);
{Purpose: Create a header node for a linked list. }

Pointers Chapter 12

begin
new (Header) ;
HeaderA.Name := 'Employee List';
HeaderA.ID_Nurnber := '00000000';
HeaderA.Link := nil

end;
{ *** }

procedure Enter_Data (Person : Node);
{Purpose: This routine reads data from the keyboard and }
{ inserts this data into an object called a node.}
begin

writeln;
with PersonA do

end;

begin
write(' Enter full name: ');
readln (Name) ;
write(' Enter ID number: ');
readln(ID_Nurnber);
write(' Enter hourly wage: ');
readln (Wage) ;

end;

{ *** }
Modify_List(Header, Employee : Node);

589

procedure
{Purpose:
{

This routine links a node to the beginning of a }
linked list.}

begin

end;

ErnployeeA.Link := HeaderA.Link;
HeaderA.Link := Employee;

{ *** }
procedure Report_Records (Header : Node);
{Purpose: Display of content in each node of a linked list. }

var
P : node;

begin
{ Test if the employee list is empty.

if HeaderA.Link = nil then
begin

write(' Employee list is empty);
writeln('no records presently exist.');

end
else
{ Continue to report the contents of each node in the }
{ employee list. }
begin
{ Let the temporary pointer point to first node in list. }

P := HeaderA.Link;
repeat

writeln;
with PA do {Pointer P points to node for reporting.}

590 Chapter 12

begin
wri teln (' Name: Name) ;
writeln(' ID number: ', ID_Nurnber);
writeln(' Hourly wage: $',Wage : 5 : 2);

end;
Let pointer P point to the next node in the }
employee list.

P := P".Link;
until P = nil;

end;
end;

Pointers

{ *** }
begin { Body of the main program.
{ Show Text window for prompts. }

ShowText;
{ Initialize the pointer List_Head. }

Initialize_Header(List_Head);
{ Enter employee records from the keyboard. }

write(' Enter another employee? Type Y for yes, N for no: ');
readln(Response);
writeln;
while Response = 'Y' do

begin
{ Create new employee record. }

new(Employee);
Enter information into new employee record. }

Enter_Data(Employee);
{ Link this new node to beginning of the employee list. }

Modify_List(List_Head, Employee);
{ Prompt user for another record. }

writeln;
write('Enter another employee? Type Y for yes,');
write (' N for no: ');
readln(Response);

end; { while-do }
Report records to the Text window.

Report_Records(List_Head);
end.

The procedure Ini tialize_Header acts a constructor by creating and initializing
the header node, while procedure Report_Records acts an iterator for viewing the
content of the linked list. Procedure Modify_List is a two-step routine acting as a
modifying operation of the list. Notice that some of the formal parameters in procedure
headers are variable types, whereas others are value types even when side effects take place
on the objects pointed to by the parameters. Procedure Ini tialize_Header requires
that the formal parameter Header be a variable type, because a header node is created
during execution of this procedure; the parameter Header points to this new object in
memory, and the address pointed to by the formal parameter is changed during the
execution of this procedure. In the procedure Enter _Data, the formal parameter
Person is a value type, even though the fields of the node of Person are modified. It

Pointers Chapter 12 591

is a value type rather than a variable type because the address associated with Person
remains unchanged.

An additional modification operation for this program is a procedure for deleting an
employee record from the list. This requires that we search through the employee list with
a key until we either find the node containing the key and mark it for deletion or reach the
last node of the linked list. Once the node is found, the link field of the preceding node is
adjusted so that it points to the link field for the node being deleted. The employee node is
then deleted. Figure 12.8 shows the steps required for disposing of a node from a linked
list. Notice that we need two pointers: one points to the node preceding the node to be
disposed of, and a second points to the node for deletion. We need two pointers because
the link field of each node points only to its successor node. There is no link field
pointing to a predecessor node. Because we cannot reference the predecessor node of the
node being deleted, it is impossible to modify the link field of the predecessor node by
having it point to the successor node of the node being deleted. The following is a
refinement of the steps for deleting a node from a singularly linked list.

procedure Delete_Record(Header : Node; Key : string);
{Purpose: On finding a node containing the value of Key, the
{ node is marked by a pointer and deleted from the }
{ linked list.}

var
P, Q : Node;
Found : Boolean;

begin
{ Initialize pointer Q. }

Q := Header;
Found := false;
while (QA.Link <> nil) and (not Found) do

begin

end;

{ Let P point to the succeeding node. }
p := QA.Link;

{ Check if the succeeding node has the key.
if PA.Name = Key then { delete node pointed to by P }

begin
Found := true;

{ Adjust the link field of Q to point to the link }
{ field of P. }

QA.Link := PA.Link;
Deallocate the node from the employee list. }

dispose(P)
end

else { let Q point to the succeeding node }
Q := p

end;

592 Chapter 12 Pointers

1. P points to the node ready for deletion.

~""I~ -=I rt----1 ------II rt----1 ------II r
/ /

Q p

2. Adjust the link field of Q to point to the Link of P.

Q".Link <-- P".Link

·I I · I I I rl !
r

/ /
Q p

3. Dispose of the node P.

""t----1 -Ir
/

Q

Figure 12.8 Disposing of a node from a linked list.

In the procedure Delete_Record, the formal parameter Header is a value type.
Even though the linked list pointed to by Header can be modified during execution, the
address pointed to by Header remains unchanged during the execution of the procedure.
It is the nodes within the linked list that may be deleted, not the node representing the
header. Furthermore, this procedure conserves memory for heap storage by executing the
command dispose for any node that is no longer needed.

Another abstract data type of interest is the stack. A stack is a finite sequence of
elements all of the same type, having the following operations:

Pointers Chapter 12 593

const

Constructor:
Create the structure representing a stack.
Initialize a stack as being empty.

Destructor:
Destroy the structure representing a stack.

Modifier:
Insert a new element at one end of the stack, called its top.
Delete an element from the top of the stack.

Selector:

Iterator:

Determine if a stack is full.
Determine if a stack is empty.

View the element at the top of the stack.

The stack is a special structure where data objects are inserted (pushed on) and
removed (popped oft) at only one end. In this context a stack is referred to as a last-in,
first-out structure. Figure 12.9 shows a simple model of the stack. Objects are pushed and
popped at the top of the stack; the top is detennined by a stack pointer. We can emulate
stacks by one of two approaches: an array or a linked list.

-----

To p '"'--
~ Stack_Pt

Bottom

Figure 12.9 A simple model representing a data object called a stack.

To emulate a stack using an array, we can use the following programmer-defined
type:

N = 100;
type

Stack = record
Stack_Pt 0 .. N;

594

Stack_ Table
end;

array[l .. NJ of Item

Chapter 12 Pointers

var
s Stack;

The type Stack represents our model of a stack as an array of 100 elements indexed from
1 through N. The following assumptions are defined as exceptions:

1. An empty stack is represented by assigning Stack_Pt a value of zero.
2. Other than for an empty stack, Stack_Pt points to the last item pushed onto

the top of the stack.
3. The stack is full when the value of Stack_Pt has the value of N.

Variables of type Stack have storage allocated when the program unit in which they
are declared is executed, so the procedure that follows defines both the constructor and
destructor operation for initializing the state of a stack as empty.

procedure Create_Stack(var S : Stack);
begin

S.Stack_Pt := O;
end;

Selector operations for testing if a stack is empty or full are defined by the following
two Boolean functions. These functions have simple definitions, because the stack
pointer has either the value zero if the stack is empty or the value of N if the stack is full.

function Empty_Stack(S : Stack) : Boolean;
begin

if S.Stack_Pt = 0 then
Empty_Stack .- true

else
Empty_Stack := false;

end;

function Full_Stack(S : Stack) : Boolean;
begin

if S.Stack_Pt = N then
Full_Stack := true

else

end;
Full_Stack .- false;

There are two modifying operations for changing the state of the stack. The first
modifier, Push_Stack, inserts a new element at the top of the stack. In defining this
routine, we must first determine if the stack is full. Any attempt to insert an element
onto the stack when it is full produces a condition referred to as stack overflow. The
following represents the routine as a function returning a Boolean value of true if an
element is successfully inserted at the top of a stack and false if stack overflow occurs.

Pointers Chapter 12 595

function Push_Stack (var S
begin

Stack; Element Item } : Boolean;

{ Test for stack overflow.
if Full_Stack(S} then

Push_Stack := false
else
{ Adjust the stack pointer and insert an element at the }
{ top of the stack. }

end;

begin
S.Stack_Pt := succ(S.Stack_Pt);
S.Stack_Table[S.Stack_Pt] := Element;
Push_Stack .- true;

end;

The second modifier, Pop_Stack, allows a new element to be popped from the top
of the stack. In defining this routine, we must first detennine if the stack is empty. Any
attempt to delete an element from a stack when it is empty represents a condition referred
to as stack underflow. The following represents the routine as a function returning a
Boolean value of true if an element is successfully deleted from a stack and false if
stack underflow occurs.

function Pop_Stack(var S : Stack}: Boolean;
begin
{ Test for stack underflow.

if Empty_Stack(S) then
Pop_Stack := false

else
{ Delete the top element by adjusting the stack pointer. }

begin

end;

S.Stack_Pt .- pred(S.Stack_Pt};
Pop_Stack := true;

end;

The iterator operator for viewing the value at the top of the stack also depends upon
the stack not being empty. If it is empty, no value can be returned by the operation. The
following function defines the steps for retrieving the value at the top of stack.

function Retrieve_Element(S : Stack; var Element : Item) :
Boolean;

begin
{ Test for stack underflow.}

if Empty_Stack(S} then
Retrieve_Element := false

else
{ Retrieve the top element from stack S.}

begin
Element := S.Stack_Table[S.Stack_Pt];
Retrieve_Element := true;

596 Chapter 12 Pointers

end;

We use Boolean functions for the various stack operations rather than procedures
because they give us more control over the next step of the program. Given that the stack
type and operations are encapsulated into a unit, a programmer using this unit can decide
how the program is to recover in case of a stack overflow or underflow. This allows the
avoidance of useless message displays and allows the programmer to dictate the next state
of the program.

A second approach to emulating a stack is to use a linked list. There are several
reasons why this approach is useful. First, there is no need in principle to test for a full
stack, because we can always add an element to the top of the stack. Second, storage is
limited to only those elements pushed onto the stack; maximum storage for the stack is
whatever is allowed for the heap. Figure 12.10 shows a linked-list representation of a
stack.

Top of stack

Header

Stack_Pt

Bottom of stack

Figure 12.10 A linked list emulating a stack.

The following are the types and modules needed to represent a stack using a linked
list. These are again given as Boolean functions for the purpose of compatibility with
any program using an array as a representation of a stack:

type
Pointer
Node =

= "Node;
record

Value : Item;
Link : Pointer

end;
Stack = Pointer;

var
S : Stack;

procedure Create_Stack(var S : Stack);
begin
{ Create a list head for the stack. }

new(S);
{ Empty stack is represented by a link field of the header being }
{nil.}

S".Link := nil
end;

Pointers Chapter 12

function Empty_Stack(S : Stack) : ~oolean;
begin

if SA.Link = nil then
Empty_Stack := true

else
Empty_Stack .- false;

end;

function Full_Stack(S
begin

Full_Stack .- false;
end;

function Push_Stack(S
var

P : Pointer;
begin

Stack) : Boolean;

Stack; Element Item) : Boolean;

{ Create a new node and link it to the top of the stack. }
new(P) ;
PA.Value := Element;

{ Let the link field of P point to the node given by the link }
{ field of S. }

PA.Link := SA.Link;
Let the header point to the new node pointed to by P. }

SA.Link := P;
Push_Stack := true;

end;

function Pop_Stack(S
var

P : Pointer;
begin

Stack) : Boolean;

{ Check for an empty stack. }
if Empty_Stack(S) then

Pop_Stack .- false
else

begin
{ Let pointer P point to the node for deletion.}

P := SA.Link;

597

Adjust link field of the header with the link field of }
pointer P. }

SA.Link := PA.Link;
{ Deallocate the node pointed to by P. }

dispose(P);
Pop_Stack := true;

598 Chapter 12 Pointers

lend;
end

function Retrieve_Element(S
Boolean;

Stack; var Element Item) :

begin
{ Test for stack underflow.}

end;

if Empty_Stack(S) then
Retrieve_Element := false

else
{Retrieve the value from the top element of the stack.}

begin
Element := SA.LinkA.Value;
Retrieve_Element .- true;

end;

One procedure that is not yet defined is a destructor for abrogating the object
representing a stack. This requires that the stack be emptied (deleted of all of its nodes)
before disposing of the header node of the stack. By doing this, we avoid garbage when
the stack is eliminated. The following routine provides the steps for deallocating a stack:

procedure Deallocate_Stack(vars : Stack);
begin

while Pop_Stack(S) do
{ nothing } ;

dispose (S) ;
end;

A queue is a third abstract data type. Data objects of this type have elements that are
inserted (pushed on) at one end and deleted (popped oft) at the other. A queue is referred to
as a first-in, first-out structure. Figure 12.11 shows a model of a queue.

As a finite sequence of elements of the same type, a queue, as an abstract data type,
has the following operations:

Constructor:
Create the structure representing a queue.
Initialize a queue as empty.

Destructor:
Destroy the structure representing a queue.

Modifier:

Selector:

Iterator:

Insert a new element at the rear of the queue.
Delete an element from the front of the queue.

Determine if a queue is full.
Determine if a queue is empty.

View the element at the front of the queue.

Pointers Chapter 12 599

When developing algorithms to perform these basic operations, we need to consider
the following assumptions and questions:

1. Simple graphic representation of a queue.

Front of queue Rear of queue

I I I I
t

I I I
t

Front_Pt Rear_Pt

2. Linked list representation of a queue.

Rear of queue

Rear_Pt

Figure 12.11 Models representing a data object called a queue.

Assumptions

1. The front pointer is assumed to point to the next element to be popped or to the
position of the last element that was deleted.

2. The rear pointer points to the next position where an element can be inserted or
to the last position where an element was inserted.

3. A queue is empty when the front pointer catches up with the rear pointer.
4. A queue is full when the rear pointer catches up with the front pointer.
5. When an element is pushed, the rear pointer is incremented.
6. When an element is popped, the front pointer is incremented.
7. If an array with n elements is used to emulate a queue, the queue should be

considered circular, with the (n -1)th position of the array next to the 0th
position.

8. If a linked list is being used to emulate a queue, the queue header will contain the
front and rear pointers, and the nodes representing elements of the queue will
need only a link field.

Questions

1. If you are emulating a queue with an array, what is the size of the queue?
2. How is a queue tested for being empty and for being full?

600 Chapter 12 Pointers

3. How is a queue created or deleted?

The use of an array to emulate a queue is left as programming exercise. What follows
is an emulation of a queue by means of a linked list. In using a linked list, we assume
that the front pointer points to the next element ready for deletion, and the rear pointer
points to the last element that was inserted.

type
Pointer
Node =

= "Node;
record

Value : Item;
Link : Pointer

end;
Queue = "Header;
Header = record

var

Title : string;
Front_Pt : Pointer;
Rear_Pt : Pointer

end;

Q Queue;

In this application a queue is considered empty if both the front and rear pointers are
nil. Here is a constructor for creating a queue where both the rear and front pointers are
nil.

procedure Create_Queue(var Q Queue);
begin

new(Q);
Q".Title := 'List head for queue';
Q".Front_Pt :=nil;
Q".Rear_Pt .- nil

end;

The following are selectors for testing if a queue is empty or full. We are using a
linked list to represent a queue, so we assume that the function Full_Queue will
always be false.

function Ernpty_Queue(Q : Queue): Boolean;
begin

if Q".Rear_Pt = nil then
Ernpty_Queue := true

else
Ernpty_Queue := false;

end;

function Full_Queue(Q
begin

Full_Queue := false;
end;

Queue) : Boolean;

Pointers Chapter 12 601

Inserting (pushing) a new element onto the queue requires the creation of a new node,
adjusting the rear pointer, and, if the queue is initially empty, adjusting the front pointer.
Two local pointers are required for adjusting link fields.

function Push_Queue(Q : Queue ; Element : Item) : Boolean;
var

P, T : Pointer;
begin
{ Create a new node for inserting an element. }

new(P) ;
PA.Value := Element;
PA. Link := nil;

{ After checking for an empty queue, insert this new node at the }
{ rear of, the queue. }

if Empty_Queue(Q) then { queue is empty }
begin

QA.Rear_Pt := P;
QA.Front_Pt .- P

e:nd
else

begin { nonempty queue }
T : = QA .Rear_Pt;
TA . Link : = P;
QA.Rear_Pt := P

end;
Push_Queue := true;

end;

In deleting an element from the queue, we test the queue to see if it is empty. If not,
the value of the element to be deleted is copied, and a test is made to see if the front and
rear pointers are pointing to the same node. If they are, both pointers are assigned nil
values. If they are not, only the front pointer is adjusted.

function Pop_Queue(Q : Queue) : Boolean;
var

P : Pointer;
begin
{ Test for an empty queue. }

if Empty_Queue(Q) then { Report queue is empty. }
Pop_Queue := false

else
begin
{ Set pointer to the node for deletion. }

P := QA.Front_Pt;
{ Test if both front and rear pointers point to P. }

if QA.Front_Pt = QA.Rear_Pt the:n
begin
{ Re-initialize the pointers as an empty queue since
{ the front pointer has caught the rear pointer. }

602

QA.Front_Pt := nil;
QA.Rear_Pt := nil

end
else { Adjust the front pointer. }

QA.Front_Pt :=PA.Link;
{ Deallocate the node pointed to by P. }

dispose(P);
Pop_Queue .- true;

end;

Chapter 12 Pointers

end;

function Retrieve_Element(Q : Queue; var Element
Boolean;

Item) :

begin
{ Test for stack underflow.}

if Empty_Queue(Q) then
Retrieve_Element := false

else
{Retrieve the value of the front element of the queue.}

begin

end;

Element := QA.Front_PtA.Value;
Retrieve_Element .- true;

end;

procedure Deallocate_Queue(var Q
begin

Queue) ;

while Pop_Queue(Q) do
{ nothing } ;

dispose (Q);
end;

12.4 APPLICATION OF POINTERS: BINARY TREES

There are numerous applications for pointers and linked lists. A common application is
the "growing" and "pruning" of binary trees. A binary tree is an abstract data type. An
object of this type is either empty or composed of a "root" node acting as a parent, and
two binary trees called a left binary subtree (left descendant) and a right binary subtree
(right descendant).

When a binary tree is implemented as an object, the root and each subtree are
represented by a node having left and right link fields. In turn each subtree of a parent
node can point to a descendant, a node containing a left link and right link field. When
both the left link field and right link field of a node are nil, the node is referred to as a
leaf node. One interesting application of a binary tree is in storing a dictionary. Having an
on-line dictionary allows us to check the spelling in a text document.

Our dictionary is represented by a binary tree. Initially, we assume the tree to be
empty except for a header node. As Figure 12.12 shows, the first word to be entered into

Pointers Chapter 12 603

the dictionary establishes the root node. Other words are added as either left or right
descendants of the binary tree.

Dictionary

i
man

child woman

nil nil

boy girl

nil nil nil nil

Order in which words are inserted: man, woman, child, boy, girl.

Left link of node man is the node containing the word child.
Right link of the node man is the node containing the word woman.

Left link of node child is the node containing the word boy.
Right link of the node child is the node containing the word girl.

The nodes boy, girl, and woman are leaf nodes (terminal nodes)
because both the left and right links of each node are nil.

Figure 12.12 Binary tree representing a simple dictionary.

Here is a list of the necessary steps for inserting one or more words into the
dictionary, assuming the existence of a pointer P initially pointing to the root of the
dictionary:

1. If Pis nil, create a new node and insert the word into this new node.
2. Otherwise, if the word is alphabetically less than the value field of the node

pointed to by P, attempt to insert the word on the left side of P by passing to P
the left link of P and repeating this algorithm.

3. Otherwise, if the word is alphabetically larger than the value field of the node
pointed to by P, attempt to insert the word on the right side of P by passing to
P the right link of P and repeating this algorithm.

4. Otherwise, the word already exists in the dictionary; there is no need for insertion.

604 Chapter 12 Pointers

We can now extend this example by creating the following programmer-defined types
for our dictionary problem:

type
Pointer
Node =

= "Node;
record

Value : string;
Left_Link : Pointer;
Right_Link : Pointer

end;
Header_Node record

Title : string;
Link Pointer

end;
Tree = "Header_Node;

var
Dictionary : Tree;

Initially we need a module for creating the header of the dictionary, given in the following
procedure.

procedure Create_Dictionary_Header(var Header
begin

new (Header) ;
Header".Title := 'Sample Dictionary';
Header".Link := nil

end;

Tree) ;

The module for inserting a new word follows the three basic steps just discussed. The
procedure for inserting a new word is as follows:

procedure Insert_Word(var P : Pointer; Word
begin
{ Test if pointer P is nil. }

if P = nil then
{ Add word to the dictionary. }

begin
new(P) ;
with P" do

begin
P".Value :=
P".Left_Link

Word;
:= nil;

P".Right_Link := nil
end

end

string) ;

else { Test if word is to be inserted to the left of node P. }
if Word < P".Value then

Insert_Word(P".Left_Link, Word)
else { Test if word is to be inserted to right of node P. }

if Word > P".Value then

Pointers Chapter 12

end;

Insert_Word(PA.Right_Link, Word)
else { Word already exists in the dictionary.

writeln(' The word', Word, ' is already in the
dictionary. ') ;

605

Notice that this procedure is recursive. It calls on itself to insert the word either to
the left or to the right of the root node. Recursion stops when it finds a left link or right
link field that is nil or when the value of Word is equal to that of PA. Value.

To display the words from our dictionary in alphabetic order, we must perform an
inorder traversal of the binary tree. Traversing a binary tree is equivalent to walking
through the paths of the binary tree. An inorder traversal of a binary tree is represented by
the following recursive steps:

1. Traverse the left link of the binary tree of the present node in inorder.
2. Visit the present node by displaying the contents of the value field.
3. Traverse the right link of the binary tree of the present node in inorder.

We have reached the end of a link in a binary tree when either the left link field or the
right link field of a node has a pointer that is nil. The following procedure refines these
steps.

procedure Print_Word(P : Pointer);
begin
{ Test if node P is not nil. }

if P <> nil then
begin
{ Traverse in inorder the left link of P. }

Print_Word(PA.Left_Link);
{ Visit the node. }

writeln(PA.Value);
{ Traverse in inorder the right link of P. }

Print_Word(PA.Right_Link)
end

else { reached a link that is nil
end;

Dictionary_Example is a sample program for testing these modules.

program Dictionary_Example(input, output);
{ Purpose: This is a simple dictionary program. Words can be }
{ inserted into the dictionary, and the dictionary is
{ displayed after each word is inserted. }

uses
QuickDrawl;

type
Pointer
Node

= ANode;
record

Value string;

606

Left_Link : Pointer;
Right_Link : Pointer

end;
Header_Node record

Title
Link

end;
Tree = AHeader_Node;

var
Dictionary : Tree;
Word : string;
Response : char;

string;
Pointer

Chapter 12

procedure Create_Dictionary_Header (var Header : Tree);
begin

new (Header) ;
HeaderA.Title := 'Sample Dictionary';
HeaderA.Link := nil

end;

Pointers

{ ***
procedure Insert_Word (var P : Pointer; Word : string);
begin
{ Test if pointer P is nil. }

if P = nil then { Add word to the dictionary.
begin

new (P);
with PA do

end

begin
Value : = Word;
Left_Link := nil;
Right_Link .- nil

end

else { Test if the word is to be inserted to the left }
{ of node P. }

end;

if Word < PA.Value then
Insert_Word(PA.Left_Link, Word)

else { Test if the word is to be inserted to the }
{ right of node P. }

if Word > PA.Value then
Insert_Word(PA.Right_Link, Word)

else { Word already exists in the dictionary.
begin

write (' The word ', Word, ' is already in');
writeln(' the dictionary.');

end;

{ ***
procedure Print_Word (P : Pointer);
begin

Pointers Chapter 12 607

Test if node P is not nil. }
if P <> nil then { traverse the binary tree in inorder }

begin
Print_Word(PA.Left_Link);
write(PA.Value, ');
Print_Word(PA.Right_Link)

end
else { reached a link that is nil }

end;
{ *** }

procedure Display_Dictionary (Header : Tree);
var

p Pointer;
begin

P := HeaderA.Link;
if P <> nil then

Print_Word(P)
else

writeln(' Dictionary is empty. ');
writeln;

end;
{ *** }
begin { Body of the main program. }
{ Show Text window for displaying prompts. }

ShowText;
Create header for dictionary. }
Create_Dictionary_Header(Dictionary);

{ Display contents of the dictionary. }
Display_Dictionary(Dictionary);
repeat
{ Prompt for next word. }

write(' Enter next word: ');
readln (Word) ;

Insert new word in dictionary.
Insert_Word(DictionaryA.Link, Word);
writeln;

Display contents of dictionary. }
Display_Dictionary(Dictionary);
writeln;

{ Prompt user to continue. }
write(' Enter Y to continue inserting words, N to quit: ');
readln(Response);

until Response<> 'Y';
Display_Dictionary(Dictionary)

end.

The program also has a procedure called Display_Dictionary. In the body of
Display_Dictionary the link field of the header is tested to see if it is nil; if so,
the program reports that the dictionary is empty.

If we can insert new words into our dictionary, how can we delete words? Deleting
words is more complex than inserting them, because it can require us to adjust some of

608 Chapter 12 Pointers

the nodes of the binary tree in order to keep the proper alphabetic ordering. As Figures
12.13a and 12.13b show, deletion of a word is simple if the node to be deleted is a leaf
node or has only one descendant.

mungo

nil

Pulley

nil

Node Q is to be deleted:

p <-- PA.Right_Link
dispose(Q)

spleen

nil

visit

nil nil

P represents the right link field of the preceding
node.

Figure 12.13a Deletion of a node having one
descendant.

In the case of a leaf node only the link field of a preceding node is set to nil,
because the leaf node has no descendants. In the case of a node with a single descendant,
only the link field pointing to the node for deletion is modified by assigning either the
left link or right link field of this node to a corresponding left or right link field of a
preceding node before disposing of the node.

Pointers Chapter 12

footer

cover I nil nil

Node Q is to be deleted:

p <-- PA.Left_Link
dispose(Q)

macaque

nil

nil

Q

P represents the right link field of the preceding
node.

Figure 12.13b Deletion of a leaf node, no descendents.

609

The difficult case is removing a node having two descendants. There are two ways to
do so. One is to replace the word to be deleted by the word in the rightmost node of the
left link of the node containing the word for deletion, and then delete the rightmost node.
The second approach is to replace the word to be deleted by the leftmost node of the right
link of the node containing the word for deletion. The leftmost node is then deleted.
Figures 12.14a and 12.14b show two examples displaying a leftmost node and a
rightmost node. In either case, the rightmost or leftmost node is assumed to have at most
one descendant. Using either approach, the word contained in the root node will always be
properly ordered with respect to the other words in the dictionary. In addition, the root
node will keep its proper descendants. We will use the second approach; the first is left as
an exercise.

Assuming that a pointer called P points to the root of the tree, these are the basic
steps in deleting a node:

1. Test if Pis nil, and if it is, report that the word does not exist.
2. Otherwise, test if the word is alphabetically less than pA. Value, and if it is,

repeat this algorithm by passing to P the pointer value of PA. Left_Link.
3. Otherwise, test if the word is alphabetically greater than PA. Value, and if it is,

repeat this algorithm by passing to P the pointer value of PA. Right_Link.
4. Otherwise, prepare to delete node P.
5. Set a temporary pointer Q to point to where node P is pointing.
6. Test if PA. Right_Link is nil, and if it is, let P become PA. Left_Link.
7. Otherwise, test if PA. Left_Link is nil, and if it is, let P become

PA. Right_Link.

610 Chapter 12 Pointers

8. Otherwise, trace the tree starting with Q". Right_Link until the leftmost node
is found. Replace the contents of Q with the contents of the lefbnost node, and
delete the leftmost node.

9. Dispose of the node pointed to by Q.

man

boy

after dad

nil nil

else

nil nil

In deleting the word man, the node containing the word else
represents the rightmost node of the left link of the node
containing man. The word else replaces the word man,
and the node containing the word else is deleted.

Figure 12.14a Deleting a node with two descendants, first approach.

Here is a refinement of our algorithm:

procedure Delete_Word(var P : Pointer; Word
var

Q : Pointer;
begin
{ Test if the word is not in the dictionary. }

if P = nil then

string);

wri teln (' The word ' , Word , ' is not in this dictionary. '
else { Test if the word is to the left of node P. }

if Word < P".Value then
{ Continue to delete to the left of node P. }

Delete_Word(P".Left_Link, Word)
else { Test if the word is to the right of node P. }

if Word > P".Value then
{ Continue to delete to the right of node P. }

Delete_Word(P".Right_Link, Word)
else { Dispose of node P. }

begin

Pointers Chapter 12 611

end;

Q := P;
if PA.Right_Link = nil then

p := PA.Left_Link
else

if PA.Left_Link = nil then
p := PA.Right_Link

else
Delete_Leftrnost_Node(QA.Right_Link, Q);

dispose (Q) ;
end

man

~ ~
~
wait

~ l ~
several younger

L I ~
nil I nil

L
ready total

nil l nil nil l nil

In deleting the word man, the node containing the word
ready represents the leftmost node of the right link of
the node containing man. The word ready replaces the
word man, and the node containing the word ready is
deleted.

Figure 12.14b Deleting a node with two descendants, second approach.

The steps for deleting a leftmost node require special attention. Assume that pointer
R is passed the value of QA. Right_Link. The steps for Delete_Leftrnost_Node
are then as follows:

1. Test if RA. Left_Link <> nil, and if so, repeat this algorithm by passing
to Rand Q the pointer values of RA. Left_Link and Q.

2. If not, there are no further left descendants, since R is now pointing to the
leftmost node.

3. Let QA. Value <-- RA. Value; Q <-- R; and
R <-- RA. Right_Link;.

612 Chapter 12 Pointers

Here is a refinement of the algorithm:

procedure Delete_Leftmost_Node(var R, Q: Pointer);
begin
{ Test if we have reached the leftmost node in the tree. }

if RA.Left_Link <>nil then
Delete_Leftmost_Node(RA.Left_Link, Q

else { No further descendants exist to the left of node R. }

end;

begin
QA.Value := RA.Value;
Q .- R;
R .- RA.Right_Link

end

Before ending this discussion, we must note that Pascal cannot support a file of
pointers. Pointers represent actual addresses in memory during the execution of a
program. Although it is possible to write pointers to a file, reading pointers and
assigning their values to pointer variables would only disrupt the execution of a Pascal
program. The objects pointed to by a pointer can be written to a file, and an object stored
in a file can be read and placed in the memory allocated for such an object.

12.5 HEURISTICS FOR WRITING RECURSIVE ROUTINES

Divide and conquer is the process of solving a problem by dividing it into smaller
subproblems. Often a step in a problem can divided into two or more substeps when
refining the solution. This method is also associated with solving problems from the top
down, because a solution is assumed to exist, and we then try to define one or more steps
that represent a solution to a problem. This often leads us to refine each step by defining
two or more substeps as subproblems.

When defining a formal algorithm for a problem, we often find it helpful to divide a
step (substep) by having the refined step call upon itself to conquer the solution. There
are heuristic rules for writing recursive algorithms that we should review. First, you must
understand the problem you want to solve before writing an algorithm for a solution.
Second, you must understand the abstract data types and the objects of these types that are
involved in the solution of the problem. For example, if an algorithm involves objects
that have a recursive structure, such as a linked list or a binary tree, we can often apply
steps in solving the problem to a lesser part of the structure by using the algorithm
presently being defined, because parts of a recursive object have the same properties as the
complete object. The objective is to write an algorithm that applies to the whole data
object as well as to its parts. Third, understand the trivial case(s) for terminating
computation on an object, for example, reaching the end of a linked list when the link
field is nil, or continuing to apply the same algorithm to the remainder of a list until
an empty list is reached. Fourth, understand the nontrivial cases and try to reduce initial
expressions for objects to trivial cases. For example, we may continue to copy a linked
list by making a copy where the link field is pointing. Often, we can replace a loop
needed for an iterative step of an algorithm with a recursive call. Fifth, combine the third
and fourth hints with a conditional expression using trivial or terminal case(s), and then

Pointers Chapter 12 613

apply the algorithm to the remaining portion or portions of a data object(s). Last, check
the definition of the algorithm by using both trivial and nontrivial examples to verify
correctness.

As an example, assume that a list is represented by an element followed by a sublist.
A sublist is in turn a list having an element followed by a sublist. Only when a sublist is
empty does the list terminate. As you can see, the concept of a list is recursive, because it
is composed of an element followed by a list. What we need is an algorithm for making a
copy of a list. The only trivial case is where an empty list is given, because a copy of an
empty list is itself an empty list. If the given list is not empty, the first element of this
list is copied. The same definition is then applied to the sublist of the given list until the
sublist being copied is empty.

In implementing this algorithm, we define a list as a structure represented by a
singularly linked list composed of elements that each have two fields: a value field and a
link field. The link field points to a successor element representing the beginning of a
sublist. In a trivial case, the list is empty, represented by the value of the given list being
ni 1. In turn, a link field of a list element with a ni 1 value defines the list as being
terminated.

The following is a recursive procedure called Copy _List. In this definition we
assume that the formal parameter L is the given list ready to be copied and c represents a
copy of list L. Initially, the trivial case is checked, because if list Lis empty, a copy of it
is itself an empty list. If not, a new element is created, and the value of the next element
in the given list is assigned to the element pointed to by c. The sublist that follows list
Lis now copied by calling on Copy_List, where the value of the actual parameter
associated with L is the sublist given by the linked field of L.

When a copy of this sublist is returned, it is assigned to the link field of the new
element pointed to by c. The procedure Copy _List is directly recursive, but recursion
ends when the value of the formal parameter L is nil. Without this trivial case, the
procedure would in theory go on forever.

procedure
{Purpose:
{

Copy_List(L : List; var C : List);
This routine makes a copy of a singularly linked }
list, assuming that no header node is present for }
list L.} {

var
R List;

begin
{ Check for a trivial case where list L is empty and recursion }
{ terminates.}

if L = nil then
{Return a copy of an empty list.}

c := nil
else

begin
{ Create the next element for list C.}

new(C);
{ Copy the value field from the next element in list }
{ L to C.}

CA.Value := LA.Value ;
{ Make a copy of the sublist of L and assign this }
{ to R. }

Copy_List(LA.link, R);

614 Chapter 12

Link a copy of the sublist of L to the next }
element of C.}
C".link := R;

end;

Pointers

end;

Why not let pointer c be assigned the value of L and avoid writing a recursive
algorithm such as Copy _List? If the algorithm has only the assignment statement C
: = L as its body, disposing of list L would leave dangling pointers. Procedure
Copy_List avoids this problem.

12.6 ADDITIONAL COMMENTS ON NEW AND DISPOSE

The command new can also be used to allocate storage for a record having variant fields.
In this case the new command uses the following syntax:

new(Pointer_Variable, c 1 , c 2 , .•• , Cn);

where Pointer_Variable points to a record having one or more variant fields, and
the constants c 2 , • • • , cn are expressions of an ordinal type related to a tag
field of a variant record. For example, consider the following definitions:

type
Education =
Profile =

(Elem, High, College, Graduate);
record

Employee_Name : string;
Street_Address: string;
City_State: string;
Zip_Code: string;
Age: integer;
Gender: char;
case Grade_Level : Education of

Elem: (Last_Grade : integer);
High : (Junior: integer; Senior: integer);
College: (Year : (Fr, Sp, Jr, Sr));
Graduate: (Degree : (MA, MS, PHD, PHE));

end;
Employee_Record = "Profile;

var
Employee : Employee_Record;
Educational_Experience : Education;

We can allocate memory by using the variant that corresponds to one of the tag
fields. The short program titled Pointer_Varying_Record shows how to create a
record and how to select the proper variant record using the command new.

program Pointer_Varying_Record(input, output);
{ This program demonstrates the extended use of new and dispose. }

Pointers Chapter 12

uses
QuickDrawl;

type
Education
Profile =

(Elem, High, College, Graduate);
record

Employee_Name : string;
Street_Address : string;
City_State : string;
Zip_Code : string;
Age : integer;
Gender : char;
case Grade_Level : Education of

Elem (Last_Grade : integer) ;
High : (Junior : integer;

Senior : integer);

615

College : (Year : (Fr, Sp, Jr, Sr));
Graduate : (Degree : (MA, MS, PHD, PHE)

end;
Employee_Record = AProfile;

var
Employee : Employee_Record;
Educational_Experience : Education;

begin
ShowText;
write(' Enter educational experience (Elem, High, College,

Graduate): ');
readln(Educational_Experience);
new(Employee, Educational_Experience);
with EmployeeA do

begin
Grade_Level := Educational_Experience;
case Grade_Level of

Elem :
begin

Last_Grade := 7;
writeln(Last_Grade);

end;
High :

begin
Senior := 12;
writeln(Senior);

end;
College :

begin
Year := Fr;
writeln(Year);

end;
Graduate :

begin
Degree := MA;
writeln(Degree);

616

end;
end; { case

end;

Chapter 12 Pointers

dispose(Employee, Educational_Experience);
end.

If during execution the response is the value Graduate, only the invariant part of
the record and the variant part for the label constant Graduate are allocated storage. The
variant selector Grade_Level must be explicitly assigned a value, but only after the
record for the pointer Employee has been created. In this example, execution of the
command new only establishes the storage for the record; it does not assign any value to
the variant selector Grade_Level.

Pascal requires that, for a record created in the manner just described, storage be
deallocated in the same order in which it was created. That is, we must execute the
command dispose using the following syntax:

dispose(Pointer_Variable, c 1 , c 2 , •.. , en);

For example, execution of

dispose(Employee, Educational_Experience);

deallocates storage for the record associated with the pointer Emp 1 oye e if
Educational_Experience still has the value Graduate.

12.7 MACINTOSH MEMORY MANAGER AND THE CONCEPT OF
HANDLES

Macintosh Pascal supports several procedures and functions for managing dynamically
allocated objects during the execution of a program. Unlike the pointers controlled by the
commands new and dispose, the Memory Manager makes use of a special object
referred to as a handle. A handle is a pointer that points to an object indirectly through the
path of another pointer. For example, consider a special handle called
Employee_Handler pointing to Employee_Record, with Employee_Record
pointing to a record called Profile:

type
Profile record

Name : string[30];
ID_Nurnber : string[lO];
Age : integer

end;
Employee_Record = AProfile;
Employee_Handler = AEmployee_Record;

var
Employee : Ernployee_Handler;

By using this indirect referencing scheme, the Memory Manager can periodically
move the contents of the Profile record to maximize available free storage space in

Pointers Chapter 12 617

memory. This is different from pointers that allocate storage in terms of nonrelocatable
blocks. In the context discussed here, handles are assignment-compatible with any pointer
type.

Handles can be allocated storage by a function called NewHandle and deallocated
storage by a procedure called DisposeHandle. The function NewHandle takes only
one argument, an integer expression representing the total number of bytes required to
allocate storage for the dynamic variable created by this function. For example, to allocate
storage and create a handle indirectly pointing to an object represented by Profile, we
would execute the following assignment statement:

Employee:= NewHandle(sizeof(Profile));

The value returned by this function is a handle pointing to a region in memory
having a size determined by its argument. The function s i z e of returns a long
integer, and it measures the number of bytes of storage for either a variable identifier
or a programmer-defined type. The function sizeof cannot measure the sizes of file
types or structure types containing file types.

To reference a field in the record Profile, we use a double pointer representation.
For example, a value for the name field would be referenced by Employee'"'. Name.
Disposing of a handle and releasing the storage associated with it is accomplished by the
command DisposeHandle. The syntax for this routine follows:

DisposeHandle(Handle);

We must be very careful when using the commands New Hand 1 e and
DisposeHandle, because they bypass the normal type-checking mechanisms of the
Macintosh Pascal translator. This means that there is no protection for the handles or
your program if these routines are used improperly.

An additional function and procedure exist for measuring and changing the handle
size. The function GetHandleSize takes as an argument a handle and measures the
actual number of bytes created by NewHandle. The type of value returned by this
function is a long integer. The procedure SetHandleSize takes as input two
actual parameters, an existing handle and a value for its new size. It establishes a new
memory size for the object indirectly pointed to by the handle. When using this
procedure, use the function GetHandleSize to confirm the size allocated to the new
memory area.

The last procedure to be discussed in this section is used to copy the contents of one
region and write them to another. The procedure BlockMove copies the number of bytes
of memory occupied by the region starting at the location given by Source_Pointer
and writes this number of bytes to a region of memory starting at Destination_
Pointer. The syntax for this routine follows:

BlockMove(Source_Pointer, Destination_Pointer, Memory_Area);

For this particular procedure, Source_Pointer and Destination_Pointer can
be of any pointer type. For example, the following block move will shift a block of
bytes starting at the memory address given by Employee" to the memory address given
by Temporary" :

Temporary:= NewHandle(sizeof(Profile);

618 Chapter 12 Pointers

BlockMove(EmployeeA, TemporaryA, sizeof(Profile));

The following program, titled Handles, illustrates the moving of a block of bytes
from a record indirectly pointed to by a handle called Employee to another handle called
Temporary.

program Handles(input, output);
{ Purpose: This program uses the the memory management routines }
{ of Macintosh Pascal. }

uses
QuickDrawl;

type
Profile = record

Name : string[20];
ID_Number : string[lO];
Age : integer

end;
Employee_Record = AProfile;
Employee_Handler = AEmployee_Record;

var
Temporary, Employee : Employee_Handler;

begin
ShowText;
Employee := NewHandle(sizeof(Profile));
Temporary:= NewHandle(sizeof(Profile));
with EmployeeAA do

begin
Name:= 'Jack & Jill';
ID_Number := '0123456789';
Age := 34

end;
writeln(' Size of record profile: ', sizeof(Profile) 3);
writeln;
BlockMove(EmployeeA, TemporaryA, sizeof(Profile));
with TemporaryAA do

begin
writeln('Employee name: ',Name);
writeln('Identification number: ' ID_Number);
writeln('Age: ', Age : 3)

end;
DisposeHandle(Employee);
DisposeHandle(Temporary);

end.

Beware: BlockMove does no error checking; it simply moves bytes of data between
two locations in memory. Executing the command

BlockMove (Employee, Temporary, sizeof(Profile))

Pointers Chapter 12 619

can bomb the Macintosh operating system, because both the pointers Employee and
Temporary are pointing to handles, not record structures.

12.8 THINK PASCAL VERSUS STANDARD PASCAL

THINK Pascal has several extensions that are not supported in standard Pascal. First, both
Macintosh and THINK Pascal support the referencing operator @ for returning the address
of a pointer to the variable upon which it operates. Whereas standard Pascal is defined to
hide the values of the addresses assigned to pointer variables, both THINK and Macintosh
Pascal support two explicit functions: ord4 and pointer. Function ord4 takes as an
argument an expression representing the value of an ordinal type or pointer type
and returns a long int value. For a pointer type, this represents the absolute address
of the dynamic variable pointed to by the argument of ord4. The function named
pointer converts an integer type value to a generic pointer type value. Because
it has only a single argument with the value of an int ager type, this function returns a
generic pointer matching any pointer type.

SUMMARY

Pointers provide a new dimension for the programmer wanting to develop sophisticated
algorithms containing complex data structures such as stacks, queues, linked lists, and
binary trees. By using pointers in Pascal, we can dynamically allocate and deallocate
storage for data objects by the executing the commands new and dispose. The
Macintosh Pascal extensions for creating handles give us the option of having the
Macintosh Memory Manager optimize heap storage during normal execution. In
particular, we can collect and remove garbage, adding storage to the free storage pool for
later objects created dynamically.

REVIEW QUESTIONS

1. What is an abstract data type?
2. What purpose is served by a constructor? destructor? modifier? selector? iterator?
3. What is a pointer?
4. How is a pointer declared in Pascal?
5. How can a pointer be declared by using a programmer-defined type?
6. What is the initial value for a pointer in Macintosh Pascal?
7. What is the purpose of the command new? What are the actions of command

new when executed?
8. What is the purpose of the command dispose? What are the actions of

command dispose when executed?
9. Why are pointer types different from other data types found in Pascal?

10. Why are pointers considered dynamic storage objects in Pascal?
11. What is the purpose of using a stack to store information during the execution of

a program?
12. What is the concept of heap storage in Pascal?
13. What is the purpose of using a heap to store information during the execution of

a program?

620 Chapter 12 Pointers

14. What can happen in Pascal if pointers are not type-compatible? Give an example
to support your answer.

15. Assuming that both X and Y are of the same pointer type, are the assignment
statements x : = Y; and X" : = Y"; equivalent? Explain your answer.

16. Consider the following declarations:

type
Employee_Record record

ID_Number : integer;
Name : string[30];
Age : integer;

end;
Person = "Employee_Record;

var
Employee : Person;

Is the data type for the variable Person a pointer or a record? Explain your
answer.

17. What kind of object is created when the command new (Employee) is
executed? What is the name of the object pointing to what has been created?

18. Consider the following declarations:

type
Employee_Record record

ID_Number : integer;
Name : string[30];
Age : integer;

end;
Person = "Employee_Record;

var
Employee : array[l •. 100) of Person;

type

What is the difference between the variable Employee here and the variable
Employee declared in Question 16? What occurs when the command
new (Employee) is executed?

19. Does Macintosh Pascal allow a data type declared as a pointer of a pointer? Can
you show an example that has been verified?

20. What unusual side effect can occur in Macintosh Pascal with the execution of the
command dispose?

21. What is the purpose of the special unary operator represented by the character @
in Macintosh Pascal?

22. How can the operator @ be used to access the memory address of a formal
parameter? Give an example to support your answer.

23. What differences exist between the values returned by operator@ when operating
on a value-type parameter and a variable-type parameter?

24. What is the concept of a linked list?
25. What are the advantages of using a linked list during the execution of a Pascal

program?
26. Find the errors in the following declarations, and correct them.

Pointers Chapter 12 621

Node = Profile";
Profile = record

var

Name : "string;
ID_Number : "string;
Wage real;
Link : "Node

end;

Employee Node;
List_Head : Node;

27. What purpose is served by having a header node at the beginning of a linked list?
28. What are the steps for inserting a new node at the beginning of a linked list?

Assume that this new node is to be inserted immediately following the header
node.

29. What are the steps for deleting a node at the beginning of a linked list? Assume
that the node to be deleted follows the header node.

30. How can a stack be represented by an array?
31. How can a stack be represented by a linked list?
32. What are the advantages of using a linked list to represent a stack? What are the

disadvantages?
33. What primitive operations can be performed on a stack?
34. Explain the concept of a queue.
35. How can a queue be represented by an array?
36. How can a queue be represented by a linked list?
37. What are the advantages of using a linked list to represent a queue? What are the

disadvantages?
38. What primitive operations can be performed on a queue?
39. How is a stack tested for being empty? for being full?
40. How is a queue tested for being empty? for being full?
41. What purpose can a header node serve for a queue represented by a linked list?
42. Why is a binary tree a special type of data object?
43. How can a binary tree be used to store a dictionary in RAM?
44. Explain the steps for inserting a new word in a dictionary represented by a binary

tree.
45. Explain the steps for deleting a word in a dictionary represented by a binary tree.
46. Using Pascal, how can a binary tree be stored as a file on a diskette?
47. How is execution of the command new { Pointer_Variable, Cl, C2,

... , Cn) different from execution of the command new {Pointer_
Variable)?

48. What is meant by the data type referred to as a handle?
49. What purpose is served by the routine NewHandle? By the routine

DisposeHandle?
50. What is the purpose of routine GetHandleSize?
51. What is the purpose of the routine SetHandleSi ze?
52. How can the function sizeof be used to measure the amount of RAM storage

for a variable?
53. How can the routine BlockMove be used to copy the individual byte storage of

a variable?
54. Why must you be careful when using the command MoveBlock?
55. Why are Macintosh Memory Management routines important?

622 Chapter 12 Pointers

56. What is meant by garbage?
57. If a formal parameter represents a pointer type, when should it be declared a value

type, and when should it be declared a variable type?
58. Define the heuristic rules for writing a recursive algorithm.

PROGRAMMING EXERCISES

con st

Although not all programming exercises require you to write an algorithm, you may
better understand the problem and what is required by first writing an algorithm and
tracing it by hand with several examples before writing a Pascal program.

1. Test the concepts for pushing onto and popping from a stack when the stack is
represented by an array. Assume that the stack is to be represented by the
following record format:

N = 50;
type

Stack = record
St_Pt
Table

end;

0 .. 50;
array[l •• N] of char

var
s Stack;

con st
N = 50;

type

Write a program that will read a line of text entered from the keyboard one
character at a time and, after each character is read, push the character onto the
stack. After the line of text has been read, have your program pop each element
off the stack, displaying each character to a line in the Text window. Test your
program using lines of text less than, equal to, and greater than 50 characters.

2. Repeat Exercise 1, but instead of using an array to represent the stack, use a
linked list, where each node is to store a single character. Test this new program
with the examples you used in Exercise 1.

3. A queue can be represented by an array, where then th element is assumed to be
adjacent to its first element. Figure 12.15 is a model of what is referred to as a
circular queue. To represent this circular queue, consider the following record
format:

Queue = record

var
Q

Front_Pt : -1 .. N;
Rear_Pt -1 .. N;
Q_Table array[O •• N-1] of char

end;

Queue;

Pointers Chapter 12

j j-1

Figure 12.15 A circular queue.

Assume the following:

(a) An empty queue exists when both the front and rear pointers have a
value of -1.

(b) A queue is filled when the rear pointer catches the front pointer.
(c) A queue becomes empty when the front pointer catches the rear

pointer.
(d) The front pointer points to the next element to be deleted from the

queue.
(e) The rear pointer points to the last element that was inserted into the

queue.

623

Develop procedures for inserting and deleting from the queue when it is
represented by an array. Use the mod operation when computing pointer values.
Once your procedures are written, write a program for reading characters from a
line of text, inserting one character at a time into the queue as a character is read.
After a line of text has been read, display the elements in the queue by deleting
each element from the queue and writing it to a line in the Text window. Test
this new program with the examples you used in Exercise 1.

624 Chapter 12 Pointers

4. Repeat Exercise 3, but use a linked list to represent the queue, where each node is
to store a single character. Test this new program with the examples you used in
Exercise 3.

5. In a doubly linked list, the node has two pointer fields: a left link field for
pointing to a preceding node and a right link field for pointing to a succeeding
node. Figure 12.16 shows an example of a doubly linked list.

Header

value value value

'--t- Left_ Link Left_Link r<----+ Left_Link

1~ Right_Link Right_Link ~ nil

Figure 12.16 A doubly linked list.

Write a program that will offer the following options, by means of a menu:

(a) Create a header node for a doubly linked list.
(b) Add an item to a doubly linked list.
(c) Delete an item from a doubly linked list.
(d) Display the value in each node of a doubly linked list.
(e) Quit this program.

6. Develop a nonrecursive function that can measure the length (the number of
nodes) in a simple linked list. Write a program for testing this new function by
applying several linked lists as test data. Try writing a recursive function for
performing the same action.

7. Develop a nonrecursive procedure that can test if two simple linked lists are
equivalent. Write a program for testing this new procedure by applying several
linked lists as test data. Try writing a recursive procedure for performing the
same action.

8. Develop a procedure for appending one linked list to the end of another linked
list. Keep in mind that the first node of the linked list, not the header node, is to
be appended to the last node of the first linked list. Write a program for testing
this new procedure.

Pointers Chapter 12 625

9. Develop a recursive procedure for copying the nodes of one linked list and
assigning these to the header node representing a second linked list. Write a
program for testing this new procedure.

10. In some instances we can use a linked list to represent a set of elements. Develop
a procedure that will take two linked lists, each representing a set of elements,
and compute the union of the elements of both sets. Write a program for testing
this new procedure, using several linked lists as test data.

11. If we consider a linked list to represent a set, write a procedure that can compute
the intersection of two sets. Write a program for testing this new procedure
using several linked lists as data.

12. In Chapter 10, we introduced an algorithm for merging a single record with a
sequential file of records sorted according to some property. Using this concept,
write an algorithm that can merge a node into a linked list, where all the nodes
are sorted in some type of order. For example, use a linked list where each node
contains a name, and the linked list holds the names alphabetically. Convert
your algorithm into a Pascal procedure, and test this procedure by writing a
program. Use several instances of data to test your algorithm.

13. By using an inordertree traversal, we can display the words held in the dictionary
in alphabetic order. There are two additional ways of walking through the tree,
called preorder traversal and postorder traversal. Here are the basic algorithms for
preorder and postorder traversals:

procedure Preorder(P : Pointer);
begin

if P <> nil then
begin
{ Visit the node pointed to by P. }

Preorder(PA. Left_Link);
Preorder(PA. Right_Link)

end
end; { Preorder }

procedure Postorder(P
begin

if P <> nil then
begin

Pointer) ;

Postorder(PA. Left_Link);
Postorder(PA. Right_Link);

Visit the node pointed to by P. }
end

end; { Postorder }

The term visit means to perform some type of action on the value field of the
node. Using the dictionary example, add two procedures to the program so that
the words (nodes in the binary tree) can be displayed in preorder, postorder, and
inorder.

626 Chapter 12 Pointers

14. Modify the dictionary program so that a menu offers the user the following
options:

(a) Create an empty dictionary.
(b) Enter an existing dictionary from a file.
(c) Add one or more words to the dictionary.
(d) Display the words alphabetically.
(e) Save the dictionary presently held in memory to a file.
(t) Exit from this program.

When option (c) is chosen, the following steps are to be executed:

(i) Prompt the user for one or more words.
(ii) As the user enters words from the keyboard, have the program

push each word onto a stack (or queue).
(iii) Once all the words have been entered from the keyboard, have

the program add each word to the dictionary by popping the
stack (or deleting the queue).

To implement option (e), use the preorder traversal scheme for copying the word
from a value field of a node and writing it to a text file. Pascal cannot write
pointers to a file, because it does not support a type called a file of
pointer. Since the tree was originally grown using a preorder traversal, it will
be preserved by using the preorder procedure described in Exercise 13.

15. Modify the program in Exercise 14 by adding a seventh option: Delete one or
more words from the dictionary. When implementing this option, follow the
approach taken in adding one or more words. First prompt the user; second, enter
the words in a stack or queue. After entering all of the words, delete a word from
the dictionary by popping the stack or queue until it is empty.

16. The ABC Telephone Company will issue a Macintosh computer to its single
telephone operator to assist with local customer calls. You have been chosen to
develop an on-line phone directory to help the operator find a phone number,
given the name of the customer. During execution of the phone directory
program, the operator will be given the following options by a menu:

(a) Enter the phone directory from the file.
(b) Search for a phone listing.
(c) Add a new customer to the directory.
(d) Delete a customer from the directory.
(e) Ask for help.
(f) Save the phone directory to the file.
(g) Exit from this program.

Keep in mind that the phone directory will always be stored in alphabetic order
by customer name. It is impossible to know the upper limit on the number of
customers, so a binary tree or a simple linked list should be used for holding
customer records in RAM. The external file will be a sequential file of records.
This system must also provide short help files to explain how the other options

Pointers Chapter 12 627

are to be chosen and used by an operator. Can you think of other options the
phone company may need? Can you think of ways to protect the program during
execution, so that the wrong option will not be chosen?

17. Write a program that checks a list of words entered from the keyboard against a
dictionary stored in a file. If any word in the list is not in the dictionary, provide
a message to the user that either the word may be misspelled, or it is not in the
dictionary. If it is not in the dictionary, offer the user the option of adding the
word to the dictionary. Think about using both the Text window and the
Drawing window for displaying text and for prompting the user.

18. It is not uncommon to use a computer to perform polynomial arithmetic. The
problem with most ASCII-oriented computers is that they lack the graphic
capability of displaying two-dimensional output. Consider that a polynomial of
the form

can be typed as input by representing the polynomial in the following format:

en * x * *n +en-I * x * *(n -1)+ ... +c2 * x * *2 + c1 * x + c0

where en, cn_1,. .. , c0 are integer coefficients.

(a) Derive a method for reading a polynomial entered from the keyboard
in the format shown. Use a linked list to store the polynomial in
RAM. Assume that only a single-variable polynomial will be
entered.

(b) Derive a method for displaying the polynomial in a two-dimensional
format using the Drawing window. Display only the terms having
nonzero coefficients.

(c) Write routines for adding, subtracting, and multiplying two
polynomials.

(d) Demonstrate the use of parts (a) through (c) by developing a menu
that allows a user to choose to perform some simple polynomial
arithmetic.

Chapter 13

Object-Oriented Programming
in THINK Pascal

OBJECTIVES

After completing Chapter 13, you will know the followlng:
1. What is meant by the term object-oriented programming.
2. The concept of a class and its implementation in THINK Pascal.
3. How objects are declared and constructed.
4. How to reference instance variables through method definitions.
5. How to apply the override directive and when to use the reserved word

inherited.
6. When to apply the prefix self within method definitions.
7. Using TObject as a root class.
8. Using the Class Browser and LightsBug for viewing objects and classes.

13.1 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

628

What does the term object-oriented programming (OOP) mean? OOP is a means of
implementing programs organized as a cooperative collection of objects. Each object
represents an instance of a class, and each class can be a member of a hierarchy of classes
united through inheritance relationships. In OOP, classes are viewed as static definitions,
whereas objects represent dynamic entities. Although OOP is a style of programming that
works with objects derived from classes, it functions as part of a broader methodology
referred to as object-oriented analysis and design. It is a style of programming that
attempts to model the real world with classes of objects that are abstract in definition but
capable of being inherited by descendants. The information and actions associated with a
class are implemented through inheritance.

Object Oriented Programming in IBINK Pascal Chapter 13 629

An object-oriented programming language is different from standard programming
languages such as BASIC, Pascal, FORTRAN, and C in that it supports the concept of a
class. By itself a class is an abstraction that allows objects to share a common structure
and common behavior. Although a class allows the description of information as well as
the methods (operations) that one object may perform upon another object, it is not an
entity by itself. Rather, it serves as a template. Thus, an object takes on the properties of
a class when it becomes an instance of a class. As an instance of the class, an object is
said to have state, behavior, and identity. In object-oriented programming, data and the
actions performed upon data are integral parts of the definition of an object.

In procedural programming, data and actions are treated separately. Often, we define
data structures and then define routines that operate on the items of particular structures.
Every attempt is made to keep the data loosely coupled (using as little information as
possible when passing data to a routine) when defining routines. Even when the data and
actions are packaged as units, loose coupling between data and actions remains. For any
new data structure that we define, we must specify new actions, even though a previous
action may in principle be a definition of a method that could operate on the newly
defined structure. A weakness of procedural programming is that we cannot reuse what has
already been defined.

In object-oriented programming, data and actions are tightly coupled and are treated as
a class. When data is defined, the action operating upon the data is also defined. The class
now becomes an abstraction that can later be inherited by a subclass. This subclass
inherits all the data and actions of its parent class and, in turn, may add data and actions to
the class that it inherits. In addition, a subclass can define an action that overrides the
action of the class that it inherits by allowing the name of an action to respond to some
common set of operations in a different way than defined by its parent class. A subclass
can also become an ancestor to another subclass, with the latter subclass inheriting data
and actions from all of its previous ancestors. This is similar to the concept of a family
tree, where siblings inherit from a parent, and a parent inherits from an order of ancestors.
Not only do siblings inherit the characteristics of their parents and ancestors, they may
add characteristics and perform actions that their parents and ancestors did not possess.

13.2 THE CONCEPT AND IMPLEMENTATION OF A CLASS

Class:

In the real world we often categorize objects in terms of the classes that they represent. It
is often easy to associate an object with the properties and capabilities of a class. When
we deal with an object, we are in essence dealing with the definition of a class. In object
Pascal a class is much like a record structure in that it is composed of private data, referred
to as instance variables, similar to the fields within a record. It is different from a record
because it can support routines (methods) for performing actions by an object associated
with a class. When an object is sent a message to perform an action, it is the routine
(method) of the class that is executed. For example, the following defines a class called
Employee:

Employee

Instance Variables:
Full_Narne
Tax_ID_Nurober
Year_of_Birth

630 Chapter 13 Object Oriented Programming in THINK Pascal

Year_To_Date_Earnings

Messages Methods
Get_Full_Name Gets the
Get_Tax_ID_Number Gets the
Get_Birth_Year
Show_Full_Name
Show_Tax_ID
Compute_Age
Compute_Pay

Gets the
Returns
Returns
Returns
Returns

full name of employee.
employee's tax number.
birth year of the employee.

employee's full name.
employee's tax ID number.
employee's age as of today's date.
employee's weekly pay.

As a class, Employee has four instance variables; Full_Name,
Tax_ID_Number, Year_of_Birth, and Year_To_Date_Earnings. These
represent the data that an object of this class will possess. Messages that an object of this
class can respond to (the actions that it can take) are Get_Full_Name,
Get_Tax_ID_Number,Show_Full_Name,Show_Tax_ID,Compute_Age,and
Compute_Pay. Routines that support the actions of a message sent to an object as an
instance of class are called methods. The names of methods invoked by objects are called
messages.

A new class defined in terms of an existing class is called a subclass, and the existing
class is called a superclass. A class having no superclass is said to be a root class.
Although a subclass inherits all of the data and variables from its superclass, subclasses
can also define additional data and methods. Subclasses can also override methods defined
by their superclass. As an example of subclasses, consider the following three subclasses
called Hourly_Employee, Salaried_Employee, and Exempt_Employee,
which inherit data from the superclass Employee.

Class:
Hourly_Employee

Superclass:
Employee

Instance Variables:
Hourly_Rate
Overtime_Rate
Overtime_Hours

Message
Compute_Pay

Class:

Method
Compute hourly and overtime pay for the week.

Salaried_Employee

Superclasses:
Employee

Instance Variables:
Annual_Salary

Object Oriented Programming in THINK Pascal Chapter 13

Message
Compute_Pay

Class:
Exempt_Employee

Superclass:
Employee

Method
Compute weekly salary.

Instance Variables:
Monthly_Rate

Message
Compute_Pay

Method
Compute weekly pay.

631

Figure 13.1 shows the superclass Employee and its relationship to the subclasses
Hourly_Employee, Salaried_Employee, and Exempt_Employee. Each arrow
represents the dependency of a subclass on its superclass. Each rectangle has the name of
the class, followed by the variables that the class supports, followed by a list of methods.

Employee

Full_Narne
Tax_ID_Number
Year_of_Birth
Year_To_Date_Earnings

Get_Full_Name
Get_Tax_ID_Number
Get_Birth_ Year
Show _Full_Name
Show _Tax_ID _Number
Compute_Age
Compute_Pay

t 1 t

Hourly _Employee Salaried_Employee Exempt_EIIlployee

Hourly _Rate
Overtime Rate

Annual_Salary Monthly_Rate

Overtime::::Hours

Compute_Pay Compute_Pay Colilpute_Pay

Figure 13.1 A graphic representation of the superclass Employee
with several subclasses.

632 Chapter 13 Object Oriented Programming in THINK Pascal

Each subclass in this example depends upon the superclass Employee. Each subclass
adds information to the superclass from which it inherits as well as retaining the
information that it inherits.

A superclass that has no direct instances (objects), but whose descendants can have
instances, is referred to as an abstract class. A class that has direct instances is referred to
as concrete class. In Figure 13.l, Employee is an abstract class, and the subclasses
Hourly_Employee, Salaried_Employee, and Exempt_Employee are concrete
classes. All three subclasses acquire the same messages (methods Get_Full_Name,
Get_Tax_ID_Number,Get_Birth_Year,Show_Full_ Name,Show_Tax_
ID_Number, Compute_Age and Compute_Pay) from class Employee. The ability
to send the same message to objects of different classes is called polymorphism. In Figure
13.l, the message Compute_Pay requires a different method, depending upon the object
associated with one of the three subclasses. It is an abstract method, because its definition
is deferred to one of the subclasses that directly inherits class Employee.

In THINK Pascal a class is declared with a class name, a list of instance-variable
declarations, and a list of method declarations. Figure 13.2 shows the format for declaring
a class as an object type. A class declaration begins with a class identifier name, followed
by the reserved word object, optionally followed by the name of a single superclass
name within parentheses, followed by field list representing instance-variable declarations,
and a method list representing method declarations.

Class_Name =object (Superclass_Name)
instance-variable declarations
method declarations

end;
Figure 13.2 The format for declaring an object-class type in

THINK Pascal.

A superclass name always represents the immediate ancestor class for the class type
being declared. Although a class is defined as a type, it is different from a record type,
because it can include header declarations for methods. In place of the reserved word
record, we use the word object. Class types are also different from record types in
that a class type cannot be declared with a variant part. Understand that the method
declarations in a class declaration are not method definitions. They are header declarations
for methods defined by procedures and functions. The complete definitions of methods
come after the class declaration as either internal or external routine definitions.

Note that for convenience the abstract class called Employee is declared in a
separate unit from the subclasses. The advantage comes from information hiding.
Definitions of declared methods are not required for a class to be compiled. However, they
are required when a unit becomes linked with other program units. The following is the
THINK Pascal code representing the superclass Employee and the subclasses given in
Figure 13.1.

unit Abstract_Class_Employee;
interface
type
{ Declaration of a superclass called Employee. }

Employee = object
{ Instance Variables }

Full_Name: string[SO];

Object Oriented Programming in THINK Pascal Chapter 13

Tax_ID_Number: string[ll];
Year_of_Birth: integer;
Year_To_Date_Earnings: real;

Method Declarations }
procedure Get_Full_Name;
procedure Get_Tax_ID_Number;
procedure Get_Birth_Year;
procedure Show_Full_Narne;
procedure Show_Tax_ID_Number;
function Compute_Age: integer;
function Compute_Pay: real;

633

This function will be overridden by each subclass.}
end;

implementation
{ Methods are defined later. }

end.

The following unit provides declarations for all three subclasses of Employee. In
each class type a method called Compute_Pay is declared. This method uses the override
directive for overriding the definition in the immediate ancestor class called Employee.
Without the override directive, a syntax error occurs, because the compiler assumes that a
new method is being introduced with the same name as a method that the subclass is
attempting to inherit. Not only is the class Employee considered a root class for this
example, it is assumed to be an abstract class as well, provided that no instances of
Employee are constructed. The remaining methods defined by class Employee are
inherited by each subclass:

unit Subclasses_of_Employee;
interface
uses

Abstract_Class_Employee;
type
{ Declarations of three subclasses dependent upon the }
{abstract class Employee.}

Hourly_Employee = object{Ernployee)
{ Instance variables

Hourly_Rate, Overtime_Rate: real;
Overtime_Hours: integer;

{ Method Declaration }
function Compute_Pay: real;
override;

end;
Salaried_Employee = object{Employee)

{ Instance Variable }
Annual_Salary: real;

Method Declaration }
function Compute_Pay: real;
override;

end;
Exempt_Employee = object{Employee)

634 Chapter 13 Object Oriented Programming in THINK Pascal

{ Instance Variable }
Monthly_Salary: real;

Method Declaration }
function Compute_Pay: real;
override;

end;
implementation

{ The definitions of methods are defined later. }
end.

Figure 13.3 shows the format for defining the methods of a class either as procedures
or functions.

procedure Class_Name.Method_Name(parameter-list);
{ Declarations of constants, types, variables, procedures }
{ or functions local to this method. }
begin

{Body of the method.}
end;

function Class_Name.Method_Name(parameter-list): return-type;
{ Declarations of constants, types, variables, procedures }
{ or functions local to this method. }
begin

{ Body of the method.}
end;

Figure 13.3 Formats for defining a method in THINK Pascal, using
either a procedure or a function.

Each header begins with a dotted pair for either the procedure or function name. That is,
the header begins with the class name followed by the name of the method. Within the
body of a function, only the name of the method, not the class name, is used for returning
a value, or for calling upon itself if it is defined as a recursive routine. The following lists
the definitions of the methods for the classes given in Figure 13.1. If class names do not
precede method names, either syntax or link errors are reported when the unit is compiled
or built, because not all program errors in OOP are discovered during either the syntax
check or the build step of the compiler. In order to shorten the listing of functions and
procedures, class declarations are not shown.

unit Abstract_Class_Employee;
interface
type

{ Declaration of instance variables and methods for the }
{ abstract class Employee.}

implementation
{ Definitions for the methods declared by the class type }
{ Employee.}

Object Oriented Programming in THINK Pascal Chapter 13

procedure Employee.Get_Full_Name;
{ Purpose: This routine reads an employee's full name from }
{ the keyboard.}

begin
readln(Full_Name);

end;

procedure Employee.Get_Tax_ID_Number;
{ Purpose: This routine reads an employee's tax number from }
{ the keyboard.}

begin
readln(Tax_ID_Number);

end;

procedure Employee.Get_Birth_Year;

635

{ Purpose: This routine reads an employee's year of birth from }
{ the keyboard.}

begin
readln(Year_of_Birth);

end;

procedure Employee.Show_Tax_ID_Number;
{ Purpose: This routine displays employee's tax number to the }
{ screen.}

begin
writeln('Employee's tax number: ' Tax_ID_Number);

end;

procedure Employee.Show_Full_Name;
{ Purpose: This routine displays the employee's name to the }
{ screen.}

begin
writeln('Employee's full name: ' Full_Name);

end;

function Employee.Compute_Age: integer;
{ Purpose: This routine computes the employee's present age.}

var
Temp_Date: DateTimeRec;

begin
GetTime(Temp_Date);
Compute_Age := Temp_Date.Year - Year_of_Birth;

end;

function Employee.Compute_Pay: real;
{ Purpose: This is a dummy routine that is overridden by }
{ subclass definitions.}

begin
{ This dummy routine must be present to keep the link step }
{ from failing.}
end;

636 Chapter 13

end.

unit Subclasses_of_Employee;
interface
uses

Abstract_Class_Employee;
type

Object Oriented Programming in 1HINK Pascal

{ Declaration of instance variables and methods for the }
{ subclasses Hourly_Employee, Salaried_Employee, and }
{ Exempt_Employee.}

implementation
{ == }
{ Definition for a method declared by the class type }
{ Hourly_Employee.}

function Hourly_Employee.Compute_Pay: real;
{ Purpose: This function computes the weekly pay of an hourly }
{ employee.}

var
Weekly_Pay: real;

begin
Weekly_Pay := Hourly_Rate * 40 + Overtime Hours *

Overtime_Rate;
Year_To_Date_Earnings := Year_To_Date_Earnings + Weekly_Pay;
Compute_Pay := Weekly_Pay;

end;

{ == }
{ Definition for a method declared by the class type }
{ Salaried_Employee.}

function Salaried_Employee.Compute_Pay: real;
{ Purpose: This function computes the weekly pay of a salaried }
{ employee.}

var
Weekly_Pay: real;

begin
Weekly_Pay := Annual_Salary I 52;
Year_To_Date_Earnings := Year_To_Date_Earnings + Weekly_Pay;
Compute_Pay := Weekly_Pay;

end;

{ == }
{ Definition for a method declared by the class type }
{ Exempt_Employee.}

function Exempt_Employee.Compute_Pay: real;
{ Purpose: This function computes the weekly pay of an exempt }
{ employee.}

var

Object Oriented Programming in THINK Pascal Chapter 13 6 3 7

Weekly_Pay: real;
begin

Weekly_Pay := Monthly_Salary I 4;
Year_To_Date_Earnings := Year_To_Date_Earnings + Weekly_Pay;
Compute_Pay := Weekly_Pay;

end;
end.

To avoid link errors, we must define all methods, even when the body of a method is
used as a stub and has no executable code (as in the function Employee. Compute_
Pay). This method is declared in class Employee in order to provide a complete
definition of the class. It is overridden by each of the three subclasses, because each
subclass has its own rule for computing weekly pay.

13.3 DECLARING AND USING OBJECTS

var

Once a class is defined, we associate an object with a class through an object declaration,
referred to as an object reference. In THINK Pascal, object references are actually handles
(a handle is a pointer of a pointer), but the A symbol is not required. Handles allow both
Macintosh and THINK Pascal to move content variables more easily and efficiently in
memory. An object is declared as an object reference using a variable declaration as
shown:

Object_Name : Class_Name;

Though an object is associated with a class through a formal declaration, it is not
allocated memory when the program begins execution. Allocation takes place through the
constructor command new, and memory can be deallocated by using the destructor
command dispose. Once we have constructed an object, we can reference a member
(instance variable) by using a dotted pair composed of the object name followed by the
instance variable, a format similar to referencing the field of a record:

Object_Name.Instance_Variable

As a rule, it is best to allow the methods of a class to have access to an object's instance
variables, because it is the class that defines all of the responsibilities and data associated
with a class. It is the responsibility of a class to get, set, and report values of any
instance variable, because it is by defining a class that information associated with the
class is hidden. Due to the use of tight coupling, few formal parameters are necessary
when defining the methods of a class.

When an object is given storage, it has access to all the instance variables defined by
its class as well as all of the instance variables through the chain of ancestors that the
object's class inherits. It also has access to all of the methods defined by an object's class
as well as all of the methods inherited by the object's class. An object acts as if it is an
autonomous element with its own set of characteristics. If a second object of the same
class is declared and constructed, it also acts as an autonomous element with its own data
and actions. This is one of the properties that makes object-oriented programming
languages different from procedural languages.

A message is sent to an object by using the syntax

638 Chapter 13 Object Oriented Programming in THINK Pascal

Object_Name.Message(parameters).

While Obj ect_Name is necessary in this syntax, the prefix Class_Name given in the
definition of a method is unnecessary; the object name has been declared as having a
particular type of class. Following is a short program designed to test the methods of the
abstract class Employee and the subclass Hourly_Employee.

program Testing_Classes_And_Instances(input, output);
{Purpose: This program creates an instance of a class and }
{ sends messages to the class for performing various }
{ actions.}
uses

Abstract_Class_Employee, Subclasses_of_Employee;
var

Person_l: Hourly_Employee;
begin
{ Show the Text window for viewing information on object }
{ Person_l. }

ShowText;
{ Create an instance of the subclass Hourly_Employee. }

new (Person_l) ;
{ Assign a name and tax ID number to instance variables of }
{ Person_l.}

write('Enter employee's full name: ');
Person_l.Get_Full_Name;
write('Enter employee's tax identification number: ');
Person_l.Get_Tax_ID_Number;
write('Enter employee's year of birth (19dd): ');
Person_l.Get_Birth_Year;

{Assign temporary data to instance variables of Person_l.}
Person_l.Hourly_Rate := 6.50;
Person_l.Overtime_Rate := 9.75;
Person_l.Overtime_Hours := 1;

{ Send messages to object Person_l for the purpose of }
{ displaying information.}

Person_l.Show_Full_Name;
Person_l.Show_Tax_ID_Number;
writeln('Employee's age: ', Person_l.Compute_Age : 3);
writeln('Wages for the Week: $', Person_l.Compute_Pay: 9 : 2);
writeln('Wages for the Year: $', Person_l.Year_To_Date_Earnings

: 9 : 2) ;
{ Dispose of the object Person_l before ending execution.}

dispose(Person_l);
end.

Because object Person_l is of class type Hourly_Employee, and subclass
Hourly_Employee has as an ancestor Employee, Person_l has the following
instance variables (data) at its disposal:

Object Oriented Programming in THINK Pascal Chapter 13

Full_Name
Tax_ID_Nurnber
Year_of_Birth
Year_To_Date_Earnings
Hourly_Rate
Overtime_Rate
Overtime_Hours

639

The first four instance variables are inherited, and the last three are added by the
subclass declaration. The object-reference Person_l inherits all of its methods from its
immediate ancestor. The method Compute_Pay is an abstract method in class
Employee and is overridden in the subclass associated with Person_l.

The property of polymorphism makes it convenient to program with an object­
oriented language. As an example, suppose that two new classes Se as ona l_
Hourly_Employee and Seasonal_Salaried_Employee are added to the class
hierarchy shown earlier in Figure 13.1. They are different from their ancestor classes in
that they have a date when employment is initiated. Seasonal_Hourly_Employee
will inherit its data and methods from Hourly_Employee while Seasonal_
Salaried_Employee will inherit its data and methods from Salaried_
Employee. Figure 13.4 shows the subclass relationships with their superclasses.

Employee

J 1 l
l l

Hourly _Employee Salaried_Employee Exempt_Employee

5 1
1

Seasonal_Hourly _Employee Seasonal_Salaried_Employee

Initial_Employment_Date Initial_Employment_Date

Get_Initial_Employment_Date Get_Initial_Employment_Date

Figure 13.4 A graphic representation of the superclasses Employee, Hourly_Employee,
Salaried_Employee, and Exempt_Employee, along with two new subclasses.

Each new subclass supports a method for reading the initial date of employment. The
following shows a separate program unit designed for the purpose of declaring these two
new subclasses and defining their methods.

640 Chapter 13 Object Oriented Programming in THINK Pascal

unit Seasonal_Employee_Classes;
interface

uses
Abstract_Employee_Class, Subclasses_of_Employee;

type
Seasonal_Hourly_Employee = object(Hourly_Employee)

{ Instance Variable }
Initial_Employment_Date: string[B];

{ Method Declaration }
procedure Get_Initial_Employment_Date;

end;
Seasonal_Salaried_Employee = object(Hourly_Employee)

{ Instance Variable }
Initial_Employment_Date: string[B];

{ Method Declaration }
procedure Get_Initial_Employment_Date;

end;

implementation
{ == }
{ Definition of the method declared by the class type }
{ Seasonal_Hourly_Employee.}
procedure Seasonal_Hourly_Employee.Get_Initial_Employment_Date;

begin
readln(Initial_Employment_Date);

end;

{ ==
{ Definition of a method declared by the class type }
{ Seasonal_Salaried_Employee.}

procedure Seasonal_Salaried_Employee.Get_Initial_Employment
_Date;

begin
readln(Initial_Employment_Date);

end;
end.

Unfortunately, Seasonal_Hourly_Employee and Seasonal_Salaried_
Employee cannot inherit a method that is overridden by their immediate ancestor class.
For example, if function Compute_Pay in class Employee is redefined with actions
that both seasonal classes can apply, only the method Compute_Pay in the immediate
ancestor class is available to each of the seasonal subclasses. In THINK Pascal, the
method Compute_Pay in class Employee is out of reach unless the method
Compute_Pay is eliminated from the subclasses Hourly_Employee and
Salaried_Employee, and the units Abstract_Class_Employee and
Subclasses_of_Employee are rebuilt.

Object Oriented Programming in THINK Pascal Chapter 13 641

Can one object of a particular class be directly assigned to an object of another class
by using the assignment operator? In THINK Pascal, two objects of different classes are
type-compatible provided that the class of the left-hand operand of the assignment operator
is an ancestor to the class of the right-hand operand. The assignment operation is allowed
for assigning an object to an object having an ancestor class but not a descendant class. In
addition, type-casting is allowed for an object being cast into a descendant class as long as
the class of the object being cast is an ancestor. Improper type-casting is only checked
during execution, provided that the programming unit containing the type-casting has
been built with the range check turned on. As an example, consider the following
declarations and statements for a segment of a program:

var
Company_President: Employee
Person_l: Hourly_Employee;
Person_2: Seasonal_Hourly_Employee;
Person_3: Seasonal_Salaried_Employee;

begin

{ The following assignment statements are type-compatible, since }
{ the class types associated with Company_President and Person_l }
{ are ancestors of the subclass associated with Person_2.}

Person_l := Person_2;
Company_President := Person_2;

{ The following assignment statements are type-incompatible, }
{ since the class type of Person_2 is not an ancestor to the }
{ class types associated with Person_l and Company_President.}

Person_2 := Person_l;
Person_2 := Company_President;

{ The following type-casting of Company_President is allowed, }
{ since the class type of Company_President is an ancestor to }
{ Seasonal_Hourly_Employee.}

Person_2 := Seasonal_Hourly_Employee(Company_President);

{ The following type-casting of Person_l will fail during }
{ execution if the program unit containing this code has been }
{built with range checking turned on.}

Person_3 := Seasonal_Salaried_Employee(Person_l);

end.

THINK Pascal objects are actually handles, so no binary operations other than the
assignment operator are allowed.

642 Chapter 13 Object Oriented Programming in THINK Pascal

In addition to the procedures new and dispose for creating a new instance of an
object and for deleting a specified object, THINK Pascal also supports a function called
member. The following describes this function:

function Member(Object_Reference, Class_Name : Boolean;

When executed, this function checks to see if the Obj ect_Reference is a
member of Class_Name. If so, the Boolean value true is returned; otherwise, false is
returned. An object reference is a member of a class provided that the object reference is of
the type Class_Name, or that Class_Name is a superclass of the object's actual class.
The following is a portion of code that implements the function Member:

if Member(Person_l, Hourly_Employee) then
writeln('Person_l is a member of subclass Hourly_Employee. ')

else
writeln('Person_l is not a member of subclass

Hourly_Employee.');
if Member(Person_l, Employee) then

writeln('Person_l is a member of the superclass Employee.')
else

writeln('Person_l is not a member of the superclass
Employee. ') ;

if Member(Person_l, Salaried_Employee) then
writeln('Person_l is a member of subclass Salaried_Employee')

else
writeln('Person_l is not a member of subclass

Salaried Em...12._l~ee.');

Unfortunately, THINK Pascal supports no type of function to return the type of class
for a given object. This is best defined as a function within an abstract class by the
programmer. All other operations on objects other then new, dispose, and member
must be defined through programmer-defined methods encapsulated within class
definitions.

13.4 APPLYING THE RESERVED WORD I:HBBRITED AND USING THE
SELi' PREFIX

A descendent class must often override the definition of a method of its immediate
ancestor. This does not mean that the method being inherited from its immediate ancestor
has to be defined as a stub. As an example, consider the case in which each of the three
subclasses Hourly_Employee, Salaried_Employee, and Exempt_Employee
override the definitions of the methods Get_Full_Name, Get_Tax_ID_Number,
and Get_Birth_Date by providing a prompt for the appropriate data, followed by
invoking the proper method from class Employee.

Initially, the methods of the subclasses Hourly_Employee, Salaried_
Employee, and Exempt_Employee are modified as the code below demonstrates. The
steps defined by the method in the immediate ancestor are to be inherited, so only the
prompt is given, and the second line in the body of the method uses the steps defined by
the method in the abstract class Employee. Where the name of a method in an

Object Oriented Programming in THINK Pascal Chapter 13 643

immediate ancestor is invoked, it is preceded by the reserved word inherited. If not,
the compiler will interpret the method as a recursive call upon itself. Only the code for
subclass Hourly_Employee is given, because the code for these methods in the other
two subclasses is similar:

unit Subclasses_of_Employee;
interface
uses

Abstract_Class_Employee;
type

{ Declaration of instance variables and methods for the }
{ subclasses Hourly_Ernployee, Salaried_Employee, and }
{ Exempt_Ernployee.}

implementation
{ == }
{ Definitions of methods declared by the subclass
{ Hourly_Employee. }
procedure Hourly_Employee.Get_Full_Name;
{ Purpose: This routine prompts for and reads an employee's }
{ full name from the keyboard.}

begin
write('Enter the employee's full name: ');
inherited Get_Full_Name;

end;

procedure Hourly_Employee.Get_Tax_ID_Nurnber;
{ Purpose: This routine prompts for and reads an employee's }
{ tax number from the keyboard.}

begin
write('Enter the employee's tax number: ');
inherited Get_Tax_ID_Number;

end;

procedure Hourly_Employee.Get_Birth_Year;
{ Purpose: This routine prompts for reads an employee's year }
{ of birth from the keyboard.}

begin
write('Enter the employee's year of birth: ');
inherited Get_Birth_Year;

end;

{ ==

end.

For the test program Testing_Classes_And_Instances, the Pascal code and
messages necessary for reading values of instance variables follows:

{ Assign a name and tax ID number to the instance variables of }

644 Chapter 13 Object Oriented Programming in THINK Pascal

Person_l.}
Person_l.Get_Full_Name;
Person_l.Get_Tax_ID_Number;
Person_l.Get_Birth_Year;

During execution, Get_Full_Name, Get_Tax_ID_Number, and Get_
Birth_Date will prompt the user by executing a write statement from the methods
defined in each the related subclasses. The read statement, reading an instance variable
from the keyboard, executes from one of the relevant methods defined in the abstract class
Employee. It is important to understand that in THINK Pascal, an inherited call to a
method can only override a method from its immediate ancestor class. It cannot apply an
inherited call to a method that is farther up the chain of class hierarchy.

In the method definitions from THINK Pascal class libraries, you will often see a
prefix called Self used in referencing the names of instance variables and invoking other
methods within the same class. This prefix is important in the definition of methods
where during execution an object must refer to itself. The following demonstrates the
Self prefix for subclass method Compute_Pay:

function Hourly_Employee.Compute_Pay: real;
{ Purpose: This function computes the weekly pay of a hourly }
{ employee.}

var
Weekly_Pay: real;

begin
Weekly_Pay := Self.Hourly_Rate * 40

+ Self.Overtime_Hours * Self.Overtime_Rate;
Compute_Pay := Weekly_Pay;
Self.Year_To_Date_Earnings := Self.Year_To_Date_Earnings

+ Weekly_Pay;
end;

Within the definition of a method, the THINK Pascal compiler supplies an implied
declaration of the form

Self : class;

Each time a method is invoked, an implicit parameter is passed to the method for
providing a reference to the current object. Using the prefix Self is optional. Although a
method definition can omit the prefix Self when referring to instance variables and to
calls upon methods of the same class, its inclusion makes it easier to read the code,
because it explicitly indicates that the instance variables and methods being accessed are
owned by the current object.

13.5 USING TOb j e ct AS THE ROOT CLASS

In THINK Pascal, an object is represented by a special type of pointer called a handle. A
handle is a pointer that points to another pointer, which in turn points to a location in
memory that can be relocated during execution. This scheme allows THINK Pascal to

Object Oriented Programming in THINK Pascal Chapter 13 645

type

periodically reorganize the content of memory to provide maximum available storage
space for the allocation of new dynamic variables. Handles have an important property in
both Macintosh and THINK Pascal: they are assignment-compatible with any other
pointer type. Because of this property, we must be careful when applying Memory
Manager procedures and functions to handles. Handles are different from simple pointers,
which point to where the dynamic variables are stored. Here the storage is locked for the
dynamic variable and cannot be moved by the system.

THINK Pascal supports a special file called Obj Intf. p containing the definition
of a root class called TObj ect, which is an abstract class defining methods that allow
efficient copying and deleting of any object. The following is a declaration of TObj ect.
Because it has no instance variables, no added storage is required of any object whose class
inherits from TObject:

TObject = object
function ShallowClone : TObject;
function Clone: TObject;
procedure ShallowFree;
procedure Free;

end;

Method Free disposes of the dynamically allocated storage of an object that is no
longer needed. It is different from the standard procedure dispose, which only breaks the
link between a handle's first pointer and its second pointer. It fails to free the dynamic
storage area of the dynamic variable associated with the handle. We can override Free
for any subclass. While method Free directly invokes method ShallowFree,
Sha 11 owFree is the lowest level method for freeing an object and should not be
overridden.

Method Clone allows the programmer to make a copy of an object. It is different
from executing an assignment statement of the form

Object_2 := Object_l;

because method Clone makes a copy of the values of all instance variables. An
assignment statement simply copies an address associated with the handle representing the
object. In the case of the given assignment statement, changes to instance variables of
Obj ect_2 affect those of Obj ect_l and vice versa, since the handles of both objects
reference the same storage area in memory. If Obj ec t_l is freed by executing
Obj ect_l. Free, Obj ect_2 is also freed of any storage. Execution of the command
Obj ect_2. Free causes an error unless Obj ect_2 has been assigned another object­
reference. A proper way to make a copy of an object is to use the method Clone. An
example of the code for cloning follows:

Object_2 := Class_Type_of_Object_2(Object_l.Clone);

When using Clone, the value returned must be cast into the class type associated with
Obj ect_2 in order to avoid a type-incompatibility error. When this function is applied
to Obj ect_l, changes to Obj ect_2 will have no effect on the object that is cloned or
upon Obj ect_l. Unexpected side effects can be avoided by cloning an object. Also, the
programmer is unencumbered in applying the method Free when an object is ready to be
disposed of. TObj ect does allow us to override Clone. The method ShallowClone

646 Chapter 13 Object Oriented Programming in TIIINK Pascal

is invoked by C 1 one and is the lowest level method for copying an object.
ShalloWClone should not be overridden.

13.6 BUILDING A SIMPLE WINDOW SYSTEM

Assume that you are to implement a simple drawing system with limited drawing
capability. This system will have provisions for two windows, a Text window for
displaying instructions and a Drawing window for drawing either a line, a rectangle, or an
oval. Instructions will include selection of the type of geometric shape to be drawn and
selection of the left or right corner for drawing a figure. It is assumed that one geometric
shape can be drawn over another.

Figure 13.5 shows an overall view of the classes for this system. The hierarchy of
this system is based upon an abstract class called Window, which has two dependent
subclasses.

Window

Window _Boundary
Boundary _for_Figure

Set_ Window _Boundary
Show_ Window
Draw_ Window

l
j t

l
Text_ Window Drawing_ Window

String_ Table

Show_Window Show_Window
(override) (override)
Draw_ObJect Draw_ObJect
(override (override

J
l _[

Line Oval Rectangle

Draw_Object
(override)

Draw_Object
(override)

Draw_Object
(override)

Figure 13.5 The hierarchy of classes for the simple drawing system.

Object Oriented Programming in THINK Pascal Chapter 13 647

The first subclass represents the Text window, and the second represents the Drawing
window. In turn, the Drawing window acts as a superclass to three additional subclasses.
These include a class representing a line figure, a class representing a rectangular figure,
and a class representing an oval figure. We assume that the superclass Window has two
members that it must know: the boundary of the window for an object of this type of
class and the boundary for a geometrical shape that is to be drawn. These boundaries are
represented by an upper-left point and a lower-right point, referred to as corners. For a
geometrical shape, the upper-left point is selected when the mouse button is pressed, and
the lower-right point is selected when the mouse button is released. After the selection of
the upper-left point, the button is held down while the mouse is dragged down and to the
right. Then the lower-right point is selected with the release of the button. We assume
that an oval or rectangle must always be drawn from an upper-left point to a lower-right
point of the Drawing window.

The superclass Window also defines three methods: one for establishing the
boundary of a window, a second for showing the window, and a third for drawing an
object within a window. This third method is responsible for capturing the upper-left and
lower-right corners bounding the graphical shape being drawn. We assume that a portion
of its definition is overridden by one or more descendent subclasses having a greater
knowledge of the types of graphical objects to be drawn. Members listed in the class
declaration as well as the methods defined are assumed to represent the minimal amount of
information required by this abstract class. In some cases these methods are overridden by
the methods of subclasses having greater knowledge of the type of object that the subclass
is categorizing.

The two subclasses Text_Window and Drawing_Window are more specific
types of classes that inherit from the abstract class Window. The subclass
Drawing_Window has no members, but the subclass Text_Window has as a member
a string array for storing messages. This string array stores text (as a primitive type
of graphical object) for drawing instructions to the Text window. Both classes define two
methods. One method is for showing the window, and the second is for drawing some
type of graphical object (or text) for an instance of this type of class. Both methods
override those defined in the superclass Window.

Another set of subclasses is the set Line, Rectangle, and Oval. Instances of
these subclasses represent objects that can reside within the instances of the superclass
Drawing_Window. While they provide no added members, each is assumed to have its
own method of drawing an object in addition to the methods defined by its ancestor
classes, Drawing_Window and Window. What is inherited from the ancestor classes is
the set of primitive actions that the present methods need not perform. This arrangement
provides a means of sharing responsibilities through a hierarchy of classes, without the
need for excessive parameter passing among messages.

The following code represents the unit for declaring the abstract class Window, and
the definitions of all of its methods. Note that we always try to keep each method as
functional as possible and to practice tight coupling:

unit Abstract_Class_Window;
{ Purpose: This unit supports the definition of a class called }
{ Window. It uses as its superclass TObject.}
interface
uses

Objintf;
type

648 Chapter 13 Object Oriented Programming in THINK Pascal

Window = object(TObject)
{ Instance Variable Declarations

Window_Boundary: Rect;
Boundary_for_Figure: record

Upper_Left_Corner: Point;
Lower_Right_Corner: Point;

end;
{ Method Declarations }

procedure Set_Window_Boundary (Top, Left,
Bottom, Right: integer);

procedure Show_Window;
procedure Draw_Obj ect;

end;

implementation

procedure Window.Set_Window_Boundary;
{ Purpose: This routine establishes the boundary for a window.}
begin

SetRect(Self.Window_Boundary, Top, Left, Bottom, Right);
end;

procedure Window.Show_Window;
{ Purpose: This routine shows the window to the viewer.}
begin

{ This method is a stub that is to be overridden by a }
{ subclass.}

end;

procedure Window.Draw_Object;
{ Purpose: This routine draws a simple figure from an }
{ upper-left corner to a lower-right corner.}

begin
{Wait for the mouse button to be pressed.}

while not Button do

{Get the upper-left point for drawing a figure.}
GetMouse(Self.Boundary_for_Figure.Upper_Left_Corner);

{ Get the lower-right point for drawing a figure by waiting }
{ for the button to be released.}

while Button do

GetMouse(Self.Boundary_for_Figure.Lower_Right_Corner);
In drawing the object, this part will be overridden by a }
definition of a subclass.}

end;
end.

The subclasses Text_Window and Drawing_Window are defined by a unit
Window_Subclasses. Here, subclass Text_Window supports a string array for
storing lines of text. Both subclasses support two methods: one for showing the window

Object Oriented Programming in THINK Pascal Chapter 13 649

and a second for drawing an appropriate object on the screen. For the subclass
Text_Window, this object will be lines of text, whereas for the subclass
Drawing_Window, it will be a simple geometrical figure.

unit Window_Subclasses;
{ Purpose: This unit defines two subclasses of superclass Window.}
interface
uses

Objintf, Abstract_Class_Window;
type

Text_Window = object(Window)
{ Instance Variable Declaration }

String_Table: array[l .. 5] of string;
Method Declarations }

procedure Show_Window;
override;

end;

procedure Draw_ Object;
override;

Drawing_Window = object(Window)
{ Method Declarations }

procedure Show_Window;
override;

end;

procedure Draw_Obj ect;
override;

implementation
{ ==
procedure Text_Window.Show_Window;
{ Purpose: This routine sets the boundary and displays a Text }
{ window on the screen.}

begin
SetTextRect(Self.Window_Boundary);
ShowText;

end;

procedure Text_Window.Draw_Object;
{ Purpose: This routine displays lines of text to the screen.}

var
Index: integer;

begin
Index : = 1;
Page;
while String_Table[Index] <> 'END_STRING' do

begin
writeln(String_Table[Index]);
Index.- succ(Index);

end;
end;

650 Chapter 13 Object Oriented Programming in THINK Pascal

{ == }
procedure Drawing_Window.Show_Window;
{ Purpose: This routine sets the boundary and displays the } {

Drawing window on the screen.}
begin

SetDrawingRect(Self.Window_Boundary);
ShowDrawing;

end;

procedure Drawing_Window.Draw_Object;
{ Purpose: This routine inherits some of its actions for }
{ drawing an object from class Windows.}

begin
inherited Draw_Object;
{ Remaining actions for drawing an object will be }
{ overridden by a definition of a subclass.}

end;
end.

The third unit, Figure_Classes, defines three subclasses representing three basic
geometric figures. These figures are Line, Oval, and Rectangle. Although none of
these three subclasses adds information by way of instance variables, each subclass defines
only one method, Draw_ Object. Each individual method draws one of three types of
figures to the screen. Notice that each method overrides Draw_Obj ect from subclass
Drawing_Window. In turn, Drawing_Window overrides the method Draw_
Object from the abstract class Window. When an object of subclass Line,
Rectangle, or Oval sends the message Draw_Obj ect, it applies the inherited steps
from Draw_Obj ect in the ancestor class Drawing_Window before completing its
own definition. In turn, the method Draw_ Object in subclass Drawing_Window
uses the definition Draw_Obj ec t from the abstract class Window. Method
Draw_Obj ect in class Window establishes the upper-left and lower-right corners for
bounding the area in which a figure is drawn. The following unit provides declarations and
definitions for the subclasses Line, Rectangle, and Oval:

unit Figure_Classes;
{ Purpose: This unit defines three subclasses representing }
{ simple geometric figures.}
interface
uses

Objintf, Abstract_Class_Window, Window_Subclasses;

type
Line object(Drawing_Window)

procedure Draw_Obj ect;
override;

end;

Rectangle = object(Drawing_Window)
procedure Draw_Obj ect;

Object Oriented Programming in THINK Pascal Chapter 13

override;
end;

Oval = object(Drawing_Window)
procedure Draw_Object;
override;

end;

implementation

procedure Line.Draw_Object;
{ Purpose: This routine draws a line from an upper-left to a }
{ lower-right point.}

begin
inherited Draw_Object;
DrawLine(Self .Boundary_for_Figure.Upper_Left_Corner.h,

Self.Boundary_for_Figure.Upper_Left_Corner.v,
Self.Boundary_for_Figure.Lower_Right_Corner.h,
Self.Boundary_for_Figure.Lower_Right_Corner.v)

end;

651

{ == }
procedure Oval.Draw_Object;
{ Purpose: This routine draws an oval bounded by upper-left and }
{ lower-right corners.}

var
Rectangle_for_Oval: Rect;

begin
inherited Draw_Object;
Rectangle_for_Oval.Top :=

Self.Boundary_for_Figure.Upper_Left_Corner.v;
Rectangle_for_Oval.Left :=

Self.Boundary_for_Figure.Upper_Left_Corner.h;
Rectangle_for_Oval.Bottom :=

Self.Boundary_for_Figure.Lower_Right_Corner.v;
Rectangle_for_Oval.Right :=

Self.Boundary_for_Figure.Lower_Right_Corner.h;
FillOval(Rectangle_for_Oval, black);
InvertOval(Rectangle_for_Oval.Top + 2,

Rectangle_for_Oval.Left + 2,

end;

Rectangle_for_Oval.Bottom - 2,
Rectangle_for_Oval.Right - 2);

{ ===
procedure Rectangle.Draw_Object;
{ Purpose: This routine draws a rectangle bounded by }
{ upper-left and lower-right corners.}

var
Rectangle_for_Rect: Rect;

begin

652 Chapter 13 Object Oriented Programming in THINK Pascal

inherited Draw_Object;
Rectangle_for_Rect.Top :=

Self.Boundary_for_Figure.Upper_Left_Corner.v;
Rectangle_for_Rect.Left :=

Self.Boundary_for_Figure.Upper_Left_Corner.h;
Rectangle_for_Rect.Bottom :=

Self.Boundary_for_Figure.Lower_Right_Corner.v;
Rectangle_for_Rect.Right :=

Self.Boundary_for_Figure.Lower_Right_Corner.h;
FillRect(Rectangle_for_Rect, black);
InvertRect(Rectangle_for_Rect.Top + 2,

Rectangle_for_Rect.Left + 2,
Rectangle_for_Rect.Bottom - 2,
Rectangle_for_Rect.Right - 2);

end;
end.

As you can see from this unit's implementation of the methods, each method inherits
the primitive actions from its ancestors while defining the specific actions for completing
its definition. This is one of the advantages of using object Pascal.

The following unit provides supporting routines for presenting instructions to a Text
window. Both procedures have a formal parameter of type Text_Window:

unit Instructions;
{ Purpose: This unit has two supporting routines for passing }
{ instructions to an instance of Text_Window.}
interface
uses

Objintf, Abstract_Class_Window, Window_Subclasses,
Figure_Classes;

procedure Instructions_for_Choosing_Figure
(A_Text_Window:Text_Window);

procedure Instructions_on_Drawing_Figure(A_Text_Window:
Text_Window);

implementation
procedure Instructions_for_Choosing_Figure;
{ Purpose: This routine passes instructions to an object of }
{ type Text_Window.}

begin
with A_Text_Window do

begin
String_Table[l] :=

'Type one of the following keys to draw a figure:';
String_Table[2] .-

'L for Line; , R for Rectangle, 0 for Oval; Q to Quit;';
String_Table[3] := 'then press the return key: ';
String_Table[4] := 'END_STRING';

end;

Object Oriented Programming in THINK Pascal Chapter 13 653

end;

procedure Instructions_on_Drawing_Figure;
{ Purpose: This routine passes instructions to an object of }
{ type Text_Window.}

begin
with A Text Window do

begin
String_Table[l] :=

Select the top left corner, then press the mouse button.';
String_Table[2] :=

Hold the mouse button down until you have selected the ';
String_Table[3] :=

right point. Then release the button. Use the halt button';
String_Table[4] :=

if you wish to interrupt execution.';
String_Table(S] .- 'END_STRING';
end;

end;
end.

The following program drives the simple drawing system described above. As you
can see, it begins by hiding all windows. It then establishes two instances of subclasses:
an instance representing the Text window as an object, and an instance representing the
Drawing window as an object. For both objects, the boundaries of the windows are set
and shown by using the messages Set_Window_Boundary and Show_Window.
The program then repeats instructions for selecting a figure and for drawing the figure in
the Drawing window. When drawing any of the three types of geometrical figures, its
instance is created, drawn, and then disposed of by using the method Free from class
TObj ect. This suggests a rule of keeping an instance in existence for only as long as it
is required. It should be disposed of immediately when it no longer is needed.

Once the choice is made to quit, each of the window instances is destroyed. This
program differs from a procedural program in the lack of dependency on parameter
passing. In most instances where messages are involved, no parameter passing is required.
This is possible because all of the values an object must know are integrated internally in
the object as it is used dynamically by the program. At no point in the program do we
need to directly reference a member of an object. All references are hidden through method
definitions.

program Drawing_Basic_Figures (input, output);
{ Purpose: This program deals with instances of a Text and }
{ Drawing window, and with instance of a figure such }
{ as a line, oval, or rectangle.}
uses

Objintf, Abstract_Class_Window, Window_Subclasses,
Figure_Classes, Instructions;

var
{ Instance-references }

A_Text_Window: Text_Window;
A_Drawing_Window: Drawing_Window;

654 Chapter 13 Object Oriented Programming in THINK Pascal

A_Line_Figure: Line;
An_Oval_Figure: Oval;
A_Rectangular_Figure: Rectangle;

{ Simple Identifier }
Figure_Type: char;

begin
{Hide all windows before showing Text and Drawing windows.}

Hideall;
{ Establish instances of objects for a Text and a Drawing window.}

new(A_Text_Window);
new(A_Drawing_Window);

{ Establish the boundary and show the Text window on the screen.}
A_Text_Window.Set_Window_Boundary(l, 260, 512, 335);
A_Text_Window.Show_Window;

{ Establish the boundary and show the Drawing window on the }
{ screen.}

A_Drawing_Window.Set_Window_Boundary(l, 40, 512, 240);
A_Drawing_Window.Show_Window;
repeat
{ Establish lines of text for viewing in the Text window.}

Instructions_for_Choosing_Figure(A_Text_Window);
{ Continue to display instructions until a proper figure-type }
{ is selected.}

repeat
A_Text_Window.Draw_Object;
readln(Figure_Type);

until (Figure_Type = 'L') or (Figure_Type = '0') or
(Figure_Type = 'R') or (Figure_Type = 'Q');

{ Test if the option is to quit.}
if (Figure_Type <> 'Q') then

begin
{ Provide instructions to the user for drawing a figure }
{within the Drawing window.}

Instructions_on_Drawing_Figure(A_Text_Window);
A_Text_Window.Draw_Object;

{ Draw the selected figure in the Drawing window. }
case Figure_Type of
'L': { Draw a line from point to point.}

begin
new(A_Line_Figure);
A_Line_Figure.Draw_Object;
A_Line_Figure.Free

end;
'0': {Draw an oval within a rectangle given by}
{ left and right mouse points.}

begin
new(An_Oval_Figure);
An_Oval_Figure.Draw_Object;
An_Oval_Figure.Free;

end;
'R': { Draw a rectangle within a rectangle given by }

Object Oriented Programming in THINK Pascal Chapter 13

{ left and right mouse points.}
begin

new(A_Rectangular_Figure);
A_Rectangular_Figure.Draw_Object;
A_Rectangular_Figure.Free;

end;
'Q':

end;
end;

until (Figure_Type = 'Q');

655

{ Free storage of all window instances before ending execution.}
A_Text_Window.Free;
A_Drawing_Window.Free;

end.

Figure 13.6 shows a snapshot taken after executing the program Drawing_Basic_
Figures.

Drawing

0 C>
c ::>

<: ::>

D Te Ht t!]

Type one of the following keys to draw a figure: ~
L for Line; R for Rectangle; 0 for Oval; Q to Quit;
then press the return key:
Q

~
12:1

Figure 13.6 A snapshot after executing the simple drawing program.

656 Chapter 13 Object Oriented Programming in THINK Pascal

13.7 USING THE CLASS BROWSER AND LIGHTSBUG FOR VIEWING
OBJECTS AND CLASSES

THINK Pascal supports a helpful tool for examining files containing class declarations.
Called a Class Browser, this tool allows us to view the hierarchical structure of classes
defined within a THINK Pascal project. It also allows us to locate files containing the
declaration of classes as well as the definitions of methods.

The Class Browser for any project is chosen by selecting Class Browser from the
menu option Windows, which presents a special window, a Class Browser window, as
the active window. Like other Macintosh windows, this window can be sized, dragged,
and closed, and has both horizontal and vertical scroll bars. Figure 13.7 shows the Class
Browser window after it has been applied to the project of the simple drawing system.

-D Class Browser 0
{ Line J Q

J{ Drawin_g__Window}{ Oval] L , TObject Window
Rectal}g!e] {

l Text Window]

~
[QI _lQj ~

Figure 13. 7 Class Browser window for the simple drawing system.

While the Class Browser window is active, the source file for any class name given
in the tree chart can be opened (and the window scrolled to where the class declaration
begins) by simply double-clicking on the rectangle containing the name of the class.

We can also locate the declaration for a class when in the editor of THINK Pascal by
holding down the option key and at the same time highlighting the name of the class.
When the mouse button is released, the source file containing the declaration appears in
an active editing window. If the source file is lengthy, the Edit window will scroll to
where the class is declared.

We can locate method definitions from either the Class Browser or from the editor.
On choosing the Class Browser, we can display the names of methods associated with a
class through a pop-up menu appearing to the right of class name. This pop-up menu is
opened by highlighting the name of a class. Figure 13.8 shows a pop-up menu
containing the names of methods declared by class Text_Window.

Highlighting the name of the method in the pop-up menu and releasing the mouse
button opens the source file containing the definition of a method, with the Edit window
scrolled to where the definition begins. A pop-up menu never includes methods inherited
from other classes. The definition of a method can also be located from the editor of
THINK Pascal by holding down the option key and at the same time highlighting the
name of the method. Releasing the mouse button displays the source file containing the
method definition in an active editing window. Again, if the source file is lengthy, the
Edit window will scroll to where the method is defined. If a method name is highlighted

Object Oriented Programming in THINK Pascal Chapter 13 657

and more than one class has a definition, the Class Browser window is opened and shows
those classes that contain definitions.

Class Browser

TOb'ect Window
_Window

Text_Window Draw_Object
Show_ Window

Figure 13.8 Listing the method names of a class by using the Class Browser
window.

Figure 13.9 shows the Class Browser window that has been opened after highlighting
the message name Draw_Object in program Drawing_Basic_Figures. From the
Class Browser window, we can access the method definition given by a particular class.

Several keyboard shortcuts exist for moving through a class hierarchy in the Class
Browser window. Pressing the enter or return key is the same as double-clicking. The Up­
arrow key will select the previous sibling of a current class, and the Down-arrow key
selects the next sibling of a current class. The Left and Right arrow keys select a
superclass or subclass, respectively, and the Tab traverses each class in the class
hierarchy.

Class Browser

TOb'ect

Figure 13.9 In this example, the Class Browser indicates that the
method Draw_Obj ect is defined in more than one class.

Various options for debugging an object Pascal program are available when using the
THINK Pascal system. By setting Option D for any file that is currently in the Project
window, we can use the LightsBug debugger to examine the memory content of any
object listed in the upper-right pane of the LightsBug window. Other options can be set,
such as Option N, for viewing the actions of routine; V, for checking for overflow; and
R, for range-checking. Figure 13.10 shows the LightsBug window, where the program

658

I
f§Jl
fdifl)

Chapter 13 Object Oriented Programming in THINK Pascal

Drawing_Basic_Figures has been stopped to view the content of the object
A_Drawing_Window.

Global variables
00000000 An_Oval_Figure :
00218DDC A_Drawing_Window:
00218DD8 A_Line_Figure
00000000 A Rectangular_F ... :
00218DEO A_Text_Window :

... '..~.'. f.i.9:hl:F.§!_T.Y.Q~•..

~ A_Drawing_Window.Window_Bounda:ry = Rect
Integer
Integer
Integer
Integer
Point
Point

Drawing_Basic_Fi
~ 40 top
f.i11 1 left
~ 240 bottom
~ 512 right
t::!!:::'.1 <record> topLeft tJ <record> botRight

¥
Figure 13.10 Using the LightsBug window to examine the content of an object.

13.8 USING OBJECT PASCAL TO IMPLEMENT AN OBJECT LIST

In THINK Pascal, objects are treated as handles. Handles are indirect references using
pointers. While in standard Pascal pointers can implement a list as a sequence of linked
nodes, object Pascal can implement a list of polymorphic objects representing an abstract
data type. The list is by itself an instance of a class. Figure 13.11 illustrates the idea of
an object list, beginning with a special object representing the header for the list. The
remaining elements represent polymorphic objects, with each object encapsulating an

Header as
an object

Polymorphic objects

Figure 13.11 Graphic representation of a list of polymorphic objects.

Object Oriented Programming in THINK Pascal Chapter 13 659

instance variable capable of referencing another polymorphic object. An object list differs
from a normal linked list of nodes in the way one object is connected with another. In an
object list, each object encapsulates a reference to the next object in the list. The instance
variable that references another object is not a pointer type. Rather, the link from one
object to another is achieved by making an instance variable a class type.

The implementation that follows defines a class for supporting the declaration of a
polymorphic object, as well as a class for supporting the declaration of a header object.
The unit that follows specifies the class for declaring our polymorphic objects:

unit Link_Class_Definition;
{Purpose: This unit defines a class for declaring a }
{ polymorphic object.}
interface
uses

Objintf;
type

Object_Class = object(TObject)
{ Instance Variable Declaration }

Next_Object: Object_Class;
{ Method Declarations }

procedure Establish_Link (Next_Object:
Object_Class);

function Next_List_Object: Object_Class;
end;

implementation

procedure Object_Class.Establish_Link (Element: Object_Class);
{ Purpose: This routine assigns a reference for the object }
{ Element passed to this routine to the instance }
{ variable Next_Object of an object encapsulating }
{ this method.}

begin
Self.Next_Object .- Element;

end;

function Object_Class.Next_List_Object: Object_Class;
{ Purpose: This routine returns a reference to the next object }
{ in the list.}

begin
Next_List_Object := Self.Next_Object;

end;
end.

Although the definitions of the methods are short, they are highly functional for the
actions that they perform. Only the instance variable Next_Obj ect is necessary,
because this class represents only the minimal information for declaring a polymorphic
object.

The next unit defines a class for an object declared as a list. An instance of this class
will represent the header to the object list:

660 Chapter 13 Object Oriented Programming in THINK Pascal

unit List_Class_Definition;
{Purpose: This unit defines a class for an object list.}
interface
uses

Objintf, Link_Class_Definition;

type
List_Class = object{TObject)

{ Instance Variable Declaration
Link: Object_Class;

{ Method Declarations }
procedure Initialize_List;
procedure Push_Object_To_List {Element: Object_Class);
function Pop_Object_From_List: Object_Class;
function Inspect_Header_List: Object_Class;

end;

implementation
{ Definitions for the different methods are given in the }
{ discussion that follows.}

end.

As you can see, the class for a list has only one instance variable. This variable is for
referencing the first object in the list. The class for a list also has four method definitions
for defining the minimal actions for anobject of this class. First, the method
Ini tiali ze_Li st establishes an empty object list by assigning the instance variable
Link in the header object the value nil. The following procedure defines the actions for
this method:

procedure List_Class.Initialize_List;
{ Purpose: This routine initializes an empty object list. }

begin
Self.Link .- nil;

end;

The instance variable Link in the header object must be modified each time an
object is added at the front of list. Figure 13.12 demonstrates the basic steps in adding a
new polymorphic object at the front of an object list. These steps provide the algorithm
for inserting a new polymorphic object at the front of a list. The definition of the method
that follows is different only in that it tests for an empty list. If the instance variable
Link of the header object is nil, the instance variable Next_Obj ect of the new
object being added is assigned the value nil. If the list is not empty, the new object is
added at the front of the list. The following is a detailed definition of the method
Push_Object_To_List.

Object Oriented Programming in THINK Pascal Chapter 13

1. Create a new object using the command new.

Objects within the list

Heade<~

Element

2. Set the instance variable Next_Obj ect of Element to reference the object at the
front of the list by sending the message Element. Establish_Link with
Self . Link as its actual parameter. Self represents the header object.

Header object

Element

3. Let the instance variable Link of the header object reference the new object
Element.

Self.Link <- Element

Objects within the list

Header object

Figure 13.12 Basic steps in adding an object at the beginning of a
polymorphic list.

661

662 Chapter 13 Object Oriented Programming in TIIINK Pascal

procedure List_Class.Push_Object_To_List (Element:
Object_Class);
{Purpose: This routine adds a polymorphic object at the front }
{ of an object list.}

begin
{ If the list is empty, set the instance variable for }
{referencing another object to nil.}

if Self.Link = nil then
Element.Establish_Link(nil)

else
{ If the list is not empty, let the instance variable for }
{ referencing another object in Element reference the }
{ object given by the instance variable Link of the header }
{ object.}

Element.Establish_Link(Self.Link);
{ Now let the instance variable Link of the header object }
{ reference the new object added to the list.}

Self.Link .- Element;
end;

For deleting an object from the front of an object list, we reverse the steps for adding
an object. Figure 13.13 shows an algorithm that removes an object. The steps require
establishing a temporary reference variable of type Link_Class and requiring it to
reference the first object at the front of the list. The second step calls for adjusting the
reference in the instance variable Link of the header object so that it references the object
following the first object in the list. The reference associated with the temporary reference
variable can now be returned. The following code defines the method Pop_Obj ect_
From_List:

function List_Class.Pop_Object_From_List: Object_Class;
{ Purpose: This routine removes the front object from a list of
objects.}

var
Temp_Reference: Object_Class;

begin
{ If the list is not empty, remove the object at the front }
{ of the list.}

if Self.Link <> nil then
begin
{ Establish a temporary reference to the first object }
{ in the list . }

Temp_Reference := Self.Link;
{ For the front object, assign the next object that it }
{ references to the instance variable Link of the }
{ header object.}

Self.Link := Temp_Reference.Next_List_Object;
{ Return the reference of the front object for later }
{ disposal.}

Pop_Object_From_List .- Temp_Reference;
end

Object Oriented Programming in THINK Pascal Chapter 13

else
Pop_Object_From_List := nil;

end;

1. Provided that the list is not empty, assign the reference of the
instance variable Link of the header object to a temporary
variable:

Temp_Reference <- Self.Link

r

~~l~G-G
I Objects within the list

Header object

Temp_Reference

2. Let the instance variable Link of the header object reference the object
following the first object of the list. This is done by letting the
instance variable Link of the header object reference the next link
object of the first list object, by using the method Next_List_Obj ect:

Self.Link<-- Self.Link.Next_List_Object

~ l
I

[}--0--tl
I Objects within the list

Header object

Temp_Reference

3. Now return the value of the variable Temp_Reference for accessing the
content of the object and disposing of storage.

Figure 13.13 Basic steps for deleting an object from the front of a
polymorphic list.

663

Notice that if the list is empty, the function returns nil. In essence, it is equivalent
to the condition of attempting to "underflow" the list. In this example, no effort is made
to test for this condition.

The function that follows defines the fourth method in class List_Class. Its
purpose is to inspect the list and return a reference to the first object in the list. As you
can see, the key step in executing this method is to return the value of the instance
variable Link of the header object.

664 Chapter 13 Object Oriented Programming in THINK Pascal

function List_Class.Inspect_Header_List: Object_Class;
{ Purpose: This routine returns the value of the instance }
{ variable Link in the header object.}

begin
Inspect_Header_List .- Self .Link;

end;

The following program provides a simple test for Obj ect_Class and List_
Class. It defines four new classes as well as several different objects. The object
An_Obj ect_List represents the header object for the list. Reference is a temporary
object for referencing an object removed from the front of the list and for disposing of its
storage once the data has been accessed. Four additional objects are included: Obj ect_A,
Obj ect_B, Obj ect_C, and Obj ect_D. These objects represent a class having an
ancestor class that is polymorphic. Notice that the function member is used on the
variable Reference to test the class associated with the object being referenced and to
ask if the class associated with each object it references is one of three defined classes:
Class_A, Class_B, or Class_C. Knowing if Reference is one of these classes
allows the instance variable I tern of an object to be properly referenced. The object
variable Reference is of a polymorphic class, so it must be cast into the proper
descendant class type before the instance variable Item in the object is accessed. Method
Free from TObj ect is applied to dispose of the dynamic storage for the object referred
to by Reference. Method Free is also applied to the header object before the program
ends execution.

program Test_Object_List (input, output);
{Purpose: This program builds an object list in which each }
{ object is of a different class.}
uses

Objintf, Link_Class_Definition, List_Class_Definition;
type

Class_A = object(Object_Class)
Item: integer;

end;
Class_B = object(Object_Class)

Item: real;
end;

Class_c = object(Object_Class)
Item: char;

end;
Class_D = object(Object_Class)

Item: string;
end;

var
An_Object_List: List_Class;
Object_A: Class_A;
Object_B: Class_B;
Object_C: Class_C;
Object_D: Class_D;
Reference: Object_Class;

Object Oriented Programming in THINK Pascal Chapter 13

begin
{ Show the Text window for viewing data.}

ShowText;

665

{ Create the header for an object list and initialize the list }
{ as empty.}

new(An_Object_List);
An_Object_List.Initialize_List;

{Create the first object and add it to the list.}
new (Obj ect_A) ;
Object_A.Item := 123;
An_Object_List.Push_Object_To_List(Object_A);

{ Create and add the second object to the list.}
new (Obj ect_B) ;
Object_B.Item := 987.6543;
An_Object_List.Push_Object_To_List(Object_B);

Create and add the third object to the list.}
new (Obj ect_C) ;
Object_C.Item := 'A';
An_Object_List.Push_Object_To_List(Object_C);

{ Create and add a fourth object to the list.}
new(Object_D);
Object_D.Item := 'This is a string.';
An_Object_List.Push_Object_To_List(Object_D);

{ Inspect the instance variable Link of the header of the object }
{ list and, while the list is not empty, remove the object from
{ the list, access its data, and dispose of storage for the }
{ object.}

while An_Object_List.Inspect_Header_List <> nil do
begin
{ Remove the next object at the front of the linked }
{ object list and dispose of the object.}

Reference := An_Object_List.Pop_Object_From_List;
if member(Reference, Class_A) then

writeln('Output from object of class A: '
Class_A(Reference) .Item)

else if member(Reference, Class_B) then
writeln('Output from object of class B: '

Class_B(Reference) .Item : 10 : 4)
else if member(Reference, Class_C) then

writeln('Output from object of class C: '
Class_C(Reference) .Item)

else
writeln('Reference is no known class type.');

Reference.Free;
end;

{ Dispose of the header of the linked object list. }
An_Object_List.Free;

end.

666 Chapter 13 Object Oriented Programming in THINK Pascal

Selecting Run Options ... from the menu option Run and choosing a file name for
echoing the text from the Text window captures the following lines when the above
program is executed:

Reference is no known class type.
Output from object of class C: A
Output from object of class B: 987.6543

123 Output from object of class A:

In the above discussion we avoided using the phrase "linking an object to another
object." The objects declared in the test program and in these method definitions are not
pointers in THINK Pascal. They are variables of class types and for that reason are stored
internally as handles. They are not pointers that reference the location of an object stored
in memory. Rather, they reference an object that encapsulates data and methods for acting
upon the object. While this approach appears to be more abstract when interpreting the
steps performed by various methods defined in this section, it is actually as simple as the
model of pointers connecting nodes within a linked list.

In writing an algorithm for searching an object list, it is important to test if the next
object being examined matches a known class type and, if it does, to test if a search key
matches the key within the object being referenced. If so, the proper object has been
found. In THINK Pascal this requires us to define a function for testing if an object is one
of several defined classes. To do so, we must use the built-in function member.

13.9 SOFTWARE ISSUES IN USING OBJECT PASCAL

In object-oriented analysis and design we often work with classes that have multiple
inheritances. Such classes are characterized by inheriting from more than one immediate
ancestor. Figure 13.14 shows that class C inherits from two different superclasses A and
B.

Class A Class B

Class C

Multiple defined hierarchical classes. Two possible choices for emulating the
mutiple hierarchical classes on the left.

Figure 13.14 Implementing a multiple hierarchical chart through single class
inheritance.

Object Oriented Programming in THINK Pascal Chapter 13 667

type

In this example, class C inherits some of its properties and methods from class A and
others from class B, which raises some issues that are difficult to resolve. For example,
both the superclasses A and B declare a method having the same name but different
definitions. Which method is invoked by class C if it inherits all of it methods from its
superclasses is difficult to define and often cannot be resolved by the language in which
the application is implemented. Fortunately, object Pascal can only inherit from a single
class and does not support the principle of multiple inheritance. In object Pascal, multiple
inheritance can only be emulated through a single chain of classes, as shown at the right
in Figure 13.14. Although class C inherits all of the characteristics of its ancestors, either
class B must define more unnecessary information for class A or class A must define
more unnecessary information for class B.

Often it is important for a method declared by a class that has no direct chain of
inheritance to invoke a method defined by another class. In developing an application, it
is more important for classes to share some of their responsibilities rather than
duplicating their definitions. By allowing the definition of one method of a class to
invoke a method of an unrelated class, an object of one class can contract with an object
of another to perform actions unknown to itself. This is similar to the real world, where
people must often contract outside their own environment in order to perform actions
outside their expertise. For example, a college professor might contract with a plumber to
get a faucet repaired. This approach allows objects to collaborate with each other without
the need for sharing classes through inheritance. It attempts to distribute the intelligence
of the application among several unrelated classes. Classes and objects may thus know
relatively fewer facts but allow us to produce a more flexible application that is easier to
modify in the future.

This principle is implemented in THINK Pascal by employing parameter passing,
where a formal parameter referencing an object is of a particular class type. In the
following code segment, method One of class A allows an object of class B to be passed.
In tum, method One invokes method Two defined by class B:

Class_A = object

procedure One(Object_Reference
end;

Class_B object

procedure Two;
end;

{ implementation

procedure Class_A.One;
begin

Object_Reference.Two;
end;

Class_B);

668 Chapter 13

procedure Class_B.Two;
begin

end;

Object Oriented Programming in THINK Pascal

It is also important that any class (as well as an object of any class) support the
principle of encapsulation. Encapsulation implies that the class encases both data and
methods. This requires us to define methods that directly access the values of any instance
variables. All direct references to instance variables are contained within the definition of a
method. All external accessing of instance variables occurs by sending a message to an
object, where the method being invoked accesses the instance variable. Thus the object
takes on the appearance of a unique entity. All methods known by the object should be
highly functional and easy to comprehend. In tum, the state of the object is understood by
the messages sent to it without having to recognize a lengthy list of variables embedded
within the object declaration. The programmer only needs to know what is in the
messages he or she needs to send to the object.

SUMMARY

In object-oriented programming, a class represents a declaration that encapsulates the data
and methods that define actions on its own data. Through an instance of a class, an object
of a class becomes a living entity. The properties defined by the class for an object are the
properties associated with the object. The object is different from a simple variable or
record structure. It has state through values of its instance variables and is capable of
being sent messages for performing actions. In developing software applications, the
classes form a hierarchical chart; subclasses can inherit properties from superclasses. The
design of an application appears as a set of relationships between classes, much as in the
real world. The need for procedural hierarchies among procedures and functions defining
methods for a class becomes secondary to design and in some instances unimportant. In
design, the principle of tight coupling of instance variables with highly functional
method definitions is of primary importance. The class and the object encapsulate
intelligence. The object acts as an entity providing intelligence to the application that is
being executed.

THINK Pascal supports object Pascal programming through object declarations and
method definitions. Through the use of the reserved word object, we can declare class
types containing fields referred to as instance variables as well as header declarations for
methods. By using separate program units, we can declare classes and construct a class
hierarchy. The superclasses toward the top of the hierarchy are more abstract, and
descendant classes toward the bottom are more concrete. In THINK Pascal, objects are
implemented as handles: pointer types that employ double indirection. To allow efficient
use of objects as handles, THINK Pascal supports a unique abstract class called
TObj ect. TObj ect defines two special methods: Clone, which allows an object to
be properly cloned (duplicated) as a handle, and Free, which properly disposes of the
dynamic storage associated with an object. The procedure new allows storage for objects
to be constructed.

By selecting Class Browser from menu option Windows, we can view the
hierarchical relationship of all classes defined for a project. By clicking on the name of a
class within the Class Browser window, we can activate the file containing the class,
making it the active Edit window, with the screen scrolled to where the class declaration

Object Oriented Programming in THINK Pascal Chapter 13 669

begins. Through a pop-up menu, the Class Browser window can also list the names of all
methods associated with any class in the project. If we highlight a method name and
release the mouse button, the file containing the method definition appears in the active
Edit window, with the screen scrolled to where the method declaration begins. By setting
stops, the LightsBug debugger can be used to trace the values of the instance variables of
any object within the project. As with other simple and structured variables, the values of
instance variables can be redefined and execution continued.

REVIEW QUESTIONS

1. What is meant by the term object-oriented programming?
2. What is a class?
3. Why is a class considered abstract and not an entity by itself?
4. What is an object?
5. How is a class declared?
6. Why is a declaration for a class different from that of a record?
7. How is a method declared?
8. How is a method defined?
9. Why is object Pascal different from standard Pascal?

10. What is an instance variable?
11. What is a root class?
12. What is a superclass?
13. How is a superclass different from that of an abstract class?
14. What is a subclass?
15. Can a subclass serve as the definition for an abstract class?
16. What is a concrete class?
17. Why is a program unit advantageous in declaring a class?
18. What is an abstract method?
19. What is meant by the term polymorphism?
20. How is polymorphism practiced with THINK Pascal?
21. What is meant by inheritance in THINK Pascal?
22. When should the directive override be applied?
23. When is the reserved word inherited used?
24. What is the purpose of using the prefix Self when defining methods?
25. What is meant by the term object reference ?
26. How is an object reference declared? How is storage created for and disposed of for

an object reference?
27. What is a handle? Why is it different from a simple pointer type?
28. When can one object reference be directly assigned the value of a second object

reference?
29. When should type-casting be applied to an object reference?
30. When can the function member be applied?
31. Show the syntax for accessing an instance variable of an object.
32. What is the advantage of establishing TObj ect as a root class for all classes

within a project?
33. Why is the method Clone of class TObj ect important in THINK Pascal?
34. Why is the method Free of class TObj ect important? How is Free different

from the standard procedure dispose?
35. In declaring a class, how can the class being declared inherit from another class?

670 Chapter 13 Object Oriented Programming in THINK Pascal

36. Can a class in THINK Pascal have multiple inheritance? Can you think of an
example for testing your answer?

37. How can multiple inheritance be defined in THINK Pascal?
38. What is the purpose of using the Class Browser?
39. When should the Class Browser be used, and when should the LightsBug

debugger be used?
40. How can an object of class A invoke a method from an object of class B when A

and B are not related? This is sometimes referred to as having an object of one
class contract with an object of some other class.

41. What is meant by the statement that the class or object of a class encapsulates
data and methods?

PROGRAMMING EXERCISES

1. Define a program unit that will contain an object declaration for a class called
Sphere_Class. This object declaration should inherit from TObj ect and
contain two instance variables: Sphere_Radi us for storing the radius of a
sphere, and Sphere_Center for storing the center point of a sphere. This
object declaration should also contain the following method declarations:

procedure Initialize_Sphere(Radius: real; Center: Point);
{ This method will initialize a sphere as an object by assigning }
{ instance variable Sphere_Radius the value of Radius and }
{ Sphere_Center the value of Center. }

function Compute_Circumference_Sphere: real;
{ This method computes and returns the circumference of a sphere }
{ as an object.}

function Compute_Surface_Area: real;
{ This method computes and returns the surface area of a sphere }
{ as an object.}

function Compute_Volume_Sphere: real;
{ This method computes and returns the volume of a sphere as an }
{ object.}

procedure Display_Spherical_Data;
{ This method displays to the screen the current radius, center, }
{and other functional results of a sphere as an object.}

Write a program that borrows from this unit and that includes a loop for creating
several Sphere_Class objects. The objects created within the loop can be
referenced by an object-reference array; each element of the array of type
Sphere_Class. Each array element represents a sphere object that can be
created and assigned initial data, and that can provide information about itself in
the Text window. If you want to be dramatic, use the Drawing window to
display a sphere represented by a circle or by a quarter section of the sphere.

Object Oriented Programming in TIIINK Pascal Chapter 13 671

2. Define a program unit that declares a new class called Rectangle_Class.
Allow this new class to have three instance variables: Rectangle_Length,
Rectangle_Height, and Rectangle_Width. Methods should include
initialization of instance variables where the object is a rectangle, computation
of surface area, the computation of volume, and the display of information that
relates to a rectangle.

3. For both Problems 1 and 2, define an abstract class that represents a general
geometric object having the properties of volume and surface area. Use this class
to define abstract methods for computing surface area and volume, and for
displaying information. Redefine your concrete classes Sphere_Class and
Rectangle_Class so that they directly inherit from the general geometric
class. Have these two subclasses override the methods for computing surface area
and volume, and for displaying information. Where it is appropriate within a
method definition, inherit the use of a method from the ancestor class.

4. For the example discussed in Section 13.8, write a function called TypeOf that
will determine the appropriate class type for several class types. Have this
function return an enumerated value representing one of several classes that have
been defined.

5. For the example discussed in Section 13.8, write a search procedure that will
locate an appropriate object within the list of objects and that has as basic
knowledge a key and the type of class associated with the object.

6. Building on Problem 5, define a procedure that can delete an object from within
an object list. (Review the concepts for deleting a node within a linked-list of
nodes).

7. For creating an object queue rather than an object stack, define a new
Queue_Class that will represent a new class for a header object. Two instance
variables are required: one for referencing the first object in a queue and a second
referencing the last object. Methods should include pushing an object to the rear
of an object queue, deleting from the front of an object queue, inspecting the
head of an object list, and inspecting the rear of an object list.

8. For the example discussed in Section 13.8, define a new Object_Class
having two instance variables: Succeeding_Obj ect and Preceding_
Object, both of type Object_Class. This class will be the basis for
building a doubly referenced list of objects. Methods for this new object class
include establishing a predecessor link, successor link, reference to successor, and
reference to predecessor.

9. Develop a program that can write information encapsulated by each object within
an object list to a file. Understand that each object within the object list may be
of a different class.

10. Consider the object-class relationships shown in Figure 13.15.

672 Chapter 13 Object Oriented Programming in 1HINK Pascal

Person

ID_Number
Full_Name

Address

Ini tialize_Da ta
Update_Data
Display _Data

j l t
l l

Staff Faculty Student

Hourly _Rate Rank Total_ Credits_
Job_Code Salary Earned
Building Course_List GPA

Initialize_Da ta Department Ini tialize_Da ta

Update_Data Update_Data

Display _Data Initialize_Data Display _Data
Update_Data
Display _Data

_t l

Full_ Time Part_ Time

Release_ Time Teaching_Hours

Update_List Update_List

Figure 13.15 Class hierarchy for Person, Student, Faculty, and Staff.

For each class define a program unit representing the class and the methods. For
Person, the method Ini tialize_Data initializes the ID_Number,
Full_Name, and Address, while Display_Data displays the values of
the instance variables. Update_Data allows data for Person to be modified.
For class Student, Initialize_Data inherits the steps from the method
Ini tialize_Data in class Person as well as initializing the data for
Student. Display_Data displays all relevant data for Student as well as
Person, while Update_Data allows changes in the information for both
Student and Person. Class type Faculty stores Rank, Department,
Course_List, and Salary and supports three methods: Initialize_
Data, Display_Data, and Update_Data. In turn, class Faculty has
two subclasses: Part_Time and Full_Time. Class Part_Time contains
part-time teaching hours, while class Full_Time contains hours for release
time involving research. Both subclasses Full_Time and Part_Time

Object Oriented Programming in THINK Pascal Chapter 13 673

support a method for updating a list of courses being taught and release time for
research. For class Staff, the only data needed is Hourly_Rate,
Job_Code, and Building where the staff member is employed. Class
Staff will also define methods for Initialize_Data, Display_Data,
and Upda te_Da ta.

Develop a menu-driven application that can create a new object as it is entered
into the Employment_System. This system must be able to add a new
employee, delete an old employee, search for information on a present employee,
and use files to maintain information on all employees, presently employed as
well as previously employed.

11. How could the class hierarchy in Problem 10 be changed to include student
subclasses of State, Foreign, and Out_of_State. Data relevant to each
class is the rate of tuition, and home address. For foreign students, a guardian and
guardian address are also required.

Chapter 14

Quicillra\VLibrary

OBJECTIVES

After completing Chapter 14, you will know the following:
1. The mathematical foundation of the QuickDraw Library.
2. The properties of the data type graf Port and how to use it as a separate entity.
3. The routines for defining and using a graf Port.
4. The routines for drawing points, lines, and rectangles.
5. The routines for drawing arcs and wedges.
6. The routines for drawing text.
7. The routines for defining and drawing regions and polygons.
8. The routines for defining and drawing pictures.
9. The concepts for understanding transfer bits and bit-transfer operations.

10. The concepts and routines for the mapping and scaling of points, rectangles,
regions, and polygons.

14.1 BASIS OF THE QUICKDRA W LIBRARY

674

As explained earlier, the memory of the Macintosh computer is divided into two basic
structures: RAM (random-access memory), for storing programs and data, and ROM (read­
only memory), for storing special procedures and functions. Macintosh ROM is further
divided into three special libraries: the Macintosh Operating System, the QuickDraw
library, and the User Interface Toolbox. The Operating System handles low-level tasks
such as managing RAM memory, input and output from disk drives, and serial
communication ports such as the printer. The User Interface Toolbox allows interaction
with higher level constructs, including windows and menus. The QuickDraw library
allows graphics routines to be implemented from several programming levels. This

QuickDraw Library Chapter 14 675

library contains the definitions for various constants, types, variables, procedures, and
functions needed to use the graphics capability of the Macintosh computer. The
Macintosh Pascal language further subdivides the QuickDraw library into two parts:
QuickDrawl and QuickDraw2. As you have seen in earlier chapters, using the
QuickDrawl and QuickDraw2 libraries simply requires adding these names to the
uses clause. THINK Pascal does not require (or allow) the uses clause with
QuickDraw, so the distinction between QuickDrawl and QuickDraw2 is less important
for the THINK Pascal programmer.

QuickDrawl contains all of the declarations needed to perform basic graphics and
text operations as they relate to the Macintosh Pascal Drawing window. When all of the
Macintosh windows are hidden by execution of the statement HideAll, data types and
procedures from QuickDraw2 can be used to frame and open grafPorts (complete
drawing environments) of your own choosing.

The procedures HideAll, ShowText, ShowDrawing, SetTextRect,
SetDrawingRect,GetTextRect,WriteDraw,GetDrawingRect,
SaveDrawing, DrawLine, Drawcircle, and InvertCircle, discussed earlier,
will not be emphasized in this chapter. The emphasis will be on using the QuickDraw
routines, not the Macintosh/THINK Pascal window-manipulation procedures.

There are few important differences between THINK Pascal and Macintosh Pascal in
the use of the QuickDraw libraries. The need for a uses clause in Macintosh Pascal is
one difference. As indicated in Section 6.4, the GetMouse function is different in
THINK Pascal and Macintosh Pascal. The programs in this chapter were written for
THINK Pascal, but with minor modifications they will execute under Macintosh Pascal
as well.

WARNING

The QuickDraw routines involving grafPorts, cursors, pointers, and handles can disrupt
the normal operation of the Macintosh Pascal system, causing it to "bomb" if not
properly used. Have a backup diskette for all your examples, and before executing the GO
option, save your program and apply the Check or Check SyntaH option.

14.2 MATHEMATICAL FOUNDATION OF THE QUICKDRAW LIBRARY

QuickDraw requires the use of four mathematical constructs throughout its data types,
procedures, and functions. They are the point, the rectangle, the region, and the coordinate
plane. Locating, placing, or moving information is done in terms of the coordinates of a
plane, because all information given to QuickDraw routines is related to that of a
coordinate plane. QuickDraw uses a finite, two-dimensional grid, as shown in Figure
14.1.

This coordinate plane contains 4,294,967,296 individual points. Each grid line is
infinitely thin, and all grid coordinates are represented by integers. The coordinate plane is
not infinite, because both horizontal and vertical coordinates must be specified within the
range from -32767 to +32767. All coordinates are specified as integers, and all
mathematical operations in QuickDraw are performed in integer arithmetic, producing
exact results. Therefore there is no need to be concerned with rounding or truncation errors
in QuickDraw computations.

676 Chapter 14 QuickDraw Library

-32767

I l -32767 +37767
h~ J

+37767 lv

Figure 14.1 The two-dimensional grid used by QuickDraw.

The values of horizontal coordinates increase from left to right, and the values of
vertical coordinates increase from top to bottom. This is in keeping with the process of
scanning a monitor screen from top left to bottom right. The intersection of a horizontal
grid line and a vertical grid line represents a point in the coordinate plane, and with respect
to the Macintosh screen, the intersection of an infinitely thin horizontal and an infinitely
thin vertical grid line represents the existence of a pixel.

On the coordinate plane a point is mathematically represented by an integer pair
(h, v). In QuickDraw a point is defined in terms of a Pascal record containing two
integers. The following variant record defines its structure:

type
VHSelect
Point

(v I h) ;
record case integer of

0 (v : integer; h: integer) ;
1 (vh: array[VHSelect] of integer)

end;

For example, the THINK Pascal program Display_Mouse_Point uses the data
type called Point:

program Display_Mouse_Point;
{ Purpose: This program executes the routine GetMouse using }

QuickDraw Library Chapter 14 677

{
{

var

the data structure Point, and displays the value of
the data point for the mouse in the Text window. }

Mousepoint: Point;
begin

ShowText;
while not Button do { nothing }

while Button do

end.

begin
GetMouse(Mousepoint);
writeln(Mousepoint.h, Mousepoint.v);

end;

This program stores the (x, y) pair in the structure called Mousepoint, and each
pair of h and v values is printed in the Text window of the screen. The mouse point can
be referred to as Mousepoint. hand Mousepoint. v or as Mousepoint. vh [h]
and Mousepoint. vh [v].

Mathematically, a rectangle in the coordinate plane is represented by an infinitely
thin border having no direct representation on the screen. Rectangles can be used to define
active drawing areas on the screen, can associate themselves with local coordinate
systems, and can specify locations and sizes for QuickDraw routines. Figure 14.2 shows
two points, one representing the top left and the second representing the bottom right,
that define a rectangle.

Left

Topt----t~-41..__. __ --+----.i.---m-~--1

Bottom

Right

Figure 14.2 Two points in the plane define a rectangle.

Here is the QuickDraw definition for a rectangle in terms of a variant record:

type
Rect record case integer of

0 : (top : integer; left integer;

678

1
end;

Chapter 14

bottom : integer; right
topLeft: Point; botright

QuickDraw Library

integer);
Point)

As an example of using the data type Rect, consider the following THINK Pascal
program, titled Rectangles.

program Rectangles;
{ Purpose: This program draws a rectangle in the Drawing. }
{ window. Press and hold the mouse button to test }
{ the program. Try moving the cursor in and out of }
{ the rectangle while holding down the button. }

var
Box: Rect;
Mousepoint: Point;

begin
ShowDrawing;

Set the size of the rectangle. }
SetRect(Box, 100, 100, 300, 250);

Draw the boundary of the rectangle. }
FrarneRect (Box);

{ With the mouse button depressed, listen for short tones. }
while not Button do {nothing }

while Button do
begin

end.

with Mousepoint do
GetMouse(Mousepoint);

{ Check if the mouse point is within the boundaries of }
{ the rectangle Box. }
if PtinRect(Mousepoint, Box) then

SysBeep(2);
end;

Notice that a special Boolean function called PtinRect is used to test if
Mousepoint lies within the rectangle called Box; this function is discussed in Section
14.4. If the point lies anywhere within the rectangle called Box, the function returns the
Boolean value true; if the point lies outside, it returns the Boolean value false. A
rectangle is considered empty when the bottom coordinate of the rectangle is equal to or
less than the top coordinate or when the right coordinate is equal to or less than the left
coordinate. Be careful not to form empty rectangles, because it is impossible to draw in
them.

A region allows a more complex drawing area in QuickDraw. By definition, a region
must be composed of one or more closed loops. A closed loop can be composed of oval
and/or rectangular shapes as well as lines with curvatures that can be either concave or
convex. A region can also be created through the union or intersection of several other
regions, either disjointed or undisjointed. A region may contain one or more "holes." For
example, the white area in Figure 14.3 represents a region generated by executing

QuickDraw Library Chapter 14 679

QuickDraw routines. This region is formed from two other regions. Reg i on_l is
composed of the large outside oval, and Region_2 is the small inside oval. The final
step involves subtracting Region_2 from Region_l, leaving the result as
Region_3. In QuickDraw a region is represented by the following data type:

type
Region record

rgnSize : Integer;
rgnBBox Rect;
{ additional data declarations if region is }
{ not rectangular }

end;

Region_listhelarge
outside oval.

Region_3 is the area in white
represented by subtractinbg
Region_2 from Region_l.

Figure 14.3 Example of regions.

Region_2isthe
small inside oval.

The field rgnS i z e specifies the amount of memory needed to store the region, and
the field rgnBBox specifies the boundary of a rectangle that completely encloses the
region.

The coordinate plane represents an abstract mathematical entity for a drawing; the
screen represents reality in viewing a drawing. The screen is itself a matrix composed of

680 Chapter 14 QuickDraw Library

175,104 pixels enclosed within a region bounded by the points (0, 0) and (512, 342).
Each pixel represents a single bit of information, a zero bit for a white pixel and a 1 bit
for a black pixel. Any information displayed on the screen is stored as a bit image within
a structure called a Bi tMap. The coordinate plane contains approximately 4.2 billion
points, so it is impossible to display all of the coordinate plane on the screen at any one
time.

The importance of the QuickDraw Library is its ability to establish distinct ports for
displaying information on the screen. A port (graf Port) represents a complete drawing
environment composed of its own coordinate system, drawing location, character and font
set, background and foreground colors, patterns, and viewing location. Each drawing
environment is expressed in terms of its own local coordinate system, rather than having
one large coordinate plane. It can act as a local region for drawing, or it can be mapped
into another region for viewing. In QuickDraw a port is represented by the following
structure:

type
GrafPtr = AGrafPort;
Graf Port = record

device
portBits:
portRect:
visRgn:
clipRgn:
bkPat:
fillPat:
pnLoc:
pnSize:
pnMode:
pnPat:
pnVis:
txFont:
txFace:
txMode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch:
picSave:
rgnSave:
polySave:
grafProcs:

end;

integer;
BitMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
Point;
integer;
Pattern;
integer;
integer;
Style;
integer;
integer;
longint;
longint;
longint;
integer;
integer;
QDHandle;
QDHandle;
QDHandle;
QDProcsPtr

All QuickDraw routines refer to grafPorts by way of the pointer Graf Ptr.
Graf Ports should be used dynamically; therefore, it is best to represent a graf Port
as a dynamic data structure rather than a static structure. This requires using the procedure
new before opening a graf Port.

QuickDraw Library Chapter 14 681

The device field indicates the physical output device for displaying the information
of a graf Port. This is necessary because there are physical differences for the same
fonts for different output devices. The device number for the Macintosh screen is 0. The
field port Bi ts defines .the memory area for the bit image as well as the coordinate
plane associated with the image on the screen. Keep in mind that the screen is represented
in terms of a global coordinate system, whereas the coordinates for points in a
graf Port are expressed in terms of a local coordinate system. Each graf Port
supports its own local coordinate system. The QuickDraw library converts the
information stored by the graf Port into the global coordinates of the screen. The
subfield portBi ts . bounds defines a rectangle specifying the limits of the screen. The
top left and bottom right points of this rectangle are expressed in terms of the local
coordinates of the graf Port. The third field, portRec t, defines a rectangular region
for drawing to a graf Port that has coordinates in the system defined by the rectangle
portBi ts. bounds. Initially, portBi ts. bounds is represented by screen boundary
points: (0, 0) and (512, 342). Drawing to any port occurs within the rectangle defined by
portRect. This field specifies the active rectangular drawing area for the grafPort's
coordinate system. In short, it specifies the rectangular area of the screen where a graphic
can be displayed.

The field vis Rgn, used by the Toolbox and not to be modified by the user's
program, defines the region that is visible on the screen. For example, if there is a
window that overlaps and suppresses part of the view of a second window, the visRgn
field of this second window will contain only that region that is visible and not
suppressed by the overlaid window. The field clipRgn defines the region where the
drawing is suppressed (clipped) and can be established or changed by using one of several
QuickDraw routines. For example, the Macintosh Pascal statements

SetRect(Box_l, 50, 100, 250, 300);
ClipRect(Box_l);

limit the visible region to within the rectangle called Box_l. Everything drawn outside
the boundaries of Box_l is clipped (not shown). Initially the visRgn is a handle to the
rectangular region given by the points (0, 0) and (512, 342), and the clipRgn is a
handle to the region given by the points (-32767, -32767) and (32767, 32767). Drawing
always occurs within the grafPort's coordinate system, always within the intersection of
the rectangles of grafPort's portBi ts. bounds and portRect, and always within the
clipping boundaries defined by the intersection of the regions visRgn and clipRgn.

The fields bkPat (default value is white) and fillPat (default value is black)
represent the background and fill patterns, respectively. These can be altered through
special QuickDraw routines. In addition, the field pnLoc contains the current pen
location [default value is (0, 0)]; pnSi ze contains the current pen size [default value
(1,1)]; pnMode, the current pen mode (default value is patCopy); pnPat, the current
pen pattern (default value is black); and pnVis indicates if the pen is currently visible (0
if visible, negative if not visible; default value is 0). The field txFon t contains the
current text font (0 is the system font, default value is O); txFace, the current text style
(default value is normal); txMode, the current text mode (default value is srcOr); and
txSize, the current text size (default value is 0). The field spExtra contains
information on extra space necessary for justifying the text (default value is 0). The field
picSave provides a handle to memory for storing picture information, rgnSave
provides a handle to memory for storing the current region definition, and polySave
provides a handle to the current polygon definition. The fields fgColor, bkColor, and
colrBi t contain values related to color drawing, and the field pa tStretch is used by

682 Chapter 14 QuickDraw Library

the printer software. The last field, graf Procs, is a handle to memory containing the
definitions of customized QuickDraw routines.

14.3 DEFINING A PORT USING GRAFPORT ROUTINES

Figure 14.4 lists the procedures used to define and manipulate gratPorts. Each routine is
listed by its header, including the procedure name and one or more parameters, with a brief
explanation of its actions.

procedure OpenPort (Port grafPort) ; This procedure opens a
graf Port, allocating memory, initializing fields with default values, and
making Port the current active graf Port. Execute new (Port) before
executing OpenPort (Port) .

procedure InitPort (Port : GraftPort) ; For a graf Port that has
already been opened, this procedure reinitializes the grafPort data structure,
making it the current port.

procedure ClosePort (Port : graf Port) ; This procedure deallocates
the memory space occupied by the handles visRgn and clipRgn. Execute this
procedure when the graf Port is no longer needed.

procedure SetPort (Port : graf Port) ; This sets the port to be the
current graf Port.

procedure Get Port (var Port : graf Port) ; For the corresponding
actual parameter, this procedure returns a pointer to the current port.

procedure PortSize (Width, Height : integer) ; This procedure
changes the size of the current graf Port' s field portRect. It does not affect
the screen, but changes the size of the active window of the current grafPort.
The top left comer remains unchanged, while the bottom right comer is adjusted
to the dimensions given by Width and Height. This procedure has no effect on
clipRgn or visRgn, nor does it affect the local coordinate system of the current
grafPort.

procedure MoveToPort(Global_Left , Global_Right : integer);
This procedure moves the position of the current Grafport' s portRect.
Though it does not affect the screen, it changes the position for drawing inside
the graf Port. No changes are made to clipRgn and visRgn, nor are local
coordinates affected.

procedure SetOrigin (H, V : integer) ; This procedure changes the
coordinate system of the current graf Port. Though it does not affect the screen,
it updates the fields portBi ts, portRect, and visRgn. This procedure does
not update the clipRgn of the current graf Port.

QuickDraw Library Chapter 14 683

procedure SetClip (Regn : RgnHandle) ; This procedure changes the
clipRgn of the current graf Port by making a copy of the region given by
Regn.

procedure GetClip (Regn : RgnHandle) ; This procedure makes a copy
of the clipRgn of the current graf Port and assigns it to the region given by
Regn.

procedure ClipRect (Box Rect) ; This procedure changes the
clipRgn of the current grafPort to the rectangle specified by Box.

procedure BackPa t (Pat Pat tern) ; This procedure sets the
background pattern of the current graf Port to the value given by Pat.

Figure 14.4 Procedures used to define and manipulate a graf Port.

The following program, Drawing_Windows, applies some of these routines.

program Drawing_Windows(input, output);
{ Purpose: This program shows the basic concept of drawing }
{ grafPorts. All windows and drawings are in terms of }
{ the global coordinates of the screen. }

type
Port = GrafPtr;
Counter = integer;

var
Window: array[l .. 4] of Port;
Rectangle : array[l .. 4] of Rect;
J : Counter;

{ *** }
procedure Open_Window (var Viewport : Port);
begin
{ Establish dynamic structure for window. }

new (Viewport) ;
{ Open the grafPort for drawing. }

OpenPort(Viewport);
end;

{ *** }
procedure Initialize_grafPort (Viewport : Port;
begin
{ Set window as current grafPort. }

SetPort(Viewport);
{ Establish clipping region for grafPort. }

ClipRect (Box) ;
end;

Box : Rect);

{ *** }

684 Chapter 14 QuickDraw Library

procedure Draw_in_Window {Viewport : Port; Box
: integer);

begin
{ Set window as current grafPort.

SetPort{Viewport);
{ Fill box with white background. }

FillRect(Box, white);
{ Set pen width for drawing border. }

PenSize(3, 3);
{ Draw a border for viewing the window. }

FrameRect {Box) ;
{ Return pen size to normal width and height. }

PenSize(l, 1);
{ Adjust text face before drawing string. }

TextFace([condense, outline]);
{ Move pen to a new location in the window. }

with Box do

Rect; Jth

MoveTo(left + (right - left) div 4, top + (bottom -
top) div 2);

{Draw the message 'Window Number ... 'within each window. }
DrawString(concat('Window Number ', chr(48 + Jth)));

end;
*** }
procedure Dispose_of_Window (var Viewport : Port);
begin

ClosePort(Viewport);
dispose(Viewport);

end;
*** }
procedure Pushbutton;

var
Time: longint;

begin
{ Wait for mouse button to be pressed.

while not Button do { nothing }

Delay(lO, Time);
end;

{ *** }
begin { Body of main program. }
{ Hide all Macintosh Pascal windows. }

HideAll;
{ Establish data structures for each window and open them. }

for J := 1 to 4 do
Open_Window(Window[J]);

{ Establish the boundaries of four window areas. }
SetRect(Rectangle[l], 0, 0, 256, 171);
SetRect(Rectangle[2], 0, 172, 256, 342);
SetRect(Rectangle[3], 257, 0, 512, 171);
SetRect{Rectangle[4], 257, 172, 512, 342);

{ Initialize the clipping region of each window. }

QuickDraw Library Chapter 14

for J := 1 to 4 do
Initialize_grafPort(Window[J], Rectangle[J]);

{ Open each of the four windows. }
for J := 1 to 4 do

Draw_in_Window(Window[J], Rectangle[J], J);
{ Study the screen. }

Pushbutton;
Dispose of storage for all four windows.

for J := 1 to 4 do
Dispose_of_Window(Window[J]);

end.

685

This program divides the screen into four separate windows, as shown in Figure
14.5.

Window N1lllm1ber]. Wi.imdlow Numlber 3

Wi.imdow Number 2 Wi.imdlow Number 4

Figure 14.5 Four separate windows created by the program Drawing_Windows.

The main program has six major steps:

1. Hide all of the Macintosh Pascal windows.
2. Allocate the data structures and initialize the grafPorts of each window.
3. Establish the drawing boundary for each window.
4. Initialize the clipping region for each window.
5. Draw a simple message to each window.
6. Dispose of storage for each window before ending execution.

686 Chapter 14 QuickDraw Library

Step 2 is performed by calling on the procedure Open_Window. In this procedure
the library routine new establishes the dynamic structure. The QuickDraw routine
OpenPort is then executed, initializing the window's graf Port structure. Notice that
the formal parameter Viewport is of type variable. Failure to declare this parameter as
variable causes the program to crash. The last graf Port to become the current
window is Window [4]. Step 3 uses the procedure SetRect to establish the boundaries
for each of the four separate rectangles. Step 4 calls on the procedure Initialize_
graf Port. This procedure sets the current graf Port by executing SetPort. The
routine ClipRect sets the current gratPort's clipping region to the value given by Box.
Without the statement calling on ClipRect, the clipping region is represented by its
default values. Step 5 is calls the procedure Draw_in_Window. If the procedure
Set Port did not exist, Window [4] would always be the current graf Port, and only
this window would appear on the screen.

The routines FillRect, FrameRect, and Drawstring draw to the window
given by Viewport. The procedure Drawstring displays the window message as a
single string concatenated from the substring Window_Number and the character
returned by executing the chr function. In this program, the local coordinates of each
graf Port coincide with the global coordinates of the screen. The last step calls on the
procedure Dispose_of_Window for disposing of a graf Port. This procedure in tum
calls on the function ClosePort followed by dispose. It is important to close a
graf Port before disposing of it. If you fail to do this, portions of memory used by the
handles visRgn and clipRgn cannot be recovered by Pascal's Memory Manager.

A second approach to the problem is shown in the following THINK Pascal
program, titled Drawing_Windows_Revised:

program Drawing_Windows_Revised(input, output);
{ Purpose: This program employs the routine SetOrigin to shift }
{ the local coordinate of the graf Port while leaving }
{ the global coordinates of the screen unchanged. }

type
Port = GrafPtr;
Counter = integer;

var
Origin : array[l .. 4] of Point;
Window : array[l .. 4] of Port;
J : Counter;

{ *** }
procedure Open_Window (var Viewport : Port);

begin
new (Viewport) ;
OpenPort(Viewport);

end;
*** }
procedure Draw_in_Window (Viewport : Port; Topleft :

Point; Jth: integer);
var

Rectangle : Rect;
begin

SetPort(Viewport);
SetOrigin(-Topleft.h, -Topleft.v);
SetRect(Rectangle, 0, 0, 256, 171);

QuickDraw Library Chapter 14

ClipRect(Rectangle);
FillRect(Rectangle, white);
PenSize(3, 3);
FrameRect(Rectangle);
PenSize(l, l);
TextFace([condense, outline]);
with Rectangle do

687

MoveTo(left + (right - left) div 4, top + (bottom - top)
div 2);

DrawString(concat('Window Number ', chr(48 + Jth)));
end;
*** }
procedure Dispose_of_Window (var Viewport : Port);

begin
ClosePort(Viewport);
dispose(Viewport);

end;
*** }
procedure Pushbutton;

var
Time: longint;

begin
{ Wait for mouse button to be pressed. }

while not Button do { nothing }

Delay(lO, Time);
end;

*** }
begin { Body of main program.

HideAll;
for J := 1 to 4 do

Open_Window(Window[J]);
SetPt(Origin[l], 0, 0);
SetPt(Origin[2], 0, 171);
SetPt(Origin[3], 256, 0);
SetPt(Origin[4], 256, 171);
for J := 1 to 4 do

Draw_in_Window(Window[J], Origin[J], J);
Pushbutton;
for J := 1 to 4 do

Dispose_of_Window(Window[J]);
end.

The procedure Ini tialize_graf Port has been replaced by SetOrigin in the
procedure Draw_in_Window. The main body of the program assigns four origins for
four top left points. The procedure Draw_in_Window thus appears to be drawing to a
general window, given in terms of the local coordinates specified by the variable called
Rectangle, which is assigned top left coordinates of (0, 0), and bottom right
coordinates of (256, 171). The clipping region is specified by the boundaries of
Rectangle. Each time that procedure Draw_in_Window is executed, the routine
SetOrigin changes the local coordinate system of the current graf Port by

688 Chapter 14 QuickDraw Library

assigning a new value to the top left corner of portRect. It does not affect the screen at
this point, but it does update portBi ts. bounds, portRect, and visRgn, while
leaving the fields c 1 ipRgn and pnLoc unchanged. Subsequently, all drawing and
computations related to drawing are performed in terms of the new coordinate system.
Notice that SetOrigin treats all of its arguments as negated values.

We can use the command MovePortTo (Top left. h, Topleft. v) in place
of SetOrigin to achieve the same actions for drawing to the screen. MovePortTo is
different from SetOrigin; it moves the active drawing area on the screen to the
coordinates specified by Topleft. h, and Topleft. v. This pair of arguments now
specifies new global coordinates for drawing, leaving the local coordinates of the
graf Port unchanged. Drawing and computations for the procedure Draw_in_
Window still appear as if they were local to the coordinates given by Rectangle.

14.4 DRAWING WITH POINTS, LINES, AND RECTANGLES

Figures 14.6 through 14.8 summarize the numerous procedures and functions for
using points as well as drawing lines, rectangles, ovals, and rounded rectangles. Figure
14.6 lists the QuickDraw routines related to drawing lines and setting the drawing pen.

procedure HidePen; This procedure decrements the current graf Port's
pn Vis field. Initially zero when OpenPort is executed, the pen remains
hidden and does not draw whenever pnVis is negative. Calls to HidePen
should always be balanced with an equal number of calls to ShowPen.

procedure ShowPen; This procedure increments the current grafPort's
pnVis field. When the value of pnVis becomes zero, the pen resumes
drawing to the screen. Extra calls on this procedure can cause the value of
pn Vis to be incremented beyond zero. Calls to ShowPen should always
balance calls to HidePen.

procedure GetPen (var Pen_Location : Point) ; This procedure
returns the location of the pen in terms of the current gra£Port's coordinate
system.

procedure GetPenState (var Pen State PenState) ; This
procedure assigns the present state of the pen (location, size, pattern, mode)
to the parameter Pen_State.

procedure SetPenState (Pen_State : PenState) ; This procedure
sets the pen state of of the current graf Port to the value stored in the
parameter Pen_State.

procedure PenSize (Width, Height : integer) ; This procedure
sets the pen's drawing width and drawing height of the current graf Port.

QuickDraw Library Chapter 14 689

procedure PenMode (Pen Mode integer) ; This procedure
establishes the transfer mode through which the pen pattern is transferred
to the bit map when drawing lines, rectangles, ovals, or shapes.

procedure PenPat (Pen_Pat : Pattern) ; This procedure assigns the
pattern given by the value of Pen_Pat to the pen of the current graf Port.
Standard pattern values are white, black, gray, 1 tgray, and dkgray.
The initial value for the field pnPat is black.

procedure PenNormal; This procedure reinitializes the pen state (pen
size, pen mode, and pen pattern) for the current graf Port. The field
pnSize becomes (1, 1), pnMode takes the value patCopy, and pnPat takes
the value black.

procedure MoveTo (Horizontal, Vertical integer) ; This
procedure changes the location of the pen by moving it to the point
(Horizontal, Vertical) in the coordinates of the current graf Port.
This procedure leaves the screen unaffected.

procedure Move(Delta_h, Delta_v : integer); This procedure
moves the location of the pen through a horizontal distance Del ta_h and
vertical distance Del ta_ v. A positive value in Del ta_h moves the pen to
the right; a positive value in Del ta_ v moves the pen downward.

procedure LineTo (Horizontal, Vertical integer) ; This
procedure draws a direct line from the current pen location to the point
(Horizontal, Vertical). The new location for the pen is the point
(Horizontal, Vertical).

procedure Line (Delta_h, Delta_v : integer) ; This procedure
draws a direct line from the current pen location through a horizontal
distance Delta_h and vertical distance Delta_v. The new pen location
becomes the coordinates at the end of the drawn line.

Figure 14.6 QuickDraw procedures for drawing lines and setting the drawing pen.

The pen acts as a drawing tool on the screen, having four characteristics: location,
size, mode for drawing, and pattern for drawing. The pen location is represented by a point
in the gratPort's coordinate system. There is no restriction on the pen location. It can be
set by either executing the commands Move To or Move. The pen is considered
rectangular in shape, and its size (width and height) can be adjusted by executing
PenSize. For widely spaced lines, the value of the pen pattern affects the type of pattern
(white, black, gray, ltgray, or dkgray) forfillingbetweenthelinesof
boundaries. This is useful for drawing thick boundaries around the edges of a window.
PenMode establishes a mode through which the pen pattern is transferred to individual

690 Chapter 14 QuickDraw Library

bits in the bit map for drawing lines or shapes. PenMode can be set to one of eight
possible transfer modes.

Pen settings are local to a graf Port and are not affected by pen settings in other
grafPorts. GetPenState allows the temporary storing of pen location, size, pattern,
and mode using a variable of type PenState. This is used when execution of a
procedure may temporarily change the current pen state. SetPenState allows the pen
state to be restored from a temporary storage variable.

Hide Pen and ShowPen have a direct effect on the value of the current grafPort's
pnVis field. Hide Pen decrements and ShowPen increments the value of the current
grafPort's pnVis field. A value for pnVis greater than or equal to zero indicates that the
pen is visible; a negative value hides the pen, keeping it from drawing on the screen. This
is useful when we make nested calls for hiding and showing the pen. PenNorrnal resets
the fields pnSize, pnMode, and pnPat to the pen's initial state.

For drawing a point, we use one of two methods:

Move To (x, y) ;
Line (dx, dy) ;

or

MoveTo (x, y) ;
LineTo(x + dx, y + dy);

where dx and dy are both zero. If both dx and dy are either +1 or -1, these sets of
commands result in a line being drawn between two points.

Figure 14.7 lists various routines for calculations with rectangles.

procedure SetRect (var Box Rect; left, top,
right, bottom integer); This procedure assigns the
parameter Box with the left top and right bottom points,
establishing the boundary coordinates of a rectangle.

function SectRect(SrcRect_A, SrcRect_B : Rect; var
DistRect : Rect) : Boolean; This function performs two
operations. First, it computes the rectangle resulting from the
intersection of the rectangles SrcRect_A and SrcRect_B,
assigning it to the rectangle DistRect. Second, it returns a
Boolean value true if the intersection is a nonempty rectangle and
false if the intersection is an empty rectangle. Areas or rectangles
are defined as those within the boundaries of the coordinates of the
rectangles. Rectangles that touch at a point or line do not intersect.
An empty rectangle is noted by the coordinates (0, 0) and (0, 0). One
of the source rectangles can also be specified as a destination
rectangle.

procedure UnionRect (SrcRect_A, SrcRect_B Rect;
var DistRect Rect) ; This procedure computes the
smallest rectangle enclosing the union of the rectangles SrcRect_A

QuickDraw Library Chapter 14

and SrcRect_B and assigns this to DistRect. One of the source
rectangles can also be specified as a destination rectangle.

function PtinRect(Coordinate_Pt: Point; Box: Rect):
Boolean; This function checks if a pixel below and to the right of
Coordinate_Pt is enclosed within the rectangle specified by Box,
returning either a Boolean value true if the point is inside or false
if it lies outside.

procedure Pt2Rect (Point_A, Point_B Point; var
DistRect Rect) ; This procedure returns the smallest
rectangle enclosed by the two points Point_A and Point_B.

function EqualRect (Rect A , Rect_B Rect)
Boolean; This function returns the Boolean value true if both
rectangles Rect_A and Rect_B have identical boundary
coordinates. If not, it returns the Boolean value false.

function EmptyRect (Box Rect Boolean; This
function returns the Boolean value true if the parameter Box is an
empty rectangle, and false if the parameter Box is not an empty
rectangle.

Figure 14.7 QuickDraw procedures and functions for using rectangles.

691

Calculations involving rectangles are independent of the current graf Port coordinate
system and will execute the same whether or not a graf Port is active. The program
Drawing_Windows_Revised shows how rectangles are applied in terms of a
common coordinate system, using SetOrigin to perform computations and draw to a
new coordinate system.

Figure 14.8 lists various routines for performing graphics operations on rectangles,
rectangles with rounded corners, and ovals. Ovals are always drawn within a specified
rectangular region. If the rectangle is square, the oval drawn is a circle.

procedure FrameRect (Box : Rect) ; This procedure draws
the outline of a rectangle within the region bounded by the
rectangle Box, using the pen state (pattern, mode, and size) of the
current graf Port. Pen location remains unchanged.

procedure PaintRect (Box : Rect) ; This procedure paints
the rectangle Box, with the current pen pattern given by pnPa t. Pen
location remains unchanged.

procedure EraseRect (Box : Rect) ; This procedure paints
the rectangle Box, with the current background pattern given by

692 Chapter 14 QuickDraw Library

bkPat. The fields pnPat and pnMode are ignored, and the pen
location remains unchanged.

procedure InvertRect (Box : Rect) ; This procedure inverts
the pixels within the rectangle Box. The fields pnPa t, pnMode,
and bkPat are ignored, and the pen location remains unchanged.

procedure FillRect(Box : Rect; Pen_Pat : Pattern);
This procedure fills the rectangle Box, with the pattern specified
by the value Pen_Pat. The fields pnPat, pnMode, and bkPat are
ignored, and the pen location remains unchanged.

procedure FrameOval (Box : Rect) ; This procedure draws
an oval within the boundary specified by the rectangle Box, using
the pen state (pattern, mode, and size) of the current graf Port.
Pen location remains unchanged.

procedure PaintOval (Box : Rect) ; This procedure paints
an oval within the boundary specified by the rectangle Box using
the current pen pattern given by pnPat Pen location remains
unchanged.

procedure EraseOval (Box : Rect) ; This procedure fills an
oval with the current background pattern within the boundary
specified by the rectangle Box. The fields pnPat and pnMode are
ignored, and the pen location remains unchanged.

procedure InvertOval (Box : Rect) ; This procedure inverts
the pixels within the boundary of an oval, with the oval bounded
by the rectangle Box. The fields pnPa t, pnMode, and bk Pat are
ignored, and the pen location remains unchanged.

procedure FillOval(Box : Rect; Pen_Pat : Pattern);
This procedure fills an oval with the pattern given by the value of
Pen_Pat. This oval is bounded by the rectangle Box. The fields
pnPa t, pnMode, and bk Pat are ignored, and the pen location
remains unchanged.

procedure FrameRoundRect (Box Rect; Oval_Width,
Oval_Height : integer) ; This procedure draws the outline of
a rectangle with rounded comers within the region bounded by the
rectangle Box, using the current pen state. The parameters
Oval_Width and Oval_Height specify comer diameters with
respect to width and height. Pen location remains unchanged.

procedure PaintRoundRect (Box Rect; Oval_Width,
Oval_Height : integer) ; This procedure paints a rectangle

QuickDraw Library Chapter 14

with rounded corners using the current pen pattern and pen mode.
The rectangle Box specifies the region bounding the rounded
rectangle, and the parameters Oval_Width and Oval_Height
specify the comer diameters with respect to width and height. Pen
location remains unchanged.

procedure EraseRoundRect { Box Rect; Oval_Width,
Oval_Height integer) ; This procedure fills a rounded
rectangle with the current background color. The rectangle Box
specifies the region bounding the rounded rectangle, and the
parameters Oval_Width and Oval_Height specify the corner
diameters with respect to width and height. The fields pnPa t,
pnMode, and bk Pat are ignored, and the pen location remains
unchanged.

procedure InvertRoundRect{ Box : Rect; Oval_Width,
Oval_Height : integer) ; This procedure inverts the pixels
within the boundaries of the rounded rectangle. The rectangle Box
specifies the region bounding the rounded rectangle, and the
parameters Oval_Width and Oval_Height specify the corner
diameters with respect to width and height. The fields pnPa t,
pnMode, and bkPa t are ignored, and the pen location remains
unchanged.

procedure FillRoundRect { Box Rect; Oval_Width,
Oval_Height integer; Pen Pat Pattern) ; This
procedure fills the rounded rectangle with a pattern given by
Pen_Pa t. The rectangle Box specifies the region bounding the
rounded rectangle, and the parameters Oval_ width and
Oval_Height specify the corner diameters with respect to width
and height. The fields pnPat, pnMode, and bkPat are ignored, and
the pen location remains unchanged.

Figure 14.8 QuickDraw procedures for performing graphics operations on
rectangles.

693

The three procedures DrawLine, PaintCircle, and InvertCircle are not
discussed here because they are a part of the Macintosh Pascal QuickDrawl library and
are not part of the ROM-based QuickDraw library. Refer to Chapter 6 for a review of
these procedures.

14.5 DRAWING WITH ARCS AND WEDGES

QuickDraw's routines for drawing arcs and wedge-shaped ovals provide added opportunities
for displaying objects on the screen. They can be used to draw pie charts in various
elliptical shapes, create regions that are nonrectangular, and provide a foundation for a

694 Chapter 14 QuickDraw Library

CAD (computer-aided design) library. Figure 14.9 lists the routines available for
operating with arcs and wedges.

procedure FrameArc(Box Rect; Starting_Angle,
Arc_Angle : integer) ; This procedure draws an arc along an
oval, bounded by the rectangle Box, beginning at Starting_Angle
and extending to Starting_Angle + Arc_Angle, using the pen
state of the current graf Port. The path of the arc is as wide and
high as specified by the field pnPa t. All angular arguments are
assumed in degrees, with positive angles rotated clockwise,
negative angles rotated counterclockwise. Zero degrees is
positioned at 12 o'clock. Pen location remains unchanged.

procedure PaintArc(Box Rect; Starting_Angle,
Arc_Angle integer) ; This procedure paints a wedge
within an oval, bounded by the rectangle Box, beginning at
Starting_Angle and extending to Starting_Angle +
Arc_Angle, using the pen state of the current graf Port. Pen
location remains unchanged.

procedure EraseArc(Box Rect; Starting_Angle,
Arc_Angle integer) ; This procedure paints a wedge
within an oval, bounded by the rectangle Box, beginning at
Starting_Angle and extending to Starting_Angle +
Arc_Angle, using the background pattern of the current pen state.
The fields pnPa t and pnMode are ignored, and the pen location
remains unchanged.

procedure InvertArc (Box Rect; Starting_Angle,
Arc_Angle : integer) ; This procedure inverts the pixels
enclosed by a wedge within an oval, bounded by the rectangle Box,
beginning at Starting_Angle and extending to Starting_Angle
+ Arc_Angle. The fields pnPat, bkPat, and pnMode are ignored,
and the pen location remains unchanged.

procedure FillArc(Box Rect; Starting_Angle,
Arc_Angle : integer) ; This procedure fills a wedge within
an oval, bounded by the rectangle Box, beginning at
Starting_Angle and extending to Starting_Angle +
Arc_Angle, using the current pattern of pen state. The fields
pnPat, bkPat, and pnMode are ignored, and the pen location
remains unchanged.

QuickDraw Library Chapter 14

procedure PtToAngle(Box : Rect; Given_Point : Point;
var Angle integer) ; This procedure computes the
integer angle from Given_Point to an imaginary vertical line
intersecting the center of the rectangle Box. Positive angles are
measured clockwise, with zero de rees at 12 o'clock.

Figure 14.9 QuickDraw procedures for drawing arcs and wedges.

695

The frame of reference with respect to angles differs from that of the coordinate plane
described in the first section of this chapter. Figures 14. lOa and 14. lOb show this
difference. With arcs and wedge shapes, angles have either positive or negative values.
Positive angles rotate clockwise; negative angles rotate counterclockwise. Figure 14.lOa
shows the method for specifying angles in relation to the screen; 0 degrees is positioned
at 12 o'clock, 90 degrees (-270 degrees) at 3 o'clock, 180 degrees (-180 degrees) at 6
o'clock, and 270 degrees (-90 degrees) at 9 o'clock.

315° 45°

225° 135°

180°
Angle representation for arc and wedge routines.

Figure 14.lOa Frame of reference with respect to angles.

This is different from the coordinate plane shown in Figure 14. lOb. Here angles in
the coordinate plane lead those of arc and wedge angles by 90 degrees. This is important
when using trigonometric functions such as sine and cosine, since they assume angles
that correspond to the coordinate plane, not the screen. Also keep in mind that the angular
arguments for arc and wedge routines are specified in degrees, whereas the arguments for
Pascal sine and cosine functions are given in radians. In addition, the angle through which
an arc or wedge is drawn is relative to the corner of the bounding rectangle, whether the
rectangle is square or not. For example, a wedge with a starting angle of 0 degrees and an

696 Chapter 14 QuickDraw Library

arc angle of 45 degrees has as one side a vertical line intersecting the center of the
bounding rectangle. A second side is a line intersecting the center and directed toward the
upper right comer of the bounding rectangle.

270°

225° 315°

+- rectangle

135° 45°

90°

Angle representation in QuickDraw's coordinate system.

Figure 14.lOb Frame of reference with respect to angles.

Let us apply some of these QuickDraw routines to drawing a pie chart. Assume that
we need a program to draw a pie chart with a maximum of five sections. Each section of
the pie is to be labeled with a comment and a percentage. Input required from the terminal
is as follows: a title for the pie chart, the number of sections, and the comment and
percentage for each section (the percentage must be an integer number). An example of
the window that prompts the user for information is shown in Figure 14.11. This
window uses an outside rectangle: the left top point is (50, 50), and the right bottom
point is (462, 292). The inner rectangle's left top point is (80, 135) and right bottom
point is (432, 247). The program is designed to check for two possible errors: (1) whether
any sections lie outside the range 1 through 5, and (2) whether the sum of the percentages
of the pie sections does not equal 100. If either of these tests fails, the Macintosh will
emit a short beep, redraw the prompting window, and require the user to reenter the
information.

The body of the main module contains the following major steps:

1. Hide all Macintosh Pascal windows.
2. Open two grafPorts: one for the prompt window and one for the pie

chart.
3. Show the prompt window, and enter requested data from the keyboard.
4. Show the pie chart window, and draw the pie chart.

QuickDraw Library Chapter 14 697

type

var

5. Close and dispose of all grafPorts.

Enter title for pie chart:

Number of pie sections (maximum limit is 5):

Pie section #

Enter comment:

Enter percentage:

Press mouse button to continue:

Figure 14.11 Prompt window for entering data when executing the pie-chart program.

The following user-defined types and variables are employed:

Port = GrafPtr;
Pie_Section = record

Comment : string[20];
Percentage : integer

end;
Pie_Table = array[l .. 5] of Pie_Section;

Pie_Data : Pie_Table;
Prompt_Window, Piechart_Window
Title : string[45);
Sections : integer;

Port;

The initial design for this system is represented by the structure diagram shown in
Figure 14.12, which shows the direction of data that is passed between modules. Pascal
code for the main module requires only a sequential set of procedure calls. The modules
for opening and closing grafPorts are identical to the procedures Open_Window and
Dispose_of_Window in the program Drawing_Windows and need not be discussed
again. These two procedures should exist before any other procedures are tested.
Open_Window establishes the structure and initially opens a graf Port, and
Dispose_Window closes a graf Port and disposes of its corresponding data
structure.

698 Chapter 14 QuickDraw Library

Establish
Windows

/
Viewport

Enter Data

Pie Chart
System

Draw Pie
Chart

Close and
Dispose of
Windows

Figure 14.12 Structure diagram for the pie-chart program.

Here are the steps for showing the prompt window and allowing the data to be
entered from the keyboard:

1. Set the prompt window as the current window.
2. Establish the clipping region and the rectangle boundary for viewing a

frame.
3. Fill the rectangle with white background, and draw a frame for the

rectangle.
4. Prompt user for title, and enter this title.
5. Prompt user for number of sections, and enter this value.
6. Check if number of sections is within the range 1 through 5.
7. If within bounds, then

(a) initialize the control counter, and partial sum.
(b) while the counter is less than or equal to the number of sections, do

(i) establish the boundary of inner box, fill the box with white
background, and draw the frame;

(ii) prompt user for comment, and enter the comment;
(iii) prompt user for percentage, and enter the amount;
(iv) continue to compute partial sum for total percentages;
(v) prompt user to continue by pressing mouse button;
(vi) erase prompt message;
(vii) increment control variable counter by 1;
end { while-do loop } ;

(c) Check if total sum of percentages is equal to I 00;
end { if-then } ;

8. If the parameters are not within bounds, then beep the user.
9. Repeat Steps 3 through 8 until all parameters are within bounds.

QuickDraw Library Chapter 14

Here is the Pascal code for perfonning these steps:

procedure Enter_Data {var Title : string; var Number
integer; var Pie : Pie_Table};

var

begin

Rectangle, Box : Rect;
Counter, Partial_Sum : integer;
Within_Bounds : Boolean;

699

{ Set grafPort for prompt window. The variable Prompt_Window is }
{ global to this procedure. }

SetPort{Prompt_Window};
{ Establish clipping region and boundary for viewing frame. }

SetRect(Rectangle, 50, 50, 462, 292};
ClipRect{Rectangle);
repeat

{ Fill rectangle with white background and draw frame of view }
{ port. }

FillRect{Rectangle, white);
PenSize{3, 3};
FrameRect{Rectangle};

{ Prompt user for title.
MoveTo { 6 0 , 8 0) ;
Drawstring(' Enter title for pie chart: '};
readln{Title};
MoveTo (64, 100) ;
DrawString(Title);

{ Prompt user for number of sections. }
MoveTo(60, 120};
Drawstring(' Number of pie sections (maximum limit is 5): ');
readln (Number) ;
MoveTo(340, 120);
DrawString(StringOf(Number));

Check if the number of sections is within range. }
Within_Bounds := (Number >= 1) and (Number <= 5);

{ If within bounds, enter comment for each section and }
{ percentage. }

if Within_Bounds then
begin

Counter : = 1;
Partial_Sum := O;
while Counter <= Number do

begin
{ Draw frame of inside box and display subtitle. }

SetRect(Box, 80, 135, 432, 247);
FillRect(Box, white);
FrarneRect (Box);
MoveTo(180, 165);
DrawString(concat('Pie section#',

StringOf(Counter:l)));

700 Chapter 14 QuickDraw Library

{ Prompt user for section's comment. }
MoveTo(90, 195);
DrawString('Enter comment : ');
readln(Pie[Counter] .Comment);
MoveTo(240, 195);
DrawString(Pie[Counter] .Comment);

{Enter percentage.}
MoveTo(90, 215);
DrawString('Enter percentage : ');
readln(Pie[Counter] .Percentage);
MoveTo(240, 215);
DrawString(StringOf(Pie[Counter] .Percentage:2));

{ Continue to compute partial sum. }
Partial_Sum := Partial_Sum +
Pie[Counter] .Percentage;

{ Prompt user for continuing execution. }
MoveTo(140, 270);
DrawString('Press mouse button to continue: ');
Pushbutton;
MoveTo(140, 270);
SetRect(Box, 140, 260, 400, 270);
FillRect(Box, white);

{ Modify loop-control variable. }
Counter := Counter + 1

end;
{ Check if partial sum is equal to 100%. }

Within_Bounds := (Partial_Sum = 100);
end;

{ Beep user if not within bounds. }
if not Within_Bounds then
SysBeep(lO);

until Within_Bounds
end; { Enter_Data }

This procedure is composed and tested in parts. First, we draw the outer rectangle to
see how it is positioned on the screen. Then we add prompts for the title and number of
sections, and test the procedure again to view the prompts and echo their respective
inputs. We can make corrections if prompts and echoed values need to be repositioned. As
you will notice, checking bounds on the number of sections (also on the sum of
percentages) is performed with a simple assignment statement; the right side is a
relational expression. The body of the loop is then added to draw the inner rectangle and
tested to see how the rectangle is positioned on the screen. Then we add prompts for
comment and percentage and test them. Notice that the QuickDraw procedure
Drawstring is used to draw a single text string to the screen instead of the Macintosh
Pascal procedure Wri teDraw. Keep in mind that our aim in this chapter is to use as
many of the QuickDraw routines as possible.

The procedure StringOf from the Macintosh Pascal library is borrowed for
converting a numeric value into a string representation in order to read numeric data and
echo it to the screen. You may ask how the equivalent action could be executed directly in
Pascal if StringOf or Wri teDraw were not available. There are several possible

QuickDraw Library Chapter 14 701

tricks you could use; the answer is left as an exercise. At one point we used the conca t
procedure to concatenate two strings before executing the procedure Drawstring. For
example, the message Pie section # is concatenated to the value of
StringOf(Counter:l).

The second module of importance to our pie-chart program is the one that displays
the pie-chart window and draws the pie chart, including comments and percentages for
each of the sections. Here are the general steps for performing these actions:

1. Set the current graf Port to the pie-chart window.
2. Establish a clipping window and boundary for viewing a frame.
3. Fill the viewing frame with a white background.
4. Compute the starting angle and arc angle, and set a fill pattern for each

section.
5. Draw a title for the pie chart.
6. Set the region for an oval, and draw each section of the pie chart.
7. Label each section of the pie chart.

Step 4 needs some elaboration. First, we need to introduce the local variables:
Starting_Angle, Arc_Angle, and Counter. The variable Starting_Angle
always contains the starting angle for the next wedge (pie section) and is determined by
adding the present value of Starting_Angle and Arc_Angle. In turn, Arc_Angle
is computed from the truncated product of a section's percentage and the constant 3.60.
The fill pattern is chosen from a function called Pattern_Picker, which returns a
value of type Pattern and uses a simple table lookup in the form of a case
statement to select one of the five standard patterns. All information for drawing a wedge
is stored in an array of records, each record having a field for starting angle, arc angle, and
fill pattern. The algorithmic steps are as follows:

Starting_Angle <-- O;
for Counter <-- 1 to Number_of Sections

begin
Wedge[Counter] .Start <-- Starting_Angle;
Arc_Angle <--Round(Pie[Counter) .Percentage* 3.60);
Wedge[Counter] .Arc <-- Arc_Angle;
Wedge[Counter) .pat<-- Pattern_Picker(Counter);
Starting_Angle <-- Starting_Angle + Arc_Angle

end;

The function round is used instead of trunc to avoid the accumulation of truncation
errors that could leave a small gap in the pie chart.

Labeling each section of the pie chart also needs further explanation. First, the pie
chart drawn is assumed to be circular and not elliptical. Second, the pie chart is drawn
within an oval having a center located at the point (250, 195) and a radius of 100. The
point for drawing the comment and percentage is located along an angle given by the
starting angle plus (Arc_Angle div 2) for each individual wedge. Since this is an
angle in the wedge and arc coordinate system, it must be adjusted for the coordinate plane
by subtracting 90 from its value. This value must then be converted into radians for the
application of the trigonometric functions cosine and sine. The starting point for drawing
a comment, where the angle for location is less than 180 degrees, is given by the
expressions

702 Chapter 14 QuickDraw Library

X <-- 250 + trunc(120 * cos(Radian_Angle)),
Y <-- 195 + trunc(120 * sin(Radian_Angle)).

Remember that the center of the oval is equivalent to the translation of the origin
from the point (0, 0) to (250, 195). If the angle for location is greater than 180 degrees,
the value of x is modified by subtracting the length of the comment. The algorithmic
steps follow:

for Counter <-- 1 to Number_of_Sections
begin

Angle <-- Wedge[Counter] .Start + Wedge[Counter] .Arc div 2;
Radian_Angle <-- pi * Angle - 90) I 180;
X<-- 250 + trunc(120 * cos(Radian_Angle));
Y<-- 195 + trunc(120 * sin(Radian_Angle));
if Angle > 180 then

X<-- X - StringWidth(Pie[Counter].Comment);
MoveTo (X, Y);
Drawstring(Pie[Counter] .Comment);
Y<-- Y + 15;
MoveTo (X, Y);
Drawstring(concat(StringOf(Pie[Counter] .Percentage:2),

I%'))

end;

This requires three new local integer variables, called X, Y, and Angle, and a
real variable called Radian_Angle. Here is the Pascal code for this module:

procedure Draw_Piechart (Title : string; Number_of_Sections
integer; Pie: Pie_Table);

type
Wedge_Element = record

Start, Arc : integer;
Pat : Pattern

end;
var

begin

Counter, Starting_Angle, Arc_Angle, Angle, X, Y integer;
Radian_Angle : real;
Wedge : array[l .. 5] of Wedge_Element;
Rectangle, Oval : Rect;

{ Set grafPort for pie chart. The variable Piechart_Window is }
{ global to this procedure. }

SetPort(Piechart_Window);
{ Establish clipping window and boundary for viewing. }

SetRect(Rectangle, 0, 20, 512, 342);
ClipRect(Rectangle);

{ Fill background with white pattern. }
FillRect(Rectangle, white);

{ Compute starting angle, arc angle, and fill pattern for each }
{ section. }

Starting_Angle := O;

QuickDraw Library Chapter 14

for Counter := 1 to Number_of_Sections do
begin

Wedge[Counter] .Start := Starting_Angle;
Arc_Angle :=Round(Pie[Counter] .Percentage* 3.60);
Wedge[Counter] .Arc := Arc_Angle;
Wedge[Counter] .Pat := Pattern_Picker(Counter);
Starting_Angle := Starting_Angle + Arc_Angle

end;
Draw title for pie chart.

MoveTo(60, 80);
DrawString(Title);

{ Set region for oval and draw pie chart. }
SetRect(Oval, 150, 95, 350, 295);
for Counter := 1 to Number_of_Sections do

FillArc(Oval, Wedge[Counter] .Start,
Wedge[Counter] .Arc, Wedge[Counter] .Pat);

FrameOval(Oval);
{ Label each section of the pie. }

for Counter := 1 to Number_of_Sections do
begin

703

Angle:= Wedge[Counter] .Start + Wedge[Counter] .Arc div 2;
Radian_Angle := pi * (Angle - 90) I 180;

end;

X := 250 + trunc(120 * cos(Radian_Angle));
Y := 195 + trunc(120 * sin(Radian_Angle));
if Angle > 180 then

{ Move farther from the left side of the chart. }
X := X - StringWidth(Pie[Counter] .Comment);

{ Move to a drawing point and display comment and }
{ percentage. }

MoveTo (X, Y);
DrawString(Pie[Counter] .Comment);
y := y + 15;
MoveTo (X, Y);
Drawstring(
concat(StringOf(Pie[Counter] .Percentage 2), ' %'));

end;

The QuickDraw function called StringWidth is employed to adjust the value of X.
This procedure measures the length of the comment as related to its length on the screen.
Figure 14.13 shows the results of the program using these procedures, with five sections
for the pie chart.

704

VOTER PREFERENCE
IN PRIMARY

9%

9%

Chapter 14 QuickDraw Library

14%

Figure 14.13 Sample output from the pie-chart program.

14.6 TEXT-DRAWING ROUTINES

type

QuickDraw not only draws lines and shapes but also contains the functions for displaying
text characters in various fonts, styles, and modes. For any opened graf Port, there are
five fields as part of the graf Port data structure: txFont , txFace, txMode,
txSize, and spExtra.

A font is defined as a complete set of type having one particular size and face. Not
every font used on the Macintosh system has the same number of characters in its set.
The field txFont of a graf Port structure contains an integer value indicating the
type of font available for display. Whenever a graf Port is opened, the txFont field is
assigned an initial value of 0, representing the system font. The field txFace is of type
Style and is used to control the appearance of the font. The type Style has the
following definition:

Styleitern (bold, italic, underline, outline, shadow,
condense, extend);

Style = set of Styleitern;

Notice that there are seven types of styles: bold, for drawing characters with extra
thickness; italic, for drawing characters with a slant; underline, for drawing a
baseline below a character; out 1 ine, for presenting a shallow character (not solid);
shadow, for making a heavier outlined character; and condense and extend, for
changing the horizontal distance between characters. The thickness of a character can only

QuickDraw Library Chapter 14 705

be controlled by changing the value of the txFace field. The routine PenSize has no
effect on characters drawn by Drawstring and DrawChar. The field txMode,
controlling how characters are mapped to the bit image, functions much as does the field
pnMode. The field txSize, an integer type, specifies the size of the font measured
in points (a point is approximately 1172 of an inch). A default value of 0 tells QuickDraw
to use the system font size of 12 points. QuickDraw will automatically adjust the value
of this field for any font not having a specified size. The field spExtra is important
when characters drawn along a line are fully justified; that is, when characters are aligned
to both the left and right margins.

Figure 14.14 lists procedures and functions useful for drawing text characters to a
grafPort. Because the fields pnSize, pnPat, and pnMode have no effect on text
drawing, the field pnLoc is used. Each character is placed to the right of the current pen
location. Special effects, such as the wrapping of words or carriage returns, are not
automatically performed as they are when using the Text window. As Figure 14.14
shows, drawing text on a new line requires executing the procedure MoveTo to adjust the
pen location.

procedure TextFont { New_Font : integer } ; This procedure sets
the txFont field of the current graf Port to the value of New_Font.

procedure TextFace (Text_Face : Style } ; This procedure sets the
txFace field of the current grafPort to one of the following predefined
constants: bold, italic, underline, outline, shadow, condense, or
extend. A value of [] for Text_Face assigns a normal style.

procedure TextMode (Text_Mode : integer } ; This procedure sets
the current graf Port's transfer mode for drawing text characters. Default
value is srcOr, and only two other values should be used: srcXor, srcBic.

procedure DrawChar (Given_Char : char } ; This procedures draws
the given character to the right of the current pen location, advancing the
pen to the right by the width of the character.

procedure Drawstring { Given_String : Str255 } ; This procedure
draws the given string to the right of the current pen location. The pen is
advanced to the right of the string.

function CharWidth { Given_Char char } integer; This
function returns the width of the given character based on the current
graf Port' s font, size of font, and style of font.

function StringWidth(Given_String : Str255 } integer;
This function returns the width of the given string based on the current
graf Port's font, size of font, and s_!yle of font.

Figure 14.14 QuickDraw procedures and functions for drawing text characters to a
grafPort.

706 Chapter 14 QuickDraw Library

Notice that in the procedure Enter_Data, listed earlier, a complete line of text is
entered from the keyboard (by executing the readln statement) before being echoed to
the screen. You may feel it is more appealing to see the characters echoed as they are
entered one at a time from the keyboard. The following procedure, Read_Response,
shows the steps for doing that.

procedure Read_Response (var Char_String
integer);

string; Max_Length

var
J : integer;
Character : Char;

begin
{ Initialize control variable and character string. }

J := 1;
Char_String := '';
while not eoln do
{ Read characters and concatenate on the right to character }
{ string. }

end;

begin
read(Character);

{ If counter J is less than the allowed maximum length of }
{ the string, draw the character to the screen and }
{ concatenate on the right with a character string. }

if J <= Max_Length then
begin

end;
readln;

if (ord(Character) >= 32) and (ord(Character) <=
126) then

end;

begin
DrawChar(Character);
Char_String := concat(Char_String,Character);
J .- J + 1

end;

First, a counter called J is employed to ensure that the variable Char_String does
not exceed a maximum length. Second, each character is read as it is entered from the
keyboard. It is then checked to see if it is in the decimal range of 32 (a space) through
decimal 126 (the character -). This prevents the drawing of a small box that represents
any of the special characters outside this range, such as the Backspace. Third, if the
ordinal value of the character is within range, the character is drawn by DrawChar and
then concatenated to the right of the character string. This procedure assures us that no
strange characters will be attached to the character string, but it does not allow us to delete
unwanted characters by pressing the Backspace key.

The procedure Enter_Data requires the following changes to incorporate the steps
of Read_Response: The lines

QuickDraw Library Chapter 14

MoveTo(64,100);
Read_Response(Title,45);

replace

readln(Title);
MoveTo(64, 100);
Drawstring(Title);

and the lines

MoveTo(240, 215);
Read_Response(Pie[Counter] .Comment,20);

replace

readln(Pie[Counter] .Comment);
MoveTo(240, 215);
DrawString(Pie[Counter] .Comment);

14.7 DRAWING WITH REGIONS AND POLYGONS

707

A region is defined as a nonrectangular figure having a closed boundary. It can be formed
from a combination of calls to procedures for drawing framed shapes of rectangles, ovals,
lines, and polygons (except for calls that draw arcs). Regions can also be defined through
the intersection, union, and subtraction of other regions. Because we are able to define a
region as a nonrectangular object, it is possible to establish clipping regions that are of
arbitrary shapes and to dictate to QuickDraw the regions that are visible to the user.
Figure 14.15 lists routines for creating and drawing regions. Regions are represented by a
specially defined type called a RgnHandle. A handle is an indirect pointer to a variable,
so it does not point directly to a dynamic variable, but to another pointer that points to a
dynamic variable.

function NewRgn RgnHandle; This function allocates space for the
dynamic data structure of a new region, initializing it as an empty region
with the top left point being (0, 0), and the bottom right point being (0, 0).
The value returned is a handle to this new structure. All regions must be
allocated using this function before any reference can be made to that
region. No other procedures or functions are capable of creating a region.

procedure DisposeRgn(Source_Rgn RgnHandle) ; This
procedure deallocates storage for the data structure representing the source
region and returns this space to a free memory pool in the Pascal system.

708 Chapter 14 QuickDraw Library

procedure CopyRgn(Source_Rgn, Dest_Rgn : RgnHandle) ; This
procedure makes a duplicate copy of the source region and assigns this copy
to the destination region. Later changes in the source region have no effect
on the destination region.

procedure SetErnptyRgn (Present_Rgn RgnHandle) ; This
procedure forces the present region to become an empty region, destroying its
previously defined st~cture.

procedure SetRectRgn(Present_Rgn : RgnHandle; left, top,
right, bottom : integer); This procedure forces the present region to
become a rectangular region with boundary points (left, top) and (right,
bottom), destroying its previously defined structure. If left is greater than
or equal to right, or if top is greater than or equal to bottom, the assigned
region will be empty.

procedure RectRgn(Present_Rgn : RgnHandle; Box : Rect);
This procedure forces the present region to become the region specified by
Box, destroying its previously defined structure.

procedure OpenRgn; This initially begins to collect the commands forming
the definition of a region, saving the information related to the region in
the current graf Port ' s rgnSave field. While a region is open, the pen is
hidden from view. Only one region should be opened at a time.

procedure CloseRgn (Dest_Rgn RgnHandle) ; This procedure
closes a region by ending the collection of commands defining the boundary
of the region, assigning the region to the destination region.

procedure SectRgn(Source_A, Source_B, Dest_Rgn
RgnHandle) ; This procedure computes the intersection of regions given by
Source_A and Source_B, assigning the result to the destination region. A
destination region can be one of the source regions.

procedure UnionRgn(Source_A, Source_B, Dest_Rgn
RgnHandle) ; This procedure computes the union of regions given by
Source_A and Source_B, assigning the result to the destination region. A
destination region can be one of the source regions.

procedure DiffRgn(Source_A, Source_B, Dest_Rgn
RgnHandle) ; This procedure subtracts region Source_B from region
Source_A, assigning the result to the destination region. The destination
region can be one of the source regions.

QuickDraw Library Chapter 14 709

procedure XorRgn(Source_A,Source_B, Dest_Rgn: RgnHandle);
This procedure computes the difference between the union and intersection
of the two source regions, assigning the result to the destination region. The
destination region can be one of the source regions.

function PtinRgn(Source Pt Point; Present_Rgn
RgnHandle) : Boolean; This function will test for the presence of a
pixel below and to the right of coordinates given by Source_Pt within the
region specified by Present_Rgn. It returns a value of true if it exists, and
false otherwise.

function RectinRgn (Source Rect Rect; Present_Rgn
RgnHandle) : Boolean; This function will test for the intersection of
the source rectangle with the present region. The value of this function is
true if the intersection encloses at least one pixel, and false otherwise.

function EqualRgn(Region_A, Region_B RgnHandle) :
Boolean; This function compares the two regions Region_A and
Region_B for equality. If the regions have identical shapes, sizes, and
locations, the value returned is true; otherwise it is false.

function EmptyRgn (Source_Rgn : RgnHandle) : Boolean; This
function returns a value of true if the source region is empty, and false
otherwise.

procedure FrameRgn (Source_Rgn : RgnHandle) ; This procedure
draws the shell of the specified region using the current graf Port's pen
state (pattern, mode, and size). Pen location remains unchanged.

procedure PaintRgn (Source_Rgn : RgnHandle) ; This procedure
paints the specified region using the pattern and mode of the current
graf Port. Pen location remains unchanged.

procedure EraseRgn (Source_Rgn : RgnHandle) ; This procedure
paints the specified region using the background pattern of the current
graf Port. Pen location remains unchanged.

procedure InvertRgn (Source_Rgn : RgnHandle) ; This procedure
inverts the pixels within the boundary specified by the source region. Pen
location remains unchanged.

procedure FillRgn(Source_Rgn RgnHandle; Pen_Pat
Pat tern) ; This procedure fills the specified region given by the source
with the attern s ecified b Pen_Pat. Pen location remains unchan ed.

Figure 14.15 QuickDraw procedures and functions for creating and using regions.

710 Chapter 14 QuickDraw Library

Here is the definition of this type:

type
RgnHandle
RgnPtr
Region

= "'RgnPtr;

=
=

"Region;
record

rgnSize
rgnBBox

{ Additional
end;

integer;
Rect;
data if region is nonrectangular. }

The field rgnSize contains the memory size required for storing the region, and the
field rgnBBox represents a rectangle that encloses the region.

All dynamic structures representing regions are allocated by executing the function
NewRgn. No region should be opened, copied, closed, disposed, operated on, designated
as a destination region, merged, or separated unless its data structure has first been
allocated by NewRgn. As for an arbitrary-shaped region, it is defined by first executing
the routine OpenRgn, defining the routines for framing the region but not drawing the
region, then closing the definition of the region by executing the routine CloseRgn.
Only one region should be opened at any one time, and it should be closed when it no
longer needs to be be defined. Once a region has been closed, it can be drawn to the screen
by executing one of the routines EraseRgn, FrameRgn, PaintRgn, and FillRgn.
Data structures for regions are deallocated by executing the routine DisposeRgn. This
routine should only be executed when the region is no longer useful or before the program
ends execution.

Consider the following example program, titled Drawing_Regions.

program Drawing_Regions;
{ Program: This example shows how a region of arbitrary shape }
{ can be generated, using several region procedures. }

type
Port = GrafPtr;

var
Window : Port;
Rectangle : array[l .. 2] of Rect;
J : integer;
Actual_Rgn : array[l .. 3] of RgnHandle;

*** }
procedure Open_Window (var Viewport : Port);
begin

new (Viewport) ;
OpenPort(Viewport)

end;
{ *** }

procedure Dispose_of_Window (var Viewport : Port);
begin

ClosePort(Viewport);
Dispose(Viewport)

end;
{ *** }

QuickDraw Library Chapter 14 711

procedure Grow_Region (var Rgn : RgnHandle; var Box : Rect;
Left, Top, Right, Bottom: integer);

begin
OpenRgn;
SetRect(Box, Left, Top, Right, Bottom);
FrarneOval (Box);
CloseRgn (Rgn);

end;
{ *** }
begin
{ Hide all Macintosh Pascal windows.

HideAll;
Establish two initial windows. }

Open_Window(Window);
for J := 1 to 3 do

Actual_Rgn[J] := NewRgn;
Generate the first region. }

Grow_Region(Actual_Rgn[l], Rectangle[l], 56, 73, 356, 273);
Generate the second region. }

Grow_Region(Actual_Rgn[2], Rectangle[2], 206, 103, 306, 243);
Generate third region. }

DiffRgn(Actual_Rgn[l], Actual_Rgn[2], Actual_Rgn[3]);
{ Show the third region. }

SetPort (Window) ;
WindowA.clipRgn := Actual_Rgn[3];
Fil1Rgn(Actual_Rgn[3], white);

{ Paint border on the edges of the third region. }
PenSize(2, 2);
FrarneRgn(Actual_Rgn[3]);

{ Draw in the third region. }
MoveTo(lOO, 160);
TextFace([italic, underline]);
DrawString('Third Region');

Close windows and dispose of all regions. }
Dispose_of_Window(Window);
for J := 1 to 3 do

DisposeRgn(Actual_Rgn[J]);
end.

This program draws the region shown in Figure 14.3. The procedure Grow_Region
generates the instructions representing the first two regions, called Act ua l_Rgn [1]
and Actual_Rgn [2]. In the body of this procedure, SetRect establishes a rectangle
as a boundary for framing an oval. During execution, Actual_Rgn [1] represents the
area within the large oval, and Act ua l_Rgn [2] represents the area within the small
oval. The third region, Actual_Rgn [3], is generated by subtracting Actual_
Rgn [2] from Actual_Rgn [1], and assigning the resulting region to this variable.
The region is drawn by first setting the current port to Window, assigning this third
region as the clipping region of Window, and then filling the region with a white
background. After setting the pen size, the frame of this third region is painted using the
procedure FrameRgn. The last set of instructions draws text into this third region.

712 Chapter 14 QuickDraw Library

Notice that the procedure DisposeRgn is executed at the end of the program to avoid
the risk of bombing the program.

Drawing polygons is similar to defining and drawing regions. Figure 14.16 lists the
procedures and functions for defining and drawing with polygons. Mathematically, a
polygon is a closed plane figure bounded by three or more line segments. In Pascal a
polygon is drawn with a closed set of three or more connected line segments. It is
represented by a special data type called polyHandl e. Like a region handle, a
polyhandle represents an indirect pointer to a dynamic structure created by execution of the
function OpenPoly.

function OpenPoly PolyHandle; This function allocates a data
structure for a polygon, indieating to QuickDraw that it is ready to receive
draw instructions of either Line or LineTo. At this point the pen is
hidden.

procedure ClosePoly; This procedure stops the polygon from collecting
line instructions and shows the pen for drawing.

procedure KillPoly(Source_Poly PolyHandle) ; This
procedure deallocates storage for the data structure representing the source
polygon and returns this space to the free memory pool of the Pascal system.
This procedure should only be used if the polygon is no longer needed.

procedure Frame Poly (Source_Poly PolyHandle) ; This
procedure draws the border of the polygon using the pen state (mode, size,
and pattern) of the current graf Port. In this procedure the pen is always
located below and to the right of each boundary point of the polygon itself,
forcing the polygon to extend beyond the right and bottom edges of the
rectangle specified by the field polyBBox.

procedure PaintPoly (Source_Poly PolyHandle) ; This
procedure paints the area within the source polygon, using the pen pattern
and pen mode of the current graf Port. Pen location remains unchanged.

procedure Erase Poly (Source_Poly PolyHandle) ; This
procedure paints the area of the source polygon using the background
pattern of the current graf Port. Pen location remains unchanged.

procedure InvertPoly (Source_Poly PolyHandle) ; This
procedure inverts each pixel of the source polygon. Pen location remains
unchanged.

QuickDraw Library Chapter 14 713

procedure FillPoly(Source_Poly PolyHandle; Pen_Pat
Pat tern) ; This procedure fills the area of the source polygon with the
pattern given by Pen_Pat. Pen location remains unchanged.

Figure 14.16 QuickDraw procedures and functions for defining and drawing polygons.

The following declarations define this type of handle:

type
PolyHandle

PolyPtr
Polygon

/\PolyPtr;

/\Polygon;
record

polySize
polyBBox
polyPoints

end;

integer;
Rect;
array[O .. OJ of Point

The field polySize provides the amount of memory needed for storing the
polygon, and the field polyBBox represents the rectangle that encloses the polygon. For
the third field, polyPoints, the bounds of the array can be changed for dynamically
storing all of the points representing the line segments of the polygon.

Before a polygon can be used, it must be allocated storage by executing the function
OpenPoly. Like OpenRgn, this function hides the pen and readies the data structure of
the polygon for points representing connecting line segments. These points can be
generated by executing procedures such as Move, MoveTo, Line, and LineTo. This
definition ends with the execution of procedure ClosePoly. The ClosePoly
procedure tells QuickDraw to stop saving definitions and show the pen for drawing. Never
open an additional polygon if one is already open. After execution of ClosePoly, a
polygon can be drawn by using a procedure such as FrarnePoly, PaintPoly,
ErasePoly, or FillPoly. The data structure for a polygon is deallocated by
executing the procedure KillPoly. Like DisposeRgn, this procedure returns the
storage space used by the data structure to the pool of free memory in the Pascal system.

14.8 DRAWING PICTURES

QuickDraw allows us to save drawing commands in a special object called a picture, with
the flexibility of drawing this picture at a later time. The details for drawing a picture can
be masked from the user in a procedure or function. Each picture that is defined requires a
picture frame that surrounds it. The picture is drawn in a destination frame that is within
the boundary of the picture frame. Figure 14.17 lists the functions and procedures for
defining and drawing pictures.

function OpenPicture (Picture_Frarne Rect) : PicHandle;
This function allocates storage for a picture. The rectangle specifies the
area in which picture commands are to be drawn. This function results in
hiding the pen.

714 Chapter 14 QuickDraw Library

procedure ClosePicture; This procedure stops commands from being
saved by an opened picture. Only one picture should be open at any one time.

procedure DrawPicture(Saved_Picture PicHandle;
Dest_Frame : Rect) ; This procedure draws the saved picture within
the destination frame, expanding or shrinking the picture as necessary. The
destination frame must be within the boundary of the picture frame, or else
no picture is drawn.

procedure KillPicture (Saved_Picture PicHandle) ; This
procedure deallocates storage for the data structure of the saved picture,
returning it to the free memory pool of the Pascal system. This procedure
should onl be used when the saved icture is no Ion er needed.

Figure 14.17 QuickDraw procedures and functions for defining and drawing
pictures.

Like regions and polygons, pictures require special data types in Pascal. All pictures
are represented by picture handles; a picture handle points to a picture pointer; in turn, the
picture pointer points to a record called a picture:

type
PicHandle

PicPtr
Picture

= /\PicPtr;
/\Picture;
record

picSize : integer;
picFrame : Rect;

{ Data and commands for drawing the picture. }
end;

The field picSize contains the size of memory needed to store the picture, the field
picFrame outlines the rectangle surrounding the defined picture. These fields are
followed by coded data and commands for drawing the picture. Like regions and polygons,
a data structure representing a picture must be allocated by executing the function
OpenPicture. This function hides the pen and collects all drawing commands to the
picture. This collection of drawing commands continues until the procedure
ClosePicture is executed. This procedure shows the pen but does not draw the
picture. The procedure DrawPicture must be executed to draw an actual picture.

Consider the following example program, titled Drawing_Pictures.

program Drawing_Pictures(input, output);
{ Program: This program draws a pie chart as a picture. This }
{ picture is then drawn in the upper right corner of }
{ the screen in what is referred to as a destination }
{ frame. The whole screen represents the picture }
{ frame for defining the picture. }

type
Port = GrafPtr;

QuickDraw Library Chapter 14

Pie_Section = record
Cormnent : string[20]
Percentage : integer

end;
Pie_Table = array[l .. 5] of Pie_Section;

var
Pie_Data : Pie_Table;
Prompt_Window, Piechart_Window Port;
Title : string[45];
Sections : integer;
Mypicture : PicHandle;
Picture_Frame, Dest_Frame : Rect;

715

{ To keep this listing short, procedures and functions are not }
{ defined. }
begin { Main body of the program. }
{ Hide all Macintosh Pascal windows. }

HideAll;
{ Establish data structures and open the two grafPorts. }

Open_Window(Prompt_Window);
Open_Window(Piechart_Window);

Show prompt window and enter relevant data. }
Enter_Data(Title, Sections, Pie_Data);

{ Set picture frame and destination frame for drawing picture. }
SetRect(Picture_Frame, 0, 20, 512, 342);
SetRect(Dest_Frame, 200, 0, 512, 190);

{ Set drawing window for picture cormnands. }
SetPort(Piechart_Window);
EraseRect(Picture_Frame);
begin
{ Open picture for picture cormnands. }

Mypicture := OpenPicture(Picture_Frame);
{ Assign drawing cormnands to current grafPort. }

Draw_Piechart(Title, Sections, Pie_Data);
{ Close picture. }

ClosePicture;
end;

{ Draw the picture in the destination frame. }
DrawPicture(Mypicture, Dest_Frame);

{ Close and dispose of storage for all windows and pictures. }
Dispose_of_Window(Prompt_Window);
Dispose_of_Window(Piechart_Window);
KillPicture(Mypicture);

end.

This is the main program for Drawing_Pictures, except that all user-defined
procedures and functions have been removed. In this example, only a few steps in the
main program have been added to draw the pie chart as a picture called Mypicture. Two
additional rectangles are defined: Picture_Frame, which picks the whole screen as the
picture frame, and Dest_Frame, the destination frame where the pie chart will actually
be drawn. After entering data from the keyboard, these two rectangles are set. This is
followed by setting Piechart_Window for collecting picture commands. If we attempt

716 Chapter 14 QuickDraw Library

to open a picture without a window being a current graf Port, the system will bomb.
In addition, picture commands are always assigned to the current graf Port once the
function OpenPicture is executed. After opening the picture, drawing commands are
assigned to Mypicture when the procedure Draw_Piechart is executed. This means
that all of our defined procedures and functions remain unchanged, with no additions or
deletions. We stop assigning picture commands to Mypic t ure by executing
ClosePicture. This is followed by executing the procedure DrawPicture for
drawing Mypicture in a destination frame in the upper right of the screen. The
procedure KillPicture is executed at the end of the program to free the data storage
for Mypicture.

14.9 TRANSFER MODES AND BIT-TRANSFER OPERATIONS

Transfer modes are important because they control the transfer of individual pixels
between bit maps, from source to destination, or between a pattern and a bit map. There
are two types of transfer modes: pattern transfer, for drawing lines and shapes with a
pattern, and source transfer, where bit images are transferred between bit maps. For each
of these there are four basic operations: Copy, Or, Xor, and Bic. Figure 14.18 shows a
table of logical equations between source and destination pixels for the transfer modes
srcCopy,patCopy,srcOr,patOr,srcXor,patXor,srcBic,patBic,
notSrcCopy,notSrcOr,notSrcXor,notSrcBic,notPatCopy,notPatOr,
notPatXor, and notPatBic.

Transfer Mode
srcCopy
patCopy
srcOr
pat Or
srcXora
patXora
srcBic
patBic
notSrcCopy
notPatCopy
notSrcOr
notPatOr
notSrcXor8

notPatXor8

notSrcBic
notPatBic

Value of Resulting_ Pixel at Destination
Source_Pixel
Pattern_Pixel
Source_Pixel OR Destination_Pixel
Pattern_Pixel OR Destination_Pixel
Source_Pixel XOR Destination_Pixel
Pattem_Pixel XOR Destination_Pixels
NOT(Source_Pixel) AND Destination_Pixel
NOT(Pattern_Pixel) AND Destination_Pixel
NOT(Source_Pixel)
NOT(Pattem_Pixel)
NOT(Source_Pixel) OR Destination_Pixel
NOT(Pattem_Pixel) OR Destination_Pixel
NOT(Source_Pixel XOR Destination_Pixel)
NOT(Pattern_Pixel XOR Destination_Pixel)
Source_Pixel AND Destination_Pixel
Pattem_Pixel AND Destination_Pixel

8bXORc= ((NOT b)ANDc) OR(b AND (NOTc)).

Figure 14.18 Logical equations for determining the value of the resulting pixel
during transfer modes.

QuickDraw Library Chapter 14 717

The Copy operation simply copies all of the bits from the source to the destination
without regard to the corresponding pixels in the destination. The or operation performs
a binary or operation between corresponding source and destination pixels, Xor is a
binary exclusive-or operation, and Bic is a binary bit-clear operation on source and
destination pixels. In addition, the operations patOr and srcOr are equivalent to taking
the source pixels and overlaying these on the destination pixels; patXor and srcXor
are equivalent to using the source to invert the pixels of the destination; and pa tBic and
srcBic are equivalent to using the source pixels to erase destination pixels.

QuickDraw has two important bit-transfer operations: s c r o 11 Rec t and
CopyBi ts. The procedure ScrollRect has the following header:

procedure ScrollRect(Rectangle : Rect; Delta_h, Delta_v
integer;

Updated_Region: RgnHandle);

This procedure allows bits contained within the intersection composed of the
rectangle, visRgn, clipRgn, portRect, and portBi ts. bounds to be scrolled
(shifted) through a horizontal distance specified by Del ta_h, and vertical distance
Del ta_ v. A positive direction is defined as down or right. Bits that lie outside the area
intersected by the five regions are not affected, and bits inside the intersection are lost
when scrolled outside this region. The region vacated by executing ScrollRect is
filled with the background pattern of the current graf Port; the vacated region is
represented by the region handle, Updated_Region.

The following program, titled Scro 11 in g, demonstrates the use of the
ScrollRect procedure.

program Scrolling(input, output);
{ Purpose: Sample program that shows how a region of the screen }
{ can be scrolled. }

type
Port = GrafPtr;
Rect_Table = array[l .. 3] of Rect;

var
Rectangle : Rect_Table;
Window : Port;
Hscroll, Vscroll : integer;
Updated_Region : RgnHandle;
Mousepoint : Point;

{ *** }
procedure Open_Window (var Viewport : Port);

begin
new (Viewport) ;
OpenPort(Viewport)

end;
{ *** }

procedure Initialize_Rectangles (var Box : Rect_Table);
begin

SetRect(Box(l], 130, 60, 350, 280);
SetRect(Box[2], 148, 78, 332, 262);
SetRect(Box[3], 151, 81, 329, 259)

end;

718 Chapter 14 QuickDraw Library

{ *** }
procedure Draw_Regions (Box : Rect_Table);

begin
PenSize(3, 3);
FillRect(Box[l], gray);
FrameRect(Box[l]);
Fil1Rect(Box[2], white);
FrameRect(Box[2]);
PenSize(l, 1);
Fill0val(Box[3], ltgray);
Frame0val(Box[3]);

end;
{ *** }

procedure Dispose_of_Window (var Viewport : Port);
begin

ClosePort(Viewport);
Dispose(Viewport)

end;
{ *** }

procedure Pushbutton;
var

Time: longint;
begin
{ Wait for mouse button to be pressed. }

while not Button do { nothing }

Delay(lO, Time);
end;

{ *** }
begin { Body of the program. }
{ Hide all of the Macintosh Pascal windows. }

HideAll;
{ Initialize the three rectangles. }

Initialize_Rectangles(Rectangle);
{ Open window for viewing. }

Open_Window(Window);
{ Establish data structure for updated region when scrolling. }

Updated_Region := NewRgn;
{ Erase the entire screen, using the default value of the field }
{ visRgn. }

EraseRect(WindowA.visRgnAA.rgnBBox);
Draw_Regions(Rectangle); {Draw the regions and the oval. }

{ Prompt the user to press the mouse button. }
MoveTo(130, 40);
Drawstring(' Press mouse button to continue: ');
Pushbutton;

{ Establish the scrolling point from the center of the oval. }
while Button do

begin
GetMouse(Mousepoint);

QuickDraw Library Chapter 14 719

{ Scroll only if mouse point is within the boundary of the }
{ second rectangle. }

if PtinRect(Mousepoint, Rectangle[2]) then
begin

end
end;

if (Mousepoint.v - 170) > 0 then
Vscroll := -1

else
if (Mousepoint.v = 170) then

Vscroll .- 0
else

Vscroll .- l;
if (240 - Mousepoint.h) > 0 then

Hscroll := 1
else

if (Mousepoint.h
Hscroll := 0

else

240) then

Hscroll := -1;
Scrol1Rect(Rectangle[3], Hscroll, Vscroll,

Updated_Region)

{ Dispose of storage for the window and Updated_Region. }
Dispose_of_Window(Window);
DisposeRgn(Updated_Region);

end.

In this program a rectangle is framed with an oval drawn inside. Using the mouse, we
can position the cursor for scrolling the oval outside of the rectangle. If the cursor is
outside the rectangle, no bits are shifted. Depending on the position of the cursor, we can
scroll the oval upward, downward, left, right, or diagonally. As the oval is scrolled, the
updated region is filled with a white background pattern. Why the three rectangles? The
first and second rectangles provide the region for drawing the gray boundary enclosing the
oval. The oval is drawn within the third rectangle. This third rectangle is slightly smaller
than the second, so that when scrolling occurs, the frame of the second rectangle
represented by an edge is not scrolled with the oval.

The second bit-transfer routine in QuickDraw is CopyBi ts. This procedure transfers
a bit image between any two bit maps, clipping the result to an area specified by a
masking region. The procedure CopyBi ts has the following header:

procedure CopyBits (Source_Bits, Destination_Bits : BitMap;
Source_Rect, Destination_Rect : Rect;
Transfer_Mode : integer;
Mask_Region: RgnHandle);

Transferring bits can be done with any one of the eight source transfer modes:
srcCopy,srcOr,srcXor,srcBic,notSrcCopy,notSrcOr,notSrcXor,or
notSrcBic. The result is always clipped to the region handle Mask_Region, and to
the boundary rectangle of the destination bit map. If the portBi ts of the current
graf Port and destination bit map are the same, the result is also clipped to the
intersection of the graf Port's visRgn and clipRgn. If clipping to Mask_Region

720 Chapter 14 QuickDraw Library

is not desired, the pointer constant ni 1 must be passed. Both the coordinates of the
destination rectangle and the masking region are in terms of the
Destination_Bits .bounds coordinate system, while the coordinates of the source
rectangle are in terms of the Source_Bi ts. bounds coordinates. During transfer,
source pixels can be condensed or stretched to fit the destination rectangle. Source and
destination rectangles need not be of the same size.

Bi t_Copies is a program that demonstrates this by first drawing to a window in
the upper right comer of the screen, then copying the bit image to a second window,
viewing the bit image from the first window in the lower left portion of the screen. As
you can see, CopyBi ts can provide a simple scheme for moving the bit images of
several windows about the screen.

program Bit_Copies(input, output);
{ Purpose: Sample program that shows how a bit image in one }
{ window can be copied and then assigned to the bit }
{ image of another window. }

type
Port = GrafPtr;
Rect_Table = array[l .. 2] of Rect;

var
Rectangle : Rect_Table;
Window: array[l .. 2] of Port;
J : integer;

{ ***
procedure Open_Window (var Viewport : Port);

begin
new (Viewport) ;
OpenPort(Viewport)

end;
{ *** }

procedure Initialize_Rectangles (var Box : Rect_Table);
begin

SetRect(Box[l], 256, 0, 512, 171);
SetRect(Box[2], 0, 171, 256, 342)

end;
{ *** }

procedure Dispose_of_Window (var Viewport : Port);
begin

ClosePort(Viewport);
Dispose(Viewport)

end;
{ *** }

procedure Pushbutton;
var

Time: longint;
begin
{ Wait for mouse button to be pressed. }

while not Button do { nothing }

Delay(lO, Time);
end;

QuickDraw Library Chapter 14

{ *** }
procedure Erase_Window (Viewport : Port;

begin
SetPort(Viewport);
BackPat (gray);
EraseRect(Box)

end;

Box : Rect);

{ *** }
begin { Body of the main program. }
{ Hide all of the Macintosh Pascal windows. }

HideAll;
{ Initialize the three rectangles.

Initialize_Rectangles(Rectangle);
for J := 1 to 2 do { Open window and erase screen. }

Open_Window(Window[J));
{ Set current port to the first window and erase the screen }

Erase_Window(Window[l], Window[l]A.visRgnAA.rgnBBox);
{ Adjust the clipping region and draw into this first window. }

ClipRect(Rectangle[l]);
PenSize(3, 3);
FillRect(Rectangle[l], white);
FrameRect(Rectangle[l]);
MoveTo(312, 50);
Drawstring ('Window 1 ') ;

{ Prompt the user to continue.
MoveTo(266, 120);
Drawstring(' Press mouse button to continue: ');
Pushbutton;

721

{ Set the current port to the second window; then copy the bit }
{ image of the first window to this second window. }

SetPort(Window[2]);
CopyBits(Window[l]A.portBits, Window[2]A.portBits,

Rectangle[!], Rectangle[2], srcCopy, nil);
{ Now erase the contents of the first window. }

Erase_Window(Window[l], Rectangle[!]);
Pushbutton;

{ Now erase the contents of the second window.
Erase_Window(Window[2), Rectangle[2]);
for J := 1 to 2 do { Dispose of storage for the window. }

Dispose_of_Window(Window[J]);
end.

14.10 SPECIAL GRAPHICAL ENTITIES: CURSORS AND PATTERNS

Cursors and patterns are special graphical entities in QuickDraw. In Pascal a cursor is a
special data type defined as follows:

type
Cursor record

722

data: array[0 .. 15]
mask: array[0 .. 15]
hotspot: Point

Chapter 14 QuickDraw Library

of integer;
of integer;

end;

Each array is a 16-word data field containing the pixel representation for either the
cursor or its mask. The data field contains the actual cursor image, the mask field contains
information about the appearance of each pixel for the cursor, and the third field represents
a point for aligning the cursor with the position of the mouse. Examples showing three
different cursors representing faces is given in Figure 14.19a-c. Each element of the data
and mask array is specified by a decimal integer value and must be in the range
-32767 to 32767. We establish a cursor by laying out a 16-by-16-bit array, painting a
black dot in a cell representing a black pixel (binary 1), and leaving a cell blank for a
white pixel (binary 0). Then the binary value (represented in a hexadecimal format) is
converted to an equivalent decimal value. If a mask is used, the following rules apply
between corresponding data and masking pixels:

Data Pixel Mask Pixel Destination Pixel on Screen

White
Black
White
Black

Array
Position

0
1
2
3

' 5
6
7
8
9

10
11
12
13
14
15

White
Black

Black
Black
White
White

Copy of pixel under cursor
Inverse of pixel under cursor

Smile
xxxxxxxxxxxxxxxx
x--------------x
x--------------x
x--xx------xx--x
x--xx------xx--x
x--------------x
x--------------x
x------x-------x
x-----xxx------x
x------x-------x
x--x-------x---x
x---x-----x----x
x----x---x-----x
x-----xxx------x
x--------------x

Hexadecimal
FFFF
8001
8001
9819
9819
8001
8001
8101
8381
8101
9011
8821
8441
8381
8001

XXXXXXXXXXXXXXXX FFFF
X implies a black pixel (binary 1).
- imJ2..lies a white ...E..ixel (binar_y_ 0).

Decimal
-1
-32767
-32767
-26599
-26599
-32767
-32767
-32511
-31871
-32511
-28655
-30687
-31679
-31871
-32767
-1

Figure 14.19a Pixel representation for the Smile cursor.

QuickDraw Library Chapter 14 723

Array
Position Frown Hexadecimal Decimal

0 xxxxxxxxxxxxxxxx FFFF -1
1 x--------------x 8001 -32767
2 x--------------x 8001 -32767
3 x--xx------xx--x 9819 -26599

' x--xx------xx--x 9819 -26599
5 x--------------x 8001 -32767
6 x--------------x 8001 -32767
7 x------x-------x 8101 -32511
8 x-----xxx------x 8381 -31871
9 x------x-------x 8101 -32511

10 x--------------x 8001 -32767
11 x-----xxx------x 8381 -31871
12 x----x---x-----x 8441 -31679
13 x---x-----x----x 8821 -30687
14 x--------------x 8001 -32767
15 xxxxxxxxxxxxxxxx FFFF -1

Figure 14.19b Pixel representation for the Frown cursor.

Array
Position Just so Hexadecimal Decimal

0 xxxxxxxxxxxxxxxx FFFF -1
1 x--------------x 8001 -32767
2 x--------------x 8001 -32767
3 x--xx------xx--x 9819 -26599

' x--xx------xx--x 9819 -26599
5 x--------------x 8001 -32767
6 x--------------x 8001 -32767
7 x------x-------x 8101 -32511
8 x-----xxx------x 8381 -31871
9 x------x-------x 8101 -32511

10 x--------------x 8001 -32767
11 x--------------x 8381 -32767
12 x---xxxxxxxx---x 9FF1 -24591
13 x--------------x 8001 -32767
14 x--------------x 8001 -32767
15 xxxxxxxxxxxxxxxx FFFF -1

Figure 14.19c Pixel representation for the Justso cursor.

Unless assignments are made to the mask array, all elements of the array are assumed to
be zero.

724 Chapter 14 QuickDraw Library

The mouse positions the cursor by means of a special point called the hotspot.
Coordinates for the hotspot are relative only to the data array, the left comer having the
coordinates (0, 0), and the bottom right comer having the coordinates (16, 16). The
mouse uses the hotspot to align the cursor on the screen with the mouse position. In
Figure 14.19 the hotspot for all three data arrays is chosen as the center point of the data
array (8, 8). Figure 14.20 lists several routines for handling cursors. The cursor level is
hidden from the programmer. Whenever this level is less than zero, the present cursor is
hidden from view. Only when this value becomes zero is the present cursor displayed.

procedure Ini tCursor; This procedure reestablishes the current cursor
as the predefined arrow pointing north-northwest and reinitializes the
cursor level to 0, making the cursor visible on the screen.

procedure SetCursor (New_Cursor : Cursor) ; This procedure sets
the new cursor as the current cursor. If the previous cursor was hidden, the
new cursor remains hidden until it becomes uncovered by execution of
ShowCursor. If the previous cursor was not hidden, this procedure
immediately shows the new cursor.

procedure HideCursor; This procedure removes the present cursor from
the screen by restoring the bit image below the cursor, decrementing the
cursor level by 1. A call of HideCursor should always be balanced with a
call to ShowCursor.

procedure ShowCursor; This procedure increments the cursor level, and if
the value of the cursor level becomes zero (it is never incremented beyond
zero), the present cursor is displayed on the screen. The present cursor is
always assumed to be the cursor last set by a call to SetCursor.

procedure ObscureCursor; This procedure hides the present cursor until
the mouse has been moved. This procedure has no effect on the cursor level
and should never be balanced by calling ShowCursor.

Figure 14.20 QuickDraw procedures for handling cursors.

The following program, titled Showing_Cursors, demonstrates how to make one
of three cursors visible on the screen. Notice that the procedure ObscureCursor is
used to hide the system cursor until the mouse is moved:

program Showing_Cursors(input, output);
{ Purpose: Sample program for showing how user-defined cursors }
{ can be created and viewed. }

type
Port = GrafPtr;
Rect_Table = array[l . . 3] of Rect;

var

QuickDraw Library Chapter 14

Rectangle : Rect_Table;
Window : Port;
J : integer;
Area : array[l .. 3] of RgnHandle;
Smile, Frown, Justso : Cursor;
Mousepoint : Point;

{ *** }
procedure Open_Window (var Viewport

begin
new(Viewport);
OpenPort(Viewport)

end;

Port) ;

{ *** }
procedure Initialize_Rectangles (var Box : Rect_Table);

begin
SetRect(Box[l], 0, 0, 512, 342);
SetRect(Box[2], 40, 40, 250, 250);
SetRect(Box[3], 300, 120, 500, 320);

end;
{ ***

procedure Dispose_of_Window (var Viewport : Port);
begin

ClosePort(Viewport);
Dispose(Viewport)

end;
{ *** }

procedure Pushbutton;
var

Time: longint;
begin
{ Wait for mouse button to be pressed.

while not Button do { nothing }

Delay(lO, Time);
end;

{ ***
begin { Body of the main program.

725

{ Hide all of Macintosh Pascal windows and the present cursor. }
HideAll;
HideCursor;

{ Initialize the data arrays for the three cursors. }
Smile.data [0] . - -1;
Smile.data[l] := -32767;
Smile.data[2] := -32767;
Smile.data[3] .- -26599;
Smile.data[4] := -26599;
Smile.data[5] := -32767;
Smile.data[6] := -32767;
Smile.data[?] .- -32511;
Smile.data[B] .- -31871;
Smile.data[9] := -32511;

726

Smile.data[lO] := -28655;
Smile.data[ll] := -30687;
Smile.data[12] .- -31679;
Smile.data[13] .- -31871;
Smile.data[14] .- -32767;
Smile.data[15] .- -1;
Smile.hotspot.v := 8;
Smile.hotspot.h := 8;
Frown.data[O] .- -1;
Frown.data[l] .- -32767;
Frown.data[2] .- -32767;
Frown.data[3] .- -26599;
Frown.data[4] .- -26599;
Frown.data[5] .- -32767;
Frown.data[6] .- -32767;
Frown.data[?] .- -32511;
Frown.data[8] .- -31871;
Frown.data[9] := -32511;
Frown.data[lO] := -32767;
Frown.data[ll] := -31871;
Frown. data [12] : = -31679;
Frown.data[13] := -30687;
Frown.data[14] := -32767;
Frown.data[15] := -1;
Frown.hotspot.v := 8;
Frown.hotspot.h := 8;
Justso.data[O] := -1;
Justso.data[l] .- -32767;
Justso.data[2] .- -32767;
Justso.data[3] := -26599;
Justso.data[4] .- -26599;
Justso.data[5] := -32767;
Justso.data[6] .- -32767;
Justso.data[7] .- -32511;
Justso.data[8] .- -31871;
Justso.data[9] .- -32511;
Justso.data[lO] .- -32767;
Justso.data[ll] .- -32767;
Justso.data[12] .- -24591;
Justso.data[13] .- -32767;
Justso.data[14] := -32767;
Justso.data[15] := -1;
Justso.hotspot.v := 8;
Justso.hotspot.h := 8;

{ Initialize the three rectangles.
Initialize_Rectangles(Rectangle);

Chapter 14 QuickDraw Library

Establish the data structures for three regions. }
for J := 1 to 3 do

Area[J] := NewRgn;
Open window for viewing the complete screen. }

Open_Window(Window);

QuickDraw Library Chapter 14

PenSize{2, 2);
{ Establish each of the three regions. }

begin { first region }
OpenRgn;
FrameRect{Rectangle[l]);
CloseRgn(Area[l]);
FillRgn{Area[l], white);

end;
begin { second region }

OpenRgn;
FrameRoundRect{Rectangle[2], 90, 90);
CloseRgn{Area[2]);
FrameRgn{Area[2]);
MoveTo(lOO, 200);
DrawString{'Happy Region');

end;
begin { third region }

OpenRgn;
Frame0val{Rectangle[3]);
CloseRgn{Area[3]);
FrameRgn{Area[3]);
MoveTo(360, 280);
DrawString{'Sad Region');

end;
{ Prompt the user to continue. }

MoveTo(266, 50);
Drawstring(' Press mouse button to stop: ');

727

{ Establish a new cursor, and then obscure the new cursor until }
{ the mouse is moved. }

SetCursor(Justso);
ShowCursor;
ObscureCursor;
while not button do

begin
GetMouse{Mousepoint.h, Mousepoint.v);
if PtinRgn(Mousepoint, Area[2)) then

SetCursor{Smile)
else

end;

if PtinRgn(Mousepoint, Area[3]) then
SetCursor{Frown)

else
SetCursor{Justso);

{ Erase the complete screen with a gray background. }
BackPat (gray) ;
EraseRgn{Area[l]);

{ Dispose of storage for the window and the areas. }
Dispose_of_Window{Window);
for J := 1 to 3 do

DisposeRgn(Area[J]);
end.

728 Chapter 14 QuickDraw Library

This is followed by immediately setting the cursor to the data pattern Justs o.
While the mouse button is not pressed, and depending on the position of the mouse, the
procedure SetCursor is called to change the cursor. The Pascal system returns to using
the normal cursor when the program ends execution. Figure 14.21 shows the screen with
the Smile cursor.

Although the Macintosh has numerous patterns that can be made available,
QuickDraw allows us to define our own patterns using a special data type in Pascal called
Pat tern. This type is defined as follows:

type
Pattern= packed array [0 .. 7] of 0 .. 255;

This represents a rectangle composed of eight elements, each element storing an 8-bit
row composed of integers in the range 0 through 255. For example, let us change the
background pattern in the last example by adding the variable Mypattern: Pattern,
under the variable declarations and replacing the statement BackPat (gray) with the
following two statements:

StuffHex(@Mypattern, '3C66C30000C3663C');
BackPat(Mypattern);

Press mouse button to stop:

Justso Region

Happy Region

Sad Region
Justso Region

Figure 14.21 An example that applies cursor routines, displaying three different cursors.

QuickDraw Library Chapter 14 729

The procedure StuffHex takes the hexadecimal pattern on the right and assigns its
equivalent numeric value to the elements of the pattern array. The alternative is to draw an
8-by-8 array for representing a pattern, placing into each cell a 1 for a black pixel and a 0
for a white pixel. Each row of the array is then converted from 8-bit binary value to an
unsigned integer. Each row requires eight Pascal statements for assigning array elements
to a pattern.

14.11 MAPPING AND SCALING POINTS, RECTANGLES, REGIONS, AND
POLYGONS

Before ending this chapter, let us examine some of the routines for offsetting, mapping,
and rescaling objects and shapes. A list of these is given in Figure 14.22. They are
divided into three general categories: conversion between coordinate systems, changing
boundaries of objects, and mapping and scaling.

Conversion between Coordinate Systems

procedure Local ToGlobal { var Local_Pt Point) ; This
procedure translates the given point from the local coordinates of the
current graf Port into a global coordinate system having an origin at the
top left point (0, 0) of the screen. This procedure has no effect on the screen.

procedure GlobalToLocal (var Global_Pt Point) ; This
procedure translates the given point from the global coordinates of the
screen into the local coordinates of the current graf Port. This procedure
has no effect on screen.

Changing Boundaries of Shapes and Regions

procedure OffsetRect{ Rectangle : Rect; Delta_h, Delta_v
integer) ; This procedure translates the boundary of the given

rectangle through a horizontal distance Del ta_h and a vertical distance
Delta_v in the coordinate system of the current graf Port. Movement is to
the right and downward if both Delta_h and Delta_v are positive. For
negative values, movement of the rectangle is in the opposite direction. The
given rectangle retains its shape and size. The screen remains unchanged,
unless a routine is called on to draw within the translated rectangle.

procedure OffsetRgn(Source_Region RgnHandle; Delta_h,
Delta_v : integer); This procedure translates the boundary of the
given region through a horizontal distance Del ta_h and a vertical
distance De 1 ta_ v in the coordinate system of the current gr a f Port.
Movement is to the right and downward if both De 1 ta_h and De 1 ta_ v are
positive. For negative values, movement of the region is in the opposite
direction. The given region retains its shape and size. The screen remains
unchanged unless a routine is called on to draw within the translated
region.

730 Chapter 14 QuickDraw Library

procedure OffsetPoly(Source_Polygon PolyHandle;
Delta_h, Delta_v integer); This procedure translates the
boundary of the given polygon through a horizontal distance Del ta_h and
a vertical distance Del ta_ v in the coordinate system of the current
graf Port. Movement is to the right and downward if both Del ta_h and
Del ta_ v are positive. For negative values, movement of the polygon is in
the opposite direction. The given polygon retains its shape and size. The
screen remains unchanged, unless a routine is called on to draw within the
translated polygon.

procedure InsetRect (var Rectangle Rect; Delta_h,
Del ta v : integer) ; This procedure rescales the boundary of the
given rectangle with respect to the its center by moving its vertical edges
through a distance Del ta_h and its horizontal edges through a distance
Del ta_ v. The boundary of the rectangle shrinks for positive values of
Del ta_h and Del ta_ v and expands for negative values. The screen remains
unchanged, unless a routine is called on to draw within the rescaled
rectangle.

procedure InsetRgn(Source_Region : RgnHandle; Delta_h,
Delta_v : integer) ; This procedure rescales the boundary of the
given region with respect to its center by moving its boundary coordinates
through a horizontal distance Del ta_h and a vertical distance Del ta_ v.
The boundary of the region shrinks for positive values of Del ta_h and
Delta_v and expands for negative values. The screen remains unchanged
unless a routine is called on to draw within the rescaled region.

Scaling and Mapping

procedure ScalePt (var Specified_Pt Point;
Source_Rec t, Des t_Rec t : Rec t) ; This procedure will scale a
specified point in the source rectangle to the destination rectangle by a
ratio of the two rectangles.

procedure MapPt(var Specified_Pt : Point ; Source_Rect,
Dest_Rect : Rect) ; This procedure both translates and scales the
source point within the source rectangle to a point within the destination
rectangle. The effect of the procedure can only be observed by calling on
routines that draw with the specified point.

procedure MapRect (var Rectangle Rect; Source_Rect,
Dest_Rect : Rect) ; This procedure both translates and scales the
specified rectangle within the source rectangle to a rectangle within the
destination rectangle. The effect of this procedure can only be observed by
calling on routines that draw with respect to the specified rectangle.

QuickDraw Library Chapter 14 731

procedure MapRgn(Specified_Region RgnHandle;
Sourec_Rect, Dest_Rect integer); This procedure both
translates and scales the specified region within the source rectangle to a
region within the destination rectangle. The effect of this procedure can
only be observed by calling on routines that draw with respect to the
specified region.

procedure MapPoly(Specified_Polygon PolyHandle ;
Source_Rect , Dest_Rect: Rect) ; This procedure both translates
and scales the specified polygon within the source rectangle to a polygon
within the destination rectangle. The effect of this procedure can only be
observed by calling on routines that draw with respect to the specified
polygon.

Figure 14.22 QuickDraw procedures for offsetting, mapping, and rescaling objects and
shapes.

We can convert between coordinate systems with the procedures Local ToGlobal
and Global ToLocal. For example, assume the existence of an oval drawn within a
rectangle called Oval_Rect of graf Port Window_l. What is required is a set of
Pascal statements that map this oval from the local coordinates of Window_l into the
local coordinates of Window_2 while the local coordinates for each graf Port are not
identical. The following statements show these steps:

SetPort(Window_l);
LocalToGlobal(Oval_Rect.left_top);
LocalToGlobal(Oval_Rect.right_bottom);
SetPort(Window_2);
GlobalToLocal(Oval_Rect.left_top);
GlobalToLocal(Oval_Rect.right_bottom);
FrameOval(Oval_Rect);

The first graf Port is set as the current graf Port. Since a rectangle is defined in
terms of two corner points, top left and bottom right, these two points are copied into
global coordinates. Setting the current graf Port to Window_2 maps the two global
points to the local coordinates of this second port, and the rectangle Oval_Rect is now
defined in terms of the local coordinates of the second port. Although these steps allow us
to translate an object from one local coordinate system to another, they do not allow us to
scale the translated object.

The routines OffsetRect, OffsetRgn, Of fsetPoly, InsetRect, and
InsetRgn are useful for translating the boundary of a rectangle, region, or polygon
before drawing within that boundary. In the case of the Inset routines, they can be used
to rescale the boundaries of either a rectangle or a region before drawing within the
boundaries. These routines have no effect on points, lines, and shapes previously drawn
within the boundaries of these objects.

The mapping procedures MapPt, MapRect, MapRgn, and MapPoly affect only
drawing with the specified objects such as points, rectangles, regions, and polygons. They

732 Chapter 14 QuickDraw Library

are used for both translating and scaling boundaries of objects such as rectangles, regions,
and polygons, but not for the points directly within these boundaries.

Consider the following Pascal statements. Figure 14.23 shows the results of
executing them.

Region2

Region3

Figure 14.23 Applying the procedures MapRgn and MapRect to map rectangles and
ovals from Region2 into Region3.

begin
{ Establish boundaries for rectangles. }

SetRect(Rectangle[2), 40, 40, 250, 250);
SetRect(Rectangle[3), 300, 120, 500, 320);
SetRect(Rectangle[4), 60, 60, 100, 100);
SetRect(Rectangle[5), 50, 50, 150, 100);

Make a copy of the second rectangle . }
Temp_Rect := Rectangle[2);

Map from region 2 in rectangle 2 to a region in rectangle 3 . }
MapRgn(Area[2), Rectangle[2), Rectangle[3));
FillRgn(Area[2), Mypattern);

Map from within rectangle 2 to rectangle 3, assigning results }
to rectangle 2. }
MapRect(Rectangle[2], Rectangle[2), Rectangle[3));

QuickDraw Library Chapter 14 733

FrameRect(Rectangle[2]);
FillOval(Rectangle[2], gray);

{ Map from within the temporary rectangle to third rectangle, }
{ assigning the result to rectangle 4. }

MapRect(Rectangle[4], Temp_Rect, Rectangle[3]);
FrarneRect(Rectangle[4]);
Fill0val(Rectangle[4], white);
OffsetRect(Rectangle[4], 50, 50);
FillOval(Rectangle[4], black) ;

{ Map region 3 from within rectangle 3 to rectangle 5. }
MapRgn(Area[3], Rectangle[3], Rectangle[5]);
FillRgn(Area[3], Mypattern);

end;

What do these statements mean? First, we make a copy of the second rectangle,
because once the MapRect procedure is executed, we are no longer looking at the
original comer points of this second rectangle. Second, the procedure MapRgn establishes
a mapping relationship from region 2 in the second rectangle to a region located within
the third rectangle. When the FillRgn routine is called, an oval filled with gray is
drawn in the third rectangle, located in region 3. The MapRect procedure that follows
now establishes a mapping relationship of the second rectangle to the third rectangle.
Only rectangle-drawing routines (such as FrameRect and FillOval) involving the
second rectangle can affect the screen. The MapRect procedure that follows establishes a
mapping relationship between the fourth rectangle located within the temporary rectangle
and a region within the third rectangle. Drawing routines for rectangles specifying the
fourth rectangle are viewed as being performed in the third region of the screen. The last
MapRgn call establishes the mapping relationship between region 3 within the third
rectangle and a region within the fifth rectangle. A call to FillRgn results in an oval
being drawn in the second region.

Keep in mind that these routines only translate and scale the boundaries of the basic
object being mapped. Lines and text drawn within the region to be mapped are not
mapped. The routine CopyBi ts provides the means for both mapping and scaling all of
the shapes, points, and text located within a source rectangle to a destination rectangle in
another region.

SUMMARY

Both Macintosh and 1HINK Pascal provide library procedures for drawing to the Drawing
window and also give us access to the QuickDraw library of the Macintosh computer.
This special ROM-based library has routines for drawing lines, rectangles, polygons,
regions, arcs, wedges, pictures, and text.

By opening and setting grafPorts, we can draw several windows on the screen, one or
more of them overlaid. By using the routines to define regions, the programmer can
establish clipping regions that go beyond a simple rectangle. The bit-transfer routine for
scrolling bits gives us the ability to scroll one window while leaving other windows
unaffected. The routine Copy _Bi ts allows us to translate and scale all of the bits from
one region to another region.

The picture routines of QuickDraw allow us to define and save one or more drawings.
These saved pictures can later be drawn within a picture frame of a graf Port, with the
picture being scaled to the size of a rectangle represented by the picture frame. By using

734 Chapter 14 QuickDraw Library

the text routines, we can select different fonts and text styles for drawing text within a
grafPort. Keep in mind that the routine PenSize has no effect on the height or
width in drawing text characters. QuickDraw gives the programmer an opportunity to use
imagination in drawing to the screen.

Care must be taken when calling on QuickDraw routines. Being careless can cause
Macintosh or THINK Pascal to crash and could also damage the binary information stored
in sectors on the disk.

REVIEW QUESTIONS

l. What is the function of a computer library?
2. In MacintoshffHINK Pascal the QuickDraw library is divided into what

two libraries?
3. What is the difference between RAM and ROM?
4. Where are QuickDraw libraries stored in the Macintosh computer?
5. What QuickDraw routines used by Macintosh Pascal are different in

THINK Pascal?
6. Distinguish between a point, a rectangle, a region, and a coordinate

plane.
7. How is the data type Point defined in MacintoshffHINK Pascal?
8. How is the data type Rect defined in MacintoshffHINK Pascal?
9. How is the data type Region defined in MacintoshffHINK Pascal?

10. What does a graf Port represent?
11. How is a graf Port defined in MacintoshffHINK Pascal?
12. In looking at a graf Port record, what function is served by the field

portBi ts? by the field portRect? by the field visRgn? by the
field clipRgn?

13. What fields are related to properties involving the drawing pen?
14. What fields are related to properties involving the drawing of text?
15. Through the intersection of what rectangles and boundaries will drawing

always take place?
16. What must be executed before the command OpenPort is executed?
17. What are the differences between the commands OpenPort and

InitPort?
18. What are the differences between the routines GetPort and SetPort?
19. What are the differences between the commands SetOrigin and

MovePortTo?
20. What is the purpose of a clipping region?
21. Which is true: Nothing can be drawn outside a clipping region or

nothing can be observed outside a clipping region?
22. What routines can be used for setting and changing the clipping regions?
23. List the procedures that can affect the drawing pen.
24. When describing the characteristics of the drawing pen, what are the

normal values for the pen?
25. If you assign new values to the fields describing the drawing pen, is it

true that the characteristics for drawing text will also change? Explain
your answer.

26. For MacintoshffHINK Pascal, are the Program and Drawing windows
the same graf Port? Can you think of a way to check your answer?

27. What are the differences between procedure SetRect and SectRect?

QuickDraw Library Chapter 14

28. Name the function for testing the existence of a pixel within a specified
rectangle.

29. A rectangle is considered empty if the bottom coordinate is equal to or
less than the top, or when the right coordinate is equal to or less than
the left. What function can test for the existence of an empty rectangle?

30. Do any of the routines described in Figure 14.7 result in drawing to a
graf Port?

31. If the Macintosh/THINK Pascal routine HideAll did not exist, how
could windows appearing on the screen be hidden?

32. The routines in Figure 14.8 all require a parameter of type Rect. What
routine can be used to establish a rectangle before execution of any of
these routines?

33. For the routines listed in Figure 14.8, what are the basic differences
between the Rect routines and the Oval routines?

34. What are the purposes of the RoundRect routines listed in Figure
14.8?

35. When using Arc and Wedge routines, what are the differences in the
views of angles that are parameters of routines in Figure 14.9 and those
that are angles of Pascal trigonometric functions?

36. If you are drawing an arc, what routine can you use to fill the arc with a
background pattern?

37. Instead of using the Wri teDraw command, what command from the
QuickDraw library can we use to paint text to a grafPort window?

38. If the StringOf function did not exist, how could we perform the
equivalent actions by using an external file?

39. How can the function StringWidth be used for painting text to a
grafPort?

40. Why are the text-drawing routines given in Figure 14.14 different from
the Macintosh/THINK Pascal library routine Wri teDraw?

41. When drawing characters to a graf Port, how can we change the style
of the characters?

42. Is it true that all characters will have the same pixel width and pixel
height when drawn to a graf Port? Can you think of a way to test
your answer?

43. Do the routines in Figure 14.14 have any effect on the characters
displayed in the Text window? in the Drawing window?

44. What field of a graf Port record is used to establish the text size?
45. What effect does the field pnLoc of the graf Port record have on the

text drawing routines?
46. Define the term region as it applies to the QuickDraw library.
47. What is represented by the data type RgnHandle?
48. What will happen if you execute a region routine specifying a region's

handle before executing the command NewRgn?
49. What is the purpose of the routines OpenRgn and CloseRgn? What

differences exist between the commands NewRgn and OpenRgn?
50. What is meant by the term polygon ?
51. What data type can we use to store the representation of a polygon?
52. What is the purpose of procedure OpenPoly?
53. What are the differences between the procedures Kill Poly and

ClosePoly listed in Figure 14.16?

735

736 Chapter 14 QuickDraw Library

54. Briefly explain the concept of a picture as it applies to the QuickDraw
library.

55. What data types are required in QuickDraw for storing a picture?
56. What QuickDraw command is necessary for drawing a picture?
57. What are the purposes of transfer modes and bit-transfer operations?
58. What are the differences between the two bit-transfer routines

ScrollRect and CopyBits?
59. How can the routine CopyBi ts be used to erase the source bits within

a grafPort?
60. Explain how to create the format for a new cursor?
61. What are the differences between the routines HideCursor and

ObscureCursor?
62. How can a previous cursor be reinstated to a graf Port?
63. What is the purpose of the procedure StuffHex?
64. What purposes are served by the routines listed in Figure 14.22?
65. What routines are useful for scaling a graf Port? What routines are

useful for translating the boundary of a graf Port?

PROGRAMMING EXERCISES

Although not all programming exercises require you to write an algorithm, you may
better understand the problem and what is required if you first write an algorithm and then
trace it by hand with several examples before you write the Pascal program.

1. Complete the procedures for the programming example Drawing_
Pictures, and test the program to show that it draws a pie chart.

2. Write a program that divides the screen into four separate windows, with
each window representing a graf Port. In the upper right window
have your program prompt the user to enter one of four possible
choices:

(a) Demonstrate a sphere (upper left window).
(b) Demonstrate a pyramid (lower left window).
(c) Demonstrate a cube (lower right window).
(d) Quit.

When a character is entered, the present window is to be cleared, the
new window opened, and the three-dimensional figure drawn. Upon
completion of the figure, the user is prompted with the following
instruction: Press the mouse button to continue.
Pressing the mouse button clears the the present window and makes the
upper right window the active window, and presents the user with the
menu for choosing one of the four possible choices. Figure 14.24
demonstrates the format for the screen. This exercise requires using the
following QuickDraw routines: OpenPort, ClosePort,
Set Port, SetClip, TextFace, TextSize,
Drawstring, SetRect, FrameRect, PaintRect,
FillRect, FrameOval, NewRgn, DisposeRgn,
OpenRgn, CloseRgn, FillRgn, FrameRgn.

QuickDraw Library Chapter 14

(a) Demonstrate a sphere

(b) Demonstrate a pyramid

(c) Demonstrate a cube

(d) Quit

Press mouse button to continue: Enter a, b, c, or d:

Cube

Press mouse button to continue: Press mouse button to continue:

Figure 14.24

3. Modify the program in Exercise 2 by storing each window as a separate
picture. Upon choosing an option, have the proper picture drawn to the
proper window. This exercise will require the following additional
QuickDraw routines: OpenPicture, ClosePicture,
DrawPicture , and KillPicture. Hint: Develop and test one
picture at a time.

4. The Macintosh Pascal disk comes with the following fonts and font
numbers:

Chicago (System Font) 0
Geneva 1, 3
Monaco 4
New York 2
Venice 5

Write a program that allows the user to make simple signs, given the
following options:

737

738 Chapter 14 QuickDraw Library

(a) Choice of a font, with an example of each font.
(b) Choice of text style, including normal, bold, italic,

underline, mndil!lle, slhl!tirllow, carlnse, and e x t e n d .
(c) Choice of text size, where each point is approximately 1172

of an inch.
(d) Enter the message (limit of four lines).

Allow the user to change these options after having viewed the sign on
the screen. Once the user is satisfied with the sign, allow the option of
saving the screen to a disk file by executing the Macintosh/THINK
Pascal procedure SaveDrawing (title) , where title is a valid
string type. This procedure saves the contents of the current
graf Port to a picture file whose name is given by the value of
title. This picture file can be read and printed by using a Paint-type
graphics application.

5. Consider Figure 14.25.

Stop

Slow

Figure 14.25

QuickDraw Library Chapter 14

Write a program that will require two grafPorts: one for displaying the
sign STOP and one for displaying the sign SLOW. The remainder of the
screen must have a gray background. Use the font, font size, and style
for displaying the text of each sign.

6. Consider the globe shown in Figure 14.26. Write a program that will
draw both the parallel lines representing latitude and the ovals
representing the meridians of longitude.

Figure 14.26

7. Write a program using graf Port and text routines that perform
special printing (sometimes called pretty printing) of expressions given
by a one-dimensional format. For example, consider the following
expressions:

Standard Output Special Print

A * B**C + 42 A* Be +42

A[k] - 42 I A Ak -42/ A

B[i,j]**5 I A[l,l] + N B .. 5 I A1 I +N
I,] '

8. Modify the programming example from Section 14.9 titled
Scro 11 in g so that it can be used as a simple test of skill by
employing the mouse. Initially the person using the program must see
the message TRY TO FIND THE CENTER OF THE SQUARE
displayed in the upper left corner of the screen. As the mouse is moved
and as the cursor moves across the screen, when it comes close to the
center of the square, have the program beep once and display the

739

740 Chapter 14 QuickDraw Library

following message at the upper right of the screen: YOU ARE
GETTING CLOSE. If the distance increases beyond a limit, this
message must be erased. You will have to decide on this limit and how
you will test for this distance. If the person locates the center of the
square, have the program respond by beeping twice and by displaying
the following message at the bottom of the square: YOU ARE ON
TARGET. If at any time the person moves the mouse away from the
center of the square, the message that the user is on target must be
erased.

9. Consider the rule for rotating a point Q about an arbitrary point C, as
shown in Figure 14.27. The new point (x2 ,y2) is given by the
following equations:

(0,0)

(x

y

ye)
-----~--q' (
c

Figure 14.27

x

x
2

Using this principle, write a program that will rotate a rectangle about
the center point (xc,Yc) through an angle 0. Can you think of a way
to define a procedure that will accept three parameters: a point
representing (xc,yc), angle of rotation, and an object represented by a
rectangle?

10. Write a program that will draw bar charts like those shown in Figure
14.28. This program must prompt the user for the following actions:

(a) Title the bar chart.
(b) Add labels for vertical and horizontal axes.
(c) Scale the horizontal axis (maximum and minimum).

QuickDraw Library Chapter 14

Year

(d) Display the bar chart to a window.
(e) Save the bar chart to a picture file.
(f) Exit.

xvz Company

(GROSS PROFITS, 1982-1986

1982

1983

1984

1985

1986

-20 -10 0 10 20 30 40

Figure 14.28

11. Using the picture routines of the QuickDraw library, write a program
that will offer the user the options of drawing a bar chart using the
procedures from Exercise 10 or a pie chart using the procedures in the
program Draw_Piechart . Can you think of a way to allow the user
to modify the text fonts and text style when labeling and titling the
drawings?

12. When we use the QuickDraw Library, the routine CopyBits provides
a means of both mapping and scaling all of the shapes, points, and text
located within a source rectangle to a destination rectangle in another
region. Can you add an option to Exercise 10 for copying the bit
pattern on the screen and moving it to a region in another graf Port?

13. Using the region routines of the QuickDraw Library, write a program
that will serve as a tutorial for teaching the basic principles of set
theory demonstrated through Venn diagrams. In the execution of this
program a set is represented as an oval shaded with a background
pattern. The following options are offered to the user:

(a) Demonstration of A union B
(b) Demonstration of A intersection B
(c) Demonstration of set difference A - B
(d) Demonstration of a complement of a set A
(e) Exit

741

742

R
R
R
R
R
R =

A *
2 -
20

Chapter 14 QuickDraw Library

Regions representing the sets A and B should be shown before
execution of a demonstration and also after execution. Shading must be
used to show the region that results from execution of the demonstrated
option.

14. Write a program for drawing mathematical functions in terms of the
polar coordinate system shown in Figure 14.29.

Polar Coordinate System

7t/2

37t/2

Figure 14.29

Notice that the direction of the angles is opposite to that of Macintosh
Pascal as well as the Macintosh drawing plane, being in terms of an xy
plane instead of in terms of a radius and ·angle. Try some of the
following examples:

cos(N * 0) { N-leaved rose }
cos ((l)) { limacon }

or 4 * R = 0 { spiral }
e2 * 0 { logarithmic spiral }
2 + 2 * sec(0) { conchoid }
A * (1 +cos((l))) { cardioid }

QuickDraw Library Chapter 14

Hint : Convert the point given by (R, 0) into one given by (x, Y) ;
then draw a line from a previous point to a new computed point. Use
small increments for angle 0 to obtain smooth lines.

15. Write a program that can display five or six windows on the Macintosh
screen, as shown in Figure 14.30.

The small box in the upper left corner of an active window will always
be shaded. To make an inactive window active, move the mouse cursor
to an area of the inactive window and press the mouse button. This will
redraw the inactive window and make it active. When an active window
becomes inactive, the small box in the upper left corner of the window
must remain unshaded. For deleting an active window, move the cursor
to the small shaded box and press the mouse button. This must delete
the present active window as a shaded rectangular area on the screen,
leaving the last window created before the deleted window as the active
window.

D 0
Window3

Window 1

•
Windows

D

Window2
Window4

Figure 14.30

743

Appendix A

THINK and Macintosh Pascal
Reserved Words

MACINTOSH PASCAL

744

The following are reserved words used by Macintosh Pascal. Use these words only in the
context in which they are defined:

and else label procedure type
array end mod program until
begin file nil record uses
case for not repeat var
con st function of set while
div goto or string with
do if otherwise then
down to in packed to

Any reserved word may be written in either uppercase or lowercase letters. The two
forms are equivalent symbols in the context of translation. The following single
characters are special symbols in Macintosh Pascal:

+ *I=<> [).,():;A@ $

The following character pairs represent special characters:

<> <= >= (* *) (. .)

Reserved Words Appendix A 745

The characters(* and*) represent { and }, respectively, and the characters(. and .) are
always be displayed as [and] , respectively.

THINK PASCAL

The following are reserved words used by Lights peed Pascal. The THINK Pascal user's
manual refers to them as word-symbols.

and end interface packed type
array file label procedure unit
begin for mod program univ
case function nil record until
const goto not repeat users
div if object set var
do implementation of string while
down to in or then with
else inherited otherwise to

Any reserved word may be written in either uppercase or lowercase letters. The two
forms are equivalent symbols in the context of translation. The following single
characters are special symbols in Macintosh Pascal:

+ *I=<> [].,():;A@ $

The following character pairs represent special characters:

<> <= >= (* *) (. .)

The characters(* and*) represent { and}, respectively, and the characters(. and .) are
always be displayed as [and] , respectively.

746

Appendix B

Macintosh Character Set

Figure B.1 shows the Macintosh character set. The character set varies by style and
selection of font (Times 12 is shown). For example, the Geneva 12 character in the hex
9D position is a rabbit. This character is not available in most other fonts.

Notice that the row and column headings of our table are hexadecimal digits. To
determine the equivalent decimal code value, take the column hexadecimal digit and
multiply it by 16. Then add the value of the row digit. For example, the character 1t

has the hexadecimal value B9 (column B, row 9). The equivalent decimal value is (11 *
16) + 9 = 185. Remember that the hexadecimal digits A, B, C, D, E, and F have the
decimal values 10, 11, 12, 13, 14, and 15, respectively. The first 32 characters (00
through IF) and the last 38 characters (DA through FF) are nonprinting characters and are
often replaced by a small square bracket or box or the character. shown in Figure B.l.
Your choice of font set will determine the optional characters that are found in hex
locations 80 (column 8, row 0) through D8 (column D, row 8).

Nonprinting characters are shown by • or a blank. The character set found in hex
locations 21 (column 2, row 1) through 7F (column 7, row F) and accessible from the
keyboard is used for standard text and programming. It contains one blank character, 7F,
which is the delete character. The character at hex location 00 is the null character; a
character of no length. All characters between hex locations 00 and 21 are nonprinting.

The decimal numbers associated with the characters are called their ASCII values.
ASCII is the acronym for American Standard Code for Information Interchange.

Macintosh Character Set Appendix B 747

The Macintosh character set: Times font
0 1 2 3 4 5 6 7 8 9 A B c D E F

0 0 @P ... p A e t l 00 -• • •
1 ! 1 A Q a q A e 0 ± i -• • • •
2 II 2 B R b r ~ i ¢ ::::; " •

...,
• •

3 # 3 c s s :E ... £ ~ -.J " • c 1 • •
4 $ 4 D T d t :N 1 § ¥ f ' • • •
5 % 5 E u e u 6 1 • µ ""' ' • • •
6 & 6 F v f v D ii <J[a ~ + • . • •
7 I 7 G Wg w • • a 6 B L « 0 • •
8 (8 H x h a ... ® 11 y • • x 0 » • •
9 •) 9 I y i y a 0 © 7t ... y • .
A * J z J z a 0 ™f • • • • •
B + K [k { a 6

, a A • • ' • • •
c < L \ I I 0 u .. 0 A • • '

a • • •
D - = M] m } ~ u '# n 6 • • . •
E > N /\ n - e u 1E re CE • • • . •
F • • I ? 0 - 0 e ii 0 ~ re • • .

Figure B.1 The Macintosh Character Set: Times 12

Appendix C

Introduction to the SANE
Library

INTRODUCTION TO THE SANE LIBRARY AND SANE DATA TYPES

748

The SANE Library supports a set of numeric routines for performing both extended
floating-point and integer computations. The core features of SANE have been taken from
Draft 10.0 of Standard 754 for Binary Floating-Point Arithmetic as proposed by the
Institute for Electronic and Electrical Engineers (IEEE). The SANE Library supports all
of the requirements of the IEEE standard; it also goes beyond this standard by including
data types and functions designed for scientific, engineering, and financial computations.
The SANE Library provides arithmetic capabilities for both present-day and anticipated
computer architectures. It does this without imposing an extra burden on the programmer
or the user.

The SANE Library supports three application types and one arithmetic type for
dealing with real and integer numbers. The application data types are single,
double, and comp (computational), and the arithmetic type is referred to as
extended. The single, double, and extended types store floating-point values,
and the comp type stores integer values. Data types in SANE differ from those in other
floating-point libraries because they support a format that represents the storage of
positive and negative infinity as numeric values. SANE also supports formats for the
existence of a non-numeric number (not-a-number, or NaN) and also stores floating­
point numbers in a denormalized format. Figure C.1 shows the various internal formats
for storing various SANE data types.

SANE Library Appendix C 749

Single: 32-bit format

1 8 23

~1Zr::::::::::i:::::::::::1

Double: 64-bit format

1 11 52

1!r: : : : : ; : : : : J: f: I

Comp: 64-bit format

1 63

~t:::::::::::::::::::::::::::: :j::::::::::::::::::::::::::::::: I

Extended: 80-bit format

1 15 63

I ~ ~ : Is(:::::: :e:::::: J::::::::::::::::::::::::::::: :t:::::::::::::::::::::::::::::: I

Key:
s = sign of the number
e =exponent of the number
f = sigajficand of the number
i = explicit 1-bit

Figure C.1 SANE data types.

Notice that all floating-point formats (single, double, and extended) are
composed of a sign bit on the left, followed by an exponent field, and a significand on the
right. In general, the value of floating-point numbers is represented by the expression

c-1Y * significand * 2exponen1

where the character S represents the sign bit of the number. If S is 0, the number is
positive; if S is 1 the number is negative. Keep in mind that these floating-point formats

750 Appendix C SANE Library

are for storing numeric values at the machine level and are not character representations
for floating-point numbers. Similar to the decimal point separating the integer and
fractional part of a decimal number, the binary point of any floating-point format is
implied to exist between the right of the exponent field and the left of the significand field
(left of the exponent field and to the right of the explicit 1-bit in extended). The
binary point is never explicitly stored in these formats; if it were, it would require an
additional byte of storage, and would impose additional complications in executing
numeric values. SANE supports routines for converting values between string
representations and machine formats.

The significand is always assumed to have a single bit position to the left of the
binary point. Only in the case of the extended format is this bit explicitly represented.
For the single and double formats, storage for this bit is implied; it is not explicitly
represented. This results in the significand having the following range:

0 <= significand < 2 .

In general, floating-point numbers are stored in a normalized form for maximum precision
for a given significand width. Maximum precision is achieved when the high-order bit in
the significand, the leftmost bit of the significand, is 1. This implies that the significand
has the following range:

1 <= significand < 2 .

A floating-point value is stored as a denormalized number when the leading bit positions
of the significand begin with zero. While a denormalized number fails to maximize the
resolution of storage for a floating-point number, it does allow a floating-point number to
have values beyond the limits of the minimum range for the exponent in a normalized
form. For example, the smallest value for a normalized sing 1 e number is
approximately -1.2*10-38 , and the smallest value for a denormalized number is
approximately -1. 5 * 10-45 • Figure C.2 provides a table comparing the precision and
range for all SANE data types including normalized and denormalized forms.

The single (equivalent to the real type discussed in Chapter 3) uses 32 bits or 4
bytes of storage (a byte is equivalent to 8 bits of storage). Eight bits are used to store the
value of the exponent as a binary number. In this format the exponent has a value
between 0 and 255 and represents a normalized value for the exponent in terms of a binary
number. In this format the exponent is always stored as an unsigned binary integer
number. The actual binary value for the exponent is the actual stored value minus 127.
The remaining 23 bits to the right represent a fractional part (referred to as the significant!)
for storing the magnitude of the floating-point number.

The single number as a decimal (base 10) number can be determined from the
following set of rules:

1. If (O<e) and (e<255), then value<--(-1)5 *{l./ho *2{e-121>.

2. If (e = 0) and(/<> O), then value <--(-1)5 *(0./ho *2(-126 >.
3. If (e = 0) and(/= 0), then value <--(-1)5 *O.

SANE Library Appendix C 751

4. If (e=255) and (f =O), then value <--(-l)s *infinity.

5. If (e = 255) and (f <> 0), then value is a NaN.

Data Type

Single Double Comp Extended

Machine Size
Bits 32 64 64 80
Bytes 4 8 8 10

Exponent Range
Minimum -126 -1022 -16383
Maximum 127 1023 16384

Precision of the Significand
Bits 24 53 63 64
Decimal digits 7to8 15to16 18to19 19 to 20

Approximate Decimal Range
Minimum negative -3.4E+38 -1.7E+308 -9.2E+18a -1.1E+4932

Max. neg. norm. -1.2E-38 -2.3E-308 -1.7E-4932

Max. neg. denorm. -1.5E-45 -5.0E-324 -1.9E-4951

Min. pos. denorm. 1.5E-45 5.0E-324 1.9E-4951

Min. pos. norm. 1.2E-38 2.3E-308 1.7E-4932

Maximum positive 3.4E+38 1.7E+308 9.2E+18a 1.1E+4932

Supports
Infinities Yes Yes No Yes
NaNsb Yes Yes Yes Yes

a Approximation for the magnitude 9,223,372,036,854,775,807.
b SANE representation for not-a-number.

Figure C.2 The precision and range of SANE data types.

752 Appendix C SANE Library

Notice that infinity is represented by the exponent with the value of 255 (all
exponent bit positions are I) and a significand of zero, while NaN is represented by the
exponent with the value of 255 and a significand that is non zero. The values (1 n10 and
(Oj)10 represent the binary values of (If) and (OJ) converted to a decimal number. The
double type uses 8 bytes (64 bits) of storage with I I bits for the exponent and 52 bits
for the significand. The 3 additional bits in the exponent field increases the range of the
exponent from plus or minus 38, for sing 1 e precision to plus or minus 308 for
double precision. The numeric precision (number of decimal digits) is increased from
7 to I5. This type of format allows the computation and storage of numbers that can be
either larger or smaller than a single precision number. The value of a double
precision number as a decimal (base 10) number can be determined from the following set
of rules:

1. If (0 < e) and (e < 204 7), then value < - -(-l)s * (1.fho * 2<e-io23 >.

2. If (e = 0) and (f <> 0), then value <--(-l)s *(O.fho * 2C-1022 >.

3. If (e = 0) and (f = 0), then value <--(-l)s *O.

4. If (e = 2 04 7) and (f = O), then value < - -(-l)s *infinity.

5. If (e = 2 04 7) and (f <> O), then value is a NaN.

Notice that infinity is again represented by an exponent containing all I-bits and a zero
significand, and NaN is represented by an exponent containing all I-bits and a nonzero
significand. Both single and double numbers have a numeric value of zero when all
bit positions of the exponent and significand fields are zero. The extended format has
I5 bits for storing the exponent and 64 bits for the significand. This allows scientific­
notation numbers with very large or small exponent values to be stored and increases the
numeric precision to I9 decimal digits. The extended mode offers the advantage of
greater precision as well as a large exponent range. The value of an extended number
as a decimal (base 10) number can be determined from the following set of rules:

1. If (0 <= e) and (e < 32767), then value < - -(-lY *(i.fho * 2<e-16383>.

2. If (e = 32767) and (f = 0), then value < --(-l)s *infinity, regardless
of the value for i.

3. If (e = 32767) and (f <> 0), then value is a NaN, regardless of
the value for i.

Notice again that infinity is represented by the exponent containing all 1-bits and a zero
significand, and not-a-number is represented by the exponent containing all 1-bits and a
nonzero significand, regardless of the value for the explicit I-bit. The comp
(computational) type is useful for extending the range of integer values. Its format is a
single bit position for the sign, followed by 63 bits for the significand. This data type
is useful in accounting applications, where results of computations must be both large

SANE Library Appendix C 753

and exact, and where money is to be represented as integral values for representing either
cents or fraction of cents (mils). A comp type is capable of storing an integer number

in the range from -(263 -1) to (263 -1). The value of a comp number as a decimal
(base 10) number can be determined from the following rule:

If (s = 1) and (e = 0),
then the value is a unique comp NaN;

else
the value is a two's-complement number with a 64-bit representation.

As you can see, the comp type does not support a representation for numeric infinity. All
integer numbers, whether they be of type comp or of type integer, are stored
internally in two's-complement form. By using the two's-complement form, an integer
zero will always be unique and positive. This is different from one's-complement form,
where either positive or negative zero can exist.

INFINITY, NOT-A-NUMBER, AND DENORMALIZED NUMBER

The SANE Library supports two special numeric notations: infinity and not-a-number
(NaN). Infinity is a special binary pattern that can be represented in either single,
double, or extended mode. For each floating-point type, infinity is represented by an
exponent having all I-bits (a value of 255 for single, 2047 for double, and 32767
for extended) and a significand of zero. Computational types have no representation
for infinities. Any attempt to assign a computational type an infinite value forces the
computational type to become a computational NaN. Infinities can arise in one of two
ways:

1. A SANE operation resulting in mathematical infinity such as a nonzero
number divided by zero

2. A SANE operation producing a magnitude too large to be stored in an
intended floating-point format

Symbolically, infinity is represented by the characters INF. Infinities can be stored as
either positive (+INF) or negative (- INF) numbers. For example, 1 divided by 0
yields +INF, and -1 divided by 0 yields - INF. Infinities can propagate through SANE
operations. For example, if 6.89 is added to INF, the result will still be INF. Note that 1
divided by - INF yields -0. SANE operations can also result in a special value
representing not-a-number (NaN). NaNs can result from undefined operations: 0 divided
by 0, +INF added to -INF, or taking the square root of a negative number. NaNs can be
stored by any of the SANE data types: single, double, extended, and comp. Like
infinity, NaNs are allowed to propagate through SANE operations. For example, if 6.89
is added to NaN, the result is NaN. There are two kinds of NaNs: quiet NaNs and
signaling NaNs. A signaling NaN is one where a NaN is used as an operand of an
arithmetic operation and an INVALID exception is signaled. If execution is not halted,
the signaled NaN becomes a quiet NaN. It can be convenient to use NaNs to initialize
storage of SANE data types. When doing this, the value must be explicitly written as
NaN (integer) . For example, the following statement shows how an extended
type called Extra is assigned the value of NaN:

754 Appendix C SANE Library

Extra:= NaN(255);

Using the value NaN or NaN () generally produces an error message when an attempt is
made to execute an expression containing NaN. NaN in floating-point form has an
associated code indicating the origin of NaN. Figure C.3 provides a list of codes and their
meanings.

Name" Meaning

NANSQRT Unable to compute valid sduare root
NAN ADD Unable to compute valid a dition
NANDIV Unable to compute valid division
NANMUL Unable to compute valid multiplication
NANREM Unable to compute valid remainder or mod
NANASCBIN Unable to convert ASCII character string
NANCOMP Error in converting comp NaN to float
NANZERO An attempt to create a NaN with an existing

zero code
NANTRIG Invalid argument passed to a trigonomertic

routine
NANINVTRIG Invalid argument passed to an inverse

trigonomertic routine
NANLOG Invalid argument passed to a logarithmic

routine
NANPOWER Invalid argument for an exponentiation

routine
NANFINAN Invalid argument for a financial function
NANINIT Failure to initialize storage (signaling NaN)

ex
Value Valueb

1 $01
2 $02
4 $04
8 $08
9 $09

17 $11
20 $14

21 $15

33 $21

34 $22

36 $24

37 $25
38 $26

255 $FF
------------------------- -------------a

b

Names for error codes are in keeping with those given in the Macintosh Pascal
Technical Appendix.

Hexadecimal (hex) values are provided for reference.

Figure C.3 SANE NaN error codes.

Notice that the code number 255 represents signaling for uninitialized storage.
Programmers are free to use other code values when assigning the value of NaN to a
variable. Denormalized numbers are nonzero binary floating-point numbers in which the
significand has a leading bit of zero. When a floating-point number stored in a normalized
representation has to store a value that is too small for its format, it can be stored in a
denormalized format. What is the importance of the denormalized number? In a computer
system that does not produce a denormalized number, the following could occur if Bis a
variable with a small (less than the smallest normalized number) but not zero value:

A+B=A

That is, the normalized value of B is treated as if it has a value of zero although its
denormalized form is nonzero. With the SANE system such numbers are tagged as
denormalized, with the result

A+B<>A.

SANE Library Appendix C 755

Building a Project That Uses SANE

Fortunately it is not difficult to use the SANE routines in your programs. The following
program, which uses SANE to control precision (see Figure C.4), illustrates how this is
done. The purpose of the example program is to compute the area under a curve, using a
technique known as the trapezoidal rule. Numerous techniques exist for numeric
integration; this one is used to demonstrate the difference in approximations, using three
different precision settings: Re a 1 Precision, Db 1 Precision, and
ExtendPrecision, and in changing the number of points.

Rounding

Rounding to the nearest (default)
Rounding upward
Rounding downward
Rounding toward zero

Precision

Extended precision
Double precision
Real precision

Figure C.4 Rounding and precision options supported by SANE.

Computing the area under a curve, represented by the function f {x) and the x-axis,
is based on the summation of small trapezoidal areas over a closed interval. Figure C.5
demonstrates this concept, where the i th area is represented by the value

Delta_x*[f(x;_1)+ /(x;)]/ 2,

and the value of Del ta_x is represented by the term

(b-a)I n.

If the function f { x) is continuous on the closed interval [a , b] and if a regular
partition of [a, b] is determined by the numbers

the area under the curve represented by f {x) is given by the approximation

Area= (b-a) I (2n)[f(x0) + 2/(x1)+ ... +2/(xn_1)+ f(xn)]

756

0 x. 1 x
1 -

Appendix C SANE Library

f(x)

Area=
llX
2

Figure C.S The trapezoidal rule is based on the summation of individual
trapezoids.

Accuracy in computing the area should improve as the value of n becomes larger. The
more points you have for the curve representing the function f (x) , the more accurate
your approximation. The computation for the area should be more precise for extended
precision than for real precision. The following program, titled Trapezoidal_
Ru 1 e, demonstrates how to test these expectations. Here the function f (x) is
represented by the trigonometric function sin, with the closed interval for integration
being [0 , 7t] • The exact area under the sine curve is 2.0. This program computes the
relative error given by the rule (Estimated_Value - True_ Value)/
True_ Value and displays the type of precision, the value of n, the computed value for
area, and the relative error.

program Trapezoidal_Rule;
{ This program computes the area under the curve f(X) represented
{ by the trigonometric function sin. The closed interval [a, b] }
{ is represented by [0, pi] . }

uses
Sane;

con st
True_Area = 2.0;

var
Estimated_Area, Sum, Delta_x, X, Rel_Error: extended;

SANE Library Appendix C 757

begin

C, B, A: extended;
N, I: integer;
Precision_Type: RoundPre;

{ Close all windows, then open the Text window for viewing data. }
HideAll;
ShowText;
writeln;

{ Compute a set of area values for each of the three SANE }
{ precisions. }

for Precision_Type := RealPrecision downto ExtPrecision do
begin

end.

SetPrecision(Precision_Type);
{ Initialize the end points of the interval [A, Bl . }

B := pi;
A := O;

{ Establish the initial number of intervals. }
N := 200;

{ Compute the area for 25 different values of N.
writeln(Precision_Type);
while N <= 5000 do

begin
Delta_x := (B - A) I N;
X := A + Delta_x;
Sum : = sin (A) ;

{ Compute the summation of N-1 points of f(x). }
for I := 1 to N - 1 do

begin
Sum:= Sum+ 2 * sin(X);
X := X + Delta_x;

end;
Sum:= Sum+ sin(B);

{ Compute the area and display the value of N, Area, }
{ and Error. }

Estimated_Area := (B - A) I (2 * N) * Sum;
Rel_Error := (Estimated_Area - True_Area) I

writeln(N : 4, '
Rel_Error);

N := N + 200;
end;

writeln;
end;

True_Area;
Estimated_Area : 10 : 9,

In order to build this program, you must insert the SANE library into your project. You
must also insert the interface Sane. p. Figure C.6 shows how the final project should
look. Recall that the build order is important as you put this project together.

758 Appendix C SANE Library

General Purpose
Options File (by build order) Size

Runtime.lib 18222
Interface.lib 10106
SANELib881.lib 2296

D IN]IY] R SANE.p 0
D IN]IY] R Trapezoidal Rule 944 toiaTcoCie··size 31'5aa

Figure C.6 The project for the program
Trapezoidal_Rule

One final point: as you build this project, you will discover that you actually have
two SANE libraries to choose from. The one shown above is called SANELib881. lib,
and the alternative is called SANELib. lib. Your choice of these libraries depends on
whether your Macintosh is equipped with the MC68881/882 floating-point coprocessor.
If this chip is present on your machine, use the file SANELib8 81 . lib. Otherwise use
the plain vanilla version.

Unfortunately, space prohibits us from giving a complete discussion of the SANE
library and its use. We refer the reader to the first edition of this text for more complete
coverage. Another source is the multiple volume set, Inside Macintosh. Finally, there is a
book devoted specifically to SANE, the Apple Numerics Manual. Both of the latter works
are published by Addison-Wesley. In the remainder of this appendix we will summarize
the SANE functions and procedures that are available to the Pascal programmer.

TRANSFER ROUTINES IN CONVERTING SANE DATA TYPES

functionNurn2Integer(E : extended) : integer;
This function takes the value as an extended type and returns a numeric value of type
integer.

function Nurn2 Longin t (E : extended) : 1 ong int;
This function takes the value as an extended type and returns a numeric value of type
longint.

procedure Num2Dec (Form : DecForm; E : extended; var D :
Decimal);
This procedure takes an extended value and, using a format provided by the value of
Form, converts the value of E into a decimal record type. This converted value is
returned through the formal parameter D.

SANE Library Appendix C 759

functionDec2Num(D : Decimal) : extended;
This function takes a value represented by a decimal record and returns a numeric value of
type extended.

procedure Num2Str (Form DecForm; E extended; var S :
DecStr);
This procedures takes an extended value and, using a format provided by the value of
Form, converts the value of E into a DecStr type. The string representation is
returned through the formal parameters.

functionStr2Num(S : DecStr) : extended;
This function takes a value represented by a DecStr called S and returns a numeric
value of type extended.

SANE INQUIRY AND ENVIRONMENT ACCESS ROUTINES

Inquiry Routines

functionClassReal(R : real) : NumClass;
This function takes a real number represented by R and returns through the name of the
function its corresponding numeric class.

functionClassDouble(D : double) : NumClass;
This function takes a double-precision number represented by D and returns through the
name of the function its corresponding numeric class.

function ClassComp (C : comp) : NumClass;
This function takes a computational number represented by C and returns through
the name of the function its corresponding numeric class.

functionClassExtended(E : extended) : NumClass;
This function takes an extended-precision number represented by E and returns through the
name of the function its corresponding numeric class.

functionSignNum(E : extended) : integer;
This function takes an extended-precision number represented by E and returns through the
name of the function an integer value representing the sign of the floating-point number.
The value returned is 0 if positive and 1 if negative.

Environment Access Routines

procedureSetException{ E : Exception; B : Boolean);
This procedure allows one of five exception bits to be either set or cleared. If the Boolean
value of B is true , the exception bit corresponding to E is set to 1. This is equivalent to
forcing an exception flag to be raised. If the Boolean value of B is false, the corresponding
exception bit is cleared, lowering the corresponding exception flag.

760 Appendix C SANE Library

functionTestException(E : Exception) : Boolean;
This function interrogates the bit corresponding to the exception E. If the bit has been set
to l, the value returned through the name of the function is true. If the bit has been
cleared, that is, if its value is 0, the value returned through the name of the function is
false.

procedureSetHalt(E : Exception; B : Boolean);
This procedure allows one of five halt bits to be either set or cleared. If the Boolean value
of B is true , the corresponding halt bit for the exception given by E is set to 1. If the
Boolean value of Bis false, the corresponding halt bit for the exception is cleared. This
procedure has no effect on the bit positions for the exception flags.

functionTestHalt(E : Exception) : Boolean;
This function interrogates the halt bit corresponding to the exception given by E. If the
bit has been set to l, the value returned through the name of the function is true. If the
halt bit has been cleared, the value returned through the name of the function is false.

procedure SetRound(R: Round.Dir);
This procedure allows the rounding direction to be set to one of the four possible values:
ToNearest, Upward, Downward, and TowardZero.

function GetRound : RoundDir;
This function returns the current rounding direction through the name of the function.

procedure SetPrecision(P : RoundPre } ;
This procedure allows the rounding precision to be set to one of the three possible values:
ExtPrecision,DblPrecision,andRealPrecision.

function GetPrecision : RoundPre;
This function returns the current rounding precision through the name of the function.

procedureSetEnvironment(E : Environment);
This procedure allows the environment represented by E to be set, thereby replacing the
current environment settings. The value of E can affect the settings of rounding direction,
rounding precision, exception flags, and halts.

procedureGetEnvironment(var E : Environment };
This procedure returns the current environment setting represented by the formal parameter
E.

procedure ProcEntry(var E : Environment) ;
This procedure saves the current environment by returning a value through the formal
parameter E and then establishes a default environment. All halts are now disabled.

procedure ProcExit(E : Environment };
This procedure restores the environment represented by E, including any halts that were
disabled. It is possible that previous exceptions either raised or set by the procedure
SetException will result in program execution being interrupted with an error
message displayed in a dialog box.

SANE Library Appendix C

ARITHMETIC, AUXILIARY, AND ELEMENTARY FUNCTIONS

Comparison Routine

functionRelation(X, Y : extended) : Relop;
This function takes two values, X and Y, and returns through the name
of the function one of four possible relationships: Grea terThan, Les sThan,
Equal To, and Unordered.

Arithmetic and Auxiliary Routines

761

function Remainder (X, Y extended; var Q integer)
extended;
This function takes two extended values, X and Y, representing the dividend and
divisor, respectively, and computes the quotient and remainder according to the IEEE
standard. The quotient is returned through the formal parameter Q as an integer, and the
remainder is returned through the name of the function.

functionRint(X : extended) : extended;
This function takes an extended value X and rounds to an integer value. The rounded
value as an extended type is returned through the name of the function. The value
returned depends on the current rounding direction set through execution of procedure
SetRound.

functionScalb(N : integer; X : extended) : extended;
This function efficiently scales the given number X by a factor of 2 raised to a given
power N. The value returned through the name of the function represents the product X *
2N.

functionLogb(X : extended) : extended;
This function takes the value X and returns through the name of the function the binary
exponent of X as a signed integer value. If X represents a denormalized number, the
exponent is determined as if the argument is normalized. Two special cases exist: (1) If x
is infinite, the value returned is +INF. (2) If X is zero, the value returned is - INF, with
the exception flag Di vByZero being raised.

function CopySign(x, Y : extended) : extended;
This function takes two values, X and Y, and returns through the name of the
function the magnitude of Y attached to the sign of x.

Next-After Functions

functionNextReal(X, Y : real) real;

function NextDouble(X, Y : double : double;

762 Appendix C SANE Library

function NextExtended(X, Y : extended) : extended;
Each of these three functions takes the value of X and returns through the name of the
function the next representable value after X in the direction given by Y.

Elementary Functions

function log2(X : extended) : extended;
This function returns the base 2 logarithm for the given value X.

functionlnl(X : extended) : extended;
This function returns the base e logarithm for the value X + 1.

function exp2{ X : extended) : extended;
This function returns the value of 2 raised to a power given by value of X.

function expl(X : extended) : extended;
This function returns the value of the natural number e raised to a power given by the

X-1
value ofX minus 1 (e) .

function XpwrI(X : extended; N : integer) : extended;
This function returns the value of X raised to an integer value N.

function XpwrY(X, Y : extended) : extended;
This function returns the value of X raised to the floating-point value of Y.

function Compound(R, N : extended) : extended;
N

This function computes the compounded value (1 + R) and returns the value
through the name of the function.

function Annuity(R, N : extended extended;

This function computes the annuity value (1 - (1 + R) (-N)) / R and
returns the value through the name of the function.

function tan(X : extended) : extended;
This function returns the value representing the tangent of x, where X represents an angle
in radians.

function RandornX (var S : extended) : extended;
This function takes the value of s as a seed and returns a number from a sequence of

pseudorandom numbers having values in the range 1 <= s <= 231 - 2. If this
function is again executed, the next random number in the sequence is returned through
the formal parameter s. If the seed value s is a non integral value or is outside the
specified range, the results are unspecified.

function NaN (N : integer) : extended;
This function converts a standard 16-bit integer into NaN. The value NaN is returned
through the name of the function.

Appendix D

Creating a
Macintosh Pascal

Application

Version 3.0 of Macintosh Pascal provides the capability of converting a Macintosh Pascal
program into an application program using the P-Shell. Figure D.l shows the Macintosh
folder with the P-Shell. For an application program to be generated, the P-Shell file must
reside either in the Macintosh Pascal folder or at least in the same folder as the application
file.

D Macintosh Pascal 0=
3 items 34,899K in disk 4,153K available

IQ

~ . fl
Macintosh Pascal PSHEU.

~
~ IQ 121

Figure D.1 The PSHELL icon.

763

764 Appendix D creating a Macintosh Pascal Application

Using the P-Shell, we can execute an application program directly by double-clicking
its corresponding name or icon from the Macintosh Pascal window rather than having to
invoke the Pascal translator directly.

While the program window is active and contains a copy of the program to be
transformed into the application, the process of creating a Macintosh Pascal program
requires four steps:

1. Pull down the File menu and highlight the Saue Rs ... option.
2. When the dialog box (see Figure D.2) appears, enter a name that is

different from the Macintosh Pascal program name.
3. Click the Rs Application option.
4. Click the Sau e option.

I a EHamples I
<:::::::::>Hard Disk

(Eject)
(Driue)

Saue your program as t Saue D
Random_Dots Application (Cancel)
0 Rs TeHt O Rs Object @ As Application

Figure D.2 The Macintosh Pascal Saue Rs ... dialog box.

The result is different from other files that have been saved. You will notice that at
the end of the operation the new name given to the application file does not appear in the
title bar. If you choose to quit the Pascal translator, the name or icon of the application
file can be viewed from the Macintosh Pascal window. Figure D.3 shows two files; one
is a Macintosh Pascal program, and the other is an application program.

The following program illustrates some of the problems of transforming a Macintosh
Pascal program into an application.

Creating a Macintosh Pascal Application Appendix D 765

§0 Pascal Programs
1 o items 34,899K in disk 4, 153K available

Random_Dots

Random_Dots Application

Figure D.3 The Macintosh Pascal application icon.

program Random_Dots;
{ Purpose: This program provides random squares with different }
{ patterns about the Drawing window. }

var

begin

Top, Left, Bottom, Right, X : integer;
Pat : Pattern;
Background : integer;

{ Use the function Random to choose the corners of the square }
{ and the pattern randomly. Initialize the counter. }

x := l;
{ Repeat the loop while the counter value is less than or equal }
{ to 200. }

while X <= 200 do
begin
{ Open Text and Drawing windows for viewing by the user. }

ShowText;
writeln ('Cycle: ', X);
ShowDrawing;

{ --
{ The size of each window is set from the Windows menu }
{ when the program is composed and translated. After the }
{ size of each window has been established, it may be }
{ better to execute SetTextRect and SetDrawingRect. }

766

end.

Appendix D creating a Macintosh Pascal Application

{ -- }
{ Randomly select the rectangles for drawing an oval. }

Top := abs(random) mod 201;
Left := abs(random) mod 201;
Bottom := Top + 30;
Right := Left + 30;

{ Randomly select the background color. }
Background := abs(randorn) mod 5;
case background of

0 Pat .- white;
1 Pat .- black;
2 Pat .- gray;
3 Pat .- ltgray;
4 Pat := dkgray;

end;
{ Display the oval in a rectangle with a chosen background }
{ pattern. }

FillOval(Top, Left, Bottom, Right, Pat);
x .- x + 1;

end;

Before converting a program into an application, the commands ShowText and
ShowDrawing must be appropriately placed. Failure to call on these routines results in
a blank screen when the application program is executed. Remember that when an
application program is being executed, no menu bar is displayed.

Not properly setting the window sizes by executing SetTextRect or
SetDrawingRect can result in either window having the wrong size or being
improperly placed on the screen as the application program is executed. During execution
it is impossible to change the size or close any window by clicking or moving the
mouse. The best rule is to be prepared. Thoroughly test your Macintosh Pascal program
before converting it into an application program. Do not attempt to use an application
program for the purpose of debugging a Macintosh Pascal program. An application
program that has entered into an infinite loop can only be halted by turning off the
Macintosh computer.

If you want to execute an application program without going through the Finder,
highlight the title or icon of your application and then select the menu Special. Next
select Set Startup ... Provided that your diskette contains a System Folder, your
application goes into immediate execution when your Macintosh machine is started.

For resetting the startup place to the Finder, quit the present application and
highlight the Finder icon. Now choose the option

Set St a rt up ... from the Spec i a I menu. At this point the Finder will be
executed when the Macintosh machine is started.

Appendix E

Using Labels
and the Pascal Goto Statement

Both Macintosh and THINK Pascal support a special unconditional transfer statement
called goto. Syntactically this statement appears as follows:

goto label

where label is represented as an unsigned integer whose value must be in the range 0
through 9999. When executed, the program branches to the statement given by the label
and continues execution. Like other objects, labels must be declared. For example,
consider the following program for displaying the numbers 1 through 100. Rather than
using one of the looping constructs, the program uses a one-way branch and a goto
statement to simulate a while-do construct:

program Display_Number;
{ This program displays 100 numbers across the Text window. }

label
10;

var
Number: integer;

begin
{ Show the Text window to the user. }

ShowText;
10:

if Number <= 100 then

767

768

begin
writeln(Number);
Number := Number + l;
goto 10

Appendix E Goto Statement

end;
writeln;

end.

There are several rules for using the goto statement:

1. A goto statement can be used for transferring either forward or
backward within the body of a compound statement.

2. A goto statement can be used to exit from within the body of a
compound statement, or a then clause of an if - then statement,
or a then clause of an else clause within an if-then-else
statement. A goto statement cannot be used to transfer execution
into the body of a compound statement, a then clause, an else
clause, or the body of a case statement. It can be used to transfer
execution to the beginning of a compound statement, an if-then or
an if-then-else, case, or simple statement.

3. Labels given within the body of a case statement are not the same as
those declared through label declaration. Case labels are referred to as
case constants and are type-associated with the case selector.

4. A goto statement can transfer execution from within the body of a
procedure or function to a location outside this program unit. For
example, the following program will transfer execution from within the
body of procedure Test to the statement labeled 100:

program Transfer_Out;
{ Sample program for testing an unconditional branch. }

label
100;

procedure Test;
begin

writeln('Executing the body of procedure Test.');
goto 100

end {Test};

begin
ShowText;
Test;

100:
writeln('Back in the main program.')

end.

When goto 100 is executed, execution of the procedure Test is
terminated before the end statement of Test is executed.

5. Like constants, types, and variables, labels satisfy the scoping rules for
being local and global.

Goto Statement Appendix E 769

When should the goto statement be used? That depends on the problem being
solved. For example, the following code represents the case of an in-test iteration loop:

Sum := 0.0;
:= 1; Counter

120:
begin

Sum
if

:=Sum+ A[Counter];
Counter = 10 then

goto 150;
Counter := Counter + 1

goto 120
end1

150:

In most cases we can avoid the need for a goto statement by using one of the other
constructs such as if-then, if-then-else, while-do, repeat­
until, or for. Excessive use of the goto statement can lead to poorly structured
programs that are difficult to read and debug.

770

Appendix F

References

Following is a list of references for readers who want to enhance their knowledge of
programming and related topics. There are numerous books that discuss Pascal and
programming topics relating to Pascal. The list presented here is limited, however. The
books listed are those we believe are significantly related to the content of this one, and
those that offer additional knowledge beyond its framework.

The reference manual cited in [1] provides a guide for installing and using Macintosh
Pascal. It also is an excellent resource on the syntax and semantic rules of Pascal, whether
the reader is using Macintosh Pascal or Symantec's THINK Pascal. Appendix B of [1]
provides a lengthy review of the QuickDraw library, and Appendix C of [1] reviews the
Standard Apple Numeric Environment, SANE.

For those readers using Symantec THINK Pascal with the intention of developing
software applications, references [2], [3], and [4] are important. Reference [2] provides
information on installing THINK Pascal as well as on editing, establishing, and using
projects, running and debugging programs, applying units and libraries, building projects,
applying compiler directives, and interaction with the debugger, LightsBug. Later chapters
provide information on using resource-description files, and the steps needed when
interacting with the resource editors SARez, SADeRez, and SAPostRez.

There are several books that provide lengthy introductions to Computer Science
using Pascal. Nance and Naps [5] offers a lengthy introduction on programming, problem
solving, and data structures using Standard Pascal. In much of the book, unrefined
algorithms are presented using a pseudocode that includes constructs of Standard Pascal.
Most of the algorithms are redefined through a listing of full Pascal programs.

For readers wanting an in-depth study of file systems, the book by Miller [6] is good.
It is a comprehensive introduction to files, with numerous examples. In many of the

References Appendix F 771

chapters, structured algorithms are used for reviewing and reinforcing file concepts and
theories. Several of these algorithms are implemented in Pascal.

There are several books that provide an excellent introduction to data structures. The
book by Wirth [7] is a classic in the field of Computer Science and offers an excellent
introduction to searching and sorting algorithms. Wirth also provides an introduction to
tree structures, with algorithms reviewing balanced tree insertions and deletions. For
multiway trees, he provides an introduction by describing B-Tree algorithms on insertion
and deletion. All of the algorithms are expressed in Standard Pascal. This book requires
concentration, and the algorithms must be traced to reinforce understanding of concepts
and theories. Horowitz and Sahni [8] have also written a classic book on data structures.
This book reviews the concepts of stacks and queues, trees, graphs, internal and external
sorting, hashing, files, and advanced tree structures. All algorithms are written in Standard
Pascal. A more recent book by Kruse [9] on data structures places emphasis on aspects of
software engineering. It provides two lengthy case studies that present many of the
concepts in data structures. All algorithms are expressed in Standard Pascal.

Several sources exist for learning more about object-orienting programming, object­
oriented analysis, and object-oriented design. First, the reference manual [3] provides a
brief introduction to using the object-oriented features of THINK Pascal. Though not a
formal text on the subject of object-oriented programming, it provides the necessary
information for getting started with objects, installing the THINK class library, reviewing
basic programming concepts of object Pascal, and learning the Class Browser. It also has
a brief review of all class types and class methods supported by the THINK class library.
The book by Sphar [10] offers more specific material on programming with object
Pascal. It is divided into three major parts: defining object-oriented programming, object­
oriented applications, and polymorphic software components. Throughout the text,
examples are given in THINK Pascal.

For a more detailed introduction to object-oriented design (OOD) and object-oriented
analysis (OOA), see references [11], [12], [13], [14], [15], and [16]. At present, there is
no single approach that best describes OOA and OOD. It is clear, however, that object­
oriented programming requires a study of OOA and OOD. Object-oriented programming is
more than simply changing the structure of the program code. It requires analysis and
design to properly model the application being implemented in object Pascal.

References [17], [18], [19], [20], [21], and [22] provide a more detailed view of the
Macintosh tools. Some of these references deal specifically with sound and the
QuickDraw Toolbox.

REFERENCES

[1] Symantec, Macintosh Pascal: Reference Guide, Symantec Corporation,
1988, Cupertino, CA.

[2] Symantec, THINK Pascal, The Fastest Way to Finished Software: User
Manual, Symantec Corporation, 1991, Cupertino, CA.

[3] Symantec, THINK Pascal, The Fastest Way to Finished Software:
Object-Oriented Programming Manual, Symantec Corporation, 1991,
Cupertino, CA.

[4] Symantec, THINK Pascal, The Fastest Way to Finished Software:
Resource Utilities Manual, Symantec Corporation, 1990, Cupertino,
CA.

772

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Appendix F References

Douglas W. Nance, Thomas L. Naps, Introduction to Computer
Science: Programming, Problem Solving, and Data Structures, 2d ed.,
West, 1991, St. Paul, MN.
Nancy E. Miller, File Structures Using Pascal, Benjamin/ Cummings
Publishing Company, 1987, Menlo Park, CA.
Niklaus Wirth, Algorithms + Data Structures = Programs, Prentice
Hall, 1976, Englewood Cliffs, NJ.
Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in
Pascal, Computer Science Press, 1990, New York.
Robert L. Kruse, Data Structures and Program Design, 2d. ed., Prentice
Hall, 1987, Englewood Cliffs, NJ.
Chuck Sphar, Object-Oriented Programming Power for Think Pascal
Programmers, Microsoft Press, 1991, Redmond, WA.
Grady Booch, Object-Oriented Design With Applications,
Benjamin/Cummings, 1991, Redwood City, CA.
James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
William Lorensen, Object-Oriented Modeling and Design, Prentice
Hall, 1991, Englewood Cliffs, NJ.
Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2d ed.,
Yourdon Press, 1991, Englewood Cliffs, NJ.
Peter Coad and Edward Yourdon, Object-Oriented Design, Y ourdon
Press, 1991, Englewood Cliffs, NJ.
Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener, Designing
Object-Oriented Software, Prentice Hall, 1990, Englewood Cliffs, NJ.
David W. Embley, Barry D. Kurtz, Scott N. Woodfield, Object-Oriented
Systems Analysis: A Model-Driven Approach, Yourdon Press, 1992,
Englewood Cliffs, NJ.
Stephen Chernicoff, Macintosh Revealed, Vol.I, Unlocking the
Toolbox, 2d ed., Hayden Books, 1987, Indianapolis, IN.
Stephen Chernicoff, Macintosh Revealed, Vol.2, Programming with
the Toolbox, 2d ed., Hayden Books, 1987, Indianapolis, IN.
David A. Surovell, Frederick M. Hall, and Konstantin Othmer,
Programming QuickDraw, Addison-Wesley, 1992, Reading, MA.
Christopher L. Morgan, Hidden Powers of the Macintosh, The Waite
Group, 1985, New York.
William B. Twitty, The Magic of Macintosh: Programming Graphics
and Sound, Scott, Foresman, and Company, 1986, Glenview, IL.
Dave Mark and Cartwright Reed, Macintosh Pascal Programming
Primer, Vol.l,lnside the Toolbox Using THINK Pascal, Addison­
Wesley, 1991, Reading, MA.

Index

773

774

+ (addition), 106

- (subtraction), 105

I (division), 106

* (multiplication), 106

= (to establish a constant), 116

:= (assignment), 115

1t (see also pi), 32, 34, 124, 345

• A •

ABS(X), 122

abstract class, 632-34

address, 3, 71, 95, 253-56, 298, 360,

410-12, 471, 501, 575, 581-82,

645

algorithm, 60-64, 79-81, 110, 113, 117-19,

138-39, 142-43, 147-48, 150-51,

155-57, 165-69, 211, 213, 215,

218-19, 230-32, 251-52, 257,

278-81, 306, 308-10, 312, 322-23,

374, 393-94, 396, 410, 412-13,

419, 421-27, 440, 445, 475, 480,

483-85, 491-96, 502, 511, 545,

553, 556, 559, 572, 585, 603,

609-14, 660, 662, 666

bubble sort, 412-13, 452-53

linear search, 425, 427, 453, 502

search, 391, 421, 425

Shellsort, 421-23

sorting, 421, 425

straight insertio~ sort, 421-22

quicksort, 421, 423-25

APPL, 369

Index

application (see also program), 2, 13, 38,

42, 286, 307,

323-24, 343-44, 359, 372, 374,

379, 501, 549,573, 667-68

program, 4, 31

arithmetic

functions, 106, 120-21, 123-24, 129

operations, 2, 84, 86, 106, 113, 127,

350

artificial language, 2, 62

ASCII, 88, 93-94, 582

assignment (see also :=), 71, 92, 107, 115,

118-19, 141-43, 145, 147-48, 159,

276, 281, 290, 324, 393,437-38,

448, 467, 505, 582-83, 614, 617,

645, 700

• B •

BackColor, 199, 234-35

BackPat, 683, 721, 727-28

Beanpicker, 165-66, 168-69, 171, 221,

224-26, 228

begin-end, 144, 255

Bic, 716-17

Index

binary

digits (bits), 3

search algorithm, 426-27, 451, 483,

485

trees, 573, 602

growing and pruning, 573

leaf node, 602, 608

parent node, 602

BitMap, 680, 719

bkColor, 680-81

bkPat, 680-81, 692-94

BlockMove, 617-618, 621

body of the main program, 252, 254-55,

277, 283-85, 288, 294, 343, 408,

431, 482-83, 590

Bold, 7-8, 39, 190, 704-05

boolean, 83, 86, 88-90

expressions, 139, 160, 173-74

operators, 138, 146, 176, 454, 533

boot, 3

branching statement, 143, 147

bug, 11, 36, 48, 51, 171

Build, 42-43, 341, 345-46, 368-69, 379,

634

Build Library, 42, 50, 354

building THINK Pascal libraries, 349

built-in constants, 70

button, 5, 12, 119, 206-9, 217, 219-21,

647, 656, 698, 721

byte, 3, 20, 446, 448, 533, 545, 621

- c -

case statement, 154-55, 158, 171, 180,

204,437, 503, 701

775

central processing unit, (see also CPU) 2

char type, 102, 119, 155, 254, 446, 448,

533, 550

character data, 466

CharWidth, 705

Check, 11-12, 43, 48, 109, 118, 156-57,

167-71, 189, 206, 226, 278-79,

303, 345-46, 351, 358-59, 404,

418,476, 484, 487,494, 496, 499,

545-47, 591, 597, 602, 613, 634,

675

class, 46, 50-51, 61, 90-91, 628-34,

636-42, 644-47, 650,653,656-60

Class Browser, 30, 46, 51, 628, 656-57,

668-70

Clear, 15, 19, 39, 50, 79, 150, 171, 229,

257, 367, 504, 575

Clipboard, 50

ClipRect, 681, 683, 686-87, 699, 702, 721

clipRgn, 680-83, 686, 688, 717, 719

Clone, 645-46, 668-69

Close, 12, 14, 38, 41, 50, 59, 109, 209,

214, 268-69, 343, 428, 467-69,

475, 482, 484-90,499,522-23

close box, 14, 209

ClosePicture, 714-16

776

ClosePoly, 712-13

ClosePort, 682, 697, 710-11, 718, 720,

725

CloseRgn, 708, 710-11, 727

colrBit, 680-81

command

branching, 147

for, 74, 139, 163-65

input, 60, 74, 78, 467

that provides action, 2

Type, 96

comments, 54, 66, 76, 79, 118, 173, 252,

399,405, 614, 701

compile, 36, 41-43, 46, 50, 189, 263, 265,

280,345-46, 357, 370, 379,531

compound

conditional, 138, 160, 174-76

statement, 143-44, 147-48, 175, 328

computer

automated machine, 19

languages, 2, 325

organization, 2

program, 1-2, 8, 20, 61-62, 138, 178,

180, 187

Concat, 538-39, 544, 548-49, 684, 701-3,

706

concrete class 632, 669

condense, 684, 687, 704-5, 738

conditional expressions, 138-39, 145, 161

const heading, 116

Index

constant, 66-71, 85, 109-10, 115-16,

123-24, 154, 221, 251-52, 259,

264, 277, 359, 392-93, 441, 616,

701, 720

equated with the name, 68

predeclared, 68, 90-92, 101, 105

real, 70

control structures, 139, 161

for branching, 147

coordinate plane, 675-77, 679-81, 695, 701,

734

Copy, 14-15, 17, 38-39, 48, 50, 194, 268,

288, 294, 345-47, 429-30, 468,

481, 491, 493-96, 538-40, 579,

612-14, 617, 645, 683, 708,

716-17, 721

CopyBits, 717, 719-21, 733

CopyRgn, 708

CPU, 2, 374, 376

counters, 139, 163

Cursor, 45, 50, 119, 206, 209, 678, 721,

728

cursors and patterns, 721

Cut, 14-15, 17, 19-20, 39, 50, 54, 194,

375

Index

- D -

data objects, 2, 61, 70, 75, 98, 116, 165,

465, 573-75,593,598

nonnumeric, 99, 532, 550

special, 573

data type

casting, 127

computational, 60, 83-85, 98-99, 127,

524,550

declarations, 96, 633

integer, 108, 195-96, 199, 210

longint, 86

ordinal, 60, 83, 86, 88, 90-94, 101,

391

nonstandard ordinal, 83, 99

real, 71, 83-84, 195

simple, 83, 98-99

string, 119, 465, 467, 533, 535,

537-38,550,573-74

data structures, 585

array (homogeneous structure), 391

multidimensional, 391, 408

of arrays, 416

one-dimensional, 527

record (inhomogeneous structure),

427-28

DateTimeRec, 428-30, 453, 457, 531, 635

Debug and Names, 370, 374

777

Debug Menu, 119, 45, 51-52, 259, 374-75,

377, 379, 382, 389-90

debugging, 9, 120, 30, 43, 50, 348, 657

decimal, 70, 77-78, 83-84, 88, 111-12,

706, 722-23

declarations, 66, 68, 70-71, 92, 95-96, 116,

250-52, 277, 285-86, 288, 290,

324, 338-41, 343, 351, 356, 358,

433, 437, 575, 632-34, 641, 656,

659-60,675, 679, 713, 728

defining a port, 682

definiteness, 61, 79, 165

degrees to radians, 124

delete, 15, 8, 50, 59, 535, 540-44, 549,

574, 591-93, 607, 706

desktop folder, 209

development folder, 31-32

device, 5, 12, 251, 360, 500, 680-81

dia_Iog box, 11-13, 16-18, 32, 35, 37-39,

42-45, 48-50

dictionary, 602-07, 621

DiffRgn, 28, 708, 711

Digits, 3, 65, 77, 84-86, 98, 112, 117-18

direct recursion, 386

disk drive, 4-5, 31

dispose, 573, 575, 584, 602, 610-611, 614,

616, 637-38, 642, 645, 664-65,

684-87, 710-11, 715, 718-21

DisposeHandle, 617-18, 621

DisposeRgn, 707, 710-13, 719, 727, 736

778

div, 106, 108, 110-12, 116-18, 127,

156-57, 171, 484

Do It button, 16, 45, 109, 194, 379

double, 83-85, 98-99, 127, 349, 370, 374,

441, 542-44, 617, 656

dragging the mouse, 189-90, 206, 209

DrawChar, 705-6

DrawCircle, 675

drawing pen, 195-96, 198, 205, 215, 240,

441, 688-89

drawing

lines, 192, 194, 219-20, 688-90, 716

pictures, 674, 713-14

rectangles, 211, 236

simple geometric patterns, 196

simple lines, 188, 192

Drawing window, 7-8, 11, 12, 16, 46, 66,

72, 109, 119, 188, 370, 646-47,

715

drawing with

arcs and wedges, 693

points, lines, and rectangles, 688

regions and polygons, 707

DrawLine, 194-96, 214, 217, 220-21, 236,

675, 693

DrawPicture, 714-16

DrawString, 684, 699-705, 707, 721

Index

- E -

Edit, 14-16,.34-48, 194, 344-49, 353, 377,

656

effectiveness, 61, 165

else clause, 148-49, 159, 166-67, 494

EmptyRect, 691

EmptyRgn, 709

end-of-file marker, 465, 467, 489, 525

eof, 465, 489, 523

eoln, 443, 447, 449, 498-99, 706

equal sign (see also=), 68, 97, 100

EqualRect, 691

EqualRgn, 709

EraseArc, 694

EraseOval, 203-04, 232-33, 236, 692

ErasePoly, 712-13

EraseRect, 198-99, 201, 205, 236, 317,

320, 691, 715, 718, 721

EraseRgn, 709-10, 727

EraseRoundRect, 693

error, 11-12, 16, 34, 41, 45, 47-48, 50,

64-65, 69, 76-78, 87, 90, 94-95,

112, 114, 118, 146, 154-55, 164,

171, 189, 195, 205, 211, 227, 263,

280, 285-86, 288, 318-19, 321,

324, 359, 368, 374, 393, 404-5,

410,433,437,448, 465, 467,500,

544, 576-77,618,633,645

exceptions, 98, 189, 574-75, 594

Index

Exp, 124-26, 130, 133, 155

expression, 47, 68-70, 75, 90, 106-8,

113-16, 118-21, 127, 145, 154,

161, 164-72, 259, 264, 278, 294,

324, 393, 437-38, 448, 468-70,

481, 494, 497, 533, 539, 578-79,

617, 700

extend, 40, 251, 323, 379, 604

extended, 43, 83-85, 98-99, 108, 121, 125,

127,428, 450, 540, 550, 614

- F -

fgColor, 680-81

Fibonacci series, 303-4, 333

file, 4, 18, 30, 32, 36, 38-39, 43, 45-46,

87, 171, 251, 338-39, 341-49, 351,

353-54, 356, 360-61, 369-371,

464, 522-85, 612, 617

advantages of using, 464, 525

actual, 268

buffer, 467-84, 515

component, 465-99

devices, 499

library, 32, 34, 361

logical, 466-67, 501, 526

nontext, 464

object, 13, 42, 369

opening and closing, 464

pointer, 464, 516

random access, 480

779

text, 464-66, 472, 475, 496-500, 523

filepos, 464, 483, 526

FillArc, 694, 703

filling with a pattern, 198

FillOval, 203-5, 231-33, 236, 651, 692,

718

FillPat, 680-81

FillPoly, 713

FillRect, 198-217, 323-24, 435, 442, 652,

684, 686-87, 692, 699-700, 702,

718, 721

FillRgn, 709-11, 727, 732-33

FillRoundRect, 693

Find, 12, 16, 31, 39-41, 49-50, 63, 66, 118

finiteness, 61, 165

firmware, 188-89

fixed and variant fields, 391

folder name, 499

font, 17-18, 34, 39, 44, 47, 196, 217-18,

500, 680-81, 704-5

Control, 17-18, 20, 196, 217, 500

size, 17, 39, 44, 218, 705,

for-to, 163

ForeColor, 199, 234-36, 241

780

formal parameter, 253-78, 285, 288-92,

298, 303, 324, 340, 360, 396,

404-5, 411, 413, 417, 428, 471,

507, 545, 579, 583, 590, 637

list, 252, 254, 264, 270, 276-78, 285,

288,409

declared as array types, 404

forward declaration, 286, 288, 306

FrameArc, 694

FrameOval, 203-7, 236, 692, 703, 711,

718, 727, 731

FramePoly, 712-13

FrameRect, 190, 198-01, 205, 214, 235-36,

435, 442, 445, 678, 684, 686-87,

691, 699, 718, 721, 727

FrameRgn, 28, 709-11, 727

FrameRoundRect, 692, 727

framing, 198, 710-11

- G -

Get, 31, 43, 46, 49-50, 219-21, 223, 472-

73, 475, 481, 490, 630, 632-33,

637, 640, 642-44,648

GetClip, 683

GetDrawingRect, 189, 211, 241, 675

GetHandleSize, 617, 621

GetMouse, 189, 206-08, 219-21, 314, 507,

648, 718, 727

GetPen, 688

GetPenState, 688, 690

GetPort, 682, 734

GetTextRect, 189, 211, 241

GetTime, 428, 431, 457, 635

global identifiers, 284-85, 340

Index

global variables, 285, 322, 374, 396, 457

GlobalToLocal, 729, 731

Go, 8-12, 20-21, 23, 32, 35-36, 42-43, 45,

61, 63, 109, 119-20, 166, 206,

229, 348, 376-77, 379,613

Goto, 767

Go-Go, 11-12, 20, 36, 43, 51, 53, 119-20

GratPort, 192, 234, 680-92, 694, 704-5,

715-17, 729-31

GratPort routines, 682

GratProcs, 680, 682

GratPtr, 680, 683, 686, 697, 710, 714,

717, 720, 724

graphical system, 188

- H-

Halt, 12, 45, 172-73, 217, 219-21, 377,

653

halts, 265, 370, 372, 522 ...

hand, 8, 9, 11, 63

handles, 573, 616, 637, 645, 658, 666,

682.686, 714

Index

hard copy, 17, 48

hard disk, 4, 6, 31, 465

heap storage, 579, 581, 592, 619

HideAll, 189, 209, 213, 236, 243, 247,

253, 255-57, 262-63, 272-73,

279-80, 290-91, 310, 312, 342,

367, 373, 394, 400,418,429,

434-35, 442-43, 546, 654, 711,

715, 718, 721, 725

HideCursor, 724-25

HidePen, 688, 690

hotspot, 722, 724, 726

- I -

I-beam, 6, 14-15

icons, 44, 374, 376-77, 380-81

identifier, 7, 34, 64-65, 67-68, 70, 88, 95,

251-52, 261, 278, 282, 285-86,

324, 339, 341, 359, 393,405, 417,

427, 466-67, 472, 533, 581-82,

617, 632,

if-then, 159, 208, 423-24

if-then-else, 138-39, 147-48, 150, 158,

162, 494

implementation, 98, 321, 323, 339-41,

351-52, 357-59, 363-65, 368, 575,

584, 633-34, 636, 659-60, 667

Implementation Section, 357, 381

781

in, 439

indentation, 8, 39, 53, 57

Include, 42-44, 66, 70, 74, 77, 83, 86, 98,

172

indirect recursion, 305-06

infinity, 184

information, 1-5, 17, 35, 43-44, 61-62, 66,

74, 102, 134, 138-39, 157, 166

information to the computer (see also

program), 2

inheritance, 628, 667, 669-70

multiple, 667, 670

inherited, 628-29, 642-44, 650-52, 656

InitCursor, 724

initial size, 239, 345

InitPort, 682, 734

inorder traversal, 605

input unit, 5

Insert, 10, 14, 45, 109, 190, 195-96, 199,

288, 345-46, 376-77, 473, 535,

542-44, 549, 574, 593-95, 598,

601, 603-7

insertion sort, 391, 421-23, 453, 457

InsetRgn, 730-731

instance variables, 628, 636, 643, 650,

668-72

Instant

project, 50, 52, 344-45

window, 16, 20, 45, 109, 194, 240,

377

782

interface, 32, 34, 36, 323, 338, 345-46,

349-51, 370, 632-34, 643

Interface.lib, 32, 34, 36, 345, 353, 381

invalid, 108, 115, 277, 467-68, 523

InvertArc, 694

InvertCircle, 196-98, 223-24, 236, 261-62,

675,693

inverting, 196, 198

InvertOval, 203-5, 651, 692

InvertPoly, 712

InvertRect, 198-99, 201, 205, 236, 652,

692

InvertRgn, 709

InvertRoundRect, 693

italic, 704-5, 711, 738

iteration statement, 138

. K.

keyboard, 3, 5, 32, 65, 71, 78, 98, 112,

117-18

KillPoly, 712-13, 735

. L .

Law of Cosines, 123-24, 132

lazy input, 391, 440, 448

Index

Length, 76, 78, 85, 87, 95, 98, 119, 124,

146, 214, 405, 421, 441, 446-49,

466, 476, 480, 490, 522, 533-34,

537-40, 542, 544-45, 547-49, 574,

702-3, 706

lexicographic ordering, 533

library, 32, 34, 42, 50, 66, 120, 123-24,

141, 153, 188-89, 209, 211, 229,

234, 250-51, 257-58, 324, 338-39,

341, 349-51, 360-61, 379, 428,

584, 674-75, 680-81, 693-94

add a, 30

predefined, 338, 360, 381

LightsBug, 44-45, 51, 338, 374-77,

380-81, 387-90, 628, 656-57,

669-70

Line, 2, 7-12, 20-21, 34, 43, 45, 66, 71,

75-79, 86, 95, 98, 119, 253, 264,

374, 440-41, 498-501, 523-25,

529, 531, 566, 568-71, 646-47,

675-76, 689-90, 695-96, 705-6,

712-13

LineTo, 192-96, 217, 220-21, 224, 236,

240, 242-44, 257-59, 689-90,

712-13

linked lists, 585, 602, 619

list head, 596, 600

ln, 124-26, 130, 133, 334

Index

local

identifiers, 282, 379

variables, 285, 298, 315, 320-21, 331,

431,476, 484, 579, 701

LocalToGlobal, 729, 731

log, 121

logical, 145, 148, 162, 173, 323, 339-40,

466-67, 716

longint, 83, 86-88, 98-99, 126-27, 154,

173-74, 200, 234, 265, 284, 296,

326, 366, 427, 446, 483, 535, 537,

550, 680, 684, 718, 720, 725

loop, 127, 138-45, 159-61, 163-65, 171,

203, 206, 223-24, 229, 285, 324,

421-23, 449, 470, 473, 582, 612,

678

for, 254-55, 417, 470, 473

in-test iteration, 139

post-test iteration, 138, 144, 174-75

nested, 159, 171

. M.

Macintosh

character set, 533, 746

file system, 13

memory manager, 616, 619

operating system, 314, 619, 674

Pascal, 2, 4-9, 11-14, 16, 19-21

783

Pascal program, 7, 9, 13-14, 19-20,

24,

Pascal String Types, 532

main memory, 2-3, 5, 20, 203, 60, 465

Make utility, 30

mapping and scaling, 674, 729

mapping and scaling points, 729

MapPoly, 731

MapPt, 730

MapRect, 730

MapRgn, 731

maxint, 70, 101

maxlongint, 70, 101

memory, 2-5, 45, 71, 74, 95, 107, 203,

259, 264, 298, 360, 369, 372, 374,

421, 446-48, 465, 475, 573,

575-77, 583-85, 612, 614, 616,

637, 644-45, 657, 666, 679, 686,

707, 710, 712-14

secondary, 3-5, 20

menu

File, 13-14, 17, 32, 34, 48-50,

345-46, 349, 351

options, 1, 3, 5, 8-9, 14, 19, 30, 37,

43-44, 50-52, 674

Pascal, 8-9, 37, 51-52

Run, 8-9, 11, 35-36, 41, 43-44,

48-51, 118-19, 206

Windows, 16-18, 45, 119, 209, 217

messages, 62, 71, 75, 78, 211, 411, 419,

630, 638, 643, 647

784

Microsoft Word, 3

mod (see also modulo), 69, 108, 110,

112-13, 117-18, 127-54, 166,

170-71

modem, 499-500

modulo (see also mod), 112

monitor, 45, 51, 58, 119, 134, 189, 234,

249,676

mouse, 5-7, 9-10, 12, 14-15, 20, 45,

188-90, 206-9, 211, 217, 219-21,

235-36, 677-78, 684, 687, 698,

700, 718-22, 724-25, 727-28

Move, 32, 38, 45, 348, 377, 396, 616-17,

637, 684, 689, 703, 713

MovePortTo, 688, 734

MoveTo, 192-236, 441, 443-44, 523, 684,

687, 689-721, 727

- N -

NewFileName, 501, 505, 526

NewHandle, 617-18, 621

NewRgn, 707, 710-11, 718, 726

nil, 575, 586, 596-97, 660, 720-21

nonrelocatable blocks, 617

null

character, 76, 446, 449, 462

string, 446,534-35, 539-40,557

Index

number

real, 83, 85-86, 126, 465, 577, 579

integer, 108, 195-96, 199, 210

ordinal, 83

- 0 -

Object List, 658-60, 662, 664-66, 671

object-oriented programming (see also

OOP), 46, 628-29, 637, 668-69

ObscureCursor, 724, 727, 736

ODD(X), 121

OffsetPoly, 730-31

OffsetRect, 729, 731

OffsetRgn, 729, 731

OldFileName, 501, 506, 526

Omit, 541-42, 566-67, 644

OOP (see also object-oriented

programming), 628, 634

open, 19, 22-23, 25, 32, 37-38, 41, 45-46,

119, 127, 189-90, 209, 213, 257,

259, 343, 345, 349, 370, 377, 399,

403,408, 440,466, 474, 484, 498,

522, 547, 675, 683-87, 696-97,

708, 710

OpenPicture, 713-16

OpenPoly, 712-13

OpenPort, 682-83, 688, 710, 717, 720, 725

Index

OpenRgn, 708, 710-711, 713, 727, 735-36

operand, 106-07, 114, 127-28, 146, 173,

581, 641

operator, 106-16, 124, 127-30, 146-47,

155, 161, 171, 173, 278, 280, 574,

581, 583-84, 595, 641

binary, 107

precedence, 106, 113, 115, 128,

146-47, 161, 175-76,454

set, 438

unary, 107-8,581

ord, 131, 134,556,558,562,565, 706

ordered set of instructions (see also

program), 2

otherwise, 148-49, 154-57, 160, 171-72,

278, 359, 372, 376, 393, 427,489,

545, 603,642, 709

outline, 7, 34, 47, 64, 198, 200, 314-15,

336, 344, 684, 687, 691-92, 704-5

output

commands, 60, 74, 81, 99, 101, 467

device, 5, 681

ovals, 188, 196, 203, 688-89, 691, 693,

707

overflow, 43, 87, 184, 594-96, 657

override, 253, 628, 630, 633-34, 642,

644-45,647, 649-651,669,671

785

- p -

packed array of characters, 99, 391, 446-49,

535

Page, 24, 34, 153, 226, 231-32, 335, 394,

426,457, 498,501, 519, 527, 547,

649

page range, 17, 48

Page Setup, 14, 17, 19, 38, 50

PaintArc, 694

PaintCircle, 66, 72-74, 103, 196-98, 201-3,

223, 226, 236,435,693

PaintOval, 203-05, 236, 692

PaintPoly, 712-13

PaintRect, 198-99, 201, 205, 235-36, 691

PaintRgn, 709-10

PaintRoundRect, 692

palindrome, 571

paper copy, 17, 48

paper feed, 17, 48

parameters

actual, 276, 327, 393

formal, 266, 276-77, 405

functional, 288

parentheses, 106-8, 114-15, 121, 161, 451,

632

786

Pascal

operators, 106

procedure, 250-53, 277, 371, 548, 625

program, 1-2, 6-7, 9, 13-14, 17, 19-24

menus, 8-9, 37, 51-52

record, 427

set, 391, 437, 500

Paste, 14-15, 19, 39, 50

patCopy, 681, 689, 716

patStretch, 680-681

pattern, 198-200,205,215,234,236,294,

323-24, 442, 532, 540-42, 544-49,

680-81, 683, 688-94, 701-3, 709,

712-13, 716-17, 719, 728-729

Pause, 12-13, 22, 43-44, 78, 83, 141, 204,

217, 219-20

pen, 190, 192-96, 198, 205, 215, 258-59,

441, 681, 684, 688-94, 705, 708-9,

711-14

PenMode, 689-90

PenNormal, 689-90

PenPat, 689

PenSize, 190, 192, 195-96, 235-36, 435,

507, 684, 687-89, 699, 705, 711,

718, 721, 727

PenState, 688, 690

Pi (see also 1t), 70, 100, 124, 130-31, 290,

292

picFrame, 714

PicHandle, 713-15

PicPtr, 714

picSave, 680-81

picSize, 714

Index

Picture, 189, 232-33, 681, 702-3, 713-16

picture handle, 714

pictures, 189-90, 192, 215, 441, 676, 680,

691, 709, 712, 716, 722-23, 729

pnLoc, 680-81,688, 705, 735

pnMode, 680-81, 689-90, 692-94, 705

pnPat, 680-81, 689-94, 705

pnSize, 680-81, 689-90, 705

pnVis, 680-81, 688, 690

Point, 70-71, 74, 77-78, 83-84, 112, 158,

163, 192-94, 196-98, 203, 205,

207-09, 214-15, 217-21, 224, 227,

229, 231, 233, 251-52, 257-62,

264,295,298,305, 324, 348-49,

351, 353, 359, 364, 372, 376-77,

405, 413, 424, 433-36, 441-42,

670, 675-78, 680, 686, 688-91,

695-96, 701-3, 705, 707, 709,

712-13, 717-19, 722, 724-25,

729-30

pointer, 464, 466-67, 469-73, 475,

482-84, 486, 489-90, 494,

498-501, 508, 516, 523-25, 545,

554-55, 559, 561-63, 554, 557,

561, 573, 575-83, 585-90, 593-96,

599-601, 603-7, 609-12, 614,

616-17

polyBBox, 712-713

Index

polygon, 674, 681, 707, 712-13, 714, 729,

730-731

PolyHandle, 712-13, 730-31

polymorphism, 632, 639, 669

polyPoints, 713

PolyPtr, 713

polySave, 680-81

polySize, 713

pop, 579, 595-98, 601-2, 656, 660, 662-63

port, 680-87, 697, 699, 710-11, 714-18,

720-25, 731

portBits, 680-82, 688, 717, 719, 721

portBits.bounds, 681, 688, 717

portRect, 680-82, 688, 717

PortSize, 682

Pos, 537-38, 540-44, 549, 566-67

postorder traversal, 625

precedence level, 120, 146, 175

pred, 134, 164, 595

Preferences, 18, 20

preorder traversal, 625-26

Print, 7-8, 14, 17, 19, 30, 38-39, 48, 153,

254, 256, 264, 532, 552-53,

559-60, 563, 565-66, 569-72,

605-7

Print Using procedure, 532

Print Using Statement, 552

Printer, 3, 5, 17-18, 20, 22, 44, 48-49,

370, 464, 499-502, 510, 517-19,

674, 682

printing, 2, 17, 22, 38, 49, 182, 464

787

problem analysis, 61, 138, 145, 165, 167,

177

problem solving, 60, 307

Profiler, 338, 370-74, 379-82, 385-86

program

executable portion, 66, 71

library, 129, 188

parameters, 65, 522

statement, 66, 189, 251

title. 7, 64-65

unit, 253, 282, 285, 338, 341, 345-47,

349, 356, 370, 377, 382, 575,594,

639, 641, 669-72

window, 6-7, 9, 13-17, 19-21, 30, 34,

43, 50, 52, 66, 119, 189-90, 194,

196, 346, 375-76

project, 30-32, 34-36, 38-39, 41-43, 45-47,

49-57, 59, 87, 109, 171, 338-41,

344-49, 351, 353-54, 357, 360-61,

368-71, 374-75, 380-81, 383,

656-57, 668-69

as an application, 42, 338, 368-69

manager, 30, 50

new, 41, 50, 344, 354

prompts, 75, 88, 95, 110, 234, 253,

268-71, 342-343, 410-12, 418,

471, 475, 546, 590, 607, 696, 700

PtlnRect, 507, 678, 691, 719

PtlnRgn, 709, 727

PtToAngle, 695

push, 594-95, 601, 660

788

put, 468-70, 475, 481, 483, 490, 581

- Q -

quality of print, 17, 48

queue, 573,585,598-602,619,671

QuickDraw, 257, 674-731

libraries, 675

mathematical foundation, 674-75

Quit, 14, 38, 50,

quotient, 108-9

- R -

RAM, 3-4, 20, 203, 369, 465, 579, 585,

674

Random, 126, 204-5, 324, 360, 425, 437,

467,480-83,522-24

range of values, 84, 94, 127

ReadString, 550-51

Rect, 199, 209, 235, 279, 290-91, 304,

342, 399, 405, 418, 429, 546, 559,

677-725

rectangle, 199, 647, 650-54

rectangles, 190-215, 674-721

RectlnRgn, 709

RectRgn, 708

recursion, 294-98, 305-6, 605, 613

recursive functions, 294-96

Index

reference, 64, 66, 70, 190, 264, 285-86,

359, 393, 409, 417, 428,481,

575-76, 581; 591, 617, 637, 642,

644-45, 659, 662-66, 695, 707

reference count technique, 581

region, 678-729

relational

expression, 139, 145-47, 533, 700

operators, 146-47, 160-61, 438

remainder, 77, 108-10, 112-13, 117-20,

155, 545-47, 549, 586,612

repeat-until, 138-39, 144-45, 152, 159-60,

164, 171, 229, 261

Replace, 16, 38, 41, 50, 158, 233, 254,

280, 290, 404, 417, 432-33, 482,

567, 574, 609, 707

reserved words, 64, 66, 340, 379, 744

Reset, 11-12, 43, 45, 223, 464, 466-501

Revert, 14, 19, 38, 50

rewrite, 268-69, 466-72, 475-79, 481, 522

rgnBBox, 679, 710, 718

RgnHandle, 680, 683, 707-11, 717, 719,

725

RgnPtr, 710

rgnSave, 680-81, 708

rgnSize, 679, 710

ROM, 3, 45, 360, 693

Root Class, 630, 633, 644-45

round, 126, 130,214-16, 701, 703

Index

Run, 8-9, 11, 109, 118-19, 206, 251

Runtime.lib, 32, 34-36, 345, 353, 360

- s -

SANE, 66, 97, 381, 559, 748-61

Save, 1, 13-14, 34-36, 38, 42, 44, 46, 251,

339, 345-46, 351, 464-65

Save a Copy As, 38

Save As, 34, 36

SaveDrawing, 713

ScalePt, 730

scientific notation, 77, 83

screen, 10-11, 13, 18, 32, 45, 48-49, 65,

188-92, 195-97, 201, 207-11, 221,

223, 229,231, 233-36, 251, 259,

274, 310-15, 317, 321, 324, 327,

335, 676-77, 679-83, 685-86,

688-90, 693, 695, 700, 703, 706,

710, 714-18, 720-21, 724, 726-30

ScrollRect, 717, 719

Search, 14, 16, 37, 39-41, 50-51, 391,

421-22, 425-27, 433, 471, 481,

483-85, 488-89, 544-45, 547-48,

574, 591, 666

SectRect, 690, 734

SectRgn, 708

seek, 464-67, 481-85, 487-88, 490, 502,

509, 515-16, 523-24, 526-27

789

self, 628, 642, 644, 649-52, 659-60, 662,

664, 669

semicolon, 34, 39, 44, 66, 148, 154,

253-54, 328, 340, 405

set, 120, 127, 436-43, 445-46

Set Project Type, 42, 50

SetClip, 683

SetCursor, 724, 727-28

SetDrawingRect, 189, 209-10, 213, 216,

218, 220, 223, 226, 233, 235

SetEmptyRgn, 708

SetHandleSize, 617, 621

SetOrigin, 682, 686-88, 691

SetPenState, 688, 690

SetPort, 682-84, 686, 699, 702, 711, 715,

721, 731

SetPt, 687

SetRect, 210-11, 213, 215, 218, 220, 222,

224-25, 231-33, 678, 681, 684,

686, 690, 699-700, 702-3, 711,

715, 717, 720, 725, 732

SetRectRgn, 708

SetTextRect, 209, 211, 213, 216, 222,

225-26, 232

shadow, 704-5

Show Finger, 45

ShowCursor, 724, 727

ShowDrawing, 189-90, 207-35, 241, 675,

678

ShowPen, 688, 690

790

ShowText, 32, 36, 69, 74, 76-77, 81, 189,

209, 211, 213, 216, 222, 224-25,

227, 232, 470, 474, 477, 481, 485,

537, 546, 551, 559, 590

significant digits, 84

SIN(X), 121, 289, 291

single, 16, 30, 39, 47, 50, 77-78, 92, 95,

108, 127, 192, 207, 341, 349, 362,

376, 391, 436, 446, 448-49,

475-76, 534, 542-44, 568, 580-81,

632, 667

size box, 209, 211

Source Options, 39

Special, 66, 72, 108, 112

spExtra, 680-81, 704-5

srcOr, 681, 705, 716-17, 719

stack, 297-98, 303, 360, 418,573, 579,

583, 585, 592-94, 593-98, 602,

619

Step, 9, 12, 20, 31-32, 34-36, 43-45, 61-63

Step-Step, 9, 12, 20, 43-44

StillDown, 206-7

Stops In, 10-12, 17, 45

Stops Out, 11

storage

space, 616

free, 579

Index

string, 16, 39-41, 69-70, 84-85, 95,

465-67, 497-98, 532-63, 573-74,

585, 588, 591

functions, 542, 544, 549

maximum length, 95

miscellaneous routines, 550

procedures, 535, 537, 544

StringOf, 550-51, 566-67, 699-702

StringWidth, 702-3, 705

structure chart, 267-68, 275

stubs, 310-11, 315

StuftHe, 728-29

Style, 217, 559, 680-81, 704-5

Styleltem, 704

subclass, 629-33, 637-39, 641-45, 657

subordinate modules, 370, 372, 410

subrange type, 83, 94, 154, 163, 165

subscript, 393-94, 403, 410, 416, 427, 440

subscripted variable, 393-94, 403-4, 409,

416-17

succ, 90-92, 101, 163-64, 397-98, 401-2,

406-7, 444, 447, 449, 495, 595

superclass, 630-32, 642, 647, 649, 657

superordinate module, 309, 372

symbol table, 285, 288, 359

syntax

ambiguity, 158

errors, 11, 79, 109, 203, 345-46, 351,

353

grammar, 2

of a program, 19

Index

SysBeep, 485,487, 490, 678, 700

- T -

TextFace, 684, 687, 705, 711

TextFont, 317, 705

TextMode, 705

TextSize, 317

TextWindow, 501

TMON, 45 I

TObject, 644-45, 647, 653, 664

trace a program, 119

trace table, 118, 139, 142-43, 422, 425

transfer bits, 674

Transfer Modes, 690, 716, 719

translator, 164, 171, 253, 285-86, 288,

359, 446, 617

trigonometric functions, 121, 695, 701

trunc, 126, 231-33, 236, 556, 562-63,

701-3

truth table, 88

TUTOR SYSTEM, 362, 369-370

txFace, 680-81, 704-5

txFont, 680-81, 704-5

txMode, 680-81, 704-5

txSize, 680-81, 704-5

- u -

underflow, 595-96, 598, 602, 663

underline, 704-5, 711

UnionRect, 690

UnionRgn, 708

User Interface Toolbox, 674

791

uses clause, 43, 64, 66, 189, 197, 338-41,

343, 355-61, 370, 372

- v -

valid statement, 115

value parameters, 259, 415

variable parameters, 264, 266, 583

variables, 45, 60-61, 66, 70-72, 75-79, 85,

88-98, 108, 111, 114-15, 118-120,

128, 188, 214, 250, 252-54, 259,

264, 276, 278, 282, 284-85, 298,

338-4~ 343, 349, 379, 391, 393,

395-96, 408, 410, 428, 431-33,

437, 446, 545, 547, 550-51, 564,

575-76, 579-80, 594, 628-34, 675,

697, 701-2

variables, values given to, 71

variant records, 436

VHSelect, 436

Views Options ... , 348

792

visRgn, 680-82, 686, 688, 717-19, 721

volume name, 349, 467, 499

von Neumann machine, 2

- w -

What to Find, 16, 19

while-do, 507, 517, 588, 590, 698

window, 3, 6, 12, 16-19, 30, 36-39,

44-46, 49-50, 109, 119, 188-89,

194, 196, 206, 209-11, 213,215,

217-18, 220-24, 226, 231-32,

342-43, 370, 374, 377, 646,650,

653-54, 656, 674-75, 683-85, 696,

711, 715, 718, 720-21, 725

Observe, 16, 20, 45, 51, 54, 106, 119-

20, 129, 134, 136, 139, 141, 331

Text, 7-8, 10, 16-18, 35, 44, 71,

74-76, 78-79, 82, 439, 469,

471-74, 480, 482, 488, 546-47,

578, 582-83, 638

with statement, 431-33

word processing, 3, 5, 532

WriteDraw, 192, 196-97, 206-7, 214,

216-220, 231, 233-36, 441, 444,

675, 700

Index

writeln, 8, 11, 32, 36, 47, 52-54, 56, 60,

69, 71, 74-79, 81-82, 85, 87,

89-90, 99, 107, 109-116, 124,

126-28, 464, 466-67, 471, 473-75,

480, 482, 485, 487-490, 497-501,

523-24

writeln(}, 76

writing to Pascal files, 464

- x -

XorRgn, 709, 716-17

Software diskette to accompan~
Proaramming in Macintosh~ and
THINKT.M Paseal
by Rink. Wisenbaker. and Vance

II
0 1995 by Prentice-Hall. Inc.
A Simon & Schuster Company
Englewood Cliffs. NJ 07632

•

DISK INCLUDED

ISBN 0 - 13-093873 - 4
90000

9 780130 938732

